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Abstract 25 

Captive breeding followed by re-introduction to the wild is a common component of 26 

conservation management plans for various taxa.  Unfortunately, captive breeding can 27 

result in morphological changes, including brain size decrease.  Brain size reduction 28 

has been associated with behavioural changes in domestic animals and such changes 29 

may negatively influence re-introduction success of captive bred animals.  Many 30 

marsupials are currently bred in captivity for re-introduction yet the impacts of 31 

captive breeding on brain size have never been studied in this taxa.  We investigated 32 

the impacts of a few generations (2-7) of captive breeding on brain volume in the 33 

stripe-faced dunnart (Sminthopsis macroura), and found that captive breeding in a 34 

relatively enriched environment did not cause any changes in brain volume.  35 

Nonetheless, we advocate that great care be taken to provide suitable husbandry 36 

conditions and to minimize the number of captive generations if marsupial re-37 

introduction programs are to be successful. 38 

 39 
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Introduction  43 

Captive breeding and re-introduction to the wild are major conservation and 44 

management techniques for a variety of threatened species (Blamford et al., 1996).  45 

Unfortunately, morphological and behavioural changes that may negatively impact on 46 

reintroduction success have been associated with captive breeding in various taxa 47 

(Kraaijeveld-Smit et al., 2006; Lewis and Thomas, 2001; Moore and Battley, 2006).  48 

In domestic species, a significant decrease in brain size (8-34%) compared with their 49 

wild ancestors is widespread and is associated with profound changes in behaviour 50 

(Kruska, 2005; Stahnke, 1987).  Captive breeding has been suggested to correspond to 51 

the early stages of domestication and has resulted in a brain size reduction of a similar 52 

magnitude in a number of species (e.g. Guay and Iwaniuk, 2008; Röhrs and Ebinger, 53 

1998).  This raises the possibility that long-term captive breeding could result in 54 

domestication and a loss of wild traits.  55 

 56 

Most current captive breeding programs try to minimize the number of generations in 57 

captivity to decrease the risk of adaptation to captivity and domestication (McPhee, 58 

2003).  Although brain size reduction has been reported over only a few generations 59 

in captivity (Runzheimer, 1969), it is not clear how many generations of captive 60 

breeding will result in a significant brain size reduction in different species. 61 

 62 

Many marsupials are listed as either endangered or critically endangered in Australia 63 

and captive breeding has been identified as a major strategy in the conservation and 64 

management of some of these species (e.g. Wilson et al., 2003). It is thus very 65 

important to determine the effects of captive breeding on the marsupial brain. 66 

 67 
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Here we investigate the impacts of short term captive breeding (up to 7 generations) 68 

on brain size in a small dasyurid marsupial, the stripe-faced dunnart (Sminthopsis 69 

macroura), to determine the suitability of captive breeding as a source of animals for 70 

marsupial reintroductions.   71 

 72 

Methods 73 

Stripe-faced dunnart 74 

The stripe-faced dunnart is a small dasyurid marsupial that is found in the semi-arid 75 

and arid zones of central and northern Australia (Morton, 1995).  Although little is 76 

known about the stripe-faced dunnart in the wild, it has been successfully maintained 77 

in long-term captive breeding colonies and has been studied extensively in captivity 78 

(Au et al., 2010; Menkhorst et al., 2007; Selwood and Woolley, 1991).  79 

 80 

Skeletal measurements 81 

We measured 79 dunnart specimens, 43 wild and 36 captive bred.  Only sexed 82 

specimens with unfractured skulls were considered.  For each specimen, we measured 83 

endocranial volume using size 12 lead shot (Guay and Iwaniuk, 2008; Iwaniuk, 2001).  84 

The skull was filled with lead shot through the foramen magnum.  While filling, the 85 

skull was repeatedly tapped to ensure good compaction of the shot.  Once the cavity 86 

was filled, the shot were decanted and weighed to the nearest 0.01g using a digital 87 

scale.  Measurement error was estimated to be below 1% by repeated measurement (5 88 

times) for a subset of the skulls (n = 38).  This is similar to the error reported by 89 

others (Iwaniuk, 2001; Marino, 1999).  To transform lead shot mass into endocranial 90 

volume, we established a calibration curve by measuring the mass of various volumes 91 
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of shot using a graduated syringe (volume [ml] = 0.1559 X lead shot mass [g]).  We 92 

also measured skull length (to the nearest 0.1mm using dial callipers). 93 

 94 

Captive specimens used in this study had been lodged with Museum Victoria and 95 

were derived from a captive colony maintained by Dr. L. Selwood at La Trobe 96 

University from 1985 to 2000 (Selwood and Cui, 2006).  Animals were kept as 97 

described by Woolley (1982) and were provided enrichment via running wheels and 98 

play balls in the cages and inclusion of live food (insects) in the diet.  For breeding, 99 

all animals received a similar treatment irrespective of temperaments and efforts were 100 

made to pair females with unrelated or distantly related males.  The dunnarts 101 

measured died between 1985 and 1992 and had been bred in captivity for 2 to 7 102 

generations.   103 

 104 

Statistical analysis 105 

We performed two types of analyses to compare brain volume between captive and 106 

wild specimens. 1) We used analysis of variance (ANOVA) to evaluate the effect of 107 

captivity and sex on absolute brain volume and 2) we used analysis of covariance 108 

(ANCOVA) to evaluate the impact of captivity and sex on brain volume relative to 109 

body mass.  The latter is necessary to control for potential changes in body size in 110 

captivity.  As brain size scales allometrically with body mass (Harvey, 1988),  we 111 

used body mass for our analyses of relative brain volume.  Not all specimens had 112 

attached body mass data and thus we repeated the analysis using skull length as a 113 

proxy for body size.  Body mass, skull length and brain volume were log10 114 

transformed before analysis. All statistical analyses were performed using PASW 115 

Statistic 18 (SPSS Inc.). 116 
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 117 

Results 118 

The average brain volume (± SE) of male and female dunnarts was 0.370ml (± 0.007) 119 

and 0.355ml (± 0.005) respectively.  There was no differences in absolute brain 120 

volume between wild and captive specimens (F1, 75 = 0.61, P = 0.436) or between the 121 

sexes (F1, 75 = 2.55, P = 0.114).  Brain volume was not correlated with body mass, but 122 

was highly correlated with skull length (Table 1).  The lack of correlation between 123 

brain volume and body mass is not unexpected because that correlation is stronger at 124 

higher taxonomic levels and is often not significant intraspecifically (Martin and 125 

Harvey, 1985; Pagel and Harvey, 1989).  There were no effects of captive breeding on 126 

brain volume relative to body mass or skull length, but female dunnarts had smaller 127 

brains relative to their mass than males (Table 1). 128 

 129 

Discussion 130 

Our measurements of stripe-faced dunnart brain volume are similar to those reported 131 

by Ashwell (2008).  We found no difference in either absolute or relative brain 132 

volume between wild dunnarts and dunnarts that had been bred in captivity for a small 133 

(2-7) number of generations.  In contrast, studies in various taxa discovered a 5-16% 134 

brain size reduction in captive bred individuals (Guay and Iwaniuk, 2008; Röhrs and 135 

Ebinger, 1998; Runzheimer, 1969).  Thus, we expected stripe-faced dunnarts that 136 

have been bred in captivity to have smaller brains compared to wild specimens.   137 

Although we did not detect any changes in overall brain volume in captive-bred 138 

dunnarts, we cannot discount the possibility that various parts of the brain may have 139 

been affected by captivity without causing changes in size of the whole brain (e.g. 140 
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Bennett, 1976).  Alternatively, 7 generations of captive breeding may be insufficient 141 

to cause brain size reduction in dunnarts. 142 

 143 

Any reduction in brain size and correlated behavioural changes could have important 144 

effects on captive bred marsupial reintroduction since, among species, smaller brain 145 

size has been associated with lower colonization success in new habitats (Sol et al., 146 

2008).  If marsupials show similar traits, brain size reduction could potentially explain 147 

poor reintroduction success of captive-bred marsupials (Short et al., 1992). 148 

 149 

Various strategies, including decreasing the number of generations in captivity 150 

(McPhee, 2003), and equalisation of family size (Allendorf, 1993), have been 151 

proposed to mitigate artificial selection in captivity.  Providing a captive environment 152 

as similar as possible to the natural habitat has also been advocated (Frankham, 2008).  153 

Often in a zoo setting, this takes the form of environmental and behavioural 154 

enrichment (Newberry, 1995).  155 

 156 

Overall, our results demonstrate that, in the case of the stripe-faced dunnart, captive 157 

breeding for a small number of generations does not cause brain size reduction. This 158 

suggests that captive breeding for reintroduction of marsupial mammals over a small 159 

number of generations may be appropriate and may not cause any significant 160 

reduction of overall brain size.  We suggest that, through various processes including 161 

environmental enrichment and low number of captive generation, efforts must be 162 

made to ensure that captive breeding does not result in selection for adaptation to 163 

captivity as this may reduce the success of breeding colonies and reintroduction 164 

programs in marsupials (Williams and Hoffman, 2009). 165 
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Table 1. Results of the ANCOVA analysis of the effects of sex and captivity on 260 
brain volume in stripe-faced dunnarts (Sminthopsis macroura).  Presented are 261 
the F-ratio and the P-value in parenthesis.  Values in bold are significant at the 262 
P < 0.05 level. 263 

 Covariates 

 Body Mass (g) Skull length (mm) 

df 1, 29 1, 71 
Captivity 0.28 (0.602) 2.14 (0.148) 
Sex 5.85 (0.022) 1.08 (0.302) 
Captivity x Sex 0.46 (0.504) 0.35 (0.556) 
Covariate 0.55 (0.463) 73.87 (<0.001) 

 264 
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