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Lanjouw and Schankerman (2004) proposed that patent quality is a key driver of R&D 
productivity but did not find supportive evidence for pharmaceuticals. This study revisits 
this hypothesis using OECD data for the period 1980-2000. It extends the literature in 
three ways: it develops new R&D price deflators to account for R&D price inflation; it 
employs two complementary indicators of patent quality, and applies dynamic panel data 
estimation techniques. When corrections are made for cross-sectional dependence, two 
major findings emerge: international inventor collaboration is an important indicator of 
patent quality, and there is strong support for the maintained hypothesis.   
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1 Introduction 
 
 

New medicines make an important contribution to wellbeing since they improve health 

care and the quality of life (Lichtenberg 2002). On the other hand, new medicines absorb 

considerable resources for their development. We know that the pharmaceutical industry 

is one of the most R&D intensive sectors in the world (OECD 2003) and that R&D 

costs have surged over the last decade (DiMasi et al. 2003). 

 

Cost-benefit analysis of business expenditure in R&D (BERD) in pharmaceuticals has 

taken centre stage in public policy.1 The emerging question of whether R&D resources 

are efficiently utilised seems warranted on two grounds. One relates to the regulation of 

pharmaceuticals in the form of prices controls, R&D tax credits and health care subsidies 

(Productivity Commission 2001; Bloom et al. 2002). This state of affairs may give rise to 

prices that deviate from consumer value (Richardson 2001; Johnson 2001). Further, 

corporate governance issues and externalities may add to incentives for over-investment 

in R&D (Nam et al. 2003; Jones and Williams 2000).  

 

Research productivity is a key indicator of the industry’s innovation performance. The 

literature has reported an R&D productivity slowdown since the 1980’s while BERD has 

grown rapidly.2 A critical question is whether the decline in the patents to BERD ratio - 

the standard measure of R&D productivity – is attributable to a falling inventive output 

per unit of R&D investment (i.e., ‘technological exhaustion’) or simply due to an increase 

in the demand for BERD (Lanjouw and Schankerman 2004). An answer to this question 

can guide management towards optimal R&D investment (Lee and O’Neill 2003) but 

                                                 
1 See, for example, Productivity Commission (2003) and PhRMA (2004). 
2 Lanjouw and Schankerman (2004) and Cockburn (2004) provide more details. 
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empirical analysis has grappled with two measurement problems. A major deficiency in 

the patents to BERD ratio is its neglect of changes in patent quality. One response to this 

problem is to utilise data on New Molecular Entities (NME’s) approved by the US Food 

and Drug Administration and arrive at an adjusted measure of R&D productivity that 

captures original innovation in medicines (Cockburn 2004). Another approach is 

Lanjouw and Schankerman (2004) who go the extra mile to incorporate added USPTO 

patent information and construct an index of patent quality that is quite independent of 

the patents to BERD ratio. In their theoretical model, Lanjouw and Schankerman (2004) 

show that patent quality is an important driver of R&D productivity. Yet, their empirical 

results raise doubts about the validity of the model for pharmaceuticals. 

 

The above literature, however, has largely focused on the output of innovation and 

little attention has been given to the measurement of real R&D investment. Empirical 

studies have relied on GDP price deflators to adjust for R&D price inflation. When 

combined with exchange rates data, these series yield the familiar GDP PPP’s indexes3 

that accompany the OECD STAN database. The convention has prevailed mainly due to 

the absence of alternative R&D price deflators. Yet, it is now established that the use of 

GDP PPP’s in structural analysis is highly problematic since they tend to miss sectoral 

variation in input prices and they ignore intermediate goods and services (Dougherty et al. 

2003; Cameron 1996; Jankowski 1993).  

 

This paper develops three new R&D price deflators for pharmaceuticals in the 

OECD. For consistency and parsimony, these new estimates derive from a methodology 

that relies on published data, economic theory and panel data econometric techniques. 

The paper utilises the new estimates to model research productivity and to re-examine 
                                                 
3 For more detail on the measurement of PPPs, see Schreyer and Koechlin (2002). 
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the view that R&D productivity has declined and that patent quality is a key driver of 

productivity. It extends the literature with the construction of two complementary 

measures of patent quality by utilizing USPTO patents data. In contrast with Lanjouw 

and Schankerman (2004), this study finds little evidence of a persistent decline in R&D 

productivity but patent quality is a significant predictor of productivity. Furthermore, 

international inventor collaboration is a key indicator of patent quality.   

 

This paper is organised in four sections. Section two outlines our methodology and 

presents the new R&D price deflators. The empirical assessment of the Lanjouw and 

Schankerman (2004) hypothesis follows in section three. The last section presents a 

summary and concludes.  

 

2 New R&D Price Deflators: Pharmaceuticals 
 

This section builds on Dougherty et al. (2003) to develop alternative R&D price deflators 

for the pharmaceuticals industry in the OECD. It extends the literature in three ways: (a) 

it derives new estimates of labour compensation in R&D; (b) it obtains industry-specific 

price indices for non-labour R&D costs, and (c) employs panel data econometrics to test 

whether the new R&D price deflators are consistent with economic theory. Overall, the 

approach facilitates a parsimonious construction of R&D price deflators, adopts an 

empirical methodology for the comparison of price deflators based on economic 

intuition and econometrics, and offers new insights on global trends in R&D price 

inflation and real R&D in pharmaceuticals.  
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2.1 Background 
 

Every international comparative study of innovation faces the challenge of estimating 

R&D price inflation in order to arrive at constant-price R&D expenditures. Ideally, this 

estimation requires information on price and weights for each R&D input category. Such 

a database is not currently available but its development has become a key objective of 

official statistical agencies such as the OECD4 and the National Science Foundation in 

the USA. However, the accomplishment of this objective would require substantial 

resources when considering the need for national industry-specific surveys.  

 

In the absence of R&D input-specific data, research has mainly relied on GDP price 

deflators with little attention been given to structural differences in R&D input prices.5 

There are two difficulties with the GDP PPP approach. First, industry output prices 

diverge considerably from aggregate GDP price levels and, thus, GDP PPP’s lead to 

misleading comparisons (Van Ark 1996). US data confirm this view for pharmaceuticals: 

the Biomedical R&D price index (BRDPI) indicates much stronger price growth than the 

implicit GDP deflator (Adams and Griliches 1996). O'Mahony and Van Ark. (2003) find 

that the labour cost structure varies considerably within the OECD. Second, output 

deflators exclude prices of intermediate goods and services that form a major part of 

R&D. Since these inputs are not traded internationally, standard GDP PPP’s can be 

grossly misleading if substantial structural differences exist between OECD countries 

(OECD 1994). Therefore, the GDP PPP convention has the potential to contaminate 

comparative analysis with a significant bias given the dominant role of labour 

compensation in BERD.  

 
                                                 
4 See, for example, Breitschopf and Grupp (2004). 
5 Freeman and Young (1965) is an early but rare inquiry.  
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We, thus, examine the possibility that an alternative to GDP PPP’s exists that 

maintains parsimony and continuity in data utilisation, and consistency with economic 

intuition. There is a high priority for new R&D price deflators for pharmaceuticals in 

view of the rise of the industry as one of the most innovative in the OECD and the 

increasing focus of public policy on health. A greater understanding of R&D price 

inflation and real BERD can guide public policy towards a resolution to the dilemma of 

sustainable drug innovation and access to new medicines (Dickson et al. 2003).  

 

Early attempts towards an alternative to the GDP deflator for the USA are Jaffe 

(1973) and Griliches (1984). They draw on the fact that labor costs represent the largest 

component of R&D expenditure to propose a weighted R&D price index that combines 

a labor costs index with a broader output deflator. The assumption here is that price 

changes of the output produced by the industry should reflect price movements of non-

labor R&D inputs. Given the lack of industry-specific value added deflators, they employ 

the GDP deflator as a proxy for the non-labor cost index. Dougherty et al. (2003) 

compare the Griliches-Jaffe approach with a fully developed R&D deflator that 

incorporates industry specific information on non-labor costs. They are able to show that 

the Griliches-Jaffe R&D deflators perform as well as the fully developed R&D PPP’s. 

The Dougherty et al. (2003) result suggests that detailed data on non-labor input prices 

may not be essential. 

 

Recent US studies have employed the National Institutes of Health Biomedical R&D 

Price Deflator (BRDPI), developed by the Bureau of Economic Analysis, as an 

alternative measure of R&D price index. Cockburn (2004) uses the BRDPI to correct for 

R&D price inflation but his adjusted series does not alter the established view that B&R 



 7

productivity has declined in the USA. Compared to the GDP price deflator, the BRDPI 

series is certainly an improvement since it more directly relates to medical R&D. 

Unfortunately, however, there is no information on the suitability of BRDPI as a proxy 

of R&D price inflation in the private sector. The series is an input price index for the NIH 

budget that is dominated by labour compensation of academic and Federal employees. It 

is weighted according to the pattern of expenditures supported by NIH awards (mainly 

basic R&D)6 and, thus, it would not necessarily track R&D price inflation in the private 

sector if we consider the Cockburn and Henderson (1997) finding that ‘research 

conducted in the public sector is managed and rewarded quite differently from work 

conducted in the private sector’ (p. 13). More importantly, an equivalent to BRDPI does 

not exist for other OECD countries.  

 

2.2 Methodology 
 
This section outlines the methodology we follow in developing three new R&D price 

deflators as Tornqvist (T) indices. We define an R&D price deflator j as follows:  
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where Pi,t is the price level of R&D input i in the current period t, Pi,0 is the price level 

in the base year (1995 in this study), wi,t and wi,0 are the expenditure weights of input i in 

the current and base year respectively and k is the number of R&D inputs considered.  

 

                                                 
6 We are indebted to James Schuttinga at the NIH for information on the BRDPI series. 
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Due to data limitations, it is a literature convention to assume that k=1 and use the 

general price level to approximate P. This is the GDP Deflator approach. Following 

Dougherty et al. (2003), we extend the existing literature in four respects. First, we 

expand the range of R&D inputs to consider the case of k=4. Based on SIRF (2001), the 

R&D cost structure comprises of four main elements: (1) labour costs; (2) laboratory 

consumables; (3) laboratory and office equipment, and (4) occupancy & office expenses. 

Second, given the lack of data on R&D labour costs, we utilise two alternative estimates 

of R&D unit labour costs. One is the average labour cost in the industry; as the standard 

measure in the R&D literature (Frantzen 2000). This forms the basis for our first R&D 

price deflator, RDP1. This crude measure is adjusted on the basis of relative value-added 

growth in pharmaceuticals to arrive at a second measure, RDP2. For comparison with 

Jaffe (1973) and Griliches (1984), we also consider the case of k=2 using the adjusted 

unit labour cost index with the GDP deflator as a proxy for non-labour R&D inputs. 

This generates a third R&D price deflator, RDP3.  

 

Third, we draw on economic foundations to subject the above price deflators to 

econometric scrutiny. Economic theory offers useful insights on the empirical behaviour 

of real R&D investment that derive from an optimal theory of the firm. We focus on the 

core economic intuition of a direct link between real BERD and the cost of R&D. 

Bloom et al. (2002) directly relate real BERD to the cost of R&D and show that a CES 

production function leads to the following relation: 

 

)2(32110 ititititit epayaraar ++++= −
 

where rit, yit, pit are the log of R&D expenditure, output and the user cost of R&D 

respectively and eit is an error term. The model predicts that real R&D investment 
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expenditure ought to relate positively to output and inversely to price; that is, α2>0 and 

α3<0. The authors adopt the GDP Deflator approach and are able to confirm the 

prediction at the national level. 

 

We depart from Bloom et al. (2002) in our approach to estimation. We choose to 

work with the model in first differences and focus on short-term dynamics for three 

reasons. First, it is unlikely that the three alternative price deflators are independent when 

considering, for example, that the labour costs index is by construction a major 

component of RDP1 RDP2 and RDP3. Hence, the three series could share a common 

trend that would make it difficult to distinguish between the three. Second, literature 

concerns about spurious regression cannot easily subside with the use of panel unit root 

and residual-based cointegration tests given the deficiencies in existing tests.7 Third, there 

is evidence that first-difference estimators are less likely to suffer from spatial correlation 

bias (Haris et al. 2000). Hence, all panel series in this study are in first differences.  

 

Finally, we apply a variety of econometric techniques to examine whether the three 

new R&D price deflators, as well as the GDP deflator, are consistent with the Bloom et 

al. (2002) model. One option is the feasible GLS estimator. Another is the dynamic panel 

data estimator of Arellano and Bover (1995). Third, given that the standard assumption 

of cross-sectional independence is often rejected, we employ spatial econometrics to 

obtain consistent estimates of standard errors. We employ the Conley (1999) and Driscoll 

and Kraay (1998) GMM estimators that nonparametrically correct for cross-sectional 

                                                 
7 There are two major issues with standard panel unit root tests. First, they assume cross-sectional 

independence; this seems implausible as countries often share common shocks (Moon and Perron 2004). 
Second, they impose homogeneity since the null hypothesis is that, on average, all cross-section units 
contain a unit root (Strauss and Yigit 2003 and Taylor and Sarno 1998). 
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correlation. The former uses a weighting matrix based on economic distance while the 

latter is robust to general forms of cross-sectional dependence.8 

 

 

2.3 Data 
 

This study utilises OECD data for fifteen OECD countries9 over the period 1980-

2000.  Towards an index of R&D unit labour costs, we utilise two alternative measures. 

The OECD STAN estimates of total labour compensation and total employment in the 

industry as a whole provide the basis for the first measure, LCP1. As an alternative, we 

exploit value added data to adjust LCP1 and arrive at a second estimate of R&D unit 

labour costs, LCP2. We conjecture that the average salary of R&D personnel has a 

premium component that moves with above average growth in value added.10 

 

For the non-labour R&D price indices of laboratory consumables, laboratory and 

office equipment, and occupancy & office expenses, we again utilise OECD STAN 

estimates of implicit value added deflators for the following industries respectively: 

‘chemicals and chemical products’ (code 2400); ‘electrical & optical equipment’ (code 30-

33), and ‘business sector services’ (code 50-74).11 The OECD ANBERD database is also 

                                                 
8In STATA, the XTABOND2 procedure was used for System GMM, written by Roodman (2005). 

Professor Conley provided spatial OLS and GMM code  (gsbwww.uchicago.edu/fac/timothy.conley). 
RATS was used to compute Driscoll and Kraay (1998) GMM estimates using code written by Steve 
Green (www.estima.com). 

9 These are Australia, Canada, Belgium, Denmark, Finland, France, Germany, Italy, Japan, Netherlands, 
Norway, Spain, Sweden, the UK and the USA. The Appendix provides a detailed account of data 
sources and variable definitions. 

10 That is, LCP2 = LCP1 *(1+g) where g is the value added growth differential of growth in a particular 
country and the mean growth rate in the five largest OECD players: France, Germany, Japan, the UK 
and the USA.  

11 While the BERD share of labour costs varies across countries and over time, we fix the non-labour share 
of specific non-labour R&D inputs on the basis of SIRF (2001). Due to lack of data, we take the mean of 
France, Germany and the UK for Belgium, the mean of Germany and Sweden for Denmark, Sweden’s 
share for Finland and Norway, and the mean of France and Germany for Italy, Netherlands and Spain. 
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used to obtain estimates of BERD. Note that we use per capita values for expenditures 

and output data. 

 

2.4 Results 
 

We proceed to test whether the above four price deflators and their corresponding 

measures of real BERD conform to the predictions of (2). We begin with feasible 

generalized least squares (FGLS) estimation to correct for AR (1) autocorrelation within 

panels, and contemporaneous cross-sectional correlation and heteroscedasticity across 

panels. Part (A) of table 1 reports the results for each of the four R&D price deflators 

when the autoregressive component is ignored. The first column of the table indicates 

that the GDP Deflator is not a good proxy as an R&D price deflator for pharmaceuticals 

since it has the wrong sign. Surprisingly, the industry-wide unit labour cost index also 

results in a coefficient estimate for price that has the wrong sign. The adjusted labour 

cost index, on the other hand, leads to a negative and statistically significant coefficient as 

expected. Further, a similar result is obtained when the Jaffe-Griliches approach is 

employed. Consistent with evidence in Dougherty et al. (2003), it indicates the critical role 

of R&D labour costs.12  

 

- Table 1 about here - 

 

At this stage, it seems prudent to treat the above results as tentative and examine the 

view that these may be due to spurious regression or to lack of dynamic estimation. On 

the first issue, it is important to test for the empirical validity of the cross-sectional 

independence assumption, given the growing literature emphasis on the geography of 

                                                 
12 Of course, mismeasurement of the non-labor price deflators cannot be excluded as a source of this. 
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innovation; i.e., clusters and R&D spillovers.13 Table 1 reports the Breusch-Pagan LM 

test statistic of cross-sectional independence (BP) using the FGLS residuals (Greene 

2000). The null hypothesis is rejected in the last two regressions. This is in line with 

Moon and Perron (2004) who question the realism of the cross-sectional independence 

assumption. Thus, the results in table 1 are suspect, for standard errors are inconsistent 

in the presence of spatial correlation (Driscoll and Kraay 1998).  

 

In order to correct for spatial correlation, we first employ the Conley (1999) OLS 

estimator. This approach relies on prior knowledge of the structure of temporal 

dependence but applies a nonparametric correction that accounts for economic distance 

when measured with error. We exploit the CEPII measure of distance between major 

cities14 to obtain projected coordinates as in Conley (1999). The spatial OLS estimation 

results are summarised in part (B) of table 1 and are similar to those obtained in part (A), 

though the standard errors are now larger than the standard OLS estimates.  

 

Next, we consider the complete model in (2) but ignore, for the time being, spatial 

dependence. We adopt the dynamic panel data estimation (DPD) approach pioneered by 

Arellano and Bond (1991) and fully developed by Arellano and Bover (1995). The 

procedure, known as the System GMM panel estimator, exploits information on all series 

to obtain separate instruments for each lag and each time period, and then uses GMM to 

weight them. Here, we allow for the lagged dependent variable to appear as an 

explanatory factor and treat both ∆y and ∆p as exogenous. Table 2 reports robust two-

step system GMM estimates of (2). Although asymptotically more efficient, the two-step 

GMM estimator tends to produce standard error estimates that are severely downward 
                                                 
13 On the geography of R&D, see Kyle (2004) for pharmaceuticals, and Simmie et al. (2002) and Conley and 

Ligon (2002) for other industries. 
14 This is variable ‘distwces’ available at http://www.cepii.fr/anglaisgraph/bdd/distances.htm  
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biased (Arellano and Bond 1991). We account for this with a finite-sample correction as 

in Windmeijer (2005) who shows that the correction makes the twostep robust GMM 

estimator more efficient than the onestep estimator. Table 2 also reports the Hansen J 

test of over-identifying restrictions15 and the Arellano-Bond tests (AB) for AR(1) and  

AR(2) applied to the first-difference equation residuals. 

 

- Table 2 about here - 

 

The results show that the ∆rt-1 coefficient is significant which is consistent with 

previous evidence of persistence in R&D.16 Note, however, the coefficients of both ∆y 

and ∆p are no longer statistically significant, although the latter now exhibits the right 

sign. Also, the AB test results do not question the validity of the model specification.17 

 

In the context of dynamic panel estimation, we wish to know whether the results in 

table 2 are spurious. Given the assumption of cross-sectional dependence is violated in 

table 1, we press on with GMM estimation that is robust to spatial correlation. We 

employ two spatial GMM estimators: Conley (1999) and Driscoll and Kraay (1998). The 

results in table 3 again indicate that both the GDP deflator and the industry-wide unit 

labour cost index are not appropriate as an R&D price index. Conversely, the R&D–

specific unit labour cost index yields an R&D price deflator (i.e., RDP2) that is consistent 

with the predictions of model (2). Further, the results provide support for the Jaffe-

                                                 
15 We use the ‘collapse’ sub-option in ‘xtabond2’ that creates one instrument per variable and lag distance 

and excludes instruments for each time period. This is in order to avoid a bias that arises when the 
number of instruments approaches the number of observations (Bond 2002).  

16 See Achilladelis and Antonakis (2001). Helfat (1994) discuss the sources of persistence.  
17 For robustness, we also obtained system GMM estimates using a sub-sample that excludes the USA to 

test for sensitivity to a major player. The results are almost identical to those in tables 1-3 and are 
available upon request. 
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Griliches approach of using the GDP deflator as a proxy for non-labour R&D costs, as 

in Dougherty et al. (2003).18  

 

- Table 3 about here - 

 

The analysis of R&D price inflation concludes with an illustration that compares the 

GDP deflator and RDP2. Figure 1 shows that the two deflators have followed different 

paths in the USA. In fact, the USA is the only OECD country where the R&D price 

deflator has grown faster than the GDP deflator. Figure 1 also depicts the evolution of 

the two series in other OECD countries relative to those in the USA respectively. It is 

discernable that the USA has experienced lower general price inflation than other OECD 

counties, except Japan and Germany. On the other hand, most OECD countries exhibit 

substantially lower R&D price inflation in pharmaceuticals than in the USA, especially 

Japan, Australia and Germany. Most surprising, however, is the case of the UK with the 

highest average R&D price inflation in the OECD.  

 

- Figure 1 about here – 

 

3 Patent Quality and R&D Productivity 
 

 

Numerous empirical studies have observed an alarming trend in the productivity of 

business research in pharmaceuticals. Lanjouw et al. (1998) cite evidence of a persistent 

decline in R&D productivity in several OECD countries. Lanjouw and Schankerman 
                                                 
18 Another potential source of spurious regression may be that real BERD, columns 3-4 in tables 1-3, 

inversely relates to the R&D price deflator by construction. We re-estimate (2) with nominal BERD (US$) 
as the dependent variable and test whether the ∆pt coefficient is <1. The Conley (1999) GMM estimates 
(s.e.) for ∆pt are 1.47 (0.12), 1.29 (0.08), 0.75 (0.05) and 0.01 (0.03) when the GDP deflator, RDP1, RDP2 
and RDP3 are used respectively. 
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(2004) utilise patents data at the firm level over the period 1980-1993 and report a ‘sharp 

decline in the patents to R&D ratio’ for the USA. Using US data on new molecular 

entities, Cockburn (2004) also observes a ‘shrinking’ R&D productivity over the period 

1996-2002. This trend has been attributed to a surge in R&D costs (DiMasi et al. 2003) 

associated with a technological change in the conduct of R&D (Cockburn 2004). It is, 

however, puzzling that R&D investment expenditures have grown rapidly despite the 

apparent decline in R&D productivity. 

 

As a first step to understanding this productivity puzzle, figure 2 offers a visual 

inspection of the patents to BERD ratio using both the GDP deflator and RDP2. In the 

USA, the decline in R&D productivity reported by Lanjouw and Schankerman (2004) is 

evident but this trend has been reversed in the late 1990s. Also, when the RDP2 price 

deflator is used to adjust for inflation, the decline looks less alarming and R&D 

productivity in the late 1990s seems to have reached record high levels. The pattern is 

similar in France and Germany but the recovery of the ratio is less pronounced. Japan 

and the UK, however, have not recovered from the secular decline in R&D productivity. 

Further, there is no visible trend in Australia and Sweden but both, Canada included, 

have seen a sharp rise in R&D productivity. Last, a more careful inspection reveals that 

the R&D productivity growth rate has declined in the late 1990s in Australia, Canada, 

Denmark, Finland, Spain, Japan and the USA but has increased sharply in Germany. 

 

- Figure 2 about here – 

 
3.1 An Empirical Model 
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For greater intuition, we again draw on economic theory. Lanjouw and Schankerman 

(2004) have provided a formal empirical model of R&D productivity. It accounts for 

change in the quality of patents, q, and market power as key determinants of R&D 

productivity. It also allows for ‘technological exhaustion’. The authors show that the 

theoretical model gives rise to the following empirical specification:  

 

)3()( itititit vsqterp +γ+β+α=
 

where prit is the log of R&D productivity, e(t) is the log of R&D elasticity, qit is the log 

of expected quality of inventions, sit is the log of sales as a proxy for market power and vit 

is normal, independently and identically distributed error. Technological exhaustion is 

captured by the αe(t) term. The model predicts that α, β, γ <0. That is, an increase in 

patent quality or market power would provide a motivation for a reduction in the number 

of patents per R&D dollar spent. As an example of the role patent quality plays in the 

model, consider the case of greater R&D emphasis on blockbuster drugs (Grabowski 

2002). According to (3), patent quality would increase and productivity would fall. 

 

3.2 Data  
 

The empirical estimation of (3) faces a major hurdle: the measurement of patent 

quality and R&D productivity. Various measures of patent quality have been proposed 

including citations, claims and renewals. Yet, there are drawbacks with these measures. 

For example, patent citations and claims may actually be associated with increased 

competition and litigation and, thus, imply reduced market value (Bosworth et al. 2003). 

Alternatively, they may simply relate to growth in the practice of patent citation (Hall et 

al. 2001). 
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In order to overcome some of these limitations, Lanjouw and Schankerman (2004) 

utilise several indicators to arrive at a single patent quality index. However, the multi-

dimensional index of Lanjouw and Schankerman (2004) remains a single all-

encompassing index. In this study, we utilise USPTO data on applications and patents 

granted to arrive at two distinct but complementary indicators of patent quality.  

 

The first measure, q1, builds on the concept of patent grant intensity (i.e., the ratio of 

patents granted in the current year and patent applications in the last four years). Given 

that the patent grant lag is about 2 years (Hall et al. 2001), this definition is not likely to 

suffer from the ‘truncation problem’.19 The concept is a baseline indicator of patent 

quality, provided that the US Patents Office preserves its patent assessment standards 

over time. However, this assumption has been severely criticised in recent literature. 

Sanyal (2002) and Jaffe and Lerner (2004) have argued that the US Patent Office has 

founded increasingly difficult to distinguish between genuine innovation and imitation. 

In order to account for this possibility, we adapt the approach taken by Hall et al. (2001): 

we scale the grant intensity and express it as a ratio to the mean grant intensity of all 

OECD patents in the same year. On the assumption that the processing of patent 

applications by the USPTO is free of a country bias, the above criticism does not affect 

our first measure of patent quality.  

 

The second, q2, is the number of patents granted to inventors residing in different 

OECD countries as a share of total patents granted to a specific country. This measure is 

based on the literature of innovation that suggests that research collaboration and formal 

                                                 
19 Visual inspection of the q1 series supports this view since there is no apparent downward trend in the 

grant intensity ratio at the end of the sample period.  
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knowledge networks yield considerable value (Sheehan and Messinis 2003). Adams and 

Marcu (2004) explore in some detail the role of Research Joint Ventures (RJVs) in the 

USA and find that RJVs make an important contribution to innovation.20 

 

In measuring R&D productivity, the challenge has often involved the choice between 

patent applications and patents granted. Although the latter better relates to the concept 

of innovation output, it suffers from the ‘truncation problem’: counts of patents granted 

become available some years after patent applications data. On the other hand, the use of 

patent applications towards a measure of R&D productivity may lead to a loss of 

valuable information if the disparity between patents granted and patent applications 

contains information on patent quality. In this study, we minimize the truncation 

problem with a four-year lag between USPTO data collection and our last observation. 

 

Finally, empirical research on R&D productivity has paid little attention to the 

measurement of R&D price inflation and, by extension, to real R&D expenditure.21 Next, 

we utilise the new R&D price deflators to test the validity of the Lanjouw and 

Schankerman (2004) hypothesis. 

 

3.3 Results 
 

We begin with part (A) of table 4 that presents the system GMM estimation results. 

Note, the Davidson and MacKinnon (1993) exogeneity test statistic (DM) advises against 

                                                 
20 Perhaps, it may not be apparent how the benefits of collaboration reflect patent quality. This can be 

accommodated with a broad definition of patent quality that incorporates both technical innovation and 
market value, as in Lanjouw and Schankerman (2004). 

21 Most of the evidence on RD productivity is based on the practice of using GDP PPP’s to account for 
inflation; Cockburn (2004) is an exception. This debate seems like a repeat of the early 1980s, until Hutt 
(1982) was able to show that the rapid growth in BERD was mainly due to R&D price inflation and real 
BERD had actually declined. 
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the use of ∆q1
t as an exogenous variable, precisely the approach taken by Lanjouw and 

Schankerman (2004). The dynamic panel data coefficient estimates are of the right sign 

for both ∆q1
t and ∆st but the former is not statistically significant.  

 

This finding is consistent with the evidence in Lanjouw and Schankerman (2004). We 

proceed to investigate whether this is due to spatial correlation since the BP statistic 

clearly rejects the assumption of cross-sectional independence. This is confirmed when 

we account for spatial dependence in part (B) of table 4. Here the ∆q1
t coefficient is 

statistically significant and negative as expected. In fact, both patent quality and sales 

seem to be important predictors of R&D productivity as Lanjouw and Schankerman 

(2004) envisaged. We obtain similar results when both measures of patent quality are 

utilised in table 5. Again, system GMM estimation suggests that none of the two measures 

are important predictors of R&D productivity.22 When, however, we employ spatial 

GMM methods, the importance of both patent quality and market power is confirmed. 

Particularly interesting is the fact that international inventor collaboration seems to be a 

crucial indicator of patent quality that has an independent effect on R&D productivity. 

 

Finally, we extend the empirical analysis to examine the hypothesis of ‘technological 

exhaustion’. That is, we wish to test whether α <0 in (3). When the model is expressed in 

first differences, the test translates into the null of the constant being greater or equal to 

zero. Due to space limitations, the estimation results are not reported here but they are 

available upon request. They show that the null hypothesis cannot be rejected.  

 

                                                 
22 Note that the ∆q1t coefficient becomes significant when we allow the lagged dependent variable to be a 

predictor but the ∆q2t coefficient remains insignificant. The results are available upon request. 
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4 Summary and Conclusions 
 

Innovation is fundamental in health care. By investing heavily on R&D, the 

pharmaceutical industry plays a leading role in the discovery of new medicines. Given the 

critical role of health care in welfare and public finance, cost-benefit analysis of the 

industry’s innovation performance can advance understanding of the value of medical 

innovation and can lead to a better public health policy. This is particularly important in 

the light of a growing literature questioning the efficacy of R&D in pharmaceuticals. 

 

This paper is an OECD comparative study of the patents to BERD ratio as a key 

indicator of R&D productivity in pharmaceuticals. The paper has drawn on economic 

intuition and employed dynamic panel data estimation techniques to develop new R&D 

price deflators to account for price inflation and estimate real R&D business expenditure. 

Further, it has utilised US patents data to measure R&D productivity and develop two 

complementary indicators of patent quality. In the process, this study has dealt with key 

measurement issues such as the ‘truncation problem’ and the possibility of an 

institutional shift towards lower assessment standards by the US Patent Office.  

 

The evidence presented in this study of pharmaceuticals is as follows. First, the GDP 

deflator was found to be inconsistent with the theory of R&D investment. Industry-wide 

data on labor compensation also resulted in R&D price deflators that did not conform to 

economic intuition. Second, both the UK and the USA have witnessed record high R&D 

price inflation when compared to other OECD nations. Third, international inventor 

collaboration is an important element of patent quality. Fourth, there is little evidence of 

a long-term decline in R&D productivity. Fifth, patent quality and market power are key 

drivers of productivity and, thus, the Lanjouw and Schankerman (2004) hypothesis is 
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consistent with the data. Finally, cross-sectional dependence is pervasive and the 

employment of spatial GMM estimators is critical in the modeling of R&D productivity. 
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Table 1. R&D Price Inflation and Real BERD: Feasible GLS and Spatial OLS 
 

 GDP RDP1 RDP2 RDP3 

 (A) Feasible GLS 

∆yt 0.675 0.667 0.642 0.649 

 (0.022)** (0.019)** (0.028)** (0.029)** 

∆pt 0.235 0.093 -1.118 -1.127 

 (0.083)** (0.055) (0.054)** (0.059)** 
BP 130.1 100.7 138.4* 157.6** 
 (B) Spatial OLS (Conley 1999) 

∆yt 0.681 0.681 0.826 0.811 

 (0.043)** (0.056)** (0.021)** (0.031)** 

∆pt 0.714 0.356 -1.031 -0.972 

 (0.203)** (0.180)** (0.075)** (0.127)** 
GDP is the GDP price deflator, RDP1 is an R&D deflator based on total labor costs in the industry, RDP2 is 
based on R&D labor costs and RDP3 is based on RDP2 with GDP as a proxy for the non-labor cost index. 
Standard errors are in parentheses. Respectively, ** and * denote significance at 1% and 5% level. BP is the 
Breusch-Pagan test of cross-sectional independence distributed χ2(105). 
 
 

Table 2. Real BERD: DPD System GMM (Arellano and Bover 1995) 

 GDP RDP1 RDP2 RDP3 

rt-1 0.884 0.941 0.924 0.850 

 (0.086)** (0.067)** (0.103)** (0.115)** 

yt 0.174 0.098 0.126 0.217 

 (0.123) (0.090) (0.133) (0.148) 

pt -0.090 -0.049 -0.066 -0.114 

 (0.072) (0.051) (0.071) (0.078) 

Hansen J 13.45 13.45 13.28 13.42 
AB AR(1) -2.83** -2.95** -2.77* -2.65* 
AB AR(2) -1.46 -1.55 0.09 0.31 
GDP is the GDP price deflator, RDP1 is an R&D deflator based on total labor costs in the industry, RDP2 is 
based on R&D labor costs and RDP3 is based on RDP2 with GDP as a proxy for the non-labor cost index. 
Standard errors are in parentheses. Respectively, ** and * denote significance at 1% and 5% level. The Hansen 
J test is distributed χ2(k) where k is the over-identifying restrictions. Given our small sample, we used only 15 
instruments. These are lags 2-13 of rt , ∆yt and ∆pt in the first difference equation, and ∆rt in the levels 
equation.  
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 Table 3. R&D Price Inflation and Real BERD: Spatial GMM 
 

 (A) Conley (1999) (B) Driscoll and Kraay (1998) 

 GDP RDP1 RDP2 RDP3 GDP RDP1 RDP2 RDP3 

∆rt-1 0.109 0.062 0.179 0.135 0.147 0.164 0.251 0.247 

 (0.025)** (0.018)** (0.011)** (0.015)** (0.071)* (0.068)* (0.064)** (0.062)**

∆yt 0.672 0.667 0.769 0.717 0.644 0.639 0.762 0.757 

 (0.012)** (0.016)** (0.008)** (0.009)** (0.037)** (0.031)** (0.064)** (0.072)**

∆pt 0.465 0.424 -0.833 -0.564 0.521 0.225 -1.155 -1.108 

 (0.092)** (0.064)** (0.024)** (0.028)** (0.118)** (0.171) (0.115)** (0.134)**

Hansen J 2.43 2.35 2.23 2.21 5.34 7.72 8.03 8.31 
GDP is the GDP price deflator, RDP1 is an R&D deflator based on total labor costs in the industry, RDP2 is based on R&D labor 
costs and RDP3 is based on RDP2 with GDP as a proxy for the non-labor cost index. Standard errors are in parentheses while ** and 
* denote significance at 1% and 5% level respectively. The Hansen J test is distributed χ2(k) where k is the number of over-identifying 
restrictions. Here, k =5 since eight instruments were used: lags 2-3 of ∆rt and growth in gross profit (i.e., profit is defined as value 
added minus labour compensation), ∆yt, ∆pt as well as two lags of growth in sales, ∆st.  
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Table 4.  Patent Quality and Real R&D Productivity:  
 System GMM and Spatial GMM 

 (A) System GMM (B) Spatial GMM 

 
Arellano and Bover 

(1995) 
Conley (1999) 

 
Driscoll and Kraay 

(1998) 

 RDP1 RDP2 RDP1 RDP2 RDP1 RDP2 

∆q1
t -0.159 -0.174 -0.259 -0.301 -0.262 -0.311 

 (0.116) (0.118) (0.016)** (0.021)** (0.063)** (0.062)**

∆st -2.912 -2.908 -0.428 -0.416 -0.505 -0.478 

 (0.059)** (0.059)** (0.052)** (0.055)** (0.054)** (0.058)**
S 0.09 0.17     

DM (∆qt) 34.70** 29.95**     

BP 295.7** 283.9**     

Hansen J 12.26 12.13 3.07 3.07 7.07 5.76 

AB AR(1) -1.02 -1.08     

AB AR(2) 1.46 1.57     
GDP is the GDP price deflator, RDP1 is an R&D deflator based on total labor costs in the industry, 
RDP2 is based on R&D labor costs and RDP3 is based on RDP2 with GDP as a proxy for the non-labor 
cost index. Standard errors are in parentheses. ** and * denote significance at 1% and 5% level 
respectively. In (A), the DM test of exogeneity is distributed χ2(1) in an IV regression with lags 1-2 of ∆q1t 
and ∆st used as instruments. S is the Sargan test of over-identifying restrictions. The Breusch-Pagan (BP) 
test of cross-sectional independence is χ2(105). In the system GMM, 15 instruments were used: lags 1-13 
of pq1t and ∆st in the first difference equation, and ∆pq1t in the levels equation. In (B) eight instruments 
were used: lags 1-3 of ∆q1t , lags 2-3 of growth in value added, ∆yt, and growth in gross profit, and ∆st. 
Hence, the Hansen J test is distributed χ2(13) in part (A) and χ2(6) in part (B). 
 



 27

 

Table 5.  Patent Quality, Collaboration and Real R&D Productivity: 
 System GMM and Spatial GMM 

 (A) System GMM (B) Spatial GMM 

 
Arellano and Bover 

(1995) 
Conley (1999) 

 
Driscoll and Kraay 

(1998) 

 RDP1 RDP2 RDP1 RDP2 RDP1 RDP2 

∆q1
t -0.143 -0.161 -0.308 -0.346 -0.296 -0.342 

 (0.131) (0.135) (0.016)** (0.017)** (0.053)** (0.053)**

∆q2
t -0.271 -0.269 -0.182 -0.196 -0.188 -0.177 

 (0.188) (0.186) (0.016)** (0.021)** (0.040)** (0.042)**

∆st -3.013 -3.010 -0.398 -0.386 -0.478 -0.453 

 (0.076)** (0.072)** (0.047)** (0.049)** (0.052)** (0.060)**
S 0.11 0.03     

DM (∆q1t) 23.59** 20.12**     

DM (∆q2t) 0.85 0.85     

BP 237.7** 230.2**     

Hansen J 12.77 12.45 2.97 2.98 7.99 6.27 

AB AR(1) -0.68 -0.76     

AB AR(2) 1.77 1.80     
GDP is the GDP price deflator, RDP1 is an R&D deflator based on total labor costs in the industry, 
RDP2 is based on R&D labor costs and RDP3 is based on RDP2 with GDP as a proxy for the non-labor 
cost index. Standard errors are in parentheses. ** and * denote significance at 1% and 5% level 
respectively. In (A), the DM test of exogeneity is distributed χ2(1) in an IV regression with lags 1-2 of 
∆q1t,  ∆q2t and ∆st used as instruments. S is the Sargan test of over-identifying restrictions. The Breusch-
Pagan (BP) test of cross-sectional independence is χ2(105). In the system GMM, 15 instruments were 
used: lags 1-12 of pq1t, ∆pq2t and ∆st in the first difference equation, and ∆pq1t in the levels equation. In 
(B) nine instruments were used: lags 1-3 of ∆q1t , lags 2-3 of growth in value added, ∆q2t, ∆yt, and growth 
in gross profit, and ∆st.. Hence, the Hansen J test is distributed χ2(13) in part (A) and χ2(6) in part (B). 
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Appendix: Data Description 
 
Labour Compensation 
OECD Health Data is the source of Australian data for the period 1980-1995. Unpublished Australian 
Bureau of Statistics (ABS) data on ‘wages and salaries’ are used to extend the sample to 2000. The ABS 
data, however, combines the ‘Medicinal and Pharmaceutical Product Manufacturing’ industry (code 2543) 
with ‘Pesticides’ (2544) and only since 2000-01 the two are separated. Based on the 2000-01 estimates, we 
adjust the wages and salaries figures by a factor of 0.902. The STAN series of ‘labour compensation’ are 
used for all other countries. For Spain, data are not available during 1980-1985 and we extrapolate on the 
basis of growth in labour costs in France. All series for United Germany are the result of splicing in 1991 
that extends the STAN data on the basis of the West Germany data.  
 
Employment 
The OECD Health Data provide Australian data for the period 1980-1992 and ABS covers the period 
1996-2000. We resort to linear interpolation for missing values. STAN is the source of total employment 
data. Given these are not available for the UK, we use total number of employees as a proxy. For Belgium 
they are only available for the period 1994-2000. We extrapolate the Belgian data back to 1980 on the basis 
of yearly growth in France.  
 
R&D Business Expenditure 
The OECD ANBERD database is the source for most OECD-15 countries. A change of classification 
from ISIC Rev. 2 (code 3522) to ISIC Rev 3 (code 2423) in ANBERD 2001 apparently maintains 
compatibility for pharmaceuticals. Rev 2 of ANBERD 2001 is the primary source for the period 1973-1986 
and Rev 3 for the period since. Due to data limitations, there are some exceptions. We draw more 
extensively from ANBERD 2001 Rev 2 for Germany and Italy for the period 1980-94. Belgium data for 
1980-1986 come from OECD Health Data 2003 and are only available bi-annually up to 1985; we linearly 
interpolate to complete the series. For Germany, there is a break in the series due to the unification of 
Germany. We used 1991-99 data for ‘UDEU’ (ANBERD code) in order to arrive at a (multiplicative) 
spliced series with 1991 as the base year. Thus, ‘Germany’ stands for Unified Germany.  
 
R&D Cost Structure 
The SIRF, Hay Group, Ernst &Young (2001) study covers nine countries. We use the mean of the France 
and Germany estimates as a proxy for Italy, Netherlands and Spain, the mean of France, Germany and the 
UK as a proxy for Belgium, the mean of Germany and Sweden for Denmark and the Sweden estimate for 
Finland and Norway. 
 
In order to allow the R&D input cost shares to vary across nations and over time, we also estimate R&D 
business enterprise personnel. The OECD Main Science and Technology Indicators database is the primary 
source for the period 1987-2000. We supplement this source with data from PhRMA (2003) and DiMasi et 
al. (2003) to obtain estimates for the USA. Missing observations have been filled on the basis of the mean 
annual growth rate in France and Germany for Belgium, Italy and Netherlands; the mean growth rate of 
France and USA for Canada and the UK, and the growth rate in Sweden for Denmark and Finland. For 
the period 1980-1986, we exploit information on the R&D personnel share of total employment in the 
industry and changes in the ratio of BERD to Value Added to expand the R&D personnel series. 
 
National Sales and Sales Price Index  
This is the sum of ‘total expenditures on pharmaceuticals & other non-durables’ (OECD Health Data 2004) 
and net exports (OECD STAN). When available, the annual growth rate of ‘pharmaceutical sales’ (Health 
Data 2004) is used to fill gaps in the former (Italy in 1980-1987, and Norway and Spain in 1998-2000). 
Missing observations for Belgium, France, Japan and the UK are filled by interpolation/ extrapolation on 
the basis of annual growth rates in adjacent data points. Regrettably, we cannot control for re-exports; i.e., 
imported goods exported without further transformation. The ‘total expenditures on pharmaceuticals & 
other non-durables’ price index (OECD Health Data 2004) was used. Missing data are filled on the basis of 
the mean of growth rates of France and Germany for Belgium, the mean of Germany and Switzerland for 
Italy, the mean of Denmark and Sweden for Norway and the mean of France and Italy for Spain. Missing 
observations in France (1981-1984 and 1986-1989) and Japan (1998-2000) are filled by interpolation and 
extrapolation respectively. 
 
Value Added Implicit Price Deflators 
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Implicit value added deflators are derived from value-added estimates and value-added volume indices 
VAPi,t = 100*VALUi,t /(VALKi,t*VALUi,95) where VALUi is the STAN code for value added in industry i 
at national currency units, VALKit is the value added volume index at time t and the VALU95 is value 
added in 1995, the base year. Note that VALK data are only available for Canada, Denmark, France, 
Norway and the UK. VALK data for chemicals industries are used for other countries. These data were 
not available for Australia and Norway. We used the mean of VAP estimates of Canada and the USA for 
the former and the pharmaceutical industry deflator for the latter. Also, we extrapolated to fill data gaps for 
France (1980-1991), Spain (1980-1994) and Sweden (1980-1992) on the basis of annual growth rates in 
Belgium, Italy and Finland respectively.  
 
USPTO Patents  
USPTO patents data were collected in early 2005 at http://patft.uspto.gov/netahtml/search-adv.htm. The 

pharmaceutical industry was defined to comprise of technology classes 424 and 514. Patent data for the 
USA is the sum of patent counts in individual US states. The inventor collaboration series was defined as 
the number of patents granted for which at least on of the inventors lived in one of the other OECD 
countries in the sample plus Switzerland, given the status of the latter as a leading player Due to 
limitations in the USPTO search engine, only the twenty eight leading US states were considered as 
international locations of patent collaboration for non-US countries. These US states are as follows: AL, 
AZ, CA, CO, CT, DE, FL, GA, IL, IN, LA, MD, MA, MI, MN, MO, NH, NJ, NY, NC, OH, PA, TN, 
TX, UT, VA, WA, WI. 




