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ABSTRACT 
 

Weight transfer in the golf swing is considered important in the coaching literature. 

However, scientific studies on weight transfer have been conflicting due to a number 

of limitations. This thesis examined weight transfer in the golf swing using more trials 

per golfer, Club Velocity at ball contact rather than handicap to indicate performance 

and more swing events at which weight position was quantified. Also, cluster analysis 

was used to identify if different swing styles exist. In study 1, 62 golfers performed 

ten simulated drives, hitting a golf ball into a net, while standing on two force plates. 

CP position relative to the feet (CPy%) was quantified at eight swing events identified 

from 200 Hz video. Cluster analysis identified two CPy% styles: ‘Front Foot’ style 

and ‘Reverse’ style. Both styles began with CPy% positioned evenly between the feet, 

moved to the back foot during backswing and then forward during early downswing. 

Beyond early downswing, the Front Foot group continued to move CPy% towards the 

front foot to ball contact, while the Reverse group moved CPy% towards the back 

foot to ball contact. Both styles occurred across skill levels from professional to high 

handicap golfers, indicating that neither style was a technical error. In study 2, group-

based relationships between CP parameters and Club Velocity for each swing style 

was examined. For the Front Foot group, a larger CP range and a more rapid CP 

movement in downswing were associated with a larger Club Velocity at ball contact. 

For the Reverse group, positioning CP further from the back foot at late backswing 

and a more rapid CP transfer towards the back foot at ball contact was associated with 

a larger Club Velocity at ball contact. In study 3, individual-based analysis was 

conducted on five golfers performing 50 swings under the same test conditions. All 

golfers returned significant relationships between CP parameters and Club Velocity 

but these were individual specific. The most consistently related parameter was CP 

range, which was significantly related to Club Velocity for all golfers. Nonlinear 

techniques also were explored, with Poincare plots returning useful results for some 

golfers. In conclusion, analysis of weight transfer in the golf swing requires styles to 

be identified prior to any performance analysis. Individual-based analysis as well as 

group-based analysis is required to extract the most relevant information. Further, the 

use of more trials per golfer and more swing events should be employed in future 

studies. 
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CHAPTER 1:  INTRODUCTION 

 

 

Weight transfer in golf is a coaching term that refers to the movement of bodyweight 

and the resulting effect on the distribution of forces between the feet during the golf 

swing. Leadbetter (1995) describes this movement as weight balanced between the 

feet at address, moving towards the back foot during backswing and weight moving to 

the front foot in downswing and follow through. Golf coaching literature has stressed 

the importance of correct weight transfer in the golf swing, suggesting it is vitally 

important in developing momentum in the golf swing (Leadbetter, 1993) and is 

crucial to all golf shots in terms of length of hit, particularly for the driver (Norman, 

1995). 

 

In spite of the coaching emphasis on weight transfer, support for its importance in the 

scientific literature has been weak and often conflicting. In examining golfers of 

different skill levels, Wallace et al. (1990, N = 2) and Koenig et al. (1993, N = 14) 

found low handicap golfers produce greater amplitude and speed of weight transfer 

during the swing as compared with high handicap golfers. Conversely, Richards et al. 

(1985, N = 20) showed no differences in weight transfer between high and low 

handicap golfers. In examining weight transfer and performance, Robinson (1994, N 

= 30) found significant associations between weight transfer and club velocity at ball 

contact using golfers from a wide range of skill levels, while Mason et al. (1995, N = 

64) found no association between weight transfer and club velocity at ball contact in 
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golfers with single figure handicaps. The importance, then, of weight transfer and 

forces at the feet in the golf swing remains unresolved. 

There are a number of factors that may have influenced or limited previous weight 

transfer studies.  

 

First, as noted by Wallace et al. (1994), the use of handicap-based groups to examine 

swing differences is not wholly appropriate since handicap does not always relate to 

swing quality. Rather, a measure of the quality or performance of the individual swing 

being tested is a more appropriate method to evaluate performance factors in the 

swing. 

 

Second, the use of only one to four trials, the number of trials used for most golf 

weight transfer studies, may not be enough to indicate a typical/average swing. Bates 

et al. (1983), for example, have shown it can take up to eight trials to establish stable 

means in ground reaction forces in other sports.  

 

Third, the use of only a small number of events in the swing (e.g. top of backswing, 

ball contact) at which the weight transfer data has been quantified reduces studies to 

more manageable levels, but loses all data/information between the chosen events. 

More events will provide more information, which may prove to be important in the 

golf swing.  

 

Fourth, even though there is repeated comment on the different swing styles exhibited 

by different professionals, no studies have attempted to objectively identify and 

account for possible weight transfer styles. The idea of a single ideal model for a 
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particular movement has been questioned in a number of activities (e.g. in shooting by 

Zatsiorsky and Aktov, 1990; in running by Dufek et al., 1995) and different swing 

strategies or styles might be expected in the golf swing as well. If they exist, different 

swing styles need to be examined separately, as important performance characteristics 

may differ between the styles. Further, if different styles exist, grouping all golfers 

together without accounting for the different styles would affect statistical analyses, 

with the influence of groups within the data generating type 1 or type 2 errors. 

 

Finally, there has been no individual-based analysis of weight transfer in the golf 

swing. In other sports, significant results have been found on an individual basis but 

when the same individuals were used in group-based analysis, no effects were evident 

(e.g. in shooting: Ball et al., 2003a, 2003b). This information would have been lost if 

only group-based analysis had been performed. 

 

The aim of this study was to examine the relationship between performance and 

weight transfer in the golf swing on a group and an individual basis. This examination 

used club velocity at ball contact to indicate performance, used ten trials to establish 

each player’s mean, and used eight swing events. Further, cluster analysis was used to 

search for different swing styles prior to performance analysis. 
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CHAPTER 2:  LITERATURE REVIEW 

 

 

2.1   WEIGHT TRANSFER IN THE GOLF SWING 

 

This literature review contains discussion of weight transfer between the feet in golf. 

This has been limited to studies using the driver with the exception of Carlsoo (1967) 

who only tested the 5-iron. Weight transfer has been used to describe the different 

measures used in the literature including centre of pressure (CP), vertical force (Fz) 

and centre of vertical forces (COV). Briefly, Fz% has been measured by placing the 

back foot on one force plate and the front foot on another plate. The relative weight 

on each foot is the percentage of Fz on the front foot divided by the total Fz. CP is the 

point of intersection between the force vector and a defined horizontal plane, usually 

the ground surface. It is very similar to Fz% (Fz% and CPy% correlated strongly in 

this study: r = 0.99, p < 0.001, N = 62). COV is Fz% using one force plate. As both 

feet were on the same force plate, the feet needed to be digitised to determine the 

location of Fz relative to the feet. These measures are discussed in Appendix A. 

 

2.1.1   What is weight transfer? 

 
Weight transfer in the golf swing is a coaching term used to describe movement of 

bodyweight between the feet during the swing. Leadbetter (1995) describes the 

sequence of weight transfer (represented graphically in figure 2.1 with swing events 

presented in figure 2.2) as: 
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• Weight evenly balanced between the feet at address 

• During the backswing, weight is initially moved towards the back foot 

• Just before the top of backswing, backwards movement ceases and weight 
begins to move towards the front foot 

 
• During the early downswing phase, weight is rapidly transferred towards the 

front foot 
 
• At ball contact and follow through, weight is positioned on the front foot 

 
 

 

 
 

Figure 2.1: Example weight transfer profile, as indicated by centre of pressure 
(CP – line between the feet), during the golf swing (TA, TB, BC and EF are 

described in figure 2.2). 
 
 
 

Figure 2.2: Swing events used in figure 2.1. 
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However, while weight transfer in the golf swing is frequently discussed in the 

coaching literature, the definition of weight transfer is somewhat unclear. Most 

coaching literature describes weight as the relative amount of body weight on each 

foot. For example, Newell and Foston (1995) suggested that weight should be felt on 

the front foot at ball contact, while Norman (1995) recommended that the position of 

weight should be evenly balanced on each foot at address and on the front foot at ball 

contact. Similarly, other authors refer to positioning weight on the front or back foot 

during the swing (e.g. Leadbetter, 1993; Leadbetter, 1995; Grant et al., 1996).  

 

Conversely, in biomechanics, ‘weight’ is defined as mass (m) multiplied by 

acceleration due to gravity (g), or Weight = m*g. Weight is considered to act through 

the centre of mass of the body (CM; e.g. Kreighbaum and Barthels, 1985). Weight 

transfer in biomechanical terms, then, might refer to the movement of the CM during 

the swing or the position of CM (transposed onto the horizontal plane) relative to the 

feet. 

 

The relationship between the coaching weight transfer (weight under each foot) and 

the biomechanical definition of weight transfer (CM) has been examined in the 

scientific literature. Cooper et al. (1974) reported that CM and Fz% (relative vertical 

force, or weight, under each foot) followed a similar path and produced similar values 

during the golf swing. Five elite golfers (college scholarship holders) performed 

swings with the driver, 3-iron and 7-iron. CM was calculated from digitized data (21 

body landmarks) from address to the end of follow through. It was then projected to 

the horizontal XY plane at the level of the feet and normalized to foot position. As 

well, two force plates, one under each foot, measured the force under the front and 
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back foot from which Fz% was calculated (percent of Fz on the front foot during the 

swing; i.e. 100% = front foot). Cooper et al. reported that there was a ‘great 

similarity’ between CM and Fz% from AD to BC for all clubs, at which point both 

indicated weight was approximately 75% towards the front foot. At mid follow 

through, Fz% tended to be moved towards the back foot (50%) before again moving 

to the Front Foot (70%), while CM continued to move towards the front foot at both 

events (no values reported). 

 

Conversely, Mason et al. (1990) reported that the paths of the CM and centre of 

pressure (CP, CP% when expressed relative to the distance between the feet) differed 

at the top of backswing and in downswing. Mason et al. calculated CM from digitized 

data (similar to Cooper et al., 1974) from 12 golfers (handicap < 10) performing a 

swing with the driver. CP was calculated from two force plates, one under each foot, 

and normalized to the digitized foot position to obtain CP% between the feet. In pilot 

work for this study, CP%, as used by Mason et al. (1990) and Fz%, as used by Cooper 

et al. (1974), were found to be very similar (r = 0.99, p < 0.001; see Appendix B) and 

so it is unlikely that the differences between studies can be explained by the different 

measures used. 

 

CM and CP have been compared in other tasks, such as postural sway. Winter (1995) 

reported that CP in the anterior-posterior direction of body sway was in phase with 

CM movement, but with larger amplitude. In the medio-lateral direction, CM and CP 

were anti-phase. This highlights the potential differences that can exist between the 

two measures. A number of attempts to approximate CM and CP or other force plate 

measures have been made. For example, Lafond et al. (2004) reported the zero to zero 
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double integration method applied to CP was comparable to the kinematic (direct) 

method of determining CM sway.  However, for this and other methods used to 

approximate CM require task specific considerations to be effective and cannot 

necessarily be used for other tasks. 

 

While differences might exist between the coaching and biomechanical definitions of 

weight transfer, there is an important distinction to note. Weight transfer as used in 

the golf coaching literature is a coaching term and is used to describe a particular 

aspect of the skill. As such, the basis of the term in the context of golf is in coaching 

and not in biomechanics. The measurement of weight transfer, then, should reflect 

this understanding of weight transfer rather than a scientific definition. As such, the 

use of CP% or Fz% is more appropriate than the measurement of the CM to explore 

weight transfer as it relates to the relative size of the forces beneath each foot.  

 

2.1.2   Measurement of weight transfer 

 

Table 2.1 reports the measures used in studies examining weight transfer. In all cases, 

the measures used have reflected the coaching emphasis of weight under each foot 

rather than CM motion with all using either CP% or Fz% (or slight variations of these 

measures) to define weight transfer. The term ‘parallel to the line of shot’ is used in 

reference to weight transfer between the feet. Weight transfer from heel to toe of each 

foot is referred to by ‘perpendicular to the line of shot’. 
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Table 2.1: Type of measurement used to indicate weight transfer parallel to the 
line of shot in golf studies (arranged by measure used). 

 
Researcher Measure Used Notes 

Cooper et al. (1974) Fz% Two force plates (one under each foot) 
Williams and Cavanagh (1983) Fz% Two force plates (one under each foot) 
Koenig et al. (1993) Fz% Two force plates (one under each foot) 
Barrentine et al. (1994) Fz% Fz% used to describe between feet movement 
Robinson (1994) Fz (but reported in kg)  Two force plates (one under each foot)  - Fz 

reported in kg and normalised to body mass 
Carlsoo (1967) Fz (but reported in kg) Two force plates (one under each foot) - Fz 

reported in kg for right and left feet 
Richards et al. (1985) COV (Fz%) One force plate - Fz% relative to digitised foot 

position 
Wallace et al. (1990) CP% Two pressure plates (one under each foot)  
Mason et al. (1990) CP% Two force plates (one under each foot) – CP 

relative to digitised foot position 
Mason et al. (1995) CP% Two force plates (one under each foot) – CP 

relative to digitised foot position 
Neal (1998) CP% One force plate (one under each foot) – CP 

relative to digitised foot position 
Koslow (1994) ‘weight shift patterns’ Sporttech swing analysis system – no further 

details provided in the study  
Note: Williams and Cavanagh (1983), Koenig et al. (1993) and Barrentine et al. (1994) used CP as well as Fz% but CP was used 
for heel to toe analysis only. 
COV = centre of vertical forces = Fz%. 

 

Seven studies used vertical forces to indicate weight transfer in the golf swing. In four 

studies (the first four in table 2.1), Fz was evaluated using two force plates, one under 

each foot. Fz% was then calculated from this data by dividing the Fz under the front 

foot by the total Fz (equation 2.1). In one study, two force plates were used and the 

weight transfer measure was defined as vertical force but values were reported in 

kilograms under each foot (Carlsoo, 1967). While this is not a unit of force, the results 

differ only by a constant (acceleration due to gravity). Robinson (1994) also used two 

force plates and also reported vertical force in kilograms, as well as normalised to 

body mass under each foot. It was not clear to this researcher if this was performed 

using body mass as measured during quiet stance (standing still) or, as used in other 

studies, by total vertical force divided by g at any instant. Using the values reported 

by Carlsoo (1967), vertical force varied between 0.9 to 1.3 times body mass in 
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different parts of the swing so this distinction is important. Using body mass 

measured during quiet stance will provide different values of normalised Fz than if 

the total instantaneous vertical force was used.  

 

Position of Fz relative to the feet = 
foot)back (under  Fzfoot)front (under  Fz

foot)front (under  Fz
+

 

         Equation 2.1 

 

One study (Richards et al., 1985) used a measure termed centre of vertical forces 

(COV), defined as the point at which the vertical force vector (Fz) intersected the 

horizontal plane at ground level. The toe and heel of each foot was digitised from 

video footage captured while the golfer was in the address position. The midpoint of 

each foot was calculated and used to indicate 0% (back foot) and 100% (front foot) of 

the distance between the back and front foot. The position of the COV was then 

calculated relative to the feet. This process is represented graphically in figure 2.3. 

 

toe

 

Figure 2.3: Determination of mid-foot position from Richards et al. (1985) 
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Four studies used CP to indicate weight transfer. In three of these studies, CP was 

calculated from force data measured using one or two force plates. Foot position was 

obtained using similar methods to those used by Richards et al. (1985) and CP 

location was expressed as a percentage of the distance between the feet. The fourth 

study using CP (Wallace et al., 1990) did not use foot digitising. Wallace et al. 

reported using a ‘Musgrave’ foot plate under each foot and used a similar rationale to 

Fz% calculation was used to obtain CP% (pressure on front foot plate divided by the 

sum of pressure on the front and back foot plate, equation 2.2). 

 

CP (between the feet) = 
foot)back (under  Pressurefoot)front (under  Pressure

foot)front (under  Pressure
+

 

         Equation 2.2 

 

The final study reported in table 2.1 did not report the type of measure used. Koslow 

(1994) used a Sporttech Swing Analyser, which included a force plate that measured 

“weight shift patterns” during the swing. Koslow reported the results as a percentage 

of body weight placed on the back foot at different swing events but did not detail 

how this was performed. This researcher was unable to find details of this Sporttech 

system either in the literature or in golf equipment and internet searches. 

 

 

2.1.3   Description of weight transfer in the scientific literature 

 

The common coaching model described in section 2.1.1 has been supported in the 

scientific literature (e.g. Carlsoo, 1967; Cooper et al., 1974; Williams and Cavanagh, 
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1983). However, this support has largely taken the form of qualitative assessment of 

quantified data (Fz% or CP). For example, Williams and Cavanagh (1983) reporting 

that weight (Fz%) was positioned approximately in the middle of the feet at address, 

moved towards the back foot during backswing, then rapidly forward in the 

downswing towards the front foot. A similar description was provided by Cooper et 

al. (1974) and Koenig et al. (1993), also using Fz%. 

 

Empirical evidence for the weight transfer pattern during the swing is difficult to 

obtain as the reporting of data in the scientific literature has been inconsistent and 

incomplete. Only seven of the 12 weight transfer studies in the literature reported data 

relating to the position of weight at different swing events. Of these seven, only three 

studies reported enough data to evaluate an overall pattern of weight transfer from 

address to ball contact or the end of follow through (Carlsoo, 1967; Wallace et al., 

1990; Koslow, 1994). Table 2.2 details all reported data for weight transfer between 

the feet in the literature. Figure 2.4 shows the swing events used in different studies at 

which data has been reported (i.e. AD, TA etc. in table 2.2: these abbreviations are 

used throughout this thesis). Figure 2.5 shows another event defined by Robinson 

(1994) as when the forearm is in the horizontal plane in downswing. No data was 

reported for this event. 
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Table 2.2: Weight transfer data reported in the literature (between the feet - 
swing events are defined in figures 2.4 and 2.5) 

 
Study Group tested Measure Swing Events 
   AD TA MB* TB MD* BC MF* EF Min Max
Cooper et al. (1974) Elite College players (N=5) Fz%      75 50 70   
Richards et al. (1985) Low Handicap (<10, N=10) COV    28  96   17 105 
 High Handicap (>20, N=10)     22  81   15 98 
Wallace et al. (1990) Low Handicap (N=1) CP% 63  53 27 68 82  90   
 High Handicap (N=1)  49  42 31 47 67  77   
Koenig et al. (1993) Handicap (0-20, N=14)  Fz%  55  35     20  
Robinson (1994) Professional (N=10) Fz%  49         
 Amateur (Handicap 0-20, N=20)   58         
Koslow (1994) ** Novice Correct weight shift (N=5)  48   27  62     
 Novice Abbreviated weight shift 

(N=17) 
“weight shift 
patterns” 49   39  43     

 Novice Reverse weight shift (N=8)  51   60  36     
Carlsoo (1967) See table 2.3            
Williams and Cavanagh (1983) No values reported            
Mason et al. (1990) No values reported            
Barrentine et al. (1994) No values reported            
Mason et al. (1995) No values reported            
Neal (1998) No values reported            

All values expressed as a percentage relative to the feet (0% = back foot, 100% = front foot). Transformed from the data 
presented in each study if required to allow for direct comparison between studies.  

*    MB, MD and MF have not been well defined in these studies 
**  Koslow used set-up (assumed to be AD), top of swing (assumed to be TB) and BC and described the measure used 

only as ‘weight shift patterns’ with no further explanation.  
 

Figure 2.4: Swing events used in golf studies (abbreviations used in this thesis). 
Note: MB, MD and MF have not been well defined in the literature. The diagrams here are based on the definition for this 

study and have been included to illustrate their approximate position in the swing 
 
 

 
Figure 2.5: The swing event defined as “forearm horizontal in downswing” (FH) 

as used by Robinson (1994). 
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In the studies that have reported data for the entire swing, the coaching model of 

weight transfer as defined in section 2.1.1 has been supported. Figure 2.6 presents the 

weight transfer patterns from Wallace et al. (1990) with weight at AD being located 

balanced between the feet for the low handicap golfer, moving towards the back foot 

in backswing for both golfers (MB and TB) and to the front foot in downswing and 

follow through for both golfers (MD, BC, EF). Koslow (1994) also reported this 

pattern occurring, but only for five of the N = 30 novice golfers tested.  
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Figure 2.6: Comparison of weight transfer for a high and low handicap player 
during the golf swing (from Wallace et al., 1990). 

 

Carlsoo (1967) measured and reported the position of weight at eight swing events. 

While the swing event definitions were not clear, there is enough data to indicate the 

coaching model of weight transfer. Table 2.3 reports the events defined by Carlsoo 

(described in the article as phases rather than events) and Fz data at these events. 

Event descriptions are taken directly from the text of the Carlsoo article. However, it 

should be noted, while Carlsoo, as well as Wallace et al. (1990) and Koslow (1994) 

have reported the coaching-based weight transfer pattern, in total this represents only 
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N = 8 golfers (Carlsoo, 1967: 1 golfer, Wallace et al., 1990: 2 golfers, Koslow, 1994: 

5 golfers). Clearly there is a need to measure and report weight transfer data in the 

scientific literature. 

 

Table 2.3: Swing event definitions and Fz% calculated from data presented by 
Carlsoo (1967). 

 
 Fz (kg) on 

front foot 
Fz (kg) on 
back foot 

% to front foot 

At the beginning of the address 42 42 50 
At the end of address 48.5 35.5 58 
At the start of backswing 34 46.5 42 
At the beginning of the backswing 29 53 35 
At the top of the backswing 49.5 34.5 59 
Immediately before impact 88 24.5 78 
The impact 74 24 76 
Immediately after impact 54 21 72 

Note: Carlsoo reported Fz data in kg rather than Newtons but this does not change the Fz% calculation. 

 

While empirical data has been inconsistently reported, the general weight transfer 

pattern of balanced at address, on the back foot at the top of backswing and on the 

front foot at ball contact is supported if data from all studies is examined together. 

Figure 2.7 shows values (Fz%, CP%, COV) reported in the literature for AD, TB and 

BC (Koslow, 1994, excluded for this comparison as only novice golfers were used). 

The position of weight at AD has been reported in two studies and ranged from 49% 

to 63% (Carlsoo, 1967; Wallace et al., 1990). This supports the ‘approximately equal’ 

term used in coaching literature. The 63% reported by Wallace et al. (1990) might be 

considered somewhat divergent from ‘balanced’, although it was produced by a high 

handicap golfer. At TB, reported values have ranged from 22% to 35% in three 

studies (Richards et al., 1985; Wallace et al., 1990; Koenig et al., 1993) suggesting 

that weight is positioned towards the back foot at TB. As well, the smaller values in 

TB compared with AD indicated that weight moved towards the back foot in 

backswing. At BC, reported values range from 67% to 95% in four studies (Carlsoo, 
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1967; Cooper et al., 1974; Richards et al., 1985; Wallace et al., 1990), suggesting that 

weight is positioned predominantly on the front foot at BC, although the 67% 

reported by Wallace et al. (1990) for a high handicap golfer might be considered low. 

As well, the larger values compared to those reported at TB indicate that weight had 

moved towards the front foot during downswing. 
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Figure 2.7: Weight transfer values reported in the literature for  
AD, TB and BC. 

 

 

While support is provided at these swing events, a limitation of these studies is the 

small number of swing events at which weight position has been reported. It is not 

known where weight is positioned between these key events and so useful data might 

have been missed. This was highlighted in Cooper et al. (1974) who reported Fz% at 

BC was 75%, moving to 50% at mid follow through and then to 70% by the end of 

follow through. This indicated a shift towards the back foot between ball contact and 

MF, a technical trait not discussed in coaching texts. No comment is made of this data 
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in the Cooper et al. article, nor has any other study reported data at both MF and EF 

for a full comparison. However, Carlsoo (1967) reported the Fz% was lower 

‘immediately after impact’ (Fz% = 72%) compared with BC (Fz% = 76%) for an elite 

golfer. Although the difference is only small, it supports the possibility that weight 

moves towards the back foot after BC and is moving towards the back foot at BC for 

some golfers. While weight was positioned further towards the front foot at EF 

compared with BC for Wallace et al. (1990) no measure was taken between BC and 

EF (e.g. immediately after BC as used by Carlsoo, 1967) and so it cannot be evaluated 

if this pattern occurred for these golfers. While the Cooper et al. (1974) finding was 

interesting on its own, the fact that the players tested were elite would strongly 

support more thorough investigation of the weight transfer pattern between TB and 

BC and between BC and EF. 

 

 

2.1.4  Importance of weight transfer in the golf swing 

 

Golf coaching literature has stressed the importance of correct weight transfer in the 

golf swing (e.g. Grant et al., 1996; Leadbetter, 1995; Frank, 1994). Leadbetter (1993) 

noted that weight transfer is vitally important in developing momentum in the golf 

swing and is a prerequisite for a solid, powerful swing. Leadbetter also highlighted 

two weight transfer flaws which affect golfers: the reverse pivot, where the weight 

moves to the front foot in backswing and to the back foot in forward swing; and the 

lack of weight transfer, where the weight remains on the back foot. Norman (1995) 

suggested that weight transfer is crucial to all golf shots in terms of length of hit 

particularly for the driver. Madonna (2001) included weight transfer as one of four 
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‘absolutes’ in the golf swing. These absolutes were defined as skill factors that are 

essential to the production of a good swing. Specifically, Madonna (2001) suggested 

that weight should move to the target leg (the leg closest to the target, referred to in 

this study as the front foot) after TB while the arms come down to the trailing side of 

the body. 

 

However, not all the coaching literature has supported the importance of weight 

transfer in the golf swing. Cooke (1987) suggested that the body should move about a 

vertical axis and, as such, no weight transfer should exist. Rae et al. (2001) suggested 

that weight transfer is not important in itself, but is necessary to allow the body to 

rotate optimally. Clearly, even within the coaching literature, there is some contention 

as to its importance. 

 

 

2.1.4.1  Position of weight at different swing events 

 

Most coaching literature has stressed where weight should be positioned at different 

events in the swing (e.g. Leadbetter, 1993). However, only two of the five scientific 

studies that have reported examining these factors found either differences in weight 

position between skill levels or that weight position was related to a performance 

measure. Further, no two similar studies have reported significant results for position 

of weight at the same swing event. For example, while Robinson (1994) found a 

relationship between weight position at TA and club velocity at ball contact, Mason et 

al. (1995) found no significant effect for a similar analysis at p < 0.05. In comparing 

handicap groups, Wallace et al. (1990) found one high and one low handicap golfer 
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differed at TA, MB, MD, BC and EF. However, Richards et al. (1985) found no 

statistical difference between a high and a low handicap group (N = 10, p < 0.05) at 

TB or BC, although medium effect sizes existed (calculated by this researcher and 

discussed below). 

 

The only event that has been indicated as important in examining weight transfer and 

performance (TA, Robinson, 1994) has not been supported in other studies, providing 

conflicting and as a result inconclusive data. Robinson, using 30 golfers from a wide 

range of skills (professional to high handicap), found an association between the 

vertical force on the back foot at takeaway and club velocity at ball contact (r = 0.45, 

p = 0.02). This indicated that a larger Fz on the back foot, or positioning weight 

further towards the back foot, was associated with a larger club velocity. Robinson 

also reported that professional players tended to adopt a more balanced position of 

51% on the back foot, while amateur players adopted a stance with weight further 

towards the front foot (only 42% on the back foot). No statistical analysis was 

reported for this comparison. These values were reported relative to the front foot in 

table 2.2 to make them consistent with other studies but have been reported here as 

they were presented by Robinson. Mason et al. (1995) found no association between 

club velocity at ball contact and the position of CP between the feet at TA for 64 

apprentice professional golfers. It is possible that the small range of skill levels in the 

golfers tested influenced this result as a more homogenous sample may lead to a 

smaller effect size (e.g. Coleman, 1999). No other study has reported the relationship 

between the position of weight at TA and performance.  

The comparison of weight position at TA between skill levels has been limited and 

might also be conflicting. Wallace et al. (1990) reported finding significant 
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differences at TA between skill levels using one low and one high handicap golfer. 

Wallace et al. reported that the low handicap golfer positioned CP closer to the front 

foot at TA (low = 63%; high = 49%; one way ANOVA, N = 10 shots, p < 0.001: no 

other statistics such as effect size or F-ratios were reported for a more precise 

evaluation). It should be noted that both golfers used in the Wallace et al. study would 

have been part of the amateur group in the Robinson (1994) study, so for this reason 

alone the group comparison aspect of these two studies cannot be compared. No other 

study has reported differences between skill levels for TA.  

 

Only one study has reported finding statistical support for the importance of weight 

position at swing events other than at TA. Wallace et al. (1990) examined one high 

handicap and one low handicap golfer performing 10 swings with the driver. CP 

between the feet was quantified at six swing events: TA, MB, TB, MD, BC and EF. 

CP at all swing events except TB was significantly different between the golfers. 

However, these findings have not been supported by other research. Robinson (1994) 

found no significant relationships between club velocity and Fz% at TB, FH, BC and 

MF (MF was defined as 0.25 s after BC). Robinson expressed surprise in finding no 

association between club velocity and the position of weight at ball contact, noting 

that moving the weight to the front foot at ball contact is a swing characteristic 

emphasised in golf instruction and swing measurement devices. Similarly, Mason et 

al. (1995) found no significant associations between club velocity and CP between 

the feet at TA, TB, BC and EF. As well, Richards et al. (1985) found that the position 

of centre of vertical forces (COV) at TB and BC did not differ between high (> 20) 

and low (< 10) handicap players. 
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It is important to note that low statistical power and limited generalisability due to 

small subject numbers existed in all weight transfer studies. Wallace et al. (1990) 

used only N = 2 subjects making it inappropriate to generalise the study’s findings. 

Also affected by low N, the Robinson (1994; N = 30) study possessed low statistical 

power. To achieve the 80% power recommended by Cohen (1968; i.e. 80% chance 

that a significant relationship will be found if it exists), Robinson (1994) would have 

needed to find large effect sizes among the relationships tested (r > 0.5; for the 

study’s parameters of p = 0.05 and N = 30). As the study was presented, the 

minimum detectable effect was r = 0.35, and so small effects were not detectable 

(using levels defined by Cohen, 1968; small effect: r > 0.2, moderate effect: r > 0.3, 

large effect: r > 0.5).  

 

Richards et al. (1985) offset the loss in statistical power due to low N by increasing 

the expected effect size. Richards et al. compared groups that were further apart in 

skill level than all other studies (Low Handicap 0-10; High Handicap 20+). However, 

the effect size was decreased due to a large variance in the high handicap group and 

so the attempt to increase power by choosing skill levels that differed more than in 

other studies was offset by the less skilled group being highly variable in 

performance. For the Richards et al. study, effect sizes were medium (calculated by 

this researcher using Cohen 1988, small: d = 0.2, medium: d = 0.5, large: d = 0.8), 

for the difference between groups at TB (effect size d = 0.51) and BC (effect size d = 

0.73). With a medium effect size and alpha set at p = 0.05, more than 25 subjects in 

each group were needed to achieve 80% power. With only N = 10 as used in Richards 

et al., even a large effect size (effect size d > 0.8) would have possessed only 40% 

power (i.e. there is less than an even chance of finding a significant result if it exists). 
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Mason et al. (1995) collected a larger sample (N = 64) but the narrow range of skill 

levels reduced statistical power (PGA apprentice professionals only). Small effect 

sizes can be expected in elite level groups as the difference between subjects will be 

small (e.g. Ball et al., 2003a; Ball et al., 2003b; Coleman, 1999), and this will in turn 

reduce statistical power (e.g. Aron and Aron, 1999). The power to detect small effects 

in the Mason et al. (1995) study was only 36%. Further, even with N = 64, some 

small effects would not have been detected in the study as, at p < 0.05, an r-value of 

0.24 was required for significance. 

 

 

2.1.4.2  Range of weight transfer 

 

One technical factor that has had support from more than one study is the range of 

weight transfer during the swing. Wallace et al. (1990, N = 2) reported that a low 

handicap player (handicap = 6) showed greater amplitude of weight transfer than a 

high handicap player (handicap = 24). As can be noted in figure 2.8 (repeated from 

section 2.1.3), the low handicap golfer moves weight further towards the back foot at 

TB (although not significant between golfers) and further towards the front foot at BC 

and EF (both significant between  golfers, p < 0.05). Koenig et al. (1993) also 

reported that low handicap players exhibited greater amplitude of weight transfer than 

high handicappers in comparing three skill levels (N = 14, handicap 0-7, 8-14, 15+). 

However, dissimilar to Wallace et al. (1990) who showed a difference between skill 

levels at BC and EF, Koenig et al. (1993) reported the differences existed at TB, with 

higher handicap golfers tending to show a more balanced position at TB (i.e. weight 
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was evenly balanced between the feet) than the low handicap golfers who positioned 

weight near the back foot. As such, differences between studies have once again been 

highlighted. 
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Figure 2.8: Comparison of weight transfer for a high and low handicap player 
during the golf swing (from Wallace et al., 1990). 

 
 
 

While Richards et al. (1985) did not analyse range specifically, enough data was 

presented for this parameter to be evaluated. Richards et al. reported weight position 

at TB and BC, as well as maximum (nearest the front foot) and minimum (nearest the 

back foot) weight positions for a low handicap group (handicap < 10, N = 10) and 

high handicap group (handicap > 20, N = 10). Table 2.4 reports the ranges calculated 

from this data. For all range calculations, low handicap golfers exhibited larger ranges 

compared to high handicap golfers. It is not possible to perform comparative statistics 

on this data, as standard deviations cannot be calculated for these parameters. 
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Table 2.4: COV% ranges calculated from data presented by  
Richards et al. (1985). 

 
Group TB-BC Min-BC Min-Max 
Low Handicap (N = 10) 68 79 89 

High Handicap (N = 10) 59 66 84 

Difference 9 13 5 
Min = most backward point of COV (i.e. nearest the back foot) 
Max = most forward point of COV (i.e. nearest the front foot) 

 

While both Wallace et al. (1990) and Koenig et al. (1993) reported differences 

between skill levels in golfers for weight transfer range, no statistical support for this 

relationship was presented. The difference in range of weight transfer is evident in 

figure 2.8 from Wallace et al. (1990) but no specific analysis was performed on range 

data. Koenig et al. did not present empirical evidence to support the comments that 

low handicap players exhibited greater range of weight transfer compared with high 

handicap golfers. As discussed in the previous paragraph, Richards et al. (1985) did 

not analyse range of weight transfer. No other study has reported examining weight 

transfer range. This lack of statistical support for range of weight transfer will be 

addressed in this study. 
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2.1.4.3   Velocity of weight transfer 

 

Another finding that has had support relates to the rate or velocity of weight transfer 

(Wallace et al., 1990; Koenig et al., 1993; Robinson, 1994). Robinson (1994) found 

significant correlations between club velocity and the rate of change of Fz on the left 

(front) foot in kg/s and with the vertical force normalised to body mass (%/s) between 

TB and FH (i.e. Fz or Fz% at FH minus Fz or Fz% at TB divided by the time between 

events, table 2.5). For both relationships, more skilled golfers (professionals) 

produced greater rate of change of weight transfer than less skilled golfers (amateurs) 

although no statistical analysis of this data was reported.  

 

Table 2.5: Parameter values and correlations between velocity of weight transfer 
and club velocity at ball contact from Robinson (1994) 

 

Rate of change of Fz on the 
front foot between TB and FH 

  
r 

 
p 

Professional  
(N = 10) 

Amateur  
(N = 20) 

kg/s 0.69 <0.001 158 119 
Normalised (%/s) 0.61 <0.001 390 298 
 

Unfortunately, Robinson (1994) is the only study to examine rate of weight transfer 

and report data for the findings. While similar observations were made by both 

Wallace et al. (1990) and Koenig et al. (1993), who reported that low handicap 

golfers exhibited a more rapid weight transfer early in downswing compared with 

high handicap golfers, neither study reported data to support these comments. As 

such, the support for velocity of weight transfer in scientific terms is poor and 

requires more thorough evaluation. 

Also of interest in the Robinson (1994) study was that weight transfer velocity was 

important in the early downswing stages of the swing. This is a phase that no other 
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study has examined. The limited number of swing events used in the literature will be 

discussed in section 2.1.5. 

 

 

2.1.4.4 Summary of weight transfer findings 

 

In summary, examination of weight transfer and the golf swing in the scientific 

literature has produced conflicting or inconclusive results. Despite the emphasis on 

the position of weight at different stages of the swing in the coaching literature, this 

has not been supported in the scientific literature. While weight transfer range and 

velocity have been observed as important, statistical support has been limited to one 

study only. More generally, the scientific literature examining weight transfer in the 

golf swing has suffered from low subject numbers, low statistical power, no 

individual-based analyses examining performance and a lack of detail in statistical 

analysis. There is a need for more thorough analysis of the weight transfer in the golf 

swing with increased statistical power and with strong statistical designs. These issues 

are addressed in this study. 
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2.1.5   Methodological issues in previous research 

 

Other than the issues of low N and statistical power already discussed, a number of 

methodological issues exist in the literature. These issues may also have contributed 

to the conflicting and non-significant findings in examining weight transfer in the golf 

swing: 

 

2.1.5.1 The use of handicap rather than swing performance measures 

2.1.5.2 The low number of trials used to assess a typical swing 

2.1.5.3 The low number of swing events used to assess weight position 

2.1.5.4 The lack of examination of different swing styles between golfers 

2.1.5.5 The lack of individual-based analyses 
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2.1.5.1  The use of handicap rather than swing performance 

measures 

 

Four criterion measures have been used in golf weight transfer studies (table 2.6).  

 

Table 2.6: Performance criterion measures used in golf weight transfer studies. 
 

Researcher Criterion measure 

Williams and Cavanagh (1983) Handicap group 
Richards et al. (1985) Handicap group 
Wallace et al. (1990) Handicap group 
Koenig et al. (1993) Handicap group 
Barrentine et al. (1994) Handicap group 
  
Robinson (1994) Club Velocity 
Mason et al. (1995) Club Velocity 
  
Koslow (1994) Swing style 
Neal (1998) Swing style 
  
Carlsoo (1967) Elite level player – descriptive only 
Cooper et al. (1974) Elite level players – descriptive only 
Mason et al. (1990) Comparison of CP and CG 

 

Of the twelve studies reviewed, five used the golfer’s handicap to form groups and to 

compare weight transfer characteristics. The rationale behind this measure is that 

lower handicap golfers are expected to possess better swings. Weight transfer 

characteristics that differ between low and high handicap golfers might indicate 

important aspects or desirable characteristics of weight transfer.  However, as noted 

by Wallace et al. (1994), the use of handicap-based groups to examine swing 

differences is not wholly appropriate since handicap does not necessarily relate to 

swing quality. Handicap, rather, is a measure that indicates the golfer’s skill in all 

aspects of golf, including driving, putting, chipping and course management. Further, 
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in three of the five studies using handicap groups, cut-offs used seem arbitrary and by 

necessity may have separated golfers who differ by only 1 handicap point. Koenig et 

al. (1993) and Williams and Cavanagh (1983) divided groups into handicaps of 0-7, 

8-14 and 14+, while Barrentine et al. (1994) used 0 - 15 and 15 + to denote low and 

high handicap golfers. As well, there is little consistency between these studies with 

low handicap groups, for example, being defined at 0-7 (Koenig et al., 1993; 

Williams and Cavanagh, 1983), 0-15 (Barrentine et al., 1994) and 0-10 (Richards et 

al., 1985). This makes it difficult to compare studies as groups defined as low and 

high handicap differ between studies. While this criterion has merit in assessing what 

might be important to success in the golf swing by examining what better (lower 

handicap) golfers do, information can be missed because handicap does not relate 

directly to the golf swing. As well, it offers little information for the low handicap 

golfer or elite player who is effectively being used as the ‘ideal’ model. For example, 

a golfer with a handicap of five is not offered any information on how to improve 

their swing in any of these studies, as the assumption in this type of testing is that the 

low handicap group exhibits the desirable characteristics already while the high 

handicap groups do not. 

 

The use of swing characteristics to indicate performance has been employed by only 

two studies. In both cases, club velocity at ball contact was used. Club velocity is 

related to ball speed, which in turn is related to distance, which is regarded as a good 

performance indicator for the golf swing. While distance and accuracy are the 

indicators of performance on the golf course, the laboratory environment and lack of 

available measurement devices for ball flight characteristics have limited research to 

club velocity. This can also be seen as de-limiting the study, as the measure 
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eliminates factors such as off centre impacts, which will affect ball flight but which 

may not be due to weight transfer factors (e.g. due to slight shift of the hands; 

Leadbetter, 1993). The use of club velocity rather than distance was an environmental 

issue for Mason et al. (1995), with testing being conducted inside a laboratory. 

Robinson (1994) tested on a driving range but distances were not reported. 

 

The remaining five studies did not include a performance component. Both Neal 

(1998) and Koslow (1994) compared different styles of swing. Carlsoo (1967) and 

Cooper et al. (1974) were both descriptive studies. Mason et al. (1990) compared CP 

and CG. 

 

2.1.5.2  The low number of trials used to assess a typical swing 

 

The number of trials used to indicate a typical swing has varied between studies from 

1 to 300 (table 2.7), with most using less than five trials. This is possibly an important 

measurement issue in weight transfer research as the use of only a few trials decreases 

the chances of collecting typical data (e.g. Mullineaux et al., 2000). Bates et al. 

(1983) found that ground reaction force (GRF) parameter means in running did not 

stabilise until eight trials had been collected.  Briefly, Bates et al. calculated the 

mean, standard deviation and one quarter of this standard deviation of each GRF 

parameter for a large number of running trials. Then, beginning with the first trial, 

successive trial GRF values were added and the ‘progressive’ mean was calculated. 

The parameter was defined as stable once the change in the mean from trial to trial 

fell below one-quarter of the standard deviation calculated across all trials. This 
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method was used in this study to determine the number of trials needed in testing (see 

Methods section 4.2.2.1). 

 

Table 2.7: Number of trials used per individual golfer for studies reviewed. 

 

 Number of trials used Notes 

Carlsoo (1967) approx 300 Over 7 testing sessions 
Cooper et al. (1974) 1  
Williams and Cavanagh (1983) 4  
Richards et al. (1985) 4  
Wallace et al. (1990) 10 Only 2 golfers tested 
Mason et al. (1990) 1  
Koenig et al. (1993) 7  
Koslow (1994) 10 Not stated, but assumed by this researcher 

that all 10 trials were used in the analysis. 
Barrentine et al. (1994) 3 3 trials with golf shoes, 3 with running 

shoes (not stated if analysed separately) 
Robinson (1994) 1  Described as typical 
Mason et al. (1995) 1  Described as typical 
Neal (1998) 1  

 

 

Using different techniques, the reported number of trials needed for a consistent result 

to be returned has varied widely. As mentioned, Bates et al. (1983) reported requiring 

eight trials for means to stabilise in running. In other tasks, ten trials were required in 

walking (Giakas and Baltzopolous, 1997) and between 1 and 78 trials in hurdling 

(Salo et al., 1997). Although no statistical analysis was performed to assess the point 

at which the mean stabilised, data presented by Best et al. (2000) indicated that mean 

minimum toe clearance (MTC) during the swing phase of normal gait did not stabilise 

even after 1000 trials. While MTC always remained within 3 mm (1 – 3.3 mm) and 

Best et al. commented that the data was stable from a general point of view, this 

variation in result needs to be evaluated in terms of the research question and the 

accuracy required. For example, if differences between subjects were of the order of 3 
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mm, then unstable mean values for individuals may be a factor in the study. With 

different results indicated for different skills (and for different parameters relating to 

the same skill) the evaluation of what constitutes a stable mean clearly needs to be 

specific to the measurement parameter and requires evaluation prior to testing. 

 

The effect of the number of trials used to assess the golf swing in previous studies 

needs to be considered. For studies using handicap groups as criterion measure, if the 

swings used to represent each individual are not typical, then group means for each 

handicap group will not be typical. As such, relationships may not be detected (type 2 

error), or random relationships may arise (type 1 error) in different studies. A similar 

issue exists when examining performance-based factors such as club velocity. If the 

measured swing for a particular golfer was atypical, then this will affect ensuing 

analyses and generate either type 1 or 2 errors.  
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2.1.5.3  The low number of swing events used to assess weight 

position 

 

Much of the research in weight transfer has examined data at different swing events 

(although as mentioned this data is often not reported). Table 2.8 reports the swing 

events used in different studies. 

 

Table 2.8: Swing events at which weight position was quantified in previous 
research. 

 
 No. of swing 

events 
AD TA MB TB FH MD BC MF EF Max Min

Studies providing statistical analysis 
Richards et al. (1985) 2    •   •   • • 
Wallace et al. (1990) 6  • • •  • •  •   
Robinson (1994) 5  •  • •  •  •   
Koslow (1994) 3  •  •   •     
Mason et al. (1995) 4  •  •   •  •   
Descriptive studies             
Koenig et al. (1993) 2  •  •       • 
Carlsoo (1967)* 8 • •  •   •     
Cooper et al. (1974) 5  •  •   • • •   
Williams and Cavanagh 
(1983)** 

8 • • • •  • • • •   

Studies that did not use swing events            
Barrentine et al. (1994) 0            
Neal (1998) 0            

* Carlsoo (1967) used eight swing events but only four events were clearly defined 
** Williams and Cavanagh (1983) used eight swing events but did not report data at these events 

 

Generally, the swing events used to quantify weight position has been at best 

inconsistent. For studies that analysed data statistically, between two and six swing 

events have been used. While two descriptive studies used eight swing events 

(Carlsoo, 1967; Williams and Cavanagh, 1983), limitations existed with both. 

Williams and Cavanagh (1983) provided only qualitative analysis of weight position 

at each event. Further, while Carlsoo (1967) did provide data, four of the eight swing 

events used were difficult to interpret from the definition given (refer to table 2.3). 
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The use of swing events is useful to make the data more interpretable and to allow for 

comparison between golfers (e.g. using time before BC does not allow for comparison 

of Fz% or CP% between subjects) but the reduction in data that exists in the literature 

has eliminated potentially important information. As noted in coaching and scientific 

literature, weight transfer changes direction before the top of backswing and moves 

rapidly forward in early downswing. This would indicate that late backswing and 

early downswing are potentially information-rich, a possibility supported by a 

significant result reported at FH by Robinson (1994) - the only study that has 

examined weight transfer at an event in either of these phases of the swing. As well, 

as discussed, Carlsoo (1967) and Cooper et al. (1974) reported movement towards the 

back foot in mid follow through, an event was not used in any of the studies 

performing statistical analyses on the data. This might also be a useful swing event to 

use. The use of more swing events to quantify weight transfer is addressed in this 

study. 

 

 

2.1.5.4  The lack of examination of different swing styles between 

golfers 

 

A possible limitation of previous studies examining weight transfer is the lack of 

examination of swing styles or movement strategies in the golf swing prior to 

performance analysis. A style or movement strategy is the performance of a skill in 

different ways to achieve the same aim. Two examples of obviously different styles in 

sport are single versus double handed backhand in tennis and the slide approach 

compared with the rotational approach in shotput. In golf, Meadows (2001) reported 
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three different strategies for gripping the golf club: the interlocking grip, the 

overlapping grip and the baseball grip. 

 

Less obvious is the existence of styles in the golf swing itself. However, different 

swing styles of professional golfers are often discussed in the media and have been 

noted in the coaching literature. For example, Suttie (2006) reported that, based on his 

“long years of teaching” all golfers fitted best into one of four categories based on the 

golfer’s physical traits and how the golfer develops power: the upper body, the lower 

body, the hands and a swing style termed “Classic” by Suttie which displayed an 

“unusually high degree of rhythm, timing and balance”. Upper body players possess 

shorter than normal arms and developed power from the shoulder muscles. Lower 

body players are taller, athletic players with long legs from which power is 

developed. Hands players possess large hands and forearms from which power is 

developed. Classic players are smooth, effortless and balanced, as well as being 

athletic with long arms.  

 

Different styles in the golf swing have been reported, albeit with no objective data, in 

the scientific literature. Nagano and Sawada (1977) reported two styles of swing arc 

based on observation of the trace of the club head viewed in the vertical plane parallel 

to the line of shot. Swing golfers exhibited an elliptical orbit from takeaway to the end 

of follow through while ‘hitters’ exhibited a horizontal or oblique type swing. This 

was the limit of the definition of the swing styles. Neal (1998) used a golf coach to 

identify two styles of swing: a left-to-right and a rotational style of swing, although 

no definition of the two styles was presented. However, objectively assessed 

differences in swing styles or strategies do not exist. 
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Only two golf studies examining weight transfer have considered styles, or movement 

strategies, in their research design. In Neal (1998), a golf coach subjectively defined 

two styles in low handicap golfers; a ‘rotational’ style and a ‘left to right’ style. 

Koslow (1994) used a Sporttech swing force plate data to identify different weight 

transfer styles in novice golfers and reported three statistically different styles:  

 

1. Normal (balanced at address, towards the back foot in backswing and towards 

the front foot at ball contact. Koslow reported this sequence as the “coach 

defined method of weight transfer”). 

2. Reverse pivot (balanced at address, on front foot at the top of backswing and 

on the back foot at ball contact).  

3. Incomplete (balanced at address, back foot at backswing and back foot at ball 

contact).  

 

Koslow (1994) reported that 84% of novice golfers did not exhibit the Normal 

pattern, producing instead a Reverse pivot or an Incomplete weight transfer. It is 

important to note that although different weight transfer patterns existed in the 

Koslow study, two of the three styles were considered errors by the researchers rather 

than useful techniques. This is an important distinction because different movement 

strategies within a skill can be valid methods of performance, or can represent errors 

in movement that reduce performance. That is, a particular style can be effective or it 

can be ineffective. 

 

Neal (1998) compared two coach-defined and coach-identified styles among 14 low 

handicap golfers. These groups were defined as ‘left-to-right’ and ‘rotational’ but the 



 

 

37
 

criterion for each style was not reported. As low handicap golfers (i.e. highly skilled) 

were used, both of these styles might be considered to be valid techniques and not 

technical errors, although this was not stated by Neal. Differences were found 

between these groups in the ratio between the CP range perpendicular to the line of 

hit (CPx) and CP range parallel to the line of hit (CPy) between the groups (Left to 

right: 0.29, Rotational: 0.39, p < 0.05). Neal reported that the ‘left-to-right’ style 

produced greater CPy movement, or movement between the left and right foot (hence 

the ‘left-to-right’ term for this style) and less CPx movement compared to the 

rotational style (p < 0.05). As well, the ‘left-to-right’ group reached maximum 

forward position of CPy later in the swing (expressed as a percentage of the time 

between top of backswing and ball contact - Left to right: 99%, Rotational: 87%, p < 

0.05). Neal (1998) did not report a description of the styles and, statistical analysis 

results were limited to alpha levels of p < 0.05 only, limiting further discussion. 

 

If different styles existed in the samples tested in previous weight transfer research, 

statistical errors would have been made. Styles such as the two described by Neal 

(1998) occurring within the same dataset could generate type 1 or 2 errors in 

statistical analyses. Type 1 errors might exist in data due to the existence of two 

distinct groups (i.e. two distinct styles). Two groups (styles) can produce a large 

effect in regression statistics (e.g. figure 2.9 a) due only to the relatively large 

difference between the groups, with no relationship evident within the groups 

themselves. It could also produce type 2 errors in the case of comparison of handicap 

groups by increasing intra-group variance and reducing statistical power. Bates 

(1996) stated that if different movement strategies exit, then statistical power will be 

lowered and there is a greater likelihood of falsely supporting the null hypothesis in 
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group comparison statistical procedures. Type 2 errors might also exist in regression 

statistics where no significant correlation exists for the whole group while significant 

correlations do exist within each group (e.g. figure 2.9 b). The lack of attention to 

possible style differences (or different movement strategies) may be a reason why 

many studies failed to find significant associations between weight transfer and 

performance, or why significant results were found in some studies. 

 

a – correlation on a group basis due to the 
existence of two groups in the data 

b – no correlation on a group basis but 
correlations within two groups within the data 

 
 

Figure 2.9: Examples of statistical errors that can exist where different styles or 
movement strategies exist within the dataset. 

 

 

2.1.5.5  The lack of examination of individual-based analysis 

 

Individual-based analysis, or single subject design, is the evaluation of a problem 

within a single subject. In its strictest sense, it involves examining one subject only 

and performing analysis within that subject (Reboussin and Morgan, 1996). However, 

much of the more recent work has been of a multiple single subject design, where a 

number of subjects are analysed on an individual basis and the research question is 
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answered in terms of the number of significant results across all individuals (e.g. Ball 

et al., 2003b; Dufek et al., 1995). Individual-based examination has taken the form of 

correlation analysis to examine associations between technical and performance 

variables in shooting (Ball et al., 2003a, 2003b), differences between means for 

different shoe conditions in running (Caster and Bates, 1995) and multiple regression 

predicting dependent variables in running (Dufek et al., 1995).  

 

A number of arguments exist for the use of individual-based analysis. 

 

First, it can provide important information to the golfer that might be masked in 

group-based analyses. Significant performance factors have been found in individual 

analyses that were not evident in group-based analyses of pistol (Ball et al., 2003a) 

and rifle shooters (Ball et al., 2003b). Based on these findings, Ball et al. encouraged 

the use of both group and individual-based analyses to extract all relevant information 

from an analysis. Both Dufek et al. (1995) and Bates et al. (1979) also identified 

different performance characteristics among runners that were masked by a group-

based statistical approach.  

 

Second, individual-based analysis can avoid the statistical errors that will be produced 

if different movement strategies, or styles of movement, are used by different subjects 

in the group being tested. Bates et al. (2004) stated that individual performance 

strategies can lead to increased inter-subject variability that will reduce statistical 

power. This can then lead to false support for the null hypothesis. 
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Third, a number of authors have expressed concern with the group-based approach in 

some areas of clinical biomechanics research as most clinical applications are 

individual-based. For example, Scholhorn et al. (2002) noted that while the scientific 

literature is largely group-based, it does not reflect clinical practice in gait analysis, 

which is individual-based. Barlow and Hersen (1984) stated that many researchers 

were dissatisfied with the inability to find strong associations to explain behaviour 

that were being observed in the applied setting because of the use of group-based 

statistics. As golf coaching is largely individual-based, this argument would seem to 

be applicable to golf research. 

 

While descriptions of individual golfers have been reported in the literature, there has 

been no individual-based statistical analysis of weight transfer. Carlsoo (1967) 

examined 300 swings of an elite golfer and used the data to describe the mechanics of 

the golf swing. Both Williams and Cavanagh (1983) and Richards et al. (1985) noted 

that the CP or COV variability was low within subjects tested. Further, Richards et al. 

(1985) stated that within-subject variability was similar for all ability levels tested 

(low and high handicap golfers). However, no study presented data to support these 

comments, nor was there any further analysis performed.  

 

As no extensive individual-based analysis has been performed in golf, two examples 

from the literature have been discussed to illustrate the use of individual-based 

analysis.  

 

In an elite sport example, Ball et al. (2003a) examined rifle shooters on a group and 

an individual basis. Six elite shooters performed 20 shots at a target under simulated 
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competition conditions. Body sway and aim point fluctuation measures were 

correlated with performance to identify important factors in rifle shooting. Ball et al. 

reported finding no significant associations between body sway and performance on a 

group basis, although Ball et al. noted that statistical power was low in this analysis. 

However, all shooters returned significant correlations and regressions when the 

relationships were examined on an individual basis. Further, regression analysis 

showed individual-specific relationships for different individuals. Ball et al. stated 

that individual-based analysis is the most appropriate for the individual in terms of 

skill development and serves as a useful adjunct for group-based analysis. Ball et al. 

(2003b) also found differences between group-based and individual-based analyses 

for pistol shooters. 

 

In a movement strategy example, Caster and Bates (1995) assessed the response 

strategies during landing for four subjects. Different masses were added to ankles to 

alter landing forces and the method of landing, defined by the researchers as either a 

mechanical or neuromuscular strategy, was examined. ANOVA and stepwise multiple 

regression was performed on ground reaction forces and EMG data on a group and 

individual basis. Caster and Bates reported that, while no group differences were 

found, 16 of 32 conditions were significant when examined on an individual basis. 

Further, multiple regression analysis showed individual-specific relationships in terms 

of the independent variables entered and the proportion of variance accounted for. As 

such, individual analysis allowed for the identification of strategies while group-based 

analysis did not. Based on the differences between the group and individual results, 

Caster and Bates concluded that it was inappropriate to use group-based analysis in 

this instance as it did not allow for the identification of these strategies. Similarly, 
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Bates and Stergiou (1996) concluded that subjects can and do respond differently to 

the same perturbation and these differential responses can compromise group analysis 

results. 

 

 

These five limitations of previous research in weight transfer in the golf swing – use 

of Handicap to assess swing quality, the small number of trials per golfer and swing 

events used, the lack of accounting for swing styles and the absence of individual-

based analysis - will be addressed in this study. 
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2.2   CLUSTER ANALYSIS 

 

Classification of objects that are thought to be similar to each other is one of the most 

inherent tasks for humans (Hair et al., 1995). A quantitative method that has been 

widely used to classify objects is cluster analysis (e.g. In Medicine: Wang et al., 

2002; Psychology: Hodge and Petlichkoff, 2000; Biomechanics: Vardaxis et al., 

1998). Cluster analysis is a statistical process that uses multivariate techniques to 

group objects based on their characteristics. The aim of cluster analysis is to 

maximize the homogeneity of objects within a group, while maximizing heterogeneity 

between the clusters (Hair et al., 1995).  

 

Cluster analysis has been used in a small number of biomechanical studies and for a 

number of reasons. Wilson and Howard (1983) and Forwood et al. (1985) used cluster 

analysis to identify different movement patterns in a sporting skill with the aim to 

provide a condensed description of the skill. Grabe and Widule (1988) used cluster 

analysis to establish if the different skill level classifications could be objectively 

determined based on kinematic variables. Vardaxis et al. (1998) used cluster analysis 

to establish if different gait patterns existed in able-bodied males. In each study, the 

researchers report that cluster analysis proved useful for the particular application. 

 

However, in spite of its potential usefulness, cluster analysis has not been widely used 

in biomechanics. One reason why cluster analysis has largely been avoided may be 

concerns of researchers with some of the procedural problems that still exist in the 

cluster analysis process.  The major problems are how to determine the number of 

clusters that exist in the data (e.g. Hair et al., 1995) and how to validate the cluster 



 

 

44
 

solution (e.g. Milligan, 1996). This is further complicated by the number of different 

clustering strategies (i.e. how cases are clustered together) as well as the many 

different methods for measuring the degree of similarity between cases (i.e. how the 

distance between cases is measured). These factors will be discussed in the next 

sections. 

 

Note that this is a large field with a large body of literature pertaining to it. It is not 

the intention of this review to be comprehensive in all aspects of cluster analysis. 

Rather, the points of contention that can affect the analysis are discussed with an 

emphasis on biomechanical research using clusters. The researcher refers the 

interested reader to Hair et al. (1995) for a good overview of operational information 

and general issues. 

  

2.2.1   How many clusters? 

 

Cluster analysis will always return a solution. As such, the choice of the number of 

clusters in the final solution is extremely important (Hair et al., 1995). Figure 2.10 

shows two plots with the same data but divided into two or three clusters. Each might 

be considered a reasonable division of the data into groups (as would only one cluster; 

i.e. the group has no clusters within it). As the one, two and three cluster solution will 

each lead to a different conclusion, it is important to thoroughly assess which solution 

is most appropriate. The numerous methods used to address this issue include the use 

of the agglomerative schedule (also called ‘stepwise method’) and dendrogram (e.g. 

Forwood et al., 1985), various statistical procedures (e.g. the R-Ratio: Vardaxis et al., 
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1998), and the use of theoretical assessment (e.g. minimum number of meaningful 

clusters; Wilson and Howard, 1983).  
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Figure 2.10: Example of one, two and three cluster solutions for a two-
parameter dataset. Possible clusters indicated within each ellipse. 

 

 

2.2.1.1  Agglomerative schedule and dendrogram 

 

The use of the agglomerative schedule is noted in the SPSS 10.0 manual (1997) as the 

most appropriate method for choosing the number of clusters when performing 

hierarchical cluster analysis. Briefly, cases are clustered together progressively, 

starting with N clusters (i.e. each case is a cluster with N = 1 cases in each cluster) 

and then sequentially combining the two nearest clusters until there is only one cluster 

(i.e. all N cases in the one cluster). This process can also be performed in reverse, 

starting with one cluster and progressing to N clusters. The distance between clusters 

is calculated at each step and reported in the agglomerative schedule. Thorndike 

(1953) suggested that the researcher should look for a sharp step in this data, which 

indicates that clusters are more widely separated and can indicate an optimal solution. 

Gower (1975) noted that unless a jump in this stepwise method exists, there is no 

argument for defining any more than one cluster.  
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The dendrogram (figure 2.11) provides a visual representation of this process and 

allows for identification of likely clusters as well as possible outliers in the data. The 

cases on the vertical axis represent the objects being clustered together. The 

horizontal axis scale represents the distance between clusters for consecutive 

combinations of cases. The lines indicate when cases combine together. Examining 

these lines for figure 2.11, the horizontal distance between consecutive joins on the 

right hand side (i.e. the last two joins) are relatively larger than those near the left 

hand side of the dendrogram. These large jumps are associated with the two and three 

cluster solutions. The one that is largest (the 2-cluster solution, or the last join) would 

be indicated as optimal by the dendrogram. 

 
 

 

Figure 2.11: Example dendrogram with 15 cases (left hand side) clustered 
progressively into 1 cluster (right hand side).  The scale on the 

horizontal axis indicates the separation between clusters. 
However, the use of the agglomerative schedule and dendrogram method to determine 

the number of clusters has been criticised. Everitt (1979) noted that the choice of what 

jump equates to the ‘sharp step’ referred to by Thorndike (1957) is likely to be 
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subjective. Further, Everitt (1974) found that a large step is a necessary but not a 

sufficient condition that clear-cut clusters exist in the data. Milligan and Cooper 

(1985) described the use of the agglomerative schedule to decide on the number of 

clusters (termed the “stepwise method”) as “mediocre”. Interestingly, Hair et al. 

(1995) suggested that the agglomerative schedule method returned reasonable results, 

even though Hair et al. refer to the Milligan and Cooper (1985) article as the source 

of this interpretation. 

 

2.2.1.2  Statistical methods for determining cluster solutions 

 

The number of clusters in a dataset has also been determined by statistical procedures. 

These methods are often called ‘stopping rules’ as they indicate where in a 

hierarchical clustering process the clustering, or joining/separating of groups, should 

stop.  For example, the C-Index (equation 2.3; Hubert and Levin, 1976) calculates the 

distance between each case within each cluster in a solution and then sums them to 

form a within-cluster distance (D, equation 2.3). The optimal solution, or number of 

clusters, is associated with the largest C-Index score produced across all cluster 

solutions (from 2 to N, Hubert and Levin).  

 

C-Index = 
(D) Minimum -  (D) Maximum

(D) Minimum - clusters) all-(D Sum     

   
Where D = sum of the distances between all cases within a cluster  

Equation 2.3 
Numerous statistical methods have been used in the literature (e.g. C-Index: Hubert 

and Levin, 1976; Goodman-Kruskal’s Gamma: Baker and Hubert, 1975; Point 

Biserial Correlation: Milligan, 1981). Milligan and Cooper (1985) evaluated the 

performance of 29 of these statistical measures for determining the number of clusters 
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as well as the agglomerative schedule method. Using 432 Monte Carlo datasets with a 

known number of clusters in the data, the 30 stopping rules were applied to each 

dataset. Briefly, the Monte Carlo data set is a pseudo-random collection of numbers 

based around forming a known number of clusters. The stopping rules were then 

ranked based on the number of correct solutions that were returned. Milligan and 

Cooper identified the better stopping rules and suggested that the use of a 

combination of the better statistical methods is the most appropriate procedure in 

establishing the number of clusters in a dataset, a point stressed again in later work by 

Milligan (1996).  

 

The use of statistical procedures to identify the number of clusters in a dataset has 

been criticised or cautioned in the literature. Hair et al. (1995) suggested that while 

statistical techniques might provide a more objective measure compared to the 

agglomerative schedule and dendrogram, most statistical methods are overly complex 

for the benefit they provide. Milligan and Cooper (1985) and Everitt (1979) noted that 

many of these statistical procedures are data specific and may not work well on data 

that they were not developed for, although neither indicated any data to support the 

comment. As well, Milligan and Cooper (1985) noted that different stopping rules 

exhibited different desirable properties.  For instance the Calinski and Harabasz index 

returned the most number of correct solutions, while the Point Biserial correlation had 

the lowest error rate for determining too many clusters.  Further, with the many 

possible statistical methods available requiring a choice, the subjectivity of which to 

use can offset some of the objectivity they provide. 

 

2.2.1.3  Theoretical considerations 



 

 

49
 

 

Hair et al. (1995) suggested that the final decision on how many clusters are formed 

should have theoretical considerations to support the empirical evidence provided by 

the various statistical and graphical techniques. As well, Milligan (1996) noted that if 

the clusters are not interpretable, then the analysis is of no use. As such, theoretical 

considerations must form a part of any decision on the number of clusters. 

Surprisingly, while many researchers have developed statistical methods for 

determining the number of clusters, little research has dealt with theoretical issues 

that are associated with this process, beyond noting that a theoretical basis is 

important. 

  

2.2.1.4  Method of choosing the number of clusters in 

biomechanical research 

 

The biomechanical studies that have used cluster analysis have employed different 

combinations of these factors to decide on the number of clusters in their data.  Both 

Wilson and Howard (1983) and Forwood et al. (1985) used a combination of visual 

inspection of the dendrogram and the theoretical consideration of finding the 

minimum number of movement action patterns that could describe the backstroke 

start (Wilson and Howard, 1983) and the front handspring to front somersault in 

gymnastics (Forwood et al., 1985). The basis for selection of the optimal solution 

from the dendrogram was not detailed in either article. Vardaxis et al. (1998) used the 

dendrogram and the R-ratio. The R-ratio is a measure of the reduction of the within-

cluster variability, with a large R-value associated with a large reduction in within-

group variability and indicating that clusters are homogenous. The largest R-ratio 
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across different cluster solutions was considered to be optimal. The limitation of the 

R-ratio is that there is no between-cluster evaluation and so should have been used 

with other indicators that provide between-cluster information. Milligan and Cooper 

(1985) did not test this method. 

 

Grabe and Widule (1988) used an unusual approach to choosing the number of 

clusters that existed in kinematic data of the jerk in weightlifting. A two-way 

coincidence table was calculated which compared ordered subjects (weightlifters) 

with ordered variables (29 kinetic and kinematic variables associated with the Jerk 

movement in the Olympic Clean and Jerk lift), with meaningful clusters identified 

using a variable (rather than fixed as the methods discussed to date have been) 

stopping rule as outlined by Boesch (1977).  The Boesch article could not be obtained 

for inclusion in this review and as the details were not thorough enough in the Grabe 

and Widule (1988) article, further discussion of this stopping rule is not possible.  

 

2.2.2   Validation of clusters 

 

Validation of cluster solutions is an important part of cluster analysis. Aldenderfer 

and Blashfield (1984) noted that while validation techniques are not well understood 

and should be used with caution, it is essential to validate the solution obtained from a 

cluster analysis. Hair et al. (1995) suggested that without validation, the cluster 

solution found has limited generalisability and will have little use beyond a 

description of the data on clustering variables.  

 

2.2.2.1  Methods of validation 
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Milligan (1996) reported that validation methods are broadly divided into external 

and internal methods. These have been reported separately in the next sections. 

 

2.2.2.1.1  EXTERNAL METHODS 

 

External methods of validation are based on variables not used in the clustering 

process.  Milligan (1996) reported that two types of external validation are available; 

(1) the use of standard parametric procedures on a variable not used in the clustering 

process to test for differences between clusters and (2) the use of an independently 

obtained partition. 

 

2.2.2.1.1.1  Parametric tests on an external variable 

 

The use of an external variable has been described as among the better methods of 

validating a cluster solution (Aldenderfer and Blashfield, 1984). Briefly, a variable, 

which has a theoretical basis for being different between groups or for defining the 

clustering solution, is identified. Parametric tests such as ANOVA are then performed 

on this variable to compare between groups. A significant result supports the validity 

of the cluster solution. For example, the coach defined ‘left-to-right’ or ‘rotational’ 

swing style in the Neal (1998) study could have been used as an external variable for 

cluster analysis on swing characteristics to determine if two styles exist. 

  

However, while the use of external variables to validate a cluster solution has been 

supported, a number of difficulties are associated with it. Aldenderfer and Blashfield 
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(1984) reported that the identification of an external variable may not be possible due 

to the research being exploratory, or the theoretical basis behind the cluster analysis 

may not be refined sufficiently to determine what is relevant to the intended 

classification. As well, Milligan (1996) noted that researchers find it difficult to omit 

a variable from the clustering process with the aim of using that variable to externally 

validate the cluster solution. Further, even if an external variable is used to validate a 

cluster solution, the validity of the external variable itself in an applied research 

setting can be questioned. Milligan (1981) noted that if the researcher fails to find a 

significant difference between the groups on an external variable, it is not necessarily 

clear as to whether this indicates a lack of cluster structure, or just that external 

variable used to validate the clusters is invalid itself. 

 

2.2.2.1.1.2  Independently obtained partition 

 

Milligan (1996) detailed another external validation method in which a partition 

(clustering pattern) is specified a-priori or obtained from clustering of another dataset. 

The cluster solution found in the data is then compared with the specified solution, 

with a high level of agreement equating to a more strongly validated solution. 

Milligan reported that a number of indices have been proposed such as the Rand 

index and the Jaccard statistic (e.g. Rohlf, 1974). However, in applied research, the 

true cluster structure, which is required for these indices, is generally not known a-

priori (Milligan, 1981). None of the applied studies reviewed by this researcher used 

these external criterion indices. 

 

2.2.2.1.2  INTERNAL METHODS 
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Internal methods of validation use the variables that have already been used in the 

clustering process. These methods attempt to represent the goodness of fit between 

the input data and the resulting cluster solution (Milligan, 1996). Internal methods are 

closely linked to the choice of the number of clusters and many of the same statistical 

techniques are used.  

 

2.2.2.1.2.1  Statistical methods 

 

The SPSS 10.0 manual (1997) suggests that the best way to validate a cluster solution 

is conducting a discriminant analysis on the clustered data. In this method, if the 

discriminant analysis indicates that the groups (clusters) are significantly different, 

then the solution is validated. However, the use of discriminant analysis, ANOVA and 

MANOVA has been strongly criticized (e.g. Milligan, 1996; Aldenderfer and 

Blashfield, 1984). Milligan (1996) argued that the clustering process separates cases 

into groups that minimize overlap, and so techniques such as discriminant analysis, 

ANOVA and MANOVA will always show good results when the cluster groups are 

compared. Interestingly, while Hair et al. (1995) also noted this method is 

inappropriate, the researchers use a one-way ANOVA to compare cluster groups in an 

example presented in their work, although it was not used to validate the solution.  It 

would seem that the use of these tests on clustering variables still offers useful 

information to the researcher in establishing which variables differ between groups, 

but this information does not validate the cluster solution on its own. 
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Milligan (1981) compared 30 methods for internal validation, using 108 Monte Carlo 

datasets with known cluster solutions and using two external criteria measures (Rand 

and Jaccard statistic). Applying each statistical technique to the clusters, the study 

ranked the 30 internal methods based on how close the result was to the known 

clustering solution as indicated by the external criteria measures. Milligan identified a 

group of six ‘strong’ methods that could form the basis of a validation procedure in 

applied research. Milligan (1996) noted that this testing was conducted on artificial 

data and may not hold for real world data. However, it does offer strong objective 

data for the relative effectiveness of different methods that can be used by the 

researcher to guide the choice of a validation method. 

 

2.2.2.1.2.2  Replication 

 

Replication has been reported as a possible method for validating cluster analysis (e.g. 

McIntyre and Blashfield, 1980; Morey et al., 1983). Replication refers to the process 

of repeating the cluster analysis on a randomly drawn subset of the original data. If a 

cluster is robust (i.e. if its characteristics remain despite the use of different sub-sets 

from the sample population) the researcher has some evidence to support the 

solution’s existence. Milligan (1996) noted that replication is analogous to the cross-

validation procedure in regression analysis. Replication was used by Hodge and 

Petlichkoff (2000), for example, reanalyzing a randomly selected subset of two thirds 

of the original dataset. The researchers reported that 94% of the subset subjects 

maintained the same cluster membership as the original analysis concluded that the 

solution was robust based on these results. 
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Milligan (1996) reported a slightly different replication method. Two samples of data 

are obtained (usually by randomly dividing the initial dataset). Cluster analysis is 

performed on the first dataset and means for each cluster are calculated. Using these 

means, each case from the second dataset is allocated to the nearest cluster, and the 

cluster that each case is allocated to is noted for later comparison. Then the second 

dataset is cluster analysed. The two cluster solutions for the second dataset (i.e. from 

cluster means from dataset one and from cluster analysis of dataset two) are then 

compared. The level of agreement between the two cluster solutions reflects the 

stability of the cluster solution. Breckenridge (1989), as reported by Milligan (1996), 

found this method useful for validating clusters in work with Monte Carlo datasets. 

 

However, Aldenderfer and Blashfield (1984) criticised the replication method of 

validation. They suggested that finding a similar cluster structure using replication is 

a check of the internal consistency of the result. While the failure of a cluster solution 

to be replicated is reason for rejecting the solution, or the existence of an individual 

cluster, successful replication does not guarantee validity of a solution. Unfortunately, 

Aldenderfer and Blashfield did not expand on this issue. No other author has 

expressed concern with replication as a validation method. As well, replication is a 

method being used more extensively in association with other statistics (e.g. 

regression, Pedhazur, 1997). Re-sampling methods such as bootstrapping and jack-

knifing (Zhu, 1997) are examples of replication analyses that are being used more 

extensively to provide confidence limits and validation to solutions using other 

statistics (e.g. Ball et al., 2003a). It should also be noted that no single measure 

(replication, statistical measures, theoretical assessment) completely validates a 

solution but all should be included to build up support for the cluster solution validity.  
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2.2.2.1.2.3  Use of more than one clustering algorithm 

 

The use of more than one method or measure of cluster calculation has been proposed 

as a useful method of validation of cluster analysis. There are a number of methods 

within the cluster process for measuring the distance between cases and between 

clusters. For example, the ‘between-groups’ method clusters cases that maximize the 

distance between clusters at each step of the hierarchical process while the ‘within-

groups’ method simply clusters the two nearest cases or clusters at each step. There 

are also a number of measures used to define how the distance between cases/clusters 

is quantified and include Euclidean distance, squared Euclidean distance (referred to 

as measures of dissimilarity) and Pearson’s correlation (referred to as a measure of 

similarity). 

 

Hair et al. (1995) suggested that re-analyzing a cluster solution using non-hierarchical 

techniques with random selection of starting seeds is a way to test the robustness of 

the cluster solution and validate results. In the example Hair et al. presented, the 

initial solution, calculated using hierarchical techniques, was found. Then, using a 

non-hierarchical clustering process and using k random seeds (i.e. randomly selected 

cluster centroids or means) and where k equalled the number of clusters chosen from 

the hierarchical process, clustering was performed on the data again. Hair et al. 

reported that this non-hierarchical cluster analysis obtained the same clusters as the 

hierarchical procedure and, based on this finding, concluded that the solution is robust 

and valid. However, Milligan (1996) reported that, while non-hierarchical procedures 

with known seed points are better at obtaining correct cluster numbers than 
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hierarchical procedures, if random seeds are used, clustering is poor. This being the 

case, the method suggested by Hair et al. (1995) would seem to be inappropriate. 

Interestingly, Hair et al. also noted that using a non-hierarchical method with random 

seeds leads to poor clustering solutions. 

 

Kos and Psenick (2000) suggested that added validity is provided to a cluster solution 

if the clusters appear using different methods for measuring the distance between 

cases and clusters. Kos and Psenick clustered a dataset using both the between-group 

method and within-group method, and suggested that for a cluster to be considered 

valid, it must appear in both analyses. Hair et al. (1995) also suggested that the use of 

more than one clustering method would be an appropriate way to validate a cluster 

solution, although the researchers do not use it in the example they provide. However, 

as noted by Hair et al. (1995) and Milligan (1996), the choice of method of 

determining clusters should have a theoretical basis. The use of more than one method 

suggested by Kos and Pesnik (2000) may depart from this theoretical basis in many 

applied research applications, making the results of such comparisons invalid 

themselves.  
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2.2.2.1.2.4  Monte Carlo datasets 

 

Aldenderfer and Blashfield (1984) suggested Monte Carlo data sets might be a useful 

method of validation of a cluster solution. In this case, the Monte Carlo data set is 

generated so that its characteristics are the same as the characteristics of the original 

data set (such as means, standard deviations etc.) but with no pre-defined clusters. 

Both the original and Monte Carlo data sets are then cluster analysed. Aldenderfer 

and Blashfield suggested that the next step could involve performing one-way 

ANOVA on each of the parameters between clusters for the original data set. 

Similarly, one-way ANOVA between clusters from the Monte Carlo data set is also 

performed. If the difference in the F-ratios between the original and Monte Carlo data 

sets is large, then it might be considered that the cluster solution is sufficiently 

removed from a random result to be considered valid. Conversely, if F-ratios were 

similar then little support exists for the cluster groupings being valid, and more likely 

exist due to chance. Aldenderfer and Blashfield noted that this method had not been 

widely used (by 1984) and this researcher found little use of it in the literature since 

this time. Milligan used this technique in the series of studies evaluating different 

cluster methodologies but not to validate a real data solution (e.g. Milligan, 1981; 

Milligan and Cooper, 1985).  

 

2.2.2.1.2.5 Cophenetic correlation 

 

Aldenderfer and Blashfield (1984) also discussed the use of cophenetic correlation to 

validate a cluster solution. Briefly, this method examines the dendrogram to see how 

well it represents the pattern among the clustered cases. An implied similarity matrix 
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is developed based on when cases were clustered together. For example, similar cases 

will cluster together early in the process and these cases will incur a small value. 

Conversely, dissimilar cases will cluster together late and will incur a large value. 

This matrix is compared with the original matrix obtained from the Euclidean 

distance between cases. The cophenetic correlation is the correlation between values 

in the original and implied matrix, with a larger value indicating a better clustering of 

the data. 

 

Aldenderfer and Blashfield (1984) were critical of the use of cophenetic correlation, 

suggesting that the assumption of normality (required for correlation) is usually 

violated and so the correlation coefficient is not an optimal estimator of the degree of 

similarity between the two matrices. This might not be a valid criticism given 

numerous authors suggested correlation is relatively robust to violations of non-

normality (e.g. Tabachnick and Fidell, 1996) and non-parametric tests might avoid 

this problem (Aldenderfer and Blashfield did not discuss this possibility). However, 

other limitations exist. The technique can only be used on data that has been clustered 

using the hierarchical method. As well, Aldenderfer and Blashfield reported that the 

two matrices contain different amounts of data and so contain considerably different 

information. Further, Holgersson (1978), as reported by Aldenderfer and Blashfield 

(1984), found the cophenetic correlation to be a generally misleading indicator of 

cluster quality based on assessment using Monte Carlo datasets. 
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2.2.2.2  Validation in biomechanical research 

 

The use of cluster validation in biomechanical research has been limited. Wilson and 

Howard (1983), Forwood et al. (1985) and Vardaxis et al. (1998) used one-way 

ANOVAs on the variables used in the clustering process to assess if clusters were 

significantly different, a method criticized by a number of researchers (e.g. 

Aldenderfer and Blashfield, 1984; Milligan, 1996). Vardaxis et al. (1998) also tested 

the robustness of the cluster solution by randomly eliminating subjects, and reported 

that the solution remained unchanged with up to 15% of the total sample size 

eliminated. This is something similar to the replication methods reported in section 

2.2.2.1.2.2. Vardaxis et al. (1998) also reported using the MGHL procedure of 

SYSTAT, which tests the null hypothesis that clusters are equal. SYSTAT was not 

available to this researcher and so this method could not be evaluated. Grabe and 

Widule (1988) did not validate their cluster solution. 

  

2.2.3   Hierarchical or non-hierarchical methods 

 

Another factor in the cluster process is the use of hierarchical or non-hierarchical 

methods for forming clusters.  Hierarchical clustering techniques effectively construct 

a tree-like structure, with progressive clustering (agglomerative) or un-clustering 

(divisive) of cases. The agglomerative method is evident in the dendrogram in figure 

2.11 (section 2.2.1.1). Non-hierarchical procedures assign objects into clusters, of 

which the number and the seeds (starting centroids or group means) are defined a-

priori by the researcher.  
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Milligan (1980) has suggested that non-hierarchical procedures are more robust than 

hierarchical procedures in extracting the true cluster solution from the data, due to the 

elimination of nesting. Nesting occurs in the hierarchical procedure of clustering 

where a case is allocated to a cluster in an early step but in the final solution may be 

more appropriately allocated to another cluster. Non-hierarchical methods reduce the 

chance of nesting as each case is evaluated against a constant set of group means (i.e. 

the seeds specified by the researcher), compared with the constantly changing 

centroids in the hierarchical process. Hair et al. (1995) also supported the use of non-

hierarchical methods, as they reduce the effects of outliers and the distance measure 

used (e.g. between-group or within-group measures). Hair et al. also noted that non-

hierarchical methods reduce the effect of irrelevant variables (i.e. variables irrelevant 

to the underlying cluster structure), which can adversely affect hierarchical analysis 

by producing a different cluster solution. However, both researchers noted that this is 

only the case if the seeds, or starting points which non-hierarchical procedures 

require, are chosen carefully and are not random. Unfortunately, as noted by Milligan 

(1985), the identification of these seeds is often not possible as there is not enough 

previous data for the researcher to decide on an appropriate cluster seed.  Milligan 

suggested a combined approach, with hierarchical methods used first to establish 

seeds (cluster means) and then using these seeds in a non-hierarchical cluster analysis 

to ‘fine tune’ the solution. 

 

 



 

 

62
 

2.2.3.1  Hierarchical or non-hierarchical methods in 

biomechanical research 

 

All biomechanical research using cluster analysis has used the hierarchical method. 

This may be a limitation of these studies. However, it may not have been feasible for 

the researchers to perform non-hierarchical analyses due to the lack of non-

hierarchical software resources. Two of these studies used the Pearson’s correlation as 

the measure of similarity (Grabe and Widule, 1988; Vardaxis et al., 1998). The 

similarity measure was not reported in the remaining two studies (Wilson and 

Howard, 1983; Forwood et al., 1985). This researcher could not find statistical 

software that offered a non-hierarchical process using the correlation method. SPSS, 

for example, offers only the Euclidean distance measure for use in the non-

hierarchical cluster process. Milligan (1985) noted that the availability of appropriate 

analysis software is a major consideration in cluster analysis due to the calculation 

demands of assessing a large number of potential combinations. Wilson and Howard 

(1983) also noted the problems of computer power in their analysis. 

 

 

2.2.4   Summary 

 

In summary, there are a number of procedural issues in cluster analysis and this has 

been highlighted by the lack of consistent methodologies used. The choice of the 

number of clusters in the final solution must be considered carefully. Validation is an 
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important part of cluster analysis and a sound knowledge of the processes is required. 

Finally, the choice of method for clustering needs to be considered.  

 

Based on the literature, a strong approach would be to initially analyse the data using 

a hierarchical cluster analysis to establish cluster seeds and then reanalyze using non-

hierarchical cluster analysis. The agglomerative schedule, dendrogram and possibly 

other techniques should be examined to establish if clusters exist in the data and that 

the data does not simply describe a continuum. Within the hierarchical and non-

hierarchical processes, the choice of distance (similarity/dissimilarity) measure and 

the clustering method (e.g. between-groups, within-group) should be based on 

theoretical issues associated with the particular application (type of data, the research 

question being answered). The choice of number of clusters should include two or 

more of the better statistical measures recommended by Milligan and Cooper (1985) 

as well as theoretical considerations for the number and type of clusters formed. 

Validation should be performed using a combination of statistical measures, 

replication and theoretical assessment. While not supported by some authors, the use 

of ANOVA or MANOVA has been used widely in the literature and may still provide 

useful validation information if used in combination with other validation measures.  
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CHAPTER 3 

 

GENERAL AIMS OF THE THESIS 
 
 
 
 
 
The general aims of this thesis are to:  
 
 
 

1. Identify if styles exist in the golf swing. 
 
 
2. Determine if weight transfer is important in the golf swing on a group basis. 

 
 

3. Determine if weight transfer is important on an individual basis. 
 
 
 

These aims are examined across three studies in this thesis.  

 

Study 1 will determine if different weight transfer patterns exist among golfers using 

a cluster analysis methodology 

 

Study 2 will determine if weight transfer parameters are related to performance on a 

group basis using regression analysis. 

 

Study 3 will determine if weight transfer parameters are related to performance on an 

individual basis using curve-fitting analysis and a non-linear technique. 
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CHAPTER 4 

 

STUDY 1 

 

IDENTIFICATION OF WEIGHT TRANSFER 

STYLES 
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4.1   AIMS 

 

4.1.1  General 

 

1. To examine if different weight transfer styles exist in the golf swing. 

2. To compare skill level, performance and weight transfer parameters between 

different weight transfer styles if they exist. 

3. To assess the cluster analysis methodology. 

 

4.1.2   Specific 

 

1. To apply cluster analysis to centre of pressure parallel to the line of shot at 

eight swing events to identify different weight transfer styles if they exist. 

2. To compare between different weight transfer styles (if weight transfer styles 

are found to exist) for: 

• Handicap 

• Club Velocity 

• Descriptive data (Age, Height, Mass) 

• Centre of pressure parameters  

3. To evaluate the usefulness and validity of cluster analysis for use in weight 

transfer in the golf swing 
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4.2   METHODS 

 

4.2.1   Subjects 

 

Sixty-two golfers ranging in skill level from professional players to high 

handicappers, as well as recreational golfers, were used in this study. Recreational 

golfers were defined as golfers who played at least 5 games a year but did not have a 

handicap. Subjects were canvassed from different golf clubs in Australia and included 

both right and left-handed golfers. Handicap, age, height and mass of the group are 

reported in table 4.1. A breakdown of handicaps is presented in table 4.2. 

 

Table 4.1: Subject data 

 Handicap Age (years) Height (m) Mass (kg) 
Mean 11.1 34.1 1.81 81.7 
SD 8.0 13.7 0.07 9.1 
Range Plus 2 - 28 15 - 63 1.65 – 1.98 63.2 – 104.6 

Note: ‘Plus 2’ is a handicap given to highly skilled golfers: 2 shots are added to their score. 

 

Table 4.2: Handicap details of golfers used in this study 

 Professional 
and/or tour 

players 
0-4 5-9 10-14 15-19 20 + Recreational 

golfers 

Number of 
golfers 5 9 12 14 6 10 6 
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4.2.2   Task 

 

All golfers were requested to bring their own golf club (driver), golf shoes and golf 

glove (if normally worn when playing) to be used in testing. In requiring golfers to 

use their own equipment, it was expected that a swing that was more indicative of 

their typical swing would be produced. After familiarisation with the laboratory 

environment and adequate warm up, each subject performed 10 swings using their 

driver, hitting the golf ball into a net placed 3 m away. Subjects were instructed to 

perform their typical swing. No time restrictions were placed on the golfers between 

trials. 

 

4.2.2.1  Number of trials 

 

The decision to use 10 trials to establish mean swing performance for each golfer was 

based on the results of techniques adapted from Bates et al. (1983). To identify the 

number of trials required for the mean centre of pressure (CP) values to stabilize, the 

method outlined by Bates et al. (1983) was used.  

 

1. Five golfers performed fifteen swings under test conditions (i.e. the same 

conditions and testing protocol as outlined through section 4.2.2 – 4.2.3).  

 

2. For each parameter used in this study (refer to section 4.2.5.2, tables 4.7 and 

4.8 for definitions), the mean, standard deviation (termed Overall SD) and one 

quarter of the standard deviation (termed Threshold SD) were calculated for 

each golfer.  
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3. The next stage involved taking the first and second swing for a golfer and 

calculating a mean from these two swings, then adding the third datapoint and 

recalculating the mean. This continued until all fifteen trials were included and 

fourteen means were calculated (termed Floating Mean).  

 

4. The change in Floating Mean between stages in step 3 was calculated (thirteen 

values resulted).  

 

5. The threshold for stability was defined as the first change in Floating Mean 

that fell below the one quarter SD (Threshold SD) calculated from all swings 

(Bates et al., 1983). The swing number at which this occurred was determined 

for each parameter and for each golfer. 

 

6. In addition to this technique presented by Bates et al., this researcher also 

examined the change in mean for trials after the threshold was reached (up to 

15 trials) to see if the mean continued to remain stable. 

 

 

An example analysis is presented in table 4.3. Overall standard deviation for all 

fifteen trials was 1.25 m.s-1 (Threshold SD = one quarter times this value = SD * 

0.25 = 0.31 m.s-1) for Club Velocity for the selected golfer. In the column headed 

Floating Mean, the results of step 3 are presented. The first value in this column 

(49.7 m.s-1) is the mean of the first and second trial. The next value (49.5 m.s-1) is 



 70
 

the mean of trials one to three and so on. The column headed Change in Floating 

Mean is the difference between consecutive Floating Mean values.  

 

Table 4.3: Example analysis to determine the number of trials for the mean to 
stabilise adapted from Bates et al. (1983).  

 
 Club Velocity (m.s-1) Floating Mean  Change in 

Floating Mean 
All trials (N = 15)    
Overall SD  1.25   
Threshold SD  
    (SD * 0.25) 0.31   

Individual trials    
1 48.9   
2 50.6 49.7  
3 49.2 49.5 0.19 
4 49.4 49.5 0.02 
5 49.4 49.5 0.01 
6 47.5 49.2 0.33 
7 46.9 48.8 0.32 
8 46.4 48.5 0.31 
9 46.9 48.4 0.18 

10 49.7 48.5 0.14 
11 48.1 48.5 0.04 
12 47.8 48.4 0.06 
13 46.9 48.3 0.11 
14 48.1 48.3 0.02 
15 47.2 48.2 0.07 

Note: Shaded cells indicate first (trial 3) and last (trial 9) time the Change in Floating Mean drops 
below the threshold of one quarter SD. 

 

The first Change in Floating Mean value was below the Threshold SD (i.e. trial 3 

– 0.19 is less than 0.31). Based on Bates et al. (1983) criteria, this indicated that 

Club Velocity would require three trials to stabilise for this golfer. However, the 

Change in Floating Mean at trials six, seven and eight were greater than the 

Threshold SD value. This occurred for approximately half of the golfer-parameter 

combinations where the change in Floating Mean did not remain below the 

Threshold SD. Based on this finding, the technique used by Bates et al. was 

modified. The criterion of the first Change in Floating Mean that fell below the 

Threshold SD was changed to the last Change in Floating Mean that fell below the 
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Threshold SD within the 15 trials evaluated. This was termed ‘Last Threshold 

Cross’ to contrast with the ‘First Threshold Cross’ suggested by Bates et al.. 

 

Mean, maximum and minimum trial numbers for each parameter are presented in 

table 4.4. For the reader’s information, both thresholds (first and last threshold 

cross) have been presented. 

 

Table 4.4: Number of trials required for parameter means to stabilize  
(N = 5 golfers). Parameters are fully defined in tables 4.7 and 4.8 section 4.2.5.2. 

 
 First Threshold Cross Last Threshold Cross 
 Mean Maximum Mean Maximum 
Club Velocity 3.2 4 5.3 9 
CPy%TA 3.2 4 6.0 8 
CPy%MB 4.0 5 6.8 9 
CPy%LB 3.6 4 5.4 10 
CPy%TB 3.2 4 5.6 10 
CPy%ED 3.2 4 6.2 9 
CPy%MD 3.0 3 5.5 8 
CPy%BC 3.6 5 5.5 9 
CPy%MF 3.2 4 3.3 4 
VelCPyTA 3.6 5 6.0 8 
VelCPyMB 3.4 4 6.0 8 
VelCPyLB 5.0 6 6.0 8 
VelCPyTB 4.4 6 7.5 10 
VelCPyED 3.6 5 5.0 8 
VelCPyMD 3.2 4 4.8 7 
VelCPyBC 4.0 5 6.3 9 
VelCPyMF 3.6 4 6.3 9 
VMaxCPy 3.6 5 5.0 6 
tVMaxCPy 3.6 4 4.4 6 
MaxCPy% 3.6 5 5.8 9 
tMaxCPy% 3.4 5 3.5 5 
MinCPy% 4.2 6 5.0 8 
tMinCPy% 4.0 5 5.0 9 
CPyR 3.2 4 5.0 8 
CPyR% 3.6 5 6.2 8 

Note: Maximums are single values taken from any of the five golfers tested (i.e. not average maximum across all 
five golfers) 

 

Last Threshold Cross values indicated between three and eight trials were required, 

on average, for means to stabilise. However, single maximums were as high as 10 

trials for some parameter-golfer combinations. Based in these results it was decided to 
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use ten trials to obtain a stable mean. Also of note in table 4.4 is that no parameter 

produced the same set of results for both thresholds.  

 

 

4.2.3   Laboratory set-up 

 

While performing each swing, golfers stood on two AMTI force plates (Advanced 

Mechanical Technologies, Inc, Massachusetts, USA), one under each foot. The force 

plates were covered with Pro-Turf synthetic grass, as used in golf driving ranges and 

in golf shops. The golf ball was placed on a rubber tee, which was part of a ProV golf 

swing analyser (Golftek Incorporated, Lewiston, Idaho). A number of tee heights 

were available to the golfer and each selected their preferred tee during warm up 

swings. A large net was placed approximately 3 m in front of the hitting area to catch 

the ball after impact.  All players reported feeling comfortable with the set-up. The 

set-up is represented in figure 4.1. 
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Figure 4.1: Laboratory set-up 

ProV 
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4.2.4   Biomechanical analysis 

 

4.2.4.1  Centre of pressure 

 

Centre of pressure (CP) was chosen to represent weight transfer. Previous research 

has used CP or vertical forces (Fz). Comparison of CP and Fz data parallel to the line 

of shot in this study indicated that the measures were very similar (r = 0.999, p < 

0.001, N = 62; Appendix B). As such, either measure would be appropriate (refer to 

Literature review, page 4, and Appendix A for discussion of different measures). 

 

4.2.4.1.1  MEASUREMENT OF FORCES TO CALCULATE CP 

 

CP was calculated from data obtained from two AMTI force plates (AMTI LG6-4, 

1200 mm x 600 mm; AMTI OR6-5-1, 450 mm x 550 mm) one under each foot. The 

force plates were positioned such that the golfer could adopt their preferred stance 

while each foot remained wholly on each force plate. Force and moment data 

collected during each swing was passed through AMTI amplifiers (AMTI SGA6-4 

attached to the LG6-4 force plate and an AMTI SGA6-3 amplifier attached to the 

OR6-5-1 force plate) set at a maximum gain of 4000. The data was then passed 

through a 24.3 Hz low pass filter and sampled by an AMLAB 16-bit data acquisition 

system (AMLAB Technologies, Sydney, Australia) at 500 Hz.  

 

A note on the sampling rate: 500 Hz was chosen as a balance between precision and 

size of data files for subsequent analysis procedures. As some of the measures used in 

this study were instantaneous (i.e. at a particular swing event or instant in time) the 
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higher the sampling rate, the closer the measure could be made to the particular 

instant (i.e. improving precision). Obviously, the higher the rate of sampling, the 

smaller the potential error due to not sampling at the instant required. For example, 

with a 500 Hz sample rate, assuming the swing event was identified accurately, the 

sample closest to that instant in time would be within +/- 0.001 s, compared to +/- 

0.005 s for 100 Hz sampling rate. Force plate sampling rates in previous research 

have ranged from 100 Hz (e.g. Williams and Cavanagh, 1983) to 1000 Hz (Barrentine 

et al., 1994). 

 

Data was sampled for 1 s prior to and 0.5 s after ball contact. A sensitive microphone, 

located unobtrusively near the hitting area, detected the sound of ball contact and 

controlled storage of force plate data. The microphone signal was passed through a 

Peak EBU system, amplified, and then passed to the AMLAB system, which used a 

preset threshold to detect the instant of ball contact. 
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4.2.4.1.2  CALCULATION OF CPy 

 

CPy for each force plate was calculated parallel to the line of shot (CPy1 and CPy2; 

equations 4.1 and 4.2). Overall CPy was calculated using this data (equation 4.3) and 

then smoothed using a 15 Hz Butterworth digital low pass recursive filter (Winter, 

1990; see below for a summary of the choice of smoothing cut-off. Complete 

discussion in Appendix C).  

 

Force Plate 1 (OR6-5-1, back foot for right handed golfers)  

1
)11(11

Fz
DzFyMxCPy ∗−

=      Equation 4.1 

Force Plate 2 (LG6-4, front foot for right handed golfers) 

2
)22(22

Fz
DzFyMxCPy ∗−

=     Equation 4.2 

Overall CP (Force plate 1 and 2 combined)     

21
)]22(*2[)1*1(

FzFz
DfCPyFzCPyFzCPy

+
++

=   Equation 4.3 

 

Where Mx  = moment about the x-axis 

 Fy  = force in the y-axis (horizontal) 

 Fz  = force in the z-axis (vertical) 

 Df2 = distance between the centre of force plate 1 and 2 (centre of force plate 1 = zero) 

Dz  = distance between transducer and grass surface. Calculated by adding the synthetic 

grass thickness (0.0318 m) to the distance from the force plate surface to the 

transducer (specified by the manufacturer)  

For force plate 1 (AMTI OR6-5-1): Dz1 = 0.0353 m + 0.0318 m = 0.0671 

m 

For force plate 2 (AMTI LG6-4): Dz2 = 0.0535 m + 0.0318 m = 0.0853 m 
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The smoothed overall CP data was then used to calculate CP velocity using a 3-point 

central differences method (Nakamura, 1993, equation 4.4: 3-point, 5-point and 9-

point difference methods all produced similar results so the simplest was chosen). 

This data were smoothed again using a 15 Hz Butterworth digital low pass recursive 

filter. The double filter method (i.e. both displacement and velocity data smoothed) 

was used as it has been found to produce better results compared with smoothing 

displacement data only (Giakas and Baltzopolous, 1997).  

 

 

CP Velocity at sample n (3 point central differences method) 

 

t
CPyCPy

VelCPy nn
n *2

)1()1( −+ −
=    Equation 4.4 

 

where  n = sample at which velocity is calculated 

 t = time interval between samples; 0.002 s (500 Hz) for this study 

 

 
It was decided to use a 15 Hz cut-off for both displacement and velocity data for this 

study. This cut-off was chosen based on three levels of decision making as 

recommended by Ball et al. (2001). First, 15 Hz was indicated as optimal by two of 

three automated algorithms (Challis, 1999; Winter, 1990; Yu et al., 1999). The 

Challis (1999) and Winter (1990) methods produced similar cut-offs for CPy of 15.2 

and 15.0 respectively. The Yu et al. (1999) method returned substantially larger 

values of approximately 25 Hz, due to the large sample rate in this study (500 Hz; the 
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Yu et al. method is strongly influenced by sample-rate). Second, the influence of 

different cut-offs on parameters of interest (CPy% between the feet and CPy velocity 

at swing events as well as maxima and minima) was inspected. Large changes in 

parameter values were evident when cut-offs below 15 Hz were used. This level was 

considered to represent over-smoothing. Third, visual inspection of raw and smoothed 

curves indicated the 15 Hz cut-off provided smooth displacement and velocity curves 

without attenuating what was considered real data, in particular near the maxima and 

minima.  

 

Post-hoc analyses required the use of Fz% in cluster analysis and for direct 

comparison with other studies. This was calculated using equation 4.5. 

 

)21(
)2*100(%

FzFz
FzFz

+
=      Equation 4.5 

 

Where  Fz1 = Fz under the back foot 

 Fz2 = Fz under the front foot 

 



 79
 

4.2.4.1.3  NORMALISATION OF CPy 

 

To normalise between subjects, CPy was expressed as a percentage of the distance 

between the back and front foot (measured at the point in the swing just before TA). 

The mid foot position of each foot (midway between the heel and toe) was calculated 

(figure 4.2). CPy displacement was expressed as a percentage (CPy%) of the distance 

between the back foot (0%) and front foot (100%).  

 

Figure 4.2: Normalisation of CPy (parallel to the line of shot). 
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4.2.4.1.3.1  Measurement of foot position 

 

Foot position relative to the force plate (and hence relative to CP data), was obtained 

from video data. A 50 Hz Panasonic WV-CL350 camera was positioned above the 

hitting area [figure 4.3 (i)].  For each swing, the image just before TA was located and 

digitised using Peak MOTUS (Peak Performance Technologies Inc., Englewood, 

California). Four points were digitised to represent the feet; right heel, right toe, left 

heel, left toe. A fifth point, the corner of the small force plate, was digitised to allow 

for the combining of CP and digitised data [figure 4.3 (ii)].   

 

 

(i) Position of overhead 
camera 

(ii) View obtained from overhead camera (with digitised 
points denoted) 

 

Figure 4.3: Foot position data collection. (i) Position of overhead camera relative 
to the hitting area and (ii) the view obtained from this camera (digitised points 

marked). 

Heel Heel 

Toe Toe 

Corner of Force Plate 
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4.2.4.1.3.1.1 Perspective correction  

 

The position of the overhead camera required offsetting to enable the feet to be seen 

past the upper body (refer to figure 4.3). To correct the out of plane image and the 

distortion produced in digitising, an adaptation of the algorithm presented by Begg et 

al. (1990) was used. 

 

To calibrate and calculate the required perspective correction, a rectangular 

calibration board (0.96 x 0.72 m) was used. Prior to testing, the board was positioned 

over the hitting area, encompassing the position of the force plates and where the 

golfer’s feet would be positioned. The axes of the calibration board were aligned with 

the force plate axes. The video image of the calibration board was recorded and the 

four corners of the calibration board (A, B, C and D; figure 4.4) were digitised from 

this image using Peak Motus. This was repeated four times, with the mean of the four 

trials used to represent the coordinates of the four corners.  

 

Figure 4.4: Location of the vanishing point (VP) using the sides of the calibration 
board (A, B and C, D). 

A

B

VP

C

D
Calibration board 
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Referring to figure 4.4, the two sides of the calibration board (line A-B and line C-D) 

were extended with the point of intersection defining the vanishing point (VP). The 

coordinates of A, B, C and D were shifted such that the middle of the calibration 

board was (0, 0). The vertical coordinate of VP was then established using equation 

4.6. 

 

21
1

21
1

vv
vv

uu
uu

−
−

=
−
−    Equation 4.6 

 

where  u   = horizontal screen coordinate at VP 

 u1 = horizontal screen coordinate at A 

 u2 = horizontal screen coordinate at B 

 v   = vertical screen coordinate at VP 

v1 = vertical screen coordinate at A 

v2 = vertical screen coordinate at B 

 

As the calibration device was in the centre of the screen with its vertical axis aligned 

with the vertical axis of the video, the horizontal coordinate of VP will be at the 

horizontal position on the screen; u = 0. Rearranging equation 4.6, the vertical 

coordinate of VP is obtained (equation 4.7). 
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Referring to figure 4.5, using VP, perspective adjustment was made using the simple 

geometrical relationship (equation 4.8): 

 

 

       

Figure 4.5: Geometrical relationship and equation used to adjust points due 
to perspective error. 

 

 

 

4.2.4.1.3.1.1.1  Assessment of error in perspective correction 

 

To assess the horizontal axis error of the perspective correction and calibration system 

for the foot digitising system, a board with a grid of 26 points was positioned over the 

hitting area and videoed using the overhead camera. These 26 points (with known 

coordinates) were digitised using Peak MOTUS.  The digitised and known 

coordinates were then compared to indicate the error in the system (table 4.5). 

Perspective Equation* 
 

h’ = h (1 – x’/d) Equation 4.8 

 
* Obtained from the relationship of the 

smaller and larger triangle i.e. the ratio of 
the large triangle d:h will be the same as 
the ratio of the small triangle (d-x’):h’ 

x’ 

h 

VP 

h’ 

d 
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Table 4.5: Comparison of known and digitised measures: horizontal screen axis 
(all measures in mm). 

 
 Known Measure Digitised Measure Difference 

1 0 0.0 0.0
2 239 238.7 0.3 
3 479 479.7 0.7 
4 720.5 720.9 0.4 
5 117 115.8 1.2 
6 355 352.9 2.1 
7 598.5 596.7 1.8 
8 0 -0.4 0.4 
9 238 236.2 1.8 

10 478 479.5 1.5 
11 720 718.4 1.6 
12 118 118.4 0.4 
13 599 597.8 1.2 
14 0 1.7 1.7 
15 236 238.2 2.2 
16 720 720.3 0.3 
17 117 119.9 2.9 
18 597 599.5 2.5 
19 0 1.7 1.7 
20 238 238.1 0.1 
21 478 478.9 0.9 
22 720 721.8 1.8 
23 118 117.9 0.1 
24 358 360.5 2.5 
25 600 601.1 1.1 
    

Mean   1.25 
R.M.S.   1.50 

 

Mean differences between measured and true coordinates were 1.25 mm with the 

maximum difference of 2.9 mm. Root mean square (R.M.S.) was 1.50 mm. 

 

Note: These error values were not used to indicate overall error in the foot digitising 

process as it was considered more appropriate to indicate error based on actual testing 

processes. This process is outlined in section 4.2.5.3. 

 

 



 85
 

4.2.4.2  Measurement of swing events 

 

A video operating at 200 Hz (Peak High Speed Camera; Peak Performance 

Technologies Inc., Englewood, California) with a shutter speed of 1/1000 s was 

placed facing the golfer and perpendicular to the line of shot (refer to figure 4.1). 

Each swing was recorded and a time code was overlaid on the image. The video was 

then used to identify eight swing events (table 4.6 and figure 4.6). This was performed 

by visual inspection with the aid of a grid placed over the monitor. The time at which 

each swing event occurred was recorded and then standardised to ball contact (i.e. 

ball contact = 0.0 s) to align with force plate data.  

 
Table 4.6: Events in the golf swing used in this study.  

 Event Definition Label 
1 Takeaway First backward movement of the club TA 
2 Mid Backswing Club shaft parallel to the horizontal plane MB 
3 Late Backswing Club shaft perpendicular to the horizontal plane 

when club is projected onto the YZ vertical plane 
LB 

4 Top of Backswing Instant before shaft begins downswing TB 
5 Early Downswing Club shaft perpendicular to the horizontal plane 

when club is projected onto the YZ vertical plane 
ED 

6 Mid Downswing Club shaft parallel to the horizontal plane MD 
7 Ball Contact Instant of club contact with ball BC 
8 Mid Follow-through Club shaft parallel to the horizontal plane MF 

Note: the frame where the club was nearest perpendicular or parallel to the horizontal plane was used for MB, LB, ED, 
MD and MF. 

 

 
Figure 4.6: Golf swing events used in this study 
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The swing events TA, TB and BC were included as they represent key coaching 

events in the golf swing and have been used in previous studies. The choice of MB, 

LB, ED and MD was based on the criteria to increase swing events used but still 

provide easily identified events. As such it was decided to use the club to define 

positions and the most obvious events exist when the club is vertical and horizontal as 

viewed in the YZ plane. Initially the swing events Address and End of Follow 

Through were also quantified but identification of these events was unreliable and so 

the data was eliminated from further analysis. 

 

The combination of 500 Hz force plate sampling and 200 Hz video data collection 

was not ideal as every second video data point lay between force plate data points. 

The initial test set-up used 50 Hz cameras. However, analysis of the errors associated 

with the 50 Hz camera identifying swing events indicated high-speed video was 

necessary. The only available high-speed camera was 200 Hz and technical and 

software constraints did not allow for the sampling rate of the force plate data to be 

altered from 500Hz.  

 

4.2.5   Performance and CP parameters quantified 

 

4.2.5.1  Club Velocity 

 

For each trial horizontal Club Velocity immediately before ball contact was measured 

using a ProV Swing Analyzer (Golftek Inc., Lewiston, Idaho). Briefly, this system has 

an overhead light, which is detected by two rows of sensors located immediately 

behind the golf ball and approximately 0.05m from the golf ball. As the club head 
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moves towards ball contact, the first row of lights is broken (the light is blocked by 

the club head), starting a timer. The timer is stopped when the second row of lights 

immediately before the ball are broken (known distance divided by time = velocity). 

The accuracy of the system was evaluated by comparing it with digitized data and in 

all test trials the difference between the systems was within the factory error 

specifications of +/- 0.1 m.s-1 (Appendix D). 

 

4.2.5.2 CPy Parameters 

 

CP parameters calculated from force plate data and used in cluster analysis are 

summarised in table 4.7. These were also used later to compare cluster groups using 

ANOVA. 

 

Table 4.7: CPy% between the feet at eight swing events – used in cluster 
analysis. 

 
CPy% between the feet 
At each swing event Relative to the distance between the feet (%) 
CPy%TA  
CPy%MB  
CPy%LB  
CPy%TB  
CPy%ED  
CPy%MD  
CPy%BC  
CPy%MF  

 

CP velocities at eight swing events and other CP parameters were also calculated 

from force plate data and later used to compare cluster groups (table 4.8). Other CPy 

parameters are detailed in this table also. 
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Table 4.8: CPy Velocity at eight swing events and other CPy parameters used to 
compare cluster groups. 

 
CPy Velocity  
At each swing event Instantaneous velocity (m.s-1) 
VelCPyTA  
VelCPyMB  
VelCPyLB  
VelCPyTB  
VelCPyED  
VelCPyMD  
VelCPyBC  
VelCPyMF  
Other CPy parameters  
VMaxCPy Maximum CPy Velocity (m.s-1) between TA and MF 
tVMaxCPy Time of VMaxCPy relative to ball contact (s) 

MaxCPy Maximum CPy% - furthest position towards front foot 
between TA and MF (%) 

tMaxCPy Time of MaxCPy relative to ball contact (s) 

MinCPy Minimum CPy% - furthest position towards back foot (%) 
between TA and MF 

tMinCPy Time of MinCPy - relative to ball contact (s) 
CPyR Absolute CPy Range (m). Maximum CPy – Minimum CPy 
CPyR% Relative CPy Range (%). MaxCPy% - MinCPy% 
 

Evaluation of CPy% at swing events was chosen in preference to using information 

from CP – time curves. In the literature, both methods have been used (Swing Events: 

Wallace et al., 1990; Mason et al., 1995: Normalised time; Barrentine et al., 1994; 

Neal, 1998) and both have advantages and limitations. Swing events were chosen for 

three reasons. First, swing events are easily understood by coaches and players. For 

example, while the top of backswing event is easily identified, the position of the 

body at 76% of the swing from TA to BC is not (76% was the mean normalized time 

that TB occurred for golfers in this study). Second, there is growing evidence to 

suggest that using time-normalised data (e.g. normalised time between TA and BC) 

can have significant flaws because of issues of temporal dependency (e.g. Forner-

Cordero et al., 2006). The problem arises from the inherent assumption that there is 

no variability in the timing of events between TA and BC and that no rescaling occurs 
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during the percentage conversion. Due to substantially different speeds of club 

movement near takeaway, the same normalised time can represent very different 

stages. For example, TB occurred between 69% and 80% of the total swing time from 

TA to BC. Comparison of normalized data between golfers, then, will be comparing 

very different stages of the swing; i.e. there is variability in the timing of events and 

rescaling does occur, rendering time-normalisation flawed. Third, the use of time-

based data would have produced problems with uneven weighting of the cluster 

analysis performed in this study due to very strong correlations between datapoints, 

particularly where CP moves slowly (and so a large number of points will exist near a 

certain point). For example, near TA, CP moves relatively slowly. Cluster analysis 

using time-based data would be influenced by this by producing clusters that were 

determined by differences around TA rather than the whole swing. The use of swing 

events eliminated this problem. 
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4.2.5.3  Summary of error assessment 

 

Table 4.9 presents the error associated with each parameter used in this study for a 

single measure and across 10 trials for each golfer. It is summarised here to allow 

easy reference for the reader with calculations for each parameter presented in 

Appendix E. Briefly, evaluation of error in the parameters used in this study was 

difficult due to the need to combine data obtained from three different measurement 

systems (force plate data, digitized data and timing data) and the lack of a gold 

standard for comparison. A combination of experimental and theoretical methods was 

used to determine an approximate error for each parameter. Force plate data error was 

established by comparing known CP data (a grid of known dimensions at each 

intersection outlined on the force plate) with measured CP data (force applied with a 

javelin tip to the force plate at each grid intersection) as used by Sommer et al. (1997) 

to evaluate CP error in Kistler force plates. Foot digitising error was established by 

comparing known foot position (heel and toe positions measured while the golfer was 

standing on the force plates) with digitised coordinates of the same golfer in the same 

position. Timing error was approximated by comparing club positions obtained from 

digitised data (e.g. mid backswing was identified as when the club was nearest the 

horizontal plane) and relating the time at which this occurred to the visual 

identification from the video screen as used in this study.  
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Table 4.9: Error estimates for parameters used in this study (200 Hz camera). 
All values +/-. 

 
 
 
Performance 

Approximate 
Single Measure

Approximate 
Across 10 trials

Approximate across  
15 golfers  

(error in group mean) 
Club Velocity (m.s-1) 0.1 0.04 0.01 
CPy% between the feet  
At downswing events  
CPy%TA 0.6 0.2 0.05 
CPy%MB 0.7 0.2 0.05 
CPy%LB 0.6 0.2 0.05 
CPy%TB 0.7 0.2 0.05 
CPy%ED 1.0 0.3 0.08 
CPy%MD 0.7 0.2 0.05 
CPy%BC 0.6 0.2 0.05 
CPy%MF 1.0 0.3 0.08 
Average 0.7 0.2 0.05 
CPy Velocity (m.s-1)  
At downswing events  
VelCPyTA 0.18 0.05 0.01 
VelCPyMB 0.18 0.04 0.01 
VelCPyLB 0.18 0.04 0.01 
VelCPyTB 0.18 0.06 0.02 
VelCPyED 0.23 0.15 0.04 
VelCPyMD 0.20 0.10 0.03 
VelCPyBC 0.18 0.04 0.01 
VelCPyMF 0.23 0.16 0.04 
Average 0.19 0.08 0.02 
Other CP parameters  
VMaxCPy (m.s-1) 0.18 0.06 0.02 
tVMaxCPy (s) 0.001 < 0.001  
MaxCPy% (% between the feet) 0.6 0.2 0.05 
tMaxCPy% (s) 0.001 < 0.001  
MinCPy% (% between the feet) 0.6 0.2 0.05 
tMinCPy% (s) 0.001 < 0.001  
CPyR (m) 0.007 0.002 0.001 
CPyR% (% between the feet) 0.8 0.3 0.08 

 
 
Average error across ten trials for CPy% data was 0.2 % and for CPy velocity was 

0.08 m.s-1. Similar values were indicated for maximum and minimum parameters. For 

group means, the approximate error will be further reduced. To provide an indication 

of the error in group means, the approximate error of the mean for fifteen golfers was 

calculated and was 0.05% (using quadrature summation – the square root of (0.2% x 

15) divided by 15. See Appendix E for full calculations). However a more 

conservative approach to reporting data was taken with CPy% reported in units of 1% 



 92
 

and velocity in units of 0.1 m.s-1 with data reported to another decimal place if 

required.  

 

4.2.6   Statistical analysis 

 

For each individual, a mean value was obtained across the 10 swings for Club 

Velocity at ball contact and each CP parameter defined in tables 4.7 and 4.8. These 

mean values for each individual were then used in further analysis (e.g. group means, 

cluster analysis). As the analysis proceeded, a number of parameters not initially 

included were required (e.g. foot width data, swing time from TA to BC). The mean 

for each individual golfer across the 10 trials was the value used in each case. 

 

4.2.6.1  Identification of swing styles: cluster analysis  

 

To examine if different weight transfer styles existed, cluster analysis was performed 

using CPy% data at the eight swing events in SPSS version 10. The clustering process 

was performed hierarchically then repeated using the cluster means from this analysis 

as seeds in a non-hierarchical procedure (K-means cluster). Milligan (1996) reported 

this process to obtain clusters more reliably. 
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4.2.6.1.1  HIERARCHICAL CLUSTER ANALYSIS 

 

Hierarchical cluster analysis was performed using the squared Euclidean distance 

dissimilarity measure and the between-groups linkage clustering strategy. As CPy% 

data was measured on the same scale, no standardization was required.  

 

The agglomerative schedule and dendrogram were employed to firstly determine if 

clusters existed in the data and secondly, to decide on the possible optimal solution 

(number of clusters in the data). If there were large jumps in the agglomerative 

schedule and dendrogram, it can be considered that clusters may exist in the data and 

analysis continued (Gower, 1975). Conversely, if no jumps exist, then it is unlikely 

that there are clusters in the data. The first reasonably large jump in the agglomerative 

schedule and dendrogram was identified. All cluster solutions below this level were 

analysed further. For example, if the 10-cluster solution was the first jump in the data, 

then the 10-cluster to 2-cluster solutions were analysed. Cluster means within each 

cluster solution were calculated and used as seeds (group or cluster means) in the next 

stage of the analysis (non-hierarchical analysis). 

 

Note: What constitutes a ‘large’ jump in the agglomerative schedule and dendrogram 

is not well defined (e.g. Everitt, 1979) and is decided in an ad-hoc manner. For this 

study, a conservative approach was adopted to ensure the optimal solution was not 

overlooked. For example, if the six cluster solution was optimal but a smaller (but still 

reasonably large) jump existed at the eight cluster solution, all clusters from the eight 

cluster to two cluster solutions were reanalysed and statistical analysis to determine 
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the optimal solution was applied to all solutions. This was distinct from only choosing 

cluster solutions producing the larger jumps. 

 

4.2.6.1.2  NON-HIERARCHICAL CLUSTER ANALYSIS 

 

Non-hierarchical analysis was performed using the k-means cluster method in SPSS 

10. Each cluster solution below the cut-off identified in the hierarchical process was 

analysed. For each, the seeds, or group means, obtained from the hierarchical analysis 

provided the starting point for the analysis and each golfer was clustered with the 

nearest seed.  

 

Note: SPSS 10 offers only the Euclidean distance measure for this analysis, as 

opposed to the squared Euclidean distance measure used in the hierarchical cluster 

analysis. This researcher was concerned that this may have produced an inconsistency 

in the analysis. However, 100% of golfers clustered into the same groups when the 

analysis was repeated using the squared Euclidean distance measure in a custom 

developed Microsoft Excel spreadsheet. As such, the different distance measures did 

not affect the analysis. 

 

4.2.6.1.2.1  Number of clusters  

 

As there is no widely accepted method for deciding on the number of clusters in an 

analysis (e.g. Hair et al., 1995), a number of techniques were used to substantiate the 

analysis as recommended by Milligan and Cooper (1985).  
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4.2.6.1.2.1.1  Statistical methods  

 

Milligan (1996) recommended the use of two or more statistical methods for choosing 

the number of clusters in a dataset. As such, all non-hierarchical solutions were 

analysed using two stopping rules. Both compare the distances between cases within a 

cluster to distances between cases in different clusters but use different key 

parameters. 

 

1. Point Biserial Correlation 

A  larger correlation coefficient indicates a stronger relationship between 

cases within clusters compared with cases in different clusters. The optimal 

cluster solution was the one that returned the highest Point Biserial 

Correlation coefficient. It is calculated using the following formula (equation 

4.9). 

 

Point Biserial Correlation = 

SDOverall
withinOutsideTotal

withinproportionoutsideproportion

.
)(

)(*)(

*(within)]Mean -(outside)[Mean 
+

    

Equation 4.9 

Where  Mean  =  mean distance between cases within each cluster (within) divided by 

the total number of distances or mean distance between each cluster 

(outside) divided by the total number of distances 

Proportion   =  number of distances between cases within each cluster divided by the 

total number of distances (within) or between cases in different clusters 

divided by the total number of distances (outside). 
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 Overall SD  =  standard deviation of all distances between all cases 

2. C Index 

The lowest C-Index value indicated the optimal solution (equation 4.10). 

 

C-Index = 
(D) Minimum -  (D) Maximum

(D) Minimum - clusters) all-(D Sum    Equation 4.10 

 

Where D   = distance between two cases. 

 

 

These methods were chosen as Milligan and Cooper (1985) found them to be among 

the strongest methods for accurately determining the number of clusters in a data set. 

Formulas have been taken from the Milligan and Cooper paper. 

 

The cluster solution was chosen if both methods indicated it was optimal. If there was 

no agreement between the stopping rules, the largest cluster solution (i.e. the one with 

the largest number of clusters) was chosen, as suggested by Milligan (1996). 
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4.2.6.1.2.2  Cluster validation 

 

Similar to the decision on the number of clusters, there is no method that has been 

widely agreed upon for validation of clusters (e.g. Hair et al., 1995). Once again, a 

number of methods were used to validate clusters in this study. These were: 

 

1. Point Biserial Correlation.  

 

This was reported by Milligan (1981) to be one of the strongest methods of 

internal validation of cluster analysis. The use of this method in validation differs 

from its use as a stopping rule. As a stopping rule, the largest coefficient across all 

cluster solutions analysed indicated the optimal solution without regard for the 

strength of the relationship. For the validation of a cluster, the strength and 

significance level of the correlation are examined. 

 

2. Replication.  

 

In this procedure, the cluster process was repeated with three randomly drawn 

subsets of N = 41, or two thirds of the data. This procedure examines the stability 

or robustness of clusters. The number of golfers who reclassify into the same 

clusters as they did in the original analysis is assessed, with a higher percentage of 

reclassification indicative of a more robust cluster (Hodge and Petlichkoff, 2000). 

A qualitative assessment of the similarity of the group mean patterns was also 

examined. 
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3. Leave-one-out reclassification.  

 

This technique eliminates a golfer from the analysis, re-calculates the cluster 

group means and then re-clusters the golfer using the nearest neighbour method. 

Successful reclassification (i.e. the removed golfer is allocated to the same 

cluster) indicates robustness of the solution. An unstable cluster will be influenced 

by single golfers and will perform poorly in reclassification. 

 

4. One way ANOVA.  

 

Cluster groups were compared to identify significant differences between 

parameters used in clustering (internal) as well as parameters not used in 

clustering (external). 

 

 

4.2.6.1.2.3  Theoretical considerations  

 

The final level of decision-making in terms of number of clusters and validity of the 

cluster groups, and overall philosophy of the analysis, was based on finding the 

minimum number of meaningful clusters in the data (similar to the guiding 

philosophy in other studies such as Wilson and Howard, 1983; Forwood et al., 1985). 
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4.2.6.1.3  CLUSTER SUMMARY 

 

Figure 4.7 provides a graphical summary of the cluster process.  

 

Figure 4.7: Summary of clustering process 

Hierarchical Cluster Analysis 

Squared Euclidean Distance 
Between groups linkage

Agglomerative Schedule and Dendrogram 
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Non- Hierarchical Cluster Analysis 
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Seeds (group means) from hierarchical clusters 

k-means cluster

Number of clusters  
 

Indicated as optimal by 
Point Biserial Correlation 

C-Index 
Theoretical Considerations 

Final Solution 

Validation of solution  
Point Biserial Correlation 

Replication (3 subsets) 
Leave-one-out reclassification 

One way ANOVA 
Theoretical Considerations 
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4.2.6.2  Post-hoc statistical analysis - differences between clusters 

 

To explore the differences between clusters, one-way ANOVAs were conducted on 

all remaining descriptive data (Age, Height, Mass and Handicap). Also, one way 

ANOVA of Club Velocity and CPy parameters (from table 4.7 and 4.8) used in the 

validation process of the cluster analysis were also used to compare groups 

descriptively. Effect sizes were calculated for all comparisons and used the subjective 

scale presented by Cohen (1988: η2≥0.2 – small, η2≥0.6 – medium, η2≥0.12 – large). 

 

 

4.2.6.2.1  NON-NORMAL DATA 

 

Pre-analysis screening using visual inspection of within-cluster histograms and 

Shapiro-Wilkes tests of Normality indicated that some CP parameters exhibited non-

normality. Although ANOVA and regression (next section) are affected minimally by 

violations to the assumption of normality (e.g. Regression: Pedhazur, 1997; ANOVA: 

Tabachnick and Fidell, 1996) as group sizes were different, it was felt appropriate to 

assess the influence of the non-normal data.  

 

The first method attempted to address the non-normal issue was to transform the data 

using various common transforms such as Log and inverse. However, this method 

was discounted as not all parameters could be successfully transformed. Further, the 

transforms made analyses difficult to interpret for coaching application. 
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The second method attempted, and the one used for this study, was the ‘computer 

intensive’ method described by Aron and Aron (1999). This method has been termed 

the ‘within-dataset distribution’ for this study as it generates a distribution from the 

dataset. After the original cluster analysis, group sizes for the clusters were defined. 

Maintaining these group sizes, golfers were randomly assigned to one of the groups to 

form a new ‘random’ grouping for ANOVA analysis. The ANOVA was repeated and 

the F-ratio recorded. This was repeated 1000 times (i.e. 1000 random datasets were 

constructed) then the F-ratios were sorted in ascending order to determine the 25th 

(lower 2.5%) and the 975th value (upper 2.5%).These values relate to a two tailed 

alpha level of p = 0.05. If the original F-ratio lay outside of these outer values (i.e. 

from 1-24 or from 976 to 1000), then this supports the relationship being a true rather 

than a random effect due to non-normal data. The upper or lower 0.5% (p = 0.01) 

value was also calculated. 

 

4.3   RESULTS 

 

4.3.1   Cluster analysis 

 

4.3.1.1  Hierarchical cluster analysis: agglomerative schedule and 

dendrogram 

 

Table 4.10 shows selected sections of the agglomerative schedule for the hierarchical 

cluster analysis of CPy% at eight swing events (N = 62 golfers). The cluster solution 

and jump in the coefficient columns have been added for easier interpretation.  
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Table 4.10: Selected sections of the agglomerative schedule for hierarchical 
cluster analysis of CPy% at eight swing events (N = 62 golfers). 

 

Stage 
Cluster 

Solution Coefficients 
Jump in 

Coefficient Stage 
Cluster  

Solution Coefficients 
Jump in 

Coefficient 
1 62 144 -  
2 61 148 3 32 31 781 104 
3 60 177 29 33 30 800 19 
4 59 229 52 34 29 815 14 
5 58 254 25 35 28 825 10 
6 57 254 0 36 27 831 6 
7 56 256 2 37 26 848 17 
8 55 262 7 38 25 884 36 
9 54 282 19 39 24 911 26 

10 53 287 5 40 23 999 88 
11 52 292 5 41 22 1025 26 
12 51 296 4 42 21 1098 73 
13 50 303 7 43 20 1105 8 
14 49 311 8 44 19 1115 10 
15 48 327 16 45 18 1133 18 
16 47 412 85 46 17 1259 126 
17 46 442 30 47 16 1291 31 
18 45 455 12 48 15 1297 6 
19 44 468 14 49 14 1393 96 
20 43 491 22 50 13 1464 71 
21 42 530 40 51 12 1476 12 
22 41 531 0 52 11 1711 235 
23 40 552 22 53 10 1780 69 
24 39 557 5 54 9 2121 341 
25 38 569 12 55 8 2277 156 
26 37 583 14 56 7 2392 115 
27 36 586 3 57 6 2870 478 
28 35 605 19 58 5 3283 413 
29 34 634 29 59 4 4119 836 
30 33 667 33 60 3 4537 418 
31 32 678 11 61 2 5024 487 

 

 

The largest jumps in the agglomerative schedule existed in forming the 2-cluster to 6-

cluster solutions. In order, these were the 4-cluster solution (agglomerative schedule 

jump in coefficients = 836), 2-cluster solution (487), 6-cluster solution (478), 3-

cluster solution (418) and 5-cluster solution (413). The first reasonably large jump 

(235) existed at the 11-cluster solution. 

Figure 4.8 represents the dendrogram from the hierarchical cluster analysis of CPy% 

at eight swing events (N = 62 golfers). 
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Figure 4.8: Dendrogram for hierarchical cluster analysis of CPy% at eight swing 
events (N = 62 golfers). 

 
 

The larger jumps in cluster separation that existed in the agglomerative schedule were 

also evident graphically in the dendrogram. Examining the right hand side of the 

dendrogram, the horizontal distance between consecutive joins is relatively larger 
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than those near the left hand side of the dendrogram. Also of note in the dendrogram 

were four individual cases (golfers) that clustered late in the hierarchical process. 

Cases 3 and 20 clustered together at the 6-cluster solution. Cases 42 and 57 clustered 

together at the 4-cluster solution.  

 

It was decided to analyse all cluster solutions below the 11-cluster solution. This was 

based on the first reasonably large jump in the agglomerative schedule of 235, which 

corresponded with the 11-cluster solution, and the support from the dendrogram that 

no large jumps existed in higher solutions. As mentioned in the methods section 

4.2.6.1.1, this was a conservative cut-off. While the likely solution would probably 

exist within the 2-cluster to 6-cluster solutions, evaluation of more cluster solutions at 

this point in the analysis was considered a safer approach towards finding the optimal 

cluster solution. 

 

 

4.3.1.2  Hierarchical and non-hierarchical cluster solution means 

 

Table 4.11 presents the CPy% means at the eight swing events for clusters within the 

2-cluster solution to the 11-cluster solution for N = 62 golfers. These means were 

used as seed points in the non-hierarchical clustering process and means from this 

second analysis are presented in table 4.12. 
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Table 4.11: Mean CPy% at eight swing events for clusters within the 2-cluster to 
11-cluster solutions from hierarchical analysis (N = 62 golfers). 

 
Cluster TA MB LB TB ED MD BC MF 
1 (N=18) 57 30 26 27 62 61 51 37 
2 (N=44) 57 27 21 21 63 74 80 79 
1 (N=18) 57 30 26 27 62 61 51 37 
2 (N=42) 57 26 19 20 63 74 79 78 
3 (N=2) 66 48 51 50 67 79 89 89 
1 (N=16) 56 30 28 28 65 63 54 39 
2 (N=2) 63 33 12 15 41 39 28 18 
3 (N=42) 57 26 19 20 63 74 79 78 
4 (N=2) 65 46 51 38 69 81 89 90 
1 (N=16) 56 30 28 28 65 63 54 39 
2 (N=2) 63 33 12 15 41 39 28 18 
3 (N=42) 57 26 19 20 63 74 79 78 
4 (N=1) 71 45 52 53 54 64 77 74 
5 (N=1) 61 51 51 46 79 93 102 105 
1 (N=16) 56 30 28 28 65 63 54 39 
2 (N=2) 63 33 12 15 41 39 28 18 
3 (N=14) 57 22 12 17 48 61 68 68 
4 (N=28) 57 28 23 21 70 81 85 84 
5 (N=1) 61 51 51 46 79 93 102 105 
6 (N=1) 71 45 52 53 54 64 77 74 
1 (N=16) 56 30 28 28 65 63 54 39 
2 (N=1) 51 50 16 16 40 47 32 13 
3 (N=14) 57 22 12 17 48 61 68 68 
4 (N=28) 57 28 23 21 70 81 85 84 
5 (N=1) 76 15 8 15 43 31 25 22 
6 (N=1) 61 51 51 46 79 93 102 105 
7 (N=1) 71 45 52 53 54 64 77 74 
1 (N=11) 55 32 29 31 63 58 46 35 
2 (N=1) 51 50 16 16 40 47 32 13 
3 (N=14) 57 22 12 17 48 61 68 68 
4 (N=5) 58 26 26 23 69 75 70 49 
5 (N=28) 57 28 23 21 70 81 85 84 
6 (N=1) 76 15 8 15 43 31 25 22 
7 (N=1) 61 51 51 46 79 93 102 105 
8 (N=1) 71 45 52 53 54 64 77 74 
1 (N=11) 55 32 29 31 63 58 46 35 
2 (N=1) 51 50 16 16 40 47 32 13 
3 (N=2) 51 28 9 8 40 52 53 49 
4 (N=12) 58 21 12 19 49 63 70 71 
5 (N=5) 58 26 26 23 69 75 70 49 
6 (N=28) 57 28 23 21 70 81 85 84 
7 (N=1) 76 15 8 15 43 31 25 22 
8 (N=1) 61 51 51 46 79 93 102 105 
9 (N=1) 71 45 52 53 54 64 77 74 
1 (N=11) 55 32 29 31 63 58 46 35 
2 (N=1) 51 50 16 16 40 47 32 13 
3 (N=1) 51 16 8 8 51 59 49 38 
4 (N=12) 58 21 12 19 49 63 70 71 
5 (N=5) 58 26 26 23 69 75 70 49 
6 (N=28) 57 28 23 21 70 81 85 84 
7 (N=1) 52 40 10 8 29 46 58 60 
8 (N=1) 76 15 8 15 43 31 25 22 
9 (N=1) 61 51 51 46 79 93 102 105 
10 (N=1) 71 45 52 53 54 64 77 74 
1 (N=11) 55 32 29 31 63 58 46 35 
2 (N=1) 51 50 16 16 40 47 32 13 
3 (N=1) 51 16 8 8 51 59 49 38 
4 (N=12) 58 21 12 19 49 63 70 71 
5 (N=5) 58 26 26 23 69 75 70 49 
6 (N=14) 57 38 30 19 69 77 80 79 
7 (N=1) 52 40 10 8 29 46 58 60 
8 (N=1) 76 15 8 15 43 31 25 22 
9 (N=14) 57 19 16 23 72 84 91 88 
10 (N=1) 61 51 51 46 79 93 102 105 
11 (N=1) 71 45 52 53 54 64 77 74 
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Table 4.12: Mean CPy% at eight swing events for clusters within the 2-cluster to 
11-cluster solutions from non-hierarchical analysis (N = 62 golfers). 

 
Cluster TA MB LB TB ED MD BC MF 
1 (N=21) 56 30 23 25 59 59 51 38 
2 (N=41) 58 27 22 22 65 76 82 81 
1 (N=21) 56 30 23 25 59 59 51 38 
2 (N=39) 57 25 19 21 64 76 81 80 
3 (N=2) 65 46 51 38 69 81 89 90 
1 (N=19) 56 30 25 26 61 62 53 41 
2 (N=2) 63 33 12 15 41 39 28 18 
3 (N=39) 57 25 19 21 64 76 81 80 
4 (N=2) 65 46 51 38 69 81 89 90 
1 (N=19) 56 30 25 26 61 62 53 41 
2 (N=2) 63 33 12 15 41 39 28 18 
3 (N=39) 57 25 19 21 64 76 81 80 
4 (N=1) 71 45 52 53 54 64 77 74 
5 (N=1) 62 47 51 31 77 89 96 98 
1 (N=16) 55 30 27 27 65 62 52 37 
2 (N=13) 57 22 11 16 50 62 68 68 
3 (N=28) 57 28 23 22 69 81 86 85 
4 (N=2) 63 33 12 15 41 39 28 18 
5 (N=2) 63 42 45 44 56 70 77 67 
6 (N=1) 61 51 51 46 79 93 102 105 
1 (N=16) 55 30 27 27 65 62 52 37 
2 (N=13) 57 22 11 16 50 62 68 68 
2 (N=28) 57 28 23 22 69 81 86 85 
4 (N=1) 51 50 16 16 40 47 32 13 
5 (N=1) 76 15 8 15 43 31 25 22 
6 (N=2) 63 42 45 44 56 70 77 67 
7 (N=1) 61 51 51 46 79 93 102 105 
1 (N=12) 54 31 27 29 62 58 46 35 
2 (N=1) 51 50 16 16 40 47 32 13 
3 (N=12) 58 22 11 17 48 61 68 69 
4 (N=8) 57 32 26 21 70 76 71 55 
5 (N=26) 57 27 23 22 69 81 87 86 
6 (N=1) 76 15 8 15 43 31 25 22 
7 (N=1) 61 51 51 46 79 93 102 105 
8 (N=1) 71 45 52 53 54 64 77 74 
1 (N=11) 55 32 29 31 63 58 46 35 
2 (N=1) 51 50 16 16 40 47 32 13 
3 (N=2) 51 28 9 8 40 52 53 49 
4 (N=12) 58 21 12 19 49 63 70 71 
5 (N=10) 57 33 27 23 70 74 71 59 
6 (N=23) 58 26 22 21 70 82 88 87 
7 (N=1) 76 15 8 15 43 31 25 22 
8 (N=1) 61 51 51 46 79 93 102 105 
9 (N=1) 71 45 52 53 54 64 77 74 
1 (N=11) 55 32 29 31 63 58 46 35 
2 (N=1) 51 50 16 16 40 47 32 13 
3 (N=1) 51 16 8 8 51 59 49 38 
4 (N=12) 58 21 12 19 49 63 70 71 
5 (N=10) 57 33 27 23 70 74 71 59 
6 (N=23) 58 26 22 21 70 82 88 87 
7 (N=1) 52 40 10 8 29 46 58 60 
8 (N=1) 76 15 8 15 43 31 25 22 
9 (N=1) 61 51 51 46 79 93 102 105 
10 (N=1) 71 45 52 53 54 64 77 74 
1 (N=11) 55 32 29 31 63 58 46 35 
2 (N=1) 51 50 16 16 40 47 32 13 
3 (N=1) 51 16 8 8 51 59 49 38 
4 (N=12) 58 21 12 19 49 63 70 71 
5 (N=6) 57 29 26 22 70 75 70 50 
6 (N=13) 57 37 30 20 68 78 81 81 
7 (N=1) 52 40 10 8 29 46 58 60 
8 (N=1) 76 15 8 15 43 31 25 22 
9 (N=14) 57 19 16 23 72 84 91 88 
10 (N=1) 61 51 51 46 79 93 102 105 
11 (N=1) 71 45 52 53 54 64 77 74 
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Of note in this data is the wide range of values evident in the BC and MF events, 

compared with other events. While other events showed differences of 20% to 40%, 

BC and MF ranged across 80% to 90%. This is particularly evident in the higher 

clusters (i.e. 11-cluster solution). Also of note is one subject produced a value greater 

than 100% at BC and MF (this is possible if CPy is moved to the outer edge of the 

front foot as 100% was defined at mid-foot). 

 

 

4.3.1.3  Number of clusters 

 

Table 4.13 reports results of Point Biserial Correlation and C-Index analysis on each 

of the cluster solutions in table 4.12. Repeating for clarity, the largest value for Point 

Biserial Correlation and the smallest value for the C-Index correspond to the optimal 

cluster solution.  

 

Table 4.13: Point Biserial Correlation and C-Index data for each solution  
(N = 62 golfers). Largest value for each test in bold. 

 
 11 10 9 8 7 6 5 4 3 2 
Point Biserial Correlation 0.47 0.52 0.52 0.54 0.58 0.58 0.621 0.622 0.61 0.58
C-Index 3.48 1.66 1.66 1.48 1.28 1.27 1.26 1.25 1.34 1.37

 
Note: The 4-cluster and 5-cluster Point Biserial Correlation has been reported to 3 decimal places to make largest value clear. 

 

 

Point Biserial Correlation and C-Index values indicated that the 4-cluster solution was 

optimal. This was the solution chosen for further analysis.  
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4.3.1.4  4-Cluster solution 

 

Table 4.14 and figure 4.9 present mean CPy% at eight swing events for each cluster in 

the 4-cluster solution. Each cluster was labelled according to the pattern displayed to 

assist interpretation (refer figure 4.9).  

 

Table 4.14: Mean CPy% at eight swing events for each cluster in the  
4-cluster solution (N = 62 golfers). 

 
Cluster Label   TA MB LB TB ED MD BC MF
1 (N=19) Reverse Mean 56 30 25 26 61 62 53 41 
    SD 5 8 9 13 13 10 12 13 
2 (N=2) Extreme Back  Mean 63 33 12 15 41 39 28 18 
               Foot Reverse SD 17 24 6 1 1 11 6 7 
3 (N=39) Front Foot Mean 57 25 19 21 64 76 81 80 
    SD 5 11 11 9 12 5 11 11 
4 (N=2) Midstance Backswing  Mean 65 46 51 38 69 81 89 90 
               Front Foot  SD 8 1 1 21 21 24 17 23 
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Figure 4.9: Mean CPy% for each cluster group at eight swing events  
(N = 62 golfers). 

 

Cluster 1 and Cluster 3 formed the largest groups of N = 19 and N = 39 respectively. 

These clusters showed similar CPy% values at TA, MB, LB, TB and ED but Cluster 1 
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produced significantly smaller CPy% values at MD, BC and MF than cluster 3 (p < 

0.001; see section 4.3.2.2). Cluster 3 was labelled the Front Foot group as CPy% 

continued to increase towards the front foot from ED to MD and BC, with CPy% at 

BC (82%) positioned predominantly on the front foot. Cluster 1 was labelled the 

Reverse group due to the CPy% reducing (reversing in direction back towards the 

back foot) from MD to BC and continuing to reduce to MF.  

 

Cluster 2 and Cluster 4 formed only small groups of N = 2. Cluster 2 was labelled the 

Extreme Back Foot Reverse group, as this group showed a similar pattern to the 

Reverse group, but CPy% values were smaller for most swing events, particularly at 

ED, MD, BC and MF, indicating CPy% was closer to the back foot. Cluster 4 was 

labelled the Midstance Backswing Front Foot group as CPy% was similar to the Front 

Foot group at ED, MD, BC and MF but was larger (i.e. less movement of CPy% 

towards the back foot in backswing or ‘short backswing’) at MB, LB and TB than the 

other groups and remained close to mid-stance. As can be noted in the dendrogram 

(figure 4.8), these four golfers did not combine to form clusters until late in the 

hierarchical clustering process. Cluster 2 formed at the 5-cluster solution (stage 58 of 

62 in the hierarchical clustering process) and Cluster 4 formed at the 7-cluster 

solution (stage 56 of 62 in the hierarchical clustering process). Prior to these stages, 

the four golfers remained un-clustered with other golfers (i.e. formed groups of N = 

1). 

 

Six golfers changed cluster groups between the hierarchical and non-hierarchical 4-

cluster solution (Reverse to Front Foot – two golfers; Front Foot to Reverse – four 

golfers). The two smaller groups remained the same. The shift of some golfers into 
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different groups was expected and is the reason for performing the non-hierarchical 

analysis to eliminate nesting in the hierarchical analysis. However, the low number of 

golfers who changed groups (<10%) indicated that the cluster solution was stable for 

the majority of the golfers. 

 

 

4.3.1.5  Validation of clusters 

 

4.3.1.5.1  POINT BISERIAL CORRELATION 

 

The Point Biserial Correlation for the 4-cluster solution returned a large significant 

effect (rpbi = 0.62, p < 0.001). Repeating for clarity, the strength (large effect) and 

significance level (p < 0.001) indicated the solution was valid. 

 

4.3.1.5.2  REPLICATION 

 

Repeating for clarity, cluster analysis on replication subsets was performed using the 

same procedures as reported in Methods section 4.4.2.6.1 and Results section 4.3.1.1 

– 4.3.1.3.  The results of replication analyses are summarized here. Agglomerative 

schedules and dendrograms are presented in Appendix F. Replication was repeated 

three times. 

 

4.3.1.5.2.1 Replication subset 1 
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The first reasonably large jump in the agglomerative schedule corresponded with the 

7-cluster solution. All cluster solutions below this cut-off were analysed non-

hierarchically. Table 4.15 presents the Point Biserial Correlation and C-Index data for 

each non-hierarchical solution. 

 
 

Table 4.15: Point Biserial Correlation and C-Index data for each solution for 
replication subset 1 (N = 41 golfers). Optimal value for each in bold. 

 
 7 6 5 4 3 2 

Point Biserial Correlation 0.56 0.56 0.59 0.66 0.65 0.63 
C-Index 1.47 1.53 1.95 1.41 1.48 1.74 

 

As Point Biserial Correlation and C-Index indicated that the 4-cluster solution was 

optimal, this solution was chosen.  Table 4.16 and figure 4.10 present mean CPy% at 

each swing event for each cluster in the 4-cluster solution.  

 
Table 4.16: Mean CPy% at eight swing events for each cluster in the  

4-cluster solution for replication subset 1 (N = 41 golfers). 
 

Cluster TA MB LB TB ED MD BC MF 
1 (N=15) 56 28 26 27 63 62 53 40 
2 (N=24) 57 23 16 21 62 74 81 83 
3 (N=1) 71 45 52 53 54 64 77 74 
4 (N=1) 51 50 16 16 40 47 32 13 
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Figure 4.10: Mean CPy% at eight swing events for each cluster in the 4-cluster 
solution for replication subset 1 (N = 41 golfers). Note that the colours but not 

the group numbers correspond to the groups in the original analysis. 
 

Cluster 1 and Cluster 2 were very similar in pattern to the Reverse and Front Foot 

groups respectively. Cluster 3 was formed by N = 1 golfers and was part of the 

Midstance Backswing Front Foot group while Cluster 4 was also formed by N = 1 

golfers and was part of the Extreme Back Foot Reverse group. All golfers (100%) 

were reclassified into the same cluster as in the original analysis.  

  

 

4.3.1.5.2.2  Replication subset 2 

 

The first reasonably large jump in the agglomerative schedule corresponded with the 

5-cluster solution. All cluster solutions below this cut-off were analysed non-

hierarchically. Table 4.17 presents the Point Biserial Correlation and C-Index data for 

each non-hierarchical solution. 

 

Table 4.17: Point Biserial Correlation and C-Index data for each solution for 
replication subset 2 (N = 41 golfers). Optimal value for each in bold. 

 
 6 5 4 3 2 
Point Biserial Correlation 0.55 0.56 0.57 0.59 0.57 
C-Index 1.75 1.93 1.80 1.24 1.44 

 

 

Both Point Biserial Correlation and C-Index indicated that the 3-cluster solution was 

optimal for subset 2 and was chosen for further analysed.  Table 4.18 and figure 4.11 

present mean CPy% at each swing event for each cluster in the 2-cluster solution from 

subset 2. 
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Table 4.18: Mean CPy% at eight swing events for each cluster in the  
3-cluster solution for replication subset 2 (N = 41 golfers). 

 
Cluster TA MB LB TB ED MD BC MF 
1 (N=13) 53 31 28 31 60 58 48 32 
2 (N=27) 57 27 20 21 61 73 78 74 
3 (N=1) 76 15 8 15 43 31 24 22 
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Figure 4.11: Mean CPy% at eight swing events for each cluster in the  
3-cluster solution for replication subset 2 (N = 41 golfers). Note that the colours 

but not the group numbers correspond to the groups in the original analysis. 
 

 

Once again, Cluster 1 and Cluster 2 were very similar in pattern to the Reverse and 

Front Foot groups while Cluster 3 was similar to the Extreme Back Foot Reverse 

group. All golfers (100%) reclassified into the same cluster as in the original analysis.  

 

 

4.3.1.5.2.3  Replication subset 3 
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The first reasonably large jump in the agglomerative schedule corresponded with the 

5-cluster solution. All cluster solutions below this cut-off were analysed non-

hierarchically. Table 4.19 presents the Point Biserial Correlation and C-Index data for 

each non-hierarchical solution. 

 
Table 4.19: Point Biserial Correlation and C-Index data for each solution for 

replication subset 3 (N = 41 golfers). Optimal value for each in bold. 
 

 5 4 3 2 
Point Biserial Correlation 0.55 0.55 0.59 0.61 
C-Index 1.67 2.27 1.42 1.19 

 

Both Point Biserial Correlation and C-Index indicated that the 2-cluster solution was 

optimal for subset 3. This solution was chosen for further analysed. Table 4.20 and 

figure 4.12 present mean CPy% at each swing event for each cluster in the 2-cluster 

solution.  

 
Table 4.20: Mean CPy% at eight swing events for each cluster in the  

2-cluster solution for replication subset 3 (N = 41 golfers). 
 

Cluster TA MB LB TB ED MD BC MF 
1 (N=13) 55 31 27 27 62 61 50 34 
2 (N=28) 57 26 19 20 63 73 78 77 
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Figure 4.12: Mean CPy% at eight swing events for each cluster in the  
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2-cluster solution for replication subset 3 (N = 41 golfers). Note that the colours 
but not the group numbers correspond to the groups in the original analysis. 

 
Cluster 1 and Cluster 2 were very similar in pattern to the Reverse and Front Foot 

groups respectively. All golfers reclassified into the same clusters as in the original 

analysis for the Front Foot and Reverse groups. However, two golfers from the small 

clusters did not reclassify into the same group. One golfer from the Midstance 

Backswing Front Foot group clustered with the Cluster 2 (Front Foot group) while 

one golfer from the Extreme Back Foot Reverse group reclassified with Cluster 1 

(Reverse Group). The overall reclassification percentage was 95%. 

 

 

4.3.1.5.3  Leave-one-out reclassification 

 

Using the leave-one-out method of reclassification, 60 of the 62 golfers (97%) were 

re-classified into the same cluster group. Of the two golfers not to be re-classified 

correctly, one was from the Extreme Back Foot Reverse group, who was re-classified 

into the Reverse group and the other was from the Midstance Backswing Front Foot 

group who re-classified into the Front Foot group. The small groups showed 

instability in this classification. 
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4.3.1.5.4 One way ANOVA comparing groups 

 

Due to small N in two clusters, only the two large clusters were compared. Table 4.21 

reports Club Velocity and CP parameters for the Front Foot and Reverse groups as 

well as ANOVA results. 

 
Table 4.21: Comparison of internal and external parameters between the Front 

Foot group and Reverse group. 
 

 
Front Foot 

group (N=39) 
Reverse group 

(N=19) ANOVA 
Within-dataset 

distribution 

 Mean SD Mean SD F p 
Effect 

η2 
Effect 
Scale Power 

F 
(p=.05) 

F 
(p=.01)

Internal Parameters          
CPy%TA 57 5 56 5 1.1 0.298 0.019 - 0.18 5.3 8.6 
CPy%MB 25 11 30 8 2.0 0.163 0.027 Small 0.28 5.3 8.4 
CPy%LB 19 11 25 9 2.4 0.132 0.041 Small 0.33 5.3 9.5 
CPy%TB 21 9 26 13 3.1 0.081 0.046 Small 0.41 5.1 7.8 
CPy%ED 64 12 61 13 0.8 0.368 0.009 - 0.14 5.2 7.4 
CPy%MD 76 5 62 10 24.9 <0.001 0.312 Large 1.00 5.2 7.5 
CPy%BC 81 11 53 12 90.5 <0.001 0.624 Large 1.00 4.8 8.6 
CPy%MF 80 11 41 13 143.6 <0.001 0.721 Large 1.00 4.9 7.5 

External parameters          
VelCPyTA 0.1 0.3 0.0 0.2 0.3 0.611 0.005 - 0.08 5.4 8.5 
VelCPyMB -0.3 0.2 -0.4 0.3 0.2 0.682 0.003 - 0.07 4.9 7.1 
VelCPyLB 0.0 0.3 0.0 0.3 0.6 0.428 0.011 Small 0.12 5.7 9.3 
VelCPyTB 0.3 0.5 0.1 0.4 2.2 0.148 0.037 Small 0.30 5.3 8.2 
VelCPyED 1.1 0.7 0.6 0.9 6.03 0.017 0.097 Medium 0.67 5.5 7.8 
VelCPyMD 0.9 0.8 -0.6 1.1 35.3 <0.001 0.387 Large 1.00 5.3 8.7 
VelCPyBC 0.5 0.9 -1.2 1.1 38.7 <0.001 0.409 Large 1.00 5.1 7.5 
VelCPyMF -0.3 0.8 -0.3 1.1 0.01 0.906 0.000 - 0.05 5.8 10.1 
VMaxCPy (m.s-1) 2.5 0.7 2.5 1.0 0.0 0.924 0.001 - 0.05 4.6 7.0 
tVMaxCPy (s) -0.14 0.05 -0.18 0.14 2.8 0.101 0.054 Small 0.37 3.8 6.0 
MaxCPy% 87 9 69 9 52.3 <0.001 0.480 Large 1.00 3.8 6.0 
tMaxCPy% (s) 0.01 0.05 -0.23 0.24 35.7 <0.001 0.393 Large 1.00 4.7 6.1 
MinCPy% 12 7 17 8 5.7 0.020 0.090 Medium 0.70 5.2 8.1 
tMinCPy% (s) -0.42 0.12 -0.41 0.21 0.1 0.792 0.003 - 0.06 5.3 8.2 
CPyR (m) 0.36 0.07 0.27 0.08 22.1 <0.001 0.278 Large 0.99 4.4 8.7 
CPyR% 75 11 51 13 56.3 <0.001 0.501 Large 1.00 5.2 7.2 

Bold indicates significant at p < 0.05 

 
Some internal (used in the clustering process, i.e. CPy% at eight swing events) and 

some external (not used in the clustering process) parameters were significantly 

different between the groups. The internal parameters CPy% at MD, BC and MF 
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differed with large effects evident. External parameters CPy velocity at ED, MD and 

BC were different, with large effects evident for MD and BC. Also, external 

parameters CPy% maximum, time of CPy% maximum, CPy% minimum and CPy 

range in absolute and relative terms were also significantly different.  

 

4.3.2   Comparison of Front Foot and Reverse cluster groups 

 

This section refers to table 4.21 in the previous section. 

 

Mean CPy% was significantly different between cluster groups for CPy%MD, 

CPy%BC and CPy%MF, with the Front Foot group producing the larger CPy% 

values. Effect sizes were large at all three events. The original F-ratios lay within the 

upper 0.5% of the within-dataset distribution F-ratios for all three comparisons 

indicating the significant differences were not influenced by non-normal distributions. 

 

Mean CPy% was not significantly different between groups at all other swing events, 

with group differences less than 5%. However a small effect size existed between the 

groups for CPy%MB, CPy%LB and CPy%TB. Due to this small effect size, power 

was also low (<0.5). 

 

Mean CPy velocity was significantly different between cluster groups for VelCPyED 

(difference = 0.53 m.s-1), VelCPyMD (difference = 1.51 m.s-1) and VelCPyBC 

(difference = 1.61 m.s-1). The Front Foot group produced larger magnitudes of CPy 

velocity for VelCPyED and VelCPyMD (both positive) and smaller for VelCPyBC 

(negative). Effect size was medium for VelCPyED and the original F-ratio lay within 
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the upper 2.5% of the within-dataset distribution F-ratios. Effect sizes were large for 

VelCPyMD and VelCPyBC and the original F-ratios lay within the upper 0.5% of the 

within-dataset distribution F-ratios for both comparisons indicating the significant 

differences were not generated by non-normal distributions. 

 

Mean CPy velocity was not significantly different between groups at all other swing 

events. However a small effect size existed between the groups for VelCPyLB (η2 = 

0.011) and VelCPyTB (η2 = 0.037). Due to this small effect size, power was also low 

in these comparisons. 

 

VMaxCPy and tVMaxCPy were not significantly different between groups. However, 

a small effect size (η2 = 0.054) existed for tVMaxCPy, with the difference in mean 

between the groups of 0.04 s. The Reverse group (-0.18 s) reached maximum CPy% 

velocity slightly earlier in the swing than the Front Foot group (-0.14 s). Power for 

this comparison was only 0.37. 

 

Both MaxCPy% and tMaxCPy% were significantly different between the groups at p 

< 0.05 and returned large effect sizes. The Front Foot group produced a larger 

MaxCPy% and this occurred nearer to BC compared with the Reverse group. The 

original F-ratio for both parameters was in the top 0.5% of the within-dataset 

distribution F-ratios. However, tMaxCPy% produced groups with unequal variance 

(Levene’s p < 0.001). This will be further analysed in section 4.3.2.4.1. 

 

MinCPy% was significantly different between groups. The Reverse group exhibited a 

larger MinCPy% than the Front Foot group (difference = 5%), with a medium effect 
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size (η2 = 0.090). The original F-ratio for this comparison was in the top 2.5% of the 

within-dataset distribution F-ratios supporting the significant difference was not 

influenced by non-normal distributions. No difference was evident between groups 

for tMinCPy% with group means differing by only 0.01 s (practically no effect). 

 

Both CPyR and CPyR% were significantly different between groups, with the 

Reverse group returning smaller values for both parameters (large effect for both 

differences between groups - CPyR = 0.10 m and CPyR% = 24%). The original F-

ratio for both comparisons were in the top 1% of the within-dataset distribution 

supporting both significant differences were not generated by non-normal 

distributions. 

 

Table 4.22 reports mean subject data, Handicap and Club Velocity for the Front Foot 

and Reverse groups, as well as the results of one-way ANOVAs comparing the 

groups. Only the upper limit of the within-dataset distribution F-ratio has been 

reported as the lower limit is not relevant to this analysis. 

 
Table 4.22: Comparison of mean descriptive data, Handicap and Club Velocity 

for Front Foot and Reverse groups. 
 

 
Front Foot group 

(N=39) 
Reverse group 

(N=19) ANOVA 
Within-dataset 

distribution 

 Mean SD Mean SD F p 
Effect 

η2 
Effect 
Scale Power 

F 
(p=.05) 

F 
(p=.01)

Handicap 11.1 6.8 10.2 10.2 0.1 0.710 0.000 - 0.07 5.30 9.37 
Age (years) 31.9 12.6 38.1 15.3 2.6 0.114 0.045 Small 0.36 5.72 9.24 
Height (m) 1.80 0.06 1.81 0.07 0.1 0.827 0.001 - 0.05 3.28 3.86 
Mass (kg) 80.4 8.6 83.3 10.0 1.3 0.269 0.022 Small 0.20 4.53 6.93 
Club Velocity 
(m.s-1) 44.1 3.9 44.1 4.9 0.0 0.981 0.000 - 0.05 1.89 2.56 
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Handicap showed no significant difference between the Front Foot and Reverse 

group. The difference in Handicap between groups (0.9) translated to an effect size of 

η2 = 0.003, which was below the small effect (η2 = 0.02) defined by Cohen (1968). 

The non-significant result was supported by the F -ratio falling well below the within-

dataset distribution threshold of F = 5.30 (p = 0.05). As there was some ambiguity 

relating to whether Handicap should be considered ordinal or interval, a non-

parametric test was also conducted to determine if the groups were significantly 

different. This test also returned a non-significant finding, supporting no difference 

between groups (Kruskall-Wallace: 0.59, p = 0.441). There was no significant 

difference between Height and Club Velocity with effect sizes for these variables also 

below η2 = 0.02.  

 

Age and Mass also showed no significant difference between groups at p < 0.05. 

However a small effect size existed for both variables (Age: η2 = 0.045, Mass: η2 = 

0.022). The difference in mean Age between groups was 6.2 years while the 

difference in Mass was 2.9 kg. Power in both analyses was less than 0.5.  

 

4.3.2.1  Post-hoc analysis of tMaxCPy% 

 

Examination of the tMaxCPy% data indicated that the large variance in the Reverse 

group was due to one large and three moderate outliers. To further explore this 

relationship, a number of subsets of data were re-analysed until Levene’s became 

non-significant. These were, in order: 
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1. Major outlier (N = 1) was removed from the Reverse group. All remaining 

data analysed (Reverse, N = 18; Front Foot, N = 39) 

2. Group numbers evened using random deletion of cases, as recommended by 

Tabachnick and Fidell (1996; Reverse, N = 18; Front Foot, N = 18) 

3. Major and minor outliers (N = 4) removed from Reverse group. All remaining 

data analysed (Reverse, N = 15; Front Foot, N = 39) 

4. Group numbers evened using random deletion of cases (Reverse, N = 15; 

Front Foot, N = 15) 

 

Table 4.23 reports the results of ANOVA using these subsets of data. 

 

Table 4.23: Comparison of tMaxCPy% for Front Foot and Reverse groups with 
group sizes equal and outliers removed. 

 
 

 ANOVA 

 F p Effect 
η2 

Effect 
Scale Power Levene’s

1. N=1 outlier removed  
(Reverse N=18, Front Foot N=39) 45.6 <0.001 .455 Large 1.00 <0.001 

2. Equal group numbers (N=18) 25.6 <0.001 .429 Large 0.99 <0.001 
3. N=3 more outliers removed  

(Reverse N=15, Front Foot N=39) 44.5 <0.001 .460 Large 1.00 0.035 

4. Equal group numbers (N=15) 24.5 <0.001 .468 Large 0.95 0.120 
 

 

Based on the original F-ratio lying in the top 0.5% of within-dataset distribution F-

ratios, a very strong p-value (p < 0.001) and a significant result in subset data where 

equal variance was achieved (table 4.23), the significant difference between the Front 

foot and Reverse groups for tMaxCPy% is supported. 
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4.4   DISCUSSION 

 

4.4.1  Two weight transfer styles: description 

 

Cluster analysis indicated that two major weight transfer styles existed. This result 

was supported by strong validation results. Point Biserial Correlation exhibited a large 

effect size and was significant at p < 0.001. Replication results were extremely strong, 

with both the Front Foot and Reverse groups appearing in all subset analyses. Further, 

100% of large group cases reclassified into their original clusters (Front Foot or 

Reverse). Finally both internal and external parameters were significantly different 

between the groups, validating the two as separate styles. 

 

Figure 4.13 shows the group CPy% means at eight swing events for the Front Foot 

group (N = 39), the Reverse group (N = 19) and All Golfers (N = 62). 
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Figure 4.13: Group CPy% means at eight swing events for the Front Foot group 
(N = 39), the Reverse group (N = 19) and All Golfers (N = 62). Asterisks denote 

significant difference between Front Foot and Reverse groups. 
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The weight transfer pattern exhibited by the Front Foot group supported the coaching 

literature description of weight transfer. Referring to figure 4.13, CPy% was 

positioned approximately balanced between the feet at TA. During backswing, CPy% 

moved towards the back foot, ceasing this backwards movement just before the top of 

backswing, as indicated by a slightly lower CPy% value at LB (CPy%LB = 20%) 

compared with TB (CPy%TB = 21%). CPy% then moved towards the front foot 

between TB and ED, continuing towards the front foot to BC before moving slightly 

towards the back foot to MF. At BC, CPy% was positioned predominantly on the 

front foot (CPy%BC = 80%). 

 

Weight transfer positions at swing events and overall pattern for the Reverse group 

did not support the coaching literature description of weight transfer. While CPy% 

was positioned midway between the feet at address, moved towards the back foot in 

backswing and then rapidly forward in early downswing, it did not continue onto the 

front foot at ball contact. From ED, the forward CPy% shift ceased as indicated by 

similar values for CPy%ED and CPy%MD (CPy% = 61% for both events). CPy% 

then moved towards the back foot from MD to a balanced position at BC (CPy% = 

53%) and further towards the back foot at MF (CPy% = 41%). 

 

 

4.4.1.1  Comparison of CPy% with the literature 

 

Table 4.24 compares the reported CPy% positions for this study (All Golfers, Front 

Foot group, Reverse group) with other studies. Also, a meta-analysis including all 

available data for TA, MB, TB, MD and BC is presented. This was calculated by 
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multiplying the reported parameter value by the N for each individual study, summing 

these multiplied values across all studies, then dividing by the total N across all 

studies. For example, for TA, two studies reported results (Koenig et al., 1993; 

Robinson, 1994). Each value for TA was multiplied by N (For Koenig et al., 1993: 14 

x 55; For Robinson, 1994: Professional 10 x 58, Amateur 20 x 49). These values were 

summed and divided by the total N [i.e. (770+580+980)/(14+10+20)] to obtain a 

mean TA value for all studies. It should be noted that comparisons between the two 

styles found in this study and previous data are limited (and largely invalid) as 

previous studies did not account for different styles.  

 

Table 4.24: Comparison of weight positions at different swing events in the golf 
swing for All Golfer (N = 62), the Front Foot group (N = 39) and the Reverse 

group (N = 19). 
 

Study Measure Group N Swing Events 
    TA MB LB TB ED MD BC MF 
This Study CPy% All Golfers 62 57 28 22 23 63 70 71 67 
This Study CPy% Front Foot 39 57 26 20 21 64 76 82 81 
This Study CPy% Reverse 19 56 30 25 26 61 61 53 41 
Cooper et al. (1974) Fz% Elite 5       75 50* 
Richards et al. (1985) COV% Low HCP 10    28   96  
  High HCP 10    22   81  
Wallace et al. (1990) CP% Low HCP 1  53*  27  68* 82  
  High HCP 1  42*  31  47* 67  

Koenig et al. (1993) Fz% Low-High 
HCP 14 55   35     

Robinson (1994) Fz% Professional 10 58        
  Amateur 20 49        
Koslow (1994)** ‘weight Normal     27   62  
 shift Abbreviated     39   43  
 patterns’ Reverse     60   36  
Meta Analysis 
(excluding Koslow) All All available  53 

N=44
48 

N=2  29 
N=36  58 

N=2 
85 

N=27 
50 

N=5 
All values expressed as a percentage relative to the feet (0% = back foot, 100% = front foot). Transformed from the data 

presented in each study if required to allow for direct comparison between studies.  
*    MB, MD and MF have not been defined in these studies 
**  Koslow used set-up (assumed to be AD), top of swing (assumed to be TB) and BC and described the measure used 

only as ‘weight shift patterns’ with no further explanation.  
 

TA and TB values for All Golfers, the Front Foot group and Reverse group in this 

study all lay within the range of values reported in other studies. TA values lay 

between the 58% (professional) and 49% (amateur) found by Robinson (1994). TB 
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values for the three groups reported in table 4.24 in this study were larger than the 

22% reported for High Handicap golfers by Richards et al. (1985) but smaller than all 

other results. Comparison between the meta-analysis indicated CPy% values at TA 

were slightly higher and values at TB were slightly lower than All Golfers in this 

study, although this difference was relatively small (4% for TA, 6% for TB). 

 

CPy% values at BC for All Golfers, the Front Foot group and the Reverse group all 

lay within values previously reported in the literature (smallest = 36%, Koslow, 1994; 

largest = 96%, Richards et al., 1985).  However, a large discrepancy existed between 

the meta-analysis value at BC of 85% and the value for this study of for All Golfers of 

71%. The lower value in this study was due to the influence of the Reverse group as 

the meta-analysis value and the Front Foot group value were similar (85% and 82% 

respectively).  

 

 Interestingly, the elite group tested by Cooper et al. (1974) reported a value that was 

only 4% different (75% compared with 71% in this study for All Golfers). The 

Cooper et al. study represents the only other study to report position of weight at BC 

for elite level golfers, with all other studies using either amateur golfers or not 

reporting values. These comparisons indicated that data in this study was reasonably 

similar to other studies. This comparison also highlights how the Reverse style could 

have existed but been undetected in other studies as values for All Golfers at TA, TB 

and BC all lay between the largest and smallest reported values in the literature. 

 

The results reported by Koslow (1994) require further discussion. The ‘abbreviated’ 

group and the ‘reverse’ group reported by Koslow, along with the Reverse group in 
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this study produced values at BC that were less than 60%. However, the patterns 

exhibited by the ‘abbreviated’ and ‘reverse’ groups in Koslow were dissimilar to the 

pattern exhibited by the Reverse group in this study. Koslow’s ‘abbreviated’ group 

produced a larger value at TB compared with the Reverse group in this study (39% 

compared with 22%). Also, the difference between TB and BC was small for the 

‘abbreviated’ group compared with the relatively larger difference for the Reverse 

group in this study (39% to 43% compared to 22% to 53%, difference = 4% compared 

to 31%). The ‘reverse’ group in Koslow differed substantially from the Reverse group 

in this study at TB and BC. Also, weight was nearer the back foot at BC compared to 

TB for Koslow’s ‘reverse’ group compared with the Reverse group in this study, in 

which CPy% was nearer the front foot at BC. Also of note in this comparison was the 

golfers in the Koslow study were novices compared with this study which used 

subjects that at a minimum played five games of golf a year. 

 

CPy% at MD was similar in this study compared with the values reported by Wallace 

et al. (1990) but CPy% at MB was smaller than MB in this study. However in both 

cases, the events were not defined in Wallace et al. and so the direct comparison 

might not be valid, as they might not refer to the same point in the swing. 

 

No comparison data exists for the swing events LB or ED. 
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4.4.1.2  Comparison of CPy velocity with the literature 

 

No comparison data exists for CPy velocity at swing events. 

 

4.4.1.3  Comparison of other CPy parameters with the literature  

 

There is little data in the literature for comparison with the other CPy parameters used 

in this study. This data is summarised in table 4.25. 

 

Table 4.25: Comparison of other CPy parameters with the literature 

Study Measure Group N Min Max 
This study CPy% All Golfers 62 15 81 
This study CPy% Front Foot 39 13 87 
This study CPy% Reverse 19 18 69 
Richards et al. (1985) COV Low HCP 10 17 105 
  High HCP 10 15 98 
Koenig et al. (1993) Fz% Low-High HCP 14 20  

Meta-analysis All All available  18  
N=34 

102 
N=20 

 

MinCPy% for All Golfers in this study was the same as the high handicap group 

reported by Richards et al. (1985) but slightly smaller than the meta-analysis value. 

MaxCPy% was substantially smaller than Richards et al. and the meta-analysis 

although the meta-analysis included only the Richards et al. data. The 105% 

expressed by Richards et al. for low handicap golfers simply meant that COV% was 

positioned on the outside edge of the front foot (measurement of 100% was to the 

middle of the foot). However, it seems unusual that the mean value was this high as it 

suggested that all N = 10 golfers positioned weight near the outer edge of the base of 

support or that some produced values greater than 105%. In this study, only 6% of 

golfers (N = 4 of 62) produced a maximum over 100% with two golfers producing the 
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maximum value recorded of 105% (one high handicap golfer and one social golfer). 

This difference between the studies might have been a function of different group 

samples or error in the Richards et al. measurement.  

 

No comparison data exists for the other measures used in this study. 

  

4.4.1.4 Reverse group weight transfer style in other studies 

 

While the Front Foot style of weight transfer has been reported in coaching literature 

(e.g. Leadbetter, 1995) and scientific literature (e.g. Wallace et al., 1990), the Reverse 

style has not. There are no qualitative reports of a similar style. Quantitatively, 

Cooper et al. (1974) reported a ‘reverse’ from BC (75%) to MF (50%). However, 

weight was positioned further towards the front foot at BC (75% compared with 53% 

for the Reverse group). Richards et al. (1985) reported large values at BC (96% and 

81% for Low and High Handicap golfers respectively). Further, maximum weight 

position values occurred after BC. Neither finding supported a Reverse style of swing. 

Both golfers in the Wallace et al. (1990) study would have been in the Front Foot 

group in this study. None of the three weight transfer styles found by Koslow (1994) 

in novice golfers resembled the Reverse group. 

  

While there is little indication of the Reverse group weight transfer style existing in 

previous qualitative and quantitative studies, this style may have been obscured in the 

averaging process. Using this study as an example, the predominant style in the data 

was the Front Foot group, with 63% of golfers exhibiting this style. As such, this 

would be the stronger influence in calculation of mean values and this would be 
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reflected in the reported weight transfer path. Figure 4.14 shows the CPy% pattern 

using means from the whole group (N = 62) as well as the two major weight transfer 

styles identified in this study. This most resembles the Front Foot group with only a 

slight ‘reverse’ from BC to MF. As such, the Reverse style would have been obscured 

and the conclusion from the data would have been that the coaching defined weight 

transfer pattern was supported. 
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Figure 4.14: Comparison of mean CPy% at eight swing events between the Front 
Foot group (N = 39), Reverse group (N = 19) and All Golfers (N = 62). Asterisks 

denote significant difference between Front Foot and Reverse groups. Figure 
repeated here for clarity. 

 

Another factor worth noting is the low number of swing events at which weight 

position was quantified in other studies. This has limited the assessment of weight 

transfer patterns and would be another reason why the Reverse style has not been 

reported previously. For example, if only TB and BC were used to quantify weight 

position, the Reverse group in this study would show movement from the back foot at 

backswing (CPy%TB = 26%) towards the front foot at BC (CPy%BC = 53%), 

although not as much as might have been expected from the previous literature. 
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Figure 4.15 shows the difference in patterns evident using all eight events compared 

with only TA, TB and BC. The use of more swing events would have made this 

weight transfer pattern more obvious if it did exist in previous studies. More 

importantly, even for the Reverse group, when analysing TA, TB and BC only, a 

Front Foot-like style would be concluded. 
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Figure 4.15: Comparison of the Reverse group pattern using all eight swing 

events and only TA, TB and BC. 
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4.4.2  Two weight transfer styles: comparison 

 

4.4.2.1  Comparison of descriptive data between weight transfer 

styles 

 
No difference existed between the Front Foot and Reverse groups for Handicap or 

Club Velocity. Further examination of these parameters indicated a fairly even spread 

of handicap levels and Club Velocities in both groups (figure 4.16 and figure 4.17). 

The Front Foot group included one professional and handicap ranges from 0 to 28. 

The Reverse Group included one professional and three amateurs involved in 

Australasian and US tour tournaments at the time of testing (and have since turned 

professional) as well as handicap ranges from 4 to 26. Interestingly, no social golfer 

was part of the Reverse group. 
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Figure 4.16: Distribution of Handicaps for the Front Foot and Reverse groups. 
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Figure 4.17: Distribution of Club Velocity for the Front Foot and Reverse 
groups. 

 

The combination of statistical data and golfers included in each of the styles indicated 

that neither the Front Foot or Reverse styles were technical errors. There was no 

statistical difference in mean Club Velocity indicating skill level and performance 

were similar between groups and neither style was indicated as better than the other. 

Further, and importantly, both groups contained highly skilled golfers. The Reverse 

group (N = 19) comprised seven players (63%) who had a handicap less than five and 

included four players (21%) who were professionals or involved in Australasian and 

US tour tournaments at the time of testing. The Front Foot group contained one 

professional (3%) and seven golfers with handicaps less than five (18%). Establishing 

if the styles identified in this study are effective techniques is of particular importance 

in relation to the Reverse group, which has not been described in the coaching 

literature. Based on this combination of results, the effectiveness of both techniques is 

supported. 
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There was no difference between groups for Age, Mass or Height. This suggested that 

basic physical factors did not predispose a golfer to use a particular technique. It 

should be noted that there were small effects for Age (Reverse golfers were older – 

38.1 years compared with 31.9 years) and for Mass (Reverse group = 83.3 kg, Front 

Foot group = 80.4 kg). However, as neither was significant, it would require more 

testing to determine if these factors are important in choosing one style or the other 

for a particular golfer. It would be useful in future work to identify the predisposing 

factors (if any exist) to using a particular style of swing. These might include 

appropriate strength and flexibility tests to more thoroughly assess if a physical 

attribute may influence the adoption of either the Front Foot or Reverse style of 

weight transfer. 

 

4.4.2.2  Comparison of CPy% between weight transfer styles 

 

Front Foot and Reverse groups were significantly different for CPy%MD, CPy%BC 

and CPy%MF. This indicated that downswing was a phase of major difference 

between the styles with the Front Foot group moving weight towards the front foot 

through BC, while the Reverse group moved towards the back foot after MD, 

balancing weight more evenly between the feet at BC (see figure 4.18, repeated for 

clarity). A small effect size also existed for CPy%MB, CPy%LB and CPy%TB. This 

indicated that the Reverse group tended to position weight in a more balanced 

position in backswing, although these differences were not significant. However, as 

will be discussed in section 4.4.2.4, minimum CPy, which occurred in backswing, was 

significantly different between groups. 
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Figure 4.18: Mean CPy% at swing events for Front Foot and Reverse groups. 
 

 

4.4.2.3  Comparison of CPy velocity between weight transfer styles 

 

CPy velocity was significantly different between the Reverse and Front Foot groups 

at ED, MD and BC. As can be noted in figure 4.19, CPy velocity was smaller in 

magnitude for the Reverse group at ED while at MD and BC, it was moving in 

opposite directions. These differences were expected given the movement patterns of 

CPy% discussed in section 4.4.2.2. The results indicated that the Front Foot group 

was moving weight towards the front foot at TB and this movement direction 

continued until after BC. In contrast, while the Reverse group also moved weight 

towards the front foot at TB and ED, this group produced a significantly slower rate at 

ED compared to the Front Foot group, and moved weight towards the back foot at 

MD and BC. CPy velocities at TA, MB and LB were similar in magnitude indicating 

the major differences between the groups in terms of CPy velocity existed in 

downswing. 
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Figure 4.19: Mean CPy velocity at swing events for the Front Foot and Reverse 
groups. 

 
 
Of interest are the similar mean values for VelCPyMF between the Front Foot and 

Reverse groups. While groups differed significantly at ED, MD and BC, both groups 

were moving CPy towards the back foot at MF at a similar rate. The value of 0.3 m.s-1 

for both the Front Foot and Reverse groups represents only approximately 12% of the 

absolute maximum velocities produced by either group so this movement is not rapid 

relative to other parts of the swing. A useful future direction for comparison of thee 

groups would be to identify a reliable swing event later in the follow through to 

examine if weight transfer patterns were once again similar later in the swing.  

It should be noted that both groups produced similar maximum CPy velocity 

measures. This is mentioned as figure 4.19 can be misleading as it presents CPy 

velocity measures at swing events only. While it looks like the Front Foot group 

produced a greater positive CPy velocity compared to the Reverse group, the 

maximum CPy velocities produced by both groups were similar and occurred at 

similar times in the swing between TB and ED (see section 4.4.2.4 for discussion).  
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4.4.2.4 Comparison of other CPy parameters between weight 

transfer styles 

 

The Front Foot group produced significantly larger CPyR and CPyR% values 

compared with the Reverse group. The Front Foot group moved CPy% through 75% 

of the distance between the feet (0.36m in absolute terms) compared with only 50% 

for the Reverse group (0.27m). Also, both MaxCPy% and MinCPy% were 

significantly different between groups, with the Front Foot group moving weight 

further towards the back foot in backswing (MinCPy% = 13% compared with 18%) 

and further towards the front foot in downswing (MaxCPy% = 87% compared with 

69%) than the Reverse group. This indicated that the Front Foot group’s larger range 

of weight transfer was produced at “both ends” of CPy movement (as opposed to a 

greater MaxCPy% position only, for example). Also it suggested that on average the 

Reverse group maintained the weight in a more central position between the feet 

throughout the swing, compared with the Front Foot group. 

  

The time of maximum CPy% was significantly different between the Front Foot and 

Reverse groups with the Front Foot group achieving a maximum CPy% later in the 

swing. However, both groups achieved the minimum value at similar times. This 

further suggested differences between groups were most prominent in downswing. 

Maximum CPy velocity was not significantly different between the groups (2.5 m.s-1 

for both). Also, there was no difference in the time that this maximum occurred with a 

difference of only 0.04 s (Front Foot = -0.14 s, Reverse group = -0.18 s), although 

there was a small effect size between groups for this parameter. Examination of the 
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data indicated that this maximum occurred between TB and ED for both groups. This 

indicated similarity in the nature of movement of weight in the early downswing 

phase for both groups.  

 

4.4.2.5 Summary of differences between the Front Foot and 

Reverse styles 

 

Both the Front Foot and Reverse groups positioned weight between the feet at 

takeaway, moved towards the back foot in backswing and started towards the front 

foot just before the top of backswing and into early downswing. From this point the 

Front Foot group continued to move towards the front foot, positioning weight 

predominantly on the front foot at ball contact. In comparison, the Reverse group after 

moving weight onto the front foot in early downswing, produced a ‘reverse’ weight 

shift such that weight was more balanced between the feet at ball contact. The rate of 

weight transfer between styles also differed in downswing with the Front Foot golfers 

producing large positive velocities towards the front foot in all downswing events 

compared with the Reverse golfers who produced negative velocities in mid 

downswing and ball contact. The Front Foot group produced a greater overall range 

of weight transfer, a larger maximum that occurred just after ball contact and a 

smaller minimum. This compared with the Reverse group which produced a smaller 

range of weight transfer, a smaller maximum that occurred in mid downswing and a 

larger minimum, indicating this technique maintained weight nearer a more balanced 

position through the swing. 
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4.4.2.6 Post-hoc comparison between weight transfer styles in this 

study and Neal (1998) 

 

To further explore the two styles, post-hoc analysis was performed to compare this 

study with Neal (1998). Neal reported finding significant differences between the 

‘Right-to-Left’ (possibly similar to the Front Foot group in this study) and 

‘Rotational’ (possibly similar to the Reverse group in this study) for tMaxCPy and the 

ratio between CPxR and CPyR. To perform this comparison, tMaxCPy was 

recalculated as a percentage of the time between TA and BC (termed Time of Max 

CPy). CPx Range was calculated using the maximum and minimum CPx position 

between TA and BC (as the parameters were in metres, no normalization to foot 

position was required). Table 4.26 reports the results of the comparisons.  

 

Table 4.26: Comparison of the Front Foot and Reverse groups with the 
Right-to-Left and Rotational groups from Neal (1998) 

 
  ANOVA Front Foot group 

(N=28) 
Reverse group 

(N=12) 

 Mean ± s Mean ± s F p 
Effect 

η2 
Effect 
Scale 

Time of Max CPy 
This study 
Neal study 

 
98 ± 4 

(right to left: 99) 

 
87 ± 9 

(rotational: 87) 

 
35.5 

 
<0.001 
< 0.05 

 
0.40 

 
Large 

Ratio 
CPxR:CPyR 
This study 
Neal study 

 
0.29 ± 0.12 

(not reported) 

 
0.39 ± 0.14 

(not reported) 

 
7.7 

 
0.010 
< 0.05 

 
0.18 

 
Large 

 

Both comparisons showed similarities. Time of Max CPy was significantly different 

between the groups in both Neal (1998) and this study. Also, similar Time of Max 

CPy values were returned for each group in both studies, with the Front Foot group 

returning similar values to the ‘Right-to-Left’ style golfers in the Neal (1998) study 
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while the Reverse group was similar to the ‘Rotational’ style. Both studies also 

returned significant differences between groups for the ratio between CPx and CPy 

range. Both the Reverse group and ‘Rotational’ style produced significantly greater 

CPxR:CPyR ratio than the Front Foot group and ‘Right-to-Left’ style (Neal noted the 

‘Rotational’ style produced a greater ratio but did not report values). Although more 

testing would be required to confirm this comparison, there is quantitative support for 

similarities between the two styles described in the Neal study and the two styles 

found in this study. This area shows excellent potential for further research. 

 

4.4.3  General discussion of weight transfer styles 

 

The existence of two different weight transfer pattern clusters does not support 

coaching literature on weight transfer during the swing which has largely considered 

only one style to exist (e.g. Leadbetter, 1995). Further, while the majority of the group 

tested (N = 39) exhibited a weight transfer pattern similar to that described in 

coaching texts of balanced at address moving to the back foot in backswing and to the 

front foot in downswing and through ball contact, not all golfers exhibited this 

pattern. Approximately one third of the golfers (N = 19), after moving weight forward 

from TB (CPy% = 26%) to ED (CPy% = 61%), then produced a reverse movement, 

such that the weight was positioned near midstance at BC (CPy% = 53%) and 

continued towards the back foot to MF (CPy% = 41%). There was no statistical 

difference in Handicap or Club Velocity between the groups and both contained 

highly skilled golfers. The Reverse group (N = 19) comprised seven players who had 

a handicap less than five and this seven included four players who were professionals 

or involved in Australasian and US tour tournaments at the time of testing. The Front 
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Foot group contained one professional and seven golfers with handicaps less than 

five. This suggested that neither pattern was a technical error. 

 

Different styles within a skill or group being tested can reduce effect sizes, and hence 

power, in statistical analyses when all styles are assessed together. Briefly, type 1 or 2 

errors can be produced by the existence of different styles or movement strategies in 

the skill being examined (Bates, 1996). For example, the correlation between CPyR 

and Club Velocity was not significant using the data as one group (N = 62, r = 0.19, p 

= 0.134) or for the Reverse group (N = 19, r = 0.17, p = 0.185) but was significant for 

the Front Foot group (N = 39, r = 0.53, p = 0.001). As such, if the data had been 

treated as one group, a type 1 error would have been made for the Front Foot group. 

This will be discussed in more detail in Study 2. 

 

While two major clusters have been identified in this study, more work with larger 

subject numbers is required to examine if more clusters exist. As noted, one of the 

difficulties in the use of cluster analysis is the decision on how many clusters to use, 

as no widely accepted stopping rules exist (Hair et al., 1995). This being the case, it 

would be presumptuous to suggest that only two styles exist. It may also be that 

golfers fit along a continuum of weight transfer styles, although the very strong 

validation results for the clusters would suggest that the styles found in this study do 

exist and are strongly defined. Further, using CPy%MF as an example (figure 4.20) 

distribution of all golfers showed two peaks and within the two peaks, the data was 

reasonably normally distributed for each cluster group. While this is a limited method 

of examination (cluster analysis is a multivariate technique and multidimensional 

graphics were not available to this researcher), it highlights two peaks in the 
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distribution of all data rather than a normal curve (i.e. only one peak). Regardless, if 

more clusters emerge or if the data fits more to a continuum of weight transfer styles, 

it is likely that different factors will be important for different golfers. This is the 

focus of study 2. 
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Figure 4.20: Distribution of CPy%MF for All Golfers as well as the Reverse and 
Front Foot clusters. 
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4.4.4  ‘Outlying clusters’ 

 

The Extreme Back Foot Reverse group and the Midstance Backswing Front Foot 

group were considered technical errors rather than useful/valid weight transfer styles. 

This decision was based on the combined evidence from different sources. First, the 

groups were only small, with only two golfers in each. Second, the individual cases 

(golfers) clustered late in the clustering process indicating that their characteristics 

were considerably different to all other cases in the N = 62 data set (and reasonably 

different to each other). Within-group dissimilarity was further supported by large 

standard deviations for the Extreme Back Foot Reverse group (TA and MB) and the 

Midstance backswing Front Foot group (downswing events; table 4.27). Third, the 

two small clusters both failed at least one of the validation tests (although there are 

issues with this analysis that will be discussed in the next section). Fourth, and most 

compelling, the golfers who made up the groups were less skilled (high handicap or 

social golfers) and/or older (two were over 45) and no low handicap golfers were 

present in either group. These factors supported the styles as errors or inefficient 

weight transfer styles, rather than valid styles.  

 

Table 4.27: Standard deviations for CPy% at eight swing events for the four 
weight transfer groups 

 
Cluster Label TA MB LB TB ED MD BC MF 
1 (N=19) Reverse 5 8 9 13 13 10 12 13 
2 (N=2) Extreme Back Foot Reverse 18 25 5 1 2 11 6 7 
3 (N=39) Front Foot 5 11 10 9 12 11 10 12 
4 (N=2) Midstance Backswing Front Foot 5 5 0 20 13 15 13 16 

 

In considering which cluster solution to choose, the 2-cluster solution in which these 

outlying golfers were part of the Front Foot or Reverse group was considered. In a 
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practical application, this option was possibly the better as some characteristics of 

each golfer were broadly similar to the major groups and they might simply represent 

outliers of the large groups rather than separate clusters. That is, the Extreme Back 

Foot Reverse group is made up of outliers in the Reverse group and the Midstance 

Backswing Front Foot group is made up of outliers from the Front Foot group. 

However, as regression analyses were to be performed using each cluster, it was 

considered more appropriate to treat these golfers as separate clusters rather than part 

of the larger groups as they were likely to influence the statistical analysis.  

 

4.4.5  Clustering of CPy% and Fz% 

 
Cluster analysis using Fz% was also performed to compare with CPy% data. The 

same clustering process described in section 4.3.1 was followed but with Fz% at eight 

swing events used instead of CPy%. Sixty of the 62 golfers reclassified into the same 

cluster. Of the two golfers that did not reclassify, one moved from the Extreme Back 

Foot Reverse group to the Reverse group, while the other moved from the Reverse 

group to the Front Foot group. This golfer showed characteristics of both groups and 

is discussed more thoroughly in section 4.4.6.2 (golfer 1). Group means for the two 

large groups were very similar (Figure 4.21). This along with 97% similarity in 

classification adds more support to the similarity of CPy% and Fz% in the golf swing 

as well as the underlying cluster structure being valid. 
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Figure 4.21: Cluster means for the Front Foot and Reverse groups using CPy% 

and Fz% 
 

 

4.4.6  Cluster analysis issues 

 

This section discusses some of the cluster analysis issues that were highlighted in the 

literature review or that were considered in this particular analysis. It should be noted 

that while it is relatively easy to identify the limitations of each method involved in 

the cluster process, the positive aspects of the cluster analysis are more difficult to 

evaluate. There is no ‘gold standard’ or known underlying cluster structure against 

which to evaluate the different techniques for real world data (as opposed to artificial 

data). As such, comparison of different methods and the use of a number of different 

assessments is the only way to show support for the cluster process used. 
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4.4.6.1 Number of clusters 

 

In all cluster analyses (original and three replication subsets) evaluating weight 

transfer swing styles, both the C-Index and Point Biserial Correlation indicated the 

same solution as optimal in the original analysis and all subset analyses. This 

provided strong support in each analysis for the particular cluster solution being 

optimal. It also provided support for the findings of Milligan and Cooper (1985) who 

reported that these methods were considered strong (C-Index = 3rd; Point Biserial 

Correlation = 7th of 30 methods). As they were always in agreement, and as the 

cluster solution indicated was strongly validated, this would support these techniques 

as being good indicators of the optimal number of clusters in the data. 

 

An interesting aspect of this analysis was that for all analyses (original and three 

replication subsets), the stepwise method (agglomerative schedule) indicated the same 

number of clusters as optimal as the Point Biserial Correlation and C-Index calculated 

on non-hierarchical data. Milligan and Cooper (1985) ranked stepwise method only 

11th of the 30 tested and described it as ‘mediocre’. However, in this study, the 

stepwise method performed similarly to the stronger statistical tests used. While 

generalisation of this finding is limited as the number of analyses performed was low 

(N = 4) and all used the same data set (or subset of the data set), it does highlight 

differences in performance that might occur with different types of data, as noted by a 

number of authors (e.g. Everitt, 1979; Milligan and Cooper, 1985; Hair et al., 1995). 

In the case of this analysis, the use of the agglomerative schedule would have resulted 

in the same cluster solution (note: the 4-cluster solution was indicated as optimal 
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using hierarchical as well as non-hierarchical data by both C-index and Point Biserial 

Correlation). 

 

One aspect of the cluster analysis process in this study differed from that used in the 

literature (e.g. Hair et al., 1995; Milligan and Cooper, 1985). For this study, statistical 

indices to determine the number of clusters were applied to non-hierarchical data. 

Other studies have applied the tests on the hierarchical data, determined the optimal 

cluster solution, and then recalculated only this solution non-hierarchically. In this 

study, all solutions below a reasonable cut-off (e.g. 11-cluster to 2-cluster solutions) 

were reanalysed non-hierarchically and then statistical tests were applied to the non-

hierarchical cluster solutions to determine which was optimal. This seemed to be a 

better approach as the non-hierarchical process eliminates nesting by reclassifying 

cases better and therefore altering the cluster structure. The altered cluster structure 

could produce different results for the statistical tests and may lead to a different 

cluster solution indicated as optimal. 

 

To assess if it was more appropriate to evaluate the optimal solution (number of 

clusters) on hierarchical data or non-hierarchical data, C-Index and Point Biserial 

Correlation were applied to both. The results of the comparison for Point Biserial 

Correlation are reported in table 4.28. As can be noted, the optimal cluster solution 

indicated by each test was the same for hierarchical cluster data and non-hierarchical 

data. Although not reported here, similar results were evident in all subset analyses 

and with C-Index. As both processes provided the same result, either could have been 

used for this data. With the extra analysis required to evaluate all non-hierarchical 

cluster group means, application of tests to the hierarchical data would have been 
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more efficient. However, the theoretical considerations expressed in the previous 

paragraph may still hold for different data and application of statistical tests to the 

non-hierarchical data would seem to be the safer option. 

 

Table 4.28: Point Biserial Correlation coefficients calculated on hierarchical and 
non-hierarchical cluster data 

 
 11 10 9 8 7 6 5 4 3 2 
Hierarchical data  0.48 0.55 0.55 0.55 0.56 0.56 0.5655 0.5660 0.55 0.51 
Non-Hierarchical data  0.47 0.52 0.52 0.54 0.58 0.58 0.621 0.622 0.61 0.58 

 

 

Another point of note from table 4.28 was the similarity between the 4-cluster and 5-

cluster solutions for the Point Biserial Correlation. This indicated that either solution 

might have been appropriate. However the only difference between the 5-cluster and 

4-cluster solutions was that two ‘outlying’ golfers who had remained as clusters of N 

= 1 (i.e. had not clustered with other golfers), combined together to form a cluster of 

N = 2 and did not affect the larger groups in the analysis. As such, either solution 

would have resulted in the same conclusions as this small group did not pass validity 

tests. 

 

 

4.4.6.2 Hierarchical – non-hierarchical process 

 

Point Biserial Correlation results showed stronger effects in the non-hierarchical data 

in the lower cluster solutions and importantly the optimal solution compared with 

hierarchical data (refer table 4.28). This indicated that the non-hierarchical process 

improved the recovery of the underlying cluster structure (i.e. cases were classified 



 148
 

more appropriately). This improvement provides support for the use of the 

hierarchical – non-hierarchical approach recommended by Milligan (1996). 

 

Seven golfers changed clusters from the hierarchical process to the non-hierarchical 

process. While five of these clustered more appropriately in the final solution, the 

remaining two golfers provided interesting data that is worthy of highlighting. Figure 

4.22 shows the two golfers along with the final group means for the Front Foot  

group and the Reverse group. Golfer 1 changed from the Front Foot group to the 

Reverse group and Golfer 2 changed from the Reverse group to the Front Foot group. 
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Figure 4.22: Golfers exhibiting unusual weight transfer patterns 

 

The two golfers in figure 4.22 showed similarities with both the Front Foot and 

Reverse groups. For Golfer 1, while the overall pattern looks more similar to the 

Reverse group, particularly in downswing, the CPy% magnitudes are more similar to 

the Front Foot group. This golfer was referred to in section 4.4.5 as clustering in the 

Front Foot group if Fz% was used compared to the Reverse group when CPy% was 

used. On a practical level, this golfer might be considered part of the Reverse Group 
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who moves too far forward or a Front Foot golfer who moves forward too early. For 

Golfer 2, CPy% magnitudes are more similar to the Reverse group in downswing but 

the pattern looks more similar to the Front Foot group. In practical terms this might 

suggest that this golfer is a Front Foot golfer that does not shift the weight forward 

enough (scaling error) or a Reverse golfer who does not rapidly shift the weight 

forward at ED but who still ends up with weight at the desired (Reverse group) 

position at BC. While Golfer 2 possessed a high handicap (24), Golfer 1 was a low 

handicapper (2) so the unusual weight transfer patterns cannot necessarily be 

discounted as technical errors.  

 

On a practical level, these two golfers would have been difficult to classify for 

coaching. The analysis might require examination of more CP parameters or the use 

of kinematic analyses to better determine which style might be most appropriate for 

each golfer. Individual-based statistical analysis of each golfer’s performance would 

also allow for a more informed decision. However, with only N = 10 trials performed, 

not enough data existed for this evaluation. It should be noted that these golfers 

represented only 3% of the golfers tested. For 97% of golfers, cluster analysis 

allocated without ambiguity. 

 

A future direction which might be of use in respect to these golfers is fuzzy 

clustering. This method of clustering considers each case in terms of percentage 

membership rather than belonging to one cluster only (e.g. Chau, 2001). For these two 

golfers, this analysis would have provided information on how much these golfers 

belonged to each cluster group which could be used to determine how they might be 

coached, or in scientific terms, how they might be treated in the next stage of analysis 
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(i.e. which style they are allocated to, if any). Certainly, its use will introduce its own 

problems as more work would be required to evaluate what a 50:50 membership 

golfer should do – move to one particular style or continue to use some of both styles. 

However, the allocation of a golfer to one style might also hold problems particularly 

if they show attributes of both styles and the classification of these golfers into one or 

the other cluster would be based on marginal differences only. Also, irrespective of 

the information offered by fuzzy clustering (or any other method of classification) the 

results in this study using cluster analysis were valid and the method used was 

appropriate.  

 

 

4.4.6.3 Measure used in clustering data 

 

 

Golfer 2 in section 4.4.6.2 also highlighted another issue in cluster analysis – the 

choice of the measure used to assess differences between cases. While this study used 

the squared Euclidean distance measure, it may not have been the best measure for 

classifying golfer 1 and 2 in figure 4.22. For these golfers, more appropriate 

clustering may have been obtained by using the Pearson’s correlation measure, which 

clusters cases that are highly correlated (and so would cluster similar patterns rather 

than similar positions).  

 

To compare the squared Euclidean distance and Pearson’s correlation methods, 

clusters were reanalysed using both measures (4-cluster solution). Results indicated 

that both measures produced similar cluster structures. Cluster means differed only 
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slightly, as is evident in figure 4.23, which compares the two large groups for both 

analyses. Further, 85% of cases clustered into the same groups for each analysis (92% 

of the major groups reclassified). Of note, from section 4.4.6.2, golfer 1 remained in 

the Front Foot group but Golfer 2 changed to the Front Foot group from  

the Reverse group. Both Midstance Backswing Front Foot golfers also moved to the 

Front Foot group (hence, N = 60 is in the ‘correl’ series in figure 4.23). 
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Figure 4.23: Mean CPy% at eight swing events for the Front Foot and Reverse 
group from cluster analysis using the squared Euclidean distance measure (SE) 

and Pearson’s correlation (Correl) measure 
 

The measure used to cluster golfers in this study was considered prior to analysis. 

Both the squared Euclidean distance measure and correlation measure had advantages 

and disadvantages. While the correlation method was better for clustering golfers with 

similar patterns of weight transfer, it did so with no information on where the pattern 

existed in relation to the feet. Conversely, the squared Euclidean distance measure 

provided this information but was less robust for extracting similar patterns. The 

squared Euclidean distance measure was chosen as the coaching emphasis is on 

weight position and previous scientific literature had evaluated positions rather than 

patterns. Regardless, for 85% of cases, either method provided the same results (92% 
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of the large cluster cases) and group means for both the Front Foot and Reverse 

groups were very similar. As such, the two weight transfer styles would have been 

identified using either measure. This also provides further validation for the existence 

of the two styles, as both appeared using different measures.  

 

4.4.6.4 Validation 

 

4.4.6.4.1 POINT BISERIAL CORRELATION 

 

An interesting result was noted in Point Biserial Correlation validation. While r-

values varied, and the strongest of these was produced by the 4-cluster solution, all of 

the Point Biserial Correlations for different cluster solutions were significant at p < 

0.001 for both the original and replication analyses. This suggested a lack of 

sensitivity to different cluster structures or a very similar clustering arrangement 

between cases for all clusters (and therefore similar Point Biserial Correlation results). 

For example, the change from the 5-cluster to the 4-cluster solution was only two 

‘outliers’ clustering together which might be expected to affect the correlation less 

than if two large groups were clustered together. The very small change in r-value 

between these solutions indicates that this is the case. However a small change in r-

values (0.04) also existed between the 6-cluster and 5-cluster solutions. Given two 

large groups clustered between the 6-cluster and 5-cluster solutions, it might be 

expected to show a large change in r-value for the Point Biserial Correlation as the 

cluster solutions were considerably different. As such, the similarity between Point 

Biserial Correlation values for these two solutions was not due to a small change in 

clustering. Rather, it indicated that the measure was not sensitive to a large cluster 
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change at a late stage of clustering (i.e. in the last five cluster solutions moving from 

62 clusters to 2 clusters). Table 4.29 repeats the Point Biserial Correlation results for 

original and replication cluster analyses.  

 

Table 4.29: Point Biserial Correlation results for cluster analyses. 

 r-value for p=0.001 11 10 9 8 7 6 5 4 3 2 
N=62 0.41 0.47 0.52 0.52 0.54 0.58 0.58 0.621 0.622 0.61 0.58
Subset1 (N=41) 0.48     0.56 0.56 0.59 0.66 0.65 0.63
Subset 2 (N=41) 0.48      0.55 0.56 0.57 0.59 0.57
Subset 3 (N=41) 0.48       0.55 0.55 0.61 0.59
 

This is an important point for this cluster analysis. Point Biserial Correlation would 

have validated cluster solutions from the 10-cluster solution to the 2-cluster solution 

based on setting significance at p < 0.001 or effect size large (r > 0.50) for the 

original data. Also, all subset cluster solutions would have been validated. This being 

the case, a poor choice of cluster solution would not have been detected at the 

validation stage by Point Biserial Correlation (although a good analysis, as has been 

performed in this study, should not arrive at a poor solution at the validation stage). 

This highlights the importance of appropriate selection of the number of clusters in a 

cluster analysis. It also emphasises the need to use more than one technique to 

validate the solution as recommended by Milligan (1996).  

 

4.4.6.4.2 REPLICATION 

 

Replication subsets indicated that the larger groups (Front Foot and Reverse) were 

stable. All cases were reclassified into the same cluster as in the original analysis. 

That is, all Reverse group golfers were clustered together in each subset while all 
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Front Foot golfers were clustered together in each subset. Also, the patterns of weight 

transfer for the Front Foot and Reverse groups were evident in each subset, in spite of 

reduced numbers in each group. If a pattern is unstable, then a reduced N forming the 

group means might be expected to alter the pattern. This was not the case in this 

analysis for either the Front Foot or the Reverse group. 

 

Replication subsets indicated that neither of the two small groups was stable. The 

Extreme Back Foot Reverse group appeared in two of three subset analyses while the 

Midstance backswing Front Foot group appeared in only one subset analysis. This 

supported other evidence that these groups were not valid; the small size of the 

cluster, the late clustering (7-cluster and 5-cluster solutions) of the two cases and the 

fact that they were composed of high handicap or social golfers. 

 

While the results for the small groups can be interpreted as being unstable (and based 

on the criteria set they should be), it needs to be considered in light of what happens 

to small groups in replication analysis. While a useful validation method, replication 

disadvantages small clusters. For example, using the Extreme Back Foot Reverse 

group (N = 2), there was an 89% chance that at least one of the two golfers would be 

chosen in a sample of two thirds of the original sample [2/3 chance that golfer 1 will 

be selected + 2/3 chance that golfer 2 will be selected – 4/9 (chance that both are 

chosen) = 8/9 = 89%]. However there is only 44% chance that both will be chosen. 

With only N = 2 some instability of the mean can be expected, even for valid groups. 

Hence the removal of one of the two cases can alter the group mean considerably – 

enough to move the golfer to another cluster and hence not form the original cluster. 

While this is the strength of the reclassification procedure as more disparate groups 
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are less likely to reclassify, the effect will be more pronounced on smaller groups 

compared with larger groups and so a limitation of the method exists. While a better 

method of replication might be bootstrapping to generate a large number of datasets 

(N = 1000 compared with only three in this study), this is not realistic due to the 

amount of work required. Also, as cluster analysis is heuristic in nature (Milligan, 

1996), researcher input is required at different stages of the analysis, limiting 

automation. It should be noted that if the small cluster was represented in 89% of 

bootstrap subsets, it would still be outside the likely significance levels that might be 

set (e.g. appeared in 95% of analyses, p < 0.05).  

 

Small groups (i.e. N = 1 or 2) might be outliers or might represent valid clusters that 

represent only a small percentage of the population or that have been under-sampled 

in the study. As such, a negative replication result should not on its own discount the 

cluster. Rather, other aspects, such as theoretical assessment of the groups, are also 

required to assess the validity of small clusters. While the small cluster cannot be 

considered robust for that particular study if it does not appear in replication analysis, 

it does still exist. As such, discounting a small cluster needs to be supported by strong 

theoretical arguments. It was for this reason that replication, other validity tests, 

clustering issues and theoretical assessment were all considered in making the 

decision that the small clusters in this study were technical errors rather than a valid 

and unique technique/styles (see section 4.4.4). 
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4.4.6.5 Leave-one-out reclassification 

 

Both large groups passed ‘leave-one-out’ reclassification, with 100% success. All 

Front Foot golfers were reclassified into the Front Foot group and all Reverse golfers 

were reclassified into the Reverse group. This supported the validity of the two large 

clusters. 

 

Both the Midstance Backswing Front Foot group and the Extreme Back Foot Reverse 

group failed ‘leave-one-out’ reclassification. This provided support for these clusters 

being invalid, or outliers. However, similar limitations exist for the ‘leave-one-out’ 

reclassification method as for the replication method; large groups tend to be 

advantaged and small groups tend to be disadvantaged. The removal of one case from 

a small group is more likely to change the group means more considerably than the 

removal of one case from a large group. This being the case, it is more likely that 

small groups will fail the leave-one-out classification procedure. As for replication, 

the validation results for leave-one-out classification need to be considered along with 

other indicators as well as a strong theoretical basis for including or discounting the 

cluster as a valid ad useful technique. 
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4.5  CONCLUSIONS 

 
The main and most important conclusion of this study is two different styles exist in 

the weight transfer profile in the golf swing. In this study, two major groups were 

identified by cluster analysis; named as the Front Foot group and the Reverse group. 

The Front Foot group began the swing from a balanced position, moved the weight 

towards the back foot in backswing, rapidly forward in early downswing and 

continued towards the front foot through ball contact. The Reverse group was similar 

to the Front Foot group in backswing and early downswing swing events. However 

from early downswing the forward movement of weight stopped and began to move 

towards the back foot through ball contact. Both groups included professional or elite 

amateur golfers and no difference existed in Club Velocity at ball contact or Handicap 

indicating neither technique was a technical error. 

 

A number of differences existed between the Front Foot and Reverse style of swing. 

CPy% at swing events near ball contact differed significantly, with the Front Foot 

group positioning CPy% nearer the front foot in mid downswing (76% compared to 

66% for the Reverse group), ball contact (81% compared to 53%) and mid follow 

through (80% compared to 43%). CPy velocity differed significantly at early 

downswing (Front Foot = 1.1 m.s-1, Reverse = 0.6 m.s-1), mid downswing (Front Foot 

= 0.9 m.s-1, Reverse = -0.6 m.s-1) and ball contact (Front Foot = 0.5 m.s-1, Reverse = -

1.2 m.s-1). The Front Foot group also achieved a significantly smaller minimum 

CPy% position (i.e. further towards the back foot, 13% compared to 18%) and a 

significantly larger maximum CPy% position (i.e. further towards the front foot, 87% 

compared with 69%). Maximum CPy% position occurred later in the swing for the 
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Front Foot group (0.01 s after ball contact for the Front Foot group compared to 0.23 

s before ball contact for the Reverse group). The Front Foot group also exhibited a 

greater overall range of weight transfer in absolute and relative terms (0.36 m and 

75% compared to 0.27 m and 51%). No difference existed between groups for age, 

handicap, height or weight. 

 

Cluster analysis has been instrumental in identifying these styles. The cluster solution 

was validated by a number of different methods. Significant differences existed 

between styles for internal (CPy% at eight swing events) and external (range, CP 

velocity at swing events, maximum and minimum CP values) parameters. Point 

Biserial Correlation was significant at p < 0.001 indicating the groups were 

significantly different. Replication procedures of two-thirds sample re-analysis and 

leave-one-out classification indicated the solution was robust. A number of important 

methodological points were evident in the cluster analysis such as the need to use two 

or more tests to indicate the number of clusters and to validate the solution. 

 

There are a number of useful future directions for this research. Most importantly, this 

study needs to be repeated with kinematic data to assist in better defining the 

mechanisms underlying the two techniques identified in this study. The inclusion of 

anthropometric measures might also identify if the different styles have a basis in 

different body types. Assessment of a larger number of golfers would be appropriate 

to identify if more than two styles exist. Finally, the use of other methods such as 

fuzzy clustering and neural networks could also hold useful information in identifying 

styles and assessing which style might be appropriate for individual golfers.  
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CHAPTER 5 

 

STUDY 2 

 

CENTRE OF PRESSURE IN THE GOLF 

SWING: GROUP-BASED ANALYSIS 
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5.1   AIMS 

 

 

5.1.1  General 

 

1. To examine the relationship between weight transfer and performance in the 

golf swing on a group basis within different weight transfer styles. 

 

 

5.1.2 Specific 

 

1. To correlate CPy parameters with Club Velocity for the Front Foot group. 

2. To determine the most influential CPy parameters in predicting Club Velocity 

using multiple regression for the Front Foot group. 

3. To correlate CPy parameters with Club Velocity for the Reverse group. 

4. To determine the most influential CPy parameters in predicting Club Velocity 

using multiple regression for the Reverse group. 
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5.2  METHODS 

 

Golfers were analysed within the cluster groups identified in study 1 (the Front Foot 

group, N = 39, and the Reverse group, N = 19) and using data obtained in study 1 (CP 

parameters, Club Velocity, etc.). As the other two smaller clusters were considered to 

be due to technical errors rather than valid techniques, they are not analysed further 

here.  

 

 

5.2.1  Parameters 

 

 

Parameters used in Study 2 are reported in table 5.1. Figure 5.1 represents the swing 

events used in this study (provided in study 1 and repeated here).  
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Table 5.1: Parameters used in Study 2 to assess the relationship between CP and 
Club Velocity in the golf swing 

 
Performance  
Club Velocity Immediately before ball contact (m.s-1) 
Descriptive  
Handicap  
Age Years (yr) 
Height  m 
Mass kg 
CP Displacement  
At each swing event Relative to the distance between the feet (%) 
CPy%TA  
CPy%MB  
CPy%LB  
CPy%TB  
CPy%ED  
CPy%MD  
CPy%BC  
CPy%MF  
CPy Velocity  
At each swing event Instantaneous velocity (m.s-1) 
VelCPyTA  
VelCPyMB  
VelCPyLB  
VelCPyTB  
VelCPyED  
VelCPyMD  
VelCPyBC  
VelCPyMF  
Other CP parameters  
VMaxCPy Maximum CPy Velocity (m.s-1)
tVMaxCPy Time of VMaxCPy relative to ball contact (s)
MaxCPy% Maximum CPy% - furthest position towards front foot (%) 
tMaxCPy% Time of MaxCPy% relative to ball contact (s)
MinCPy% Minimum CPy% - furthest position towards back foot (%) 
tMinCPy% Time of MinCPy% - relative to ball contact (s)
CPyR CPy Range in metres (Maximum CPy – Minimum CPy) 
CPyR% CPy Range in % (MaxCPy% - MinCPy%)

 

 

Figure 5.1: Golf swing events used in this study 
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5.2.2  Statistical analysis 

 

 

5.2.2.1  Relationship between weight transfer and performance 

 

 

5.2.2.1.1 CORRELATION ANALYSIS 

 

To examine the relationship between weight transfer (as indicated by CP parameters) 

and performance (as indicated by club velocity at the instant before ball contact), 

linear correlations were performed on data within cluster groups (i.e. the Front Foot 

group and the Reverse group). As Age was found to correlate with Club Velocity 

within both cluster groups, partial correlations controlling for Age were performed 

using SPSS 10.0. 

 

Bootstrapping techniques, as outlined by Zhu (1997), were used to establish a 95% 

confidence level for each correlation. Briefly, this process resamples the existing data 

to form 1000 datasets with the same N, calculates r-values for each resampled dataset 

and determines the 25th and 975th ranked r-value to establish a 95% confidence 

interval. Using the Reverse group Club Velocity - CPyR relationship to illustrate this 

process, a bootstrap dataset would be formed by randomly selecting N = 19 golfers 

from the original N = 19 data. This was performed with replacement which means the 

selection of each datapoint is made from all N = 19 golfers (i.e. the same golfer could 

be in the dataset more than once). The correlation coefficient between Club Velocity 

and CPyR was then calculated for the newly formed bootstrap dataset of N = 19 



 

 

164

golfers. This process was repeated until 1000 datasets were formed and 1000 r-values 

calculated. The correlation coefficients were then sorted in ascending order and the 

25th and 975th (2.5% and 97.5%) values were identified to define the 95% confidence 

limit. The upper and lower limits were considered in analysis of confidence levels to 

indicate the likely range of correlations that might exist. If these levels crossed zero 

then the effect was deemed not significant (Hopkins, 1999). 

 

Based on visual inspection of histograms, this researcher was concerned that the 

assumption of normality may be violated in some parameters. To avoid possible 

problems with non-normal data, the ‘computer intensive method’ outlined by Aron 

and Aron (1999) was used (also used in ANOVA in study 1 and termed “within-

dataset distribution” for this study). Using the Reverse group Club Velocity – CPyR 

relationship as an example, a dataset was formed by randomly selecting a Club 

Velocity measure from any of the Reverse golfers tested and pairing it with a 

randomly selected CPyR measure from any of the Reverse golfers tested (e.g. a Club 

Velocity from Golfer A might be paired with a CPyR from Golfer F). This was 

repeated (with replacement) until N = 19 data pairs were obtained and a partial 

correlation controlling for Age was performed on the new dataset. This process was 

repeated until 1000 datasets (and 1000 r-values) were formed. These were sorted in 

ascending order and the outer 2.5% (25th or 975th) value and 0.5% (5th or 995th) value 

were determined. These values relate to a two tailed alpha level of p = 0.05 and p = 

0.01. If the original r-value lay outside of these outer values (i.e. from 1-24 or from 

976 to 1000), then this supports the relationship being a true rather than a random 

effect due to non-normal data. This process differs from the confidence level 

determination outlined in the previous paragraph in that the parameters are randomly 
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paired together. In the confidence level process, the Club Velocity and CPyR values 

for any golfer remain together. 

 

Due to the large number of correlations performed, an alpha level of p = 0.01 was set 

to indicate significant analyses. It was felt by this researcher that the p = 0.01 level 

was reasonable balance between reduction of the conventional p = 0.05 to avoid type 

1 errors (as one in 20 tests could be a chance significant finding) and Bonferroni 

adjustment, which would have been severe on the alpha level (to gain significance, p 

< 0.0001 would have been required) and increase the chance of a type 2 error. As 

there was no strong theoretical basis that could be formed from the literature as to 

which parameters should be chosen (and in fact the increased number of swing events 

used was to rectify what this researcher saw as a limitation of previous studies), the 

use of large numbers of parameters was warranted, as there was a need for a greater 

emphasis on exploratory work. Confidence levels also formed part of the assessment 

of significance. 

 

Effect sizes were considered to be very important in this analysis, particularly as 

group sizes were unequal (i.e. a small effect might be significant for the Front Foot 

group but not the Reverse group). The attention to effect sizes also assisted in 

stronger interpretation compared to relying on p-values as the only method of 

identifying important parameters. To assess effect sizes in the correlation analysis, the 

scale presented by Cohen (1988) was used (table 5.2). The category “Practically No 

Effect” was added by this researcher to define r-values less than 0.2. This level was 

not defined by Cohen. Hopkins (2002) suggested a similar scale with more intervals 

and suggested that r < 0.2 could be considered a ‘very small effect’ and r < 0.1 could 
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be considered ‘practically no effect’. As the subject numbers in this study were 

relatively low, the larger r = 0.2 was considered a more appropriate definition for 

‘practically no effect’.  

 

Table 5.2: Effect size categories for correlation and regression analysis 

r-value Effect size 
Greater than 0.5 Large Effect 
0.3 to 0.5 Medium Effect 
0.2 to 0.3 Small Effect 
Less than 0.2 Practically No Effect 

 

 

For all analyses, two dimensional (Club Velocity – CP parameter, Age – CP 

Parameter, Club Velocity – Age) scatterplots were examined to screen for outliers, 

grouping effects or other abnormalities and to visually assess each relationship. It 

should be noted that while two dimensional scatterplots were reasonable indicators of 

the relationships being examined, there is no true graphical representation of partial 

correlations. Where appropriate, two dimensional scatterplots have been presented in 

discussion to indicate relationships but the limitations mentioned here need to be 

considered when viewing. 

 

5.2.2.1.2 MULTIPLE REGRESSION ANALYSIS 

 

5.2.2.1.2.1 Cluster analysis to reduce the number of CP parameters 

 

Due to lower than planned N in this study and the further reduction due to styles being 

present in the data, the number of parameters used in multiple regression needed to be 

reduced. To achieve the parameter:case ratio (number of parameters compared with 
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the number of cases or golfers in this study) of 1:5 recommended by Tabachnick and 

Fidell (1996) as a minimum requirement, cluster analysis was performed (using 

parameters rather than golfers as in study 1). 

 

Cluster analysis was performed using the same process as described in study 1 but 

with four differences in this process: 

 

1. Clustering grouped similar parameters together rather than similar golfers.  

2. The Pearson’s correlation measure was used, rather than the squared Euclidean 

distance measure, as it operates independently of measurement scales 

(different scales were used for the different parameters, e.g. CPy%: 1-100, 

CPy Velocity: approximately -5 – 5 m.s-1). 

3. Validation of the solution included Point Biserial Correlation as well as cross 

correlations. Correlations between parameters within and between the cluster 

groups were visually inspected. A valid solution returned high correlations 

between parameters within a cluster and low correlations between parameters 

in different clusters. As the aim of the analysis was to reduce the number of 

clusters rather than identify a result that was generalisable outside of this 

study, no replication was performed.  

4. The maximum number of clusters was predetermined by the N in each group 

(i.e. seven for the Front Foot group and three for the Reverse group so the 1:5 

ratio was achieved). The optimal solution was chosen as the strongest Point 

Biserial Correlation and C-Index within these constraints.  
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Once the clusters were formed, one CP parameter was chosen from each cluster for 

use in regression analysis.  This was based on two levels of decision-making: 

 

1. Strongest partial correlation with Club Velocity (controlling for Age). 

2. Indicated as significant in previous research (if correlations were similar 

between parameters and Club Velocity). 

 

Two other methods for parameter reduction were considered along with cluster 

analysis but were discounted on statistical and theoretical grounds. First, factor 

analysis was applied to the data but failed diagnostic tests (Kaiser-Meyer-Olkin and 

Bartlett's test of sphericity < 0.6) indicating it was inappropriate for use with this data. 

Second, limiting CP parameters to those that were significantly correlated with Club 

Velocity was also considered and performed in pilot work. However, it was felt that it 

would be more useful to include parameters that did not necessarily correlate 

significantly with Club Velocity but might contribute significantly with other 

parameters in the regression predicting Club Velocity. Given it was the first time 

styles had been examined and that regression analyses have not been performed on 

weight transfer data previously, this represented exploratory work. As such, 

increasing rather than decreasing the number of parameters, within the statistical 

recommendations for case:parameter ratios, was appropriate. 

 

5.2.2.1.2.2 Best subsets regression 

 

Once the parameters for use in regression analysis were chosen, a best subsets 

regression was applied to the data (Minitab 11). Best subsets regression uses a 
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combination of Mallow’s Cp (total square error) and Best Multiple R2 assessment, as 

recommended by Daniel and Wood (1980) to determine the ‘best’ regression equation 

for the data. Briefly, a regression equation was calculated for all possible 

combinations of independent variables (Age was included in all) along with the total 

square error (Cp) for the regression. The combination of parameters chosen to 

represent the best subset regression was based on the largest R2 value for the smallest 

Cp (error) value. Tabachnick and Fidell (1996) recommend this approach if the 

parameter:case ratio is low (discussed in section 5.2.2.1.2.1). This process has been 

used in previous sports biomechanics applications (e.g. Ball et al., 2003a; Ball et al., 

2003b) and is explained in more detail in Results section 5.3.1.2.  

 

5.2.2.1.2.3 Full regression 

 

Once the best subset regression was chosen, a full standard linear regression analysis 

was performed in SPSS 10. The need to perform both Best Subsets and Full 

Regression was due to the limited output of data from the Best Subsets regression. 

While Best Subset identified the best regression for a given set of data and outputs 

overall R2 and error values, it does not output information such as change in R2 for 

individual parameters in the regression. As such, the use of full regression was not a 

separate analysis from Best Subsets. Rather it was a repetition of the same analysis 

using software that would output more information.  

 

As Age was strongly correlated with Club Velocity, it was included in the first block 

in each regression calculation. The first block refers to the process where Age is 

entered into the regression first and without any other parameter (to eliminate the 
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effects of Age on the analysis prior to examining CPy – Club Velocity). CP 

parameters were included in the next block. To assess the importance of individual 

CPy parameters, change in R2 and p-values for each CPy parameter were examined. 

The effects of Age on this analysis are discussed in section 5.4.1.4.1. 

To examine the robustness of the regression, a subset analysis was performed, where a 

randomly drawn sub-sample of two-thirds of the original sample (i.e. N = 28 for the 

Front Foot group and N = 12 for the Reverse group) was re-analysed. This was an 

adaptation of the method suggested by Tabachnick and Fidell (1996) where the 

sample is halved and the regression analysis repeated on both halves. Due to low N, 

analysis of a two-thirds subset, as used by Hodge and Petlichkoff (2000) for cluster 

analysis and used in study 1, was considered more appropriate for this study. For a 

parameter (and regression) to be considered robust it should be significant in the 

subset analysis as well as the original analysis.  

 

5.2.2.1.2.4 Outliers 

 

The data were screened for outliers and influential cases throughout the regression 

analysis. This was performed on three levels – univariate (z-scores), bivariate 

(scatterplots) and multivariate (residual analysis and Difference in fit – DFit).  

 

Prior to best subsets analysis, univariate and bivariate outliers were examined. To 

identify univariate outliers, z-scores were examined within each parameter. A case 

with a z-score greater than 3.29 (p < 0.001; recommended by Tabachnick and Fidell, 

1996) was considered an outlier. Bivariate outliers were assessed subjectively from 
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visual inspection of scatterplots (as performed for correlation analysis, section 

5.2.2.1.1).  

 

After the best subsets regression and prior to the full standard regression analysis, the 

selected parameters were included in screening for multivariate outliers using 

Mahalanobis distance. A level of p < 0.001 was set as the cut-off for detecting 

multivariate outliers as recommended by Tabachnick and Fidell (1996). As this cut-

off is different for analyses with different numbers of independent variables, the exact 

cut-off value is reported in the relevant Results section. 

 

At the completion of the full regression, influential observations (i.e. observations 

with a notable influence on the R2 value) were assessed. This was performed using 

two diagnostic tests. Residuals were examined for each case with a residual value of 

greater than two considered an outlier (Pedhazur, 1997). DFit, the standardized 

difference in predicted value with that case removed, was also examined. Cases with a 

larger DFit influence R2 values more substantially and need to be examined further 

(DFit > 1 considered influential, Pedhazur, 1997). This assessment identified cases 

that either increased or decreased the R2 result substantially. 

 

Where outliers or influential cases existed, the analysis was performed with these 

cases removed to examine their influence on the result. 

 

Examples of the use of these screening methods are presented in Results section 

5.3.1.2. 
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5.3   RESULTS 

 

5.3.1   Performance and CP parameters 

 

Table 5.3 reports means and standard deviations for all parameters. Some of these 

data have already been discussed in Study 1 but are repeated here for easier reference. 

 
Table 5.3: Means and standard deviations for all parameters for the Front Foot 

group (N = 39) and Reverse group (N = 19) 
 

 Front Foot group (N = 39) Reverse group (N = 19) 
 Mean SD Mean SD 

Performance     
Club Velocity (m.s-1) 44.1 3.9 44.1 4.9 
Descriptive   
Handicap 11 7 10 9 
Age (years) 31.9 12.6 38.1 15.3 
Height (m) 1.80 0.06 1.81 0.07 
Weight (kg) 80.4 8.6 83.3 10.0 
CP Displacement (% between the feet)   
CPy%TA 57 5 56 5 
CPy%MB 25 11 30 8 
CPy%LB 19 11 25 9 
CPy%TB 21 9 26 13 
CPy%ED 64 12 61 13 
CPy%MD 76 5 62 10 
CPy%BC 81 11 53 12 
CPy%MF 80 11 41 13 
CPy Velocity (m.s-1)   
VelCPyTA 0.1 0.3 0.0 0.2 
VelCPyMB -0.3 0.2 -0.4 0.3 
VelCPyLB 0.0 0.3 0.0 0.3 
VelCPyTB 0.3 0.5 0.1 0.4 
VelCPyED 1.1 0.7 0.6 0.9 
VelCPyMD 0.9 0.8 -0.6 1.1 
VelCPyBC 0.5 0.9 -1.2 1.1 
VelCPyMF -0.3 0.8 -0.3 1.1 
Other CP parameters   
VMaxCPy (m.s-1) 2.5 0.7 2.5 0.9 
tVMaxCPy (s) -0.14 0.05 -0.18 0.14 
MaxCPy% (% between the feet) 87 9 69 9 
tMaxCPy% (s) 0.01 0.05 -0.23 0.24 
MinCPy% (% between the feet) 13 7 18 8 
tMinCPy% (s) -0.42 0.12 -0.41 0.21 
CPyR (m) 0.36 0.07 0.27 0.08 
CPyR% (% between the feet) 75 11 51 12 
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5.3.2   Handicap, Age, Height and Mass 

 

Table 5.4 presents the results of correlations between Club Velocity and Handicap, 

Age, Height and Mass. 

 

Table 5.4: Correlations between Club Velocity and Handicap, Age, Height and 
Mass for the Front Foot group (N = 39) and Reverse group (N = 19). 

 

  Front Foot group (N = 39) Reverse group (N = 19) 
  Handicap Age Height Mass Handicap Age Height Mass 

 r -0.65 -0.59 0.16 -0.14 -0.72 -0.80 0.25 0.14 
 p  <0.001 <0.001 0.333 0.39 0.001 <0.001 0.324 0.569 

2.50% -0.77 -0.75 -0.12 -0.41 -0.83 -0.88 -0.10 -0.18 Confidence 
limits 97.50% -0.53 -0.36 0.39 0.18 -0.60 -0.71 0.55 0.40 

p=.05 -0.35 -0.30 0.44 -0.41 -0.50 -0.52 0.55 0.56 Within-
dataset 

distribution p=.01 -0.44 -0.42 -0.55 -0.50 -0.66 -0.63 0.68 0.66 
 

 

Large effects were evident between both Handicap and Age with Club Velocity for 

both the Front Foot and Reverse groups. Both results were in the upper 1% of values 

based on the within-dataset distribution indicating the significant correlation was not 

due to issues of non-normal data. While skill level was a desirable trait to include in 

the analysis, Age was not. Based on this correlation, partial correlations controlling 

for Age were performed for the remaining analyses. Height and Mass did not correlate 

with Club Velocity for either group, although a small effect was evident between Club 

Velocity and Height for the Reverse group. However the level of significance for this 

result was p = 0.324 only and as confidence interval crossed zero, no significant result 

was indicated. No outliers existed in these analyses. 
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5.3.3   CPy% at eight swing events 

 

Table 5.5 presents the results of partial correlations (controlling for age) between Club 

Velocity and CPy% values at eight swing events.  

 

Table 5.5: Partial correlations (controlling for age) between Club Velocity and 
CPy% at eight swing events for the Front Foot group (N = 39) and Reverse 

group (N = 19). 
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Front Foot group (N = 39)        
 r 0.07 -0.17 -0.09 -0.05 0.15 0.01 0.12 0.05 
 p 0.673 0.316 0.573 0.760 0.363 0.953 0.478 0.757 

2.50% -0.16 -0.42 -0.3 -0.29 -0.06 -0.22 -0.14 -0.22 Confidence 
Limits 97.50% 0.28 0.09 0.14 0.22 0.38 0.23 0.37 0.33 

p=.05 0.46 -0.47 -0.46 -0.45 0.44 0.45 0.44 0.48 Within 
Dataset 

Distribution p=.01 0.60 -0.58 -0.61 -0.61 0.54 0.56 0.56 0.62 
Reverse Group (N = 19)        

 r -0.03 0.17 0.44 0.02 0.55 0.28 -0.12 -0.58 
 p 0.902 0.524 0.06 0.951 0.023 0.278 0.642 0.015 

2.50% -0.26 -0.14 0.12 -0.27 0.34 0.04 -0.37 -0.84 Confidence 
Limits 97.50% 0.16 0.48 0.80 0.46 0.73 0.48 0.15 -0.31 

p=.05 -0.52 0.48 0.49 0.52 0.47 0.46 -0.51 -0.56 Within-
dataset 

distribution p=.01 -0.67 0.64 0.63 0.62 0.56 0.61 -0.60 -0.70 
Reverse Group with outliers removed (all N = 18)     

 r   0.75 0.40 0.46    
 p   0.001 0.120 0.073    

2.50%   0.57 0.18 0.22    
Confidence 

Limits 97.50%   0.92 0.59 0.69    
 N   18 18 18    

p=.05   0.56 0.48 0.57    Within-
dataset 

distribution p=.01   0.73 0.58 0.72    
Bold type = significant at p < 0.01 

 

For the Front Foot group, no correlations between Club Velocity and CPy% at eight 

swing events were significant. There were no r-values greater than 0.2 indicating 

practically no effect existed for any of the relationships examined. This was supported 



 

 

175

by all confidence levels crossing zero, indicating that no significant effects existed. 

No r-values crossed the p = 0.05 threshold for within-dataset distribution indicating 

the analysis was not affected by non-normal data. No outliers existed in these 

analyses. 

 

For the Reverse group, Club Velocity was not significantly correlated with CPy% at 

any of the eight events at p < 0.01. However, with an outlier (N = 1) removed from 

the partial correlation between CPy%LB and Club Velocity, a large significant effect 

was evident (r = 0.75 with a likely range of 0.57 to 0.92). As well, this result was 

placed in the upper 1% of the within-dataset distribution indicating the analysis was 

not influenced by non-normal data. Although not significant, large effects were 

indicated for CPy%ED and CPy%MF and confidence limits did not cross zero. The 

large effect between CPy%ED and Club Velocity was due to an outlier, although with 

it removed, the effect size remained medium and the likely range indicated that there 

was at least a small effect (r = 0.22 to 0.69). CPy%MF was strongly negatively 

correlated with Club Velocity (r = -0.58 with a likely range of -0.31 to -0.84). The r-

value was placed inside the upper 2.5% of the within-dataset distribution indicating 

the analysis was not influenced by non-normal data. A medium effect was evident 

between Club Velocity and CPy%TB with an outlier removed. Also, a small effect 

was evident between Club Velocity and CPy%MD. However, neither was significant. 

For the remaining two correlations (Club Velocity and CPy%BC, Club Velocity and 

CPy%TA) practically no effect existed. 
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5.3.4   CPy Velocity at eight swing events 

 

Table 5.6 presents the results of partial correlations (controlling for age) between Club 

Velocity and CPy velocity at eight swing events. 

 

Table 5.6: Partial correlations (controlling for age) between Club Velocity and 
CPy Velocity at eight swing events for the Front Foot group (N = 39) and 

Reverse group (N = 19). 
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Front Foot group (N = 39)        
 r -0.27 0.06 0.02 0.06 -0.25 0.24 0.09 -0.11 
 p 0.102 0.712 0.908 0.720 0.130 0.150 0.590 0.505 

2.50% -0.56 -0.15 -0.26 -0.15 -0.51 -0.04 -0.18 -0.36 Confidence 
Limits 97.50% -0.08 0.27 0.31 0.28 -0.06 0.51 0.36 0.18 

p=.05 -0.46 0.46 0.47 0.46 -0.46 0.43 0.45 -0.48 Within 
Dataset 

Distribution p=.01 -0.59 0.56 0.58 0.59 -0.55 0.58 0.54 -0.62 
Reverse Group (N = 19)        

 r -0.42 0.24 0.13 -0.14 -0.26 -0.40 -0.43 -0.35 
 p 0.093 0.357 0.608 0.601 0.316 0.113 0.082 0.173 

2.50% -0.66 -0.11 -0.1 -0.39 -0.45 -0.63 -0.73 -0.6 Confidence 
Limits 97.50% -0.2 0.46 0.41 0.07 -0.07 -0.12 -0.15 -0.15 

p=.05 -0.52 0.49 0.52 -0.5 -0.49 -0.51 -0.51 -0.53 Within-
dataset 

distribution p=.01 -0.64 0.56 0.61 -0.59 -0.64 -0.6 -0.66 -0.6 
Reverse Group with outliers removed (all N = 18)     
 r  -0.03     -0.69  
 p  0.922     0.003  

2.50%  -0.34     -0.87  Confidence 
Limits 97.50%  0.26     -0.5  

 N  18     18  
p=.05  0.53     -0.61  Within-

dataset 
distribution p=.01  0.62     -0.73  

Bold type = significant at p < 0.01 

 

For the Front Foot group, no partial correlations between CPy velocity measures and 

Club Velocity were significant at p < 0.01. Small effect sizes existed for VelCPyTA, 

VelCPyED and VelCPyMD but these were not significant. Further, the confidence 
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limits of VelCPyMD crossed zero, supporting no significant effect. Confidence levels 

did not cross zero for VelCPyED and VelCPyTA but lower confidence limits were 

near zero. No r-values crossed the p = 0.05 threshold for within-dataset distribution 

indicating the analysis was not affected by non-normal data. No outliers existed in 

these analyses. 

 

For the Reverse group, no partial correlations between CPy velocity measures and 

Club Velocity were significant at p < 0.01. However, with an outlier (N = 1) removed 

from the relationship between VelCPyBC and Club Velocity, a large significant effect 

was returned (r = -0.69 with a likely range of –0.50 to –0.87). Within-dataset 

distribution r-values indicated non-normal data did not influence this result. 

Although not significant, three correlations returned medium effects for the Reverse 

group. The relationship between Club Velocity and VelCPyTA returned a medium 

negative effect with confidence limits indicating a likely range from a small to a large 

effect and was significant at p = 0.092. The medium effects between Club Velocity 

and VelCPyMD and between Club Velocity and VelCPyMF were not as strong with 

confidence limits indicating a possible range from large to practically no effect.  

 

A small effect was evident between Club Velocity and VelCPyMB and between Club 

Velocity and VelCPyED for the Reverse group. However these were not significant 

and confidence limits crossed zero for VelCPyMB indicating no relationship. As well, 

the small effect between Club Velocity and VelCPyMB was due to an outlier and 

when removed, practically no effect existed. Practically no effect existed for the 

relationships between Club velocity and VelCPyLB and between Club Velocity and 

VelCPyTB. 
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5.3.5   Other CPy parameters 

 

Table 5.7 presents the results of partial correlations (controlling for age) between Club 

Velocity and other selected CPy parameters.  

 

Table 5.7: Partial correlations (controlling for age) between Club Velocity and 
other CPy parameters for the Front Foot (N = 39) and Reverse group (N = 19). 
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Front Foot group (N = 39)        
 r 0.46 -0.18 0.15 -0.04 -0.22 -0.12 0.53 0.28 
 p 0.004 0.287 0.367 0.828 0.182 0.47 0.001 0.087 

2.50% 0.20 -0.37 -0.10 -0.35 -0.44 -0.38 0.33 0.04 Confidence 
Limits 97.50% 0.66 0.04 0.37 0.21 0.03 0.18 0.68 0.51 

p=.05 0.33 -0.46 0.47 -0.45 -0.48 -0.47 0.33 0.44 Within Dataset 
Distribution p=.01 0.41 -0.54 0.56 -0.53 -0.58 -0.67 0.37 0.59 

Reverse Group (N = 19)        
 r 0.26 0.39 0.3 0.34 0.02 0.25 0.25 0.18 
 p 0.31 0.117 0.237 0.182 0.934 0.298 0.31 0.492 

2.50% 0.10 -0.17 0.06 0.06 -0.28 -0.11 -0.05 -0.11 Confidence 
Limits 97.50% 0.41 0.62 0.56 0.56 0.42 0.51 0.49 0.44 

p=.05 0.47 0.45 0.50 0.48 0.50 0.38 0.48 0.47 Within-dataset 
distribution p=.01 0.59 0.52 0.62 0.62 0.64 0.52 0.58 0.62 

Reverse Group with outliers removed (all N = 18)      
 r  -0.17 0.19 0.17 0.39    
 p  0.522 0.47 0.525 0.13    

2.50%  -0.48 -0.03 -0.21 0.09    Confidence 
Limits 97.50%  0.17 0.49 0.52 0.63    

 N  18 18 18 18    
p=.05  -0.55 0.52 0.52 0.55    Within-dataset 

distribution p=.01  -0.68 0.63 0.66 0.69    
Bold type = significant at p < 0.01 

 

For the Front Foot group, a large significant effect was evident between Club Velocity 

and CPyR and a medium significant effect was returned for the relationship between 

Velocity and VMaxCPy at p < 0.01. Both correlations were positive and confidence 

intervals ranged from medium to large for CPyR and from small to large for 
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VMaxCPy. As r-values were larger than the thresholds indicated by within-dataset 

distributions, correlations were not influenced by non-normal data. 

 

A small effect size was evident between Club Velocity and CPyR% (r = 0.28) for the 

Front Foot group. However, this was not significant and while upper confidence limits 

suggested the relationship might be large, the lower limits were near zero, suggesting 

no effect. A small non-significant effect also existed for the relationship between Club 

Velocity and MinCPy% (r = -0.22). However confidence levels crossed zero 

indicating no relationship. No significant results were evident for any of the remaining 

correlations and for all, confidence levels crossed zero. No outliers existed in this 

data. 

 

For the Reverse group, no correlations between Club Velocity and other CPy 

parameters were significant at p < 0.01, nor were there any large effect sizes. Three 

correlations returned medium effects (Club Velocity with tVMaxCPy, MaxCPy%, 

tMaxCPy%). However, all indicated no effect with an outlier removed. 

 

A medium effect size was evident between Club Velocity and MinCPy% with an 

outlier removed for the Reverse group. However, the effect was not and lower 

confidence levels indicated practically no effect. Small effects existed between Club 

Velocity and VMaxCPy, Club Velocity and CPyR and Club Velocity and tMinCPy 

although these were not significant and lower confidence limits indicated practically 

no effect. No effect existed between Club Velocity and CPyR%. 
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5.3.6   Multiple regression analysis: Front Foot group 

 

5.3.6.1  Cluster analysis to reduce the number of parameters 

 

The agglomerative schedule (table 5.8) and visual inspection of the dendrogram 

indicated that the largest jump in coefficients occurred at the 6-cluster solution for the 

clustering of CP parameters. 

 
Table 5.8: Selected sections of the agglomerative schedule for hierarchical cluster 

analysis of Front Foot group cases (N = 24 parameters). 
 

Stage 
Cluster 

Solution Coefficients 
Jump in 

Coefficient Stage 
Cluster 

Solution Coefficients 
Jump in 

Coefficient 
1 24 0.872 
2 23 0.816 -0.056 13 12 0.380 -0.056
3 22 0.788 -0.028 14 11 0.375 -0.005
4 21 0.746 -0.042 15 10 0.302 -0.073
5 20 0.722 -0.023 16 9 0.297 -0.005
6 19 0.677 -0.045 17 8 0.189 -0.108
7 18 0.625 -0.053 18 7 0.186 -0.003
8 17 0.594 -0.031 19 6 0.061 -0.125
9 16 0.588 -0.006 20 5 0.030 -0.031
10 15 0.484 -0.104 21 4 0.022 -0.008
11 14 0.440 -0.044 22 3 0.013 -0.008
12 13 0.436 -0.004 23 2 0.106 -0.093

 

The 2-cluster to 8-cluster solutions were re-analysed non-hierarchically and statistical 

tests applied to the non-hierarchical solutions to determine the optimal number of 

clusters (this process was detailed in study 1). Group means are not reported here.  

The 6-cluster solution was chosen for further analysis, as it was indicated as optimal 

by both the C-Index and Point Biserial Correlation (table 5.9). 

 
Table 5.9: Point Biserial Correlation and C-Index data for each solution for the 

Front Foot group (N = 24 parameters). Optimal value for each test in bold. 
 

 8 7 6 5 4 3 2 
Point Biserial Correlation -0.61 -0.62 -0.63 -0.57 -0.53 -0.49 -0.39 
C Index 1.51 1.62 1.67 1.56 1.18 1.17 1.00 

Note: For Point Biserial Correlation, the largest negative value is associated with the optimal solution when using the Pearson’s 
correlation measure in cluster analysis. 

 



 

 

181

Table 5.10 reports the CP parameter clusters for the 6-cluster solution. The parameter 

chosen from the cluster group and the basis for this choice is also reported.  

 

Table 5.10: Cluster groups for the 6-cluster solution for the Front Foot group 
with the parameter chosen and the basis for the choice. 

 
Cluster   Partial Correlation with 

Club Velocity Selected parameter Basis of selection 

1 CPy%TA 0.07   

1 VelCPyTB 0.06 CPy%TA Strongest partial correlation with Club Velocity 

     

2 VelCPyMF -0.11 VelCPyMF Only parameter in cluster 

     

3 VelCPyMB 0.06   

3 CPy%MB -0.17   

3 CPy%LB -0.09 MinCPy% Strongest partial correlation with Club Velocity 

3 MinCPy% -0.22   

3 tMinCPy -0.12   

     
4 CPy%TB -0.05 CPy%TB Strongest partial correlation with Club Velocity 
4 VelCPyLB 0.02   

     

5 CPy%ED 0.15   

5 CPy%MD 0.01   

5 CPy%BC 0.12   

5 CPy%MF 0.05 CPyR Strongest partial correlation with Club Velocity 

5 VMaxCPy 0.46   

5 MaxCPy% 0.15   

5 CPyR 0.53   

5 CPyR% 0.28   

     

6 VelCPyTA -0.27   

6 VelCPyED -0.25  Second strongest partial correlation with Club Velocity 

6 VelCPyMD 0.24 VelCPyED  

6 VelCPyBC 0.09  Chosen as similar parameter important in previous research  

6 tVMaxCPy -0.18  (Robinson, 1994) 

6 tMaxCPy -0.04   
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Cross correlation analysis is presented in table 5.11 with clustered parameters indicted 

by boxes. All CP parameters with the exception of VelCPyTB produced the strongest 

bivariate correlation with another CP parameter within the same cluster and not with a 

CP parameter in another cluster. As well, most parameters were correlated with at 

least one other parameter within the cluster group at p < 0.05 (r > 0.4). VelCPyTB 

correlated more strongly with CPy%MB, which existed in another cluster. However, 

VelCPyTB would not have been chosen from either cluster as the partial correlation 

with Club Velocity was lower than other parameters in both clusters. 

 



Table 5.11: Cross correlations between parameters for the Front Foot group  
(boxes indicate clustered parameters, r > 0.4, p < 0.05 reported). 
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CPy%TA 1                        
VelCPyTB 0.58 1                       
VelCPyMF . . 1                      
VelCPyMB . 0.56 . 1                     
CPy%MB . 0.66 . 0.72 1                    
CPy%LB . 0.51 . 0.53 0.66 1                   
MinCPy% . . . 0.65 0.50 . 1                  
tMinCPy . . . . . 0.54 . 1                 
CPy%TB . . . . . . . 0.48 1                
VelCPyLB . . . . 0.48 . . . 0.52 1               
CPy%MD . . . . . . . . . . 1              
CPy%MB . . . . . . . . . . 0.79 1             
CPy%BC . . 0.45 . . . . . . . 0.53 0.71 1            
CPy%MF . . . . . . . . . . . . 0.61 1           
VMaxCPy . . . . . . . . . . . . . . 1          
MaxCPy% . . . . . . . . . . 0.49 0.65 0.87 0.84 . 1         
CPyR . . . . . . . . . . . . 0.55 0.52 0.54 0.63 1        
CPyR% . . . . . 0.52 . . . . . 0.51 0.65 0.66 . 0.74 0.75 1       
VelCPyTA . . . . . . . . . . . . . . . . . . 1      
VelCPyED . . . . . . . . . . . . . . . . . . . 1     
VelCPyMD . . . . . . . . . . . . . . . . . . . . 1    
VelCPyBC . . . . . . . . . . . . . 0.50 . 0.42 0.41 . . . 0.54 1   
tVMaxCPy . . . . . . . . . . . 0.59 . . . . . . . . 0.68 0.45 1  
tMaxCPy . . . . . . . . . . . . 0.42 . . 0.58 . . . . . 0.59 . 1 
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5.3.6.2 Best subsets regression 

 

Table 5.12 reports univariate z-score data for each golfer in the parameters chosen 

from cluster analysis to be used in multiple regression analysis for the Front Foot 

group for univariate outlier assessment. 

 

Table 5.12: Univariate z-score data for parameters chosen from cluster analysis 
to be used in multiple regression analysis for the Front Foot Group. 

 
Golfer Club Velocity Age CPy%TA CPy%TB VelCPyED VelCPyBC MinCPy% CPyR 

1 -2.27 2.15 -0.61 1.59 1.15 -0.29 1.73 -1.86 
2 -0.20 -0.15 -1.47 1.41 -0.89 1.30 1.39 0.53 
3 -2.16 2.15 2.11 -0.05 -0.97 -0.31 -0.75 -1.30 
4 0.18 -0.71 -1.72 0.52 -0.30 0.72 0.94 0.11 
5 1.52 -0.31 -0.39 -1.84 -2.22 -1.29 -1.31 0.53 
6 0.49 -0.95 -0.28 -1.06 1.16 0.80 -0.54 1.38 
7 -0.36 -0.55 -0.36 -1.55 -0.63 -0.35 -1.18 -0.87 
8 -0.12 -1.34 1.15 -0.70 0.35 0.51 -0.76 0.53 
9 1.70 -1.02 -0.39 0.67 0.94 0.97 0.46 0.67 
10 -0.40 -0.79 -0.48 -0.06 0.06 -0.38 0.48 -1.01 
11 0.85 -1.02 -0.46 0.09 -0.61 -1.17 0.11 -0.59 
12 0.53 -0.95 1.52 0.43 -0.28 -0.47 0.83 0.11 
13 0.12 0.56 0.41 -0.86 0.82 0.36 -0.44 1.10 
14 0.29 1.12 0.03 -1.64 -0.41 1.01 -1.03 1.24 
15 0.94 -0.63 -0.36 -0.39 0.86 -0.35 -1.46 0.67 
16 -1.13 0.64 1.31 -0.53 2.01 -0.01 0.19 0.82 
17 0.01 0.09 0.19 -0.38 -1.10 -1.25 0.30 -1.72 
18 -0.92 -0.79 0.49 -0.98 1.49 -1.78 -0.39 -0.03 
19 -1.12 1.59 -0.42 -1.30 0.06 -1.14 -1.39 -1.15 
20 -0.89 2.15 -0.05 -0.22 0.29 -0.70 0.63 -0.59 
21 0.85 1.43 0.57 0.35 0.28 -0.76 -0.20 0.39 
22 0.11 0.09 1.06 1.00 -1.16 0.24 -0.38 -1.01 
23 -0.49 1.12 -1.11 -0.50 -0.18 0.69 0.41 -0.73 
24 0.69 -0.23 0.24 1.24 -1.32 -0.84 -1.88 0.96 
25 -0.34 0.01 -1.04 1.31 -2.48 1.32 1.76 -1.30 
26 -0.10 0.32 -0.19 -1.29 0.40 1.31 -1.37 0.67 
27 0.86 0.01 1.11 1.81 -0.90 0.51 -0.69 1.52 
28 -0.15 -0.79 -2.88 0.22 1.25 0.09 0.08 -0.59 
29 1.27 -0.71 0.06 -0.07 -0.44 3.06 0.79 1.10 
30 -0.38 -1.10 -0.09 0.94 -0.61 -0.27 1.92 -0.73 
31 1.61 -0.79 0.80 0.09 0.71 0.22 1.10 1.24 
32 0.58 -0.95 -1.05 1.82 0.83 0.19 1.11 -0.59 
33 0.80 -0.47 0.16 0.05 -1.14 0.66 -0.16 0.53 
34 -1.12 1.27 2.32 1.60 1.11 -0.12 -0.64 0.53 
35 -0.30 -0.79 0.36 -0.69 0.71 0.70 -0.39 1.38 
36 1.05 -0.71 -0.30 0.15 0.68 0.33 0.59 1.24 
37 1.06 -0.15 0.31 -0.53 -0.20 -2.32 0.02 -0.45 
38 -1.13 1.04 -0.30 -1.06 0.09 -0.96 -1.25 -1.30 
39 -1.93 0.16 -0.27 0.40 0.61 -0.23 1.37 -1.44 

 

No univariate outliers (z-score > 3.29, p = 0.001) existed in the data.  
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Based on visual inspection of two dimensional scatterplots, no outliers existed for 

bivariate relationships between Club Velocity and the selected CP parameters. 

 

Table 5.13 shows the best subsets regression output from MINITAB software. Likely 

solutions are in bold type. Figure 5.2 shows the Cp – p graph with the Cp = p line. 

Repeating for clarity, likely solutions cluster close to this line (Daniel and Wood, 

1980). 

 

Table 5.13: Best subsets regression – selected outputs from Minitab software 
using parameters from cluster analysis for the Front Foot group. 
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2 53.2 2.1 X      X 
2 39.2 19.5 X   X    
2 38.3 20.3 X     X  
3 62.3 2.6 X   X   X 
3 54.2 8.5 X X     X 
3 53.3 9.4 X     X X 
3 53.2 9.4 X  X    X 
3 53.2 9.5 X    X  X 
4 63.6 2.4 X X  X   X 
4 62.7 3.2 X   X X  X 
4 62.3 3.6 X   X  X X 
4 62.3 3.6 X  X X X  X 
4 54.5 10.3 X X    X X 
5 64.0 4.1 X X  X X  X 
5 63.6 4.4 X X  X  X X 
5 63.6 4.4 X X X X   X 
5 62.8 5.1 X  X X X  X 
5 62.7 5.2 X   X X X X 
6 64.1 6.0 X X    X X 
6 64.1 6.0 X X  X X X X 
6 63.6 6.4 X X X X  X X 
6 62.8 7.1 X  X X X X X 
6 54.8 14.0 X X X  X X X 
7 64.1 8.0 X X X X X X X 

* Likely solutions in bold 
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Figure 5.2: Cp-p plot displaying the Cp=p line and likely solutions circled for the 
Front Foot group (note: vertical axis shortened to better display points close to 

the Cp=p line. As such, points with Cp > 8 not displayed) 
 

Examining circled points in the Cp-p plot in figure 5.2, 2-parameter, 3-parameter, 4-

parameter, 5-parameter and 6-parameter solutions returned Cp values close to the 

Cp=p line. The 3-variable solution (Age, VelCPyED and CPyR) was chosen to 

analyse from these possibilities, as it was located near the Cp=p line and the addition 

of more variables did not increase R2 values substantially.  
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5.3.6.3 Full multiple regression analysis using parameters chosen 

from best subsets for the Front Foot group 

 
To screen for multivariate outliers in the 3-parameter regression, Mahalanobis 

distance was calculated for each case (Table 5.14). 

 
Table 5.14: Mahalanobis distance for each case using the 3-parameters obtained 

from cluster and best subsets analysis for the Front Foot Group 
 

Case M  Case M  Case M  Case M 
1 8.04  11 2.28  21 2.87  31 1.97 
2 1.41  12 0.99  22 1.94  32 2.9 
3 5.85  13 2.61  23 1.44  33 1.96 
4 0.59  14 4.69  24 3.22  34 3.48 
5 5.97  15 1.22  25 6.85  35 2.29 
6 3.11  16 4.79  26 0.77  36 1.88 
7 1.75  17 3.59  27 4.14  37 0.25 
8 1.94  18 3.37  28 3.8  38 2.13 
9 1.97  19 2.97  29 1.78  39 3.01 

10 2.68  20 4.68  30 2.81    
M = Mahalanobis distance. For 3 variables, a Mahalanobis distance > 16.3 (p = 0.001, recommended by 

Tabachnick and Fidell, 1996) was considered a multivariate outlier. 
 

As no case was indicated as a multivariate outlier, the analysis continued with all 

cases included. Table 5.15 shows the full regression analysis output for this solution.  

 
Table 5.15: Regression analysis for the 3-parameter solution for the Front Foot 

group (Age, CPyR, VelCPyED). 
 

 Full Regression Individual Parameters 
  Age CPyR VelCPyED 

R2 / Change in R2 0.63 0.34 0.22 0.06 

p  <  0.001 0.001  <  0.001 0.021 

Equation Club Velocity = 39 - 0.12 Age + 29 CPyR -1.5 VelCPyED 

 

A strong R2 value of 63% (p < 0.001) was returned for the regression. All parameters 

were significant at p < 0.05. CPyR increased R2 by 0.22 and VelCPyED increased R2 

by 0.06.  Table 5.16 reports residuals and DFIT statistics for each case. 
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Table 5.16: Residuals and DFIT for each case in the 3-parameter regression for 
the Front Foot group (from cluster and best subsets analysis). Shaded area 

indicates possible influential case. 
 

Case DFIT Res   Case DFIT Res   Case DFIT Res   Case DFIT Res 
1 -0.06 -0.09  11 0.29 0.90  21 0.78 2.08  31 0.41 1.34 
2 -0.36 -1.31  12 -0.01 -0.02  22 0.14 0.46  32 0.42 1.16 
3 -0.7 -1.34  13 0 0.00  23 0.13 0.50  33 -0.01 -0.04 
4 -0.1 -0.48  14 0 0.00  24 -0.17 -0.46  34 -0.33 -0.85 
5 0.34 0.65  15 0.25 0.98  25 -0.39 -0.68  35 -0.59 -1.78 
6 -0.15 -0.42  16 -0.47 -1.02  26 -0.06 -0.26  36 0.14 0.48 
7 -0.14 -0.49  17 0.36 0.90  27 -0.13 -0.32  37 0.34 1.77 
8 -0.42 -1.38  18 -0.45 -1.17  28 0.16 0.39  38 0 -0.01 
9 0.6 1.89  19 0.08 0.24  29 0.12 0.41  39 -0.54 -1.46 

10 -0.08 -0.25   20 0.29 0.63   30 -0.34 -0.96         
• DFIT (degree of fit) > 1 and/or Res (residual) > 2 considered influential (Pedhazur, 1997) 

  

While all cases passed DFIT tests, Case 21 returned a large residual (standard residual 

> 2; reported by Minitab software). The regression was re-analysed with this case 

eliminated to examine its influence. As no multivariate outliers existed in the new 

data set, as indicated by Mahalanobis distance data (table 5.17), all cases were used in 

the new regression analysis (table 5.18). DFIT diagnostics were also repeated (table 

5.19). 

 

Table 5.17: Mahalanobis distance for each case using the three parameters 
obtained from cluster and best subsets analysis for the Front Foot Group. 

 
Case M  Case M  Case M  Case M 

1 8.74  11 2.18  21   31 1.93 
2 1.37  12 0.91  22 2.01  32 2.80 
3 1.02  13 2.72  23 1.93  33 1.84 
4 0.51  14 5.19  24 3.11  34 3.86 
5 5.77  15 1.17  25 6.9  35 2.25 
6 3.11  16 4.73  26 0.85  36 1.84 
7 1.65  17 3.63  27 4.08  37 0.22 
8 1.98  18 3.26  28 3.64  38 2.48 
9 1.98  19 3.71  29 1.66  39 2.87 

10 2.54  20 5.87  30 2.7    
M = Mahalanobis distance. For 3 parameters, a Mahalanobis distance > 16.3 (p = 0.001, recommended by 

Tabachnick and Fidell, 1996) was considered a multivariate outlier 
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Table 5.18: Regression analysis for the 3-parameter solution with one influential 
case removed for the Front Foot group (Age, CPyR, VelCPyED). 

 
 Full Regression Individual Parameters 
  Age CPyR VelCPyED 

R2 / Change in R2 0.67 0.36 0.22 0.07 

P  <  0.001 0.001  0.002 0.010 
 
Equation 
 

 
Club Velocity = 39.4 - 0.2 Age + 29.9 CPyR – 2.1 VelCPyED 

 
 

Table 5.19: Residuals and DFIT for each case in the 3-parameter regression for 
the Front Foot group (from cluster and best subsets analysis). 

 
Case DFIT Res   Case DFIT Res  Case DFIT Res   Case DFIT Res 

1 -0.08 0.10  11 0.28 0.86  21    31 0.41 0.50 
2 -0.38 -1.32  12 -0.01 -0.06  22 0.12 0.50  32 0.42 0.45 
3 -0.65 -1.20  13 0.06 0.20  23 0.16 0.67  33 -0.01 -0.01 
4 -0.11 -0.52  14 0.06 0.26  24 -0.17 -0.40  34 -0.33 -0.32 
5 0.35 0.75  15 0.30 1.07  25 -0.54 -0.74  35 -0.59 -0.61 
6 -0.11 -0.40  16 -0.43 -0.89  26 -0.04 -0.14  36 0.14 0.19 
7 -0.18 -0.57  17 0.34 0.93  27 -0.1 -0.19  37 0.34 0.37 
8 -0.46 -1.52  18 -0.47 -1.27  28 0.17 0.36  38 0.00 -0.02 
9 0.70 2.00  19 0.10 0.43  29 0.15 0.48  39 -0.54 -0.62 

10 -0.12 -0.35   20 0.39 0.94  30 -0.4 -1.13         
• DFIT (degree of fit) > 1 and/or Res (residual) > 2 considered influential (Pedhazur, 1997) 

 

With the influential case eliminated, the regression was stronger (R2 = 0.67, p < 

0.001). All included parameters were significant at p < 0.05. VelCPyED showed a 

slight increase in change in R2 values (0.07 compared with 0.06) while CPyR 

remained the same (R2 = 0.22). No cases failed diagnostic tests (residuals, DFIT, 

leverage) for the regression with case 21 removed.  
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5.3.6.3.1 SUBSET REGRESSION RE-ANALYSIS FOR THE FRONT FOOT 

GROUP 

 

Repeating, a randomly drawn sample of N = 28 from the N = 39 Front Foot group was 

formed and the regression was re-analysed. No multivariate outliers existed (table 

5.20) so all N = 28 golfers were entered into the regression analysis (table 5.21). DFIT 

for each case is reported in table 5.22. 

 

Table 5.20: Mahalanobis distance for each case for the Front Foot subset Group 
(N = 28). 

 
Case M  Case M  Case M 

1 1.21  11 3.05  21 2.22
2 1.92  12 2.66  22 1.98
3 0.78  13 1.02  23 1.15
4 2.47  14 1.34  24 1.91
5 0.64  15 0.44  25 2.85
6 1.88  16 4.13  26 1.21
7 2.42  17 3.31  27 0.56
8 1.78  18 6.72  28 0.13
9 0.84  19 1.64    

10 2.10  20 1.65    
M = Mahalanobis distance. For 3 parameters, a Mahalanobis distance > 16.3 (p = 0.001, recommended by 

Tabachnick and Fidell, 1996) was considered a multivariate outlier 
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Table 5.21: Regression analysis for the 3-parameter solution for the Front Foot 
subset group (N = 28). 

 
 Full Regression Individual Parameters 
  Age CPyR VelCPyED 

R2 / Change in R2 0.57 0.28 0.26 0.03 

p  <  0.001 0.001  0.002 0.120 

Equation 37.3 - 0.11 Age + 33.7 CPyR – 1.1 VelCPyED 

 

Table 5.22: Residuals and DFIT for each case in the 3-parameter regression for 
the Front Foot subset group (N = 28). 

 
Case DFIT Res   Case DFIT Res   Case DFIT Res 

1 -0.13 -0.60  11 0.26 0.85  21 -0.51 -1.20 
2 0.69 1.04  12 -0.01 -0.03  22 0.49 1.36 
3 -0.29 -0.65  13 0.32 0.44  23 0.40 0.92 
4 -0.24 -0.68  14 0.14 0.35  24 0.03 0.08 
5 -0.58 -1.66  15 -0.13 -0.31  25 -0.70 -1.20 
6 0.70 1.86  16 -0.49 -0.61  26 0.14 0.42 
7 -0.23 -0.56  17 -0.12 -0.43  27 0.43 1.80 
8 0.33 0.87  18 -0.08 -0.16  28 -0.16 -0.33 
9 -0.03 -0.11  19 -0.01 -0.01     

10 0.04 0.08   20 0.17 0.52         
• DFIT (degree of fit) > 1 and/or Res (residual) > 2 considered influential (Pedhazur, 1997) 

 

 

The Front Foot subset regression was significant. However, while Age and CPyR 

were significant, VelCPyED was not. It should be noted that based on this group of N 

= 28 golfers, the change in R2 due to VelCPyED would not have been significant even 

with N = 39 (i.e. the non-significant finding for this group of N = 28 golfers was not 

due to lower N). The regression with VelCPyED removed was still significant (R2 = 

0.54, p < 0.001). 

 

 

 



 

 

192

5.3.7   Multiple regression analysis: Reverse group 

 

 

5.3.7.1  Cluster analysis to reduce the number of parameters for 

the Reverse group 

 

The agglomerative schedule (table 5.23) and visual inspection of the dendrogram 

indicated that the largest jump in coefficients occurred at the 2-cluster solution for the 

clustering of CP parameters. 

 

Table 5.23: Selected sections of the agglomerative schedule for hierarchical 
cluster analysis of Reverse group cases (N = 24 parameters).  

Largest jumps in bold type. 
 

Stage Cluster 
Solution Coefficients Jump in 

Coefficient Stage Cluster 
Solution Coefficients Jump in 

Coefficient 
1 24 7.4       
2 23 8.5 1.11 13 12 21.1 1.26 
3 22 10.5 2.03 14 11 22.2 1.08 
4 21 10.7 0.14 15 10 24.8 2.58 
5 20 10.7 0.02 16 9 25.6 0.82 
6 19 14.1 3.40 17 8 26.4 0.75 
7 18 15.3 1.21 18 7 28.0 1.61 
8 17 16.4 1.05 19 6 31.1 3.11 
9 16 18.4 2.03 20 5 32.8 1.71 

10 15 19.3 0.88 21 4 34.0 1.21 
11 14 19.5 0.18 22 3 38.9 4.94 
12 13 19.9 0.41 23 2 52.8 13.9 

 

 

The 2-cluster and 3-cluster solutions were re-analysed non-hierarchically and 

statistical tests applied to the non-hierarchical solutions to determine the optimal 

number of clusters (this process was detailed in study 1). While the next two largest 

jump occurred at the 6th and 19th cluster stage, as the limit of parameters to achieve 
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the 5:1 case to parameter ratio was three, cluster solutions above this threshold were 

not considered for analysis. 

 

The 3-cluster solution was chosen for further analysis, as it was indicated as optimal 

by both the C-Index and Point Biserial Correlation (table 5.24). 

 

 

Table 5.24: Point Biserial Correlation and C-Index data for each solution for the 
Reverse group (N = 24 parameters). Optimal value for each test in bold. 

 
 3 2 
Point Biserial Correlation -0.49 -0.39
C-Index 1.17 1.00 

 
Note: For Point Biserial Correlation, the largest negative value is associated with the optimal solution when using the Pearson’s 

correlation measure in cluster analysis. 
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Table 5.25 reports the CP parameter clusters for the 3-cluster solution. The parameter 

chosen from the cluster group and the basis for this choice is also reported.  

 

Table 5.25: Cluster groups for the 3-cluster solution for the Reverse group with 
the parameter chosen and the basis for the choice. 

 
Cluster  Partial Correlation with Club 

Velocity Selected  Basis of selection 

  All data  
(N = 19) 

Minus outliers  
(N = 18) parameter  

1 CPy%TA -0.03    

1 CPy%MB 0.17 -0.03   

1 CPy%ED 0.55    

1 CPy%MD 0.28    

1 VelCPyTA -0.42    

1 VelCPyTB -0.14    

1 VelCPyED -0.26  CPy%ED Strongest partial correlation with Club Velocity 

1 VelCPyMF -0.35    

1 VMaxCPy 0.26    

1 tVmaxCPy 0.39 -0.17   

1 MaxCPy% 0.30 0.19   

1 tMaxCPy% 0.34 0.17   

1 tMinCPy% 0.44 0.25   

 

2 CPyR 0.25    

2 CPyR% 0.18    

2 CPy%LB 0.44 0.75 CPy%LB Strongest partial correlation with Club Velocity 

2 CPy%TB 0.02    

2 VelCPyMB 0.24    

  

3 VelCPyLB 0.13    

3 MinCPy% 0.02 0.39   

3 CPy%BC -0.12  VelCPyBC Strongest partial correlation with Club Velocity 

3 CPy%MF -0.58    

3 VelCPyMD -0.40    

3 VelCPyBC -0.43 -0.69   
 

Cross correlation analysis is presented in table 5.26 with clustered parameters 

indicated by boxes. Twenty one of the twenty four CP parameters produced their 

largest bivariate correlation with a parameter in the same cluster. However, three did 

not. CPy%MB and VelCPyED did not correlate with any parameter within-cluster at r 

> 0.4 but did with a parameter in another cluster. VelCPyTA correlated with one 

parameter within-cluster but more strongly with five parameters in other clusters.  



Table 5.26: Cross correlations between parameters for the Reverse group  
(boxes indicate clustered parameters, r > 0.4, p < 0.05 reported except where noted). 
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CPy%TA 1                        
CPy%MB . 1                       
CPy%ED . . 1                      
CPy%MD 0.54 . 0.55 1                     
VelCPyTA . . . . 1                    
VelCPyTB . . . . . 1                   
VelCPyED . . . . . . 1                  
VelCPyMF . . . . . . . 1                 
VMaxCPy . . 0.59 . . . . . 1                
tVmaxCPy . . . . . . 0.37# 0.45 . 1               
MaxCPy% 0.50 . 0.66 0.76 . . . . 0.44 . 1              
tMaxCPy% . . 0.59 . . . . . 0.52 . 0.43 1             
tMinCPy% . 0.34* . . . . . . . . . . 1            
CPyR . . . . . 0.56 . . 0.66 . 0.61 0.42 . 1           
CPyR% 0.41 . 0.40 0.48 0.44 0.64 . . 0.49 . 0.81 . . 0.83 1          
CPy%LB . 0.54 . . . . . . . . . . . . . 1         
CPy%TB . . . . . . . . . . . . . . . 0.65 1        
VelCPyMB . . . . . . . . . . . . . . . 0.56 0.40 1       
VelCPyLB . . . . . . . . . . . . . . . . 0.73 . 1      
MinCPy% . . . . . . . . . . . . . . . 0.76 0.79 0.51 0.42 1     
CPy%BC . . . 0.64 . . . . . . . . . . . . . . . . 1    
CPy%MF . . . . 0.53 . . . . . . . . . . . . . . . 0.46 1   
VelCPyMD . . . . . . 0.40 . . . . . . . . . . . . . 0.70 0.46 1  
VelCPyBC . . . . . . . . . . . . . . . . . . . . . 0.71 0.60 1 

 
* largest r-value reported for tMinCPy (also the largest r-value within the classified cluster for CPy%MB) 

# largest r-value within the classified cluster for VelCPyED. 
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The result that CP parameters can correlate more strongly with a parameter in another 

cluster, as has occurred with these three parameters, represents a limitation of using 

the cluster process for grouping parameters. This result can occur at the boundaries of 

each of the clusters without representing a clustering error. Figure 5.3 is a theoretical 

example of how a case can be clustered (appropriately) in one cluster but be 

correlated more strongly with a case in another cluster.  

 

Cluster 1
Cluster 2
Border betw een clusters
Case in Cluster 1
Case in Cluster 2

 

Figure 5.3: Theoretical example of where a case can be more closely associated 
with a case in another cluster. 

 

A potential problem that this effect can produce is where a case that could be grouped 

in more than one cluster for this study would be chosen to be entered into regression 

analysis in one but not the other cluster. For example, CPy%MB was not chosen 

within the cluster it was grouped with but it might have been chosen from the cluster 

in which it correlated more strongly with other CP parameters (but was not allocated 

to). In this case, the clustering process is paramount to the end result. However, this 

limitation did not affect this analysis. For CPy%MD, VelCPyTA and VelCPyED there 

were larger partial correlations between Club Velocity and other parameters in all 
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clusters (table 5.27). As such, these parameters would not have been chosen even if 

they had been classified in a different cluster. 

 

Table 5.27: Correlation coefficients for partial correlations between Club 
Velocity and CP parameters within each cluster for the Reverse group (N = 19 

golfers). Bold type indicates strongest partial correlate in each cluster. 
 

Cluster  r r (minus outliers) 
1 CPy%TA -0.03  
1 CPy%MB 0.17 -0.03 
1 CPy%ED 0.55  
1 CPy%MD 0.28  
1 VelCPyTA -0.42  
1 VelCPyTB -0.14  
1 VelCPyED -0.26  
1 VelCPyMF -0.35  
1 VMaxCPy 0.26  
1 tVmaxCPy 0.39 -0.17 
1 MaxCPy% 0.30 0.19 
1 tMaxCPy% 0.34 0.17 
1 tMinCPy% 0.44 0.25 
    

2 CPyR 0.25  
2 CPyR% 0.18  
2 CPy%LB 0.44 0.75 
2 CPy%TB 0.02  
2 VelCPyMB 0.24  
    

3 VelCPyLB 0.13  
3 MinCPy% 0.02 0.39 
3 CPy%BC -0.12  
3 CPy%MF -0.58  
3 VelCPyMD -0.40  
3 VelCPyBC -0.43 -0.69 

Note: The correlation between Club Velocity and CPy%MF was r = -0.60, p = 0.011 with the golfer 
that was an outlier in VelCPyBC removed. 



 

 

198

5.3.7.2 Best subsets regression 

 

Table 5.28 reports univariate z-score data for outlier assessment of each golfer for the 

parameters chosen from cluster analysis for the Reverse group. 

 

Table 5.28: Univariate z-score data for parameters chosen from cluster analysis 
to be used in multiple regression analysis for the Reverse Group (N = 19 golfers). 

 
Golfer Club Velocity Age CPy%ED CPy%LB VelCPyBC 

1 1.09 -1.25 1.12 -0.47 -1.65 
2 0.77 -1.18 -0.37 -0.95 0.74 
3 1.25 -1.12 1.18 0.65 -0.24 
4 0.50 -1.05 0.42 0.51 -0.65 
5 0.81 -1.05 0.08 0.76 -0.15 
6 1.44 -0.99 -1.00 1.45 -0.28 
7 0.64 -0.92 -0.88 0.63 -0.09 
8 -0.04 -0.66 0.48 -0.88 -0.57 
9 0.60 -0.20 -0.07 0.20 2.19 
10 0.60 -0.13 1.07 -1.00 -1.28 
11 -0.79 0.39 -0.82 -1.35 -0.40 
12 -1.40 0.72 -2.51 -1.59 1.88 
13 -0.51 0.72 1.20 -0.06 0.60 
14 -0.03 0.78 1.30 0.76 -1.34 
15 -1.40 0.78 -1.16 -1.19 0.76 
16 -0.51 0.98 -0.10 0.29 0.40 
17 -2.01 1.17 -0.44 1.60 0.72 
18 0.20 1.37 0.47 0.43 -0.49 
19 -1.20 1.63 0.04 0.72 -0.14 

 

No univariate outliers (z-score > 3.29, p = 0.001, as recommended by Tabachnick and 

Fidell, 1996) existed in the data.  

 

Based on visual inspection of two dimensional scatterplots, two outliers existed for 

bivariate relationships: one between Club Velocity and CPy%ED and between Club 

Velocity and CPy%LB (produced by the same golfer) and one between Club Velocity 

and VelCPyBC. Analysis was performed with and without the two golfers that 

produced these outliers. 
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Table 5.29 shows the best subsets regression output from MINITAB software. Likely 

solutions are in bold type. Figure 5.4 shows the Cp – p graph with the Cp = p line 

with all data (N = 19 golfers) and with outliers removed (N = 17 golfers, cases 9 and 

17 from table 5.28 were removed). Repeating for clarity, likely solutions cluster close 

to this line (Daniel and Wood, 1980). 

 

Table 5.29: Best subsets regression – selected outputs from Minitab software 
using parameters from cluster analysis for the Reverse group. 

 
Vars (p) R2 Cp Age CPy%LB CPy%ED VelCPyBC 

All data (N = 19 golfers) 
2 0.70 2.9 x x   
2 0.69 0.1 x  x  
2 0.66 1.1 x   x 
3 0.73 1.1 x x x  
3 0.72 2.1 x x  x 
3 0.72 1.9 x  x x 
4 0.74 3.0 x x x x 

Minus outliers (N = 17 golfers) 
2 0.76 2.5 x x   
2 0.75 0.2 x  x  
2 0.75 1.6 x   x 
3 0.80 2.0 x x x  
3 0.87 2.9 x x  x 
3 0.75 2.1 x  x x 
4 0.88 3.6 x x x x 

• Likely solutions in bold 
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Figure 5.4: Cp-p plot displaying the Cp=p line and likely solutions circled with 

and without outliers 
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The choice of solution of regression for the Reverse group was not as clear as for the 

Front Foot group. Examining the Reverse group N = 19 data, the 2-parameter solution 

(Age, CPy%LB) and the 3-parameter solution (Age, CPy%LB, VelCPyBC) lay 

nearest the Cp=p line. While there was a larger R2 value for another 3-parameter 

solution (Age, CPy%LB, CPy%ED), the Cp value of 1.1 was considerably further 

from the Cp=p line. The 4-parameter solution returned the largest R2 value and a Cp 

value only slightly further from the Cp=p line. However, there was an increase in R2 

of only 0.2 between the 2-parameter (Age, CPy%LB) and 3-parameter solutions (Age, 

CPy%LB, VelCPyBC) and the same between the 3-parameter (Age, CPy%LB, 

VelCPyBC) and 4-parameter solutions. 

 

The choice of solution was clearer with outliers removed (N = 17). The 3-parameter 

solution (Age, CPy%LB, VelCPyBC) produced a considerably larger R2 value than 

the 2-parameter solution (Age, CPy%LB) and produced the Cp value nearest the 

Cp=p line. The 4-parameter solution also produced a Cp value near this line but the 

increase in R2 was only 0.1. 

 

It was decided to analyse the 3-parameter solution (Age, CPy%LB, VelCPyBC) as 

this solution was one of the best with all data (N = 19 golfers) and clearly the best 

with outliers removed (N = 17 golfers).  
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5.3.7.3 Full multiple regression analysis using parameters chosen 

from best subsets for the Reverse group 

 

To screen for multivariate outliers in the 3-parameter regression, Mahalanobis 

distance was calculated for each case (Table 5.30). 

 

Table 5.30: Mahalanobis distance for each case using the 3-parameters obtained 
from cluster and best subsets analysis for the Reverse Group 

 
Case M  Case M 

1 3.79  11 4.01
2 3.19  12 0.64
3 1.74  13 5.87
4 1.75  14 2.23
5 1.48  15 3.48
6 2.92  16 0.98
7 1.35  17 4.18
8 1.64  18 2.72
9 5.91  19 3.47

10 2.82    
M = Mahalanobis distance. For 3 variables, a Mahalanobis distance > 16.3 (p = 0.001, recommended by 

Tabachnick and Fidell, 1996) was considered a multivariate outlier. 
 

 

As no case was indicated as a multivariate outlier, the analysis continued with all 

cases included. Table 5.31 shows the full regression analysis output for this solution.  

 

Table 5.31: Regression analysis for the 3-parameter solution (Age, CPy%LB, 
VelCPyBC) for the Reverse group (N = 19). 

 
  Full Regression Individual Parameters 
    Age CPy%LB VelCPyBC 

R2 / Change in R2 0.72 0.64 0.04 0.04 
p  <  0.001 <  0.001 0.191 0.186 
 
Equation 
 

48.7 – 0.3 Age + 0.1 CPy%LB – 1.1 VelCPyBC 
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A strong R2 value of 0.72 (p < 0.001) was returned for the regression. However, 

neither CPy%LB nor VelCPyBC were significant. As well, two cases did not pass 

DFIT and residual analysis (table 5.32).  

 

 

Table 5.32: Residuals and DFIT for each case in the 3-parameter regression for 
the Reverse group. Shaded area indicates possible influential cases. 

 
Case DFIT Res   Case DFIT Res 

1 -0.09 -0.12  11 -0.26 -0.35 
2 0.35 0.87  12 0.10 0.29 
3 0.20 0.43  13 -0.27 -0.27 
4 -0.11 -0.24  14 -0.37 -0.71 
5 -0.38 -0.86  15 0.16 0.24 
6 0.40 0.65  16 0.16 0.43 
7 -0.12 -0.30  17 -2.33 -2.19 
8 -0.36 -0.79  18 1.21 1.79 
9 1.88 1.89  19 -0.16 -0.24 

10 0.46 0.76        
 
• DFIT (degree of fit) > 1 and/or Res (residual) > 2 considered influential (Pedhazur, 1997) 
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A second regression analysis was conducted with the two cases that failed DFIT and 

residual analysis removed (cases 9 and 17). From this regression analysis (N = 17 

golfers), another two cases failed DFIT and residual analysis. Recalling, Pedhazur 

(1997) noted that it is common for new cases to become influential in progressive 

regression analyses. A third regression analysis was performed with the new 

influential cases removed. From this regression analysis (N = 15 golfers), one case 

failed DFIT and residual analysis. Regression analysis was repeated for a fourth time 

(N = 14 golfers) with the new influential case removed. No case failed diagnostic tests 

in the fourth regression analysis. This data is summarized in table 5.33 showing 

regression statistics and diagnostics for each of the four analyses. 

 

Table 5.33: Progressive regression analyses for the Reverse group with 
influential cases removed until all cases passed diagnostic tests. 

 
 1st Regression (N = 19) 2nd Regression (N = 17) 3rd Regression (N = 15) 4th Regression (N = 14) 

Case Res M DFIT Res M DFIT Res M DFIT Res M DFIT 
1 -0.11 3.91 -0.07 0.03 4.33 0.02 0.17 3.85 0.11 1.20 4.69 0.98 
2 -0.32 3.19 -0.17 0.49 3.56 0.29 0.48 4.00 0.34 0.55 3.66 0.39 
3 0.52 1.68 0.21 0.87 1.66 0.38 1.05 1.35 0.47 1.23 1.20 0.56 
4 -0.92 1.49 -0.36 -1.43 1.25 -0.60 -1.76 0.98 -0.79 -1.98 0.90 -0.97 
5 -0.23 1.71 -0.09 -0.34 1.81 -0.15 -0.46 1.48 -0.20 -0.66 1.33 -0.29 
6 0.78 3.09 0.42 0.94 3.36 0.57 1.15 2.95 0.73 1.15 2.77 0.74 
7 -0.30 1.29 -0.11 -0.43 1.42 -0.17 -0.57 1.14 -0.23 -0.77 1.01 -0.32 
8 -0.83 1.48 -0.32 -0.93 1.43 -0.39 -1.10 1.22 -0.47 -0.82 1.57 -0.39 
9 2.00 5.57 1.70 . . . . . . . . . 

10 0.90 3.00 0.48 1.47 3.44 0.95 2.04 3.00 1.54 . . . 
11 -0.39 4.12 -0.24 -0.25 4.06 -0.16 -0.14 3.49 -0.09 0.77 4.33 0.62 
12 -0.27 5.57 -0.19 0.39 6.34 0.34 0.39 5.45 0.35 0.27 5.05 0.23 
13 0.33 0.71 0.10 0.31 1.20 0.12 0.47 1.85 0.22 0.52 1.66 0.25 
14 0.23 3.42 0.13 -0.74 3.62 -0.46 -0.74 6.06 -0.73 -0.21 6.09 -0.21 
15 -0.77 2.24 -0.35 -0.99 2.12 -0.48 -1.18 2.02 -0.62 -1.23 1.88 -0.67 
16 0.47 1.09 0.16 0.25 1.65 0.10 0.45 3.16 0.28 0.51 2.87 0.31 
17 -2.72 4.35 -2.39 . . . . . . . . . 
18 1.98 2.69 1.15 2.22 2.84 1.50 . . . . . . 
19 -0.34 3.40 -0.18 -1.70 3.91 -1.22 . . . . . . 

  
R2/Change in 

R2 p R2/Change in 
R2 p R2/Change in 

R2 p R2/Change in 
R2 p 

Regression 0.72 <0.001 0.83 <0.001 0.92 <0.001 0.95 <0.001 
Age 0.64 <0.001 0.63 <0.001 0.70 <0.001 0.69 <0.001 
CPy%LB 0.04 0.191 0.16 0.007 0.16 0.003 0.20 <0.001 
VelCPyBC 0.04 0.186 0.07 0.024 0.06 0.014 0.06 0.048 

• DFIT (degree of fit) > 1 and/or Res (residual) > 2 considered influential (Pedhazur, 1997) 
• M (Mahalanobis Distance) > 16.3 considered multivariate outlier (Tabachnick and Fidell,(1996) 
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While influential cases affected this regression analysis, in all progressive regressions, 

the R2 value increased indicating the outliers served to decrease the relationship rather 

than generate it. As well, once the first outlier was removed, both CPy%LB and 

VelCPyBC were significant in all regressions where influential cases were removed. 

 

5.3.7.3.1 SUBSET REGRESSION RE-ANALYSIS 

 

A randomly drawn sample of N = 13 cases was analysed for the Reverse group. There 

were no multivariate outliers although there was one bivariate outlier in this subset. 

Analysis proceeded but the same case did not pass DFIT. A second regression was 

performed with this case removed, resulting in another case failing DFIT statistics. A 

third regression was analysed. The analysis was stopped at this point as four cases 

failed DFIT diagnostics and with these removed, the regression would have been 

calculated on N = 7 cases only. This analysis is summarized in table 5.34. 

 
Table 5.34: Progressive regression analyses for the Reverse group two-thirds 

replication subset with influential cases removed. 
 

  1st Regression (N = 13) 2nd Regression (N = 12) 3rd Regression (N = 11) 
Case Res M DFIT Res M DFIT Res M DFIT 

1 -0.61 0.75 -0.26 -0.17 1.08 -0.08 -0.67 1.12 -0.36 
2 -1.17 0.90 -0.56 -1.94 0.75 -1.25 . . . 
3 -0.52 1.04 -0.24 -0.10 1.27 -0.05 -0.61 1.33 -0.35 
4 1.30 2.09 0.95 1.01 2.72 0.90 1.20 2.46 1.16 
5 0.15 2.65 0.11 0.57 2.43 0.44 0.25 2.48 0.21 
6 0.63 3.14 0.54 -0.23 3.84 -0.25 -0.83 3.71 -1.07 
7 0.49 1.01 0.23 1.53 1.17 0.96 1.67 1.25 1.31 
8 0.53 8.05 0.85 -0.29 8.21 -0.92 -0.47 7.40 -1.56 
9 -0.62 1.80 -0.37 0.17 2.50 0.13 0.24 2.19 0.18 

10 -0.44 1.42 -0.23 -0.43 1.29 -0.23 -0.85 1.17 -0.49 
11 -0.01 3.57 -0.01 0.21 3.24 0.20 0.36 2.87 0.33 
12 -1.24 2.86 -1.10 -0.33 4.49 -0.43 -0.30 4.03 -0.39 
13 1.50 6.71 5.49 . . . . . . 

  R2/Change in R2 p R2/Change in R2 p R2/Change in R2 p 
Regression 0.79 <0.001 0.93 <0.001 0.97 <0.001 
Age 0.54 0.004 0.56 0.005 0.57 0.007 
CPy%LB 0.20 0.019 0.19 0.029 0.20 0.028 
VelCPyBC 0.05 0.196 0.19 0.020 0.20 0.006 

• DFIT (degree of fit) > 1 and/or Res (residual) > 2 considered influential (Pedhazur, 1997) 
• M (Mahalanobis Distance) > 16.3 considered multivariate outlier (Tabachnick and Fidell,(1996) 
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All regressions were significant at p < 0.05 in two-thirds subset replication analysis. 

Examining individual parameters, CPy%LB was significant in all regressions, 

indicating that it was robust. The result for VelCPyBC was less definite. VelCPyBC 

was not significant in the first regression but was in the second and third regressions 

with influential cases removed. The first case removed was also the bivariate outlier 

identified in correlation analysis for the relationship between VelCPyBC and Club 

Velocity (refer section 5.3.2.3.2). The most appropriate conclusion from this analysis 

is that the result for VelCPyBC was also robust as an outlier was the reason for the 

parameter not being significant, particularly as this outlier was extreme, returning the 

largest DFIT value of any analysis in this study. 

 

No regression was produced in which all cases passed diagnostics although Pedhazur 

(1997) reported that it is not uncommon for new cases to fail in progressive 

regressions and in this event a decision should be made as to how many regressions 

should be performed. In this analysis, the next regression would have contained too 

few cases for a reasonable result hence the stopping point. Regardless, for VelCPyBC, 

the only parameter that was not definitively indicated as robust, R2 values 

progressively increased with each progressive regression indicating the influential 

cases served to reduce its effect rather than produce the significant result. 
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5.4  DISCUSSION 

 

5.4.1  CPy% at eight swing events 

 

Club Velocity at ball contact was not related to the position of CPy% at the eight 

swing events used in this study for the Front Foot group. This supported Mason et al. 

(CPy%; 1995) who found no significant association between Club Velocity and 

CPy% at TA, TB and BC. It also supported Robinson (1994) who found no significant 

association between Club Velocity and Fz% at TB and BC (but not TA: discussed 

later). However, comparisons are limited by no study accounting for swing styles 

prior to analysis. These results indicated that positioning of weight during the swing 

was not important for Front Foot golfers in developing Club Velocity at ball contact.  

 

In contrast to the Front Foot group, the Reverse group produced significant 

associations between Club Velocity and CPy% during the swing. The medium effect 

between CPy%LB and Club Velocity (r = 0.44, p = 0.060) increased to a large 

significant effect with an outlier removed (r = 0.75, p = 0.001). This indicated that 

positioning weight during the swing was important for the Reverse golfers tested. As 

well, non-significant medium and large effect were returned for the relationships 

between Club Velocity and CPy%ED (r = 0.55, p = 0.023, minus one outlier, r = 0.46, 

p = 0.073) and Club Velocity and CPy%MF (r = -0.58, p = 0.015). With larger subject 

numbers (e.g. N = 39 as for the Front Foot group) these r-values would be significant. 

This did not support Mason et al. (1995) and while Robinson (1994) found an 

association between Club Velocity and weight position, the swing events of 
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importance were different. However, importantly, neither examined the Reverse style 

of swing, nor did they examine swing events LB, ED or MF.  

 

A larger CPy%LB, or a CPy position closer to the front foot at late backswing, was 

associated with a larger Club Velocity at ball contact for the Reverse group. As 

CPy%LB ranged from 8% to 39%, this result indicated that positioning CPy% nearer 

39% of the distance from the back foot to the front foot compared to moving it further 

towards the back foot (8%) was associated with larger Club Velocities. Handicap and 

CPy%LB were also related with an outlier removed (r = -0.71, p = 0.001) suggesting 

more highly skilled golfers positioned CPy% further from the back foot and nearer the 

midstance position of 50%. However, as Handicap and Club Velocity were 

themselves correlated (r = -0.72, p = 0.001), this latter finding had limited extra use. 

There was no association between CPy%LB and Age (r = 0.01, p = 0.902), indicating 

that the positioning of CPy%LB was not related to age. As mentioned, this swing 

event has not been used in previous studies so no comparison data exists. 

 

It is possible that the LB swing event is a truer representation when the club 

accelerates in the direction of the downswing. This being the case, its importance for 

the Reverse group might be related to obtaining a good weight position further from 

the back foot at LB from which to generate Club Velocity. Conversely, it might 

indicate a position too far towards the back foot does not allow for this Club Velocity 

to be developed as effectively. The top of backswing is the displacement transition 

point between backswing and downswing and was defined in this study as the instant 

before the club began downswing. This is also the usual position referred to by 

coaching texts as the top of backswing (e.g. Leadbetter, 1993). However, the forces 



 

 

208

required to generate downswing must start before the club begins downswing. It is 

possible that these forces are initiated nearer the late backswing event. Mean 

tMinCPy% was 0.43 s before ball contact (65% of the time from TA to BC) which 

was midway between LB (-0.57 s, 54%) and TB (-0.30 s, 76%) and for all golfers, Fy, 

the horizontal force in the direction of line of hit (i.e. same direction as CPy%) had 

changed from negative at TA and MB to positive at LB.  Both indicate that the forces 

producing downswing are initiated nearer LB rather than TB. The start of downswing 

starting prior to the top of backswing also has support in the literature with Burden et 

al. (1998) noting that maximum hip and shoulder angles were achieved before the top 

of backswing as defined by club movement. However, as no relationship was 

indicated for the Front Foot group, the importance of the LB swing event in relation to 

CPy would seem to be related to the Reverse group only (although other aspects of 

performance might be important at LB for Front Foot golfers). Future work needs to 

examine kinematic data to determine other technical aspects of the Reverse swing 

style compared with Front Foot golfers to better define the mechanism behind the 

association of CPy%LB and Club Velocity. 

 

Although not significant at p < 0.01, large effect sizes were indicated for the 

relationship between Club Velocity and CPy%ED (r = 0.55, p = 0.023) and between 

Club Velocity and CPy%MF (r = -0.56, p = 0.015) for the Reverse group.  A larger 

CPy%ED, or a CP position closer to the front foot at early downswing, was associated 

with a larger Club Velocity at ball contact. Considering the ‘reverse’ CPy pattern of 

Reverse golfers evident from ED to MF, it might be advantageous to move CPy% 

further to the front foot by the ED event such that there is more distance available for 

CP to be moved back towards the back foot from ED to MF. This possibility was 
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supported in part by the large negative effect between CPy%ED and the distance 

CPy% moved between CPy%ED and CPy%BC (i.e. CPy%ED correlated with 

[CPy%ED - CPy%BC]: r = -0.76, p < 0.001) indicating a position nearer the front 

foot at ED was associated with a greater range of movement towards the back foot 

between ED and BC. CPy%ED was also correlated strongly with VelCPyBC (r = -

0.61, p = 0.008; discussed in section 5.4.2), which indicated a larger CPy%ED, or 

position nearer the front foot, was related to a larger negative CP velocity at ball 

contact. As VelCPyBC was more strongly correlated with Club Velocity (r = -0.69, p 

= 0.003) than CPy%ED, the position of CPy%ED might be an important transition 

position to produce a larger negative CP velocity at BC, rather than an important 

finding in itself. Only a small non-significant effect existed between CPy%ED and 

CPy%LB (the other CP parameter significantly correlated with Club Velocity for the 

Reverse group; r = 0.23, p = 0.384) indicating the association between these 

parameters and Club Velocity were different. 

 

A smaller CPy%MF, or a position further towards the back foot at mid follow through 

was associated with a larger Club Velocity at ball contact for the Reverse group. This 

was a surprising finding as it indicated a weight position nearer the back foot in 

follow through was advantageous, a finding that is in direct conflict with the coaching 

literature (e.g. Leadbetter, 1995, Norman, 1996, Grant et al., 1996). Not only was the 

mean Reverse group CPy%MF value more towards the back foot (40.6%) but golfers 

who positioned CPy% closer to the back foot produced larger Club Velocities. For 

example, two golfers currently involved in international amateur and professional 

tournaments and who achieved some of the larger Club Velocities produced values of 

29% and 34%, indicating these golfer positioned CPy well towards the back foot at 
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MF. Both CPy% and Fz% returned similar correlations with Club Velocity (Club 

Velocity - CPy%MF, r = -0.58, p = 0.015; Club Velocity – Fz%MF, r = -0.57, p = 

0.021) showing that the result was not due to horizontal forces (as mentioned, 

horizontal forces are the only difference between CPy and Fz measures). Not 

surprisingly, CPy%MF was also related to VelCPyBC (r = 0.71, p = 0.002) indicating 

a greater CPy velocity towards the back foot at BC was related to a CPy% position 

further towards the back foot at MF. Given the proximity of the two events, similar 

mechanisms are likely to be generating both relationships. 

 

Of importance in this study is that no relationship was evident between CPy% 

positioning and performance when the data was treated as one group. Partial 

correlations using all N = 62 golfers returned no significant effects and only one small 

effect existed between Club Velocity and CPy% at eight swing events (Front Foot, 

Reverse and outliers, N = 62, table 5.35). This would have represented a type 1 error 

for the Reverse group, for which significant effects existed. This result has also 

highlighted a limitation of previous studies which showed no relationship between 

position of weight and performance. If the Reverse style existed in these studies, 

important information would have been masked by the data being treated as one group 

only with no accounting for styles. 

 
Table 5.35: Partial correlations controlling for Age between CPy% at eight 

swing events and Club Velocity for all golfers (N = 62). 
 

 r p 
CPy%TA 0.09 0.486 
CPy%MB -0.05 0.725 
CPy%LB 0.11 0.402 
CPy%TB 0.05 0.680 
CPy%ED 0.19 0.175 
CPy%MD -0.06 0.637 
CPy%BC -0.13 0.321 
CPy%MF -0.23 0.071 
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The non-significant result in this study between CPy%TA and Club Velocity for both 

the Front Foot and Reverse groups supported Mason et al. (1995) but not Robinson 

(1994). It was suggested in the literature review of this thesis that the conflict between 

Mason et al. (1995) and Robinson (1994) might have been due to the different range 

of skill levels tested. Repeating, Mason et al. (1995) used golfers from a narrow skill 

range (single figure handicaps which is likely to reduce ranges of parameters and 

hence effect sizes) compared with Robinson (1994) who used a wider range of skill 

levels (professional to high handicap golfers). However, as this study used a similar 

range of skill level to that used by Robinson and found no relationship between 

CPy%TA and Club Velocity, this explanation was not supported. Further, reanalyzing 

data in this study to directly compare with the Robinson study (Fz% between the feet) 

indicated no relationship existed for the Front Foot group (r = 0.09, p = 0.592), 

Reverse group (r = -0.07, p = 0.799) or with all data included (N = 62; r = 0.05, p = 

0.728). As such, this study did not support the finding of Robinson (1994). 

 

Of interest in the non-significant finding for TA in this study for the Front Foot and 

Reverse groups, as well as that of Mason et al. (1995) is that it suggests that the 

positioning of weight at this event does not influence Club Velocity at ball contact. 

Further, post-hoc comparison dividing the data in this study into handicap groups 

showed no difference between golfers of different skill level for CPy%TA (table 

5.36). This does not support the coaching emphasis on correct body positioning at TA 

to assist swing performance (e.g. Grant et al., 1996; Leadbetter, 1995).  
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Table 5.36: ANOVA comparing different handicap groupings for CPy%TA 

 Front Foot group Reverse Group 
Handicap grouping F p F p 

 
(1)  a. 0-7, b. 8-14, c. 15+ 
Front Foot N (a=13, b=11, c=11) 
Reverse N (a=8, b=5, c=6)  

0.43 0.651 0.94 0.356 

 
(2)  a. 0-10, b. 20+ 
Front Foot N (a=15, b=6) 
Reverse N (a=10, b=4) 

 
0.21 

 
0.826 

 
2.10 

 
0.150 

Note: social golfers eliminated from this analysis 
Groupings based on those used in previous studies (1) Koenig et al. (1993), (2) Richards et al., (1985) 

No significant differences between groups for Age at p < 0.01 
 

 

It should be noted that cluster analysis will influence ensuing statistical analysis if the 

same parameters that were clustered are examined. For this study, cluster analysis 

grouped similar values of CPy% together to form the Front Foot group and Reverse 

groups. This reduced the range of CPy% values at each swing event. For example, the 

range of CPy%BC was 77% for the whole group (N = 62) but only 39% for the Front 

Foot group (N = 39). A reduced range of values will reduce effect size and hence 

statistical power in correlation analysis (Coleman, 1999). As such, statistical power 

would have been reduced for both groups due to cluster analysis. However, as no 

effects were evident for the Front Foot group or the group as a whole (N = 62), it is 

unlikely that a type 2 error has been generated by conducting correlation analysis on 

data that has been clustered. As well, in spite of the decrease in likely ranges and 

effect sizes, the Reverse group did return strong correlation results for some of the 

CPy% parameters. In this respect, the use of cluster analysis has actually increased the 

real power of the study by facilitating the separation of styles from within the data, 

and allowing for an accurate result to be obtained. 
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Of particular interest was that CPy% was not related to Club Velocity at TA, TB and 

BC, key events in coaching and scientific literature. Robinson (1994) expressed 

surprise at the position of weight at BC being unrelated to performance and not 

different between amateur and professional players. However, data in this study 

supported these findings. If this study had used only these events then no significant 

findings would have been identified. Clearly important information would have been 

missed for the Reverse group who returned medium and large effects at three swing 

events not used in previous studies (LB, ED and MF). This finding has provided 

compelling support for the use of more swing events in the analysis of weight transfer 

in the golf swing in both scientific and coaching terms.  

 

Based on these findings, CPy% at the eight swing events used in this study holds 

useful information for the Reverse style of swing but not the Front Foot style. The 

Reverse group finding of one significant relationship and two relationships returning 

medium or large effects (although not significant) supports the coaching literature 

(e.g. Norman, 1995) that the correct positioning of weight during the swing is 

important to increasing club velocity and hence distance of hit. However, the direction 

of some of the effects conflicted with the same coaching literature, with a position 

nearer the back foot at MF, rather than towards the front foot, being advantageous. As 

well, the Front Foot group findings did not support the coaching literature that weight 

transfer was important to performance. The finding that different technical aspects are 

important for the different styles highlights the importance of identifying these styles 

prior to any statistical or coaching analysis. 
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5.4.2  CPy Velocity at eight swing events 

 

Club Velocity at ball contact was not related to CPy velocity at the eight swing events 

used in this study for the Front Foot group. While small effects were evident for three 

relationships (VelCPyTA, VelCPyED and VelCPyMD) these were not significant. 

Further, while upper confidence levels indicated these three correlations might have 

been strong, lower confidence levels indicated no effect (table 5.6, Results section 

5.3.4) and large confidence intervals existed within each (r-value ranges of 0.5 or 

25% of the full scale of correlation values of –1 to 1) which indicated the relationships 

among the golfers tested were inconsistent. As such, the support for the small effect in 

these correlations was weak. No data exists in the literature for comparison. 

 

Conversely, for the Reverse group, CPy velocity at the eight swing events used in this 

study was important. The relationship between Club Velocity and VelCPyBC 

produced a large effect with an outlier removed. As well, although not significant at p 

< 0.01, medium effects were returned at three other swing events with none of the 

confidence limits for these relationships crossing zero. This indicated that CPy 

velocity at swing events provided useful information to the Reverse group. No data 

exists in the literature for comparison. 

 

The Reverse group produced a medium negative effect between VelCPyBC and Club 

Velocity at ball contact which was indicated as large with an outlier removed (r = -

0.43, p = 0.082; minus one outlier, r = -0.69, p = 0.003). Surprisingly, given 

VelCPyBC ranged from 1.2 to -2.2 m.s-1, this result indicated that a CP velocity 

moving more rapidly towards the back foot was associated with a larger Club 
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Velocity. As can be noted in figure 5.5, only two Reverse golfers produced a positive 

VelCPyBC value and one of these golfers was the outlier that altered the correlation 

substantially (denoted as ‘1’). A similar result was obtained using Fz% instead of 

CPy% with the same two golfers the only ones to produce a positive rate of change of 

Fz% and the partial correlation between Club Velocity and rate of change of Fz% 

with an outlier removed for the Reverse group was r = -0.69 (p = 0.003). This 

indicated that this result was not due to horizontal forces (the only difference between 

Fz and CP measures). The rapid CPy movement towards the back foot at BC was also 

relatively large, with VelCPyBC producing the largest magnitude of any swing event 

calculated (table 5.37). This held when absolute values were used to calculate the 

mean (i.e. parameters with both positive and negative values will tend to show lower 

means if absolute values not used). No effect was evident for this parameter for the 

Front Foot group (r = 0.12, p = 0.487). 

 

 

Figure 5.5: Scatterplot of VelCPyBC and Club Velocity (outlier denoted 1). Note 
that the two dimensional scatterplot is an indication of but not a true 

representation of the partial correlation analysed in this study. 
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Table 5.37: Reverse group mean values (N = 19) calculated from observed and 
absolute values for CPy Velocity at eight swing events. All data in m.s-1. 

 
 Mean (observed values) Mean (absolute values) 
VelCPyTA 0.0 0.1 
VelCPyMB -0.4 0.4 
VelCPyLB 0.0 0.2 
VelCPyTB 0.1 0.3 
VelCPyED 0.6 0.9 
VelCPyMD -0.6 0.9 
VelCPyBC -1.2 1.4 
VelCPyMF -0.3 0.9 

 

As discussed in study 1 and in section 5.4.1 of this study, the findings that weight 

transfer was moving towards the back foot at ball contact was surprising in coaching 

terms. Even more surprising is the finding in this study that the more rapid movement 

towards the back foot was associated with a larger Club Velocity for the Reverse 

group. As such, not only do some golfers shift their weight towards the back foot at 

ball contact (89% of Reverse golfers produced a negative VelCPyBC), but a more 

rapid weight transfer was associated with better performance. There is no mention in 

the coaching literature of weight shift moving towards the back foot at ball contact 

being a desirable trait. Indeed, this is often associated with technical errors such as a 

reverse pivot where weight is positioned on the front foot at TB and on the back foot 

at BC (e.g. Leadbetter, 1993). This finding represents an important change in how 

weight transfer should be interpreted and coaching practices relating to weight 

transfer need to consider the implications of this weight transfer style. Not only 

should a weight transfer moving towards the back foot be encouraged, but a more 

rapid rate of transfer might be of advantage to the golfer.  

 

The mechanism underlying this finding is not clear from the data and the researcher 

can only speculate. From visual inspection of video, it was noted that the front knee 

was extended between ED and BC for Reverse golfers, a technical trait not noted 



 

 

217

among Front Foot golfers. This is worth evaluating in future exploration of Reverse 

golfers. If the Reverse golfers are similar to the ‘rotational’ style golfer described by 

Neal (1998) it might be that the rapid reverse movement of CP assists in positioning 

the body optimally for rotation. A position nearer midstance would be the better for 

full body rotation compared with positioning weight nearer the front foot. Rae et al. 

(2001) suggested that weight transfer was not important itself but was needed to 

position the body for rotation and so was of secondary importance. However, these 

suggestions are speculative as no data exists to evaluate them but might be useful 

future directions for analysis of Reverse golfers. More work is required examining the 

kinematics of the Reverse group to identify the mechanism being utilized and to 

develop other coaching cues that might be of use in producing and refining this 

technique. 

 

While no other relationships were statistically significant for either group, 

relationships that returned small or medium effect sizes with confidence limits that 

did not cross zero have been briefly discussed below. 

 

For the relationship between Club Velocity and VelCPyTA, a small negative effect 

was returned by the Front Foot group (r = -0.27, p = 0.102) and a medium negative 

effect was produced by the Reverse group (r = -0.42, p = 0.09). For both groups, the 

range of CPy velocities at takeaway crossed zero (Reverse = -0.2 to 0.3 m.s-1, Front 

Foot = –0.6 m.s-1 to 0.6 m.s-1). As such, this result indicated that a larger negative CPy 

velocity, or moving CPy more rapidly towards the back foot, was associated with a 

larger Club Velocity.  
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Interestingly, 71% of golfers tested produced a positive VelCPyTA value (N = 29 

Front Foot golfers and N = 12 Reverse golfers) indicating that CPy was moving 

towards the front foot at TA, rather than towards the back foot, for most golfers. This 

was an interesting finding as it suggested weight was moving forward at the start of 

the backswing for most golfers. Rate of change of Fz% between the feet was also 

positive (velocity of Fz%TA = 0.1 %.s-1) so this finding was not due to horizontal 

forces. This might indicate the ‘press’ discussed in some coaching (e.g. Grant et al., 

1996) and scientific literature (e.g. Wallace et al., 1990) where the back leg pushes 

weight onto the front foot to instigate takeaway. However, the direction of the non-

significant effect between Club Velocity and VelCPyTA was negative for both groups 

indicating moving CPy towards the back foot more rapidly rather than the front foot 

was associated with a larger Club Velocity. As such, the positive CPy velocity at TA 

was less advantageous, although the result was not significant. 

 

Medium negative effects existed between Club Velocity and VelCPyMD and between 

Club Velocity and VelCPyMF for the Reverse group. VelCPyMD was also related to 

VelCPyBC (r = 0.60, p = 0.018) so the mechanism generating this result might be 

similar to that of VelCPyBC. However, VelCPyMF and VelCPyBC were not related 

(r = -0.11, p = 0.702). This suggested that not only was a negative CP velocity at BC 

related to Club Velocity, this relationship also existed in mid follow through and that 

this result was not simply due to collinearity. However, neither relationship was 

significant. As well, while confidence levels indicated effects might be large the lower 

confidence limit suggested no effect might also exist. As such, there is only weak 

evidence to support any substantial effect existing for these parameters for the 

Reverse group. No effect existed for VelCPyMF for the Front Foot group and while a 
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small effect existed for VelCPyMD this was not significant and confidence limits 

crossed zero indicating no relationship. 

 

 

5.4.3  Other CPy parameters 

 

A larger absolute range of CPy (CPyR: r = 0.53, p = 0.001) and larger maximum CPy 

velocity (VMaxCPy: r = 0.46, p = 0.003) was associated with a larger Club Velocity 

for the Front Foot group. This suggested that weight transfer was important in the golf 

swing for the Front Foot group. This supported Koenig et al. (1993) and Wallace et 

al. (1990), who both suggested (without statistical evidence) that these factors were 

important in the golf swing based on low handicap golfers producing larger range and 

rate of weight transfer compared with high handicap golfers. Importantly, this study is 

the first to provide group-based statistical evidence that these relationships exist.  

 

CPyR and VMaxCPy were themselves significantly correlated for the Front Foot 

group (r = 0.54, p < 0.001). It is possible that the mechanism behind these significant 

results might also be related. It may be that this mechanism is part of the kinetic chain 

or proximal to distal sequencing found in other striking activities (e.g. Tennis serve: 

Elliot et al., 1986; Kicking: Putnam, 1993; general: Kreighbaum and Barthels, 1985). 

That is, the greater velocity of weight transfer, as indicated by VMaxCPy (whole body 

or proximal movement) develops greater system momentum, which can then be 

transferred to the club and ball (distal movement). A larger weight transfer range may 

facilitate this by allowing greater relative distance over which this velocity and 

momentum can be generated (or be a product of it). This would support Leadbetter 
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(1995) who suggested weight transfer was essential to developing momentum in the 

swing. However, discussion of this mechanism is limited by the absence of kinematic 

data. This is a useful area for future work when kinetic and kinematic data can be 

combined. 

 

While a strong effect existed between Club Velocity and CPyR for the Front Foot 

group, only a small association was evident between Club Velocity and CPyR%. This 

indicated that increasing the CPy range in metres was the more important factor, 

rather increasing the range of CPy% between the feet. Stance Width (distance 

between the feet) was also correlated with Club Velocity (r = 0.47, p = 0.005) and 

with CPyR (r = 0.51, p = 0.001). A similar pattern existed for a subset of Front Foot 

golfers who were under 40 years of age (N = 29: Stance Width and Club Velocity: r = 

0.51, p = 0.005; Stance Width and CPyR: r = 0.44, p = 0.017: subset discussed in 

section 5.4.1.5.1). In an applied sense, while the cue to increase weight transfer range 

or increase rate of weight transfer might be useful, a simpler cue of increase stance 

width may also develop the technical change required to increase CPyR. Leadbetter 

(1993) suggested that an increase in stance width does not lead to greater distance. 

Given that club velocity at ball contact is related to distance, the findings in this study 

are in conflict with these comments.  

 

In contrast to the findings for the Front Foot group, CPyR and VMaxCPy were not 

related to Club Velocity for the Reverse group. While a small positive effect was 

evident for both, neither was significant and confidence limits crossed zero for CPyR 

(Club Velocity – VMaxCPy; r = 0.26 with a likely range of 0.10 to 0.41, p = 0.310; 

Club Velocity – CPyR; r = 0.25 with a likely range of -0.11 to 0.44, p = 0.318). 
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Interestingly, mean VMaxCPy values were similar (Front Foot group = 2.5 ± 0.7 m.s-

1; Reverse group = 2.5 ± 0.9 m.s-1). However, the importance of this parameter within 

each group was different (VMaxCPy correlation with Club Velocity: Front Foot 

group, r = 0.46, p = 0.001; Reverse group, r = 0.26, p = 0.310). This suggested a 

technical similarity between each group but a distinctly different influence of this 

technical element on performance. In the case of CPyR, neither the value nor the 

correlation with Club Velocity was similar. The small value of CPyR and small effect 

for the relationship between CPyR and Club Velocity (mean = 0.27 m, r = 0.25, p = 

0.310) compared with the significantly larger value and large effect for the Front Foot 

group (mean = 0.36 m, r = 0.53, p = 0.001) indicating a different technical element as 

well as different influence on performance of CPyR. Further, mean Stance Width was 

similar between groups (Front Foot = 0.51 m; Reverse = 0.52 m) but for the Reverse 

group did not correlate with Club Velocity (r = 0.21, p = 0.416). These results 

provided further support for the Front Foot and Reverse styles being distinct 

techniques.  

 

While VMaxCPy and Club Velocity were associated for the Front Foot group, the 

time at which the maximum occurred was not (r = -0.18, p = 0.29). This suggested 

that while rapid weight transfer was important, the time at which it occurred was not. 

Examination of the data indicated that 87% of Front Foot group golfers (N = 34) 

achieved the maximum between TB and ED and so as the range of values for most 

golfers was small, this reduced statistical power. Similarly, there was practically no 

effect between Club Velocity and the other timing measures used in this study for the 

Front Foot group (tMaxCPy, r = -0.04, p = 0.828; tMinCPy%, r = -0.12, p = 0.470). 
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The relationships between MaxCPy% and Club Velocity and MinCPy% and Club 

Velocity were not significant for either the Front Foot group or the Reverse group. 

While a small effect existed for MinCPy% for the Front Foot group, confidence levels 

crossed zero indicating no relationship existed. For the Reverse group, while MaxCPy 

returned a medium effect size with Club Velocity, this was due to the influence of an 

outlier (r = 0.30, p = 0.237; with outlier removed r = 0.19, p = 0.470). MinCPy 

returned a medium effect size with an outlier removed (r = 0.02, p = 0.934; with 

outlier removed, r = 0.39, p = 0.130), although this was not significant. However, it 

would be worth reevaluating MinCPy% for the Reverse style in future work with a 

larger N as r = 0.39 would be significant at p < 0.01 with N = 40 golfers and at p < 

0.05 with N = 29 golfers. 

 
There was little support for the importance of timing parameters for the Reverse 

group. An outlier produced the non-significant medium effect sizes evident between 

Club Velocity and time-based CP parameters (tVMaxCPy, tMaxCPy%, tMinCPy%) 

and with the outlier removed, no association was indicated. For the relationships 

between Club Velocity and tVMaxCPy, and between Club Velocity and tMaxCPy%, 

practically no effect existed without the outlier. A small effect remained for the 

relationship between Club Velocity and tMinCPy%, although the level of significance 

for this result was only p = 0.330. As well, for all correlations with outliers removed, 

confidence levels crossed zero, indicating no effect existed. These results indicate that 

the timing parameters measured in this study were not related to Club Velocity for the 

Reverse group. 

 

 



 

 

223

It is surprising given the coaching emphasis that exists on tempo and timing of the 

swing that no timing parameters were related to Club Velocity. Further, there was no 

relationship between any of the timing parameters and handicap, or between handicap 

groups (table 5.38). This analysis was limited to the Front Foot group due to small N 

for the Reverse group combined with the large influence of outliers. It might be that 

the golfers in the group had optimized their own swing so the effects of CPy timing 

were not evident or that differences are not evident on a group basis. Intra-individual 

analysis may also be required to define the importance of weight transfer timing 

parameters.  

 

 

Table 5.38: Post Hoc statistical analysis of CPy timing measures  
(Front Foot group only). 

 
 tVMaxCPy tMaxCPy% tMinCPy% 
Handicap grouping F / r p F / r p F / r p 
 
1.  0-7, 8-14, 15+ 
N (a=13, b=11, c=11) 

0.46 0.699 0.27 0.766 0.002 0.998 

 
2.  0-10, 20+ 
N (a=15, b=6) 

1.09 0.744 0.42 0.525 0.08 0.776 

 
Partial Correlation with 
Handicap controlling for 
Age (N = 39) 

 
-0.10 

 
0.570 

 
0.14 

 
0.444 

 
0.01 

 
0.973 

 
Note: social golfers eliminated from this analysis 

Groupings based on those used in previous studies 1. Koenig et al. (1993), 2. Richards et al., (1985) 
 

 

Examination of scatterplots of individual golfer data indicated a measurement issue 

might have influenced the examination of timing data. For five golfers, maximum 

CPy values appeared in distinct clusters. A similar outcome was evident in minimum 

CPy for three golfers. Figure 5.6 shows two datapoint that are separated from the 
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remaining eight points for a selected golfer for MaxCPy%. These clusters were 

associated with either the first or second peaks denoted by arrows in figure 5.7.  

40

41

42

43

44

45

-0.2 -0.1 0.0 0.1 0.2

tMaxCPy (s)

C
lu

b 
Ve

lo
ci

ty
 (m

.s-1
)

Individual Golfer 3
(N = 10 shots)

 

Figure 5.6: Scatterplot of Club Velocity and tMaxCPy for a selected golfer (N = 
10 shots), showing two clusters of points due to maximum CPy occurring at 

distinctly different points in the swing 
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Figure 5.7: CPy%-time curve for a golfer who produced clusters in tMaxCPy 
showing two different points at which the maximum occurred (denoted by 

arrows). 
 
 

Two problems are produced from this issue. First, the use of the mean time value is 

not representative of either peak. Second, the peaks relate to very different parts of the 

swing. Arguments exist for leaving this data intact as well as for eliminating it from 
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the analysis. The data is, by definition, the maximum CPy value between TA and MF 

and therefore it can be reasoned that it should remain. Alternatively, as the mean 

value across N = 10 shots was used in further evaluation, this value could be 

considered a misrepresentation of what was intended to be measured. In the case of 

figure 5.7, the maximum occurred at a distinctly different time in the swing and 

existed on another ‘hill’ in the CPy curve. The mean value for the time the maximum 

occurred will not represent the region of either maximum (i.e. near each of the 

arrows) and would indicate maximum occurred near the trough just after BC. Further, 

although this was not the case with all golfers, the CPy% maximum occurred at the 

measurement limit and given the upward direction of the curve at this point might be 

expected to further increase. As such, it might not represent a maximum at all. It 

should be noted that this issue was not evident in golfers used to evaluate stability of 

the mean otherwise it would have been identified at that point. 

 

Re-evaluation of this measurement issue indicated it did not affect the results of 

statistical analyses in this study. Correlations between Club Velocity and potentially 

affected CP parameters were re-evaluated in two ways with no analysis changed the 

significant and non-significant results. In the first re-evaluation method, the golfers 

who produced clusters in timing data were removed from the analysis (three for 

tMinCPy, five for tMaxCPy). In the second, these golfers were included but 

maximum CPy% was re-calculated for these golfers between TA and BC (rather than 

TA to MF). This produced one cluster of results for all but one golfer (this golfer was 

not included in this analysis and is discussed in detail in the next study).  MaxCPy%, 

MinCPy%, CPyR and CPyR% were also re-evaluated as they might also have been 

compromised. As indicated in table 5.39, while some r-values were altered, none 
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became significant (or not significant). As such, while future research needs to be 

mindful of this measurement issue, it did not affect the decisions made in this study.  

 

Table 5.39: Partial correlations between Club Velocity and CP parameters 
possibly affected by the timing measurement issue 

 
 
 
 

Original Analysis 
All but with mean 

recalculated for problem 
golfers 

Problem golfers eliminated 

 r p r p r p N 
Reverse N = 18 N = 17 N as indicated 
MaxCPy% 0.30 0.237 0.31 0.230 0.26 0.410 15 
tMaxCPy% 0.34 0.182 0.36 0.161 0.41 0.126 15 
MinCPy% 0.02 0.934 -0.15 0.554 -0.02 0.941 16 
tMinCPy% 0.25 0.298 0.32 0.217 0.38 0.218 16 
CPyR 0.25 0.310 0.35 0.189 0.35 0.265 14 
CPyR% 0.18 0.492 0.10 0.708 0.21 0.508 14 
Front Foot N = 39 N = 39    
MaxCPy% 0.15 0.367 0.04 0.816 -0.02 0.928 37 
tMaxCPy% -0.04 0.828 0.11 0.528 -0.19 0.262 37 
MinCPy% -0.22 0.182 -0.22 0.175 -0.21 0.219 38 
tMinCPy% -0.12 0.470 -0.07 0.680 -0.07 0.679 38 
CPyR 0.53 0.001 0.47 0.003 0.48 0.003 36 
CPyR% 0.28 0.087 0.28 0.089 0.28 0.091 36 

 
Note: The outlier identified in the Reverse group analysis (section 5.3.5) was eliminated for all datasets in this 

table 
 
 

5.4.4  Multiple regression analysis 

 

The combination of CPyR and VelCPyED predicted 28% of the variance in Club 

Velocity for the Front Foot group. CPyR was the major weight transfer influence, 

accounting for 20% of this 28% with VelCPyED contributing 8%. Two-thirds sub-

sample analysis indicated that the result was robust for CPyR but not for VelCPyED, 

as it was not significant in the reanalyzed regression. So while both were included, the 

importance of VelCPyED is questionable and would require more research to 

substantiate. While Robinson (1994) conducted regression analyses, these included 
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kinematic variables and so comparison is not possible. No other study has conducted 

multiple regression analysis on weight transfer parameters. 

 

As noted in the previous section, CPyR and VMaxCPy were related for the Front Foot 

group and hence did not both appear in the best regression due to shared variance. 

However, it is important not to discount VMaxCPy on this basis as less important as 

r-values varied only slightly (VMaxCPy: r = 0.46 compared with CPyR: r = 0.53). 

Hair et al. (1995) also warned against this type of interpretation when collinearity 

exists between parameters. An example of the potential risk of considering a 

parameter unimportant if not entered into a regression was highlighted when 

analyzing a subset of the data (golfers under 40 years old) in this study. In this 

analysis VMaxCPy was included in the best subset regression and returned a larger r-

value for the correlation with Club Velocity (VMaxCPy: r = 0.61; CPyR: r = 0.53). 

Further discussion of the subset group is in section 5.4.4.1.1. 

 

For the Reverse group, both significant correlates (CPy%LB and VelCPyBC) 

appeared in the multiple regression analysis predicting Club Velocity from CP 

parameters. With outliers removed, CPy%LB produced a change in R2 of 16%, while 

VelCPyBC produced a change in R2 of 7%. Both were significant in sub-sample 

regressions, indicating that the association between these parameters and Club 

Velocity was robust for the Reverse group. As both appeared in the regression, this 

suggested that both parameters were associated with Club Velocity at ball contact 

independent of each other. This was supported by the correlation between the 

parameters indicating practically no effect (r = -0.01, p = 0.988). The combined total 
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of 23% of the variance in Club Velocity accounted for by CP parameters was slightly 

smaller than the 28% accounted for in the Front Foot group. 

 

For the Front Foot group, while the result was not robust, it is appropriate to examine 

VelCPyED in more detail as it appeared in the best regression. From correlation 

analysis, a small negative effect size was evident between Club Velocity and 

VelCPyED (r = -0.25, p = 0.310). With one golfer removed (denoted as 2 in figure 

5.8) there was no relationship evident (r = 0.17, p = 0.310). However, with the golfers 

represented by 1 (1 golfer) and 3 (2 golfers) removed, a medium non-significant effect 

existed (r = -0.30, p = 0.085). While the lower end of the range of VelCPyED values 

was negative, only two golfers produced negative values (indicated as ‘1’ and ‘2’ in 

figure 5.8). As such it might be that a VelCPyED nearer zero is the more 

advantageous technical trait rather than a negative VelCPyED. However this was not 

clear from the scatterplot with golfers with the higher Club Velocities showing a wide 

range of values for VelCPyED. This is evident in figure 5.8 examining the top three 

Club Velocities which were associated with values ranging from -0.6 to 1.8 m.s-1.  
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Figure 5.8: Scatterplot of VelCPyED and Club Velocity. Possible outliers 
denoted as 1, 2 (both one datapoint each) and 3 (two datapoints). 
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5.4.4.1 On the inclusion of Age in regression analysis  

 

The association of Club Velocity and Age in regression analysis presented statistical 

problems in this study. While it was an important finding in itself, it was not the focus 

of the study. The problem arose from Age not only correlating with Club Velocity but 

also Handicap. As such, when Age was accounted for in correlations and regression 

analysis, some skill level information is likely to have been eliminated as well. The 

effect would have been to reduce the variance accounted for by CP parameters (i.e. 

they seem less influential than they were). In multiple regression analysis, the first 

independent variable (IV: Age in this regression) is allocated the variance accounted 

for that would be the case if simple correlation was performed (i.e. its ‘full’ amount). 

However, the remaining IV’s are only considered in terms of the variance remaining. 

The other problem arising from Age correlating with performance was it precluded 

curvilinear analysis. This analysis was performed on an individual basis in study 3 but 

remains a necessary future direction for group-based analysis.  

 

As mentioned, a number of methods of eliminating the effect of Age were attempted. 

Transformation was experimented with but with only N = 39 and N = 19, the choice 

of transformation algorithm could not be confidently determined. The best statistical 

and most useful practical option would have been to develop different models for 

different Age groups. This was performed for the under 40 year old Front Foot subset 

group in the next section (5.4.4.1.1). Subject numbers in the Front Foot over 40 year 

group and the Reverse group were too small for this analysis to be performed (N ≤ 10 

for all other subsets of Age).  
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5.4.4.1.1 SUBSET ANALYSIS: FRONT FOOT GOLFERS UNDER 40 

YEARS OF AGE 

 

Analysis of different Age categories indicated that 40 years of age was a key point, 

after which Club Velocity declined in this study. Brown et al. (2002; using data from 

this study; N = 40) found that no association existed between Age and Club Velocity 

using golfers under 40 years of age. Lockwood et al. (1998) also identified 40 years of 

age as the point of decline in skill level as indicated by an increase in handicap. Based 

on these findings, the 40 years of age cut-off was considered a valid partition for this 

study.  

 

The same analysis used for the Front Foot group (N = 39) was repeated for the under 

40 year old Front Foot group (N = 29), with the exception that bivariate rather than 

partial correlations were performed (as Age did not correlate with Club Velocity, r = -

0.21, p = 0.263). Table 5.40 presents selected correlations between weight transfer 

parameters and Club Velocity.  

 

Table 5.40: Selected correlations between Club Velocity and Handicap, Age and 
CP parameters for the Front Foot under 40 years old group (N = 29). 

 
 Overall Within-dataset 

distribution 
   Confidence Limits  

  r p 2.5%  97.5%  p = 0.05 p = 0.01 
Handicap -0.58 0.002 -0.38 -0.74 -0.32 -0.48 
Age (years) -0.21 0.263 -0.35 0.08 -0.41 -0.52 
VelCPyED (m.s-1)  -0.11 0.555 -0.37 0.14 -0.35 -0.43 
VMaxCPy (m.s-1) 0.61 <0.001 0.43 0.77 0.33 0.41 
CPyR (m) 0.53 0.003 0.31 0.71 0.36 0.42 

 

Similar to the full Front Foot Group (N = 39) analysis, VMaxCPy and CPyR were 

significantly correlated with Club Velocity. However, VMaxCPy demonstrated a 
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larger r-value than CPyR and as such was chosen ahead of CPyR for entry into the 

best regression analysis. Also different was the regression chosen from best subsets 

analysis included only VMaxCPy (VelCPyED was not included), and accounted for a 

larger amount of variance in Club Velocity than was indicated by the original analysis 

(R2 = 0.38 compared with R2 = 0.28). This might have been due to differences 

between the full group and subset group. It might also have been due to Age 

eliminating some skill factor (important information) from the analysis as discussed in 

the previous section.  

 

VelCPyED was not significantly correlated with Club Velocity for the under 40 years 

old group (N = 29), nor was any effect size evident (r = -0.11, p = 0.555). Further, 

VelCPyED was not included in the best regression for the under-40 years subgroup. 

As well, VelCPyED was not significant when included in regressions with either 

CPyR or VMaxCPy (calculated for comparison purposes. CPyR and VelCPyED: 

Change in R2 due to VelCPyED = 0.02, p = 0.290; VMaxCPy and VelCPyED: 

Change in R2 due to VelCPyED = 0.02, p = 0.340). Clearly, this parameter was not 

important to the under 40 years subgroup.  

 

Based on the findings of the under-40 years group, Age had some influence on the 

analysis of Club Velocity and CP parameters although the extent is not clear. While 

both VMaxCPy and CPyR were still significant and CPyR returned the same r-value 

(r = 0.53), the effect for VMaxCPy was larger in the subset analysis (r = 0.61 

compared with 0.46). As well, the regression analysis was stronger and included 

VMaxCPy rather than CPyR (VMaxCPy was included, R2 = 0.38 compared to 0.28). 

This difference might have been due to differences between the full group and subset 
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group or due to Age eliminating some skill factor from the analysis, although it did 

not change the fact that both CPyR and VMaxCPy were related to Club Velocity for 

Front Foot golfers (rather the strength of association was altered).  

 

 

5.4.4.2 Evaluation of the regression process 

 

To evaluate the process of using cluster analysis to reduce parameter numbers and 

then use best subsets to choose the regression for analysis, stepwise regression was 

conducted for both groups. This was performed using Age in the first block and all CP 

parameters in the second block. This was performed to identify if a better regression 

had been missed due to the clustering and best subsets processes.  

 

The Front Foot group stepwise regression included both CPyR and VelCPyED. As 

these results have been presented already they are not repeated here (see Results 

section 5.3.6.3). This confirmed that the process used in this study found the best 

regression in the data for the Front Foot group. While VelCPyED was not significant 

in replication analyses or in the under 40 years subgroup analysis, both best subsets 

and stepwise regression returned the same result. As such, if it was considered a 

limitation of the best subsets approach that a non-robust parameter was included, then 

the same limitation is shared by stepwise regression.  

 

The Reverse group required more thorough analysis due to the smaller N and outliers. 

With all data analysed, the stepwise regression included CPy%ED and tMinCPy 

(table 5.41). However, while all regressions were significant (using the same process 
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of eliminating cases if they failed DFIT and residual analysis), only CPy%ED was 

significant in the final regression (i.e. when all cases passed diagnostic tests). The 

analysis was repeated with outliers eliminated prior to analysis. With outliers 

removed, CPy%LB and VelCPyBC were included in stepwise regression analysis, as 

identified from the process used in this study. 

 

Table 5.41: Results of stepwise regression for the Reverse group. 

 Initial Analysis 
Final solution  

(all cases passed diagnostic tests) 
 R2/Change in R2 p R2/Change in R2 p 
Regression 0.79 <0.001 0.91 <0.001 
Age 0.62 <0.001 0.73 <0.001 
CPy%ED 0.10 0.023 0.15 0.005 
tMinCPy 0.07 0.040 0.03 0.191 
N 19  15  

Outliers removed prior to analysis   
 R2/Change in R2 p R2/Change in R2 p 
Regression 0.83 <0.001 0.95 <0.001 
Age 0.63 <0.001 0.69 <0.001 
CPy%LB 0.16 0.007 0.20 <0.001 
VelCPyBC 0.07 0.024 0.06 0.048 
N 17  14  

 

The second level of decision making that was evaluated for the Reverse group was the 

choice of regression from best subsets. Recalling, CPy%LB and VelCPyBC were 

chosen as this combination produced one of the best regressions with all data and 

clearly the best with outliers removed. As the remaining parameter, CPy%ED, 

appeared in stepwise regression, it was also considered appropriate to evaluate 

regressions with CPy%ED included for comparison. From this analysis, the regression 

including CPy%LB and VelCPyBC produced the largest R2 value, the largest change 

in R2 value due to CP parameters and maintained all CP parameters as significant in 

the final solution. Table 5.42 summarises this analysis. 
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Table 5.42: Regressions for all combinations of CPy%LB, CPy%ED and 
VelCPyBC for the Reverse group. 

 
 All Data included (N = 19) Final solution  

(all cases passed diagnostic tests) 
 R2/Change in R2 p R2/Change in R2 p 

Full Regression 0.72 <0.001 0.95 <0.001 
Age 0.64 <0.001 0.69 <0.001 

CPy%LB 0.04 0.191 0.20 <0.001 
VelCPyBC 0.04 0.186 0.06 0.048 

N 19  14  
Full Regression 0.62 <0.001 0.91 <0.001 

Age 0.62 <0.001 0.72 <0.001 
CPy%LB 0.02 0.248 0.12 0.009 
CPy%ED 0.10 0.060 0.07 0.011 

N 19  16  
Full Regression 0.73 <0.001 0.91 <0.001 

Age 0.62 <0.001 0.73 <0.001 
CPy%ED 0.10 0.028 0.17 0.005 

VelCPyBC 0.00 0.456 0.01 0.456 
N 19  15  

Full Regression 0.75 <0.001 0.95 <0.001 
Age 0.68 <0.001 0.75 <0.001 

CPy%LB 0.04 0.212 0.16 0.013 
CPy%ED 0.03 0.251 0.04 0.145 

VelCPyBC 0.00 0.624 0.00 0.456 
N 19  14  

 

 

It is difficult to evaluate the regression analysis process with the Reverse group due to 

influential cases affecting the data. Depending on how outliers were treated, different 

results were produced. However, the best regression was obtained using the process of 

data reduction (cluster analysis of parameters) and best subsets regression in this 

study. This is based on three arguments. First, stepwise regression produced the 

combination of Age, CPy%LB and VelCPyBC with outliers removed and all 

parameters were still significant after all influential cases (i.e. cases that failed 

diagnostics) were removed. Second, while stepwise regression produced an equation 

including Age, CPy%ED and tMinCPy with all data included (N = 19), only 

CPy%ED was significant when influential cases were removed, indicating tMinCPy 

was included only due to outliers. As well, from table 5.42, the R2 value for the 
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regression (with influential cases removed; R2 = 0.91, CP parameter change in R2 = 

0.18) was not as large as that for the regression including Age, VelCPyBC and 

CPy%LB (with influential cases removed; R2 = 0.95, CP parameter change in R2 = 

0.26). Third, no combination of CP parameters from best subsets regression 

(CPy%LB, CPy%ED and VelCPyBC) produced as strong a regression with all 

parameters significant, indicating the best subsets choice was the correct one.  

 

 

5.4.5  Summary 

 

For the Front Foot and Reverse groups, CPy% was positioned at 56-57% of the 

distance from the back foot to the front foot at TA. Interestingly, CPy% was moving 

towards the front foot rather than the back foot at TA for 71% of golfers tested. This 

technical trait might be related to the front leg ‘press’ reported by Wallace et al. 

(1990) where weight is moved to the front foot briefly at the start of backswing. There 

was no relationship between Club Velocity and position or velocity of CPy at TA for 

either group.  

 

CPy% then moved towards the back foot through MB to LB. Position of CPy at LB 

was related to Club Velocity for the Reverse group but not the Front Foot group. The 

result indicated that for the Reverse group, a position further from the front foot at LB 

was related to a larger Club Velocity. Positioning CPy% at MB and rate of change of 

CPy at MB and LB were not related to Club Velocity for either group. At TB, CPy 

was positioned at 21% for the Front Foot group and 26% for the Reverse group of the 

distance from back to front foot and was moving towards the front foot for both 
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groups. Positioning or rate of CPy movement at TB was not related to Club Velocity 

for either group. Maximum CPy velocity was similar for both groups (2.5 m.s-1) and 

occurred between TB and ED for most golfers. A larger maximum CPy velocity, or a 

more rapid weight transfer towards the front foot, was associated with a larger Club 

Velocity for the Front Foot group but not the Reverse group. The time that it occurred 

was not correlated with Club Velocity for either group. 

 

For both groups, CPy continued to move towards the front foot to ED. For the 

Reverse group, a medium positive effect existed between CPy%ED and Club Velocity 

but this was not significant (p = 0.073). For the Front Foot group, CPy velocity at ED 

returned a small non-significant negative effect with Club Velocity and was also 

included in the best subsets regression. However, this parameter was not robust in 

regression analysis and did not appear in the regression calculated from Front Foot 

under 40 years old golfers so requires more testing to substantiate.  

After ED, the styles differed with the Front Foot continuing to move CPy% to the 

front foot (81% at BC) while the Reverse group moved weight towards the back foot 

(53% at BC). Position of CPy% was significantly different at MD, BC and MF (p < 

0.001) but no relationship existed between Club Velocity and CPy% at these events 

for either group. However, a greater rate of CPy movement towards the back foot at 

ball contact was related to Club Velocity for the Reverse group. This was an 

unexpected finding as not only did the Reverse group position weight in a midstance 

position at BC rather than on the front foot, but moving CPy more rapidly towards the 

back foot was advantageous. This finding is in direct conflict with the coaching 

literature and requires that weight transfer be reassessed for coaching.  
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For the Front Foot group, CPy% remained predominantly on the front foot at MF 

(70%) compared with a position predominantly on the back foot for the Reverse group 

(43%). A large non-significant negative effect existed between CPy%MF and Club 

Velocity for the Reverse group indicating a position nearer the back foot at MF was 

related to a larger Club Velocity (p = 0.015). Maximum CPy (87%) occurred for the 

Front foot group between BC and MF and significant differences existed between 

groups for both the time (later in the swing) and the magnitude of maximum CPy% 

(larger). However, none of these parameters were significantly related to Club 

Velocity for either group. 

 

The overall range of CPy movement during the swing was significantly larger for the 

Front Foot group compared with the Reverse group (p < 0.001). As well, a larger 

range of CPy movement was associated with a larger Club Velocity for the Front Foot 

group but not the Reverse group. However, only a small effect existed for the 

relationship between Club Velocity and CPy normalised to stance width. Stance width 

itself was also related to Club Velocity. These results indicated that adopting a wider 

stance to increase weight transfer in absolute terms was advantageous to Club 

Velocity at ball contact for the Front Foot group. Minimum CPy occurred at a similar 

time for both groups (near LB) but maximum CPy% occurred much later in the swing 

for the Front Foot group (0.01 s after BC compared with -0.23 s before BC). The 

Front Foot group produced a significantly smaller minimum CPy% (p = 0.020) and 

significantly larger maximum CPy% (p < 0.001). However, none of these parameters 

were correlated to Club Velocity for either group. 
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Regression analysis indicated that for the Front Foot group CPy range and the velocity 

of CPy when the club was vertical during downswing (ED) predicted 28% of the 

variance in Club Velocity at ball contact. However in the under 40 years subset, 

maximum CPy velocity was included in the regression and accounted for 38% of the 

variance in Club Velocity. For the Reverse group, position of CPy% at LB and CPy 

velocity at BC combined to predict 23% of the variance in Club Velocity and both 

were robust. 

 

 

5.4.6   General discussion 

 

This study has highlighted the importance of identifying if different movement 

strategies or styles exist within the same skill prior to performance analysis whether it 

be for scientific research or in coaching. Differences existed in the weight transfer 

parameters that were associated with Club Velocity for the two styles identified in 

study 1. For the Front Foot group, a larger range of CPy and a larger maximum CPy 

velocity were associated with a larger Club Velocity at ball contact. However, these 

parameters were not associated with Club Velocity for the Reverse group, for which a 

larger CPy%LB and more negative VelCPyBC were related to Club Velocity. In turn, 

these parameters were not related to Club Velocity for the Front Foot group.  

 

If the different movement strategies had not been identified prior to correlation 

analysis and the group treated as one (N = 62), the effects between Club Velocity and 

CPy%LB (r = 0.02, p = 0.861), VelCPyBC (r = -0.08, p = 0.558) and CPyR (r = 0.17, 

p = 0.185) would not have been identified. Further, while the effect between Club 
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Velocity and VMaxCPy was significant for the full group (N = 62, r = 0.38, p = 

0.003), this parameter was not significant for the Reverse group golfers and would be 

considered a type 1 error for that group. This finding has important coaching 

implications. For the Front Foot group, encouraging a wide stance, to produce a large 

range of weight transfer, and rapid forward movement may be useful coaching cues to 

increasing Club Velocity. However, these cues would be inappropriate for the Reverse 

group golfers, who employ a different technique to generate Club Velocity. For these 

golfers, a wider stance and large weight transfer is not important. Rather, encouraging 

a more rapid weight shift towards the back foot at ball contact and positioning weight 

further from the back foot at late backswing would be useful for increasing Club 

Velocity. As the importance of weight transfer to performance differed between the 

Front Foot and Reverse groups, it would seem that swing styles must be taken into 

account when working with a golfer.  

 

Different styles within a skill or group being tested can reduce effect sizes, and hence 

power, in statistical analyses when all styles are assessed together. For example, the 

Front Foot group returned a strong association between CPyR and Club Velocity (r = 

0.53, p = 0.001).  However, when the group was treated as a whole (N = 62), no effect 

existed (r = 0.17, p = 0.185). As such, this relationship would have been missed in 

this study if styles were not identified prior to analysis (type 2 error for the Front Foot 

group). This highlights the potential danger of group-based analyses when different 

styles exist in the data. 

 

Cluster analysis was a useful method of identifying different movement strategies 

within the golfers tested and proved to be an essential step prior to statistical 
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performance analysis. For this study, the different results for the Front Foot and 

Reverse groups identified by cluster analysis indicated that different parameters were 

important for each group. Further, most of these results were not evident when the 

group was treated as one. The use of cluster analysis to identify styles might offer a 

compromise between group-based analysis with all styles analysed together 

(producing statistical errors) and individual-based analyses which lose the advantages 

of group-based analysis and are time consuming. Cluster analysis can identify 

strategies and group golfers into the appropriate style, and from this point statistical 

and/or coaching analysis performed. 
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5.4.6.1 Methodological issues 

 

It was considered appropriate to discuss a number of measurement issues that were of 

importance to this study. 

 

5.4.6.1.1 NORMALISATION 

 

This study (and all previous studies) normalised CPy or Fz position to foot stance 

width. As outlined in the methods section, this involved calculating CPy and foot 

position and expressing CPy as a percentage of the distance between the feet. 

However, both normalised data and absolute data provided useful information in this 

study. For example, CPy range in absolute terms was strongly associated with Club 

Velocity for the Front Foot group (r = 0.53, p = 0.001) but when normalised to foot 

width, only a small effect existed (r = 0.28, p = 0.087). As significant correlations 

were found for both types of data (e.g. absolute: Front Foot CPyR – Club Velocity 

and relative: Reverse group CPy% - Club Velocity) the use of both should be 

considered in future studies.  

 

Timing data was not normalised in this study. Normalising for time involves 

expressing the swing in terms of the percentage of the time between swing events 

such as takeaway or top of backswing and ball contact. For example, Neal (1998) 

used this approach in examining the time at which minimum CPy% occurred in the 

swing while Wallace et al. (1990) used swing events (similar to those used in this 

study). To compare absolute time as used in this study with normalised time, both 

were calculated and compared in terms of the correlation with Club Velocity. As 
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indicated by Table 5.43, correlation coefficients changed only slightly and in all cases 

retained the same non-significant finding. Although not reported here regression 

analysis was also repeated with percentage time data rather than absolute data but 

none were included in the best regression. As such, in this study at least, absolute and 

relative values for time did not alter the result.  

 

Table 5.43: Comparison of correlations between Club Velocity and timing 
parameters expressed in absolute and normalised terms for the  

Front Foot group (N = 39) and Reverse Group (N = 19) 
 

  Reverse Group Front Foot Group 
 Normalised 

between Normalised time Absolute time Normalised time Absolute time 

  r p r p r p r p 
tVMaxCPy TA-BC 0.34 0.182 0.39 0.117 -0.14 .401 -0.18 0.287 
 TB-BC 0.30 0.241   -0.16 .325   
tMaxCPy% TA-BC 0.33 0.194 0.34 0.182 -0.05 .778 -0.04 0.828 
 TB-BC 0.39 0.120   -0.07 .672   
tMinCPy% TA-BC 0.35 0.173 0.44 0.076 -0.14 .384 -0.12 0.470 
 TB-BC 0.27 0.302   -0.18 .285   

Note: analyses were repeated with outliers removed for the Reverse group but as similar r-values existed between 
normalised and absolute for this data also, these have not been reported. 

 

One of the potential problems of normalising time is the accurate identification of key 

swing events. As discussed in the methods section of study 1, identification of TA and 

TB, the two events used in the literature for normalisation (e.g. Neal, 1998), were the 

most difficult and least reliable swing events to identify. The collection of kinematic 

data from the golf club providing XYZ coordinates would have assisted in this 

identification. This has been used in previous research (e.g. Barrentine et al., 1994) 

and would make this measure more reliable. This was another factor that was 

considered in the decision to use absolute rather than relative timing for this study. 

The final issue of normalisation considered prior to this study was the use of swing 

events in preference to considering the swing in terms of percentage movement time 

from TA or TB to BC. This was discussed in study 1, section 4.2.5.2 but the relevant 
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points are repeated here as they are important to this section. Swing events were 

chosen in this study for three reasons and two of these were specific to this study. 

First, swing events are easily understood by coaches and players. For example, while 

the top of backswing event is easily identified, the position of the body at 76% of the 

swing from TA to BC is not (76% was the mean normalised time that TB occurred for 

Front Foot golfers in this study). Second, there is growing evidence to suggest that 

using time-normalised data (e.g. normalised time between TA and BC) can have 

significant flaws because of issues of temporal dependency (e.g. Forner-Cordero et 

al., 2006). The problem arises from the inherent assumption that there is no variability 

in the timing of events between TA and BC and that no rescaling occurs during the 

percentage conversion. Due to substantially different speeds of club movement near 

takeaway, the same normalised time can represent very different stages for different 

individuals. For example, TB occurred between 69% and 80% of the total swing time 

from TA to BC for different golfers. Comparison of normalised data between golfers, 

then, will be comparing very different stages of the swing; i.e. there is variability in 

the timing of events and rescaling does occur, rendering time-normalisation 

problematic.  

 

5.4.6.1.2 USE OF CLUSTER ANALYSIS TO REDUCE THE NUMBER OF 

PARAMETERS 

 

Cluster analysis provided a useful tool to reduce the number of parameters for 

regression analysis. The clustering of variables was supported by cross correlation 

analysis. Its use also was supported by stepwise reevaluation which confirmed that the 

best regression was obtained (section 5.4.4.2).While factor analysis is probably the 
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more common method for performing this task, diagnostic tests available in SPSS 

(Kaiser-Meyer-Okin to test for the appropriateness of the data to be factor analysed) 

failed and so this method was not used.  

 

The best subsets regression could have simply been applied to all 24 CP parameters to 

maximize the chance of finding the best combination of parameters that explained the 

variance in Club Velocity. However Tabachnick and Fidell (1996) suggested that if 

the number of cases is less than five for every parameter, then the results are too 

specific to the dataset tested and less generalisable to the population. A valid method 

might have been to use best subsets with all 24 parameters but only selecting from 

solutions that do not violate the 1:5 parameter:case ratio. However, this method still 

draws from the pool of all parameters (where the parameter:case ratio for the Front 

Foot group for example was only 1:1.6). This researcher considered that this might 

still produce the problem of limited generalisability described by Tabachnick and 

Fidell (1996) as, effectively, all the CP parameters are being used in the analysis. It 

could also be argued that selecting the strongest correlate from each cluster might also 

increase the chances of finding significance compared with planning to use a smaller 

number of parameters from the outset of testing. This might maximise the chance of 

significance in regressions where parameters have been chosen from clusters where a 

number of parameters correlated with Club Velocity. However, there were also 

clusters in which no parameter was correlated with Club Velocity and so this criterion 

allows for non-significant parameters to also be assessed. As well, the criteria for 

selection also considered previous research (e.g. choice of VelCPyED instead of 

VelCPyTA for the Front Foot group) so the choice was not based on statistical results 

only. These issues have not been discussed in the statistical literature to this 
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researcher’s knowledge. It is worth noting that, using a stepwise regression with all 24 

parameters included for both the Front Foot and Reverse group data produced a 

similar result, indicating that the method used in this study still produced the best 

regression equation from the data. Recalling, stepwise regression was not used as the 

ratio of cases (golfers) to parameters was well below the 50:1 recommended by 

Tabachnick and Fidell (1996). With all parameters included, the case to parameter 

ratio was approximately 2:1 for the Front Foot group and 1:1 for the Reverse group 

and even with the use of cluster analysis to improve this ratio, the result was a ratio of 

approximately 5:1 for both groups. 

 
 
5.5  CONCLUSIONS 

 

Weight transfer was important for the Front Foot group and Reverse group style of 

swing.  

 
Within the Front Foot group, a greater weight transfer range in absolute terms and a 

larger maximum CPy velocity towards the front foot in downswing were associated 

with a larger Club Velocity at ball contact. Stance width was related to both Club 

Velocity and weight transfer range indicating the increase in weight transfer is in part 

produced by increasing stance width. Weight transfer parameters accounted for 28% 

of the variance in Club Velocity. While CPy velocity at the early downswing event 

was also included in the best regression for the Front Foot golfers, it was not robust as 

it was not included in the two thirds subset or the subset of golfers who were under 40 

years old. Further testing would be required to determine if this parameter is 

important. Encouraging an increased stance width, increased range of weight transfer 



 

 

246

and more rapid transfer of weight towards the front foot in downswing would be 

useful cues for Front Foot golfers to increase Club Velocity at ball contact. 

 

Within the Reverse group, positioning CPy closer to the mid-foot position at late 

backswing (as opposed to closer to the back foot) and a larger CPy velocity towards 

the back foot at ball contact was associated with a larger Club Velocity at ball contact. 

The result at ball contact is in direct conflict with the coaching literature, which 

encourages a weight transfer that is moving towards the front foot in downswing and 

is positioned on the front foot at ball contact. Not only did the Reverse golfers 

position weight in a balanced position between the feet at ball contact but a more 

rapid transfer of weight towards the back foot at ball contact was associated with 

larger Club Velocities. These parameters accounted for 23% of the variance in Club 

Velocity. Encouraging a weight position further from the back foot in late backswing 

and a rapid weight shift towards the back foot at ball contact would be of advantage to 

Reverse style golfers. 

 

The different result for each group has highlighted the importance of identifying if 

different movement strategies exist in the performance of a skill. If all data had been 

treated as one style, only maximum CPy velocity would have been indicated as 

important. While this conclusion would have been appropriate for the Front Foot 

golfers, it was not for Reverse golfers. As well, type 2 errors would have been made 

for both groups as the range of CPy movement would not have been identified as 

important for the Front Foot group and neither would CPy position at LB and CPy 

velocity at BC have been identified as important for the Reverse group. With no 

identification of movement strategies, statistical errors would have been made. 
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Future research needs to include kinematic as well as kinetic data to determine more 

technical aspects important within each swing style. In particular, this direction is 

essential for further exploring the underlying mechanics of the Reverse style of swing, 

not previously documented in coaching or scientific literature. The expansion of the 

performance measure to include accuracy and consistency of hit would also be 

appropriate. Lastly, individual analysis of these styles is essential. This is the focus of 

study 3. 
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CHAPTER 6 

 

STUDY 3 

 

CENTRE OF PRESSURE IN THE GOLF 

SWING: INDIVIDUAL-BASED ANALYSIS 
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6.1  AIMS 

 

 

6.1.1  General 

 

1. To examine the relationship between weight transfer and performance in the 

golf swing on an individual basis. 

 

 

6.1.2  Specific 

 

1. To determine if CPy parameters are related to Club Velocity on an individual 

basis. 

 

2. To determine which CPy parameters are most often related to Club Velocity 

among individual golfers. 

 

3. To apply a non-linear technique to individual-based centre of pressure data to 

determine if this technique holds useful information for individual-based 

analysis of the golf swing. 
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6.2  METHODS 

 

6.2.1  Subjects 

 

Five golfers from a range of skill levels were used in study 3 (table 6.1).  

 

Table 6.1: Subject details for study 3 (N = 5) 

Golfer Handicap Age 
(years) 

Height 
(m) 

Mass 
(kg) 

Experience 
(years 

played) 

Weight 
transfer 
style * 

1 Professional 36 1.80 80.0 20 Reverse 
2 3 29 1.94 81.4 15 Reverse 
3 14 33 1.96 86.4 15 Reverse 
4 5 24 1.74 80.2 15 Front Foot 
5 Social 31 1.83 88.0 12 Front Foot 
* Golfers were classified by comparing their CPy% means with that of the CPy% means for the Front 

Foot and Reverse groups (from Study 1) and choosing the nearer group using squared Euclidean 
distance (as used in Study 1). 

 

The wide range of skill levels were intended to be similar to the range used in study 1 

and study 2. Older golfers were not considered due to the possibility of fatigue 

influencing the N = 50 shot task. 

 

Initially, N = 10 individual golfers were identified for testing for this study. This 

number was made up of six Front Foot golfers and three Reverse golfers (who 

participated in study 1 and 2) as well as one golfer not previously tested. This subject 

profile was used to approximate the 2:1 ratio of Front Foot: Reverse golfers indicated 

in Study 2 (recalling from study 1, Front Foot golfers N = 39 and Reverse golfers N = 

19 – approximately 2:1). However, time delays in testing allowed for only N = 5 

golfers to be tested which comprised N = 4 golfers previously tested (N = 2 Reverse 
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golfers, N = 2 Front Foot golfers) as well as the previously untested golfer (identified 

as a Reverse golfer). 

 

 

6.2.2  Task 

 

The task was as for study 1 and study 2 with the exception that golfers completed 50 

simulated drives (recalling each golfer performed only 10 simulated drives in study 1 

and 2). Time between each hit was self-paced but required at least 45 s for the video 

file to be stored to the computer hard disk (see methods section 6.2.3). 

 

 

6.2.3  Laboratory Set-up 

 

The laboratory set-up was as for study 1 and 2 with the exception that swing events 

were identified from a Redlake Motionscope PCI 1000 high-speed video camera 

(Redlake, San Diego) operating at 250 Hz (compared with the Peak 200 Hz camera). 

This change was due to camera availability. Based on error assessments of both 

systems, the use of different cameras did not affect the analysis nor the comparison 

between Study 2 and 3. Measurement error in parameters used in this study is 

presented in section 6.2.4.1 and error calculations are presented in Appendix D. 

 

The Redlake high-speed camera was connected to the force plate trigger system. It 

should be noted that this set-up did not ‘gen-lock’ or precisely align the timing of 

sampling between systems. Rather, it was used to provide ease of operation (recording 



 

 

252

was performed automatically) and reduce testing errors (i.e. ‘missing’ a trial due to 

starting recording too early or too late - a risk with this system as it had a short record 

time). It was noted that the trigger for the video system was somewhat unreliable, as 

the frame denoted as ball contact was often in error by one or two frames. While this 

did not affect the timing of sampling (i.e. the full swing was always recorded 

regardless of this error) it could not be used for synchronization with the force plate 

data. As such, identification of ball contact was performed manually. Ball contact for 

the video system and ball contact for the force plate system were normalized to zero 

and all timing measures were determined relative to this event. The time that each 

swing event occurred was also manually determined with the assistance of a grid 

placed on the screen (as for study 1) and referenced to ball contact.  

 

 

6.2.4   CP Parameters 

 

All CP parameters used in study 2 were also used in study 3 (repeated in table 6.2 

with swing events in figure 6.1) with the exception of CPyR%. As CPyR and CPyR% 

were very strongly correlated for each golfer (r > 0.94) only CPyR was used. 

 



 

 

253

Table 6.2: Parameters used in study 3 to assess the relationship between CP and 
Club Velocity in the golf swing on an individual basis 

 
Performance  
Club Velocity Immediately before ball contact (m.s-1)
Descriptive  
Handicap  
Age Years (yr)
Height  m 
Mass kg 
CP Displacement  
At each swing event Relative to the distance between the feet (%)
CPy%TA  
CPy%MB  
CPy%LB  
CPy%TB  
CPy%ED  
CPy%MD  
CPy%BC  
CPy%MF  
CPy Velocity  
At downswing events Instantaneous velocity (m.s-1)
VelCPyTA  
VelCPyMB  
VelCPyLB  
VelCPyTB  
VelCPyED  
VelCPyMD  
VelCPyBC  
VelCPyMF  
Other CP parameters  
VMaxCPy Maximum CPy Velocity (m.s-1)
tVMaxCPy Time of VMaxCPy relative to ball contact (s)
MaxCPy% Maximum CPy% - closest position to front foot = 100% 
tMaxCPy% Time of MaxCPy relative to ball contact (s)
MinCPy% Minimum CPy% - closest position to back foot = 0% 
tMinCPy% Time of MinCPy - relative to ball contact (s)
CPyR CPy Range (Maximum CPy – Minimum CPy) (m) 

 

 

Figure 6.1: Golf swing events used in this study 
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6.2.4.1  Summary of error assessment 

 

Table 6.3 presents the error associated with each parameter used in this study for a 

single measure and across 50 trials for each golfer. It is summarised here to allow 

easy reference for the reader with calculations for each parameter presented in 

Appendix D.  

 

Table 6.3: Approximate error estimates for parameters used in this study (250 
Hz camera). All values +/-. 

 
 
 
Performance 

Approximate 
Single Measure 

Approximate Across 
50 trials 

Club Velocity (m.s-1) 0.5 0.07
CP Displacement 
At each swing event Relative to the distance between the feet (%) 
CPy%TA 0.6 0.08
CPy%MB 0.6 0.08
CPy%LB 0.6 0.08
CPy%TB 0.6 0.08
CPy%ED 0.8 0.11
CPy%MD 0.7 0.10
CPy%BC 0.6 0.08
CPy%MF 0.8 0.11
Average 0.6 0.08
CPy Velocity 
At each swing event Instantaneous velocity (m.s-1)
VelCPyTA 0.18 0.03
VelCPyMB 0.18 0.03
VelCPyLB 0.18 0.03
VelCPyTB 0.18 0.03
VelCPyED 0.21 0.03
VelCPyMD 0.19 0.03
VelCPyBC 0.18 0.03
VelCPyMF 0.21 0.03
Average 0.19 0.03
Other CP parameters 
VMaxCPy (m.s-1) 0.18 0.03
tVMaxCPy (s) 0.001 < 0.001 
MaxCPy% (% between the 0.56 0.08
tMaxCPy% (s) 0.001 < 0.001 
MinCPy% (% between the 0.56 0.08
tMinCPy% (s) 0.001 < 0.001 
CPyR (m) 0.007 0.001
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Average error across fifty trials for CPy% data was 0.1 % and for CPy velocity was 

0.03 m.s-1. Similar values were indicated for maximum and minimum parameters. As 

for study 2, a conservative approach to reporting data was taken with CPy% reported 

in units of 1% and velocity in units of 0.1 m.s-1 with data reported to another decimal 

place if required.  

 

 

6.2.5  Statistical Analysis 

 

 

6.2.5.1  Importance of weight transfer on an individual basis 

 

 

To examine the relationship between weight transfer, as indicated by CP parameters, 

and performance, as indicated by Club Velocity at the instant before ball contact, on 

an individual basis, linear (1st order), quadratic (2nd order) and cubic (3rd order) 

polynomial curves were fitted to each CP parameter – Club Velocity relationship. The 

analysis was performed using the curve estimation option in SPSS 13.0.  

 

To determine which curve best represented the relationship, a combination of alpha 

level, visual inspection of scatterplots and the statistical test presented by Hayes 

(1970) were used. First, R2 and p-values were examined for each curve estimation, 

with an alpha level of p = 0.05 set to indicate significance. Second, scatterplots were 

visually inspected to see if any relationship was evident between each CP parameter 

and Club Velocity. Third, the significance test presented by Hayes (1970) was used to 
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assess if the increase in R2 between linear, quadratic and cubic fits was significant 

(equation 6.1). If the F-ratio produced by this equation was significant at p = 0.05 

then the higher order polynomial was considered to represent a significantly different 

(i.e. better) fit. This method has been used in optimization studies previously 

examining polynomial curve fitting (Best, 1995) and was used here to add more 

objectivity to this decision.  

 

F = 
(a)

(a)1)-(a

Error  SquareMean 
Error  Square - Error  Square

      Equation 6.1 

 

Where a = order of polynomial (linear = 1st, quadratic = 2nd, cubic = 3rd) 

 

As mentioned, the alpha level was set at p = 0.05 to indicate significance. As there 

were a large number of analyses performed, reduction in alpha levels using 

Bonferroni adjustment was considered. However, while the large number of analyses 

will tend to capitalize on chance findings (type 2 errors) this was offset by the narrow 

ranges for parameters that can be expected when performing individual analysis. This 

will reduce effect sizes in correlation and regression type analysis (Coleman, 1999; 

Ball et al., 2003a; Ball et al., 2003b). So while the alpha level was seen as somewhat 

liberal, as effect sizes were likely to be reduced and as this work was largely 

exploratory, its use was considered reasonable.  

 

While effect sizes have been discussed in the literature for linear relationships such as 

correlations and for group comparisons such as ANOVA (e.g. Cohen, 1988), to this 

researcher’s knowledge this topic has not been discussed in relation to higher order 
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polynomial fits. In the absence of any guidelines, the thresholds used for linear 

relationships have been used for quadratic and cubic fit as well (small: R2 ≥ 0.04, 

medium: R2 ≥ 0.09, large: R2 ≥ 0.25: converted from r-values presented by Cohen, 

1988). For higher order polynomial fits, these thresholds are liberal as the r-value for 

increasingly larger orders will always be larger than the lower order. 

 

Bivariate outliers were examined for each relationship using scatterplots. Where 

appropriate analyses affected by outliers were examined with and without these 

outliers. 

 

The available software tools did not allow for the automation of calculation of 

bootstrapping for quadratic and cubic fits and so this analysis was not performed in 

this study.  

 

 

6.3 RESULTS 

 

Table 6.4 reports means and standard deviations of Club Velocity and CP parameters 

for the five individual golfers tested.  

 



Table 6.4: Mean parameter values for individual golfers (N = 50 shots each). 

Reverse Group Golfers Front Foot Golfers
Golfer 1 Golfer 2 Golfer 3 Golfer 4 Golfer 5

(Professional) (HCP = 3) (HCP = 14) (HCP = 5) (Social)
mean SD mean SD mean SD mean SD mean SD

Club Velocity (m.s-1) 45.4 0.7 47.5 1.2 43.0 0.8 48.2 0.5 47.7 0.9
CP Displacement (% between the feet)  
CPy%TA 52 5 56 2 49 1 56 1 56 1
CPy%MB 17 5 24 2 33 2 32 2 48 3
CPy%LB 16 5 25 2 26 3 20 2 31 5
CPy%TB 16 5 11 2 30 4 21 2 15 3
CPy%ED 78 4 62 4 55 3 74 2 69 4
CPy%MD 79 4 61 3 60 5 90 2 80 3
CPy%BC 70 5 59 3 60 6 99 1 74 6
CPy%MF 47 8 55 4 59 8 87 3 64 8
CPy Velocity (m.s-1)  
VelCPyTA -0.4 0.2 -0.1 0.1 0.0 0.0 0.2 0.0 0.0 0.0
VelCPyMB -0.3 0.1 -0.3 0.1 -0.4 0.1 -0.7 0.1 -0.3 0.1
VelCPyLB 0.1 0.1 0.2 0.2 0.0 0.2 -0.2 0.1 -0.5 0.2
VelCPyTB 0.5 0.2 0.0 0.5 0.4 0.2 0.1 0.1 0.2 0.3
VelCPyED 0.0 0.2 0.1 0.7 0.5 0.3 1.3 0.2 1.6 0.4
VelCPyMD -0.1 0.2 -0.2 0.3 0.4 0.3 1.6 0.2 0.0 0.5
VelCPyBC -2.2 0.4 -0.2 0.3 -0.4 0.3 0.7 0.2 -1.8 0.9
VelCPyMF -1.1 0.8 -0.7 0.5 0.9 0.5 -0.9 0.5 0.8 0.9
Other CP parameters  
VMaxCPy (m.s-1) 4.0 0.3 2.9 0.3 1.5 0.4 3.2 0.2 3.4 0.4
tVMaxCPy (s) -0.17 0.004 -0.20 0.01 -0.08 0.11 -0.16 0.01 -0.15 0.01
MaxCPy% (% between the feet) 79 4 63 4 63 6 100 2 80 3
tMaxCPy% (s) -0.07 0.03 -0.06 0.04 -0.02 0.16 0.01 0.004 -0.04 0.01
MinCPy% (% between the feet) 13 45 10 2 24 3 18 2 13 4
tMinCPy% (s) -0.37 0.12 -0.30 0.01 -0.46 0.09 -0.43 0.07 -0.29 0.03
CPyR (m) 0.34 0.02 0.30 0.03 0.21 0.04 0.45 0.01 0.34 0.02
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6.3.1  Relationship between CP parameters and Club Velocity 

 

Table 6.5 reports results of curve estimation analysis between CPy parameters and 

Velocity. For consistency, R2 values have been used for all analyses. In total, there 

were 43 significant linear relationships between CP parameters and Club Velocity, 37 

significant quadratic relationships and 37 significant cubic relationships. After 

choosing the most appropriate fit for each relationship, there were 35 significant linear 

relationships, ten significant quadratic relationships and three significant cubic 

relationships. 

 

 



Table 6.5: Curve estimations between CP parameters and Club Velocity for individual golfers (N = 50 shots for each golfer). 
 

Golfer 1 Golfer 2 Golfer 3 Golfer 4 Golfer 5
(Professional) (HCP = 3) (HCP = 14) (HCP = 5) (Social)

Linear Quadratic Cubic Linear Quadratic Cubic Linear Quadratic Cubic Linear Quadratic Cubic Linear Quadratic Cubic
CPy%TA R2 0 05 0 07 0 07 0 04 0 04 0 04 0 01 0 04 0 04 0 02 0 02 0 02 0 00 0 02 0 02

p 0.112 0.202 0.200 0.150 0.340 0.341 0.409 0.419 0.410 0.325 0.325 0.620 0.652 0.566 0.561
CPy%MB R2 0.05 0.06 0.06 0.10 0.17* 0.17 0.08* 0.08 0.08 0.12* 0.12 0.12 0.01 0.01 0.01

p 0.124 0.259 0.444 0.025 0.013 0.013 0.044 0.132 0.131 0.015 0.052 0.052 0.538 0.802 0.799
CPy%LB R2 0.08* 0.09 0.11 0.30* 0.31 0.31 0.11* 0.11 0.11 0.05 0.16* 0.16 0.03 0.05 0.05

p 0.042 0.129 0.136 <0.001 <0.001 <0.001 0.021 0.063 0.063 0.126 0.016 0.016 0.207 0.319 0.274
CPy%TB R2 0.03 0.03 0.04 0.24 0.33* 0.33 0.17* 0.17 0.17 0.01 0.02 0.02 0.01 0.05 0.06

p 0.269 0.539 0.561 <0.001 <0.001 <0.001 0.003 0.012 0.012 0.584 0.678 0.683 0.481 0.335 0.392
CPy%ED R2 0.00 0.02 0.02 0.42* 0.43 0.43 0.39* 0.39 0.39 0.10* 0.10 0.10 0.02 0.02 0.03

p 0.649 0.689 0.696 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.024 0.074 0.074 0.313 0.557 0.549
CPy%MD R2 0.04 0.05 0.05 0.21* 0.21 0.21 0.51* 0.51 0.51 0.03 0.05 0.05 0.07 0.07 0.07

p 0.168 0.317 0.315 0.001 0.003 0.003 <0.001 <0.001 <0.001 0.195 0.288 0.290 0.068 0.188 0.188
CPy%BC R2 0.01 0.03 0.03 0.02 0.05 0.05 0.40* 0.43 0.43 0.03 0.05 0.05 0.07 0.12* 0.12

p 0.437 0.535 0.528 0.401 0.275 0.278 <0.001 <0.001 <0.001 0.215 0.336 0.335 0.072 0.050 0.050
CPy%MF R2 0.01 0.01 0.01 0.04 0.05 0.05 0.18 0.26* 0.26 0.02 0.04 0.04 0.08 0.16* 0.15

p 0.484 0.761 0.761 0.144 0.328 0.332 0.002 0.001 0.001 0.733 0.416 0.414 0.040 0.018 0.019
VelCPyTA R2 0.04 0.04 0.06 0.00 0.01 0.01 0.07 0.07 0.08 0.03 0.03 0.04 0.06 0.11 0.11

p 0.188 0.376 0.442 0.902 0.730 0.891 0.069 0.194 0.204 0.205 0.448 0.562 0.077 0.062 0.130
VelCPyMB R2 0.01 0.05 0.06 0.04 0.06 0.06 0.00 0.09 0.09 0.00 0.00 0.01 0.01 0.03 0.07

p 0.563 0.315 0.405 0.192 0.255 0.403 0.956 0.105 0.142 0.917 0.921 0.865 0.623 0.492 0.365
VelCPyLB R2 0.00 0.00 0.05 0.15* 0.19 0.21 0.04 0.04 0.07 0.03 0.03 0.04 0.00 0.04 0.09

p 0.920 0.893 0.499 0.005 0.008 0.014 0.161 0.373 0.372 0.223 0.467 0.646 0.707 0.430 0.222
VelCPyTB R2 0.08 0.10 0.10 0.28* 0.29 0.29 0.16* 0.17 0.18 0.02 0.02 0.02 0.27* 0.27 0.28

p 0.054 0.098 0.171 <0.001 <0.001 0.001 0.004 0.011 0.030 0.295 0.581 0.776 <0.001 0.001 0.002
VelCPyED R2 0.20* 0.20 0.28 0.06 0.08 0.09 0.30* 0.31 0.31 0.00 0.08 0.08 0.05 0.05 0.13

p 0.001 0.006 0.002 0.076 0.134 0.203 <0.001 <0.001 0.001 0.987 0.149 0.144 0.123 0.283 0.102
VelCPyMD R2 0.01 0.02 0.02 0.34* 0.34 0.37 0.08 0.11 0.12 0.14* 0.19 0.19 0.05 0.08 0.15*

p 0.433 0.711 0.858 <0.001 <0.001 <0.001 0.052 0.062 0.125 0.007 0.007 0.007 0.113 0.126 0.050
VelCPyBC R2 0.13* 0.15 0.15 0.11* 0.11 0.11 0.07 0.08 0.11 0.06 0.09 0.11 0.06 0.06 0.11

p 0.012 0.029 0.070 0.020 0.070 0.149 0.074 0.140 0.153 0.085 0.107 0.152 0.085 0.231 0.160
VelCPyMF R2 0.00 0.01 0.05 0.12 0.20* 0.20 0.01 0.01 0.16* 0.04 0.08 0.08 0.04 0.14* 0.14

p 0.665 0.823 0.480 0.016 0.005 0.015 0.520 0.776 0.045 0.168 0.149 0.284 0.180 0.031 0.066
VMaxCPy R2 0 03 0 05 0 05 0.22* 0.23 0.23 0.23* 0.25 0.26 0 01 0 01 0 01 0 01 0 02 0 02

p 0.214 0.337 0.320 0.001 0.002 0.002 <0.001 0.001 0.003 0.530 0.819 0.817 0.552 0.630 0.630
tVMaxCPy R2 0.08* 0.09 0.09 0.01 0.01 0.01 0.02 0.03 0.03 0.04 0.04 0.04 0.00 0.00 0.00

p 0.045 0.117 0.118 0.553 0.822 0.822 0.279 0.472 0.683 0.153 0.362 0.362 0.699 0.896 0.893
MaxCPy% R2 0.02 0.03 0.03 0.36* 0.38 0.38 0.31 0.40* 0.40 0.05 0.08 0.08 0.05 0.05 0.05

p 0.327 0.532 0.532 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.109 0.131 0.131 0.112 0.272 0.272
tMaxCPy% R2 0.14* 0.18 0.18 0.09 0.14 0.26* 0.10* 0.10 0.10 0.01 0.02 0.03 0.02 0.05 0.12

p 0.008 0.011 0.013 0.030 0.029 0.003 0.026 0.086 0.091 0.493 0.569 0.658 0.290 0.315 0.122
MinCPy% R2 0.05 0.05 0.06 0.44* 0.47 0.49 0.11* 0.12 0.13 0.02 0.06 0.06 0.07 0.08 0.09

p 0.136 0.327 0.401 <0.001 <0.001 <0.001 0.020 0.045 0.043 0.297 0.215 0.210 0.059 0.158 0.246
tMinCPy% R2 0.00 0.01 0.01 0.00 0.00 0.00 0.06 0.07 0.07 0.01 0.04 0.05 0.15* 0.16 0.16
 p 0.944 0.857 0.878 0.901 0.953 0.950 0.083 0.202 0.202 0.620 0.416 0.306 0.005 0.017 0.016 
CPyR R2 0.20* 0.22 0.22 0.52* 0.54 0.54 0.35 0.41* 0.43 0.08* 0.13 0.13 0.08* 0.08 0.08

p 0.001 0.003 0.003 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.050 0.038 0.037 0.050 0.163 0.166
Bold type denotes significant at p < 0.05. Shaded also for clarity. 

* denotes chosen relationship based on scatterplot, R2 value and Hayes (1970) significance test 
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Individual golfers returned between five and 15 significant relationships between CP 

parameters and Club Velocity after choosing the most appropriate fit. On a general 

level, all golfers returned at least one significant relationship between CPy% position 

at swing events and Club Velocity, at least one significant relationship between CPy 

velocity at swing events and Club Velocity and at least one significant relationship 

between other CPy parameters (maximums, minimums etc) and Club Velocity. 

However, each golfer presented an individual-specific profile with respect to 

significant parameters, effect sizes, and type of relationship (linear, quadratic, cubic). 

 

Examining the data on a parameter specific level, CPyR was related to Club Velocity 

for all golfers tested. For four golfers, a positive linear relationship was indicated 

while for Golfer 3, a quadratic best described the relationship (the linear relationship 

was also significant for this golfer). The next most prevalent significant association 

was between Club Velocity and CPy%LB (four golfers). All three Reverse golfers 

returned a significant linear relationship while Golfer 4 (Front Foot) returned a 

significant quadratic relationship. Interestingly, no relationship was significant for 

CPy%TA or for VelCPyTA. All remaining parameters produced significant results for 

at least one golfer. 

 

Specific to swing style, for the Front Foot golfers tested, only CPyR and VelCPyMD 

were significantly related to Club Velocity for both golfers. For Reverse golfers, 

CPyR, CPy%LB and tMaxCPy% were significantly related to Club Velocity for all 

golfers. Also, at least a small effect was produced for VelCPyBC for all Reverse 

golfers. 
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6.4  DISCUSSION 

 

 

6.4.1  Importance of weight transfer on an individual basis 

 

Weight transfer is important on an individual basis. All individual golfers tested in 

this study returned multiple significant relationships at p < 0.05 between CPy 

parameters and Club Velocity. The number of significant relationships ranged from 

five (Golfer 4) to 16 (Golfer 3) of the 23 CP parameter – Club Velocity relationships 

examined. These results have provided the first scientific support for the importance 

of weight transfer to the golf swing on an individual basis. Further, the results provide 

scientific support for the emphasis on weight transfer in the coaching literature (e.g. 

Leadbetter, 1995; Norman, 1996). 

 

While all golfers returned significant relationships between CPy parameters and Club 

Velocity, each result was individual-specific. Differences existed between golfers in 

terms of the number of significant results, the CP parameters that were related to Club 

Velocity, the strength of relationships and the nature of the relationships (e.g. positive 

linear, quadratic etc). For example, for the relationship between CPy%LB and Club 

Velocity, Golfers 1, 2 and 3 returned a significant negative linear association, Golfer 4 

indicated a quadratic relationship and Golfer 5 indicated no relationship. Effect sizes 

encompassed large (Golfer 2: R2 = 0.30), medium (Golfer 4: R2 = 0.16, Golfer 3: R2 = 

0.11), small (Golfer 1: R2 = 0.08) and practically no effect (Golfer 5: R2 = 0.03). 

Individual-specific findings have been reported in other activities such as rifle 

shooting (Ball et al., 2003a) and pistol shooting (Ball et al., 2003b) and based on 
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these findings, the researchers recommended intra-individual analyses for assessment 

of shooting activities. The finding in this study has provided strong support for a 

similar conclusion for the use of individual-based analysis for the examination of 

weight transfer in the golf swing. 

 

CPyR was the parameter most often related to Club Velocity, with all golfers 

returning significant relationships. For four golfers, the relationship indicated was 

linear with a larger CPyR associated with a larger Club Velocity. For the fifth golfer 

(Golfer 3) the relationship was indicated as a quadratic. However, as indicated by 

figure 6.2, larger values of CPyR were still associated with larger Club Velocities and 

with an influential case removed (indicated by an arrow in figure 6.2) the relationship 

was indicated as linear (figure 6.2: R2 = 0.30, p < 0.001). These results supported the 

comments of Wallace et al. (1990) and Koenig et al. (1993) that range of weight 

transfer was important. Importantly, this is the first statistical evidence supporting this 

relationship on an individual basis. 
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Figure 6.2: Relationship between CPyR and Club Velocity for Golfer 3 with 

quadratic curve (dark curve). An influential case denoted by an arrow and the 
lighter line indicates the quadratic with this case removed. 
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The mechanism underlying CPyR and Club Velocity has been discussed in study 2. 

Briefly repeating, it might be that increased weight transfer range assists the swing in 

increasing momentum developed by the whole body which is then transferred along 

the kinetic chain to the club head.  

 

An important difference between individual and group-based analyses with respect to 

CPyR was the relationship between Stance Width and Club Velocity. For the Front 

Foot group, Stance Width was correlated with Club Velocity as well as CPyR (table 

6.6). This prompted the suggestion in Study 2 that a cue to increase Stance Width 

might be a simple method of increasing CPyR and possibly increasing Club Velocity. 

However, Stance Width was not related to Club Velocity or CPyR for any individual 

golfer (Front Foot and Reverse). Clearly, increasing CPyR and not simply increasing 

stance width was the important element for the individual golfers tested and the cue 

suggested in Study 2 is more complex than was indicated by the group-based analysis. 

More testing examining individual golfers using different stance widths would be 

required to evaluate if increased stance width was a useful technical alteration on an 

individual basis.  

 

Table 6.6: Relationship between Stance Width and Club Velocity and Stance 
Width and CPyR for the Front Foot group and individual golfers. 

 
   Club Velocity CPyR 
   R2 p R2 P 
      
Front Foot group N = 39 golfers 0.22 0.005 0.26 0.001 
Reverse Golfers      
Golfer 1 (Professional) N = 50 shots 0.01 0.467 0.03 0.256 
Golfer 2 (HCP = 3) N = 50 shots 0.00 0.789 0.06 0.108 
Golfer 3 (HCP = 14) N = 50 shots 0.00 0.834 0.05 0.185 
Front Foot Golfers      
Golfer 4 (HCP = 5) N = 50 shots 0.00 0.806 0.06 0.102 
Golfer 5 (Social) N = 50 shots 0.02 0.336 0.07 0.076 
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Positioning of weight at specific swing events (CPy%TA to CPy%MF) is important 

on an individual basis. All five golfers returned at least one and up to seven 

significant results between Club Velocity and CPy% at the eight swing events used in 

this study. This indicated that different positioning of weight was associated with 

changes in performance. On a general level this supported the coaching emphasis on 

positioning of weight at key swing events such as TB and BC (e.g. Leadbetter, 1995, 

Norman, 1996). However, once again these relationships were individual-specific 

indicating different sets of factors were important for different golfers and that simply 

providing one ‘ideal’ swing coaching model is not appropriate. 

 

CP%LB was the most consistently CPy%-at-swing-events parameter related to Club 

Velocity with four golfers returning a significant result. This indicated LB was an 

important event for weight transfer. As mentioned in study 2, this importance might 

be related to the proximity of LB to the onset of forces associated with downswing 

(decelerating the club in the backswing requires forces in the direction of the 

downswing). As such, positioning of weight at LB might be related to attaining the 

best position from which to begin downswing which in turn results in greater Club 

Velocity at ball contact. The time of minimum CPy% was nearer to LB than to TB for 

all individual golfers supporting LB being nearer the start of downswing forces. As 

well, Burden et al. (1998) noted that maximum hip and shoulder angles were achieved 

before the start of downswing, as defined by club movement, indicating that 

kinematic as well as kinetic factors point to a start of downswing forces occurring 

before the club begins its forwards rotation towards the ball. With four of five golfers 

indicating the relationship between CPy% at LB and Club Velocity was important on 

an individual basis (as well as on a group basis for the Reverse group in study 2), 
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future evaluation of weight transfer in the golf swing should include late backswing as 

an event and/or examine the phase of the swing before the start of downswing near 

the LB event. 

 

Importantly for the relationship between CPy%LB and Club Velocity, all three 

Reverse golfers returned a significant negative linear relationship. This result 

indicated that a smaller CPy%LB, or a position nearer the back foot at LB, was 

associated with a larger Club Velocity and that this relationship was consistent among 

Reverse golfers. However, while the group-based result was also significant, the 

direction of the relationship was positive. This difference between group-based and 

individual-based studies indicated that the relationship between CPy%LB and Club 

Velocity was more complex and would require more analysis to determine the other 

influential factors associated with the relationship. This difference also highlights the 

importance of considering individual-based analysis in evaluating weight transfer in 

the golf swing. 

 

Of note in CPy% position data, for Reverse golfers all significant linear relationships 

from takeaway to the top of backswing were negative (CPy%TA to CPy%TB 

inclusive) and all in downswing events were positive (5 linear relationships; CPy%ED 

to CPy%BC inclusive – Golfer 1 also returned a small positive non-significant linear 

effect for CPy%MD). Table 6.7 details r-values (i.e. square root of R2 values) with the 

direction of the relationship evident for all golfers. This indicated that moving CPy% 

nearer the back foot in backswing and nearer the front foot in downswing was 

associated with larger Club Velocities for individual golfers tested. Further, this 
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suggested that a consistent pattern existed in terms of important CPy% positioning in 

backswing and downswing on an individual basis.  

 
Table 6.7: Linear relationships between Club Velocity and CPy% at eight swing 

events for individual analysis (N = 50 shots for each golfer) 
 

 Reverse Golfers 
 Golfer 1 Golfer 2 Golfer 3 
 (Professional) (HCP = 3) (HCP = 14) 
 r p r p r p 
CPy%TA 0.23 0.112 0.21 0.150 -0.12 0.409 
CPy%MB -0.22 0.124 -0.32* 0.025 -0.29 0.044 
CPy%LB -0.29 0.042 -0.55 <0.001 -0.33 0.021 
CPy%TB -0.16 0.269 -0.49* <0.001 -0.41 0.003 
CPy%ED -0.07 0.649 0.65 <0.001 0.62 <0.001 
CPy%MD 0.20 0.168 0.46 0.001 0.71 <0.001 
CPy%BC 0.11 0.437 0.10 0.501 0.64 <0.001 
CPy%MF -0.10 0.484 0.21 0.144 0.42 0.002 

* Linear relationship not chosen as the best fit for that set of data (both quadratic) 
Bold type indicates significant at p < 0.05 

 
 
It is possible that these results might have been simply due to golfers increasing CPyR 

(recalling CPyR and Club Velocity were related for all Reverse golfers). The direction 

of correlations (small effect or greater, r > 0.2) indicated that for all golfers moving 

CPy% nearer the back foot in backswing events and nearer the front foot in 

downswing events was associated with Club Velocity. This will also produce a larger 

CPyR. CPy% at backswing events were correlated with CPyR for two golfers (all 

three if CPy%TB is considered a backswing event) and CPy% at downswing events 

were correlated with CPyR for all golfers indicating this might be the case (table 6.8). 

Further, Golfer 1 and Golfer 2 returned a larger effect between CPyR and Club 

Velocity compared with any correlation between CPy% positioning and Club 

Velocity. However, Golfer 3 returned a larger effect for CPy%ED, CPy%MD and 

CPy%BC compared with CPyR suggesting the positioning was more important for 

this golfer (table 6.5 in results section 6.3.1). This means that CPy% at swing events 

held important information for individual golfers that could not be provided by range, 
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maximum and minimum measures and the findings were not simply due to an 

increase in range of weight transfer. 

 

 
Table 6.8: Correlations between CPy% in backswing and downswing events and 

CPyR, MinCPy% and MaxCPy%.  
 

 CPyR MinCPy% MaxCPy% 
Golfer 1 2 3 1 2 3 1 2 3 
CPy%TA 0.08 0.20 -0.07 0.63 0.36 0.05    
CPy%MB -0.32 -0.20 -0.45 0.87 0.49 0.15    
CPy%LB -0.48 -0.16 -0.56 0.93 0.51 0.69    
CPy%TB -0.32 -0.53 -0.57 0.94 0.36 0.86 -0.02 -0.64 -0.50 
CPy%ED 0.12 0.61 0.95    0.94 0.95 0.62 
CPy%MD 0.30 0.87 0.73    0.97 0.86 0.88 
CPy%BC 0.23 0.88 0.40    0.91 0.58 0.92 
CPy%MF 0.05 0.83 0.15    0.58 0.32 0.91 
Min and Max included for CPy%TB as it is a transition point between backswing and downswing 

Bold type indicates significant at p < 0.05. 
 
 
The rate of weight transfer at specific swing events is important on an individual 

basis. All individual golfers returned at least one and up to five significant 

relationships between Club Velocity and CPy velocity at the eight swing events used 

in this study. This indicated that different rates of weight transfer at specific points in 

the swing influenced performance. CPy velocity at specific swing events has not been 

reported in the scientific literature and so this represents a new and important finding. 

The only other study to measure rate of weight transfer performed this analysis for 

phases of the swing rather than at specific events but also found a significant 

association with Club Velocity (rate of change of Fz% between TB and FH; 

Robinson, 1994). Given the large number of significant results among individuals in 

this study as well as the only other study reporting rate of weight transfer measures 

finding a significant result, measurement of rate of weight transfer is essential for 

future testing or in applied work with golfers.  

 



 

 

269

Importantly for the relationship between VelCPyBC and Club Velocity, all Reverse 

golfers returned a negative linear effect (although the level of significance for one 

golfer was only p = 0.078). This was similar to the group-based findings for the 

Reverse group and indicated that moving CPy towards the back foot more rapidly at 

BC was associated with a larger Club Velocity. As discussed in study 2 (section 

5.4.2.2), the finding that weight is moving towards the back foot at ball contact and 

that a more rapid shift towards the back foot at ball contact is related to better 

performance represents new and important research. The only mention in the 

coaching literature of this occurring is in relation to the reverse pivot which is 

considered a technical flaw by Leadbetter (1993) and others. However, with all three 

Reverse golfers returning a negative linear relationship with at least a small effect, 

and given a similar result was found on a group-basis, this finding is strongly 

supported. This parameter needs to be evaluated in future work combining kinematic 

analysis to identify the mechanism underlying this technical trait. 

 

While rate of weight transfer was important at swing events, neither Front Foot golfer 

returned a significant relationship between Club Velocity and VMaxCPy. Further, not 

even a small effect was evident indicating there was no relationship between these 

parameters for the golfers tested. This was dissimilar group-based analysis for Front 

Foot group (R2 = 0.21, p = 0.004) and the under 40 years subgroup (R2 = 0.37, p < 

0.001) of which these golfers were a part. However, while no relationship existed 

between maximum rate of weight transfer and Club Velocity on an individual basis 

for Front Foot golfers, both returned a significant positive linear relationship between 

Club Velocity and CP velocity at swing events near where VMaxCPy occurred 

(Golfer 4: VelCPyMD, R2 = 0.14, p = 0.007; Golfer 5: VelCPyTB, R2 = 0.27, p < 
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0.001). As these significant results occurred at the start of or during downswing, this 

indicated that a rapid weight transfer was important in this phase of the swing. On a 

general level, this might have supported the coaching literature emphasis on a rapid 

weight shift towards the front foot during downswing.  

 

Two Reverse golfers returned significant positive linear relationships between Club 

Velocity and VMaxCPy. For Golfer 2 and Golfer 3, a larger maximum CPy velocity, 

or more rapid movement towards the front foot, was associated with a larger Club 

Velocity. This result has provided individual-based support for the coaching literature 

that has reported the rapid weight shift towards the front foot in early is important 

(e.g. Wallace et al., 1990; Koenig et al., 1993; VMaxCPy occurred between TB and 

ED for both golfers).  

 

No golfer (Front Foot or Reverse) returned a significant relationship between Club 

Velocity and CPy%TA or VelCPyTA. This indicated that neither the weight position 

at TA, nor the nature of the movement at TA, was important on an individual basis for 

the golfers tested. This was also the finding in group-based analyses in Study 2 for 

both Front Foot and Reverse styles, as well as all but one study in the literature 

(Mason et al., 1995, Wallace et al., 1990, but not Robinson, 1994). This finding did 

not support the very strong emphasis on weight position at TA in coaching texts (e.g. 

Leadbetter, 1995; Grant et al., 1996; Norman, 1995). However as neither group nor 

individual golfer analyses have produced a significant result, and only one report 

exists in the literature of weight position at TA being important (Robinson, 1994), this 

conclusion was strongly supported 
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There are a number of possible reasons why no relationship was indicated for 

CPy%TA or VelCPyTA for individual golfers tested in this study. The first is that 

positioning weight and rate of weight transfer at TA is not important to developing 

Club Velocity at ball contact. A second reason, and one that is not independent of the 

first, is that CPy%TA and VelCPyTA are easily controllable variables or different 

starting positions do not affect the ensuing swing (table 6.9). A third reason might be 

that due to the small range of values for CPy%TA and VelCPyTA, statistical power 

was reduced and hence no effect was evident. On average, both produced the lowest 

standard deviation values of any of the swing events. As mentioned by numerous 

researchers (e.g. Coleman, 1999: Ball et al., 2003a; 2003b) smaller ranges of values 

reduce effect sizes in regression analyses.  

 
Table 6.9: Standard deviation values for individual golfers for CPy% and CPy 
Velocity at eight swing events (N = 50 shots each). Means across all individuals 

also included.  
 

  Reverse Group Golfers Front Foot Golfers Mean 
  Golfer 1 Golfer 2 Golfer 3 Golfer 4 Golfer 5   
  (Professional) (HCP = 3) (HCP = 14) (HCP = 5) (Social)   
Club Velocity (m.s-1) 0.7 1.2 0.8 0.5 0.9  
CPy% at swing events (% between the feet) 
CPy%TA 5 2 1 1 1 2.0 
CPy%MB 5 2 2 2 3 2.7 
CPy%LB 5 2 3 2 5 3.5 
CPy%TB 5 2 4 2 3 3.2 
CPy%ED 4 4 3 2 4 3.4 
CPy%MD 4 3 5 2 3 3.4 
CPy%BC 5 3 6 1 6 4.2 
CPy%MF 8 4 8 3 8 6.4 
Average 5.0 2.8 4.0 2.0 4.3 6.4 
CPy Velocity at swing events(m.s-1)         
VelCPyTA 0.20 0.11 0.04 0.04 0.03 2.00 
VelCPyMB 0.14 0.13 0.13 0.08 0.12 2.80 
VelCPyLB 0.12 0.17 0.17 0.08 0.16 3.40 
VelCPyTB 0.23 0.45 0.22 0.14 0.27 3.20 
VelCPyED 0.23 0.26 0.32 0.20 0.43 3.40 
VelCPyMD 0.18 0.31 0.26 0.17 0.47 3.40 
VelCPyBC 0.41 0.34 0.29 0.23 0.86 4.20 
VelCPyMF 0.85 0.54 0.50 0.45 0.93 6.20 
Average 0.30 0.29 0.24 0.17 0.41 3.58 

* Extra decimal place included for velocity measures for comparison purposes. 
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Of note in table 6.9, the most skilled golfer tested also produced the most inconsistent 

weight transfer profile. The professional golfer produced the largest mean standard 

deviation values for CPy% parameters at swing events and the second largest mean 

standard deviation for CPy Velocity parameters at swing events. That the most skilled 

of the golfers tested in this study was the least consistent did not support Dowlan et 

al. (2001; using a subset of golfers from study 2) who reported low handicap golfers 

produced similar standard deviation values at TA and TB but smaller SD values at BC 

compared with high handicap golfers. However, the professional did produce the 

second most consistent Club Velocity at ball contact, indicating this golfer still 

produced a relatively consistent performance outcome. This combination of results 

was similar those reported by Arutyunyan et al. (1968) for elite pistol shooters who 

produced variable elbow and shoulder movement in aiming but maintained a high 

level of end point (i.e. gun barrel) control. Also of note was that only one golfer 

produced a smaller standard deviation at BC compared with MD. This did not support 

Koenig et al. (1993) who reported more variable Fz% values up to mid downswing 

and then reduced variability at BC (although for both studies, variability increased 

again at MF). The examination of functional variability and performance, as 

recommended by Davids et al. (2003) in motor control research, is also an important 

future direction for this analysis. 

 

Swing events other than TA, TB and BC were more often related to Club Velocity in 

this study. As can be noted in table 6.10, overall there were a greater percentage of 

significant results for individuals among the swing events MB, LB, ED, MD and MF. 

Examining significant results specific to event (table 6.11), it can be noted that this 

finding was due to the lack of significance for the TA event. However one golfer 
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returned no significant associations for TA, TB and BC (table 6.10) and so no 

information would have been provided to this golfer if events were limited to these. 

Further, for four golfers, effect sizes were larger for events other than TA, TB and 

BC, indicating for these golfers that other swing events were more important. This 

further supports the use of more swing events, and particularly events other than TA, 

TB and BC, in future studies examining weight transfer. 

 
Table 6.10: Comparison of number of significant relationships between Club 
Velocity and the most commonly used swing events (TA, TB, BC) with other 

swing events used in this study 
 

 
Golfer 

1 
Golfer 

2 
Golfer 

3 
Golfer 

4 
Golfer 

5 Total 
TA TB BC 1 3 3 0 2 9 of 30 
MB LB ED MD MF 2 7 7 4 3 23 of 50 
% of total number of analyses      
TA TB BC 17% 50% 50% 0% 33% 30% 
MB LB ED MD MF 20% 70% 70% 40% 30% 46% 

 
 

Table 6.11: Comparison of number of significant relationships between Club 
Velocity and individual swing events 

 
 CPy% CPy Velocity Total 

TA 0 0 0 
MB 3 0 3 
LB 4 1 5 
TB 2 3 5 
ED 3 2 5 
MD 2 3 5 
BC 2 2 4 
MF 2 3 5 

 
 
The importance of positioning of weight compared to rate of weight transfer differed 

between backswing and downswing events. Positioning weight was more important at 

backswing events (MB and LB) compared to CPy velocity for the golfers tested. 

Conversely, rate of weight transfer was more important in downswing events (ED and 
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MD) compared to positioning. For positioning in the backswing, six significant 

relationships between Club Velocity and either CPy%MB (two golfers) or CPy%LB 

(four golfers) compared to only one significant relationship for CPy velocity. For rate 

of weight transfer in the downswing, all five golfers returned a significant relationship 

between either VelCPyED or VelCPyMD and Club Velocity compared with only 

three of five golfers returning significant relationships for CPy% positioning at the 

same events. Further, while the number of significant results were the same (five for 

CPy% positioning and five for CPy velocity at ED and MD), there were four non-

significant small effects for selected relationships between CPy velocity and Club 

Velocity, compared with only one for CPy%. This might be suggesting a differing 

importance of weight transfer in the golf swing with attaining the correct position in 

the backswing and then achieving the correct rate of weight transfer in the downswing 

as factors that combine to facilitate better performance. However, this can only be 

seen as speculative with the limited number of individual golfers tested. This area 

should be examined in future individual-based analyses. 

 
Timing of weight transfer was important for three golfers (after the relationships with 

measurement issues were recalculated – see section 6.4.2.1). However there was no 

consistency among the significant results. Only one golfer produced an effect for the 

relationship between tVMaxCPy and Club Velocity (Golfer 1). As well, only one 

golfer produced a significant result for the relationship between tMinCPy% and Club 

Velocity (Golfer 5: positive linear relationship) and although a small effect was 

produced by another golfer, this effect was not significant at p < 0.05 and indicated a 

different direction of relationship to that of Golfer 5 (Golfer 3: negative linear). 

Further, while two golfers produced a significant result for tMaxCPy% and Club 

Velocity, the type of relationship differed. For Golfer 2, a cubic relationship existed 
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although with three cases removed, the relationship was negative linear. For Golfer 1, 

measurement issues indicated that regression statistics may not be appropriate for 

tMaxCPy% (refer to section 6.4.2.1) but swings where maximum CPy occurred later 

in the swing were related to larger Club Velocities, indicating different relationship to 

that produced by Golfer 2 regardless. As such while timing was important for three 

golfers, it was individual-specific. 

 

 

6.4.1.1  TIMING MEASUREMENT ISSUE 

 

The same measurement issue discussed in section 5.4.3 in study 2 existed for two 

individual golfers in study 3. Figures 6.3 and 6.4 show scatterplots of the problem 

relationships for Golfer 1 and Golfer 3 with example CPy curves of specific trials 

selected from each of the clusters to highlight the cause of the measurement issue. 
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Figure 6.3: Scatterplots and example CP curves for Golfer 1 highlighting the 

clusters and the cause of the measurement issue for tMaxCPy% and tMinCPy%. 
Arrows denote sites of maximum and minimum values relating to the clusters in 

scatterplots. 
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Figure 6.4: Scatterplots and example CP curves for Golfer 1 highlighting the 
clusters and the cause of the measurement issue for tVMaxCPy and tMinCPy%. 
Arrows denote sites of maximum and minimum values relating to the clusters in 

scatterplots. 
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For Golfer 1, two peaks existed across the crest of the CPy trace between TB and BC 

and slight differences in the shape of the curve meant that tMaxCPy% related to the 

first or the second peak. Also, slightly different patterning just before TB produced 

different minimum CPy times. For Golfer 3, both maximum CPy% and maximum 

CPy velocity occurred either midway between TB and BC in downswing or 

immediately after BC but the difference in time of maximum was associated with 

different ‘hills’ in the curve. A small third group also existed for maximum CPy and 

was produced in swings that showed a different patterning from the other swings 

(yellow line figure 6.4 iv).  

 

Three measurement issues exist due to the clusters in figures 6.3 and 6.4. First the 

mean value presented in table 6.4 (Results section 6.3) did not relate to any of the 

peaks indicated in figures 6.3 and 6.4. Second, the clusters represent very different 

parts of the swing. Both these factors were an issue on a group basis as well. As well, 

a third issue existed for individual-based analysis relating to the use of regression 

statistics where clusters are evident in the data. This can affect the analysis by 

producing or masking effects simply due to the existence of groups of data. A similar 

possibility was raised in relation to clusters due to different swing styles (refer 

Literature Review figure 2.9 in section 2.1.5.4). 

 

To evaluate these factors, within-cluster and between-cluster analyses were 

performed. Data were grouped into respective clusters (i.e. the clusters evident in 

scatterplots in figures 6.3 and 6.4) and the relationship between Club Velocity and the 

CPy timing parameter was then examined within each of these clusters. Other 

parameters that might have been influenced by this issue were also re-examined (i.e. 
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MaxCPy%, MinCPy%, CPyR and VMaxCPy). Also for Golfer 3, maxima were re-

evaluated between TA and BC (rather than MF), which eliminated the clusters 

produced after BC. 

 

For Golfer 1, clusters in tMaxCPy affected the analysis. Neither within-cluster 

relationship between Club Velocity and tMaxCPy was significant indicating the 

original significant result was influenced by the existence of the clusters in the data 

(table 6.12). However, Club Velocity was significantly different between clusters 

indicating that swings that produced a later maximum for CPy% also produced the 

larger Club Velocities on average. As such, while a statistical issue might have made 

the use of regression statistics questionable, the information produced (i.e. that a later 

maximum CPy% was advantageous for Golfer 1) remained. For this relationship the 

more appropriate method of analysis would be to compare clusters rather than 

examine regression statistics. 

 
Table 6.12: Within-cluster and between-cluster analysis for CP parameters 

affected by tMaxCPy% for Golfer 1 
 

    tMaxCPy% 
(s) 

MaxCPy% 
(%) 

CPyR 
(m) 

Club Velocity 
(m.s-1) 

Cluster 1 N = 16 Mean -0.11 78 0.33 45.0 
Cluster 2 N = 34 Mean -0.05 80 0.35 45.6 

F 1021 2.7 4.5 7.8 ANOVA 
p <0.001 0.105 0.038 0.008 
R2 0.06 0.01 0.13   Relationship  

within Cluster 1 p 0.351 0.719 0.173   
R2 0.03 0.01 0.15   Relationship  

within Cluster 2 p 0.341 0.504 0.024   
Note: all chosen relationships were linear 

 

The original results for the relationships between Club Velocity and MaxCPy% and 

between Club Velocity and CPyR were supported for Golfer 1. Neither cluster 

returned a significant within-cluster relationship between MaxCPy% and Club 
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Velocity, supporting the original non-significant analysis. For CPyR, both within-

cluster relationships with Club Velocity were positive linear, supporting the original 

analysis. Although the relationship for cluster 1 was not significant, the medium effect 

was only 0.2 less than cluster 2 with the non-significant result largely due to lower N. 

As well, a significant difference existed between clusters 1 and 2, with the larger 

CPyR group (cluster 2) returning a significantly larger Club Velocity.  

 

The clusters evident in the tMinCPy% data did not influence the analysis for Golfer 1 

(table 6.13). There was no significant relationship between tMinCPy and Club 

Velocity for either within-cluster group, supporting the non-significant original 

analysis (R2 = 0.05, p = 0.134). The results for the relationships between Club velocity 

and both MinCPy% and CPyR were also unaffected. There was no significant 

relationship within either cluster for MinCPy% supporting the original non-significant 

analysis (R2 = 0.00, p = 0.944). For CPyR, both within-cluster relationships were 

positive linear supporting the original positive linear relationship (R2 = 0.20, p = 

0.001). While the level of significance for this effect was only p = 0.115 for cluster 1, 

the R2 value was only 0.1 below the original analysis and the non-significant finding 

was largely due to the lower N.  

 
Table 6.13: Within-cluster and between-cluster analysis for CP parameters 

affected by tMinCPy% for Golfer 1 
 

    tMinCPy% 
(s) 

MinCPy% 
(%) 

CPyR 
(m) 

Club Velocity 
(m.s-1) 

Cluster 1 N = 14 Mean -0.56 15 0.34 45.4 
Cluster 2 N = 36 Mean -0.30 12 0.34 45.4 

F 963 3.2 0.1 0.0 ANOVA 
p <0.001 0.082 0.725 0.839 
R2 0.00 0.07 0.19  Relationship Cluster 1 
p 0.954 0.354 0.115  
R2 0.04 0.04 0.22  Relationship Cluster 2 
p 0.283 0.245 0.004  
Note: all chosen relationships were linear 
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The clusters evident in tVMaxCPy data did not influence the analysis for Golfer 3. As 

can be noted in table 6.14, there were no significant relationships between tVMaxCPy 

and Club Velocity for either cluster, supporting the original non-significant finding 

(R2 = 0.02, p = 0.279). Further, the original result for VMaxCPy  (positive linear, R2 = 

0.23, p < 0.001) was supported by within-cluster relationships with Club Velocity, 

with both clusters producing high medium effects (both positive linear) as well as 

when VMaxCPy was re-evaluated between TA and BC (R2 = 0.23, p < 0.001). While 

the effect was not significant for cluster 2, the R2 value was only 0.04 below the 

original analysis and the non-significant finding was due largely to smaller N.  

 
Table 6.14: Within-cluster and between-cluster analysis for CP parameters 

affected by tVMaxCPy for Golfer 3 
 

   tVMaxCPy 
(s) 

VMaxCPy 
(m.s-1) 

Club Velocity 
(m.s-1) 

Cluster 1 N = 32 Mean -0.16 1.5 43.1 
Cluster 2 N = 18 Mean 0.07 1.6 42.9 

F 8437 0.4 1.2 ANOVA 
p <0.001 0.542 0.282 
R2 0.00 0.31   Relationship Cluster 1 
p 0.908 0.001   
R2 0.12 0.15   Relationship Cluster 2 
p 0.160 0.098  
R2 0.01 0.23   Relationship using the 

interval from TA - BC p 0.552 <0.001  
Note: all chosen relationships were linear 

 

Clusters affected the result for tMaxCPy% for Golfer 3. The original analysis 

indicated a significant polynomial relationship. However, within-cluster analysis 

indicated no relationship between tMaxCPy% and Club Velocity (table 6.15). Further, 

the relationship between tMaxCPy% and Club Velocity was not significant when 

MaxCPy% was evaluated between TA to BC, which eliminated cluster 1 from the 

analysis, and the small effect was due only to four outliers (represented by cluster 3, 
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R2 = 0.08, p = 0.059, with four outliers represented by cluster 3 removed R2 = 0.03, p 

= 0.541). This indicated that while it was better for Golfer 3 to produce swings where 

MaxCPy% occurred in cluster 2 compared to cluster 3, no relationship existed 

between tMaxCPy% and Club Velocity for the majority (i.e. N = 46) of swings. 

 
 

Table 6.15: Within-cluster and between-cluster analysis for CP parameters 
affected by tMaxCPy for Golfer 3 

 

    tMaxCPy% 
(s) 

MaxCPy% 
(%) 

CPyR 
(m) 

Club Velocity 
(m.s-1) 

Cluster 1 N = 15 Mean 0.07 63 0.22 40.5 
Cluster 2 N = 31 Mean -0.02 60 0.21 41.9 
Cluster 3 N = 4 Mean -0.08 44 0.13 33.7 

F 9.0 17.1 0.33 4.7 ANOVA 
p 0.004 <0.001 0.718 0.013 
R2 0.06 0.21 0.24  Relationship 

Cluster 1 p 0.378 0.079 0.049  
R2 0.03 0.55 0.45   Relationship 

Cluster 2 p 0.548 <0.001 <0.001   
R2 0.08 0.52 0.41  Relationship using 

the interval from 
TA - BC p 0.059 <0.001 <0.001  

Note: all chosen relationships were linear 
 
 
This measurement issue for Golfer 3 did not alter the decision that both MaxCPy% 

and CPyR were significantly related to Club Velocity, although the nature of the 

relationship indicated was different. The relationship was indicated as linear for each 

cluster rather than quadratic as was indicated in the original analysis (level of 

significance was p = 0.079 only for Cluster 1 for CPyR but this was due in part to low 

N with a medium effect evident)., However when MaxCPy% was re-evaluated for the 

interval from TA to BC (i.e. effectively eliminating cluster 1) the relationship with 

Club Velocity was a quadratic for both and returned the same R2 values as the original 

analysis indicating minimal influence of the timing measurement issue on these 

parameters (MaxCPy%: R2 = 0.52, p < 0.001; CPyR, R2 = 0.41, p < 0.001). It should 
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be noted that on a general level, all analyses indicated larger MaxCPy% and CPyR 

values were associated with larger Club Velocities. 

 

On a general level, there are a number of options when treating these measurement 

issues. For Golfer 1 and maximum CPy%, a valid method of analysis would be to 

compare the two clusters. Also, examining only the interval between TA and BC was 

appropriate for Golfer 3 and will be particularly important where the maximum being 

detected is on a different ‘hill’. While the differences between the swings might be of 

importance and should be examined, the data should not be evaluated together as 

substantial violations of statistical assumptions will exist (e.g. non-normal data). As 

well, very different aspects of the swing were measured between each data cluster for 

Golfer 3 for both tMaxCPy% and tVMaxCPy. It is also important to evaluate 

measures other than the time parameters themselves such as maximum and minimum 

values as these parameters might also produce different results if values from the 

same ‘hill’ are used rather than from different hills. 

 
 
6.4.2   On clustering of individual golfers 

 

The strong positive relationships between Club Velocity and both CPy%MD and 

CPy%BC were unusual for Golfer 2 and 3. For both, higher Club Velocities were 

produced in swings in which CPy% was positioned nearer the front foot at swing 

events that are near or at ball contact, a trait evident in Front Foot but not Reverse 

golfers. Figure 6.5 shows the mean of the 10 swings with the largest Club Velocities 

and 10 lowest Club Velocities. For Golfer 3, the differences between CPy% at TB, 
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ED, MD, BC and MF were all significant at p < 0.05 while for Golfer 2, significant 

differences existed at LB, TB, ED and MD (table 6.16).  
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Figure 6.5: Comparison of CPy% at eight swing events for the 10 fastest and 10 

slowest Club Velocities for Golfer 2 and 3. 
 
 

Table 6.16: One way ANOVA comparing shots N = 10 largest and N = 10 
smallest Club Velocities for Reverse Golfer 2 and Reverse Golfer 3 

 
 Golfer 2 Golfer 3 

 (HCP = 3) (HCP = 14) 

 

Large Club 
Velocity 
(N = 10 
shots) 

Small Club 
Velocity 
(N = 10 
shots) 

ANOVA 

Large Club 
Velocity 
(N = 10 
shots) 

Small Club 
Velocity 

(N = 10 shots) 
ANOVA 

 Mean SD Mean SD F p Mean SD Mean SD F p 
Club Velocity 
(m.s-1) 49 1 46 1 179.6 <0.001 44 0 42 0 214.7 <0.001 
CPy%TA 56 2 56 1 1.1 0.311 48 1 49 2 0.3 0.620 
CPy%MB 23 3 24 1 1.9 0.182 32 2 34 2 2.1 0.165 
CPy%LB 23 3 27 2 12.3 0.003 25 3 27 2 3.1 0.098 
CPy%TB 9 2 12 2 11.8 0.003 28 3 32 3 10.3 0.005 
CPy%ED 66 3 59 2 32.1 <0.001 58 3 53 3 19.4 <0.001 
CPy%MD 62 4 59 2 6.6 0.020 64 3 54 5 25.6 <0.001 
CPy%BC 59 4 59 2 0.0 0.918 65 4 55 6 16.1 0.001 
CPy%MF 54 5 53 3 0.7 0.430 61 7 52 9 6.2 0.023 

 
 
Evident in figure 6.5, for Golfer 2, the slower swings were associated with CPy% 

pattern that maintained a similar CPy% position for ED, MD and BC. This compared 

with the faster swings which exhibited a CPy% position nearer to the front foot at ED 
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and MD and a more noticeable reverse pattern. This indicated that the swings in 

which a reverse technique was produced were the swings that achieved the largest 

Club Velocity, and if the reverse pattern was not produced then slower Club 

Velocities resulted. This supported the allocation of Golfer 2 to the Reverse group and 

that the reverse patterning was important to this golfer. 

 

Conversely, Golfer 3 did not produce a large reverse pattern for the lower or higher 

Club Velocity swings. Rather, the swing pattern resembled a Front Foot rather than 

Reverse style for Golfer 3, particularly for the faster swings. CPy% was positioned 

closer to the front foot at MD compared with ED while for the Reverse group mean, 

these values were very similar. As well, the time of maximum CPy% occurred later in 

the swing for Golfer 3 (94%) compared with the Reverse group in study 3 (82%). This 

unusual pattern for Golfer 3 prompted a post-hoc analysis of classification procedures. 

Reanalysis of classification using the Squared Euclidean and Pearson’s correlation 

methods indicated that while Golfers 1, 2, 4 and 5 classified in the same group (table 

6.17), Golfer 3 exhibited a variable classification. Using the squared Euclidean 

distance measure, which uses the absolute values of each parameter, Golfer 3 was 

classified as a Reverse golfer due to CPy% remaining nearer a midfoot position in 

both backswing and downswing (figure 6.6). However, when using the Pearson’s 

correlation method, which examines the overall pattern of the weight transfer, Golfer 

3 was indicated as a Front Foot golfer.  
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Table 6.17: Clustering results using the Pearson’s Correlation and Squared 
Euclidean Distance measures for individual golfers. Bold values indicate most 

appropriate cluster for each golfer for each method. 
 

 Pearson’s Correlation  
(largest value indicates best cluster fit) 

Squared Euclidean Distance 
(smallest value indicates best cluster fit) 

 Reverse Front Foot Reverse Front Foot 
Golfer 1 0.97 0.88 1220 1736 
Golfer 2 0.94 0.88 420 2075 
Golfer 3 0.83 0.95 649 1976 
Golfer 4 0.81 0.99 5358 566 
Golfer 5 0.85 0.89 2013 1297 
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Figure 6.6: Comparison of CPy% at eight swing events for Golfer 3, Front Foot 

group and Reverse group. 
 
 
In practical terms, it would probably be better to classify this golfer as a Front Foot 

style golfer when examining Club Velocity at ball contact. Swings with larger Club 

Velocity were nearer the Front Foot style indicating a more front foot style was better 

in terms of Club Velocity for Golfer 3. As well, the relationships between Club 

Velocity and CPy% at swing events ED, MD, BC and MF were linear and positive 

indicating that further increases in CPy% at these events might be of advantage (i.e. 

position CPy% nearer the front foot during downswing and follow through events). 

This technical change would further liken the pattern to that of the Front Foot group.  
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Four individual golfers (this study) and 92% of the major group golfers from Study 1 

(section 4.4.5.3) were classified into the same cluster regardless of measure used. This 

would indicate that the use of cluster analysis is an appropriate method of 

classification for the majority of golfers. However, two golfers in Study 1 (8%) and 

one golfer in Study 3 (not previously tested) exhibited variable classification. As such 

it would seem that there will be some golfers that are difficult to classify using this 

method. For these golfers, a more detailed assessment of which style is most 

appropriate is necessary.  

 

Possible solutions to the problem of clustering for golfers who exhibit aspects of both 

styles could be provided by Fuzzy clustering (e.g. Chau, 2001) or the use of more than 

one cluster measure. Fuzzy clustering will produce a percentage membership for each 

golfer for the Front Foot and Reverse styles and those golfers who indicate a high 

percentage clustering with more than one cluster can be indicated as requiring further 

analysis. However, fuzzy clustering might not have identified Golfer 3 as a potential 

problem if only the squared Euclidean distance was used as, observing figure 6.6, 

CPy% values were close to the Reverse mean for all events (and so this golfer would 

most likely have had a large percentage belonging value for the Reverse group).  For 

this golfer, the use of both squared Euclidean and Pearson’s correlation methods 

would have been needed to identify a possible classification problem. Using this 

method, any golfer who changes cluster with the different methods would need to be 

further analysed. Once golfers with classification issues are identified, the process 

used in this section (fastest and slowest 10 swings compared) could be implemented 

to provide more information on which classification would be optimal. Important 
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information was gathered for both Golfer 2 and Golfer 3 using this process and this 

information supported the inclusion of Golfer 2 in the Reverse group. 

 

6.4.3   Practical significance of results 

 

To provide an indication of the practical significance of the findings in this study, 

total drive distance was approximated. Total drive distance is the distance between 

ball strike and where the ball finally comes to rest. Quintavala (2006) in a technical 

report for the US golf association reported approximate distance data predicted from 

Club Velocity at ball contact. This was based on experimental data obtained using a 

mechanical golf swing system which hit five different ball types at four (reliable) 

Club Velocities ranging from 40 m.s-1 to 54 m.s-1. These values encompassed the 

measured values in this study (refer table 6.18). Although the conversion factor was 

not reported, it could be calculated from data presented in the paper. For the purposes 

of this assessment, the average conversion factor for all conditions was used (five 

balls at four Club Velocities = 5.2 m of total drive distance for every 1 m.s-1 of Club 

Velocity at ball contact. N.B. the relationship is quadratic, not linear, but in this range 

of club velocities a linear relationship is adequate). Results of this approximation are 

reported in table 6.18.  

 
Table 6.18: Range of Club Velocity values for individual golfers. Approximate 

Total Drive Distance ranges also included. 
 Reverse Group Golfers Front Foot Golfers 
 Golfer 1 Golfer 2 Golfer 3 Golfer 4 Golfer 5 
 (Professional) (HCP = 3) (HCP = 14) (HCP = 5) (Social) 
Range (m.s-1) 43.6 – 47.2 45.0 – 50.6 41.1 – 44.7 47.5 – 49.2 45.0 – 49.7 
Approximate Total 
Drive Distance range 
(min - max, m) 

227 - 245 234 - 263 214 - 232 247 - 256 234 – 258 

Approximate Total 
Drive Distance range 
(difference, m) 

19 29 19 9 24 
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Golfers in this study produced approximate Total Drive Distance ranges of between 9 

m and 29 m. These differences in total drive distance are substantial, particularly for 

the four golfers who ranged in distance of 19 m or more. Numerous golf coaching 

websites indicate that the difference between consecutive clubs (i.e. 3-iron to 4-iron, 

4-iron to 5-iron) is between nine and 14 metres (e.g. Kelley, 2006; Meinen, 2006; 

Leaderboard, 2006). These ranges are similar to experimental results from the 

Victorian state golf team (average difference in distance between consecutive clubs = 

10m, N = 8, Cooney, 2005, personal communication, 10 October). Using 10 m as one 

club length, a drive that takes the ball 20 m further (two club lengths) will require a 

shorter club for the next shot on par 4 holes and possible par 5 holes (e.g. a 7-iron 

rather than a 5iron). Given four golfers ranged 19 m or more for total drive distance 

from Club Velocities produced in testing, factors that contributed to this change are 

worth assessing.  

 

So what does this mean for the importance of weight transfer to the golf swing? To 

gain some insight into the practical significance of how weight transfer contributed to 

the differences in Club Velocity, a post-hoc analysis of CPyR was performed (CPyR 

was chosen as it was significant for all golfers). For each golfer, the ten largest 

(termed LargeCPyR) and ten smallest (termed SmallCPyR) CPyR swings were 

grouped together. Mean Club Velocity and estimated ball carry values were calculated 

for each group and compared using a one way ANOVA. The results of this analysis 

are presented in table 6.19. 
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Table 6.19: Differences in Club Velocity and estimated ball carry between ten 
largest and ten smallest CPyR values for individual golfers 

 
 Reverse Golfers Front Foot Golfers 
 Golfer 1 Golfer 2 Golfer 3 Golfer 4 Golfer 5 
 (Professional) (HCP = 3) (HCP = 14) (HCP = 5) (Social) 

 

Club 
Velocity 
(m.s-1) CPyR 

Club 
Velocity 
(m.s-1) CPyR 

Club 
Velocity 
(m.s-1) CPyR 

Club 
Velocity 
(m.s-1) CPyR 

Club 
Velocity 
(m.s-1) CPyR 

LargeCPyR 
(mean, N=10) 46.4 0.35 49.3 0.33 44.1 0.24 49.1 0.46 49.0 0.35 
SmallCPyR 
(mean, N=10) 44.5 0.32 45.9 0.27 41.8 0.18 47.8 0.45 46.6 0.33 
Difference 
between 
LargeCPyR 
and Small 
CPyR swings  

1.9 0.03 3.4 0.06 2.4 0.06 1.3 0.01 2.4 0.02 

Group 
Difference for 
Total Drive 
Distance 

10 m 18 m 12 m 7 m 12 m 

F 139.6 28.6 57.4 49.99 214.7 15.5 520.0 11.7 123.1 4.6 
p <0.001 <0.001 <0.001 <0.001 <0.001 0.001 <0.001 0.005 <0.001 0.048 
Effect size 
(η2) 0.886 0.614 0.909 0.735 0.923 0.463 0.967 0.394 0.872 0.204 
Effect Scale Large Large Large Large Large Large Large Large Large Large 

 
 
All golfers returned significant differences between LargeCPyR and SmallCPyR for 

both CPyR and Club Velocity (p < 0.05). For four of five golfers, the difference in 

mean Total Drive Distance was larger than 10 m with the LargeCPyR group 

producing greater distance. As such, for these golfers, the difference in performance 

related to one club length. This indicated a high level of practical significance for the 

relationship between CPyR and Club Velocity for these four golfers.  

 

Golfer 4 produced a mean difference in Total Drive Distance of only 7 m between 

LargeCPyR and SmallCPyR and a maximum difference of only 9 m (calculated from 

the single maximum and single minimum Club Velocity produced by Golfer 4; table 

6.19). As such, this golfer did not produce a large range of Club Velocities in the N = 

50 swings and so there was no possibility of finding an increase of 10 m or more for 
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this golfer. However, a 7 m increase in distance is likely to be advantageous as the 

golfer is closer to the green for the second shot potentially allowing for a shorter club 

to be taken or bringing the green into range. 

 

6.4.4   Use of group-based and individual-based analyses 

 

Individual-based analysis provided information that was not evident on a group-basis 

in this study. Numerous parameters were significantly related to Club Velocity on an 

individual basis but not on a group basis. For example, both Front Foot golfers 

returned significant relationships between CPy% at swing events and Club Velocity 

while there were no significant effects on a group basis. For Reverse golfers, the 

relationship between CPyR and Club Velocity was related on an individual basis for 

all golfers while not being significant on a group basis. Using only group-based 

analysis, these factors would not have been identified and so not offered as possible 

technical aspects to alter for improved performance for these individual golfers.  

 

Group-based analysis provided information that was not evident on an individual-

basis in this study. For the Reverse golfers, a significant negative relationship was 

indicated between VelCPyBC and Club Velocity on a group basis but not an 

individual basis for Golfer 3. However, the range of values for Golfer 3 was small, 

reducing statistical power for the analysis. Further, the mean value for Golfer 3 for 

VelCPyBC was one of the least negative values produced by any golfer (3rd largest, 

figure 6.7). Given this combination, it might be useful for Golfer 3 to increase the 

negative VelCPyBC values further. Using only individual-based data, this possibility 

would not have been detected. This combination of results supports the 
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recommendation of Ball et al. (2003a, 2003b) that both group-based and individual-

based analysis is required to extract all the available information form an analysis. 
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Figure 6.7: Scatterplot of VelCPyBC and Club Velocity for the Reverse group (N 
= 18, outlier removed) and Individual Golfer 3 (N = 50 shots). 
 
 
  
6.4.5     Linear Relationships – general discussion 

 

The finding that many relationships were linear on an individual basis requires further 

discussion. The relationship between Club Velocity and CPy% at swing events, 

maximum CPy, Minimum CPy and CPyR might be expected to be optimal rather than 

linear due to the limits imposed by stance width. Using CPyR as an example, four 

golfers indicated a linear relationship between CPyR and Club Velocity. This was 

appropriate conclusion based on the range of data produced by each golfer. However, 

to move CPy beyond the base of support will most likely lead to a performance 

decrement, possibly similar to the ‘catastrophic’ point reported by Best (1995) for 

javelin throwers (see figure 6.8). While requesting the golfer to produce a greater 

range of CPyR values could test this, this can affect ecological validity of the testing. 

It would be appropriate to indicate to golfers and coaches that the relationship 
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between CPyR and Club Velocity was linear and that larger range of weight transfer 

was associated with better performance. However, it would also be necessary to detail 

the theoretical limit that exists but was not detected in this study and to detail the 

(obvious) issue of losing balance. 

CPyR

Cl
ub

 V
el

oc
ity

 
Figure 6.8: Example relationship between Club Velocity and CPyR showing a 

linear relationship up to a ‘catastrophic failure point’ denoted by an arrow 
 
 
6.4.6         Statistical issues in single-subject designs 

 

6.4.6.1 Generalisability 

 

All individual golfers returned significant relationships between Club Velocity and 

CP parameters. More specifically, all golfers returned significant relationships 

between CPy% at swing events and Club Velocity and between CPy velocity at swing 

events and Club Velocity. Importantly, the single parameter CPyR was related to Club 

Velocity for all golfers. Given generalisability is based on replication, not sample size 

(Bates et al., 2004) this would indicate strong support that the findings are 

generalisable on an individual basis. However, as these analyses still represent only 

five golfers of a population of over a million golfers in Australia (Australian Bureau 

of Statistics, 2001) the sample size was small. So while this study comprised five 

single-subject studies, and significant associations existed between CPy parameters 
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and Club Velocity for all individual golfers, there is a need to further increase this 

number to assess if these relationships exist in the wider golfing population. 

 

6.4.6.2  Normality 

 

As this study examined curvilinear as well as linear relationships, the issue of 

normality was less influential to this analysis. Obviously for curvilinear relationships 

to exist, some deviation from normality must exist in at least one of the parameters 

being examined. As such, deviations from normality were a part of rather than a 

limitation of the analysis. Further, correlation (linear) analysis is robust to violations 

of normality (e.g. Pedhazur, 1997). These factors all support the issue of normality 

not affecting this study. However as there were a large number of linear relationships 

found and as non-normality has been a criticism of single subject designs (e.g. 

Reboussin and Morgan, 1996), the issue was explored.  

 

The effects of any non-normal data on linear relationships were evaluated using 

within dataset distribution as outlined by Aron and Aron (1999). Repeating briefly, 

for a particular CP parameter-Club Velocity relationship, N = 50 randomly paired 

Club Velocity-CPy Parameter data pairs are assembled. The linear curve estimation is 

evaluated on this N = 50 dataset. This is repeated N = 1000 times to obtain 1000 R2 

values. These are sorted and the 975th (p = 0.05, two-tailed) R2 value is determined. If 

the original R2 value was greater than this value then this supports the relationship 

being a true rather than a random effect.  
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Within dataset distribution supported all linear results (table 6.20). For all 

relationships significant at p < 0.05, R2 values were larger than the value indicated by 

the within dataset distributions as the threshold for significance at p < 0.05. This 

supported the results in this study and indicated that normality, or lack of, did not 

influence the analysis.  

 
Table 6.20: Within dataset distribution for significant linear relationships 

between CP parameters and Club Velocity for individual golfers  
(N = 50 shots each). 

  Original Correlation Within dataset distribution 
  R2 p p = 0.05 p = 0.01 

Golfer 1 CPy%LB 0.08 0.042 0.07 0.13
 VelCPyED 0.20 0.001 0.06 0.10
 VelCPyBC 0.13 0.012 0.07 0.12
 tVMaxCPy 0.08 0.045 0.07 0.12
 CPyR 0.20 0.001 0.05 0.18

Golfer 2 CPy%LB 0.30 <0.001 0.05 0.27
 CPy%ED 0.42 <0.001 0.05 0.32
 CPy%MD 0.21 0.001 0.05 0.13
 VelCPyLB 0.15 0.005 0.05 0.12
 VelCPyTB 0.28 <0.001 0.05 0.20
 VelCPyMD 0.34 <0.001 0.05 0.27
 VelCPyBC 0.11 0.020 0.05 0.12
 VMaxCPy 0.22 0.001 0.05 0.18
 MaxCPy% 0.36 <0.001 0.05 0.31
 MinCPy% 0.44 <0.001 0.04 0.30
 CPyR 0.52 <0.001 0.05 0.38

Golfer 3 CPy%MB 0.08 0.044 0.05 0.13
 CPy%LB 0.11 0.021 0.04 0.12
 CPy%TB 0.17 0.003 0.05 0.16
 CPy%ED 0.38 <0.001 0.05 0.35

 CPy%MD 0.50 <0.001 0.05 0.38
 CPy%BC 0.41 <0.001 0.05 0.34
 VelCPyTB 0.16 0.004 0.04 0.14
 VelCPyED 0.30 <0.001 0.05 0.23
 VMaxCPy 0.22 <0.001 0.04 0.19
 MinCPy% 0.11 0.020 0.06 0.12

Golfer 4 CPy%MB 0.12 0.014 0.05 0.12
 CPy%ED 0.10 0.027 0.04 0.10
 VelCPyMD 0.14 0.008 0.05 0.10
 CPyR 0.10 0.027 0.05 0.10

Golfer 5 VelCPyTB 0.27 <0.001 0.04 0.15
 tMinCPy% 0.15 0.005 0.04 0.12
 CPyR 0.08 0.042 0.05 0.10

 
Note: tMaxCPy for Golfers 2 and 3 have been eliminated from this assessment due to the identification of clusters detailed in 

section 6.4.2.1 
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6.4.6.3 Independence 

 

Independence of samples was examined by calculating autocorrelations of residuals 

for each chosen relationship between the CP parameter and Club Velocity for three 

lags (three lags recommended by Bates et al., 2004). Lag 1 was the correlation 

between CP parameter N and CP parameter N+1 across the 50 shots. Lag 2 was the 

correlation between CP parameter N and CP parameter N+2 across the 50 shots. Lag 3 

was the correlation between CP parameter N and CP parameter N+3 across the 50 

shots. Tabachnick and Fidell (1996) and Hopkins (2003) recommended that these 

calculations should be performed on residuals. The threshold to indicate that a level of 

dependence existed that would influence regression statistics was set at R2 = 0.50 as 

recommended by Bates et al. (2004). Table 6.21 reports this data for the Reverse and 

Front Foot golfers with CP parameters that were significantly associated with Club 

Velocity are shaded. 



Table 6.21: Autocorrelations for residuals for 3 lags for Reverse golfers. Shaded areas indicate a significant relationship between the 
relevant CP parameter and Club Velocity 

 
  Golfer 1 Golfer 2 Golfer 3 Golfer 4 Golfer 5 

  (Professional) (HCP = 3) (HCP = 14) (HCP = 5) (Social) 

 Lag 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 
CPy%TA 0.01 0.00 0.00 0.10 0.10 0.08 0.19 0.04 0.02 0.02 0.03 0.05 0.07 0.04 0.06 
CPy%MB 0.02 0.02 0.03 0.07 0.01 0.04 0.20 0.04 0.03 0.01 0.07 0.02 0.07 0.05 0.07 
CPy%LB 0.01 0.01 0.02 0.22 0.05 0.02 0.07 0.01 0.02 0.01 0.07 0.01 0.08 0.05 0.08 
CPy%TB 0.03 0.04 0.04 0.14 0.04 0.12 0.07 0.00 0.00 0.02 0.04 0.04 0.08 0.06 0.06 
CPy%ED 0.01 0.02 0.02 0.22 0.14 0.12 0.04 0.02 0.01 0.01 0.07 0.01 0.08 0.05 0.07 
CPy%MD 0.00 0.00 0.00 0.04 0.01 0.02 0.02 0.02 0.00 0.03 0.03 0.03 0.04 0.01 0.04 
CPy%BC 0.00 0.00 0.00 0.01 0.00 0.00 0.06 0.01 0.00 0.02 0.05 0.04 0.03 0.01 0.04 
CPy%MF 0.01 0.01 0.01 0.01 0.01 0.04 0.10 0.02 0.00 0.02 0.03 0.05 0.03 0.00 0.03 
VelCPyTA 0.00 0.00 0.00 0.04 0.02 0.00 0.13 0.02 0.03 0.01 0.04 0.02 0.04 0.02 0.02 
VelCPyMB 0.00 0.00 0.01 0.02 0.00 0.04 0.18 0.03 0.02 0.02 0.04 0.05 0.06 0.04 0.06 
VelCPyLB 0.01 0.01 0.01 0.02 0.02 0.00 0.16 0.01 0.00 0.01 0.05 0.03 0.06 0.04 0.06 
VelCPyTB 0.02 0.02 0.02 0.08 0.05 0.06 0.12 0.01 0.01 0.02 0.02 0.04 0.02 0.02 0.00 
VelCPyED 0.00 0.00 0.00 0.05 0.05 0.06 0.07 0.00 0.02 0.02 0.04 0.04 0.08 0.03 0.07 
VelCPyMD 0.01 0.02 0.02 0.19 0.12 0.12 0.12 0.01 0.04 0.03 0.07 0.02 0.06 0.03 0.06 
VelCPyBC 0.02 0.03 0.03 0.00 0.03 0.01 0.10 0.04 0.03 0.03 0.06 0.03 0.03 0.00 0.03 
VelCPyMF 0.00 0.01 0.01 0.01 0.00 0.05 0.07 0.03 0.01 0.04 0.04 0.04 0.04 0.03 0.05 
VMaxCPy 0.00 0.00 0.00 0.02 0.01 0.06 0.07 0.00 0.00 0.01 0.05 0.04 0.08 0.04 0.06 
VtMaxCPy 0.03 0.03 0.03 0.03 0.11 0.02 0.18 0.03 0.03 0.02 0.06 0.03 0.07 0.03 0.06 
MaxCPy% 0.00 0.00 0.00 0.10 0.03 0.05 0.04 0.00 0.00 0.02 0.07 0.03 0.05 0.01 0.04 
tMaxCPy% 0.03 0.03 0.03 0.06 0.00 0.19 0.07 0.04 0.01 0.02 0.04 0.04 0.07 0.04 0.06 
MinCPy% 0.02 0.03 0.03 0.04 0.02 0.01 0.02 0.00 0.00 0.01 0.04 0.03 0.08 0.07 0.04 
tMinCPy% 0.01 0.01 0.01 0.22 0.23 0.07 0.12 0.01 0.00 0.02 0.05 0.04 0.03 0.05 0.03 

CPyR 0.00 0.00 0.01 0.13 0.02 0.01 0.04 0.00 0.00 0.03 0.03 0.02 0.07 0.05 0.05 
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As no autocorrelation exceeded the threshold of R2 = 0.50 (nor did any come close to 

this value), it was considered that the assumption of independence was not violated 

and use of regression statistics was appropriate for this data. 

 

6.4.6.3.1     ISSUES ASSOCIATED WITH INDEPENDENCE 

 

Three issues existed in the assessment of dependence of data in this study. 

 

First is the threshold set to indicate dependence. While well below the threshold of R2 

= 0.50 suggested by Bates et al. (2004), a number of autocorrelations were significant 

at p < 0.05 in table 6.21 indicating a relationship, and hence a level of dependence 

existed in the data. This highlights that the decision on whether dependence exists in a 

dataset will be reliant on the threshold set by the researcher. There is little information 

in the literature to guide the researcher’s decision as to what threshold constitutes 

dependence in a dataset. Hopkins (2003) suggested it is up to the researcher in each 

case to determine if dependence exists and if it is influential to the analysis. For this 

particular analysis, there were no relationships stronger than R2 > 0.25 (half the 

threshold suggested by Bates et al. 2004) and so the decision to consider statistical 

results as valid is justified.  

 

Second is what should be done about the analysis if dependence exists. The effect of 

dependent data will be to inflate R2-values and reduce the range of confidence limits 

(Hopkins, 2003). As such, a possible approach where the researcher is concerned that 

dependence exists might be to make the alpha level more conservative. For this study, 

examining the relationships that were significantly autocorrelated at p < 0.05, the 
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original relationship between Club Velocity and the relevant CP parametersreturned p 

≤ 0.002 for all but one relationship. As such, applying this more stringent statistical 

limitation would have changed the results of this study minimally. 

 

The third is the use of autocorrelations to indicate dependence. This test was chosen 

as it was the only one used in the previous literature. However, it evaluates only the 

overall effects of the dataset. Dependence might exist in the short term (e.g. across 10 

shots but not across all fifty shots) but not be detected by autocorrelations, which will 

evaluate all N, N+1 relationships. The use of different statistical tests to determine 

dependence is needed in future individual-based studies, although the issue as to what 

constitutes dependence and what should be done about it still remain. It should also be 

noted that some level of dependence can be an important finding in individual-based 

studies. This is the focus of the next section. 

 
 
6.4.7   Non-linear analysis – Poincare plots 
 
 
 
While single swings have been examined in golf, there has been little research into 

how performance alters between shots or over longer periods of time. The question of 

how performance changes from shot to shot and across shots over time is very 

important to the golfer. For example, is there a pattern of progression in performance 

leading up to a poor shot? Is there a pattern of performance after a poor shot is 

performed? Non-linear techniques, such as Poincare plots, could answer these 

questions. A Poincare plot is a nonlinear dynamic technique that plots a parameter 

value against its next value and this technique has been used to highlight nonlinear 

patterns in areas such as heart rate variability (e.g. Brennan et al., 2001; Kamen et al., 
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1996; Woo et al., 1992). As this study examined a large number of shots, it is 

worthwhile briefly examining this technique to indicate if it will provide useful 

information in the examination of weight transfer in the golf swing. 

 

For each golfer, a Poincare plot of CPyR was generated with N on the x-axis and N+1 

on the y-axis. CPyR was chosen as it was significantly associated to Club Velocity for 

all individual golfers. As well, referring to figure 6.9 for an explanation (and to 

Appendix F for proofs), the Poincare plots were quantified using  

 
• R2 values 

• 95% ellipse area encompassed by the dot cloud using axes P1 and P2 (P1 

is the line of identity where x = y. P2 is perpendicular to P1, figure 6.9) 

• Short term variability (standard deviation of perpendicular distances from 

each [N,N+1] datapoint to P1) 

• Long term variability (standard deviation of perpendicular distances from 

each [N,N+1] datapoint to P2) 

• Histograms were calculated for Golfer 2 using perpendicular distances 

from P1 (line of identity) and P2 (axis perpendicular to line of identity).  

0

50
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0 50 100
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N+
1
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Width Histogram Length Histogram

Parameter Histogram  
 

Figure 6.9: Quantification methods applied to the Poincare plot. P1 represents 
the line of identity (x = y). P2 is perpendicular to P1 passing through the mean of 

all values in the Poincare plot (adapted from Brennan et al., 2001). 
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Figure 6.10 shows CPyR Poincare plots for each golfer. 
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Figure 6.10: Poincare plot for CPyR values across 50 consecutive swings for all 

individual golfers. 
 
 

Referring to figure 6.10, Golfer 1, Golfer 4 and Golfer 5 produced a rounded cloud 

while Golfer 2 and Golfer 3 produced a cloud that was elongated along the line of 

identity. The rounded clouds indicated similar variability existed in the short term 

(shot to shot) and long term (across N = 50 shots). However, the size of the point 

‘clouds’ differed, indicating more variability for Golfer 5, less for Golfer 1 and less 

again for Golfer 4. Short and long term variability values and ellipse areas presented 

in table 6.22 support both observations. The elongated clouds of Golfer 2 and Golfer 3 



 

 

301

indicated more long term compared with short term variability (also supported by data 

in table 6.22). 

 

Table 6.22: Ellipse area, short term variability and long term variability for 
CPyR across 50 swings for all individual golfers 

 
 Golfer 1 Golfer 2 Golfer 3 Golfer 3 Golfer 4 Golfer 5 
 (Professional) (HCP = 2) (HCP = 14) (HCP = 14) (HCP = 5) (Social) 

    
minus 
outlier   

R2 
p 

0.00  
0.836 

0.40 
<0.001 

0.37 
<0.001 

0.42 
<0.001 

0.00 
0.474 

0.00 
0.831 

Ellipse 95% (m2) 0.015 0.029 0.061 0.037 0.008 0.029 
Short Term 
variability (m) 0.017 0.016 0.024 0.021 0.012 0.024 

Long Term 
variability (m) 0.018 0.035 0.050 0.035 0.013 0.025 

N = 49 for all analyses except Golfer 3 outlier removed (N = 47) 
Note: For outlier removal in Poincare plots, the two points that the outlier was linked to were removed i.e.[ Noutlier, 

Noutlier + 1] and [N, Noutlier ], (where Noutlier  is N+1). 
 

 
 
Two golfers produced a significant R2 value (Golfer 2 and Golfer 3). For both, the 

relationships were positive (refer figure 6.10) indicating large CPyR values tended to 

follow large CPyR values and small CPyR values followed small CPyR values. For 

this to exist there must be long term drift. That is, larger values tended to follow larger 

values but over time these values drifted such that smaller values were produced 

together. This is distinct to short term changes that will produce a negative correlation 

(small values followed by large values represented in Poincare plots by a bottom right 

to top left spread of points). No relationship existed for the remaining three golfers.  

 

Poincare plot analysis provided interesting short term shot to shot patterning 

information for Golfer 2. The jumps from relatively smaller to larger CPyR values 

tended to be large while from large to small CPyR values tended to be more evenly 

distributed. This was evident in the Poincare plot and in the width histogram, which 

showed a group of seven points that were distinct from the remaining datapoints 



 

 

302

(Poincare plot presented again in figure 6.11 i, with the seven points denoted by a 

shaded area). Examining the distribution of the difference in CPyR between shots 

(CPyRN-CPyRN+1, figure 6.11 ii) it can be seen that the same seven points differed 

from the next swing by more than 0.03 m with all but one of the remaining swing to 

swing differences where CPyR moved from small to large were less than 0.01 m.   

 

0
2
4
6
8

10
12
14
16

-0
.0

7
-0

.0
6

-0
.0

5
-0

.0
4

-0
.0

3
-0

.0
2

-0
.0

1
0.

00
0.

01
0.

02
0.

03
0.

04
0.

05

Bin

Fr
eq

ue
nc

y

i. Poincare Plot ii. Difference in CPyR between shots Histogram 
 

Figure 6.11: Poincare plot and histogram of the difference between consecutive 
shots for CPyR [N-(N+1)] across 50 swings for Golfer 2. Negative values mean 
the next swing produced a larger CPyR value. The bin numbers represent the 

upper value of the range. 
 
 
The underlying cause for the difference in small to large CPyR changes compared to 

large to small CPyR changes from shot to shot is not clear. In all cases for the seven 

swings, Club Velocity also increased for the corresponding swing (on average by 1.5 

m.s-1 compared with the mean change between all other shots of 0.8 m.s-1 [absolute 

change values used for this calculation]). It could be a conscious effort by the golfer 

to increase this range (or Club Velocity) after a smaller than desired CPyR (or Club 

Velocity) for the previous swing. However, no data was collected to indicate if this 

golfer was making conscious control or change. As such, there is a need to gather 
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information on each trial for use in a shot to shot analysis. This should be considered 

in designs of any future study using Poincare plot in analysis of the golf swing. 

 

While there has been criticism that the measures used to assess Poincare plots provide 

no more information than linear measures (e.g. Brennan et al., 2001), short and long 

term variability measures provided information not evident from linear measures in 

this analysis. For example, the linear measure standard deviation (i.e. original or 

overall SD) for Golfer 2 was considerably larger that for Golfer 1 (table 6.23). 

However, short term variability for Golfer 2 was actually smaller than that for Golfer 

1, with the larger linear standard deviation a function of the increased long term 

variability. This indicated that from shot to shot, Golfer 2 was slightly more consistent 

than Golfer 1, but over a longer period, CPyR performance drifted. A similar contrast 

existed between Golfer 3 and Golfer 5. This information was not evident with linear 

measures and so the non-linear measures have provided more information. 

 

Table 6.23: Comparison of linear (standard deviation) and non-linear (Poincare 
plot measures) indices for CPyR for individual golfers. 

 
 Values Rank 
 Linear Measure Poincare Plot Measures Linear Measure Poincare Plot Measures 
  SD ST LT E95% SD ST LT E95% 
Golfer 1 0.018 0.018 0.018 0.016 2 3 2 2 
Golfer 2 0.027 0.016 0.033 0.030 4 2 4 4 
Golfer 3 0.035 0.021 0.035 0.037 5 5 5 5 
Golfer 4 0.013 0.012 0.011 0.012 1 1 1 1 
Golfer 5 0.024 0.023 0.023 0.027 3 4 3 3 

SD = standard deviation (m) 
ST = short term variability (m) 
LT = long term variability (m) 
E95% = area of 95% ellipse (m2) 
* Outliers removed for Golfer 3 - no change to rankings with or without Golfer 3 outlier 
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The ellipse measure did not provide more information for this analysis than that 

provided by the linear standard deviation. The ranking of golfers from smallest to 

largest SD was the same as for the ellipse area. As well, like linear standard deviation, 

the ellipse measure was not sensitive to differences in short and long term variability. 

For example, Golfer 2 and Golfer 5 produced the same ellipse area but distinctly 

different axis lengths (i.e. short and long term variability). It would seem that this 

measure is not required as short and long term variability measures provide more 

useful information, and this is further emphasized with linear standard deviation 

providing the same relative information as the ellipse measure. 

 

Based on the interesting finding for Golfer 2 and the useful information provided by 

separating short and long term variability, it would be worth continuing to explore 

Poincare plots in future research. These need to include examining technical aspects 

‘on site’ where the actual result of the swing (distance and accuracy) can be 

determined. As well, a larger number of shots would be useful in analysis, although as 

this would be required to be performed over a period of time, conscious technique 

changes and day to day variability issues would need to be addressed. Other 

techniques such as detrended fluctuation analysis which looks at short and long term 

patterns across a large N (e.g. Hausdorff et al., 2001) may also hold useful 

information. 
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6.5  CONCLUSION 

 

Weight transfer is important to performance of the golf swing on an individual basis. 

All individual golfers returned significant relationships between CP parameters and 

Club Velocity. However the nature of this relationship is individual-specific with 

different parameters associated with Club Velocity for different golfers. As well, 

effect sizes, and in some cases the direction of relationships, differed between golfers 

for the same CP parameter. This is the first statistical support for the importance of 

weight transfer in the golf swing on an individual basis. 

 

Both positioning of weight and rate of weight transfer at specific swing events was 

important to all golfers tested. All golfers returned significant relationships between 

Club Velocity and CPy% at swing events. As well, all golfers returned significant 

relationships between Club Velocity and CPy velocity at swing events. However, the 

swing events indicated as important differed between golfers, as did effect sizes and 

the nature of these relationships (linear, polynomial, cubic). This indicated a complex 

and individual-specific relationship between both positioning of weight and rate of 

weight transfer with Club Velocity. 

 

Weight transfer range and position of weight at the late backswing event were the 

CPy parameters most often related to Club Velocity. All golfers returned a significant 

association between CPy range and Club Velocity.  For four golfers the indicated 

relationship was linear with a larger weight transfer range associated with a larger 

Club Velocity at ball contact and on a general level, the other golfer also produced 

this relationship. Four golfers returned a significant relationship between CPy% at late 
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backswing and Club Velocity. For three golfers a smaller CPy%, or positioning CPy% 

nearer the back foot at late backswing was associated with larger Club Velocities. On 

a general level, this relationship also existed for the fourth golfer. The importance of 

this swing event might be related to its proximity to the start of the forces associated 

with moving the club forward. These results supported the importance of weight 

transfer range in the golf swing and highlighted the need to include the late backswing 

event in future studies. 

 
For Reverse golfers, both CPy%LB and VelCPyBC were important on an individual-

basis. For all three Reverse golfers a significant negative linear relationship indicated 

a position further towards the back foot at LB was associated with a larger Club 

Velocity. As well, all three Reverse golfers produced at least a small negative effect 

for the relationship between VelCPyBC and Club Velocity indicating moving CPy 

towards the back foot more rapidly at BC was associated with a larger Club Velocity. 

That weight is moving towards the back foot and a more rapid movement towards the 

back foot is of advantage is a new finding that has not been identified or discussed in 

either coaching or scientific literature. 

 
 
Non-linear techniques such as Poincare plots hold useful information in assessment of 

weight transfer in the golf swing. Differences existed in short term (shot to shot) and 

long term (across all fifty shots) variability both within and between golfers. As well, 

for one golfer, the shot to shot changes in range of weight transfer differed depending 

on whether the change was to increase weight range in the next shot, or to decrease it. 

This information was not evident using linear measures such as overall standard 

deviation. 
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A number of important future directions exist for examining weight transfer in the 

golf swing on an individual basis. The number of subjects examined needs to increase, 

as does the number of shots performed to allow for the examination of long term 

patterns using techniques such as detrended fluctuation analysis. Further, the inclusion 

of kinematic data is essential in better defining the underlying mechanics generating 

the significant findings in this study between weight transfer and Club Velocity. 

 
 



 308

CHAPTER 7: GENERAL CONCLUSIONS 
 
 

 

Different weight transfer styles exist in the golf swing. Different styles exist for 

CPy% movement for golfers across skill levels. In this study, two major groups were 

identified; a Front Foot group and a Reverse group. For both groups, CPy% was 

positioned near the midpoint of stance at takeaway, near the back foot at mid, late and 

the top of backswing, before moving towards the front foot at early downswing. The 

Front Foot group continued to move CPy% towards the front foot, with CPy% being 

positioned close to the front foot at ball contact and mid follow through. However, for 

the Reverse group, CPy% moved towards the back foot again and was positioned at 

the midpoint of the feet at ball contact and closer to the back foot at mid follow 

through. As both groups contained highly skilled golfers and no difference existed 

between handicap or club velocity at ball contact between the two groups, neither 

style was deemed to be a technical error.  

 

Different styles need to be identified prior to any group-based analysis. Different 

parameters were important for the Front Foot group and the Reverse group in this 

study.  Further, errors would have been made if the groups had been treated as one. 

Weight transfer range was significant on a group basis for the whole group but this 

would have represented a type 2 error for the Reverse group, for which this parameter 

was not significant. As well, weight position and rate of weight transfer, significant 

for the reverse group, were not significant when the groups were analysed together, 

producing a type 1 error for the Reverse group for these parameters. 
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A new and important finding was that for Reverse golfers, at ball contact weight was 

positioned near midstance and was moving towards the back foot. Further, moving 

weight more rapidly towards the back foot at this event was related to better 

performance on a group and an individual basis. This is in direct conflict with the 

coaching literature which reports weight should be nearer the front foot at ball contact 

and be continuing to move further towards the front foot. There is no mention of this 

technique in either coaching or scientific literature so it represents a new finding. This 

finding requires that both coaching and scientific recommendations for weight 

transfer in the golf swing need to be changed.  

 

Weight transfer is important to performance on a group basis for both the Front Foot 

and Reverse styles. For the Front Foot style, an increased range of CPy movement and 

an increased rate of CPy movement towards the front foot in downswing were 

associated with larger club velocities at ball contact. For the Reverse style, positioning 

CPy nearer midstance (compared to further towards the back foot) and a larger rate of 

CPy movement towards the back foot at ball contact were associated with larger club 

velocities. 

 

Weight transfer is important on an individual basis for Front Foot and Reverse style 

golfers. Positioning weight during the swing as well as the rate of weight transfer 

were both important, with all golfers returning at least one significant result for both. 

Range of weight transfer was important for all golfers and on a general level, a larger 

range of weight transfer was associated with a larger club velocity and ball contact. 

As well, for four golfers, positioning of weight at the late backswing event was related 



 310

to performance indicating this event is important. However, results were individual 

specific with each golfer returning a unique set of significant results.  

 

Both individual-based and group-based analyses are required to extract all the useful 

information from data. In this thesis, important information was evident on a group 

basis that was not evident on an individual basis. Similarly, important information 

was found on an individual basis that would have been missed if only group-based 

assessment was used. The use of both types of analysis offered a more thorough and 

useful investigation of the importance of weight transfer in the golf swing.  

 

The use of more swing events than has been used in previous research is essential in 

weight transfer research. Using only the most common events of takeaway, top of 

backswing and ball contact, important relationships would have been missed on both 

a group and an individual basis. Importantly, the swing event at late backswing was 

important for four of five golfers as well as important for Reverse golfers on a group 

basis. Future work must include this swing event.  

 

The use of more trials per individual is necessary to obtain stable mean parameter 

values for research into weight transfer in the golf swing. As few as three and up to 

ten trials were required for mean CP parameter values to stabilise for different 

individual golfers. Only one previous study has used ten trials to establish mean 

values for individual subjects for use in statistical analysis.  

 

Future work requires similar analysis with larger N for both group-based and 

individual-based analyses. On a group basis, increasing N will provide a more 
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powerful analysis to determine if more styles exist. On an individual basis, a better 

profile of important parameters can be obtained. This work needs to be expanded to 

include more clubs such as fairway woods and irons to identify if styles are consistent 

across all clubs or if these styles are distinctive to the driver. As part of this work 

kinematic analyses should be included to explore the mechanics underlying the two 

swing styles, and any other style that might be evident. As well, including CPx data in 

the analysis (perpendicular to the line of shot) will provide a more thorough 

assessment of forces at the feet during the swing.  

 

A number of statistical and analytical tools that have not been applied to the analysis 

of the golf swing should be explored. In this study, a non-linear technique identified 

important information for some golfers. Further development of this work is 

important examining both short and long term patterns of performance. The use of 

detrended fluctuation analysis can identify if long-term patterns occur across a large 

number of shots. Neural networks and fuzzy clustering should be explored to identify 

if these methods add more useful information to the cluster analysis and improve the 

process (e.g. speed classification up) of the formal classification of golfers.  
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APPENDICIES 



Appendix A 
 
Definition of measures used to indicate weight transfer 
 
 
 
Fz% = Percentage of force under the front foot divided by the total force (Equation 
A1).  
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Where  Fz1 = Fz under the back foot 

 Fz2 = Fz under the front foot 

 
CP% (Centre of pressure) – Is the point at which the force vector intersects some 
defined plane, usually the ground surface. The calculations are represented below 
using CPy which is the direction usually associated with parallel to the line of shot 
(Equation A2). 
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Where Mx  = moment about the x-axis 

 Fy  = force in the y-axis (horizontal) 

 Fz  = force in the z-axis (vertical) 

Dz  = distance between transducer and a horizontal plane (usually the 

ground surface).  For force plate 2 in this study (AMTI LG6-4): Dz2 = 

0.0535 m. 

 



COV (centre of vertical forces) – Equals the sum of the moments about a defined 
axis. For weight transfer parallel to the line of shot, the axis is perpendicular. For the 
Richards et al. (1985) study, a three transducer force plate was used (Figure A1). 
Examining Figure A1, moments will be calculated for each transducer, summed then 
divided by the total Fz to determine the horizontal coordinate for the force vector line 
of action. 
 

 
Figure A1: Calculation of COV using the sum of moments about A 

 
 
Comparison of measures 
 
Fz% and COV 
 
The centre of vertical forces is equivalent to Fz% as it uses only vertical forces. The 
difference between the measures as used in the golfing literature is the Richards et al. 
(1985) study only used one force plate so the feet were required to be digitized so the 
resultant force vector position could be expressed relative to the feet. Fz% is simply 
calculated using equation A1 but could also be evaluated using equation A3 to obtain 
the same value. 
 
 
Fz%/COV and CP 
 
The difference between these measures is horizontal forces.  
 
Expanding Equation A1 
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Fz% and COV equals the first part of this equation (i.e. Mx/Fz) 
The contribution of the horizontal forces is the second part [(Fy*Dz)/Fz] 
 
The difference between measures will depend on the magnitude of the horizontal and 
vertical force. However, the horizontal force is multiplied by Dz which is small 
(0.0535 m in the case of the AMTI LG6-4) reducing effect of Fy in the CP 
calculation. Using the mean Fy of 102N at BC (the largest Fy of any swing event) and 
the mean Fz for this study (Fz = 905 N), the change in CP value due to the horizontal 
force at this event is: 
 

mCPy 006.0
905

)0535.0*100(
==  

 
So the difference between CP and the position of the vertical force Fz (i.e. Fz% or 
COV) will be less than 1 mm.  
 
 
 
 



Appendix B 
 
Comparison of Fz% and CPy% 
 
The aim of this examination was to compare Fz% under each foot and CPy% between 
the feet. Both measures have been used to indicate weight position and transfer in golf 
studies.  
 
Using the data from the sixty-two golfers in this study, CPy% between the feet and 
Fz% under each foot was quantified at eight swing events. The method of collecting 
CPy% data has been presented in the methods section (4.2.4.1). Fz% was calculated 
using equation B1. 
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Correlations were performed to assess the relationship between Fz% and CPy% 
between the feet. Correlations were also performed between CPy% and Fz% data for 
each individual, with a mean correlation also obtained. 
 
Observation of the group mean CPy% and Fz% data across the eight swing events 
indicated very similar patterns and values (table B.1 and figure B.1). This was 
supported by strong correlation coefficients between mean CPy% and Fz% on a group 
basis (r = 0.999, p < 0.001, N = 62). As well, weight position at the eight different 
swing events was similar, with a mean absolute difference of 1%. CPy% returned 
slightly lower values during backswing (MB, LB and TB) and slightly higher values 
during downswing (ED, MD and BC) and in follow through (MF). 
 

Table B.1: Group means for CPy% and Fz% at eight swing events (N = 62) 
 TA MB LB TB ED MD BC MF 
CPy% 57 28 22 23 63 70 71 66 
Fz% 57 29 23 24 62 69 70 64 
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Figure B.1: Comparison of CPy% and Fz% between the feet during the golf 

swing (mean values at each event; N = 62 golfers). 
CPy% and Fz% measures also showed strong similarities on an individual basis. The 
mean correlation for all individuals between CPy% and Fz% was r = 0.996 (range r = 
1.000 – 0.947; all significant at p < 0.001). There were five of golfers who showed 



large differences (> 5%) at certain events, particularly at TB and MF where horizontal 
forces were higher. 
 
As the correlations between CPy% and Fz% were strong for this group, statistical 
analyses involving either measure would be expected to be similar. This means that 
statistical analyses for studies using either measure can be compared with confidence 
that the type of measure is not influencing the data. For example the correlations 
between Club Velocity and CPy% range (r = 0.11, p = 0.39) and Club Velocity and 
Fz% range (r = 0.12, p = 0.36) were very similar. The only time this might have been 
an issue was where the measures were close to a threshold value (e.g. 0.2 as a cut-off 
for small effect compared with no effect). However, this did not occur in any measure 
for this study. 
 
As mean differences between CPy% and Fz% values were low (≤ 3% on a group 
basis) comparison of CPy% and Fz% values may also be performed when examining 
group-based data. However, as some individuals produced large (up to 5%) 
differences, the comparisons on an individual basis are likely to hold more error and 
should be treated with caution. 



Appendix C 
 
Smoothing 
 
Observation of the raw force plate data for golf swings and for static loading 
situations (weights placed on force plate) indicated a high frequency noise existed in 
force and moment data that required smoothing. Figure C.1 shows a spectral analysis 
of CPy when the force plates were loaded with 750 N of weight, showing a relatively 
large 50 Hz spike with low amplitude noise across the frequency spectrum which was 
slightly larger amplitude between approximately 30 Hz and 60 Hz.  
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Figure C.1: Spectral analysis of CP with a 750 N weight placed on the force plate  
Note: Calculation on 1024 samples (2.048 s at 500 Hz). Unusual time interval due to the FFT calculation requiring a value 

which is a power of 2.   
 
Based on these observations, a low pass pre-filter (24.3 Hz) was inserted into the 
AMLAB software with the aim to eliminate this noise. While no frequency domain 
data has been presented in the literature for weight transfer in the golf swing, it was 
considered that no frequencies above this level would be expected in weight transfer 
data in the golf swing.  
 
However, noise still existed in the system, evident in CPy displacement curves in 
figure C.2 calculated from data sampled with the 24.3 Hz pre-filter. Spectral analysis 
indicated that some of this noise was 50 Hz, indicating that noise was added after the 
pre-filtering but before the data was stored. This researcher assumed the source of this 
noise was the analogue to digital computer board. As such, it was decided that 
smoothing the CP displacement data was required. 
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Figure C.2: CP displacement during a golf swing calculated from force plate 

data pre filtered at 24.3 Hz.  
 
 

CP Displacement 
 
To decide on an appropriate smoothing cut-off frequency for CP displacement and 
velocity, a combination of methods was used to gather information on the data.  These 
were: 

1. Automatic methods for determining optimal smoothing frequency. 
2. The effect of different smoothing cut-off frequencies on parameters of interest. 
3. Observation of raw and smoothed data curves (displacement and speed) 

 
Ball et al. (2001) recommended a combination of the above methods as well as 
spectral analysis for thorough assessment of smoothing requirements. However, as the 
golf swing is non-stationary, accurate spectral analysis would have required the use of 
wavelets. Wavelet software was unavailable to this researcher at the time of deciding 
upon a smoothing cut-off frequency and development of this software was considered 
beyond the scope of this study. As well, no frequency domain data for the golf swing 
exists in the literature so the decision of smoothing cut-off frequency was made based 
on methods 1-3 only. 
 
1. Automatic methods for determining optimal smoothing frequency 
 
Three automated methods for calculating an optimal smoothing cut-off frequency 
were applied to CP data; Challis (1999), Yu et al., (1999) and Winter (1990). Table 
C.1 reports the mean cut-off frequencies returned by each of the methods (5 golf 
swing trials from randomly selected golfers examined). CPx has been included as it 
was evaluated prior to analysis of the data and was used in comparison with Neal 
(1998) in study 1. 
 
 
Table C.1: Cut-off frequencies found by different methods to be optimal. 



 Displacement 
 CPx CPy 
Challis (1999) 14.0 15.2 
Yu et al. (1999) 24.8 24.9 
Winter (1990) 14.0 15.0 

 
The Challis (1999) method and the Winter (1990) method produced similar cut-offs 
for both CPy and CPx. The Yu et al. (1999) method returned larger values than the 
Challis (1999) and Winter (1990) methods of approximately 25 Hz, due to the large 
sample rate in this study (500Hz; The Yu method is largely sample rate based). 
  
 
2. The effect of different smoothing cut-off frequencies on parameters of interest. 
 
Inspection of parameters of interest (CPy% at swing events, maximums and 
minimums) indicated that for most parameters, minimal change existed using cut-off 
frequencies from 15-25 Hz.  At 10 Hz, some change was evident and at 5 Hz the 
change was large for some parameters. Figure C.3 shows an example of the effect of 
different smoothing cut-off frequencies on the values of CPy% maximum and CPy% 
minimum for a single trial. At 10 Hz, CPy% maximum began to change more 
considerably than for the higher frequencies, indicating that the smoothing is 
influencing values and that signal as well as noise may be being eliminated. While the 
differences in these parameters are relatively small (Change in CPy% < 1%), for other 
parameters (e.g. velocity) this change was more considerable although similar patterns 
existed where below 15 Hz, parameter values changed.  
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Figure C.3: Effects of different cut-off frequencies on parameters of 

interest (CPy% maximum and CPy% minimum) 

 

 



3. Observation of raw and smoothed data curves (displacement and velocity) 
 
Figures C.4 and C.5 show raw and smoothed CPy displacement and CPy velocity 
curves for a single trial across the whole swing from address to mid follow through.  
The same data is presented again for downswing only (TB – MF) to enable better 
inspection of the changes due to smoothing.  Inspection of displacement curves 
smoothed at a range of frequencies from 5 Hz to 30 Hz indicated that little change 
existed between raw and smoothed data from 15-30 Hz.  Slight changes were noted 
on the later stages of downswing at 5 Hz and 10 Hz, which were more particularly 
noticeable in velocity data at the peaks.  This supported the findings of parameter 
changes from the previous section.  
 

 

 
Figure C.4: Example CP displacement data: raw and smoothed at different cut-

off frequencies (same curve with second graph focusing on downswing).  
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Figure C.5: Example CP velocity data: raw and smoothed at different cut-off 

frequencies (same curve with second graph focusing on downswing). 
 
 
 
Smoothing summary 
 

It was decided to use a 15 Hz cut-off for both displacement and velocity data for this 

study. This cut-off was chosen based on three levels of decision making as 

recommended by Ball et al. (2001). First, 15 Hz was indicated as optimal by two of 

three automated algorithms (Challis, 1999; Winter, 1990; Yu et al., 1999). The 

Challis (1999) and Winter (1990) methods produced similar cut-offs for CPy of 15.2 

and 15.0 respectively. The Yu et al. (1999) method returned substantially larger 

values of approximately 25 Hz, due to the large sample rate in this study (500Hz; The 

Yu et al. method is strongly influenced by sample-rate). Second, the influence of 
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different cut-offs on parameters of interest (CPy% between the feet and CPy velocity 

at swing events as well as maxima and minima) was inspected. Large changes in 

parameter values were evident when cut-offs below 10 Hz to 15 Hz were used. This 

level was considered to represent oversmoothing. Third, visual inspection of raw and 

smoothed curves indicated the 15 Hz cut-off provided smooth displacement and 

velocity curves without attenuating what was considered real data in particular near 

the maxima and minima.  

 
 
 



Appendix D 
 
Validation of ProV system 
 
To validate the ProV system, Club Velocity obtained by the ProV was compared with 
Club Velocity calculated from digitised data.  
 
Twenty swings were performed with a 5-iron. For each swing, Club Velocity was 
recorded by the ProV system. Also for each swing, video from an overhead 200 Hz 
video camera, aligned perpendicular to the hitting surface and immediately to the side 
of the point light source for the ProV was obtained (figure D.1). The two frames 
immediately before ball contact were used for analysis using Peak Motus. For each 
trial, two points on the clubface were digitised; one near the heel and one near the toe 
of the club. The average of the two points was calculated for each frame and velocity 
of this average point was calculated and used to indicate Club Velocity. 
 

 

 
Figure D1: Laboratory set-up for comparison of Club Velocity 

 
Table D.1 reports the ProV and digitised data for club velocity in both feet per second 
(units in which ProV specified error) and metres per second (used in this study) have 
been reported.  
 

Table D.1: Comparison of Club Velocity obtained from digitising and from the 
ProV system 

 ProV Data Digitised Data Difference 
 ft.s-1 m.s-1 ft.s-1 m.s-1 ft.s-1 m.s-1 

 95.9 29.3 96.3 29.4 -0.4 -0.1 

Camera and ProV light 
aligned as close as possible ProV light source

ProV unit with two light 
sensors

Camera (200 Hz)

Side View 

Direction of Hit 



Club Velocity (N = 20) 
The mean difference in Club Velocity between the digitised and ProV data (0.4 ft.s-1) 
was within the factory specified error of +/- 0.5 ft.s-1. As well, although not reported 
here as the data has not been used in this study, differences between ProV and 
digitised data for clubface angle and swing path, two other measures produced by 
ProV, were also within the factory specified error. The difference between ProV data 
and digitised data was not significant (F = 0.62, p = 0.78). 
 
It should be noted that the method of validation used here is not a gold standard 
comparison as such. Rather this is a comparison of an accepted measure of velocity 
(from digitised data) with that of the ProV. The use of only two frames, rather than a 
series of frames which was then smoothed, was the preferred method for three 
reasons. First, it allowed for measurement at the same site (i.e. over the appropriate 
ProV lights). Second, it allowed for a larger image for digitising as the field of view 
could be narrowed to the area immediately near the ball before contact. If more 
frames were to be digitised, the field of view would have been required to be 
increased, reducing the resolution of the digitising set-up (i.e. 1 pixel would have 
equalled a greater distance so a 1 pixel error would be greater in the video with the 
wider field of view). Third, the 200 Hz camera did not capture enough points for a 
reasonable extrapolation across which smoothing could be performed. Even when the 
field of view was increased to its maximum, the golf club was in view for only 8 – 10 
video fields. As there is an impact in the movement, the data needed to be examined 
in two sections – pre and post impact (Knudson and Bahamonde, 2001). To perform 
this analysis, the most common method in the literature is to use data up to the instant 
before impact then extrapolate from this point to add more data points prior to 
smoothing. However, due to the rapid movement and relatively slow frame rate (at 
200 Hz, the club was only evident over the ProV system for 2 - 4 frames) the use of 
this method was not appropriate. 
 
In summary, ProV Club Velocity measurement lay within the ProV quoted error 
limits of 1 ft.s-1. Comparison with digitised velocity data produced non-significant 
differences of only 0.4 ft.s-1. It was concluded that the data provided by the ProV 
system was precise enough to be used in this study.  
 
 
 



Appendix E 
 
Summary of error assessment 
 
Table E.1 (200 Hz camera) and table E.2 (250 Hz camera) present the error associated 
with each parameter used in this study. It is presented here to allow easy reference for 
the reader. Calculations for error estimation for each parameter are provided in the 
next sections. In all cases, means for significantly different parameters were well in 
excess of these errors. Further, cluster, correlation and regression analysis were not 
influenced by these errors as values were rounded to the appropriate error level prior 
to analysis, although mean data has been reported to a slightly higher level in some 
cases for easier reading. For example it would have been confusing to report values in 
units of 0.3 % for CPy% rather than in whole units of 1% (or in this case, 0.1%) 
 

Table E.1: Approximate and maximum error estimates for parameters used in 

this study (200 Hz camera). All values +/-. 

 
 
Performance 

Approximate 
Single 

Measure 

Approximate 
Across 10 

trials 
Maximum 

Club Velocity (m.s-1) 0.1 0.04 0.1 
At each swing event (% between the feet) 
CPy%TA 0.6 0.2 2.1 
CPy%MB 0.7 0.2 2.6 
CPy%LB 0.6 0.2 2.3 
CPy%TB 0.7 0.2 3.5 
CPy%ED 1.0 0.3 3.8 
CPy%MD 0.7 0.2 4.0 
CPy%BC 0.6 0.2 1.7 
CPy%MF 1.0 0.3 4.6 
Average 0.7 0.2 3.0 
CPy Velocity (m.s-1)  
At downswing events  
VelCPyTA 0.18 0.05 7.00 
VelCPyMB 0.18 0.04 7.00 
VelCPyLB 0.18 0.04 7.00 
VelCPyTB 0.18 0.06 7.00 
VelCPyED 0.23 0.15 7.00 
VelCPyMD 0.20 0.10 7.00 
VelCPyBC 0.18 0.04 7.00 
VelCPyMF 0.23 0.16 7.00 
Average 0.19 0.08 7.00 

 
VMaxCPy (m.s-1) 0.18 0.06 0.25 
tVMaxCPy (s) 0.001 < 0.001 0.002 
MaxCPy% (% between the feet) 0.56 0.18 1.6 
tMaxCPy% (s) 0.001 < 0.001 0.002 
MinCPy% (% between the feet) 0.56 0.18 1.6 
tMinCPy% (s) 0.001 < 0.001 0.002 
CPyR (m) 0.007 0.002 0.01 
CPyR% (% between the feet) 0.79 0.25 1.12 

 



Table E.2: Approximate and maximum error estimates for parameters used in 

this study (250 Hz camera). All values +/-. 

 
 
Performance 

Approximate 
Single 

Measure 

Approximate 
Across 10 

trials 

Maximum 

Club Velocity (m.s-1) 0.5 0.16 0.5 
At each swing event (% between the feet) 
CPy%TA 0.6 0.2 2.0 
CPy%MB 0.6 0.2 2.4 
CPy%LB 0.6 0.2 2.1 
CPy%TB 0.6 0.2 3.1 
CPy%ED 0.8 0.2 3.3 
CPy%MD 0.7 0.2 3.5 
CPy%BC 0.6 0.2 2.2 
CPy%MF 0.8 0.3 3.9 
Average 0.6 0.2 2.8 
CPy Velocity (m.s-1)  
At downswing events  
VelCPyTA 0.18 0.05 7.00 
VelCPyMB 0.18 0.04 7.00 
VelCPyLB 0.18 0.04 7.00 
VelCPyTB 0.18 0.05 7.00 
VelCPyED 0.21 0.12 7.00 
VelCPyMD 0.19 0.09 7.00 
VelCPyBC 0.18 0.06 7.00 
VelCPyMF 0.21 0.13 7.00 
Average 0.19 0.07 7.00 

 
VMaxCPy (m.s-1) 0.18 0.06 0.25 
tVMaxCPy (s) 0.001 < 0.001 0.002 
MaxCPy% (% between the feet) 0.56 0.18 1.6 
tMaxCPy% (s) 0.001 < 0.001 0.002 
MinCPy% (% between the feet) 0.56 0.18 1.6 
tMinCPy% (s) 0.001 < 0.001 0.002 
CPyR (m) 0.007 0.002 0.01 
CPyR% (% between the feet) 0.79 0.25 1.12 

 
Approximation of error in the parameters used in this study was difficult due to the 
need to combine data obtained from three different measurement systems (force plate 
data, digitized data and timing data) and the lack of a gold standard for comparison. A 
combination of experimental and theoretical methods was used to determine an 
approximate error for each parameter. 
 
Techniques presented by Taylor (1982) for calculating measurement error that is 
propagated during calculations have been used. Briefly, these are: 
 

• Uncertainty in sums and differences: if two terms with error in them are added 
or subtracted, the error in each term is added 

• Uncertainty in a measured quantity multiplied or divided by an exact number: 
if a term is multiplied or divided by an exact number, the error in the term is 
multiplied or divided by the constant 

• Uncertainty in products or quotients: if two terms with error in them are 
multiplied or divided, the error is calculated by using fractional uncertainties. 



For example, to calculate the error in a quotient, the error is calculated as a 
fraction of the measured value for the upper line and the lower line separately, 
adding them to get a total fractional uncertainty and then calculating the error 
value using the final measured value (this is more easily understood in the 
calculations below – see error calculations for CPy% between the feet) 

• Quadrature summation: If a value is entered more than once in a calculation or 
comes from the same source (e.g. two CPy% values used to calculate 
CPyR%), some cancelling of error can be expected. Taylor reported a better 
way of approximating error to take into account this cancelling effect called 
quadrature summation. This involves squaring the error terms, summing them 
and then taking the square root of this sum. Approximate error has been 
estimated using this process. 

 
Note: the symbol ‘δ‘ is used to indicate ‘error in..’ and is used before terms to denote 
that the error (rather than the value itself) is being referred to. 
 
Force Plate error analysis 
 
In order to assess how accurately the force plate system located the CP, a comparison 
between force plate calculated CPy coordinates was made with known CPy 
coordinates. 
 
A grid of masking tape was secured to each force plate and a point was marked with a 
pen at the middle of each intersection. These grids provided 8 points on the OR6-5-1 
force plate and 18 points on the LG6-4 force plate and were spaced out evenly across 
the force plates (see table E.3 and E.4 for coordinates). Each position was measured 
using a millimetre ruler to obtain the y coordinates. A javelin was used to provide a 
point source of force at each of the grid positions. The tip of the javelin was pressed 
into the force plate at each grid marking with a vertical force of between 200 N and 
230 N, similar to the force values used by Sommer et al. (1997; similar methodology 
to evaluate CP in Kistler force plates). CP was calculated for each position in Excel 
and data was compared with the known coordinates. Similarity between the two 
measures was used to indicate accuracy. That is, CP positions recorded by the force 
plate system should be the same as the grid coordinates. 
 



 
Table E.3: Large force plate (LG6-4) grid data showing force plate CP and grid 

coordinates difference (all data in mm) 
 

Grid  
Position 

Force Plate  
Data (CP) 

Grid  
Coordinates 

Absolute  
Difference 

1 1047.1 1048.5 1.4 
2 1047.9 1049.5 1.6 
3 1047.1 1050.5 3.4 
4 898.3 900.0 1.7 
5 899.5 899.5 0.0 
6 899.1 899.0 0.1 
7 749.7 749.0 0.7 
8 749.8 749.0 0.8 
9 750.4 750.0 0.4 

10 599.4 600.0 0.6 
11 599.8 600.0 0.2 
12 598.3 599.5 1.2 
13 449.8 449.5 0.3 
14 449.2 450.0 0.8 
15 448.4 449.0 0.6 
16 301.0 300.0 1.0 
17 300.2 299.0 1.2 
18 299.1 299.5 0.4 

    
Mean Error   0.9 

 
Table E.4: Small force plate (OR6-5-1) grid data showing force plate CP and 

grid coordinates difference (all data in mm) 

Grid  
Position 

Force Plate  
Data (CP) 

Grid  
Coordinates 

Absolute  
Error 

1 398.0 399.0 1.0 
2 299.9 300.0 0.1 
3 200.8 201.5 0.7 
4 100.1 100.0 0.1 
5 101.7 100.5 1.2 
6 199.1 200.5 1.4 
7 298.1 301.0 2.9 
8 401.3 401.0 0.3 
    

Mean Error   1.0 
 
Average difference between measures for both force plates were small (approximately 
1.0 mm) and within the precision available to the analysis (i.e. javelin tip 
approximately 1 mm wide, grid coordinates measured to ±0.5 mm). A few areas of 
the large force plate returned large differences (e.g. Position 3, error = 3.4 mm). These 
were near the edge of the force plate and are similar to the error patterns reported by 
Sommer et al. (1997) in Kistler force plates. This prompted the testers to position 
golfers away from the edges and towards the middle of the force plates. 



 
This error is smaller than the error reported for Kistler force plates (e.g. Sommer et 
al., 1997; Bobbert and Schamhardt, 1990; Middleton et al., 2000: maximum possible 
error of 20 mm; mean error approximately 5 mm). This may be due to the plate 
distortion characteristics of the AMTI force plates, which use strain gauge technology 
(which require distortion for measurement), affecting the measurement less than the 
Kistler force plates, which use Piezo electric crystals with a solid metal top plate and 
require the two surfaces (top plate and piezoelectric crystal) to remain perpendicular. 
It might also be due to the influence of a point source load, as opposed to an area load 
that will most likely be the source of force applied to the force plate (e.g. the sole of a 
shoe). Schmeidmayer and Kastner (2000) and Middleton et al. (1999) found that 
Kistler force plates did not show as large an error in CP measurement if the load 
applied was in the form of an area rather than a point source, as used by Bobbert and 
Schamhardt (1990) and Sommer et al. (1997), suggesting that the force plate will 
distort differently and as such, the error will be different.  For example Middleton et 
al. report finding errors of approximately 5 mm using a point source which were 
reduced to less than 2 mm when two metal blocks were placed on the force plate, 
similar to the area loading that might be expected when a subject is standing on the 
force plate. Regardless, using similar point force methods, the AMTI force plate data 
produced smaller errors that Kistler force plates for CP. No experimental data exists 
for AMTI force plates in the literature. 
 
Chockalingham et al. (2002) reported errors greater than 3 mm below 90N in single 
force plate analysis. While force values might get low on the back foot near ball 
contact, the total Fz remains large (between 0.95 and 1.3 times body weight) for the 
entire golf swing (as opposed to the gait problem examined by Chockalingham et al.). 
As such, the relative effect of any error is reduced substantially in this study. This is 
because the CP calculation included information on Fz from both plates (see equation 
below) and if Fz approaches zero on one plate it is multiplied by the erroneous CP 
value and the sum (eg. Fz2*CPy2 – see equation below) approaches zero.  
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=  

 
Note that an extensive error assessment of the force plate system has been conducted 
examining CP under different force conditions. As this was presented in Ball (1999, 
unpublished Masters thesis, Victoria University) it is not appropriate to present it here 
as new work. 
 
In summary, the mean error for each force plate system was used to indicate error in 
CP measurement (LG6-4: 0.9 mm or +/- 0.45 m; OR6-5-1: 1.0 mm or +/- 0.5 mm).  
 



Foot Position 
 
This process has been reported elsewhere in detail (Brown, 2002) and results are 
summarized in table E.5. Briefly a golfer was set-up in the address position on the 
hitting area as for testing. The heel and toe position of each foot were measured 
manually using a ruler (graded in mm). The image was recorded for analysis. This 
error was considered the error in a single digitized field. As four fields were digitized, 
error will be reduced due to cancelling of the random error associated with the 
digitizing process. The approximate error, calculated using quadrature summation, is 
also included in this table (calculations shown after the table). 
 

Table E.5: Maximum and approximate error for foot position (+/- mm) 

 
Back 

Foot Toe
Back Foot 

Heel 
Front Foot 

Toe 
Front Foot 

Heel 
Maximum error 4 1 5 6 
Approximate error 2.0 0.5 2.5 3.0 

 

Approximate error calculation 
 
Using the Front Foot heel as an example (all values calculated using the same 
method): 

CPyheel   = 
4

DyCyByAy heelheelheelheel +++
 

Where A, B, C and D represent the four digitised fields. 
 
Approximate error in Front Foot heel position  

= 
4

2222 DyCyByAy heelheelheelheel +++
 

   = 
4

6666 2222 +++     = 3 mm 

Note: Maximum possible error will remain the same as in table E.5 (i.e. each measure 
will be in maximum error in the same direction) 
 

Error in the Front Foot position 

Front Foot position     = 
2

toeheel yy +
 

Maximum error in Front Foot position = 
2

toeheel yy δδ +
 

      = 
2

56 +   = 5.5 mm 



Approximate error in Front Foot position = 
2

22
toeheel yy δδ +

 

      = 
2

5.23 22 +   = 2.0 mm 

Error in the Back Foot position 

Back Foot position     = 
2

toeheel yy +
 

Maximum error in Back Foot position = 
2

toeheel yy δδ +
 

      = 
2

41+   = 2.5 mm 

Approximate error in Back Foot position = 
2

22
toeheel yy δδ +

 

      = 
2

5.02 22 +   = 1.0 mm 

 

Error in CPy% 
CPy% between the feet    = 

sitionBackFootPoositionFrontFootP
sitionBackFootPoCPy

−
−  

 
Using the error calculated for the back and front foot positions and recalling the error 
in CPy was measured as +/-0.5 mm and separating the equation to calculate error: 
 
Upper line     = sitionBackFootPoCPy −  
 
Error in upper line    = sitionBackFootPoCPy δδ +  
Maximum    = 0.5 + 2.5   = 3.0 mm 
Approximate    = 0.5 + 1.0   = 1.5 mm 
 
Lower line     = sitionBackFootPoositionFrontFootP −  
 
Error in lower line    = sitionBackFootPoositionFrontFootP δδ +  
Maximum    = 5.5 + 2.5   = 8.0 mm 
Approximate    = 2.0 + 1.0   = 3.0 mm 
 

 

 



Overall error in CPy% between the feet 
 
For this calculation, measured data was required (e.g. position of feet, displacement 
between feet). Five trials from different golfers were obtained and all CP parameters 
were calculated using the same procedures as in study 1. The mean of the five trials 
for each parameter was used in error calculations. These are reported as they become 
necessary in the calculations. Percentage errors are used in calculation of error for 
each parameter. This should not be confused with the reported error for the 
parameters that are expressed as a percentage. For example, CPy% error is reported as 
0.6%. This is the value of the error (i.e. the error is not 0.6% of the measurement).  
 
Mean position of back foot = 205 mm  
Mean position of front foot = 706 mm 
Let CPy = 605 mm 

CPy% between the feet  = 
sitionBackFootPoositionFrontFootP

sitionBackFootPoCPy
−

−  * 100 

 

    = 
205706
205605

−
−  * 100   = 80% 

 

δCPy% between the feet = 
alueLowerLineV

LowerLine
alueUpperLineV

UpperLine δδ
+  

 

Maximum (% of CPy%) = 
205706

8
205605

3
−

+
−

  = 0.023 

 
Maximum error  = CPy% * maximum (% of CPy%) 
    = 80 * 0.023    = 1.6 % 
 

Approximate (% of CPy%) = 
205706

3
205605

5.1
−

+
−

  = 0.009 

 
Approximate error  = CPy% * approximate (% of CPy%) 
    = 80 * 0.009    = 0.6 % 
 
So a single measure of CPy% can be in error by +/- 0.6 % with a maximum possible 
error of 1.6 %. The approximate error was considered reasonable for this study and 
while the maximum possible error was large, it is unlikely that this value would exist 
due to the cancelling effects throughout the calculations and the likelihood that 
digitizing errors would be reduced by the use of four fields for analysis. 
 
Timing Errors 
  
This analysis was performed by another researcher in this study and will be presented 
fully in that thesis. This section provides a brief outline of this process. 
 
Error in obtaining timing data could have occurred in two areas 
 



1. Error in identification of the correct video field was evaluated.  
2. Error in the precision supplied by the 200 Hz and 250 Hz cameras 

 
1. Error in identification of the correct video field was evaluated.  

 
For ten randomly selected trials, full digitization on Peak MOTUS was performed. 
Two points on the shaft of the club were identified (reflective tape was applied to the 
club shaft near the handle and near the club head). The field nearest each of the eight 
swing events was identified from this data as per study 1 (table 4.2.4.2.1, section 
4.2.4.2). For example, using the screen coordinate system, the field where the club 
shaft was nearest to horizontal in the downswing was considered the field indicating 
mid downswing (MD). In the case of the top of backswing, the field before the first 
change in angular velocity direction of the club was identified.  
 
The tester then identified the eight swing events subjectively from the video image, as 
was performed for the study.  
 
The error in identification was the difference between the two methods, with the 
digitized method considered the ‘gold standard’. 
 
There was no difference between the digitized data and subjectively identified data for 
all events for all trials with the exception of TA and TB. These events were found to 
be in error by +/- 1 video field (or +/- 0.005 s for the 200 Hz camera and +/- 0.004 s 
for the 250 Hz camera).  
 

2. Error in the precision supplied by the 200 Hz and 250 Hz cameras 
 
As identification of most swing events was exact, the error associated with the use of 
swing events lay only in its precision. At 200 Hz, the exact event did not always occur 
at the same time as a video field was captured. For example, one video field might 
have been captured just before ball contact while the next captured just after ball 
contact, with the event itself occurring between fields. As such, the error in CPy% 
could be up to half the difference in CPy% between video fields. Due to the video and 
CPy% sampling rates being different, there were 2.5 CPy% data points for every 1 
video field. So the error due to limits of the video could be +/- 1.25 CPy% data points. 
This error in field identification could occur at the event itself or at ball contact (as the 
time was synchronized to ball contact). Maximum error would occur if the swing 
event and ball contact lay exactly between fields and the earlier field was chosen for 
the swing event and the later field was chosen for ball contact (or vice versa). In this 
case, the total error would be equivalent to 1 field or 2.5 CPy data points (2 sample 
points for the 250Hz camera). Maximum error for TA and TB was the sum of this 
error plus the error in identifying a field either side of the true field (or +/- another 2.5 
CPy data points for a total of +/- 5 CPy data points).  
 
To calculate the error due to timing, five trials from five different golfers were chosen 
at random. For each golfer, CPy% and CP velocity was calculated for the entire 
swing. At each swing event, the measured value was obtained (i.e. the value indicated 
as at that swing event) as well as 3 CPy% (and CPy velocity) data points either side of 
this data point (2 samples for the 250Hz camera). The difference between the 
measured value and the value at +/-3 samples was averaged for each golfer and used 



as indicative of error due to timing. Note that the use of 3 samples is a slight 
overestimate of the error (1 field = 2.5 samples for the 200 Hz camera) but the ‘true’ 
error lay between samples and may have been two or three samples at different times, 
depending on the exact point of ball contact). It should be noted that where a possible 
error lay at a fraction of a field, the larger error was chosen (e.g. a 2.5 data point error 
would be examined as a 3 data point error) 
 
Table E.6 and E.7 reports the mean and single maximum error for each swing event 
from five randomly selected golfers using the 200Hz and 250 Hz cameras. 
 

Table E.6: Mean and single maximum error for each swing event from five 

randomly selected golfers (200 Hz camera). All values +/-. 

 Mean Error Maximum Error 
Swing Event CPy% Velocity (m.s-1) CPy% Velocity (m.s-1) 
TA 0.23 0.02 0.29 0.04 
MB 0.35 0.01 0.58 0.02 
LB 0.15 0.01 0.41 0.01 
TB 0.37 0.03 1.09 0.05 
ED 0.83 0.08 1.27 0.16 
MD 0.49 0.06 1.40 0.10 
BC 0.05 0.01 0.14 0.02 
MF 0.90 0.09 1.04 0.11 
     
AVERAGE 0.42 0.04 0.83 0.06 

 

Table E.7: Mean and single maximum error for each swing event from five 

randomly selected golfers (250 Hz camera). All values +/-. 

  
  Mean Error Maximum Error 
Swing Event CPy% Velocity (m.s-1) CPy% Velocity (m.s-1) 
TA 0.14 0.01 0.17 0.03 
MB 0.21 0.01 0.35 0.01 
LB 0.09 0.00 0.25 0.01 
TB 0.22 0.02 0.65 0.03 
ED 0.50 0.05 0.76 0.10 
MD 0.49 0.03 0.84 0.06 
BC 0.08 0.01 0.21 0.02 
MF 0.58 0.05 1.00 0.06 
     
AVERAGE 0.29 0.02 0.52 0.04 

 
As can be noted in these tables, different errors occurred at different swing events. 
This was due to the different rates of change of CPy% and CPy velocity. The largest 
errors occurred at ED, MD and MF, stages of the swing where the club and body is 



moving most rapidly. BC error is low due to the force plate system being triggered at 
BC and identification from video was not used in its calculation (hence error is only 
+/- 0.5 data points). 
 
It should be noted for these calculations that the error is probably smaller than the 
values reported, in most events, the estimation of when the swing event occurred 
could be determined ‘between fields’ and so providing a 400 Hz sample rate. For 
example, it was relatively easy to identify if ball contact occurred closer to a 
particular field or closer to the midpoint between fields. This was assessed against 
digitized data also and was found to be appropriate for downswing events (but not 
backswing events). However, it was felt that it was more appropriate to determine the 
error based on the sample rate provided by the system but with the knowledge that 
this represents an upper limit of error. 
 
Overall Error 
 
CPy% at eight swing events 
 
Table E.8 and E.9 report the error in CPy% at each swing event using the 200 Hz and 
250 Hz cameras. Error was calculated as: 
 
Error due to foot position/force plate data (CPy%) + error due to timing (at each 
event) 
 
Approximate error calculated using quadrature summation while maximum error 
calculated as the sum of both errors. 
Recalling  
Error due to force position/force plate data (CPy%) = +/- 0.6% (maximum = 1.6%) 
Error due to timing from data in tables E.6 and E.7 (tables from previous section). 
 

Table E.8: Error in CPy% at each swing event (200 Hz camera). All values +/-%. 
 Approximate Maximum 
  Single measure Over 10 measures Single maximum error 
TA 0.6 0.2 2.1 
MB 0.7 0.2 2.6 
LB 0.6 0.2 2.3 
TB 0.7 0.2 3.5 
ED 1.0 0.3 3.8 
MD 0.7 0.2 4.0 
BC 0.6 0.2 1.7 
MF 1.1 0.3 4.6 
    
AVERAGE 0.7 0.2 3.1 

 
 

 



Table E.9: Error in CPy% at each swing event (250 Hz camera). All values +/-%. 

 Approximate Maximum 
  Single measure Over 10 measures Single maximum error 
TA 0.6 0.2 2.0 
MB 0.6 0.2 2.4 
LB 0.6 0.2 2.1 
TB 0.6 0.2 3.1 
ED 0.8 0.2 3.3 
MD 0.7 0.2 3.5 
BC 0.6 0.2 2.2 
MF 0.8 0.3 3.9 
    
AVERAGE 0.6 0.2 2.8 

 
A further calculation is also presented in tables E.8 and E.9. As the CPy% value for 
each golfer was averaged over 10 trials, the random error in the value used for each 
golfer in study 1 and study 2 will be lower than that reported for a single swing. The 
error value over 10 measures was calculated using quadrature summation of the single 
measure error: 
 

Approximate error across 10 trials  = 
oftrialsNo

oftrialsNotrialone
.

.*. 2δ
 

     = %2.0
10

10*6.0 2

=  

 
The maximum remains the same regardless of how many trials are performed and 
would be achieved if every trial were in error by the maximum amount and in the 
same direction (in which case it would be a systematic and not a random error). 
 
As mentioned, although the maximum values are large in some cases (e.g. MD = 4%) 
it is very unlikely that this error will occur due to canceling effects of errors 
throughout calculations and the averaging process. Further, in study 1 and study 2, 
group means were associated with N of greater than 15 for the large clusters. Group 
mean error for fifteen golfers or more would be approximately 0.05% for CPy%. As 
such it as decided to report these means to 0.1% increments. Post hoc evaluation 
indicated that all significantly different groups produced means well in excess of 
approximate and maximum errors.  
 
 
CP velocity 
 
CP velocity presented a problem in that there was no method for producing a known 
velocity to compare against. While the value of +/-0.5 mm was used for CPy in the 
calculation of error it probably doesn’t offer a reasonable estimate as data is smoothed 
twice between measurement of CP and the production of velocity. As such, the use of 
an approximate displacement resolution has limitations. A second method 



(theoretical) was also performed using the resolution of the 16-bit ADC system to 
define the error in CPy.  
 

t
CPyCPy

VelCPy nn
n *2

)1()1( −+ −
=  

 
Where CPy(n+1)  = the CPy data point immediately before the nth data point at 

which velocity is being calculated  
 CPy(n-1)   = the CPy data point immediately after the nth data point at 

which velocity is being calculated 
 t  = sample rate (0.002 s for this study) 
 
Using CPy error of +/- 0.5 mm (from force plate testing): 
 

Error    = 
t
CPyCPy nn

*2
)1()1( −+ − δδ

  

Maximum error  = 
002.0*2

5.05.0 +  = 250 mm.s-1   = 0.25 m.s-1 

Approximate error = 
002.0*2

5.05.0 22 + = 177 mm.s-1   = 0.18 m.s-1 

Approximate error in 10 trials 

   = 
10

18.0*10 2

  (10 measures each with 0.18m.s-1 error) 

   = 56 mm.s-1     = 0.06m.s-1 
 
While the single velocity measures seemed high relative to the measures obtained in 
this study, the mean value across the 10 trials was low. 
 
Using the theoretical resolution provided by 16-bit ADC (calculations for these values 
are reported in Ball, 1999) 
 
Theoretical error in CPy using a 16-bit ADC system and using a 700 N golfer is +/- 
0.04 mm. Using this value and the equations presented above: 
 
Maximum error   = 20 mm.s-1   = 0.020 m.s-1 
Approximate error    = 14 mm.s-1   = 0.014 m.s-1 
Approximate error across 10 trials = 4 mm.s-1   = 0.004 m.s-1 
 
In all cases, the theoretical error estimate of velocity was small. 
 
 
 
 
 
CPy Velocity at eight swing events 
 
Table E.10 and E.11 report the error in CPy velocity at each swing event using the 
200 Hz and 250 Hz cameras. Error was calculated as: 



 
Error due to foot position/force plate data (CPy velocity) + error due to timing (at 
each event) 
 
Approximate error calculated using quadrature summation while maximum error 
calculated as the sum of both errors. 
Recalling  
Error due to force position/force plate data (CPy velocity) = +/- 0.18 m.s-1 (maximum 
= 0.25 m.s-1) 
Error due to timing from data in tables E.8 and E.9 (note: values were rounded for 
presentation but not calculation so may seem to be unusual for some calculations). 
 

Table E.10: Error in CPy velocity at each swing event (200 Hz camera). 

All values +/-m.s-1. 
 

 Approximate Maximum 
  Single measure Over 10 measures Single maximum error 
TA 0.18 0.05 7.00 
MB 0.18 0.04 7.00 
LB 0.18 0.04 7.00 
TB 0.18 0.06 7.00 
ED 0.23 0.15 7.01 
MD 0.20 0.10 7.00 
BC 0.18 0.04 7.00 
MF 0.23 0.16 7.00 
    
AVERAGE 0.20 0.08 7.00 

 
Table E.11: Error in CPy Velocity at each swing event (250 Hz camera). 

All values +/- m.s-1. 

 Approximate Maximum 
  Single measure Over 10 measures Single maximum error 
TA 0.18 0.05 7.00 
MB 0.18 0.04 7.00 
LB 0.18 0.04 7.00 
TB 0.18 0.05 7.00 
ED 0.21 0.12 7.00 
MD 0.19 0.09 7.00 
BC 0.18 0.06 7.00 
MF 0.21 0.13 7.00 
    
AVERAGE 0.19 0.07 7.00 

 



Based on the approximate error over the ten trials the measure was considered 
reasonable (mean of approximately 0.08 m.s-1for each event) and its use in study 2 
was considered appropriate.  
 
However, as single trial measures were used in study 3, error may have affected these 
parameters. While a value of +/- 0.2 m.s-1 was indicated as the error for velocity at 
swing events (and was used in this study) it was probably an overestimation of the 
error. Firstly, it did not take into account smoothing (twice from the point at which 
error was calculated here to the value). As well, theoretical analysis suggested the 
error would be much smaller than this. The true error probably lay between these 
values. However, correlation analyses were affected minimally when velocity values 
were rounded to 0.4 m.s-1 units, returning similar r-values than when no rounding was 
performed. As such, this researcher was confident that the data could be rounded to 
units of 0.4 m.s-1, which was possibly an underestimation of the true resolution 
without generating type 1 errors. 
 
 
Other CPy Parameters 
 
Timing data 
 
All timing data was accurate to +/- half the sample rate of the force plate in addition 
to +/- half the sample rate due to possible trigger error (discussed previously). 
 
Maximum     = 0.001 + 0.001   = 0.002 s 
Approximate     = 22 001.0001.0 +   = 0.001 s 

Approximate error across 10 trials = 
10

001.0*10 2

  < 0.001 s  

 
 
MaxCPy% MinCPy% 
 
Maximum and minimum CPy% error was the same as for CPy% calculated above as 
no swing event data was included in these parameters: 
 
Maximum         = 1.60 % 
Approximate        = 0.56 % 
Approximate error across 10 trials     = 0.18 % 
 
 



VMaxCPy 
 
As for CPy velocity calculated above. 
 
Maximum error   = 20 mm.s-1   = 0.020 m.s-1 
Approximate error    = 14 mm.s-1   = 0.014 m.s-1 
Approximate error across 10 trials = 4 mm.s-1   = 0.004 m.s-1 
 
 
CPyR 
 
CPyR      = CPy Maximum - CPy minimum  
 
δCPyR     = δCPy Maximum + δCPy minimum 
 
Maximum    = 0.5 + 0.5   = 1.0 mm  
Approximate     = 22 5.0*5.0   = 0.7 mm 

Approximate error across 10 trials = 
10

7.0*10 2

   = 0.2 mm 

 
 
CPyR% 
 
CPyR%    = CPy% Maximum – CPy% minimum  
 
δCPyR%    = δCPy% Maximum + δCPy% minimum 
 
Maximum    = 0.56%+ 0.56%   = 1.12%  
Approximate     = 22 56.0*56.0   = 0.79% 

Approximate error across 10 trials = 
10

79.0*10 2

   = 0.25% 

 



Appendix F 
 
Agglomerative schedules and dendrograms for Replication subsets 
 
Replication Subset 1 

 

Table F.1: Selected sections of the agglomerative schedule for hierarchical 
cluster analysis of CPy% at eight swing events for subset 1 (N = 41 golfers). 

 
 

Stage Cluster 
Solution Coefficients Jump in 

Coefficient Stage Cluster 
Solution Coefficients Jump in 

Coefficient 

1 41 153 - 21 21 899 73 
2 40 229 75 22 20 932 34 
3 39 254 25 23 19 1002 70 
4 38 282 28 24 18 1047 46 
5 37 292 11 25 17 1052 5 
6 36 296 4 26 16 1062 10 
7 35 351 55 27 15 1143 80 
8 34 414 63 28 14 1307 164 
9 33 468 54 29 13 1336 30 

10 32 483 14 30 12 1412 76 
11 31 491 8 31 11 1507 95 
12 30 498 7 32 10 1541 35 
13 29 531 32 33 9 1683 142 
14 28 583 52 34 8 1778 95 
15 27 645 62 35 7 2116 337 
16 26 710 66 36 6 2126 10 
17 25 791 81 37 5 2718 592 
18 24 801 10 38 4 3528 809 
19 23 804 3 39 3 4175 648 
20 22 825 21 40 2 4903 808 

 
   



 
 
 

Figure F.1: Dendrogram for hierarchical cluster analysis of CPy% at eight swing 
events for subset 1 (N = 41 golfers). 



Replication Subset 2 
 
Table F.2: Selected sections of the agglomerative schedule for hierarchical 
cluster analysis of CPy% at eight swing events for subset 1 (N = 41 golfers). 
 

Stage Cluster 
Solution Coefficients Jump in 

Coefficient Stage Cluster 
Solution Coefficients Jump in 

Coefficient 
1 41 142 - 21 21 800 72 
2 40 150 8 22 20 824 25 
3 39 172 22 23 19 878 54 
4 38 252 80 24 18 939 60 
5 37 276 24 25 17 984 46 
6 36 317 41 26 16 1021 37 
7 35 398 80 27 15 1041 20 
8 34 408 11 28 14 1068 27 
9 33 435 27 29 13 1299 231 

10 32 447 12 30 12 1317 18 
11 31 457 10 31 11 1400 83 
12 30 478 21 32 10 1433 33 
13 29 487 9 33 9 1562 129 
14 28 515 29 34 8 1707 145 
15 27 542 26 35 7 1842 135 
16 26 603 61 36 6 2092 250 
17 25 637 34 37 5 2209 117 
18 24 681 44 38 4 2657 448 
19 23 725 44 39 3 3793 1537 
20 22 727 3 40 2 5326 1532 

 
 



Figure F.2: Dendrogram for hierarchical cluster analysis of CPy% at eight swing 
events for subset 2 (N = 41 golfers). 



Replication Subset 3 
 
Table F.3: Selected sections of the agglomerative schedule for hierarchical 
cluster analysis of CPy% at eight swing events for subset 1 (N = 41 golfers). 
 

Stage Cluster 
Solution Coefficients Jump in 

Coefficient Stage Cluster 
Solution Coefficients Jump in 

Coefficient 
1 41 146 - 21 21 800 24 
2 40 224 78 22 20 827 28 
3 39 271 47 23 19 845 18 
4 38 291 21 24 18 851 6 
5 37 300 9 25 17 894 43 
6 36 301 1 26 16 969 74 
7 35 341 40 27 15 1065 97 
8 34 423 81 28 14 1073 8 
9 33 457 34 29 13 1191 118 

10 32 460 3 30 12 1317 126 
11 31 487 27 31 11 1558 241 
12 30 521 35 32 10 1563 5 
13 29 531 10 33 9 1607 44 
14 28 542 11 34 8 1820 213 
15 27 607 65 35 7 1821 1 
16 26 681 73 36 6 2356 535 
17 25 703 22 37 5 2461 105 
18 24 731 29 38 4 2593 133 
19 23 774 42 39 3 3458 865 
20 22 776 3 40 2 5542 2084 

 
 
 



 
Figure F.3: Dendrogram for hierarchical cluster analysis of CPy% at eight swing 

events for subset 3 (N = 41 golfers). 
 



Appendix G 
 
 
Poincare plot calculations 
 
 
To calculate quantitative parameters, the line of identity (x = y, termed P1) was 
established for the CPyR Poincare plot. A second line was also established – the line 
perpendicular to the line of identity that passed through the mean CPyR value. This 
line was referred to as P2. 
 
The perpendicular distance from each (N, N+1) datapoint to the line of identity (P1) 
was calculated using the following: 
 
Perpendicular distance from P1 for datapoint n  
 
 

= (Xn – Yn) * Cos 450    Equation G.1 
 
 

• Short term variability was calculated as the standard deviation of 
the perpendicular distances from P1. 

• The width histogram was calculated from the perpendicular 
distances from P1. 

• The length of the short axis of the ellipse was calculated as four 
times the standard deviation of perpendicular distances from P1 
(i.e. two standard deviations from the mean in both positive and 
negative directions - 95% of all values will lie within ± two 
standard deviations from the mean). 

 
 

Perpendicular distance from P2 for datapoint n  
 
 

= (Yn + Xn - 2 * mean CPyR) * Cos 450  Equation G.2 
 

 
• Long term variability was calculated as the standard deviation of 

the perpendicular distances from P2. 
• The Length histogram was calculated from the perpendicular 

distances from P2. 
• The length of the long axis of the ellipse was calculated as four 

times the standard deviation of perpendicular distances from P2 
(i.e. two standard deviations from the mean in both positive and 
negative directions - 95% of all values will lie within ± two 
standard deviations from the mean). 

 
 
Proofs for equations 7.1 and 7.2 are provided below. 
 



The 95% area ellipse (adapted from AMTI, 1982) 
 

= 
2

)(*
2

)(* LongAxisLengthShortAxisLengthπ  Equation G.3 

 
Where  

• Length(ShortAxis) = four times the standard deviation of all 
perpendicular distances from P1 (two standard deviations either 
side of line P1 encompass 95% of the datapoints hence the 95% 
area ellipse). 

• Length(LongAxis) = four times the standard deviation of all 
perpendicular distances from P2 (two standard deviations either 
side of P2 encompass 95% of the datapoints hence the 95% area 
ellipse). 

 
 
Proofs for equations G.1 and G.2 
 
Perpendicular distance to the line of identity 
 
Figure G.1 is the reference figure for the calculation of perpendicular distance from 
point A to the line of identity. 
 

A

x = y

H

B

Pda

 
 

Figure G.1: Example calculation of perpendicular distance from point A to the 
line of identity 

 
From Figure G.1 
 
Length H = Ay – By 
 
Where 
Ay  = current datapoint (value known) 



By  = vertical projection of A to line X = Y  
 

Therefore By = Bx 
And Bx = Ax (vertical projection from A means x-coordinate does not change) 
So 
By = Ax 

Thus 
 
H = Ay - Ax 
Using Trigonometry and referring to figure G.1 
 
Perpendicular distance Pd from point A to line x = y 
 

Hypotenuse
sideadjacentaCos .. =  

 
Rearranging 
 
Adjacent side = Hypotenuse * Cos a 
 
Or 
 
Pd = H * Cos a 
 
Where a = 45o (x = y at 45o to vertical and line H is vertical) 
 
So 
 
Pd = (Ay – Ax) * Cos 45o 
 
 
Or in general terms, for datapoint n with coordinates (Xn, Yn), the perpendicular 
distance to the line of identity is given by 
 
(Xn – Yn) * Cos 450 



Perpendicular distance to a line perpendicular to the line of identity and passing 
through the mean parameter value. 
 
 
Figure G.2 is the reference figure for the calculation of perpendicular distance from 
point A to line perpendicular to the line of identity and passing through the mean 
parameter value 
 

A

h

B

Pd a

Line perpendicular to 
the line of identity

 
Figure G.2: Example calculation of perpendicular distance from point A to a line 

perpendicular to the line of identity. 
 
From Figure G.2 
 
y = mx + b 
 
The slope of the line is known but the y-intercept is not 
m = -1 
 
rearranging 
b  = y – mx 
 = y + x 
  
Setting this line to pass through the mean value of the parameter being examined 
(meanParameter) 
 
b = meanParameter + meanParameter 
 = 2.meanParameter 
 
So 
 
y = -x + (2.meanParameter) 
 
 
 



Referring to figure G.2 
 
h = Ay – By 
 
Where  
Ay  = current datapoint (value known) 
By  = vertical projection of A to line y = -x + 2.meanParameter  

= -Ax + 2.meanParameter 
 
Thus 
 
h = Ay – (-Ax + 2.meanParameter) 
 = Ay + Ax – 2.meanParameter 
 
Using Trigonometry and referring to figure * 
Perpendicular distance Pd from point A to line y = -x + 2.meanParameter 
 

Hypotenuse
sideadjacentaCos .. =  

Rearranging 
Adjacent side = Hypotenuse * Cos a 

Or 
Pd = h * Cos a 
Where a = 45o  

So 
 
Pd = (Ay + Ax – 2.meanParameter) * Cos 45o 
 
 
Or in general terms, for datapoint n with coordinates  (Xn, Yn), the 
perpendicular distance to a line perpendicular to the line of identity and passing 
through the parameter mean is given by 
 

(Yn + Xn - 2 * mean CPyR) * Cos 450 


