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Abstract 

Wireless communication devices are currently enjoying increasing popularity and 

widespread use. The constantly growing number of users, however, results in the shortage of the 

available spectrum.  Various techniques have been proposed to increase the spectrum efficiency of 

wireless systems to solve the problem. Multiple Input Multiple Output (MIMO) is one solution that 

employs multiple antennas at the transmitter and receiver. The MIMO algorithms are usually highly 

complex and computationally intensive. This results in increased power consumption and reduced 

battery lifespan. This thesis investigates the complexity – performance trade-off of two MIMO 

algorithms.  

Space Time Block Coding (STBC) is a MIMO-based algorithm, which efficiently exploits 

spatial and temporal diversity. Recently, it has been specified in a number of 3G standards. 

However, not much attention has been paid to the implementation issues of this algorithm. One such 

issue, clipping of the Analog to Digital Converter (ADC) at the receiver, is described in the first part 

of the thesis (chapter 3). A small amount of clipping in an ADC can improve dynamic range and 

reduce the power consumption. However, the increased clipping distortion of the signal, can 

adversely affect the overall performance of the system. It will be shown in this dissertation that 

STBC are more sensitive to clipping, compared to the uncoded single antenna systems. Two 

receiver structures are considered: Direct Conversion (DC) structure, where the ADCs impose a 



square clipping function, and a Log-Polar structure, where ADC induces a circular clipping 

function. Log-Polar receivers were found to be clipping insensitive for the given target Symbol 

Error Rate (SER) of 1*10-3. This makes Log-Polar receivers an obvious choice for the system 

designers. 

The second part of the thesis (chapter 4) addresses the complexity problem associated with 

the QR decomposition algorithm, which is frequently used as a faster alternative to channel 

inversion in a MIMO scheme. Channel tracking can be employed with QR equalization in order to 

reduce the pilot overhead of a MIMO system in a non-stationary environment. QR decomposition is 

part of the QR equalization method and has to be performed in every instance that the channel 

estimate is obtained. The high rate of the QR decomposition, a computationally intensive technique, 

results in a high computational complexity per symbol. Some novel modifications are proposed to 

address this problem. Reducing the repetition rate of QR decompositions and tracking R (the upper 

triangular matrix) directly, while holding unitary matrix Q fixed, can significantly reduce 

complexity per symbol at the expense of some introduced error. Additional modification of the 

CORDIC algorithm (a square root- and division-free algorithm used to perform QR decomposition) 

results in more than 80% of computational complexity savings.  

Further, Minimum Mean Squared Error (MMSE) detection is applied to Least Mean Squared 

(LMS) based R tracking and channel tracking algorithms and then compared in complexity and 

performance to the Recursive Least Squares Decision Feedback Equalizer (RLS-DFE) tracking 

system in [1]. The R tracking scheme is shown to achieve more accurate channel estimates 

compared to the channel tracking scenario, but this advantage does not translate into better Bit Error 

Rate (BER) results due to errors on the first layer of the detector. Both LMS strategies have an 

inferior BER performance compared to the DFE RLS-based system of [1], and surprisingly the LMS 

schemes show no significant complexity improvement.    
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1 Introduction and Thesis Outline  

Wireless systems of the future must accommodate rich information content applications like 

high-speed Internet, live video streaming, online gaming, and so forth. The demand for these 

capabilities is constantly growing; in fact, according to [2] there will be 300,000 wireless hotspots 

by the end of 2009. Sophisticated algorithms based on Multiple Input Multiple Output (MIMO) 

techniques were developed to realise this great information capacity demand. These are usually 

highly complex, high processing power algorithms. Handheld, battery-operated devices are the 

primary targets of these new technologies. The increased power consumption will shorten battery 

life, hence the problem of reducing the processing power of these algorithms or their complexity is 

of paramount importance. This dissertation investigates the power and complexity issues of some of 

these algorithms.  

The thesis is organised as follows. Chapter 2 presents all the necessary background 

information. The notion of channels and all the essential channel characteristics like multipath 

propagation and the Doppler effect are introduced. Concepts of diversity and information capacity 

are presented and the basic MIMO structure is reviewed. Coding to achieve diversity and Spatial 

Multiplexing are overviewed, which are essentially two major implementation approaches used to 

obtain the high capacity promised by information theory.  
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Alamouti Space Time Block (STBC) [3] is a popular algorithm aimed at achieving the 

diversity potential that MIMO offers. Implementation issues of the algorithm have attracted little 

attention in the literature. Chapter 3 investigates one such issue—that of signal clipping caused by 

the receiver's Analog to Digital Converter. The chapter first introduces STBC, then reviews the two 

adopted receiver hardware architectures:  

1. Direct Conversion receiver that causes square clipping  

2. Log-Polar receiver that induces a circular clipping  

ADC clipping and quantisation effects are introduced next.  The rest of the chapter compares 

the effect of the square and circular clipping on the STBC system and Single Input Single Output 

(SISO) systems in terms of performance deterioration and sensitivity.  

 
QR equalisation techniques are often used as a quicker alternative to the matrix inversion. 

This technique is often employed in MIMO receivers where symbol detection involves channel 

matrix inversion. However, when channel tracking is employed to decrease training overheads and 

increase data throughput, QR decomposition (part of the QR equalisation scheme) of the channel 

matrix estimate is performed in every consecutive time slot. Since performing the QR 

decomposition is a computationally intensive process, detection will suffer a high computational 

complexity per symbol. The introductory part of Chapter 4 discusses the outlined problem, 

introduces the system model and briefly overviews the channel model used for the simulations. The 

remainder of the chapter proposes several novel modifications to decrease this computational burden 

while benefiting from channel tracking and QR equalisation. 
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2 Background Information 

This chapter provides the necessary background information for the remaining parts of the 

thesis. Section 2.1 defines the propagation characteristics of the wireless channel and elaborates on 

the large-scale path loss and small-scale variations that cause signal fading, which include multipath 

and Doppler effects. Diversity, an important technique that exploits channel fading to increase the 

reliability of the signal, is presented in section 2.3. Section 2.4 introduces the concept of information 

as a measurable quantity and defines channel capacity. Finally, the last section describes the idea of 

Multiple Input Multiple Output (MIMO) systems and their advantages. 

2.1 Propagation Characteristics of a Radio Channel 
Wireless communications systems use electromagnetic waves to carry information signals 

from a sender to a recipient. They propagate through a space with various obstacles that are either 

moving or stationary and have different absorption or reflection properties. The Propagation 

medium can also vary in temperature, humidity, and so on. The propagation path between the sender 

and recipient including all the above factors is called a channel. A typical channel attenuates the 

signal and shifts its phase in a random manner. This effect can result in the loss of the information at 

the receiving side. Therefore it is important to identify the channel characteristics and take them into 

account when designing a communications system. The effect of the channel on the transmitted 

signal can be described by two major phenomena: Large-scale path loss and small-scale variations. 
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Large-scale path loss describes the loss of the signal strength over large distances, while fluctuations 

of the signal strength over small distances are characterised by small-scale variations.  A detailed 

explanation of the two phenomena is now presented. 

2.1.1 Large-scale path loss  

Path loss is defined as the average loss of the received signal power at a given distance from 

the transmitter [4]. The average power loss is exponential with distance with its most basic 

representation [4] 

( )
___ ___

0
0

[ ] 10 log
⎛ ⎞

= + ∗ ∗ ⎜ ⎟
⎝ ⎠

p p
dL dB L d n
d

 (1) 

Here ( )
___

0pL d  is the average path loss at the close-in reference distance d0 and d is the 

distance between transmitter and receiver.  The value exponent constant n depends on the 

environment. It is 2 for the free space and can go up to 6 when the receiver is inside the building 

with no line of sight path [5]. The path loss can vary considerably for different environments (i.e. 

different obstacles), with the same distance separation between transmitter and receiver. Equation 

(1) has to be modified to account for these random variations 

[ ] ( )
___

0
0

10 log σ
⎛ ⎞

= + ∗ ∗ +⎜ ⎟
⎝ ⎠

p p
dL dB L d n X
d

   (2) 

[ ]pL dB  is a log-normal shadow path loss with distribution ( )20,X Nσ σ . Essentially a log 

normal distribution statistically describes an ensemble of all possible propagation paths over the 

same distance. 
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2.1.2 Small-scale variations  

Obstacles in the propagation environment can act as scatterers for the transmitted signal. 

They enable more than one path from the transmitter to the receiver, creating a multipath effect as 

shown in figure 1.  

 

Figure 1.  Multipath effect 

Essentially multiple delayed copies of the same transmitted data (two reflected rays in 

figure) appear at the receiver. Also the amount of scatterers and their position generally changes 

randomly with time. The random movement of the transmitter, receiver or scatterers towards or 

away from each other creates a Doppler effect, causing the spectral components of the signal on 

various paths to shift their frequencies. This effect creates a spectral broadening. Multipath and 

Doppler are the major causes of signal distortion over small distances (due to the short wavelengths 

of the carrier frequency) [4].  The variations in the signal amplitude and phase are termed small-

scale signal variations.       

2.1.2.1 Multipath effect 

The addition of the multiple copies of the transmitted waveform at the receiver can be either 

constructive or destructive, depending on the phase of each waveform. When destructive addition 

occurs it causes signal fading (the strength of the received signal is reduced).    
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Power delay profile [5] characterises a multipath channel. It shows the statistically averaged 

spread of the transmitted energy over different paths. Root Mean Squared (RMS) delay spread στ 

describes the variations of the delay around its mean value. If the symbol time is much longer than 

στ, (all the copies can be assumed to have equal delays), the channel will attenuate all the 

frequencies, equally resulting in a flat fading. However a symbol time shorter than στ will result in a 

frequency-selective fading. Coherence bandwidth [5] is an equivalent parameter in the frequency 

domain. It is defined as  

1
50cB

τσ
≈

∗
 (3) 

2.1.2.2 Doppler effect 

 
        A relative movement between a transmitter, scatterers and a receiver creates a Doppler 

effect. The receiver sees a positive shift in frequency when it moves towards the transmitter or a 

negative shift when it moves away from the transmitter. The frequency shift is defined as [4] 

( )cosd
vf θ
λ

= ∗ .  (4) 

Here v is a positive or negative speed of the receiver relative to the stationary transmitter, λ 

is a carrier wavelength and the multiplication by cos(θ) ensures that only the velocity component in 

the direction towards or away from the transmitter is taken. When the Doppler frequency is high the 

channel changes more quickly, hence fading will occur more often. Quite often it is convenient to 

express Doppler frequency relative to the symbol time 

= ∗ = d
d d s

s

fF T f T
f

 (5) 
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Ts is a symbol time period and fs is its reciprocal in the frequency domain. High values of FdT mean 

that the channel changes faster with more fades relative to the symbol time, which results in a higher 

symbol distortion. Coherence time Tc specifies the timeframe within which the channel impulse 

response is statistically time invariant [5],  

 

2
9

16
c

d
T

fπ
=

∗ ∗
  (6) 

   

where fd is defined as a maximum Doppler shift.  

There is a high probability that the channel will affect two symbols in totally different ways, 

if the time separation between the two adjacent data symbols is greater then Tc   

2.1.2.3 Fading characteristics of the channel 

Multipath and Doppler shift affect the channel independently. The fading itself is a direct 

result of multipath, while the rate of fading depends on the Doppler effect.  The channel is usually 

one of four types:  

• Flat and slow fading  

• Flat and fast fading  

• Frequency selective and slow fading   

• Frequency selective and fast fading  

The channel between a stationary transmitter such as a base station and a fast-moving car or 

a train, for instance, exhibits fast fading properties due to the high Doppler shifts. On the other hand, 

offices and homes have stationary environments, resulting in time-invariant or very slow fading 
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channels. Wideband or frequency-selective channels cause Inter-Symbol-Interference (ISI) when the 

bandwidth of the information-carrying waveform exceeds Coherence Bandwidth Bc [6]. Then there 

is a situation when multipath components contain more than one symbol. It leads to the decision 

errors at the receiver after the addition of all these paths. There are various techniques that combat 

ISI by equalising channel response at the receiver [6]. Others, like Orthogonal Frequency Division 

Multiplexing (OFDM), avoid ISI by extending the data symbol with the guard interval [4] to ensure 

that all the delayed copies of the signal arrive within the time slot of the symbol.  

2.2 Diversity 
Diversity is obtained when the signal is sent along two or more statistically independent 

paths. If the signal along one path undergoes deep fading, there is a high probability that the signal 

along the other path may have a recoverable signal. The receiver then can choose either to take the 

strongest signal or to combine all the signals. Diversity can be exploited in space, polarisation, time 

or frequency domains. 

2.2.1 Spatial diversity 

Spatial diversity is obtained when two or more antennas are used at the receiver (receive 

diversity), transmitter (transmit diversity), or both. These techniques utilise the fact that if two 

antennas are separated by more than half a wavelength, small-scale fading affects the emitted or 

received signals independently [7]. The classical example of the receive diversity is a technique 

called maximum ratio combining [4]. Here received signals from all the paths are co-phased and 

then added. This ensures that the total received Signal to Noise Ratio (SNR) is higher than the SNR 

from each separate antenna.  
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2.2.2 Polarisation diversity 

Electromagnetic waves travel along two orthogonal vertical and horizontal planes that can be 

used to obtain polarisation diversity [4]. This kind of diversity is preferred at the mobile unit, where 

it is unfeasible to deploy more than one antenna due to the lack of space. Polarisation diversity does 

not require physical separation of the antennas.   

2.2.3 Time diversity 

Time diversity [4] uses a repeatedly transmitted signal over the time slots that have 

separation longer than the coherence time of the channel. This ensures that repeated signals will 

undergo independent fading. This technique works well in fast fading environments but is harder to 

implement in a slow fading environment, where long delays have to be accommodated to establish 

independent fading of recurrent signals. 

2.2.4 Frequency diversity 

Here the same signal is transmitted on two or more frequencies whose separation is more 

than a coherence bandwidth of the channel. The channel then affects independently these signals in 

the frequency domain. OFDM can use a frequency diversity of a wideband channel with error 

correcting coding across independent sub-carriers to recover the symbols even if some of the sub-

carriers undergo a deep fading [8].      

2.3 Concept of Information  
Entropy [9] describes the average information (or the amount of uncertainty) in a random 

variable.  For a given random variable X, whose event space is spanned by the set of mutually 

exclusive events [p1, p2,…,pn], the entropy H(X) is given by   

( )∑
=

∗−=
n

i
ii ppXH

1
log)(   (7) 
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If log (pi) has a base of two, then the information contained in X is defined in bits. H(X) is a convex 

with the maximum occurring when all the mutually exclusive events have equal probability [9]. 

Conditional entropy can be interpreted as the amount of uncertainty in a random variable given the 

knowledge of the other random variable. If two random variables are dependent then knowledge of 

one of them will reduce the entropy of another one. For the two random variables X and Y, 

conditional entropy is described [9] 

 ∑
=

=∗=−=
n

i
i iYpyYXHYXH

1
)()/()/(   (8) 

In other words, )/( YXH  is entropy of X given every possible occurrence of Y, averaged over all the 

possible values Y can take. 

The mutual entropy is defined as [9] 

)/()(),( YXHXHYXI −=   (9) 

Essentially, (9) defines the reduction in uncertainty of X due to the knowledge of Y.  

2.4 Channel Capacity 
Let X be an information source and let Y be an information sink. Then the mutual 

information defined in (9) is the actual amount of information about X available at the sink. The 

maximum value of the mutual information (distribution of X chosen to maximise the mutual 

information) is termed channel capacity [10].  

  ( )( )YXIC ,max= , (10) 

where C is a channel capacity. 
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Shannon in his groundbreaking work [11] has shown that for the bandlimited system, with the 

information source having a Gaussian distribution and Additive White Gaussian Noise (AWGN) as 

a disturbance, the channel capacity C per unit bandwidth is   

( )[ / ] log 1C bps Hz SNR= +  (11) 

Here
0

sPSNR
W N

=
∗

, with Ps as a signal power, W as bandwidth and N0 as a noise power density. 

Shannon has shown that channel capacity forms an upper bound for the transmission rate and that it 

is possible to transmit information at the rate as close to channel capacity as is desirable, with a 

negligible amount of error.   

2.5 Multiple Input Multiple Output Systems 

2.5.1 Capacity of the Multiple Input Multiple Output system 

Multiple Input Multiple Output (MIMO) systems deploy multiple antennas at the transmitter 

as well as at the receiver. Let H be the channel matrix of N X M dimensions, where M is a number 

of transmit antennas and N is a number of receive antennas. For the case in figure 2, H is 3X3. In the 

ideal case, each path is assumed to be statistically independent from the others. Independent data can 

be sent from each antenna, increasing the capacity of the system. MIMO is a very attractive setup 

because it offers a great increase in information capacity at the cost of increased complexity only, 

not increased bandwidth or power [12]. 
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Figure 2.  MIMO system employing multiple antennas at the receiver and transmitter 

Capacity of the MIMO channel has been derived in [13] as   

( )2log det ⎡ ⎤= ⎣ ⎦
H

RI + H *Q* HMIMOC  (12) 

where [ ]H defines hermitian, Q is an covariance matrix of the transmitted power and IR is 

an NXN identity matrix. 

Assuming equal power sources [13], (12) can be presented as 

[ ] 2
1

/ log 1
=

⎛ ⎞= + ∗⎜ ⎟
⎝ ⎠

∑
m

EP i
i

C bps Hz
M
ρ λ                                                        (13)  

M
ρ  is the SNR per transmitting antenna, { }min ,=m N M  and iλ  is an ith eigenvalue of 

the HH * H . 

The main advantage, as seen in (13), is that the capacity grows linearly with m, while 

capacity in (11) grows only logarithmically with increased SNR.  

If the channel H is assumed time invariant, capacities in (12) and (13) are fixed values 

themselves. For the more realistic scenario, elements of H are assumed to be generated by the 

ergodic process and Rayleigh, independent identically distributed (iid). Subsequently, capacity itself 

becomes a random variable [13]. If, for instance, some of the channel paths are in a deep fade, 
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matrix H becomes ill conditioned.  As a result, instantaneous capacity can drop below the rate of the 

system, severely increasing BER. The system designers usually aim at a capacity that has a certain 

fixed probability to stay above the data rate. The capacity is termed an outage capacity. Another 

adverse scenario occurs when channel paths become correlated (spatial correlation between antennas 

is the major cause). It also results in an ill-conditioned H, with a drop in the capacity.  

2.5.2 Using MIMO capacity 

  In practice there are two approaches to harness the high theoretical capacity of MIMO [14]: 

Spatial multiplexing for rate enhancement, and channel coding to achieve high reliability. These 

implementations require high complexity algorithms capable of multidimensional signal processing 

in real time. High complexity results in increased power consumption, which is extremely 

undesirable in mobile handsets.  The thesis investigates the power and complexity issues of these 

algorithms.  

2.5.2.1 Coding to enhance reliability 

This method takes advantage of the additional spatial diversity that MIMO offers. 

Redundancy is now encoded in space (across antennas) and time, in order to combat the fading of 

the channel.  Generally, Space Time Coding (STC) leads to signal-reliability improvement, so that 

even when one or more of the paths are in a fade it is still possible to obtain an error-free signal. 

Using spatial diversity, however, reduces the number of independent paths, which leads to a 

decreased maximum possible rate at the transmitter.  Figure 3 shows a generalised setup for the 

space time coded MIMO.  
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Figure 3.  Space Time Coded MIMO system setup 

The incoming signals s0,s1,..,sk are mapped by a Space-Time Trellis Code (STTC) onto a 

codeword c0,c1,…,ct and distributed among t antennas. At the receiver side the channel is estimated, 

the data is decoded and finally the original data is recovered and converted back into serial form.   

STTC were developed in [15]. They provide an excellent performance at the expense of high 

complexity. Usually a sophisticated Viterbi type decoder is used [6]. Recently Space-Time Block 

(STBC) codes have emerged as an alternative type of ST codes [3]. They don't provide a coding 

gain (i.e. a gain in SNR over an uncoded system of the same rate) like STTC do.  However, when 

compared to a SISO system, their BER performance improves much more quickly as SNR increases 

(in other words, they have a higher diversity gain). They also have a simple, low-complexity 

decoding technique.  The low-complexity advantage has made STBC a preferred Space Time 

Coding technique in many practical applications, as well as accepting them as part of a 3GPP 

standard [16].  

 Chapter 3, as a contribution of this work, investigates one implementation issue of STBC: 

the clipping effect caused by Analog to Digital Conversion on STBC system performance.  

2.5.2.1 Spatial Multiplexing 

Spatial Multiplexing, shown in figure 4, relies on uncorrelated channel paths between the 

antennas. Generally, fewer antennas at the transmitter than at the receiver are deployed ( M N≤ ) to 
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increase the probability of the full rank matrix. Each antenna transmits a different symbol, making it 

possible to achieve high data rates.  
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Figure 4.  Spatial Multiplexing system structure 

The transmission can be implemented simply by using a serial to parallel converter to 

distribute the signal among the M antennas. The task of channel estimation and detection at the 

receiver usually requires high-complexity algorithms. There are various types of detectors: 

Maximum Likelihood, Linear Zero Forcing (ZF), Linear Minimum Mean Square Error (MMSE) and 

Successive Interference Cancellation (SIC). Each has their own performance vs. complexity trade 

off. Chapter 4, which constitutes another major contribution of the work, deals with a number of the 

complexity issues associated with QR detection. This is one of the subset techniques of ZF and SIC. 

Chapter 4 essentially presents a method to reduce the complexity of the QR detection receiver.  
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3 Simulation-Based Clipping Analysis in Alamouti 
Space Time Block Codes 

3.1 Chapter Outline  
STBC codes provide higher information reliability through the wireless link compared to 

Single Input Single Output (SISO) uncoded systems. They achieve this by using multiple antennas 

at the transmitter (transmit diversity). There are various implementation issues that can affect the 

performance of the system. One such issue is a signal clipping caused by an ADC. In a power-

conscious circuitry (such as the one in a wireless handset) ADC can be optimised to reduce the 

power consumption of the system at the expense of the increased clipping distortion of the signal. 

This chapter shows that STBC systems are more sensitive than uncoded systems to the ADC 

clipping. This fact has to be taken into account when optimising ADC for low power. Section 3.2.1 

introduces a communication system based on a STBC. The Direct Conversion receiver and Log 

Polar receiver are reviewed in section 3.2.2. They are two types of receivers that can be used to 

implement STBC systems. The relevant properties of an ADC that affect the system performance 

are described in section 3.2.3. Section 3.3 introduces the phenomenon of the square and circular 

clipping occurring in a Direct Conversion receiver and in a Log-Polar receiver respectively. The 

effect of a square and circular clipping on STBC is theoretically shown in section 3.4. Target SER of 
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10-3 was chosen for simulation results in section 3.5. There, the lowest possible clipping levels (for 

given SER) were shown for SISO and STBC Multiple Input Single Output (MISO) schemes.  

3.2 Introduction 

3.2.1 Communication system based on STBC  

Space Time Block codes [3] use multiple antennas and time as a coding domain. For a 

system with two transmit antennas, one receive antenna (2X1) and two symbols s0 and s1 the 

orthogonal coding matrix S is 

0 1

1 0

s s
S

s s∗ ∗

⎡ ⎤
= ⎢ ⎥

−⎢ ⎥⎣ ⎦
  (14) 

with rows representing space and columns representing time domains, respectively.  

A simplified block diagram of the Multiple Input Single Output (MISO), 2X1 STBC system 

is presented in figure 5.  
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Figure 5.  Simplified setup for 2X1 communication system based on STBC  

First the data is mapped according to modulation (BPSK, M-PSK or M-QAM). The complex 

data is then arranged according to the format expressed in (14). At the first time slot, the first row of 
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(14) is transmitted, and at the second time slot, the second row of (14) is transmitted (see figure 5). 

Channel responses h0 and h1 are then estimated (block "channel estimation" in figure 5). The final 

received signal including channel response and complex noise can be written as 

0 0 0 1 1 0

1 0 1 1 0 1

y

y

s h s h n

s h s h n∗ ∗ ∗ ∗

= ∗ + ∗ +

= ∗ − ∗ +
 (15)  

where y0 and y1 are the received signals at two consecutive time slots. Two-channel responses h0 

and h1 are assumed to be stationary during these two time slots. They are independent random 

Rayleigh distributed variables with zero mean and variance of one and are given by 

0
0 0 ,j hh h e ∗∠= 1

1 1  j hh h e ∗∠=      

Noise variables n0 and n1 are two independent random Rayleigh distributed variables with 

zero mean and variance depending on signal to noise ratio. They can be represented as follows 

0 1
0 0 1 1,   nj n j nn n e n e∗∠ ∗∠= = . 

We can rewrite (15) in a matrix form as 

0 10 0 0

1 1 11 0

h hy s n
y s nh h∗ ∗

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= ∗ +⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

−⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
  (16)       

with channel matrix H given as 0 1

1 0
∗ ∗

⎡ ⎤
= ⎢ ⎥

−⎢ ⎥⎣ ⎦
H

h h

h h
. 

 The linear combiner (figure 5) recovers symbols s0 and s1 by multiplying the received 

signals in (16) by the conjugate-transpose of the channel matrix.  It can be written as 

^
0 0*
^ 1
1

⎡ ⎤
⎡ ⎤⎢ ⎥ = ∗ ⎢ ⎥⎢ ⎥
⎣ ⎦⎢ ⎥⎣ ⎦

H
s y

y
s

 ,  



19 

^
0 10 0

^ 11 01

h hs y
yh hs

∗

∗

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥= ∗ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦−⎣ ⎦⎢ ⎥⎣ ⎦

;  (17)                 

^ 2 2
0 1 0 0 1 10 0

2 2^ 1 1 0 0 10 11

0

0

h h h n h ns s
s h n h nh hs

∗ ∗

∗ ∗

⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ ∗ + ∗⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ∗ +⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ∗ − ∗+ ⎣ ⎦⎢ ⎥ ⎣ ⎦⎣ ⎦

   (18) 

Equations (17) and (18) show the advantage of the orthogonal coding. There is no need for a 

channel matrix inversion in order to force off-diagonal components to zero in (18). Multiplication by 

the conjugated transposed channel matrix is sufficient to separate the symbols.  

Linear combination is followed by detection (usually ML, MMSE or ZF), hard decision, 

parallel to serial conversion and finally symbol de-mapping to obtain the binary data.  

In practical RF systems a number of distortions are added to the signal before it is STBC 

decoded. One of these is a clipping distortion caused by the Analog to Digital Converter. The ADC 

forms an integral part of any receiver that uses digital signal processing [17]. The next section will 

introduce two types of receivers:  

• Direct Conversion (DC) receiver [18], the most common receiver architecture in use 

today. It uses two ADCs located on the Imaginary and Quadrature arms of the 

receiver  

• Log-Polar receiver is an alternative receiver structure to a DC structure [19]. The 

complex envelope signal recovery is performed in a polar format. One ADC is used 

to digitise the phase of the signal, obtained from the hard clipped envelope and 

another ADC digitises the log-magnitude of the received signal 
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3.2.2 Receiver architectures 

3.2.2.1 Direct Conversion receiver structure 

Figure 6 shows the simplified Direct Conversion (DC) receiver structure.  
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Figure 6.   STBC system implementation based on DC receiver structure 

The coded signal is transmitted from the two antennas. The inphase branch is formed when 

the Local Oscillator (LO in figure 6) is mixed with the input signal, effectively down converting it. 

The Local Oscillator waveform is shifted 90° and mixed with the input waveform to form a 

quadrature branch.  

Mixers are followed by the Variable Gain Amplifiers (VGAs), the gain of which is 

controlled by the Automatic Gain Control (AGC). The AGC causes weak signals to be amplified so 

that ADC that follows later in the receiving chain can digitise this signal with the acceptable 

resolution. The AGC also reduces the gain of VGA so that the strong signals are attenuated, 

preventing the magnitude of the signals to exceed the maximum amplitude that ADC can handle.  

Low Pass Filters (LPF in the figure above) are used as anti-aliasing filters. ADCs that follow 

digitise Inphase and Quadrature signal components (ADC blocks in figure 6). ADCs introduce a 

quantisation noise among the host of other types of non-linearity [20]. Also, despite the AGC 
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control, white noise can drive the instantaneous amplitude of the signal above the maximum voltage 

level that ADC can handle. Then ADC gets saturated and clips the signal, causing a distortion.   

Finally digital signal processing is applied to the digitised discrete signal.  

An effect of clipping from the two independently operating ADCs on the STBC system is 

investigated in this work.   

3.2.2.2 Log-Polar receivers 

In the non-stationary environment the distance between the transmitter and the receiver 

changes randomly with time. The signal often has a large magnitude swing (large dynamic range).  

It is much harder then for AGC in a Direct Conversion receiver to keep the signal amplitude within 

the desired range and prevent ADC from saturation.   

Paul Wilkinson of Ericsson® has proposed to use a Log-Polar receiver structure for the 

described scenario [19]. It uses logarithmic amplifiers to increase the acceptable range of the input 

signals at the expense of the introduced signal distortion. Figure 7 shows the schematic diagram of 

the receiver. 
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Figure 7.  Block diagram of the Log-Polar receiver  
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After the RF stage, the signal passes through a series of logarithmic amplifiers. Each 

amplifier is designed to saturate every 1dB (relative to the input voltage) increase in the voltage 

level. The last amplifier in the chain is saturated first, followed by the preceding amplifier and so on. 

Thus the maximum possible input signal level is limited by the number of the amplifier stages. The 

outputs of the individual amplifiers are summed to obtain the total log-magnitude value of the 

signal. The logarithmically processed signal enables ADC1 in figure 7 to accommodate large swings 

in the amplitude of the incoming signal. The downside, however, is that the signal becomes 

exponentially distorted (the signal is compressed harder as its amplitude grows). The digitised signal 

magnitude is then fed into a microprocessor. The output of the last amplifier is also applied to a 

phase detector, which then extracts the phase information out of the received signal (the phase value 

is retained even when the signal is hard clipped due to the amplifier saturation). The phase value is 

converted into a digital form by the second ADC (ADC2) and is also fed into a microprocessor. The 

task of the microprocessor is to convert the Polar representation of the signal into the Cartesian one.  

This receiver structure is most suitable for the phase-modulated schemes (like M-PSK), where the 

introduced distortion of the magnitude of the signal does not affect the system performance.  

The clipping effects of the ADC1 onto QPSK modulated STBC systems are studied in this 

work.   
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3.2.3 Signal conversion 

Figure 8 shows the equivalent representation of ADC 

 

Figure 8.  ADC broken down into a sampler and quantiser 

ADC consists of two major parts. First, the input analog waveform has to be sampled at a 

frequency at least twice as high as the bandwidth of the input waveform to avoid aliasing [21]. Then 

incoming samples are quantised into discrete levels and binary encoded. For an ADC with A bits and 

full-scale range VF, q – the size of the quantisation step is given by 

2 1 2
F F

A A
V Vq = ≈
−

  (19) 

Signal quantisation induces a quantisation error ε in the system. It has a uniform distribution in the 

range
2
q

± . Then its power 2
εσ  can be calculated 

( )
2

2 2

2

2 2
2 2

2

;

1
12

q

q

q

q

p d

qd
q

ε

ε

σ ε ε ε

σ ε ε

−

−

= ∗

= =

∫

∫

   (20)  

where ( )p ε  denotes a probability distribution function of ε. 
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The dynamic range of an ADC is defined as the ratio between the maximum to minimum 

levels the ADC can accept. With the maximum level as VF, the minimum level as q, the dynamic 

range D is 

( )

2 ;

2

[ ] 20 log 2

AF F

F
A

A

V VD
q V

D dB

= = =
⎛ ⎞
⎜ ⎟
⎝ ⎠

= ∗

  (21) 

The more bits the ADC has, the higher its dynamic range; that is, the wider the range of 

signal amplitudes it can handle. 

Reducing the dynamic range will reduce the power consumption of the ADC at the expense 

of increased quantisation noise. The maximum voltage level VF can subsequently be lowered to 

counteract the increased quantisation noise. However, there is then an increased risk of signal 

clipping by the ADC, because it is more likely that the maximum signal amplitude can exceed VF. 

The signal, distorted by the clipping, impairs the overall performance of the system. It is possible to 

optimise the ADC power consumption by choosing the lowest number of bits and the lowest VF for 

certain Symbol Error Rate (SER).  

The rest of the chapter comprises novel work that investigates the performance deterioration 

of the Alamouti STBC structure employing two transmit and one receive antennas in the presence of 

ADC clipping in DC and Log Polar receivers for 10-3 target SER.  

3.3 Clipping in SISO systems 

3.3.1 DC receivers and square clipping  

A conceptual example of a square clipping in a DC receiver is shown in figure 9.  
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Figure 9.  A conceptual example of the square clipping of a QPSK modulated signal 

The square region in figure 9 is formed by the maximum acceptable signal amplitudes of the 

inphase and quadrature ADCs. Inside this bounded region four original signal constellations are 

shown ("X"es in the figure). The received signal (represented by stars in figure 9) outside of this 

region is scaled (or clipped) by ADCs.  The soft limiting operation of each ADC is shown in the 

figure below 

 

Figure 10.  Soft limiting operation of ADC in a DC receiver 
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At any time instant t, clipping either the inphase or quadrature branch of the complex signal 

can be represented as follows: 

( )
( ) ( )
( ) ( )

( )

,      

,     

⎧ <⎪= ⎨
∗ ≥⎪⎩

=

clip

clip

clip

y t y t r
r t

y t y t r

r
y t

α

α

 (22) 

 
In (22) and in figure 10, y(t) is a received signal before the clipping and r(t) is a signal after 

the clipping. Following the definition in (22), the scaling coefficient α  has the following properties:  

 

1,      ( )

,     ( )
( )

⎧ <
⎪

= ⎨
≥⎪

⎩

clip

clip
clip

y t r

r
y t r

y t
α  (23) 

                                                                                    
 

Two ADC converters operate independently on inphase and quadrature parts of the complex 

input signal. Then the received signal can be shown as: 

( ) ( )
( ) ( )[ ] ( )iirrriiriiirrr

iriiririirrr

njnhshsjhshsr
nhshsjnhshsr

∗∗+∗+∗+∗∗∗+∗−∗=
+∗+∗∗++∗−∗=

∗

∗∗

αααα
αα ;

              (24)                        

In (24) reference to time is omitted; s=sr+jsi is a transmitted symbol; h=hr+jhi is a sample of 

the complex i.i.d channel; n=nr+jni represents a complex noise snapshot; αr and αi are clipping 

coefficients of the inphase and quadrature branches respectively.  

3.3.2 Log-Polar receivers and circular clipping 

 A conceptual example of a circular clipping in a Log-Polar receiver is shown in figure 11. 
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Figure 11.  Magnitude clipping in a Log-Polar receiver employing QPSK modulation 

The full-scale range of ADC1 in figure 7 forms a circular boundary on the Cartesian plane in 

figure 11. The ADC clips (or scales) all the complex signals whose magnitude exceeds this 

boundary. The soft clipping operation of this ADC is presented in figure 12 

 

Figure 12.  Soft limiting operation of the ADC in a Log-Polar receiver 

The definition of the clipping coefficient for the circular clipping case is identical to (23) and 

(24). Then the received clipped signal can be written as 
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( )r s h nα ∗= ∗ +  (25) 

Here, reference to time is omitted; both the real and imaginary components of r are scaled 

equally by α.  

The next section will use the defined scaling coefficient to investigate clipping effects in the 

DC and Log-Polar receivers that employ STBC.   

3.4 Clipping in Alamouti STBC System  

3.4.1 Square clipping 

The clipped form of the STBC signal is represented by 

( ) ( ) ( )
( ) ( ) ( )

0 0 0 0 1 1 0 0 0 0 1 1 0

1 1 0 1 1 0 1 1 0 1 1 0 1

Re Im

Re Im

r i

r i

r t s h s h n j s h s h n

r t s h s h n j s h s h n

α α

α α∗ ∗ ∗ ∗ ∗ ∗

= ∗ ∗ + ∗ + + ∗ ∗ ∗ + ∗ +

= ∗ ∗ − ∗ + + ∗ ∗ ∗ − ∗ +
 (26) 

In (26) α0 is a scaling coefficient at time slot zero and α1 is a scaling coefficient at time slot 

one. 
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Defining:  

( )

( ) ( )

2 22 2
0 0 0 1 1 0 0 0 1 1

2 22 2
1 1 0 0 1 0 1 0 0 1

0 1 0 1

!,  ;
! !

 ,  ;

 ,  ;

= ∗ + ∗ = ∗ + ∗
−

= ∗ + ∗ = ∗ + ∗

= − = −

r r r i i i

r r r i i i

r r r i i i

nh h h h
r n r

h h h h

d d

ρ α α ρ α α

ρ α α ρ α α

α α α α α α

                                         

 (27) 

 
Then, after multiplying by transposed-conjugated channel matrix and further defining,  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

* *
0 0 1 1 1 0 1 1 1

* *
1 0 1 0 0 0 1 0 0

Re Im

Re Im

r r i i r i i r

r r i i r i i r

k h h d s j d s h h d s j d s

k h h d s j d s h h d s j d s

α α α α

α α α α

= ∗ ∗ ∗ + ∗ ∗ − ∗ ∗ ∗ + ∗ ∗

= ∗ ∗ ∗ + ∗ ∗ − ∗ ∗ ∗ + ∗ ∗
 (28) 

Symbol estimates then can be presented  

( ) ( )
( ) ( )

* *
0 0 0 0 1

* *
1 1 1 0 0 1

ˆ 0 0 0 0 1

ˆ 1 1 1 1

c c

c c

s s j s k h n h nr r i i

s s j s k h n h nr r i i

ρ ρ

ρ ρ

= ∗ + + + ∗ + ∗

= ∗ + + +

∗

∗ ∗ − ∗
                                (29) 

 
Here n0c and n1c represent the Inphase Quadrature clipped noise in time slots zero and one 

respectively.  

STBC uses time as a coding domain. As a result of the coding, the two consecutive STBC 

samples become orthogonal. Clipping in the time domain will affect coding by breaking 

orthogonality between the samples. The terms k0 and k1 represent cross-talk terms, showing the 

degree of orthogonality loss due to the clipping. These cross-talk terms will cause an additional error 

when the signal passes through the threshold detector. The cross-talk terms will disappear if the 

clipping is identical in the two consecutive time slots.  
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3.4.2 Circular clipping 

The STBC signal, affected by the circular clipping, can be written as 

( )

( )
0 0 0 0 1 1 0

1 1 0 1 1 0 1

t

t

r s h s h n

r s h s h n

α

α ∗ ∗ ∗

= ∗ ∗ + ∗ +

= ∗ ∗ − ∗ +
   (30) 

 
As in the case for square clipping, the top line defines the signal at the first time slot and the 

second line at the second time slot. 

Defining 

( )

2 2
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Since only the magnitude is clipped, k0 and k1 in (28) can be rewritten to suit the circular 

clipping case 

( )
( )

*
0 0 1 1

*
1 0 1 0

k d h h s

k d h h s

α

α

= ∗ ∗ ∗

= ∗ ∗ ∗
    (32) 

Finally, the symbol estimates are presented as 

( )
( )

* *
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* *
1 1 1 1 1 0 0 1

ˆ 1

ˆ

c c

c c

s s k h n h n

s s k h n h n

ρ

ρ

= + + ∗ + ∗

= + +

∗

∗ ∗ − ∗
  (33)   

Here the cross-talk terms k0 and k1 also appear, due to the orthogonality loss in the coding.  
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3.5 Simulations and Comparisons 

 
Figure 13.  Simulation block diagram 

Figure 13 shows the block diagram and specifies all the necessary parameters used to 

produce the simulation results. The channel is ideally estimated at the receiver, and assumed to be 

flat fading, having complex Gaussian Independent Identically Distributed (i.i.d) samples. All the 

clip values are taken relative to the received signal Root Mean Square (rms) value (without the 

noise).   

 

Figure 14.  Lowest clip/average levels for 10-3 target SER, DC receiver, square clipping 
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Figure 14 shows the lowest possible clipping levels at different SNR values, while 

maintaining target 10-3 SER for square clipping: STBC QPSK, STBC 16QAM, SISO QPSK and 

SISO 16QAM. For all four schemes, inter-symbol-interference (ISI) caused by Root Raised Cosine 

(RRC) filters is one of the error contributors besides AWGN. For STBC schemes, however, the 

cross-talk noise is another major contributor of the error. This is the reason for the STBC signal clip 

floor being 1dB higher than the clipping floor of the SISO scheme for 16QAM modulation. This 

difference expands to 7dB for the QPSK system, as depicted in figure 14. STBC systems perform 15 

dB better when compared to SISO schemes for the same clipping levels. This is true for both 

constellation densities used for this research.  

For the circular clipping scenario (STBC system with QPSK modulation), the unrealistically 

low clipping level of –30dB was found to induce a symbol error rate of 3*10-4, way below the target 

SER of 10-3. The Log-Polar receiver structure is essentially clipping insensitive at this particular 

target SER.  

Figure 15 compares the sensitivity of STBC and SISO schemes in the presence of square 

clipping. 
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Figure 15.  Sensitivity of STBC and SISO schemes to AWGN at 10-3 target SER, DC 
receaver, square clipping. 

This plot is built by lining up the upper bounds of all schemes to zero. The amount of SNR 

required for every scheme to achieve its clip floor can be defined as the noise sensitivity of the 

scheme.  

It takes about 0.5 dB of change in SNR for the STBC system to achieve its clip floor (QPSK 

and 16QAM). This value is 1dB for SISO 16QAM and about 9dB for SISO QPSK. It is also 

important to note in figure 15 that from 0 to 0.5 dB for 16QAM and from 0 to 0.7 dB for QPSK, 

STBC schemes have lower clip levels, making them superior to SISO schemes within this SNR 

range.   

3.6 Conclusions 
 Space Time Block codes provide higher transmission reliability in the wireless environment 

compared to the SISO systems. In practical receivers, however, a number of distortions are added to 

the signal before it is STBC decoded. One form of ADC clipping was investigated in this work. Two 
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receiver structures were considered: the DC receiver structure that employs two ADCs on the 

inphase and quadrature branches and the Log-Polar receiver that recovers the complex envelope in 

the polar form. It has one ADC to digitise the magnitude and another one to digitise the phase of the 

received signal.  The two independently operating ADCs in a DC receiver induce a square clipping, 

while an ADC that digitises the signal magnitude in a Log-Polar receiver causes a circular clipping 

on the Cartesian plane.   

STBC rely on orthogonal coding to separate individual symbols. It was shown that ADC 

clipping leads to breaking the code orthogonality. As a result, cross-talk interference can adversely 

affect the performance of the system. For the square clipping case, simulations have confirmed that 

STBC schemes have a higher clip floor and are more sensitive to AWGN than SISO systems. For 

receiver designers this means that they must increase signal back off into ADC by 7 dB for QPSK 

and 1 dB for 16QAM with Alamouti STBC scheme.  

The Log-Polar receiver, however, was found to be clipping insensitive for the target SER of 

10-3. For the phase-modulated systems, like MPSK, where the logarithmic distortion of the 

magnitude does not affect the performance of the system, the Log-Polar receiver is an obvious 

choice for the system designer.   

 

 

 

 

 

 

 



35 

 

4 Complexity Reduction through Upper Triangular Matrix 
Tracking in QR Detection MIMO Receivers 

4.1 Chapter Outline 
QR equalisation is a computationally intensive process often required for MIMO detection. 

When the QR equalisation is used with channel tracking, QR decomposition (part of a QR 

equalisation process) has to be performed at every instance the new channel estimate is obtained. 

This will result in a high computational complexity per symbol. This chapter proposes a technique 

that reduces the number of operations in MIMO systems in the described scenario. A non frequency-

selective channel such as that found in Orthogonal Frequency Division Multiplex (OFDM) systems 

is assumed.  We propose to reduce the frequency of QR decompositions while continuing to track 

the channel H. The Q and R matrices are held fixed for a number of symbol periods between 

adjacent QR decompositions. This will result in a complexity reduction at the expense of a growing 

equalisation error caused by the outdated Q and R. We further suggest tracking the upper triangular 

matrix, while holding the unitary matrix Q fixed, instead of tracking the channel H. The R matrix 

loses its upper triangular form with time because of the fixed Q. It is shown, however, that this 

modification will result in a slower equalisation error growth, allowing a further decrease in 

frequency of the QR decompositions. When used with SIC-MMSE detection, however, the upper 
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triangular matrix tracking does not show any BER advantage over the channel-tracking scenario and 

also results in a higher computational complexity.  Both LMS channel tracking schemes are then 

compared with the RLS-DFE tracking system of  [1]. The equalizer coefficients (inverse channel) 

exhibit higher dynamics than the channel and suggest the possibility of using lower complexity 

tracking schemes. Both LMS strategies had an inferior BER performance compared to the DFE 

RLS-based system, and surprisingly the LMS schemes showed no significant complexity 

improvement. The work has been published in [72]. The chapter is organised as follows.  

Section 4.2 introduces the 802.11n channel model, reviews existing detection and estimation 

techniques in MIMO, explains the importance of tracking in MIMO systems and formulates the 

problem. 

Section 4.3 describes two tracking strategies and compares their performance based on the 

MSE of the channel-estimate metric. The section also reviews the application of the CORDIC 

algorithm to QRD and highlights potential modifications that can be exploited when the target 

matrix is nearly upper triangular.  

The BER performance of both channel and upper triangular matrix tracking strategies with 

SIC-MMSE detection is presented in section 4.4.   

Finally, section 4.5 draws the conclusion to the chapter. 

4.2 Introduction 

4.2.1 IEEE 802.11 TGn channel model 

Simulations in section 4.3 are based on the IEEE 802.11 TGn channel model [22, 23]. This 

wideband channel model has been developed for the MIMO indoor environment and uses a cluster 

approach [22] where the multipath components arrive at the receiver grouped in clusters. Spatial 

correlation between antennas is assumed. Characteristics like antenna spacing, power angular 
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spectrum, angle spread, mean angle of departure and arrival determine the degree of correlation 

[22].  

  Channel models are developed for the standard indoor A-F environments (for instance, A is 

flat fading, B is residential, etc.). This model uses the following formula to describe the Doppler 

spectrum of the signal 

2
1( )

1 9 c

d

S f
f f

f

=
⎛ ⎞−

+ ∗⎜ ⎟
⎝ ⎠

   (34) 

The Doppler frequency fd was experimentally determined to be 6Hz for the indoor 

environment [22]. This model assumes near-stationary transmitters and receivers and moving 

scatterers. An example could be an office environment, where the access point and notebooks are 

stationary and walking people are scatterers. The F environment was selected for this work because 

it had the highest Doppler spread. It includes one fast-moving scatterer at 40km/h.  Practically, this 

can be a car moving outside the office window.  

Figure 16a compares the Doppler spectrum of the 802.11n models A to E to Clarke's model 

[4]. The frequency spectrum from the right of the carrier frequency fc is plotted for both cases. 

Clarke’s model assumes the highest Doppler component of 6Hz.  Figure 16b shows the channel F 

spectrum with the extra peak caused by the additional moving object.   
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Figure 16.  (a) Doppler spectra used in 802.11n and Clarke's models  (b) 40km/h moving object 

causes peak at 194 Hz.  fc=5.25GHz. 
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It can be observed from figure 16a that unlike Clarke's model, where most of the power 

spectrum is contained in the frequency components close to fd, most of the power spectrum in 

802.11n is retained around the carrier frequency fc. Also the 802.11n curve is truncated at fmax of five 

times the Doppler frequency (30KHz in our case). In the case of channel F (figure 16b) the moving 

cluster causes a significant amount of energy at 194Hz.  

 

4.2.2 Detection in MIMO  

MIMO systems offer high theoretical information capacities. Spatial multiplexing is used to 

achieve these high capacities, as stated in chapter 2. There are various ways to perform symbol 

detection in spatial multiplexing systems, and this sub-section will describe some of them.  

The received baseband NX1 signal vector yi at ith time instant can be expressed as 

= +i i iy Hs n  (35) 

where H is an NXM channel matrix assumed known at the receiver, si is M X 1 transmitted signal 

vector, ni is an NX1 additive WGN vector where each element is distributed as ( )20, nN σ . 

For the constellation of sizeθ  ,the set of all possible constellation symbols is defined 

as }{ 1 2, ,..,=K s s sθ θ .  

The optimum Maximum Likelihood Sequence Detector (MLSD) [6] finds Euclidean 

distances between the received signal vector yi and all the possible sequences of transmitted symbol 

vectors distorted by the channel. Then the symbol vector, corresponding to the minimum distance is 

chosen as an estimate of the transmitted symbol vector ˆis . 

( )ˆ arg min
∈

=i is y - HT
MT Kθ

 (36) 
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where MKθ  is a space of all the available sequences. 

There are Mθ  possible sequences that MLSD has to consider to make a choice. The 

complexity increases exponentially with the number of antennas, which severely restricts its use in 

practical systems.  Less complex, suboptimum detectors are described in the following sub-sections. 

4.2.2.1 Linear detectors 

Linear detectors obtain the estimate of the transmitted symbol via linear mapping 

( )ˆ =i is Ayϑ where ( )ϑ ⋅ denotes a hard decision and A is chosen according to the two following 

criteria: 

1. ZF criteria [24]: -1A = H . Symbol estimate is then 

ˆ -1 -1
i is = Ay = H Hs + H n  (37) 

Defining error covariance matrix as  

( )( )ˆ ˆ⎡ ⎤= ⎣ ⎦
H

i i i iP s - s s - sE  (38) 

 For the ZF case 

( )( ) ( ) 12 −⎡ ⎤= =⎣ ⎦
-1 H -H H

i i i i i iP s - s - H n s - s - n H H HnE σ  (39) 

The WGN noise amount in the symbol vector estimate will be amplified by small 

eigenvalues, ( ) 1−HH H  that occur when the channel is faded or ill conditioned. It was shown in [25-

27] that ZF detection with Bit Interleaved Coded Modulation (BICM) can asymptotically achieve 

ML performance as the number of antennas grows to infinity.    

2. MMSE criteria [24]: Here the error metric is defined as 
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2ˆ⎡ ⎤= −⎣ ⎦i is sEε  (40) 

After presenting the symbol vector estimate ˆis  as a linear combination of the received signal 

vector yi, error ε can be minimised in the linear sense 

 
1

2
min arg min

∈ℜ

⎡ ⎤= −⎢ ⎥⎣ ⎦
H

i is A y
NXA

Eε  (41) 

The optimum (in linear MMSE sense) Aopt that corresponds to minimum error can be derived 

as 

( )

1

12 2

;
−

−

⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦

= +

opt i i i i

opt NXN

A y y y s

A I HH H

H H

H
n s

E E

σ σ
 (42) 

where 2
sσ is a signal power. 

The error covariance matrix is obtained as follows [28] 

( )( )

( ) 12 2

ˆ ˆ ;

−

⎡ ⎤= ⎣ ⎦

= +MXM

s - s s - s

I H H

H

H
n n

P E

P σ σ
 (43) 

where the signal is assumed to have a unit power. 

Since the noise power is included in the inversion term, small eigenvalues of  H HH  will not 

result in large noise amplification in the symbol vector estimate. MMSE detection in MIMO is used 

in [29, 30]. 

Importantly, for both ZF and MMSE methods the amount of noise amplification in the 

symbol vector estimate will be dominated by the smallest eigenvalue in ( )H HH and 

( )2 +MXMI H HH
nσ  respectively.  
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4.2.2.2 Non-linear detectors 

There are suboptimum detection algorithms that try to capture an optimum ML solution at a 

fraction of the complexity of MLSD.  The Sphere Detector [31-35] is one such algorithm and the  

Space Alternating Generalised Expectation maximisation is another  [36].  

VBLAST is an adaptation of the ordered Successive Interference Canceller (SIC), which is 

well known in the Multi-User Detection area for MIMO detection [37]. Both terms VBLAST and 

SIC will refer to the algorithm throughout this section. Unlike ZF and MMSE detectors, where all 

the symbols are recovered simultaneously, VBLAST detects symbols iteratively, one by one. N ≥M 

is the condition to be satisfied for VBLAST to work. The algorithm consists of two parts: Nulling 

and Cancellation.  

1. The row with the smallest norm of inverted H is chosen (nulling vector for ZF case) 

and the corresponding symbol is recovered. This is a nulling step;   

2. The corresponding column of H is erased and the symbol, multiplied by this column 

vector, is subtracted from the received signal y. This is a cancellation step of the 

algorithm.  

The described process is repeated with deflated H until all the symbols (or layers) have been 

recovered. The excellent, detailed explanation of VBLAST is provided in [38]. Authors of the 

original paper have reported a complexity of O(M4), which is considerably smaller than that of the 

MLSD algorithm.  

The iterative structure of VBLAST increases the magnitude of the smallest row in H on 

every iteration. Choosing the row with the smallest norm results in the least number of detection 

errors compared to other possible choices. As the author in [38] has shown, this order of choice is 

the global optimum. Ordering and repetitive pseudo inverses of deflated H are the main contributors 
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to the algorithm complexity. In fact, as Hassibi in [28] reported, both of these procedures take up to 

90% of the overall algorithm processing power.   

Wubben in [39] has shown that cancellation of the detected symbol provides an increase in 

diversity order for the remaining symbols. This is the main strength of the VBLAST algorithm, 

compared to the ZF and MMSE algorithms, which provide no diversity gain. The choice of the 

nulling vector in step 1 corresponds to the ZF criteria. It suppresses the interference from the other 

antennas, but results in noise enhancement. The nulling vector can also be chosen according to 

MMSE criteria [40], which will result in a smaller noise enhancement compared to the ZF principle. 

4.2.2.3 Simulations and discussions  

Figure 17 shows a BER comparison for MLSD, ZF, MMSE, VBLAST ZF and VBLAST 

MMSE systems. 
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Figure 17.  BER comparison, 4X4 system with channel known at the receiver and QPSK 

modulation.  
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MLSD has the best BER performance followed by VBLAST-MMSE. VBLAST-ZF 

outperforms MMSE for SNR>5dB. The reason for this is the diversity gain provided by VBLAST. 

Finally, ZF exhibits the worst performance of all five schemes, as it does not provide any diversity 

gain and causes considerable noise enhancements.  

VBLAST-type algorithms are considered a good choice for implementation due to their 

relatively low complexity and good BER performance. There was an extensive research into further 

complexity reduction of VBLAST algorithms. Hassibi in [28] has proposed to iteratively update the 

error covariance matrix (required for MMSE nulling) instead of repetitive inversion. The complexity 

of the algorithm has been reduced to O(M3).  

VBLAST can also be restated in terms of the QR decomposition (QRD) [39]. QRD factors H 

into unitary matrix Q and upper triangular matrix R. Transmitted symbols then can be recovered via 

the back substitution method. A hard decision is performed on every recovered symbol, before 

feeding it to higher rows for the next step of the back substitution. The procedure is equivalent to the 

SIC method used in VBLAST [39] and repetitive channel inversions are avoided. Ordering, 

however, increases the complexity of the QRD-based algorithm [40], because O(N2/2) QRDs are 

required to check all the possible orderings to find the best one. Bohnke [40] has proposed a 

suboptimal Sorted QRD (SQRD) algorithm that performs sorting at each step of QRD. The 

algorithm is based on the modified Gramm Schmidt orthogonalisation procedure [41]. The 

complexity of the algorithm is O(M3).  
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4.2.3 Review of existing MIMO channel-tracking schemes 

4.2.3.1 Motivation for tracking 

In wireless packet data transmission systems it is necessary to reduce the packet size when 

the Doppler on the channel increases. This is because the training header containing the channel 

estimation information becomes outdated sooner.  Unfortunately, short packets have reduced 

throughput because of the higher relative overheads associated with training, acknowledgements and 

inter-frame spacing. MIMO schemes such as VBLAST have to estimate many channels and so their 

training headers are generally very long. Therefore they are particularly vulnerable to Doppler-

induced channel changes.  A possible solution to this problem is to employ channel tracking, so that 

the equaliser in the receiver can be continually updated.  

A generic data transmission frame structure is shown in figure 18 below. The first few 

symbols are dedicated pilots for channel estimation. The following symbols contain the data 

payload. 

 

 

Figure 18.  A generic frame structure consisting of a training preamble and D payload data 

symbols 

The receiver acquires the channel estimate during the training session, then applies it to 

recover the D following transmitted data symbols, contained in a payload section of the frame. For 

the continuously fading channel scenarios, the actual channel value experienced by the ith data 

symbol will be different from the measured channel estimate. The error, caused by the time 
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difference, will grow, since the measured channel estimate will become more outdated with time. 

Decreasing the time between successive training periods can reduce the error.  

Hassibi et al in [42] has shown that the optimum number of training symbols in a preamble is 

equal to the number of transmitting antennas. Qifang et al in [43] have performed simulations using 

MIMO Jakes flat fading channel model at 2GHz carrier frequency and 41usec symbol time to show 

that the reduction of the training interval will reduce the throughput of the MIMO system. The 

amount of reduction is dependent on the number of antennas used and the fading rate of the channel. 

The paper also shows that employing channel tracking between successive training periods increases 

the training interval and improves the throughput of the system. However, these benefits of the 

channel tracking come at the expense of the increased complexity associated with the tracking 

algorithm implementation.  

The growth of the Mean Squared Error (MSE) due to the use of the outdated fixed channel 

estimate at ith instance can be defined as  

( )
2

1

1

=
= ∗∑H H(i)ker er

L

k F
MSE

LMN
 (44) 

where H(i)er  is the difference between the actual channel matrix at the time of the ith symbol arrival 

and the initial channel estimate matrix obtained during the training session; F  is a Frobenious 

norm; L is the number of ensemble repetitions; k is an ensemble index, and M and N are the number 

of transmit and receive antennas respectively.  

Figure 19 plots a MSE(erH) (in dB, relative to the normalised average channel power) of the 

802.11n channels B, C, D, E and F in the 2X2 MIMO system.  
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Figure 19.  Channel MSE vs Time (symbols after training). Doppler as for 802.11n channels. The 

symbol period is 4μs. 

The D and E channels take into account fluorescent light. Their MSE, then, grows more 

quickly compared to the B and C channels. Channel F has a fast-moving component (40km/h) and 

has the worst performance of all the channel types.  

Figure 19 can be used to estimate the number of data symbols between successive training 

periods.  MSE should remain below the noise floor in the system before any additional training is 

needed. For the noise floor of –30dB, channels B and C can have packet lengths of up to 200 

symbols. For the OFDM system (part of the 802.11n standard) with the symbol time of 4usec it is 

equal to 800usec. Channels D and E would be able to tolerate 150 symbols (or 600usec given the 

symbol time of 4usec) in the packet before MSE exceeds the –30dB threshold. Finally, channel F 
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can only have up to 75 symbols (or 300usec, given OFDM symbol time). Channel tracking can be 

employed to increase the packet length (and hence throughput of the system). The work in section 

4.3 considers employing channel tracking for the F channel case. In the rest of the section, various 

existing tracking algorithms employed in MIMO are reviewed.  

4.2.3.2 Existing algorithms that employ MIMO channel tracking  

Decision Feedback Equalisation (DFE) is one popular approach employed for channel 

tracking and equalisation [1, 44-49]. The Equaliser coefficients are adjusted directly by the tracking 

algorithm. This approach is used in SISO systems to remove ISI effects caused by wideband 

multipath channels. The Feed Forward Filter (FFF) removes channel effects on the current symbol, 

while the Feed Back Filter (FBF) suppresses ISI effects from the previously detected symbols. 

Effectively the DFE tracks the channel inverse, H-1. Figure 20 depicts the autocorrelation of the 

inverse channel and also the autocorrelation of the channel, H. A Jakes channel model is used in the 

simulation and elements of the MIMO channel matrices are independent identically distributed (iid).      
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Figure 20.  Autocorrelation of the channel and channel inverse for SISO, 2X2 MIMO and 4X4 

MIMO channels 

The peaky shape of the autocorrelation function of the H-1 in Figure 20 indicates high 

frequency content in the Power Spectral Density (PSD) of the inverse channel. It can be concluded, 

then that in SISO and MIMO systems the inverse channel exhibits dynamic variations far higher 

than the (non-inverted) channel. Therefore fast tracking algorithms such as the computationally 

intensive RLS or Kalman algorithms are generally needed [50]. The DFE can be used in MIMO 

systems not only to cancel ISI, but also to remove the interference from adjacent antennas. 

Komninakis, et al [51] presented one such scheme that uses the Kalman tracking algorithm to update 
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FFF and FBF coefficients. More details on using DFE in MIMO can be found in [52] and references 

therein. It was also shown in [53] that VBLAST can be reformulated as DFE.  

Using this relation Choi at el [1] built a low complexity MIMO DFE algorithm for the flat 

fading MIMO channel, which removes concurrent interference from neighbouring antennas by 

applying SIC. The tracking of the feed forward  coefficients is performed using the Sequential RLS 

(S-RLS) algorithm. The Feed Forward Filter (FFF) coefficients eliminate the channel effect (Nulling 

procedure in VBLAST) and the Feed Back Filter (FBF) coefficients suppress the interference from 

layers with already detected symbols (Cancellation procedure in VBLAST). VBLAST requires a 

pseudo-inverse calculation after each successive deflation of the channel to get the best filter 

coefficients for nulling. Choi, however, proposes to calculate the filter coefficients via an Order RLS 

(O-RLS)  procedure [54]. The performance has also been compared to other existing SIC-MMSE 

algorithms and has provided superior BER results in a slow changing environment as well as in a 

channel with higher Doppler spread.  

Alternatively  the channel can be tracked  and then the equaliser coefficients can be derived 

from the channel estimate. Some of the published work in the area is as follows. 

• Sun  Q.., at el [43] used a high-order interpolation algorithm for channel tracking. Channel 

estimates were then used in a VBLAST equaliser.  

• Roman T., et al [55] used the Kalman algorithm to track the channel in the MIMO OFDM 

system. The tracking is performed in the time domain and channel estimates are then 

converted into the frequency domain, where equaliser coefficients are calculated and 

equalisation is performed.  

• Tong.J,, et al [56] used the LMS algorithm to track the time-varying channel for the space-

frequency coded MIMO-OFDM system. The initial training sequence is used to obtain the 
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noisy channel estimate via Least Squares approximation of the known pilot symbols to the 

received data. Then this channel estimate is used to initialise the LMS tracking algorithm. 

P reference sub-carriers are included in each OFDM symbol. The LMS then iterates along 

these P sub-carriers to converge to the best channel estimate (in the MSE sense) at the 

current time instant. 

There is a host of other MIMO tracking algorithms worth looking at [57-66]. 

When tracking is used with QRD-based detection algorithms, QRD can be performed every 

time a new channel estimate becomes available. This however will result in a high complexity per 

symbol, since QRD is a computationally expensive process (O(M3)). The cost further increases in 

SIC systems, where the optimum detection order is required.  

In this chapter we investigate the performance of decision-directed (DD) MIMO systems 

with two LMS based tracking strategies. 

• The first strategy continuously tracks the channel matrix, H, but reduces the frequency of 

the QR decompositions. The Q and R matrices are then held fixed between successive 

updates. This will result in a complexity reduction at the expense of a growing error in 

channel estimate caused by the obsolete Q and R.  

• The second strategy involves tracking the upper triangular matrix, R, rather than the 

channel matrix H, while holding the unitary matrix Q fixed between successive updates. 

The R matrix loses its upper triangular form with time because of the fixed Q. 

Here, we assume no errors on the feedback path into the tracking algorithm for either 

strategy.  The second strategy will result in a slower equalisation error growth, allowing a further 

decrease in frequency of the QR decompositions. In addition, the number of micro-rotations of the 

CORDIC algorithm can be reduced by taking the QRD of the tracked R matrix (which is nearly 
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upper triangular), rather than the H Matrix.  This is due to the smaller average phase angles of the 

complex elements and column vectors. 

Further, we compare the proposed strategies with MIMO-RLS-DFE scheme of [1], to see 

whether the benefit of the simpler and slower LMS algorithm outweighs the additional need for 

channel inversion. We show that despite the errors on the feedback path to the tracking algorithm, 

the second strategy still provides a superior effective channel. Unfortunately this fails to translate 

into better BER performance because of the errors on the first detection layer. 
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4.3 Using Upper Triangular Matrix Tracking to Reduce 
Complexity per Symbol in a Linear ZF MIMO System 

4.3.1 System model 

A simplified 2X2 base-band model of the MIMO-OFDM structure with QR detection and channel 

tracking is shown in figure 21. 
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Figure 21.   MIMO-OFDM structure with QR detection and channel tracking, initial channel 

estimates are obtained during the training session 
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The serial input data d is channel coded, interleaved and then converted to parallel streams s1 and 

s2. After IFFTs, a wideband channel Hw corrupts the data and WGN is added at the receiver. The 

received wideband signal is represented by yw. An N-point FFT at each receiver transforms the 

wideband channel, Hw, into N groups of 2X2 narrowband flat fading channels, H. ⎡ ⎤
⎢ ⎥
⎣ ⎦

y1
y =

y2
  is the 

output signal of one such group.  

 

Figure 22.  General packet structure employed in wireless LANs 

The data transmission packet consists of a header of known training symbols followed by a data 

payload of M MIMO encoded symbols (figure 22). The training symbols are used for channel 

estimation and setting the initial conditions of the tracking adaptive filter.  A decision-directed 

algorithm then takes over and tracks the channel, using y as its reference signal. This is performed 

in the “DD track and QRD” block of figure 21. The LMS algorithm used in this work performs well 

in a slow-changing environment. It has low complexity and is robust. The decision-directed 

structure eliminates the need for a priori information. After the channel has been estimated in this 

way, the 
^
Q  and 

^
R  matrices are obtained through QR decomposition and then used to equalise the 

channel for the received data symbols, y. QR equalisation is based on the following identity 

^ ^ ^
HQ * y = R*s  (45) 
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Since 
^
R  is an upper triangular matrix, symbol recovery of the symbol estimate, ŝ  is possible via 

back substitution in (45). Finally, de-interleaving, decoding and decision are performed to get the 

original data, d. The data is re-coded for the feedback path and then used as an input, s, to the LMS 

channel-tracking algorithm.  

In this work we will consider low Doppler channels as specified for wireless local area 

networks (WLAN).  These channels generally assume stationary terminals but moving scatterers.  

The new 802.11n standard has specified six such channels. The most aggressive of these, in terms 

of Doppler, is channel F, which assumes scatter velocities of 1.2km/hr for all scatterers except for 

one, which moves at 40km/hr.  This channel will be used for this work.  A complete list of the 

simulation parameters is shown below:  

• The IEEE 802.11n type F channel model @ 5.27GHz   

• A 4µsec OFDM symbol period (3.2usec with a cyclic prefix of 0.8usec)  

• The number of sub-carriers, N=64 

• A 20MHz system bandwidth  

• QPSK modulation 

• No hardware imperfections, perfect synchronisation and no frequency offset  

All the variables with ' ^ ' denote the estimated parameters. Also R denotes the strictly upper 

triangular matrix while AR (used from section 4.3.2.2 onwards) represents an upper triangular matrix 

that loses its upper triangular structure in the course of tracking.  
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4.3.2 Evaluation of tracking schemes 

4.3.2.1 Tracking the channel matrix H 

An expansion of the "DD track and QRD" block of figure 21 is shown in figure 23 for the 

channel-tracking case. The LMS algorithm uses a decision-directed structure to track the channel 

matrix H. The recoded and remapped signal s forms the input to the LMS and the received signal y 

(appropriately delayed) is used as reference. The LMS then adjusts the coefficients of Ĥ  to 

minimise the error signal −y H*s
^

. 

LMS
H

X

QRDH

QH QHy

^

^

text

R

y

s

H(0)
^

DD track and QRD

Input

Reference

 

Figure 23.   Decision-directed tracking and QR decomposition for the channel-tracking case 

The matrix ( )H
^
i represents the channel estimate matrix at the ith time instance. It can be 

decomposed, 

( ) ( ) ( )H = Q * R
^ ^ ^

ii i   (46) 
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from which the term 
^
HQ y  can be obtained.  If the QR decomposition is not performed at every 

time instance to reduce complexity, the matrices 
^
Q  and 

^
R  become outdated. Outdated 

^
Q  and 

^
R  

values will cause an error in the equalisation that increases, as the estimates gets older. The error 

matrix, H(i)er , can be written as follows 

( ) ( ) ( ) ( )= −
^ ^

i-ni-nH i ier H Q * R                                                  (47) 

Here ( )iH  is the actual channel matrix at the time instance, i, while ( )
^

i-nQ  and ( )
^

i-nR  are 

unitary and upper triangular matrices obtained n time instances earlier, from the LMS estimate 

( )
^

i-nH .  Obviously, when n = 0 (QR decomposition is performed at every time instance) H(i)er  will 

represent the tracking error of the LMS algorithm. When n=(i-1) the QR decomposition is 

performed only once, directly after the training sequence, and so H(i)er  will represent the error due 

to Doppler variations in the channel. The average error power per element of this matrix is described 

by (44). 

The diagrammatical representation of the indexing is shown below 

Figure 24.  An example of the indexing, QRD performed every 3rd symbol.    

 

i=

n=

Perform QRD, set n=0 

1 2 3 4 5 6 

0 1 2 0 1 2 
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4.3.2.2 Tracking the upper triangular matrix 

The expansion of the "DD track and QRD" block in figure 21 for the upper triangular matrix-

tracking scenario is shown in figure 25.  
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Figure 25.  Decision-directed tracking and QR decomposition for the upper triangular matrix-

tracking scenario 
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The channel matrix ( )
^

0H  is obtained immediately after the initial training period, and the QR 

decomposition is performed to initialise the 
^

QH and 
^

RA  blocks. In this scenario, the LMS 

algorithm tracks the AR matrix only. (Note, the Q matrix is held fixed until it is updated by the next 

QR decomposition). At any time instance the channel matrix H can be presented as 

( ) ( ) ( )i i-n R iH = Q * A   (48) 

Here H(i) is the actual channel matrix at the ith time instance, ( )i-nQ  is a unitary matrix obtained n 

time instances ago (from H(i-n)), and ( )R iA  is generally a non-upper triangular matrix. ( )R iA  has the 

upper triangular form when n=0, immediately after a QR decomposition. As n increases ( )i-nQ  

becomes more outdated, hence ( )R iA  has to change to compensate for the changing channel. As a 

result ( )R iA  has non-zero components introduced below the main diagonal as well as non-real 

components on the main diagonal. 

The LMS tracking configuration is shown in figure 26. The key difference between this and 

the previous sub-section (4.3.2.1) is that the reference signal for the LMS algorithm is now taken 

after the 
^
HQ  processing block. 

 



60 

AR

^

+yQH
ˆ

s sAR
ˆ

 

Figure 26.  LMS configuration for tracking the AR matrix 

If ( )
^

R iA  is an estimate of an upper triangular matrix AR at the time instance i, then the error 

( )ier  due to tracking and noise can be expressed as 

( ) ( ) ( ) ( )

^ ^
H

(i-n)i i R i ier = Q * y - A *s    (49) 

substituting from equation 49 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

H^ ^ ^
H

ii i-n i-n R i R i i i-n i

^ ^^
H H

Ri i-n i-n R i i i i-n i

er = Q *Q * A *s - A *s + Q *n

er = Q *Q * A - A *s + Q *n
   (50) 

This error signal is used to update the LMS tracking algorithm [67].   

The non-upper triangular ( )
^

R iA  matrix is not suitable for the back substitution process used 

in the R-1 equalisation block of figure 21.  A modified copy of ( )
^

R iA  is needed.  In this modification 

all the non-zero imaginary elements on the main diagonal and all the elements below the main 
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diagonal are set to zero. The created upper triangular matrix 
^

fR is used for back substitution in 

figure 25. The forcing to zero operation, however, creates an additional error.  

The effective channel estimate, ( )
^

f iH  with all errors included (zero-forcing and tracking) is 

defined as 

( ) ( ) ( )
^ ^ ^

f i i-n f iH = Q * R   (51) 

The new error matrix becomes  

( ) ( ) ( )
^

fR i i ier =H -H       (52) 

Expanding (52) using equation (51) gives 

( ) ( ) ( ) ( ) ( )
^ ^

fR i i-n R i i-n ier = Q * A - Q * R   (53) 

When the power of this error grows beyond a threshold, set by the designer, the QR decomposition 

(QRD block in figure 25) can be performed on ( )
^

R iA  to bring it back to upper triangular form and 

update the unitary matrix Q, as shown below 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
⎛ ⎞
⎜ ⎟
⎝ ⎠

^ ^ ^ ^ ^ ^
/ /

i i-n R i i-n R i i-n i iH = Q * A = Q *QRD A = Q *Q * R   (54) 

In (55) ( ) ( )
^

/
i-n iQ *Q  forms a new unitary matrix and ( )

/
iR  is the new upper triangular matrix that 

updates the 
^

RA value in the LMS tracking block of figure 25. 

4.3.2.3 Simulation results 

Figure 27 depicts the MSE performance of the two tracking scenarios as a function of the 

number of data symbols in a packet. Two conditions are shown for each scenario: with QR 
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decomposition performed on every symbol, and with QR decomposition performed on the initial 

channel estimate ( )
^

0H  only. A 2X2 normalised channel matrix is used, at a Doppler frequency of 

48Hz. Such a high Doppler frequency is chosen to show the asymptotic behaviour of the curves.  

There is no noise in the system. 
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Figure 27.  Comparison of tracking performance, perfect channel estimation and hence perfect Q 

and R is assumed at the first symbol.   

Some important observations can be made based on this figure. Both tracking schemes 

H and RA  perform equally when QR decomposition is performed at every time instance (bottom 

line). In both cases the error floor is due to the tracking and misadjustment of the LMS algorithm. 

To show the equivalence, we can write 

H
RA = Q * H  (55) 
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Taking the Frobenious norm of both sides gives 

H
R F F

A = Q * H                                                           (56) 

Here Q  is a unitary matrix, so the magnitudes of H  and RA  are equal.  

The error growth in the RA  tracking case (second line from the bottom, figure 27) is solely due to 

the conversion of 
^

RA  to 
^

fR for equalisation using back substitution.  For the case of a 2X2 matrix: 

11 11 12 12 11 12 12

21 21 22 22 22

0
 and      

0 0 0
r i r i r r i

r i r i r

r jr r jr r j r jr
r jr r jr j r j

+ + + +⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥+ + + +⎣ ⎦⎣ ⎦

^ ^

R fA R   (57)            

Then the instantaneous error matrix due to introducing zeros in 
^

RA  can be written  

11

21 21 22

0i

r i i

jr
r jr jr
⎡ ⎤⎛ ⎞ = ⎢ ⎥⎜ ⎟ +⎝ ⎠ ⎣ ⎦

^ ^

R fA - R    (58) 

The elements in (59) are reset to zero every time QR decomposition is performed on 
^

RA . 

Given that 
^

RA is normalised to have an average total power of unity (equivalent to the channel), it 

can be easily shown that the maximum average power of this error matrix reaches –3dB of the 

normalised power. This is indeed the upper bound for the second line from the bottom in figure 27. 

The top line in Figure 27 shows the difference between the current channel estimate, ( )
^

iH , 

and the original current estimate, ( )
^

i-nH  taken n instances earlier. The error matrix can be presented 

as 
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( ) ( ) ( )

( ) ( )( )

  11   11   21   21 

  12   12   22   22 

    

Where

 

r i r i

r i r i

ij ij iji i n

dh jdh dh jdh
dh jdh dh jdh

dh h h −

+ +⎡ ⎤
= ⎢ ⎥+ +⎣ ⎦

= −

^ ^

H n i i-ne = H -H

         (59) 

   

Here, ijh can be either real or an imaginary and 21  ,21 ≤≤≤≤ ji  

Assuming all four complex coefficients of (60) have identical statistics and the channel matrix is 

again normalised to have an average power of unity, it can be shown that the average power per 

element in ( )H ne  is given by: 

  ( )( )2
lim 3
n

E dB
→∞

⎡ ⎤ =⎢ ⎥⎣ ⎦
H ne  of the normalised power     (60) 

This is the upper bound for the top line in figure 27. 

4.3.3 Saving power through QR decomposition repetition rate reduction 

Figure 28 depicts a channel-tracking model where the frequency of QR decompositions is 

adjusted to maintain the average MSE below a set threshold.  This will minimise the power 

consumption.  
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Figure 28.  The system model used to evaluate the channel or upper triangular matrix-tracking 

schemes 

The QRD block is invoked and n set equal to i, when the MSE exceeds a set threshold; 

otherwise the outdated 
^

(i-n)Q  and 
^

(i-n)R  values are used.  In the simulations the above model will be 

used to generate three MSE curves representing different scenarios.  

In the first scenario the QRD block is used once only; immediately after the training session.  

In the second scenario, the threshold for invoking a QRD is set at 6dB below the operating noise 

power level, No. This means that the implementation loss associated with channel estimation errors 

is bounded at 

4

log10 10
o

o

o

N
N

N

+
∗−  ≈ 1dB.   
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And finally in the last scenario QR decomposition is performed on every single channel 

estimate. This curve represents the tracking floor of the LMS algorithm (assuming negligible QR 

decomposition errors).  There is some compromise here, since the LMS feedback coefficient, μ, can 

be adjusted to lower this floor, but at the expense of slower convergence.  The value of μ =0.1 

chosen in this simulation takes 8 symbols to bring the MSE below the (No-6dB) threshold. 

The same system model is used for the upper triangular matrix tracking (figure 28), except 

the variables in parentheses are now used. Two additional scenarios are considered.  The fourth 

scenario only performs one QR decomposition after training.  In this case ( )
^

f iR  is obtained through 

inserting zeros into the tracked matrix ( )
^

R iA .  The fifth scenario performs the QRD when the MSE 

is above the set threshold. The update of ( )
^

R iA  and ( )
^

iQ  is performed according to (55). 

Figure 29 presents MSE comparisons of the five scenarios for both tracking schemes in the 

presence of additive white Gaussian noise of –30dB. The pilots have the same SNR as the data and 

the environment is slowly changing with a Doppler frequency of 6Hz, as specified in the channel 

model [22]. 
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Figure 29.  MSE vs. packet length comparison of various scenarios in the presence of AWGN and 

fd=6Hz 

A QRD is taken immediately after training for all curves.  The top curve “H no QRD” has no further 

updates of the Q and R matrices, and so the MSE (48) steadily increases with time.  The second 

curve from the top “AR no QRD” also does no further QRDs, but the partial tracking of the R Matrix 

initially improves the MSE for the first 15 data symbols, before the error growth in the zeroed 

elements (59) starts to dominate. The best results come from when the QRD is executed after every 

symbol “H or AR QRD” and this forms a lower bound to the MSE.  These three lines are identical to 

the curves in figure 27, except for the more realistic lower Doppler frequency suggested by the 

IEEE802.11n channel model.  The last two curves show the threshold mode of operation.  Savings 

in QRDs occurs after MSE drops below the threshold of -36dB.  The oscillatory motion is 

constrained between the threshold and lower MSE bound.  It can be observed that after the LMS 

algorithm has converged, it takes about 10 symbols longer for the “AR threshold QRD” line to reach 
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the error threshold than for the “H threshold QRD” line. The slower divergence of AR allows a 

reduced number of operations per symbol without additional sacrifice in the performance. 

If the AR tracking and H tracking scenarios require n and m symbols respectively to degrade 

to a given MSE, the ratio 
n
m  will express the complexity gain of the AR tracking scheme over the 

channel-tracking scheme.  Table 1 presents the gain in the complexity of the RA  tracking scheme 

for the various SNR cases. The IEEE 802.11n channel “F” model is used. 

 

Symbols between QRSNR 
[dB] 

Target 
MSE [dB] Tracking H

[n] 
Tracking AR

[m] 

Ratio 
AR/H 
[m/n] 

20 -26 97 140 1.44 
22 -28 74 108 1.46 
24 -30 56 82 1.46 
26 -32 43 64 1.49 
28 -34 32 48 1.5 
30 -36 24 36 1.5 

 

Table 1 Number of symbols between QR decompositions during which the target MSE is reached 

for both tracking schemes at various SNR levels  

The first column of table 1 gives the SNR level, and the target MSE is shown in the second 

column. The last column shows the gain in the complexity that can be achieved by tracking the 

upper triangular matrix.  It is possible to have up to 1.5 times fewer operations per symbol without 

sacrificing performance.   

4.3.4 Threshold detection in a practical system 

Threshold detection forms an important component of the computation-saving techniques 

proposed in this work. Errors described by (47) and (53) are used to calculate Mean Squared Error 
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needed for the threshold calculations. For simulation purposes, the actual channel is used as a 

reference in these equations (also depicted in figure 28). 

In the practical case the actual channel value is not available. However, it is possible to 

obtain the required error, using 
^
H  or 

^
RA  (depending on the tracking scheme chosen) as a 

reference. The next two subsections show how the error is obtained for the channel-tracking case 

and for the RA  tracking case respectively. 

4.3.4.1 Channel tracking with threshold detection   

For the channel-tracking case the error ( )H ier  in (47) can be rewritten as 

( ) ( ) ( ) ( ) ( ) ( ) ( )
⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

^ ^ ^ ^
H i i i-n i i i i-ner = H - H = H - H + H - H   (61) 

Mean Squared Error of (61) is then  

( ) ( ) ( ) ( ) ( )
⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

2^ ^ ^
i i i i-n= H - H + H - HH iMSE E   (62) 

where 2E ⎡ ⎤
⎢ ⎥⎣ ⎦

 denotes an ensemble average per matrix element. 

Assuming that the two different components in (62) are uncorrelated  

( ) ( ) ( ) ( ) ( )

2 2⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

^ ^ ^
i i i i-nH - H H - HH iMSE E E   (63) 

The first part of (63) can be obtained from the LMS tracking error 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

=

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

^ ^
i i i i i i i i

^
i i i i

y - H *s = H *s + n - H *s ;

H - H *s + n

LMS i

LMS i

er

er
    (64) 

With normalised signal power the expected value of LMSer  is 

( ) ( ) ( )

2
2

⎡ ⎤
⎡ ⎤⎢ ⎥= + ⎢ ⎥⎣ ⎦⎢ ⎥

⎣ ⎦

^
i iH - H nLMS iMSE E E      

  (65) 

After subtracting the biasing term 2⎡ ⎤
⎢ ⎥⎣ ⎦

nE  from the derived MSE, the expression can be used in 

(63). 

The second part of (63) is calculated from readily available ( )
^
i-nH (saved every time QR 

decomposition is performed) and ( )
^

iH , the LMS channel estimate. 

4.3.4.2 Upper triangular matrix tracking with threshold detection 

 
In the upper triangular matrix-tracking case:  

( ) ( ) ( ) ( ) ( )

2⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

^ ^
fi-n R i i-n iQ * A - Q * RR iMSE E    (66) 

Since ( )i nQ −  and ( )
^
i nQ − are unitary (66) can be rewritten  

( ) ( ) ( )

2⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

^
fR i iA - RR iMSE E   (67) 
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Equation (67) can be expanded into 

( ) ( ) ( ) ( ) ( )

2⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥= ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

^ ^ ^
fR i R i R i iA - A + A - RR iMSE E    (68) 

Then, assuming the two parts in (68) are uncorrelated  

( ) ( ) ( ) ( ) ( )

2 2⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

^ ^ ^
fR i R i R i iA - A A - RR iMSE E E   (69) 

Following the same approach as in the channel-tracking case, it is easy to show that the first part of 

(69) is actually the LMS tracking error without biasing noise term and the difference in the second 

part of (69) is evaluated from the available ( )
^

R iA  and ( )
^
f iR . 

4.3.4.3 Block diagram and evaluation of the threshold detector  

The block diagram of a threshold detector is presented in figure 30 
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+ -

+

-

+

+

Threshold detector

 

Figure 30.  Threshold detector block diagram 
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The values in brackets on the input lines to the threshold detector apply for the upper 

triangular matrix-tracking case. Pn is the noise power (a biasing term). The trigger line is connected 

to the QR decomposition blocks in figures 23 and 25. 

Figure 31 shows the performance of most of the scenarios described in the previous section 

with identical conditions. For clarity of presentation, the channel-tracking case is excluded. Instead, 

the MSE of the threshold detector in the AR tracking case is shown.  
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Figure 31.  MSE vs. packet length comparison using threshold detector 

The "AR practical thresh. QRD" line has fluctuations due to the noisy LMS error. Using more 

samples for averaging can reduce the power of these fluctuations. In practice, averaging causes a 

time delay that has to be accommodated in the system.  
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4.3.5 CORDIC-based QR decomposition 

QR decomposition using the Givens rotation method is commonly based on the CORDIC 

algorithm. The latter performs a fixed number of micro-rotations. For the RA tracking case, 

however, the initial angles by which complex elements and column vectors of RA are rotated are 

often small. This section presents and explains the necessary CORDIC algorithm modifications to 

take advantage of these smaller angles.   

4.3.5.1 Using CORDIC to perform QR decomposition 

The Vectoring and rotation modes of the CORDIC operation are of interest [68].  

In the vectoring mode an arbitrary vector 
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

v
x
y

 with
x
y

=)tan(α  is rotated towards the x-axes 

using a set of rotation matrices, called micro-rotations. The algorithm is presented in (70) 
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= ∗
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m+1 m

q

v v

m

ms m

m m

m

d
m K

d

d sign x sign y
q

      (70)    

 

xm and ym are x and y components of v at the mth iteration and  vm  is vector v at mth iteration;   qm is 

an orthogonal matrix that rotates the vector vm by tan-1(2-m) angle. Since 2-m, Ν∈≤≤ m  ,0 Km  is 

a converging sequence, vm is bound to align with the x-axes to within a ‘set angular tolerance’ given 

by tan-1(2-K).  After K micro-rotations, the algorithm is stopped.  Symbol d in (71) indicates the 

direction of the next micro-rotation. The square root term in front of the matrix in (71) is known as 

the scaling factor.  It quickly converges to 1.0 and there is no need to calculate it after nb/2 

iterations, where nb is the processing wordlength, since the value of 22− ∗s m  drops below the 
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quantisation noise floor. The product of all the scaling factors is normally pre-calculated, stored, and 

applied only once after the final iteration.  

In the rotational mode the vector v is rotated by a preset angle.   

 

               (71) 

                                                     

 

z=z0  is the preset angle. In (71), zm+1 contains the residual angle that must be driven to zero, and d 

indicates the direction of the next micro-rotation.  When zm+1 reaches a ‘set angular tolerance’ of  

tan-1(2-K), the algorithm is stopped. 

4.3.5.2 QR decomposition using Givens Rotations 

Givens rotations are used in this work to perform QR decomposition [41]. We consider the 

2X2 real matrix 

11 12

21 22

| |

| |
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1 2H H H
h h
h h

    (72) 

The idea is to find such a unitary rotation matrix Q so that when it multiplies column vector 

H1 it rotates it in the following way. 

0
⎡ ⎤

= = ⎢ ⎥
⎣ ⎦

1
1 1

H
R Q*H         (73)  

Multiplying H by Q 
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/
12

/
220

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

1H
R = Q*H

h

h
   (74)      

In (74) R is an upper triangular matrix with Q as its unitary basis.  The CORDIC-based QR 

decomposition of a 2X2 complex matrix is shown below as an example. 

 

Figure 32.  Using CORDIC to obtain upper triangular matrix R and unitary Q of a 2X2 complex 

matrix.  

At the end of the procedure shown in figure 32, R and Q are obtained. Since R is a complex 

matrix there are a total of 8 rotations needed to obtain the upper triangular matrix, with half of them 

in the vectoring mode. There are four rotations to generate real coefficients in the first column, three 

to perform Givens rotations and a final rotation to make the diagonal real. There are 8 additional 

rotations required to obtain Q with all of these rotations performed by the CORDIC in a rotational 

mode.  
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For the CORDIC-based QR decomposition, the vectoring mode of CORDIC is used to 

introduce zeros in appropriate places while creating R, as shown in figure 32.  The Rotational mode 

of the CORDIC is used to update the rest of the vectors. If the sequence of the signs used during the 

vectoring mode is saved, it then can be used in (71) for the CORDIC in rotational mode to update 

the vector (updating ( )12
12

θjer  to ( )1112
12

θθ −jer , for instance). The middle two steps of (71) are not 

needed, hence reducing algorithm complexity.  

4.3.5.3 Complexity of QR decomposition based on CORDIC 

Two additions and two shifts are required to implement a micro-rotation by the orthonormal 

matrix in the first line of (70) and (71).  The total scaling factor resulting from the multiplication of 

individual scaling factors is stored separately. Vector v is multiplied by K orthogonal matrices and 

then by the stored scaling coefficient. 

For the CORDIC that uses K micro-rotations, it takes 8*2*K shifts + 8*2*K additions to 

form R and the same number of shifts and additions to form Q. The CORDIC in our work needed 

K=11 micro-rotations to reach the -41dB tracking error bound of figure 28. Two multiplications are 

required for the scaling coefficient at the end of each of the 16 rotations.  Hence there are 352 shifts 

and 352 additions and 32 multiplications needed to perform the QR decomposition of a complex 

2X2 matrix.  

4.3.5.4 Modified CORDIC 

When tracking the upper triangular matrix, the interference elements below the main 

diagonal and imaginary elements on the main diagonal start from zero.  

11 12 12

22

0ˆ
0 0 0

r r i
R

r

r j r jr
A

j r j
+ +⎡ ⎤

= ⎢ ⎥+ +⎣ ⎦
    (75) 
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The first complex element r11 will have a very small phase angle at the beginning. The 

second complex element r21 will have both elements very small at the beginning, with a uniformly 

distributed phase angle between 0° to 360°.  The initial angle between the vector ⎥
⎦

⎤
⎢
⎣

⎡

21

11

r
r

and the x-

axes is also likely to be very small. Since the QR decomposition is performed on this nearly upper 

triangular matrix, as explained in section 4.3.2.2 of this work, it makes sense to modify the CORDIC 

so that it uses a smaller number of micro-rotations for the smaller angles. 

For an input vector defined as ( )
x
y

y
x

=⎥
⎦

⎤
⎢
⎣

⎡
αtan , , operation of the conventional CORDIC algorithm 

can be presented as in figure 33. 

2(0) 2(-1) 2(-2)y0/x0

rotate

y1/x1 y2/x2 y3/x3

rotate rotate

± ± ±
 

(a) 

 

(b) 
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Figure 33.  (a) Conventional CORDIC with three micro-rotations.  The micro-rotation angle is 

approximately halved for each consecutive iteration  (b) CORDIC becomes inefficient 

when the input angle is small 

The conventional CORDIC will go through a set number of micro-rotations (figure 33a) 

irrespective of the input angle. The direction of the next micro-rotation is always towards the 

positive x-axis. The CORDIC becomes inefficient when the input angle is small (figure 33b), since 

the first micro-rotation causes a large overshoot in the phase, which requires a number of iterations 

to correct. Processing power is wasted.  The number of micro-rotations can be reduced by 

considering all possible micro-rotations and choosing the one that gives the smallest residual angle. 

Figure 34 conceptually describes the idea. The Number of micro-rotations has been reduced from 

three to only one. 

2(0) 2(-1) 2(-2) y1/x1y0/x0

skip skip optimum
angle

± ± ±

 

 

Figure 34.  Reducing the number of micro-rotations to one, by considering all possible micro-

rotations at each iteration 
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One way to find the optimum angle is to use a method of approximate rotations suggested 

first by Gotze et al in 1996 [69, 70]. This method is used here to reduce the number of iterations for 

the small angles of the 
^

RA matrix. The technique is explained below.    

Representing  )tan(α  in the floating point binary format 

)(2
2
2

)tan( exey

x

y
ex

x

ey
y

M
M

M
M −∗=

∗

∗
=α       (76) 

Where My and Mx are mantissas and ey and ex are the exponents of y and x respectively. 

Since 21    ,21 ≤≤≤≤ xy MM  then 

11 22 ≤≤−

x

y

M
M

           (77) 

With )(22 exeya −= , used as an approximate rotation and taking (77) into account, the set of 

possible choices is narrowed down to  

( ) ( ) ( )[ ] 2,2,2 11 +− aaa              (78) 

Dickson [71] used two additional rotations to find the closest value among the three options 

in (78).  To avoid this additional complexity we suggest using the middle of the three options 2(a) , 

regardless of which of the three choices is closer to 
x
y .   Statistically, the probability that this is the 

correct choice is 50%.  For the other 50% of occurrences the system still converges, but in the worst 

case will activate all the following available micro-rotations. 

In this work the value of yi rather than the ‘set angular tolerance’ is used to terminate the 

rotating process of the vectoring CORDIC.   This will tend to equalise the residual errors in the AR 

matrix coefficients after the QRD has been completed.   It will also eliminate unnecessary rotations.   
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The modified vectoring mode algorithm will now be described in pseudo-code. 

1. Move the input vector, ⎥
⎦

⎤
⎢
⎣

⎡

i

i

y
x

, into the first octant by inverting signs and flipping the x and 

y magnitudes as appropriate   

2. Obtain the exponent difference (ey-ex) =a 

Refer to Appendix 1 for details 

3. Rotate with 2a to perform the approximate micro-rotation 
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4. Check the stop condition.  If (yi < accuracy floor) Apply scaling factor from LUT,  re-

adjust signs and stop. Else next iteration (go to 2)  

The sign and flipping information, the sequence of a’s and the scaling factor are used in the 

rotational part of the modified CORDIC to update the other vectors. 

Figure 35 depicts the number of micro-rotations needed to obtain an angular accuracy of 

α<tan-1(2-9) for the modified CORDIC.  The average number of micro-rotations is 4.3 which is 

significantly below the fixed set of 10 micro-rotations, required by a conventional CORDIC with the 

same accuracy.  The average is further reduced when angles are small.  Note angles in the range of  

tan(α) <= 0.02 are common in the upper triangular matrix tracking scheme of  sub-section 4.3.2.   
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Figure 35.   The number of microrotations vs y
x

 (= ( )tan α ).  Zero corresponds to α= 0 degrees 

and 1 corresponds to α= 45 degrees. 

 

There is an additional computational overhead in the proposed algorithm. It is associated 

with obtaining the exponential difference (step 2) when the algorithm is implemented on fixed-point 

hardware. Also, a LUT containing all possible combinations of the scaling factors is needed, since 

the rotational sequence is no longer fixed. The number of scaling factors (equal to 2nb/2) determines 

the LUT size.  When QR decomposition is performed some vectors are rotated by the sequence 

obtained earlier from the vectoring mode, as shown in figure 32. The described computational 

overheads do not exist for the CORDIC in the rotational mode. 

4.3.5.5 Complexity of QRD based on the modified CORDIC 

N micro-rotations require the complexity of 2*N additions + 2*N shifts in the vectoring 

mode algorithm. The function that finds the exponent difference adds an overhead complexity of P 

comparisons and additions, and S shifts. The values of P and S depend on the way the function is 
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realised. Appendix 1 demonstrates the realisation of the function used in this work.  Defining the 

complexity of the vectoring CORDIC as CV: 

CV =(2*N+P) additions + (2*N+S) shifts      (79) 

Here, comparisons are assumed to have an equivalent complexity to additions. The rotational 

CORDIC has only the complexity of N micro-rotations.  Defining its complexity as CR, then 

CR = 2*N additions + 2*N shifts       (80)         

This is much less than the vectoring CORDIC because it does not include the overhead of estimating 

the approximate angle. 

The total complexity of the QR decomposition of a 2X2 complex matrix is  

C2X2= (4*CV + 4*CR)+ 10*CR         (81) 

 R matrix   Q matrix 

For the case of an n by n full-rank matrix this can be generalised to 

 ( )2 3 2 3 21 11 5 2
2 2

n
nXn v RC n C n n n n n C−⎛ ⎞= ∗ + ∗ + ∗ − ∗ − ∗ − ∗⎜ ⎟

⎝ ⎠
  (82) 

The rotational complexity (second term) grows much more quickly then the vectoring 

complexity (first term).  

4.3.6 Simulation results 

Table 2 shows a comparison in the complexity of the conventional and modified CORDIC 

algorithms. It was found that the conventional CORDIC required 11 micro-rotations to guarantee 

convergence to the LMS tracking floor in figure 29. Similarly, the modified CORDIC was required 

to meet yi<2-9 before termination.  The modified algorithm is data dependent and so the average 

number of operations was obtained from uniformly distributed values of x and y between 0 and 1.  
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            Complexity     

CORDIC 
Shifts Additions 

Standard vectoring 

or rotational mode 
22 22 

Modified, Vectoring 

mode (CV) 
27.29 22.18 

Modified, 

Rotational mode 

(CR) 

6.43 6.43 

Table 2 Complexity comparison between standard CORDIC of 11 micro-rotations and 

Modified CORDIC with termination condition |yi |< 2-9  

It can be observed from table 2 that the overhead increases the complexity of the modified 

CORDIC in the vectoring mode, but reduces the complexity in the rotational mode. However, there 

is a net complexity reduction when the modified CORDIC is used to perform QR decomposition.  

Substituting table 2 values into (82) for the 2x2 case gives 0.53 times the number of shifts and 0.47 

times the number of additions compared to the conventional CORDIC. The performance savings 

improve as the matrix size increases.  

For the AR tracking scenario there will be even larger savings as the angles on average are 

smaller, resulting in fewer micro-rotations. Figure 36 plots the complexity of the AR tracking 

scenario based on the modified CORDIC as the fraction of the complexity of the H tracking case 

based on the conventional CORDIC.   
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Figure 36.   Complexity savings of the AR tracking with modified CORDIC over the H tracking 

with the conventional CORDIC in 2X2 system 

For a small number of symbols between consecutive QR decompositions, there are large 

savings in the number of shifts and additions per symbol. The savings are less as the QR 

decomposition frequency decreases, asymptotically reaching their respective upper bounds.  

However, savings are still worthwhile at the repetition rates suggested by figure 29 (20 to 30 

symbols). 

At diminished signal-to-noise ratios the LMS tracking floor (figure 28) rises, reducing the 

accuracy requirements on the QR decomposition and allowing a larger terminating value for yi and 

so a lower number of micro-rotations. Table 3 shows the required yi termination levels for the 

modified CORDIC, as well as the number of micro-rotations for the conventional CORDIC for 

various SNRs. 
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SNR [dB] 10 12 14 16 18 20 22 24 26 28 30 
Term.  yi 2-5 2-5 2-6 2-6 2-6 2-7 2-7 2-7 2-8 2-8 2-9 
Rotation number 7 7 8 8 8 9 9 9 10 10 11 

 

Table 3 Termination yi value for various operating SNR 

Finally, table 4 demonstrates the complexity savings for various SNR with MSE thresholds 

set proportionally lower for higher SNR values.  

SNR [dB] Target [dB] AR/H shifts AR/H add 

20 -26 0.23 0.196 

22 -28 0.21 0.188 

24 -30 0.19 0.162 

26 -32 0.22 0.183 

28 -34 0.2 0.165 

30 -36 0.22 0.184 

 

Table 4 Complexity comparisons for various SNR 

Table 4 shows that the proposed modifications to the CORDIC reduce the complexity of the 

AR tracking scheme even further compared to the results reported in Table 1. The complexity of the 

AR tracking scenario is now reduced to 20% of the shifts and about 18% of the additions compared 

to the original channel-tracking scenario.  

All the results described until now have been obtained under the assumption of the error free 

detection. The following section will consider the more practical case of VBLAST-MMSE detection 

and compares both developed LMS strategies to the RLS-DFE scheme of [1]. 
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4.4 Evaluation of the two proposed strategies with VBLAST-
MMSE detection and comparison with RLS based DFE 
scheme. 

4.4.1 Introduction 

MSE of the channel estimate was used as a performance metric in the previous section. In 

this section, however, we wish to use more realistic BER metric for performance evaluation of both 

tracking schemes. VBLAST-MMSE achieves the closest performance to optimum MLS detection, 

while ZF has the worst performance, according to figure 17. For this reason we have chosen to 

implement both tracking scenarios with the VBLAST-MMSE detection algorithm. We evaluate the 

accuracy of the channel estimation as well as BER performance.   

The major modification to the system model described in figures 21,23 and 25 is the use of 

the extended channel matrix, required for MMSE detection [28, 40]. It is defined as
ˆˆ ⎡ ⎤

= ⎢ ⎥
⎣ ⎦M×M

HH
Inσ

 

Ĥ can be written as a product of two matrices: 

ˆˆ ˆˆ ⎡ ⎤
⎡ ⎤ ⎢ ⎥⎣ ⎦

⎣ ⎦
1 2

N×M

RH = Q Q *
0

  (83) 

where ( ) ( )ˆ ˆ ˆ,   + × + × ×∈ ∈ ∈1 2Q Q RN M M N M N M MC C and C .  ˆ 1Q spans orthogonal subspace of Ĥ ; 

and ˆ 2Q  is an orthogonal basis for the null-space of the Hermitian of Ĥ .  

The ˆ ˆ ˆ⎡ ⎤
⎣ ⎦1 2Q = Q Q  and R̂  matrices are obtained through QR decomposition and then used 

to equalise the channel for the received data symbols y. QR equalisation is based on the following 

identity 

ˆ ˆHQ * y = R *s   (84) 
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Since R̂  is an upper triangular matrix, symbol recovery is possible via SIC. The data is re-

mapped for the feedback path and then used as an input, ŝ , to the LMS channel-tracking algorithm.  

R denotes the strictly upper triangular matrix while AR (used from section 4.4.2.2 onwards) 

represents an upper triangular matrix 
⎡ ⎤
⎢ ⎥
⎣ ⎦

R
N×M

R
A =

0
 that loses its upper triangular structure in the 

course of tracking. In this section Jakes model describes the Doppler effect of the non-stationary 

channel. 

4.4.2 Evaluation of tracking schemes 

The two LMS tracking strategies presented in this sub-section aim to reduce the 

computational complexity per symbol in QR detection based receivers. They both achieve this goal 

by reducing the recurrence rate of QR decompositions, exploiting the better correlation properties of 

the channel compared to the inverse channel. Here, we evaluate the complexities of these tracking 

schemes with MMSE detection and compare them with the algorithm in [1] 

 

 

 

 

 

 

 

 

 



88 

4.4.2.1 Tracking the channel matrix H 

 

LMS
H

SQRD
^

^R ^

y

Input

Reference

Q1
H

^

σ ×

⎡ ⎤
⎢ ⎥
⎣ ⎦M M

H
I

SIC-MMSE
ŝ
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Figure 37.  Decision-directed tracking and Sorted QR decomposition (SQRD) )for the 
channel-tracking case. 

The re-mapped symbol, ŝ  from the MMSE detector (Fig. 37) forms the input to the LMS 

and the received signal y is used as reference. The LMS then adjusts the coefficients of Ĥ  to 

minimise the error signal ˆ ˆy - H *s . 

The low-complexity Sorted QR Decomposition (SQRD) developed in [39] is used to obtain 

suboptimal ordering and QR decomposition.  The matrix ( )ˆ
iH represents the extended channel 

estimate matrix at the ith time instant. SQRD decomposes it as 

( ) ( ) ( )
ˆˆ ˆ1i  i iH = Q * R   (85) 

from which the term ˆ H
1Q * y  can be obtained.  ˆ 2Q  is not required in this tracking scenario, since it 

multiplies the last N rows of zeros in 
ˆ⎡ ⎤

⎢ ⎥
⎣ ⎦N×M

R
0

.   If the SQRD is not performed every symbol time 

instant, the complexity per symbol in the system is reduced but the matrices ˆ 1Q  and R̂  become 
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obsolete. Obsolete ˆ 1Q  and R̂  values will cause an error in the equalisation that increases as the 

estimates get older. The error matrix, H(i)er  represents the instantaneous deviation of the channel 

estimate by the LMS tracking algorithm from the actual channel matrix 

( ) ( ) ( ) ( )
ˆ ˆ

H i i 1 n ner = H - Q * R   (86) 

Here ( )iH  is the actual channel matrix at the time instant, i, while ( )
ˆ

1 nQ  and ( )ˆ
nR  are unitary and 

upper triangular matrices obtained at the nth instant ((i – n) time instances earlier), from the LMS 

estimate ( )ˆ
nH . Whenever a SQRD is performed, n is set to be equal to i. With γ  defined as the 

maximum interval between consecutive SQRDs, we can calculate the total complexity of the 

algorithm as 

3 2 21 13 1 1 13 18
2 2 2 2

γ
γ γ

−⎛ ⎞ ⎛ ⎞= ∗ + − + ∗ −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

HC M M M M M  (87) 
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4.4.2.2 Tracking the upper triangular matrix  

The growth in equalisation error can be reduced by tracking the upper triangular matrix.  

This is because some of the tracked elements can be used immediately in the equalisation process. 
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Figure 38.  Decision-directed tracking and SQRD for the upper triangular matrix-tracking 
scenario 

In this scenario (figure 38), the LMS algorithm tracks the AR matrix (the R matrix that loses 

its non-upper triangular form), while the Q matrix is held fixed until it is updated by the next QR 

decomposition. At any time instant the channel matrix H can be presented as 

( ) ( ) ( )i n R iH = Q * A   (88) 

Here ( )iH  is the actual extended channel matrix at the ith time instant, ( )nQ  is a unitary matrix 

obtained (i - n) time instances ago (from ( )ˆ
nH ), and ( )R iA  is generally a non-upper triangular 

matrix. ( )R iA  has the upper triangular form when n = i, immediately after a QR decomposition. As 

(i – n) increases, ( )nQ  becomes more obsolete, hence ( )R iA  has to change to compensate for the 
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changing channel. As a result, ( )R iA  has non-zero components introduced below the main diagonal 

as well as non-real components on the main diagonal.   

The non-upper triangular ( )
^

R iA  matrix (an estimate of ( )R iA  produced by the LMS tracking 

algorithm) is not suitable for the back substitution process used in the SIC block of figure 38. A 

modified copy of ( )
^

R iA  is needed.  In this modification all the non-zero imaginary elements on the 

main diagonal and all the elements below the main diagonal are set to zero. The created upper 

triangular matrix ˆ fR can then be used for equalisation. The forcing-to-zero operation, however, 

creates an additional error.  

For the case of a 4X2 matrix, the additional error is given by 

( )
11

21 21 22

31 31 32 32

41 41 42 42

0

ˆ ˆ

⎡ ⎤
⎢ ⎥+⎢ ⎥=
⎢ ⎥+ +
⎢ ⎥+ +⎣ ⎦

R fA - R

i

r i i

r i r i

r i r i

jr
r jr jr
r jr r jr
r jr r jr

 (89) 

Every time QR decomposition is performed on ˆ RA  it resets the error matrix in (89) to zero. 

The overall error includes tracking inaccuracies as well as error caused by creating ˆ fR . It is defined 

as 

( ) ( ) ( ) ( ) ( )
ˆ ˆ= n R i n f iQ * A - Q * RR ier   (90) 

The first product in (90) forms the ideal channel matrix H , while the second product term 

defines the channel matrix used in the SIC-MMSE equaliser. 

The average power per element of the error matrices H(i)er  and ( )R ier  is used as a MSE 

metric for simulation comparisons in this work.  
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SQRD can be performed on ( )
^

R iA  at any time to bring it back to upper triangular form, and 

update the order and the unitary matrix Q, as shown below 

( ) ( ) ( )( ) ( ) ( ) ( )
ˆ ˆ ˆ ˆˆ ˆ= ∗ = / /

i n R i n i iH Q A Q *Q * RSQRD  (91) 

In (91) ( ) ( )
ˆ ˆ /

n iQ *Q  forms a new unitary matrix and ( )
/

iR  is the new upper triangular matrix 

that updates the ˆ RA  value in the LMS tracking block of figure 35. This algorithm has two 

additional complexity factors compared to the H tracking algorithm (section 4.4.2.1). 

• The LMS will now track (N+M)M elements compared to NM elements in the H tracking 

algorithm 

•  The SQRD, which is based on the modified Gramm Schmidt algorithm, can only 

provide ˆ 1Q . The null space of Ĥ is calculated and orthogonalised to obtain ˆ 2Q . 

The total complexity of this algorithm is  

3 2 21 7 3 1 17 117
2 2 2 2

γ
γ γ

−⎛ ⎞ ⎛ ⎞= ∗ + − + ∗ −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

RC M M M M M  (92) 

The complexity per symbol of the algorithm in [1], along with the complexities of the two 

proposed strategies, is shown in figure 39. 
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Figure 39.  Complexity per symbol vs QR (order)  update time  

Along the horizontal axis, γ defines a number of symbols between successive order updates 

for the algorithm in [1] or number of symbols between successive SQRDs for channel tracking and 

upper triangular matrix tracking (or AR tracking) scenarios. The RLS scheme of [1] is surprisingly 

competitive. The LMS channel-tracking schemes have the additional complexity overhead of 

performing a SQRD, which results in large complexities with small γ (‘LMS DF(H)’ line). The cost 

is even higher for the AR tracking algorithm (‘LMS DF(AR)’ line), where calculation of 2Q̂  is 

required.  

As γ increases, however, the complexity per symbol drops, and reaches asymptotically the 

complexity of the LMS algorithm, which is inherently lower then the complexity of the RLS 

algorithm. This is why the complexity per symbol for the channel-tracking scenario drops below the 

complexity of the RLS-based algorithm (for γ>24). The LMS of the AR tracking algorithm (‘LMS 
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DF(AR)’ line), however, has to track more coefficients than the other two algorithms, resulting in 

higher complexity (17% more expensive as γ approaches 100). 

However, tracking the AR upper triangular matrix results in a more accurate channel 

estimate, as shown in the next section.  

4.4.2.3 Simulation results 

Complexity analysis in the previous section has shown that while the channel tracking 

scheme can compete with the one proposed by Choi et al in [1], the upper triangular matrix scheme 

fails to do so, because of the additional complexity overhead in tracking the nullspace of the 

extended channel matrix. This section presents performance comparisons of these three tracking 

schemes in stationary as well as non-stationary environment. Figure 40 depicts the BER 

performance comparisons of the proposed LMS tracking schemes with [1]. Only the performance of 

the AR tracking algorithm is shown on the figure; however, since the channel is stationary, there is 

no difference between the BER performances of the two LMS tracking algorithms. VBLAST-ZF 

and VBLAST-MMSE are shown as reference curves. 
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Figure 40.  BER comparison for the stationary channel 

Tracking error of the RLS algorithm in [1] (‘RLS DFE’ curve) causes about 1dB of 

consistent difference in performance compared to VBLAST-MMSE with known channel 

(‘VBLAST-MMSE’ curve). The proposed algorithm (‘LMS DF(AR)’) has a performance identical 

to that of the RLS-based system up to SNR of 8dB. Deterioration of performance for the higher 

SNRs is caused by suboptimum ordering of the SQRD [40].   

Figure 41 depicts MSE in the channel estimate of both tracking schemes. The initial training 

of 40 symbols reduces the MSE in the channel estimate to -28dB. 
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Figure 41.  Channel MSE for AR and H tracking strategies, SNR=20dB, fdT=1*10-3 

The ‘LMS DF(H)’ line shows the growth in mean squared of Her  as γ increases. The ‘LMS 

DF(AR) ideal’ line depicts the growth in mean squared of Rer  when AR tracking is performed 

without symbol errors on the feedback path to the LMS routine. This scenario has slower MSE 

growth because some of the elements of ˆ fR are being tracked. When the data stream on the 

feedback path to the LMS includes symbol errors caused by the SIC-MMSE detection block (‘LMS 

DF(AR)’ line), the advantage of slower MSE growth is retained until γ reaches about  120 symbols.     

The BER performance of the SIC MMSE vs. γ with both tracking schemes is shown in Fig. 

42.  Gamma values up to 40 are shown, and in this region AR tracking outperforms the H tracking 

scheme in an MSE sense, but the top two curves do not show this.  Clearly the SIC detection errors 

eliminate the advantage of the LMS DF(AR) scheme. When the same setup was repeated without 

the detection errors on the first layer, but with errors still on the feedback path to the channel 
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tracking, the resulting two dashed curves (‘LMS DF(H) no detect error’ and ‘LMS DF(AR) no detect 

error’ lines) have shown a near order of magnitude improvement.  The clear superiority of AR 

tracking over H tracking scenario is also observed.  Error propagation from the first detected layer to 

the higher layers is therefore the dominant source of performance loss. 
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Figure 42.   AR and H tracking BER results, as well as the BER result from [1], SNR=20dB, 

fdT=1*10-3 

The bottom line “RLS-DFE” represents the BER of the scheme proposed in [1]. It clearly 

has the superior performance to both of the proposed tracking schemes 'LMS DF(AR)' and 'LMS 

DF(H), even though it is tracking a more dynamic environment. 
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4.5 Conclusions 
When channel tracking is employed, QR decomposition can be performed on every symbol. 

Reducing the frequency of QR decompositions and using fixed Q and R matrices between 

successive QR decompositions will reduce computational complexity per symbol at the expense of 

the increased estimation error. It was shown in this work that tracking the upper triangular matrix 

instead of the channel matrix would reduce computational complexity per symbol by about 1.5 times 

without introducing any additional estimation error into the system. However the implementation of 

QR decomposition may require special hardware, in which case there are no cost savings in 

reducing the QR decomposition frequency. The main benefit is in the reduction of power 

consumption for this computationally intensive process. 

Tracking the upper triangular matrix AR will introduce cross-talk components below its main 

diagonal. QRD, based on the CORDIC algorithm, is then applied to AR. It rotates column vectors so 

that cross-talk components are eliminated. Initially, the rotation angles will be small, hence the 

CORDIC algorithm was modified to take advantage of these smaller angles to reduce the number of 

iterations. It was shown that this modification, when used with upper triangular matrix tracking, 

resulted in a further complexity reduction compared to the channel-tracking scenario. A total saving 

by a factor of between 2 and 10 in a Wireless LAN environment was obtained.  

VBLAST-MMSE was used with the two tracking strategies to obtain BER performance 

comparisons. A low-complexity SQRD algorithm was employed for detection ordering, as well as to 

perform the QRD. The AR tracking strategy initially yielded better channel estimates at an SNR of 

20dB. With time, however, this advantage was eliminated by the errors in the data stream fed back 

into the tracking algorithm. Further, it was found that better channel estimates did not translate into 

superior BER results due to the propagation error of the first layer in the detection algorithm.  
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Both strategies were compared in complexity and performance to the RLS-based algorithm 

in [1]. The complexity of the LMS-based channel-tracking scheme dropped below the RLS-based 

system after the distance between adjacent SQRDs exceeded 24 symbols (γ>24). In the AR tracking 

scenario, however, a nullspace of the channel matrix had to be calculated and tracked. This 

additional overhead kept the complexity of the upper triangular matrix scheme 17% higher 

compared to the complexity of the RLS-based system after γ=100 symbols. The BER performance 

of both strategies was found to be inferior to the RLS-based system in a stationary as well as a non-

stationary environment. This is due to the suboptimum orderings obtained by the SQRD algorithm. 

Overall, the DFE approach, adopted by Choi at el in [1] outperformed the two LMS based channel 

tracking strategies , indicating that the RLS tracking scheme more than compensates for the faster 

moving characteristics of the inverse channel. 
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5 Conclusions 

The thesis focused on the implementation issues of MIMO algorithms. Two problems were 

investigated:  

• The effect of ADC-induced clipping on the performance of Alamouti STBC system  

• The performance of low complexity channel tracking and equalisation schemes . 

The first part, described in chapter 3, considers the practical implementation issue of the 

popular Alamouti STBC algorithm. Choosing an ADC with a smaller dynamic range and reduced 

voltage supply rails can save the power consumption of the circuitry. This, however, will result in an 

increased clipping distortion of the signal, which can adversely affect the overall performance of the 

system. It was found that clipping breaks the orthogonality of the STBC, making it more sensitive to 

clipping than uncoded single antenna systems. It is further established in Chapter 3 that STBC 

QPSK modulation  requires an extra 7 dB back-off into the ADC, while 16QAM modulation only 

requires 1dB. Two receiver structures for implementing the STBC system were considered in this 

chapter: Direct Conversion (DC) receiver structures that impose square clipping on the signal, and 

Log-Polar receiver structures that induce circular clipping. The Log-Polar receiver structure is best 

suited for M-PSK modulated signals, since the magnitude distortion caused by the logarithmic 

amplifiers does not affect system performance. Log-Polar receivers were found to be clipping 
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insensitive at the given SER target of 10-3. This makes Log-Polar receivers an obvious choice when 

M-PSK modulation is employed. 

QR detection is frequently used as a faster alternative to a channel inversion in a MIMO 

scheme. A computationally intensive QR decomposition algorithm is used to obtain R and Q 

matrices employed by a QR equaliser. When channel tracking is used, the QR decomposition has to 

be performed at every instance a  new channel estimate is obtained. This will result in a high 

computational complexity per symbol. We have proposed in chapter 4 to reduce the rate of QR 

decomposition while continuing to track the channel. This will reduce the complexity per symbol at 

the expense of the increasing error from using an outdated unitary Q and upper triangular R 

matrices. We have also shown that by tracking directly the upper triangular matrix, a further 33% 

reduction in complexity per symbol is possible.  

QR decomposition is often based on a CORDIC algorithm that performs the rotations needed 

to obtain the Q and R matrices. CORDIC obtains the desired angle by using a fixed number of 

iterations. We have demonstrated that by tracking the upper triangular matrix and allowing a 

variable number of iterations for the CORDIC algorithm it is possible to reduce the complexity of 

QR decomposition by factor of between 2 and 10.  

Both channel tracking and upper triangular matrix tracking strategies were implemented with 

the VBLAST-MMSE detection algorithm to obtain the MSE performances. Upper triangular matrix 

tracking has a consistent performance advantage over channel tracking.  However in the more 

practical case, with detection errors allowed in the feed-back stream, this MSE   advantage was 

wiped out after 120 Symbols.   

Unfortunately, any MSE advantage due to upper triangular matrix tracking, does not 

translate into a BER improvement when layered detection is used.  This is because the MSE of the 

first detection layer is not improved and so error propagation dominates the performance. We 
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hypothesise that soft detection followed by error correction decoding would reclaim the MSE 

advantage.  

Both strategies were compared in complexity and performance to the RLS DFE-based 

scheme in [1] (which essentially tracks a highly dynamic inverse channel matrix) , to see whether 

the benefit of tracking a slower changing matrix with the simpler algorithm outweighs the additional 

need for occasional channel inversions. The upper triangular matrix-tracking scheme is required to 

track the nullspace of the extended channel matrix.  This overhead significantly increases the 

complexity of the system. The overall complexity per symbol then was ~17% higher than that of the 

RLS-based system when the distance between adjacent QRDs was 100 symbols (γ=100 symbols). 

The complexity of the channel-tracking scheme, on the other hand, dropped below the complexity of 

RLS DFE for γ > 24 symbols. Both LMS strategies had an inferior BER performance compared to 

the DFE RLS-based system of [1], and surprisingly the LMS schemes showed no significant 

complexity improvement.   

5.1 Future work  
Chapter 3 investigated only a clipping effect. The next important step is to include a 

quantisation noise effect. Then as the voltage supply rails are increased for the given number of bits, 

the quantisation noise will increase, affecting the performance of the system. Hence there is an 

obvious trade off between the clipping noise and quantisation noise. Future work would use this 

trade off to find the point where the error due to these two effects is minimum, enabling ADC 

optimisation for a target SER. 

The promising approach to low-complexity upper triangular matrix tracking in chapter 4 

could not be realised with VBLAST-MMSE detection. Future work would employ ZF detection and 

bit-interleaved channel coding and modulation (BICM) with upper triangular matrix tracking as an 

alternative approach. ZF, performed via QR equalisation, does not impose any overheads on the 
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tracking algorithm, unlike MMSE, which requires tracking the nullspace.  This leads to a reduction 

in complexity and all indications show that there will be little loss of performance since ZF with 

BICM has almost the same performance as MMSE with BICM [26].   In addition, the BICM 

approach does not require any ordering, which was a cause of performance loss in this work.  

OFDM is a very effective technique against multipath distortion in wideband channels. The 

algorithm, developed in Chapter 4, can be adopted to work with OFDM. A straightforward but high 

complexity approach would use multiple copies of the algorithm - one for each sub-carrier. 

Alternatively, correlation between sub-carriers could be exploited to simplify or reduce the number 

of algorithm copies.   

The algorithm in Chapter 4 can also be adjusted to work in high Doppler environments. The 

LMS algorithm, used for channel tracking, does not perform well in a fast changing environment. 

More powerful, high complexity tracking algorithm like RLS or Kalman could be employed to track 

fast channel variations.   
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Appendix: Realization of Exponent Difference 

This appendix presents the algorithm that finds the exponent difference between two positive 

fixed-point numbers, 0<A<1 and 0<B<1.  The output exponent difference ‘dif’ is given by 

dif=exp(B)-exp(A) and evaluated in Figure A1.  

|A |,|B |

w h ile  ((A  o r  B )< 1  )
A = A *2
B = B *2

A ,B

w h ile  (B < 1 )
B = B *2

d if= d if-1

w h ile  (A < 1 )
A = A *2

d if= d if+ 1

e n d

A > = 1 B > = 1

 

Figure A1 Algorithm that finds the exponent difference of two fixed-point numbers  
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