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ABSTRACT 

Like other engineering structures, buried stormwater drainage pipes deteriorate and fail 

over time in terms of pipe collapses due to structural deterioration or pipe blockages due 

to hydraulic deterioration. The deterioration of service infrastructure was a concern in 

Australian in recent times, where stormwater drainage pipes in Australia were rated as 

‘poor condition’. The information on current and future condition of stormwater pipes is 

therefore important for making decisions on when and how to carry out maintenance and 

rehabilitation. As the major objective, this study attempted to develop separately 

structural and hydraulic deterioration models that can predict the condition changes of 

pipe population and condition changes of individual pipes as compared to the ‘like-new’ 

condition. The outcomes of the models can be used for planning annual budget and 

prioritizing repairs. Furthermore, this study aimed to identify the significant factors that 

affect the structural and hydraulic condition of stormwater pipes, which could support 

design and operation of stormwater pipes. 

To achieve these objectives, this study first considered an ideal deterioration model which 

recognized that pipes deteriorate differently due to their contributing factors such as pipe 

size and soil type. Based on the ideal deterioration model, five practical deterioration 

models were developed using statistical techniques and neural networks (NNs), and were 

calibrated using different optimization techniques in searching for the best suitable model. 

These deterioration models were selected considering the availability of snap-shot  (or 

once only) inspection data and the ordinal grading system of pipe condition. The model 

inputs were contributing factors and the model output was pipe condition in ordinal 

numbers. Methods for assessing the predictive performance of these models and 

determining the significant input factors were considered. A case study with data 

collected from a City Council in Melbourne (Australia) was used to demonstrate the 

applicability of the models developed in this study. The results showed that the NN model 

and the Markov (statistical) model were the best models for predicting condition changes 

of individual pipes and pipe population respectively. Several factors such as pipe size and 

pipe location were found significant factors in these models. 

The significance of this study is the development of deterioration models that provide a 

basis for the construction of a comprehensive asset management system for stormwater 

pipes. The major innovation of this study is the exploitation of advanced modelling 

techniques for predicting the deterioration process of stormwater pipes.  
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CHAPTER 1   INTRODUCTION 

 

1.1 Background 

Separate systems are used in Australia for stormwater drainage and sewerage 

disposal, while many European countries such as England and France use combined 

systems. Both systems are important to all aspects of urban living and form one of the 

most capital-intensive infrastructure systems. The primary function of stormwater 

drainage systems is to remove stormwater runoff from urban areas (BTE 2001). The 

rationale for using separate stormwater drainage systems is to significantly reduce the 

hydraulic load and operation cost on wastewater treatment plants. 

A stormwater drainage system consists of collector and conveyer components. The 

collector components include roof and street gutters (e.g. kerbs or channels). The 

conveyer components, which are generally referred as stormwater pipe systems, 

include property drains and public owned conduits or pipes. The majority of 

stormwater pipes are buried and connected via receiving pits and manholes. The 

common operation mode of stormwater pipes is by gravity feed, which means flow in 

pipes is not under pressure. 

The design of a stormwater pipe system includes both structural and hydraulic 

considerations. The structural design deals with the capacity to resist external loads 

and the capacity to resist stresses generated from dimensional changes of the pipe. 

The structural capacity of the pipe relies on the properties of pipe material and 

dimensions such as the diameter and the wall thickness. There are basically three 

classes of stormwater pipes classified based on the material used namely, rigid (e.g. 

concrete and vitrified clay), semi-rigid (e.g. steel and brick) and flexible (e.g. plastic). 

The rigid pipes are commonly used for stormwater pipes in Australia. 

The hydraulic design of a pipe concerns with the discharge capacity against the 

maximum likely inflow to the pipe. An additional requirement is the velocity of flow, 

which must be sufficiently high to keep the pipe clean and free of deposits that could 

settle in the invert of the pipe. The hydraulic or discharge capacity of pipes depends 
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on the cross sectional area (or pipe diameter), the pipe roughness and the hydraulic 

gradient.  

In general, the management including construction and maintenance of stormwater 

drainage systems is the responsibility of the following parties:  

• The property owners - pipes outside the property boundaries that connects to 

Council pipes or to the kerb and channel,  

• Councils - pipes and drains in the road reserve, nature strips and in easements 

serving several properties,  

• Water authorities - large conduits (or pipes) and disposal points.   

In the State of Victoria (Australia), 79 City or Shire Councils operate a total of 25,000 

kms of stormwater pipes while Melbourne Water Corporation operates 2,500 kms of 

large conduits (Engineers Australia 2005). 

Asset management is the process by which asset managers monitor and maintain built 

facilities, with the objective of maximizing facility performance within the limited 

resources (Kuhn and Madanat 2006). More specifically, the asset management 

concerns with the selection and scheduling of maintenance and rehabilitation actions 

to carry out on the facilities during a planning horizon. The infrastructure asset 

management systems (IAMS) are tools to support asset managers with the asset 

management processes. A number of IAMS have recently been developed in North 

America and Europe for sewers and they can also be applied to stormwater pipes. 

Examples are CARE-S project for sewers in European countries (Saegrov and 

Schilling 2002), COST-S project for combined sewers in UK (Cashman et al. 2006) 

and optimal model-based rehabilitation for sewers in US (Solomatine et al. 2006). 

One of the key elements in these projects is the deterioration models which were 

aimed to predict the asset condition or the remaining serviceability of assets, since 

assets deteriorate over time. Based on the predictive information from the 

deterioration models, a critical management decision can be made regarding when and 

how to inspect, maintain, repair and even renew the existing assets. 
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1.2 Motivation for this Study 

Like other engineering structures, stormwater pipes deteriorate leading to pipe 

failures. The deterioration of stormwater pipes can be divided into structural 

deterioration and hydraulic deterioration. The structural deterioration is a continuing 

process that reduces the load bearing capacity and can be observed through the 

structural defects such as cracks and fractures. This structural deterioration leads to 

structural failure such as a pipe collapse as shown in Figure 1.1.  

 

Figure 1-1: A pipe collapse event 

The hydraulic deterioration is also a continuing process that reduces the discharge 

capacity of the pipe and can be observed through a reduction of cross-sectional area 

and an increase in pipe roughness due to hydraulic defects such as tree root intrusions 

and deposits. The hydraulic deterioration leads to hydraulic failure such as pipe 

blockage and overflow, with the consequences of flooding. An example of a flooding 

event, which occurred in Hawthorn, Melbourne (Australia) in December 2003 is 

shown in Figure 1-2. These failures of pipes can cause serious damage to business and 

environment, and in some worse cases, human loss. It has been estimated that urban 

flooding costs in Australia in terms of property damage were 314 million dollars over 

the last 3 years prior to 2001 (BTE 2001), in addition immeasurable emotional 

disturbance to flood-affected people. Furthermore, the Australian Infrastructure 

Report Card (2001) stated that in general stormwater pipe systems were in poor 

condition.  

Recognizing the problem of pipe deterioration, the procedures such as Sewer 

Inspection Reporting Code (WSAA 2002, 2006) were developed in Australia to assess 

the condition of sewers and stormwater pipes. Consistent with these procedures, the 
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closed circuit television (CCTV) inspection technique is widely used for detecting 

pipe defects including structural and hydraulic defects. Based on these pipe defects, 

the conditions of pipes are then graded into one of three or five condition states (from 

perfect to failure) considering structural deterioration and hydraulic deterioration. 

However, the stormwater pipe systems are still managed using a crisis-based or 

reactive approach in many cases. Snapshot inspections, instead of regular inspections 

(or longitudinal inspections over time), are commonly carried out in condition 

monitoring and assessment programs for stormwater pipe systems. This practice leads 

to the inefficient use of limited funds, causing more frequent failures of pipe, which 

results in difficult and costly rehabilitation.  

 
Figure 1-2: A flooding event 

As identified in Section 1.1, effective (or proactive) asset management can be 

supported by the use of deterioration models, which can predict current and future 

condition of pipes in terms of their structural and hydraulic conditions. This is 

because the predicted information can support decision-making on when, where and 

how individual pipes should be repaired or replaced to ensure uninterrupted services 

to the community.  

Lack of such deterioration models for the management of stormwater pipe systems in 

Australia was the principle motivation for this study. This study was also motivated 

by the fact that although there was a recent study by Micevski et al. (2002) for 

modelling structural deterioration of stormwater pipes in the City of Newcastle in 

Australia, hydraulic deterioration was not considered in their study and their 

developed methodology cannot be applied to predict the structural and hydraulic 

condition of individual pipes unless regular data is available. Furthermore, although 

sewers and combined sewers have been subjected to much more studies and 
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investigations than the stormwater pipes during the past two decades, it is not 

appropriate to simply use the findings from sewer deterioration models to stormwater 

pipes. This is because there are major differences between them in terms of the design 

standards and conveyed waste type. For example, the sewer is buried deeper than 

stormwater pipe; stormwater contain fewer corrosion chemicals (Micevski et al. 

2002). On the other hand, the important commonalities are that they both use gravity 

flow, buried pipes and rigid material which make the modelling techniques for sewers 

can be adaptable for stormwater pipes. 

1.3 Aims of this Study  

The primary aim of this study was to develop structural and hydraulic deterioration 

models that can predict current and future condition of stormwater pipes. The 

outcome of the deterioration models is the condition changes of pipe population and 

individual pipes. The condition changes of pipe population show the predicted 

proportions of the pipe population in each condition state at each year; this predicted 

information can be used for planning annual budget required for maintenance and 

rehabilitation of pipes. The condition changes of individual pipes, on the other hand, 

show the predicted condition of any particular pipe, as compared to the ‘like new’ 

condition, given the contributing factors (e.g. pipe size and pipe age) of the individual 

pipes; this predicted information can be used to identify pipes that are in poor 

condition for repair works.  

The secondary aim of this study was to identify significant input factors that affect the 

output of deterioration models and hence the deterioration process of stormwater 

pipes. By paying attention to these significant factors, the design and operation of 

stormwater pipes could be improved in order to reduce pipe failures and increase 

service life. For example the location of pipes may be a significant factor, meaning 

pipes should be designed differently if they are buried under street or nature strip. 

Another example is that the age of pipes may not be a significant factor, meaning the 

condition of pipes should not be judged by their age only. 
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1.4 Scope and Assumptions Used in this Study 

1.4.1 Scope 

The scope of this study is limited to the use of CCTV inspection pipe condition data 

for modeling the deterioration of stormwater pipes. It is noted, however, that the 

CCTV inspection data and their derived information were criticized as: (1) 

accountable for only surface defects, (2) dependent on CCTV operators’ skills (i.e. 

subjective) and (3) non-consistent (Terry et al. 2006). Nevertheless, they were used in 

this study since they were the only technically and readily available pipe condition 

data at the time of this study. The more sophisticated and advanced inspection 

techniques such as ultrasound and radar, seem to be able to provide less subjective 

data and information (Ratliff 2003; Terry et al. 2006). However, they are not yet 

practically proved and commercially available for wider use for the condition 

monitoring and assessment of stormwater pipes. Once these advanced inspection 

techniques are applicable, their inspection data can be used with the deterioration 

models developed in this study.  

It should also be noted that rigid pipes (i.e. concrete and vitrified clay pipes) were the 

focus of this study because the majority of stormwater pipes in Australia are made of 

rigid material and the case study dealt with sample data of concrete pipes. However, 

the methodologies developed in this study can be expanded to other material such as 

plastic and metal pipes. 

1.4.2 Assumptions Used in this Study 

The following assumptions were used mainly due to lack of data in developing 

deterioration models in this study: 

• Pipe age, structural and hydraulic conditions were considered as time-dependent 

factors and  other factors were considered as time-independent factors. 

• No rehabilitation was considered in predicting the future condition of pipes. 

• CCTV data were collected by trained operators for making CCTV condition 

data less subjective and consistent.  

• Supplied datasets were considered to come from random sampling. 
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1.5 Methodology in Brief 

The deterioration models developed in this study are called inferential models, which 

means the structural and hydraulic conditions of pipes (model outputs) were inferred 

or predicted by using the contributing factors of the pipes (model inputs). The 

contributing factors refer to a set of factors (e.g. pipe size and pipe location) that are 

considered possibly contributing to the structural and hydraulic deterioration of pipes.  

These contributing factors are also called influential factors or explanatory factors. 

The reason to use the inferential models in this study is that the structural and 

hydraulic deterioration of stormwater pipes are a complex process with multiple 

causes and many contributing factors (detailed in Section 2.2), and that it is virtually 

impossible to carry out experimental data collection for all possible combinations of 

contributing factors corresponding to different deterioration rates of pipes and to 

accurately measure the ‘overall’ deterioration rate.  

The aims of this study were achieved by carrying out the following key tasks: 

• Task 1 - Collect data 

• Task 2 - Develop ideal deterioration models 

• Task 3 - Develop practical deterioration models  

• Task 4 - Identify methods for testing deterioration models  

• Task 5 - Examine methods to identify significant factors that affect the outputs 

of the deterioration models  

• Task 6 - Apply on a case study  

Task 1 – Collect Data 

A sample of 417 data points used in this study was supplied by the City of Greater 

Dandenong (CGD), Victoria, Australia. Each data point consisted of the structural and 

hydraulic conditions of pipes together with eight contributing factors (i.e. pipe size, 

pipe age, pipe depth, pipe slope, tree-count, pipe location, soil type and Thornwaite 

moisture index (TMI - as annual average value). The structural and hydraulic 

conditions were inspected using the CCTV inspection technique and were then graded 

into ordinal values of 1, 2 and 3 with one being the good, two being the fair and three 
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being the poor conditions. This was done using the Sewer Inspection Reporting Code 

of WSAA (2002). It should be noted that the data obtained were of snapshot type, 

which meant that none of the pipes in the supplied sample dataset had received second 

or repeated inspections. 

Task 2 – Develop an Ideal Deterioration Model  

The ideal deterioration model was first developed in order to account for the fact that 

the deterioration of individual pipes (whether it is structural or hydraulic 

deterioration) is different from one pipe to another according to their contributing 

factors (e.g. pipe size, slope and soil type). From the ideal deterioration model, the 

condition changes of pipe population and individual pipes were established and were 

then used as the target for the development of practical deterioration models. A list of 

possible contributing factors was identified from literature and CCTV footages. 

Task 3 - Develop Practical Deterioration Models  

The practical deterioration models were developed to predict the condition changes of 

pipe population and individual pipes for both structural and hydraulic deterioration of 

stormwater pipes. These models must be able to (1) be calibrated and tested with the 

snapshot type data; and (2) handle the ordinal values of pipe condition. Several 

deterioration models were developed in this study with the aim of selecting the best 

models for the structural and hydraulic deterioration.  

Among commonly used infrastructure modelling techniques, five deterioration 

models using three statistical techniques namely, Markov chain, multiple discriminant 

analysis and ordered probit, and two artificial intelligence techniques namely,  neural 

networks and probabilistic neural networks were investigated. Furthermore, different 

calibration methods including non-linear optimization, genetic algorithm and 

Bayesian Markov chain Monte Carlo simulation were investigated. 

Task 4 – Identify Methods for Testing Deterioration Models 

The methods were identified to test the developed deterioration models considering 

the ordinal values of predicted condition. The goodness-of-fit test using Pearson Chi-

square statistic has been commonly used in testing deterioration models for 

infrastructure facilities such as bridges, pavements and stormwater pipes. Similarly, 
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the confusion matrix has also been used to provide details on how well the predicted 

values and observed values are matched. The goodness-of-fit test and confusion 

matrix were investigated to test the developed deterioration models. 

Task 5 – Examine Methods for Identifying Significant Factors 

Identification of significant factors that affect the underlying processes or that affect 

the output of models is already established and widely practised. The major work of 

this task was therefore to find the suitable and practical methods for use in the 

developed deterioration models except for the Markov model which used only one 

factor (i.e. pipe age). The forward stepwise method and the Wald-test were employed 

respectively for the multiple discriminant deterioration model and the ordered probit 

deterioration model. The connection weight analysis was used for the neural network 

deterioration model while the backward stepwise method was used for the 

probabilistic neural network deterioration model. 

Task 6 – Perform the Case Study 

This task included three major works. The first major work was to conduct a 

preliminary data analysis using standard and basic statistical techniques (for the 

collected data in Task 1). This would reveal the structure of data and the relationships 

between contributing factors, and between contributing factors and hydraulic and 

structural conditions. The second major work was to estimate or calibrate the model 

parameters and test the predictive performances of structural and hydraulic 

deterioration models. The third major work was to identify the significant factors that 

affect the prediction of the structural and hydraulic condition. 

1.6 Outcomes, Significance and Innovation 

1.6.1 Outcomes 

The outcomes of this study are outlined below. 

• The Markov model was found to be the most suitable model for predicting the 

condition changes of pipe population for both structural and hydraulic 

deterioration. 
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• Neural network model was found to be the most suitable model for predicting 

the condition changes of individual pipes for both structural and hydraulic 

deterioration. 

• The Bayesian Markov chain Monte Carlo simulation was found the best 

calibration method for both the Markov model and neural network model. 

• Pipe size, hydraulic condition and pipe location were found to be the significant 

factors to the prediction of the structural condition. Pipe size, structural 

condition, pipe location, pipe age and pipe slope were found to be the 

significant factors to the prediction of the hydraulic condition.  

1.6.2 Significance 

• The need for proactive management and prevention of catastrophic failures of 

stormwater pipe systems is more than ever intensifying. The prediction of the 

deterioration models developed in this study can make a significant contribution 

towards developing proactive management plans in preventing the catastrophic 

failures of stormwater pipes. For example, the annual budget for maintenance 

and repair of stormwater drainage pipes can be properly prepared based the 

predicted information on the condition changes of pipe population. 

Furthermore, the predicted condition changes of individual pipes can help asset 

managers in making ‘optimal’ decisions on when and how to carry out 

maintenance and rehabilitation actions. 

• The output of the deterioration models, especially the hydraulic condition of 

stormwater pipes can be used as input to hydrologic and hydraulic models to 

investigate urban flooding in the area. This will provide a strong basis for 

development of a comprehensive asset management system for stormwater pipe 

systems for local government councils.  

• This study has identified the significant factors that affect the prediction of 

structural condition and hydraulic condition of stormwater pipes. These 

significant factors can be given more consideration during design, construction 

and operation of stormwater pipe systems so that the service life and 

serviceability of pipes can be improved. 
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1.6.3 Innovation 

Several innovative ideas developed in this study are outlined below. 

• This study has considered an ideal deterioration model (IDM) to describe that 

pipes deteriorate differently from one to another due to their contributing 

factors. The implication of the IDM is that older pipes do not necessarily 

deteriorate faster than younger pipes.  

• Neural networks (NNs) were used in this study for handling the poorly 

understood processes of structural and hydraulic deterioration as well as for 

handling the noisy data associated with the CCTV inspection technique in 

assessing the structural and hydraulic deterioration. 

• Although structural deterioration models for sewers were already developed 

using statistical models such as Markov model, logistic model and ordered 

probit model and by the use of neural networks, this study has added the 

diversity of models for infrastructural buried pipes through multiple 

discriminant analysis and probabilistic NN. 

• The hydraulic deterioration models have not been well treated in the literature. 

In this study, three distinctive statistical techniques (i.e. Markov chain, multiple 

discriminant analysis and ordered probit) and two advanced neural network 

techniques (a standard NN and a probabilistic NN) were developed to model 

hydraulic deterioration.  

• Although the advanced calibration techniques such as genetic algorithm (GA) 

and Bayesian Markov chain Monte Carlo (MCMC) simulation were already 

established in other fields of engineering, they were adapted in this study to 

handle uncertainty and local optima associated with calibration of the standard 

NN model for stormwater pipes. 

• The predictive performance of developed deterioration models were assessed by 

the adaptation of both statistical test (Goodness-fit-test) and analysis of 

confusion matrix in this study, which can be applied to other infrastructure 

facilities such as sewers and water pipes. 
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1.7 Outline of the Thesis 

The thesis consists of five chapters. The current chapter describes the background to 

the research project, motivation, aims, scope and assumptions, a brief methodology, 

and outcomes of this study, significance and innovation. The second chapter presents 

a critical review of literature relevant to the research project. The development of five 

deterioration models, methods for testing predictive performance of deterioration 

models and identification of significant factors that affect the performance of the 

deterioration models are described in Chapter 3. Chapter 4 presents the case study and 

discusses the application of the developed models. Finally, Chapter 5 presents 

conclusions and recommendations for future research. 
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CHAPTER 2 STORMWATER PIPE DETERIORATION, 

PIPE CONDITION AND MODELLING 

TECHNIQUES 

2.1 Overview 

The urban stormwater drainage systems in Australia collect stormwater runoff from 

properties (i.e. roof, backyard and playground), road surfaces and adjoining lands (i.e. 

parks, reserves) by a network of gutters, pits and buried pipes, and convey it to 

receiving waters (Dayaratne 2000). Among the system components, buried pipes 

constitute the largest investment in the system. These pipes are made of different 

material classes like rigid (e.g. concrete and vitrified clay), semi-rigid (e.g. steel) and 

flexible (e.g. plastic) materials; however, rigid materials are commonly used for 

stormwater pipes in Australia.  

Like other engineering structures, stormwater pipes wear out or deteriorate with time 

which cause reduction of both structural integrity and hydraulic or discharge capacity 

of pipes. The effects of pipe deterioration can sometimes be observed on the street 

such as a pipe collapse with consequences of traffic disruption or a pipe blockage with 

consequences of flooding and environmental pollution. Therefore, managing and 

maintaining the performance of buried pipes is a significant task to asset mangers. 

This task requires the information on the current and future condition of stormwater 

pipes. 

This chapter reviews both theoretical studies and empirical research on deterioration 

of rigid stormwater pipes (which is the focus of this study) and methods to predict the 

pipe deterioration. However, the literature search revealed that the research on the 

deterioration of stormwater pipes is limited. Therefore, the review was expanded to 

include deterioration of sewers and other infrastructure facilities such as bridges, 

pavements and water pipes when applicable. This expansion would provide a rich 

background for this study. Furthermore, the term ‘rigid pipes’ would be used 

whenever it is required to differentiate with other material classes of pipes; otherwise, 

‘pipes’ would be used. 

The chapter starts with a review on existing knowledge of deterioration process and 

its contributing factors of rigid stormwater pipes, sewers and combined sewers 
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(conveying both stormwater runoff and sewerage). It then describes how structural 

and hydraulic conditions of rigid pipes are monitored and assessed in the current 

management practice. Following this, the chapter reviews modelling techniques that 

used contributing factors to predict the structural and hydraulic conditions of pipes. 

Finally, the chapter concludes with the selection of modelling techniques for this 

study. 

2.2 Deterioration of Rigid Stormwater Pipes and Rigid Sewers 

Considerable effort has been invested in the past in understanding the deterioration 

process leading to failures of sewers and stormwater pipes. One of the most influential 

works came from the UK-based Water Research Center (WRC 1986) in which 

deterioration of rigid sewers (i.e. concrete pipes and vitrified clay pipes) in UK were 

systematically studied using both site and laboratory experiments. The deterioration 

process of rigid sewers was divided into structural deterioration and hydraulic 

deterioration which are respectively characterized by structural defects (e.g. cracks 

and fractures) and hydraulic defects (e.g. intrusion of tree roots and deposits). The 

WRC then concluded that: 

• The deterioration of rigid sewers is a complex and probabilistic process since 

the deterioration is more influenced by random events such as a storm or an 

excavation during the lifetime of the sewers. 

• It is almost impossible to measure the rate of deterioration 

Building upon this knowledge, many researchers have greatly advanced the 

understanding of structural and hydraulic deterioration as well as their contributing 

factors for both sewers and stormwater pipes using experiments and modelling tools. 

2.2.1 Structural Deterioration and Contributing Factors 

The structural deterioration of rigid sewers and stormwater pipes is characterized by 

structural defects that directly reduce the structural integrity, i.e. shape and load 

bearing capacity of pipes. The commonly found structural defects in the WRC’s study 

include crack, fracture, deformation (shape distortion) and hole. The WRC also 

explained the process leading to collapse of rigid sewers using a three-phase 
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development of structural defects in conjunction with a concept of random damage 

events. 

Phase one is initiated from minor defects such as cracks or leaking joints that are 

possibly caused by poor handling and improper construction methods. 

Phase two extends the initial deterioration of phase 1 in different rates depending on a 

combination of attacks such as external loads (both static and dynamic), chemical 

corrosion, erosion and ground loss. Particularly, the ground loss happens when 

surrounding soil is drawn into pipes through defects by groundwater. This would lead 

to the poor structural support of pipes. 

Phase three usually occurs through probabilistic damage events such as nearby 

excavation or excessive load. Therefore, it is not possible to forecast when a sewer 

will collapse, but it is possible to judge whether a sewer has deteriorated sufficiently 

for collapse to be likely. 

This three-phase development was described by a ‘bath-tub curve’ in the context of  

asset management as suggested by Davies et al. (2001a) for sewers and Kleiner and 

Rajani (2001) for water pipes as shown in Figure 2-1. There are three areas, namely, 

Zone 1, Zone 2 and Zone 3 in this figure. Zone 1 shows the high failure probability 

during the construction of pipes. This high failure probability then drops to the lowest 

when the construction was completed and pipes begin their normal operation. The 

Zone 2 shows a steady increase of the failure probability due to pipe deterioration 

during the operation of pipes. Finally, Zone 3 shows the high failure probability when 

the pipe deterioration has reached a hazard level. When pipes are considered in Zone 

3, rehabilitation or replacement should be carried out.  

It can be assumed that the rigid stormwater pipes also experience similar properties of 

deterioration and collapse process. This was substantiated in a study using data of 

Newcastle City in Australia by Micevski et al. (2002) who found that the structural 

deterioration of stormwater pipes can be described using a stochastic process and 

multi-stage transition between four development stages from perfect to collapse. 

Furthermore, they found that the deterioration intensity at the present time affects the 

deterioration intensity at the next period of time. This stochastic property was also 
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found in structural deterioration of sewers in a number of studies in US (Kathula 

2001; Wirahadikusumah et al. 2001; Baik et al. 2006).  

 

 

 

 

 

Figure 2-1: ‘Bath tub’ curve for structural deterioration of pipes 

According to the synthesis of Makar and Kleiner (2000), the deterioration process or 

mechanism leading to pipe failure varies with pipe’s material, but the rate of 

deterioration and failure depend on exposure to different environments and 

operational conditions. That is, individual pipes possess different rates of deterioration 

because of the so-called contributing or explanatory factors. Table 2-1 shows some of 

the contributing factors that were used in previous studies and investigations on 

structural deterioration of sewers and stormwater pipes. Note that the only study 

dealing with stormwater pipes is the study by Micevski et al. (2002) and this study is 

marked with ‘#’ in Table 2-1. As can be seen from this table, ‘pipe age’, ‘pipe 

material’ and ‘pipe size’ are the most commonly used factors because they were often 

available in the pipe databases of host cities that supplied data for the research study. 

Although other factors such as pipe location and pipe depth are also considered in the 

literature (Davies et al. 2001b), their availability was found to vary with different 

cities. The effects of several contributing factors shown in Table 2-1 are described 

below. 

Pipe material - According to an experimental investigation on shallowly buried pipes 

by Kawabata et al. (2003), a flexible pipe under wheel loads would be subjected to a 

maximum stress 5 times smaller than a rigid pipe (e.g. concrete and vitrified clay). 

Concrete pipes can sustain larger loads than the vitrified clay pipes; however, vitrified 

clay has a better chemical resistance (Moser 2001). 
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Table 2-1: Contributing factors used in previous studies 

Contributing factors Used in research study 

Pipe material (Ariaratnam et al. 2001) 

(Davies et al. 2001b) 

(Micevski et al. 2002)# 

(Mohammad and Guru 2005) 

(Baik et al. 2006) 

Pipe size (Ariaratnam et al. 2001) 

(Davies et al. 2001b) 

(Micevski et al. 2002)# 

(Mohammad and Guru 2005) 

(Baik et al. 2006) 

Pipe depth (Micevski et al. 2002)# 

(Mohammad and Guru 2005) 

Slope (Mohammad and Guru 2005) 

(Baik et al. 2006) 

Location (Davies et al. 2001b) 

(Micevski et al. 2002)# 

Bus route (Davies et al. 2001b)  

Waste types (Ariaratnam et al. 2001) 

(Davies et al. 2001b) 

(Mohammad and Guru 2005) 

Ground water level (Davies et al. 2001b) 

Soil/backfill type (Micevski et al. 2002)# 

Age (Ariaratnam et al. 2001) 

(Davies et al. 2001b) 

(Micevski et al. 2002)# 

(Mohammad and Guru 2005) 

(Baik et al. 2006) 
#only study dealing with stormwater pipes 

Pipe size - According to Young and O’Reilly (1983), small pipes have smaller 

moment of inertia, therefore, they are less resistant to bending moments. Failure of 
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pipes due to bending stress is generally restricted to pipes of 300 mm or smaller size. 

Micevski et al. (2002) mentioned that pipe designers may underestimate the traffic 

loads or the cover requirements for small size pipes. These could be the reason that 

the deterioration of small pipes were found to be greater than that of large pipes in 

their study.  Furthermore, It may be the case that larger sewers are laid with more care 

and precision by more experienced personnel (Davies et al. 2001b). 

Pipe depth - In the review by Davies et al. (2001a), there is a decreasing influence of 

surface loads like traffic loads at lower depths on buried pipes. Kawabata et al. 

(2003), who investigated shallowly buried pipes subjected to traffic load, found that a 

rigid buried pipe with 2-meter depth of cover received earth pressure 4 times fewer 

than the one with 1-meter cover under similar traveling wheel loads.  

Pipe location - In the review by Davies et al. (2001a), this factor refers to the location 

where pipes were buried such as beneath roads, footpaths, fields, gardens, buildings 

and even railway lines. In general, the location of a pipe affects the magnitude of 

surface loading to the pipes. Surface loads may come from deterministic loads (daily 

traffic, cyclic load) and probabilistic loads (excavation, repair events). Micevski et al. 

(2002) also mentioned that location such as close to coast line may expose pipes to 

corrosion. 

Bus route - Although external loads are the direct cause of structural deterioration and 

failures of pipes, the ‘bus route’ factor was sometimes used to represent for wheel 

loads and cyclic loads because in some cases, the magnitude and frequency of these 

loads vary from time to time which makes it difficult for data collection. Cyclic loads 

are further classified into large, one time events and smaller cyclic events with a 

variety of frequencies (daily, seasonally) (Hahn et al. 2002). The large, one-time 

events include periods of surface construction, in-ground utility construction, or non-

construction events (earthquakes, landslide). The damages of these events become 

significant on pipes when coupled with the deteriorated pipe strength or voids in the 

soil. The smaller, cyclic forces may come from ground activities such as the 

maintenance of other facilities, routine truck and frost heave.  

Waste types - According to the synthesis of Hahn et al. (2002), biochemical, 

electrochemical and physical reactions can degrade pipe material (or lose ability to 

resist forces) and make it vulnerable to structural deterioration, even if the pipe is 
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installed properly and the risk of dynamic forces is low. Three primary types of 

material degradation are internal corrosion, external corrosion and erosion of invert. 

Internal corrosion depends mostly on the properties of flowing liquids.  For example, 

corrosion by hydrogen sulphide is the most common in a concrete sewer. On the other 

hand, the external corrosion of pipes associates with the presence of acidic soils and 

groundwater. The erosion of invert of the pipe is dependent upon the material type, 

flow velocity and presence of suspended solids. 

Groundwater level - In the review by Davies et al. (2001a), the presence of 

groundwater potentially causes ground loss and subsequent lack of support to pipes. 

Soil/Backfill type - According to sewer rehabilitation manual (WRC 1983), silts and 

fine sands are high risk soils that can cause ground loss while clay is considered a low 

risk soil. As investigated by Li (2003), the pipe bedding composed of deformed peaty 

soil would settle differentially which then causes pipe failures under external load 

(peaty soil is soil whose deformation occurs when soaked in water). The reaction 

force by soil-pipe interaction was significantly reduced by 50-60% when using 

expanded Poly-styrene (EPS) backfill compared with sand backfill (Yoshizaki and 

Sakanoue 2003). Furthermore, the horizontal and vertical displacements of existing 

pipes due to the impacts of a near-by deep excavation were reduced by 56% and 57% 

respectively when adjacent soil areas were treated by cement mixing piles to enhance 

the elastic modulus of the soil to 10 times of the original value (Li et al. 2003).  

Age – City expansions have resulted in stormwater pipes of different ages. The age of 

pipes is an important factor that can describe the hidden effects on pipes by design 

approaches, improved technologies and other unknowns. Although previous studies as 

synthesized by Davies et al. (2001a) pointed out that the ‘improved technology’ could 

be the major reason for the decreased defect rate of sewers in the 25 years after the 

Second World War. A given pipe will always deteriorate with age. However, 

deterioration rates can vary significantly between pipes, therefore an older pipe is not 

necessarily in worse condition than a newer pipe. 

2.2.2 Hydraulic Deterioration and Contributing Factors 

Unlike with structural deterioration, very few studies have been conducted on 

hydraulic deterioration of sewers and none for stormwater pipes. According to Hahn 
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et al. (2002), the hydraulic deterioration refers to a reduction of cross sectional area 

and an increase in the roughness coefficient. In the work by WRC (1986), the cross 

sectional area was found to be reduced by tree root intrusions and accumulation of 

silts, debris and obstructions (e.g. illegal waste and metals), while the roughness 

coefficient was increased by deposits such as scale and encrustation.  

The hydraulic deterioration is affected by a number of contributing factors such as 

tree types and tree ages, pipe depth, pipe location and soil type. The effects of these 

factors are described below. 

Tree type and tree age - Root masses are common in areas with older trees and often 

enter a sewer system via structural defects such as cracks, open joints and fractures 

(WRC 1986). In some circumstances, the biological growth of tree roots can force 

themselves through the wall of concrete pipes (ASCE 1994). Furthermore, Pohls 

(2001) found that the majority of sewer blockages occurred in parts of Victoria ( 

Australia) where Eucalyptus and Melaleuca type trees exist in the proximity, and 

when temperature and evaporation are at lowest levels. 

Pipe depth - According to Pohls (2001), shallowly buried pipes are more vulnerable to 

the intrusions of tree roots. On the other hand, deeply buried pipes are subjected to 

groundwater which may enter the pipes through structural defects and then cause 

encrustation. In this case, encrustation is deposits left by the partial evaporation of 

water containing salt (groundwater and sea water) (WRC 1986) 

Pipe location – This factor affect the type and the level of deposit build-up or debris 

accumulation in pipes. The natural sources of deposit and debris vary significantly 

within catchments and depend significantly on site characteristics such as the fraction 

of impervious surfaces and traffic conditions. These sources include water-transported 

material from surrounding soils, dry and wet atmospheric deposition and biological 

inputs from vegetation (Sutherland and Tolosa 2000) and from automobiles (Tai 

1991).  The contribution of soil to the accumulation of particulates in pipes can be 

significant. Hopke et al. (1980) found that 76% of the total street dust mass originated 

from soil materials. Similarly, Tai (1991) found that most of the street surface 

particles originated from the erosion of local soils.  
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Soil type - According to Pohls (2001), dark grey sand over clay and deep sands free of 

lime in Victoria (Australia) are favored conditions for the growth of tree roots. Pipes 

buried in such soil types may be more likely to have blockages due to tree root 

intrusions. 

2.3 Monitoring and Assessing Pipe Condition  

Pipe condition (or status) is often used to describe the overall serviceability, i.e. 

structural and hydraulic capacity of pipes at a point of time in their lifetime. Because 

of pipe deterioration, the task of monitoring and assessing the changes of pipe 

condition over time becomes extremely important as part of proactive management 

strategies. In the current management practice of sewers and stormwater pipes, this 

task consists of three steps: (1) selection of monitoring frequency, (2) selection of 

inspection techniques and (3) grading of pipe conditions.  

2.3.1 Monitoring frequency: regular versus snapshot 

Bridges and pavements in USA are subjected to a regular (or repeated) inspection 

program to identify structural defects during their lifetime. In particular, every bridge 

is legally required to be inspected once every two years (Madanat et al. 1995) which 

resulted in a database with regular or longitudinal data. These bridge inspection data 

provide asset managers with information on the current condition of the bridges so 

that preventative maintenance can be decided in a timely manner. Furthermore, these 

longitudinal data can be used in deterioration models for predicting future conditions 

of bridges (to be detailed in Section 2.4.2). 

Unfortunately, sewers in USA and stormwater pipes in Australia were not subjected 

to such regular inspection programs. Instead, their inspection programs were of 

snapshot type, that is, a sample of pipes was inspected for only once (Kathula 2001; 

Kleiner 2001; Wirahadikusumah et al. 2001; Baik et al. 2006). 

2.3.2 Inspection Techniques: CCTV versus others 

According to Ratliff (2003), inspection techniques can be grouped into three levels of 

assessment according to the capability of the inspection techniques and the required 

information by asset managers. The three levels are (1) field reconnaissance (level 1), 

internal inspection (level 2) and external inspection (level 3).  
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Field reconnaissance (level 1) aims to collect data of manholes, pits and pipelines and 

assesses the structure of manholes for accessibility of inspection equipment and even 

inspectors. Some of available inspection techniques for this level are: 

• Manhole survey 

• Sonde locators 

• Global positioning system (GPS)  

This basic step often associates with reviewing as-built drawings and existing 

information in order to form the backbone of any management database. This task 

continues throughout service lifetime of the pipe systems whenever new information 

such as pipe replacement or repair occurs. 

 

Internal inspection (level 2) focuses on assessing the internal condition of pipes so 

that appropriate action can be taken for pipes in poor condition before the pipe 

collapse or occurrence of complete blockage of pipe. Some of available inspection 

techniques for this level are: 

• Man-walk through 

• Close circuit television (CCTV) 

• Sonar (or ultrasonic) 

• Focused electrode leak location (FELL) 

• Sewer scanner and evaluation technology (SSET) 

• Laser-based scanning system 

• Multi-sensor pipeline inspection system (KARO, PIRAT) 

 

External inspection (level 3) concerns with the soil structure that supports pipes. Any 

voids or loss of soil support is potentially leading to pipe collapse (Ratliff 2003). 

Some of available inspection techniques for this level are:  

• Infrared thermographs 

• Ground penetrating radar 

• Micro deflection 

• Impact echo wave impedance probe (WIP) 

Although as described above, there are several inspection techniques available for 

each level of assessment, there are no guidelines for selecting these techniques for a 
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particular application. In order to reduce time and effort in selecting the appropriate 

inspection technique, a number of researchers have provided comprehensive reviews 

of inspection techniques that were applied in many infrastructure facilities. Examples 

can be found in Wirahadikusumah et al.(1998), Morrison and Thomson (2003) and 

Koo and Ariaratnam (2006). Details of these individual techniques are described in 

Appendix A.   

In current management practice of sewers and stormwater pipes, the GPS locator and 

the CCTV inspection were still the most used techniques for locating pipelines (i.e. 

level 1) and assessing internal condition of pipes (i.e. level 2) (Wirahadikusumah et 

al. 2001; Morrison and Thomson 2003; Baik et al. 2006). With hundreds of 

kilometers of pipelines, inspection costs become a critical factor for asset managers’ 

decisions, not to mention productivity. 

2.3.3 Grading of pipe condition 

The Water Research Center (WRC) in UK devised the world first condition grading 

scheme that provided protocols and guidelines for assessing current condition of 

individual pipes using the CCTV inspection technique (WRC 1986). Based on the 

original scheme of WRC (1986), several condition grading schemes were later 

developed in Canada (McDonald and Zhao 2001), Europe (Cemagref 2003) and 

Australia (WSAA 2002). Although the structural and hydraulic deterioration of pipes 

are a continuous process (as explained in Section 2.2), ordinal grading systems were 

used in these schemes for mapping the pipe deterioration into pipe conditions at the 

time of inspection. For example, a grading system of 1 to 3 was specified in WRC 

(1986) with that condition 1 as ‘perfect’ condition, condition 2 as ‘fair’ condition and 

condition 3 as ‘poor’ condition. Similar grading systems can be found in the 

assessment of deterioration of bridges and pavements where grading scales of 0 to 9 

and 1 to 8 were used respectively (Madanat et al. 1995).  These assigned numbers do 

not indicate the distances between grades but a relative ordering. The use of ordinal 

grading systems is primarily for reducing the computational complexity of the M&R 

decision-making process (Madanat et al. 1997). Another justification is that detail is 

not necessary at this level of management. 

The Australia Conduit Condition Evaluation Manual (ACCEM) produced by Sydney 

Water in 1991, was considered the first attempt in Australia to support water industry 
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in dealing with increasing awareness of asset deterioration. This was then superseded 

by the Sewer Inspection Reporting Code (SIRC) by the Water Service Association of 

Australia (WSAA 2002) using a grading system of 1 to 3 as shown in Table 2-2. The 

SIRC was developed for assessing conditions of rigid sewers (concrete and vitrified 

clay pipes) using CCTV inspection data. The SIRC was then updated by the Conduit 

Inspection Reporting Code (CIRC) (WSAA 2006) with a grading system of 1 to 5 as 

shown in Table 2-2. Furthermore, the CIRC covered the plastic pipes which were not 

available in the SIRC. 

Figure 2-2 shows the grading process based on the SIRC for a pipe segment from 

CCTV data. A pipe segment is defined between two manholes or pits. As shown in 

this figure, the CCTV robot was sent to the pipe of interest. During its movement 

along the pipe, the CCTV-recoded images were sent to a monitor where the operator 

can recognize any structural or hydraulic defects. He or she then coded the defects 

with the aid of computer. As shown in the lower line of the Figure, each coded defect 

was automatically or manually assigned a score according to the guidelines. For 

example a structural defect like crack has a score of 5.  All defect scores were 

aggregated for two condition measures, namely, peak score and mean score. The peak 

and mean score were then compared against pre-defined thresholds for grading the 

pipe into either condition one, two or three. 

Some notes and explanations are worth mentioning here in relation to the SIRC which 

are also applicable to the CIRC. Defects are separated for structural and hydraulic 

defects. The structural defects are distinguished for rigid pipes (concrete, vitrified clay 

material), brick pipes and flexible pipes (plastic material), while the hydraulic defects 

are the same for all types of material. Defect scores were a relative measure of 

contribution of defects to the likelihood of structural failures or hydraulic failures. 

Single defect score starts from zero and the largest scores are 165 (collapse state) and 

80 (hazard obstruction) for structural and hydraulic condition respectively. In general, 

structural defects that receive high scores are surface damage, breaking and 

deformation, while debris, roots and obstruction get high scores for hydraulic defects. 

The peak score indicates the largest score from one defect or multiple defects in one 

location (often within a meter length) in the pipe segment. The mean score is the sum 

of all defect scores divided by the segment length. 
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Table 2-2: Description of condition states used in WSAA (2002, 2006) 

WSAA 2002 WSAA 2006 Condition 

grading 

(or state) 

Structural condition Hydraulic condition Structural condition  Hydraulic condition 

1 No apparent need to 

investigate further 

No apparent need for 

action 

Insignificant deterioration of 

the sewer has occurred. 

Appears to be in good condition 

No or insignificant loss of hydraulic 

performance has occurred. Appears to 

be in good condition 

2 Consider overall 

circumstances on a 

program basis 

Consider response on a 

program basis 

Minor deterioration of the 

sewer has occurred. 

Minor defects are present causing 

minor loss of hydraulic performance 

3 Urgent need to 

investigate overall 

circumstances 

Appropriate action to 

be investigated 

urgently 

Moderate deterioration has 

occurred but defects do not 

affect short term structural 

integrity 

Developed defects are present 

causing moderate loss of hydraulic 

performance 

4   Serious deterioration of the 

sewer has occurred and affected 

structural integrity 

Significant defects are present 

causing serious loss of hydraulic 

performance 

5   Failure of the sewer has 

occurred or is imminent 

Failure of the sewer has occurred or 

is imminent  
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Figure 2-2: Grading process for a pipe from CCTV data 
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2.4 Modelling Techniques 

Current and future condition data of stormwater pipes are crucial to all aspects of a 

stormwater pipe management system. Current condition data of pipes are often 

‘measured’ through inspection techniques like CCTV and condition grading schemes. 

Consequently, their accuracy depends on the ‘measurement’ technology. Furthermore, 

in most cases, these data are available only for a fraction of the pipes in a stormwater 

drainage system. Therefore, the current condition data of ‘unmeasured’ pipes and the 

future condition data of all pipes need to be predicted.  

Researchers frequently use models in problem formation and solution. Sometimes these 

models are based on physical, chemical or engineering science knowledge of the 

phenomenon. In such cases, the models can be theoretically established and tested with 

the experiments, and are called mechanistic models. Examples of mechanistic models 

are Ohm’s law and Newton’s gravity force. However, there are many situations in 

which two or more factors are combined in a complex or probabilistic way that is often 

poorly understood or unknown to affect a response of interest. In these cases, it is 

necessary to build a model relating the contributing factors with the response based on 

observed data. This type of model is called an empirical model, which were the type of 

almost all deterioration models found in the literature for infrastructure modelling. 

These deterioration models, which utilize samples of CCTV graded pipe conditions, are 

often used to predict the current and future condition of pipes. Therefore, accurate 

predictions become crucial for effective decision-making.  

It is obvious that selecting the appropriate modelling techniques for structural and 

hydraulic deterioration of pipes will increase the accuracy of predictions. However, 

limited information is available in the literature on deterioration models for stormwater 

pipes. Hence, the deterioration models of sewers, bridges and pavements, which use 

similar graded condition data (Madanat et al. 1995), will be examined with the aim of 

using these modelling techniques in stormwater pipes. 

Morcous et al. (2002b) classified existing deterioration models used for infrastructure 

facilities into three categories. They are (1) deterministic models, (2) statistical models 

and (3) soft computing or artificial intelligence based models, as shown in Table 2-3. 

Dasu and Johnson (2003) considered the deterministic models and statistical models as 
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a model-driven type because the structures of these models are often decided by the 

experts. The artificial intelligence based models were considered as a data-driven type 

because the structures of the models are decided by the sample data. In each model type, 

there are several modelling techniques and those modelling techniques which were 

applied on infrastructure facilities are given in Table 2-3. 

Table 2-3: Classification of deterioration models 

Model-driven type Data-driven type 

Deterministic models Statistical models Artificial intelligence models  

Linear, 

Exponential. 

Markov chain, 

Ordinal regression, 

Linear discriminant 

analysis. 

Case-based reasoning, 

Fuzzy set  theory, 

Neural networks. 

2.4.1 Deterministic Models 

Deterministic models are often used for phenomenon where relationships between 

components are certain. Examples are time linear and power law models for water 

mains (Kleiner and Rajani 2001) and pavements (Lou et al. 2001). Deterministic models 

in the form of linear and exponential models were no doubt the first attempt at 

modelling deterioration of infrastructure facilities because of their simplicity in 

mathematical operations and capability to describe a direct relationship between the 

input factors and the output. 

2.4.1.1 Linear Models 

Madanat et al. (1995) described steps in building a common linear model for 

infrastructure facilities as follows: 

Step 1 The facilities are grouped into cohorts, i.e. having similar attributes such as size, 

material and service type. These cohorts can then provide a direct relationship 

between asset condition and age as shown in next step. 

Step 2  For each cohort, a linear model with condition state Y, as dependent variable and 

age t, as the independent variable is developed as in Equation (2-1).  
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ii tY εββ ++= 21  (2-1) 

where: i = index for facility, 

iY  = condition state for facility i, 

1β and 2β  = parameters to be estimated, 

iε  = random error term. 

The linear model is often calibrated using the common least square technique (see 

Aldrich and Nelson 1990 for more detail of this technique). Typical result is a straight 

line, as shown in Figure 2-3, which shows that the rate of deterioration is independent of 

time. However, the linear models are too simplistic to reflect the probabilistic nature of 

pipe failures, which are caused by a combination of time dependent deterioration 

process and random damage events (Morcous et al. 2002a). Furthermore, it is not 

appropriate to model discrete condition states using linear regression (Madanat and 

Ibrahim 1995; Madanat et al. 1997). 

2.4.1.2 Exponential Models 

Wirahadikusumah et al. (2001) pointed out that the deterioration rate of older sewers in 

City of Indianapolis (USA) should be faster than the young ones and used an 

exponential model with the mathematical expression of :  

it
i eY εββ ++= 21

 
(2-2) 

The model was also calibrated using the least square technique and the result, an 

exponential curve as shown in Figure 2-3, indicating an increasing deterioration rate 

over time. The exponential models also suffer similar shortfalls encountered with the 

linear models (in Section 2.4.1.1). 
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Figure 2-3: An illustration of linear and exponential models 
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2.4.1.3 Advantages and Disadvantages of Deterministic Models 

A/ Advantages 

• Mathematical expressions are in analytical form. 

• The relationship between input factors and output is straight forward 

B/ Disadvantages 

• Age can represent majority of potentially contributing factors in the models, since 

pipes seem to deteriorate with age. However the age cannot describe the variation 

in rate of deterioration across pipes which are varied due to different other factors 

affecting deterioration. 

• Partitioning pipes into groups or cohorts to fix the above ‘age only’ problem 

creates another problem of cohort. That is, each cohort must be small enough to 

be considered homogeneous but it also must be large enough to cover as many as 

input factors (Kleiner et al. 2007). Furthermore, the complicated interactions 

between factors, which have not been fully understood, but influence deterioration 

levels of pipes, could not be accounted when grouping pipes (Mishalani and 

Madanat 2002). 

• The methods are too simplistic to reflect the probabilistic nature of pipe failures, 

which are caused by a combination of time dependent deterioration process and 

random damage events (Morcous et al. 2002a). 

• It is not appropriate to model discrete condition states using linear or exponential 

models (Madanat and Ibrahim 1995; Madanat et al. 1997). 

2.4.2 Statistical Models 

Statistical models are based on statistical theory for modelling phenomenon where 

random noise in components exists. Statistical models have been used in many 

engineering problems (Henley and Kumamoto 1992; Johnson and Albert 1999; Kuzin 

and Adams 2005). Dasu and Johnson (2003) noted that the statistical models are of the 

model-driven type, which assumes parametric density functions for measurement errors 

and certain probabilistic relationships between input data and output data. The statistical 



 31

models provide a more realistic approach to predict the current and future condition of 

pipes because their outcomes (i.e. predicted pipe conditions) are explicitly formulated in 

probability values rather than in quantitative values as in the deterministic models. The 

outcome could be a binary choice (i.e. ‘yes’ or ‘no’), multiple category responses or 

even a matrix of transition probabilities.  Markov models and ordinal regression-based 

models are two typical statistical deterioration models which have been used 

extensively in modelling the deterioration of infrastructure facilities.  

2.4.2.1 Markov models 

According to Morcous et al. (2002a), the Markov chain theory is still the most 

frequently used method in many statistical models. The basic idea of the Markov chain 

theory is that the prediction of the future condition over a unit time depends only on the 

current condition, regardless of its history. For example, a pipe which is in condition 

state 1 at the current time has a series of probability, namely P11, P12, P13, P14 and P15 to 

stay still or proceed transition to one of poorer condition states 2, 3, 4 and 5 respectively 

at the next period. Thus, a transition matrix P can be established for 5 possible 

conditions as shown below:     
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P  (2-3) 

where sum of row elements is always 1 and the size of matrix is equal to the grading 

range of facility. The structure of the transition matrix P implies that no rehabilitation 

effect is accounted for and the pipe cannot move from a higher condition grade to a 

lower grade. Mishalani and Madanat (2002) further classified Markov models into state-

based and time-based models. The former is to estimate the probability of condition 

changes of an infrastructure facility over a unit time. In contrary, the latter predicts the 

probability distribution of time spent to have a unit change of the asset condition. The 

main task in calibrating Markov models is to estimate the transition probability matrix 

from sample data. The calibration techniques are classified according to the type of data 
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whether they are regular or snapshot data. In the case of regular data, the techniques are 

then further divided into the state-based models and time-based models. 

A/ Calibration techniques for state-based Markov models with regular data 

As mentioned in Section 2.3.1, regular inspection of bridges in USA is required and 

graded into ordinal condition states every 2 years by law, and hence, a regular dataset is 

available (Madanat et al. 1995). This is a unique case for which a number of calibrating 

techniques were developed. For example, Madanat and Ibrahim (1995) who used the 

frequency analysis technique to test the Markov property of history independence on 

USA bridge dataset, concluded that Markov property is appropriate for infrastructure 

facilities. Frequency analysis technique was also suggested in the framework by 

Wirahadikusumah et al. (2001) as the simplest yet most accurate method to estimate 

transition probabilities of Markov deterioration model for sewers.  

Alternatively Madanat et al. (1995) used a combination of two techniques, namely, 

incremental model and ordered probit model (see Greene 1990 for detail of this 

technique) to estimate the parameters of a Markov model for each bridge deck. The 

incremental technique mapped the continuous deterioration process into ordinal 

condition states by using thresholds which accounted for the ordinal nature of condition 

states. The ordered probit technique then linked the mappings with potentially 

contributing factors. It means that if the continuous deterioration value (determined by 

the linear combination of contributing factors) is larger than the thresholds, the bridge 

will be assigned to the corresponding condition state. Based on the two combined 

techniques, Baik et al. (2006) estimated the transition probabilities for inspected sewers 

of City of San Diego. However, as stated in their study, the supplied data set was of 

snapshot type, and hence their methodology may not be appropriate for their study. 

Madanat et al. (1997) mentioned two issues namely, non-homogenous Markov property 

and heterogeneity found in bridge panel data - a combination of sample data collected 

over different areas and time. The non-homogenous (or non-stationary) Markov 

property suggests that the transition probability from condition state i to state j changes 

over time. For example, the transition probability from condition 1 to condition 2 for a 

pipe at the age of 20 should be different with that of the same pipe at the age of 40. This 

is to capture the possible reality that the deterioration rate of older pipes should be 
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different with that of younger pipes. Heterogeneity indicates unequal variance in the 

dependent variables of panel data in which error learning, discretionary choice with 

aging, improvement of inspection techniques, outliers and inappropriate data 

transformations are listed as reasons for heterogeneity by Gujarati (2003). Madanat et 

al. (1997) used random effect method (REM) to improve the two combined techniques 

(i.e. incremental model and ordered probit model) and tested the above two issues on 

Indiana bridge dataset. REM considers all cross-sectional data to be from the same 

population. The mean value of this population was estimated by adding one more error 

term to the mean values of sectional data for capturing heterogeneity. The occurrence of 

heterogeneity and the suitability of non-stationary Markov property were found in their 

study together with improved success rate of prediction. 

Madanat and Ibrahim (1995) used a different approach to model continuous 

deterioration process of bridge decks and assumed that the number of condition changes 

over a unit time for each condition state may follow Poisson distribution. The Poisson 

rate became the deterioration rate which is an exponential function of contributing 

factors. The negative binomial distribution was then used as an extension of the Poisson 

model that relaxed the assumption of equality between the mean and variance of the 

bridge deck condition. Their study demonstrated that the negative binomial distribution 

provided accurate estimates of transition probabilities. 

B/ Calibration techniques for time-based Markov models with regular data 

One critical problem with the above mentioned calibrating techniques for state-based 

Markov models is that they require truly uncensored regular data, i.e. continuous 

inspection (Mauch and Madanat 2001). An example is shown here to explain the 

censored and uncensored data (see Nelson 1982 for more details). If a new facility is 

observed during an experiment of 2 years and the facility still functions at the end of the 

experiment, a censored data point is obtained. If the facility failed during the 

experiment, an uncensored data point is obtained. The truly uncensored data requires 

that the timing when a facility changes its condition throughout their service life should 

be recorded. However, this requirement is impractical when considering cost even for 

important facilities like bridges. For example, a pipe was inspected and graded in 

condition 3 at the age of 30 years.  Suppose that unit time for inspection is 2-year 

interval, the pipe was inspected again at the age of 32 years and graded 5. This means 
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that the pipe either changed from condition 3 to 5 via 4 or jumped from 3 to 5 and the 

timing for those changes was not known. It is obvious that continuous inspection must 

be applied in order to find out when condition 3 has changed to condition 5. In order to 

address this problem, the time-based Markov model was proposed. Examples can be 

found in the works by DeStefano and Grivas (1998), Mauch and Madanat (2001), 

Kleiner (2001) and Mishalani and Madanat (2002). The common points of methods 

used in these works are: 

• Assume that a facility change its condition in unit step (i.e. no multi-state jump) 

and the timing of change is in the middle of the change interval; 

• Link contributing factors with facility deterioration via hazard rate function (see 

Nelson 1982 for a definition of hazard rate function); 

• Transition time distribution is equivalent to survival function (see Nelson 1982 for 

a  definition of survival function); 

• Assign a uniform or Weibull density function for survival function; 

• Transition time distribution is estimated using analysis such as Kaplan-Meyer 

method (see Nelson 1982 for more details); and 

• Can be used for both censored and uncensored data. 

Although the time-based Markov models were found to be adequate for modeling 

deterioration of bridge decks, the assumption of unit change of facility condition  is not 

appropriate for stormwater pipes as found by Micevski et al. (2002) who concluded that 

the deterioration of  stormwater pipes might undergo a multi-state transition (e.g. 

jumping from condition 1 to condition 3 within a time step). 

C/ Calibration techniques for state-based Markov models with snapshot data 

As stated in Section 2.3.1, snapshot-type inspection data are more common in current 

management programs of sewers and stormwater pipes. Therefore, the proper 

calibration of the state-based Markov models is not an easy task. This is because the 

Markov models require that at least three sets of data regarding the condition of 

facilities should be available for three consecutive periods so that proper calibration and 
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testing of the Markov models can be carried out (Madanat and Ibrahim 1995; 

Wirahadikusumah et al. 2001). Different calibration approaches were used to handle the 

problem of scarce data (i.e. only snapshot data are available). According to a review by 

Madanat et al. (1995), optimization technique was one approach in calibrating Markov 

deterioration models for bridge and pavements. It was used to minimize the distance 

between predicted conditions of a deterministic linear (or exponential) model and a 

statistical Markov model (Madanat et al. 1995).  

When applying this technique to calibrate the Markov deterioration model with 

snapshot data for combined sewers of City of Indianapolis (USA), Wirahadikusumah et 

al. (2001) assumed a non-stationary transition matrix and grouped sewers into 16 

cohorts according to four contributing factors (pipe material, soil type, buried depth and 

groundwater table). They chose the cohort which had the highest correlation between 

pipe age and the pipe condition for constructing a deterministic exponential model. The 

Markov model was then calibrated using the predicted outputs from the exponential 

model. Wirahadikusumah et al. (2001) admitted that calibrating the Markov model 

using regression analysis was not appropriate. Furthermore, the Markov model could 

not be tested due to the lack of regular data. 

Micevski et al. (2002) used Bayesian Markov Chain Monte Carlo (MCMC)  simulation  

technique to calibrate the Markov model with the assumption of stationary transition 

matrix for structural deterioration of stormwater pipes in City of Newcastle, Australia. 

The Markov model calibrated by the Bayesian MCMC technique can be used to predict 

the future conditions for the whole population or sub-population (or cohorts) of pipes 

since the contributing factors of individual pipes were not used with their condition state 

in the calibration process for the models. They found a reasonable match between 

predicted and observed proportions of pipes for each condition state in each year of a 

test dataset. They further argued that using stationary Markov property can reduce the 

complexity and error in the calibrating process, yet provide an acceptable result. The 

applications of Bayesian MCMC technique were also found in deterioration models for 

bridge decks (Enright and Frangopol 1999) and pavements (Hong and Prozzi 2006).  

One approach to cope with scarce data (i.e. only snapshot data are available) is to use 

expert opinions. For example, Kathula (2001) sent questionnaires to several Cities in 

USA to get expert opinion on future deterioration expressed in percentages of pipes. 
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This information was used to compute the stationary transition matrix. She validated the 

developed model against observed condition of combined sewers and found a 

reasonable match. Kleiner et al. (2004; 2006) proposed a fuzzy methodology to 

mathematically convert expert opinions into numbers for calibrating the transition 

matrix.  

Although the calibrating techniques and Markov deterioration models developed for 

handling snapshot data seem to be successful in predicting future deterioration of the 

whole population of pipes, they still lack a mechanism to predict the future deterioration 

of a particular pipe (or single pipe prediction). Grouping pipes into cohorts according to 

‘pipe size or pipe location’ as in the work of Micevski et al. (2002) or ‘pipe material, 

soil type, groundwater table and buried depth’ as in the work of Wirahadikusumah et al. 

(2001) work still encounter problems of cohort, as outlined in Section 2.4.1. 

2.4.2.2 Ordinal Regression Models 

Ordinal regression methods have become popular when dealing with a relationship 

between a integer valued output and one or more explanatory variables (Johnson and 

Albert 1999). The integer values are sometimes meaningfully ranked in increasing or 

decreasing order. The condition grading system of pipes is a typical example. In case of 

pipe deterioration models, these methods re-conceptualize the deterministic linear 

regression to predict the probability that a particular pipe is in a particular condition 

based on the value of its attributes (or contributing factors). Some common functions 

used in the ordinal regression models were logistic and probit functions (Tabachnick 

and Fidell 2001). The maximum likelihood method is the commonly used calibration 

technique for the ordinal regression models (Johnson and Albert 1999).  

The ordinal regression models using the logistic function were developed in several 

studies to identify whether a particular sewer is in good or bad condition. Examples are 

Davies et al. (2001b), Ariaratnam et al. (2001) and Koo and Ariaratnam (2006) for 

studies of structural deterioration of combined sewers in UK, Canada and USA 

respectively, and Pohls (2001) for investigation of sewer blockages in Australia. 

However, these studies were focused with the investigation of factors that affect the 

structural deterioration and lacked goodness-of-fit tests comparing the results of the 

deterioration models with the observed data. 
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2.4.2.3 Linear Discriminant Models 

Fisher’s linear discriminant analysis - LDA (Huberty 1994) is a statistical method for 

classifying or predicting individuals or objects into mutually exclusive and exhaustive 

classes based on a set of independent variables (or predictors). Since a class contains 

similar objects which are often measured or observed with measurement errors, the 

objective of the LDA is to find a linear transformation of independent variables that 

maximizes the ratio of between-class scatter and the within-class scatter (Laitinen 

2007). Maximizing this ratio is also called Fisher’s criterion. In other words, the LDA 

takes the classes into consideration and searches for a subspace where the samples from 

the same class are as compact as possible, and meanwhile the samples from the different 

classes are as far as possible.  

The LDA is similar to the popular multiple regression method in a way that both 

methods use a linear function of independent variables. The key difference between the 

LDA and multiple regression is that the dependent variable or output of the LDA must 

be of categorized values while that of multiple regression must be a real number. 

Furthermore, the LDA requires independent variables to be of multivariate normal 

distribution (Tabachnick and Fidell 2001).  

The LDA can be applied for problems of two-class (binary) or multiple classes. When 

the LDA considers multiple classes, it is called multiple discrimiant analysis - MDA 

(Huberty 1994). The LDA was used for engineering problems (Tan et al.; Galletti et al. 

2003; Tsai 2006) and business research (Yang et al. 1999; Shan et al. 2002; Liu et al. 

2007). However, no applications were found in infrastructure modelling. Maximizing 

Fisher’s criterion is also the calibration technique of the LDA (Johnson and Wichern 

2002).   

2.4.2.4 Advantages and Disadvantages of Statistical Models 

A/ Advantages 

• The statistical models seem robust to handle outputs of ordinal data type. 

• These models take into account the probabilistic nature of the underlying 

deterioration process. 
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B/ Disadvantages 

• Grading condition state and collected data are subjective in nature whilst the 

mathematical and statistical methodologies used in the aforementioned models 

require objective and uniform data. 

• The models are sensitive to noisy data (Leung and Tran 2000; Dasu and Johnson 

2003). Furthermore, it is not easy to remove the noisy data since the precise cause 

and effect of the underlying process is not known (Terano et al. 1991). 

• The models used assumptions such as standard normal distribution for 

measurement error, which are difficult to validate. 

2.4.3 Artificial Intelligence Based Models 

In comparison with the deterministic and statistical models, some of the artificial 

intelligence based models are of the data-driven type in which model structure is 

determined by data, i.e. no assumptions are made regarding the model structure. This is 

because that they were designed to mimic the operations of human brain and natural life 

which are learning and generalizing all the time (Taylor 1993, 1996; Soulie and 

Gallinari 1998). This learning and generalizing feature was often used for many 

engineering models (Moselhi and Shehab-Eldeen 2000; Seo et al. 2004; Singh and 

Tiong 2005; Wilmot and Mei 2005), where model outputs were classified from a set of 

input patterns by learning from the past data and generalizing the lessons to predict 

future targets. The artificial intelligence based models fall into category of ‘black box’ 

models, since they seem concerned only with input and output data without specifying 

the underlying mechanism. Among the artificial intelligence techniques, case-based 

reasoning (CBR), fuzzy set theory and neural networks (NNs) were used for modelling 

the deterioration of infrastructure facilities,  (Flintsch and Chen 2004; Kleiner et al. 

2004).   

2.4.3.1 Deterioration Models using CBR 

Morcous et al. (2002b) developed a case-based reasoning (CBR) methodology for 

modelling infrastructure deterioration. CBR is a problem-solving regime that relies on 

the specific knowledge of previously experienced cases (Aamondt and Plaza 1994) and 

the essence of how human makes judgment (Riesbeck and Schank 1989). In principle, 
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CBR requires a longitudinal and diversified database (or experienced case library) be 

maintained and updated so that a query case (e.g. future condition of a facility) can be 

solved by retrieving and adjusting information from the case library. Morcous et al. 

(2002a) implemented the above methodology to predict the next 5-year condition of a 

highway bridge deck given the known current condition using a dataset provided by the 

Ministry of Transportation of Quebec (MTQ) in Canada. Their study demonstrated that 

the CBR provided correct predictions for 70% of the cases in the testing group. A 

framework of expert system, a close class of CBR, was also developed using expert 

opinion for prioritizing inspections of sewers (Hahn et al. 1999). The shortfalls with the 

CBR and expert system are the requirement of sufficiently large case library and the 

subjectivity of the inference rules. 

2.4.3.2 Deterioration Models using Fuzzy Set Theory 

Fuzzy set theory has been employed to mathematically convert linguistic inference rules 

into fuzzy numbers and fuzzy rules (Zhao and Chen 2002). Although fuzzy set theory 

was originally applied to reduce the complexity and response time in electronic control 

systems where a direct causal-effect model is too difficult to be constructed and 

mathematically solved (Terano et al. 1991; Klir and Yuan 1995), it has increased 

applications in infrastructure modeling. Examples are fuzzy expert systems for buried 

pipes (Makropoulos et al. 2003; Yan and Vairavamoorthy 2003; Najjaran et al. 2004; 

and Vamvakeridou-Lyroudia et al. 2005) and fuzzy decision support systems for 

construction and building (Chao and Skibniewski 1998; Liang et al. 2001; Seo et al. 

2004; Singh and Tiong 2005). However, one shortfall with fuzzy models is the 

subjectivity of the inference rules which are constructed based on expert opinion. 

Recently, Kleiner et al. (2006) developed a fuzzy Markov model for deterioration of 

buried pipes. In their approach, fuzzy rules can be trained to given data, thus reducing 

subjectivity. 

2.4.3.3 Deterioration Models using NNs 

Researchers have been attracted to the vast, sophisticated and extraordinary 

functionality of human brain for centuries. In 1943, Warren Mc-Culloc and Walter Pitts 

proposed the first artificial model for a biological neuron of human brain. Since then, 

numerous methods for building neuro-inspired computational models, ranging from 



 40

simple to very sophisticated mathematical models, have been proposed and investigated. 

This field of study is generally known as artificial neural networks or in a short 

abbreviation, neural networks (NNs). NNs are defined as a type of information 

processing system in a way that resembles human brain (Hassoun 1995). NNs ‘learn’ 

the patterns of the underlying process from past data and generalize the gained 

‘knowledge’ (or mathematical relationships between input and output data) to predict or 

classify an output given a new set of input variables from the problem domain. 

The application of CBR and fuzzy expert systems for sewers and stormwater pipes 

suffers two critical setbacks. The first is the lack of a case library for the application of 

CBR and the second is the subjectivity of expert opinions in Fuzzy expert systems, 

which tend to be more conservative. NNs, on the other hand, are able to tackle the 

problems found with CBR and Fuzzy expert systems. Furthermore, NN can sometimes 

be a practical alternative to well founded theoretical models such as the deterministic 

models and statistical models when causal relationships are ill understood. The strength 

and capability of NN models are the ability to identify the complex non-linear 

relationships between input and output data (Moselhi and Shehab-Eldeen 2000; Nilsson 

et al. 2006), the adaptability to solve problems that are poorly defined or not clearly 

understood (Chua and Goh 2003), and the flexibility to handle both integer and real 

values (Hyun-Suk et al. 1999; Ha and Stenstrom 2003). Furthermore, NNs accept 

limited data (Smith 1996), require no assumptions (Soulie and Gallinari 1998; Dasu and 

Johnson 2003), and are insensitive to noisy data (Bishop 1995; Lou et al. 2001). These 

capabilities were demonstrated in several studies recently such as the review by (Sexton 

and Dorsey 2000), and comparative studies by Lou et al. (2001), Christodoulou et al. 

(2003), Abdel-Aty and Abdelwahab (2004) and Bennell (2006). 

A/ NN Models 

NNs have been used in different research areas such as pattern recognition, linear and 

non-linear optimization, and parallel computing and prediction (Mukherjee and 

Deshpande 1995; Soulie and Gallinari 1998; Olden and Jackson 2002; Ferentinos 2005; 

Samarasinghe 2006). In infrastructure management modelling, an increasing number of 

researchers have recently used NNs. Examples are modeling of pavement crack 

conditions (Lou et al. 2001), defect classifications in sewers (Moselhi and Shehab-

Eldeen 2000), deterioration and management of water mains (Luis and Naim 2001; Al-
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Barqawi and Zayed 2006), modeling construction cost (Kim et al. 2005b; Wilmot and 

Mei 2005), and analysis of bridge condition data (Cattan and Mohammadi 1997).  

Najafi and Kulandaivel (2005) adopted a feed-forward back-propagation NN model to 

predict the future structural condition of a particular sewer based on its contributing 

factors. A case study using 7 factors (size, sewer type, length, age, depth, material and 

slope) for predicting discrete conditions ranging from one (the best) to five (the worst) 

was demonstrated in their study. Although the NN model could learn with only 70% of 

the presented cases, their study indicated the feasibility of using NN to predict pipe 

conditions. One of the key elements affecting the performance of NN models that was 

not mentioned in their study is the occurrence of local optimum associated with the 

commonly used back-propagation calibrating technique (Gori and Tesi 1992). In several 

studies, other calibration techniques like genetics algorithms (McInerney and Dhawan 

1993; Rooij et al. 1996) and Bayesian Markov chain Monte Carlo simulation (Mackay 

1992; Kingston et al. 2006) were used to handle the problem of local optimum.  

B/ Probabilistic Neural Network Models 

Probabilistic neural network (PNN) was originally developed by Specht (1990) and is 

considered a hybrid technique that use a Bayesian classifier (Gelman et al. 1995) and a 

Parzen-Cacoullos theory (Cacoullos 1966) on an NN platform to produce the 

probability distribution of each pattern or class. Both Bayesian classifier and Parzen-

Cacoullos theory are statistical techniques. PNN were successfully applied for reliability 

assessment of oil and gas pipelines (Sinha and Pandey 2002) and for prediction of 

concrete strength (Kim et al. 2005a). The PNN models in these studies had a fast 

calibration without any optimizing process which is the advantage of the PNN models 

over the NN models. However, the PNN models are still based on the statistical 

techniques with assumptions of probability distributions on their model structure. This 

may affect the predictive performance of the PNN models. 

2.4.3.4 Advantages and Disadvantages of Artificial Intelligence Based Models  

A/ Advantages 

• These models are insensitive to noisy data (Hassoun 1995; Smith 1996). 
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• This can automatically detect non-linear underlying processes (Dasu and Johnson 

2003). 

• These models can handle both scale and ordinal data types. 

B/ Disadvantages 

• Determination of NN structure which greatly affect the predictive performance, is 

time consuming (Leung et al. 2003; Kuncheva 2004; Curry and Morgan 2006) 

• Calibration or training of these models involves high-dimensional optimization 

(except to the PNN models) which contains many local optima (Gori and Tesi 

1992).  

• High demand for data 

• Black box with no underlying model – danger of overfitting 

2.4.4 Methods for Testing of Model Performance  

Testing (or evaluating) model performance is to quantify the model error which is the 

difference between predicted values and corresponding true values (Wright et al. 2006). 

The model performance is high when the model error is low.  

For continuous value outputs, the correlation coefficient (R) and the root mean square 

error (RMSE) are commonly used. Examples are modelling construction cost (Wilmot 

and Mei 2005), modeling bridge risks (Wang and Elhag 2007), and daily flow 

forecasting (Singh and Deo 2007).  

For categorical and ordinal outputs, the confusion matrix is often used to assess the 

performance of classifiers which classify an object into one of the categorical targets. 

Examples are shrimp disease occurrence/no-occurrence (Leung and Tran 2000), 

bacterial growth/no-growth (Hajmeer and Basheer 2003), the credit ratings good/bad 

(Bennell et al. 2006). Another form of testing models is the goodness-of-fit test, which 

assessed whether the proposed model is consistent with a set of observations. This 

method of testing was often used in infrastructure modelling (Madanat et al. 1995; 

Micevski et al. 2002).  
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Basically, the testing process has two steps in which the first step is to present a dataset 

to the model and the second step is to compute the model error. It is obvious that the 

model performance must ideally be tested using unseen data (i.e. not used in the 

construction stage of the model or the calibration of the model) (Wilmot and Cheng 

2003). To achieve this, one common method is to randomly divide the existing dataset 

into two portions in which one portion is used in the construction stage of the model and 

the other is used for testing the model. This method had been used extensively in testing 

deterioration models for infrastructure facilities such as bridge decks (Madanat and 

Ibrahim 1995; Madanat et al. 1995), pavements (Alsugair and Al-Qudrah 1998; Lou et 

al. 2001) and drainage pipes (Micevski et al. 2002; Baik et al. 2006).  

2.4.5 Methods for Identifying Significant Factors 

Identification of significant factors that define the underlying process is also one of the 

important tasks in construction of engineering models. The aim of this task is to 

determine a set of significant inputs from a superset of potentially useful inputs (Saxen 

and Pettersson 2006). This task obviously can result in a reduced number of inputs used 

in the models which have the following benefits: 

• As the input dimensionality decrease, the computational complexity and memory 

requirements of the model decrease (Muttil and Chau 2007). 

• As the number of inputs decrease, the number of training data (sample size) also 

decrease (Saxen and Pettersson 2006).  

• Poor convergence and poor model accuracy can be reduced from the exclusion of 

irrelevant inputs (Olden et al. 2004). 

• By paying more attention on the set of significant factors, the design and 

operation of the system being analyzed could be improved (Baik et al. 2006).  

This task has long been addressed, as can be seen in the reviews by Gevrey et al. 

(2003). As a result, a number of quantification methods that attempt to identify the most 

significant factors have been developed. They can be broadly classified into screening 

methods, local sensitivity analysis methods and global sensitivity analysis methods 

(Saltelli et al. 2000).  
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Screening methods are often used for models that are computationally expensive to 

evaluate and have a large number of input variables. The most commonly used 

screening methods are principal component analysis and cluster analysis (Tabachnick 

and Fidell 2001). The objective of these two methods are to condense the information 

contained in a number of original variables into a smaller set of variables with a 

minimum loss of information (i.e. most accountable for variations between them). 

Global sensitivity analysis methods are considered the most effective way to evaluate 

the impact on output of changes in input variables (Saltelli et al. 2000). They have two 

important properties. The first is the inclusion of the shape and scale of probability 

distribution functions of input variables. The second is the estimation of the sensitivity 

estimates of individual variables while varying other variables. However, these 

properties are less practical when the distribution of variables is unknown or costly to 

obtain and when there are a large number of variables which will require an enormous 

amount of computing time. 

In the local sensitivity analysis, the impact of the individual variables to the model 

output can be evaluated by several simpler methods. Examples are statistical tests such 

as Wald or Student t-tests (Baik et al. 2006), stepwise methods (Coppola et al. 2003; 

Gevrey et al. 2003; Ha and Stenstrom 2003), partial derivatives (Olden and Jackson, 

2002), connection weight analysis (Olden et al. 2004) and Garson’s algorithm (Olden 

and Jackson, 2002). In particular, the connection weight analysis and Garson’s 

algorithm were two specific methods for handling the specific structure of NN models. 

Furthermore, the connection weight analysis was shown, in the study by Olden et al. 

(2004) with simulated data, to be better than the other methods such as Garson’s 

algorithm, forward stepwise method and partial derivatives in identifying the significant 

input variables to the output of NN models.  

2.5 Review Conclusions 

Rigid pipes (e.g. concrete and vitrified clay) are still dominantly used in sewer and 

stormwater pipe systems. The deterioration of rigid pipes is affected by various factors 

and probabilistic damage events. Currently, the signs of deterioration are often observed 

using the popular close circuit television (CCTV) inspection technique. The 

deterioration of rigid sewers and stormwater pipes can be divided into structural and 
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hydraulic deterioration. The structural deterioration, which is characterized by structural 

defects, reduces the physical integrity of pipes and can eventually lead to pipe collapse. 

On the other hand, the hydraulic deterioration, which is characterized by hydraulic 

defects, reduces the internal cross-sectional area of pipes and increases the roughness 

coefficient, and eventually leads to pipe blockage. 

In current management practice of stormwater pipes in Australia, only a fraction of pipe 

networks are subjected to one-time assessment using CCTV inspection and a condition 

grading scheme. A pipe can be assessed by its structural and hydraulic condition at the 

time of inspection which allows making decisions on whether maintenance and 

rehabilitation are needed to be carried out. Although the processing of CCTV-recorded 

defects is considered inherently subjective, these data are still the only available 

information for both asset managers and researchers in Australia. 

Development of deterioration modes that can predict current and future condition of 

infrastructure assets has received increased attention. This has resulted in a number of 

deterioration models which can be broadly classified as deterministic models, statistical 

models and artificial intelligence models. These deterioration models in the past were 

often developed using samples of inspected assets (e.g. CCTV-inspected pipes) and 

contributing factors. A number of advanced calibration techniques such as genetic 

algorithm (GA) and Bayesian Markov Chain Monte Carlo (MCMC) simulation have 

also been mathematically developed to improve the predictive performance of the 

deterioration models considering the subjectivity and scarcity of sample data and the 

probabilistic nature of the deterioration process.  

Although there are some disadvantages associated with the statistical models, these 

models are still better than the deterministic models in handling integer valued outputs 

(i.e. pipe conditions) and the probabilistic nature of the pipe deterioration. Therefore, 

the statistical models using Markov chain, ordered probit (OP) and multiple 

discriminant analysis (MDA) were chosen for this study. Furthermore, there are several 

advantages in artificial intelligence models in which neural network (NN) and 

probabilistic NN models emerge as powerful and flexible tools for modeling 

infrastructure facilities, where data scarcity, probabilistic deterioration process and 

noisy data are the major issues. Nevertheless, the NN and PNN models have not been 

used for stormwater pipes. Hence, NN and PNN models with advanced calibration 
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techniques such as GA and Bayesian MCMC were also chosen as competing models 

against the statistical deterioration models in searching for the best suitable models for 

this study. 

In order to compare the performance of these deterioration models, the goodness-of-fit 

test and the confusion matrix analysis were chosen in this study. These methods are 

popular and also can be used with outputs with ordinal values such as the pipe condition 

in this study. Finally the local sensitivity analysis was chosen to identify the significant 

factors that affect the output of the deterioration models except for the model using 

Markov chain (this is because the Markov model uses only age factor). The forward 

stepwise method was chosen for the deterioration model using MDA, the Wald-test was 

chosen for the model using OP. The connection weight analysis was chose for the 

model using NN and the backward stepwise method was chosen for the model using 

PNN.  
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CHAPTER 3 DEVELOPMENT OF DETERIORATION 

MODELS 

3.1 Overview 

The structural and hydraulic deterioration of stormwater pipes have been one of the 

major causes for the interrupted service of stromwater drainage systems. However, 

maintaining the intended performance of stormwater pipes is not an easy task because 

of the limited budget for maintenance and rehabilitation (M&R) and massive lengths of 

pipes. The need for deterioration models, which can predict current and future condition 

of pipes is increasing because the predicted information can be used for budget planning 

and effective M&R on the ‘right’ pipes (i.e. the pipes are in poor condition). 

Development of structural and hydraulic deterioration models for stormwater pipes is 

the primary aim of this study. The secondary aim of this study is to identify significant 

factors that affect the performance of these models.  

The basic steps used in this study are summarized in Figure 3-1 which also shows the 

chapter layout. The details of these steps are given in various sections of this chapter. It 

should be noted that these models were developed to predict pipes in one of three 

conditions to suit the case study in Chapter 4 which uses data obtained based on the 

Sewer Inspection Reporting Code of Australia (WSAA 2002). The extension to a larger 

range like ‘1 to 5’ (WSAA, 2006) can be done in a similar manner.  

In Section 3.2, an ideal deterioration model is considered for both structural and 

hydraulic deterioration. From this ideal model, two targets were derived for the 

construction of practical deterioration models. The first target is the estimation of 

condition changes over time for the pipe population. The second target is the estimation 

of condition changes overtime for individual pipes. A list of potential contributing 

factors, which can be used as model inputs for practical deterioration models, is also 

presented in this section.  

In Section 3.3, five practical deterioration models using five different modelling 

techniques are presented together with their calibration techniques. These five models 

can be applied to model both structural and hydraulic deterioration. These five models 
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were compared on a case study (detailed in Chapter 4) so that the best possible 

deterioration model can be identified to satisfy the aim of this study.  

In Section 3.4, the methods for assessing the predictive performances of these models 

are presented. In Section 3.5, the methods for identifying significant factors from these 

practical deterioration models are presented. Section 3.6 presents the chapter summary. 
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Figure 3-1: Summary of major steps in the development of deterioration models 
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3.2 Ideal Deterioration Model (IDM) 

Section 2.2 clearly identified several major mechanisms leading to the deterioration of 

rigid sewers and stormwater pipes. These mechanisms are primarily attributed to many 

contributing factors (e.g. traffic load, static load, debris, tree roots, soil type, pipe size 

and buried depth). More importantly, a three-phase development of deterioration of 

combined sewers was considered in WRC (1983) and these three phases were translated 

into a ‘bath-tub curve’ for management planning by Davies et al. (2001a) for sewers 

and by Kleiner and Rajani (2001) for water pipes. 

Based on the above ideas, the present study considered an ideal deterioration model 

(IDM) using assumed deterioration curves for both structural and hydraulic 

deterioration of stormwater pipes. The IDM defined each pipe by a different 

deterioration curve because pipes in reality deteriorate differently from one to another 

due to many contributing factors. For example, some young pipes may experience 

structural or hydraulic failures in one area whilst older pipes still work well in other 

areas or even in the same area.  

Before going into the details of the IDM, it is worth mentioning that the IDM for the 

structural deterioration should be constructed separately to the IDM for the hydraulic 

deterioration in the case that regular or longitudinal data are available. This is because 

the structural deterioration process is different with the hydraulic deterioration process 

and the effects of contributing factors on the structural deterioration process are 

different with those of contributing factors on the hydraulic deterioration process. 

The IDM is shown in Figure 3-2 where individual pipes presumably have their own 

deterioration curve pattern as marked Pipe 1, Pipe 2,..,Pipe n. This figure also shows 

how pipes change their condition over time represented by age from start-up phase to 

operation phase and until they reach the rehabilitation phase when structural or 

hydraulic failures are likely to occur if no maintenance is carried out. The ‘age’ is a 

unique factor that was used to express the change of pipe condition because ‘age’ 

complies with most M&R scheduling of asset management. It can be noted from this 

figure that a threshold line, which is at condition 3, defined the rehabilitation phase 

where pipes need rehabilitation or replacement, since they approach the condition that is 

considered not safe and economical to operate according to some criteria.   
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Phase 1 is called the start up-phase where any major defects identified during 

construction and system testing are fixed to bring pipes back to its original perfect 

condition (i.e. condition 1). Although some minor defects may not be detected when 

pipes step into the operation phase (phase 2), the condition of pipes at the beginning of 

phase 2 is assumed to be in condition 1. During the operation phase, pipes will 

deteriorate due to many causes such as chemical corrosion and mechanical loads in a 

way that deterioration rates of pipes may not be the same due to many contributing 

factors such as pipe size, pipe location and random damage events. 
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Figure 3-2: Illustration of ideal deterioration curves 

When M&R occurs in a drainage system, two age definitions can be used. The first is 

the absolute age, which shows the absolute change of age from its construction. The 

second is the reference age, which shows the adjusted age of the pipe that receives 

M&R and return to a perfect condition in order to make a consistent dataset for the 

management of pipes. For example, after receiving an M&R action, a pipe of age 30 in 

condition 3 will return to condition 1 with reference age of zero and absolute age of 30. 

By doing this, the pipe is treated as a new pipe given that all defects are fixed.  

3.2.1 Condition Changes of Individual Pipes and Pipe Population  

The IDM allows monitoring the condition changes of individual pipes over time. The 

condition changes of individual pipes show the condition of any particular pipe, as 

compared to the ‘like new’ condition, given the contributing factors (e.g. pipe size and 

pipe age) of the pipe. This monitoring allows correctly directing M&R actions on pipes 

that are considered as at risk. Furthermore, this IDM also allows monitoring the 
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condition changes of pipe population over time as shown in Figure 3-3. The curves in 

this figure show the proportions of pipes in each condition at any time during the 

expected life and thus are useful for budget planning and estimating of expected life of 

pipes. 
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Figure 3-3: Condition changes of pipe population (hypothetical data) 

3.2.2 Construction of IDM with Real Data 

The shape of each deterioration curve pattern in the IDM can be broadly identified when 

several points (i.e. inspected pipe condition) as ‘squares’ marked in the Figure 3-2 along 

the age axis are available. This is the case of having longitudinal data which could be 

collected using CCTV inspection or recently advanced inspection techniques like sonar 

and radar. However, collecting such real data for the construction of the IDM is an 

impossible task when technological restraints, the massive number of pipes and limited 

budget are considered. Instead of longitudinal data, the current practice is to obtain 

snapshot data (one inspection only during the pipe lifetime) of a sample set of pipes. 

These snapshot data are marked as ‘circles’ in Figure 3-2. Therefore, only a point of the 

deterioration curve can be seen.  

The IDM is still the basis for the development of practical deterioration models in 

Section 3.3 for capturing condition changes of individual pipes and pipe population with 

snapshot data. The pipe condition and proportions of pipe in each condition are the two 

outputs from the deterioration models to be developed. 
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3.2.3 Input Factors to Practical Deterioration Models  

A number of factors were identified in Section 2.2, which directly or indirectly affect 

the structural and hydraulic deterioration of sewers and stormwater pipes. However, it is 

expected that many more factors will emerge as the knowledge of the complex 

deterioration process is increased. A list of potentially contributing factors that affect 

the deterioration process of stormwater pipes are compiled and synthesized from 

literature review and expert opinion. These factors, which are classified to account for 

structural and hydraulic deterioration, are given in Table 3-1. These factors are 

categorized into two groups, namely, construction and operation factors and M&R 

factors.  

Factors can also be viewed as static and non-static (time-dependent). However, the 

distinction between static and non-static factors is not always clear-cut. For example, 

the pipe slope can be viewed as a static factor but in reality there is a slight change of 

slope over time due to the settlement of bedding. The rationale for introduction of time-

dependent property is to increase the accuracy in finding the underlying deterioration 

process (Kleiner and Rajani 2000). However, it is obvious that the use of time-

dependent factors in any model requires longitudinal data (continuous data over a 

certain period) that are normally not available and costly to obtain in the future. 

Therefore all factors were considered static (time independent) as outlined in Section 

1.4 (Scope and Assumptions) of this thesis. This excludes pipe age, structural condition 

and hydraulic condition. Furthermore, M&R factors were not used in the 

implementation of deterioration models due to lack of data. 

3.3 Development of Practical Deterioration Models  

As outlined in Section 1.5 (Methodology), the practical deterioration models for 

predicting structural and hydraulic deterioration of stormwater pipes in this study were 

developed as empirical or inferential models. This is because the deterioration of 

stormwater pipes is a complex process due to multiple causes, probabilistic damage 

events and effects of many factors, which can not be determined experimentally. 

Therefore, it is attempted with the inferential models for achieving the objective in this 

study.  
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Table 3-1: List of potentially contributing factors 

Contributing Factors 
Factor Groups 

Structural deterioration Hydraulic deterioration 

Pipe size Pipe size 

Pipe wall thickness Pipe wall thickness 

Pipe depth Pipe depth 

Pipe slope Pipe slope 

Laid year Laid year 

Pipe material Pipe material 

Pipe joint material Pipe joint material 

Pipe length Pipe length 

Pipe location Pipe location 

Soil type Soil type 

Backfill material Backfill material 

Ground water Ground water  

Traffic counts  

Bus route  

Tree counts Tree counts 

Tree types Tree types 

pH of soil pH of soil 

pH of water inside pipe pH of water inside pipe 

Existing sewer below Existing sewer below 

Construction 

and operation 

factors 

 

Hydraulic condition Structural condition 

Pipe collapse records (counts) Blockage records (counts) 

Repaired year Cleaned year 

Repaired length Cleaned length 

Condition before repair Condition before cleaning 

Condition after repair Condition after cleaning 

Repair method Cleaning method 

Repair unit cost Cleaning unit cost 

M&R factors 

Repair time  
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As described in Section 3.2.2, the practical deterioration models can be constructed 

based on the IDM for the case of pipes with snapshot data. The snapshot sample of 

pipes with known pipe conditions was used to predict the conditions of the remaining 

pipes that were not inspected. This can be done by ‘learning’ the partially known 

deterioration patterns of different pipes in the sample in order to infer the pipe condition 

of the remaining pipes. Furthermore, the future condition of individual pipes can also be 

predicted by the same concept. This view of ‘learning from deterioration patterns’ was 

incorporated in the development of practical deterioration models (the term ‘practical’ 

has been omitted in subsequent sections). 

The availability of snapshot data (against regular or longitudinal data), the use of ordinal 

grading of pipe condition and the probabilistic nature of the deterioration processes 

were the important factors in selecting the modelling technique to develop deterioration 

models. Based on the conclusions in Chapter 2, three statistical modelling techniques 

namely, Markov chain, multiple discriminant analysis and ordered probit (a member of 

ordinal regression), and two artificial intelligence techniques, namely, neural networks 

and probabilistic neural networks were selected in this study. They were used to develop 

five deterioration models, namely: 

• Markov model 

• Multiple discriminant deterioration model (MDDM) 

• Ordered probit deterioration model (OPDM) 

• Neural network deterioration model (NNDM) 

• Probabilistic neural network deterioration model (PNNDM) 

These deterioration models were constructed using the currently available snapshot data 

of CCTV graded pipe conditions and contributing factors. Furthermore, they are 

considered generic models because they can be applied to both structural and hydraulic 

deterioration of stormwater pipes in this study and can also be used for sewers.  

The Markov model was developed to predict the condition changes of pipe population; 

this model was not able to be used for predicting condition changes of individual pipes 

due to the lack of regular pipe condition data. The four remaining deterioration models 

were developed to predict the condition changes of individual pipes. They can also be 
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used for predicting the condition changes of pipe population by summing up the 

predicted conditions of individual pipes and computing the proportions.  

With regards to the calibration of the deterioration models, optimization techniques 

were used for maximizing or minimizing an objective function. For the objective 

function with high dimensionality and complex solution space, the local optima may 

occur in such optimization processes, which adversely affect the results of model 

calibration and hence the performance of the deterioration models. As a result, different 

optimization techniques were used for the calibration of deterioration models in this 

study. Markov model was calibrated using two different techniques, namely, the 

Bayesian MCMC simulation using Metropolis-Hastings algorithm and the maximum 

likelihood method. The MDDM was calibrated by maximizing the Fisher’s criterion. 

The OPDM was calibrated by two different competing techniques, namely, the 

maximum likelihood and the Bayesian MCMC using Gibb sampler as local optimum 

may occur. The NNDM was calibrated by three different techniques, namely, the back-

propagation, the GA and the Bayesian MCMC simulation because of the problem of 

local optimum (as stated above) and weight uncertainty. The calibration of the PNNDM 

was based on a trial and error approach (since it required only one model parameter). 

These calibration methods are discussed in details later in the chapter. 

3.3.1 Markov model 

The Markov model was developed in this study for predicting the condition changes of 

pipe population using snapshot data. This Markov model was not able to predict the 

condition changes of individual pipes due to the lack of longitudinal data. This Markov 

model was based on the Markov model and calibration technique using the Bayesian 

MCMC simulation used by Micevski et al. (2002). The Markov model of this study can 

be applied to both structural and hydraulic deterioration. This is because the structural 

and hydraulic deterioration processes have similar Markov properties such as similar 

state space (condition states) and stochastic process as identified in Section 2.2. 

Furthermore, there are two types of Markov models, namely, state-based model and 

time-based model (Mauch and Madanat 2001; Mishalani and Madanat 2002). Their 

properties were discussed in Section 2.4.2.1 in which time-based model requires 
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longitudinal data. Therefore, the state-based Markov model was adopted in this study, 

(the term ‘state-based’ has been omitted from now on).  

3.3.1.1 Assumptions of Markov Model 

The assumptions of the Markov model are: 

• Stormwater pipe deterioration is considered to be continuous in time; however, 

they can be captured using discrete unit time of normally one year. 

• Pipes exhibit the condition change over time following their stochastic process  

• The future condition of pipes can be assumed to depend only on present condition  

• Stationary transition matrix is used. 

• Multi-state transition is possible; meaning the structural or hydraulic condition of 

pipes can jump from condition 1 to condition 3 over a unit time. 

• No M&R action is accounted for due to lack of data. 

• When applied to predict the condition changes of pipe population, all pipes are 

assumed to come from a homogeneous population and hence the ‘average’ 

deterioration characteristic of the population can be captured. This is acceptable 

when considering a population of stormwater pipes in a local catchment or within 

the local government council boundaries. 

3.3.1.2 Structure of Markov Model 

The structure of the Markov model is based on Markov chain theory (Ross 1972). The 

Markov chain operates in such a way that, whenever the process is in condition state i at 

year t, there is a probability ijP  that the process will move to state j at year t+1. The 

time interval of the Markov chain was chosen as one-year and was indexed using non-

negative integers. The important property is that the probability ijP  depends only on the 

present state (state i), which means the process is independent of historical states (Ross 

1972). The Markov model uses a square transition matrix P as shown in Equation (3-1).  

It can be seen from Equation (3-1) that ijP =0 if i > j, since no M&R action is accounted 

for and hence 33P  is always equal to 1.  
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             i  = 1 to 3 

ijP  = [0,1] 

If the initial condition state at year 0 expressed by 0 0 0 0
1 2 3( , , )C C C=C  is known 

deterministically or probabilistically, the probability distribution 1 2 3( , , )t t t tC C C=C  of 

being in one of three condition states at year t can be computed using Equation (3-2) 

derived from Chapman-Kolmogorov formula (Ross 1972) as below: 
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where: t
iC  is the probability being in the condition state i at year t 

0
iC  is the probability being in the condition state i at year 0 
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t = 0, 1, 2, 3… 

It is clear that if the transition matrix and the condition at year ‘0’ are known, then the 

future condition of a pipe at any time t can be calculated using Equation (3-2). 

However, as mentioned earlier, due to the lack of longitudinal data, it is impossible to 

estimate the transition matrix for each pipe. On the other hand, if the sample is assumed 

to represent a ‘homogenous’ population, the transition matrix for pipe population can be 

estimated from the sample of pipes. In this case, the effects of contributing factors are 

ignored. This means that all pipes now have the same transition matrix and this 

transition matrix represents the behavior of pipe population with regard to the condition 

changes over time.  

The condition changes of pipe population can be established as follows. The initial 

condition of a pipe becomes the initial proportion of pipes in each condition. Since it is 
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often assumed that the pipe was initially in condition 1 with certainty, this means that 

100% of pipe population was also initially in condition 1. The proportion of pipes in 

each of three possible conditions at any time t can be computed using Equation (3-2) 

where t
iC means the proportion of pipes in condition i at year t. Since the condition of 

pipes at year ‘0’ is often assumed to be in good condition, the remaining task is to 

estimate the transition matrix, which is also called calibrating the Markov model. 

3.3.1.3 Calibration of Markov Model 

The calibration of Markov model is the task of applying the selected calibrating 

technique on a calibration dataset to estimate the model parameters or the transition 

probability. The calibration dataset is often randomly selected from a sample dataset 

and accounts for 70-80% the sample size. The remaining dataset is called the test 

dataset and can be used to test the Markov model. In the case of stormwater pipes, the 

dataset is a sample of pipes that were CCTV-inspected and graded using a condition 

grading scheme.  

As discussed in Section 2.5, the calibration technique using the Bayesian Markov chain 

Monte Carlo (MCMC) simulation was used in this study since it was the proven 

technique that can be used with snapshot data currently available for stormwater pipes. 

Furthermore, a non-linear optimization technique implemented by the Excel Solver® 

was used as an alternative technique for calibrating the Markov model.  

Bayesian Markov Chain Monte Carlo Simulation 

The Bayesian theorem has been widely used to estimate random variables via their 

conditional distribution in many engineering problems (Brooks 1998). It is formulated 

in Equation (3-3): 

∫
×

=
θθθ

θθθ
dPDP

PDPDP
)()|(

)()|()|(  (3-3) 

where:  θ  is a random variable whose value to be 

estimated 

 D is a random variable whose value or 

probability distribution is known 
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 ( | )P Dθ  is posterior distribution of θ  given D which 

relates to θ  via a model 

 ( | )P D θ  is the likelihood to observe D given unknown 

θ  (in this study) or the sampling distribution 

of D given known θ  

 ( )P θ  is prior probability of θ  

 ( | ) ( )P D P dθ θ θ∫
 

is a normalizing factor and always resulted in 

a value 

This Bayesian approach allows estimating true values ofθ from both prior knowledge 

about θ  and current knowledge obtained from data, depending on which ones are closer 

to the true values.  

In calibrating Markov models (i.e. estimating the transition probabilities), the Bayesian 

approach was used to estimate ijP based on the observed pipe condition and prior 

knowledge of ijP . This was done via sampling a large number of ijP  from its posterior 

distribution as shown in Equation (3-4). 

0( | , ) L( | , ) ( )M Mπ π≈ ×P Y Y P P  (3-4) 

where: ( | )π P Y  is the posterior distribution of ijP  

 ( | , )L MY P  is the likelihood to observe a set Y of pipe 

conditions,  1 2{ , ,..., }ny y y=Y , where n is the 

number of pipes in the sample 

 0( )π P  is the prior distribution of ijP  

 M is Markov model 

In this study, the prior distribution 0( )π P  was arbitrarily chosen as a uniform 

distribution in interval [0, 1], since there was no available knowledge about the proper 

distribution of ijP . As a result, the posterior distribution ( | )π P Y  is proportional to the 

likelihood function ( | , )L MY P  which was determined as follows. From the joint 

probability theory, the likelihood to observe Y can be expressed in Equation (3-5), 

which was then transformed into logarithm format as in Equation (3-6) for faster 

computing. 
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where: t is the pipe age in years 

 T is the largest age found in the dataset 

 t
iN  is the number of pipes in condition i at year t 

 t
iC  is the probability in condition i at year t and can 

be computed by Equation (3-2) 

The Metropolis-Hastings algorithm (MHA), a member of the MCMC simulation 

(Gelman et al. 1995), was chosen to perform sampling from the posterior distribution. 

MCMC simulation allows sampling from most types of posterior distributions with 

reliable results and easy coding for computer simulations. The basic idea behind 

MCMC simulation is the use of a Markov chain whose stationary probabilities are 

identical to the target posterior distribution (Ross 1997). This Markov chain is then run 

a large number of times until it converges to the stationary probability. After discarding 

the warm up runs, the remaining values can be used as the sampling data for the 

posterior distribution.  

The MHA is based on the candidate-generating density ( , )q x y where ( , ) 1q x y dy =∫  for 

sampling from the target density ( )π ⋅ . In this study, ( )π ⋅  is considered as the posterior 

distribution of the transition probability. The x and y are the values of transition 

probability. The candidate-generating density depends on the current state of the 

Markov chain, which means that when a process is at the point x this density generates a 

point y from ( , )q x y . The new point y is always accepted if ( ) ( , )( , ) 1
( ) ( , )
y q y xx y
x q x y

πα
π

= ≥ ; 

otherwise, y can be accepted with a probability ( , )x yα . In other words, if the jump goes 

‘uphill’, it is always accepted; if ‘downhill’, it is accepted with a non-zero probability. 

The density ( , )q x y is often chosen as a symmetric and multivariate density such as a 

multivariate normal distribution (i.e. ( , )q x y = ( , )q y x ) for ease of implementation. The 

MHA using multivariate normal (MVN) density is shown below:  
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Step 1. Let n=0 and randomly generate initial values of ijP , and choose 

variance-covariance matrix for MVN. 

Step 2. Generate new value of ijP  using MVN with mean values equal to 

current ijP  and generate a random uniform number U. 

Step 3. Evaluate posterior density with current values and new values 

of ijP . 

If the ratio of new evaluation and current evaluation is larger than 

U, 

Accept new values 

Current values = new values 

Else 

Reject new value  

Step 4.  n = n+1 

Step 5.  Go to step 2 

The initial values of the MHA can be arbitrarily chosen, since in theory, they do not 

affect the convergence to the target distribution of the chain (Brooks 1998). The 

variance-covariance matrix for the MVN can be arbitrarily chosen as well. However, 

some notes are worth mentioning here. If too large a value is chosen for the variance-

covariance matrix of MVN the MHA may reject most of proposed jumps and thus the 

chain gets stuck in one of several regions of search space. Choosing too small values 

makes the chain crawl to the target distribution. One popular way to find a suitable 

variance-covariance matrix is to run the MHA with a randomly generated variance-

covariance matrix. A sample of the target density can be obtained which is called a pilot 

sample. This pilot sample is then used to compute the variance-covariance values. A 

criterion to check the suitability of the chosen variance-covariance matrix is that the 

acceptance rate in step 3 of the algorithm should be close to 0.234 (Roberts and 

Rosenthal 2001).  

Once the sample data of transition probability ijP  are obtained using MHA, the point 

estimators and confidence interval (CI) for these transition probabilities can be 

determined as follows. Although the posterior distribution of the transition probability 

may not be of normal type, its sample data is considered to be a normal distribution 
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from the Central Limit Theory. Furthermore, the sample mean can be used as an 

unbiased point estimator for the mean values of transition probability from basic 

probability theory. However, this point estimator could not tell how close it is to the 

‘true’ mean value of the posterior distribution since this ‘true’ mean is not known. 

Therefore the confidence interval (CI) or interval estimate is required and the commonly 

used 95% CI can be computed for each transition probability Pij as in Equation (3-7) 

0.05,

0.05,

Upper-limit

Lower-limit

X
df

X
df

X t
n

X t
n

σ

σ

−

−

⎧ = +⎪⎪
⎨
⎪ = −
⎪⎩

 (3-7) 

where: 
X
−

 is the statistical mean of the sample data of transition 

probability ijP  

 Xσ  is the standard deviation of the sample data of 

transition probability ijP  

 n is the sample size 

 0.05,dft  is the 95% confidence interval of the t-distribution 

 df is the degree of freedom 

Non-linear optimization  

Apparently, the MHA looks similar to optimization techniques that maximize the 

posterior distribution. However, the fundamental difference is that during the run of the 

MHA, whenever the new evaluation is smaller than the current evaluation, the new 

value of ijP can be accepted at an adequate rate. This situation is not acceptable in other 

optimization techniques. By doing this, the MHA sometimes steps back a while to avoid 

being stuck at a local optimum. Furthermore, the outcome of the MHA is the set of 

sampling data, which increases the chance of capturing the true global optimum. A non-

linear optimization technique implemented in the Excel Solver® as shown in appendix 

C.4 was used as an alternative technique for calibrating the Markov model in order to 

confirm the superiority of the MHA. The implemented optimization technique is based 

on the Generalized Reduced Gradient nonlinear optimization code developed by Leon 

Lasdon, University of Texas at Austin, and Allan Waren, Cleveland State University. 
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3.3.2 Multiple Discriminant Deterioration Model (MDDM) 

As mentioned in Section 2.4.2.2, multiple discriminant analysis (MDA) is a member of 

a statistical method, called, Fisher’s linear discriminant analysis that can be used for 

classifying or predicting individuals or objects into mutually exclusive and exhaustive 

multiple-classes based on a set of features (also called as independent variables or 

predictors) (Hair et al. 1998).  

In this study, the multiple dicriminant deterioration model (MDDM) was developed 

using the MDA for classifying individual pipes into one of three classes (i.e. pipe 

conditions). Pipes are described by the contributing factors (i.e. the features of the 

objects). The rationale for using the MDA is that a pipe must be in one of three 

condition states at any time during their service life. It is therefore possible to use the 

MDDM for classifying the pipe among its feature space if the MDDM was calibrated 

with a sample of training patterns (i.e. pipes with known condition and known values of 

the contributing factors). The following sections present the assumptions, the structure 

and the calibration of the MDDM. 

3.3.2.1 Assumptions of the MDDM 

The MDDM was developed based on the following assumptions: 

• Dependent variable is the pipe condition.  

• Contributing factors are assumed to follow a multivariate normal distribution, 

which is required to use MDA. 

3.3.2.2 Structure of the MDDM 

Suppose a pipe population G of a stormwater pipe system is at any time made up of 3 

sub-groups or classes: 1G , 2G and 3G  representing three pipe conditions with 1 being 

perfect, 2 being fair and 3 being poor respectively. Each pipe in G is defined by K 

features or contributing factors and belongs to any of these three classes.  

Suppose there are N training patterns of ( , )i iYX  with K
i R∈X (feature space) and 

iY G∈  (pipe condition), of which 1N are from 1G , 2N  are from 2G  and 3N  are from 
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3G . The MDDM was developed to assign a query pipe into to either 1G , 2G or 3G  by a 

classification rule.  

The classification rule can be constructed by first finding linear composites of 

contributing factors that transform the feature space KR of contributing factors into a 

reduced space so that the class centroids are best separated. The class centroid can be 

computed as the mean vector of contributing factors in that class as shown in Equation 

(3-8). The linear composites, which are called discriminant functions, act as axes in the 

reduced space. It has been shown that the dimensionality of the reduced space is min(K, 

number of classes – 1) (Hair et al. 1998). Suppose that 2K ≥ , there are two discriminant 

functions as shown in Equation (3-9). The classification rule can then be established by 

comparing the Euclidian distances in the reduced space from the query pipe to class 

centroids. In other words, the query pipe is assigned to the class which has the shortest 

distance. According to the Fisher’s criterion, the class centroids can be separated by 

maximizing the ratio of between-class scatter and the within-class scatter (Hair et al. 

1998) as shown in Expression (3-10).  

1

1 iN

c i
icN =

= ∑X X  (3-8) 

1 11 1 12 2 1

2 21 1 22 2 2

...

...
K K
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( )( )
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T
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= − −∑∑W X X X X  (3-12) 

where: 
cX  is the mean vector (or centroid) of the 

class c 

 cN  is the number of observations in the 

class c 

 1 11 12 1( , ,..., )Kβ β β=β  is the factor coefficients in discriminant 

function 1 
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 21 22 2( , ,..., )Kβ β β=2β  the factor coefficients in discriminant 

function 2 

 

Figure 3-4 shows an example of classifying a query pipe into one of three conditions. 

The two discriminant functions appear to well separate the three class centroids. It can 

be seen that the query pipe has the shortest distance to the class centroid 2 which means 

that it should be in condition 2. 
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Figure 3-4. An illustration of three-group classifications 

3.3.2.3 Calibration of MDDM 

To effectively calibrate the MDDM, the sample size of each class must be larger than 

the number of factors used (Tabachnick and Fidell 2001). The calibrating process is to 

find β (or factor coefficients in discriminant functions) that maximize the Fisher’s 

criterion. The problem of maximizing can be solved by taking partial derivative of 

Expression (3-10) with respect to β  and set it equal to zero. After simplification, 

Equation (3-10) becomes the Equation (3-13) which can be solved using eigenvectors 

(Johnson and Wichern 2002). 

( ) 0− =-1W B λI β  (3-13) 

where: W and B  are from Equations (3-11) and (3-12) 

 λ  is the eigenvectors 

 I  is the identity matrix 
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If the eigenvalues of 1−W β  are distinct, then there will be 

{ }min ,number of classes - 1r K=  linear composites, i.e. 2r =  discriminant functions. 

Although the computing steps for calibrating MDDM appear to be time consuming, 

their solutions are incorporated in most statistical software packages such as SPSS®. 

3.3.3 Ordered Probit Deterioration Model (OPDM) 

The OPDM developed in this study was based on the ordered probit model of Madanat 

et al. (1995) for modelling bridge deterioration. The ordered probit technique has also 

been used in a number of other classification problems (Abdel-Aty and Abdelwahab 

2004; Bennell et al. 2006) and modelling sewer deterioration (Baik et al. 2006). In 

general, the ordered probit technique was claimed to be the most appropriate technique 

in handling non-continuous valued (or discrete valued) dependent variables.  

3.3.3.1 Assumptions of OPDM 

The OPDM was developed based on the following assumptions: 

• Dependent variable is the pipe condition which takes on ordinal values. 

• Measurement error or random part of the linear function is assumed to a follow 

normal distribution, as required by the OPDM. 

3.3.3.2 Structure of OPDM 

The structural or hydraulic deterioration of a pipe i is considered a continuous process 

which can be described by a deterioration curve iZ as shown in Figure 3-5.  
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Figure 3-5. Illustration of the ordered probit model 
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This figure also illustrates the OPDM. The deterioration curve iZ represents the 

continuous deterioration of pipes and therefore the values of iZ are defined in[ ]0,+∞ .  

The deterioration curve iZ , which consists of a deterministic part and a random part, is 

modelled in Equation (3-14). The deterministic part im  and the random part iε are given 

in Equations (3-14) and (3-15). The use of log( )iZ ensures that the continuous 

deterioration iZ is positive. The deterministic part im is often chosen as a linear 

composite of contributing factors such as pipe size and pipe depth, and thus allows 

prediction for individual pipes. The random part iε is often known as measurement error 

due to the subjectivity of the CCTV inspection method, random damage event and 

equipment noise. This random part is often assumed to follow a normal distribution 

with zero mean and unit variance. This implies that log( )iZ can be treated as a random 

variable, which follows a normal distribution with mean value of im  and unit variance. 

log( )i i iZ m ε= +  (3-14) 

1

K

i k k
k

m Xβ
=

=∑  (3-15) 

where: iZ  is the deterioration for the pipe i and 0iZ ≥  

 im  is a linear composite of contributing factors 

 iε  is measurement error 

 ,1 ,2 ,( , ,..., )i i i i KX X X=X

 
is the vector of K explanatory factors for the 

pipe i. 

 1 2( , ,..., )Kβ β β=β  is the vector of K coefficients. 

The deterioration curve is segmented into three sections corresponding to three 

condition states by two threshold values (i.e. 1θ and 2θ  in Figure 3-5). A pipe is 

considered in the condition one, two or three depending on its log( )iZ value against two 

threshold values 1θ and 2θ . Since log( )iZ is modelled as a random variable, a pipe 

belongs to condition one, two or three can only be determined with probabilities 

,1 ,2,  i iP P  and ,3iP respectively. By using Equations (3-14) and (3-15) and the two threshold 
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values, these probabilities can be formulated as in Equations (3-16) to (3-18) and the 

pipe i will be assigned or predicted to the condition that has the highest probability.  

( ),1 1 1log( ) ( )i i iP probability Z F mθ θ= < = −  (3-16) 

( ),2 1 2

2 1

log( )
     ( ) ( )

i i

i i

P probability Z
F m F m

θ θ
θ θ

= < <

= − − −
 (3-17) 

,3 ,1 ,21i i iP P P= − −  (3-18) 

where: ,i cP  is the probability that the pipe i belongs to condition 

c 

 F  is the cumulative normal distribution function of iε  

 1θ  and 2θ  are the threshold values. 

3.3.3.3 Calibrating OPDM 

The model calibration was used to estimate the model parameters from the sample data. 

Among others (Tabachnick and Fidell 2001), the Maximum Likelihood (ML) technique 

and the Bayesian MCMC simulation using the Gibb sampler were used separately to 

calibrate the OPDM. Although the ML technique is more frequently used, its solution 

was counterchecked by the Bayesian MCMC in this study as the local optimum may 

occur. 

A/ Maximum Likelihood (ML)  

Suppose that there is a sample of N observations of pipes { },i iYX in which iX  and 

iY are respectively the vector of contributing factors and the known (structural or 

hydraulic) condition of a pipe i.  The problem of interest is to use this sample of 

observations to estimate the unknown model parameters which are the vector β of factor 

coefficients and 1 2 and θ θ . Let { }( )1 2, | , ,i if Y θ θX β denotes the joint probability 

distribution function of N observations of pipes { },i iYX  conditional on the model 

parameters.  Since the model parameters are assumed unknown, the function f  

represents the likelihood that the N observations of pipes { },i iYX  will be observed when 

the model parameters take their true values. It would therefore seem that the estimates 

of the model parameters would be those values that yield the largest likelihood to 
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observe the N observations of pipes{ },i iYX . Thus it becomes a problem of maximizing 

the likelihood function as given in Equation (3-19). 

{ }( )1 2 ,1 ,2 ,3
1

, | , , i i i

N
a b c

i i i i i
i

f Y P P Pθ θ
=

=∏X β  (3-19) 

where: ,i cP  is the probability that the pipe i belongs to the condition c, 

as estimated from Equations (3-16) to (3-18). 

 ia  = 1 if pipe i was observed in condition 1 and zero, 

otherwise. 

 ib  = 1 if pipe i was observed in condition 2 and zero, 

otherwise. 

 ic  = 1 if pipe i was observed in condition 3 and zero, 

otherwise. 

 N Os the sample size 

By substituting ,1 ,2 ,3, ,i i iP P P from Equation (3-16), (3-17), and (3-18) respectively into 

Equation (3-19), the likelihood function or the logarithm of likelihood function can be 

maximized. The SPSS® package can be used to run this maximizing process. Local 

optimum may occur and hence, an alternative Bayesian MCMC technique can be used 

to counter check. 

B/ Bayesian MCMC using Gibbs Sampler 

The Gibbs sampler is a member of the Bayesian MCMC simulation. In fact, the Gibbs 

sampler is considered as a special case of the MHA (Section 3.3.1.4) (Casella and 

George 1992). However, unlike with the MHA, the Gibb sampler allows sampling the 

random variables from a probability density without having to evaluate the density. 

Furthermore, in the Gibbs sampler only one variable can be updated at a time based on a 

conditional posterior distribution of the variable given other variables kept constant 

(Gelman et al. 1995; Altaleb and Chauveau 2002; Reis and Stedinger 2005). The 

conditional posterior distribution is required to be of analytical forms such as Gaussian 

or Weibull distributions. This process is different to the MHA where all variables are 

updated at a time and the posterior distribution can take any form. Through the use of 
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the Gibbs sampler, it is able to avoid difficult calculations of the likelihood function as 

in the case of the MHA, replacing them with a sequence of easier calculations. 

Similar to the MHA (Section 3.3.1.4), the Bayesian theorem in Equation (3-3) was used 

with the assumption of a uniform distribution for the prior probability of the model 

parameters (i.e. 1,θβ  and 2θ ). As a result, the posterior distribution π  of ( 1,θβ  and 2θ ) is 

proportional to the likelihood function as given in Equation (3-20).  

1 2 ,1 ,2 ,3
1

( , , |{ , }) i i i

N
a b c

i i i i i
i

Y P P Pπ θ θ
=

=∏β X  (3-20) 

The components ,1 ,2 ,3,  and i i ia b c
i i iP P P  of Equation (3-20) are based on the cumulative 

Gaussian distribution as estimated from Equations (3-16) to (3-18). Therefore, the Gibb 

sampler can be used to estimate the model parameters by sampling from Equation (3-

19). Suppose that there is a vector μ  of K model parameters including the factor 

coefficients β  and two threshold 1θ  and 2θ , The Gibbs sampler works as follows: 

Step 1: Randomly generate the initial values for K element (i.e. model parameters) 

of the vector μ and set n = 0  

Step 2: Simulate from Equation (3-19) 

-A new value for the element 1 (denoted as 1
1
nμ + ) of vector μ  conditional 

on other elements (denoted as 1
1

nμ +
− ) 

-A new value for the element 2 (denoted as 1
2
nμ + ) of vector μ  conditional 

on other elements (denoted as 1
2

nμ +
− ) 

… 

-A new value for the element k (denoted as 1n
kμ
+ ) of vector μ  conditional 

on other elements (denoted as 1n
kμ +

− ) 

Step 3: Set n = n+1 and go to Step 2 

Similar to the MHA in Section 3.3.1.4, this iterative scheme of the Gibbs sampler 

generates a Markov chain whose stationary probabilities are identical to the posterior 

distribution of the model parameters. After the chain has converged at a selected 
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number of iterations (Gelman et al. 1995), the simulated values can be used to compute 

the mean and variances of the model parameters. A free software, WINBUGS tool 

(Lunn et al. 2000), was used to run the Gibbs sampler in this study. 

3.3.4 Development of Neural Network Deterioration Model (NNDM) 

A neural network deterioration model (NNDM) was developed in this study to model 

both the structural and hydraulic deterioration of stormwater pipes. Each deterioration 

curve of pipes (as was shown in Figure 3-2) is considered a time varying pattern 

characterized by its contributing factors. NN was adapted to detect or classify these 

patterns in a similar way to human brains that ‘learn’ from past data and generalize the 

‘gained knowledge’ to predict a new pattern. Generalization can be defined as the 

capability of an NN to identify deterioration patterns that are common to a presented 

sample of pipes and store them in the network. Then the NN effectively uses these 

characteristics to make prediction for query pipes.  

The snapshot-type inspection data and graded pipe conditions were used as the training 

data for the learning process of the NNDM. By assuming that the training data were 

randomly collected over different age groups and contributing factors, the NNDM can 

learn sufficient deterioration patterns from the training data and thus was able to predict 

the pipe condition of any query pipes, whose contributing factors are given (or known). 

This section presents the structure of the NNDM and the methods of training or 

calibrating the NNDM used in this study.   

3.3.4.1 Structure of NNDM 

The NNDM was based on the theory of neural networks (NNs) which consist of many 

information processing elements, called artificial neurons or neurons (in short). NNs 

mimic the human brain in processing information through a network of neurons which 

are connected together. An NN receives the input signals, processes them and produces 

output signals in the required format according to the design of the NN. 

The structure of the NNDM is shown in Figure 3-6.  There are two types of neurons 

which are filled circles and empty circles as shown in this figure. According to the 

function of neurons, these neurons are grouped into three layers in NNDM, namely, 

input layer, hidden layer and output layer.  Therefore, the neurons in these layers are 
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called input neurons, hidden neurons and output neurons respectively. The connections 

between neurons are attached by connection weights (CWs), which are grouped into 

CWs from input to hidden layer (CWI-H) and from hidden layer to output layer (CWH-O). 

The input signals to the NNDM are the contributing factors which are received by input 

neurons (i.e. the empty circles). These input neurons simply pass the signals to the 

hidden neurons.  

The output signals are the three possible pipe conditions represented by three output 

neurons with output values in range [0, 1]. Since the pipe condition takes on ordinal 

values, the use of scale valued output neuron is not appropriate. With this design, the 

NNDM is required to produce the value of ‘1’ for one output neuron and the values of 

‘0’ for the remaining output neurons so that the classification of a query pipe can be 

clearly identified. Furthermore, the use of range [0, 1] for output neurons can be 

interpreted as the probabilities that the query pipe can be in one of the three possible 

conditions. The query pipe is therefore assigned to the condition that it has the highest 

probability.
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Figure 3-6: Structure of the NNDM 

A/ Artificial Neurons and Connection Weights 

The biological nervous systems of humans come in various architecture; some are 

simple, while others are complex. But all these different types are composed of the same 

type of building blocks, called the neural cells or neurons. A neuron receives signals or 

inputs, and produces a response or an output. In the biological neuron, the inputs and the 

response are electrical pulses. The input pulses are passed to the neuron through 
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multiple channels (i.e. dendrites) and the output is passed forward via its only one 

output channel (i.e. axons). Each dendrite has a contact point (called synapses) which 

acts as a gate to open or close and thus allow some input signals to flow in or stop some 

others depending on modes of operation. Figure 3-7 (a) shows the basic structure of a 

biological neuron. 
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Figure 3-7. Basic structure of a biological neuron and an artificial neuron 

In this sense, a biological neuron acts as a function which receives a set of inputs or 

parameters and produces an output. Analogously to this, an artificial neuron has a 

multiple-input channel, a cell body and a one-output channel (Figure 3-7 (b)). Usually 

the input channel (X1, X2,…, Xk) has associated weights (called connection weights) 

which are ‘attached’ to input signals. These weights (CW1, CW2,…, CWk)  allow 

choosing the important signals among input signals by their large weight values. The 

neuron has a special input signal whose value is always 1 and the weight attached to this 

signal is called bias weight (BW as shown in Figure 3-7). This bias weight and the 

special input signal are not shown in Figure 3-6 for reducing the complexity. The bias 

weight simulates the function of synapse that can allow (being non-zero value) and stop 

(being zero-value) the input signals going through. The transmitted signals are 

integrated (usually just by adding up all input signals) and the mathematical function 

(also called activation function) in the cell body is evaluated to produce an output 

signal. The mathematical relationship between input signals and output in an artificial 

neuron therefore can be formulated as below: 

1

(  )
K

i i
i

Y f X W
=

= ∑  (3-21) 
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where: Y is the output signal 

 iX  is the input signal i 

 K is the number of input signals 

 iW  is the weight attached to the input signal i 

 f  is the activation function 

B/ Feed-Forward Type 

In this study, the ‘feed-forward’ type of NNs was used for the NNDM to ensure that the 

network outputs can be calculated as explicit functions of the inputs and the network 

weights (CWs and BWs). According to Lou et al.(2001), the use of this NN type can 

reduce the unnecessary complexity in determining the structure of NN models whilst the 

use of ‘recurrent’ type might affect the predictive capability of the NN models. As can 

be seen from Figure 3-6, signals travel in the same direction between layers in the ‘feed-

forward’ NN. 

C/ Activation functions 

Any activation function can be used for the neurons; however, the use of non-

differentiable functions such as the step function can be considered a serious limitation. 

This is because many simple approximation methods where gradient information (i.e. 

derivatives) plays an essential role are not utilized. Among continuous and 

differentiable functions, the non-linear sigmoid and hyperbolic tangent functions as 

shown in Figure 3-8 were often used in most NN models (Moselhi and Shehab-Eldeen 

2000; Lou et al. 2001; Kingston et al. 2006). This is because these non-linear functions 

allow non-linear mappings between input and output signals. Furthermore, according to 

Bishop (1995), the use of these two functions with a hidden layer can approximate any 

non-linear relationships in real world problems.  

In this study, the tangent function was chosen for the hidden neurons since this allows a 

flexible range of input signal values computable. The sigmoid function was used for 

output neurons since the values of output signal must be between [0, 1] for the 

classification rule of the NNDM. 
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Figure 3-8. Activation functions commonly used in NN models. 

D/ Number of hidden layers 

In this study, one hidden layer was basically adopted since several studies have shown 

that an NN with one hidden layer and the sigmoid and tangent activation functions is 

capable of  approximating most non-linear continuous function (Cattan and 

Mohammadi 1997; Zhao et al. 1998; Lou et al. 2001; Attalla and Hegazy 2003). 

E/ Number of hidden neurons 

The number of hidden neurons affects how well an NN is able to classify the data 

(Hassoun 1995). On one hand, an NN with too few hidden neurons is unable to learn 

sufficiently for making correct predictions. An NN with too many hidden neurons, on 

the other hand, can become a memory device and thus loses the generalization ability. 

These two situations are sometimes called under-fitting and over-fitting of NN models 

respectively.  

F/ Supervised Learning and Error Function 

NN is attractive because of its ability to learn and generalize like the human brain. In a 

similar way to how a person develops his knowledge, NN learns by training itself with a 

set of training data or calibration data. During the training process, the network weights 

(i.e. connection weights and bias weights) are adjusted. The adjustments of these 

weights are undertaken by a learning rule.  

Among several available learning rules such as supervised learning and unsupervised 

learning (Samarasinghe 2006), the supervised learning is the most commonly used 
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learning rule in many NN models (Alsugair and Al-Qudrah 1998; Zhao et al. 1998; 

Moselhi and Shehab-Eldeen 2000; Singh and Deo 2007) and was adopted in this study. 

In this supervised learning, a sample of training data is presented to the NN. The NN 

then learns by adjusting its weights constantly so that an error function between the 

predicted data and observed data is minimized. The mean square error (MSE) as given 

in Equation (3-22) was chosen for the error function in this study. 

2

1

1 ( )
N

i i
i

MSE predicted observed
N =

= −∑  (3-22) 

where: MSE is the error function. 

 N is the sample size. 

 i is count index. 

3.3.4.2 Training of NNDM 

Training of NNDM was aimed to determine the model parameters which are the number 

of hidden neurons and the network weights (i.e. connection weights and bias weights) in 

this study. MSE was used as the criterion in the training process. The problem of over-

fitting during the training process was considered by using the early stopping technique 

(Bishop 1995). The occurrence of local optimum (Gori and Tesi 1992) and the 

uncertainty of network weights (Kingston et al. 2006) are often associated with training 

of the NN models due to the complexity and the high-dimensionality of the parameter 

space. These two problems can adversely affect the training of NNDM, and hence the 

performance of NNDM.  

The number of hidden neurons was first determined using the back-propagation training 

method; the Levenberg-Marquartd algorithm (LMA) was employed and used by trail 

and error to determine the suitable number of hidden neurons. The trail and error 

approach had been often used to determine the suitable number of hidden neurons in 

many NN models (Moselhi and Shehab-Eldeen 2000; Lou et al. 2001; Mohammad and 

Guru 2005). Once the number of hidden neurons was determined, the NNDM was then 

trained by other two different techniques, namely, genetic algorithm (GA) and Bayesian 

MCMC method for addressing the problems of local optimum and weight uncertainty as 

identified in literature (Gori and Tesi 1992; Kingston et al. 2006). This is to ensure the 

best possible solutions are achieved.  



 77

A/ Early-stopping technique 

The goal of training NN is not to find a model that exactly fits the training data. Such a 

model often performs poorly on unseen or new data because instead of learning the true 

underlying function of data, it memorizes or over-fits the training data. As explained 

earlier, the ability to perform well on new pattern is known as the generalization ability 

of a NN. One commonly used approach to handle the generalization problem is to stop 

the training process earlier, before it over-learns the training data (Bishop 1995). This 

early stopping technique requires an extra data set which is called validation dataset. 

Note that the validation dataset is different with the train dataset (for training the 

NNDM) and the test dataset (for testing the NNDM) to ensure effective testing result. 

These three datasets are often randomly generated from sample data. Figure 3-9 shows a 

hypothetical illustration of the early stopping technique using the minimum MSE of the 

validation set. As can be seen from this figure, without early stopping the fitting error 

on the training dataset continues to decrease after each iteration. However, the fitting 

error on the validation dataset decreases until a point where it starts to increase. This is 

the point where training process should be stopped otherwise the NN will perform 

poorly on unseen data. 

Training set

Validation set
point

Early stopping

Iterations

MSE

 
Figure 3-9: Illustration of the early stopping technique 

B/ Trial and error approach for the number of hidden neurons 

The trial and error approach starts with a minimum number of hidden neurons and 

increases until the MSE on training and validation datasets show a clear trend. The 

relationship between MSE values and the number of hidden neurons is plotted so that 

the appropriate number can be selected. A typical curve is shown in Figure 3-10. 

Generally, the MSE of the training dataset is smaller than that of the validation dataset. 
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This is because the validation dataset is not used in the minimizing process of the MSE. 

Furthermore, as can be seen from this figure, the lowest MSE achieved with 9 hidden 

neurons does not necessarily means a good generalization (higher MSE of validation 

dataset). As a result, 12 hidden neurons appear to best compromise between the MSEs 

of the training and validation datasets. 

12090601512963
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Figure 3-10: Illustration of selection of number of hidden neurons 

C/ Back-propagation training using Levenberg-Marquartd algorithm 

The back-propagation (BP) training is the commonly used iterative search process 

which adjusts the weights from the output layer back to the input layer in each run until 

no further improvement in MSE value is found (Bishop 1995).  On one hand, gradient 

descent and conjugate gradient are among the slow convergence algorithms of the BP 

training, which were based on the steepest descent optimization using first-order 

derivatives. On the other hand, Gauss-Newton and Levenberg-Marquartd algorithms are 

among the fast convergence algorithms of the BP training which use second-order 

derivatives. In particular, the Levenberg-Marquartd algorithm (LMA) was designed for 

the error function using sum of square such as MSE (Bishop 1995) and LMA was used 

in many NN models (Attalla and Hegazy 2003; Najafi and Kulandaivel 2005; Singh and 

Deo 2007). Therefore, the BP using LMA was used to determine the number of hidden 

neurons and the network weights of the NNDM in this study. 

The LMA often starts with the given initial values of network weights and makes use of 

the Gauss-Newton method to update the network weights as given in Equation (3-23) 

(Masters 1995). When μ =0, the LMA becomes the Gauss-Newton method, and for a 

higher value ofμ , the LMA becomes the gradient descent algorithm. The μ in the LMA 
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is always automatically adjusted so that good convergence is ensured. This is achieved 

by successively reducing the value of μ  at each step until there is a reduction in the 

error function. In this way, the error function is always minimized in each iteration. 

1
1 ( ) ( )T

k k kμ −
+ = − +w w H I J ε w  (3-23) 

where: 1k+w and kw  are the network weights at iterations k+1 and k 

respectively 

 J is the Jacobian matrix that contains the first-order 

derivatives of the error function MSE with 

regards to network weights 

 H is the Hessian matrix that contains the second-

order derivatives of the error function MSE with 

regards to network weights 

 μ  is learning rate 

 I is the identity matrix, 

 ( )kε w  is the value of error function (MSE) with regards 

to network weights at time steps k. 

Although the LMA and other back-propagation algorithms (Samarasinghe 2006) would 

converge to a solution for almost any initial values of connection weights, the ‘good’ 

solution depends on the ‘properly’ given initial values. Since the ‘proper’ initial values 

are unknown, they are often randomly generated within a range. Furthermore, the error 

surface of neural network problems is reportedly non-convex and contains large number 

of local optima (Gori and Tesi 1992). As a result, the network weights determined by 

the LMA are considered uncertain with unknown ‘true’ optimum values. In other words, 

it is impossible to evaluate how close the estimated weights are to these true optimum 

weights. It is therefore important to look for weight estimation methods that can reduce 

the complexity but improve the generality and account for the uncertainty in estimating 

the weights. The genetic algorithm (GA) and Bayesian Markov chain Monte Carlo 

simulation are two such methods that were used in this study to address the problem of 

local optimum and uncertainty of network weights. 
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D/ Genetic Algorithm (GA) 

Genetic algorithm (GA) is a search algorithm that is based on the concepts of natural 

selection and natural genetics. GA is considered a directed ‘global’ search algorithm 

(Goldberg 1989; Ng and Perera 2003) that is especially useful for complex optimization 

processes where the number of parameters is large and the analytical solutions are 

difficult to obtain (Pham and Karaboga 2000). The use of GA in neural networks 

problems has proved efficient and continues to increase a rapid rate in many diverse 

areas (McInerney and Dhawan 1993; VanRooij et al. 1996; Kim et al. 2005b; Osman et 

al. 2005).  

The key differences between GA and other conventional optimization techniques such 

as gradient descent and Gauss-Newton are:  

• GA searches from a population of points and not from a single point 

• GA utilizes the information of the objective function without using the derivatives 

• GA uses probabilistic transition rules and not deterministic rules in updating new 

network weights 

GA was used as a competing technique (against the LMA and Bayesian MCMC 

simulation) for training of the NNDM in this study. The GA used in this study was 

based on the GA toolbox of MATLAB® which consists of three basic operations: (1) 

selection, (2) crossover and (3) mutation. The ultimate goal of using the above 

operations is to generate a population of weight vectors which contain the ‘best’ weight 

vector that has the optimum value of fitness function. The fitness function in this study 

was the MSE of training data as formulated in Equation (3-22) which can be minimized 

by the GA. A weight vector is a set of network weights and the use of weight vector is 

because the GA searches from a population instead from a single point (i.e. a set of 

network weights). One complete cycle of the operations is called a generation. In this 

study, the initial population was randomly chosen to ensure the diversity in the search 

space. 

The selection process normally chooses two weight vectors that have the lowest values 

of the error function from the current population and transfers them to next generation 

without processing. This ensures that the good weight vectors are inherited to the next 
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generation. This selection process also chooses some weight vectors for performing of 

genetics exchanges (i.e. crossover and mutation). This process can be achieved in many 

ways; however, the roulette wheel selection (Pham and Karaboga 2000) was used in this 

study because of its relative ease of implementation. Basically, this method of selection 

allows weight vectors with low values of error function to have a better chance of 

moving to the next generation and used in the genetics exchanges. These chosen weight 

vectors are called ‘parents’. 

The crossover process combines two parents to form a new offspring or a new weight 

vector in the next generation. It is carried out among pairs of weight vectors by 

swapping parts of their set sequences separated at a randomly chosen point, called the 

crossover point. The role of the crossover process is to generate new weight vectors that 

did not exist in the current population, so that the solution space is searched thoroughly. 

The ‘scattered’ method for crossover was selected in this study due to the ease of 

implementation. This method creates a random binary vector. It then selects the genes 

where the vector is a 1 from the first parent, and the genes where the vector is a 0 from 

the second parent, and combines the genes to form the child. 

The mutation process makes small random changes to a single parent or a weight vector 

to produce a new weight vector. Note that, the mutation process and crossover process 

of GA toolbox are performed independently with each other. The mutation process 

provides genetic diversity for the next generation, and thus enables the GA to search a 

broader space. Among several mutation methods, the Gaussian method (Pham and 

Karaboga 2000) was chosen in this study due to the ease of implementation. This 

method adds a random number to the selected weight vector and this random number is 

taken from a Gaussian distribution centered on zero with the arbitrarily chosen variance. 

To effectively carry out these operations in GA, the population size and the crossover 

fraction are two parameters which should be properly chosen. A too small population 

size may cause a poor search performance and a too large population size increases the 

computing time. The crossover fraction is the percentage of offsprings that come from 

the crossover process and the remaining percentage represents for offsprings that come 

from the mutation process. For example, if the population size is 20, the crossover 

fraction is 0.8 and the inherited offsprings are 2, in the new generation, the number of 

children created from crossover is 0.8 x 18 = 14.4 (or rounded to 14). The number of 
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children created from the mutation process is 18 – 14 = 4. Without mutation offsrpings, 

the search process of GA may result in poor performance since the diversity in the 

population is not utilized. Suitable values for the crossover fraction and for the 

population size were therefore investigated using a trial and error procedure in this 

study.  

E/ Bayesian MCMC 

The Bayesian framework for estimating weights of an NN was first introduced by 

MacKay (1992)  and Neal (1992). In their approach, weights were treated as random 

numbers whose posterior distribution depends on observed data and prior knowledge 

according to Bayesian theory. Later, Kingston et al. (2006) implemented this approach 

using both simulated data and real data for probabilistic knowledge extraction from the 

network weights of an NN model in order to reveal the range of relationships between 

input and output data. This study adopted the Bayesian MCMC approach by Kingston et 

al. (2006) as a competing method for training of the NNDM. 

Using the Bayesian theorem, the posterior distribution Q(W|Y,X) of network weights 

can be extracted from training data as shown in Equation (3-24).  

( | ) ( )( | )
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Q QQ
Q

=
Y W WW Y

Y
 (3-24) 

where: W is a vector of network weights 

 Y is a set of N observations of pipe condition { }ny  

 Q(W) is the prior knowledge about W  

 Q(Y) is a normalization factor 

 Q(Y|W) is the likelihood function 

 Q(W|Y) is the posterior distribution of network weights 

By assuming a Gaussian noise model with the same variance for each observation with 

regard to the predicted outputs, the likelihood function is expressed in Equation (3-25). 
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where: ( , )nf X W  is the predicted pipe condition from the NNDM 
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 2σ  is the variance of the Gaussian distribution 

The posterior distribution Q(W|Y) of the network weights can be estimated from the 

likelihood function Q(Y|W) and the prior knowledge Q(W), since the normalization 

factor Q(Y)  is considered as a scale factor and can be cancelled out of the estimation of 

Q(W|Y). Furthermore, the prior knowledge Q(W) was assumed to follow a uniform 

distribution, meaning the Q(W) can be cancelled out of the estimation of Q(W). If a 

new set of training data can be obtained in the future, the posterior distribution of 

network weights obtained in this study can become the prior knowledge. Finally, the 

Q(W|Y) can be estimated using the Q(Y|W). 

If it is possible to sample the network weights from their posterior distribution as in 

Equation (3-25), the values of the network weights could be determined from their 

sample data with a confidence limit. In other words, the uncertainty of the network 

weights can be accounted for by specifying the confident ranges that contain the ‘best’ 

values.  

The Metropolis-Hastings algorithm (MHA) as described in Section 3.3.1.4, a member of 

Bayesian Markov Chain Monte Carlo (MCMC) simulation methods was also used for 

sampling the posterior distribution Q(W|Y). The mean values and the confident ranges 

(or 95% probability limit) of the network weights can be computed from the sample 

data. The confident ranges of the network weights were then used to compute the 

network outputs given the inputs from test dataset. Therefore, each predicted output 

value was expressed by an interval values using 95% probability limit. 

3.3.5 Probabilistic Neural Network Deterioration Model (PNNDM) 

Probabilistic neural network (PNN) was originally developed by Specht (1990) and is 

considered a hybrid technique that use a Bayesian classifier (Gelman et al. 1995) and a 

Parzen-Cacoullos theory (Cacoullos 1966) on an NN platform to produce the 

probability distribution of each pattern or class. Both Bayesian classifier and Parzen-

Cacoullos theory are considered statistical technique. PNN were successfully applied on 

some infrastructure modellings (Sinha and Pandey 2002; Kim et al. 2005a). Based on 

the concept of classifying deterioration patterns of stormwater pipes used by the NNDM 
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in Section 3.3.4, the PNNDM in this study used the PNN to classify a pipe into one 

three possible conditions.  

3.3.5.1 Bayesian Classifier 

The Bayesian classifier (Wasserman 1993), as shown in Equation (3-26), was used to 

classify a pipe into one of the three possible pipe conditions. The purpose of Equation 

(3-26) is to minimize the expected risk in classification (Kim et al. 2005). From the 

Bayesian theorem, the product of ch  and ( )cf X is a posterior probability that allows the 

updating of existing knowledge ch  with new information ( )cf X . The existing 

knowledge ch  could be obtained from a previous sample or expert opinion. The loss cl  

which is associated with misclassification can be interpreted with following examples. 

When a pipe in condition 1 is misclassified into condition 3, the loss is just an 

inspection cost. However, when a pipe in condition 3 is misclassified into condition 1, 

the loss can be substantially higher. This is because if no inspection or repair is done 

due to pipe is assumed in good condition, the pipe then fails and incurs repair cost and 

damage cost. 

In this study, the loss cl  was assumed identical between the classes since no data for 

calculating risk are available. This means that all pipes are treated equally. Furthermore, 

the prior probability ch  of occurrence in the class c was assumed to a follow uniform 

distribution which means that a pipe is classified into condition c if its probability 

distribution in that class has the highest value compared with those in other classes. This 

is because the effects of cl and ch  were cancelled by the above assumptions.  

( )  if ( ) ( ) [1,3]c c c j j jD c l h f l h f j= ≥ ∀ ∈X X X  (3-26) 

where: X is a K-dimensional vector representing a pipe with K 

contributing factors 

 D(X) is an image of X in a set of three classes 1 2 3,   and C C C  

 cl  is the loss associated with misclassifying a vector of the 

class c into other classes 

 ch  is the prior probability of occurrence in the class c 

 ( )cf X  is the probability distribution function for class c 
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3.3.5.2 Parzen-Cacoullos method for estimating PDF 

As can be seen in the previous section, the challenge to the Bayesian classifier is the 

fact that the probability distribution function (PDF) ( )cf X is not usually known. 

Therefore, it is necessary to derive an estimate of ( )cf X  from the training data. This 

can be done by using the Parzen-Cacoullos method (Kim et al. 2005a). The univariate 

case of PDF was first developed by Parzen and then was extended to the multivariate 

case by Cacoullos. This method is given in Equation (3-27). 

11 2

1( )
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Nσ σ σ σ=
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where: X is a K-dimensional vector representing a pipe with K 

contributing factors 

 iσ  is standard deviation of a contributing factor i 

 N  is the number of training data (i.e. number of pipes 

with known condition and contributing factors) 

 ( )f X  is the probability distribution function (PDF) of X 

 W  is (kernel) density function 

This study assumed that all smoothing parameters are identical to a smoothing 

parameterσ and a bell-shaped Gaussian function is used for W. Equation (3-27) then 

reduces to Equation (3-28). The meaning of the smoothing parameter σ in the case of 

the Gauss kernel, is that the Gaussian curve is sharply peaked with σ smaller than one, 

and tends to flatten out with increasing σ (Wasserman 1993).  
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where: 2|| ||i−X X  is the Euclidean distance from the vector X of the 

query pipe to a training vector iX  

Equation (3-28) was then used to compute the PDF ( )cf X  of a pipe represented by a 

vector X of K-contributing factors in class c given a sample of training data { },i iYX  

with inspected (or known) pipe condition and contributing factors. iX is called a 
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training vector of K-contributing factors. The Bayesian classifier was then applied to 

classify or predict the pipe into one of the three possible conditions. 

3.3.5.3 Topology of the PNNDM 

An NN platform was used to implement the Bayesian classifier and the Parzen-

Cacoullos method by Specht (1990), which was called PNN. The PNN is composed of 

many connected processing units or artificial neurons which are laid in four successive 

and fixed layers, namely input layer, pattern layer, summation layer and output layer as 

shown in Figure 3-11. For classifying a query pipe into one of the three conditions, the 

PNNDM computes the posterior probabilities of the query pipe to each of the condition 

classes. The condition class that the query pipe has the highest posterior probability is 

then assigned to the query pipe. The functions of four layers in the PNNDM are 

described below. 
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Figure 3-11: Topology of PNNDM 

A/ Input layer 

In the input layer, the number of neurons is equal to the number of input factors. This 

layer does not perform any computations and simply distributes the query pipe with a 

vector of contributing factors to the neurons in the pattern layer. 

B/ Pattern layer 

Suppose that there are N training data in which 1N , 2N and 3N  ( 1 2 3N N N N+ + = ) 

training data are for classes 1C , 2C  and 3C  respectively. The total number of neurons in 
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this layer is equal to N and these neurons are divided into three classes with 

corresponding numbers of neurons 1N , 2N and 3N as shown by three sets of neurons of 

different shapes in Figure 3-11. The neurons with square shape are for training vectors 

of condition 1. The neurons with circular shape are for training vectors of condition 2. 

The neurons with elliptical shape are for training vectors of condition 3. This means that 

each neuron in a class was designed to hold a training vector of contributing factors. 

When the incoming signal of the query pipe is presented, these neurons compute the 

exponential part of the Equation (3-28) (i.e.
2

2

|| ||exp
2

i

σ
⎛ ⎞−
⎜ ⎟
⎝ ⎠

X X ) and transfer the values to 

the summation layer 

C/ Summation Layer 

The summation layer contains one neuron for each class. The number of neurons in the 

summation layer is equal to the number of classes. This layer computes the posterior 

probabilities of a query pipe being into one of the three possible conditions from 

Equation (3-28) on the incoming signals. The computed probabilities are then sent to the 

output layer. 

D/ Output Layer 

There is one neuron in this layer. The ‘Arg Max’ activation function of this neuron 

(Kim et al. 2005) simply compares the incoming probabilities and assigns the query 

pipe into the class that has the highest posterior probability.  

3.3.5.4 Training PNNDM 

Training of the PNNDM was actually to store the training data in the system by 

assigning their values into the neurons in the pattern layers. However, there is still one 

parameter, the smoothing parameterσ of the Gaussian kernel, which needs to be 

estimated. This can be done by trial and error search so that the MSE of training data 

has the lowest value, or equivalently, the number of correct predictions on the training 

data has the highest possible value. A correct prediction is counted if the predicted pipe 

condition is same as the known pipe condition in the training data. The training of 
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PNNDM in this study was done by searching for the maximum number of correct 

predictions.  

3.4 Assessing Performance of Deterioration Models 

Testing or assessing models is to quantify the model error which relates to the 

differences between the predicted values and the observed values when a test data set 

was presented to the model. To effectively test the model, the test dataset should not be 

used in calibrating or training of the model.  One common method to create such a test 

dataset from a sample of data is to randomly split the sample data into the calibration (or 

train) dataset and the test dataset. This strategy was often used for testing infrastructure 

deterioration models (Micevski et al. 2002; Baik et al. 2006).  

This study adopted two scalar performance measures, namely, false negative rate and 

overall success rate derived from the confusion matrix (Hajmeer and Basheer 2003) and 

the goodness-of-fit test (Micevski et al. 2002; Baik et al. 2006) for assessing the 

performance of the developed deterioration models on a test dataset.  

3.4.1  Confusion Matrix 

There are always four possible situations between a predicted case and an observed 

case: (1) true negative (TN) when the model correctly identifies a negative case (i.e. 

pipe in poor condition), (2) true positive (TP) when the model correctly identifies a 

positive case (i.e. pipe in good condition), (3) false negative (FN) when the model 

wrongly identifies a pipe actually in poor condition as in good condition, and (4) false 

positive (FP) when the model wrongly identifies a pipe actually in good condition as in 

poor condition. It is obvious that the consequence of an FP case is just the inspection 

cost. On the other hand, the consequence of an FN case is far more severe since when 

that pipe fails, all costs including repair, penalty and disruption should be added. In this 

study, the positive case or the pipe in good condition is defined as the pipe is either in 

condition 1 or 2. If the pipe condition is 3, it is defined as a negative case. 

These four possible situations can be used to assess the predictive performance of a 

deterioration model by using the confusion matrix or the contingency table (Johnson 

and Wichern 2002) on a test dataset as given in Table 3-2. For example, the FN21 in 

this table means the number of pipes in the observed condition 2 which were incorrectly 
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predicted as the condition 1. Furthermore, the total number of pipes which were 

observed in condition 1, 2 and 3 are O1, O2 and O3 respectively and the total number of 

pipes which was predicted in condition 1, 2 and 3 are P1, P2 and P3 respectively. 

 Table 3-2: Confusion matrix 

Predicted condition 

 1 

(good) 

2  

(fair) 

3 

(poor) 

Total 

1 (good) TP11 FP12 FP13 O1 

2 (fair) FP21 TP22 FP23 O2 
Observed 

condition 
3 (poor) FN31 FN32 TN33 O3 

Total P1 P2 P3  

The overall success rate (OSR) and false negative rate (FNR) can be used to assess the 

predictive performance of the four deterioration models (i.e. MDDM, OPDM, NNDM 

and PNNDM) which were developed to predict the condition changes of individual 

pipes in this study. The OSR and FNR cannot be used for assessing the Markov model 

since this model was not able to predict the condition changes of a particular pipe due to 

the lack of longitudinal data. The OSR and FNR can be computed from the confusion 

matrix using Equations (3-29) and (3-30) respectively.  

11 22 33

1 2 3

TP TP TNOSR
O O O
+ +

=
+ +

 (3-29) 

31 32

31 32 33

FN FNFNR
FN FN TN

+
=

+ +
 (3-30) 

The OSR indicates how well the deterioration models predict the condition of individual 

pipes for all cases. The FNR indicates the risk associated with the use of the models. It 

is obvious that a ‘good’ deterioration model requires high OSR and low FNR.  

3.4.2  Goodness-of-Fit Test 

The goodness-of-fit test using Pearson chi-squared test statistic ( 2χ ) is based on a null 

hypothesis that the observed frequency is matched with the estimated (or predicted) 

frequency (Micevski et al. 2002). This test can be used for the five deterioration models 

developed in this study. It is often required a 95% or 99% confidence level to conclude 
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the fitness of a model (Montgomery et al. 2004). The test statistic 2
Mχ  for the 

deterioration models in this study can be calculated using equation (3-31). 

∑
=

−
=

3

1

2
2 )(

c c

cc
M P

PO
χ  (3-31) 

where: cO  is the observed number of pipes in condition c  

 cP  is the predicted number of pipes in condition c  

If the test statistic 2
Mχ is larger than the critical 2

0.05,2χ (95% confidence level and 2 degree 

of freedom), the hypothesis is rejected. The goodness-of-fit test shows how confidently 

a model fit with a set of observations. To ensure the accuracy of 2
Mχ , one rule of thumb 

should be enforced. That is the predicted number of pipes in any condition c must be at 

least 5 (Montgomery et al. 2004).  

For the Markov model, test statistic 2
Mχ  can be computed using the predicted 

proportions of pipe 1 2 3,   and P P P  in each condition over a time interval (by Equation (3-

2) in Section 3.3.1.3) and the computed proportions of pipes observed 1 2 3,   and O O O  in 

condition 1, 2 and 3 from the test dataset. For the remaining four deterioration models, 

the test statistic 2
Mχ  can be computed by using 1 2 3,   and P P P  (which are the column 

sums) and 1 2 3,   and O O O  (which are the row sums) in Table 3-2. 

3.5 Identification of Significant Factors 

Identification of significant factors to the underlying process is one of the important 

tasks in the construction of engineering models. This is also the case with developed 

deterioration models of stormwater pipes. There are many methods that can be used for 

carrying out this task (Saltelli et al. 2000), which are classified into local and global 

sensitivity analysis and. These methods were discussed in Section 2.4.5. 

In this study, the most commonly used methods were used for identifying significant 

factors for both structural and hydraulic deterioration models. They are forward 

stepwise method (Nakashima et al. 1997; Leung and Tran 2000; Barendregt and Bio 

2003) for the MDDM, Wald test (Madanat et al. 1995; Baik et al. 2006) for the OPDM, 

connection weight analysis (Olden et al. 2004) for the NNDM and backward stepwise 
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method (Emery Coppola et al. 2003; Ha and Stenstrom 2003) for the PNNDM. 

However, since the Markov model uses only one input factor (i.e. pipe age), the 

identification of significant factors is not applied to the Markov model. 

3.5.1 Forward Stepwise Method 

The forward stepwise method involves entering the contributing factors into the MDDM 

one at a time and assessing its classifying power. The classifying power is the 

proportion of variance in the output of the MDDM that may be attributed to the factor of 

interest. The classifying power can be described by the test statistic Fratio, which can be 

computed using Equation (3-32) (Tabachnick and Fidell 2001). The Fratio is assumed to 

follow an F-distribution and thus the P-value of the Fratio can be computed. If the P-

value is smaller than 0.05 (equivalent to 95% confidence level), the factor is considered 

significant (Tabachnick and Fidell 2001). Although it seems complicated, the 

computing process is obtainable via computer software such as SPSS® and Stata®. 

regression

regression

regression constant

residual

( )ratio

SSE
df

F SSE SSE
df

=
+

 (3-32) 

where: regressionSSE  is sum of square errors due to contributing factors. 

 constantSSE  is sum of square errors using only a constant value. 

 regressiondf  is degree of freedom equal to the number of is 

contributing factors. 

 residualdf  is degree of freedom equal to the sample size minus 

the number of contributing factors and the constant 

value. 

3.5.2 Wald Test 

For the OPDM, the significant factors can be identified using the Wald test in which a Z 

statistics is calculated using the ratio of estimated mean value to standard error 

(Tabachnick and Fidell 2001). The square of this Z statistic yields the Wald statistic, 

which follows a Chi-squared distribution. By using a 95% confidence level, the 

contributing factors with the P-value of the Wald statistic less than 0.05 are considered 

significant factors to the output of the OPDM. 
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3.5.3 Backward Stepwise Method 

This method (Tabachnick and Fidell 2001) involves using all input factors and 

recording the predictive performance of the PNNDM on the test dataset as a reference 

predictive performance. Then, each input factor is subsequently withdrawn from the 

PNNDM and the predictive performance of the PNNDM with the remaining factors is 

recorded which indicates the influence of that particular factor to the PNNDM. The 

ranking of input factors is based on the largest percentage influences which are the 

relative differences between the predictive performances of individual input factors with 

the reference predictive performance. 

3.5.4 Connection weight analysis 

Olden et al. (2004) introduced the connection weight analysis (CWA) for identifying 

the significant inputs to the output with one neuron of an NN model. The magnitude and 

direction of the connection weights can decide how much each input variable affects the 

output of an NN model (Olden and Jackson, 2002). Input variables with large 

connection weights play greater roles in transferring signals to output neurons and thus 

can be considered more important in the operation of NN models. Positive and negative 

connection weights, respectively, increase and decrease the value of predicted response 

at the hidden or output neurons and therefore affect the final outcomes. Since input 

factors are measured in different scales, they must be standardized to the same range 

such as [0, 1] for proper comparison of importance.  

Table 3-3 shows illustrated steps of the CWA which was used in this study for 

computing the overall significance measure of the input factor j to the NNDM. Since the 

number of hidden neurons in the NNDM can only be determined upon a case study, for 

illustration purposes, it is assumed that the NNDM had three hidden neurons. 

Furthermore, it is proposed in this study that the overall significance measure (OZc) of 

the factor j is the average of three local significance measures (Zj,c) which can be 

computed according to the original CWA developed by Olden et al. (2004). Then, the 

ranking from the most to least significant factors can be established by sorting the 

overall significance measure (OZc) of each factor in a descending order. 
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Table 3-3: Computing steps to measure overall significance of an input factor in 

the NNDM (example with 3 hidden neurons) 

Hidden neurons Step Factor Xj 

1 2 3 

1 Connection weights between the input factor 

Xj and hidden neurons 

A1 A2 A3 

2 Connection weights between hidden neurons 

and the output neuron c 

B1 B2 B3 

3 Local significance measure Zj,c of input factor 

Xj to the output neuron c 

3

,
1

*j c i i
i

Z A B
=

= ∑  

4 Overall significance measure OZc of input 

factor Xj to the NNDM model (proposed step 

in this study) 

3

,
1

1 ( )
3j j c

c
OZ abs Z

=

= ∑  

 

3.6 Summary 

The structural and hydraulic deterioration of stormwater pipes have been the major 

cause for the interrupted service of stromwater drainge systems. However, maintaining 

the intended performance of stormwater pipes is not an easy task because of the limited 

budget and the massive lengths of pipes. The need for deterioration models, which can 

predict current and future condition of pipes, is intensifying. This is the primary aim of 

this study. Once the models are developed, they can be used to identify the significant 

factors that affect the model output and hence the deterioration process of stormwater 

pipes. 

The ideal deterioration model (IDM) was first considered using assumed curves for both 

structural and hydraulic deterioration of stormwater pipes. The IDM defines each pipe 

by a different deterioration curve because pipes in reality deteriorate differently from 

one to another due to many contributing factors. From this IDM, the estimation of the 

condition changes over time for the pipe population and the estimation of the condition 

changes overtime for individual pipes are the model outputs for the development of 

practical deterioration models. A list of potential contributing factors was also 

mentioned. 
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Based on the IDM, conclusions in Chapter 2 and the availability of the snapshot data, 

five practical deterioration models including Markov model, multiple discriminant 

deterioration model (MDDM), ordered probit deterioration model (OPDM), neural 

network deterioration model (NNDM) and probabilistic neural network deterioration 

model (PNNDM) were developed.  The Markov model, MDDM and OPDM are 

considered the statistical deterioration models while the NNDM and PNNDM are 

considered the artificial intelligence deterioration models. The predictive performances 

of these models were compared on a case study (detailed in Chapter 4) so that the best 

possible deterioration model can be identified. These five deterioration models used 

contributing factors as model inputs for predicting pipe conditions. Furthermore, they 

are considered generic models because they can be applied to both structural and 

hydraulic deterioration of stormwater pipes in this study and can also be used for 

sewers.  

The Markov model was developed to predict the condition changes of pipe population 

and it cannot be used to predict the condition changes of individual pipes due to the lack 

of regular (or longitudinal) data. The four remaining deterioration models were 

developed to predict the condition changes of individual pipes. They can also be used 

for predicting the condition changes of pipe population by summing up the predicted 

conditions of individual pipes and computing the proportions.  

Training or calibration of the deterioration models was done using trial and error 

approaches and advanced optimization methods. They are listed below:  

• For the Markov model, the transition probabilities were the model parameters, 

which can be estimated by two different techniques namely, the Bayesian MCMC 

simulation using Metropolis-Hastings algorithm (MHA) and a non-linear 

optimization technique. 

• For the MDDM, the factor coefficients are the model parameters, which can be 

estimated by maximizing Fisher’s criterion.  

• For the OPDM, the factor coefficients and two thresholds are the model 

parameters, which can be estimated by two different techniques namely, 
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maximum likelihood (ML) and the Bayesian MCMC simulation using Gibbs 

sampler. 

• For the NNDM, the number of hidden neurons and the network weights are the 

model parameters. They can be estimated by three different methods namely, 

Back-propagation using Levenberg-Marquartd (LMA), Genetic algorithm (GA) 

and the Bayesian MCMC simulation using MHA. Furthermore, the effects of the 

population size and the crossover fraction on the performance of the GA also need 

to be investigated. 

• For the PNNDM, the smoothing parameter was the only model parameter, which 

can be estimated by the trial and error approach. 

The predictive performances of the five developed deterioration models can be assessed 

by the goodness-of-fit test using Pearson Chi-squared test statistic and two scalar 

performance measures namely, the overall success rate (OSR) and the false negative 

rate (FNR) which can be derived from the confusion matrix. 

The significant factors that affect the structural and hydraulic deterioration can be 

identified by using several analysis methods on these deterioration models (except the 

Markov model). The forward stepwise method, the Wald-test, the connection weight 

analysis (CWA) and the backward stepwise method can be used for the MDDM, 

OPDM, NNDM and PNNDM respectively. The identification of significant factors is 

not applied to the Markov model since the Markov model uses only one input factor 

(i.e. pipe age). 

One application of this study is to infer or extrapolate the condition of those pipes that 

were not CCTV-inspected. Therefore, it is better to have a representative sample data. 

This means the oldest and newest pipes in the network should be in the training data. 

For testing future condition (i.e. beyond maximum age in the data), a repeated 

inspection is recommended. Unfortunately, such repeated data are not available for 

proper testing as can be seen in the Chapter 4 (case study). Except for the structural and 

hydraulic condition, the remaining contributing factors such as pipe size and pipe depth 

were assumed to be time-independent due to limited data. When applied, the predictive 

result must be checked by field experts. 
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CHAPTER 4   CASE STUDY 

 

4.1 Overview 

This chapter presents the application of deterioration models developed in Chapter 3 of 

this thesis to a case study with a sample of real data collected from a stormwater pipe 

system in City of Greater Dandenong, Australia. Section 4.2 presents a description of 

the case study. Section 4.3 explores the structures of data and the relationships between 

contributing factors and between contributing factors with hydraulic and structural 

conditions by conducting standard statistical analysis on the sample data. Sections 4.4 

and 4.5 calibrated and tested the developed structural and hydraulic deterioration 

models of stormwater pipes using the supplied sample data of stormwater pipes. The 

significant factors were also identified in these two sections. Section 4.6 discusses the 

findings of the Sections 4.4 and 4.5 in comparisons with the results of Section 4.3 and 

the literature. Section 4.7 presents a summary of this chapter. 

4.2 Case Study Description 

4.2.1 Data Source 

This case study used a data set supplied by City of Greater Dandenong (CGD) in 

Victoria. CGD is responsible for 806 kms of a stormwater pipe system in which there 

are 801 kms of buried pipes and 4 kms of culverts of various sizes (Burkhardt and 

Hananto 2004). In addition to the underground system, there are also over 80 kms of 

open drains which are generally located in the rural portion of the municipality. There 

are over 27,800 side entry pits and approximately the same number of easement pits. 

The underground pipes range in diameter from 150 mm to 2100 mm, with the majority 

being between 150 mm to 450 mm. The location of CGD with respect to Melbourne 

metropolitan area is shown in Figure 4-1, while a typical suburb in CGD (where 

stormwater pipes run through) is shown in Figure 4-2.  
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Figure 4-1: Location of CGD 

 

 
Figure 4-2: An aerial photograph of CGD’s suburb and stormwater pipes (dark 

lines) 

The age profile of the underground stormwater pipe system is given in Figure 4-3. It can 

be seen from this figure that nearly 67% of the system has been in service for more than 

20 years and nearly 23% of the system for more than 40 years. The replacement value 

of the stormwater pipe system at 2004 is $84.5 million. The CGD’s annual budget for 

its stormwater pipe system is approximately $650,000 representing an expenditure of 

only 0.6% of the existing replacement value. Until 1999, there had been no 

comprehensive physical or visual inspection of any part of the stormwater pipe system 

      City of Greater Dandenong 
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and therefore there was no basis on which to prepare or implement a proactive 

maintenance and rehabilitation program.  
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Figure 4-3: Age profile of pipes in the system 

4.2.2  City Improvement Program 

The City Improvement Program as part of Local Government Act (1993) is a continuing 

process used to identify and prioritise municipal public capital works within cities in 

Victoria. This process significantly assisted CGD to make investment decisions by 

targeting resources and funds to areas of greatest needs. The City Improvement Program 

plans projects for the next five years and the program is reviewed annually to ensure 

priorities are current.  

Funding was allocated from the City Improvement Program for each of five consecutive 

years starting from 1999-2003 to conduct CCTV inspection programs to monitor and 

assess the internal condition of the stormwater pipe system. The inspection schedule 

was set out as given in Table 4-1 which shows that the older pipes were the priority.  

Table 4-1: CCTV inspection scheduling 

Age Group % to be inspected Pipes to be inspected over 5 years 

>45 years 20% per year All pipes  

30-45 years 10% per year Sample pipes in this group 

15-30 years 5% per year Identified problem pipes 
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This means the collected data set was biased and thus is less valid for a research study. 

In order to support the research work in this study, CGD has used additional funding to 

conduct further CCTV inspections between 2006 and 2007. In this additional inspection 

program, a set of 200 pipes were randomly selected throughout the whole catchment of 

CGD, which were not previously inspected. 

4.2.3  Description of Data Set 

4.2.3.1 Sample Size 

As mentioned in Section 4.2.2, there were two inspection programs with the first one in 

between 1999-2003 (considered biased) and the second one in between 2006-2007 (less 

biased). Both programs resulted in 695 pipes in which 495 pipes were from the first 

program and 200 pipes were from the second program. Each pipe in the sample was 

described by structural and hydraulic conditions together with contributing factors such 

as pipe size, pipe age and pipe location (to be detailed in Section 4.2.3.3). However, 

only a smaller data set of 417 data points, representing a sample size of 2.2% of the pipe 

population, was valid for analysis and modelling due to the following reasons.  

• One third of inspections were abandoned (or not completed) because of 

obstructions, root masses, high water level and defective connections, which 

blocked the CCTV camera.  

• A number of pipes had missing contributing factors.  

• Some inconsistent data and outliers were found because three different contractors 

were employed for CCTV inspections.   

4.2.3.2 Inspected Condition of Pipes 

The Sewer Inspection Reporting Code of Australia (WSAA 2002) was used for grading 

deterioration condition of the inspected pipes. The structural and hydraulic conditions of 

each pipe in the data set were provided by CGD and the condition takes the value 

between 1-3 with one being perfect, two being fair and three being poor.   
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A/ Structural Condition 

The distribution of structural conditions of inspected pipes in the supplied dataset is 

shown in Figure 4-4. It can be seen that the majority (67%) of pipes are in condition 

state 3 while there is only 7.7% of pipes are in condition state 2.  
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Figure 4-4: Distribution of structural conditions in the sample 

B/ Hydraulic Condition 

The distribution of hydraulic conditions of inspected pipes in the supplied dataset is 

shown in Figure 4-5. It can be seen that an approximately equal distribution of three 

pipe conditions across the sample data. This may indicate that the average rate of 

hydraulic deterioration seems to be slower than that of the structural deterioration. 
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Figure 4-5: Distribution of hydraulic conditions in the sample 
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4.2.3.3 Contributing Factors 

Each pipe in the dataset also has the following contributing factors: pipe material, pipe 

size, construction year (or pipe age), pipe depth, pipe slope, pipe location and tree 

count. However, all pipes in the data set are of reinforced concrete type (i.e. pipe 

material). The literature suggested two other potential factors should be considered with 

respect to pipe deterioration, namely, soil type (WRC 1983) and climatic conditions 

(Hahn et al. 2002), since these factors may affect the growth of tree roots and soil 

movement, which could eventually contribute to the structural and hydraulic 

deterioration. Hence, soil type and Thornthwaite Moisture Index (TMI), which is a 

representative of climatic conditions, were added into the list of pipe factors by inferring 

them from soil maps of Victoria and pipe depth respectively.  

For contributing factors with continuous values such as pipe size and pipe depth, the 

distribution of the factor value is of interest because it can be used for simulation study 

and generation of artificial data. Therefore, the popular normal distribution curve is 

shown on histogram of each factor for comparing. Due to limited data, the distribution 

found can only be used as a reference. 

A/ Pipe Size 

Pipe sizes were collected from the design drawings which showed the nominal size (or 

diameter). The pipe size range is 225 – 1950 mm; the distribution of pipe size is shown 

in Figure 4-6. As can be seen from this figure, the distribution of pipe size appears not 

to be of normal distribution with a peak frequency of 11% at size 300 mm. 

 
Figure 4-6: Distribution of pipe size (mm) 

Mean      = 700 mm 

Std. Dev. = 335.7 mm 
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B/ Pipe Age 

The pipe age was computed by referring the construction year (collected from the 

construction documents) to the years of inspection. The age range is 0 – 65 with mean 

age of 38.3 and standard deviation of 0.8. The distribution of pipe age is shown in 

Figure 4-7. As can be seen from this figure, the distribution of pipe age does not appear 

to be normal distribution. 

 
Figure 4-7: Distribution of pipe age (years) 

 C/ Pipe Depth 

The pipe depth represents the distance from the pipe crown to the ground surface and 

was collected from the construction drawings since the records of actually installed 

depths were not available. The depth range is 0 - 8.99 m; the distribution of pipe depth 

is shown in Figure 4-8.  

 
Figure 4-8: Distribution of pipe depth (m) 

Mean      = 38.3 years 

Std. Dev. = 8.1 

Mean      = 1.6 m 

Std. Dev. = 0.7 m 
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As can be seen from this figure, the distribution of this factor can be approximated with 

a normal distribution. A mean depth value of 1.6 m and a standard deviation value of 

0.8 m indicate that pipes are not deeply buried and hence, the effects of load and tree 

roots must be considered in the development of deterioration models. 

D/ Pipe Slope 

The pipe slope was computed for each pipe by considering pipe invert levels and pipe 

length from construction drawings as the records of actually installed slopes were not 

available. The slope range is 0 - 22.9 % and a slope of 0 % means the pipe is horizontal. 

The histogram of pipe slope is shown in Figure 4-9, which shows that the distribution of 

the pipe slope does not appear to be normal distribution.  

 

Figure 4-9: Distribution of pipe slope (%) 

 E/ Tree-Count 

The tree-count represents the number of trees found within 3 meters on either side of the 

pipe and thus shows the likelihood of tree-root attack. The tree-count was collected 

using the satellite photographs in 2005. The histogram of tree-count is shown in Figure 

4-10, which shows that the distribution of tree-count appears not to follow a normal 

distribution. 

Mean      = 1.5% 

Std. Dev. = 2.3 
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Figure 4-10: Distribution of tree-count 

F/ Pipe Location 

The pipe location was defined in terms of the following four categories: under easement 

(i.e. under private properties), under road, under nature strip and under reserve (e.g. 

park, protected area). The pipe location information was collected and recorded during 

the CCTV inspection. The distribution between the four categories in the sample is 

shown in Figure 4-11. It can be seen from this figure that nearly 40% of pipes in CGD 

appears to be under roads, where the structural deterioration due to traffic load is more 

likely to be dominant.  The remaining pipes are either under easement, nature strip or 

reserve which means that there are possible tree roots going into pipes. 

 
Figure 4-11: Distribution of pipe location  

Mean      = 1.9 

Std. Dev. = 2.6 

1: Under easement 
2: Under road 
3: Under nature strip 
4: Under reserve 
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G/ Soil Type 

Soil type is classified according to four types of soil layers (i.e. dark grey sand, light 

grey sand, clay and mix) which were found from soil maps of Victoria and these soil 

layers were identified by distance to the surface.  The layer of dark grey sand was 

defined for the depths between 0 - 0.3 m; the layer of light grey sand was defined for the 

depths between 0.3 - 0.5 m. The layer of clay was defined for the depths between 0.5 -

1.5 m and beyond that was the layer of mixed soil types.  

The distribution of different soil layers in the supplied dataset is shown in Figure 4-12. 

It can be seen from this figure that the layer of clay soil (44%) and the layer of mix soil 

(54%) were dominant, while the layers of sandy soil (type 1 and 2) were rare in CGD. 

This high percentage of the clay soil layer presented a high risk environment for 

structural condition and a low risk for hydraulic condition since clay soil may cause 

unstable bedding but reduce the development of tree root and deposits (Bashir 2000). 

 
Figure 4-12: Distribution of soil type 

H/ TMI 

The Thornwaite Moisture Index (TMI) is a climatic classification that categorizes the 

soil into wet and dry layers according to depth (McManus et al. 2004). According to 

McManus et al. (2004), the six layers of different TMI in Victoria were wettest 

(depth<1.5m), wetter (1.5 - 1.8 m), wet (1.8 - 2.3 m), dry (2.3 - 3.0 m), drier (3.0 - 3.5 

m) and driest (depth>4m).  

1: dark grey sand 
2: light grey sand 
3: clay 
4: mix 
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The distribution of TMI layers in the supplied dataset is shown in Figure 4-13, 

respectively. It can be seen from this figure that the majority (85%) of pipes works in 

wet condition which could favor the hydraulic deterioration due to tree root intrusion. 

 
Figure 4-13: Distribution of TMI 

4.2.4  Example of Data Set 

A portion of the supplied data set is presented in Table 4-2. This table shows each pipe 

segment has information on both condition assessment and corresponding contributing 

factors. 

Table 4-2: A portion of the supplied dataset 

No. 

Structural 

Condition 

Hydraulic 

Condition 

Pipe

Size 

(m) 

Pipe 

Age 

(years)

Pipe 

Depth

(m) 

Pipe 

Slope

 (%) 

Tree- 

count 

Pipe 

Location

Soil 

Type TMI 

1 2 2 375 42 1.15 7.80 0 2 3 1 

2 2 2 900 44 1.40 1.04 1 1 3 1 

3 1 3 750 39 1.30 1.11 0 2 3 1 

4 1 3 600 30 1.30 1.00 2 4 3 1 

5 3 3 525 32 1.70 0.51 0 4 4 2 

Note:  
Structural condition: 1 = good 2 = fair  3 = poor 
Hydraulic condition: 1 = good 2 = fair  3 = poor 
Pipe location:  1 = under easement 2 = under road  

3 = under nature strip 4 = under reserve 
 Soil type: 1 = dark grey sand 2 = light grey sand 
   3 = clay   4 = mix 
 TMI:  1 = wettest 2 = wetter 3 = wet 
   4 = dry  5 = drier  6 = driest 

1: wettest 
2: wetter 
3: wet 
4: dry 
5: drier 
6: driest 
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4.3 Preliminary Data analysis 

Several basic statistical techniques including correlation tests and univariate analysis of 

variance (Oneway-ANOVA) were used to study the relationships between contributing 

factors, and relationships between structural/hydraulic conditions and contributing 

factors. One important aspect in most statistical techniques is the classification of 

variables into scale variables and categorical variables. Some techniques such as 

correlation test can only be applied to the scale variables, whilst others such as the cross 

table analysis can only be applied to the categorical variables.  

Scale variables represent ordered categories with a meaningful metric, so that distance 

comparisons between values are appropriate. Examples of scale variables include age in 

years and income in thousands of dollars. In this study, scale factors are pipe size, pipe 

age, pipe depth, pipe slope and tree-count.  

Categorical variables are classified as nominal variables and ordinal variables. Nominal 

variables represent categories with no intrinsic ranking. Examples of nominal variables 

include region, zip code, or religious affiliation. Ordinal variables represent categories 

with some intrinsic ranking. Examples of ordinal variables include attitude scores 

representing degree of satisfaction or confidence and preference rating scores. In this 

study nominal factors are pipe location, soil type and TMI. Ordinal factors are the 

structural and hydraulic conditions. 

The SPSS software package can be used to perform the analysis and was used in this 

study. 

4.3.1 Correlation Tests 

The correlation test measures show how two variables are linearly related (Dasu and 

Johnson 2003). The Pearson's correlation coefficient is a measure of linear association 

between two scale variables (Johnson and Wichern 2002). The correlation coefficient 

takes values between [0, 1]. Generally, strong and weak linear relationships would take 

values between [0.85-1] and [0-0.5] respectively; the mild or moderate linear 

relationships would take values between 0.5 and 0.85. The t-test (Montgomery et al. 

2004) can be used for the correlation tests to specify whether the linear relationships are 
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statistically significant by considering the P-value. If the P-value of the t-statistic is 

smaller than a critical value of 0.05 for 95% confidence level, the linear relationship is 

considered statistically significant (Montgomery et al. 2004).  

The correlation test was applied only to scale factors including pipe size, age, depth, 

slope and tree-count. The results are given in Table 4-3, which shows that there is a 

statistically significant correlation between pipe size and pipe depth. This correlation 

was mild since the correlation coefficient of 0.517 was between 0.5 and 0.85. In short 

description, this correlation was called statistically significant and mild. In a similar 

description, there are statistically significant and weak correlations between pipe size 

and age, pipe size and slope, pipe age and depth, and depth and slope. However, the 

‘tree-count’ factor has no statistically significant correlation with other scale factors.  

The positive (+) correlation indicates a value of one variable increases with increase in 

the value of the other variable.  Similarly, the negative (-) correlation indicates a value 

of one variable increases with decrease in the value of the other variable. The positive 

correlation between pipe size and depth is reasonable since the large size pipes are often 

used as the main pipes which must be buried deeper because of cover requirements. 

Similarly, the positive correlation between pipe size and age can be viewed in a sense 

that larger size pipes are often laid first followed by smaller size pipes which are often 

added later with urban development. On the other hand, the negative correlation 

between pipe size and slope could relate to design or construction practices in which 

large pipes can have smaller slopes (to reduce cost) because they typically are designed 

for larger minimum flows, which can provide the minimal required flow velocity 

(typically 0.75 m/s) to avoid settling of solids. 

Table 4-3: Results of Pearson‘s correlation tests 

 Pipe Size Pipe Age Pipe Depth Pipe Slope Tree-count 

Pipe Size 1 0.106(*) 0.517(**) -0.165(**) 0.058 

Pipe Age  1 0.102(*) 0.034 0.024 

Pipe Depth   1 -0.101(*) 0.079 

Pipe Slope    1 -0.008 

Tree-count     1 

(**): Correlation is statistically significant at the 0.01 level from t-test.  
(*):  Correlation is statistically significant at the 0.05 level from t-test. 
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4.3.2 One-way ANOVA and Cross-Table analysis 

Besides the correlation tests, the analysis of variance (one-way ANOVA) and cross-

table analysis (Hair et al. 1998) can be used to detect associations between two 

variables.  

The one-way ANOVA technique compares a scale variable across two or more groups 

of a categorical variable with a hypothesis of equality of group means. If the hypothesis 

is rejected, the scale variable has different effects on each group. For stormwater pipes, 

the common hypothesis is whether scale factors (i.e. pipe size, age, depth, slope, tree-

count) have significantly different effects on three groups of pipes corresponding to 

three pipe (structural and hydraulic) conditions. On the other hand, the cross-table 

analysis technique assesses whether a category factor has an association with another 

category factor using the hypothesis of equality of cell counts across the table of two 

factors. If the hypothesis is rejected, the association or effect exists. For stormwater 

pipes, this test is carried out for categorical factors (i.e. pipe location, soil and TMI) on 

the pipe (structural and hydraulic) conditions.  

The symmetric measure (Hair et al. 1998) is a statistical indicator that can be used to 

determine the degree of association in the cross-table analysis. The symmetric measure 

ranges between 0 and 1, with 0 indicating no association between the row and column 

variables and values close to 1 indicating a high degree of association between the 

variables. 

Similar to the t-test in the correlation tests in Section 4.3.1, the F-test can be used for the 

oneway-ANOVA and the Pearson Chi-square test can be used for the cross-table 

analysis in order to test whether the association is statistically significant by considering 

the P-values (Hair et al. 1998). If the P-value is smaller than a critical value of 0.05 for 

95% confidence level, the hypothesis is rejected (Hair et al. 1998).  

4.3.2.1 Structural Condition versus Contributing Factors 

The results of performing one-way ANOVA and cross-table analysis on structural 

condition are given in Table 4-4 and Table 4-5 respectively. It can be seen From Table 

4-4, all P-values are larger than the critical value which means that the structural 

condition did not have associations with the five scale factors as substantiated by. It can 
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be seen from Table 4-5, only the hydraulic condition was found to have statistically 

significant effect on the structural condition as substantiated by its P-value of 0.002. 

However, the symmetric measure shows a low degree of association between them. 

Table 4-4: One-way ANOVA on structural condition 

Factors Mean Square F-statistic P-value 

Pipe Size 247200.9 2.205 0.112 

Pipe Age 18.6 0.286 0.751 

Pipe Depth 0.086 0.157 0.855 

Pipe Slope 6.8 1.277 0.280 

Tree-count 3.9 0.584 0.558 

 

Table 4-5: Cross-table analysis on structural condition 

Factors Pearson Chi-

square 

Symmetric 

measure 

P-value 

Pipe Location 5.099 0.084 0.531 

Soil Type 3.925 0.01 0.416 

TMI 10.638 0.04 0.386 

Hydraulic 

Condition 

17.075 0.132 0.002* 

*statistically significant at 0.05 significance level 

4.3.2.2 Hydraulic Condition versus Contributing Factors 

Similar to Section 4.3.2.1, the results of performing one-way ANOVA and cross-table 

analysis on the hydraulic condition are given in Tables 4-6 and 4-7 respectively. It can 

be seen that the pipe age and pipe slope were found to have statistically significant 

effect on the hydraulic condition. The structural condition and pipe location were found 

to have statistically significant effects on the hydraulic condition as substantiated by the 

P-values in Tables 4-6 and 4-7 respectively. However, the symmetric measure using 

contingency coefficient provides weak association between the pipe location and the 

hydraulic condition. 
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Table 4-6: One-way ANOVA on hydraulic condition 

Factors Mean Square F-statistic P-value 

Pipe Size 124129.042 1.102 0.333 

Pipe Age 518.017 8.261 0.000* 

Pipe Depth .734 1.349 0.261 

Pipe Slope 34.704 6.597 0.002* 

Tree-count 13.412 2.020 0.134 
*statistically significant at 0.05 significance level 

Table 4-7: Cross-table analysis on hydraulic condition 

Factors Pearson Chi-

square 

Symmetric 

measure 

P-value 

Pipe Location 16.012 0.196 0.014* 

Soil Type 5.521 -0.034 0.238 

TMI 17.510 -0.034 0.064 
*statistically significant at 0.05 significance level 

4.4 Application of Structural Deterioration Models 

Five deterioration models (i.e. Markov model, MDDM, OPDM, NNDM and PNNDM) 

developed in Section 3.3 were applied to model the structural deterioration of 

stormwater pipes of CGD. The Markov model was used for predicting the condition 

changes of pipe population; this model was not able to be used for individual pipes due 

to the lack of longitudinal pipe condition data. The predicted information on the 

condition changes of pipe population can be used for budget planning. The remaining 

four models (MDDM, OPDM, NNDM and PNNDM) were used for predicting the 

condition changes of individual pipes and pipe population. The predicted information on 

the condition changes of individual pipes can be used for prioritizing repair works. 

Except for the Markov model, nine contributing factors provided were used as inputs to 

the remaining four deterioration models. Inputs to the Markov model were the pipe age. 

The output of the four models was the pipe condition at different ages and the output of 

the Markov model was the number of pipes in each of three structural conditions at 

different ages. The five deterioration models were calibrated by different techniques as 
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shown in Figure 3-1, the details of these calibration techniques were given throughout 

Section 3.3. 

As outlined in Section 3.4, the fitness of five deterioration models for modelling 

structural deterioration of stormwater was tested by the goodness-of-fit test using 

Pearson Chi-square statistic. Except for the Markov model, the predictive performance 

of the remaining four deterioration models in predicting condition changes of individual 

pipes was also assessed by two scalar performance measures, namely, the overall 

success rate (OSR) and the false negative rate (FNR). The OSR indicates how well the 

deterioration models predict condition changes of individual pipes and the FNR shows 

the risk associated with the use of the models. 

As outlined in Section 3.5, the significant input factors to four deterioration models 

MDDM, OPDM, NNDM and PNNDM were identified by the forward stepwise method, 

Wald test, connection weight analysis and the backward stepwise method respectively.  

The SPSS® software package was used to perform computational tasks for the MDDM 

and OPDM. The MATLAB® software package and its toolboxes (i.e. NN toolbox and 

GA toolbox) were used to perform computational tasks for the Markov model, the 

NNDM and the PNNDM.  

Section 4.4.1 presents the data preparation for the models. Section 4.4.2 describes the 

results of calibration or training while section 4.4.3 describes the testing results. Section 

4.4.4 presents the significant input factors identified from four deterioration models 

MDDM, OPDM, NNDM and PNNDM.  

4.4.1 Data preparation 

As outlined in the development of the five deterioration models in Sections 3.3.1-3.3.5, 

first the model parameters need to be estimated using a calibration dataset, and the 

predictive performances of these models need to be tested using a test dataset which is 

different to the calibration dataset. However, the calibration and test datasets required 

for the Markov model are different from that of the remaining four deterioration models 

(i.e. MDDM, OPDM, NNDM and PNNDM). This is because the inputs of the Markov 

model were only the pipe age. 
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4.4.1.1 Data for the Structural Markov Model 

The entire dataset was randomly split into the calibration dataset containing 

approximately 75% of the entire dataset and the test dataset containing the remaining 

25%. The calibration and test datasets are given in Table 4-8. This table was constructed 

by assigning the pipes of different ages randomly into the calibration and test datasets to 

get 75/25% split. Pipes are assigned at a certain age only to one dataset. This condition 

was required to test the Markov model. 

4.4.1.2 Data for the Structural MDDM, OPDM, NNDM and PNNDM 

Since the MDDM, OPDM, NNDM and PNNDM used similar inputs factors; the entire 

dataset was randomly split into the calibration dataset containing approximately 75% of 

the entire dataset and the test dataset containing the remaining 25%. A part of the 

dataset is shown in Table 4-9. As can be seen from this table, there are totally nine input 

factors (from the pipe size to the Thornwaite Moisture Index (TMI)). The hydraulic 

condition was used as one of the inputs to the MDDM, OPDM, NNDM and PNNDM 

for structural condition because this factor could be associated with structural 

deterioration. For example, a poor hydraulic condition caused by tree roots and 

sediment deposition may be a result due to a hole or fracture (structural defects) along 

the pipe. The last column shows how the pipe has been assigned to either the calibration 

dataset (code=1) or the test dataset (code=0) based on randomly generated numbers and 

a threshold value. The calibration dataset used for the NNDM was randomly split into a 

train dataset containing 60% of the entire dataset and the validation dataset containing 

15% of the entire dataset (i.e. 75%=60%+15%). This is because the NNDM needs the 

validation dataset in the training process to avoid the problem of over-fitting, as outlined 

in Section 3.3.4.2/B. Furthermore, values of all the input factors used for the NNDM 

were scaled between 0 and 1 in order to identify the significant factors using the connect 

weight analysis (Section 3.5.4). 
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Table 4-8: Details of calibration and test datasets for the Markov model 

Calibration Dataset Test dataset 

Structural 

Condition 

Structural 

Condition 

Age 

1 2 3 

Total Age 

1 2 3 

Total 

0 0 0 1 1 5 0 0 1 1 

2 0 0 1 1 14 2 0 0 2 

10 1 0 0 1 21 3 0 1 4 

17 0 0 11 11 29 7 0 1 8 

18 0 0 1 1 34 1 0 11 12 

25 0 0 1 1 38 3 4 13 20 

27 0 0 1 1 42 10 1 13 24 

30 5 5 23 33 46 4 0 12 16 

31 1 0 0 1 49 0 0 1 1 

32 6 1 21 28 52 2 0 3 5 

33 0 0 2 2 Total 32 5 56 93 

35 4 0 10 14 

36 2 1 1 4 

37 14 2 11 27 

39 6 3 18 27 

40 1 1 25 27 

41 4 2 13 19 

43 10 2 23 35 

44 11 8 29 48 

45 8 2 16 26 

47 0 0 4 4 

48 1 0 3 4 

50 0 0 4 4 

51 0 0 1 1 

65 0 0 3 3 

Total 74 27 223 324 
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Table 4-9: A part of calibration of and test datasets for MDDM, OPDM, NNDM 

and PNNDM 

Output Input Factors 

No. 
St.  

Cond. 

Pipe 

Size 

(m) 

Pipe 

Age 

(years) 

Pipe 

Depth 

(m) 

Pipe 

Slope

 (%) 

Tree-

count

Hy. 

Cond.

Pipe 

Location

Soil 

Type TMI 
Code 

1 2 2 375 42 1.15 7.80 0 2 3 1 1 

2 3 2 900 44 1.40 1.04 1 1 3 1 0 

3 1 3 750 39 1.30 1.11 0 2 3 1 1 

4 1 3 600 30 1.30 1.00 2 4 3 1 1 

5 3 3 525 32 1.70 0.51 0 4 4 2 0 

6 3 525 44 0.65 1.43 1 2 4 3 1 1 

7 3 1425 32 2.4 0.21 2 3 1 4 4 1 

8 3 450 35 1.60 0.55 2 3 2 4 2 0 

9 1 225 39 0.85 1.13 2 1 3 3 1 1 

10 1 825 47 1.67 0.67 0 2 2 4 2 0 

Note:  
St. Cond.: structural condition  1 = good 2 = fair  3 = poor 
Hy. Cond.: hydraulic condition   1 = good 2 = fair  3 = poor 
Pipe location:    1 = under easement 2 = under road  

3 = under nature strip 4 = under reserve 
 Soil type:   1 = dark grey sand 2 = light grey sand 
     3 = clay   4 = mix 
 TMI:    1 = wettest 2 = wetter 3 = wet 
     4 = dry  5 = drier  6 = driest 

 

4.4.2 Calibration (or Training) of Structural Deterioration Models 

Section 3.3 dealt with model calibration (or training of model) which was aimed at 

estimating the model parameters from the sample data. One major issue in the 

calibration process is to produce local optimum model parameters instead of global 

optimum parameters. The occurrence of local optimum model parameters could 

adversely affect the calibration performance leading to poor model performance.  This 

was addressed in this study by using different calibration techniques for the Markov 

model, OPDM and NNDM. The calibration of the MDDM and PNNDM, on the other 

hand, can be done without any concern for the local optimum due to their model 

structures. 
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4.4.2.1 Structural Markov Model 

The transition probabilities were the model parameters in the structural Markov model. 

The Metropolis-Hastings algorithm (MHA) of the Bayesian MCMC simulation and the 

standard optimization technique were two calibration techniques used in this study. 

Initially the calibration and test dataset were used to calibrate and test the Markov 

model respectively. Once the model was tested, then the entire dataset was used for 

constructing the condition changes of pipe population as the transition probabilities 

estimated with the entire dataset (large sample size) would be better than that with the 

calibration dataset (small sample size). 

The MHA was performed on the MATLAB® platform and the programming codes for 

the MHA are given in the Appendix C.1. The MHA was run with 13,000 iterations for 

the calibration dataset and entire dataset to achieve convergence of the chain to 

stationary distributions. An acceptance rate of 0.34 was found in the runs, which is not 

far from the suggested value of 0.234 (Roberts and Rosenthal 2001) for checking the 

suitability of the variance-covariance matrix of the MHA (Section 3.3.1.4). The last 

3,000 results were kept to estimate the mean and confidence ranges of the transition 

probabilities. The Excel Solver® optimization tool was used to implement the standard 

optimization technique for maximizing the likelihood on the calibration dataset.  

The mean values of the transition probabilities estimated by the MHA with the 

calibration dataset were given in Table 4-10. Similarly, the values of the transition 

probabilities estimated by the optimization technique with the calibration dataset are 

given in the Table 4-11. It can be seen from these two tables, the estimated transition 

probabilities by two calibration techniques are slightly different.  The performances of 

each calibration technique are shown in Section 4.4.2. 

Table 4-10: MHA estimated transition probabilities with the calibration dataset 

Future Condition State 
MHA 

1 2 3 

1 0.9455 0.0202 0.0343

2 0 0.9996 0.0004

Current 

Condition 

State 3 0 0 1 
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The mean values of the transition probabilities and their 95% confidence intervals 

(values within brackets) estimated by the MHA on the entire datasets are given in Table 

4-12. The 95% confidence limits of the transition probabilities give an indication of the 

uncertainty of the model parameters. In other words, since the true values of transition 

probabilities are unknown, the mean values within 95% confidence limits can be used to 

approximate the true values. This is the advantage of the MHA over the standard 

optimization technique which cannot provide the confidence limits of the transition 

probabilities. 

Table 4-11: Optimization estimated transition probabilities with the calibration 

dataset 

Future Condition State 
Optimization  

1 2 3 

1 0.9426 0.0196 0.0378

2 0 0.9998 0.0002

Current 

Condition 

State 3 0 0 1 

 

Table 4-12: MHA estimated transition probabilities  

with the entire dataset 

Future Condition State 
MHA 

1 2 3 

1 
0.9432  

(0.9404-0.9461) 

0.0209 

(0.0199-0.0219) 

0.0359 

(0.0341-0.0377) 

2 0 
0.9995 

(0.9994-0.9996) 

0.0005 

(0.0004-0.0006) 

Current 

Condition 

State 

3 0 0 1 

 

4.4.2.2 Structural Multiple Discriminant Deterioration Model (MDDM) 

The calibration of the structural MDDM was to estimate the model parameters which 

were the factor coefficients of the two discriminant functions as outlined in Section 

3.3.2.3. The calibration of the MDDM was done using the SPSS® software. The 

estimated factor coefficients are given in Table 4-13. The estimated coefficients as 
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shown in Tables 4-13 are of little interest because they are just a transformation from a 

set of axis to another set of axis in the same factor space in order to better separate the 

pipe condition. 

Table 4-13: Factor coefficients for discriminant functions of structural MDDM 

Discriminant Function Factors 

1 2 

Pipe Size (m) .002 .001 

Pipe Age .002 -.034 

Pipe Depth (m) -.551 -1.142 

Pipe Slope -.116 .176 

Tree-count .183 -.030 

Hydraulic Condition .607 .318 

Pipe Location -.294 .408 

Soil Type -.784 .396 

TMI .320 .792 

 

4.4.2.3 Structural Ordered Probit Deterioration Model (OPDM) 

The calibration of the structural OPDM was to estimate the model parameters which are 

two thresholds ( 1θ and 2θ ) and the factor coefficients (Section 3.3.3.3). The Maximum 

Likelihood (ML) and Bayesian MCMC using Gibb sampler were two alternative 

calibration techniques used in this study. The ML technique is a frequently used 

technique in calibration of statistical models (Greene 1990). Its solution was 

counterchecked in this study by the Bayesian MCMC as local optimum may occur. The 

ML and the Gibb sampler were implemented using the SPSS® software and the 

WINBUGS® software respectively. Table 4-14 shows estimated values for the model 

parameters. It can be seen that the estimated values of model parameters by both 

techniques are not much different. The magnitude of the factor coefficients as shown in 

Table 4-14 was reasonable with the value range of contributing factors. The positive 

sign of the factor coefficient means that the larger the value of the factor (or covariates) 

the poorer the condition. The negative sign shows the inverse effect. All contributing 
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factors except the tree-count had positive factor coefficients. This means pipes will have 

poorer condition with aging and larger size. This is consistent with other study by Baik 

et al. (2006) and Ariaratnam et al.(2001). 

4.4.2.4 Structural Neural Network Deterioration Model (NNDM) 

As outlined in Section 3.3.4.2, the number of hidden neurons in the structural NNDM 

was first determined using the Levenberg-Marquardt algorithm (LMA). This also means 

that with the chosen number of hidden neurons, the structural NNDM was already 

trained by the LMA. Genetic algorithm (GA) and Bayesian MCMC using Metropolis-

Hastings algorithm (MHA) were then used to train the NNDM as the LMA may not 

handle well the problems of local optimum and the uncertainty of network weights. 

Table 4-14: Estimated thresholds and factor coefficients for the structural OPDM  

Input Factors ML Bayesian MCMC 

1θ  2.532 2.745 

2θ  2.795 2.992 

Pipe Size 0.001 0.002 

Pipe Age 0.001 0.003 

Pipe Depth 0.672 0.658 

Pipe Slope 0.045 0.055 

Tree-count -0.056 -0.063 

Hydraulic Condition 0.399 0.400 

Pipe Location 0.041 0.049 

Soil Type 3.011 3.005 

TMI 2.208 2.309 

A/ Training of NNDM using LMA and determine the number of hidden neurons 

The NN toolbox of MATLAB® was used to perform computational tasks. The suitable 

number of hidden neurons for the NNDM was searched using the LMA and mean 

square error (MSE) criterion. The results are given in Figure 4-14 which shows the 

changes of MSE computed from the train and validation datasets against the number of 

hidden neurons. The validation dataset was used to avoid over-fitting the NNDM 
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(Section 3.3.4.2). The training of the NNDM should stop whenever the MSE of the 

validation dataset starts to increase. As can be seen from this figure, the best possible 

number of hidden neurons was 18 as the MSE values had the lowest values of 0.04 and 

0.08 respectively on the train and validation datasets at this point. The NNDM for 

structural deterioration had 9 input neurons, 18 hidden neurons and 3 output neurons 

with a total of 237 network weights (including connection weights and bias weights). 

The values of network weights estimated by the LMA can be used in the NNDM to 

compute the predicted output values given any input values. 
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Figure 4-14: MSE of structural NNDM with different number of hidden neurons 

B/ Training of structural NNDM using GA 

This task was performed using the GA Toolbox of MATLAB software package and the 

programming code was given in Appendix C.3. The population size and the crossover 

fraction were two GA parameters that could affect the GA performance and therefore 

required investigation as outlined in Section 3.3.4.2.  The suitable value of the 

population size was determined by changing its value while keeping crossover fraction 

at the average value of 0.5. Similarly, the suitable value of the crossover fraction was 

determined by changing its values while keeping the population size at the determined 

value. Figure 4-15 shows the effects of population size and the effect of crossover 

fraction on the MSE of training dataset which was the fitness value of GA. As can be 

seen in this figure, the suitable value of population size was 230 with an MSE value of 

0.026 since the other values caused an increase in the MSE of GA.  The suitable value 

of crossover fraction appeared to be 0.8 with an MSE value of 0.02. Beyond 0.9 for 
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crossover fraction, the MSE value increases rapidly since less mutation occur. This was 

expected as explained in Section 3.3.4.2 since the variability in population members is 

reduced. With these optimum values for the population size and crossover fraction, GA 

was used again to determine the network weights. The MSE value of 0.018 was found 

with GA training which is smaller than the MSE value of 0.04 found with LMA 

training. The estimated network weights by GA were then used in the structural NNDM 

to compute the predicted output values given any input values. 
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Figure 4-15: Effect of crossover fraction and population size on MSE of GA 

training for structural NNDM 

C/ Train NNDM using MHA of Bayesian MCMC 

Similar to the Metropolis-Hastings algorithm (MHA) used in the calibration of the 

structural Markov model, the MHA used for training of the structural NNDM was run 

on the MATLAB® platform and the programming code was given in Appendix C.2. 

The last 3000 values of network weights were kept to compute the mean values and 

95% confidence limits. The average MSE value found with the MHA was 0.009 which 

is smaller than both the MSE values found with LMA and GA. One typical distribution 

of a network weight (among 237 network weights) is given in Figure 4-16. From this 

figure, the mean value of the network weight was computed as 0.45 and the 95% 

confidence interval was [0.21, 0.62]. This implies that in a considerable uncertainty 
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exists in estimating the network weights. The values with 95% confidence limit of 

network weights were then used in the NNDM to produce the corresponding predicted 

structural condition with 95% confidence limit (or interval prediction) given any input 

values.  

4.4.2.5 Structural Probabilistic Neural Network Deterioration Model (PNNDM) 

The NN toolbox of MATLAB® was used to perform the computational tasks. The 

training of the PNNDM was almost instantaneous since the PNNDM simply stored the 

training data into the pattern layer as explained in Section 3.3.5.3. The smoothing 

parameter (or standard deviation) of the Gaussian kernel was searched based on the trial 

and error approach. The value of 0.5 was found since other values caused a reduction on 

the number of correct predictions in the training dataset. 
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Figure 4-16: Histogram of a network weight 

4.4.3 Testing Five Structural Deterioration Models 

As outlined in Section 1.3, the primary aim of this study was to develop deterioration 

models which can predict the condition changes of pipe population and the condition 

changes of individual stormwater pipes. An essential part of this development is the 

testing of the developed models, once the model parameters were estimated. As 

described in Section 3.4, the fitness of the five deterioration models for predicting 

structural condition changes of pipe population can be tested by the goodness-of-fit test 

Mean value = 0.425 

95% confidence limit = [0.21, 0.62] 
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using Pearson Chi-square statistic. The predictive performance of the remaining four 

deterioration models (i.e. MDDM, OPDM, NNDM and PNNDM) in predicting 

condition changes of individual pipes can be assessed using two scalar performance 

measures, namely, the overall success rate (OSR) and the false negative rate (FNR). The 

OSR indicates how well the deterioration models predict condition changes of 

individual pipes, while the FNR shows the risk associated with the use of the models. 

These performance measures (i.e. goodness-of-fit test, OSR and FNR) were used to 

select the best deterioration models to predict the condition changes of pipe population 

and the condition changes of individual stormwater pipes for the case study. 

4.4.3.1  Best Suitable Structural Deterioration Model for Predicting Condition 

Changes of Pipe Population 

Table 4-15 shows the computed Chi-square values for the calibration and test datasets 

for testing the fitness of five deterioration models. As expected, the Chi-square value for 

the test dataset is larger than that for the calibration dataset for each of the models since 

the model parameters were determined by minimizing the MSE on the calibration 

dataset. As can be seen from this table, the Markov model, NNDM and PNNDM passed 

the goodness-of-fit test for both calibration and test datasets as substantiated by the 

small Chi-square values which were lower than the critical Chi-square value of 5.99 for 

this case study. This means that these deterioration models are suitable models for 

structural deterioration of stormwater pipes. Furthermore, among suitable deterioration 

models, the Markov model had the lowest Chi-square value which suggested the 

Markov model was the best model to predict the condition changes of the pipe 

population for stormwater pipes in this case study. The MDDM and OPDM failed the 

goodness-of-fit test. 

The Bayesian MCMC technique provided the better performance for model calibration 

for the Markov model over the standard optimization. This is substantiated by the lower 

Chi-square values found with this technique on both calibration and test datasets as 

shown in Table B-1 (Appendix B). This suggested that the Bayesian MCMC technique 

was the best calibration technique for the Markov model. The Bayesian MCMC also 

provided the better performance for the NNDM in comparison with LMA and GA. This 

is substantiated by the lowest MSE value during training of the structural NNDM and 
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the lowest Chi-square values for both calibration and test dataset. GA was found better 

than the LMA in training the NNDM as expected. 

Since the Markov model was the best model for predicting the condition changes of the 

pipe population, it was then used to predict the condition changes of pipe population for 

the stormwater pipes of CGD at different ages. The proportions of the three structural 

conditions belonging to each structural condition over time were computed using 

Equation (3-2) with the transition probabilities estimated from the entire dataset (as 

shown in Table 4-12). The prediction of the structural deterioration of the stormwater 

pipes is shown in Figure 4-17. 

 

Table 4-15: Chi-square values of five structural deterioration models 

Chi-square values 
2
Mχ ( 2

2,0.05 5.99χ≤ = ) 
Structural 

Deterioration 

Models 

Calibration Techniques 
Calibration 

dataset 

Test 

dataset 

Bayesian MCMC 

simulation (MHA) 

0.22 0.34 
Markov Model 

Standard optimization 1.38 1.53 

MDDM Maximizing Fisher’s 

criterion 

12.9 14.5 

Maximum Likelihood 7.21 7.35 

OPDM Bayesian MCMC 

simulation (Gibb sampler) 

7.21 7.35 

LMA 2.95 4.16 

GA 2.44 3.28 
NNDM 

Bayesian MCMC 

simulation (MHA) 

2.13 2.57 

PNNDM Trial and error approach 1.97 4.21 
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This figure was constructed assuming that all pipes come from a homogenous 

population (i.e. effects of contributing factors were ignored). The figure shows an initial 

steep upwards slope for distribution curves of structural conditions 2 and 3 with a peak 

at the age of 45 for condition grade 2. The proportions of conditions 1 and 3 

continuously decreased and increased respectively over the years. If maintenance and 

rehabilitation (M&R) actions are not carried out until the age of 120 year, about 80% of 

pipes would be predicted to be in the poor structural condition. 

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

Age (years)

Pr
op

or
tio

n 
of

 P
ip

es

Structural Condition 1
Structural Condition 2
Structural Condition 3

 
Figure 4-17: Structural condition changes of pipe population  

4.4.3.2  Best Suitable Structural Deterioration Model for Condition Changes of 

Individual Pipes 

The confusion matrixes of four deterioration models (MDDM, OPDM, NNDM and 

PNNDM) are given in Tables B-2 to B-7 (Appendix B). The computed overall success 

rate (OSR) and the false negative rate (FNR) are shown in this section for determining 

the best suitable structural deterioration model, the primary aim of this study. Figure 4-

18 shows the computed OSRs (in percentages) for the calibration and test datasets for 

four deterioration models (MDDM, OPDM, NNDM and PNNDM). Furthermore, the 

effects of different calibration techniques on the OSR of each deterioration model are 

also shown in this figure. As expected, the OSR for the calibration (or train) dataset is 

higher than for the test dataset. As can be seen form this figure, the NNDM and 

PNNDM outperformed the MDDM and OPDM in predicting the structural condition of 

individual pipes. This was substantiated by the higher values of OSR for the NNDM 
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and PNNDM for both calibration and test datasets. Furthermore, the PNNDM had the 

highest OSR in the calibration dataset and the NNDM had the highest OSR in the test 

dataset.  

Similar results were found when comparing these four deterioration models in terms of 

the FNR as shown in Figure 4-19. As expected, the FNR for the calibration (or train) 

dataset is lower than for the test dataset. As can be seen from this figure, the NNDM 

and PNNDM again outperformed the MDDM and OPDM as substantiated by the lower 

FNRs for both calibration and test datasets. The PNNDM had the lowest FNR on the 

calibration dataset and the NNDM had the lowest FNR on the test dataset.  

Based on the performances found with OSR and FNR on the test dataset this study 

therefore decided to consider the NNDM as the best model for predicting the structural 

condition of individual stormwater pipes (for this case study). 
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Figure 4-18: Values of OSR for MDDM. OPDM, NNDM and PNNDM 
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Figure 4-19: Values of FNR for MDDM. OPDM, NNDM and PNNDM 

The NNDM trained with GA had higher OSR and lower FNR than those of the NNDM 

trained with the LMA on both calibration and test dataset. However, the MHA of 

Bayesian MCMC technique outperformed both GA and LMA techniques in producing 

the best predictive performances for NNDM for both calibration and test datasets. This 

implies that the Bayesian MCMC technique was considered as the best calibration 

technique for the NNDM in this case study. The superiority of the Bayesian MCMC 

simulation technique over the LMA was shown in Figure 4-20 which illustrates the 

predictions by the NNDM for the first 25 data points in the test dataset.  The point 

prediction was obtained by using the point values of network weights which were 

estimated from the calibration of the NNDM by the LMA. The interval prediction was 

obtained by using the 95% confidence limits of network weights which were estimated 

from the calibration of the NNDM by the MHA of Bayesian MCMC. The interval 

prediction indicated the 95% confidence range of structural condition that could contain 

the observation. As can be seen from this figure, the interval prediction of structural 

conditions had a better fitting to the observed structural condition than that of the point 

prediction.  
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Figure 4-20: point and interval predictions versus observations of structural 

condition on a portion of test dataset 

4.4.4 Identification of Significant Input Factors of Structural Models 

As outlined in Section 1.3, the secondary aim of this study was the identification of 

significant input factors that affect the predicted condition of individual stormwater 

pipes. By paying attention to the identified significant input factors, the design and 

operation of pipes could be improved towards fewer pipe failures and longer service 

lifetimes. 

The significant input factors of the structural MDDM and OPDM were identified by the 

forward stepwise method and the Wald-test respectively described in Sections 3.5.1-

3.5.3. The common aspect of these two statistical methods is that if the P-value for the 

computed test statistic (F-value for the structural MDDM and Wald statistic for the 

structural OPDM) is smaller than the value of 0.05 or 0.1 (equivalent to 95% and 90% 

confidence level respectively), the corresponding input factor can be considered 

statistically significant.   

The significant input factors of the structural NNDM were identified using the 

connection weight analysis described in Section 3.5.4 while the significant factors of the 

structural PNNDM were identified using the stepwise backward method described in 

Section 3.5.3.  The common aspect of these two methods is that the input factors can be 

ranked in significance order according to the magnitudes of their significance values. 

The significance values of an input factor in the structural NNDM can be computed 

from its connection weights. The significance values of an input factor in the structural 
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PNNDM is the decrease in the overall success rate (OSR) on the test dataset when 

comparing the structural PNNDM using all input factors and the structural PNNDM 

without the input factor of interest. 

Table 4-16 shows the computed F-values and P-values for the 9 input factors of the 

structural MDDM. As can be seen from this table, only the hydraulic condition was 

found to be the statistically significant factor at 0.05 level.  

Table 4-16: F-value and P-value of input factors in structural MDDM 

Factors F-value P-value 

Pipe Size 1.47 0.230 

Pipe Age 0.12 0.879 

Pipe Depth .30 0.739 

Pipe Slope 1.52 0.219 

Tree-count 1.35 0.259 

Hydraulic condition 3.36 0.053* 

Pipe Location 1.55 0.214 

Soil Type 0.43 0.649 

TMI 0.24 0.787 

* significant input factor at 0.05 level 

Similarly, Table 4-17 shows the Wald statistic and corresponding P-values. It is seen 

from this table that pipe size, tree-count, hydraulic condition and pipe location were 

found to be statistically significant at 0.05 or 0.1 levels as substantiated by the P-values.  

Figures 4-21 to 4-23 show the significance values of input factors found by three 

different train techniques (i.e. LMA, GA and MHA respectively) for the NNDM. As can 

be seen from these figures that pipe size, pipe location, hydraulic condition and soil type 

stood out as the top four ranked factors. On the other hand, pipe age and TMI were 

bottom ranked factors across the three training techniques. Furthermore, tree-count was 

ranked high only in the NNDM trained by the MHA. Figure 4-24 shows the significance 

values of input factors of the PNNDM. As can be seen from this figure, the top four 

ranked factors were pipe size, tree-count, hydraulic condition and pipe location. Bottom 

ranked factors were Pipe age and TMI. By comparing the significant factors found in 

MDDM, OPDM, NNDM and PNNDM, it was concluded that pipe size, pipe location 
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and hydraulic condition can be considered as significant factors that affect the structural 

condition of pipes. Pipe age, TMI, pipe slope and pipe depth were considered as 

insignificance factors for the case study. Tree-count and soil type were inconclusive 

since the analysis produced inconsistent results. 

Table 4-17: Wald-statistic and P-value of input factors in structural OPDM 

Input Factors Wald-Statistic P-value 

Pipe Size 3.254 .071** 

Pipe Age .003 .959 

Pipe Depth 2.390 .122 

Pipe Slope 1.282 .257 

Tree-count 3.212 .073** 

Hydraulic condition 4.280 .039* 

Pipe Location 2.222 .070** 

Soil Type 1.821 .177 

TMI 3.287 .174 
*statistically significant factors at 0.05 level 

** statistically significant factors at 0.10 level 
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Figure 4-21: Significance values of input factors of NNDM (LMA) Figure 4-22: Significance values of input factors of NNDM (GA) 
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Figure 4-23: Significance values of input factors of NNDM (MHA) Figure 4-24: Significance values of input factors of PNNDM 
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4.5 Hydraulic Deterioration Models for Stormwater Pipes of CGD 

All five deterioration models (i.e. Markov model, MDDM, OPDM, NNDM and 

PNNDM) developed in Section 3.3 and applied for modelling structural deterioration of 

stormwater pipes of CGD in Section 4.4 were also applied for modelling hydraulic 

deterioration of stormwater pipes of CGD. Methods for calibration and testing of the 

models, and methods for identifying significant input factors for each model are the 

same for both structural and hydraulic deterioration. Therefore, only the results are 

shown in this section with relevant comments.    

4.5.1 Data preparation 

4.5.1.1 Data for the Hydraulic Markov Model 

Similar to the data for the Markov model for structural deterioration, pipe age was the 

only input factor used for the Markov model for hydraulic deterioration. Table 4-18 

shows the calibration and test datasets for the hydraulic Markov model. The method for 

construction of this table was similar to the method for construction of Table 4-8 which 

(Section 4.4.1.1). The calibration (approximately 75%) and test (25%) datasets were 

generated by randomly splitting the entire dataset. 

4.5.1.2 Data for the Hydraulic MDDM, OPDM, NNDM and PNNDM 

The data format used by four hydraulic deterioration models MDDM, OPDM, NNDM 

and PNNDM are similar to the data used for four structural deterioration models 

described in Section 4.4.1.2. That is the calibration dataset of approximately 75% and 

the test dataset of 25% were generated by randomly picking from the entire dataset. The 

calibration dataset of the hydraulic NNDM was randomly divided into the train dataset 

(approximately 60%) and the validation dataset (15%). The use of validation dataset 

was to avoid over-fitting during the training of the hydraulic NNDM. The input factors 

of the four hydraulic deterioration models were pipe size, pipe age, pipe depth, pipe 

slope, tree-count, structural condition, pipe location, soil type and TMI. These input 

factors were the same as the input factors of four structural deterioration models except 

that the structural condition was used as an input factor for the hydraulic deterioration 

models whereas the hydraulic condition was used as an input factor for the structural 

deterioration models. 
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Table 4-18: Details of Calibration and test datasets for the hydraulic Markov 

model 

Calibration Dataset Test dataset 

Hydraulic Condition Hydraulic Condition Age 

1 2 3 

Total Age 

1 2 3 

Total  

0 0 0 1 1 10 1 0 0 1 

2 0 0 1 1 21 1 2 1 4 

5 1 0 0 1 29 2 0 6 8 

14 0 0 2 2 34 4 5 3 12 

17 0 0 11 11 39 18 3 6 27 

18 0 0 1 1 42 13 6 5 24 

25 1 0 0 1 45 12 6 8 26 

27 0 0 1 1 Total 51 22 29 102 

30 12 7 14 33 

31 1 0 0 1 

32 12 7 9 28 

33 2 0 0 2 

35 4 2 8 14 

36 3 1 0 4 

37 13 10 4 27 

38 13 5 2 20 

40 12 8 7 27 

41 5 7 7 19 

43 11 11 13 35 

44 25 19 4 48 

46 5 5 6 16 

47 3 0 1 4 

48 1 0 3 4 

49 0 0 1 1 

50 3 0 1 4 

51 0 0 1 1 

52 2 0 3 5 

65 2 0 1 3 

Total 131 82 102 315 
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4.5.2 Calibration (or Training) of the Hydraulic Deterioration Models 

Similar to the calibration or training of five structural deterioration models in Section 

4.4.2, the major issue in calibration process was to determine the global optimum 

parameters instead of local optimum parameters which could adversely affect the 

calibration performance leading to poor model performance.  The methods used were 

similar to those used for the structural deterioration models of Section 4.4.2. 

4.5.2.1 Hydraulic Markov Model 

The transition probabilities were the model parameters of the hydraulic Markov model. 

They were estimated using the Metropolis-Hastings algorithm (MHA) of the Bayesian 

MCMC and the standard optimization technique. As was in Section 4.4.2.1, the 

calibration dataset and the entire dataset were also used in the calibration of the Markov 

model for hydraulic deterioration. The calibration dataset was used so that the Markov 

model can be tested with the test dataset. The entire dataset was used for constructing 

the condition changes of pipe population as the transition probabilities estimated with 

the entire dataset would be better than that with the calibration dataset. 

The mean values of the transition probabilities estimated by the MHA with the 

calibration dataset are given in Table 4-19. As can be seen from this table, the 

probability of 0.0173 for the transition from current condition 1 to future condition 3 is 

larger than that of 0.01 for the transition from current condition 1 to future condition 2. 

This implies that the multi-state transition from the current condition 1 to the future 

condition 3 is more likely to occur than the transition from the current condition 1 to the 

future condition 2. 

Table 4-19: MHA estimated transition probabilities with the calibration dataset 

Future Condition State 
MHA 

1 2 3 

1 0.9727 0.01 0.0173

2 0 0.9996 0.0004

Current 

Condition 

State 3 0 0 1 

The values of the transition probabilities estimated by the standard optimization 

technique with the calibration dataset are given in Table 4-20. These values of transition 
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probabilities are again slightly different to those estimated by the MHA as encountered 

with the structural Markov model (Section 4.4.2.1).  

The mean values of the transition probabilities estimated by the MHA using the entire 

dataset are given in Table 4-21. The values within the bracket of the Table 4-21 are the 

95% confidence limits of the transition probabilities, which indicate the uncertainty of 

the model parameters for the hydraulic Markov model. 

Table 4-20: Optimization estimated transition probabilities with the calibration 

dataset 

Future Condition State 
Optimization  

1 2 3 

1 0.9726 0.01 0.0174

2 0 0.9999 0.0001

Current 

Condition 

State 3 0 0 1 

 

Table 4-21: MHA estimated transition probabilities  

with the entire dataset 

Future Condition State 
MHA 

1 2 3 

1 
0.9732  

(0.9730-0.9734) 

0.0109 

(0.0108-0.011) 

0.0159 

(0.0158-0.0160) 

2 0 
0.9950 

(0.9948-0.9952 

0.0005 

(0.0048-0.0052) 

Current 

Condition 

State 

3 0 0 1 

4.5.2.2 Hydraulic Multiple Discriminant Deterioration Model (MDDM) 

The factor coefficients of the two discriminant functions as described in Section 3.3.2.3 

were the model parameters to be estimated during the calibration. The estimated factor 

coefficients are given in Table 4-22.  

4.5.2.3 Hydraulic Ordered Probit Deterioration Model (OPDM) 

Two thresholds and the factor coefficients described in Section 3.3.3.3 were estimated 

by two different calibration techniques, Maximum Likelihood (ML) and Bayesian 
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MCMC using Gibb sampler, similar to the structural OPDM. Table 4-23 shows 

estimated values for the model parameters of the hydraulic OPDM. It can be seen that 

both techniques provided similar results. Pipe size, pipe depth and pipe slope had 

negative factor coefficients. This means large, deep and more sloped pipes tend to have 

better hydraulic condition. This is reasonable since it take time for tree roots to reach 

deep pipes. However, the finding is not conclusive because pipe age also had negative 

factor coefficient which is not reasonable. A larger and less biased sample data could 

produce different outcomes. 

Table 4-22: Factor coefficients for discriminant functions in the hydraulic MDDM 

Discriminant Function Factors 

1 2 

Pipe Size 0.525 -0.307 

Pipe Age 0.457 -0.247 

Pipe Depth 0.455 -0.257 

Pipe Slope 0.581 -0.092 

Tree-count 0.036 -0.399 

Structural Condition 0.264 0.528 

Pipe Location 0.396 0.385 

Soil Type -0.071 -0.183 

TMI -0.471 0.93 

4.5.2.4 Hydraulic Neural Network Deterioration Model (NNDM) 

The number of hidden neurons and the network weights were the model parameters of 

the NNDM (Section 3.3.4.2). Similar to the calibration of structural NNDM in Section 

4.4.2.4, the number of hidden neurons in the hydraulic NNDM was first determined 

using the Levenberg-Marquardt algorithm (LMA). This also meant that with the chosen 

number of hidden neurons, the NNDM was already trained by the LMA. As mentioned 

with the training of the structural NNDM, there is a possibility that with LMA, the 

solution might be trapped in a local optimum point. Furthermore, LMA does not 

produce any indication of uncertainty of network weights. Hence, GA and Bayesian 

MCMC using MHA were then used to train the hydraulic NNDM to handle the problem 

of local optimum and the uncertainty of network weights respectively. 
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Table 4-23: Estimated thresholds and factor coefficients for the hydraulic OPDM  

Input Factors ML Bayesian MCMC 

1θ  -2.6762 -2.852 

2θ  -2.0364 -2.2274 

Pipe Size -0.0003 -0.0003 

Pipe Age -0.0224 -0.0232 

Pipe Depth -0.3881 -0.4393 

Pipe Slope -0.0932 -0.0948 

Tree-count 0.0382 0.0379 

Structural Condition 0.3573 0.3583 

Pipe Location 0.1898 0.1938 

Soil Type 1.5432 1.4904 

TMI 0.7047 0.6771 

A/ Training of NNDM using LMA  

The suitable number of hidden neurons for the NNDM was searched using the LMA 

and mean square error (MSE) criterion as was done for the structural NNDM. The 

results are given in Figure 4-25 which shows the best possible number of hidden 

neurons was 12 as the MSE values of 0.04 and 0.072 respectively are the lowest values 

on the train and validation datasets at this point. The hydraulic NNDM then consistsed 

of 9 input neurons, 12 hidden neurons and 3 output neurons with a total of 159 network 

weights (including connection weights and bias weights). The values of network 

weights estimated by the LMA can be used in the NNDM to compute the predicted 

hydraulic condition given any input values for individual pipes. 
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Figure 4-25: MSE with different number of hidden neurons – hydraulic NNDM 

B/ Training of Hydraulic NNDM using GA 

The hydraulic NNDM has similar forms of inputs, outputs and structures with that of 

the structural NNDM. Therefore, the population size of 230 and the crossover fraction 

of 0.8 as optimized during the training of structural NNDM with GA were used for GA 

for training of the hydraulic NNDM. The MSE value of 0.032 was achieved on the 

calibration dataset which is smaller than that of the LMA.  

C/ Train NNDM using MHA of Bayesian MCMC 

The Metropolis-Hastings algorithm (MHA) used for training of the hydraulic NNDM 

was the same with the MHA used in the calibration of structural NNDM in Section 

4.4.2.4 C/. The MSE value of 0.018 was achieved with the calibration dataset. This 

MSE value is smaller than those obtained by the LMA (0.04) and GA (0.032). In a 

similar manner with that of structural NNDM, the last 3000 values of network weights 

were kept to compute the mean values and 95% confidence limits for individual 

network weights of the hydraulic NNDM. The 95% confidence limits were then used to 

compute the 95% confidence limits for the predicted hydraulic conditions in the test 

dataset. 

4.5.2.5 Hydraulic Probabilistic Neural Network Deterioration Model (PNNDM) 

The training of the hydraulic PNNDM was similar to that of the structural PNNDM 

described in section 4.4.2.5. However, the suitable smoothing parameter (or standard 
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deviation) of the Gaussian kernel was found as 0.4 since other values caused a reduction 

on the number of correct predictions in the training dataset. 

4.5.3 Testing of Hydraulic Deterioration Models 

The goodness-of-fit test and two scalar performance measures, namely, overall success 

rate (OSR) and false negative rate (FNR) derived from the confusion matrix were used 

to test the five structural deterioration models in Section 4.4.2. These methods were also 

used to test the five hydraulic deterioration models. The results of these testings were 

used to identify the best hydraulic deterioration model for both pipe population and 

individual pipes.  

4.5.3.1  Best Suitable Hydraulic Deterioration Model for Predicting Condition 

Changes of Pipe Population 

Table 4-24 shows the computed Chi-square values for the calibration and test datasets 

for testing the fitness of five deterioration models. Except for the hydraulic MDDM and 

PNNDM, the remaining hydraulic deterioration models, Markov model, OPDM and 

NNDM, were calibrated by different calibration techniques. Similar to the structural 

deterioration models (Section 4.5.2.1), the Chi-square values for different models under 

different calibration techniques are shown in Table 4-24. As can be seen from this table, 

the Markov model, NNDM and PNNDM consistently passed the Goodness-of-fit test on 

both calibration and test datasets. This was substantiated by the small Chi-square values 

which were lower than the critical Chi-square value of 5.99 for the case study. This 

means that these models are suitable to model the hydraulic deterioration of stormwater 

pipes at least for the case study. Furthermore, among the suitable deterioration models, 

the hydraulic Markov model had the lowest Chi-square values on both calibration and 

test datasets. This suggested that the Markov model was the best model to predict the 

hydraulic condition changes of stormwater pipe population in this case study. The 

MDDM failed the goodness-of-fit test on both calibration and test datasets. The OPDM 

passed the goodness-of-fit test on the calibration dataset and failed on the test dataset. 

Therefore, it was decided that both MDDM and OPDM were not suitable models for the 

hydraulic deterioration of stormwater pipes in this case study. 
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As found with the structural Markov model, the Bayesian MCMC simulation technique 

again provided the better performance for model calibration for the hydraulic Markov 

model over the standard optimization. This is substantiated by the lower Chi-square 

values found with this technique on both calibration and test datasets as shown in Table 

B-8 (Appendix B). This suggested that the Bayesian MCMC technique was the best 

calibration technique for the hydraulic Markov model. The Bayesian MCMC simulation 

also provided the better performance for the NNDM in comparison with LMA and GA. 

This is substantiated by the lowest MSE value during training of the structural NNDM 

and the lowest Chi-square values for both calibration and test dataset. GA was also 

found to be better than the LMA in training the NNDM as in the case of structural 

NNDM. 

Table 4-24: Chi-square values of five hydraulic deterioration models 

Chi-square values 
2
Mχ ( 2

2,0.05 5.99χ≤ = ) 
Hydraulic 

Deterioration 

Models 

Calibration Techniques 
Calibration 

dataset 

Test 

dataset 

Bayesian MCMC 

simulation (MHA) 

0.06 0.09 Markov Model 

Standard optimization 0.16 0.21 

MDDM Maximizing Fisher’s 

criterion 

6.01 6.92 

Maximum Likelihood (ML) 5.89 6.36 

OPDM Bayesian MCMC 

simulation (Gibb sampler) 

5.89 6.36 

LMA 5.59 5.89 

GA 2.83 3.05 
NNDM 

Bayesian MCMC 

simulation (MHA) 

2.24 2.55 

PNNDM Trial and error approach 2.17 3.34 
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Since the Markov model was the best model for predicting the hydraulic condition 

changes of the pipe population, the Markov model was then used to predict the 

hydraulic condition changes of stormwater pipe population of CGD. The proportions of 

the three hydraulic conditions belonging to each hydraulic condition over time were 

computed by applying Equation (3-2) to the Markov model with the estimated transition 

probabilities from the entire dataset (as shown in Table 4-21). The results are shown in 

Figure 4-26. This figure was constructed assuming that all pipes come from a 

homogenous population (i.e. effects of contributing factors were ignored). The figure 

shows an initial mild upwards slope for distribution curves of structural condition 2 and 

3 with a peak at the age of 60 years for condition grade 2. As can be seen from this 

figure, the proportions of conditions 1 and 3 continuously decreased and increased 

respectively. If M&R actions are not carried out until the age of 120 year, about 70% of 

pipes would be predicted to be in poor hydraulic condition. 
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Figure 4-26: Hydraulic condition changes of pipe population 

4.5.3.2  Best Suitable Hydraulic Deterioration Model for Predicting Condition 

Changes of Individual Pipes 

The confusion matrixes of four hydraulic deterioration models (MDDM, OPDM, 

NNDM and PNNDM) are given in Tables B-9 to B-14 (Appendix B). The computed 

overall success rate (OSR) and the false negative rate (FNR) are shown in this section 

for determining the best suitable hydraulic deterioration model, the primary aim of this 

study. Figure 4-27 shows the computed OSRs (in percentage) on the calibration and test 

datasets for four hydraulic deterioration models, MDDM, OPDM, NNDM and 
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PNNDM. Furthermore, the effects of different calibration techniques on the OSR of 

each deterioration model were also shown in this figure. As expected, the OSR for the 

calibration (or train) dataset is higher than for the test dataset. As can be seen form this 

figure, the NNDM and PNNDM outperformed the MDDM and OPDM in predicting the 

hydraulic condition of individual pipes. This was substantiated by the higher values of 

OSR for the NNDM and PNNDM for both calibration and test datasets. Furthermore, 

the PNNDM had the highest OSR in the calibration dataset and the NNDM had the 

highest OSR in the test dataset.  

Similar results were found when comparing these four deterioration models in terms of 

the FNR, as shown in Figure 4-28. As expected, the FNR for the calibration (or train) 

dataset is lower than for the test dataset. As can be seen from this figure, the NNDM 

and PNNDM again outperformed the MDDM and OPDM as substantiated by the lower 

FNRs for both calibration and test datasets. The PNNDM had the lowest FNR on the 

calibration dataset and the NNDM had the lowest FNR on the test dataset.  

Based on the performances found with OSR and FNR on the test dataset, the NNDM 

was considered as the best model for predicting hydraulic condition of stormwater pipes 

in this case study. 
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Figure 4-27: Values of OSR for hydraulic MDDM. OPDM, NNDM and PNNDM 
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Figure 4-28: Values of FNR for hydraulic MDDM. OPDM, NNDM and PNNDM 

As found with the training of the structural NNDM, the NNDM trained with GA had 

higher OSR and lower FNR than those of the NNDM trained with the LMA for both 

calibration and test dataset. However, the MHA of Bayesian MCMC technique 

outperformed both GA and LMA techniques in producing the best and consistent 

predictive performances for NNDM for both calibration and test datasets. This implies 

that the Bayesian MCMC technique was again considered as the best calibration 

technique for the hydraulic NNDM.  

4.5.4 Identification of Significant Input Factors  

Methods for identifying the significant input factors to the structural deterioration 

models in Section 4.4.3 were also used for the hydraulic deterioration models.  The 

significant input factors of the hydraulic MDDM were identified by using the forward 

stepwise method (Section 3.5.1). The significant input factors of the hydraulic OPDM 

were identified using the Wald test (Section 3.5.2). The common aspect of these two 

statistical methods is that if the P-value for the computed test statistic (F-value for the 

hydraulic MDDM and Wald statistic for the hydraulic OPDM) is smaller than the value 

of 0.05 or 0.1 (equivalent to 95% and 90% confidence level respectively), the 

corresponding input factor can be considered statistically significant at that level.   

The significant input factors of the NNDM were identified using the connection weight 

analysis (Section 3.5.4). The significant factors in the PNNDM were identified using the 

backward method (Section 3.5.3). The common element of these two methods is that the 

input factors can be ranked in significance order according to the magnitudes of their 
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significance values. The significance values of an input factor in the NNDM can be 

computed from its connection weights. The significance values of an input factor in the 

PNNDM is the decrease in the overall success rate (OSR) on the test dataset when 

comparing the PNNDM using all input factors and the PNNDM without the input factor 

of interest. 

Table 4-25 shows the computed F-values and P-values for the nine input factors of the 

hydraulic MDDM. As can be seen from this table, pipe age, pipe slope, structural 

condition and pipe location were found to be the statistically significant factor at a 0.05 

level. Similarly, Table 4-26 shows the computed Wald statistics and corresponding P-

values for the input factors of the hydraulic OPDM. As can be seen from this table, pipe 

size, pipe age, pipe slope, structural condition and pipe location were found to be the 

statistically significant as substantiated by their P-values which are smaller than 0.05.  

Figures 4-29 to 4-31 show the significance values of input factors obtained by three 

different training techniques (i.e. LMA, GA and MHA respectively) for the hydraulic 

NNDM. As can be seen from these figures, the pipe size, pipe age, structural condition, 

pipe slope and pipe location stood out as the top five ranked factors. On the other hand, 

pipe depth, tree-count and TMI were bottom ranked factors across the three training 

techniques. 

Table 4-25: F-value and P-value of input factors in MDDM 

Factors F-value P-value 

Pipe Size 2.736 .16 

Pipe Age 6.716 .001* 

Pipe Depth 2.107 0.123 

Pipe Slope 6.118 0.002* 

Tree-count 2.144 0.119 

Structural condition 6.716 0.01* 

Pipe Location 5.710 0.004* 

Soil Type .837 0.434 

TMI 2.907 0.156 

*statistically significant factor at 0.05 level 
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Table 4-26: Wald-statistic and P-value of input factors 

Input Factors Wald-Statistic P-value 

Pipe Size 5.267 0.022* 

Pipe Age 7.511 0.006* 

Pipe Depth 2.390 0.122 

Pipe Slope 7.592 0.006* 

Tree-count 2.212 0.273 

Structural condition 5.509 0.019* 

Pipe Location 5.801 0.016* 

Soil Type 0.497 0.698 

TMI 0.69 0.46 
*statistically significant factors at 0.05 level 

Figure 4-32 shows the significance values of input factors of the hydraulic PNNDM. As 

can be seen from this figure, the top four ranked factors were pipe size, pipe age, 

structural condition and pipe location. Bottom ranked factors were tree-count, soil type 

and TMI. 

 By comparing the significant factors found in the hydraulic MDDM, OPDM, NNDM 

and PNNDM, it was concluded that the significant input factors were pipe size, pipe 

age, pipe slope, pipe location and structural condition. The insignificance input factors 

were tree-count and TMI. Soil type and pipe depth were inconclusive.    

4.6 Discussion 

4.6.1 Statistical Models versus Neural Network Models 

Three statistical models (Markov model, MDDM and OPDM) and two neural network 

models (NNDM and PNNDM) were developed for modelling structural and hydraulic 

deterioration of stormwater pipes, as the primary aim of this study. The statistical 

models can be classified as the model driven type because the model structure is 

decided by experts (Dasu and Johnson 2003). The neural network models on the other 

hand, can be classified as the data driven type because the model structure is decided by 

the data (Dasu and Johnson 2003). The attributes of these two types as outlined in 

Section 2.4.2.4 and 2.4.3.4 were considered for finding the best suitable model. 
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The expected outcomes of these deterioration models were the prediction for the 

condition changes of pipe population and the prediction for the condition changes of 

individual pipes. However, the Markov model was used to predict only the condition 

changes of pipe population and was not able to be used for predicting the condition 

changes of individual pipes due to the lack of regular data (or longitudinal data over 

time). The other four models were designed to predict the condition changes of 

individual pipes, but they can then be applied to pipe population considering the 

predictions across all individual pipes within the pipe population. These five models 

were applied to a case study which contained the structural and hydraulic condition data 

of snapshot type. 

The predictive performances of these models for the case study were compared against 

each other so that the best suitable models for modelling structural and hydraulic 

deterioration of stormwater pipes can be determined. Based on the results of goodness-

of-fit test, the Markov model was found conclusively to be the most appropriate choice 

for predicting both structural and hydraulic condition changes of pipe population. The 

assumption of homogenous Markov model was found adequate when considering the 

acceptable results of the goodness-of-fit test. A homogenous Markov model means that 

the transition probabilities are time-independent. This is consistent with the finding of a 

study using the homogenous Markov model for modelling structural deterioration of the 

stormwate pipe system in Newcastle in New South Wales (Australia) by Micevski et al. 

(2002). Their finding was that the use of homogeneous Markov model was appropriate 

and the use of a non-homogenous Markov model could adversely reduce the predictive 

performance of the Markov model. This is because a greater uncertainty of parameter 

estimation can occur due to the increased number of model parameters associated with 

the use of the non-homogenous Markov model. Although it appears that older pipes 

tend to deteriorate faster than the new pipes (i.e. non-homogenous deterioration), this 

assumption may no hold due to other contributing factors or covariates such as pipe size 

and pipe location. This was supported by this study and the study of Micevski et al. 

(2001). Other research papers concerned with bridges and sewers whose deterioration 

properties are considered different with stormwater pipes in Australia. Furthermore, the 

assumption of probabilistic and multi-state condition changes were found appropriate in 

this study and in a study by Micevski et al. (2002). 
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Figure 4-29: Significance values of input factors of NNDM (LMA) Figure 4-30: Significance values of input factors of NNDM (GA) 
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Figure 4-31: Significance values of input factors of NNDM (MHA) Figure 4-32: Significance values of input factors of PNNDM 
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Based on the overall success rate (OSR) and the false negative rate (FNR), the NNDM was 

found to outperform all the remaining deterioration models (MDDM, OPDM and PNNDM) 

in predicting the structural and hydraulic condition changes of individual pipes as shown in 

Figures 4.18 and 4.19 (page 126 of Section 4.4.2.2) and Figures 4.27 and 4.28 (page 141 of 

Section 4.5.2.2). This is consistent with the theoretical capability and practical performance 

of NN found in previous studies (Marquez et al. 1991). Although the NNDM showed a 

promising capability for predicting individual pipes, the FNRs of 18% and 38% for the 

structural and hydraulic conditions respectively were still of great concern. This means that 

a misclassification can occur. Therefore expert opinion should be sought to reconfirm the 

predicted outcomes of the NNDM prior to conducting any M&R actions. Increasing the 

number of input factors such as backfill material, ground water table as listed in Table 3-1 

in the NNDM could be a practical solution to increase the predictive performance of the 

NNDM and to significantly reduce the FNR. By doing so, each pipe deterioration curve has 

more attributes to uniquely describe pipe deterioration and increase the classification power 

of the NNDM.  

The low predictive performance and the failure of the goodness-of-fit tests of both MDDM 

and OPDM for modelling the structural and hydraulic conditions found in the case study 

could be explained by one important reason. That is the statistical assumptions such as 

normality of the input factors in MDDM and normal distribution of the random error in 

OPDM could greatly reduce the predictive capability of these two models. These statistical 

assumptions have been recognized in a number of studies involving prediction models in 

various fields where NN models were alternatively used and produced a much better 

outcome (Leung and Tran 2000; Hajmeer and Basheer 2003; Ermini et al. 2005). 

Furthermore, in predicting individual pipe conditions, MDDM and OPDM have done 

poorly compared to neural networks. That is two are linear models and neural networks 

(NNDM) capture nonlinear relationships. MDDM is the poorest because it is strictly linear. 

OPDM is slightly better because it has more flexibility as it incorporates the error 

distribution left over by a linear model. The fact that the results from these two and neural 

networks are different is an indication that the contributing factors are nonlinearly related to 

the deterioration. This is also supported by the linear statistical correlation not being able to 

indicate some of the significant contributing factors. 



149  

PNNDM appeared to be the best balance between two opposite model types: model driven 

type (i.e. MDDM and OPDM) and data driven type (i.e. NNDM) because PNN models do 

not require complex training process as found with the NN models and are based on the 

well established Parzen-Cacoullos theory and Bayesian decision theory. These advantages 

can be seen in the predictive performance of PNNDM which passed the goodness-of-fit 

test. Furthermore, the OSR of PNNDM on the calibration dataset was consistently better 

than that of the NNDM using a sophisticated training algorithm (i.e. Bayesian MCMC) for 

both structural and hydraulic deterioration. However, the poorer predictive performance of 

the PNNDM on the test dataset found in modelling both structural and hydraulic 

deterioration could be associated with the use of all training patterns in the train dataset. 

Some training patterns may be redundant and thus the PNN becomes oversensitive to the 

training patterns and exhibits poor generalization capacities to the unseen patterns (Mao et 

al. 2000). 

4.6.2 Calibration techniques 

As explained in Section 4.6.1, the Markov model and the NNDM were found to be the best 

suitable models for predicting the structural and hydraulic condition changes of pipe 

population and individual pipes respectively. Both models relied on the sophisticated 

training method, the Bayesian MCMC simulation to avoid the problem of local optimum 

and uncertainty in the estimation of model parameters. In this study, it was found that the 

Bayesian MCMC simulation consistently outperformed the conventional non-linear 

optimizations and genetic algorithm as found in the calibration of the Markov model, 

OPDM and NNDM.  

Although the conventional non-linear optimization techniques such as the first or second 

order derivative (LMA) would converge to a solution, their search methods are well known 

for being easily trapped iat a local optimum (Gori and Tesi 1992). This is the major 

disadvantage in finding solutions in a complex and high-dimensional space with many local 

optima like the parameter space of the NNDM (Gori and Tesi 1992).  

GA is considered a directed ‘global’ search algorithm with probabilistic search rules 

(Goldberg 1989) that is especially useful for such parameter space. However, unlike the 
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conventional optimization techniques, GA does not make use of local knowledge of 

parameter space. Therefore, the convergence of GA may take a long time in the large 

solution space of NN parameters. The Bayesian MCMC simulation, on the other hand, also 

used probabilistic search rules and the ‘global’ knowledge of parameter space via updating 

the variance-covariance matrix as outlined in Section 3.3.1.4. This could be the reason that 

the Bayesian MCMC technique outperformed all other calibration techniques used in this 

study. 

4.6.3 Structural Deterioration and Hydraulic Deterioration 

From the results of the structural and hydraulic Markov models in the Figure 4-17 and 

Figure 4-26, if no maintenance and rehabilitation (M&R) actions are carried out, almost 

80% and 70% of the stormwater pipe system would be in poor structural and hydraulic 

conditions respectively at the age of 120 years. Therefore, the structural deterioration rate 

was faster than that of the hydraulic deterioration rate in this case study. This was 

substantiated by comparing the proportional structural and hydraulic conditions 3 of pipes, 

as shown in Figure 4-33. Furthermore, this was also consistent with the preliminary 

analysis of structural and hydraulic conditions in the case study which shows that more 

pipes are in structural condition 3 (66.9%) than in hydraulic condition 3 (31.4%).  

4.6.4 Significant input factors 

The significant and insignificant input factors that affect the structural and hydraulic 

condition as determined in Section 4.4.3 and 4.5.3 are summarized in Table 4-27. The 

results of one-way ANOVA and cross-table analysis for the structural and hydraulic 

conditions in Section 4.3.2 are also shown in this table. Input factors with ‘*’ mark were 

found to have statistical associations with the structural and hydraulic conditions. As can be 

seen from this table, significant input factors found from the one-way ANOVA or the 

cross-table analysis were also found significant by the four deterioration models.  
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Figure 4-33: Comparison between structural and hydraulic deterioration rates 

(condition 3 only) predicted by the Markov model 

Table 4-27: Significant input factors to structural and hydraulic condition 

Input factor Structural condition Hydraulic condition 

Pipe Size Pipe Size 

Hydraulic Condition* Structural Condition* 

Pipe Location Pipe Location* 

 Pipe Age* 

Significant 

 Pipe Slope* 

TMI TMI 

Pipe Age Tree-count 

Pipe Depth  
Insignificant 

Pipe Slope  

Soil type Soil type 
Undecided 

Tree-count Pipe Depth 
Input factors with ‘*’ mark were found to have statistical  
associations with the structural and hydraulic conditions. 

Although several factors out of the nine input factors considered in the case study were 

found to be significant (or important) to the prediction of the deterioration of stormwater 

pipes, the remaining factors are still useful since the deterioration process is still not fully 

understood and the collected data of the case study just represents a fraction of the whole 
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pipe population. Hence, the findings of significant factors in the case study should not be 

considered as totally conclusive. 

Pipe size: Pipe size was found to be a significant factor that affects both structural and 

hydraulic conditions. Pipe size is an important factor in the structural design of stormwater 

pipes. As outlined in Section 2.2.1, Micevski et al. (2002) mentioned that pipe designers 

may underestimate the traffic loads or the cover requirements for small size pipes. 

Furthermore, It may be the case that larger sewers are laid with more care and precision by 

more experienced personnel (Davies et al. 2001b). Pipe size is also an important factor to 

the hydraulic design of stormwater pipes. Pipes of larger size tend to have low fluid 

velocity which could not flush away all sediments.  Pipes of smaller size are close to the 

ground surface and therefore are likely subjected to tree root intrusion.  

Pipe age: Pipe age was not a significant factor to the structural condition but was a 

significant factor to the hydraulic condition.  This could be explained by the fact that the 

structural deterioration seems to be the result of the combined effects of various factors. 

Furthermore, considering the results found in the study that the rate of structural 

deterioration is greater than the hydraulic deterioration, it is surprising that the age or a 

directly age related variable did not become a prominent factor for structural condition. 

This may have something to do with the data. Judging the structural condition of pipes 

using only pipe age is therefore not appropriate. On the other hand, the tree root intrusion 

and sediment accumulation appear a time consuming process.  

Pipe depth: This factor was not significant to the structural deterioration and its effect on 

the hydraulic deterioration was not strong enough to be considered significant in this study. 

However, it should be noted that pipe depth had mild correlation with pipe size (as 

described in Section 4.3.1.1) which was also the strongest correlation found among other 

correlations between input factors in the case study. Therefore, it can be considered that the 

effects of pipe depth on the structural and hydraulic deterioration models were already 

explained by the pipe size. 

Pipe slope: Similar to the pipe age, pipe slope was not a significant factor to structural 

condition but was a significant factor to the hydraulic condition. Pipes with steeper slope 
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allow higher gravity flow rate, which can remove the sediments and small obstructions. 

However, in the case of unstable backfill or subsoil, the pipes tend to move relatively to 

each other, which may damage the joint section and thus, allow tree root intrusions.  

Tree-count: This factor was not a significant factor that affects the hydraulic deterioration 

of stormwater pipes. Furthermore, the effect of tree-count was not strong enough to be 

considered significant to the structural deterioration in this study. It implies that more 

related factors such as tree age, height and tree type may be more appropriate since these 

factors have a direct relationship with the coverage of tree roots which in turn affect the 

structural and hydraulic condition. 

Structural condition and hydraulic condition: The structural condition was found to be a 

significant input factor to the hydraulic deterioration. This could be explained by the fact 

that structural defects allow surrounding soil and tree roots to enter the pipes. Similarly, the 

hydraulic condition was found to be significant to the structural condition. This finding was 

contradicted by the study of Micevski et al. (2002). They assumed that hydraulic condition 

was based on hydraulic defects that did not affect the structural condition. However, a 

different point of view could be that because the poor structural condition may lead to the 

poor hydraulic condition, the hydraulic condition can act as an ‘indicator’ or predictor to 

predict the structural condition of pipes.  

Pipe location: This factor was found to be significant to both structural and hydraulic 

conditions. In this case study, four different pipe locations (i.e. under roads, nature strips, 

reserves and easements) were considered. Pipes under roads are more likely to be 

structurally damaged due to road repair, construction and dynamic loads associated with 

heavy traffic. Pipes under nature strips, reserves and easements are associated with root 

intrusion, illegal household connections and garden waste. 

Soil type: The effect of soil type to the structural and hydraulic condition was not 

consistently found between the four deterioration models. However, in other studies by 

Micevski et al. (2002) and Davies et al. (2001a), soil type was found to be important factor 

that affect the structural deterioration of stormwater pipes and sewers. A larger sample size 
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or a more detailed investigation of soil type around each pipe could provide more 

information on the effect of the soil type. 

TMI: This factor was seen as an indirect factor that could affect both structural and 

hydraulic deterioration. However, TMI was found as an insignificant factor in this case 

study.   

4.7 Summary 

This chapter presented the application of deterioration models that were developed in 

Chapter 3 to a case study with a sample of real data collected from a stormwater pipe 

system in City of Greater Dandenong (CGD), Australia. The supplied dataset consisted of 

417 concrete pipes which accounted for 2.2% of the whole stormwater pipe system of 

CGD. Each pipe in the dataset was described by the structural condition, hydraulic 

condition and eight input factors (i.e. pipe size, pipe age, pipe depth, pipe slope, tree-count, 

soil type and TMI). The structural and hydraulic conditions of pipes were graded using 

CCTV inspected data and Sewer Inspection Reporting Code of Australia (WSAA, 2002). 

The preliminary analysis of the supplied dataset revealed a number of interesting results. 

More of inspected pipes were in structural condition state three than in hydraulic condition 

state three. Based on the correlation tests, a mild correlation was found between pipe size 

and pipe depth. There were weak correlations found between pipe size and the factors, pipe 

age and pipe slope. Furthermore, pipe depth had weak correlations with pipe age and pipe 

slope. Based on one-way ANOVA and cross-table analysis, the statistical associations were 

found between structural and hydraulic conditions, between hydraulic condition and the 

following factors: pipe age, pipe slope and pipe location. 

The supplied dataset was randomly split into calibration (75%) and test datasets (25%) 

which were used for calibrating and testing the structural and hydraulic deterioration 

models. The data format used for the Markov model was different with those used for the 

remaining four deterioration models. Furthermore, the NNDM required an extra dataset 

(called validation dataset) which was randomly generated from the calibration dataset. This 

means the NNDM used a train (or calibration) dataset of 60% and a validation dataset of 
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15% for the training (or calibration) of the NNDM and the test dataset of 25% for testing 

the NNDM. 

Based on the goodness-of-fit test, the Markov model was consistently found to be the best 

suitable model for predicting the condition changes of pipe population for both structural 

and hydraulic deterioration. The NNDM and PNNDM ranked second and third, while the 

MDDM and OPDM failed the test for both structural and hydraulic deterioration. It was 

predicted from the structural and hydraulic Markov models, that if no maintenance and 

rehabilitation (M&R) actions are to be carried out, almost 80% and 70% of the CGD 

stormwater pipe system would be in poor structural and hydraulic conditions respectively at 

the age of 120 years. Furthermore, the structural deterioration rate was found to be faster 

than that of the hydraulic deterioration rate in this case study. 

Based on the overall success rate (OSR) and the false negative rate (FNR), the NNDM was 

consistently found to be the best suitable model in predicting the condition changes of 

individual pipes for both structural and hydraulic deterioration. The PNNDM ranked 

second, the OPDM ranked third and the MDDM ranked fourth for both structural and 

hydraulic deterioration. However, the NNDM still had relatively high FNR, which means 

that misclassifications may occur and thus expert opinions should be sought to reconfirm 

the predicted outcomes of the NNDM prior to conducting any M&R actions. 

The Bayesian Markov chain Monte Carlo (MCMC) simulation was found to be the best 

calibration method for the Markov model over the standard optimization method. This 

calibration method was also found to be the best training method for the NNDM over the 

Levenberg-Marquardt algorithm (LMA) and genetic algorithm (GA). GA was also found to 

outperform the LMA in training of the NNDM.  

Hydraulic condition, pipe size and pipe location were found to be the significant factors for 

structural deterioration, while structural condition, pipe age, pipe size and pipe location 

were found to be the significant factors for the hydraulic deterioration. 
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CHAPTER 5   SUMMARY, CONCLUSIONS AND 

RECOMMENDATIONS 

 

5.1 Summary and Conclusions 

Deterioration of stormwater pipes can cause pipe failures with catastrophic consequences to 

socio-environment. Monitoring and assessing the condition of stormwater pipes throughout 

their service life are important in ensuring that stormwater pipes perform adequately.  

However, it is not feasible to monitor all stormwater pipes due to the limited budget, 

massive number of pipes and technical constraints. Alternatively, deterioration models can 

be used to predict current and future condition of pipes and based on the predicted 

information, ‘optimal’ decision can be made regarding when and how to repair, overhaul or 

replace pipes in poor condition.  

In many cases, the stormwater pipes systems have been maintained using a crisis-based (or 

reactive) approach. One major reason for use of the reactive approach is the lack of 

deterioration models. As a result of poor maintenance and rehabilitation associated with 

reactive approach to stormwater pipe management, the Australian Infrastructure Report 

Card (2001) rated the stormwater pipe systems in Australia as in ‘poor condition’. Because 

of the increasing importance being placed on asset management strategies and the 

increasing awareness on pipe ageing together with pipe failures, asset managers need to 

change from reactive to proactive approach in managing stormwater pipe systems.  

The challenge of this study reported in the thesis was to utilize the available but limited 

snapshot closed circuit television (CCTV) data of stormwater pipes and the surrounding 

environment (i.e. contributing factors) to develop deterioration models. The developed 

models were then used for identifying significant factors that affect stormwater pipe 

deterioration. Over the past decades, several statistical methods and techniques have been 

developed to model the deterioration of sewers which can be applied to model the 

deterioration of stormwater pipes. Recognizing the important differences between the 
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deterioration of sewers and stormwater pipes as well as the increasing need to support the 

proactive management of stormwater pipe systems, this study was undertaken with the 

following two objectives: 

• The primary objective was to develop structural and hydraulic deterioration models 

to predict current and future condition of stormwater pipes. The outcomes of the 

deterioration models were the condition changes of pipe population and individual 

pipes. The condition changes of pipe population show the predicted proportions of 

the pipe population in each condition state in each year; this predicted information 

can be used for planning annual budget required for maintenance and rehabilitation 

of pipes. The condition changes of individual pipes, on the other hand, show the 

predicted condition of any particular pipe, as compared to the ‘like new’ condition, 

given the contributing factors (e.g. pipe size and pipe age) of the individual pipes; 

this predicted information can be used to identify pipes that are in poor condition and 

considered for repair works.  

• The secondary objective was to identify significant input factors that affect the 

output of deterioration models and hence the deterioration process of stormwater 

pipes. By paying attention to these significant factors, the design and operation of 

stormwater pipes could be improved in order to reduce pipe failures and increase 

service life.  

A case study with data from City of Greater Dandenong (CGD) in Melbourne (Australia) 

was used to demonstrate the applicability of the developed models. The dataset consisted of 

417 concrete pipes which accounted for 2.2% of the whole stormwater pipe system of 

CGD. Each pipe in the dataset was described by the structural condition, hydraulic 

condition and eight input factors (i.e. pipe size, pipe age, pipe depth, pipe slope, tree-count, 

soil type and Thornwaite moisture index (TMI)). The structural and hydraulic conditions of 

the pipes were graded using CCTV inspection data and Sewer Inspection Reporting Code 

of Australia (WSAA, 2002).  

The following conclusions were drawn from the development of deterioration models in 

this study and the application to the case study. However, these conclusions cannot be 
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considered as representative for stormwater pipes across Australia, since it is the only study 

of pipe deterioration models of this magnitude. 

1. The preliminary analysis of the supplied dataset revealed a number of interesting 

results. Based on the correlation tests, a mild correlation was found between pipe size and 

pipe depth. There were weak correlations found between pipe size and the factors of pipe 

age and pipe slope. Furthermore, pipe depth had weak correlations with pipe age and pipe 

slope. Based on one-way ANOVA and cross-table analysis, the structural condition has a 

statistical association with the hydraulic condition. Furthermore, the hydraulic condition 

has statistical associations with the following factors: pipe age, pipe slope and pipe 

location.  

2. Literature review undertaken in this study showed that rigid pipes (e.g. concrete and 

vitrified clay) are still dominantly used in sewer and stormwater pipe systems. The 

deterioration of rigid pipes is affected by various factors and probabilistic damage events. 

Currently, the assessment of deterioration is often observed using the popular CCTV 

inspection technique. The deterioration of rigid sewers and stormwater pipes can be divided 

into structural and hydraulic deterioration. Development of deterioration modes that can 

predict the current and future condition of infrastructure assets has received increased 

attention. Although there are some disadvantages associated with the statistical models 

(such as sensitivity to noisy data and assumed model structure), these models are still better 

than the deterministic models in handling integer valued outputs (i.e. pipe conditions) and 

the probabilistic nature of the pipe deterioration. There are several advantages in artificial 

intelligence models to deal with the major issues such as data scarcity, probabilistic 

deterioration process and noisy data. In the artificial intelligence models, neural network 

(NN) and probabilistic NN models emerge as a powerful and flexible tool for modeling 

infrastructure facilities. Nevertheless, the NN and PNN models have not been used for 

stormwater pipes. The goodness-of-fit test and the confusion matrix analysis used in this 

study are the only available methods for assessing the performance of deterioration models 

with the output of ordinal pipe condition.  

3. The ideal deterioration model (IDM) using assumed curves for both structural and 

hydraulic deterioration of individual stormwater pipes can be used to show that pipes in 
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reality deteriorate differently from one to another due to many contributing factors. From 

this IDM, the estimation of the condition changes over time for the pipe population and the 

estimation of the condition changes overtime for individual pipes can be constructed and 

then used as the model outputs for the development of practical deterioration models. A list 

of potential contributing factors such as pipe size, pipe age, and soil type was found. The 

full list of contributing factors is shown in Table 3-1 of this thesis. 

4. Based on the IDM, literature review and the availability of the snapshot data of the 

case study, five practical deterioration models, Markov model, multiple discriminant 

deterioration model (MDDM), ordered probit deterioration model (OPDM), neural network 

deterioration model (NNDM) and probabilistic neural network deterioration model 

(PNNDM), were developed in this study.  These five deterioration models used 

contributing factors as model inputs for predicting pipe conditions. The Markov model, 

MDDM and OPDM are the statistical deterioration models while the NNDM and PNNDM 

are artificial intelligence deterioration models. The Markov model was developed to predict 

the condition changes of pipe population and cannot be used to predict the condition 

changes of individual pipes due to the lack of regular (or longitudinal) data. The four 

remaining deterioration models were developed to predict the condition changes of 

individual pipes. They can also be used for predicting the condition changes of pipe 

population by summing up the predicted conditions of individual pipes and computing the 

proportions. Furthermore, the five deterioration models are considered as generic models 

because they can be applied to model both structural and hydraulic deterioration of 

stormwater pipes. In training or calibrating the five deterioration models, the advanced 

optimization methods including genetic algorithm (GA) and Bayesian Markov Chain 

Monte Carlo (MCMC) simulation were used as the effective methods as compared to the 

standard optimization methods such as the Levenberg-Marquardt algorithm (LMA) in 

handling the local optimum of complex parameter spaces.  

 

5. The structural and hydraulic deterioration models for the stormwater pipes of CGD 

were implemented using the five deterioration models: Markov model, MDDM, OPDM, 

NNDM and PNNDM developed in this study. The supplied dataset was randomly split into 

the calibration (75%) and test (25%) datasets which were then used for respectively 
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calibrating and testing the structural and hydraulic deterioration models. The predictive 

performances of these models were compared against each other so that the best possible 

deterioration model can be identified.  

 

For the structural deterioration models of CGD stormwater pipes, the Markov model was 

found to be the best suitable model in predicting the condition changes of the pipe 

population. This was based on the acceptable results of the goodness-of-fit test with the 

smallest Chi-square values of 0.22 and 0.34 as compared to the critical value of 5.99 on the 

calibration and test datasets respectively. The NNDM and PNNDM ranked second and 

third, while the MDDM and OPDM failed the test for both structural and hydraulic 

deterioration. In predicting the condition changes of individual pipes, the NNDM was 

found to be the best suitable model based on the overall success rate (OSR) and the false 

negative rate (FNR). The NNDM achieved the highest value (82%) of OSR and the lowest 

value (16%) of FNR on the test dataset. Although the PNNDM ranked second, it got the 

highest value (95%) of OSR and lowest value (9%) of FNR on the calibration dataset. The 

OPDM ranked third and the MDDM ranked fourth. The Bayesian MCMC simulation was 

found to be the best calibration method for the Markov model over the standard 

optimization method. This calibration method was also found to be the best training method 

for the NNDM over the LMA and genetic algorithm (GA). GA was also found to 

outperform the LMA in training the NNDM. Hydraulic condition, pipe size and pipe 

location were found to be significant factors that affect the outputs of structural 

deterioration models and hence the structural deterioration of stormwater pipes.  

 

For the hydraulic deterioration models of CGD stormwater pipes, the Markov model was 

also found to be the best suitable model in predicting the condition changes of pipe 

population as found by the acceptable results of the goodness-of-fit test with the best Chi-

square values of 0.06 and 0.09 on the calibration and test datasets respectively. Again, the 

NNDM and PNNDM ranked second and third, while the MDDM and OPDM failed the 

goodness-of fit test. In predicting the condition changes of individual pipes, the NNDM 

was consistently found to be the best suitable model with the highest value (74%) of OSR 

and lowest value (38%) of FNR on the test dataset. The PNNDM repeatedly ranked second 
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with the highest value (88%) of OSR and lowest value (15%) of FNR on the calibration 

dataset. The OPDM ranked third and the MDDM ranked fourth. Similar to the structural 

deterioration models, the Bayesian MCMC simulation was consistently found to be the best 

calibration method for the Markov model and the NNDM. GA was also found to 

outperform the LMA in training the NNDM. Structural condition, pipe age, pipe size and 

pipe location were found to be significant factors that affect the outputs of hydraulic 

deterioration models and hence the hydraulic deterioration of stormwater pipes. 

 

6. It was predicted from the structural and hydraulic Markov models, that if no 

maintenance and rehabilitation (M&R) actions are to be carried out, almost 80% and 70% 

of the CGD stormwater pipe system would be in poor structural and hydraulic conditions 

respectively at the age of 120 years. Furthermore, the structural deterioration rate was 

found to be faster than the hydraulic deterioration rate in this case study. The FNRs of 

NNDM for both structural and hydraulic deterioration models are still considered as 

relatively high, which means misclassifications may occur and thus expert opinion should 

be sought to reconfirm the predicted outcomes of the NNDM prior to conducting any M&R 

actions on individual pipes. 

 

5.2 Recommendations for future work 

As stated in the conclusions, different case studies should be used to verify the findings of 

this study and to make general comclusions for stormwater pipes across Australia. 

The deterioration process of rigid stormwater pipes was investigated via the development of 

deterioration models in this study. The Markov model was found to have the highest 

performances for prediction of condition changes of pipe population for both structural and 

hydraulic conditions. This indicates that the Markov model may provide a better predictive 

performance for individual pipes than the NNDM and other models. Therefore, a regular 

inspection program is recommended in future data collection so that the Markov model can 

be calibrated and tested for prediction of individual pipes.  
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Nevertheless, the NNDM can still improve its predictive performance on the condition that 

more factors (as listed in Table 3-1) should be collected. On the other hand, the PNNDM 

also has proven a promising candidate that can replace the statistical models and avoid the 

complexity associated with the training process of the NNDM. Therefore, it is also 

recommended that more investigation on improving the PNNDM should be carried out in 

the future.  

This study is limited to stormwater rigid pipes and therefore, it is recommended to extend 

the work to the stormwater flexible pipes which are increasingly used in buried 

infrastructure facilities. The significant factors found within this study may provide a 

starting point for the future work with flexible pipes. 

It is also recommended to use the predicted hydraulic conditions of stormwater pipes for 

evaluating the changes of pipe flow capacity due to hydraulic deterioration in comparison 

with the increasing runoff volume due to climatic change and urban development. 
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APPENDIX A:   INSPECTION TECHNIQUES 

A.1 Level 1-techniques 

A.1.1 Manual Manhole surveys  

Accessible manholes and pits can be physically surveyed to identify the position of all 

structures, flow direction, segment length and connecting pipes. The information of 

position contains depth and geo-coordinators to a standard referent point. This is also a 

preparation step for level 2 of inspection. Safety should be carefully considered. Gas 

reading must be measured and recorded prior to opening covers.  

A.1.2 Sonde Locator 

Sonde locators use radio frequency to locate the non-metallic pipes. A sonde locator is a 

small radio transmitter inserted into a pipe. A radio receiver on the surface will move along 

as the sonde is pushed farther in the pipe. At every pace of sonde, pipe’s position is marked. 

Alternatively, a plumber‘s snake can be used to emit the signal to the surface. 

A.1.3 Global Positioning System (GPS)  

The GPS is a world-wide radio-navigation system using a constellation of satellites and 

ground stations. GPS uses the satellite as reference point to calculate ground position 

within the accuracy of meters. Hand-held GPS units become a common mapping tool in 

infrastructure information management.     

A.2 Level 2-techniques 

A.2.1 Man Walk-through (Manual) Inspection  

This type of inspection can be used only in circumstances where the pipe diameters are 

over 1.2 meters and safety precautions are ensured before and during inspection. This 

method has a series of disadvantages such as low productivity and high subjectivity. Other 

manual inspection techniques are smoke testing and dye testing. Smoke testing is 

performed to detect lateral defects, illegal connection and buried manholes. Dye testing can 

be used to detect overflow into river, creek and infiltration/exfiltration. 
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A.2.2 CCTV Inspection  

Mobile or robotic CCTV systems are the most common means of inspecting sewer and 

stormwater pipelines. This robotic CCTV system uses a CCTV camera mounted on an 

electric-driven robot that enters a pipe segment. The camera generally looks forward as the 

robot moves along the pipe axis, allowing the field operators to examine and evaluate the 

entire segment via a TV monitor.  The field operators exercise subjective judgment when 

identifying and classifying pipe defects in the filed. This judgment is affected by many 

factors such as experience, mental awareness and equipment capability. When the operator 

finds a defect, he then stops the robot, zooms in the defect, records images of the defect and 

codes the defect. The process starts again and repeats until the end of the segment. After 

defect coding, computer software is used to do defect scoring and condition grading. It is 

obviously that the subjectivity of CCTV inspection occurs before defect scoring.  

Several techniques and accessories have been developed to improve the subjectivity during 

CCTV inspections. Examples are:  

• Pan and tilt head – allowing the camera to look sideways around the pipe wall. 

• Zoom lens – the latest high-powered tele-objective zoom lens (Lee 2005) allows 

viewing upto 150 meters in large size pipes. 

• Lighting – High intensity lighting is also adopted to enhance the image quality. 

• Inclinometer – to show the instantaneous gradient of the pipe; integration software can 

calculate the overall gradient for the whole segment. 

• Sonde - a radio transmitter built into the camera allows tracing the position of the 

camera. 

• Multiplex control - only one cable is used to carry both power and data lines. 

• Automated defect classifying – recorded images are automatically scanned to spot 

defects and code them. 

A.2.3 Sewer Scanner and Evaluation Technology (SSET)  

The development of the SSET in Japan is considered an improvement to the standard 

CCTV inspection. It houses a CCTV camera, a fish-eye, digital and high-resolution scanner 
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and a fiber optic gyroscope that allows an engineer to see the total pipe surface in 360 

degree forward view from one end to other, along with vertical and horizontal alignment 

data. The scanned image is digitized so that a color-coded computer image can be viewed 

on a computer screen. The key advantage is that the field operator does not need to stop the 

robot when a defect is found and assessed. 

A.2.4 Multi-Sensor Pipeline Inspection System (KARO, PIRAT) 

KARO is a robot multi-sensor inspection system developed in Germany which attempts to 

automatically detect the type, location and size of defects in sewers. It consists of a 3D 

optical sensor, ultra-sonic sensors and microwave sensors. KARO applies a sensor fusion 

fuzzy logic system for conducting damage diagnosis. KARO can work with pipe size of 20-

cm, travel up to 400 meters, measure obstacles, and cracks even under the cover of mud. 

Similarly, PIRAT developed in Australia uses semi-independent systems. The instrument 

system which houses a sensor system, a laser scanner for dry pipes and a sonar scanner for 

flooded pipes, collects the geometry data. This data is input into the interpretation system to 

detect, identify and rate each defect. 

A.2.5 Laser Scanning System 

This type of inspection utilizes a laser as a light source to scan the geometric shape of a 

pipe’s interior wall and detects variation in shape and type of cracks as small as 0.3 mm. It 

is done by narrowing a ring of light at the pipe wall in order to profile the pipe interior at 

any cross section. One critical limit of this method is above water line. 

A.2.6 Sonar (Ultrasonic Inspection) 

Ultrasonic inspection is performed using a beam of very high frequency which is many 

orders of magnitude higher than a human being can hear. The sound wave travels into the 

object being inspected and reflects whenever a change in density occurs. A sonar head 

which is mounted on a tractor or crawler sends out a 360 degree sound wave. The sonar 

head picks up the signal reflected from various surfaces with different depths and objects 

within the pipes, and calculate the delaying time to generate a profile of the pipe surface. 
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This technique can detect pits, voids and cracks although certain crack orientations are 

more difficult to detect. 

A.2.7 Eddy Current Testing 

This is an electromagnetic technique that can detect surface and sub-surface discontinuities 

in tube walls up to 10 mm thick in conductive material. When an energized coil is brought 

near to the surface of metal component, eddy currents are induced into the specimen. The 

eddy current sets up a magnetic field that tends to oppose the original magnetic field (from 

coil). The impedance of coil is influenced by the presence of eddy currents. When the eddy 

currents in the specimen are distorted by defects, the impedance in the coil is altered and 

this variation is measured and display in a way that indicates the type of defect. 

A.2.8 Focus Electrode Leak Location (FELL) 

FELL is used for leak detection and is based on the simple principle that water offers less 

resistance to the transmission of electrical energy than a non-metallic pipe wall. 

Consequently, an electrical field generated inside a surcharged pipe will be stronger at 

locations where water can escape to the surrounding surface. FELL uses a special electrode, 

named ‘sonde’ that generates an electrical field. When this sonde is pushed moving inside a 

pipe and approaches a defect that allows fluid flowing in or out, the current between the 

sonde and the surface electrode increases until they are radially aligned.  

A.3 Level 3-techniques 

A.3.1 Impact Echo and Spectral Analysis of Surface Waves (SASW) 

The impact echo technique is based on the use of impact-generated stress (sound) waves 

that propagate through the sewer and are reflected by internal defects and external surfaces. 

The apparatus consists of a source of controlled impacts such as a falling weight, a 

pneumatic hammer and one or more geophones that are mounted against the pipe wall. 

Waves are produced when the pipe is struck by the weight or the hammer. These waves are 

detected by geophones.  The impact echo technique looks at the actual waveform produced 

by the impact, whereas SASW uses more geophones to separate the waves into different 
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frequency components (i.e. effect from pipe defects and from soil condition). These 

different components travel at different speeds and penetrate to different depth in the soil 

beyond the pipe.   

A.3.2 Ground Penetrating Radar (GPR) 

GPR can detect subsurface voids and defects in concrete pipe. GPR emits electromagnetic 

pulses into the ground, and measures the reflection and refraction by sub-layers or buried 

objects. The effective depth can be up to 100 meters depending on soil type. However, it 

has little effectiveness on clay or soil with high conductivity. 

A.3.3 Infrared Thermography 

This technique can be used to detect void locations in large areas and GPR can then be 

employed to identify the thickness and depth of voids. It measures a slight variation in 

temperature and produces thermographic images of objects rather than their optical values. 

An infrared scanner head and a detector are used to capture the thermal data which are 

converted into color images for display on monitor. 

A.3.4 Micro Deflection 

This technique was developed to investigate the structural integrity of rigid pipes. It 

measures the change in position (micro deflection) where a pressure is applied. The result is 

then compared with a measured response from a structurally sound rigid pipe. Any 

deviation is an indication of a weakness in the pipe. 

A.3.5 Wave Impedance Probe 

This technique developed in Australia successfully detected voids, loose soil and man-made 

structure outside the sewers. This is a hybrid of GPR and electromagnetic techniques that 

can detect differences in electromagnetic impedance of the material. 
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APPENDIX B:  CONFUSION MATRIX FOR PREDICTIONS OF 

STRUCTURAL AND HYDRAULIC CONDITIONS 

Table B-1: Goodness-of-fit test for structural 

Markov model  

Predicted Number 
Dataset 

Structural 

Condition 

Observed 

Number MHA Optimization

1 74 73 78 

2 27 25 22 Calibration 

3 223 226 224 

1 32 34 35 

2 5 4 7 Test 

3 56 55 51 

 

Table B-2: Confusion Matrix for predictive performance of the structural MDDM 

Predicted structural condition (%) Observed structural 

condition  1 2 3 

Total 

(%) 

1 31 17 52 100 

2 2 62 36 100 
Calibration  

dataset 
3 43 5 52 100 

1 26 45 29 100 

2 2 52 46 100 Test dataset 

3 42 10 48 100 
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Table B-3: Confusion Matrix for predictive performance of the structural OPDM 

Predicted structural condition (%) Observed structural 

condition 1 2 3 

Total 

(%) 

1 38 16 47 100 

2 55 40 5 100 
Calibration 

dataset 
3 38 5 57 100 

1 32 23 45 100 

2 41 43 15 100 Test dataset 

3 36 11 53 100 

 

 

Table B-4: Confusion Matrix for predictive performance of BP trained structural 

NNDM 

Predicted structural condition (%) Observed 

structural condition 1 2 3 

Total 

(%) 

1 74 2 24 100 

2 14 50 36 100 
Train 

dataset 
3 17 11 72 100 

1 61 6 32 100 

2 5 80 15 100 Test dataset 

3 30 6 64 100 
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Table B-5: Confusion Matrix for predictive performance of GA trained structural 

NNDM 

Predicted structural condition (%) Observed structural 

condition 1 2 3 

Total 

(%) 

1 83 7 10 100 

2 6 58 36 100 Train dataset 

3 18 3 79 100 

1 84 6 10 100 

2 33 37 31 100 Test dataset 

3 16 8 76 100 

 

 

Table B-6: Confusion Matrix for predictive performance of Bayesian MCMC trained 

structural NNDM 

Predicted structural condition (%) Observed structural 

condition 1 2 3 

Total 

(%) 

1 87 3 10 100 

2 3 75 23 100 Train dataset 

3 10 5 85 100 

1 84 6 10 100 

2 15 77 8 100 Test dataset 

3 5 11 84 100 
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Table B-7: Confusion Matrix for predictive performance of the structural PNNDM 

Predicted structural condition (%) Observed structural 

condition 1 2 3 

Total 

(%) 

1 96 2 2 100 

2 8 78 14 100 Train dataset 

3 9 0 91 100 

1 58 19 23 100 

2 8 76 15 100 Test dataset 

3 25 5 70 100 

 

Table B-8: Goodness-of-fit test for hydraulic  

Markov model 

Predicted Number 
Dataset 

Hydraulic 

Condition 

Observed 

Number MHA Optimization

1 131 132 134 

2 82 83 79 Calibration 

3 102 100 102 

1 32 34 35 

2 5 4 7 Test 

3 56 55 51 
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Table B-9: Confusion Matrix for predictive performance of the Hydraulic MDDM 

Predicted Hydraulic condition (%) Observed Hydraulic 

condition  1 2 3 

Total 

(%) 

1 48 14 38 100 

2 11 81 8 100 
Calibration  

dataset 
3 49 10 41 100 

1 59 24 18 100 

2 62 16 22 100 Test dataset 

3 54 9 37 100 

 

 

Table B-10: Confusion Matrix for predictive performance of the Hydraulic OPDM 

Predicted Hydraulic condition (%) Observed Hydraulic 

condition 1 2 3 

Total 

(%) 

1 48 13 39 100 

2 29 67 4 100 
Calibration 

dataset 
3 34 10 56 100 

1 59 14 27 100 

2 71 22 7 100 Test dataset 

3 25 22 53 100 
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Table B-11: Confusion Matrix for predictive performance of BP trained hydraulic 

NNDM 

Predicted Hydraulic condition (%) Observed 

Hydraulic 

condition 
1 2 3 

Total 

(%) 

1 56 9 35 100 

2 44 45 11 100 
Train 

dataset 
3 15 24 61 100 

1 57 24 20 100 

2 50 42 7 100 Test dataset 

3 32 13 56 100 

 

 

Table B-12: Confusion Matrix for predictive performance of GA trained hydraulic 

NNDM 

Predicted Hydraulic condition (%) Observed Hydraulic 

condition 1 2 3 

Total 

(%) 

1 70 9 21 100 

2 10 79 11 100 Train dataset 

3 23 14 63 100 

1 90 4 6 100 

2 51 34 15 100 Test dataset 

3 26 16 58 100 
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Table B-13: Confusion Matrix for predictive performance of Bayesian MCMC 

trained hydraulic NNDM 

Predicted Hydraulic condition (%) Observed Hydraulic 

condition 1 2 3 

Total 

(%) 

1 77 3 21 100 

2 26 67 7 100 Train dataset 

3 22 9 69 100 

1 90 4 6 100 

2 55 41 4 100 Test dataset 

3 16 22 62 100 

 

Table B-14: Confusion Matrix for predictive performance of the hydraulic PNNDM 

Predicted Hydraulic condition (%) Observed Hydraulic 

condition 1 2 3 

Total 

(%) 

1 98 1 1 100 

2 12 81 7 100 Train dataset 

3 7 8 85 100 

1 75 12 14 100 

2 33 59 7 100 Test dataset 

3 33 9 58 100 
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APPENDIX C: PROGRAMMING CODES 

 

C.1 Bayesian MCMC for Calibration of Markov Model 

%MATLAB programming codes 

Function y=MCMC_Markov(x,aa) 

%x: the number of iteraion 

%aa: number of last data taken from the sampling 

Data = [to be inserted here]; 

% generate initial values of Pij 

count=0; 

cpos=1; 

% data matrix setup 

[nrows,ncols]=size(data); 

age=data(:,1); 

number_pjt=data(:,2:ncols-1); 

sumrow=data(:,ncols); 

% assign initial value to Pij from random number generator. 

%Sum of Pij must be equal 1 and each Pij must be in the range [0,1] 

  N12=0.1+0.8*rand(1); %rand(1); 

temp12=1-(exp(N12)/(1+exp(N12))); 

N13=-1*log(1/temp12-1)*(1+rand(1)); 

N23=randn(1); 

  p12=exp(N12)/(1+exp(N12)) 

p13=exp(N13)/(1+exp(N13)) 

p23=exp(N23)/(1+exp(N23)) 

 p11=1-(p12+p13); 

p22=1-p23; 

%Initiate variance-covariance matrix with arbitrary values 

  cova1=[0.2 0 0;0 0.1 0;0 0 0.15]; 

cova=cova1; 
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%Initiate iteration start value 

ite=2; 

while ite<=x  

      if ite>(x-aa) 

          %cova=cova2; 

      end     

% record old values of Pij 

     oldN11=N11; 

    oldN12=N12; 

     oldN13=N13; 

     oldN23=N23; 

     oldp11=p11; 

     oldp12=p12; 

     oldp13=p13; 

     oldp22=p22; 

     oldp23=p23; 

    % generate new values of Pij 

           NN=randn(3); 

          NN=NN(1,:); 

          N12=oldN12+cova(1,:)*NN'; 

          N13=oldN13+cova(2,:)*NN'; 

          N23=oldN23+cova(3,:)*NN'; 

          p12=exp(N12)/(1+exp(N12)); 

          p13=exp(N13)/(1+exp(N13)); 

          p23=exp(N23)/(1+exp(N23)); 

          p11=1-(p12+p13); 

          p22=1-p23; 

 % check that sum of Pij must be 1 

  if `p11<0  

          prob_value=0; %reject new sample 

  else                
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r_new=logpost(nrows,age,number_pjt,p11,p12,p13,p22,p23);   

r_old=logpost(nrows,age,number_pjt,oldp11,oldp12,oldp13,oldp22,oldp23); 

          prob_value=exp(r_new-r_old); 

end %if p11 

%Generate a random uniform number in [0,1] to check the new Pij 

  Ucheck=rand(1); 

 if (prob_value > 1)|(prob_value>Ucheck) % accepted  

          count=count+1; 

        last_accept=ite; 

if (count/x)>0.234 

             % stoploop=ite 

              ite=x; 

          end    % increase index of result matrix 

     else % Not accepted and return to old values Pij 

          N11=oldN11; 

           N12=oldN12; 

           N13=oldN13; 

           N23=oldN23; 

            p11=oldp11; 

          p12=oldp12; 

          p13=oldp13; 

          p22=oldp22; 

          p23=oldp23; 

            end % check accepatnce 

      if ite>(x-aa) 

           pp11(cpos)=p11; 

           pp12(cpos)=p12; 

           pp13(cpos)=p13; 

           pp22(cpos)=p22; 

           pp23(cpos)=p23; 

           cpos=cpos+1; 
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      end %if ite   

ite=ite+1;     

end % while ite 

  yy=[pp11' pp12' pp13' pp22' pp23']; 

[row_y,col_y]=size(yy); 

number_of_acceptance=count 

acceptance_rate=count/x 

disp('the last accepted is: ') 

disp(last_accept); 

%kk=yy(row_y-5:row_y,:) 

for kk=1:col_y % compute mean value 

    y(kk)=sum(yy(:,kk))/(row_y); 

end % for kk   

% display the calculated values of Pij 

disp(y); 

y=yy;%(row_y-100:row_y,:); 

end % main function 

% function to calculate the loglikelihood 

Function y=logpost(nrows,age,number_pjt,p11,p12,p13,p22,p23) 

p33=1; 

for i=1:nrows %nrows 

    p1t(i,1)=1; 

    p2t(i,1)=0.0; 

    p3t(i,1)=0.0; 

    for j=1:(age(i)) 

        p1t(i,j+1)=p11*p1t(i,j); 

        p2t(i,j+1)=p12*p1t(i,j)+p22*p2t(i,j); 

        p3t(i,j+1)=p13*p1t(i,j)+p23*p2t(i,j)+p33*p3t(i,j); 

    end  % j   

    log_pjt(i,1)=log(p1t(i,age(i)+1)); 

    log_pjt(i,2)=log(p2t(i,age(i)+1)); 
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    log_pjt(i,3)=log(p3t(i,age(i)+1)); 

    loglike(i)=number_pjt(i,:)*log_pjt(i,:)'; 

end % i,nrows 

y=sum(loglike); 

end % logpost 

 

C.2 Bayesian MCMC Calibration for NNDM 

%MATLAB programming codes 

function y=MCMC_NN(no_hn,x,aa) 

%no_hn: number of hidden neurons 

%x: the number of iteraion 

%aa: number of last data taken from sampling 

data =[ to be inserted here]; 

% generate Init value of Pi-j 

count=0; 

cpos=1; 

last_accept=0; 

 %warm_c=round(aa*x); 

 % matrix setup 

[da_row,da_col]=size(data); 

da_in=[ones(da_row) data(:,1:da_col-1)]; 

da_ou=data(:,da_col); 

%assign init values for weight 

 no_hw=no_hn*da_col; %number of weight (bias included) in hidden layer 

no_ow=no_hn+1; %number of weight (bias included),connecting hidden to output, in 

output layer 

total_wei=no_hw+no_ow; % tatal variables of weight 

 % generate initial values for all weights by using normal distribution 

old_wei=randn(total_wei,1); 

 cova_wei=1+rand(1,total_wei); % make sure positive variance 

cova_wei=diag(cova_wei); 
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row_yy=total_wei; 

% record old values of network weights 

update_cova=1; 

ite=2; 

while ite<=x  

    if ite > x/3 & update_cova==1 

        [row_yy,col_yy]=size(yy); 

        mean_yy=sum(yy)/row_yy; 

        cova_wei=(yy-repmat(mean_yy,row_yy,1))/sqrt(row_yy-1); 

        cova_wei=cova_wei'; 

        update_cova=0; %stop 

    end     

    if ite==round(2*x/3) 

        update_cova=1; %stop 

    end 

% generate new values of network weights 

         ZZ=randn(row_yy,1); % generate new sample from multi-Gaussian pdf 

         new_wei=old_wei+cova_wei*ZZ; % apply 8.1.4 Tong (multivariate normal) 

         r_new=logpost(data,no_hn,new_wei); 

        r_old=logpost(data,no_hn,old_wei); 

        prob_value=r_new/r_old; 

        Ucheck=0.95+0.05*rand(1); %reduce acceptance rate since prop-valur is too small 

     if (prob_value > 1)|(prob_value>Ucheck) % accpeted 

        count=count+1; 

        last_accept=ite; 

        % update new value 

        old_wei=new_wei; 

        yy(count,:)=old_wei'; 

 end % check acceptance 

ite=ite+1;     

end % while ite 
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  [row_yy,col_yy]=size(yy); 

number_of_acceptance=count; 

acceptance_rate=count/x; 

 if row_yy > aa 

    yy=yy(row_yy-aa:row_yy,:); 

    [row_yy,col_yy]=size(yy); 

end 

[te_row,te_col]=size(data_test); 

 disp('the accepted rate is: ') 

disp(acceptance_rate); 

disp('MSE of calibration test: ') 

cal_mse(data,no_hn,yy(row_yy,:)') % mse of calibration 

  for i=1:row_yy 

mm(i,:)=cal_test(data_test,no_hn,yy(i,:)'); %cal culate test data 

end 

disp('the mean output test is: ') 

sum(mm)'/row_yy 

std_err=sqrt((row_yy*sum(mm.^2)-(sum(mm).^2))/(row_yy*(row_yy-1)))' 

 kk=sum(mm)'/row_yy - data_test(:,te_col); 

for j=1:te_row 

        if abs(kk(j,1))<=0.17 

            kk(j,1)=1; 

        else 

            kk(j,1)=0; 

        end 

end 

disp('the performance test is: ') 

100*sum(kk)/te_row %wei matrix 

 y=yy; %wei matrix 

 end % main fucntion 

 function z=logpost(data_inou,number_hn,matrix_wei) 
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     [da_row,da_col]=size(data_inou); 

    da_in=[ones(da_row,1) data_inou(:,1:da_col-1)]; 

    da_ou=data_inou(:,da_col); 

     

    matrix_wei=matrix_wei'; %transform to one row format 

    [mawei_row,mawei_col]=size(matrix_wei); 

    output_wei=matrix_wei(number_hn*da_col+1:mawei_col)' ; 

% extract from last segment & convert in one column format 

    hidden_wei=matrix_wei(1,1:number_hn*da_col); 

    hidden_wei=reshape(hidden_wei,da_col,number_hn); 

    sum_hidden=da_in*hidden_wei; 

    tan_sig=2./(1+exp(-2*sum_hidden))-1; %a = tansig(n) = 2/(1+exp(-2*n))-1 

     hidden_output=[ones(da_row,1) tan_sig]; 

    sum_output=hidden_output*output_wei; 

    log_sig=1./(1+exp(-1*sum_output)); %logsig(n) = 1 / (1 + exp(-n)) 

     err_dis=log_sig-da_ou; 

    mean_se=sum(err_dis.^2)/da_row; 

    std_err=sqrt((da_row*sum(err_dis.^2)-(sum(err_dis))^2)/(da_row*(da_row-1))); 

    tt=(err_dis/std_err).^2; 

    z=sum(exp(-0.5*tt))/std_err; 

 end % logpost 

%Function to calculate the MSE 

 function zz=cal_mse(data_inou,number_hn,matrix_wei) %calculate MSE 

     [da_row,da_col]=size(data_inou); 

    da_in=[ones(da_row,1) data_inou(:,1:da_col-1)]; 

    da_ou=data_inou(:,da_col); 

    matrix_wei=matrix_wei'; %transform to one row format 

    [mawei_row,mawei_col]=size(matrix_wei); 

    output_wei=matrix_wei(number_hn*da_col+1:mawei_col)' ;% extract from last 

segment&convert in one colume format 

    hidden_wei=matrix_wei(1,1:number_hn*da_col); 
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    hidden_wei=reshape(hidden_wei,da_col,number_hn); 

    sum_hidden=da_in*hidden_wei; 

    tan_sig=2./(1+exp(-2*sum_hidden))-1; %a = tansig(n) = 2/(1+exp(-2*n))-1 

    hidden_output=[ones(da_row,1) tan_sig]; 

    sum_output=hidden_output*output_wei; 

    log_sig=1./(1+exp(-1*sum_output)); %logsig(n) = 1 / (1 + exp(-n)) 

    err_dis=log_sig-da_ou; 

    mean_se=sum(err_dis.^2)/da_row; 

    zz=mean_se; 

    end % logpost 

 

%Function to calculate the MSE of NNDM 

 function ww=cal_test(data_inou,number_hn,matrix_wei) %calculate MSE 

     [da_row,da_col]=size(data_inou); 

    da_in=[ones(da_row,1) data_inou(:,1:da_col-1)]; 

    da_ou=data_inou(:,da_col); 

    matrix_wei=matrix_wei'; %transform to one row format 

    [mawei_row,mawei_col]=size(matrix_wei); 

output_wei=matrix_wei(number_hn*da_col+1:mawei_col)' ;% extract from last 

segment&convert in one colume format 

    hidden_wei=matrix_wei(1,1:number_hn*da_col); 

    hidden_wei=reshape(hidden_wei,da_col,number_hn); 

    sum_hidden=da_in*hidden_wei; 

    tan_sig=2./(1+exp(-2*sum_hidden))-1; %a = tansig(n) = 2/(1+exp(-2*n))-1 

    hidden_output=[ones(da_row,1) tan_sig]; 

    sum_output=hidden_output*output_wei; 

    log_sig=1./(1+exp(-1*sum_output)); %logsig(n) = 1 / (1 + exp(-n)) 

    ww=log_sig; 

 end % cal_test 
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C.3 GA Calibration for NNDM 

function y = GA_FFNNFM(x) %MATLAB programming codes 

%Test Function  for GA 

% x=x1, x5, x9 . . . bias weight; x2,3,4: weight from input to neuron 1 

 data =[ to be inserted here]; 

% Calculate the size of data 

 [rd,cd] = size(data); 

input = data(:,2:cd); 

obser = data(:,1); 

[ri,ci] = size(input); 

[ro,co] = size(obser); 

inputbias = [ones(ri,1) input]; % insert special input with value =1 

[rib,cib]=size(inputbias); 

n = 60; % total number of hidden neurons in NNM 

no = 1; % total number of output in NNM 

nw1 = cib*n;% number of weight at hidden layer 

nw2 = n + no ;% number of weight at ouput layer 

 tw = nw1+nw2; % total number of weight (x(i) 

tx = ones(1,tw); 

for i=1:tw 

    tx(1,i) = x(i); 

end 

m=1 

for k=1:n 

    hiddenweight(k,:)=tx(1,m:m+cib-1);    % hidden neurons n  x weight m 

    m=m+cib; 

end %for k 

outputweight=tx(1,nw1+1:tw); 

% x1, x5, x9 . . . bias weight; x2,3,4: weight from input to neuron 1 

hiddensum = inputbias*hiddenweight'; % compute weight sum to each hidden neuron 

hiddenoutput=2./(1+exp(-2*hiddensum))-1; 
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 %n_logsig = 1./(1+exp(-1*n1)); 

%2./(sqrt(abs(n1)))-1; 

%2./(1+exp(-2*n1))-1; 

%1./(1+exp(-1*n1)) % compute logsig function) 

 hiddentooutput = [ones(rib,1) hiddenoutput]; % add output bias 

outputsum=hiddentooutput*outputweight'; 

outputtarget= 1./(1+exp(-1*outputsum)); ;% compute Purelin function 

%Compute the MSE of NNDM 

mse60=abs(outputtarget-obser); 

y =sum(mse60.^2)/rib; 

 

C.4 Illustration of Excel Spreadsheet for Markov model using SOLVER 

 

 




