GENE EXPRESSION PROFILE OF ETHANOL-STRESSED YEAST IN THE PRESENCE OF ACETALDEHYDE

A thesis submitted for the degree of

DOCTOR OF PHILOSOPHY

BY IDRIS MOHAMMED

School of Molecular Sciences Victoria University Melbourne AUSTRALIA 2007

DECLARATION

"I, Idris Mohammed, declare that the PhD thesis entitled, Gene Expression Profile of Ethanol-Stressed Yeast in the Presence of Acetaldehyde, is no more than 100,000 words in length, exclusive of tables, figures, appendices, references and footnotes. This thesis contains no material that has been submitted previously, in whole or in part, for the award of any other academic degree or diploma. Except where otherwise indicated, this thesis is my own work"

Signature:

Date: March 2007

ACKNOWLEDGEMENTS

I am ever so grateful for the help and support provided by my supervisors Dr. Paul Chambers and Professor Grant Stanley, for their knowledge, guidance, encouragement and understanding throughout the course of this project. Without their assistance this would not have become a reality. Their understanding attitude especially during my frustrating time and their ability to see through problems are highly inspiring. I also wish to extend my great appreciation to Dr. Peter Rogers of Carlton United and Breweries for his advice and providing some equipment and material for this project.

I am grateful to The Australian Wine Research Institute (AWRI) and, in particular, Dr. Miguel de Barros Lopes, for providing the yeast knockout strains that were used in this thesis.

I am also appreciative of the valuable assistance and advice provided by Dr. Sara Fraser. I am also grateful to laboratory manager Dale Tomlinson and to my fellow post graduate students Mr. Fahad Hanna, Dr. Joshua Johnson, Ms. Dragana Stanley, Ms. Belinda Davis, Dr. Meredith Chandler, Ms. Sudinna Hewakapuge, Ms. Shruti Harnal and Dr. Bogdan Zisu, who have been more than friends to me throughout my research work. There are many people whose names are not mentioned here and I wish to express my gratitude to all of them for making this project a very good experience for me

I wish to thank all the laboratory technicians especially Mr. Joe Pelle, Marianne Tellbach, and Mrs. Stacey Lloyd for being ever ready to provide me with valuable suggestions and assistance in organizing, conducting experiments and during my sessional demonstration. I wish to acknowledge with much appreciation the crucial role of Brian Tyrell, Rod Rizzi, Sue Pentland, Grame Oke and all the library staff at the School of Life Sciences and Technology, Victoria University, Werribee campus, Melbourne, Victoria, Australia.

I wish to extend my appreciation to the Australian Postgraduate Research industry Award and Carlton and United Breweries for their financial support throughout this research project.

My thanks are also extended to my brothers, sisters and friends for their constant support and encouragement throughout this work. In particular, my heartfelt thanks goes to my beautiful mother for her unlimited and continuous support in anything I choose to pursue and for making me feel special everyday by showering me with love and affection. Without her support and encouragement in so many different ways, this work could not have been possible. At last but not least, a special thanks also goes to Samira A. Malekin for her constant unconditional support, encouragement and love throughout the final year of this research.

ABSTRACT

One of the major yeast stressors during fermentation is ethanol accumulation. Ethanol stress is associated with reduced cell growth and viability, consequently lowering yeast productivity. Although the underlying causes of ethanol inhibition of cells are yet to be identified, it has been discovered that yeast acclimatise more quickly to ethanol stress in the presence of low acetaldehyde concentrations; however, the biochemical processes underpinning this effect are unknown. The objective of this project was to identify the mechanisms associated with the acetaldehyde-mediated adaptation of yeast to ethanol stress, which may facilitate the development of yeast strains with improved ethanol tolerance and/or strategies for improving ethanol tolerance in yeast.

Gene array analysis was used to study gene expression in *Saccharomyces cerevisiae* during acclimatisation to non-lethal ethanol stress, in the presence and absence of acetaldehyde. Acetaldehyde caused significant changes in gene expression in ethanol-stressed yeast. For example, many genes associated with protein biosynthesis were more highly expressed, as were pyruvate decarboxylase genes. Interestingly, however, there was no significant increase in the expression of trehalose synthesis genes or genes encoding HSPs; genes which, in previous studies, appeared to be associated with acclimatisation to ethanol-stress. In addition, acetaldehyde did not have a major impact on gene expression in non-stressed cultures.

The results of this project are consistent with the speculation that the addition of acetaldehyde to ethanol-stressed *S. cerevisiae* primes glycolytic flux in ethanol-stressed cells by regenerating NAD⁺ from accumulated NADH. This, in turn, stimulates glyceraldehyde-3-phosphate dehydrogenase activity and might account for the acetaldehyde-mediated increased expression levels of pyruvate decarboxylase genes; elevated levels of pyruvate would potentially increase the need for *PDC* activity. Overall, these speculated effects of acetaldehyde on ethanol-stressed yeast would increase glycolytic rate and energy production.

PUBLICATIONS AND PRESENTATIONS

Publications:

- I. Mohammed I., Stanley G. A., Rogers P. and Chambers P. (2006). Transcriptional expression of brewing yeast at very high-gravity brewing. (In submission).
- II. Mohammed I., Stanley G. A., Rogers P. and Chambers P. (2006). Gene expression profile during ethanol stress in presence and absence of added acetaldehyde. (Manuscript under preparation).

Poster presentations:

Mohammed I., Stanley G.A., Rogers P.J. and Chambers P.J. (2006). Acetaldehyde-Stimulation of the Ethanol Stress Response of *Saccharomyces cerevisiae*. Abstracts, *10th International Symposium on the Genetics of Industrial Microorganisms*, Prague, Czech Republic.

Mohammed I., Stanley G.A., Fraser S., Rogers PJ and Chambers PJ. (2004). Acetaldehyde-Mediated Changes in the Transcriptional Response of *Saccharomyces cerevisiae* to Ethanol Stress. Abstracts, *Eleventh International Congress on Yeasts*, Rio De Janeiro, Brazil.

Mohammed I., G. A. Stanley, Sarah Fraser, P. Rogers and P. Chambers (2004). The Role of Acetaldehyde in Promoting Yeast Tolerance to Ethanol Stress. Abstracts, *3rd YPD, Yeast: Products and Discovery*, Barossa, SA, Australia.

Mohammed I., G. A. Stanley, P. Rogers and P. Chambers (2003). The Transcriptional Response of Ethanol-Stressed Yeast to the Presence of Acetaldehyde. Abstracts, *XXI International Conference on Yeast Genetics and Molecular Biology*, Gotebory, Sweden.

Mohammed I., G. A. Stanley, L. Serwecinska, D. Emslie1, P. Rogers and P. J. Chambers (2002). The Transcriptional Response of Ethanol-stressed Yeast in the Presence & Absence of Acetaldehyde. Abstracts, *2nd YPD, Yeast: Products and Discovery*, CSIRO, Melbourne, Australia.

G. A. Stanley, L. Serwecinska, I. Mohammed, P. Rogers and P. Chambers (2002). Stimulation of Gene Expression in Ethanol-Stressed Yeast by Acetaldehyde. Abstracts, *9th International Symposium on the Genetics of Industrial Micro-organisms*, Korea,

L. Serwecinska, I. Mohammed, D. Emslie, G. A. Stanley, P. Rogers and P. Chambers (2002). The Role of Acetaldehyde in Promoting Yeast Tolerance to Ethanol Stress. Abstracts, 23rd, Annual Conference on the Organization and Expression of the Genome, Lorne, Victoria Australia.

LIST OF ABBREVIATIONS

Organizations:

Australian Wine Research Institute
Carlton & united breweries
Victoria University
Walter and Eliza Hall Institution

Chemicals and Units:

ADH	Alcohol dehydrogenase
ALDH	Aldehyde dehydrogenase
ATP	Adenosine triphosphate
ATPase	Adenosine triphosphatase
BLAST	Basic local alignment search tool
bp	Base pair
BSA	Bovine serum albumin
°C	Degree Celsius
cDNA	Complementary DNA
CoA	Coenzyme A
CO_2	Carbon dioxide
Ci/mmol	Curies per millimole
Cm	Centimeter
СР	Crossing point
Cy3	Cyanine dye 3
Cy5	Cyanine dye 5
ΔPDC1/5	BY4742 <i>APDC1/5::kanMX4</i>
$\Delta HXT4$	BY4742 <i>AHXT4::kanMX4</i>
ΔΡΗΟ84	BY4742 <i>APHO84::kanMX4</i>
∆YLR364W	BY4742 <i>AYLR364W::kanMX4</i>
DEPC	Diethyl pyrocarbonate
dATP	Deoxyadenosine 5'-triphosphate
dCTP	Deoxycytidine 5'-triphosphate
dGTP	Deoxyguanosine 5'-triphosphate
DIG	Digoxigenin
DMSO	Dimethyl sulfoxide
DNA	Deoxyribonucleic acid
DNase	Deoxyribonuclease
dNTPs	Deoxynucleotide triphosphates (dATP, dTTP, dGTP, dCTP)
DTT	Dithiothreitol
dTTP	Deoxythymidine 5'-triphosphate
dUTP	Deoxyuridine 5'-triphosphate
EDTA	Ethylenediaminetetraacetic acid
FA	Fold alteration
g/l	Gram per litre
h	Hour
HCL	Hydrochloric Acid
HSE	Heat shock element

HSF	Heat shock factor
Hsp	Heat shock protein
KCl	Potassium choride
LHE	Less highly expressed
L	Litre
Mg	Milligram
MHE	More highly expressed
MIPS	Munich Information Centre for Protein Sequences
ml	Milliliter
mRNA	Messenger RNA
М	Molar
mM	Millimolar
MW	Molecular weight
MgCl ₂	Magnesium chloride
μg	Microgram
ul	Microlitre
um	Micrometer
μM	Micromolar
NaOH	Sodium hydroxide
nM	Nanomolar
NAD^+	Nicotinamide adenine dinucleotide
NADH	Nicotinamide adenine dinucleotide (reduced)
NADP ⁺	Nicotinamide adenine dinucleotide (reduced)
NADPH	Nicotinamide adenine dinucleotide phosphate (reduced)
NaHCO2	Sodium bicarbonate
OD	Ontical density
ORFs	Open reading frames
PCR	Polymerase chain reaction
PEG	Polyethylene glycol
RNA	Ribonucleic acid
RNase	Ribonuclease
rRNA	Ribosomal RNA
rnm	Revolution per minute
RSAT	Regulatory sequence analysis tools
PCR	Polymerase chain reaction
RT-PCR	Peverse transcription polymerase chain reaction
SDS	Sodium dodecyl sulphate
SGD	Saccharomyces genome database
SSC	Sodium chloride-sodium citrate
SS-DNA	Salmon sperm DNA
STRE	stress response element
TRIS	Tris-(hydroxymethy)-aminomethane
UV	Ultra violet
V	Volt
v/v	Volume per volume
w/v	Weight per volume
YEASTRACT	Yeast Search for Transcriptional Regulators and Consensus Tracking
YEPD	Yeast extract, peptone and D-glucose
YMGV	Yeast microarray global viewer

TABLE OF CONTENTS

Ti	itle	Page
DE	CLARATION	II
AC	KNOWLEDGEMENTS	III
AB	STRACT	V
PUI	BLICATIONS AND PRESENTATIONS	VI
LIS	ST OF ABBREVIATIONS	. VII
TA	BLE OF CONTENTS	IX
LIS	ST OF FIGURES	. XII
LIS	ST OF TABLES	XIV
СН	[APTER 1	1
Gen	neral introduction	1
1.1	Introduction	1
СН	IAPTER 2	3
Lite	erature review	3
2.1	Introduction2.1.1The problem of yeast stress during fermentation and associated processes	3
2.2	The general stress response of Saccharomyces cerevisiae2.2.1Pre-treatment of yeast with Mild Stress2.2.2Mild stress, cross-stress protection and stress-specific responses2.2.3Heat shock proteins in stress tolerance2.2.4Trehalose in stress tolerance	4 6 7 8 10
2.3	Ethanol toxicity in S. cerevisiae. 2.3.1 Overview 2.3.1.1 The yeast cell plasma membrane and ethanol toxicity. 2.3.1.2 The effect of ethanol on membrane fluidity and membrane transport 2.3.2 The relationship between ethanol and oxidative stress 2.3.3 The effect of magnesium on ethanol tolerance.	12 12 12 13 14 16
2.4	 Response of <i>S. cerevisiae</i> to ethanol stress 2.4.1 Changes in plasma membrane composition in response to ethanol stress 2.4.2 Proteins associated with ethanol-stress tolerance 2.4.3 Global gene expression response to ethanol stress 	16 17 20 21
2.5	Effect of acetaldehyde on the growth of ethanol-stressed yeast cells 2.5.1 The effect of inoculum size on the lag period of yeast	23

	2.5.2 Stimulatory and inhibitory effect of acetaldehyde on ethanol	-stressed
	2.5.3 The stimulatory role of acetaldehyde in the physiological adaptation of	f veast to
	ethanol stress	31
	2.5.4 Effect of acetaldehyde and glycerol on NAD ⁺ /NADH ratio	33
	2.5.5 Pre-treatment with mild ethanol-stress enhances the stimulatory e	effect of
	acetaldehyde	34
	2.5.6 The effect of acetaldehyde on gene expression	
2.6	Aims and objectives of this project	
	2.6.1 General aim	
	2.6.2 Specific aims were to:	
СН	APTER 3	39
Mat	terial and methods	
3.1	Materials	
	3.1.1 General buffers and solutions	
	3.1.2 Yeast strains	41
3.2	Microbiological work	41
	3.2.1 Growth media	41
	3.2.2 Ethanol stress conditions during yeast growth	43
	3.2.2.1 Standard culture conditions	43
	3.2.3 Growth of yeast on plates and liquid media	43
	3.2.3.1 Yeast storage	43
	3.2.3.2 Growth of yeast on plates	44
	3.2.3.3 Inoculum preparation and experimental cultures	44
	3.2.3.4 Harvesting cells for molecular work	44
	3.2.3.5 Cell population	45
3.3	Molecular work	45
	3.3.1 RNA extraction: RNase-free procedures	45
	3.3.1.1 Total RNA extraction from S. cerevisiae	46
	3.3.1.2 DNase Treatment of Total RNA	48
	3.3.2 Gene expression analysis using Gene filter (Macro) arrays	
	3.3.2.1 Gene array pre-hybridisation	48
	3.3.2.2 cDNA synthesis and labelling	49
	3.3.2.3 Hybridisation of labelled cDNA to probes on the gene filter	
	3.3.2.4 Analysis of gene filters	50
	3.3.2.5 Stripping gene filters for re-use	
	3.3.3 Gene expression analysis using glass chip (micro) arrays	
	3.3.3.1 cDNA synthesis for microarray analysis	
	3.3.3.2 Purification and labeling of PCR products	
	3.3.3.3 Washes of labelled cDNA	
	3.3.3.4 Washing and blocking microarray slides	
	3.3.5.5 Hybriaized slide washes	
	3.3.5.0 Analysis of micorarray	
	5.5.4 FIIST STAND CDINA SYNTHESIS FOR PUK and Keal-Time PUK analysis	
	2.2.5.1 Spacific primers for Deal Time DCD	

3.3.5.2 Magnesium chloride titration to optimise Real-Time PCR reaction	57
3.3.5.3 Real Time PCR reactions	57
3.3.5.4 Real-Time PCR data analysis	57
3.3.6 Promoter analysis	
3.3.7 Yeast DNA isolation	
3.3.8 Confirmation of gene knockouts in deletion strains supplied for	r this
project	
59	

CH	APTER 4
The	physiological role of acetaldehyde in promoting yeast tolerance to ethanol stress61
4.1	Introduction61
4.2	The effect of ethanol on the growth of <i>S. cerevisiae</i> PMY1.1
4.3	Discussion724.3.1 Ethanol stress and acetaldehyde stimulation724.3.2 Effect of ethanol on the growth of <i>S. cerevisiae</i> PMY1.1734.3.3 Effect of acetaldehyde on the growth of ethanol-stressed <i>S. cerevisiae</i> PMY1.174

CHAPTER 5	
5.2	Results and Discussion79
	5.2.1 RNA preparations: quality and reproducibility
	5.2.2 Gene array analysis of ethanol-stressed and acetaldehyde-stimulated yeast cells
	using gene filter macroarrays
	5.2.2.1 Overview of gene filter macroarray data
	5.2.2.2 Analysis of gene filter, macroarray, data for ethanol-stressed cells
	compared to unstressed, control cells
	5.2.2.3 Analysis of gene filter, macroarray, data for ethanol-stressed cells in the
	presence and absence of added acetaldehyde
	5.2.2.4 Comparison of one- and five-hour time points using data from gene
	filter macroarray analysis of acetaldehyde-stimulated ethanol-stressed cultures89
	5.2.2.5 Analysis of gene filter, macroarray, data for acetaldehyde-treated, non-
	stressed yeast cells compared to unstressed control cells
	5.2.3 Overview of array analysis using glass slides (microarrays)
	5.2.4 Comparison of macroarray and microarray data, and general observations from
	array experiments
	5.2.5 Validation of array results using real-time-PCR analysis
	5.2.6 Promoter analysis of up-regulated genes

5.3	Conclusion	
СН	APTER 6	105
Cha Kno Etha	racterisatoin of the Phenotypes of <i>Saccharomyces cerevisiae</i> Strains with ockouts of Genes Associated with Acetaldehyde-Mediated Amelioration of anol-stress	Targeted 105
6.1	Introduction	
6.2	 Analysis of yeast knockout strains 6.2.1 Confirmation of gene replacement 6.2.2 PCR-based confirmation of the presence of the <i>kanMX</i> cassette in knockouts 	107 109 BY4742 111
6.3	Characterizing the phenotypes of wild type and knockout strains	116 116 120
6.4	Discussion	125

CH	APTER 7	
Gen	eral Discussion and Future Directions	
7.1	Introduction	
7.2	Possible mechanism of acetaldehyde stimulatory effect	
7.3	Concluding Remarks and Future Directions	
	7.3.1 Concluding Remarks	
	7.3.2 Future Directions	

REFERENCES	
APPENDICES	

LIST OF FIGURES

- **Figure 2.3** : Schematic overview of glycolytic and fermentative pathways in yeast. If acetaldehyde is not reduced to ethanol, glycolysis would be limited by an

NAD ⁺ deficiency, the reduction of dihydroxyacetone phosphate to form glycerol might help to balance the NAD ⁺ production
Figure 3.1: Experimental set-up in 2 litre sidearm flasks, all containing fresh medium with various supplements 42
Figure 4.1: The effect of various ethanol concentrations on the growth of <i>S. cerevisiae</i> PMY1.163
Figure 4.2: Effect of different concentrations of acetaldehyde on <i>S. cerevisiae</i> PMY1.1 growth in the presence of 7% (v/v) ethanol in YEPD medium
Figure 4.3 : Effect of added acetaldehyde on <i>S. cerevisiae</i> PMY1.1 growth in the presence of 7% (v/v) ethanol in YEPD Cells were medium:
Figure 4.4: Effect of added acetaldehyde on <i>S. cerevisiae</i> PMY1.1 growth in the presence of 7% (v/v) ethanol in YEPD Cells were medium:
Figure 5.1: Total RNA was isolated from equal number (2 x 10 ⁸) of cells from exponentially growing triplicates of two yeast cultures (A and B) and was visualized on a 1% ethidium bromide-stained agarose gel
Figure 5.2: Venn diagram comparing the number of ORFs that were MHE using macroarray and microarray analysis of acetaldehye-treated ethanol-stressed cultures compared ethanol-stressed cultures at the one-hour time point
Figure 5.3: Fluorescence versus cycle number plot for PDC5 transcript in acetaldehyde-treated ethanol-stressed and ethanol-stressed cultures. Plots of similar quality were obtained for all genes analysed using quantitative Real Time PCR
Figure 6.1: Schematic representation of PCR positioning primers for confirmation of ΔPDC5 knockout construct compared to the BY4742 wild type110
Figure 6.2: Agarose gel electrophoresis of PCR products to confirm the integration of the <i>KanMX4</i> module in the place of PDC5 gene
Figure 6.3: Agarose gel electrophoresis of PCR products to confirm the integration of the <i>KanMX4</i> module in the place of PHO84 gene113
Figure 6.4: The stimulatory effect of acetaldehyde on ethanol-stressed <i>S. cerevisiae</i> BY4742 (Wt) strain114
Figure 6.5: The stimulatory effect of acetaldehyde on ethanol-stressed S. cerevisiae ΔPDC1 strain

Figure 6.6 : The stimulatory effect of acetaldehyde on ethanol-stressed <i>S. cerevisiae</i> ΔPDC5 strain.	119
Figure 6.7 : The stimulatory effect of acetaldehyde on ethanol-stressed <i>S. cerevisiae</i> ΔPHO84 strain	121
Figure 6.8 : The stimulatory effect of acetaldehyde on ethanol-stressed <i>S. cerevisiae</i> ΔHXT4 strain	122
Figure 6.9 : The stimulatory effect of acetaldehyde on ethanol-stressed <i>S. cerevisiae</i> ΔYLR346W strain	123

LIST OF TABLES

Table 3.1: Summary of S. cerevisiae strains used in the work described in this thesis
Table 3.2: Reagents for first strand cDNA synthesis (Mix 1): (supplier: Invitrogen)
Table 3.3: Reagents for first strand cDNA synthesis (Mix 2): (supplier: Invitrogen)
Table 3.4: Hydridization solution mix per slide
Table 4.1: Effect of ethanol and acetaldehyde on the growth of S. cerevisiae PMY1.1 65
Table 4.2: Summary showing the effect of ethanol on the growth of <i>S. cerevisiae</i> in the presence and absence of acetaldehyde
Table 5.1: Summary of macroarray data: functional classes of genes with changedexpression following one-hour exposure to 7% (v/v) ethanol in the presence and absence ofacetaldehyde. 81
Table 5.2: Summary of macroarray data: functional classes of genes with changedexpression following five hours exposure to 7% (v/v) ethanol in the presence and absenceof acetaldehyde. 88
Table 5.3: Summary of microarray data: functional classes of genes with changed expression following one hour exposure to
Table 5.4: Specific primers designed for Real-Time PCR analysis. 97
Table 5.5: Comparison of gene expression measurements by macroarray, microarray andrelative quantitative Real Time PCR for transcripts prepared from yeast cells exposed to 7% (v/v) ethanol-stress under the stimulatory condition of acetaldehyde101

Table 6.1: Selection of <i>S. cerevisiae</i> BY4742 knockout strains according to their growth of YEPD and YEPD geneticin (G418) plates.	n . . 108
Table 6.2: Growth profiles of S. cerevisiae PMY1.1 and BY4742 strains during ethanol stress in presence or absence of acetaldehyde.	.115
Table 6.3: Effect of ethanol stress on the growth of wild type and knockout mutant <i>S. cerevisiae</i> BY4742 stains in presence and absence of acetaldehyde	.124

CHAPTER 1

General introduction

1.1 Introduction

Saccharomyces cerevisiae is an important organism in both fundamental and applied research. Along with *Escherichia coli* and *Drosophila melanogaster*, *S. cerevisiae* has been one of the central model organisms for studies in genetics, biochemistry, cell biology, and more recently molecular biology and systems biology. In fact, we probably know more about the biology of the yeast cell than any other eukaryote. This makes *S. cerevisiae* an ideal model organism for studies on environmental-stress responses and stress tolerance. Such studies are of huge economic importance because of the numerous industrial applications of yeast, including brewing, winemaking, baking and, in more recent years, bioethanol production. Global warming, conflicts in the Middle East and the finite supply of oil are contributing to increased interest in generating ethanol as a fuel. In all of these industries the costs associated with failed or suboptimal fermentations are significant, and one of the major causes of such problems is the environmental stresses that yeast cells encounter during fermentation (see for example Bisson and Block, 2002; Gasch *et al.*, 2000).

Of the many environmental stresses encountered by yeast in industrial applications, exposure to accumulating levels of ethanol probably has the greatest negative impact. The effects of this self-inflicted stress include increased growth lag periods following re-pitching (a common brewing industry practice of recycling yeasts from one fermentation to the next), and a decrease in specific growth rate, vitality and yeast viability. These impacts result in lower productivity, suboptimal rates of fermentation, lower ethanol yields and ultimately less profit for the industries concerned (Ingram, 1986).

Although fermentation performance is inhibited by ethanol stress, yeast cells have builtin protective mechanisms to counteract some of the toxic effects of this alcohol, enabling them to acclimatise to this stress. The effectiveness of these mechanisms is however limited and, as ethanol levels increase in a fermentation, the yeast may ultimately succumb to the damaging and disruptive effect of its stressful environment. The principal mechanisms underpinning yeast acclimatisation to ethanol stress remain elusive, but greater knowledge in this field might enable the development of practices and/or yeast strains that will improve the efficiency and reliability of fermentation, thereby reducing costs to industry.

In yeast, acetaldehyde is the direct metabolic precursor of ethanol and acetic acid; and is therefore a key metabolite between the pathways of anaerobic and aerobic glucose metabolism. Research into the causes of ethanol toxicity in yeast has identified a role for acetaldehyde in stimulating the rate of adaptation of yeast to ethanol stress (Vriesekoop & Pamment 2005; Barber *et al.*, 2002; Stanley *et al.*, 1997; Stanley *et al.*, 1993; Walker-Caprioglio and parks, 1987). These reports demonstrated that small amounts of added acetaldehyde markedly reduced the lag phase, and increased the specific growth rate, of yeast inoculated into ethanol-containing medium, however, the mechanism underpinning the stimulatory effect of added acetaldehyde on ethanol-stressed cultures is yet to be elucidated. Despite the amount of information that has been generated on the physiological and chemical changes in ethanol-stressed yeast during acetaldehyde stimulation, there is no published information on the yeast response to ethanol stress in the presence of acetaldehyde at the level of gene expression. The work in this thesis investigates the stimulatory effect of acetaldehyde on ethanol-stressed yeast at the molecular level.

CHAPTER 2

Literature review

2.1 Introduction

Fermentation uses living organisms in the production of foods and beverages such as bread, yoghurt, cheese, beer, wine and spirits. The exploitation of fermentation dates back several thousand years to when people inadvertently discovered the usefulness of this process. However millennia passed before yeast and bacteria were identified as the causative agents. The yeast *S. cerevisiae* is of particular importance in fermentation industries for the role that it plays in fermenting sugars into ethanol. There is no microorganism more closely associated with human life, from ancient to contemporary times, than this single-celled fungus. The Egyptians were the earliest recorded users of yeasts; they brewed beer and made wine. By medieval times, brewing technology had spread from the Middle East to Europe (Protz, 1998) and since then has evolved incrementally, but the basic process remains the same.

The role of microorganisms in fermentation was first identified in 1876 when Louis Pasteur proved that fermentation was due to living cells (Hardwick, 1995). The first pure yeast culture used in alcoholic beverage production was obtained by Emil Christian Hansen from the Carlsberg Brewery in 1883. A pure culture of wine yeast was subsequently obtained by Muller-Thurgau from Geisenheim (Germany) in 1890 (from Dequin, 2001). Prior to this, fermentations were considered spontaneous; yeasts were unknowingly transferred from brew to brew in fermentation vessels or from remnants of previous brews saved for starting the next brew. Brewing yeasts have in fact adapted over thousands of years from serial re-pitching (re-cycling) and this selection has led to the evolution of adaptive mechanisms that increase yeast tolerance to many of the physiological stresses encountered during brewing and industrial fermentations.

Of course ethanolic fermentation has great potential in other industries. For example, in a world of energy shortages, depleting and increasingly expensive non-renewable fossil fuels and global warning, bioethanol production is becoming an increasingly attractive energy option. As a result, in countries with large agricultural industries and limited access to fossil fuels, such as Brazil and South Africa, research is being conducted on improving the efficiency of production of ethanol from substrates such as lignocellulose. The objectives of such research are to improve substrate range, ethanol yield and productivity for use as fuel alcohol.

2.1.1 The problem of yeast stress during fermentation and associated processes

During fermentation sugars are converted into ethanol and carbon dioxide, but accumulating levels of ethanol become stressful for yeast cells. The exposure of yeast to this stress is thought to be responsible for a decline in yeast viability and vitality and this has a substantial impact on fermentation productivity by increasing growth/fermentation lag periods, reducing productivity, increasing fermentation turnover periods and, in a brewery context, limiting the life span of re-pitched (recycled) yeast. Of particular concern to the brewing and wine industries are stuck or suboptimal fermentations, where yeast growth and ethanol production can come to a virtual standstill, increasing processing times and in some cases leading to a complete failure of the fermentation process (Linko *et al.*, 1998).

Improving stress tolerance in yeast may enable the cells to better withstand the stresses associated with fermentation, possibly leading to an increased rate of production and extend the life of re-pitched brewing yeast. This study was conducted to investigate the physiological and molecular responses of yeast to ethanol stress conditions.

2.2 The general stress response of *Saccharomyces cerevisiae*

When yeast cells are grown in suboptimal conditions, they exhibit a complex stress response. This stress response is a reprogramming of cellular activities to ensure survival, protect essential cell components, and to drive a resumption of cellular activities during recovery (Birch and Walker, 2000; Gasch *et al.*, 2001; for reviews see

Mager and Hohmann, 1997; Attfield *et al.*, 1997; Attfield, 1997b; Mager and Moradas-Ferriera, 1993).

Yeast strains used for brewing, baking and winemaking are intrinsically tolerant to a range of extreme conditions including a level of ethanol that is toxic to most, if not all, competing microorganisms. This tolerance is presumably acquired by rapid molecular responses that protect against damage caused by ongoing exposure to the same or other forms of stress. These responses include changes in gene transcription, translational and post-translational modifications of stress-associated protein, and are triggered, at least in part, by stress-induced denaturation of proteins, disordering of membranes, DNA damage and metabolic disturbances (Mager and Moradas-Ferreira, 1993; Piper, 1993; Siderius and Mager, 1997).

Tolerance to stresses is acquired by means of protective biochemical processes which include the synthesis of osmolytes (e.g. glycerol), trehalose, heat shock proteins (HSPs), increased chaperone activity, enhanced radical oxygen scavenging, changes in redox control, increased proton pumping activity, adjustments in carbon/nitrogen balance and altered ion and water uptake (Piper, 1993; De Virgillio *et al.*, 1994; Parrou *et al.*, 1997; Guldfeldt and Arneborg, 1998; Estruch, 2000; Yale *et al.*, 2001). For example, yeast cells exposed to a salt shock of 300 mM NaCl for 45 minutes accumulate glycerol (Lewis *et al.*, 1995) and heat shocked cells accumulate trehalose (Hottiger *et al.*, 1987), suggesting that the accumulation of trehalose and glycerol have important roles in stress tolerance.

These stress response mechanisms not only initiate the repair of macromolecular damage caused by stress but presumably also establish a tolerant state, which helps prevent further damage. Central to these responses are the sensing and signaling pathways that communicate with the nucleus and facilitate necessary changes in gene expression. Stress responsive genes that are part of the general stress response machinery of yeast are presumed to encode proteins with functions that are necessary to cope with damage under various stress conditions. The expression of genes is controlled by specific regulatory factors up-stream of each gene. In *S. cerevisiae* there are two major independent stress responses: the general stress response (GSR) and heat shock response (HSR). The general stress response is induced by a wide variety of

stressing agents including heat, osmotic stress, oxidative stress, nitrogen starvation, ethanol, sorbate and low pH (Chatterjee *et al.*, 2000; Ruis and Schuller, 1995). Each GSR gene contains a stress-response promoter element that binds to transcription factors Msn2p and Msn4p. In contrast the heat shock response, induced when cells are exposed to any of a range of stresses including sublethal heat shock, requires the activation of a specific heat-shock transcription factor (Hsf1p) that binds to a specific conserved promoter sequence, the heat shock element (HSE) (Grably *et al.*, 2002, Chatterjee *et al.*, 2000).

2.2.1 Pre-treatment of yeast with Mild Stress

Pre exposure of yeast to a non-lethal stress stimulates an adaptive response resulting in transient resistance to higher levels of the same stress. The acquisition of tolerance to otherwise lethal levels of stress has been linked to stress protein synthesis during pre-exposure to the mild stress. For instance, yeast cells grown at 23°C develop enhanced tolerance to a lethal temperature of 51°C following prior incubation at 37°C for 20 minutes (Plesset *et al.*, 1982). This induction of thermo-tolerance has been observed in cells incubated at a series of sub-lethal temperatures, ranging between 37°C and 45°C (Coote *et al.*, 1991). Within this range of temperatures, a higher pre-stress heat shock produced a greater thermo-tolerance response (Coote *et al.*, 1991).

Davies *et al.* (1995), showed that the growth of yeast cells was arrested when exposed to 0.8 mM H_2O_2 (oxidative stress). But when pre-treated by exposure to 0.4 mM H_2O_2 for 45 min, they were better able to tolerate the subsequent 0.8 mM H_2O_2 stress and were able to grow and divide at a normal rate, i.e. the pre-treated yeast grew and divided at a 15-30% faster rate than the non-pretreated cells (Davies *et al.*, 1995). This pre-exposure effect is also true for stresses other than temperature and oxidative stress. A short pre-treatment of yeast with 0.7 M NaCl leads to an increase in the number of surviving cells when they are subsequently exposed to 1.4 M NaCl (Trollmo *et al.*, 1988; Varela *et al.*, 1992).

Thus, mild stress conditions may trigger cellular responses that prepare cells to cope with severe stress. Such investigations suggest that yeast and other microorganisms have an inherent ability to improve their stress tolerance provided that the appropriate external and internal triggers are activated. A better understanding of these built-in molecular processes that underpin, and are a part of, the yeast stress response will greatly facilitate the development of strategies to improve yeast stress tolerance.

2.2.2 Mild stress, cross-stress protection and stress-specific responses

Yeast cells exposed to mild stress can develop tolerance not only to higher levels of the same stress, but also to stress caused by other agents. This phenomenon is called cross-protection and is caused by the expression of general stress-responsive genes under mild stress conditions (Chen *et al.*, 2003). For example, a brief temperature shock not only increases yeast thermo-tolerance, but may also increase tolerance to other stressors such as ethanol (Watson and Caricchioli, 1983; Costa *et al.*, 1993), a high salt concentration and oxidative stress (Lewis *el al.*, 1995). Steels *et al.*, (1994) investigated the relationship between yeast tolerance to heat and oxidative stress, and found that a mild heat shock induced tolerance to an otherwise lethal temperature and H_2O_2 stress. Similarly, pre-treatment of yeast cells with a mild osmotic shock conferred increased resistance to heat shock (Trollmo *et al.*, 1988; Varela *et al.*, 1992) and the exposure of yeast to ethanol, sorbic acid and low external pH induced greater thermotolerance (Plesset *et al.*, 1982; Coote *et al.*, 1991). This phenomenon of cross-protection is consistent with commonality in the yeast cellular responses and protection to different forms of stress.

Although cross protection suggests commonality in stress responses there is a level of exclusivity. For example, a mild heat shock does not result in increased osmo-tolerance (Trollmo *et al.*, 1988; Varela *et al.*, 1992). Similarly, Steels *et al.* (1994) showed that pre-exposure of yeast to low temperature conferred resistance to both low temperature and oxidative stresses, but pre-treatment of cells with low concentration of H_2O_2 did not evoke resistance to heat stress. Thus, while a part of the stress response of yeast cells may be shared and lead to cross protection, there are also stress-specific responses. Studies of *S. cerevisiae* suggest that specific adaptive responses rely primarily on the increased synthesis of specialized stress proteins and/or organic solutes such as glycerol (Piper, 1993).

2.2.3 Heat shock proteins in stress tolerance

The heat shock response is the most extensively studied stress response in yeast and other organisms, and Heat Shock Protein (HSP) genes are among the best-characterized stress response genes (Mager and Moradas-Ferreira, 1993). Most HSPs are highly conserved across bacteria, fungi, plants and animals (Lindquist and Craig, 1988; Craig et al., 1993; Hartl, 1996) suggesting that they are of fundamental importance to cells. There is a number of documented studies that demonstrate the protective effect of HSPs to stress. For example, Plesset et al. (1982) investigated the effect of heat shock and ethanol stress on the survival of S. cerevisiae. Exponential parent cultures were shifted from 23°C to 37°C, 45°C, 49°C and 51°C, for 10 minutes, then viable counts were determined for each and for a control that was maintained at 23°C. Viability dropped rapidly above 37°C with 51°C being lethal. However, pre-treatment at 37°C for 20 minutes protected cells when subsequently shifted to 51°C, with greater than 70% viability. Cells were also pre-treated with mild ethanol stress (1.55 M) for 20 minutes then resuspended in fresh medium and incubated for 10 minutes at 49°C. This ethanol pre-treatment gave higher cell viability compared to non-pre-treated cells, but lower than that of a 37°C temperature pre-treatment (Plesset et al., 1982). A possible explanation for this was that pre-treatment with mild temperature or mild ethanol caused induction of HSPs and this resulted in the acquisition of thermotolerance. To investigate this possibility Plesset et al. (1982), used ³⁵S pulse-labeling and two-dimensional polyacrylamide gel electrophoresis to follow the induction of 'heat shock' protein synthesis after pre-incubations at 23°C (control), 37°C and in 1.55 M ethanol. Results showed the induction of the same 'heat shock' proteins [NB. the authors do not define which HSPs they followed in this work] for the 37°C and 1.55 M ethanol treatments. This result demonstrated the correlation between induction of putative HSPs and acquisition of thermotolerance.

Since the time of the above work of Plesset *et al.* (1982) a great deal of research has been conducted on stress response proteins. Of particular relevance in the context of stress tolerance are the Hsp70 and Hsp104 families; both have been shown to be involved in recovery from stress-induced damage (see, for example Parsell and

Lindquist, 1993 and Piper 1997). The Hsp70 family has been shown to be involved in the prevention of protein aggregation and the refolding of damaged proteins following heat shock (Piper, 1997), and Hsp104 cooperates with Hsp70 family members in refolding and reactivating previously denatured proteins (see http://db.yeastgenome.org/cgi-bin/locus.pl?locus=HSP104).

When wild-type and $hsp104\Delta$ mutant yeast cells were grown at 25°C and given a mild heat shock (30 minutes at 37°C) before exposure to 50°C, thermotolerance was induced in both strains. However, this tolerance was very transient in the $\Delta hsp104$ mutant since cells began to die at 100-1000 times the rate of the wild type (Parsell and Lindquist, 1993). In addition, cells with constitutive *HSP104* expression were found to have elevated thermotolerance in the absence of a pre-stress (Sanchez *et al.*, 1992). The acquirement of tolerance against high ethanol concentrations is similarly dependant on a functional *HSP104* gene (Sanchez *et al.*, 1992). Hsp104 is suggested to rescue heatinactivated proteins directly from insoluble aggregates, which is not a function of other chaperones (Parsell *et al.*, 1994). There is also evidence that Hsp70 and Hsp104 may have complementary roles: *SSA* gene products (SSA stands for stress-seventy, sub family A; this is a sub family of the HSP70s) assume an important role in tolerance to extreme temperatures in the absence of Hsp104 while, in cells with low levels of Hsp70, Hsp104 assumes an important role in growth at normal temperatures (Sanchez *et al.*, 1993).

Recently, global gene array analysis of yeasts growing in stressful conditions has revealed that many heat shock genes are induced. During wine fermentation for example there was increased expression of *HSPs 12, 26, 42, 78,* and *104* and the HSP70 family member *SSE2* (Rossignol *et al.*, 2003). However, since there are so many environmental variables during a wine fermentation and conditions change enormously over time, it is difficult to determine what the yeast cells were responding to; it may have been osmotic stress, nutrient limitation, acidity, and/or accumulating alcohol. Yale and Bohnert, (2001) investigated global gene expression in *S. cerevisiae* exposed to 1.0 M NaCl osmotic stress. This work showed increased expression of *HSPs 12, 26, 70, 78* and *104* at the 90 minute time point. Similarly, Alexandre *et al.* (2001) and Chandler *et al.* (2004) studied global expression in *S. cerevisiae* during ethanol stress. Their results

showed increased expression levels of *HSPs 12, 26, 30, 42, 70, 78, 82* and *104*. These *HSP* genes were also found to be up-regulated in *S. cerevisiae* following one hour exposure to toxic concentrations (1 g/l) of acetaldehyde (Aranda and Olmo, 2004). Thus, there is increased expression of *HSP* genes in response to various types of stresses; the roles of most of these genes (if any) in conferring stress-tolerance however remain to be determined.

2.2.4 Trehalose in stress tolerance

Trehalose is a non-reducing disaccharide that acts principally as a reserve or storage carbohydrate (Wiemken, 1990; Lillie and Pringle, 1980; Thevelein, 1984; Thevelein and Hohmann 1995). However, it has also been suggested that trehalose functions as a cellular protectant that is involved in stress tolerance (Rep et al., 2000; Parrou et al., 1999; Parrou et al., 1997; Kim et al., 1996; Wiemken 1990; Van Laere, 1989). Large amounts of trehalose accumulate in S. cerevisiae cells during periods of adverse growth conditions such as high temperature (Eleutherio et al., 1995; Hottiger et al., 1987; Lewis et al., 1995), freezing (Kim et al., 1996), dehydration and desiccation (Eleutherio et al., 1993; Gadd et al., 1987; D'Amore et al., 1991), starvation (Lillie and Pringle, 1980), hyperosmotic shock (Hounsa et al., 1998) and ethanol stress (Hounsa et al., 1998, Soto et al., 1999, Attfield, 1987; Kim et al., 1996). Trehalose also accumulates when cells are exposed to copper sulphate or hydrogen peroxide and declines rapidly after the stress is removed (Attfield, 1987). High trehalose content in re-pitched yeast in brewing fermentations is known to improve cell viability and increase carbohydrate utilization during the initial stages of fermentation (Guldfelt and Arneborg, 1998). Similarly, a decline in trehalose content has been correlated with a loss of stress resistance (Van Dijck et al., 1995). Soto et al. (1999) investigated the synthesis of trehalose in S. pombe and showed that mutant strains unable to synthesis trehalose were sensitive to temperature, freeze/thawing, dehydration, sodium chloride, and ethanol stresses. These authors speculated that trehalose is a key determinant in general stress tolerance.

The precise role of trehalose in stress tolerance, however, is unknown although it has been suggested that it acts to stabilize proteins in their native state and preserve the integrity of cellular membranes during stress (Colaco *et al.*, 1994; Omdumeru *et al.*, 1993; Crowe *et al.*, 1984). Hottiger *et al.*, (1994) investigated thermal stability of purified glucose-6-phosphate dehydrogenase (Glc6PDH) *in vitro*. Trehalose was added at a concentration of 0.5 M to a range of solutions containing glucose-6-P dehydrogenase. These were heat shocked at a range of temperatures from 40°C to 60°C for eight minutes. After cooling, enzyme activity was measured and compared to activities for controls that were treated in the same way but without added trehalose. After a 55°C heat shock the activity of trehalose-treated enzyme preparations was 60% greater than the controls (Hottiger *et al.*, 1994). This suggests that trehalose increases the thermal stability of proteins *in vitro*; this finding is in line with that of De Virgilio *et al.* (1990)

However subsequent to the above, other researchers presented evidence that suggested trehalose may not have a protective role in stress tolerance. The proteins responsible for trehalose production are encoded by TPS1 (trehalose-6-phosphate synthase), TPS2 (trehalose-6-phosphate phosphatase) and TSL1/TPS3 (these are regulatory subunits of the trehalose synthase complex). Mutations of the *TPS1* gene render yeast cells unable to produce trehalose, and the phenotype has increased sensitivity to heat stress (De Virgilio et al., 1994). However, phenotypes of mutants lacking the NTH1 gene, which is responsible for trehalose degradation, accumulate high levels of trehalose yet their ability to survive extreme heat is also reduced (Nwaka et al., 1995a and Nwaka et al., 1995b). This and other work led to doubts about the role of trehalose in protecting cells from heat stress (see review by Nwaka and Holzer, 1998). But it should be pointed out that the *Nth1* Δ mutant would have accumulated excessive trehalose and, as argued by Singer and Lindquist (1998), this would probably have interfered with other cellular functions including the activities of chaperones that are important for stress tolerance. The authors suggest that rapid early accumulation of trehalose, when cells are heat stressed, is needed only for a short time to stabilize proteins in their native state followed by rapid degradation of trehalose, necessary for full recovery from heat stress. The fact that trehalose acts as protein and plasma membrane stablizer and protectant for yeast cells under stressful conditions is well documented (Parro et al., 1999; Guldfelt and Arneborg, 1998; Parrou et al., 1997; Majara et al., 1996; Panek and Panek, 1990; Hottiger et al., 1994; Odumeru et al., 1993; De Virgilio et al., 1990).

2.3 Ethanol toxicity in S. cerevisiae

2.3.1 Overview

Sugars are the major carbon and energy source for yeast in natural habitats as well as in industrial fermentations, and ethanol is the major product of sugar catabolism in yeasts. Thus ethanol accumulates in the yeast cell's environment and this negatively impacts on cellular functions. The productivity and yield of fermentations is limited by the sensitivity of yeast to ethanol (Walker 1998). Many of the changes induced in yeast by 'stressful' levels of ethanol are similar to those resulting from sublethal heat stress. They include: increased frequency of petite mutations and the inhibition of metabolism (including fermentation), growth, nutrient intake and plasma membrane ATPase activity (Walker 1998; Casey and Ingledew, 1986; D'Amore *et al.*, 1990; Ingram and Buttke, 1994; Jones 1989 and Misha, 1993).

It is believed that the main impact of high ethanol concentrations is the disruption of membrane structure, affecting membrane transport systems and leading to increased membrane fluidity, permeability and passive proton influx (Leao and Van Uden, 1984; Walker 1998; Sajbidor, 1997; Hallsworth, 1998 and Alexandre *et al.*, 2001). There is an associated loss of membrane potential and leakage of electrolytes, amino acids and ribose-containing compounds from the cell (Juroszek *et al.*, 1987 and Salgueiro *et al.*, 1988). In addition, ethanol inhibits the activity of key glycolytic enzymes and denatures proteins; this is probably due to a reduction in water availability (Hallsworth, 1998; Casey and Ingledew, 1986). There is also a lower rate of RNA (Walker, 1998 and Alexandre *et al.*, 1993).

2.3.1.1 The yeast cell plasma membrane and ethanol toxicity

It has been proposed by several authors that the yeast cell membrane is the principal site of action of ethanol leading to its toxic effects (see for example Bisson and Block 2002; Piper, 1995; and Rose, 1993). The presence of ethanol around the phospholipid bilayer weakens the water-lattice structure of the membrane and decreases the strength of interactions between fatty acids, and this is thought to promote cell leakage and decrease the integrity of the membrane (Sajbidor *et al.*, 1992). In support of this,

Mansure *et al.* (1994) found a correlation between ethanol stress and increased membrane leakage; interestingly, this leakage was reduced in the presence of trehalose.

Ethanol is thought to partition into the hydrophobic regions of the membrane where it increases the relative polarity of this microenvironment. It thereby increases the membrane's ability to solubilise other polar molecules (Ingram, 1986) and perturbs the functions of transport proteins in the membrane. This results in decreased nutrient uptake by the cells (van Uden, 1985; Pascual *et al.*, 1988) and increased influx of protons, causing disruption of the proton-motive force (Ogawa *et al.*, 2000; Walker, 1998) and intracellular acidification (Alexandre *et al.*, 1998; Walker, 1998).

Ethanol-induced passive proton influx is thought to be the trigger for an increase in activity of the plasma membrane H^+ -ATPase (Cartwright *et al.*, 1987), the enzyme largely responsible for maintenance of the plasma membrane proton gradient (Serrano, 1991). Thus it might be expected that the cell would be able to quickly recover its proton gradient following ethanol stress, but this appears not to happen. Perhaps this is because Hsp30p synthesis is also induced in conditions of ethanol stress (Chandler *et al.*, 2004 and Alexandre *et al.*, 2001) and this protein is an inhibitor of the plasma membrane H⁺-ATPase (Piper *et al.*, 1997, Braley and Piper, 1997). To date, however, there has been no experimental work to test this in ethanol stressed cells.

2.3.1.2 The effect of ethanol on membrane fluidity and membrane transport

Jones and Greenfield (1987) used passive influx of undissociated acetic acid as an indicator of membrane fluidity for yeasts grown in batch and continuous culture, in medium containing between 20 - 50 gL⁻¹ ethanol. Increases in ethanol concentration led to increased membrane permeability, and therefore it was inferred that membrane fluidity increased. Interestingly however, the membranes of cells acclimated to ethanol in continuous culture were less permeable than unacclimatised cells exposed to similar levels of ethanol in batch culture. The authors conclude that increased membrane permeability (and therefore fluidity) does not impart tolerance to ethanol. This landmark publication was very important for what it tells us about membrane permeability and acclimatisation to ethanol stress, however the assumption that

permeability to undissociated acetic acid is a measure of membrane fluidity is questionable.

Lloyd *et al.* (1993) measured membrane fluidity directly using electron spin resonance spectroscopy (ESR), for yeast cells exposed to 7-10% v/v ethanol. Membrane fluidity increased in microsomal fractions from yeast cells incubated with 9% (v/v) ethanol compared to no ethanol controls. Swan and Watson (1997) used fluorescence anistropy to measure membrane fluidity of stress-sensitive and stress-resistant strains of *S. cerevisiae*, and found that membrane fluidity increased slightly in all strains following treatment for 60 minutes with 17% ethanol. Whilst the increased fluidity was accompanied by a minor increase in cell survival, fluidity did not correlate with stress tolerance.

Membrane composition has also been shown to influence the uptake of nutrients in the presence of ethanol. Thomas and Rose (1979), examined the influence of membrane lipid components on the uptake of nutrients in the presence of 4.5 and 6% (v/v) ethanol. Cells were grown anaerobically with ergosterol and either monounsaturated oleic or polyunsaturated linoleic acid supplements. These were incubated with radiolabeled nutrients. Addition of ethanol was accompanied by an initial loss from the cells of glucose, glucosamine and lysine, and the growth rate was immediately reduced, particularly in cultures containing oleic rather than linoleic acid. Similarly, the accumulation rate within cells of labeled solutes glucose, glucosamine, lysine and arginine was reduced following ethanol addition, more so in oleic acid-supplemented cultures than polyunsaturated linoleic acid-supplemented cultures. The increased capacity of cells for solute uptake when enriched with polyunsaturated linoleyl residues compared to monounsaturated oleic acid residues was thought to be due to increased membrane fluidity.

2.3.2 The relationship between ethanol and oxidative stress

Dissolved oxygen and mitochondrial activity are important for the biosynthesis of unsaturated fatty acids and ergosterol (Casey *et al.*, 1984; O'Connor-Cox *et al.*, 1996; and Higgins *et al.*, 2003). In brewing, for example, oxygenation of wort at pitching is

important for sterol, unsaturated fatty acid and lipid metabolism, and this impacts on yeast performance and beer flavour (Jahnke and Klein, 1983). However, growth under aerobic conditions exposes cells to oxidative stress due to the production of partially reduced forms of molecular oxygen known as reactive oxygen species (ROS). These highly reactive forms of 'oxygen', including the hydroxyl radical (OH⁻), the superoxide anion (O_2^-) and peroxide (H_2O_2), are highly damaging to cellular components causing DNA lesions, lipid peroxidation, oxidation of proteins and perturbations to the cellular redox balance (Sies, 1986). ROS are formed during respiration, β -oxidation of fatty acids, and a range of other reactions. They are also produced by yeast cells exposed to ethanol or chemical stresses (Georgiou and Masip, 2003; Costa *et al.*, 1993; Steels *et al.*, 1994 and Jamieson, 1998).

Cellular defenses that can inactivate ROS include the activities of a number of enzymes such as the cytoplasmic superoxide dismutase (Cu, ZnSOD) encoded by the *SOD1* gene, the mitochondrial superoxide dismutase (MnSOD) encoded by the *SOD2* gene, cytochrome c peroxidase (CCP) and cytoplasmic catalase T (*CTT1*).

Using respiratory deficient mutants as controls, Costa *et al.*, (1997) showed that ethanol toxicity correlates with the production of ROS in the mitochondria and that the mitochondrial superoxide dismutase, MnSOD, is essential for ethanol tolerance in diauxic and post-diauxic-phase cells. Consistent with this, yeast lacking Sod1p (*SOD1* Δ) were found to have lower tolerance not only to oxidative stress but also to heat and ethanol stresses (Pereira *et al.*, 2003).

Many anti-oxidant genes are glucose-repressed, explaining why Gille *et al.*, (1993) found that both intracellular and extracellular catalase activities in an aerated *S. cerevisiae* distillery strain were greater with ethanol as substrate than with glucose. The authors suggested that extracellular catalase acts as a protectant against the damaging effects of ethanol by oxidizing ethanol outside the cell.

Cytochrome P-450, an enzyme catalysing the oxidation of endogenous and exogenous substrates in *S. cerevisiae*, accumulates to a high level when yeast grows fermentatively on glucose and is also present when ethanol is added to cultures grown on low levels of glucose. Encoded by *ERG11*, this cytochrome oxidatively detoxifies ethanol.

Furthermore, studies by Gupta *et al.*, (1994), indicated that ethanol might interfere with the antioxidant defense mechanisms of yeast cells and, as a result, catalase is unable to counter the toxic effects of ethanol. When *S. cerevisiae* cells were treated with ethanol, lipid peroxidation increased such that cells had decreased total lipids, phospholipids and free sterols. Ethanol-induced lipid peroxidation was associated with a decline in plasma membrane lipid order and interfered with catalase defensive activity, resulting in the deterioration of membrane integrity and loss of membrane impermeability (Gupta *et al.*, 1994).

2.3.3 The effect of magnesium on ethanol tolerance

Magnesium is involved in many physiological functions, including growth, cell division, and enzyme activity. Magnesium ions also decrease proton and anion permeability of the plasma membrane by interacting with membrane phospholipids, resulting in stabilization of the membrane bilayer (Birch *et al.*, 2000; Walker, 1994). Thus it is probably not surprising that magnesium is implicated in the relief of the detrimental effects of ethanol stress in yeast (Walker, 1994).

Birch *et al.* (2000) and Hu *et al.* (2003), demonstrated that increasing the extracellular availability of magnesium ions, increases physiological protection against temperatureand ethanol-stress. Hu *et al.* (2003), for example, showed that the exposure of yeast cells to 20% (v/v) ethanol for 9 hours resulted in the death of all cells, whereas over 50% of the cell population remained viable in the same ethanol concentration but in the presence of Mg²⁺.

2.4 Response of *S. cerevisiae* to ethanol stress

As discussed previously in this literature review ethanol has a range of effects on cell biochemistry and physiology. The following will describe how yeast cells respond to ethanol assaults and in particular how they acclimatise to this stress. Factors thought to affect ethanol tolerance include the amount of ergosterol in cellular membranes, phospholipid biosynthesis, the degree of unsaturation of membrane fatty acids, temperature, the activities of superoxide dismutase and plasma membrane ATPase, and trehalose production. These will be covered in the following sections.

2.4.1 Changes in plasma membrane composition in response to ethanol stress

Alterations in plasma membrane lipid composition in response to ethanol stress are thought to represent an adaptive mechanism to ethanol-induced, detrimental changes in plasma membrane function. Beaven et al. (1982), showed that when S. cerevisiae cultures were subjected to 6% (v/v) ethanol the fatty acid composition of the membrane was adjusted towards longer chain mono-unsaturated fatty acids. These adaptive changes enabled yeast cells to better tolerate and function in the presence of ethanol. Using fluorescence anisotropy Beaven et al., (1982) demonstrated that, in anaerobic S. cerevisiae cultures supplemented with 3.5 - 9% (v/v) ethanol, the proportion of monounsaturated fatty acids increased, particularly C_{18:1} residue (oleic acid), whilst the proportion of saturated fatty acids decreased compared to cultures without ethanol. Similarly, Sajbidor and Grego (1992) observed an increase in the proportion of $C_{18:1}$ residues relative to C_{16:1} residues in anaerobic cultures of S. cerevisiae strain CCY supplemented with up to 15% (v/v) ethanol. This appears to be due largely to a decline in the level of C_{16:1} residues in all phospholipids tested thus there may have been no net synthesis of oleic acid $(C_{18:1})$ but a remodeling of the $C_{16:1}$ residues. These changes in membrane lipids are believed to improve ethanol tolerance by lowering membrane leakage.

Evidence suggests that the phospholipid and sterol composition of cell membranes influences yeast ethanol tolerance (see reviews by Bisson and Block, 2002; D'Amore *et al.*, 1990; Mishra, 1993; Rose, 1993; Sajbidor, 1997). A common trend in the reported work is that exposure to ethanol leads to increased fatty acid length and increased proportions of unsaturated fatty acids and sterols in the cell membrane. In cells grown under anaerobic conditions, the levels of sterols were dramatically reduced with a concomitant increase of their squalene precursor, as compared to cells grown under aerobic conditions (Walker 1998, Paltauf *et al.*, 1992). The presence of ethanol resulted in a decrease in sterol content under aerobic conditions (Alexandre *et al.*, 1994). Under anaerobic conditions, however, the presence of ethanol resulted in a three-fold increase of total sterols, with lanosterol being the main constituent. It is suggested that

lanosterol in parallel with unsaturated fatty acids is responsible for maintaining membrane integrity of *S. pombe* cells growing in the presence of ethanol (Koukkou *et al.*, 1993).

Under anaerobic conditions, yeast cells are unable to synthesize unsaturated fatty acids because the yeast desaturase enzyme requires oxygen. Similarly many of the enzymes involved in sterol synthesis, in particular the conversion of squalene to ergosterol, require oxygen (Paltauf *et al.*, 1992). Therefore, in anaerobic experiments unsaturated lipids must be imported into the cell from the growth medium. Under aerobic conditions however, in the presence of 10% (v/v) ethanol, membrane lipids of wine yeast strain *S. cerevisiae* 3079 were modulated towards a higher level of $C_{18:1}$ fatty acid residues with a corresponding decrease in palmitic acid residues ($C_{16:0}$) similarly to anaerobic cultures (Alexandre *et al.*, 1993). As well as the increase in unsaturation of fatty acids, sterols were also modulated towards greater unsaturation in favour of the unsaturated fatty acid oleic acid ($C_{18:1}$) which was incorporated to the plasma membrane and thereby effectively decreasing membrane fluidity.

Alexandre et al. (1994) used gas chromatography to measure the sterol composition of S. cerevisiae grown in the presence of 10% (v/v) ethanol. These authors measured ergosterol at concentrations of 59.1+2.4 mg/100mg dry wt cells in ethanol-stressed cultures compared to 40+0.7mg/100mg in non-stressed cultures. This was accompanied by a decrease in zymosterol concentration to 13.9+0.8mg/100mg in ethanol-stressed cultures from 31.9+0.9mg/100 mg in non-stressed cells. This suggests that ethanol tolerance in yeast correlates with increasing ergosterol levels. Swan and Watson (1999) explored the effects of ergosterol-supplementation on 17% (v/v) ethanol-stressed wild type S. cerevisiae strain S288C and a mutant (KD115) derived from the same strain that lacked Ole1p (stearoyl-CoA 9-desaturase) activity, (it is also called Fatty acid desaturase, required for monounsaturated fatty acid synthesis and for normal distribution of mitochondria). The membrane lipid composition of the wild type had 21% of C_{16:0}, 53% of C_{16:1} and 16% of C_{18:1} fatty acyl residues. When KD115 was supplemented with oleic acid ($C_{18:1}$) it produced a membrane that was enriched in $C_{16:0}$ (28%), C_{16:1} (23%) and C_{18:1} (30%) fatty acyl residues. When supplementation with linoleic ($C_{18:2}$) or linolenic ($C_{18:3}$) lipids resulted in the $C_{16:0}$ (30%), $C_{18:2}$ (54%) and $C_{18:3}$

(58%) fatty acid residues. The wild type had relatively less ergosterol (49%) content compared to the supplemented mutant (64-83%) strain; the content of ergosterol increased with increasing unsaturation of the lipid supplement. Measurement of cell viability showed less than 40% cell survival when the wild type strain was exposed to 17% ethanol stress for 5 min; there was a decrease in ethanol tolerance with an increase in the number of double bonds in the lipids i.e. cells supplemented with $C_{18:1}$ were more ethanol tolerant than cell supplemented with $C_{18:2}$ fatty acid residues. These data suggests that the degree of membrane lipid unsaturation may influence cellular stress tolerance to ethanol (Swan and Watson, 1999). KD115 cells enriched with $C_{18:1}$ were not only more ethanol tolerant than the wild type strains. These data clearly indicate a consistent correlation between membrane lipid composition and stress tolerance.

Chi and Arnebory (1999) compared the lipid composition of membranes from yeast strains with differing levels of ethanol-tolerance. The more ethanol-tolerant strains had a higher ergosterol:phospholipid ratio, a higher level of phosphatidylcholine, a lower level of phosphatidylethanolamine, a higher incorporation of long-chain fatty acids and a slightly higher level of unsaturated fatty acids relative to total phospholipid composition. Chi and Arnebory (1999), showed that the increased concentrations of ergosterol, long chain fatty acids and unsaturated fatty acids correlated with increased ethanol tolerance. However, the mechanisms by which ergosterol and long chain fatty acids affect ethanol tolerance of yeast cells was not discussed.

Although this section is dedicated to yeast, it is important to consider other microorganisms such as bacteria to further clarify the effect of ethanol on the plasma membrane. Graca *et al.* (2003), studied the effect of ethanol on the cytoplasmic membrane composition of bacterial (*Oenococcus oeni*) cells; ethanol tolerance was measured using carbonxyfluorescein (cF), which distinguishes intact membrane/viable cells that retain cF, whereas dead cells cannot retain cF.. Two cultures were prepared from the same parent culture, one was pretreated by exposing it to 8% ethanol (pretreated cells) to trigger an adaptive response, while the second culture was not pretreated. The pretreated cells which were subsequently exposed to 16% (v/v) ethanol were able to retain cF, while the non-pretreated culture exposed to 16% (v/v) ethanol had a rapid loss of cF, suggesting a failure of plasma membrane function. Membrane

leakage rate of cF in the pretreated cells was less than 50% of that observed in nonpretreated cells. The authors also measured the fatty acid composition, which showed that the addition of 8% (v/v) ethanol to the growth medium increased the degree of unsaturation in fatty acid composition of the ethanol-adapted cells, while the total lipid content markedly decreased. This was thought to be mainly due to a large decrease in $C_{16:0}$ levels and an increase in the level of $C_{16:1}$. The degree of unsaturation and the total amount of lipids were identical in the control cells and in cells pre-incubated in 12% (v/v) ethanol for 2 hours. These results suggest that adaptation at the membrane level to ethanol stress does not necessarily require a change in the membrane lipid composition. It is postulated that the physical state of the membrane, rather than membrane composition may determine ethanol tolerance. However, most other authors argue that there is a correlation between increased degree of unsaturated fatty acid composition and ethanol tolerance of *S. cerevisiae* (Mishra and Kaur, 1991). It will be important to conduct further studied on this aspect, to confirm or refute, these conflicting literature reports.

2.4.2 Proteins associated with ethanol-stress tolerance

As discussed in Section 2.2.3 there are numerous HSPs encoded in the yeast genome. Of these HSPs some have been shown to increase expression when yeast is exposed to ethanol stress. These include *Hsp104* (Chandler *et al.*, 2004, Alexandre *et al.*, 2001; Piper *et al.*, 1994; Sanchez *et al.*, 1992), *Hsp26, Hsp30,* (Chandler *et al.*, 2004; Alexandre *et al.*, 2001 and Piper *et al.*, 1994), *Hsp82, Hsp70* (Piper *et al.*, 1994) and *Hsp12* (Chandler *et al.*, 2004, Praekelt and Meacock 1990 and Varela *et al.*, 1995). Of these only Hsp104p (Parsell *et al.*, 1991; Sanchez *et al.*, 1992; Glover and Lindquist 1998) and Hsp12p (Sales *et al.*, 2000) appear to influence yeast tolerance to ethanol. In the case of Hsp104, Sanchez *et al.* (1993) used an *hsp104*Δ mutant and tested the ethanol tolerance of this strain compared to its parent. These experiments demonstrated that heat-induced tolerance to 20% ethanol could not be achieved in the mutant but was inducible in the parent. Hsp12p is a membrane-associated protein that can protect liposomal membrane integrity against desiccation and ethanol stress. Sales *et al.* (2000) found that an *hsp12*Δ knockout mutant had a reduced growth rate over 24 hours in 10-12% ethanol compared to the wild type.

Another interesting protein that appears to be involved in conferring ethanol tolerance is Asr1p (Alcohol Sensitive Ring/PHD). Betz *et al.*, (2004) and Van Voorst *et al.*, (2006) demonstrated that this protein constitutively shuttles between the nucleus and cytoplasm but accumulates in the nucleus upon exposure to alcohol. The localization of Asr1p in the nucleus is exclusive to alcohol stress; not being observed during other stress conditions such as oxidative, osmotic, nutrient limitation and heat stress (Betz *et al.*, 2004). These authors hypothesized that the nuclear accumulation of Asr1p upon alcohol stress is the result of enhanced nuclear import or inhibition of nuclear export. The authors also speculated that Asr1p might be involved in a complex signal transduction pathway during ethanol stress that enables yeast to acclimatise to this stress, but this is yet to be tested.

2.4.3 Global gene expression response to ethanol stress

In a study by Alexandre *et al.*, (2001), *S. cerevisiae* S288C cells were grown in a rich medium at 30° C in the presence and absence of 7% (v/v) ethanol, and the global expression level of genes was determined after 30 minutes. Ethanol stress altered the expression level of 395 ORFs. Of these 194 were up-regulated and 201 were down-regulated. Recently Chandler *et al.* (2004) tested and extended the findings of Alexandre *et al.* (2001) using *S. cerevisiae* PMY1.1 grown in defined medium with and without 5% (v/v) ethanol at 30°C in aerobic conditions. Global gene array analysis showed that 374 ORFs had altered expression levels after exposure to ethanol stress for one hour (Chandler *et al.*, 2004). Among these 100 ORFs were up-regulated and 274 ORFs were up-regulated. Following three hours of exposure to ethanol stress, only 14 ORFs were up-regulated and 99 were down-regulated. Most of the ORFs changed expression level at the one hour time point were transient; only seven were common to both one and three hour time points.

In both of the above studies, genes encoding heat shock proteins *HSP12*, *HSP26*, *HSP78* and *HSP104*, were amongst the most highly up-regulated in the presence of ethanol stress; a finding that is consistent with previous work (Piper *et al.*, 1994; 1995). Chandler *et al.* (2004) and Alexandre *et al.* (2001) also reported for the first time the
ethanol-induced up-regulation of members of the *HSP70* family (*SSA1, SSA2, SSA3, SSA4, SSE1*). Other up-regulated genes included *TPS1, TPS2* and *TLS1*, all three of which are associated with trehalose synthesis. This is consistent with the finding of other groups who have reported trehalose accumulation in response to ethanol stress (Mansure *et al.*, 1994, 1997 and Lucero *et al.*, 2000) and under other stressfull conditions (Gasch *et al.*, 200; Rep *et al.*, 2000). The up-regulation of HSPs and trehalose synthesis genes is suggested to have a protective effect against damage caused by ethanol stress. As discussed previously trehalose is thought to impede protein denaturation during stress and reduce ethanol-induced membrane permeability (see Section 2.2.4).

Chandler *et al.*, (2004) and Alexandre *et al.*, (2001) also identified the up-regulation of glycolysis-associated genes, *GLK1*, *HXK1*, *TDH1 ALD4* and *PGM2*, and high affinity hexose transporter genes of *HXT6* and *HXT7*. This lead Chandler *et al.* (2004) to propose that when exposed to ethanol stress, yeast cells enter a pseudo starvation state since the molecular response to ethanol stress was similar to that when cells are starved of glucose; in this case, there was ample glucose in the medium but, because of the impact of ethanol, it was not accessible to cells. Other energy production-associated genes, *GPD1 HOR2, GRE3 HOR7* and *DAK1*, were also found to be up-regulated during ethanol stress in the work of Alexandre *et al.* (2001) but their up-regulation was not confirmed by Tamas *et al.* (2000) or Chandler *et al.* (2004).

One of the most interesting results at 30 minute and one hour time points in the studies of both Alexandre *et al.* (2001) and Chandler *et al.* (2004) was the down regulation of genes associated with protein biosynthesis, cell growth and RNA metabolism. It has been speculated that the down regulation of these genes reflected growth arrest during the stress conditions to allow energy conservation and cellular adaptation to the stress condition (Gasch *et al.*, 2000).

It is clear from the above that there are similarities and differences between the results of Alexandre *et al.* (2001) and Chandler *et al.* (2004). This may be due to differences in experimental conditions (e.g. severity of ethanol stress, time-length of exposure to ethanol, media used and gene array methodology) or strain differences. Alexander *et al.* (2001) focused on a single time point using equalized RNA concentrations in the test

and control samples instead of RNA from equalized cell numbers (as used by Chandler and co-workers). It is well documented that stress reduces general transcription levels. Thus, if RNA concentrations were equalized in test and control samples, the concentration of mRNA in the stressed samples would be disproportionately increased compared to unstressed controls, increasing the likelihood of generating false positive results.

2.5 Effect of acetaldehyde on the growth of ethanol-stressed yeast cells

2.5.1 The effect of inoculum size on the lag period of yeast

There are number of studies reported in the literature on the ethanol-induced lag period in yeast (Walker-carpioglio *et al.*, 1985; Walker-carpioglio and Parks, 1987; Stanley *et al.*, 1993; Stanley *et al.*, 1997; Barber *et al.*, 2002 and Vriesekoop and Pamment, 2005). Walker-carpioglio *et al.*, (1985) investigated the effect of a step change in ethanol concentration (between 1% to 8%) on the length of the lag period of *S. cerevisiae* X2180-1A under aerobic conditions. These authors showed that lag periods increased and growth rates decreased with increasing ethanol concentrations. The authors also investigated the effect of different inoculum sizes ranging from 10^3 to 10^6 cells/ml on the length of a 4% ethanol-induced lag period. They found that the lag period decreased as the inoculum size increased, demonstrating an inverse relationship between inoculum size and the lag period. This suggests that a lag-reducing metabolite(s) was present in the culture fluid, carried over with the inoculum, or excreted during the lag phase, or both (Walker-Caprioglio *et al.*, 1985). Cells grown in culture filtrates also showed reduced lags.

This inoculum dependent ethanol-induced lag reduction was confirmed by Stanley *et al.* (1997); who used inocula comprising late exponential phase *S. cerevisiae* X2180-1A. The inoculum was washed to avoid carryover of conditioning factors that might have contributed to the reduction of the lag time. When initial cell populations of 5×10^4 and 5×10^6 cells/ml were inoculated into rich medium containing 4% (v/v) ethanol, lag periods of 3.6 and 2.6 hours were observed respectively. Unlike Walker-Carpioglio *et*

al., (1985), Stanley *et al.* (1993) found that the inoculum-dependent lag reduction was observed only above a threshold cell population of around 10^5 cells/ml, below this the lag period was independent of inoculum size. Stanley *et al.* (1997) demonstrated that initial cell populations above 10^5 cells/ml were able to produce metabolite(s) that enables the ethanol-stressed culture to acclimatize more rapidly to ethanol stress and then commence growth. At initial cell populations below 10^5 cells/ml the metabolite(s) can be assumed to be present but at a concentration too low to have any effect on the lag period. One of the metabolites found to be partly responsible for the ethanol induced lag period reduction was identified as acetaldehyde (Walker-Carprioglio and Parks, 1987 and Stanley *et al.*, 1997).

2.5.2 Stimulatory and inhibitory effect of acetaldehyde on ethanol-stressed yeast

Acetaldehyde is a natural by-product of yeast metabolism during alcoholic fermentation and it is the direct precursor to ethanol in the fermentative pathways of yeasts (Figure 2.3). The effects of acetaldehyde on metabolism are complex and unclear due in part to acetaldehyde's high volatility and the difficulty in measuring its intracellular concentration. Acetaldehyde at high concentrations stops cell growth and is thought to contribute to the overall product inhibition effect in alcohol fermentation (Jones, 1989 and Stanley *et al.*, 1993). Acetaldehyde is a known inhibitor of a wide range of metabolic activities and at times can be more toxic than ethanol. In fact, added acetaldehyde has been found to both inhibit and stimulate yeast growth in the presence of ethanol depending on its concentrations above 0.3 g/L inhibited *S. cerevisiae* cell growth if added to non-stressed cultures. Furthermore, acetaldehyde has been shown to inhibit growth rate and fermentation not only in yeast, but also in other organisms such as the bacterium *Zymomonas mobilis* under aerobic conditions (Ishikawa *et al.*, 1990).

Acetaldehyde has a molecular weight of 44.1, which is similar to that of ethanol at 46.1; both are small, polar molecules. Acetaldehyde is, however, more polar than ethanol. For this reason, it passes more slowly through the hydrophobic core of cell membranes. This is consistent with the slower rate at which acetaldehyde diffuses out of the cells (Stanley and Pamment, 1993). As a result, acetaldehyde tends to accumulate inside

cells during fermentation, reaching concentrations of up ten times the prevailing extracellular concentration, with intracellular values reaching between 0.3-0.4 g/L (Stanley and Pamment, 1993). Although the intracellular acetaldehyde concentration in *S. cerevisiae* is estimated to be around 0.3 g/L (Martinez *et al.*, 1997; Stanley and Pamment, 1993), its level may reach up to around 1 g/L, depending on the strain and conditions. Rank *et al.*, (1995), investigated the concentrations of secondary metabolites such as ethanol, acetaldehyde and glycerol produced during an industrial fermentation of *S. cerervisiae* over the first 48 hours of fermentation. In this study the intracellular acetaldehyde level reached a peak value of about 0.3 g/L. Acetaldehyde is a very reactive compound and its intracellular accumulation might affect some structural components of cells. Hence, acetaldehyde is often better known for its more lethal effect on yeast metabolism than ethanol (Bandas, 1983).

Maiorella *et al.* (1983) studied the effect of added acetaldehyde on yeast cell growth under anaerobic conditions. Concentrations of 0.4 g/L acetaldehyde were found to inhibit cell growth, however, this inhibitory concentration was not found to affect the fermentation rate (ethanol production). This is in keeping with findings of Carlsen *et al.* (1991), both investigators concluding that high quantities of acetaldehyde did not inhibit fermentation under anaerobic conditions. When the effect of added acetaldehyde (0.55 g/L) on aerobically growing yeast cultures was studied, they found that aerobic fermentation was inhibited, showing a marked decrease in oxygen consumption and a slight decrease in CO_2 production. Carlsen's findings showed that the degree of inhibition of respiration and fermentation by acetaldehyde is quite distinct to that of ethanol, i.e. acetaldehyde was a more powerful inhibitor of respiration than fermentation, while ethanol is more detrimental to fermentation than respiration.

The toxicity of acetaldehyde in microorganisms was reviewed extensively by Jones (1989 and 1990), who suggested that acetaldehyde is more toxic to organisms of low ethanol tolerance; this was based on indirect evidence which demonstrated greater sensitivity of a variety of organisms to acetaldehyde compared to ethanol. Other more recent findings suggest that acetaldehyde has a direct effect on gene expression (Mayer *et al.*, 1994). Ristow *et al.*, (1995) and Obe and Ristow (1979), suggested that acetaldehyde causes DNA breakage and was mutagenic. The evidence presented by Obe and Ristow (1979) suggested that acetaldehyde is a more potent inhibitor of cells

than ethanol; the studies were conducted *in vitro* for RNA synthesis in the presence of 0.44 g/L acetaldehyde and *in vivo* for protein synthesis in the presence of 2.6 g/L acetaldehyde compared to 41.4 g/L and 21 g/L ethanol respectively. The results suggested a 50% greater inhibition of cellular processes by acetaldehyde compared to ethanol. Other studies using higher eukaryotes showed that the growth rate of mouse neuroblastoma cells was 50% inhibited at 0.22 g/L of acetaldehyde, whereas 9 g/L of ethanol had no noticeable effect (Syapin and Noble, 1979). However, it is important to note that the effect of acetaldehyde on different species might vary. For example yeast glucose transport permease is five times more tolerant to inhibition by acetaldehyde than the human intestinal glucose permease (Jones, 1990).

Acetaldehyde tolerance even within the same species can vary significantly. Aranda *et al.* (2002), analyzed the response of different *S. cerevisiae* strains to the sudden addition of acetaldehyde (1 g/L) into exponentially growing yeast cells in a complex medium for two hours at 20° C. Their results showed that some strains are more acetaldehyde stress tolerant than others. For example, when investigating the response of three wine strains and four sherry wine strains during short-term exposure to acetaldehyde stress, the three wine strains had cell viabilities of less than 40% while the sherry strains had viabilities in the range 50% to 80%.

Figure 2.1: The stimulatory effect of added acetaldehyde on *S. cerevisiae* growth (open symbols) and added acetaldehyde concentration (closed symbols). Yeast cells were grown in rich medium with 4% (v/v) ethanol. Acetaldehyde concentration and corresponding lag period were: 0 g/l and 7 h lag (\bigcirc , $\textcircled{\bullet}$), 0.005 g/l and 5.4 h lag (\triangle , \bigstar), 0.046 g/l and 2.7 h (\Box , \blacksquare) (from Stanley *et al.*, 1997).

Remize *et al.* (1999), investigated the overproduction of glycerol at the expense of low ethanol production and accumulation of acetaldehyde in *S. cerevisiae* cells. The *GPD1* gene that encodes for glycerol-3-phosphate dehydrogenase was engineered for glycerol overproduction in laboratory (L1 and L2) and industrial wine (W3, W6, W15, W18, W19, V5 and R) strains of *S. cerevisiae*, resulting in a two fold increase in glycerol production and a slight decrease in ethanol production (Remize *et al.*, 1999). During the overproduction of glycerol in the industrial (wine strain), the cell biomass decreased which was attributed to high acetaldehyde production during the growth phase. The biomass increase by strains (W3, W6, W18 and R) were not affected for those that produced less the 300 mg/l acetaldehyde, while those strains (W15 and W19) that produced 400-500 mg/l and 600 mg/l (V5) of acetaldehyde exhibited a decrease in cell growth. The *S. cerevisiae* laboratory strains L1 and L2 produced about 4000 and 6000 mg/l of acetaldehyde respectively, and the growth of cells were severely affected compared to controls (wild type).

This result suggests a correlation between acetaldehyde concentration and its inhibitory effect. The results of Remize *et al.*, (1999) are consistent with the role of acetaldehyde as a potent inhibitor of cell function if it is allowed to accumulate to levels above 300 mg/l (Stanley and Pamment 1993; Stanley *et al.*, 1993; Aranda *et al.*, 2002; Aranda and Olmo, 2003; 2004).

In contrast to this inhibitory role, acetaldehyde can have a growth stimulatory effect in ethanol-stressed cultures. Some initial evidence reported by Walker-Caprioglio and Parks (1987), showed that when yeast are inoculated into a complex medium containing a stressful level of ethanol, the resulting lag period was significantly reduced by the addition of small amounts of acetaldehyde. These positive effects of acetaldehyde on the growth of ethanol-stressed yeast was further investigated by Stanley *et al.* (1993 and 1997) and their results confirmed that the presence of small quantities (*ca* 0.01 and 0.046 g/L) of added acetaldehyde in ethanol-stressed yeast and Zymononas mobilis cultures significantly reduced the ethanol induced growth lag period and significantly increased the specific growth rate of the cultures after growth commenced (Figure 2.1).

Figure 2.2: Effect of acetaldehyde addition on the growth of *S. cerevisiae* X2180-1A in defined medium containing 0.4% (v/v) n-propanol. Open symbols (cell numbers), closed symbols (acetaldehyde concentrations). Initial acetaldehyde concentrations (g/l): (\circ, \bigoplus) 0, (\Box, \blacksquare) 0.003, and (Δ, \blacktriangle) 0.085. The cultures were inoculated aerobically at 30C/140 rpm (from Barber *et al.*, 2002).

The effect of acetaldehyde in reducing the lag time of ethanol-stressed yeast cultures is also observed when yeast cells are stressed by other alcohol stressors such as propanol and butanol. Barber *et al.* (2002) reported that acetaldehyde (0.085 g/l) reduced the lag time of the propanol-inhibited *S. cerevisiae* culture from about 35 hours to only 2 hours (Figure 2.2). Barber *et al.* (2002) found that there is a clear difference between the acetaldehyde concentration profiles of ethanol-stressed cultures containing added acetaldehyde and those stressed using other alcohols. In the ethanol-stressed cultures, the extracellular acetaldehyde concentration decreased relatively slowly during lag and exponential growth period, while for the other alcohol-stressed cultures the concentration of extracellular acetaldehyde dropped significantly during the same period. As shown by Stanley *et al.* (2002) and acetaldehyde did not react chemically with the defined medium used in the experiment. Thus, the acetaldehyde loss was suggested to be due to its conversion to ethanol, therefore influencing the NAD+/NADH redox balance.

In support of this, Barber *et al.* (2002) found that when propanal (a three carbon aldehyde) was used instead of acetaldehyde to stimulate the ethanol stress response, an equivalent amount of propanol was produced relative to the amount of propanal lost (the ethanol-stressed cultures had a reduced lag period as with acetaldehyde), suggesting that the stimulatory effect may be due to aldehyde reduction to alcohol and its role in maintaining an NAD+/NADH redox balance.

The stimulatory effect of added acetaldehyde on chemically-inhibited cultures was not found to be universal. When *S. cerevisiae* was stressed by common food preservative acids at pH 5.2, the resulting lag was either not significantly affected or it was lengthened by the addition of acetaldehyde (0.005-0.055 g/l). Acetaldehyde at very low concentrations of 0.005 g/l, increased the inhibitory effect of lactic acid (Barber *et al.*, 2002).

2.5.3 The stimulatory role of acetaldehyde in the physiological adaptation of yeast to ethanol stress

The mechanism underpinning the acetaldehyde-stimulated adaptation of *S. cerevisiae* to ethanol stress is unclear. There is considerable evidence suggesting that the plasma membrane could be the primary target of ethanol toxicity. Given this observation, Walker-Caprioglio and Parks (1987) studied yeast plasma membrane order using fluorescence anisotropy and found no difference between the plasma membrane of yeast in cultures containing acetaldehyde with 6% (v/v) ethanol and a control containing only 6% ethanol *i.e.* acetaldehyde did not reverse ethanol-induced changes to plasma membrane. Walker-Caprioglio and Parks (1987) concluded that the ethanol induced lag phase could not be due to the changes on the plasma membrane order, rather it could be due to ethanol-induced changes in cell metabolism. The authors also measured the concentration of ethanol in cultures with and without acetaldehyde and found that added acetaldehyde (0.078 g/l) did not affect the amount of ethanol produced, but still reduced the lag phase. This implies acetaldehyde did not significantly affect the metabolic rate of glycolysis.

Stanley *et al.* (1997), suggested the added acetaldehyde replaces intracellular acetaldehyde lost from the cell when the permeability of the plasma membrane is disturbed by ethanol stress. In an earlier publication, Stanley and Pamment (1993) demonstrated the intracellular acetaldehyde levels could be up to 10-fold higher than the extracellular concentration. The loss of intracellular acetaldehyde in ethanol-producing cells could lead to a cellular redox imbalance since regeneration of NAD⁺ via alcohol dehydrogenase may be slowed. It was speculated that added acetaldehyde serves to replace intracellular acetaldehyde lost by diffusion when cells are inoculated into high ethanol concentration, permitting a more rapid rate of NAD⁺ regeneration.

Figure 2.3: Schematic overview of glycolytic and fermentative pathways in yeast. If acetaldehyde is not reduced to ethanol, glycolysis would be limited by an NAD⁺ deficiency, the reduction of dihydroxyacetone phosphate to form glycerol might help to balance the NAD⁺ production.

2.5.4 Effect of acetaldehyde and glycerol on NAD⁺/NADH ratio

During alcoholic fermentation, it is believed that one of the main roles of glycerol formation is to equilibrate the intracellular redox balance by converting the excess NADH generated during biomass formation to NAD⁺ (Nordström, 1968) (Figure 2.3). It was previously shown that the increased utilization of NADH through glycerol formation led to a transient accumulation of pyruvate and acetaldehyde (Remize *et al.*, 1999 and Michnick *et al.*, 1997). Most anabolic reductive reactions require NADPH rather than NADH. Since, ethanol production from glucose is a redox neutral process; glycerol production is the only other way of restoring the cytosolic redox balance under anaerobic conditions. Hence, substantial overproduction of glycerol is observed during alcoholic fermentation when reoxidation of glycolytically-formed NADH is restricted. This is the case, for instance, when the intermediate product, acetaldehyde, is trapped by bisulphate or amino acids in complex medium, so that it can no longer serve as an electron acceptor for cytosolic NADH (Barber *et al.*, 2002; Stanley and Pamment, 1997).

In an anaerobic batch culture, Oura (1977) reported a huge production of glycerol compared to the amount produced during aerobic fermentation, and noted that glycerol production was linked to the fate of acetaldehyde and cellular redox balance (NAD⁺/NADH). Furthermore, Oura (1977) suggested that there were two acetaldehyde-related factors that limit the progress of glycolysis. First, if acetaldehyde is not reduced to ethanol for some reason, glycolysis will tend to be limited due to a lack of NAD⁺ (Figure 2.3). Second, the formation of acetate from acetaldehyde by an oxidation reaction that consumes NAD⁺, further limiting the availability of NAD⁺ for glycolysis. These effects might be resolved by the reduction of dihydroxyacetone phosphate to glycerol, which regenerates NAD⁺ for upper glycolysis. Hence, redox balance is maintained either by the formation of ethanol or glycerol or both. The production of glycerol is linked to the metabolic fate of acetaldehyde.

Betz and Becker (1975), reported that acetaldehyde (0.009 g/L) added to an anaerobic yeast culture growing on glucose had markedly reduced the NADH levels. It was suggested that the added acetaldehyde was converted to ethanol, which was accompanied by the oxidation of NADH to NAD⁺. Other studies, by Radler and Shutz

(1982), examined the concentration of glycerol, acetaldehyde and pyruvate in different strains of *S. cerevisiae*, growing in anaerobic conditions. They found that strains that produced a large amount of glycerol also produced a larger amount of acetaldehyde and pyruvate during fermentation. This suggests that in the absence of oxygen, and where there was a deficiency in alcohol dehydrogenase activity, acetaldehyde tends to accumulate.

The effect of added acetaldehyde on cellular metabolism can be more complex during aerobic growth. Iscaki (1975), reported that acetaldehyde added (0.01-0.07g/L) to an aerobic yeast culture reduced the consumption of glucose by glycolysis and increased utilization of glucose by the pentose phosphate pathway (Figure 2.3). Iscaki (1975), investigated the fate of added acetaldehyde using radioactively labeled glucose and found it to be oxidized to acetate by aldehyde dehydrogenase rather than reduced to ethanol. The acetaldehyde added into the aerobic culture was oxidized to acetate accompanied by the reduction of NAD⁺ to NADH, which negatively affects glyceraldehyde 3-phosphate dehydrogenase (GAPDH) activity. Hence, this would not only increase the level of NADH in the cell, thereby inhibiting GAPDH, but also reduce the NAD⁺ availability for glycolysis. As a result, glycolysis was partially inhibited by added acetaldehyde and the pentose phosphate pathway in which NADP⁺, and not NAD⁺ is used was activated. It could be concluded that when acetaldehyde is added to an anaerobic yeast culture, it appears to stimulate glycolysis by the reduction of acetaldehyde to ethanol. This increases the cellular levels of NAD⁺ and deceases the glycerol production levels, as the purpose of glycerol is for the regeneration of NAD⁺. However, when acetaldehyde is added to aerobic yeast cultures the acetaldehyde is oxidized to acetate instead of being reduced to ethanol. The acetate formation is accompanied by an accumulation of NADH, resulting in an NAD⁺ deficiency for glycolysis.

2.5.5 Pre-treatment with mild ethanol-stress enhances the stimulatory effect of acetaldehyde

As described in section 2.2.1, pre-treatment of yeast cells with mild stress results in the acquisition of greater tolerance to a lethal dose of the same stress. It was therefore postulated that the combination of pre-treatment and the stimulatory effect of added

acetaldehyde could synergistically reduce the ethanol-induced lag period (Vriesekoop and Pamment, 2005). Vriesekoop and Pamment, (2005), inoculated S. cerevisiae TWY-397 into two flasks containing medium: one flask had 5% (v/v) ethanol and 0.09 g/l added acetaldehyde and the other flask had 5% (v/v) ethanol only. The ethanol-stressed culture had a lag period of nine hours, and the added acetaldehyde reduced this ethanolinduced lag period by six hours (67%); this finding is consistent with that of Stanley et al. (1993; 1997), Barber et al. (2000) and Barber et al. (2002). These workers then investigated the combined effect of pre-treatment of inocula with mild ethanol stress and the stimulatory effect of added acetaldehyde on the yeast ethanol stress response, *i.e.* the yeast inoculum was subjected to low-intensity stress of 1% (v/v) ethanol, compared to an inoculum without prestress (control), and both were inoculated into ethanol-containing medium in the presence and absence of acetaldehyde. The culture with a pre-treated inoculum showed a 70% reduction in the lag period compared to the non-pre-treated (control) culture containing only ethanol. When the combined effect of pre-treatment and added acetaldehyde was investigated the lag period was reduced by 90% (Vriesekoop and Pamment, 2005). Thus, the ethanol induced lag phase in yeast can be substantially reduced by the combined effect of pre-treatment with mild ethanol stress and added acetaldehyde. These results suggest that the stimulatory effects of prestressing or acetaldehyde addition on ethanol-stressed yeast operate by different and independent mechanisms.

2.5.6 The effect of acetaldehyde on gene expression

Acetaldehyde is a known inhibitor of a wide range of metabolic activities and is thought to be more toxic than ethanol (Jones 1988; 1990). Aranda *et al.* (2002) used Northern blots to study the expression profile of particular genes subject to acetaldehyde and ethanol stress. Exponentially growing yeast from the same parent culture were incubated with either 1 g/L added acetaldehyde or 12% ethanol and compared to untreated cultures, using different yeast strains (seven sherry wine strains, three wine strains and one laboratory strain). It was found that the sherry wine yeast strains had the highest viability to the acetaldehyde and ethanol stress. Among the *HSP* genes considered as stress indicators by Aranda *et al.* (2002) were HSP12/26/82/104 genes. The expression levels of these genes were analyzed at time points of 30 and 60 min after the addition of the stress agents; these time points were chosen because previous reports have indicated that the maximal induction of HSP genes is achieved at approximately these times (Martinez-pastor et al., 1996; Treger et al., 1998). Aranda et al., (2002) observed the up-regulation of all the above four genes, among these genes HSP12 and HSP104 exhibited the highest expression level for the sherry wine yeast strains. Higher induction levels were observed when yeast cells were exposed to acetaldehyde compared to ethanol stress cultures. The findings of Aranda et al. (2002) were in keeping with that of Shankar et al. (1996) and recently Aranda & Olmo (2003) and Aranda & Olmo (2004) who showed that several HSP genes were up-regulated at a high concentration of acetaldehyde-treated sherry wine S. cerevisiae. This strain dependent up-regulation of specific genes during exposure to a high concentration of acetaldehyde was also observed for ALD genes that encode aldehyde dehydrogenase proteins (Aranda & Olmo, 2003). The increased expression levels of ALD genes in response to acetaldehyde stress was expected, because the intrinsic cell response was anticipated to initiate a decrease in the toxic level of acetaldehyde by its oxidation to acetate. These results showed that the level of increase in gene expression depended on the yeast strain, and for all of the strains, maximal induction was achieved at around 1 hour after acetaldehyde treatment. Overall, the HSP and ALD gene expression pattern in different yeast strains showed correlation between resistance to acetaldehyde and ethanol stress (Aranda et al., 2002; Aranda & Olmo, 2003).

The adverse effect of acetaldehyde on gene expression was investigated using global gene expression analysis, to study the genome wide impact of acetaldehyde stress on yeast *S. cerevisiae*. *S. cerevisiae* was exposed to 1 g/L of acetaldehyde for one hour (Aranda and Olmo, 2004); the microarray result revealed 401 genes had significant shift in expression level, of these 273 were up-regulated and 128 genes were down-regulated at the one hour time point compared to the control. Among these genes activated by acetaldehyde are those involved in sulfur metabolism and some involved in polyamine transport (*TPO1-TPO4*), which are located in the plasma membrane, and which are involved in multi-drug transport activities. Microarray results showed a significant increase in the expression level of the *TPO2* gene, while *TPO3* was moderately induced and no significant expression levels of *TPO1* and *TPO4* was observed (Aranda and Olmo, 2004). The up-regulation of these *TPO* genes suggests that the product membrane proteins might be involved in the efflux of excess acetaldehyde from the cells. Hence, the increased expression of *TPO*

tolerance to acetaldehyde stress. Transcription of *TPO2* and *TPO3* genes, but not *TPO4* depends on the Haa1p transcription factor under acetaldehyde stress; these were confirmed by creating mutants for Haa1p gene (Aranda and Olmo, 2004).

Aranda and Olmo (2004) also observed a marked induction of sulfur metabolism genes (*MUP3, SAM3, MET3, SUL2, MUP1, MMP1 & MET3*) during acetaldehyde stress. Some of these genes are involved in the pathway from sulphate uptake to homocysteine synthesis and transport of sulphur compounds. The acetaldehyde induction of these genes depends on the transcription factor Met4p and partially on Met31p and Met32p. Both acetaldehyde and sulphite are toxic to yeast cells (Casalone *et al.*, 1991), hence, the induction of sulphur metabolism genes and *TPO* genes suggests their involvement in acetaldehyde and sulphite detoxification; either by eliminating (efflux) excess acetaldehyde or acetaldehyde binding with other molecules such as sulphite/sulphur or sulphur containing amino acids (e.g. cysteine & methionine) to produce non-toxic sulphate adducts and, subsequently, expelled by the *TPO* transporters (Aranda & Olmo, 2004).

2.6 Aims and objectives of this project

2.6.1 General aim

The primary objective of this research project was to investigate and characterise the molecular response of *S. cerevisiae* to ethanol stress in the presence of added acetaldehyde using global gene expression analysis. Information from this would be used to identify genes in yeast that are involved in the ethanol stress response and, in particular, are associated with the stimulatory effect of acetaldehyde on ethanol-stressed cultures.

2.6.2 Specific aims were to:

- I. Compare, using gene array technology, mRNA profiles of ethanol-stressed yeast cells incubated in the presence and absence of acetaldehyde, to determine whether acetaldehyde induces a novel set of stress-response genes, whether it stimulates a more rapid expression of typical ethanol stress response genes and/or has a role in the generic up-regulation of gene expression during ethanol stress.
- II. Using the data obtained in (i), develop a hypothesis that describes the mechanism by which acetaldehyde stimulates the growth of ethanol-stressed *Saccharomyces cerevisiae* cultures.

CHAPTER 3

Material and methods

3.1 Materials

3.1.1 General buffers and solutions

Analytical grade chemicals were used to prepare all buffers and solutions unless otherwise stated. Chemicals used were supplied by BDH (UK) or Sigma (USA) unless otherwise stated. All buffers and solutions were prepared using distilled and de-ionised Milli-Q water (Milli-Q Plus Ultra Pure Water System, Millipore, Billerica, MA, USA). Formulae for all buffers and solutions are provided in Appendix I, section 1.1. Buffers and solutions were sterilized by autoclaving at 121°C for 20 minutes or, where indicated, filter sterilized using a 0.22 μ m or 0.45 μ m Millipore membrane filter. All glassware and stainless steel components for preparing RNA solutions were baked at 180°C for at least 12 hours. Buffers for RNA work were prepared in RNase-free glassware using diethyl pyrocarbonate (DEPC)-treated water. DEPC-treated water (0.2%) was prepared with distilled and de-ionized Milli-Q water. A list of all enzymes, molecular weight markers, molecular biology kits and a list of suppliers are also provided in Appendix I, Table 1.1.

	Table 3.1: Summary	of <i>S</i> .	cerevisiae strains	s used in the	e work	described i	in this	thesis.
--	--------------------	---------------	--------------------	---------------	--------	-------------	---------	---------

S. cerevisiae STRAINS	DESCRIPTION	GENOTYPE	SOURCE
PMY1.1	Wild type	PMY1.1 (MATa leu2, ura3, his4)	P. Piper [*]
BY4742	Wild type	m BY4742 (MATalpha his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0)	Provided by AWRI**
BY4742 <i>APDC5</i> ::kanMX4	Knockout	BY4742 (<i>MATalpha his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0) ΔPDC5</i> ::KanMX4	Provided by AWRI
BY4742 APDC1:: kanMX4	Knockout	BY4742 (<i>MATalpha his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0) ΔPDC1</i> ::KanMX4	Provided by AWRI
BY4742 <i>_PHO84</i> ::kanMX4	Knockout	BY4742 (<i>MATalpha his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0) ΔPHO84</i> ::KanMX4	Provided by AWRI
BY4742 <i>AHXT4</i> ::kanMX4	Knockout	BY4742 (MATalpha his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0) Δ HXT4::KanMX4	Provided by AWRI
BY4742 <i>∆YLR364W</i> ::kanMX4	Knockout	BY4742 (MATalpha his3 Δ 1 leu2 Δ 0 lys2 Δ 0 ura3 Δ 0) Δ YLR364W::KanMX4	Provided by AWRI

Dr. Peter Piper*, University College, London, UK. **Australian Wine Research Institute, Adelaide, Australia.

3.1.2 Yeast strains

A haploid lab strain, *Saccharomyces cerevisiae* PMY1.1 (*MATa leu2, ura3, his4*) and a haploid lab strain, *Saccharomyces cerevisiae* BY4742 (*MATalpha his3* Δ 1 *leu2* Δ 0 *lys2* Δ 0 *ura3* Δ 0) were used for the work described throughout this thesis. PMY1.1 was originally from the laboratory of Dr Peter Piper (University College, London, UK). Five knockout strains of *S. cerevisiae* BY4742 were used in this project. Each of these had one of the genes *PDC5, PDC1, PHO84, HXT4* or *YLR364W* replaced by the *kanMX4* module to generate five knockout strains, BY4742 (*MATalpha his3* Δ 1 *leu2* Δ 0 *lys2* Δ 0 *ura3* Δ 0) Δ *pdc5::kanMX4,* Δ *pdc1::kanMX4,* Δ *pho84::kanMX4,* Δ *hxt4::kanMX4* and Δ *ylr364w::kanMX4* (Table 3.1).

3.2 Microbiological work

3.2.1 Growth media

Yeast cultures were grown in a nutrient rich YEPD medium. Media and culture vessels were autoclaved at 121°C for 20 minutes. The glucose component of the rich YEPD medium was autoclaved separately. All water used in growth media was distilled and de-ionised Milli-Q water.

YEPD medium comprised of per litre: 10 g yeast extract, 20 g bacto-peptone, and 20 g D-glucose. Components were dissolved in distilled de-ionised water and autoclaved at 121°C for 20 minutes. For solid YEPD medium, bacto-agar was added to a final concentration of 15 g l^{-1} prior to autoclaving.

YEPD Geneticin plates for the selection of knockout strains with an integrated *kanMX4* cassette comprised YEPD medium with the addition of per litre: 15 g bactoagar and 400 mg G418 Geneticin (Sigma). G418 was added when the medium had cooled to approximately 55°C.

Glycerol storage medium comprised of 2 x YEPD: yeast extract (20 g), bacto-peptone (40 g) and glucose (40 g), with the addition of 15% (v/v) glycerol. The dry components

were dissolved in distilled and de-ionised water and autoclaved at 121° C for 20 minutes. This medium was used for the storage of all yeast strains at -20° C or -80° C.

Control 1: Fresh medium with no added supplements.

Control 2: Fresh medium with added acetaldehyde.

Control 3: Fresh medium with added ethanol.

Experimental culture: fresh medium with added acetaldehyde and ethanol.

Figure 3.1: Experimental set-up in 2 litre sidearm flasks, all containing fresh medium with various supplements

3.2.2 Ethanol stress conditions during yeast growth

3.2.2.1 Standard culture conditions

Ethanol stress experiment: YEPD Liquid medium was added to clean sterile sidearm shaker flasks of appropriate volume as shown in Figure 3.1. The fresh medium was prewarmed to 30°C to reduce the effect of temperature shock upon inoculum addition. The following four flasks containing fresh medium with or without acetaldehyde or ethanol were prepared immediately prior to the growth experiment: control flask 1 contained no supplements, control flask 2 contained acetaldehyde, control flask 3 contained added ethanol and experimental flask 4 contained added acetaldehyde and added ethanol. Yeast liquid cultures were grown under aerobic conditions at 30°C in an orbital shaker-incubator (Innova 4230 refrigerated, New Brunswick Scientific, Edison, New jersey) at 120 rpm. From the each flask samples for optical density, viability by plate counts and samples for RNA extraction were taken at regular intervals during incubations.

Preparation of acetaldehyde stock: Analytical grade acetaldehyde (BDH Ltd. Poole, England) was used in this research. Prior to the addition of acetaldehyde to the experimental cultures, acetaldehyde stock was prepared. As acetaldehyde is volatile (boiling point 20°C), it was necessary to prepare the stock solutions at 4°C to minimise evaporation loss. All glassware and solutions used to prepare the stock were autoclaved and pre-cooled. The procedure was conducted in a 4°C cold room. Stock solution was prepared by adding the appropriate amount of acetaldehyde to 50 ml of cold sterile water in a 100 ml volumetric flask. The pipette tip was immersed under the water to reduce evaporation when acetaldehyde was added. The weight of the added acetaldehyde was recorded and the volumetric flask filled up to mark with cold sterile water, stoppered and mixed.

3.2.3 Growth of yeast on plates and liquid media

3.2.3.1 Yeast storage

For long-term storage, yeast cultures were kept in glycerol storage medium at -20°C or -80°C. Transfers from glycerol stocks were undertaken aseptically using barrier pipette tips. Yeast was streaked on YEPD agar plates for short-term storage. YEPD Geneticin plates were used for the selection and short-term storage of gene knockout strains.

3.2.3.2 Growth of yeast on plates

Yeast cells from -20°C glycerol vials were thawed to room temperature and aseptically streaked onto YEPD or YEPD Geneticin plates, and incubated at 30°C for 2 - 3 days.

3.2.3.3 Inoculum preparation and experimental cultures

To prepare inocula for growth curve experiments, a loopful of cells was taken from plates, and used to inoculate 200 ml of YEPD fresh medium in a sterile conical flask. The yeast cells were grown overnight at 30°C in an orbital shaker at 120 rpm. The optical density reading at 620 nm (OD_{620}) of these cultures was used to determine the inoculum size required for an initial OD_{620} reading of 0.1 when transferred to 300 ml of fresh medium in a conical flask (parent culture). The parent cultures for growth experiments were grown in 0.5 litre conical flasks, plugged with cotton wool stoppers. Late-exponential phase parent culture cells (OD_{620} of approximately 1.0) were collected by centrifugation at 4,000 rpm (3,313 g) in a swinging rotor centrifuge (Sorvall[®] RT 7) for 5 minutes. The supernatant was discarded and the cells washed in pre-warmed fresh medium. The temperature was maintained at 30°C, during the wash procedure and transfers were performed aseptically in a laminar flow cabinet under a bunsen burner flame.

Aliquots of the cell suspension were then inoculated, to an initial OD_{620} of 0.1 (approximately 2 x 10⁶ cell ml⁻¹), into the control and experimental flasks containing pre-warmed medium. Once inoculated, the cultures were quickly transferred to the shaker incubator and grown under aerobic conditions at 30°C and 120 rpm.

3.2.3.4 Harvesting cells for molecular work

Yeast cells were harvested from each culture at regular intervals. Samples were removed through a clamped glass sidearm using a sterile syringe. An initial 5 ml of culture was discarded from the sampling line before the required volume was collected

and backflow of sample was prevented to avoid contamination. Each sample comprised 100 ml culture in a pair of 50 ml falcon tubes, which were pelleted by centrifugation for 5 minutes at 4°C in a swing rotor centrifuge (Sorvall[®] RT 7 Centrifuge) at 4,000 rpm (3, 313 g). The supernatant was poured off and the pelleted cells were frozen in liquid nitrogen and stored in -80°C until required for RNA isolation.

3.2.3.5 Cell population

Cell viability was measured using plate counts. Samples of 100 μ l aliquots of culture were serially diluted in 900 μ l of YEPD medium in microfuge tubes, and then 100 μ l of diluted sample was spread onto duplicate YEPD agar plates. Plates were incubated at 30°C for 2 – 3 days and counted immediately. Plates with cell counts in the range of 30 – 300 cells per plate were counted. The readings for each set of duplicates were averaged and multiplied by the dilution factor to give the viable cell population of the culture. Optical density was determined using a spectrophotometer at a wavelength of 620 nm. Samples were diluted in such a way that the measured extinction was between 0.1 and 0.5

3.3 Molecular work

A list of all buffers, solutions, reagents and a list of suppliers for molecular work are provided in Appendix I, section 1.1.

3.3.1 RNA extraction: RNase-free procedures

For extraction of high quality total RNA, all chemicals, water, plastic-ware and glassware used for RNA preparation were RNase-free. Glassware and spatulas were covered in foil and baked at 180°C for at least 12 hours prior to use, while plastic containers, electrophoresis tanks, trays and combs were sprayed with RNase ERASE (ICN) and rinsed with DEPC treated water. Disposable plastic ware (pipette tips and eppendorf tubes) were purchased RNase-free, and autoclaved prior to use. RNase-free barrier tips were used for pipetting. Glass beads/Micro-Dismembrator of 0.4 μ m (B. Braun Biotech International) were acid washed by stirring for 10 minutes and soaked overnight. The beads were then washed extensively under running water and then

rinsed with DEPC treated water, dried in the drying oven and then baked at 180°C overnight in a baking oven.

Centrifugation, vortexing, electrophoresis, optical density (OD) determinations and visualizing RNA in electrophoresis gels were performed using the following:

- > A centrifuge 5415C Microfuge bench top centrifuge (Eppendorf).
- > A vortex MT19DL Deluxe bench vortex (Chiltern Scientific).
- DNA grade Agarose (Progen).
- ➤ A 4054 UV/visible (Pharmacia Biotech) or DU[®] 530 UV/visible (Beckman) spectrophotometers.
- ➤ A UV/visible Darkroom (Pathtech Pty Ltd) connected to LaworkTM analysis software and Digital Graphic printer Up-D890 and Intelligent Dark box II.

3.3.1.1 Total RNA extraction from S. cerevisiae

Frozen cell pellets from section 3.2.3.4 were thawed on ice and the number of viable cells ml⁻¹ in each sample was calculated. Cells were resuspended in RNA buffer to cell density of 2 x 10^8 viable cells ml⁻¹. Total RNA was extracted from *S. cerevisiae* using the glass bead extraction method, essentially as described by Ausubel *et al.*, (1997). *S. cerevisiae* cell pellets of 2 x 10^8 cells were resuspended in 300 µl (1 x) RNA buffer and added to approximately 300 µl of chilled, acid-washed 0.4 µm glass beads (Sigma). Samples were kept on ice throughout the procedure. The mixture was vortexed for 3 minutes (alternating one minute vortexing with one minute on ice x 3). Samples were centrifuged at 12,000 g for one minute to pellet cell debris and the upper phase transferred to a fresh microfuge tube. The following two extraction methods were used:

Trizol[®] Reagent (Invitrogen) extraction method: According the manufacture's instructions, supernatants containing 2 x 10^8 cells was mixed with 1.0 ml Trizol[®] Reagent (Invitrogen) and incubated for 5 minutes at room temperature. Chloroform (0.2 ml) was added and mixed by shaking vigorously for 15 seconds and then incubated at room temperature for 2 – 3 minutes. The mixture was centrifuged at 12,000 g for 15 minutes at 4°C. Following centrifugation, the mixture was separated into phases, the upper aqueous phase was transferred to a fresh tube and precipitated by the addition of

0.5 ml of isopropyl alcohol, incubated at room temperature for 10 minutes and centrifuged at 12,000 g at 4°C. Following the centrifugation the supernatant was discarded and the RNA pellet was washed (2 - 3 times) with 75% (v/v) ethanol. The washing was conducted by carefully resuspending the pellet with ice cold 75% ethanol and then centrifuging at 7,500 g for 5 minutes at 4°C. RNA pellets were air-dried at room temperature in a fume hood and resuspended in 25 µL RNase free water.

Phenol extraction method: Following glass bead extraction, the cell homogenate was centrifuged at 12,000 g for one minute to pellet debris and the supernatant was transferred to a fresh microfuge tube. An equal volume of phenol/choloroform/isoamyl alcohol (25:24:1) (pH 8.0) and 25 μ l Tris buffer (0.5 M, pH 8.0) were added to the supernatant and the content was mixed by flicking it for 20 seconds; and then centrifuged for two minutes at 12,000 g to separate the precipitated protein phase. The upper phase was removed to a new microfuge tube and 3 volumes of chilled 100% ethanol and 25 μ l sodium acetate (3.0 M) were added to precipitate the RNA. These solutions were mixed and allowed to precipitate for 2 hours at -80°C (or overnight) and centrifuged at 12,000 g for 10 min. Following centrifugation the supernatant was removed and the RNA pellets were washed 2 – 3 times with 500 μ l of chilled 75% ethanol, re-centrifuged for 2 minutes at 12,000 g and the supernatant removed. The RNA pellets were air-dried and resuspended in 25 μ l of RNase-free water.

To determine the quantity and quantity of RNA, 2 μ l of total RNA solution was diluted with 598 μ l of DEPC treated water and A₂₆₀ and A₂₈₀ values was determined. To test for purity and reproducibility of extraction across different time points RNA was visualized by electrophoresis of total RNA in RNase free 1% non-denaturing agarose gels in 1 x TAE buffer. A volume of 2 μ l of ethidium bromide solution (1 g ml⁻¹) was added to agarose gel solutions. RNA samples (2.0 μ l) were mixed with 2.0 μ l of 6 x gel loading buffer and 4 μ l of RNase free water and loaded onto the gel. Electrophoresis was conducted at 60 – 80 voltage typically for 45 – 60 minutes. Gels were viewed on a UV transilluminator and photographed using a UVP Laboratory Products gel documentation system. RNA samples were stored at -80°C.

3.3.1.2 DNase Treatment of Total RNA

Prior to cDNA synthesis all total RNA samples were DNase treated to remove any contaminating DNA. To 20 μ l of RNA solution, 2 μ l of 10 x DNase Buffer and 1.5 μ l of DNase I enzyme (Ambion®) were added and mixed thoroughly by flicking the tube and then incubated at 37°C for 45 minutes. DNase I enzyme was then inactivated by the addition of 3 μ l of DNase Inactivation Reagent each sample was mixed thoroughly with continued intermittent flicking during the 2 min incubation at room temperature. Samples were centrifuged at 12,000 g for 2 min and the supernatant was transferred to a sterile fresh eppendorf tube. To test the purity of DNase treated RNA, as in Section 3.3.1.1, 2.0 μ l RNA gel loading buffer was added to 2.0 μ l of DNase treated RNA and 4 μ l of RNase free water. The RNA was then resolved electrophoretically in a 1% agarose gel. DNase treated RNA samples were stored at -80°C until required.

3.3.2 Gene expression analysis using Gene filter (Macro) arrays

Macroarray (Gene Filters) analysis was performed as described in the ResGenTM Technical Handbook GF100 (Research Genetics).

3.3.2.1 Gene array pre-hybridisation

The Yeast Index Gene Filters used in this work were purchased from Research Genetics. Filters were rinsed in boiling 0.5% SDS prior to use and placed in a hybridisation roller tube (35 x 150 mm) with the DNA side facing the interior of the tube. A volume of 5 ml MicroHyb solution (Research Genetics) was added to the roller tube containing the membranes. The MicroHyb solution was rolled around to saturate the membranes. Membranes were blocked by the addition of 5 μ g PolydA (1 μ g/ μ l) (Invitrogen). Any air bubbles between membranes and the tube were removed with forceps and the membranes placed so they were not overlapping. The membranes were pre-hybridised for 3 – 5 hours at 42°C in a XTRON HI 2002 hybridisation roller oven (Bartelt Instruments). The rotation of the tubes was set at approximately 10 rpm.

3.3.2.2 cDNA synthesis and labelling

Complementary DNA (cDNA) was prepared from RNA extracted using the Trizol method described in section 3.3.1.1. First strand cDNA synthesis was performed in 30 μ l reaction volumes. Total RNA from 2 x 10⁸ cells (approximately 1 μ g for unstressed, control cells) and 5 μ g oligo dT (1 μ g/ μ l) was mixed in 8 μ l of sterile distilled, deionized water. This was heated to 70°C then chilled on ice for 2 minutes. A volume of 6 μ l First Strand Buffer (5x, Invitrogen), 1.5 μ l of 20 μ M dNTP mix (only dATP, dGTP and dTTP), 1.0 μ l of 10 mM DTT, 1.5 μ l of 300 U Superscript II reverse transcriptase (Invitrogen) and [α -³³P] dCTP (100 μ Ci, 3000 Ci/mmol; Perkin Elmer) were the added, mixed well and spun down. The mixture was incubated at 37°C for 90 minutes.

The cDNA was purified by passage through a sterile Bio-Spin 6 chromatography column (Bio-Rad); the volume was brought up to 100 μ l with DEPC water. The Bio-spin 6 column was prepared for use by centrifugation at 1000 g in a bench top microfuge (Eppendorf) for 5 minutes. Column packing buffer was removed and the column placed into a new microfuge tube. The entire probe volume was loaded onto the Bio-Spin 6 column and centrifuged at 1000 g for 5 minutes. The purified probe was collected, denatured by heating to 100°C in a boiling water bath for 3 minutes, and chilled on ice for a further 2 minutes.

3.3.2.3 Hybridisation of labelled cDNA to probes on the gene filter

The purified and denatured cDNA from section 3.3.2.2 was pipetted into the prehybridisation mixture. The roller tube was vortexed thoroughly and allowed to hybridise overnight at 42°C. The rotation of the roller tube was set at approximately 10 rpm.

Following overnight hybridisation the hybridization solution was removed and the membranes were washed twice in 30 ml 2 x SSC, 1% SDS at 50°C for 20 minutes. These washes were performed in the hybridisation roller tube. A third wash was performed in 100 ml of 0.5 x SSC, 1% SDS in a plastic container at room temperature. The membranes were not allowed to overlap or adhere to the side of the container during the wash.

To prevent the membranes from drying after washing, they were placed on a piece of filter paper moistened with sterile distilled, de-ionized water and wrapped in plastic Cling Wrap[®]. All air bubbles were removed from between the plastic wrap and the filters.

3.3.2.4 Analysis of gene filters

Hybridised Gene Filters were placed in a cassette and carefully aligned with a BAS-MS 2340 phosphor-imaging screen (Fijifilm). Gene Filters were exposed to the phosphorimaging screen for 48 hours to generate optimal signal intensities. Following this exposure, the phosphor-imaging screen was scanned using on FLA 3000 phosphor image analyser (Fujifilm) to obtain digital images, which were subsequently analysed using ArrayGauge[™] software (version 1.3, Fujifilm). All spot intensities were normalised against the intensity of genomic DNA control spots. Comparisons of spot intensities for each time interval were calculated relative to the no-stress control.

3.3.2.5 Stripping gene filters for re-use

The gene filter membranes were stripped after analysis to facilitate their reuse. Membranes were placed into separate 500 ml solutions of boiling 0.5% SDS, covered, and agitated briskly for half hour. Following this, membranes were checked with a Geiger counter, placed on moistened filter paper and covered with plastic cling wrap. Again the filters were placed in a cassette, exposed to a phosphor-imaging screen for 48 hours, and scanned with a phosphor image analyser. The hybridisation intensity of the images was checked to make sure the stripping process was efficient. Following stripping, membranes were stored moist at 4°C until their next use. Gene filters were successfully stripped and reused a maximum of five times.

Slide number	1	2	3	4	5
5 X first Strand Buffer (µl)	16.8	32.8	48.8	64.8	80.8
Oligo (dT)12-18 primer, 0.5 μg/μl (μl)	3.15	6.15	9.15	12.15	15.15
DTT, 0.1M (µl)	8.4	16.4	24.	32.4	40.4
Total Vol. (µl)	28.35	55.35	82.35	109.35	136.35

Table 3.2: Reagents for first strand cDNA synthesis (Mix 1): (supplier: Invitrogen).

Table 3.3: Reagents for first strand cDNA synthesis (Mix 2): (supplier: Invitrogen).

Slide Number	1	2	3	4	5
*dNTPs {dATP, dCTP, dGTP)	2.6	5.2	7.8	10.4	13
(10 mM)} (µl)					
dTTP, 2.5 mM (μl)	3.4	6.8	10.2	13.6	17
Aminoallyl-dUTP 10 mM (µl)	1.8	3.6	5.4	7.2	9
Total Vol. (µl)	13.0	15.6	23.4	31.2	39

(Note: the stock concentrations of dNTPs (dATP, dCTP, dGTP and dTTP) was 100 mM. The dATP, dCTP and dGTP were diluted to 10 mM by taking 1 μ l of stock in 9 μ l of DEPC treated water). The dTTP was diluted to 2.5 mM by taking 1 μ l of stock in 39 μ l of DEPC treated water. *(For each dNTP 2.6 μ l was added).

3.3.3 Gene expression analysis using glass chip (micro) arrays

Microarray analysis was performed as described in the following sections. All microarray slides were purchased from Clive and Vera Ramaciotti Centre for Gene Function Analysis, University of New South Wales.

3.3.3.1 cDNA synthesis for microarray analysis

First strand cDNA was prepared from phenol extracted RNA from yeast cell cultures, as described in section 3.3.1.1. A volume 18.7 μ l (20-25 μ g) of DNase-treated total RNA samples was mixed with 13.5 μ l of **Mix 1** {according Table 3.2 reagent master Mix 1 of 28.35 μ l was prepared for one slide (control and test sample)} and placed into PCR machine. The PCR machine was programmed at 65°C for 5 min and 42°C for 2 hrs and 15 min and final 65°C for 20 min. Following 65°C for 5 and 42°C for 5 min incubation the PCR reaction was paused and 5.95 μ l of **Mix 2** (from Table 3.3) and 2 μ l of Superscript II enzyme were added directly to each sample the cycle was continued at 42°C for 2 hrs 15 min. Following this 4 μ l EDTA (50 mM, pH 8.0) and 2 μ l NaOH (10 M) were added, and the PCR cycler was set to 65°C for 20 min to hydrolyse the RNA. The reaction mixtures were then neutralized with 4 μ l acetic acid (5 M).

3.3.3.2 Purification and labeling of PCR products

PCR products were purified on QIAquick[®] (QIAGEN) columns according the manufactures instructions. In brief, 150 μ l PB buffer (phosphate buffer) was added to each PCR product and this was applied to the columns. An additional 150 μ l PB buffer was used to rinse the tubes and this was also added to the columns. Columns were centrifuged at 3,185 g for 1 min, the flow through was discarded and a volume of 700 μ l (70% v/v) ethanol was added to each column and incubated for 1 min. Following incubation, columns were centrifuged at 3,185 g for 1 min and the flow through was discarded (the washing step with 70% ethanol was repeated twice). Finally, columns were dried by centrifugation at 3,185 g for 1 min.

For elution of cDNA, columns were placed on fresh sterile microfuge tubes and 25 μ l of DEPC-treated distilled water was added to each followed by incubation at room

temperature for 5 min. Columns were then centrifuged at 3,185 g for 1 min. Again 10 μ l of DEPC-treated distilled water was added to each column and incubated at room temperature for 5 min, followed by centrifugation at 3,185 g for 1 min. A final volume of about 35 μ l was collected. The collected cDNA samples were centrifuged in a Speedivac at a low speed for ~20 min to reduce the volume to 2 – 5 μ l. Following the speedivac step, 9 μ l of NaHCO₃ (0.1 M, pH 9) was added to each sample and mixed thoroughly by flicking it.

Following cDNA synthesis and purification, for indirect labeling aminoallyl-modified nucleotides (aminoally-dUTP) were used for the subsequent coupling to Cy3 and Cy5 fluorescent dyes. The fluorescent dyes, Cy3 and Cy5, that were used to label cDNA for microarray analysis were provided in pellet form by supplier (Amersham). Each dye was resuspended in 18 μ L DMSO and aliquot of 2 μ L were prepared into each eppendorf tubes, all aliquots were centrifuged in speedivac until dry pellets formed and stored at 4^oC until required. In darkness, 2 μ l of DMSO stock solution was added to each Cy3 and Cy5 pellet, and resuspended by repetitive pipetting. In darkness 2 μ l of Cy3 and Cy5 dyes were then added to corresponding tubes containing (2 – 5 μ l PCR products plus 9 μ L of NaHCO₃. The samples were mixed thoroughly by repetitive pipetting. Note that control samples were labeled with Cy3 (green) and experimental samples with Cy5 (red). The samples were incubated at room temperature in darkness for 1 hr 30 min.

3.3.3.3 Washes of labelled cDNA

Labelled cDNA was washed in darkness to remove unincorporated dyes. This was carried out by adding 65 μ l of PB buffer to each sample, mixing thoroughly by repetitive pipetting and loading onto QIAquick[®] columns. Columns were centrifuged at 3,185 g for 1 min, and the flow through was discarded. To each column 700 μ l of 70% (v/v) ethanol was added and incubated at room temperature for 1 min, then centrifuged at 3,185 g for 1 min, and the flow through discarded. The columns were dried by centrifugation at 3,185 g for 1 min. Columns were then placed in fresh sterile microfuge tubes, 25 μ l of DEPC-treated distilled water was added to the centre of each column and incubated at room temperature for 5 min. The columns were then

to the centre of each column and incubated at room temperature for 5 min. The columns were then centrifuged at 3,185 g for 1 min. The collected volumes of approx $35 \,\mu$ l of the labelled cDNA were reduced to 10 μ l using a speedivac.

Finally, the two labelled cDNA preparations were combined in one tube to give total volume of 20 μ l. These solutions were mixed thoroughly by repetitive pipetting. Each was then reduced from 20 μ l to 5 μ l using a speedivac at low speed for approximately 10 – 15 min. Finally, 85 μ l of hybridisation solution was added to each tube (from Table 3.4) and incubated at 65°C for 5 min. These solutions were then cooled at room temperature in darkness. Samples of ~90 μ l of the labelled cDNAs were loaded onto each slide in darkness and the slides were incubated in darkness at 37°C for 16 hrs.

Table 3.4: Hydridization solution mix per slide

Reagents	Volume (µL)
Dig Easy Hyb (filtered)	100
**Yeast tRNA (10 mg/ml)	5
*Salmon Herring Sperm (10 mg/ml)	2.75
Total vol.	107.75

Suppliers: *Invitrogen, **Ambion®

3.3.3.4 Washing and blocking microarray slides

Microarray slides were placed in a slide chamber which was then filled up with solution 1 (0.1% Tritron X-100), and agitated gently for 5 min. Solution 1 was removed, then solution 2 (4.38 mM HCl) was added and agitated gently for 2 min. Solution 2 was removed and fresh solution 2 was added and agitated gently for 2 min. Solution 2 was removed and solution 3 (100 mM KCl) was added and agitated gently for 10 min. Solution 3 was removed and DEPC-treated distilled water was added and agitated gently for 1 min. DEPC-treated distilled water was removed and blocking buffer (25% Ethyene glycol and 0.01% HCl) was added and agitated gently at 50°C for 30 min. The blocking buffer was removed and DEPC-treated distilled water was added and agitated gently for 1 min. Slides were then air dried by centrifugation in falcon tubes at 830 g

for 10 min at 40°C using a swing out centrifuge rotor (Sorvall[®] RT 7). Dry slides were placed at room temperature in a light blocking slide box until required. Formula for all solutions used for washing are provided in Appendix I, section 1.1.

3.3.3.5 Hybridized slide washes

Following overnight incubation of the slides with the labeled cDNA, the cover-slip was removed by immersing in 1 x SSC + 0.1% SDS in a 50 ml falcon tube; the cover-slip was allowed to float off. The slide/s were then placed into 50 ml of 1 X SSC + SDS in a falcon tube, and this was gently agitated for 20 min. The wash solution was removed and this step repeated twice. Following the above three washes, further washes were performed in following solutions:

- > $1 \times SSC + SDS$ with gentle agitation for 15 min.
- \succ 1 X SSC with gentle agitation for 10 min.
- > 1 X SSC + Triton X-100 with gentle agitation for 10 min.
- > 1 X SSC with gentle agitation for 10 min.
- > 0.5 X SSC with gentle agitation for 10 min. This last step was repeated.

Washed slides were air dried by centrifuging at 830 g (using Sorvall[®] RT 7 Centrifuge) for 10 min at 40°C. Labelled slides were stored in the dark. Prior to scanning, the back of each slide was cleaned with 95% ethanol to remove any dust or smudges. Slides were scanned using a GenePix-Pro 4000, scanning machine (Axon), at the Australian Genomic Research Facility (AGRF).

3.3.3.6 Analysis of micorarray

Unreliable signals were filtered out and data normalized using GenePix Pro 5.0 software. GeneSpring[®] software was used to determine genes as more- or less-highly expressed when the difference in expression level between stressed and control cultures was reproducibly greater than three-fold in at least two replicates. Furthermore, to minimize systematic variations within or between slides (e.g. dye incorporation differences) in the measured gene expression levels of the two co-hybridized mRNA samples, the Locally Weighted Scatterplot Smoothing (LOWESS) normalization method was used. The *Saccharomyces cerevisiae* genome database (SGD;

<u>http://www.yeastgenome.org</u>) and yMGV (http://transcriptome.ens.fr/ymgv/) were used to group ORFs according their molecular and biological function.

3.3.4 First strand cDNA synthesis for PCR and Real-Time PCR analysis

cDNA was prepared from RNA extracted from equal number of cells of treated and untreated cells. According the reagent supplier's protocol (Invitrogen): 1 μ l (1 ng – 5 μ g) DNase treated total RNA, 1 μ l oligo (dT)₁₂₋₁₈, 1 μ l (10 mM) dNTP mix and 12 μ l sterile distilled water were added and heated at 65°C for 5 min, and then quickly chilled on ice. The contents were collected by brief centrifugation and then 4 μ l of 5 x First-strand Buffer, 2 μ l (0.1 M) DTT and 1 μ l RNase inhibitor were added and the contents gently mixed at 42°C for 2 min. Following the incubation, 1 μ l (200 units) SuperScriptTM II RT was added to give a final volume 23 μ l. This was mixed by gentle pipetting then incubated at 42°C for 50 min. Finally, the reaction was inactivated by heating it at 70°C for 15 min. This cDNA was ready to be used as a template for amplification in PCR and Real Time PCR reactions.

3.3.5 Quantitative Real-Time (kinetic) PCR analysis

SYBR green is a dye that binds to double but not single stranded DNA is used in quantitative PCR reactions. All Real-Time PCR reactions were performed using a Roche LightCycler Instrument (Catalogue # 2 011 468). The reagents used were contained within the LightCycler FastStart DNA Master SYBR Green I kit (catalogue # 3 003 230). The kit components include: Taq DNA polymerase, reaction buffer, dNTP mix and SYBR Green I dye. Only template cDNA, primers, appropriate concentration of MgCl₂ and water was added. All Real-Time reactions were performed in a Roche LightCycler according to the manufacturer's instructions.

3.3.5.1 Specific primers for Real-Time PCR

Specific primers were designed to gene-specific target sequences within the sequences of transcripts to be assayed. These were designed using the *Saccharomyces cerevisiae* genome database (SGD;<u>www.yeastgenome.org</u>). These primers were 'tested' using the

BLASTn sequence alignment algorithm; primers were deemed suitable if they would not bind to a template other than the one of interest. These primers comprised 20 – 25 nucleotides with 50 – 60% G+C content, and the target amplicon length was between 100 and 400 bp. Quality of primers was further tested to avoid: primer dimmer and primer hairpin formation, and nonspecific binding using Primer3 website: (http://cbr-rbc.nrc-cnrc.gc.ca/cgi-bin/primer3_www.cgi). Primers were purchased from Invitrogen Custom Primers.

Two negative controls were prepared, one in which no Reverse Transcriptase enzyme was added to the reaction and the other in which no cDNA-template was added. For experiments in this thesis, RNA templates were derived from the same samples as those used in gene array experiments unless otherwise stated.

3.3.5.2 Magnesium chloride titration to optimise Real-Time PCR reaction

The optimal magnesium concentration for LightCycler Real-Time PCR varies between 2 - 5 mM. Hence, prior to starting an experiment, it was necessary to determine the concentration that provided optimal assay performance for each primer pair. The MgCl₂ concentration that gave the most efficient amplification PCR product value was chosen for subsequent experiments.

3.3.5.3 Real Time PCR reactions

cDNA for Real Time PCR reactions was prepared as described in section 3.3.4. It was used at a dilution of 1:20 and 2 μ l of this was added to the Real-Time PCR reaction. The PCR amplification protocol was run using the following set-up program: 95°C for 10 min followed by 35 cycles of 95°C for 10 s, 60°C for 10 s, and 72°C for 15 s, then cooling down 40°C for 30 s.

3.3.5.4 Real-Time PCR data analysis

Once the melting curve confirmed that no primer dimer or non-specific products were formed, relative quantification analysis was conducted using the "quantification" mode. The amplification curve was displayed along with a table giving values for the crossover points. These values were indicative of the cycle at which amplification of
the product reached detectable threshold level. The more template present at the beginning of the reaction, the fewer the number of cycles it takes to reach a point at which a fluorescent signal can be recorded as statistically significant above background. In other words, the earlier the product was amplified, the greater the amount of template present. The relative concentration of transcript in each cDNA sample was quantified by direct comparison of cross point values between test and control samples employing the LightCycler logarithmic software. The fold alteration (FA) was calculated using the formula FA = $2^{(CP1-CP0)}$, where the CP1 represents the crossing point¹ of RNA from the stressed cells sample and CP0 unstressed cells.

3.3.6 Promoter analysis

A region spanning 800 bp upstream of the transcription start sites of genes identified in array analysis as having increased expression was recovered using the Regulatory Sequence Analysis Tools (RSAT) databases (http://rsat.ulb.ac.be/rsat/) and www.yeastract.com. Upstream sequences were then searched for specific sequence motifs using RSAT.

3.3.7 Yeast DNA isolation

Frozen cell pellets containing approximately 10^8 cells were thawed on ice and were resuspended to a volume of 500 µl in DNA extraction buffer to which approximately 500µl of chilled, acid-washed 0.4 µm glass beads (Sigma) were added. Samples were kept on ice throughout the procedure. The mixture was vortexed for a total of 3 minutes (alternating one minute vortexing with one minute on ice). Samples were centrifuged at 12,000 g in a bench top microfuge (Eppendorf) for one minute to pellet cell debris and the upper phase was transferred to a fresh microfuge tube. Equal volumes of this upper phase cell pellets, Phenol/chloroform/isoamyl alcohol (25:24:1) and 5 µl Tris buffer (0.5M, pH 8.0) were combined and mixed by inversion and incubated for 5 min at room temperature. Precipitated proteins were removed from DNA by centrifugation for 5 minutes at 12,000 g. The upper aqueous layer was transferred to a new microfuge tube

¹ Crossing points and crossover values are when the log-linear part of the amplification curve crosses a fluorescence background threshold.

and 10 μ l RNase (mg/ml) enzyme was added and incubated at 37°C for 40 min. Following incubation 1/10 volume (50 μ l) of sodium acetate and 1.0 ml chilled 100% ethanol were added. The supernatant was removed, following three-minute centrifugation at 12,000 g, and 500 μ l of ice-cold 70% ethanol was added, mixed, and centrifuged as previously. The supernatant was removed and the DNA pellet air-dried for 10 – 15 min. DNA was resuspended in 25 μ l of autoclaved double distilled water. DNA was subsequently visualized on a 1% agarose gel (essentially as described in Section 3.3.1.1) and analysed by spectrophotometrically at 260 and 280 nm using an Ultraspec III UV/Vis spectrophotometer (Pharmacia). The reading at 260 nm allowed for calculation of nucleic acid concentration in the sample and the ratio of ODs at 260 nm and 280 nm was used to assess quality.

3.3.8 Confirmation of gene knockouts in deletion strains supplied for this project

The gene knockout yeast strains used for this work were from the EUROSCARF deletion collection and were kindly provided by the Australian Wine Research Institute as part of collaborative project. The EUROSCARF deletion strains were created by gene replacement, in which targeted genes are replaced with DNA cassette carrying a Kanamycin resistance that confers resistance not only to Kanamycin but also to Geneticin (G418).

The knockout status of the strains used for this project mutants were confirmed by plating onto medium containing G418 and by PCR. The primer pairs for such PCR reactions for the genes of interests and *KanMx4* were designed using *Saccharomyces cerevisiae* Genome Deletion Project website. <u>http://www-sequence.stanford.edu/group/yeast_deletion_project/Enter_DB.html.</u> Primers were purchased from Invitrogen Custom Primers.

For PCR reactions the genomic DNA was isolated as described in section 3.3.7 or cell colonies were picked with sterile pipette tips and smeared into a PCR tube containing 20 μ l of sterile water. The cellular material was microwaved on high for 1.0 minute and immediately placed on ice. PCR-SuperMix (Invitrogen) reagent was used, it was added along with the following components into PCR tubes: 23 μ l PCR SuperMix, 1 μ l primer

mix and 1 μ l DNA template. The PCR amplification protocol consisted of 2 minutes at 94°C, followed by 30 cycles of 30 s at 94°C, 30 s at 55°C and 90 s at 72°C. PCR product sizes were confirmed by gel electrophoresis on 1% agarose gel.

CHAPTER 4

The physiological role of acetaldehyde in promoting yeast tolerance to ethanol stress

4.1 Introduction

Yeast encounters a range of stresses during fermentation that compromise productivity of the brewing process and other processes. Some of the principal stresses that yeast cell encounter during fermentation are exposure to hyperosmotic stress and high ethanol concentrations. When yeast cells are exposed to high concentrations of ethanol there is a decrease in cell viability, ethanol yield and productivity (Chandler *et al.*, 2004; Ingram, 1986 and Casey *et al.*, 1984). If the underlying mechanisms responsible for the inhibitory effects of ethanol on yeast growth were understood, then this information could potentially be used to modify either the yeast environment or the genetic make-up of yeast strains to improve their tolerance to ethanol.

When actively growing yeast are exposed to a step change in ethanol concentration, cell division is halted, and provided the change is non-lethal, growth will recommence after a period of time. This growth lag period is recognized to be an adaptation period during which time the cells are undergoing structural and metabolic changes to adapt to their new environment. These physiological changes to the cell are usually prescribed by changes in gene expression. Recent research in this area has characterized the gene expression changes during the lag period that occur during ethanol stress and a large number of genes were observed to respond to ethanol stress (Alexandre et al., 2001, Chandler et al., 2004). Although some of these genes would have a crucial role in directing the important physiological changes in the cell that are necessary to adapt to the stress, many of the genes will most likely have only a minor or no role in stress adaptation. Identifying the important genes is challenging given the large number of genes affected by ethanol stress. It may be possible to reduce the number of candidate genes associated with ethanol stress response by examining yeast gene expression during ethanol stress in the presence of acetaldehyde. As described in Chapter 1 (section 2.5.3) the addition of acetaldehyde to ethanol-stressed yeast stimulated growth

recovery resulting in shorter lag periods. Comparing gene expression profiles in ethanol-stressed cultures in the presence and absence of acetaldehyde may identify a subset of genes that are differentially expressed in the acetaldehyde-stimulated cultures, and which may have a crucial role in yeast adaptation to ethanol stress. The aim of this research project is to determine gene expression levels during an ethanol-induced adaptation period (lag phase) in yeast in the presence and absence of acetaldehyde.

Before investigating the effect of acetaldehyde on gene expression during ethanol stress, it was necessary to determine the environmental conditions and methodology that induce a reproducible, non-lethal and clearly defined ethanol-induced growth lag period. This was achieved by inoculating late exponential phase yeast into medium containing a range of ethanol concentrations (0-9% v/v) and then measuring the resulting lag period. The induced lag period needed to be of sufficient duration (around 4-7 hours) to allow multiple time point sampling during the adaptation phase. It was also important to determine the appropriate concentration of acetaldehyde needed to reduce the lag period in the ethanol-stressed cultures. This chapter will focus on the growth of *S. cerevisiae* during ethanol stress in the presence and absence of acetaldehyde.

4.2 The effect of ethanol on the growth of *S. cerevisiae* PMY1.1

4.2.1 Experimental design and its parameters

For these experiments it was important to ensure that ethanol stress was the only adversary condition inducing the lag period in the ethanol-stressed cultures. To ensure this, all inocula for the experimental cultures were prepared from the same parent culture that was in the late exponential phase. The inoculum was washed with fresh medium at 30°C prior to inoculation to prevent the carryover of by-products from the parent culture that may influence the adaptation rate of yeast cells to ethanol. All experimental cultures had the same initial cell population at the time of inoculation. Experimental cultures were deemed to be ethanol-stressed when they exhibited a lag period compared to unstressed control cultures.

Figure 4.1: The effect of various ethanol concentrations on the growth of *S. cerevisiae* PMY1.1. Cells were inoculated into YEPD medium only (\blacksquare), or medium containing 5% v/v (\bigcirc), 6% v/v (▲), 7% v/v (\diamond), 8% v/v (\bigcirc), or 9 % v/v (\square) added ethanol. The cultures were incubated aerobically at 30°C/140 rpm.

4.2.2 Effect of ethanol on the lag period of S. cerevisiae PMY1.1

To determine the most suitable ethanol concentration for the stressed experimental cultures in this study, the growth profile of *S. cerevisiae* PMY1.1 was investigated in the presence of different ethanol concentrations in YEPD medium and grown batchwise under aerobic conditions. Late exponential phase parent cells were washed and inoculated into fresh medium containing 0%, 5%, 6%, 7%, 8% and 9% (v/v) added ethanol. The growth of these cultures was monitored by OD_{620} readings and viable plate counts at hourly intervals over a 12-hour period. Most commentary on the growth profile of the yeast cultures are based on the viable plate count since they represent the viable cell population in the cultures.

The lag periods induced by step changes in ethanol concentration of 0%, 5%, 6%, 7%, 8% and 9% (v/v) are shown in Figure 4.1. This preliminary experiment with S. cerevisiae PMY1.1 indicated that ethanol concentrations in the range 5-9% (v/v) would induce a non-lethal growth lag period. According to the viable cell population, the lag periods, doubling times and growth rates were calculated from Figure 4.1. Yeast exposed to 5, 6, 7, and 8% (v/v) ethanol stress had lag periods of 4.6, 5.5, 6.1 and 7.8 hours respectively (Table 4.1) and doubling times of 2.3, 2.9, 3.6 and 5.8 hours respectively. In the presence of 9 % (v/v) ethanol the cells did not recover from the stress over the 12-hour period of the experiment, however, a constant viable cell population was maintained. In all five ethanol-stressed cultures the viable cell population either increased or was constant, suggesting that initial cell viability was not compromised even by the 9% step change in ethanol concentrations. The 9 % (v/v) ethanol stress appeared to be the upper threshold of cell recovery from ethanol stress over a 12-hour period. These experiments were repeated to determine the reproducibility and accuracy of the above experiments (duplicate experiments conducted), and similar results were obtained for the lag periods and growth rates (Appendix II, Figure 1).

Based on these results, the 6.1-hour lag period arising from a 7% (v/v) step change in ethanol concentration was considered to be of appropriate duration to allow the lag reducing effects of added acetaldehyde in future experiments to be clearly defined.

Yeast inoculated into medium containing 7% (v/v) ethanol did not have any apparent loss in viable cell population and the cells were able to recover sufficiently during the lag phase to enter a clearly defined exponential phase. It was therefore decided to use an ethanol concentration of 7% (v/v) to induce an ethanol stress in subsequent experiments.

Fig.	Ethanol	Added	Lag	Doubling	Specific	Reduction
	(v/v)	Acetaldehyde	Time	Time	Growth	in lag (%)
		(g/l)	(h)	(h)	Rate (h ⁻¹)	
4.1	0%	0.0	1.0	1.8±0.05	0.375±0.1	N/A
	5%	0.0	4.6	2.3±0.10	0.30±0.01	N/A
	6%	0.0	5.5	2.9±0.15	0.24±0.01	N/A
	7%	0.0	6.1	3.6±0.40	0.19±0.02	N/A
	8%	0.0	7.8	5.8±0.6	0.12±0.01	N/A
	9%	0.0	N/A	N/A	N/A	N/A
4.2	0%	0.0	0.5	1.9±0.06	0.37±0.01	N/A
	7%	0.0	6.2	3.5±0.15	0.20±0.015	N/A
	7%	0.01	5.0	3.0±0.15	0.23±0.02	19
	7%	0.05	4.4	2.7±0.04	0.26±0.015	29
	7%	0.10	2.0	2.5±0 09	0.28±0.01	68
	7%	0.20	4.6	2.8±0.01	0.25±0.015	26
	7%	0.30	5.2	2 8+0 10	0 25+0 01	16
	7%	0.40	6.4	2.0±0.10	0.23±0.01	N/A
				3.2±0.20	0.22 ± 0.01	

Table 4.1: Effect of ethanol and acetaldehyde on the growth of S. cerevisiaePMY1.1

N/A:- Not applicable

Figure 4.2: Effect of different concentrations of acetaldehyde on *S. cerevisiae* PMY1.1 growth in the presence of 7% (v/v) ethanol in YEPD medium: medium without ethanol or acetaldehyde (\blacksquare), 7% (v/v) ethanol only (\bigtriangledown), 7% (v/v) ethanol & 0.01 g/l acetaldehyde (\blacklozenge), 7% (v/v) ethanol & 0.05 g/l acetaldehyde (\blacktriangle), 7% (v/v) ethanol & 0.1 g/l acetaldehyde (\blacklozenge), 7% (v/v) ethanol & 0.2 g/l acetaldehyde (\triangle), 7% (v/v) ethanol & 0.3 g/l acetaldehyde (\bigcirc) and 7% (v/v) ethanol & 0.4 g/l acetaldehyde (\bigtriangledown). The cultures were incubated aerobically at 30°C/140 rpm.

4.2.3 Effect of added acetaldehyde on the growth of ethanol-stressed *S. cerevisiae* PMY1.1

Having determined the appropriate ethanol concentration for the experimental work, the next step was to determine a concentration of added acetaldehyde that would cause a significant reduction in the ethanol-induced lag period. The added acetaldehyde concentrations (around 0.08 g/l) used to achieve this in the literature were approximated in the experiments in this project, as well as slightly higher and lower acetaldehyde concentrations to account for differences in environmental conditions and yeast strain.

The growth of 7% ethanol-stressed *S. cerevisiae* PMY1.1 cultures was investigated in the presence of added acetaldehyde concentrations in the range 0.01-0.4 g/l (Figure 4.2). The lag periods, doubling times and growth rates (Table 4.1) were calculated from Figure 4.2. The results showed that added acetaldehyde concentrations of 0.01, 0.05, 0.1 and 0.2 g/l reduced the ethanol-induced lag period by 19%, 29%, 68%, and 26% respectively, and increased the specific growth rate by 15%, 30%, 40% and 25% respectively. Acetaldehyde concentrations less than 0.05 g/l had only a slight stimulatory effect on the growth of ethanol stressed cultures, whilst concentrations above 0.3 g/l had no significant effect on the lag period or the specific growth rate. An acetaldehyde concentration of 0.1g/l had the largest stimulatory effect on the adaptation period and growth rate of ethanol-stressed yeast. These experiments were repeated to determine the reproducibility and accuracy of the above experiments and similar results were obtained as above.

The lag-reducing effect of 0.1 g/l added acetaldehyde on a 7% (v/v) ethanol-stressed culture of *S. cerevisiae* PMY1.1 in YEPD medium was repeated (Figures 4.3 and 4.4). The results show that both the lag period and exponential growth rate are significantly affected by the added acetaldehyde compared to the ethanol-stressed control. Cultures subjected to 7% (v/v) ethanol stress only, had a lag period of approximately 6.1 hours, however, when added acetaldehyde (0.1 g/l) was present in the ethanol-stressed cultures, the lag period was reduced to approximately 2 hours which

represents a lag period reduction of approximately 67% (Figures 4.3 and 4.4; Table 4.2). An acetaldehyde concentration of 0.1 g/l provided the optimum stimulatory effect on the ethanol-stressed yeast, yet it was not inhibitory to the yeast in the absence of ethanol. For these reasons 0.1g/l added acetaldehyde was chosen as the acetaldehyde concentration to be used for the remainder of the experimental work.

Figure 4.3: Effect of added acetaldehyde on *S. cerevisiae* PMY1.1 growth in the presence of 7% (v/v) ethanol in YEPD medium: YEPD medium without ethanol and acetaldehyde (■), YEPD with 0.1 g/l acetaldehyde (●), YEPD with 7% (v/v) ethanol (♦) and YEPD with 7% (v/v) ethanol & 0.1 g/l acetaldehyde (▲). The cultures were incubated aerobically at 30°C/140 rpm.

Figure 4.4: Effect of added acetaldehyde on *S. cerevisiae* PMY1.1 growth in the presence of 7% (v/v) ethanol in YEPD medium: YEPD medium without ethanol and acetaldehyde (■), YEPD with 0.1 g/l acetaldehyde (●), YEPD with 7% (v/v) ethanol (♦) and YEPD with 7% (v/v) ethanol & 0.1 g/l acetaldehyde (▲). The cultures were incubated aerobically at 30°C/140 rpm.

Figures	Ethanol	Added acetaldehyde	Lag Time	Doubling Time	Growth	Reduction in lag
	(v/v)	(g/l)	(h)	(h)	Rate (h ⁻¹)	(%)
4.1	0%	0.0	1.0	1.8 ± 0.05	0.375±0.1	N/A
	5%	0.0	4.6	2.3±0.10	0.30±0.01	N/A
	6%	0.0	5.5	2.9±0.15	0.24±0.01	N/A
	7%	0.0	6.1	3.6±0.40	0.19±0.02	N/A
	8%	0.0	7.8	5.8±0.6	0.12±0.01	N/A
	9%	0.0	N/A	N/A	N/A	N/A
4.2	0%	0.0	0.5	1.9±0.06	0.37±0.01	N/A
	7%	0.0	6.2	3.5±0.15	0.20±0.015	N/A
	7%	0.01	5.0	3.0±0.15	0.23 ± 0.02	19
	7%	0.05	4.4	2.7±0.04	0.26±0.015	29
	7%	0.10	2.0	2.5±0 09	0.28±0.01	68
	7%	0.20	4.6	2.8±0.01	0.25±0.015	26
	7%	0.30	5.2	2.8±0.10	0.25±0.01	16
	7%	0.40	6.4	3.2±0.20	0.22±0.01	N/A
4.3	0%	0	0.8	1.9±0.10	0.37±0.01	N/A
	0%	0.1	0.8	1.9±0.10	0.37±0.01	N/A
	7%	0.0	6.1	3.5±0.23	0.20±0.015	N/A
	7%	0.1	2.0	2.6±0.20	0.27±0.010	67
4.4	0%	0.0	0.8	1.9±0.15	0.375±0.01	N/A
	0%	0.1	0.8	1.9±0.15	0.375±0.01	N/A
	7%	0.0	6.0	3.6±0.1	0.19±0.015	N/A
	7%	0.1	2.0	2.5±0.2	0.28±0.01	67

Table 4.2: Summary showing the effect of ethanol on the growth of *S. cerevisiae* in the presence and absence of acetaldehyde.

4.3 Discussion

4.3.1 Ethanol stress and acetaldehyde stimulation

Although there are many publications citing the effect of ethanol stress on yeast cells, comparing the results obtained in this project with published work must take into account the different experimental conditions used by other workers that can affect the response of yeast during an ethanol-induced lag phase. Some of these experimental variables such as yeast strain, inoculum size, medium type and other environmental conditions have been reported to have a significant influence on the length of an ethanol-induced lag period (Barber et al., 2002; Emslie 2002, Stanley et al., 1997, 1993). The lag period is reduced when inoculum size is increased and when cells are grown in rich medium compared to defined medium (Barber et al., 2002; Stanley et al., 1997; Stanley and Pamment, 1993). For example, when S. cerevisiae X2180-1A from a late exponential phase parent culture was washed and inoculated at initial cell populations of 5 x 10^6 cells/ml and 5 x 10^4 cells/ml into rich medium containing 4% (v/v) ethanol, the subsequent lag periods were 2.6 and 3.6 hours respectively (Stanley *et* al., 1997; Stanley and Pamment, 1993). When defined medium containing 4% ethanol was inoculated with the same strain to the same initial cell populations, the lag periods were around 3.4 and 4.86 hours respectively. The inoculum size-dependence of yeast cultures for ethanol stress-adaptation is an important observation since it indicates that extracellular factors may play a role in ethanol adaptation. Stanley et al., (1997), attributed the inoculum dependent lag-reducing effects to the accumulation of metabolites, which enable cultures to adapt to ethanol stress and recommence growth. When low inoculum sizes are used (below 10^5 cell/ml), the metabolite is either not produced or not present in sufficient concentration to affect the lag period. Walker-Caprioglio and Park (1987) and Stanley et al. (1997) speculated that the lag-reducing effect is due, in part, to acetaldehyde excretion.

It has been reported that the magnitude of the lag reducing effect of added acetaldehyde on ethanol-stressed yeast depends on the yeast strains being used (Barber *et al.*, 2002 and Stanley *et al.*, 1997). Barber *et al.* (2002), used *S. cerevisiae* strains (TWY-397, T2-3C, T2-3D and GG919) grown in complex medium containing 60 g/l ethanol under

aerobic conditions. All cultures showed that added acetaldehyde significantly reduced the lag period and increased specific growth rate. However, there was variability in the response of the different *S. cerevisiae* strains showing a lag period reduction ranging from 33-78% depending on the strains. Thus, the lag reducing ability of acetaldehyde on ethanol-stressed cultures varies widely according to yeast strains (Barber *et al.*, 2002).

Given the many environmental variables that influence the extent of the lag reducing effect by acetaldehyde, it was important for this project that the effect of such environmental factors in the adaptation period been kept to a minimum. In this project, all inocula in the growth curve experiments were washed to avoid the carryover of lag affecting substances from the parent culture, and initial cell populations in the experimental cultures were approximately the same within each experiment and across experiments, although in the latter case there was a slightly greater variation in the initial cell populations ($6 \times 10^5 - 3 \times 10^6$ cell/ml).

4.3.2 Effect of ethanol on the growth of *S. cerevisiae* PMY1.1

Much of the early-published work on ethanol toxicity and stress was carried out by exposing cells to a relatively high ethanol concentration for a short period of time (Rosa and Sa-Correia 1991; Costa *et al.*, 1997). In contrast, the ethanol-induced growth lag phase described in this project is a period for observing adaptative changes of cells exposed to non-lethal ethanol stress. The experiments conducted in this chapter were designed to determine a non-lethal ethanol concentration that would provide a level of stress sufficient to induce a 4-7 hour lag period. This condition subjects the cells to a growth inhibitory stress, which is not too severe as to prevent adaptive metabolic and molecular events to take place. There are few publications that examine the lag period adaptation of cells to non-lethal ethanol stress, of these Chandler *et al.* (2004) and Emslie (2002) used *S. cerevisiae* PMY1.1 (the same strain as the one used in this work). Chandler *et al.* (2004) reported that when cells were subjected to 5% and 7% (v/v) added ethanol concentrations in defined medium, it induced lag periods of 3 and 6 hours respectively, while cultures exposed to a 10% (v/v) ethanol stress did not recover from the stress over a 12 hour period, even though cell viability did not decrease during that

time. Similarly, Emslie (2002) investigated *S. cerevisiae* PMY1.1 in YEPD medium containing 2%, 3%, 4%, 5%, 6%, 7%, 8% and 10% (v/v) ethanol concentrations and its growth compared to a control culture without added ethanol. The results showed that cultures subjected to ethanol concentrations less than 4% (v/v) did not have a sufficient lag period for multiple sampling during the lag period for RNA analysis, whereas cultures containing greater than 8% ethanol had considerable lag period but had low subsequent growth rate. Cultures subjected to 4%, 5% or 6% ethanol concentrations induced lag periods of approximately 2.5, 3.5 and 4.5 hours respectively (Emslie, 2002). The findings of Chandler *et al.* (2004) and Emslie (2002) are consistent with the experimental results in this chapter, that showed the exposure of PMY1.1 to ethanol concentrations of 5%, 6%, 7% and 8% in rich medium induced lag periods of approximately 4.6, 5.5, 6.1 and 7.8 hours respectively (Figure 4.1).

One objective of this chapter was to determine an ethanol concentration that induces a lag period 4-7 hours which is sufficient for multiple sampling and allowing multiple time point analysis of gene expression, without compromising cell viability or recovery from the stress. The choice of 7% ethanol as stressor in this project satisfied the above requirement and is consistent with the findings of Chandler *et al.* (2004) and Alexandre *et al.* (2001).

4.3.3 Effect of acetaldehyde on the growth of ethanol-stressed *S. cerevisiae* PMY1.1

Experiments were performed in this study using various acetaldehyde concentrations (0.01, 0.05, 0.1, 0.2, 0.3 and 0.4 g/l) to determine the optimum growth stimulatory effect of acetaldehyde when added to 7% (v/v) ethanol-stressed cultures. These acetaldehyde concentrations were selected based on the previous studies of Walker-Caprioglio and Parks (1987), Stanley and Pamment (1993), Stanley *et al.*, (1997), Barber *et al.* (2000) and Viresekoop and Pamment (2005). Added acetaldehyde concentrations of 0.01, 0.05, 0.1 and 0.2 g/l reduced the ethanol-induced lag period of *S. cerevisiae* PMY1.1 cultures by 19%, 29%, 68% and 26% respectively, whilst the concentrations of (0.3 to 0.4 g/l) showed no significant reduction in ethanol-induced lag period. The findings of this study are in keeping with that of Walker-Caprioglio and Parks (1987), and Stanley *et al.* (1993) who investigated the effect of different

concentrations of added acetaldehyde on the growth of yeast cells. Walker-Caprioglio and Parks (1987) inoculated *S. cerevisiae* X2180-1A into YEPD medium containing 6% (v/v) ethanol in the presence of a range of acetaldehyde concentrations 0, 0.08, 0.1, 0.4 and 1 g/l. The exogenously added acetaldehyde concentrations of 0.08 and 0.1 g/l reduced the ethanol-induced lag period, whilst concentrations 0.4 and 1 g/l showed no lag reducing effect, rather it further inhibited yeast growth and recovery from stress. Similarly, Stanley *et al.* (1993), studied the effect of added acetaldehyde concentrations (0-1g/l) on the growth of aerobic cultures of *S. cerevisiae* UNSW 706800; the added acetaldehyde became inhibitory once its concentration exceeded 0.15 g/l.

In this project it was found that the ethanol induced lag period was optimally reduced by the addition of 0.1g/l acetaldehyde, whereas, concentrations of acetaldehyde greater than 0.3 g/l has no stimulatory effect on yeast cell growth. The optimum acetaldehyde concentration for reducing the ethanol-induced lag period of 0.1 g/l found in this project agrees with the findings of other researchers (Viresekoop and Pamment 2005; Barber *et al.*, 2002; Barber *et al.*, 2000; Stanley *et al.*, 1997, 1993; Walker-Caprioglio and Parks 1987). This is an interesting result given the different *S. cerevisiae* strains used in the various projects and the different response in lag period by each strain in the absence of acetaldehyde. It suggests that although various strains respond differently to the same ethanol concentration, they have a similar response to the same acetaldehyde concentration. However, this observation would need to be confirmed by conducting a comprehensive analysis of different *S. cerevisiae* strains and their response to acetaldehyde stimulation.

Based on the results of this study and previously published reports, an ethanol concentration of 7% (v/v) and acetaldehyde concentration of 0.1 g/l were selected as the optimum concentrations to be used in further experiments designed to investigate gene expression during ethanol stress in the presence of added acetaldehyde.

CHAPTER 5

Transcriptional Response of Ethanol-Stressed Yeast to the Presence of Acetaldehyde

5.1 Introduction

Experiments described in the previous chapter demonstrated the effect of added acetaldehyde on ethanol-stressed yeast cultures. In response to 7% (v/v) ethanol stress a lag period of around 6 hours was induced, which in the presence of a small amount of acetaldehyde, was reduced to 2 hours. In this chapter, the effects of ethanol stress and the stimulatory effect of added acetaldehyde were investigated at a molecular level.

The primary objective of work described in this chapter was to determine global gene expression profiles of *S. cerevisiae* during acclimatisation to ethanol stress in the presence and absence of acetaldehyde. Knowledge of differences in expression profiles between these two sets of conditions is important for our understanding of the mechanisms underpinning the acetaldehyde-induced amelioration of ethanol stress. This may, for example, inform the development of strategies for minimizing yeast stress in fermentation industries.

A secondary aim of the work described in this chapter was to test and extend findings reported by Chandler *et al.*, (2004) and Alexandre *et al.*, (2001), both of whom performed global gene expression analysis of ethanol-stressed yeast cells. Chandler *et al.*, (2004) used the same yeast strain (*S. cerevisiae* PMY1.1) as the one used in this study, with 5% (v/v) ethanol and in minimal medium. Alexandre *et al.*, (2001) used S. *cerevisiae* S288C grown in rich medium under 7% (v/v) ethanol stress. In the research conducted for this chapter a rich medium containing 7% (v/v) ethanol was used, as these conditions best suited the primary objective of the work.

The two most commonly used supports for global gene array analysis are nylon filters (known as macroarrays) and glass slides (known as microarrays). In each case the array is a reproducible pattern of probes in the form of oligonucleotides or PCR products,

each probe representing a different target gene sequence, and these are spotted onto the support. In a typical experiment, cDNA prepared from test and control mRNA is labeled with radioactive (³³P) for macroarrays or fluorescent dyes (Cy5 and Cy3) for glass slides. This is then hybridized to the immobilsed probes on the solid support. The array is then washed to remove non-specifically bound cDNA and is then read in an appropriate detector to determine which probes have labeled signal bound to them.

At the commencement of work for this thesis only nylon-based array technology was available to the laboratory at Victoria University and therefore initial experiments used only this approach. However glass slide arrays are more sensitive than filter arrays, enabling the detection of low abundance mRNAs (Bowtell, 1999). Therefore when resources for using slide-based arrays were accessible, some experiments were repeated using this technology.

There are no published reports on changes in gene expression associated with the stimulatory effects of added acetaldehyde to ethanol stressed yeast cultures. This data therefore provides important information for scientists working on cellular stress responses and will be of particular interest to those who work on ethanol stress and ethanol tolerance.

Figure 5.1: Total RNA was isolated from equal number (2×10^8) of cells from exponentially growing triplicates of two yeast cultures (A and B) and was visualized on a 1% ethidium bromide-stained agarose gel. The relatively constant yields of DNA and RNA in the replicates indicates that the RNA isolation method was consistent. The overall quality of the prepartions is apparent from the integrity of the bands. This experiment was repeated several times and always gave similar results.

5.2 **Results and Discussion**

5.2.1 RNA preparations: quality and reproducibility

Analysis of global gene expression requires the preparation of high quality template RNA. It is also important to consider the method of 'equalizing' template RNA from cultures that are to be compared; this is of particular importance when comparing transcriptomes from stressed and unstressed cells. The standard approach for most types of array experiment is to prepare total RNA, and equalize at this stage. However it is well documented that stress reduces overall transcription (Chandler et al., 2004; Mager and Moradas-Ferreira, 1993). Thus, if RNA concentrations from treated and untreated cultures were equalized the concentration of mRNA in the stressed samples would be disproportionately increased relative to unstressed controls, thus increasing the risk of generating false positive results. To minimize this risk for work described here, total RNA was extracted from equal numbers of cells (2×10^8) for the control and treated cultures, as described in Chandler et al. (2004). It was therefore important to make sure the RNA extraction efficiency was reproducible. The method used to achieve this end (as described in Section 3.3.1) was tested in several experiments by performing triplicate RNA extractions from various yeast cultures, and comparing the yields and quality of the product (see Figure 5.1).

5.2.2 Gene array analysis of ethanol-stressed and acetaldehyde-stimulated yeast cells using gene filter macroarrays

Macroarray analyses were performed using Yeast Index Gene Filters (Invitrogen). These filters carry 6,144 *S. cerevisiae* PCR-amplified Open Reading Frames (ORFs) spotted across two nylon membranes. cDNA was prepared from extracted RNA from equal numbers (2×10^8 cells) of cells taken from: unstressed (control) cultures, ethanol-stressed cultures, acetaldehyde-treated ethanol-stressed cultures and acetaldehyde-treated unstressed cultures; each of these were sampled at one and five hours post-inoculation. These time points corresponded to early and late stages in acclimatisation to ethanol stress (see Figures 4.3 & 4.4). cDNA was synthesized from total RNA using Superscript® II (Invitrogen), according the manufacturer's instructions and was labelled

using [33 P]. Following hybridization, images of gene filters were produced using an FLA3000 Phosphor Imaging System (Fujifilm). Genes were considered up or down regulated when the difference in expression level between 'test' and 'control' cultures was greater than three-fold. All spot intensities were normalized to the intensity of genomic DNA control spots on the filters. Determining absolute changes in gene expression by normalizing against constitutively expressed genes, such as *ACT1*, was considered inappropriate because this (and other housekeeping genes) have consistently been found to be less highly expressed¹ (LHE) under ethanol stress in the laboratory at Victoria University (data not shown). Indeed *ACT1* was 5.1-fold LHE in the ethanol-stressed culture than it was in the control culture at the one-hour time point in experiments described here (Section 5.2.2.2). Hence, normalization against this housekeeping gene would have artificially increased the numbers of genes apparently more highly expressed¹ (MHE), in response to ethanol stress, potentially generating false positive results.

¹From experiments described in this chapter it is not possible to determine whether a gene that is more highly expressed in a given set of conditions is induced, de-repressed or otherwise up-regulated. For this reason the term 'more highly expressed' (MHE) is used. For similar reasons the term 'less highly expressed' (LHE) is used to describe genes with reduced levels of expression.

Table 5.1: Summary of macroarray data: functional classes of genes with changed expression following one-hour exposure to 7% (v/v) ethanol in the presence and absence of acetaldehyde.

	Effect of ethanol stress		Effect of acetaldehyde on ethanol-stressed cells		Effect of acetaldehyde on unstressed cells	
Functional class of genes	No. of ORFs	No. of ORFs	No. of ORFs	No. of ORFs	No. of ORFs	No. of ORFs
	MHE	LHE	MHE	LHE	MHE	LHE
Ribosomal Protein & Ribosomal subunit	_	148	75	_	-	-
Stress response	1	23	6	-	-	-
Cell cycle & growth	-	58	7	1	-	-
Protein metabolism	-	-	21	-	-	-
Transport genes	-	150	18	-	-	-
Transcription & translation factors	3	210	5	-	-	-
Energy utilization	7	44	4	1	1	1
Protein folding	1	141	6		-	-
Signal transduction	-	27	-	-	-	-
Cytoskeleton organization & maintenance	-	24	-	-	-	-
Cell wall & membrane proteins	-	20	3	-	-	-
Lipid metabolism		24	5			
Nucleotide metabolism	-	92	10	-	-	-
Miscellaneous	-	135	16	-	-	-
Unknown function	16	448	38	2	3	3
Total ORFs	28	1544	214	4	4	4

5.2.2.1 Overview of gene filter macroarray data

As mentioned previously, initial experiments were performed using macroarrays, and some of this work was subsequently repeated using microarrays. This section will focus only on data obtained from macroarray experiments; microarray data will be discussed in Section 5.2.3.

At the one-hour time point for the ethanol-stressed culture (Table 5.1), 1,572 ORFs displayed a change in expression level relative to an unstressed control. Of these, only 28 were more highly expressed (MHE), the rest being LHE. At the same time point, for cultures exposed to ethanol stress in the presence of added acetaldehyde compared to an ethanol-stressed culture, 218 ORFs displayed a shift in expression level. Of these, 214 ORFs were MHE, only 4 being LHE (see Table 5.1). When acetaldehyde was added to unstressed culture, there was a shift in expression of only 8 ORFs relative to the unstressed control; of these 4 were MHE.

At the five-hour time point for the ethanol-stressed culture, 1505 ORFs displayed a change in expression level relative to an unstressed control (See Table 5.2). Of these, 85 were MHE, the rest being LHE. At the same time point there were 396 ORFs that showed a shift in expression level for the acetaldehyde-treated ethanol-stressed culture compared to the ethanol-stressed culture. Of these 347 were MHE. When acetaldehyde was added to the unstressed culture there was a shift in expression level of only 3 ORFs, two of which were MHE (See Table 5.2).

5.2.2.2 Analysis of gene filter, macroarray, data for ethanol-stressed cells compared to unstressed, control cells.

Unlike previous reports on global gene expression of ethanol-stressed yeast cells there were very few genes highly expressed relative to the control at the early stages of stress (i.e. at the one-hour time point); only 28 ORFs were MHE in this work compared with 100 for Chandler *et al.* (2004) and 194 for Alexandre *et al.* (2001). Of the 28 ORFs that had increased expression in this study, 16 are of unknown function, 7 are involved in energy utilization, 3 are associated with RNA-directed DNA polymerase activity, 1 is associated with stress responses (*HSP26*) and 1 encodes a protein kinase.

It was interesting to find in this work that only one *HSP* gene was highly expressed; this is in stark contrast to findings of several other workers. For example Chandler *et al.* (2004) found that *HSP104, 78, 42, 30, 26, 12* and two members of the *HSP70* family, *SSA4* and *SSE2*, were more highly expressed. Similarly Alexandre *et al.* (2001) found *HSP104, 82, 78, 42, 30, 26, 12*, and several members of the *HSP70* family were MHE. These results from Chandler *et al.* (2004) and Alexandre *et al.* (2001) are consistent with much earlier work of Piper (1995) and Parsell and Lindquist (1993).

In the work for this thesis, of 7 MHE genes associated with energy utilization, *TDH1*, *ALD4*, *PYC1*, and *GLK1* were also reported as MHE in response to ethanol stress by Chandler *et al.* (2004) and Alexandre *et al.* (2001); Alexandre *et al.* also reported that *GLC3* was up-regulated. The higher level of expression of *DLD3* (associated with lactate metabolism) and *ACS1* (associated with acetyl-CoA biosynthesis) in response to ethanol stress at the one-hour time point, are reported for the first time in this study.

While there are many differences between the results presented in this thesis and the published results of Chandler *et al.* (2004) and Alexandre *et al.* (2001), it should be pointed out that there are also many differences between the result of Chandler *et al.* (2004) and Alexandre *et al.* (2001). These latter differences were acknowledged by Chandler *et al.* (2004), and were thought to be due to strain differences, stress severity, type of growth medium, time lengths of exposure to ethanol and other experimental conditions. Similar reasons can be offered for the differences between results presented in this thesis and those of the above authors. Alexandre *et al.* (2001) used a similar level of ethanol stress as in this study, but these authors used an earlier time point and a different strain. Chandler *et al.* (2001) used the same strain as the one used for this thesis, but different growth conditions (including different growth medium and different ethanol concentrations).

An interesting feature of the data presented in this thesis is the ethanol-stress-induced lower level of expression of many genes associated with anabolic processes, and this is consistent with the findings of Chandler *et al.* (2004) and Alexandre *et al.* (2001). It is evident from all three pieces of work that genes encoding proteins associated with anabolic functions such as ribosome synthesis, transport, transcription initiation, cell

cycle, energy utilization, DNA synthesis, and cell wall synthesis, are LHE in ethanolstressed cultures. This however is typical of cells undergoing growth arrest as a result of encountering physiological stress (Gasch *et al.*, 2000) and the reduced expression of genes encoding ribosomal proteins has previously been linked with cellular arrest (Warner, 1999). These observations indicate that reduced expression of ribosomal protein-genes is a general stress response rather than being specific to ethanol-stress (Causton *et al.*, 2001. Synthesis of ribosomes is a major consumer of the cell's resources, thus, it is likely that transcription of ribosomal protein genes is reduced to conserve energy during stress (Warner, 1999).

During environmental insult lack of initiation of ribosome synthesis will block cell cycle. Consistent with this, the results presented here demonstrate reduced expression of genes associated with cell cycle and cytoskeleton (*TUB1*, *TUB2 TUB3 TUB4* and *ACT1*) (see Table 3.1b, in appendix III). Reduced expression of these genes would lead to a lower ATP demand. This is consistent with the decreased expression of genes associated with the lower part of the glycolysis (*PDA1* and *PDB1*) and fermentation (*PDC5*, *PDC1*, *ALD6* and *ADH6*). In fact the dramatic reduction in expression of ribosomal protein genes and genes associated with the physiological status of the yeast cells, which is evident from the growth curves in Figures 4.3 & 4.4; the cultures these cells were derived from underwent a lag period of six hours.

In this study there were 150 transport-associated genes expressed at a reduced level in response to ethanol stress at the one-hour time point. Several of these (*HXT2, HXT3, HXT4, HXT6, HXT7, PHO3, PHO84*, and *PHO88*) are associated with hexose and phosphate transport and, of these, *HXT2* and *PHO3* were also reported by Chandler *et al.* (2004) to be LHE in response to ethanol stress (see Table 3.1b, in appendix III). However, the same authors found that high affinity hexose transport genes *HXT6* and *HXT7* were both MHE in response to 5% (v/v) ethanol stress.

Ethanol stress not only induced changes in expression of genes associated with energy utilization and transport but also genes encoding proteins associated with the plasma membrane. During ethanol stress 24 genes associated with lipid metabolism, including ergosterol and fatty acid metabolism, were LHE at one-hour time point; this is consistent with the findings of Chandler *et al.*, (2004) and Alexandre *et al.*, (2001). Previously it was reported that ethanol induces modifications of yeast membranes (Walker-Caprioglio *et al.*, 1985 and Walker, 1998) that compromise the integrity of plasma membrane (Sections 2.3.1.1 and 2.3.1.2). It might be argued that global gene array analysis of *S. cerevisiae* PMY1.1 exposed to ethanol stress showed changes in expression of genes associated with energy utilization and genes associated with plasma membrane structure.

The data presented in this thesis also shows that the magnitude of the ethanol-stress response diminishes with time. As shown in Tables 5.1 and 5.2, at the one-hour time point there were 28 ORFs MHE whilst 1, 544 ORFs were LHE (Table 3.1a and 3.1b, in appendix III). When this is compared to the five-hour time point, there were 85 ORFs with increased expression and 1,420 ORFs with decreased expression (see Table 3.2a and 3.2b, in appendix III). Overall, the transcriptional response to ethanol stress demonstrated that the number of genes with altered expression was slightly diminished at the five-hour time point compared to the one-hour time point. In agreement with this finding, Chandler et al. (2004) also clearly demonstrated that many genes are transiently highly expressed in response to ethanol stress and a similar pattern has been observed for other stresses (Posas et al., 2000 and Gasch et al., 2000). Thus, from previous published reports and results presented here, it is clear that the transcriptional response of genes with altered expression level occurs early in response to stress and is largely transient. In this study, the main categories of genes that were highly affected by ethanol stress were: genes associated with ribosome synthesis, transport, transcription factors, protein synthesis and genes of unknown function. The transient stress-induced repression of ribosomal protein genes has also been reported for stresses such as temperature shock (Warner, 1999; Eisen et al., 1998 and Herruer et al., 1988) and osmotic stress (Gasch et al., 2000).

5.2.2.3 Analysis of gene filter, macroarray, data for ethanol-stressed cells in the presence and absence of added acetaldehyde

Although a growing number of studies have documented the changes in global gene expression in ethanol-stressed yeast cultures using global gene expression, there have been no such reports on the stimulatory effect of added acetaldehyde to ethanol-stressed

cultures. The following presents the first such data from gene filter, macroarray experiments.

At the one-hour time point there were 214 ORFs MHE in the acetaldehyde-treated ethanol-stressed culture than in the untreated ethanol-stressed culture, and only 4 ORFs had reduced expression (Tables 3.3a and 3.3b, in Appendix III). At the five-hour time point 347 were MHE and 49 were LHE (Tables 3.4a and Table 3.4b, in Appendix III).

One of the most interesting aspects of the array data is that, when acetaldehyde was added to the ethanol-stressed yeast cells, there was increased expression of many genes. Perhaps the most striking feature of the MHE ORFs was the large number that are associated with synthesis of ribosomal proteins, DNA synthesis, transcription and cell cycle, and this was evident at both time points (Tables 5.1 and 5.2). This is consistent with growth curve data shown in Figures 4.3 and 4.4, in which it clearly showed that cells are rescued from lag considerably faster when acetaldehyde is present in ethanol-containing cultures, relative to cultures without acetaldehyde; when acetaldehyde is present the cells commence division more rapidly.

Another notable feature of this study was that stress response genes and genes associated with trehalose synthesis were not highly expressed during acetaldehyde stimulation of ethanol-stressed cultures relative to untreated ethanol-stressed cultures. This finding is interesting, because the well-documented increased expression of *HSP* genes and trehalose synthesis genes in response to ethanol stress (Chandler *et al.*, 2004; Alexandre *et al.*, 2001; Piper *et al.*, 1994 and Piper, 1995) has led to the proposal that stress response genes protect against the damaging effect of ethanol stress. This may be the case but results presented here suggest they are unlikely to have a role in acetaldehyde-induced tolerance to ethanol stress.

As described in Section 5.2.2.2 150 genes associated with transport were LHE in ethanol-stressed cultures relative to the unstressed control. In the presence of acetaldehyde 18 of these (along with two that were not affected by ethanol stress alone), displayed increased level of expression relative to ethanol stressed cells. This change in expression, brought about by the addition of acetaldehyde to ethanol stressed cultures, may represent a small fraction of the overall number of transport genes that were LHE

under ethanol stress, but it suggests that the cell is attempting to activate transport processes that are otherwise compromised in ethanol-stress conditions. For example, several *HXT* hexose and *PHO* phosphate transport genes were LHE under ethanol stress, a finding that is consistent with the findings of Chandler *et al.* (2004) and Alexandre *et al.* (2001). However, when acetaldehyde was added to the ethanol-stressed culture, *HXT3*, *PHO84*, *PHO3 and PHO88* showed increased expression levels at one hour time point, and *HXT1* at five hour time point. It has been proposed that cells under ethanol stress are likely to be in a pseudo-starvation state where nutrients, such as glucose, are present in the growth medium but are not accessible to the cell (Chandler *et al.*, 2004). The increased expression of these transport genes following addition of acetaldehyde to the ethanol-stressed culture may ameliorate ethanol-induced stress by facilitating the transport of nutrients for normal cell metabolic activities.

Another group of genes that are noteworthy here because they were MHE when acetaldehyde was added to the ethanol-stressed culture are genes associated with plasma membrane structure and function. These include the ergosterol synthesis genes, *ERG3*, *ERG11*, *ERG25* and ERG26 at one-hour time point and *ERG3* and *ERG9* at five-hour time point. There was only one fatty acid metabolism gene, *FEN1* (*YCR034W*) with increased expression across both time points.

As discussed in Section 2.4.1, ethanol tolerance in yeast is thought by some workers to correlate with increasing ergosterol levels. Thus, increased expression of *ERG* genes in an ethanol-stressed culture with added acetaldehyde might be a significant factor in promoting ethanol tolerance. However, when Walker-Caprioglio *et al.* (1985) performed fluorescence anisotropy measurement of the plasma membrane during ethanol stress in the presence of small amounts of added acetaldehyde no reversal of the ethanol-induced changes to plasma membrane was observed; i.e. acetaldehyde did not reverse the ethanol-induced changes to plasma membrane. Thus, while the cell may be attempting to alter its membrane structure to better tolerate ethanol stress, actual changes in membrane composition may not be achieved. Membrane lipids were not analysed for work described in this thesis, therefore it is not possible to ascertain whether increased expression of *ERG* genes had any impact on the membrane.

Table 5.2: Summary of macroarray data: functional classes of genes with changed expression following five hours exposure to 7% (v/v) ethanol in the presence and absence of acetaldehyde.

	Effect of ethanol stress		Effect of acetaldehyde on		Effect of acetaldehyde on	
			ethanol-stressed cells		unstressed cells	
Functional class of genes	No. of ORFs	No. of ORFs	No. of ORFs	No. of ORFs	No. of ORFs	No. of ORFs
	MHE	LHE	MHE	LHE	MHE	LHE
Ribosomal Protein & Ribosomal subunit	-	149	55	-	-	-
Stress response	7	18	8	-	-	-
Cell cycle & growth	-	25	13	1	1	-
Protein metabolism	1	34	-	-	1	1
Transport and translocation	3	91	30	4	-	-
Transcription & translation factors	5	125	30	3	-	-
Energy utilization	9	23	5	2	-	-
Protein synthesis & folding	-	28	24	-	-	-
Signal transduction	1	8	3	-	-	-
Cytoskeleton organization & maintenance	-	35	5	-	-	-
Cell wall & membrane proteins	4	49	8	2	-	-
Lipid metabolism	1	12	3	-		-
Nucleotide metabolism	9	109	13	5	-	-
Histone metabolism	-	12	-	-	-	-
Miscellaneous	9	308	47	2	-	-
Unknown function	36	394	103	30	-	-
Total ORFs	85	1420	347	49	2	1

5.2.2.4 Comparison of one- and five-hour time points using data from gene filter macroarray analysis of acetaldehyde-stimulated ethanol-stressed cultures

It was clearly shown in the previous chapter that the ethanol-induced lag period of six hours was reduced to two hours by the addition of a small quantity of acetaldehyde (Figures 4.3 & 4.4) and at the five-hour time point, the acetaldehyde-treated culture was clearly in exponential growth. From macroarray data the number of MHE genes in acetaldehyde-treated ethanol-stressed yeast cells relative to ethanol-stressed cells was greater at five hours than at one (Tables 5.1 and 5.2). This is perhaps not surprising because at five hours the acetaldehyde-treated, ethanol-stressed culture was fully recovered while the ethanol-stressed culture was still in lag phase. However, the amplitude of differences in gene expression was generally slightly reduced at the five-hour time point compared to one-hour. This might reflect the fact that, at five hours, both cultures had come out of the early 'shocked' state associated with changing environmental conditions, in which changes in gene expression tend to be far more dramatic (see for example Gasch *et al.*, 2000), although this is not consistent with the lower number of genes exhibiting altered expression at the one-hour time point.

An interesting deviation from the above general pattern is found in the expression of ribosomal protein genes. In this case the number and magnitude of differences in expression both declined at the five-hour time point relative to the one-hour time point. The reason for this is unclear. One might have predicted that cells would require more ribosomal activity during exponential phase when they are involved in growth (and therefore anabolic) activities, than during lag phase. However, the result may simply reflect the fact that, at the five hours, the ethanol-only stressed cells had acclimatised to their environment and were moving into anabolism.

5.2.2.5 Analysis of gene filter, macroarray, data for acetaldehyde-treated, nonstressed yeast cells compared to unstressed control cells

As described in the previous chapter, small quantities (0.1 g/l) of added acetaldehyde did not affect the growth of non-stressed yeast cultures (Figures 4.3 & 4.4). Similarly, from array analysis a small quantity of added acetaldehyde did not have a major impact

on gene expression of non-stressed cultures; at the one-hour time point there were only 8 genes with a shift in expression level (Table 3.5a, in Appendix III). Of these, 4 were MHE. One gene of interest here is *PDC5*, which was 4.2-fold MHE. This gene was also found to be transiently MHE by 15.2-fold in the ethanol-stressed culture in the presence of a small quantity of added acetaldehyde relative to ethanol stress alone. At the five-hour time point three genes displayed shifts in expression level, two of these *MON2* and *PCL2* were MHE in the acetaldehyde-treated culture and one *VPS65* was LHE (Table 3.6a, in Appendix III).

Table 5.3: Summary of microarray data: functional classes of genes with changed expression following one hour exposure to 7% (v/v) ethanol, in the presence and absence of acetaldehyde.

	Effect of acetaldehyde	on ethanol-stressed cells	Effect of acetaldehyde on unstressed cells		
Functional class of genes	No. of ORFs	No. of ORFs	No. of ORFs	No. of ORFs	
	MHE	LHE	MHE	LHE	
Ribosomal Protein & Ribosomal subunit	95	-	-	-	
Stress response	5	23	1	-	
Cell cycle & growth	5	-	-	-	
Protein synthesis and metabolism	9	3	-	-	
Transport	6	15	1	-	
Transcription and translation factors	28	29	1	-	
Energy utilization	2	18	-	-	
Protein folding	-	-	-	-	
Signal transduction	-	-	-	-	
Cytoskeleton organization & maintenance	2	2	1	-	
Cell wall & membrane proteins	6	-	-	-	
Lipid metabolism	3	-	-	-	
Nucleotide metabolism	5	3	-	-	
Transposable elements	-	11	-	-	
Miscellaneous	33	27	4	-	
Unknown function	40	86	17	-	
Total ORFs	239	217	25	0	

5.2.3 Overview of array analysis using glass slides (microarrays)

Validation of macroarray (gene filter) data described in previous sections of this chapter would have required repeat experiments. However, filter-based arrays became prohibitively expensive making it difficult to perform repeats (or use replicates). Fortunately, at the time of performing this work, slide-based microarray analysis became available to the laboratory at Victoria University, and because microarrays are more sensitive and more economical it was decided to perform the core experiments from the work described above, using microarray technology. This enabled the findings described above to be tested using different experimental tools.

The experimental design for performing microarray analyses was essentially the same as that used for the macroarrays. However, because of limited time and resources there were only two treatments used (ethanol with acetaldehyde and acetaldehyde alone) alongside an untreated control. The decision to prioritise the 'acetaldehyde/ethanol stress' experiment is justified on the grounds that the most important aspect of the work in this thesis is the impact of acetaldehyde on ethanol stressed cells; there is already considerable knowledge on the effects of ethanol stress on global gene expression in yeast cells.

Analysis was restricted to the one-hour time-point as this gave the most pronounced difference in gene expression profiles in the experiments described in the previous section and there was insufficient time and resources to assess multiple time points. However, the decision to prioritise this time point does not mean that it is the 'most important' or even 'most informative' time-point; there are good arguments that could be put for focusing on the five-hour time point, and this would be important to pursue in future studies.

In all experiments RNA was extracted from equal cell numbers (2 x 10^8 cells) and cDNA was labelled with fluorescent dyes (Cy5 and Cy3). The microarray slides

contained 6,528 *S. cerevisiae* PCR-amplified open reading frames spotted on each slide. Following hybridization, the glass slides were scanned using a GenePix-Pro 4000 scanner and analyzed using GeneSpring software.

For experiments on the effect of acetaldehyde on ethanol-stressed cells, triplicate cultures were used (and therefore triplicate arrays were performed). For experiments involving acetaldehyde treatment of unstressed cells, duplicates were used. In general, the replicates used in these experiments gave similar results (Table 4.1a, in Appendix IV)

Data analysis revealed that, after one hour, 93.06% ORFs were expressed at similar levels in the acetaldehyde-treated ethanol-stressed and ethanol-stressed cultures. As shown in Table 5.3, of the 454 ORFs that displayed a change in expression, 238 were MHE and have been grouped into functional categories (Tables 4.1a and 4.1b, in Appendix IV). Comparing expression in acetaldehyde-treated unstressed cultures to the controls (unstressed cultures), there were 25 ORFs MHE and none LHE in acetaldehyde treated cells (Table 4.2, in Appendix IV). Thus, as in the case of the macroarray analysis, there were very few changes in expression detected when cells were exposed to acetaldehyde alone.

Figure 5.2: Venn diagram comparing the number of ORFs that were MHE using macroarray and microarray analysis of acetaldehye-treated ethanol-stressed cultures compared ethanol-stressed cultures at the one-hour time point.

5.2.4 Comparison of macroarray and microarray data, and general observations from array experiments

Results obtained using microarrays were similar to those from macroarrays in that similar groups of genes were affected by acetaldehyde treatment of ethanol-stressed cells. However, microarrays were generally more sensitive than macroarrays in that more differences in gene expression were detected using the former (Bowtell 1999). For example, from acetaldehyde-treated ethanol-stressed cells compared to untreated ethanol-stressed cells there were 239 ORFs MHE and 217 ORFs LHE in microarray analysis, compared with 214 ORFs MHE and 4 LHE for the macroarray. The huge difference in sensitivity when it came to detecting LHE ORFs is interesting but there is no obvious explanation for it. Time limitations meant that this discrepancy could not be explored further. Of the MHE ORFs, 68 were common to both types of array, and of the LHE ORFs, 3 (*SPS100, SPI1* and *HBT1*) were common to both (see Figure 5.2).

A consistent feature of microarray and macroarray data was the increased expression of genes associated with ribosome synthesis in acetaldehyde stimulated, ethanol-stressed cells at the one-hour time-point. Several genes associated with metabolism of pyruvate were also MHE in macro- and microarrays, but only one of these, *PDC5*, was found to be MHE in both. Another important group of genes found to be highly expressed in acetaldehyde-treated ethanol-stressed cells in both array-types was the group of genes encoding enzymes associated with lipid metabolism, in particular, *ERG25*, *ERG3 and FEN1*. As discussed previously, these genes may have an important role in ethanol tolerance (Section 5.2.2.3). Other genes that were MHE in both array-types were the transport genes *HXT3*, *KAP123*, *VRG4* and *PHO84* and four genes associated with protein synthesis, *SAM1*, *CYS1*, *THS1* and *HSL1*. In addition, three genes of unknown or uncharacterized function were MHE in both macro- and microarrays.

Of the 217 LHE ORFs in the microarray data, 23 were stress response genes, 7 of which encoded HSPs, including *HSP 26*, 30, *33*, *78*, *82*, *104*, and *YRO2* (a homolog of

HSP30). This study also found that, *SSA1*, *SSA3*, and *SSA4*, which belong to the *HSP70* family were LHE. This would suggest that stress-response genes do not play a part in acetaldehyde-induced tolerance to ethanol stress.

Of genes that fall into the energy metabolism grouping, 18 were LHE in response to acetaldehyde acting on ethanol-stressed cells. Among these were genes encoding glycolytic enzymes, *HXK1*, *GLK1*, *GPM2*, and *TDH1*. Other 'energy metabolism' genes found to be LHE in microarray analysis of acetaldehyde treated ethanol stressed cultures were those involved in trehalose synthesis: *TSL1*, *TPS2*, *TPS1*, and *UGP1*. Expression of these genes would be expected to result in the accumulation of trehalose in response to ethanol stress, and this has been reported to protect cells against the damaging effects of ethanol stress (Mansure *et al.*, 1994); Chandler *et al.*, (2004) found increased expression of genes associated with trehalose metabolism in response to ethanol stress. Thus, it is interesting that data presented here shows that genes involved in trehalose synthesis are LHE in ethanol-stressed cells in the presence of acetaldehyde. In fact, it seems from macroarray data (see section 5.2.2.3) and, even more so from microarray data, that trehalose does not play a part in the acetaldehyde-induced tolerance to ethanol stress.

Gene name	Primer sequences	Tm (°C)	Product size (bp)
ACT1	5' AGGTATCATGGTCGGTATGG	57	398 (123-520)
	5' CGTGAGGTAGAGAGAAACCA	56	
HSP30	5' GAACAAGGGCTCCAGATTGA	60	216 (171-386)
	5' CAGGACAAGAACCAGGCAAT	60	
HSP104	5' GCACGTCCACTGAACAGGTTA	61	207 (2473-2679)
	5' ACCTAACGTGTCAGCCCCTA	59	
TPO4	5' GCCATTAACTGTGGCATCCT	60	166 (1446-1611)
	5' AACCCATGGAATTGGAATCA	60	
TSL1	5' GTTCAGAGGCAGATTTGTTCG	60	210 (2084-2293)
	5' TCTCCAACCCCTTGAGAATG	60	
GPD2	5' CACAGAATTGCATTCCCATATC	59	162 (315-476)
	5' TCAGGATCGGCCACTAGATT	59	
SPS100	5' TTACAAAGCGAATCGTCTTCC	59	239 (235-473)
	5' CCCACAGGAACAGTGTAAGGA	60	
TOS1	5' CTTTGTCCCAGGCTCTACTAGC	59	326 (684-1009)
	5' CAGAACCGCTGGTGTCACT	60	
YER150W	5' TACGGCTCTCGGATTGGTAT	59	226 (45-270)
	5' GAATGTAGCGCCATTCGTTA	59	
HXT4	5' TCAAGCTTGTAACTGGATCTGG	59	228 (1442-1649)
	5' GTTTGGTGGAACCAAGAAGGT	60	
YLR364W	5' CCGACTGCGTCTATGCTAATTC	61	250 (77-326)
	5' GGCAGAAGCCCGATTTTAGT	60	
PDC5	5' GTTCCAATTACCAAGTCTACTCCA	58	169 (1057-1225)
	5' GGACGATAGCGTATACATCTGTT	57	
PHO84	5' CTGCCGCACAAGAACAAGAT	61	376 (863 -1238)
	5' ACAGTGAAGACGGATACCCAGTA	60	

Table 5.4: Specific primers designed for Real-Time PCR analysis.

5.2.5 Validation of array results using real-time-PCR analysis

To further test the validity of data from macroarray and microarray experiments and compare the two approaches, quantitative real-time PCR was used to analyse the level of expression of thirteen candidate genes (Table 5.4) for acetaldehyde-treated ethanol-stressed cultures compared to ethanol-stressed cells, and results from this were compared with macro- and micro-array data for the same genes. Some of the candidate genes registered similar changes in expression in macro- and micro-arrays whilst others were different across the two methods. This enabled the techniques to be compared for reliability.

To perform quantitative Real-time PCR reactions, specific primers were designed for the thirteen candidate genes using *Saccharomyces cerevisiae* genome database (SGD: <u>www.yeastgenome.org</u>). These primer sequences, their melting temperatures and product sizes are shown in Table 5.4.

Real Time PCR results largely confirmed microarray data but were less supportive of macroarray results. A possible explanation for this is that the RNA used as template for the Real Time PCR was the same as that used for one of the replicate microarrays (slide 1 in the data presented in Tables 4.1a and 4.1b, in Appendix IV). This does however raise questions about variation in gene expression between experiments or the validity of the macroarray data, and this should be tested in future work.

Figure 5.3: Fluorescence versus cycle number plot for PDC5 transcript in acetaldehyde-treated ethanol-stressed and ethanol-stressed cultures. Plots of similar quality were obtained for all genes analyzed using quantitative Real Time PCR.

To determine the relative levels of target transcripts in Real Time PCR, it was necessary to determine the crossing points (CPs) or crossing thresholds (CTs) for each transcript (Figure 5.3). To determine the reproducibility and accuracy, as shown in Figure 5.3, duplicate real time PCR reactions were conducted for each ORF/gene. The CP is defined as the point at which fluorescence rises appreciably above background. Based on the CP, the relative expression level of treated sample versus a control sample for each candidate gene was calculated. A summary of the comparison between array and Real Time PCR data is given in Table 5.5.

From Table 5.5 it is apparent that ORFs identified as MHE or LHE in microarrays were confirmed as such by real-time PCR analysis. However, there are clear difference in magnitude between the microarray data and Real Time PCR. The reason(s) for this are unknown but perhaps reflect some of limitation inherent in the methodologies. For example, arrays rely largely on the affinity of the array probes for the labeled cDNA whereas Real Time PCR relies on the efficiency of PCR reactions, which in turn is dependent on the specificity and affinity of the primer used and the complex kinetics of a real time PCR reaction. It is important to note, that the discrepancies between the Real Time PCR and microarray were previously reported by Morey *et al.* (2006) and Wang et al. (2003). However, both reports showed overall significant correlation between microarray Real Time PCR. In general, as reported by *Wang et al.* (2003), one would expect Real Time PCR to be more precise and accurate than arrays, but this has not been tested for the experiments conducted here.

5.2.6 Promoter analysis of up-regulated genes

A systematic promoter analysis was performed to search for regulatory elements that were common to genes that were MHE in acetaldehyde-treated ethanol-stressed cells compared to cells from the untreated ethanol-stressed culture. While there is a large number of transcription factors and cognate promoter motifs in the yeast genome only three promoter elements were targeted in this analysis: STRE, HSE and ARE. These elements bind transcription factors Msn2/Msn4p, Hsf1p, and Yap1/2p respectively, and were selected based on previous studies by Van Voorst *et al.*, (2006), Chandler *et al.* (2004); Alexandre *et al.*, (2001); Gasch *et al.*, (2000) and Moskvina *et al.*, (1998). These authors found that STRE, HSE and ARE elements are common features of promoters associated with genes that are MHE in ethanol stressed cells. The aim of the work described here was to determine whether the same elements are associated with genes that are MHE in acetaldehyde-treated ethanol-stressed cells, and therefore may be important for the acetaldehyde-driven recovery from ethanol-stress.

Table 5.5: Comparison of gene expression measurements by macroarray, microarray and relative quantitative Real Time PCR for transcripts prepared from yeast cells exposed to 7% (v/v) ethanol-stress under the stimulatory condition of acetaldehyde.

Gene name	Macro array fold alteration	Microarray fold alteration	Real Time PCR	
More highly expressed				
PDC5	15.2	70.0	256	
PHO84	5.8	7.0	16	
HXT4	NDD	17.0	32	
TOS1	8.8 NDD		5.0	
YLR364W	364W NDD 8		32	
ACT1	NDD	NDD	NDD	
Less highly expressed				
HSP30	NDD	78.0	64	
HSP104	NDD	12.0	4	
GPD2	2 NDD 6.0		4	
TSL1	L1 NDD 11.0		4	
TPO4	NDD	6.0	2	
SPS100	5.5	16	4	
YER150W	NDD	32	8	

NDD = No Detectable Difference in expression.

The Regulatory Sequence Analysis Tools (RSAT) (http://rsat.ulb.ac.be/rsat/) and www.yeastract.com databases were used to perform computer-aided pattern matching of the promoters of interest. The upstream regions of genes that were MHE in the acetaldehyde-treated ethanol-stressed cells compared to the untreated ethanol-stressed cells were searched for each of the above three motifs. Of the 214 ORFs identified at the one hour time point in macroarrays as MHE, 135 contained HSEs, 134 contained STREs and 44 had AREs (Table 3.3a, in Appendix III), while at five hour time point, of 347 ORFs identified as MHE in response to ethanol stress in the presence of acetaldehyde, 237 contained STREs, 213 contained HSEs and 50 contained AREs (Table 3.4a, in Appendix III). Similarly, of the 239 ORFs identified in microarrays as MHE in response to acetaldehyde treatment of ethanol stressed cells, 147 contained HSEs; 113 contained STREs and 92 contained AREs (Table 4.1a, in Appendix III). As shown in Table 3.3a, in appendix III, a detailed study of the macroarray result showed that, of the 75 ribosomal genes that were highly expressed by the stimulatory effect of acetaldehyde on ethanol-stressed cells, 44 contained HSEs, 47 had STREs and 17 had AREs sequences in their promoter regions. Of the 18 transport genes that were MHE, 13 contained HSEs, 13 contained STREs and 2 had AREs. This promoter analysis showed the central role of STRE and HSE elements in the likely activation of most of genes with increased expression levels and, to a lesser extent, ARE, in the response to ethanol stress in the presence of acetaldehyde.

5.3 Conclusion

In conclusion, the work presented here is largely consistent with previous work on the impact of ethanol stress on global gene expression in yeast reported by Chandler *et al.* (2004) and Alexandre *et al.* (2001). The general trend in these reports is that a large number of genes associated with anabolism are down regulated in response to ethanol stress, and the cell appears to enter into a pseudo starvation state.

However, in work presented in this thesis, when a small quantity of acetaldehyde was added to ethanol-stressed cultures there was a significant level of 'recovery' of expression of genes associated with anabolism and this is consistent with growth curves of the cultures; cells were clearly in recovery mode when acetaldehyde was present in the growth medium. Interestingly however, the recovery appears not to be due to increased expression of genes associated with trehalose synthesis or genes encoding HSPs.

When a small quantity (0.1 g/l) of acetaldehyde was added to a non-stressed yeast, its growth profile was not significantly different to that of an untreated control. Similarly, from array analysis a small quantity of added acetaldehyde did not have a major impact on gene expression of non-stressed cultures at the one and five hour time points.

Upstream promoter analysis of the ORFs that were MHE when ethanol-stressed cells were treated with acetaldehyde relative to ethanol-stressed cultures, demonstrated that HSE, STRE and ARE elements are common features of upstream regions of these ORFs. This may mean that at least some of the acetaldehyde-induced recovery to ethanol stress is mediated by typical stress response-like changes in the cell; i.e. acetaldehyde stimulates aspects of the stress-response to enable rapid acclimatisation to the stress. However this seems unlikely in light of the fact that acetaldehyde did not stimulate higher expression of HSP genes, in fact many HSP genes were LHE in ethanol-stressed cells following treatment with acetaldehyde. With hindsight the promoters of MHE ORFs should have been screened for common elements to see if there are any novel motifs in their promoters; this should be picked up in future work.

The time-course study conducted for this thesis showed that most of the differences in gene expression between various combinations of treatments were transient. This might reflect the fact that different genes are required at different stages of growth (Gasch *et al.*, 2000) and may also reflect what has been observed elsewhere, that acclimatisation to imposed stress (or altered environmental conditions) is achieved in the first few hours of exposure to the changed conditions (Chandler *et al.*, 2004; Gasch *et al.*, 2000).

The significance of the results presented in this chapter is discussed further, and in a broader context of the acetaldehyde-stimulated recovery from ethanol stress, in Chapter 7.

The significance of some of the changes identified at mRNA level using global array technology was further investigated using knockout strains for genes of interest. The phenotype performances of these strains were tested in ethanol-stressed cultures in presence and absence of acetaldehyde as described in the following chapter.

CHAPTER 6

Characterisatoin of the Phenotypes of *Saccharomyces cerevisiae* Strains with Targeted Knockouts of Genes Associated with Acetaldehyde-Mediated Amelioration of Ethanol-stress

6.1 Introduction

In the previous chapter a large number of genes were found to have significantly changed expression levels in response to ethanol stress in the presence of added acetaldehyde. While gene array technology allows the study of gene expression profile, the role of the products of genes with changed expression in response to ethanol stress in the presence of acetaldehyde remains unknown. To investigate the role of these gene products during ethanol stress, it was decided to determine the phenotype of yeast strains containing single knockouts of some genes identified in the previous chapter. In yeast, genes are deleted using gene replacement cassettes that can be generated by PCR, requiring as little as 30 bases of flanking homology to target recombination on either side of the gene of interest. The resulting mutant can then be examined under a number of different selective growth conditions to determine if it differs phenotypically from the parent (wild type).

PDC1, PDC5, PHO84, HXT4 and *YLR364W* were all observed to have higher expression levels during ethanol stress when in the presence of added acetaldehyde, relative to an ethanol-stressed culture. These five genes were chosen for further studies in view of their increased expression levels and their metabolic functions, which are described below.

Pyruvate decarboxylases (PDC1 and PDC5): The first step in production of ethanol from pyruvate is the decarboxylation of pyruvate to acetaldehyde and CO_2 by the enzyme pyruvate decarboxylase. *Saccharomyces cerevisiae* has three structural genes encoding pyruvate decarboxylase enzymes (*PDC1, PDC5* and *PDC6*). Another *PDC*

gene, *PDC2*, encodes a positive regulator of the transcription of *PDC1* and *PDC5* (Hohmann and Cederberg, 1990). The finding that *PDC5* and *PDC1* were more highly expressed in acetaldehyde-treated ethanol-stressed cells relative to ethanol-stressed cells is supportive of a proposed model for the effect of acetaldehyde on ethanol-stressed yeast cells. Stanley *et al.* (1997) proposed that ethanol stressed cells leak acetaldehyde into the surrounding medium and thus lose the capacity to fully regenerate NAD⁺, which is essential for glycolysis. Thus, according to this model, ethanol-stressed cells have a reduced capacity to generate ATP. Increased expression of the *PDC* genes would conceivably increase acetaldehyde production, perhaps compensating for acetaldehyde losses from the cell, and thereby maintaining glycolytic flux.

Hexose (HXT4) and Phosphate (PHO84) transporters: The first essential step of sugar utilization is the uptake of sugars by the yeast cells. Sugar transport across the plasma membrane is thought to be the limiting step in sugar (hexose) metabolism. There are twenty members of the hexose transport (*HXT*) gene family, only seven of which (*HXT1-HXT7*) are known to encode functional glucose transporters; these may operate in various environmental conditions to ensure that the cell receives an adequate supply of carbon and energy. *HXT4* encodes a hexose transporter with medium affinity (Reifenberger *et al.*, 1997) and transcription of this gene depends completely on Gcr1p and partially on Gcr2p transcription factors (Turkel and Bisson, 1999).

The *PHO84* gene encodes a high affinity, transmembrane, inorganic phosphate transporter. It was previously reported that the *PHO84* gene product is the major transporter of cellular phosphate (Bun-Ya *et al.*, 1991). However, studies on a *PHO84* Δ mutant found that such mutants can obtain their phosphate using five other phosphate transporters (*PHO87, 88, 89, 90,* and *91*); the deletion of all six *PHO* genes is lethal (Wykoff and O'Sheal, 2001).

Ethanol stress compromises nutrient transport activities across the plasma membrane (Leao and Van Uden, 1982; and Salmon *et al.*, 1993), therefore the increased expression of *HXT and PHO84* genes may play a role in ethanol tolerance by increasing the availability of glucose and phosphate to cells.

Genes of unknown function (*YLR364W*): Many ORFs encoding for products with unknown function showed a change in expression when acetaldehyde was added to ethanol-stressed cells. *YLR364W* was chosen for further work because of its particularly high level of expression in acetaldehyde-treated ethanol-stressed cells (relative to ethanol-stressed cells).

6.2 Analysis of yeast knockout strains

The experiments described in this chapter investigated the phenotypes of ethanolstressed *S. cerevisiae* knockout strains in the presence and the absence of added acetaldehyde. It must be noted that the yeast strain used in this chapter is different to that used in the preceding chapters. In previous chapters *S. cerevisiae* PMY1.1 was used to study the effect of added acetaldehyde on ethanol-stressed yeast cells. If this strain were to be used for studying the phenotype of yeast knockout strains then a different knockout strain of PMY1.1 would need to be constructed for each gene under investigation. This is a time consuming and unnecessary task given that a *S. cerevisiae* BY4742 gene knockout collection was available from the Australian Wine Research Institute for this project. With this in mind, the phenotype studies described in this chapter were conducted using *S. cerevisiae* BY4742 and single gene knockout strains derived from this.

Strain	Medium	Growth (Yes/No)
BY4742	YEPD	Yes
BY4742	YEPD + geneticin	No
ΔPDC1	YEPD	Yes
ΔPDC1	YEPD + geneticin	Yes
ΔPDC5	YEPD	Yes
ΔPDC5	YEPD + geneticin	Yes
ΔΡΗΟ84	YEPD	Yes
ΔΡΗΟ84	YEPD + geneticin	Yes
Δ HXT4	YEPD	Yes
Δ HXT4	YEPD + geneticin	Yes
ΔYLR364W	YEPD	Yes
ΔYLR364W	YEPD + geneticin	Yes

Table 6.1: Selection of S. cerevisiae BY4742 knockout strains according to theirgrowth on YEPD and YEPD geneticin (G418) plates.

6.2.1 Confirmation of gene replacement

Five knockout strains in a *S. cerevisiae* background were used for this work: BY4742 $\Delta pdc5$::*kanMX4*, $\Delta pdc1$::*kanMX4*, $\Delta pho84$::*kanMX4*, $\Delta hxt4$::*kanMX4* and $\Delta ylr364w$::*kanMX4*. These were kindly donated by The Australian Wine Research Institute (AWRI). The presence of a *kanMX* gene in each of these strains was confirmed by plating onto both YEPD and YEPD Geneticin plates and incubating at 30°C for 2 – 3 days. The YEPD Geneticin plates did not support the growth of the parent strain, whereas all of the knockout strains grew on YEPD and YEPD Geneticin plates (Table 6.1).

Figure 6.1: Schematic representation of PCR positioning primers for confirmation of ∆PDC5 knockout construct compared to the BY4742 wild type.

6.2.2 PCR-based confirmation of the presence of the *kanMX* cassette in BY4742 knockouts

The replacement of the *PDC1*, *PDC5*, *PHO84*, *HXT4* and *YLR364W* ORFs with the *kanMX4* module was confirmed by colony PCR. The presence and position of the *kanMX4* module was tested using a combination of four primers specific to each strain. For example, primers complementary to the upstream and downstream flanking regions of the *PDC5* ORF, *PDC5*-FP (forward primer) and *PDC5*-RP (reverse primer) were used in combination with upstream and downstream flanking regions of the *kanMX4* cassette (*kanMX*-FP and *kanMX*-RP). This is diagrammatically represented in Figure 6.1. The PCR reaction product was resolved on 1% agarose gel by electrophoresis at 60 V for 45-60 minutes (Figures 6.2 and 6.3).

The amplified product of PCR reactions that confirmed the integration of the *KanMX4* module in the place of *PDC5* and *PHO84* genes are shown in Figures 6.2 & 6.3. As shown in Figure 6.2 with primer combination of PDC5-AFP/PDC5-BRP no PCR product was amplified using DNA from $\Delta PDC5$ mutant cells. When PDC5-AFP/kanMX-RP primer combination was used with DNA from $\Delta PDC5$ mutant cells and wild type cells, this resulted in a 661 bp product and no PCR product respectively, but when PDC5-AFP/PDC5-BRP primer combination was used with DNA from wild type cells, it resulted in 850 bp PCR product. When PDC5-CFP/PDC5-DRP primer combination was used with DNA from $\Delta PDC5$ cells resulted in no PCR product amplification. When *kanMX*-FP and PDC5-DRP primer combination was used with DNA from $\Delta PDC5$ mutant cells and wild type cells result in 905 bp and no PCR product amplified respectively, but when PDC5-CFP/PDC5-DRP primer combination was used with DNA from wild type cells result in 905 bp and no PCR product amplified respectively, but when PDC5-CFP/PDC5-DRP primer combination was used with DNA from wild type cells result in 905 bp and no PCR product amplified respectively, but when PDC5-CFP/PDC5-DRP primer combination was used with DNA from wild type cells result in 905 bp and no PCR product amplified respectively, but when PDC5-CFP/PDC5-DRP primer combination was used with DNA from wild type cells result in 905 bp and no PCR product amplified respectively, but when PDC5-CFP/PDC5-DRP primer combination was used with DNA from wild type cells resulted in 515 bp PCR product (Figure 6.2). All knockout strains were confirmed.

Figure 6.2: Agarose gel electrophoresis of PCR products to confirm the integration of the *KanMX4* module in the place of PDC5 gene. Lane 1: Marker DNA, Lane 2: No product was amplified from PDC5-AFP and PDC5-BRP primer combination using DNA from $\Delta PDC5$ mutant cells. Lane 3: A PCR product of 661 bp was amplified from PDC5-AFP and *kanMX*-RP primer combination using DNA from $\Delta PDC5$ mutant cells. Lane 4: No PCR product was amplified from PDC5-AFP and *kanMX*-RP primer combination using DNA from wild type cells. Land 5: A PCR product of 850 bp was amplified from PDC5-AFP and PDC5-BRP primer combination using DNA from wild type cells. Lane 6: No PCR product was amplified from PDC5-CFP and PDC5-DRP primer combination using DNA from $\Delta PDC5$ cells. Lane 7: A PCR product of 905 bp was amplified from *kanMX*-FP and PDC5-DRP primer combination using DNA from $\Delta PDC5$ mutant cells. 8: No PCR product was generated from *kanMX*-FP and PDC5-DRP primer combination using DNA from wild type cells. Lane 9: A PCR product of 515 bp was amplified from PDC5-CFP and PDC5-DRP primer combination using DNA from wild type cells. Lane 9: A PCR product of 515 bp was amplified from PDC5-CFP and PDC5-DRP primer combination using DNA from wild type cells. Lane 9: A PCR product of 515 bp was amplified from PDC5-CFP and PDC5-DRP primer combination using DNA from wild type cells. Lane 9: A PCR product of 515 bp was amplified from PDC5-CFP and PDC5-DRP primer combination using DNA from wild type cells.

Figure 6.3: Agarose gel electrophoresis of PCR products to confirm the integration of the *KanMX4* module in the place of PHO84 gene. Lane 1: Marker DNA, Lane 2: No product was amplified from PHO84-AFP and PHO84-BRP primer combination using DNA from $\Delta PHO84$ mutant cells. Lane 3: A PCR product of 558 bp was amplified from PHO84-AFP and *kanMX*-RP primer combination using DNA from $\Delta PHO84$ mutant cells. Lane 4: No PCR product was amplified from PHO84-AFP and *kanMX*-RP primer combination using DNA from wild type cells. Land 5: A PCR product of 613 bp was amplified from PHO84-AFP and PHO84-BRP primer combination using DNA from wild type cells. Lane 6: No PCR product was amplified from PHO84-CFP and PHO84-DRP primer combination using DNA from $\Delta PHO84$ mutant cells. Lane 7: A PCR product of 994 bp was amplified from *kanMX*-FP and PHO84-DRP primer combination using DNA from PHO84 mutant cells. Lane 8: No PCR product was generated from *kanMX*-FP and PHO84-DRP primer combination using DNA from wild type cells. Lane 9: A PCR product of 704 bp was amplified from PHO84-CFP and PHO84-DRP primer combination using DNA from wild type cells.

Figure 6.4: The stimulatory effect of acetaldehyde on ethanol-stressed *S. cerevisiae* BY4742 (Wt) strain. Late exponential phase culture was inoculated into YEPD only (\blacksquare), or YEPD containing only 0.1 g/l acetaldehyde (\blacklozenge), only 7.5% (v/v) ethanol (\blacktriangle), or both 7.5% (v/v) ethanol & 0.1 g/l acetaldehyde (\blacklozenge). The cultures were incubated at 30°C/140 rpm, under aerobic conditions.

Figures	Strains	Ethanol	Acetaldehyde	Lag Time	Doubling	Growth
		(v/v)	(g/l)	(h)	Time (h)	Rate (h ⁻¹)
4.3	PMY1.1	0%	0.0	0.8	1.9±0.10	0.37±0.01
	(WT)	0%	0.1	0.8	1.9±0.10	0.37±0.01
		7%	0.0	6.1	3.5±0.23	0.20±0.015
		7%	0.1	2.0	2.6±0.20	0.27±0.010
6.4	BY4742	0%	0.0	0.0	1.8±0.105	0.38±0.02
	(WT)	0%	0.1	0.0	1.8±0.105	0.38±0.02
		7.5%	0.0	4.8	3.3±0.15	0.21±0.01
		7.5%	0.1	2.0	2.5±0.15	0.28±0.015

Table 6.2: Growth profiles of S. cerevisiae PMY1.1 and BY4742 strains duringethanol stress in presence or absence of acetaldehyde.

6.3 Characterizing the phenotypes of wild type and knockout strains

6.3.1 Growth profile of BY4742 strain compared to PMY1.1 strain

The experimental design used to characterize the phenotype of *S. cerevisiae* BY4742 and the corresponding knockout strains were based on that used for the growth studies in Chapters 3 and 4 (Sections 3.2.2 and 4.2). To summarize, late exponential phase cells were inoculated into fresh YEPD medium containing either no ethanol or 7.5% (v/v) ethanol in the presence or absence of added acetaldehyde (0.1 g/l). Samples were taken regularly to monitor cell growth.

Before investigating the response of ethanol-stressed BY4742 knockout strains to added acetaldehyde, it was first necessary to compare the phenotype of ethanol-stressed *S. cerevisiae* BY4742 to that of *S. cerevisiae* PMY1.1. *S. cerevisiae* BY4742 was found to be slightly more ethanol-tolerant than strain PMY1.1 (Figures 4.3 and 6.4; Table 6.2). In the absence of ethanol and added acetaldehyde, both strains had similar growth rates and these were unaffected when in the presence of added acetaldehyde only. The lag period of PMY1.1 strain in the presence of 7% (v/v) ethanol was slightly longer than BY4742 when in the presence of added acetaldehyde and added ethanol (7% v/v for PMY1.1 and 7.5% v/v for BY4742). Given the similarities of the two strains in their response to ethanol stress and added acetaldehyde, *S. cerevisiae* BY4742 was considered to be a representative strain for determining the effect of selected gene deletions on the *S. cerevisiae* phenotype during ethanol stress and in the presence of added acetaldehyde.

S. cerevisiae BY4742 was inoculated from an overnight culture into fresh YEPD medium with and without an ethanol concentration of 7.5% (v/v) and in the presence or absence of acetaldehyde. Lag period, growth rates and doubling times were calculated from viable plate count data Figure 6.4. Strain BY4742 had no detectable lag period in the absence of

ethanol stress and a doubling time of 1.8 hrs and growth rate of 0.38 h⁻¹. In the presence of 7.5% ethanol stress strain BY4742 had a 4.8 h lag period, a 3.3 h doubling time and a growth rate of 0.21 h⁻¹. When a small quantity of acetaldehyde was present in the 7.5% ethanol-stressed cultures, the lag period was reduced to 2.0 hrs, the doubling time was 2.5 hrs and the growth rate was 0.28 h⁻¹. These results suggest that strains BY4742 and PMY1.1 have a similar physiological response to ethanol stress in the presence and absence of added acetaldehyde (Table 6.2); however BY4742 strain is slightly better able to acclimatize and recover from ethanol stress than strain PMY1.1.

Figure 6.5: The stimulatory effect of acetaldehyde on ethanol-stressed *S. cerevisiae* \triangle PDC1 strain. Late exponential phase culture was inoculated into YEPD only (**n**), or YEPD containing 0.1 g/l acetaldehyde only (*****), 7.5% (v/v) ethanol only (**A**), or both 7.5% (v/v) ethanol & 0.1 g/l acetaldehyde (**•**). The cultures were incubated at 30°C/140 rpm, under aerobic conditions.

Figure 6.6: The stimulatory effect of acetaldehyde on ethanol-stressed *S. cerevisiae* \triangle PDC5 strain. Late exponential phase culture was inoculated into YEPD only (**n**), or YEPD containing 0.1 g/l acetaldehyde only (*****), 7.5% (v/v) ethanol only (**A**), or both 7.5% (v/v) ethanol & 0.1 g/l acetaldehyde (**•**). The cultures were incubated at 30°C/140 rpm, under aerobic conditions.

6.3.2 Phenotypes of S. cerevisiae BY4742 knockout strains

There was no significant difference in the growth profiles between parent strain BY4247 wild type compared to knockout strains, $\Delta PDC1$ and $\Delta PDC5$, during 7.5% (v/v) ethanol stress in presence or absence of acetaldehyde (Figures 6.5 & 6.6, Table 6.3). Both $\Delta PDC1$ and $\Delta PDC5$ knockout strains grew similarly without a measurable lag period in the absence of ethanol stress. In the presence of a 7.5% ethanol stress, the lag periods were 4.8, 4.8 and 4.7 hours for the wild type BY4247, $\Delta PDC1$ knockout and $\Delta PDC5$ knockout strains respectively. In the ethanol-stressed cultures containing acetaldehyde (0.1g/l), the ethanol-induced lag period was reduced to 1.8 hours in both $\Delta PDC1$ knockout and $\Delta PDC5$ knockout and $\Delta PDC5$ knockout strains (Table 6.3). There was no significant difference between the exponential growth rates of the parent strain and knockout strains during 7.5% ethanol stress in presence of added acetaldehyde.

Growth profiles of the three knockout strains APHO84, AHXT4 and AYLR364W in YEPD medium containing 0% and 7.5% ethanol in presence and absence of acetaldehyde are shown in Figures 6.7, 6.8 and 6.9. There was no discernable difference in viable cell population profile for the knockout strain cultures compared to the viable cell population profile of the BY4247 strain grown under the same conditions (Table 6.3). In the absence of ethanol stress all three-knockout strains and the wild type commenced exponential growth without a detectable lag period. In the presence of 7.5% (v/v) ethanol stress, there were lag periods of 4.9±0.19 hours, when a small quantity of acetaldehyde (0.1 g/l) was added to the ethanol-stressed cultures the lag period was reduced to 1.9±0.14 hours (Figures 6.5, 6.6, 6.7, 6.8 and 6.9, Table 6.3). The knockout strains and wild type cells showed similar doubling time and growth rates compared to the wild type cells. These experiments were repeated to determine the reproducibility and accuracy of the above experiments, and similar results obtained for each experiment. were

Figure 6.7: The stimulatory effect of acetaldehyde on ethanol-stressed *S. cerevisiae* \triangle PHO84 strain. Late exponential phase culture was inoculated into YEPD only (**n**), or YEPD containing 0.1 g/l acetaldehyde only (*****), 7.5% (v/v) ethanol only (**A**), or both 7.5% (v/v) ethanol & 0.1 g/l acetaldehyde (**•**). The cultures were incubated at 30°C/140 rpm, under aerobic conditions.

Figure 6.8: The stimulatory effect of acetaldehyde on ethanol-stressed *S. cerevisiae* Δ HXT4 strain. Late exponential phase culture was inoculated into YEPD only (**■**), or YEPD containing 0.1 g/l acetaldehyde only (**♦**), 7.5% (v/v) ethanol only (**▲**), or both 7.5% (v/v) ethanol & 0.1 g/l acetaldehyde (**●**). The cultures were incubated at 30°C/140 rpm, under aerobic conditions.

Figure 6.9: The stimulatory effect of acetaldehyde on ethanol-stressed *S. cerevisiae* Δ YLR346W strain. Late exponential phase culture was inoculated into YEPD only (**n**), or YEPD containing 0.1 g/l acetaldehyde only (*****), 7.5% (v/v) ethanol only (**A**), or both 7.5% (v/v) ethanol & 0.1 g/l acetaldehyde (**•**). The cultures were incubated at 30°C/140 rpm, under aerobic conditions.

Figures	Strains	Ethanol	Acetaldehyde	Lag Time	Doubling Time	Growth
_		(v/v)	(g/l)	(h)	(h)	Rate (h ⁻¹)
6.4	BY4742	0%	0.0	0.0	1.8±0.11	0.38±0.02
	(Wild type)	0%	0.1	0.0	1.8±0.11	0.38 ± 0.02
		7.5%	0.0	4.8	3.3±0.15	0.21±0.01
		7.5%	0.1	2.0	2.5±0.15	0.28 ± 0.02
6.5	APDC1	0%	0.0	0.0	1.9±0.12	0.38±0.01
		0%	0.1	0.0	1.9±0.12	0.38±0.01
		7.5%	0.0	4.8	3.5±0.10	0.20±0.01
		7.5%	0.1	1.8	2.2±0.10	0.32±0.01
6.6	$\Delta PDC5$	0%	0.0	0.0	1.9±0.07	0.37±0.02
		0%	0.1	0.0	1.9±0.07	0.37 ± 0.02
		7.5%	0.0	4.7	3.0±0.20	0.23 ± 0.02
		7.5%	0.1	1.8	2.2±0.13	0.31±0.02
6.7	ΔΡΗΟ84	0%	0.0	0.0	1.8±0.01	0.38±0.02
		0%	0.1	0.0	1.8±0.01	0.38 ± 0.02
		7.5%	0.0	4.9	3.3±0.15	0.21±0.01
		7.5%	0.1	2.0	2.2 ± 0.06	0.31±0.01
6.8	$\Delta HXT4$	0%	0.0	0.2	1.8±0.06	0.39±0.01
		0%	0.1	0.2	1.8 ± 0.06	0.39±0.01
		7.5%	0.0	5.0	2.9 ± 0.20	0.23 ± 0.01
		7.5%	0.1	2.1	2.3±0.10	0.3±0.01
6.9	∆YLR346W	0%	0.0	0.0	2.0±0.15	0.35±0.02
		0%	0.1	0.0	2.0±0.15	0.35 ± 0.02
		7.5%	0.0	5.1	3.5±0.15	0.20±0.01
		7.5%	0.1	1.8	2.4±0.10	0.29±0.01

Table 6.3: Effect of ethanol stress on the growth of wild type and knockout mutant *S. cerevisiae* BY4742 stains in presence and absence of acetaldehyde.

6.4 Discussion

The ability of acetaldehyde to significantly reduce the adaptation period of *Saccharomyces cerevisiae* during ethanol stress is well proven; however the mechanism underpinning this effect is unknown. For the first time, this project has investigated the effect of acetaldehyde-mediated adaptation to ethanol stress on gene expression profile in *Saccharomyces cerevisiae*. Of the more than 200 genes found to have increased expression levels during ethanol stress in the presence of acetaldehyde (described in the previous chapter), five genes were selected for further investigation into the effect of their deletion on the phenotype of *S. cerevisiae* BY4742 mutants during ethanol stress in the presence and absence of acetaldehyde.

Four of the five chosen genes (PDC1, PDC5, PHO84 and HXT4) were selected in part due to their relatively high expression levels during ethanol stress adaptation in the presence of acetaldehyde, and also due to their known roles, perceiving metabolism and potential influence on ethanol-stressed yeast cells. Chandler et al., (2004) suggested that during ethanol-stress yeast are in a state of pseudo-starvation where nutrients such as glucose, although present in the extracellular medium, are not catabolized at a sufficient rate to meet cellular energy demands. This pseudo-starvation state could be due to ethanol inhibition of transporter activity, changes in the activity of enzymes involved in central metabolism, loss of intracellular metabolites or any combination of these or other events. With this in mind it was conceivable that genes stimulated by acetaldehyde during ethanol stress that produce proteins associated with central metabolism (PDC1 and PDC5) and nutrient transport (PHO84 and HXT4), were likely to have an important role in the acetaldehyde-mediated ethanol stress response of S. The other gene, YLR364W, was selected because it had substantially cerevisiae. increased expression levels during the ethanol stress response of S. cerevisiae in the presence of acetaldehyde and it has a product with unknown function, this combination of information stimulating curiosity into the possible role of YLR364W during ethanol stress.

The results of this chapter demonstrated that single deletions for each of the above five genes in *S. cerevisiae* BY4742 had no measurable effect on the growth phenotype of the

mutants during ethanol stress and in the presence of acetaldehyde. In the absence of each of these genes, the knockout strains had similar ethanol-induced lag periods to the parent strain and they also showed similar lag period reductions when acetaldehyde was added to the ethanol-stressed cells. This suggests that expression of each of the five genes singularly is not essential for acetaldehyde to have a stimulatory effect on ethanol-stressed yeast cells, these genes possibly have no role in the acetaldehyde effect on ethanol-stressed yeast cells.

A possible explanation for the gene deletions having no measurable effect on the acetaldehyde-stimulation of ethanol-stressed mutants is that the role of the deleted genes was compensated for by another gene. There is evidence in the literature to support this. Investigations into the role of PDC1 and PDC5 in S. cerevisiae have shown that in the absence of ethanol stress, the deletion of one PDC gene, either PDC1 or PDC5, has no measurable effect on the growth profile of the knockout strain, the other PDC gene presumably compensating for the deletion (Hohmann and Cederberg, 1990); a double deletion of PDC1 and PDC5 resulted in a complete loss of PDC activity and the inability to ferment glucose. Interestingly a third PDC gene, known as PDC2, was found to be a positive regulator of both PDC1 and PDC5 genes (Hohmann, 1993). It was shown that a PDC2 deletion resulted in a reduced expression level of PDC1 and complete abolishment of PDC5 expression (Hohmann and Cederberg, 1990; Nevoigt and Stahl, 1996). The role of the PDC2 gene in regulating expression levels of both PDC1 and PDC5 presents an opportunity to further investigate the role of PDC activity in the effect of acetaldehyde on ethanol-stressed yeast cells. According to the above studies, a PDC2 knockout strain would have no PDC5 expression and a 70% reduction in *PDC1* expression levels. Investigations using a *PDC2* knockout strain may reduce the compensatory effect of PDC1 for PDC5, and vice-versa, allowing the true effect of PDC deletions on the acetaldehyde stimulation of ethanol adaptation to be determined. This is recommended for further work.

PHO84 is a member of a set of isogenes (*PHO87, 88, 89, 90,* and *91*) that encode phosphate transporters. Wykoff and O'Sheal (2001) demonstrated that a Δ PHO84 knockout strain of *S. cerevisiae* had a similar growth profile to the parent strain when grown in the absence of ethanol stress, while the combined deletion of all *PHO* genes in a single strain was found to be lethal. The significantly increased expression levels of

PHO84 in response to acetaldehyde addition during ethanol stress (Section 5.2.2.3) suggested that *PHO84* may have a special role during ethanol stress, its protein product possibly being more resistant to the inhibitory effects of ethanol than other *PHO* gene products and therefore having a primary role in phosphate transport during ethanol stress. The work in this study has shown that the deletion of *PHO84* from *S. cerevisiae* have no measurable effect on the phenotype during ethanol stress in the presence of acetaldehyde. Based on previous studies by Wykoff and O'Sheal (2001) it is likely that the other *PHO* genes were compensating for the loss of *PHO84*. The importance of *PHO* activity during ethanol stress could be tested in further work by performing multiple knockouts of the *PHO* gene family and examining the phenotype of the multi-knockout strains during ethanol stress and in the presence of acetaldehyde.

To utilize glucose (hexose) as a carbon source cells must sense the presence of hexose sugar and transport it across the plasma membrane via the HXT gene family. The HXT gene family comprises seven isogenes (HXT1, 2, 3, 4, 5, 6, and 7). It has previously been shown that S. cerevisiae strains containing multiple knockouts of all seven isogenes are not able to grow on glucose (Reifenberger et al., 1997) nor are they able to grow or ferment under winemaking conditions (Luyten et al., 2002). The HXT4 gene has increased expression levels in the presence of low glucose concentrations, and to be repressed in the presence of high glucose concentrations (Ozcan and Johnston, 1995). It is therefore not surprising that the expression of HXT4 is increased during periods of ethanol stress given that evidence suggests that ethanol-stressed S. cerevisiae cells are in a state of pseudo-starvation (Chandler et al., 2004). Under such conditions the ethanolstressed cell may 'believe' that it is in a low glucose environment and increase HXT4 expression to compensate. The results of this project demonstrate that the deletion of HXT4 from S. cerevisiae has no measurable effect on the phenotype during ethanol stress and in the presence of acetaldehyde. Once again it is likely that one or more of the other HXT genes is compensating for the loss of HXT4 however this would need to be proven.

The deletion of *YLR364W* from *S. cerevisiae* has no measurable effect on the phenotype during ethanol stress and in the presence of acetaldehyde. Little is known about the function of the gene product in yeast and for this reason it is difficult to speculate on whether the gene has a role in the ethanol stress response of *S. cerevisiae*. Other genes

may compensate for *YLR364W* in the knockout strain or it may not have a crucial role in the adaptation of *S. cerevisiae* to ethanol stress.

6.4.1 Conclusion

The results in this chapter suggest that acetaldehyde-ameliorated recovery from ethanolstress in *S. cerevisiae* does not rely on the singular expression of *PDC1*, *PDC5*, *PHO84*, *HXT4* or *YLR364W*. It is not suggested however that these genes do not have a role in this phenomenon, or indeed, in conferring ethanol-tolerance in the absence of acetaldehyde. It is possible, for example, that other genes may compensate for the loss of any one of five that were studied as knockout in the work described here. This would make sense from an evolutionary perspective since the important roles performed by each of the four known genes (*PDC1*, *PDC5*, *PHO84 and HXT4*) are unlikely to depend entirely on a single gene, rather, cell survival would be facilitated by having several genes able to perform similar roles.

The deletion of the above genes did not show a significant difference in viable population profile compared to the wild type strains. The specific roles of these genes in the ethanol stress response in presence of added acetaldehyde are yet to be determined, noting that the adaptation rate and growth rate were the only parameters tested in the work described here. It is possible that these genes may have a marginal influence on yeast adaptation to ethanol, or in their absence their role may be compensated by other genes. A more comprehensive and sensitive techniques are required to confirm or disprove this. These techniques are such as growth competition experiments, overexpresson and double/triple knockout strains. This should be investigated further, as will be discussed in the following chapter.

CHAPTER 7

General Discussion and Future Directions

7.1 Introduction

In this project, *S. cerevisiae* PMY1.1 was exposed to a 7% (v/v) ethanol stress, which induced a lag period of approximately 6 hours during which cells were acclimatizing to their environment. When a small quantity of acetaldehyde was added to ethanol-stressed cells, the lag period was reduced to approximately 2 hours. This result clearly demonstrated the acetaldehyde-induced amelioration of ethanol stress in yeast, in confirmation of the reports of Walker-Caprioglio and Parks (1987); Stanley and Pamment (1993); Stanley *et al.* (1997); Barber *et al.* (2002a); Vriesekoop and Pamment, (2005).

The mechanisms underlying the lag-reducing effect of acetaldehyde on ethanol-stressed yeast are unclear. However it was reasoned at the outset of this research project that the effect of added acetaldehyde on ethanol-stressed yeast would be likely to cause a change in expression of genes associated with the ethanol acclimatisation process, since changes in cell physiology are often the consequence of changes in gene expression. This project used both macroarray and microarray analyses to provide insights into the global pattern of gene expression during the acetaldehyde-stimulated recovery of ethanol-stressed cultures. Both technologies provided rapid, efficient, quantitative and a comprehensive analysis of gene expression profile. To-date, no molecular studies have been published that investigate the lag reducing effects of acetaldehyde on gene expression in ethanol-stressed cells

Part of this research study confirmed previous work reported by Chandler *et al.* (2004) and Alexandre *et al.* (2001) that showed a substantial number of genes associated with anabolism were LHE in response to ethanol stress compared to unstressed cultures. These genes encode proteins associated with ribosomes, transport, transcription
initiation, cell cycle, energy utilization, DNA synthesis, cell wall, nucleotide metabolism and lipid metabolism genes. The decreased expression levels of these genes could be expected for cells undergoing growth arrest to conserve energy expenditure during stress conditions. This response also correlates with growth curves that showed a lag period of approximately 6 hours, when yeast cultures were subjected to 7% ethanol stress. Overall, the array results of this study showed the decreased expression level of anabolic genes and increased expression level of some stress response genes (such as HSP genes and trehalose genes), are consistent with the findings of Chandler *et al.* (2004) and Alexandre *et al.* (2001), for ethanol-stressed yeast cells.

An interesting aspect of the array data is that, when acetaldehyde was added to ethanolstressed yeast cells, there was increased expression of many genes. Perhaps the most striking feature was the clustering of MHE ORFs associated with the synthesis of ribosomal proteins, DNA synthesis, transcription and a cell cycle, and this was evident at both time points (See Tables 5.1 and 5.2). This is consistent with growth curve data shown in Figures 4.3 and 4.4, in which it is clear that cells are rescued from ethanolinduced lag considerably faster when added acetaldehyde is present in ethanolcontaining cultures; when acetaldehyde is present cells commence division more rapidly.

Results presented in this thesis also show that acetaldehyde treatment of ethanolstressed yeast cells decreases the expression level of *HSP* genes and genes associated with trehalose metabolism. On the one hand, the decreased expression levels of *HSP* and trehalose genes, in response to the stimulatory effect of added acetaldehyde to ethanol-stressed cells, may reflect that cell stress was alleviated by the addition of a small quantity of acetaldehyde and this stimulated growth; therefore cells did not need the protective 'inputs' of HSPs and trehalose. In this case, growth would not be a direct effect of acetaldehyde addition; i.e. acetaldehyde was not being used as a carbon source. On the other hand, in the presence of the acetaldehyde (for ethanol-stressed cells) there was increased expression of ribosomal protein genes, genes associated with transcription initiation and protein metabolism, and cell cycle genes, thus potentially stimulating cell growth and division. In light of this and the growth curves seen in Figures 4.3 and 4.4, it is clear that even in the presence of 'stressful levels' of ethanol, yeast cells were actively growing and dividing under the stimulatory effect of added acetaldehyde. In the absence of acetaldehyde the ethanol-stressed cells were in growth arrest.

When a small quantity (0.1 g/l) of acetaldehyde was added to non-stressed yeast cultures, it had no detectable effect on the growth of yeast cells and it did not have a significant effect on gene expression in non-stressed cultures. This shows that the stimulatory effect of a small quantity of added acetaldehyde to yeast cultures and gene expression is only observed in cells subject to ethanol-stress. This is important to note because it suggests that the mechanism by which acetaldehyde stimulates the adaptation of yeast to ethanol is only functional in a stress-compromised cell.

The general patterns of gene expression using both macro- and microarrays appeared similar, except that microarrays seemed to be more sensitive, i.e. macroarray analysis revealed 214 ORFs were MHE and 4 ORFs were LHE whilst in microarrays 239 ORFs were MHE and 217 were LHE, in response to stimulatory effect of acetaldehyde to ethanol-stressed cultures compared to ethanol-stressed cultures, at one hour time point. This finding is in line with that of Bowtell, (1999), which showed microarrays were more sensitive than macroarrays in the detection of low abundance mRNAs.

To confirm macro- and microarray data, quantitative Real-Time PCR analysis was performed, and overall gave a similar trend as the microarray data. This suggests that the microarray data from this thesis is more reliable than that from macroarrays, which might be expected since microarrays were performed using replicate arrays; macroarrays were not. However, there are clear difference in magnitude between the microarray data and Real Time PCR. The reason(s) for this are unknown but perhaps reflect some of the limitations inherent in the methodologies. For example, the differences in sensitivity, efficiency and affinity of probes used in three different methodologies (macroarray, microarray and Real Time PCR), this requires further studies to be conducted.

This study showed, the upstream region of MHE ORFs in ethanol-stressed cells exposed to acetaldehyde contained regulatory elements in their promoters such as STRE/Msn2/4, HSE/Hf1p and ARE/Yap1/2p. The majority of MHE ORFs contained STRE and HSE sequence motifs, which are binding sites for Msn2/4p and Hsf1p transcription factors

respectively; few MHE ORFs had ARE sequence motifs, for binding Yap1/2p transcription factor. These transcription factors target individual genes to be turned on or off specifically. Thus, the correct transcription of cellular genes is one of the most critical factors of cell's normal development (Alberts *et al.*, 1994).

7.2 Possible mechanism of acetaldehyde stimulatory effect

The reason for the lag reducing effect of acetaldehyde on ethanol-stressed cultures is unclear. It has been suggested however that, intracellular acetaldehyde lost from the cell by the ethanol-mediated disruption of the plasma membrane and associated increase of permeability, may cause a significant decrease it its intracellular concentration, thus limiting the rate of ethanol production and concurrent NAD⁺ regeneration via alcohol dehydrogenase. This reduction in NAD⁺ regeneration consequently affects glyceraldehyde-3-phosphate activity (which relies on NAD⁺ as a cofactor), thus causing a bottleneck in glycolysis (Stanley *et al.*, 1997). When acetaldehyde is exogenously added to ethanol-stressed cultures, it is speculated that it diffuses into the cells and increase the intracellular concentration, stimulating glycolysis and ATP production by increasing the rate of NAD⁺ regeneration Stanley *et al.*, (1997).

The above hypothesis was further investigated by Barber *et al.*, (2002a), using *S. cerevisiae* X2180-1A in complex medium containing 4% (v/v) ethanol under anaerobic conditions. These authors found that an ethanol-induced lag period of around 16 hours could be reduced to 2 hours by the addition of small quantities of acetaldehyde. This lag reducing effect by acetaldehyde was considerably more substantial than that observed for the same strain and conditions but grown aerobically. It was speculated that acetaldehyde was more effective under anaerobic conditions because the NAD⁺/NADH redox balance and energy generation is entirely dependent on glycolysis and the fermentation pathway (i.e. substrate level phosphorylation); energy generation by respiration is absent. The authors also found that the lag period of ethanol-stressed cells could be reduced by the addition of propionaldehyde (3 carbon-based aldehyde) and that under such conditions the decrease in propionaldehyde concentration during the lag period stochiometrically matched the amount of propanol being formed by alcohol dehydrogenase. This provided further evidence that the mechanism of acetaldehyde

stimulation of ethanol-stressed cells is attributable to its role in restoring the NAD+/NADH redox balance.

The results of this project provide further evidence to support the role of acetaldehyde in restoring the NAD+/NADH redox balance in ethanol-stressed *S. cerevisiae*. The gene array data identified pyruvate decarboxlyase genes (*PDC1* and *PDC5*) in *S. cerevisiae* in the ethanol-stressed cells in the presence of added acetaldehyde. Pyruvate decarboxylase is involved in the decarboxylation of pyruvate to acetaldehyde, which is then reduced to ethanol (using NADH as a cofactor) by alcohol dehydrogenase (Then and Radler, 1970). It can be speculated that an increase in *PDC* activity would increase metabolic flux through the fermentative pathway thus increasing the regeneration rate of NAD⁺, stimulating glyceraldehyde-3-phosphate dehydrogenase activity and metabolic flux through the upper glycolytic pathway; higher glycolytic flux would accelerate energy production which may assist the cell to more quickly overcome the ethanol stress.

Although the data supports an increase in *PDC* expression levels resulting from acetaldehyde addition, the mechanism behind this effect is uncertain. Acetaldehyde is a product of PDC activity therefore an increase in acetaldehyde concentration would theoretically decrease PDC activity (via feedback inhibition) rather than increase it. It is suggested that rather than directly impacting on *PDC* expression, the added acetaldehyde is directly stimulating NAD⁺ regeneration (by reduction to ethanol, as shown by Barber *et al.*, 2002) which in turn stimulates glyceraldehyde-3-phosphate dehydrogenase activity, consequently increasing glycolytic flux. This priming effect of added acetaldehyde on glycolytic flux in ethanol-stressed cells would reduce the metabolic bottleneck caused by low glyceraldehyde-3-phosphate dehydrogenase activity (due to low concentrations of its cofactor, NAD⁺) and increase the concentrations of lower glycolytic intermediates, such as pyruvate. Since pyruvate is a substrate of pyruvate decarboxylase, an increase in its concentration might be expected to increase expression of *PDC* genes.

In summary, it is speculated that the addition of acetaldehyde to ethanol-stressed *S*. *cerevisiae* primes glycolytic flux by regenerating NAD^+ from accumulated NADH, which in turn helps to overcome the metabolic bottleneck caused by low

glyceraldehyde-3-phosphate dehydrogenase activity; the resulting increase in pyruvate concentration stimulating an increase in *PDC* activity and an overall increase in glycolytic rate. This proposed mechanism by which acetaldehyde stimulates the recovery of ethanol-stressed cells is in keeping with the observation that during ethanol stress, the cells are in a state of pseudo-starvation i.e. although there is excess glucose in the medium, the cells are unable to catabolise it at a sufficient rate to meet cellular energy demands (Chandler *et al.*, 2004)

However, in this project, the knockout studies could not detect a difference in phenotype in *S. cerevisiae* knockout strains ($\Delta PDC1$, $\Delta PDC5$, $\Delta HXT4$, $\Delta PHO48$ and $\Delta YLR134W$) compared to the parent strain during ethanol stress in the presence of acetaldehyde. Although this may at first appear not to support these genes having a crucial role in ethanol stress adaptation or the acetaldehyde effect, it is possible that other members of their isogene families compensated for the role of each of the genes in the knockout strains. This is discussed in chapter 6 and recommendations for further work with the knockout strains is given in the following section.

7.3 Concluding Remarks and Future Directions

7.3.1 Concluding Remarks

This project has for the first time shown that added acetaldehyde stimulates the expression of many genes in ethanol-stressed *S. cerevisiae*. This effect of acetaldehyde on ethanol-stressed yeast supports previous physiological-based investigations in this area. In particular, it has been shown that there are significant increases in the expression levels of groups of genes that are associated with particular, and important, functions in the stressed cell. Such functions include ribosomal processes, nutrient transport, cell cycle, energy production and lipid metabolism. All of these functions have a crucial role in restoring overall cell vitality during a period of ethanol stress.

In particular this project has identified an association between the addition of acetaldehyde to *S. cerevisiae* cultures and subsequent increases in the expression levels of pyruvate decarboxylase genes. Although acetaldehyde may directly influence the

level of expression of these genes, it seems unlikely that it would up-regulate them. Given that it is a product of pyruvate decarboxlyase activity, it is more likely that increased acetaldehyde concentrations would, in fact, lead to a decrease in pyruvate decarboxylase expression, if indeed it has any direct influence on it at all. Rather, it is proposed that acetaldehyde added to ethanol-stressed cells improves their stress adaptation rate by priming glycolysis thereby increasing glycolytic flux and increasing the levels of intracellular metabolites, improving the NAD⁺/NADH ratio and increasing energy production. According to this proposed model, the observed changes in gene expression in ethanol-stressed cells following acetaldehyde addition is more likely a consequence of the effect of improved levels of glycolytic intermediates and improved energy production. This proposed model supports the more recent observations that ethanol-stressed yeast are primarily struggling to meet cellular energy demands due to low glycolytic flux and that the priority is to improve cellular energetics in order to facilitate the adaptation process.

7.3.2 Future Directions

- 1. The results presented in this thesis support the hypothesis that acetaldehyde stimulates the adaptation rate of yeast to ethanol stress by increasing the NAD⁺/NADH ratio, consequently providing a greater supply of NAD⁺ for upper glycolytic metabolism (Stanley *et al.*, 1997). This could be investigated further by conducting metabolite analysis on ethanol-stressed yeast in the presence and absence of acetaldehyde. The concentrations of metabolites to be investigated include the NAD⁺/NADH ratio, glyceraldehyde 3-phosphate and 1,3-diphosphoglycerate, which are the substrate and product respectively of glyceraldehyde 3-phosphate dehydrogenase, and pyruvate due to its role in stimulating the expression of *PDC* genes. It was reported by Martini *et al.*, (2006) that understanding complex systems of yeast cells needs understanding of cellular metabolitic processes resulting from activation, inhibition and feedback activities.
- 2. In light of advances in metabolomics over recent years, it would be informative to assess changes in the yeast metabolome in ethanol-stressed and in acetaldehyde-treated,

ethanol-stressed cells. This may give greater definition, over and above what is proposed in Point 1 above, to changes in metabolism.

- 3. In Chapter 6 of this thesis, phenotype analysis of selected knockout strains did not result in any significant difference in growth profile compared to the wild type under ethanol stress in presence or absence of acetaldehyde. To further test the functions of these genes, double and triple knockouts should be constructed to eliminate the possibility of compensatory effects by other genes. For example, screening of a ΔPDC1ΔPDC5 knockout strain in ethanol-stressed cultures in the presence and absence of acetaldehyde would determine whether or not PDC1 compensates for PDC5 and vice versa.
- 4. The above work on double (and even triple knockouts) should be extended, as part of a long term aim, to include a synthetic lethality screen using a synthetic gene array as described in Tong *et al.*, (2004 and 2001), but using ethanol stress conditions. This would enable the identification of gene interactions between, for example, *PDC5*, and any other non-essential genes in the yeast genome. This is important because of the high probability that ethanol tolerance is affected by many genes, and thus gene interactions are very likely to be important.
- 5. The potential for compensatory effects by isogenes in the knockout strains could be investigated further by performing microarray analysis on the knockout cultures during ethanol stress. This may reveal changes in expression of compensating genes. Alternatively, expression levels of particular isogenes could be measured in ethanol-stressed knockout cultures using Real Time PCR. However, compensatory effects may not show up as changes in expression; changes in enzyme activities of compensating enzymes would have the same effect.
- 6. Investigation of the phenotype of knockout strains using conventional methodology such as measuring cell populations in batch growth experiments of pure cultures, has poor sensitivity. Growth competition experiments is a more sensitive technique for detecting small differences in fitness and this should be used with the knockout strains and the parent cultures described in Chapter 6 while in the presence of an ethanol stress.

- 7. Gene expression arrays measure changes in mRNA concentration, not protein levels. The assumption with such a technique is that mRNA production correlates with protein production. However, it is recognised that mRNA expression patterns do not always reflect changes in protein levels (Gygi *et al.*, 1999). Given proteins are the ultimate arbiters of cell function, changes in protein levels are arguably more important in inferring alteration of function. It was recently reported that comparison of proteome analysis instead of mRNA analysis of yeast ale strain with lager brewing yeast strain showed better picture of expression level (Kobi *et al.*, 2004). Thus, proteome analysis of ethanol-stressed yeast in the presence and absence of acetaldehyde is suggested for further work to more accurately quantify the changes in cell function brought about by acetaldehyde.
- 8. Athough PDC1 and PDC5 single gene deletions were found to have no significant effect on the ethanol-stress response of S. cerevisiae BY4742, a third PDC gene, known as PDC2, is known to be a positive regulator of both PDC1 and PDC5 genes (Hohmann, 1993). It was shown that a PDC2 deletion resulted in a reduced expression level of PDC1 and complete abolishment of PDC5 expression (Hohmann and Cederberg, 1990; Nevoigt and Stahl, 1996). The role of the PDC2 gene in regulating expression levels of both PDC1 and PDC5 presents an opportunity to further investigate the role of PDC activity in the effect of acetaldehyde on ethanol-stressed yeast cells. Accordingly, a PDC2 knockout strain would have no PDC5 expression and a 70% reduction in PDC1 expression levels. Investigations using a PDC2 knockout strain may reduce the compensatory effect of PDC1 for PDC5, and vice-versa, allowing the true effect of PDC deletions on the acetaldehyde stimulation of ethanol adaptation to be determined.

REFERENCES

Alberts B., Bray D., Lewis J., Martin R., Roberts K. and Watson J.D. (1994). *Molecular Biology of the cell*. Third edition, Garland published, Inc., New York.

Aguilera A. & Benitez T. (1986). Ethanol-sensitive mutants of *Saccharomyces* cerevisiae. Archives of Microbiology, 143:337-344

Alexandre H., Ansanay-Galeote V., Dequin S. and Blondin B. (2001). Global gene expression during short-term ethanol stress in *Saccharomyces cerevisiae*. *FEBS* letters, **498**:98-103.

Alexandre H., Plourde L., Charpentier C. & Francois J. (1998). Lack of correlation between trehalose accumulation, cell viability, and intracellular acidification as induced by various stresses in *Saccharomyces cerevisiae*. *Microbiology*, 144:1103-1111.

Alexandre H., Rousseaux I. and Charpentier C. (1993). Ethanol adaptation mechanisms in *Saccharomyces cerevisiae*. *Biotechnololgy and Applied Biochemistry*, 20:173-183.

Alexandre H., Rousseaux I. & Charpentier C. (1994). Relationship between ethanol tolerance, lipid composition and plasma membrane fluidity in *Saccharomyces cerevisiae* and *Kloeckera apiculata*. *FEMS Microbiology Letters*, **124**:17-22.

Aranda A. and Olmo M. (2004). Exposure of *Saccharomyces cerevisiae* to Acetaldehyde Induces Sulfur Amino Acid Metabolism and Polyamine Transporter Genes, Which Depend on Met4p and Haa1p Transcription Factors, Respectively. *Applied and Environmental Microbiology*, **70** (4):1913-1922.

Aranda A. and Olmo M. (2003). Response to acetaldehyde stress in the yeast *saccharomyces cerevisiae* involves a strain-dependent regulation of several ALD genes and is mediated by the general response pathway. *Yeast*, 20:747-759.

Aranda A. Querol A. and Olmo M. (2002). Correlation between acetaldeyde and ethanol resistance and expression of HSP genes in strains isolated during the biological aging of sherry wines. *Archives of Microbiology*, 177:304-312.

Attfield P., Myers, D. & Hazell B. (1997). The importance of stress tolerance to bakers yeast. *Australasian Biotechnology*, 7:149-154.

Attfield P. V. (1997). Stress Tolerance: The key to effective strains of industrial baker's yeast. *Nature Biotechnology*, **15**:1351-1357.

Attfield P.V. (1987). Trehalose accumulates in *Saccharomyces cerevisiae* during exposure of agents that induce heat shock response. *FEBS Letters*, **225**:259-263.

Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A. and Struhl K. (1997). *In: Current Protocols in Molecular Biology*. John Wiley & Sons Inc., New York.

Bandas E. L. (1983). Study of the metabolites and impurities in the mutagenic action of ethanol on yeast mitochondria. *Genetika*, **18**:1056-1059.

Barber A. R., Vriesekoop F., Pamment N. B. (2002). Effect of acetaldehyde on *Saccharomyces cerevisiae* exposed to range of chemical and environmental stresses. *Enzyme and Microbial Technology*, **30**:240-250.

Barber A.R., Hansson H. and Pamment N.B. (2000). Acetaldehyde stimulation of the growth of *Saccharomyces cerevisiae* in the presence of inhibitors found in lignocellulose-to-ethanol fermentations. *Journal of Industrial Microbiology and Biotechnology*, **25**:104–108.

Beaven M., Charpentier C. and Rose A. H. (1982). Production and tolerance of ethanol in relation to phospholipid fatty-acyl composition in *Saccharomyces cerevisiae* NCYC 431. *Journal of General Microbiology*, **128**:1447-1455.

Betz C., Schlenstedt G. and Bailer S.M. (2004). Asr1p, a Novel yeast Ring/PHD Finger protein, Signals Stress to Nucleus. *The Journal of biological Chemistry*, 279(27): 28174-28181.

Birch R. M. & Walker G. M. (2000). Influence of magnesium ions on heat shock and ethnaol stress responses of *Saccharomyces cerevisiae*. *Enzyme and Microbial Technology*, **26**:678-687.

Bisson L. F. and Block D. E. (2002). Ethanol Tolerance in Saccharomyces. In: Ciani M, editor, Biodiversity and Biotechnology of Wine Yeasts: Research.

Bowtell D. L. (1999). Options available-From start to finish-for obtaining expression data by microarray. *Natuer Genetics*, **21**:25–32.

Braley R. & Piper P. W. (1997). The C-terminus of the plasma membrane H⁺-ATPase is essential for the regulation of this enzyme by the heat shock protein, *HSP30*, but not for stress activation. *FEBS Letters*, **418**:123-186.

Bun-ya M., Nishimura M., Harashima S. and Oshima Y. (1991). The *PHO84* gene of *Sacchromyces cerevisiae* encodes an inorganic phosphate transporter. *Molecular and Cellular biology*, **11**(6):3229-3238.

Carlsen H. N. Degn H. and Lioyd D. (1991). Effect of alcohols on the respiration and fermentation of aerated suspension of baker's yeast. *Journal of General Microbiology*, 132:369-377.

Cartwright, C. P., Veazey, F. J. & Rose, A. H. (1987). Effect of ethanol on activity of the plasma membrane ATPase in, and the accumulation of glycine by, *Saccharomyces cerevisiae. Journal of General Microbiology*, 133:857-865.

Casalone E., Colella C. M., Daly S., Gallori E., Moriani L., Polsinelli M. (1991). Mechanism of resistance to sulphite in *Saccharomyces cerevisiae*. *Current Genetics*, **22(6)**: 435-440.

Casey, G. P., and Ingledew W. M. (1986). Ethanol Tolerance in Yeasts. CRC Critical Reviews in Microbiology, 13:219-280.

Casey G. P., Magnus C. A. and Ingledew W. M. (1984). High-gravity Brewing: Effects of nutrition on yeast composition fermentative ability and alcohol production. *Applied Environmental Microbiology*, **48**: 639-646.

Causton H. C., Ren B., Koh S. S., Harbison C. T., Kanin E., Jennings E. G., Lee T.I., True H. L., Lander E.S. and Young R.A. (2001). Remodeling of Yeast Genome Expression in Response to Environmental Changes. *Molecular Biology of the Cell*, 12(2):323-337.

Chandler M., Stanley G.A., Rogers P. and Chambers P. (2004). A genomic approach to defining the ethanol stress response in the yeast *Saccharomyces cerevisiae*. *Annals of Microbiology*, **54**(4):427-454.

Chatterjee M. T., Khalawan S. A., and Curran B. P. G. (2000). Cellular lipid composition influences stress activation of the yeast general stress response element (STRE). *Microbiology*, 146:877-884.

Chen D., Toone M.W., Mata J., Lyne R., Burns G., Kivinen K., Brazma A., Jones N., and Bahler J. (2003). Global transcriptional response of fission yeast to environmental stress. *Molecular Biology of the Cell*, 14:214-229.

Chi Z. and Arneborg N. (1999). Relationship between lipid composition, frequency of ethanol-induced respiratory deficient mutants, and ethanol tolerance in *Saccharomyces cerevisiae*. *Journal of Applied Microbiology*, **86**:1047-1052.

Colaco C. A. L. S., Smith C. J. S., Sen S., Roser D. H., Newman Y., Ring S. & Roser B. J. (1994). Chemistry of protein stabilization by trehalose. In Formulation and delivery of proteins and peptides. Edited by J. L. Cleland & R. Langer. Washington DC: *American Chemical Society*, 222-240.

Coote P. J., Cole M. B. & Jones M. V. (1991). Induction of increased thermotolerance in *Saccharomyces cerevisiae* may be triggered by a mechanism involving intracellular pH. *Journal of General Microbiology*, **137**: 1701-1708.

Costa V., Amorim M. A., Reis E., Quintanilha A. and Moradas-Ferreira P. (1997). Mitochondrial superoxide dismutase is essential for ethanol tolerance of *Saccharomyces cerevisiae* in the post-diauxic phase. *Microbiology*, **143:** 1649-1656.

Costa V., Reis E., Quintanilha A. and Moradas-Ferreira P. (1993). Acquisition of ethanol tolerance in *Saccharomyces cerevisiae:* the key role of the mitochondrial superoxidedismutase. *Archives of Biochemistry and Biophyics*, **2:** 608-614.

Craig E. A., Gambill B. D. and Nelson R. J. (1993). Heat shock proteins: Molecular chaperones of protein biogenesis. *Microbiological Reviews*, **57**: 402-414.

Crowe J. H., Crowe L. M. and Chapman D. (1984). Preservation of membranes in anhydrobiotic organisms: the role of trehalose. *Sciences*, **223**: 701-703.

Davies J. M., Lowry C. V. and Davies K. J. A. (1995). Transient adaptation to oxidative stress in yeast. *Archives of Biochemistry and Biophysics*, 317: 1-6.

Dequin S. (2001). The potential of genetic engineering for improving brewing, winemaking and baking yeasts. *Archieves of Microbiology and Biotechnology*, **56**:577-588.

De Virgillio C., Hottiger T., Dominguez J., Boller T. & Wiemkem A. (1994). The role of trehalose synthesis for the acquisition of thermotolerance in yeast: Genetic evidence trehalose is a thermo-protectant. *European Journal of Biochemistry*, **219**: 179-186.

De Virgilio C., Simmen U., Hottiger T., Boller T. and A. Wiemken (1990). Heat shock induces enzymes of trehalose metabolism, trehalose accumulation, and thermotolerance in *Schizosaccharomyces pombe*, even in the presence of cycloheximide. *FEBS Lett.*, **273**:107–110.

D'Amore T., Panchal C. J., Russell I. and Stewart G. G. (1990). A Study of Ethanol Tolerance in Yeast. *Critical Reviews in Biotechnology*, **9:**287-304.

D'Amore T., Crumplen R. & Stewart G. (1991). The involvement of trehalose in yeast stress tolerance. *Journal of Industrial Microbiology*, 7:191-196.

Eisen, M.B., Spellman, P.T., Brown, P.O., and Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. *Proceeding of National Academy of Sciences*, USA, **95**:14863–14868.

Eleutherio E. C. A., Araujo P.S. and Panek A. D. (1993). Role of the trehalose carrier in dehydration resistance of *Saccharomyces cerevisiae*. *Biochimica et Biophysica Acta*, 1156:263-266.

Eleutherio E. C., Ribeiro M. J., Pereira M. D., Maia F. M. and Panek A. D. (1995). Effect of trehalose during stress in a heat-shock resistant mutant of *Saccharomyces cerevisiae*. *Biochemistry and Molecular Biology International*, **36**:1217-1223.

Emslie D. (2002). Molecular basis of the ethanol-stress response in the yeast *Saccharomyces cerevisiae*. In *School of Life Sciences and Technology*. Melbourne: Victoria University of Technology.

Estruch F. (2000). Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. *FEMS Microbiology Reviews*, **24**:469-486.

Gadd G. M., Chalmers K. & Reed R. H. (1987). The role of trehalose in dehydration resistance of *Saccharomyces cerevisiae*. *FEMS Microbiology Letters*, **48**:249-254.

Gasch A. P., Spellmann P. T., Kao C. M., Carmel-Harel O., Eisen M. B., Storz G., Botstein D. and Brown P. O. (2000). Genomic expression programs in response of yeast cells to environmental changes. *Molecular Biology of the Cell*, 11: 4241-4257.

Gasch A. P., Huang M. X., Metzner S., Botstein D., Elledge S. J. and Brown P. O. (2001). Genomic expression responses to DNA damaging agents and the regulatory role of yeast ATR homolog Mec1p. *Molecular Biology of the Cell*, 12:2987-3003.

Georgiou G. and Masip L. (2003). An Overoxidation Journey with a Return Ticket. *Science*, 300 (5619):592-594.

Gille G. K., Sigler K. & Hofer M. (1993). Response of catalase activity and membrane fluidity of aerobically grown *Schizosaccharomyces pombe* and *Saccharomyces cerevisiae* to aeration and the presence of substrates. *Journal of General Microbiology*, 139:1627-1634.

Glover J. R. and Lindquist S. (1998). HSP104, HSP70, and HSP40 - a novel chaperone system that rescues previously aggregated proteins. *Cell*, 94: 73-82.

Grably M. R., Stanhill A., Tell O. and Engelberg (2002). HSF and Msn2/4p can exclusively or cooperatively active the yeast HSP104 gene. *Molecular microbiology*, 44:21-35.

Graca M., Silveira Da, Golovina A. E., Hoekstra A. F., Rombouts M.F. and Abee T. (2003). Membrane Fluidity Adjustments in Ethanol-Stressed *Oenococcus Oeni* Cells. *Applied and Evironmental Microbiology*, **69**:5826-5832.

Guldfeldt L. U. & Arneborg N. (1998). The effect of yeast trehalose content at pitching on fermentation performance during brewing fermentations. *Journal of the Institute of Brewing*, 104:37-39.

Gupta S., Sharma S.C. and Singh B. (1994). Changes in the composition and peroxidation of yeast membrane lipids during ethanol stress. *ACTA Microbiologica Immunologica Hungarica*, 41(2):197-204.

Gygi S. P, Rochon Y., Franza B. R. and Aebersold R. (1999). Correlation between protein and mRNA abundance in yeast. *Molecular Cell Biology*. 19:1720-30

Hallsworth J. E. (1998). Review: Ethanol-induced water stress in yeast. *Journal of Fermentation and Bioengineering*, **65**(20):125-137.

Hardwick W. A. (1995). Handbook of Brewing. New York: Marcel Dekker, Inc.

Hartl F. U. (1996). Molecular chaperones in cellular protein folding. Nature, 381:571-579.

Herruer M.H., Mager W.H., Raue H.A., Vreken P., Wilms E. and Planta R.J. (1988). Mild temperature shock affects transcription of yeast ribosomal protein genes as well as the stability of their mRNAs. *Nucleic Acids Research*, *16*:7917–7929.

Higgins V. J., Beckhouse A. G., Oliver A., Rogers P. J. and Dawes I. W. (2003). Yeast Genome-Wide Expression Analysis Identifies a Strong Ergosterol and Oxidative Stress Response during the Initial Stages of Industrial Lager fermentation. *Applied and Environmental Microbiology*, **69**(8):4777-4787.

Hobley T.J. and Pamment N. B. (1997). Liquid injection gas chromatography and the ALDH assay overestimation free acetaldehyde in complex fermentation media. *Biotechnol. Tech.*, 11:39-42.

Hohmann S., and H. Cederberg (1990). Autoregulation may control the expression of yeast pyruvate decarboxylase structural genes PDC1 and PDC5. *European Journal of Biochemistry*, **188**:615-621.

Hohmann S. (1993). Characterisation of PDC2, a gene necessary for high level expression of pyruvate decarboxylase structural genes in *Saccharomyce cerevisiae*. *Molecular and General Genetics*, 241: 657-666.

Hottiger T., Boller T. and Wiemkem A. (1987). Rapid changes of heat and desiccation tolerance correlated with changes of trehalose content in *Saccharomyces cerevisiae* cell subject to temperature shifts. *FEBS Letters*, **220**:113-115.

Hottiger T., C. De Virgilio M. N. Hall T. Boller and A. Wiemken (1994). The role of trehalose synthesis for the acquisition of thermotolerance in yeast II. Physiological concentrations of trehalose increase the thermal stability of proteins *in vitro*. *European Journal of Biochemistry*, **219**:187-193

Hounsa C., Brandt E. V., Thevelein J. M., Hohmann S. and Prior B. A. (1998). Role of trehalose in survival of *Saccharomyces cerevisiae* under osmotic stress. *Microbiology*, 144:671-680.

Hu C. K., Bai F. W. and An L. J. (2003). Enhance ethanol tolerance of a self-flocculating fusant of *Schizosaccharomyces Pombe* and *Saccharomyces cerevisiae* Mg²⁺ via reduction in plasma membrane permeability. *Biotechnology letters*, **25**(14):1191-1194.

Ingram L. O. (1986). Microbiol tolerance to alcohols: Role of the cell membrane. *Trends Biotechnology*, **4**:40-44

Ingram L. O. and Buttke T. M. (1984). Effects of Alcohols on Micro-Organisms. *Advances in Microbial Physiology*, **25**:253-300.

Iscaki M. (1975). Acetaldehyde influence on glucose degradation by bakers yeast. C.R. Ferment. *Bioengineering*, **70(1):**34-40.

Ishikawa H., Nobayashi H. and Tanaka H. (1990). Mechanism of fermentation performance of *Zymomonas mobilis* under oxygen supply in batch culture. *Journal of fermentation and Bioengineering*, **70**(1):34-40.

Jahnke L. and Kleim H. P. (1983). Oxygen requirment for formation and activity of the squalene epoxidase in *Saccharomyces cerevisiae*. *Journal of Bacteriology*, 155: 488-492.

Jamieson D. J. (1998). Oxidative Stress Responses of the Yeast Saccharomyces cerevisiae. Yeast, 14:1511-1527.

Jones R. P. & Greenfield (1987). Ethanol and the fluidity of the yeast plasma membrane. *Yeast*, 3:223-232.

Jones R. P. (1988). Intracellular ethanol accumulation and exit from yeast and other cells. *FEMS Microbiology Reviews*, 4:239-258.

Jones R. P. (1989). Biological principals for the effects of ethanol. *Enzyme and Microbial Technology*, 11: 130-153.

Jones R.P. (1990). Roles for replicative deactivation in yeast-ethanol fermentations. *Critical Review of Biotechnology*, 10:205-222.

Juroszek J. R., Feuillat M. and Charpentier C. (1987). Effect of ethanol on the glucose-induced movement of protons across the plasma membrane of *Saccharomyces cerevisiae* NCYC 431. *Canadian Journal of Microbiology*, **33**:93-97.

Kim J., Alizadeh P., Harding T., Hefner-Gravink A. and Klionsky D. J. (1996). Disruption of the yeast ATH1 gene confers better survival after dehydration, freezing and ethanol shock: potential commercial applications. *Applied and Environmental Microbiology*, **62**:1563-1569.

Kobi D. Zugmeyer S. Potier S. and Jaquet-Gutfreund L. (2004). Two-dimensional protein map of an "ale" brewing yeast strain: proteome dynamics during fermentation. *FEMS Yeast research*, **5**(3):213-230.

Koukkou A. I., Tsoukatos D. and Drainas C. (1993). Effect of ethanol on the sterols of the fission yeast Schizosaccharomyces pombe. *FEMS*, **111**(2-3): 171-175.

Leao C. and Van Uden N. (1984). Effects of ethanol and other alkanols on passive proton influx in the yeast *Saccharomyces cerevisiae*. *Biochimica et Biophysica Acta*, 774: 43-48.

Leao C. & van Uden, N. (1982). Effects of ethanol and other alkanols on the glucose transport system of *Saccharomyces cerevisiae*. *Biotechnology and Bioengineering* 24:2601-2604.

Lewis J. G., Learmonth P. R. and Watson K. (1995). Induction of heat, freezing and salt tolerance by heat and salt shock in Saccharomyces cerevisiae. *Microbiology*, 141:687-694.

Lillie S. H. and Pringle J. R. (1980). Reserve carbohydrate metabolism in *Sacchromyces cerevisiae*: responses to nutrient limitation. *Journal of Bacteriology*, 143:1384-1394.

Lindquist S. and Craig E. A. (1988). The heat shock proteins. *Annual Review of Genetic*, 22:631-677.

Linko M., Haikara A., Ritala A. and Penttila (1998). Recent advances in the malting and brewing industry. *Journal of Biotechnology*, **65**: 85-98.

Lloyd D., Morrell S., Carlsen H. N., Degn H., James P. E. and Rowlands C. C. (1993). Effects of growth with ethanol on fermentation and membrane fluidity of *Saccharomyces cerevisiae*. *Yeast*, 9:825-833.

Lucero P., Penalver E., Moreno E. and Lagunas R. (2000). Internal Trehalose Protects from Inhibition by Ethanol in *Saccharomyces cerevisiae*. *Applied and Environmental Microbiology*, **66**(10):4456-4461.

Luyten K. Christine R. and Blondin B. (2002). The hexose transporters of *Saccharomyces cerevisiae* play different roles during enological fermentation. *Yeast* **19**: 713-726.

Mager W. H. & Moradas-Ferreira P. (1993). Stress response of yeast. *Journal of Biochemistry*, 290:1-13.

Mager W. H. & Hohmann S. (1997). Stress response mechanisms in the yeast *Saccharomyces cerevisiae*. In *Yeast Stress Responses*, pp. 1-5. Edited by S. Hohmann & W. H. Mager. Austin, Texas, U.S.A.: R.G. Landes Company.

Maiorella B., Blanch H.W. and Wilke C.W. (1983). By-product inhibition effects on ethanolic fermentation by Saccharomyces cerevisiae. *Biotechnology and Bioengineering*, **25**:103-121.

Majara M., O'Connor-Cox E. S. C. and B. C. Axcell (1996). Trehalose-A Stress Protectant and Stress Indicator Compound for Yeast Exposed to Adverse Conditions. *Journal of American Society of Brewery Chemistry*, **54**(4): 221-227

Mansure J. J. C., Panek A. D., Crowe L. M. and Crowe J. H. (1994). Trehalose inhibits ethanol effects on intact yeast cells and liposomes. *Biochimia ET Biophysica ACTA*, 1191: 309-316.

Mansure, J. J., R. C. Souza and Panek D. A. (1997). Trehalose metabolism in *Saccharomyces cerevisiae* during alcoholic fermentation. *Biotechnology Letters*, 19:1201-1203.

Martinez-Pastor M. T., Marchler G., Schuller C., Marchler-Bauer A., Ruis H. and Estruch F. (1996). The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). *The EMBO Journal*, 15:2227-2235.

Martinez P. Perez Rodriguez L. and Benitez T. (1997). Evolution of flor population during the biological ageing of fino Sherry wine. *American Journal of Enology and Viticulture*, **48**:160-168.

Martini S., Ricci M., Bartolini F. Bonechi C., Braconi D., Millucci L., Santucci A. and Rossi C. (2006). Metaboic response to exogenous ethanol in yeast: an in vivo NMR and methamatical modeling approach. *Biophysical Chemistry*, **120(2)**:135-142.

Mayer J. J., Zia S. and Tzagararkis C. (1994). Acetaldehyde induced stimulation of collagen-synthesis and gene expression is dependent on conditions of cell culture-studies with rat lipocytes and fibroblasts. *Alcohol Clinical Experimental Research*. 18:403-409.

Michnick S., Roustan J. L, Remize F., Barre P., and Dequin S. (1997). Modulation of glycerol and ethanol yields during alcoholic fermentation in *Saccharomyces cerevisiae* strains overexpressed or disrupted for GPD1 encoding glycerol-3-phosphate dehydrogenase. *Yeast*, **13**:783-793.

Mishra, P and Kaur S. (1991). Lipids as modulators of ethanol tolerance in yeast. *Applied microbiology and Bitechnology*, **34**:697-702.

Mishra, P. (1993). Tolerance of Fungi to Ethanol, pp. 189-208 in Stress Tolerance of Fungi. Edited by D. H. Jennings. Marcel Dekker Inc., New York.

Morey J. S., Ryan J. C. and Van Dolan F. M. (2006). Microarray validation: factors influencing correlation between oligonucleotide microarrays and real-time PCR. *Biological Proceeding*, **8**(1):175-193.

Moskvina, E., Schuller, C., Maurer, C. T., Mager, W. H. & Ruis, H. (1998). A search in the genome of *Saccharomyces cerevisiae* for genes regulated via stress response elements. *Yeast*, 14:1041-1050.

Nevoigt E. and Stahl U. (1996). Reduced pyruvate decarboxylase and increased glycerol-3-phosphate dehydrogenase [NAD1] levels enhance glycerol production in *Saccharomyces cerevisiae. Yeast*, **12:**1331–1337.

Nordström K. (1968). Yeast growth and glycerol formation. II. Carbon and redox balances. *Journal of Institute of Brewing*, 74: 429-432

Nwaka, S. & Holzer, H. (1998). Molecular biology of trehalose and the trehalases in the yeast *Saccharomyces cerevisiae*. *Progress in Nucleic Acid Research and Molecular Biology*, San Diego: Academic Press, **58**:197-237.

Nwaka S., Kopp M. and Holzer H. (1995a). Expression and function of the trehalse genes NTH1 and YBR0106 in *Saccharomyces cerevisiae*. Journal of Biological

Chemistry, 270:10193-10198.

Nwaka S., Mechler B., Destruelle M. and Holzer H. (1995b). Phenotypic features of trehalase mutants in *Saccharomyces cerevisiae*. *FEBS Letters*, **360**:286-290.

Obe G. and Ristow H. (1979). Mutagenic, cancerogenic and teratogenic effects of alcohol. *Mutation Research*, **65**:229-259.

O'Connor-Cox, E. S., CLodolo E. J. and Axcell B. C., (1996). Mitochondrial Relevance to Yeast Fermentative Performance. *A Review. Journal of the Institute of Brewing*, 102:19-25.

Ogawa Y., Nitta A., Uchiyama H., Imamura T., Shimoi H. and Ito K. (2000). Tolerance mechanism of the ethanol-tolerance mutant of sake yeast. *Journal of Bioscience and Bioengineering*, **90**(3):313-320.

Omdumeru J.A. D'Amore T., Russell I. and Stewart G.G. (1993). Alternation in fatty-acid composition and trehalose conentration of *Saccharomyces* brewing strains in response to heat and ethanol shock. *Journal of Industrial Microbiology*, **11**: 113-119.

Oura E. (1977). Reaction products of yeast fermentations. *Process of Bichemistry*, April, 19-58.

Ozcan S. and Johnston M. (1995). Three different regulatory mechanisms enable yeast hexose transport (HXT) genes to be induced by different levels of glucose. *Molecular and Cellular Biology*, **15**(3):1564-1572.

Pascual C., Alonson A., Garcia I., Romay C. (1988). Effect of ethanol on glucose transport, key glycolytic enzymes, and proton extrusion in *Saccharomyces cerevisiae*. *Biotechnology and bioengineerings*, **32**: 374-378.

Paltauf F., S. D. Kohlwien and S. A. Henry (1992). Regulation and Compartmentalization of Lipid Synthesis in Yeast, pp. 415-497. The *Molecular and Cellular Biology of the Yeast Saccharomyces: Gene Expression*. Cold Spring Harbour Laboratory Press, New York.

Panek A. D., and Panek A. C. (1990). Metabolism and thermotolerance function of trehalose in *Saccharomyces cerevisiae*: A current perspective. *Journal of Biotechnology*, 14:229-238

Parsell D. A., Sanchez Y. & Lindquist, S. (1991). Hsp104 is a highly conserved protein with two essential nucleotide-binding sites. *Nature*, **353**:270-273.

Parsell D. A. & Lindquist S. L. (1993). The function of heat-shock proteins in stress tolerance: degredation and reactivation of damaged proteins. *Annual Review in Genetics*, **27**:437-496.

Parsell D. A., Kowal A. S., Singer M. A. & Lindquist S. L. (1994). Protein disaggregation mediated by heat-shock protein Hsp104. *Nature*, 372:475-478.

Parrou J. L., Enjalbert B., Plourde L., Bauche A. Gonzalez B. and Francois J. (1999). Dynamic responses of reserve carbohydrate metabolism under carbon and nitrogen limitations in Saccharomyces cerevisiae. *Yeast*, 15:191-203

Parrou J. L., Teste M. A. and Franscois J. (1997). Effect of various types of stress on the metabolism of reserve carbohydrates in *Saccharomyces cerevisiae*: genetic evidence for a stress-induced recycling of glycogen and trehalose. *Microbiology*, **143**: 1891-1900.

Pereira M. D., Herdeiro R. S., Fernandes P. N., E. Eleutherio C. A. and Panek A. D. (2003). Targets of oxidative stress in yeast *sod* mutants. *Biochimica et Biophysica Acta*, 1620 (1-3):245-251

Piper P. W. (1993). Molecular events associated with acquisition of heat tolerance by yeast *Saccharomyces cerevisiae*. *FEMS Microbiology Reviews*, **11**:339-356.

Piper P. W., Ortiz-Calderon C., Holyoak C., Coote P. and Cole M. (1997). Hsp30, the integral plasma membrane heat-shock protein of *Saccharomyces cerevisiae*, is a stress-inducible regulator of plasma membrane H+-ATPase. *Cell Stress Chaperones*, **2**: 12-24.

Piper P. (1995). The heat shock and ethanol stress responses of yeast exhibit extensive similarity and functional overlap. *FEMS Microbiolohy Letters*, **134**: 121-127.

Piper P.W., Talreja K., Panaretou B., Moradas-Ferreira P., Byrne K., Praekelt U.M., Meacock P., Recnacq M. and Boucherie H. (1994). Induction of major heatshock proteins of Saccharomyces cerevisiae, including plasma membrane Hsp30, by ethanol levels above a critical threshold. *Microbiology*, 140:3031-3038.

Plesset J., Palm C. and McLauchlin C. S. (1982). Induction of heat-shock proteins and thermotolerance by ethanol in *Saccharomyces cerevisiae*. *Biochemical and Biophysical Research Communications*, **108**: 1340-1345.

Posas F., Chambers J. R., Heyman J. A., Hoeffler J. P., de Nadal E. and Arino J. (2000). The transcriptional response of yeast to saline stress. *Journal of Biological Chemistry*, **275** (23): 17249-17255.

Praekelt U. M. & Meacock P. (1990). *HSP12*, a new small heat shock protein gene of *Saccharomyces cerevisiae*: Analysis of structure regulation and function. *Molecular and General Genetics*, **223**:97-106.

Protz R. (1998). *The Taste of Beer*. George Weidenfeld & Nicholson Limited, London.

Radler F. and Schutz H. (1982). Glycerol production of various strains of *Saccharomyces. American Journal of Enology and Viticulture*, **33(1):**129-170.

Rank M., Gram J., Nielsen K.S. and Danielsson, (1995). On-line monitoring of ethanol, acetaldehyde and glycerol during industrial fermentations with *Saccharomyces cerevisiae*. *Applied microbiology and Biotechnolog*, **42(6)**:813-817.

Reifenberger E., Boles E. and Ciriacy M. (1997). Kinetic Charaterisation of individual hexose transporters of *Saccharomyces cerervisiae* and their relation to the triggering mechanisms of glucose repression. *European Journal of Biochemistry*, **245**: 324-333.

Remize F. Roustan J. L., Sablayrolles J. M., Barre P., and Dequins S. (1999). Glycerol Overproduction by Engineered *Saccharomyces cerevisiae* Wine Yeast Strains Leads to Substantial Changes in By-Product Formation and to a Stimulation of Fermentation Rate in Stationary Phase. *Applied and Environmental Micorbiology*, **65(1)**:143-149.

Rep M., Krantz M., Thevelein J. M. & Hohmann S. (2000). The transcriptional response of *Saccharomyces cerevisiae* to osmotic shock. *The Journal of Biological Chemistry*, **275**:8290-8300.

Ristow H. Seyfarth A. and Lochmann E.R. (1995). Chromosomal damages by ethanol and acetaldehyde in *Saccharomyces cerevisiae* as studied by pulsed gel electrophoresis. *Mutation Res*earch, **326**:165-170.

Rossignol T., Dulau L., Julien A. and Blondin B. (2003). Genome-wide monitoring of wine yeast gene expression during alcoholic fermentation. *Yeast*, **20**: 1369-1385.

Rosa M. F. and Sa-Correia, I. (1991). In vivo activation by ethanol of plasma membrane ATPase of Saccharomyces cerevisiae. Applied and Environmental Microbiology, 57:830-835

Rose A. H. (1993). Composition of the envelope layers of *Saccharomyces cerevisiae* in relation to flocculation and ethanol tolerance. *Journal of Applied Bacteriology Symposium Supplement*, **74**: 110S-118S.

Ruis H. and Shuller C. (1995). Stress signalling in yeast. *Bioessays*, 17(11): 959-65.

Sajbidor J. (1997). Effect of Some Environmental Factors on the Content and Composition of Microbial Membrane Lipids. *Critical Reviews in Biotechnology* **17:**87-103.

Sajbidor J. and Grego J. (1992). Fatty acid alterations in *Saccharomyces cerevisiae* exposed to ethanol stress. *FEMS Microbiology Letters*, 93:13-16.

Sanchez Y., Parsell D. A., Taulien J., Vogel J. C., Craig E. A. and Lindquist, S. (1993). Genetic evidence for a functional relationship between Hsp104 and Hsp70. *Journal of Bacteriology*, 175:6484-6489.

Sanchez Y., Taulien J., Borkovich K. A. and Lindquist S. (1992). Hsp104 is required for tolerance to many forms of stress. *The EMBO Journal*, 11: 2357-2364.

Sajbidor J. (1997). Effect of some environmental factors on the content and composition of microbial membrane lipids. *Critical Review of Biotechnology*, 17:87-103.

Sajbidor J. and Grego J. (1992). Fatty acid alterations in *Saccharomyces cerevisiae* exposed to ethanol stress. *FEMS Microbiology Letters*, 93: 13-16.

Sales K., Brandt W., Rumbak E. and Lindsey G. (2000). The LEA-like protein HSP 12 in *Saccgaromyces cerevisiae* has a plasma membrane location and protects membranes against desiccation and ethanol-induced stress. *Biochimica et Biophysica Acta*, 1463:267-278.

Salgueiro S. P, Sa-Correia I. and Novais J. M (1988). Ethanol-induced Leakage in *Saccharomyces cerevisiae*: Kinetics and Relationship to Yeast Ethanol Tolerance and Alcohol Fermentation Productivity. *Applied and Environmental Microbiology*, **54**:903-909.

Serrano R. (1991). Transport across the yeast vacuolar and plasma membranes. In *Molecular biology of the yeast Saccharomyces cerevisiae: Genome dynamics, protein synthesis and energetics*, pp. 523-585. Edited by J. N. Strathern, E. W. Jones & J. R. Broach. Cold Springs Harbour, N.Y.: Cold Springs Harbour Laboratory Press.

Shankar C. S., Aneez A., Ramakrishnan M. S. and Umesh-Kumar S. (1996). Mitochondrial NADH dehydrogenase activity and ability to tolerate acetaldehyde determine faster ethanol production in *Saccharomyces cerevisiae*. *Biochemistry and Molecular Biology Int*, 40(1):145-50

Siderius M. & Mager W. H. (1997). General stress response: in search of a common denominator. *In Yeast Stress Responses*, pp. 213-229. Edited by S. Hohmann & W. H. Mager. Austin, Texas, U.S.A.: R.G. Landes Company.

Sies H. (1986). Biochemistry of oxidative stress. Angew Chem Int Ed., England, 25: 1058-1071.

Singer M. A. and Lindquist S. L. (1998). Multiple effects of trehalose on protein folding *in vitro* and *in vivo*. *Molecular Cell*, 1:639-648.

Salgueiro S. P., I. Sa-Correia and J. M. Novais (1988). Ethanol-induced Leakage in *Saccharomyces cerevisiae*: Kinetics and Relationship to Yeast Ethanol Tolerance and Alcohol Fermentation Productivity. *Applied and Environmental Microbiology*, **54**:903-909.

Salmon J. M., Vincent O., Mauricio J. C., Bely M. and Barre P. (1993). Sugar transport inhibition and apparent loss of activity in *Saccharomyces cerevisiae* as a major limiting factor of enological fermentations. *American Journal of Enology and Viticulture*, **44**:56-64.

Soto T., Fernandez J., Vicente-Soler J., Cansado J. and Gacto M. (1999). Accummulation of trehalose by overexpression of tps1, coding for trehalose-6-phosphate synthase, causes increased resistance to multiple stresses in the fission yeast Schizosaccharomyces pombe. *Applied and Enironmental Microbiology*, **65**(5): 2020-2024. **Stanley G. A., Hobley T. J. & Pamment N. B. (1997).** Effect of acetaldehyde on *Saccharomyces cerevisiae* and *Zymomona mobilis* subjected to environmental shocks. *Biotechnology and Bioengineering*, **53**:71-78.

Stanley G. A. and Pamment N. B. (1993). Transport and intracellular accumulation of acetaldehyde in *Saccharomyces cerevisiae*. *Biotechnology and Bioengineering*, **42**:24-29.

Stanley G. A. Douglas N. G., Everu E. J., Tzanatos T. and Pamment N. B. (1993). Inhibition and stimulation of yeast growth by acetaldehydee. *Biotechnology letters*, 15:1199-1204.

Steels L. E., Learmonth R. P. and Watson K. (1994). Stress tolerance and membrane lipid unsaturation in *Saccharomyces cerevisiae* grown aerobically or anaerobically. *Microbiology*, 140:569-576.

Swan T. M. & Watson K. (1997). Membrane fatty acid composition and membrane fluidity as parameters of stress tolerance in yeast. *Canadian Journal of Microbiology*, **43**:70-77.

Swan T. M. & Watson K. (1999). Stress tolerance in a yeast mutant: membrane lipids influence tolerance to heat and ethanol independently of heat shock proteins and trehalose. *Canadian Journal of Microbiology*, **45**:472-479.

Syapin P. J. and Noble E. P. (1979). In: Majchrowicz and E.P. Noble (eds) Biochemistry and Pharmacology of ethanol. *Publishing Co., New York*, 1:521-539

Tamas M. J., Rep M., Thevelein J. M. Hohman S. (1999). Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation. *Molecular Microbiololgy*, **31(4):**1087-104

Then R. and Radler F. (1970). Regulation der Acetaldehydkonzentration im Medium während der alkoholischen Gärung durch *Saccharomyces cerevisiae*. Archives of Microbiology, 72:60-67

Thevelein J. M. (1984). Regulation of trehalose metabolism in fungi. *Microbiology Reviews*, **48**: 42-59.

Thevelein J. M. and Hohmann S. (1995). Trehalose synthase: guard to the gate of glycolysis in yeast. *Trends in Biochemical Science*, **20**:3-10.

Thomas D. S. and A. H. Rose (1979). Inhibitory Effect of Ethanol on Growth and Solute Accumulation by *Saccharomyces cerevisiae*as Affected by Plasma-Membrane Lipid Composition. *Archives of Microbiology*, **122:**49-55.

Tong A. H. Y., Evangelista M., Parsons A. B., Xu H., Bader G. D., Page N., Robinson M., Raghibizadeh S., Hogue C. W. V., Bussey H., Andrews B., Tyers M. and Boone C. (2001). Systematic Genetic Analysis with Ordered Arrays of Yeast Deletion Mutants. *Science*, 294: 2364-2368.

Tong A. H.Y., Lesage G., Bader G.D., Ding H., Xu H., Xin X., Young J., Beriz G. F., Brost R. L., Chang M., Chen Y., Cheng X., Chua G., Friesen H., Goldberg D. S., Haynes J., Humphries C., He G, Hussen S., Ke L., Krogan N., Li Z., Levnson J. N., Lu H., Menard P., Munyana C., Parsons A. B., Ryan O., Tonikian R., Roberts T., Sdicu A., Shapiro J., Sheikh B., Suter B., Wong S. L., Zhang L.V., Zhu H., Burd C. G., Munro S., Sander C., Rine J., Greenblatt J., Peter M., Bretscher A., Bell G., Roth F. P., Brown G. W., Andrews B., Bussey H. and Boone C. (2004). Global Mapping of the Yeast Genetic Interaction Network. *Science*, 303:808-813.

Treger J.M. Schmitt A.P. Simon J.R. and MckEntee K. (1998). Transcriptional factor mutations reveal regulatory complexities of heat shock and newly identified stress genes in *Saccharomyces cerevisiae. Journal of Biological Chemistry*, **273**:62875-26879.

Trollmo C., Andre L., Blomberg A. & Adler L. (1988). Physiological overlap between osmotolerance and thermotolerance in *Saccharomyces cerevisiae*. *FEMS Microbiology Letters*, **56**: 321-326.

Turkel S. and Bissson L. F. (1999). Transcription of the *HXT4* gene in regulated by Gcr1p and Gcr2p in the Yeast *S. cerevisiae*. Yeast **15**: 1045-1057.

Van Dijck P., Colavizza D., Smet P. and Thevelein J. M. (1995). Differential importance of trehalose in stress resistance in fermenting and nonfermenting *Saccharomyces cerevisiae* cells. *Applied and Environmental Microbiology*, **61**:109-115.

Van Leare A. (1989). Trehalose, reserve and/or stress metabolite? *FEMS Microbiology Reviews*, 63:201-210.

Van Uden N. (1985). Ethanol toxicity and ethanol tolerance in yeasts. *Annual Reports* on *Fermentation Processes*, 8:11-58.

Van Uden N. (1984). Effects of ethanol on the temperature relations of viability and growth in yeast. *CRC Critical Reviews in Biotechnology*, 1:263-272.

Van Uden N. (1989). Alcohol toxicity in yeasts and bacteria. CRC Press, Boca Raton, Florida, pp 135–146

Varela J. C. S., Van Beekvelt C. A., Planta R. J. & Mager W. H. (1992). Osmostress induced changes in yeast gene expression. *Molecular Microbiology*, 6:2183-2190.

Van Voorst F., Houghon-Larsen J., Jonson L., kiellan M.C. and Brant A. (2006). Genome-wide identificant of genes required for growth of *Saccharomyces cerevisiae* under ethanol stress. *Yeast*, 23(5):351-359.

Vriesekoop F. and Pamment N. B. (2005). Acetaldehyde addition and pre-adaptation to the stressor together virtually eliminate the ethanol-induced lag phase in Saccharomyces cerevisiae. **41**(5): 424-7.

Walker, G. M. (1994). The role of magnesium in biotechnology. *Critical Reviews in Biotechnology*, 14:311-354.

Walker, G. M., (1998). *Yeast Physiology and Biotechnology*. John Wiley & Sons Ltd., England.

Walker-Caprioglio H. M. and Parks L. W. (1987). Autconditioning factor relieves ethanol-induced growth inhibition of *Saccharomyces cerevisiae*. *Applied Environmental Microbiology*, **50**:685-689.

Walker-Caprioglio H. M., Rodriguez R. Z. and Parks L. W. (1985). Recovery of *Saccharomyces cerevisiae* from ethanol-induced growth inhibition. *Applied Environmental Microbiology*, **53**:33-35.

Wang R., Okamoto M., Xing X. and Crawford N. M. (2003). Microarray Analysis of the Nitrate Response in Arabidopsis Roots and Shoots Reveals over 1,000 Rapidly Responding Genes and New Linkages to Glucose, Trehalose-6-Phosphate, Iron, and Sulfate Metabolism. *Plant Physiology*, **132**:556-567.

Warner J. R. (1999). The economics of ribosome biosynthesis in yeast. *Trends Biochemical Sciences*, 24:437-440.

Watson, K. & Cavicchioli, R. (1983). Aquisition of ethanol tolerance in yeast cells by heat shock. *Biotechnology Letters*, **5**: 683-688.

Wiemken A. (1990). Trehalose in yeast, stress protectant rather than reserve carbohydrate. *Antonie van Leeuwenhoek*, **58**:209-217.

Wykoff D. D. and O'Shea E. K. (2001). *Genetics*, 159:1491–1499.

Yale J. and Bohnert H.J. (2001). Transcriptional expression in saccharomyces cerevisiae at high salinity. *The journal of Biological Chemistry*, 276: 15996-16007.

You K. M., Rosenfield C, and Knipple D. C. (2003). Ethanol tolerance in the yeast Saccharomyces cerevisiae is dependent on cellular oleic acid content. *Applied and Environmental Microbiology*, **69(3):**1499-1503.

APPENDICES

Table of content

Title	Page
APPENDIX I	156
1.1 Buffers and solutions	156
1.2 Enzymes, Molecular Weight Markers and Molecular Biology kits	159
APPENDIX II	161
2.1 Growth curves	161
APPENDIX III	164
3.0 Analysis of gene filter, macroarray, data for ethanol-stressed cells compared to unstressed, control cells	164
APPENDIX IV	235
4.0 Analysis of glass slides, microarray, data for ethanol-stressed cells compared to unstressed, control cells.	235

List of figures

Figure 1: Determination of lag period, growth rate and doubling time for <i>S. cerevisiae</i> PMY1.1	
grown in YEPD medium: Medium only or medium containing different concentrations of	
ethanol	161
Figure 2: Determination of lag period, growth rate and doubling time for <i>S. cerevisiae</i>	
PMY1.1 grown in YEPD medium: .	162
Figure 3: Determination of lag period, growth rate and doubling time for <i>S. cerevisiae</i>	
PMY1.1 grown in YEPD medium:	163
e e e e e e e e e e e e e e e e e e e	

List of Tables

Table 1.1: Reagents obtained from commercial sources	. 159
Table 3.1a: Macroarray data: Genes that were MHE following one hour exposure to 7% ethanol relative to control	164
Table 3.1b: Macroarray data: Genes that were LHE following one hour exposure to 7%	104
ethanol relative to control	.165
Table 3.2a: Macroarray data: Genes that were MHE following five hour exposure to 7% ethanol relative to control.	.193
Table 3.2b: Macroarray data: Genes that were LHE following five hour exposure to 7% ethanol relative to control	.195
Table 3.3a: Macroarray data: genes that were MHE after one hour exposure to 7% ethanol in the presence of acetaldehyde	.220
Table 3.3b: Macroarray data: genes that were LHE after one hour exposure to 7% ethanol in the presence of acetaldehyde.	.224

Table 3.4a: Macroarray data: genes that were MHE after five hour exposure to 7%	
ethanol in the presence of acetaldehyde.	.225
Table 3.4b: Macroarray data: genes that were LHE after five-hour exposure to 7%	
ethanol in the presence of acetaldehyde.	.232
Table 3.5a: Macroarray data: genes that were MHE and LHE after one-hour exposure to	
acetaldehyde only	.234
Table 3.6a : Macroarray data: Shift in gene expression level following five-hour exposure	
to acetaldehyde only	.234
Table 4.1a: Microarray data: genes that were MHE after one-hour exposure to 7%	
ethanol in the presence of acetaldehyde.	.235
Table 4.1b: Microarray data: genes that were LHE after one-hour exposure to 7%	
ethanol in the presence of acetaldehyde.	.244
Table 4.2: Microarray data: genes that were MHE after one-hour exposure to	
acetaldehvde only.	.252

APPENDIX I

1.1 Buffers and solutions

Buffered phenol (for RNA isolation): was prepared using Special Grade phenol (Wako Pure Chemical Industries limited), RNA buffer (see below) and 0.1% (w/v) 8-hydroxyquinoline. Equal volumes of phenol and RNA buffer (5 x) were mixed with the 8-hydroxyquinoline in a brown (light proof) baked bottle with a stirring bar for 10 minutes. The phases were allowed to separate, the aqueous top phase removed and replaced with an equal volume of 1 x RNA buffer. The procedure was repeated using 1 x RNA buffer until the aqueous top phase was at pH 7.5 when tested with pH paper. The buffered phenol was stored at 4°C.

Buffered phenol (for DNA isolation): was prepared using Special Grade phenol (Wako Pure Chemical Industries limited), 50 mM Tris.Cl buffer (see below) and 0.1% (w/v) 8-hydroxyquinoline. Equal volumes of phenol and 50 mM Tris.Cl buffer were mixed with the 8-hydroxyquinoline in a brown (light proof) baked bottle with a stirring bar for 10 minutes. The phases were allowed to separate; the aqueous top phase removed and replaced with an equal volume of 50 mM Tris.Cl buffer. The procedure was repeated using 50 mM Tris.Cl buffer until the aqueous top phase was at pH 8.0 when tested with pH paper. The buffered phenol was stored at 4°C.

Chloroform/ Isoamyl alcohol (25:24): Chloroform (25 ml) and isoamyl alcohol (24 ml) added together and mixed well.

DEPC water: 0.1% DEPC and distilled de-ionized water were mixed well, allowed to stand overnight, and autoclaved.

EDTA 0.5 M: was prepared by dissolving 186.1 g EDTA in 800 ml of distilled deionized water. The solution was dissolved with gentle heating for several hours. The solution was cooled, the pH adjusted to 8.0 with NaOH and the volume adjusted to 1 L. The solution was autoclaved. **Ethidium Bromide:** for non-denaturing RNA and DNA gels was prepared as a 10 mg/ml stock solution by dissolving ethidium bromide with distilled de-ionized water. The stock solution was stored in a baked lightproof glass bottle at 4°C. Ethidium bromide was added to a cooled agarose gel at a final concentration of 1 μ g ml⁻¹.

Geneticin: A stock solution of 100 mg ml⁻¹ was prepared by adding 1 ml of sterile distilled de-ionized water to 100 mg Geneticin G418 in a sterile bottle. The stock solution was dissolved and stored at 4°C. The solution was used at a final concentration of 0.2 mg ml⁻¹.

Gel loading buffer (6 x): 0.2% (w/v) bromophenol blue, 20% (w/v) Ficoll and 10 mM EDTA were dissolved in distilled de-ionized water and filter sterilized into a sterile glass bottle. The solution was stored at 4° C.

25 mM MgCl₂ (Perkin Elmer or Invitrogen): used in PCR reactions and supplied with the enzyme, AmplitaqTM DNA Polymerase or Platinum Taq DNA Polymerase.

PCR buffer (10x): PCR buffer was supplied with the Taq DNA polymerase enzymes, AmplitaqTM (Perkin Elmer) or Platinum Taq (Invitrogen).

RNA lysis buffer (5 x): 2.5 M NaCl, 1 M Tris base and 50 mM EDTA were dissolved in distilled water. The pH was adjusted to 7.5 with HCl and the buffer filter sterilized through a 0.22 μ m filter into a baked glass bottle.

RNA gel loading buffer (6 x): 0.2% (w/v) bromophenol blue, 20% (w/v) Ficoll and 10 mM EDTA were dissolved in DEPC treated water and filter sterilized into a baked glass bottle. The solution was stored at 4°C.

SDS 10%: Sodium dodecyl sulphate was dissolved in distilled de-ionized water by heating to 68°C. The solution was filter sterilized through a 0.45 µm filter into a sterile baked glass bottle.

3M Sodium acetate: Sodium acetate was dissolved in a small amount of DEPC treated water in baked glassware. The pH was adjusted to 5.3 with dilute glacial acetic acid and the solution filter sterilized through a $0.22 \ \mu m$ filter into a baked glass bottle.

Solution 1 (0.1% Tritron X-100, for washing microarray slides): 1 g of Tritron X-100 was dissolved in 1 liter filtered DEPC treated water.

Solution 2 (4.38 mM HCl, for washing microarray slides): 0.38 ml of concentrated HCL (36%, 11.64 M) was added into one litre DEPC treated water and then filtered.

Solution 3 (100 mM KCl, for washing microarray slides): 7.4551 g of KCL was added into one liter DEPC treated water and then filtered.

Blocking buffer: 25% Ethyene glycol and 0.01% HCl.

SSC (20 x): NaCl (175.3 g) and tri-sodium citrate (88.2 g) were dissolved in DEPC treated water. The pH was adjusted to 7.0 with 10M NaOH prior to autoclaving.

TAE buffer (10 x): Tris base (400 mM), 200 mM Sodium acetate, 20 mM EDTA (pH 8) were dissolved in DEPC treated water. pH was adjusted to approximately 7.2 with glacial acetic acid prior to autoclaving. The 10 x stock solution was diluted with DEPC treated water prior to use with RNA.

TBE buffer (10 x): Tris base (0.89 M), 0.89 M boric acid and 20 mM EDTA (pH 8) were dissolved in distilled de-ionized water and autoclaved. The 10 x stock was diluted with distilled se-ionized water prior to use.

TE buffer: contained 10 mM Tris.Cl (pH 7.4) and 1 mM EDTA (pH 8.0). The solution adjusted to pH 8.0 with HCl and was autoclaved.

Tris 1M: Tris base (121.1 g) was dissolved in distilled de-ionized water. The pH was adjusted to 7.5 with glacial acetic acid, the volume adjusted to 1 L and the solution autoclaved.

1.2 Enzymes, Molecular Weight Markers and Molecular Biology kits

Reagents	Commercial sources
RNase ERASE Spray	ICN
DNase I, RNase free	Roche
Recombinant RNasin Ribonuclease inhibitor	Promega
RNA marker	Promega
Dig Easy Hybridisation solution	Roche
Yeast GeneFilters	Invitrogen
Radiolabel (γ^{32} P ATP and α^{33} P CTP)	PerkinElmer
SybGreen dye	Roche
Microarray slides Slide	The Clive & Vera Ramaciotti
	Centre for Gene function analysis
RT-PCR	Invitrogen

 Table 1.1: Reagents obtained from commercial sources

Enzymes: RNase-free DNase (Roche), Amplitaq (Perkin Elmer), Supermix (Invitrogen), RNase A (Epicentre Technologies), T4 Polynucleotide kinase (Ammersham Pharmacia Biotech), Superscript TM II RNase H⁻ Reverse Transcriptase (Gibco BRL Life Technologies), Recombinant RNasin Ribonuclease Inhibitor (Promega), ABI Prism Cycle Sequencing.

Molecular Weight Markers: RNA markers, 0.28-6.58 kb (Promega), 100 bp DNA ladder (Promega), GeneRuler 100 bp DNA Ladder Plus (MBI Fermentas).

LIST OF SUPPLIERS

Applied Biosystems (Foster City, CA, USA)
Amersham Biosciences (Little Chalfont, Buckinghamshire, UK)
Bartelt Instruments Pty Ltd (Heidelberg, Victoria, Australia)
Beckmam Instruments (GmbH, Munchen, Germany)
Bio-Rad Laboratories (Hercules, CA, USA)
B. Braun Biotech International (Melsungen, Germany)
Bresatech Pty Ltd (Adelaide, South Australia)
Epicenter Technologies (Maddison, USA)
Invitrogen Corporation (Carlsbad, California, USA)

New England Biolabs, Inc. (Beverly, MA, USA) PerkinElmer (Wellesley, MA, USA) Promega Corporation (Maddison, USA) Progen Industried Limited (Darra, Queensland, Australia) Qiagen Pty Ltd (Clifton Hill, Victoria, Australia) Roche Diagnostics (GmbH, Mannheim, Germany) Sigma-Aldrich Corporation (St Louis, Missouri, USA)

APPENDIX II

2.1 Growth curves

This section contains replicates of growth curve figures and calculation of lag period, growth rate and double time.

Figure 1: Determination of lag period, growth rate and doubling time for *S. cerevisiae* PMY1.1 grown in YEPD medium: Medium only or medium containing different concentrations of ethanol

Lag Period (h):

 0% ethanol
 0.6

 0.1 g/l acetaldehyde
 0.6

 7% ethanol
 6.1

 7% EtOH & 0.1g/l acet.
 2.0

Growth Rate (h-¹):

 0% ethanol
 0.34

 0.1g/l acetaldehyde
 0.34

 7% ethanol
 0.19

 7% EtOH & 0.1g/l acet.
 0.25

Doubling Time (h):

0% ethanol	2.0
0.1 g/l acetaldehyde	2.0
7% ethanol	3.6
7% EtOH & 0.1 g/l ace	et. 2.8

Figure 2: Determination of lag period, growth rate and doubling time for *S. cerevisiae* PMY1.1 grown in YEPD medium: Medium only, or medium containing 0.1 g/l acetaldehyde, medium containing 7% (v/v) ethanol, or medium containing both 0.1 g/l acetaldehyde & 7% (v/v) ethanol.

Figure 3: Determination of lag period, growth rate and doubling time for *S. cerevisiae* PMY1.1 grown in YEPD medium: Medium only, or medium containing 0.1 g/l acetaldehyde, medium containing 7% (v/v) ethanol, or medium containing both 0.1 g/l acetaldehyde & 7% (v/v) ethanol.

APPENDIX III

Analysis of gene filter, macroarray, data for ethanol-stressed cells compared to unstressed, control cells.

This section of appendix contains the principal raw and calculated data obtained in the thesis, raw data that was not practical to tubulate, which was generated from macroarray and microarray analyses.

Table 3.1a: Macroarray data: Genes that were MHE following one hour exposure to 7% ethanol relative to control.

* Genes also found to be MHE in macroarray experiments for the same conditions at five-hour time point.

ORF/Gene name	Description of gene product	Fold	Putative Transcription
		increase	factors
Stress response			
*HSP26	Heat shock protein	7.3	Msn2/4p, Hsf1p
Energy utilization g	enes		
TDH1	Glyceraldehyde 3-phosphate dehydrogenase (phosphorylating	7.1	Msn2/4p, Hsf1p, Yap1/2p
DLD3	Lactate metabolism (D-lactate dehydrogenase (cytochrome)	5.6	Hsf1p
ALD4	Aldehyde dehydrogenase (NAD+) activity (Ethanol metabolism)	5.4	Hsflp, Yap1/2p
ACS1	Acetyl-CoA biosynthesis (acetate fermentation)	3.4	Msn2/4p, Hsf1p
PYC1	Gluconeogenesis (Pyruvate carboxylase)	3.3	Msn2/4p, Hsf1p
GLC3	Glycogen metabolism (1,4-alpha-glucan branching enzyme activity)	3.0	Msn2/4p
*GLK1	Carbohydrate metabolism (Glucokinase activity)	3.0	Msn2/4p, Hsf1p
Protein folding synt	thesis modification translocation degradation and com	lex assembly	
YDL025C	Protein kinase activity	4 0	Hsfln
1010230	roteni kiluse detivity	1.0	11511p
Transcription and t	ranslation factor and process		
*YBR012W-B	RNA-directed DNA polymerase activity	5.7	Hsflp
YBL101W-B	RNA-directed DNA polymerase activity	3.4	Hsflp
YCL019W	RNA-directed DNA polymerase activity	3.3	Msn2/4p, Hsf1p
Unknown function			
*YCL020W		12.5	Msn2/4p, Hsf1p
*YBL101W-A		10.1	Hsflp
*YJR028W		7.7	Msn2/4p, Hsf1p
*YJR026W		7.2	Msn2/4p
*YMR051C		6.8	Msn2/4p, Hsf1p
*YCL042W		6.6	Msn2/4p, Hsf1p
HBT1		6.5	Msn2/4p, Hsf1p
*YBL005W-A		6.0	Msn2/4p, Hsf1p
*YBR012W-A		5.9	Hsflp
*YAR010C		5.8	Msn2/4p, Hsf1p
*YMR046C		5.7	Msn2/4p, Hsf1p
*YML045W		5.7	Msn2/4p
*YML040W		5.5	Msn2/4p, Hsf1p
YMR050C		3.3	Msn2/4p, Hsf1p
YJR029W		3.2	Msn2/4p, Hsf1p
SPS100		3.0	Msn2/4p, Hsf1p, Yap1/2p

Table 3.1b: Macroarray data: Genes that were LHE following one hour exposure to 7% ethanol relative to control.

*Genes also found to be LHE in macro-array experiments for the same conditions at five-hour	
time point.	

ORF/Gene name	Description of gene product	Fold decrease
Ribosomal proteins	Protein synthesis	
RPP0	Cytosolic small ribosomal subunit	-53.7
*RPS24A	Cytosolic small ribosomal subunit	-43.1
RPS0A	Cytosolic small ribosomal subunit	-39.0
RPS27B	Cytosolic small ribosomal subunit	-38.5
RPS1B	Cytosolic small ribosomal subunit	-37.5
RPL28A	Ribosomal large subunit biogenesis	-35.0
RPS26A	Cytosolic small ribosomal subunit	-34.5
RPS26B	Cytosolic small ribosomal subunit	-34.4
RPS20	Cytosolic small ribosomal subunit	-33.6
RPL24A	Ribosomal large subunit biogenesis	-30.5
RPL15A	Ribosomal large subunit biogenesis	-30.5
RPL1	Ribosomal large subunit biogenesis	-29.6
RPS30	Cytosolic small ribosomal subunit	-29.2
RPL30 / RPL32	Ribosomal large subunit biogenesis	-29.2
RPL4B	Ribosomal large subunit biogenesis	-27.3
RPL35A	Ribosomal large subunit biogenesis	-27.0
RPS2	Cytosolic small ribosomal subunit	-26.8
RPS14A	Cytosolic small ribosomal subunit	-26.5
RPS21	Cytosolic small ribosomal subunit	-26.5
RPL9A	Ribosomal large subunit biogenesis	-26.2
RPS5	Cytosolic small ribosomal subunit	-25.5
RPL35B	Ribosomal large subunit biogenesis	-25.3
RPS33A	Cytosolic small ribosomal subunit	-24.7
RPL20A	Ribosomal large subunit biogenesis	-24.4
RPS1B	Cytosolic small ribosomal subunit	-24.3
RPI 46	Ribosomal large subunit biogenesis	-23.9
RPS6A	Cytosolic small ribosomal subunit	-23.9
RPS10A	Cytosolic small ribosomal subunit	-23.8
RPL1B	Ribosomal large subunit biogenesis	-23.4
UB12	Ribosomal large subunit biogenesis	-23.2
RPI 6A	Ribosomal large subunit biogenesis	-23.1
SUP46	Ribosomal large subunit biogenesis	-22.4
RDI 22 A	Ribosomal large subunit biogenesis	-22.4
RDS11A	Cutosolia small ribosomal subunit	-21.9
DDS18B	Cytosolic small ribosomal subunit	-21.7
DDI 26A	Dibecomel large subunit biogenesis	-21.7
SSM1	Ribosomal large subunit biogenesis	-21.0
	Ribosomal large subunit biogenesis	-21.2
NFL21D DDI 20D	Ribosomal large subunit biogenesis	-21.2
RPL30D DDL24D	Ribosomal large subunit biogenesis	-21.1
RPL34B	Ribosomal large subunit biogenesis	-21.0
KPL4A	Ribosomal large subunit biogenesis	-20.9
RPS13C	Cytosolic small ribosomal subunit	-20.1
RPL3	Ribosomal large subunit biogenesis	-20.2
RPL34A	Ribosomal large subunit biogenesis	-19.9
KPL13A	Ribosomal large subunit biogenesis	-19.8
KPL16A	Ribosomal large subunit biogenesis	-19.8
KP88B	Cytosolic small ribosomal subunit	-19.8
RPL17B	Ribosomal large subunit biogenesis	-19.7
RPL15B	Ribosomal large subunit biogenesis	-19.5
RPL18A1	Ribosomal large subunit biogenesis	-19.4
RPL6A	Ribosomal large subunit biogenesis	-19.3
RPS7B	Cytosolic small ribosomal subunit	-19.1
RPL28	Ribosomal large subunit biogenesis	-19.1
------------------	--	-------------
RPS29A	Cytosolic small ribosomal subunit	-18.7
RPL5B	Ribosomal large subunit biogenesis	-18.2
RPL 17	Ribosomal large subunit biogenesis	-18.0
RPI 10	Ribosomal large subunit biogenesis	-18.0
	Cutosolia mall ribosomal subunit	-18.0
DDC19D	Cytosolic small ribosomal subunit	-1/.4
RPS10D	Cytosolic small ribosomal subunit	-17.1
RPL14A	Ribosomal large subunit biogenesis	-17.0
RPL38	Ribosomal large subunit biogenesis	-17.0
RPL25	Ribosomal large subunit biogenesis	-16.9
RPS8A	Cytosolic small ribosomal subunit	-16.8
RPL14B	Ribosomal large subunit biogenesis	-16.7
RPL27	Ribosomal large subunit biogenesis	-16.6
RPS28A	Cytosolic small ribosomal subunit	-16.4
RPS10B	Cytosolic small ribosomal subunit	-16.3
RPL13A	Ribosomal large subunit biogenesis	-16.1
RPL5A	Ribosomal large subunit biogenesis	-16.1
RPS18A	Cytosolic small ribosomal subunit	-15.5
RPL28B	Ribosomal large subunit biogenesis	-14.8
RPL2B	Ribosomal large subunit biogenesis	-14.4
RPS16B	Ribosomal large subunit biogenesis	-13.4
RPS7A	Ribosomal large subunit biogenesis	-12.6
RPI 24	Ribosomal large subunit biogenesis	-12.0
RDS25	Cutosolia mall ribosomal subunit	-12.4
PDS25B	Cytosolic small ribosonial subunit	-12.0
	Cytosolic small ribosolial subunit	-11.5
DDI 27D	Cytosofic small force subunit biogeneois	-11.0
	Ribosomai large subunit biogenesis	-11.5
RPL43A	Ribosomal large subunit biogenesis	-11.5
RPS2/A	Cytosolic small ribosomal subunit	-11.0
RPL35A	Ribosomal large subunit biogenesis	-10.9
RPS9A	Cytosolic small ribosomal subunit	-10.8
RPL19B	Ribosomal large subunit biogenesis	-10.6
RPS16A	Ribosomal large subunit biogenesis	-10.5
RPL9B	Ribosomal large subunit biogenesis	-10.2
RPS14B	Cytosolic small ribosomal subunit	-10.0
RPL27B	Ribosomal large subunit biogenesis	-9.8
RPS16B	Cytosolic small ribosomal subunit	-9.7
RPL13	Ribosomal large subunit biogenesis	-9.5
RPL45	Ribosomal large subunit biogenesis	-9.5
RPL19A	Ribosomal large subunit biogenesis	-9.2
RPL15B	Ribosomal large subunit biogenesis	-9.2
RPL37A	Ribosomal large subunit biogenesis	-9.1
RPS10A	Cytosolic small ribosomal subunit	-8.9
RPL2	Ribosomal large subunit biogenesis	-8.8
RPL41A	Ribosomal large subunit biogenesis	-8.7
RPLA3	Ribosomal large subunit biogenesis	-8.1
RPS3	Cytosolic small ribosomal subunit	-8.0
RPL35B	Ribosomal large subunit biogenesis	-8.0
RPS31	Cytosolic small ribosomal subunit	-7.3
RPP1A	Ribosomal large subunit biogenesis	-5.8
RPS24B	Cytosolic small ribosomal subunit	-5.7
RPL13R	Ribosomal large subunit biogenesis	-5 3
RP23	Dibosomal large subunit biogenesis	-5.5
MDDC10	Kibusullai laige subullit diogenesis	-5.1 A 0
DDC7D	Critogolia angli nihagang 1 minut	-4.0 1 0
Krð/d DDI 17D	Cytosolic small ribosomal subunit	-4.8
KPL1/B	Ribosomal large subunit biogenesis	-4.5
KPS1B	Cytosolic small ribosomal subunit	-4.2
KPL11A	Ribosomal large subunit biogenesis	-4.1
KPL1/A	Ribosomal large subunit biogenesis	-4.1
RPS19B	Cytosolic small ribosomal subunit	-3.9

RPS30A	Cytosolic small ribosomal subunit	-3.9
MRPL49	Ribosomal large subunit biogenesis	-3.9
RPS12	Cytosolic small ribosomal subunit	-3.8
RPL6B	Ribosomal large subunit biogenesis	-3.7
RPI 47B	Ribosomal large subunit biogenesis	-3.7
MRP4	Mitochondrial ribosome small subunit component	-3.6
PSM10	Mitochondrial ribosome small subunit component	3.6
MDD12	Mitochondrial ribosome small subunit component	-5.0
MRP13	Mitochondrial ribosome small subunit component	-3.5
RPL4/A	Ribosomal large subunit biogenesis	-3.3
MRPL31	Mitochondrial large ribosomal subunit	-3.2
MRP1	Mitochondrial large ribosomal subunit	-3.2
MRP51	Mitochondrial large ribosomal subunit	-3.1
MRPL7	Mitochondrial large ribosomal subunit	-3.1
MRPL11	Mitochondrial large ribosomal subunit	-3.1
RPS24B	Cytosolic small ribosomal subunit	-3.1
RPL43B	Ribosomal large subunit biogenesis	-3.0
MRP10	Mitochondrial ribosome small subunit component	-3.0
WINT TO	witteenonariar ricesonic sinan subunit component	5.0
Ribosomal subunit		
MRT4	Ribosomal large subunit biogenesis	-10.6
BRX1	Ribosomal large subunit assembly and maintenance- rRNA primary transcript	-10.3
RPF2	Ribosomal large subunit assembly and maintenance - rRNA, 5S RNA and 7S	-10.2
EDD2	TRNA binding activity	0.8
EDF2 NOP2	rDNA processing DNA methyltransferase	-9.8
	Riva processing- Kiva incuryinansierase	-0.8
NOP7	Ribosomal large subunit biogenesis	-6.5
NOP8	rRNA processing	-0.5
RRP7	Ribosomal small subunit assembly andmaintenance (358 primary transcript	-4.8
NID7	processing) PDNA processing	-4.0
NIF / VTM1	Riva processing Dibosomal large subunit biogenesis	-4.0
I IMI LOC1	Ribosomal large subunit biogenesis mPNA binding activity	-4.2
NSA1	Ribosomal large subunit biogenesis	-4.0
NOP15	Ribosomal large subunit biogenesis	-3.9
TSR1	Ribosome biogenesis and assembly	-3.8
RI P24	Ribosomal large subunit biogenesis	-3.6
MAK11	Ribosomal large subunit biogenesis	-3.1
NOC2	Ribosome assembly (ribosome nucleus export)	-3.0
SAT1	Ribosomal large subunit assembly and maintenance	-3.0
Cell cycle and growth		22.2
HSL7	Regulation of cell cycle (G2/M transition of mitotic cell cycle)- Protein- arginine N-methyltransferase activity	-23.3
GIC1	Axial budding (cytokinesis) (cellular morphogenesis)- Phosphatidylinositol binding activity (structural constituent of cytoskeleton)	-6.8
YCK1	Cellular morphogenesis (cytokinesis) (endocytosis)- Casein kinase I activity	-6.8
GIC2	Axial budding- Small GTPase regulatory/interacting protein activity	-6.5
SPO12	Exit from mitosis (mitotic cell cycle) (Meiosis I)	-6.1
CLN3	G1/S transition of mitotic cell cycle (regulation of CDK activity)- Cyclin- dependent protein kinase, regulator activity	-6.1
NIS1	Regulation of mitosis	-5.8
ADK1	Cell proliferation- Adenylate kinase activity	-5.7
TAO3	Cellular morphogenesis (budding)	-5.6
UBC9	G2/M transition of mitotic cell cycle (protein modification)- Ubiquitin-like conjugating enzyme activity	-5.5
RSR1	Polar and axial budding (Bud site selection) (small GTPase mediated signal transduction)- RAS small monomeric GTPase activity (signal transducer activity) (small monomeric GTPase activity)	-5.4
SAP4	G1/S transition of mitotic cell cycle- Protein serine/threonine phosphatase activity	-5.2
CKS1	Regulation of cell cvcle-	-5.0
CLG1	Cell cycle- Cyclin-dependent protein kinase, regulator activity	-4.9
ARC35	Cell growth and/or maintenance- Structural molecule activity	-4.9

CKA2	G2/M & G1/S transition of mitotic cell cycle- Protein kinase CK2 activity	-4.9
TOR1	G1 phase of mitotic cell cycle- Phosphatidylinositol 3-kinase activity	-4.8
PPH22	G1/S transition of mitotic cell cycle (protein biosynthesis) (protein amino acid	-4.7
	dephosphorylation)- Protein phosphatase type 2A activity	
CMD1	Budding (cytoskeleton organization and biogenesis)	-4.7
YOR300W	Bud site selection-	-4.6
CLB5	Regulation of CDK activity (G1/S & G2/M transition of mitotic cell cycle) Cyclin-dependent protein kinase, regulator activity	-4.5
SAU5	Cell growth and/or maintenance	-4.5
BIK1	Mitotic anaphase B (mitotic spindle assembly)- Microtubule binding activity	-4.5
LAG1	Cell aging (ceramide biosynthesis)- Protein transporter activity	-4.3
YRB1	G1/S transition of mitotic cell cycle (Protein and RNA-nucleus export)- RAN protein binding activity	-4.2
CLB2	Regulation of CDK activity (G2/M transition of mitotic cell cycle)- Cyclin- dependent protein kinase, regulator activity	-4.0
GRC3	Cell growth and/or maintenance	-4.0
CDC28	G1/S transition of mitotic cell cycle (G2/M transition of mitotic cell cycle) (S phase of mitotic cell cycle) (protein amino acid phosphorylation) regulation of cell cycle. Cyclin.dependent protein kinase activity	-4.0
SIC1	Regulation of CDK activity (G1/S transition of mitotic cell cycle)- Kinase inhibitor activity (protein binding activity)	-3.9
SYF1	Cell cycle (mRNA splicing)	-3.9
SIR2	Cell aging (sensu Saccharomyces)- Histone binding activity (histone binding activity)	-3.8
SRO4	Axial budding (bud site selection)	-3.7
YBR276C	Regulation of S phase of mitotic cell cycle- Protein tyrosine/threonine	-3.7
	phosphatase activity	
PCL1	Cell cycle- Cyclin-dependent protein kinase, regulator activity	-3.6
FKH1	Regulation of cell cycle- Transcription factor activity	-3.6
FIG2	Cellular morphogenesis during conjugation with cellular fusion	-3.6
STB1	G1/S transition of mitotic cell cycle	-3.5
TEM1	M phase of mitotic cell cycle (Signal transduction)- Small monomeric GTPase activity	-3.5
FER3	Cellular morphogenesis	-3.5
POG1	Re-entry into mitotic cell cycle after pheromone arrest- Specific RNA polymerase II transcription factor activity	-3.5
PCH2	Regulation of meiosis	-3.4
RIO1	S phase of mitotic cell cycle (processing of 20S pre-rRNA)- Protein kinase activity	-3.4
NDD1	G2/M-specific transcription in mitotic cell cycle- Transcriptional activator activity	-3.4
GRR1	G1/S transition of mitotic cell cycle (ubiquitin-dependent protein catabolism)- Protein binding activity (ubiquitin-protein ligase activity)	-3.4
PPH21	G1/S transition of mitotic cell cycle/G1/S transition of mitotic cell cycle (protein amino acid Dephosphorylation) (protein biosynthesis)	-3.4
CKB1	G1/S transition of mitotic cell cycle (G2/M transition of mitotic cell cycle) (protein amino acid phosphorylation)- Protein kinase CK2 activity	-3.3
CLB3	G1/S transition of mitoticcell cycle (G2/M transition of mitotic cell cycle) (regulation of CDK activity)- Cyclin-dependent protein kinase, regulator activity	-3.2
WHI2	Regulation of growth (response to stress) Phosphatase activator activity	-3.1
CKB2	G2/M & G1/S transition of mitotic cell cycle- Protein kinase CK2 activity	-3.1
TOR2	G1 phase of mitotic cell cycle (phosphatidylinositol kinase involved in signaling activation of translation initiation)- Phosphatidylinositol 3-kinase	-3.1
RFC2	Cell cycle checkpoint- DNA clamp loader activity (purine nucleotide binding Activity)	-3.0
PRM4	Conjugation with cellular fusion	-3.0
ADY4	Sporulation	-3.0
PHO85	Cell cycle- Cyclin-dependent protein kinase activity	-3.0
TAP42	Cell growth and/or Maintenance (signal transduction)-Protein binding activity	-3.0
TAF12	G1-specific transcription in mitotic cell cycle (transcription initiation from Pol II promoter), protein amino acid and histone acetylation, chromatin	-3.0
	modification- General RNA nolymerase II transcription factor activity	
CLB1	G2/M transition of mitotic cell cycle (meiotic G2/MI transition)- Cyclin- dependent protein kinase, regulator activity	-3.0
PCL2	Cell cycle- Cyclin-dependent protein kinase regulator activity	-3.0

Stress response		
SNQ2	Response to drug- Xenobiotic-transporting ATPase activity	-15.0
MNN4	O-linked &N-linked glycosylation (response to stress)-	-9.6
YNL190W	Response to dessication	-8.5
ALO1	Response to oxidative stress- D-arabinono-1, 4-lactone oxidase activity	-7.6
IST2	Response to osmotic stress	-6.8
YPD1	Response to osmotic stress- Osmosensory signaling pathway via two- component system	-6.8
GRX5	Response to osmotic stress and oxidative stress- Thiol-disulfide exchange	-6.6
GPX2	Response to oxidative stress- Glutathione peroxides activity	-6.1
YBR016W	Response to dessication	-5.8
AGP2	Response to osmotic stress (fatty acid metabolism)- Hydrogen: amino acid symporter activity	-5.6
SVS1	Response to chemical substance	-5.5
ATC1	Response to stress	-5.3
SHO1/SSU81	Osmosensory signaling pathway via Sho1 osmosensor- osmosensor activity	-5.1
HAL1	Salinity response	-4.6
WWM1	Response to dessication	-4.4
CCP1	Response to oxidative stress	-4 3
YHB1	Response to stress	-4.2
YNL234W	Response to stress- Heme binding activity	-4.2
SNG1	Response to drug	-4.0
PSR2	Response to stress- Protein phosphatase activity	-3.8
CCT7	(Protein folding)- Chaperone activity	-3.3
HOGI	Hyperosmotic response- MAP kinase activity	-3.3
OCA1	Response to oxidative stress. Protein tyrosin phosphatase activity	-3.0
00/11	Response to oxidative suess- i fotem tyrosin phosphatase activity	-5.0
Transport & transloc	ation	
HXT2	Hexose transport- Glucose mannose and fructose transporter activity	-36.5
PHO3	Thiamine transport. Acid phosphatase	-35.3
НХТ3	Hexose transport- Glucose transporter*	-26.7
VRG4/GOG5	Nucleotide-sugar transport - Nucleotide-sugar transporter activity	-20.4
SSH1	Protein transporter activity_ Cotranslational membrane targeting	-18.6
Ato3	Nitrogen utilization (transport). Transporter activity	-10.0
K A P123	Protein-nucleus import- Protein carrier activity	-17.5
VMA7	Vacualar acidification. Hydrogen-transporting ATPase activity	-12.5
PMP3	Cation transport	-11.4
NTF2	Protein-nucleus import- RAN protein hinding activity	-11.1
PMA1	Proton transport (regulation of PH). Hydrogen_transporting A TPase activity	-10.6
PHO88	Phosphate transport. Phosphate transporter activity	-10.2
TPO2	Polyamine transport- Spermine transporter activity	-84
	Iron-siderochrome transport- Siderochrome-iron transporter activity	-8.4
SEC61	SRP_dependent cotranslational membrane targeting translocation_ Protein	-8.1
SECO	transporter activity	-0.1
PHO84	Phosphate transport- Inorganic phosphate transporter activity	-7.5
ARFI	ER to Golgi transport (intra-Golgi transport)- ARF small monomeric GTPase activity	-7.3
ZRT3	Zinc ion transport (zinc ion homeostasis)- Zinc ion transporter activity	-7.2
LAC1	Protein transporter activity- Ceramide biosynthesis (aging)	-7.0
EMP70	Transport- transporter activity	-6.9
PDR5	Drug transport (response to drug)- Xenobiotic-transporting ATPase activity	-6.9
SEC63	SRP-dependent cotranslational membrane targeting, translocation- Endoplasmic reticulum receptor activity	-6.8
OAC1	Oxaloacetate transport (sulfate transport)- Oxaloacetate carrier (sulfate porter)	-6.8
YPT1	ER to Golgi transport (protein complex assembly)- RAB small monomeric GTPase activity	-6.5
PPA1	Hydrogen-transporting ATPase activity- Vacuolar acidification	-6.5
VCX1	Calcium ion homeostasis (calium ion transport)- Calcium ion transporter activity	-6.5
FRE1	Iron and copper ion transport- Ferric-chelate reductase activity	-6 0
SEC13	ER to Golgi transport	-6.0
TOM22	Protein transporter activity- Mitochondrial translocation	-6.0
TOM6	Mitochondrial translocation- Protein transporter activity	-6.0
YCP4	Electron transporter activity	-5.9
PXA1	Fatty acid transport- ATP-binding cassette (ABC) transporter activity	-5.7

GOT1	ER to Golgi transport	-5.6
YGR257C/MTM1	Transport- Transporter activity	-5.5
YKT6	Intra-Golgi transport (nonselective vesicle fusion)- v-SNARE activity	-5.4
ERV14	ER to Golgi transport (axial budding)	-5.3
KAP120	Protein-nucleus import- Structural constituent of nuclear pore	-5.3
GLO3	ER to Golgi transport (retrograde (Golgi to ER) Transport- ARF GTPase activaton activity	-5.3
SFH5	Phospholipid transport- Phosphatidylinositol transporter activity	-5.2
ARF2	ER to Golgi transport (intra-Golgi transport)- ARF small monomeric GTPase	-5.1
AGT1	Alpha-glucoside transporter, hexose transporter, maltose permease- Alpha-	-5.0
INID54	Executoria Inegital 1, 4, 5 trianhogeneous 5 phogeneous estivity	4.0
TIM50	Exocytosis- moshol-1, 4, 5-msphosphate 5-phosphatase activity	-4.9
TIM130	Protain transporter activity. Mitochondrial translocation	-4.9
FMP2/	FR to Golgi transport	-4.8
RET2	FR to Golgi transport	-4.8
SAR1	FR to Golgi transport. SAR small monomeric GTPase activity	-4.8
SVI 3	ER to obigi transport SAR sman monomene off ase activity Endocytosis	-4.8
DPR5	mRNA-nucleus export- RNA belicase activity	-4.8
PMP2	Cation transport	-4.7
HIP1	Histidine transport-Histidine transport	-4.7
KRF11	FR to Golgi transport	-4.7
CTP1	mitochondrial citrate transport- Tricarboxylate carrier activity	-4.6
VPH1	Hydrogen-transporting ATPase activity	-4.6
COT1	Cobalt ion transport- Cobalt ion transporter activity	-4 5
ITR2	Myo-inosital transport- Myo-inosital transporter activity	-4 5
FCY2	Cytosine transport (nurine transport)- Cytosine-nurine permease activity	-4.5
FMP47	FR to Golgi transport	-4.4
SFT2	Golgi to endosome transport	-4 4
VPS55	Late endosome to vacuole transport	-4.4
SOP4	ER to Golgi transport	-4 4
TRS33	ER to Golgi transport	-43
VMA8	Hydrogen-transporting ATPase activity- Vacuolar acidification	-43
SLY1	ER to Golgi transport- ER to Golgi transport	-4.2
CHS7	ER to Golgi transport (cell wall chitin biosynthesis)	-4.2
TRK1	Potassium ion homeostasis- Potassium ion transporter activity	-4.2
SCM2	Aromatic amino acid transport- Aromatic amino acid transporter activity	-4.1
SEC1	Exocytosis (nonselective vesicle docking and fusion)- SNARE binding activity	-4.1
ERV46	ER to Golgi transport	-4.1
HXT4	Hexose transport- Glucose, mannose and fructose transporter activity	-4.0
TRK2	Potassium ion homeostasis- Potassium ion transporter activity	-4.0
VMA4	Vacuolar acidification- Hydrogen-transporting ATPase activity	-4.0
BRF2	ER to Golgi transport	-4.0
CHS5	Golgi to plasma membrane transport	-3.9
MUP1	Sulfur amino acid transport- L-methionine porter activity	-3.9
AVT3	Neutral amino acid transport- Neutral amino acid transporter activity	-3.8
TOM7	Mitochondrial translocation- Protein transporter activity	-3.8
PMR1	Calcium and manganese ion transport- Calcium-transporting ATPase activity (manganese-transporting ATPase activity)	-3.8
ATP16	ATP synthesis coupled proton transport- Hydrogen-transporting ATPase	-3.8
HNM1	acuvily Choline transport, Choline transporter activity	_3.8
POM3/	Nucleocytoplasmic transport	-3.7
ARE3	Intracellular protein transport_ARE small monomeric GTPase activ	-3.7
SSS1	Protein transporter activity. Cotranslational membrane targeting	-3.7
HXT6	Hexose transport- Fructose transporter activity (glucose transporter activity)	-3.6
11/10	(mannose transporter	5.0
COG1	Intra-Golgi transport (retrograde (vesicle recycling within	-3.6
CED1	Goigi) (ransport) Drotein transporter activity, Cotranslational membrane, terrative	26
SEBI NU ID57	mDNA mDNA hinding (hnDND)	-3.0
	mRNA mRNA binding (mRNP) and VCDP	-3.0
NCD1	Fleetron transporter activity	-5.0
FDV/1/	ED to Colgi transport	-5.0
PDR10	ATP-hinding cassette (ABC) transporter activity- ATP-hinding cassette	-3.6
	(ABC) transporter activity	-5.0

YNL275W	Transport- Anion transporter activity	-3.5
TOM70	Mitochondrial translocation -Protein transporter activity	-3.5
PHO86	Phosphate transport	-3.5
YHL008C	Transporter activity	-3.5
FET5	Iron ion transport- Multicopper ferroxidase iron transport mediator activity	-3.5
GCS1	ER to Golgi transport- ARF GTPase activator activity	-3.5
SEC4	Golgi to plasma membrane transport (cytokinesis)- RAB small monomeric GTPase activity	-3.5
YPT31	Exocytosis (vesicle-mediated transport)- GTPase activity	-3.4
More 7	Transport- Hexose transporter	-3.4
ERP2	ER to Golgi transport	-3.4
YBT1	Bile acid transport- ATP-binding cassette (ABC) transporter activity (bile acid transporter activity)	-3.4
AVT1	Neutral amino acid transport- Neutral amino acid transporter activity	-3.4
ATX1	Copper ion transport- Copper chaperone activity	-3.4
AKR1	Endocytosis- Palmitoyltransferase activity	-3.4
TPO1	Polyamine transport- Spermidine transporter activity	-3.4
RFT1	Oligosaccharide transporter activity- Oligosaccharide transport (N-linked glycosylation)	-3.4
NUP145	mRNA, mRNA binding (hnRNP),see YGDB	-3.3
RNA1	Protein-nucleus import (rRNA-nucleus export) (ribosome nucleus export)- RNA GTPase activator activity	-3.3
YPR004C	Electron carrier activity	-3.3
NUP133	mRNA-nucleus export, mRNA-binding (hnRNP) protein-nucleus, NLS-	-3.3
	bearing substrate-nucleus import, Import nuclear pore organization and	
	biogenesis, (Structural molecule activity (nuclear pore complex subunit)	
TIP20	Retrograde (Golgi to ER) transport	-3.3
TIM22	Mitochondrial translocation- Protein transporter activity	-3.3
ERV29	ER to Golgi transport	-3.3
MCH5	Transport– Transport activity	-3.3
SRP1	Nucleocytoplasmic transport- Protein carrier activity	-3.3
FUN26	Nucleoside transport- Nucleoside transporter activity	-3.3
YAP1802	Endocytosis- Cytoskeletal adaptor activity	-3.3
TOM71	Protein transporter activity	-3.3
RLI1	ATP-binding cassette (ABC) transporter activity	-3.3
YIP3	ER to Golgi transport	-3.2
ZRC1	Zinc & cobalt ion transport- Zinc ion transporter activity	-3.2
SEC12	ER to Golgi transport- Guanyl-nucleotide exchange factor activity	-3.2
SYS1	Golgi to endosome transport (vesicle organization and Biogenesis	-3.2
ARL1	Vesicle-mediated transport- Small monomeric GTPase activity	-3.2
YHM1	Transporter activity- Mitochondrial genome maintenance (transport)	-3.1
ADP1	Transport- ATP-binding cassette (ABC) transporter activity	-3.1
ATX2	Manganese ion homeostasis- Manganese ion transporter activity	-3.1
FRE2	Iron and copper ion import- Ferric-chelate reductase activity	-3.1
ATP4	ATP synthesis coupled proton transport- Hydrogen-transporting ATPase	-3.1
	activity	
HOLI	Transport- Transporter activity	-3.1
YLKUU4C	I ransport- I ransporter activity	-5.1
MIDI CEE1	Calcium ion transport- Calcium channel activity	-3.1
CSEI MAL 21	Protein-nucleus export- importin-aipna export receptor activity	-3.1
MAL31 VID24	Alpha-glucoside transport- Alpha-glucoside:hydrogen symporter activity	-3.1
	vesicle-ineulated transport	-5.1
APNI4	mDNA mDNA hinding (hnDND) and VCDD	-5.1
ASM4 VED026C	ATD hinding assorts (APC) transporter activity	-3.1
1 EK030C 7PT2	Low affinity zing ion transport. Low affinity zing ion transporter activity	-3.1
RET3	Retrograde (Golgi to FR) transport. Protein hinding activity	-3.0
I STA	Golgi to plasma membrane transport- i rotein transporter activity	-3.0
$\Delta \cap \mathbb{R}^{1}$	Drug transport (monocarboxylic acid transport). Drug transporter activity	-3.0
лул	(monocarboxylic acid transport) – Drug transporter activity)	-5.0
UR\$1	Protein-nucleus export (protein ubiquitination	-3.0
ATP1	ATP synthesis coupled proton transport- Hydrogen-transporting ATPase	-3.0
	activity	2.0
SEC27	Retrograde (Golgi to ER) transport	-3.0
SEH1	mRNA, mRNA binding (hnRNP),see YGDB	-3.0
VPS53	Golgi to vacuole transport	-3.0
	<u> </u>	

SNX41	Protein transporter- Protein transporter activity (Endosome)	-3.0
AGE2	ER to Golgi transport- ARF GTPase activator activity	-3.0
Energy utilization g	enes	
OCR9	Oxidative phosphorylation, ubiquinone to cytochrome c (aerobic respiration)-	-17.7
(Ubiquinol-cytochrome C reductase activity	
ALD6	Acetate biosynthesis -aldehyde dehydrogenase activity	-11.0
IMD2/PUR5	GTP biosynthesis- IMP dehydrogenase activity	-9.5
SOL3	Pentose-phosphate shunt oxidative branch (tRNA processing)	-9.4
NDEI	NADH oxidation (Ethanol fermentation)- NADH dehydrogenase activity	-8.8
MDH2	Gluconeogenesis (malate metabolism)- malic enzyme activity	-8.1
POS18/RPF1	Pentose-nhosnhate shunt. Ribulose-nhosnhate 3-enimerase activity	-8.1
PK11	Pentose phosphate shunt _Ribose_5_nbosphate isomerase activity	-7.6
PDC1	Purivate metabolism (Ethanol fermentation). Purivate decarboxylase activity	-7.2
GND1	Glucose metabolism Dhosphogluconate debydrogenase (decarboxylasting)	-7.1
GND1	activity	-/.1
	activity Durawata matabalism. Durawata dahudraganaga (linaamida) aativity	62
	Pyruvate metabolism (alpha subunit of pyruvate dehydrogenase), pyruvate	-0.2
FDAI	r yiuvate metabolism (alpha subulit of pyiuvate denyulogenase)- pyiuvate	-3.7
	denydrogenase	
TC 4 1	(inpoamide) activity	5 (
ISAI	Regulation of redox nomeostasis- Inforedoxin peroxidase activity	-5.6
PDC5	Pyruvate metabolism (ethanol fermentation)- Pyruvate decarboxylase activity	-5.5
MAL12	Maltose metabolism- Alpha-glucosidase activity	-5.5
EXG1	Glucan metabolism (cell wall organization and biogenesis)- Glucan 1,3-beta-	-5.4
	glucosidase activity	
PFK27	Fructose 2,6-bisphosphate metabolism (regulation of glycolysis)- 6-	-5.1
	phosphofructo-2-kinase activity	
STD1	Glucose metabolism (regulation of transcription from Pol II promoter)- Protein	-5.1
	kinase activator activity	
COX9	Aerobic respiration- Cytochrome c oxidase activity	-4.6
TDH3	Gluconeogenesis (Glycolysis)- Glyceraldehyde 3-phosphate dehydrogenase	-4.6
	(phosphorylating) activity	
QNS1	NAD+ synthase (glutamine-hydrolyzing) activity	-4.6
PSA1	GDP-mannose biosynthesis (cell wall mannoprotein biosynthesis)- Mannose-1-	-4.5
	phosphate guanylyltransferase activity	
SDH2	Oxidative phosphorylation, succinate to ubiquinone- Succinate dehydrogenase	-4.1
	activity	
KTI12	Carbon utilization (cell growth and/or maintenance)- Enzyme regulator activity	-4.0
ARA1	Carbohydrate metabolism- D-arabinose 1-dehydrogenase [NAD(P)] activity	-3.9
ADH6	Alcohol metabolism (aldehvde- Alcohol dehvdrogenase	-3.8
	(NADP+) activity	
GDH1	Glutamate biosynthesis using glutamate dehydrogenase (NAD (P)+)-	-3.8
02111	Glutamate dehydrogenasem (NADP+) activity	5.0
VMA10	Glycogen metabolism- Hydrogen-transporting ATPase activity	-3.8
TAL1	Pentose-phosphate shunt- Transaldolase activity	-37
HRD3	FR-associated protein catabolism- Ubiquitin-protein ligase activity	-3 3
ACS2	A cetyl-CoA biosynthesis- A cetate-CoA ligase activity	-3.3
GFA1	Glucosamine-fructose-6-nhosphate aminotransferase (isomerizing) activity	-3.2
MAE1	Malate debudrogenase (ovaloacetate decarboyulating) activity	-3.2
WIALI	matale denydrogenase (oxaloacetate decarboxylating) activity- (pyruvate	-5.2
DCM1	Glucose 6 phosphate utilization (glucose 1 phosphateutilization)	3.2
FUIVII	Dhagnhachusannitaga activity	-3.2
TUL 1	Phosphoglucomulase activity	2.2
	Fernose-phosphate shuft- fransketolase activity	-5.2
FDH2	Formate catabolism- Formate denydrogenase activity	-3.1
PHO80	Regulation of phosphate metabolism- Cyclin-dependent protein kinase,	-3.1
00775	regulator activity	
COX5A	Aerobic respiration Cytochrome C oxidase activity	-3.1
APH1	Regulation of redox homeostasis- Thioredoxin peroxidase activity	-3.1
TKL2	Pentose-phosphate shunt- Transketolase activity	-3.1
TDH2	Glycolysis (gluconeogenesis)- Glyceraldehyde 3-phosphate dehydrogenase	-3.0
	(phosphorylating) activity	
ERR2	Phosphopyruvate hydratase activity	-3.0
GLC3	Glycogen metabolism	-30
SHP1	Glycogen metabolism	-3.0
Protein folding, synt	hesis, modification, translocation, degradation and complex assembly	
SSB1	Chaperone- Protein biosynthesis	-30.0

nslocation, degradation and complex assembly Chaperone- Protein biosynthesis

SSB2	Protein biosynthesis- ATPase activity (chaperone activity)	-24.4
SSZ1	Chaperone activity- Protein biosynthesis	-14.0
ZUO1	Proteins folding (Z-DNA binding protein)- Chaperone activity	-12.3
THR1	Homoserine metabolism- Homoserine kinase activity	-12.1
MKC7	Proteolysis and peptidolysis- Aspartic-type signal peptidase activity	-12.0
CDC42	Rho subfamily of Ras-like proteins- Rho small monomeric GTPase activity	-11.4
SAM1	Methionine metabolism- Methionine adenosyltransferase activity	-11.1
DED81	Asparaginyl-tRNA aminoacylation- ATP binding activity (asparagine-Trna	-10.5
	ligase activity)	
TWT1	Branched chain family amino acid biosynthesis (amino acid catabolism)-	-10.4
	Branched-chain amino acid aminotransferase activity	
EGD2	Chaperone activity- Nascent polypeptide association	-10.5
YPL037C/EGD11	Nascent polypeptide association- Chaperone activity	-9.9
SAM4	Sulfur amino acid metabolism- Homocysteine S-methyltransferase	-9.9
	activity	
SER3	Serine family amino acid biosynthesis- Phosphoglycerate dehydrogenase	-9.8
SERG	activity	2.0
I V89	Lysine biosynthesis, aminoadinic nathway, Saccharonine dehydrogenase	-9.8
2159	$(NADP+ L_{a})$ and $(NADP+ L_{a})$	-9.0
ΔΔΤ2	Aspartate catabolism & biosynthesis. Aspartate aminotransferase activity	-9.7
SDE2	Pontothenote biosynthesis. A denosylmethioning decarboxylase activity	-9.7
HOME	Thranning and methicating methodism. Homosoring debudrogeness activity	-9.7
SWD1	N linked alveesulation. Deliebul dinheanhe eligesseeharide protein	-9.7
SWPI	N-linked glycosylation- Dolicnyl-alphospho-oligosaccharide-protein	-9.0
	giycosyltransierase activity	0.5
UBRI	Protein monoubiquitination- Ubiquitin-protein ligase activity	-9.5
NMD3	Protein binding activity- RNA binding activity	-9.4
NAT5	Protein amino acid acetylation - Peptide alpha-N-acetyltransferase activity	-9.4
ILV5	Branched chain family amino acid biosynthesis- Ketol-acid reductoisomerase	-9.3
	activity	
LEU1	leucine biosynthesis-3-isopropylmalate dehydratase activity	-8.8
CICI	Protein catabolism- Protein binding activity, bridging	-8.7
HMT1	peptidyl-arginine modification- Protein-arginine N-methyltransferase activity	-8.5
APE3	Vacuolar protein catabolism- Aminopeptidase activity	-8.3
YHR020W	Proline-Trna ligase activity	-7.8
JAC1	Co-chaperone activity- Aerobic respiration (iron-sulfur cluster assembly)	-7.7
WRS1	Tryptophanyl-Trna aminoacylation- Tryptophan-tRNA ligase activity	-7.6
ARO8	Aromatic amino acid family metabolism- Aromatic amino acid transferase	-7.6
	activity	
SHR3	Chaperone activity- ER to Golgi transport (amino acid transport	-7.5
MDN1	Protein complex assembly- ATPase activity	-7.4
DPS1	Protein biosynthesis- Aspartate-tRNA ligase activity	-7.0
TCP1	Protein folding (cytoskeleton organization and biogenesis)- Chaperone activity	-7.3
PRE9	ubiquitin-dependent protein catabolism- Proteasome endopeptidase activity	-6.8
YRB30	Enzyme regulator activity (proteins binding activity)	-6.7
CYS3	cysteine metabolism (sulfur amino acidmetabolism) (transsulfuration)-	-6.7
	cystathionine-gamma-lyase activity	
RRS1	protein biosynthesis- arginine-tRNA ligase activity	-6.6
NIN1	ubiquitin-dependent protein catabolism- Proteasome endopentidase activity	-6.6
AHA1	Protein folding (response to stress)- Chaperone activator activity	-6.5
CCT2	Protein folding. Chaperone activity	-6.4
CVS4	Cysteine biosynthesis- Cystathione beta-synthase activity	-6.4
SRP40	Nucleocytonlasmic transport. Chanerone activity	-6.0
MELI	Glutamate biosynthesis	-0.0
	Dratain monoubiquitingtion. Ubiquitin conjugating anguma activity	-5.9
UBC4 NMT1	N terminal particul gluaina N munistraulation. Chard partica N	-3.9
	N-terminal peptidyl-glycine N-mynstoylation- Olycyl-peptide N-	-3.7
	A remetie emine eaid family biographesis 2 debudre 2 desurrheanhabentenete	57
AK04	Atomatic anno acid family biosynthesis-2-denydro-5-deoxyphosphoneptonate	-3.7
A CD2	A sporaging establism. A sporaging a still	5 5
ASI'S	Asparagine catabolism- Asparaginase activity	-3.3
MTK2	Poly (A)+ Nirna-nucleus export- Protein binding activity	-5.5
SESI	Amino acid activation- serine-tKNA ligase activity	-5.5
LEU9	Leucine biosynthesis-2-isopropylmalate synthase activity	-5.4
GPI16	Attachment of GPI anchor to protein- GPI-anchor transamidase activity	-5.4
CCT6	Protein folding (Cytoskeleton organization and biogenesis)- Chaperone activity	-5.4
FES1	Protein biosynthesis- Adenyl-nucleotide exchange factor activity	-5.4
PRE7	ubiquitin-dependent protein catabolism Proteasome endopeptidase activity	-5.4
STP22	Protein-membrane targeting (protein-vacuolar targeting- Protein binding	-5.3

	activity	
ARO3	Aromatic amino acid family biosynthesis-2-dehydro-3-	-5.3
	Aromatic amino acid family biosynthesis-2-dehydro-3-	
	deoxyphosphoheptonate aldolase activity	
HOM2	Methionine metabolism (threonine metabolism)- aspartate-semialdehyde	-5.2
1101012	debydrogenase activity	0.2
VMD226C	Sarina matchalism. Ovidereductors activity acting on the aldebude or evo	5 0
I WIK220C	Serine metabolism- Oxidoreductase activity, acting on the aldenyde of 0x0	-3.2
CDU1	group of donors, NAD of NADP as acceptor	- 1
CPHI	Protein metabolism	-5.1
MRF1	Protein-ER retention	-5.0
VMA21	Protein complex assembly	-5.0
MAP2	Proteolysis and peptidolysis- Methionyl aminopeptidase activity	-4.9
TTP1	Protein amino acid glycosylation- Alpha-1,2-mannosyltransferase activity	-4.9
PPT1	Protein amino acid phosphorylation- Protein serine/threonine phosphatase	-4.9
PNG1	Misfolded or incompletely synthesized protein catabolism- Peptide-N4- (N-	-4.9
	acetyl-heta glucosaminyl) asparagines amidase activity	
VEL 035C	Protein kinase activator activity	-4.8
A A T 1	A sparaging biosynthesis from avalage tate. A spart to a minotransferase activity	-4.0
MALLI MANULLI	Asparagine biosynthesis non oxabacetate- Asparate animotransferase activity	-4.7
	Protein annio aciu giycosylation Alpha-1, o-maniosylitansietase activity	-4./
MSDI	Protein diosynthesis- Aspartate-tRINA figase activity	-4./
PRE6	Ubiquitin-dependent protein catabolism- Proteasome endopeptidase activity	-4.6
HIS1	Histidine biosynthesis- ATP phosphoribosyltransferase activity	-4.6
YTA2	Ubiquitin-dependent protein catabolism- ATPase activity (proteasome	-4.6
	endopeptidase activity	
ASP1	Aspartate biosynthesis- Aspartate biosynthesis	-4.6
ASP3	Asparagine catabolism- Asparaginase activity	-4.5
PDS1	Protein binding activity	-4 5
PAD1	Aromatic compound catabolism- Carboxy-lyase activity	-4 3
MAK10	Amino acid N-acetyltransferase activity- N-terminal protein amino acid	-4.2
MARIO	Annua dela N-decivitalisterase delivity- N-terminal protein annua dela	-4.2
NOD1	Destain secondary operation (VII us nost interaction	4.2
NOBI	Protein complex assembly- Chaperone activity	-4.2
ARO2	Aromatic amino acid family biosynthesis- Chorismate synthase activity	-4.2
TRP3	Tryptophan biosynthesis- Anthranilate synthase activity	-4.2
SSE1	Protein folding- Co-chaperone activity	-4.1
THS1	Protein biosynthesis- Threonine-tRNA ligase activity	-4.1
RPN3	ubiquitin-dependent protein catabolism- Proteasome endopeptidase activity	-4.1
TRP4	Tryptophan biosynthesis- Anthranilate phosphoribosyltransferase	-4.1
	activity	
RPN9	ubiquitin-dependent protein catabolism- Proteasome endopentidase activity	-4 1
TVS1	Tyrosyl-tRNA aminoacylation (amino acid activation). Tyrosine-tRNA ligase	-4.0
1151	1 yiosyi-tkivA animoacyiation (animo actu activation)- 1 yiosine-tkivA figase	-4.0
TUD 4	activity Theory is a set of the time Theory is a set of the	4.0
THK4	I hreonine metabolism- I hreonine synthase activity	-4.0
CC14	Chaperone activity- protein folding	-4.0
UBC6	Protein monoubiquitination (protein polyubiquitination)- Ubiquitin conjugating	-4.0
	enzyme activity	
GNT1	Protein amino acid glycosylation- Acetylglucosaminyltransferase activity	-4.0
GLN4	Amino acid activation- Glutamine-tRNA ligase activity	-3.9
ASN2	Asparagine biosynthesis- Asparagine synthase (glutamine-hydrolyzing) activity	-3.9
ARG4	Arginine biosynthesis- Argininosuccinate lyase activity	-3.9
LYS2	Lysine biosynthesis aminoadinic nathway- aminoadinate-semialdehyde	-3.8
2102	debydrogenace activity	5.0
CAT11	Methioning meteholism (selengersteing meteholism). A denovilhem overteinge	20
SALL	Methonine metabolism (selenocystellie metabolism)- Adenosymomocystelliase	-3.8
D.D.1.5	activity	2.0
RPN5	ubiquitin-dependent protein catabolism- Proteasome endopeptidase activity	-3.8
GSH1	Glutathione biosynthesis– Glutamate-cysteine ligase activity	-3.6
PRO2	Proline biosynthesis- Glutamate-5-semialdehyde dehydrogenase activity	-3.6
VPS45	Protein chaperone activity- protein assembly activity	-3.6
ASP3	Asparagine catabolism- Asparaginase activity	-3.6
DBF2	Protein amino acid phosphorylation- Protein kinase activity	-3.6
SLT2	MAP kinase activity- signal transduction)	-36
ILV2	Branched chain family amino acid biosynthesis- Threonine dehydratase activity	-3.6
TPK 3	Protein amino acid phosphorylation _ cAMP_dependent protein kinose activity	_2 5
CIC1	Chaparona activity Translational initiation	-5.5
	Unaperone activity- Translational Initiation	-5.5
SCLI	ubiquitin-dependent protein catabolism- Proteasome endopeptidase activity	-3.5
ANPI	N-linked glycosylation- Mannosyltransferase activity	-3.5
GDA1	Protein amino acid glycosylation- Guanosine diphosphatase activity	-3.5
	(uridine diphosphatase activity)	

I ID I	Protein ubiquitination- ubiquitin-protein ligase activity	-3.5
RAM1	Protein amino acid farnesylation- Protein farnesyltransferase activity	-3.4
MSY1	Amino acid activation- Tyrosine-tRNA ligase activity	-3.4
UBA1	Ubiquitin cycle- Ubiquitin activating enzyme activity	-3.3
CDC26	Protein binding activity (ubiquitin-protein ligase activity)	-3.3
PCL10	Cyclin-dependent protein kinase, regulator activity- Regulation of glycogen	-3.3
10210	hiosynthesis (regulation of glycogen catabolism)	0.0
VDR131C	ubiquitin-dependent protein catabolism- Protein binding activity	-33
IDP1	Glutamate biosynthesis (isocitrate metabolism). Isocitrate debydrogenase	_3 3
IDI I	(NADD+) activity	-5.5
MESI	Amine paid activation. Mathianine tPNA ligage activity	2.2
	Libiguitin dependent protein estabolism (stress response)	-3.3
CPS2	Diquini-dependent protein catabolism (sitess response)	-3.3
	Protein bios atheris (actin Channet and a stirn) (and in an in-	-3.5
IPD3	Protein biosynthesis (actin filament organization) (protein amino acto	-3.2
1 1/010	depnosphorylation) (bud growth)- Protein phosphatase type 2A activity	2.2
LYS12	Lysine biosynthesis- isocitrate dehydrogenase activity	-3.2
MNN5	Protein amino acid glycosylation- Alpha-1, 2-mannosyltransferase activity	-3.2
ARGI	arginine biosynthesis- argininosuccinate synthase activity	-3.2
TIM17	Mitochondrial translocation- Protein transporter activity	-3.2
MMS2	Ubiquitin-dependent protein catabolism- ubiquitin conjugating enzyme activity	-3.1
PRE4	ubiquitin-dependent protein catabolism- Proteasome endopeptidase activity	-3.1
DAP2	Protein processing- Dipeptidyl-peptidase and tripeptidyl-peptidase activity	-3.1
PRE8	Ubiquitin-dependent protein catabolism- Proteasome endopeptidase activity	-3.1
YPS7	Aspartic-type endopeptidase activity	-3.1
SCC3	Protein binding activity- Peptidyl-prolyl cis-trans isomerase activity	-3.1
TOM1	Ubiquitin-protein ligase activity	-3.1
MPD2	Protein disulfide-isomerase reaction (protein folding)- Protein disulfide	-3.1
	isomerase activity	
UMP1	Chaperone activity (chaperone activity)	-3.1
PNO1	Protein complex assembly- Chaperone activity	-3.0
YFR010W	Protein deubiquitination- Ubiquitin-specific protease activity	-3.0
MMF1	Isoleucine hiosynthesis	-3.0
SRP14	Protein signal sequence binding activity/ Protein-ER targeting	-3.0
YGR052W	Kinase activity	-3.0
SGN1	Protein metabolism- Poly (A) binding activity	-3.0
50111	Totell metabolism Toty (T) binding detivity	5.0
Signal transduction	arotains	
Signal transduction	proteins	22.0
Signal transduction RAS2	RAS protein signal transduction (small GTP-binding protein)- RAS small	-22.9
Signal transduction J RAS2	oroteins RAS protein signal transduction (small GTP-binding protein)- RAS small monomeric GTPase activity	-22.9
Signal transduction p RAS2 MF(ALPHA)2	Proteins RAS protein signal transduction (small GTP-binding protein)- RAS small monomeric GTPase activity Response to pheromone during conjugation with cellular fusion- Pheromone	-22.9 -22.3
Signal transduction p RAS2 MF(ALPHA)2	Proteins RAS protein signal transduction (small GTP-binding protein)- RAS small monomeric GTPase activity Response to pheromone during conjugation with cellular fusion- Pheromone activity (alpha mating factor)	-22.9 -22.3
Signal transduction p RAS2 MF(ALPHA)2 STE3	oroteins RAS protein signal transduction (small GTP-binding protein)- RAS small monomeric GTPase activity Response to pheromone during conjugation with cellular fusion- Pheromone activity (alpha mating factor) Signal transduction during conjugation with cellular fusion- Mating-type a-	-22.9 -22.3 -12.0
Signal transduction p RAS2 MF(ALPHA)2 STE3	Proteins RAS protein signal transduction (small GTP-binding protein)- RAS small monomeric GTPase activity Response to pheromone during conjugation with cellular fusion- Pheromone activity (alpha mating factor) Signal transduction during conjugation with cellular fusion- Mating-type a- factor pheromone receptor activity	-22.9 -22.3 -12.0
Signal transduction p RAS2 MF(ALPHA)2 STE3 HF(ALPHA)1	Proteins RAS protein signal transduction (small GTP-binding protein)- RAS small monomeric GTPase activity Response to pheromone during conjugation with cellular fusion- Pheromone activity (alpha mating factor) Signal transduction during conjugation with cellular fusion- Mating-type a- factor pheromone receptor activity Response to pheromone during conjugation with cellular fusion- Pheromone	-22.9 -22.3 -12.0
Signal transduction p RAS2 MF(ALPHA)2 STE3 HF(ALPHA)1	Proteins RAS protein signal transduction (small GTP-binding protein)- RAS small monomeric GTPase activity Response to pheromone during conjugation with cellular fusion- Pheromone activity (alpha mating factor) Signal transduction during conjugation with cellular fusion- Mating-type a- factor pheromone receptor activity Response to pheromone during conjugation with cellular fusion- Pheromone activity	-22.9 -22.3 -12.0 -11.6
Signal transduction p RAS2 MF(ALPHA)2 STE3 HF(ALPHA)1 STE24	Proteins RAS protein signal transduction (small GTP-binding protein)- RAS small monomeric GTPase activity Response to pheromone during conjugation with cellular fusion- Pheromone activity (alpha mating factor) Signal transduction during conjugation with cellular fusion- Mating-type a- factor pheromone receptor activity Response to pheromone during conjugation with cellular fusion- Pheromone activity Peptide pheromone maturation- Metalloendopeptidase activity	-22.9 -22.3 -12.0 -11.6 -7.3
Signal transduction p RAS2 MF(ALPHA)2 STE3 HF(ALPHA)1 STE24 RAS1	oroteins RAS protein signal transduction (small GTP-binding protein)- RAS small monomeric GTPase activity Response to pheromone during conjugation with cellular fusion- Pheromone activity (alpha mating factor) Signal transduction during conjugation with cellular fusion- Mating-type a- factor pheromone receptor activity Response to pheromone during conjugation with cellular fusion- Pheromone activity Peptide pheromone maturation- Metalloendopeptidase activity RAS protein signal transduction (G-protein signaling, adenylate cyclase	-22.9 -22.3 -12.0 -11.6 -7.3 -7.2
Signal transduction p RAS2 MF(ALPHA)2 STE3 HF(ALPHA)1 STE24 RAS1	Proteins RAS protein signal transduction (small GTP-binding protein)- RAS small monomeric GTPase activity Response to pheromone during conjugation with cellular fusion- Pheromone activity (alpha mating factor) Signal transduction during conjugation with cellular fusion- Mating-type a- factor pheromone receptor activity Response to pheromone during conjugation with cellular fusion- Pheromone activity Peptide pheromone maturation- Metalloendopeptidase activity RAS protein signal transduction (G-protein signaling, adenylate cyclase activating pathway)- RAS small monomeric GTPase activity	-22.9 -22.3 -12.0 -11.6 -7.3 -7.2
Signal transduction p RAS2 MF(ALPHA)2 STE3 HF(ALPHA)1 STE24 RAS1 WSC3	proteins RAS protein signal transduction (small GTP-binding protein)- RAS small monomeric GTPase activity Response to pheromone during conjugation with cellular fusion- Pheromone activity (alpha mating factor) Signal transduction during conjugation with cellular fusion- Mating-type a- factor pheromone receptor activity Response to pheromone during conjugation with cellular fusion- Mating-type a- factor pheromone receptor activity Response to pheromone during conjugation with cellular fusion- Pheromone activity Peptide pheromone maturation- Metalloendopeptidase activity RAS protein signal transduction (G-protein signaling, adenylate cyclase activating pathway)- RAS small monomeric GTPase activity Rho protein signal transduction- Transmembrane receptor activity	-22.9 -22.3 -12.0 -11.6 -7.3 -7.2 -6.9
Signal transduction p RAS2 MF(ALPHA)2 STE3 HF(ALPHA)1 STE24 RAS1 WSC3 CLA4	proteins RAS protein signal transduction (small GTP-binding protein)- RAS small monomeric GTPase activity Response to pheromone during conjugation with cellular fusion- Pheromone activity (alpha mating factor) Signal transduction during conjugation with cellular fusion- Mating-type a- factor pheromone receptor activity Response to pheromone during conjugation with cellular fusion- Mating-type a- factor pheromone receptor activity Response to pheromone during conjugation with cellular fusion- Pheromone activity Peptide pheromone maturation- Metalloendopeptidase activity RAS protein signal transduction (G-protein signaling, adenylate cyclase activating pathway)- RAS small monomeric GTPase activity Rho protein signal transduction- Transmembrane receptor activity Rho protein signal transduction- Protein serine/threonine kinase activity	-22.9 -22.3 -12.0 -11.6 -7.3 -7.2 -6.9 -6.8
Signal transduction p RAS2 MF(ALPHA)2 STE3 HF(ALPHA)1 STE24 RAS1 WSC3 CLA4 YLR301W	proteins RAS protein signal transduction (small GTP-binding protein)- RAS small monomeric GTPase activity Response to pheromone during conjugation with cellular fusion- Pheromone activity (alpha mating factor) Signal transduction during conjugation with cellular fusion- Mating-type afactor pheromone receptor activity Response to pheromone during conjugation with cellular fusion- Mating-type afactor pheromone receptor activity Response to pheromone during conjugation with cellular fusion- Pheromone activity Response to pheromone maturation- Metalloendopeptidase activity RAS protein signal transduction (G-protein signaling, adenylate cyclase activating pathway)- RAS small monomeric GTPase activity Rho protein signal transduction- Transmembrane receptor activity Rho protein signal transduction- Protein serine/threonine kinase activity Cotranslational membrane targeting-	-22.9 -22.3 -12.0 -11.6 -7.3 -7.2 -6.9 -6.8 -6.4
Signal transduction p RAS2 MF(ALPHA)2 STE3 HF(ALPHA)1 STE24 RAS1 WSC3 CLA4 YLR301W SRP21	proteins RAS protein signal transduction (small GTP-binding protein)- RAS small monomeric GTPase activity Response to pheromone during conjugation with cellular fusion- Pheromone activity (alpha mating factor) Signal transduction during conjugation with cellular fusion- Mating-type afactor pheromone receptor activity Response to pheromone during conjugation with cellular fusion- Mating-type afactor pheromone receptor activity Response to pheromone during conjugation with cellular fusion- Pheromone activity Peptide pheromone maturation- Metalloendopeptidase activity RAS protein signal transduction (G-protein signaling, adenylate cyclase activating pathway)- RAS small monomeric GTPase activity Rho protein signal transduction- Transmembrane receptor activity Rho protein signal transduction- Protein serine/threonine kinase activity Cotranslational membrane targeting- Protein-ER targeting- Protein signal sequence binding activity	-22.9 -22.3 -12.0 -11.6 -7.3 -7.2 -6.9 -6.8 -6.4 -6.4
Signal transduction p RAS2 MF(ALPHA)2 STE3 HF(ALPHA)1 STE24 RAS1 WSC3 CLA4 YLR301W SRP21 SRP101	proteins RAS protein signal transduction (small GTP-binding protein)- RAS small monomeric GTPase activity Response to pheromone during conjugation with cellular fusion- Pheromone activity (alpha mating factor) Signal transduction during conjugation with cellular fusion- Mating-type afactor pheromone receptor activity Response to pheromone during conjugation with cellular fusion- Mating-type afactor pheromone receptor activity Response to pheromone during conjugation with cellular fusion- Pheromone activity Peptide pheromone maturation- Metalloendopeptidase activity RAS protein signal transduction (G-protein signaling, adenylate cyclase activating pathway)- RAS small monomeric GTPase activity Rho protein signal transduction- Transmembrane receptor activity Rho protein signal transduction- Protein serine/threonine kinase activity Cotranslational membrane targeting- Protein-ER targeting- Protein signal sequence binding activity Signal recognition particle binding activity- Protein-ER targeting	-22.9 -22.3 -12.0 -11.6 -7.3 -7.2 -6.9 -6.8 -6.4 -6.4 -5.7
Signal transduction p RAS2 MF(ALPHA)2 STE3 HF(ALPHA)1 STE24 RAS1 WSC3 CLA4 YLR301W SRP21 SRP101 RHO2	proteins RAS protein signal transduction (small GTP-binding protein)- RAS small monomeric GTPase activity Response to pheromone during conjugation with cellular fusion- Pheromone activity (alpha mating factor) Signal transduction during conjugation with cellular fusion- Mating-type afactor pheromone receptor activity Response to pheromone during conjugation with cellular fusion- Mating-type afactor pheromone receptor activity Response to pheromone during conjugation with cellular fusion- Pheromone activity Peptide pheromone maturation- Metalloendopeptidase activity RAS protein signal transduction (G-protein signaling, adenylate cyclase activating pathway)- RAS small monomeric GTPase activity Rho protein signal transduction- Transmembrane receptor activity Rho protein signal transduction- Protein serine/threonine kinase activity Cotranslational membrane targeting- Protein-ER targeting- Protein signal sequence binding activity Signal recognition particle binding activity- Protein-ER targeting Small GTPase mediate signal transduction- Rho small monomeric GTPase	-22.9 -22.3 -12.0 -11.6 -7.3 -7.2 -6.9 -6.8 -6.4 -6.4 -5.7 -5.5
Signal transduction p RAS2 MF(ALPHA)2 STE3 HF(ALPHA)1 STE24 RAS1 WSC3 CLA4 YLR301W SRP21 SRP101 RHO2	proteins RAS protein signal transduction (small GTP-binding protein)- RAS small monomeric GTPase activity Response to pheromone during conjugation with cellular fusion- Pheromone activity (alpha mating factor) Signal transduction during conjugation with cellular fusion- Mating-type afactor pheromone receptor activity Response to pheromone during conjugation with cellular fusion- Mating-type afactor pheromone receptor activity Response to pheromone during conjugation with cellular fusion- Pheromone activity Peptide pheromone maturation- Metalloendopeptidase activity RAS protein signal transduction (G-protein signaling, adenylate cyclase activating pathway)- RAS small monomeric GTPase activity Rho protein signal transduction- Transmembrane receptor activity Rho protein signal transduction- Protein serine/threonine kinase activity Cotranslational membrane targeting- Protein-ER targeting- Protein signal sequence binding activity Signal recognition particle binding activity- Protein-ER targeting Small GTPase mediate signal transduction- Rho small monomeric GTPase activity	-22.9 -22.3 -12.0 -11.6 -7.3 -7.2 -6.9 -6.8 -6.4 -6.4 -5.7 -5.5
Signal transduction p RAS2 MF(ALPHA)2 STE3 HF(ALPHA)1 STE24 RAS1 WSC3 CLA4 YLR301W SRP21 SRP101 RHO2 SMR1	proteins RAS protein signal transduction (small GTP-binding protein)- RAS small monomeric GTPase activity Response to pheromone during conjugation with cellular fusion- Pheromone activity (alpha mating factor) Signal transduction during conjugation with cellular fusion- Mating-type afactor pheromone receptor activity Response to pheromone during conjugation with cellular fusion- Mating-type afactor pheromone receptor activity Response to pheromone during conjugation with cellular fusion- Pheromone activity Peptide pheromone maturation- Metalloendopeptidase activity RAS protein signal transduction (G-protein signaling, adenylate cyclase activating pathway)- RAS small monomeric GTPase activity Rho protein signal transduction- Transmembrane receptor activity Rho protein signal transduction- Protein serine/threonine kinase activity Cotranslational membrane targeting- Protein-ER targeting- Protein signal sequence binding activity Signal recognition particle binding activity- Protein-ER targeting Small GTPase mediate signal transduction- Rho small monomeric GTPase activity Signal transducer activity- rRNA-nucleus export (ribosome nucleus export)	-22.9 -22.3 -12.0 -11.6 -7.3 -7.2 -6.9 -6.8 -6.4 -6.4 -5.7 -5.5 -5.5
Signal transduction p RAS2 MF(ALPHA)2 STE3 HF(ALPHA)1 STE24 RAS1 WSC3 CLA4 YLR301W SRP21 SRP101 RHO2 SMR1 RAM2	proteins RAS protein signal transduction (small GTP-binding protein)- RAS small monomeric GTPase activity Response to pheromone during conjugation with cellular fusion- Pheromone activity (alpha mating factor) Signal transduction during conjugation with cellular fusion- Mating-type afactor pheromone receptor activity Response to pheromone during conjugation with cellular fusion- Mating-type afactor pheromone receptor activity Response to pheromone during conjugation with cellular fusion- Pheromone activity Peptide pheromone maturation- Metalloendopeptidase activity RAS protein signal transduction (G-protein signaling, adenylate cyclase activating pathway)- RAS small monomeric GTPase activity Rho protein signal transduction- Transmembrane receptor activity Rho protein signal transduction- Protein serine/threonine kinase activity Cotranslational membrane targeting- Protein-ER targeting- Protein signal sequence binding activity Signal recognition particle binding activity- Protein-ER targeting Small GTPase mediate signal transduction- Rho small monomeric GTPase activity Signal transducer activity- rRNA-nucleus export (ribosome nucleus export) Protein amino acid farnesylation (pentide pheromone maturation)- Protein	-22.9 -22.3 -12.0 -11.6 -7.3 -7.2 -6.9 -6.8 -6.4 -6.4 -5.7 -5.5 -5.5 -4.8
Signal transduction p RAS2 MF(ALPHA)2 STE3 HF(ALPHA)1 STE24 RAS1 WSC3 CLA4 YLR301W SRP21 SRP101 RHO2 SMR1 RAM2	Proteins RAS protein signal transduction (small GTP-binding protein)- RAS small monomeric GTPase activity Response to pheromone during conjugation with cellular fusion- Pheromone activity (alpha mating factor) Signal transduction during conjugation with cellular fusion- Mating-type afactor pheromone receptor activity Response to pheromone during conjugation with cellular fusion- Mating-type afactor pheromone receptor activity Response to pheromone during conjugation with cellular fusion- Pheromone activity Peptide pheromone maturation- Metalloendopeptidase activity RAS protein signal transduction (G-protein signaling, adenylate cyclase activating pathway)- RAS small monomeric GTPase activity Rho protein signal transduction- Transmembrane receptor activity Rho protein signal transduction- Protein serine/threonine kinase activity Cotranslational membrane targeting- Protein-ER targeting- Protein signal sequence binding activity Signal recognition particle binding activity- Protein-ER targeting Small GTPase mediate signal transduction- Rho small monomeric GTPase activity Signal transducer activity- rRNA-nucleus export (ribosome nucleus export) Protein amino acid farnesylation (peptide pheromone maturation)- Protein farnesylation (peptide pheromone maturation)- Protein	-22.9 -22.3 -12.0 -11.6 -7.3 -7.2 -6.9 -6.8 -6.4 -6.4 -5.7 -5.5 -5.5 -4.8
Signal transduction p RAS2 MF(ALPHA)2 STE3 HF(ALPHA)1 STE24 RAS1 WSC3 CLA4 YLR301W SRP21 SRP101 RHO2 SMR1 RAM2 STE4	proteins RAS protein signal transduction (small GTP-binding protein)- RAS small monomeric GTPase activity Response to pheromone during conjugation with cellular fusion- Pheromone activity (alpha mating factor) Signal transduction during conjugation with cellular fusion- Mating-type afactor pheromone receptor activity Response to pheromone during conjugation with cellular fusion- Mating-type afactor pheromone receptor activity Response to pheromone during conjugation with cellular fusion- Pheromone activity Peptide pheromone maturation- Metalloendopeptidase activity RAS protein signal transduction (G-protein signaling, adenylate cyclase activating pathway)- RAS small monomeric GTPase activity Rho protein signal transduction- Transmembrane receptor activity Rho protein signal transduction Protein serine/threonine kinase activity Cotranslational membrane targeting- Protein-ER targeting- Protein signal sequence binding activity Signal recognition particle binding activity- Protein-ER targeting Small GTPase mediate signal transduction- Rho small monomeric GTPase activity Signal transducer activity- rRNA-nucleus export (ribosome nucleus export) Protein amino acid farnesyltansferase activity Signal transducer activity- rRNA-nucleus export (ribosome nucleus export) Protein amino acid farnesyltansferase activity	-22.9 -22.3 -12.0 -11.6 -7.3 -7.2 -6.9 -6.8 -6.4 -6.4 -5.7 -5.5 -4.8 -4.8
Signal transduction p RAS2 MF(ALPHA)2 STE3 HF(ALPHA)1 STE24 RAS1 WSC3 CLA4 YLR301W SRP21 SRP101 RHO2 SMR1 RAM2 STE4	 Proteins RAS protein signal transduction (small GTP-binding protein)- RAS small monomeric GTPase activity Response to pheromone during conjugation with cellular fusion- Pheromone activity (alpha mating factor) Signal transduction during conjugation with cellular fusion- Mating-type afactor pheromone receptor activity Response to pheromone during conjugation with cellular fusion- Pheromone activity Peptide pheromone during conjugation with cellular fusion- Pheromone activity Peptide pheromone maturation- Metalloendopeptidase activity RAS protein signal transduction (G-protein signaling, adenylate cyclase activating pathway)- RAS small monomeric GTPase activity Rho protein signal transduction- Transmembrane receptor activity Rho protein signal transduction- Protein serine/threonine kinase activity Cotranslational membrane targeting- Protein-ER targeting- Protein signal sequence binding activity Signal recognition particle binding activity- Protein-ER targeting Small GTPase mediate signal transduction- Rho small monomeric GTPase activity Signal transducer activity- rRNA-nucleus export (ribosome nucleus export) Protein amino acid farnesyltransferase activity Signal transduction during (peptide pheromone maturation)- Protein farnesyltransferase activity 	-22.9 -22.3 -12.0 -11.6 -7.3 -7.2 -6.9 -6.8 -6.4 -6.4 -5.7 -5.5 -5.5 -4.8 -4.8
Signal transduction p RAS2 MF(ALPHA)2 STE3 HF(ALPHA)1 STE24 RAS1 WSC3 CLA4 YLR301W SRP21 SRP101 RHO2 SMR1 RAM2 STE4 BMH2	 Proteins RAS protein signal transduction (small GTP-binding protein)- RAS small monomeric GTPase activity Response to pheromone during conjugation with cellular fusion- Pheromone activity (alpha mating factor) Signal transduction during conjugation with cellular fusion- Mating-type afactor pheromone receptor activity Response to pheromone during conjugation with cellular fusion- Mating-type afactor pheromone receptor activity Response to pheromone during conjugation with cellular fusion- Mating-type afactor pheromone receptor activity Response to pheromone maturation- Metalloendopeptidase activity RAS protein signal transduction (G-protein signaling, adenylate cyclase activating pathway)- RAS small monomeric GTPase activity Rho protein signal transduction- Transmembrane receptor activity Rho protein signal transduction- Protein serine/threonine kinase activity Cotranslational membrane targeting- Protein-ER targeting- Protein signal sequence binding activity Signal recognition particle binding activity- Protein-ER targeting Small GTPase mediate signal transduction- Rho small monomeric GTPase activity Signal transducer activity- rRNA-nucleus export (ribosome nucleus export) Protein amino acid farnesyltion (peptide pheromone maturation)- Protein farnesyltransferase activity Signal transduction during conjugation with cellular fusion- Heterotrimeric G-protein GTPase activity 	-22.9 -22.3 -12.0 -11.6 -7.3 -7.2 -6.9 -6.8 -6.4 -6.4 -5.7 -5.5 -5.5 -4.8 -4.8 -4.8 -4.1
Signal transduction p RAS2 MF(ALPHA)2 STE3 HF(ALPHA)1 STE24 RAS1 WSC3 CLA4 YLR301W SRP21 SRP101 RHO2 SMR1 RAM2 STE4 BMH2 SRP68	 Proteins RAS protein signal transduction (small GTP-binding protein)- RAS small monomeric GTPase activity Response to pheromone during conjugation with cellular fusion- Pheromone activity (alpha mating factor) Signal transduction during conjugation with cellular fusion- Mating-type afactor pheromone receptor activity Response to pheromone during conjugation with cellular fusion- Mating-type afactor pheromone receptor activity Response to pheromone during conjugation with cellular fusion- Pheromone activity Response to pheromone during conjugation with cellular fusion- Pheromone activity Response to pheromone maturation- Metalloendopeptidase activity RAS protein signal transduction (G-protein signaling, adenylate cyclase activating pathway)- RAS small monomeric GTPase activity Rho protein signal transduction- Protein serine/threonine kinase activity Rho protein signal transduction- Protein serine/threonine kinase activity Cotranslational membrane targeting- Protein-ER targeting- Protein signal sequence binding activity Signal recognition particle binding activity- Protein-ER targeting Small GTPase mediate signal transduction- Rho small monomeric GTPase activity Signal transducer activity- rRNA-nucleus export (ribosome nucleus export) Protein amino acid farnesyltanof (peptide pheromone maturation)- Protein farnesyltransferase activity Signal transduction during conjugation with cellular fusion- Heterotrimeric G-protein GTPase activity RAS protein signal transduction 	-22.9 -22.3 -12.0 -11.6 -7.3 -7.2 -6.9 -6.8 -6.4 -6.4 -5.7 -5.5 -4.8 -4.8 -4.8 -4.1 -3.9
Signal transduction p RAS2 MF(ALPHA)2 STE3 HF(ALPHA)1 STE24 RAS1 WSC3 CLA4 YLR301W SRP21 SRP101 RH02 SMR1 RAM2 STE4 BMH2 SRP68 PDE2	proteins RAS protein signal transduction (small GTP-binding protein)- RAS small monomeric GTPase activity Response to pheromone during conjugation with cellular fusion- Pheromone activity (alpha mating factor) Signal transduction during conjugation with cellular fusion- Mating-type afactor pheromone receptor activity Response to pheromone during conjugation with cellular fusion- Mating-type afactor pheromone receptor activity Response to pheromone during conjugation with cellular fusion- Pheromone activity Peptide pheromone maturation- Metalloendopeptidase activity RAS protein signal transduction (G-protein signaling, adenylate cyclase activating pathway)- RAS small monomeric GTPase activity Rho protein signal transduction- Transmembrane receptor activity Rho protein signal transduction - Protein serine/threonine kinase activity Cotranslational membrane targeting- Protein-ER targeting - Protein signal sequence binding activity Signal recognition particle binding activity- Protein-ER targeting Small GTPase mediate signal transduction- Rho small monomeric GTPase activity Signal transducer activity- rRNA-nucleus export (ribosome nucleus export) Protein amino acid farnesylation (peptide pheromone maturation)- Protein farnesyltransferase activity Signal transduction during conjugation with cellular fusion- Heterotrimeric G-protein GTPase activity RAS protein signal transduction Protein	-22.9 -22.3 -12.0 -11.6 -7.3 -7.2 -6.9 -6.8 -6.4 -6.4 -6.4 -5.7 -5.5 -4.8 -4.8 -4.8 -4.8 -4.1 -3.9 -3 9
Signal transduction p RAS2 MF(ALPHA)2 STE3 HF(ALPHA)1 STE24 RAS1 WSC3 CLA4 YLR301W SRP21 SRP101 RH02 SMR1 RAM2 STE4 BMH2 SRP68 PDE2 CMP2	 Proteins RAS protein signal transduction (small GTP-binding protein)- RAS small monomeric GTPase activity Response to pheromone during conjugation with cellular fusion- Pheromone activity (alpha mating factor) Signal transduction during conjugation with cellular fusion- Mating-type afactor pheromone receptor activity Response to pheromone during conjugation with cellular fusion- Mating-type afactor pheromone receptor activity Response to pheromone during conjugation with cellular fusion- Pheromone activity Response to pheromone maturation- Metalloendopeptidase activity RAS protein signal transduction (G-protein signaling, adenylate cyclase activating pathway)- RAS small monomeric GTPase activity Rho protein signal transduction- Transmembrane receptor activity Rho protein signal transduction- Protein serine/threonine kinase activity Cotranslational membrane targeting- Protein-ER targeting- Protein signal sequence binding activity Signal recognition particle binding activity- Protein-ER targeting Small GTPase mediate signal transduction- Rho small monomeric GTPase activity Signal transducer activity rRNA-nucleus export (ribosome nucleus export) Protein amino acid farnesyltansferase activity Signal transduction during conjugation with cellular fusion- Heterotrimeric G-protein GTPase activity RAS protein signal transduction Protein signal sequence binding activity- Protein-ER targeting cAMP-mediated signaling- camp-specific phosphodiesterase activity Advattion to heteromone during conjugation with cellular fusion - Gleiner 	-22.9 -22.3 -12.0 -11.6 -7.3 -7.2 -6.9 -6.8 -6.4 -6.4 -6.4 -5.7 -5.5 -4.8 -4.8 -4.8 -4.8 -4.1 -3.9 -3.9 -3.9 -3.7
Signal transduction p RAS2 MF(ALPHA)2 STE3 HF(ALPHA)1 STE24 RAS1 WSC3 CLA4 YLR301W SRP21 SRP101 RH02 SMR1 RAM2 STE4 BMH2 SRP68 PDE2 CMP2	 Proteins RAS protein signal transduction (small GTP-binding protein)- RAS small monomeric GTPase activity Response to pheromone during conjugation with cellular fusion- Pheromone activity (alpha mating factor) Signal transduction during conjugation with cellular fusion- Mating-type afactor pheromone receptor activity Response to pheromone during conjugation with cellular fusion- Pheromone activity Response to pheromone maturation- Metalloendopeptidase activity RAS protein signal transduction (G-protein signaling, adenylate cyclase activating pathway)- RAS small monomeric GTPase activity Rho protein signal transduction- Transmembrane receptor activity Rho protein signal transduction- Protein serine/threonine kinase activity Cotranslational membrane targeting- Protein-ER targeting- Protein signal sequence binding activity Signal recognition particle binding activity- Protein-ER targeting Small GTPase mediate signal transduction- Rho small monomeric GTPase activity Signal transducer activity- rRNA-nucleus export (ribosome nucleus export) Protein amino acid farnesyltansferase activity Signal transduction during conjugation with cellular fusion- Heterotrimeric G-protein Signal transduction Protein signal sequence binding activity- Protein-ER targeting Signal transduction during conjugation with cellular fusion- Heterotrimeric G-protein signal sequence binding activity RAS protein signal sequence binding activity RAS protein signal transduction Protein amino acid farnesyltransferase activity Signal transduction during conjugation with cellular fusion- ER targeting cAMP-mediated signaling- camp-specific phosphodiesterase activity Adaptation to pheromone during conjugation with cellular fusion- Calcium-demedant protein serina	$\begin{array}{c} -22.9 \\ -22.3 \\ -12.0 \\ -11.6 \\ -7.3 \\ -7.2 \\ -6.9 \\ -6.8 \\ -6.4 \\ -6.4 \\ -5.7 \\ -5.5 \\ -5.5 \\ -4.8 \\ -4.8 \\ -4.8 \\ -4.1 \\ -3.9 \\ -3.9 \\ -3.9 \\ -3.7 \end{array}$
Signal transduction p RAS2 MF(ALPHA)2 STE3 HF(ALPHA)1 STE24 RAS1 WSC3 CLA4 YLR301W SRP21 SRP101 RH02 SMR1 RAM2 STE4 BMH2 SRP68 PDE2 CMP2 RGS2	proteins RAS protein signal transduction (small GTP-binding protein)- RAS small monomeric GTPase activity Response to pheromone during conjugation with cellular fusion- Pheromone activity (alpha mating factor) Signal transduction during conjugation with cellular fusion- Mating-type a- factor pheromone receptor activity Response to pheromone during conjugation with cellular fusion- Mating-type a- factor pheromone receptor activity Response to pheromone during conjugation with cellular fusion- Pheromone activity Peptide pheromone maturation- Metalloendopeptidase activity RAS protein signal transduction (G-protein signaling, adenylate cyclase activating pathway)- RAS small monomeric GTPase activity Rho protein signal transduction- Transmembrane receptor activity Rho protein signal transduction- Protein serine/threonine kinase activity Cotranslational membrane targeting- Protein-ER targeting- Protein signal sequence binding activity Signal recognition particle binding activity- Protein-ER targeting Small GTPase mediate signal transduction- Rho small monomeric GTPase activity Signal transducer activity rRNA-nucleus export (ribosome nucleus export) Protein amino acid farnesylation (peptide pheromone maturation)- Protein farnesyltransferase activity Signal transduction during conjugation with cellular fusion- Heterotrimeric G- protein GTPase activity RAS protein signal sequence binding activity- Protein-ER targeting cAMP-mediated signaling- camp-specific phosphodiesterase activity Adaptation to pheromone during conjugation with cellular fusion- Calcium-	-22.9 -22.3 -12.0 -11.6 -7.3 -7.2 -6.9 -6.8 -6.4 -6.4 -6.4 -5.7 -5.5 -4.8 -4.8 -4.8 -4.8 -4.1 -3.9 -3.9 -3.7 -3.9
Signal transduction p RAS2 MF(ALPHA)2 STE3 HF(ALPHA)1 STE24 RAS1 WSC3 CLA4 YLR301W SRP21 SRP101 RH02 SRP101 RH02 SMR1 RAM2 STE4 BMH2 SRP68 PDE2 CMP2 RGS2	 Proteins RAS protein signal transduction (small GTP-binding protein)- RAS small monomeric GTPase activity Response to pheromone during conjugation with cellular fusion- Pheromone activity (alpha mating factor) Signal transduction during conjugation with cellular fusion- Mating-type afactor pheromone receptor activity Response to pheromone during conjugation with cellular fusion- Pheromone activity Response to pheromone during conjugation with cellular fusion- Pheromone activity Response to pheromone during conjugation with cellular fusion- Pheromone activity Response to pheromone maturation- Metalloendopeptidase activity RAS protein signal transduction (G-protein signaling, adenylate cyclase activating pathway)- RAS small monomeric GTPase activity Rho protein signal transduction- Transmembrane receptor activity Rho protein signal transduction- Protein serine/threonine kinase activity Cotranslational membrane targeting- Protein-ER targeting- Protein signal sequence binding activity Signal recognition particle binding activity- Protein-ER targeting Small GTPase mediate signal transduction- Rho small monomeric GTPase activity Signal transducer activity- rRNA-nucleus export (ribosome nucleus export) Protein amino acid farnesylation (peptide pheromone maturation)- Protein farnesyltransferase activity RAS protein signal transduction Protein signal sequence binding activity- Protein-ER targeting cAMP-mediated signaling- camp-specific phosphodiesterase activity Adaptation to pheromone during conjugation with cellular fusion- Calcium-dependent protein serine/threonine phosphatase activity 	$\begin{array}{c} -22.9 \\ -22.3 \\ -12.0 \\ -11.6 \\ -7.3 \\ -7.2 \\ -6.9 \\ -6.8 \\ -6.4 \\ -6.4 \\ -5.7 \\ -5.5 \\ -5.5 \\ -4.8 \\ -4.8 \\ -4.8 \\ -4.1 \\ -3.9 \\ -3.9 \\ -3.7 \\ -3.9 \end{array}$

GPA1	Signal transduction during conjugation with cellular fusion- Heterotrimeric G-	-3.9
	protein GTPase activity	
RTG2	Intracellular signaling cascade	-3.5
MSO1	Nonselective vesicle docking	-3.5
MUC1	Signal transducer activity- Cell-cell adhesion (cell surface flocculin with	-3.3
	structure similar to serine/threonine-rich GPI anchored cell wall proteins)	
SRV2	RAS protein signal Transduction (cytoskeleton organization & biogenesis)-	-31
51112	Adenvlate cyclase binding activity (cytoskeletal protein bindingactivity)	0.1
$DE \Lambda 2$	Cytoskeletal regulatory protein binding activity. Actin filament organization	3.0
I LAZ	Cytoskeletal regulatory protein binding activity- Actin mament organization	-3.0
IR A 2	RAS protein signal transduction- Ras GTPase activator activity	-3.0
11(712	KAS protein signal transduction- Kas off ase activator activity	-5.0
Nucleotides Metabol	lism	
URA1	Pyrimidine base biosynthesis -Dihydroorotate dehydrogenase activity	-23.0
AAH1	Adenine catabolism- Adenine deaminase activity	-20.5
HTA2	Chromatin assembly /disassembly (Histone H2A)- DNA binding activity	-20.0
MPT4	Telomere maintenance (anti-apoptosis)- Telomeric DNA binding activity	-17.5
HTB2	Chromatin assembly /disassembly (histone H2B)- DNA hinding activity	-16.4
HTB1	Chromatin assembly /disassembly (histone H2B) DNA binding activity	-14.9
	DNA replication. Pibenualogsida dinhagnhata reductaça activity	-14.)
KINKZ	DNA replication- Ribonucleoside-dipliosphale reductase activity	-13.9
SML1	Response to DNA damage- Enzyme inhibitor activity	-13.0
HHTI	Chromatin assembly/disassembly- DNA binding activity	-13.3
YOR247W	Nucleobase, nucleoside, nucleotide and nucleic acid metabolism	-13.1
TRX2	DNA dependent DNA replication (response to oxidative stress)- Thiol-disulfide	-11.5
	exchange intermediate activity	
FUR1	Pyrimidine salvage- Uracil phosphoribosyltransferase activity	-11.3
HPT1	Purine nucleotide biosynthesis- Hypoxanthine phosphoribosyltransferase	-11.0
	activity	11.0
URA4	Pyrimidine nucleotide biosynthesis- Dihydroorotase activity	-10.5
GSP1	Nuclear organization and biogenesis- RAN small monomeric GTPase activity	-10.5
MCM3	DNA replication initiation. ATP dependent DNA helicase activity	_9.4
	Diviniding base biogenthesis. Orotate phosphoribogultransforase activity	-).4
UKAJ MOOZ	Fyrinnenie base biosynniesis- Ofotate phosphoribosyntansierase activity	-9.5
MSC/	Melotic recombination	-8.9
URA/	Pyrimidine base biosynthesis- CTP synthase activity	-8.3
ADO1	Purine base metabolism- Adenosine kinase activity	-8.0
POL30	Base-excision repair (mismatch repair) (postreplication repair) (leading strand	-7.6
	elongation)- DNA polymerase processivity factor	
	activity	
YDL125C	Nucleotide metabolism- Hydrolase activity (nucleotide binding	-7.5
NPT1	Chromatin silencing at ribosomal DNA (rDNA) (nicotinate nucleotide	-7.0
	hiosynthesis salvage nathway)- Nicotinate phosphoribosyltransferase activity	
RFC3	Leading strand elongation (mismatch renair)- DNA clamp loader (ATPase)	-6.8
	DNA ranging DNA hinding activity	-0.8
IARI	DNA repail- DNA binding activity	-0.7
PRII	DNA replication initiation- Alpha DNA polymerase activity	-0.7
ASFI	Induction of apoptosis by DNA damage- Historie binding activity	-6.5
RFA3	DNA replication, priming, and elongation- DNA binding activity	-6.3
NUC1	DNA recombination- Endodeoxyribonuclease activity	-6.1
YLR003C	Regulation of DNA replication	-5.8
HHF1	DNA binding activity- Chromatin assembly/disassembly	-5.8
PHO13	Histone dephosphorylation (protein amino acid dephosphorylation-4-	-5.8
	nitrophenylphosphatase activity (alkaline phosphatase activity)	
HUS2	Base-excision renair (lagging & leading strand elongation) (mismatch renair)-	-5.7
110.52	Delta DNA nolymerase activity	-5.7
L 1171	Double strend break reneir via nonhomologous and joining	56
LIFI	Double-strand break repair via nonnomologous end-joining	-5.0
ADE13	Purine base metabolism- Adenylosuccinate lyase activity	-5.4
RAII	RNA catabolism (processing of 27S pre-rRNA)- Enzyme regulator activity	-5.3
PAN3	Postreplication repair (DNA repair)- Poly (A)-specific ribonuclease activity	-5.1
MSI1	DNA repair (RAS signal transduction	-5.1
SAN1	Establishment and/or maintenance of chromatin architecture	-5.1
TRX1	DNA dependent DNA Replication (regulation of redox Homeostasis)- Thiol-	-4.9
	disulfide exchange intermediate activity	
YFR038W	Helicase activity	-4.9
RNR4	DNA replication- Ribonucleoside-dinhosphate reductase activity	-4 7
CTF8	Sister chromatid cohesion	-4.6
	Chromatin assembly/disassembly, DNA binding activity	0
	DNA mean him as seniory/disasseniory- DNA Dinding activity	-4.0
KAD57	DINA recombinase assembly- Protein binding activity	-4.4

CDC9	DNA ligation (DNA recombination) (base-excision repair) (base-excision	-4.3
	repair)- DNA ligase (ATP) activity	
STS1	Chromosome segregation	-4.3
PAT1	Chromosome segregation (regulation of translational initiation)	-4.2
PMS1	Meiosis (mismatch repair)- ATP binding activity (ATPase activity)	-4.1
RFA1	DNA recombination (DNA replication, priming) (DNA strand elongation)	-4.1
	(DNA unwinding) (double-strand break repair)- Damaged DNA binding	
	activity	
SPC3	Signal peptide processing- Signal peptidase activity	-4.1
APA1	Nucleotide metabolism- Bis (5'-nucleosyl)-tetraphosphatase	-4.0
	activity	
NOC3	DNA replication initiation (rRNA processing)- Chromatin binding activity	-3.9
	(protein binding activity)	
MSH2	DNA recombination (mismatch repair)- ATP binding activity (ATPase activity)	-3.8
MGS1	DNA replication (regulation of DNA	-3.6
	Replication)- ATPase activity (helicase activity)	
MCM1	DNA replication initiation (regulation of transcription from Pol II promoter)-	-3.5
	DNA replication origin binding activity (DNA replication activity)	
ORC3	DNA replication initiation -DNA replication origin binding activity	-3.5
URA6	Nucleobase, nucleoside, nucleotide and nucleic acid metabolism- Uridine	-3.5
	kinase activity	
SDT1	Pyrimidine base metabolism- Nucleotidase activity	-3.5
RGD2	Small GTPase mediated signal transduction- Rho GTPase activator activity	-3.4
CCE1	DNA recombination- Endodeoxyribonuclease activity	-3.4
RSC9	Chromatin modeling- Chromatin binding activity	-3.4
TBF1	Loss of chromatin silencing- DNA binding activity (transcription factor	-3.4
	activity)	
ACT3	Establishment and/or maintenance of chromatin architecture- Chromatin	-3.4
	binding activity (histone acetyltransferase activity)	
TRF4	DNA topological change- DNA-directed DNA polymerase activity	-3.3
HAMA	DNA repair	-3.3
RFC4	Leading strand elongation (mismatch repair)- DNA clamp loader activity	-3.3
	(purine nucleotide binding Activity)	
SWD2	Histone methylation-Histone-lysine N-methyltransferase activity	-3.3
HTA1	DNA binding activity- Chromatin assembly/disassembly	-3.3
MSH6	Mismatch repair- ATP binding activity (ATPase activity) (DNA binding	-3.3
	activity)	
SRL3	Nucleobase, nucleoside, nucleotide and nucleic acid metabolism	-3.3
NAM7	mRNA catabolism, nonsense-mediated- ATP dependent helicase Activity	-3.3
	(ATPase activity)	
PET309	RNA metabolism (protein biosynthesis)- Translation regulator activity	-3.3
AMD1	Purine nucleotide metabolism- AMP deaminase activity	-3.2
SER1	Purine base biosynthesis Phosphoserine aminotransferase activity	-3.2
REC102	Meiotic DNA double-strand break formation (meiotic recombination)- DNA	-3.2
120102	hinding activity	0.2
CSM4	Mejotic chromosome segregation	-32
HRR25	DNA renair (cell growth or/and maintenance)- Casein kinase activity (protein	-3.2
maas	kinase activity)	5.2
DOT1	Chromatin silencing at telomere (histone methylation)- Protein-lysine N-	-3.2
Doll	methyltransferase activity	5.2
RNH70	DNA replication and RNA processing-3'-5' exonuclease activity (ribonuclease	-3.2
KIN170	H activity)	-5.2
CDC14	DNA dependent DNA replication (exit from mitosis). Protein phosphatase	-3.2
CDC14	activity	-3.2
HEV3	DNA recombinant ion DNA hinding activity	3.2
DOB3	Chrometin assembly/disassembly (DNA dependent DNA replication)	-3.2
1005	Chromatin binding activity	-5.1
ТАЦ11	DNA replication licensing	3 1
MUMO	Dramaiotia DNA synthesis	-5.1
	FIGHICIOUC DINA SYMULTISIS	-3.1 2.1
W 5C4	autoskalaton organization and biogenesis and reasons to best	-3.1
ECV1	Cytosino metabolism. Cytosino deaminada activity	2.0
	During here metabolism. Disorder beginne deaminase activity	-3.0
ADEI	r unne vase metavonsm- r nospnorioosytaminoimidazoie-succinocarboxamide	-3.0
anaaa	Synthase activity	2.0
5D522	(protein hosphotose ture 1 - explore regulator activity	-3.0
NTT T 1	(proteipnosphatase type 1, regulator activity)	2.0
NEJI	DINA repair (double-strand break repair)	-3.0

-

RSC30	DNA binding- Regulation of transcription, DNA-dependent	-3.0
RPH1	DNA repair	-3.0
	. .	
Transcription and tra	unslation factor and process	
	TEID subunit (transcription initiation from Pol II promoter)	10302
ASC1	Negative and lation of the selection	-10392
ASCI	Negative regulation of translation	-35.8
SNU13	mRNA splicing (processing of 20S pre-rRNA)- Pre-mRNA splicing factor activity	-19.9
EFB1	Translational elongation- Translation elongation factor activity	-18.2
MTF1	Transcription from mitochondrial promoter- Transcription cofactor activity	-17.8
TEF1	Translational elongation- Translation elongation factor activity	-16.7
ERG3	Translational elongation- Translation elongation factor activity	-16.5
CAF20	Negative regulation of translation- Translation regulator activity	-14.2
SIK 1	35S primary transprint processing	-13.6
EET1	Translational elongation Translation+` elongation factor activity	-13.0
	Translational elongation Translation elongation factor activity	-12.5
IEF2 MIC2	Presidential congation- frame and the memory of the second activity	-12.4
MIG2	Regulation of transcription from Pol II promoter (glucose metabolism)-	-12.1
	Specific RNA polymerase II transcription factor activity	10.0
CDC33	Translational initiation (regulation of cell cycle)- Translation initiation factor activity	-12.0
HRP1	mRNA polyadenylation and cleavage- Cleavage/polyadenylation specificity	-12.0
	factor activity	
SUI2	Translation initiation- Translation initiation factor activity	-11.5
ALPHA1	Regulation of transcription from Pol II promoter- Transcription co-activator	-9.8
	activity	2.0
TIF1	Translational initiation- Translation initiation factor activity	_0 /
	255 primary transprint processing ATD dependent DNA holicose activity	-9.4
DK51 CCD1	555 primary transcript processing- ATP dependent KNA hencase activity	-9.4
GCDI	Translational initiation- Translation initiation factor activity	-9.1
HYP2	I ranslational initiation – I ranslation initiation factor activity	-9.0
SUB2	Lariat formation, 5'-splice site cleavage- ATP dependent RNA helicase activity	-8.8
	(pre-Mrna splicing factor activity)	
GRS1	Glycyl-tRNA aminoacylation- Glycine-Trna ligase activity	-8.7
TIF2	Regulation of translational initiation (translation initiation)- RNA helicase	-8.5
	activity (translation initiation factor activity)	
TIF34	Translation initiation- Translation initiation factor activity	-8.1
TEF4	Translational elongation- Translation elongation factor activity	-8.0
ADR1	Transcription (regulation of carbohydrate metabolism)- Transcription factor	-7.8
VI A 1	tDNA processing DNA hinding estivity	7 0
I LAI VDS1	IKINA processing- KINA binding activity	-7.8
KKS1	Lysyl-tRNA aminoacylation- lysine-tRNA ligase activity	-/./
RRP42	35S primary transcript processing (mRNA catabolism-3'-5' exoribonuclease activity	-7.6
NOP58	35S primary transcript processing (processing of 20S pre-rRNA)	-7.6
NOP1	RNA methylation (35S primary transcript processing) (rRNA modification)-	-7.5
TDM7	Drotain biosynthesis (tDNA methylation) tDNA methyltransferase activity	74
	Historia agentilation (regulation of transgrintion from Dol II promotor). Historia	-7.4
IKAI	ristone acetylation (regulation of transcription from Form promoter)- ristone	-7.5
TDMO	ADNIA motheristica ADNIA (maning NIZ) motheritane estimite	7.2
	trina mempianon- trina (guanne-n/-)-mempinansierase activity	-7.2
NHP2	35S primary transcript processing (rRNA modification- RNA binding activity	-/.0
GARI	35S primary transcript processing (rRNA modification- RNA binding activity	-6.8
HIR3	G1/S-specific transcription in mitotic cell cycle- Transcription co-repressor	-6.7
RPA34	Transcription from Pol I promoter- DNA-directed RNA polymerase activity	-6.7
YEF3	Translational elongation- Translation elongation factor activity	-6.6
HMO1	RNA polymerase I transcription factor activity	-6.4
TRM1	tRNA methylation- tRNA (guanine-N2-)-methyltransferase activity	-6.2
IMP3	35S primary transcript processing- snoRNA binding activity	-6.1
DCP1	Deadenylation-dependent decapping- Hydrolase activity (mRNA binding	-6.1
PAR1	Regulation of translational initiation $Poly(\Lambda)$ binding activity	-6.0
	Transcription from Pol I. II & III promoter DNA directed PNA Polymerose	-0.0
NI Do	activity	-5.7
PWP2	Processing of 20S pre-rRNA (cytokinesis)- snoRNA binding activity	-5.9
SPT15	Transcription from Pol I, II and III promoter- DNA binding activity (RNA	-5.8
	polymerase I, II, III transcription factor activity)	
CBF5	35S primary transcript processing- Pseudouridvlate synthas activity	-5.8
IKI1	Regulation of transcription from Pol II promoter- Pol II transcription elongation	-5.6

-

	factor activity	
TIF5	Mature ribosome assembly (regulation of translational initiation)- GTPase	-5.6
	activator activity (translation initiation factor activity)	
SUI1	Translational initiation- Translation initiation factor activity	-5.6
TIF35	Translational initiation- Translation initiation factor activity	-5.6
TFB2	Negative regulation of transcription from Pol II promoter, mitotic- General	-5.5
	RNA polymerase II transcription factor activity	
SRM1	rRNA-nucleus export (ribosome nucleus export)- Signal transducer activity	-5.5
HEK2	mRNA localization, intracellular (telomerase-dependent telomere	-5.5
	maintenance)- Mrna binding activity	
TRM82	tRNA methylation- tRNA (guanine-N7-)-methyltransferase activity	-5.5
USS1	mRNA splicing (rRNA processing)- Pre-mRNA splicing factor activity	-5.4
NAM8	mRNA splice site selection (mRNA splicing)- RNA binding activity (mRNA	-5.4
	binding activity)	
RPO21	Transcription from Pol II promoter- DNA-directed RNA polymerase activity	-5.4
EFT2	Translational elongation- Translation elongation factor activity	-5.4
PRP38	mRNA splicing- Pre-mRNA splicing factor activity	-5.3
DIG1	Invasive growth- Transcription factor binding activity	-5.3
SNF11	General RNA polymerase II transcription factor activity	-5.2
GCN4	Regulation of transcription from Pol II promoter (amino acid biosynthesis)-	-5.2
	Transcriptional activator activity (DNA binding activity)	
GRF10	Transcription (cellular response to phosphate starvation)- Transcription factor	-5.2
	activity	
TFA1	Transcription II initiation from Pol II promoter- General RNA polymerase	-5.1
	transcription factor activity	
MED2	RNA polymerase II Transcription mediator activity	-5.1
ALPHA1	Regulation of transcription from Pol II promoter (regulation of transcription,	-5.1
	mating-type specific)	
RRN7	Transcription from Pol I promoter- RNA polymerase I transcription factor	-5.1
	activity	
KRR1	rRNA processing (ribosome biogenesis)	-5.0
YRA1	mRNA-nucleus export- RNA binding activity	-5.0
TEC1	Positive regulation of transcription from Pol II promoter- Specific RNA	-4.9
	polymerase II transcription factor activity	
SMM1	tRNA processing and modification- tRNA dihydrouridine synthase activity	-4.9
NOP13	RNA binding activity	-4.9
FRS2	Phenylalanyl-tRNA aminoacylation- Phenylalanine-tRNA ligase activity	-4.8
SUP45	Translation release factor activity, codon specific- Translational termination	-4.8
TIF11	Translational initiation - Translation initiation factor activity	-4.8
ANB1	Translational initiation Translation initiation factor activity	-4.8
SNF6	General RNA polymerase II transcription factor activity	-4.8
RPC19	Transcription from Pol I Pol II promoter- DNA-directed RNA polymerase	-4 7
id ei)	activity	,
RRP3	mRNA splicing. ATP dependent RNA belicase activity	-4.6
KAR4	Positive regulation of transcription from Pol II promoter (meiosis and mitosis).	-4.6
	Transcription regulator activity	-4.0
PTI1	mRNA cleavage (mRNA nolvadenylation)- Pre-mRNA cleavage factor activity	-4.6
FLC1	RNA elongation from Pol II promoter. Transcriptional elongation regulator	-4.5
LLCI	activity	-1.5
DAT1	Negative regulation of transcription from Pol II promoter- AT DNA hinding	-4.5
DATT	activity	-4.5
BUD21	Drocessing of 20S pro rPNA snoPNA hinding activity	4.5
MDS3	PNA splicing carrier activity?	-4.5
CGP1	$r \mathbf{P} \mathbf{N} \mathbf{A}$ processing (ribosome biogenesis)	-4.5
CORI CCD11	Translational initiation. Translation initiation factor activity	-4.4
	Translational initiation - Translation initiation lactor activity	-4.4 1 2
AFD11 CCND0	Pagulation of translational alegestics	-4.5
UTDO	Regulation of the stational congation	-4.5
	FIDUCESSING OF 205 PRO-TRINA- SHOKINA DINGING ACTIVITY	-4.5
UTP4	Processing of 200 pre-rKINA- snoKINA binding activity	-4.3
UTP9	Processing of 208 pre-rKNA- snoKNA binding activity	-4.2
	tkinA splicing- $1 \text{ rna } 2$ -phosphotransferase activity	-4.2
PGD1	I ranscription from Pol II promoter- KNA polymerase II transcription mediator	-4.2
TOCO	activity	4.2
1088	I ranscription factor activity	-4.2
SLH1	Regulation of translation- RNA helicase activity	-4.2
MTR3	35S primary transcript processing-3'-5' exoribonuclease activity	-4.1
ENP1	Processing of 20S pre-rRNA) (rRNA processing)- snoRNA binding activity	-4.1

PDR1	Regulation of transcription from Pol II promoter (response to drug)- DNA	-4.1
DDM	256 uning activity (transcriptional activity)	4 1
DBP3	358 primary transcript processing- IP dependent RNA helicase activity	-4.1
ARCI	tRNA-nucleus export (amino acid activation)- tRNA binding activity	-4.1
NOP14	Processing of 20S pre-Rrna- snoRNA binding activity	-4.0
RRP45	35S primary transcript processing (mRNA catabolism)- 3'-5' exoribonuclease activity	-4.0
RPL7	Processing of 27S pre-rRNA (ribosomal large subunit biogenesis)-rRNA	-4.0
DDE1	binding activity	1.0
BDF1	Transcription regulator activity	-4.0
PRP24	snRNP recycling (spliceosome assembly)- Pre-mRNA splicing factor activity	-4.0
GRC3	Transcription from Pol II promoter- RNA polymerase II transcription mediator activity	-3.9
TAF14	General RNA polymerase II transcription factor activity- Transcription initiation from Pol II promoter (G1-specific transcription in mitotic cell cycle)	-3.9
RTT106	Negative regulation of DNA transposition	-3.9
EPB1	Brna processing	_3.9
TIE6	Drocessing of 27S pre rPNA (ribosomal large subunit biogenesis)	-3.9
DOD5 /ELINI52	tDNA and rDNA processing. Dihomuslooga MDD activity (rDNA processing)	-3.9
POP5/FUN55	trina and trina processing - ribonuclease MRP activity (trina processing)	-3.9
KEMI	(deoxyribonuclease activity)	-3.9
RAD3	General RNA polymerase II transcription factor activity (DNA helicase	-3.9
	activity)- Transcription initiation from Pol II	
FL DO	promoter (nucleotide-excision repair, DNA duplex unwinding)	2.0
ELP2	Regulation of transcription from Pol II promoter- Pol II transcription elongation	-3.9
	ractor activity	2.0
SNF5	General RNA polymerase II transcription factor activity	-3.9
GCN1	Regulation of translational elongation	-3.9
MSS116	RNA splicing- RNA helicase activity	-3.8
CDC36	Negative regulation of transcription from Pol II promoter (poly (A) tail	-3.8
	shortening) (regulation of cell cycle)- 3'-5' exoribonuclease activity	
PRP8	mRNA splicing- Pre-mRNA splicing factor activity	-3.8
RPA14	Transcription from Pol I promoter- DNA-directed RNA polymerase activity	-3.8
TAF7	General RNA polymerase II transcription factor (TAS)- Transcription factor	3.8
SI II 2	Translational initiation Translation initiation factor	2.9
SUI3	DNA sultaine Des DNA sultaine Certenenti it	-3.8
PRP19	mknA splicing- Pre-mknA splicing factor activity	-3.8
FKSI	Phenylalanyl-tKNA aminoacylation- Phenylalanine-tKNA ligase activity	-3.8
ARP9	General RNA polymerase II transcription factor activit	3.7
STOL	MRNA splicing- mRNA binding activity	-3.7
GCD7	Translational initiation- Translation initiation factor activity	-3.7
ARP7	General RNA polymerase II transcription factor activity	-3.7
MSS11	Specific RNA polymerase II transcription factor activity- Positive regulation of	-3.7
	transcription from Pol II promoter	
RLM1	Positive regulation of transcription from Pol II promoter (signal transduction)	-3.7
RNC1	tRNA modification- Trna methyltransferase activity	-3.7
MSS51	Mrna processing (protein bioynthesis)	-3.7
HST1	Histidyl-tRNA aminoacylation- Histidine-Trna ligase activity	-3.7
SRB2	Transcription from Pol II promoter- RNA polymerase II transcription mediator	-3.7
DDD46	activity 258 primary transprint processing 2' 5' everibenualesse estivity	2.6
DOD7	Dipopuelease D activity (tDNA processing) Dipopuelease MDD activity	-3.0
1017	(ribonuclease P activity)	-5.0
RPA12	Transcription from Pol I promoter- DNA-directed RNA polymerase activity	-3.6
RPC40	Transcription from Pol I & II promoter- DNA-directed RNA polymerase	-3.6
NAB3	Regulation of transcription from Pol II promoter- Poly (A) hinding activity	-36
RRS1	rRNA processing (ribosome biogenesis)	-3.6
ITTP11	Processing of 20S nre-Rrna_ snoRNA hinding activity	_3 5
DIM1	rRNA modification (35S primary transcript Processing), rRNA (adenine,	-3.5
DIMI	N6,N6-)- dimethyltransferase activity	-5.5
GCD6	Translational initiation- Translation initiation factor activity	-3.5
HCA4	35S primary transcript processing -ATP dependent RNA helicase activity	-3.5
KIN28	Negative regulation of transcription from Pol II promoter- Cyclin-dependent	-3.5
ar	protein kinase activity (general RNA polymerase II transcription factor activity)	a -
SUP35	Translational termination- Translation release factor activity	-3.5
UFD1	mRNA processing	-3.4

SRB7	Transcription from Pol II promoter- RNA polymerase II transcription mediator	-3.4
CALOO	activity	2.4
GAL80	Transcription co-repressor activity- Galactose metabolism (regulation of	-3.4
~ ~ ~	transcription, DNA-dependent	
SMD3	mRNA splicing- mRNA binding activity (pre-mRNA splicing factor activity)	-3.4
HST1	Transcriptional gene silencing- NAD-dependent histone deacetylase activity	-3.4
	(NAD-independent histone deacetylase activity)	
YJR014W	RNA binding activity	-3.4
CBC2	mRNA splicing- Pre-mRNA splicing factor activity	-3.4
PLP2	Positive regulation of transcription from Pol II promoter by pheromones-	-3.4
	GTPase inhibitor activity	5.1
NAF1	snoPNA metabolism (transport), PNA binding activity (transporter activity)	-3.4
EUNI12	Translational initiation (TDasa activity (translation initiation factor Activity)	-3.4
FUNI2	Translational initiation- GTP ase activity (translation initiation factor Activity)	-5.4
KPF1	Processing of 2/S pre-Rrna (ribosomal large subunit assembly and	-3.4
	maintenance)- rRNA primary transcript binding activity	
GCD10	tRNA methylation (translation initiation)- tRNA methyltransferase activity	-3.3
RPC34	Transcription from Pol III promoter- DNA-directed RNA polymerase activity	-3.3
HTZ1	Regulation of transcription from Pol II promoter- Chromatin binding activity	-3.3
YNL247W	Cysteine metabolism (cysteinyl-Trna aminoacylation)- Cysteine-tRNA ligase	-3.3
	activity	
DBP10	358 primary transcript processing (ribosomal large subunit assembly and	_3 3
DDI 10	maintananaa) ATD dependent DNA haliaasa aatiyity	-5.5
DDD42	Indificulture) - ATF dependent KNA helicase activity	2.2
PRP43	Lariat formation, 5-splice site cleavage- ATP dependent RNA helicase activity	-3.3
	(pre-mRNA splicing factor) activity	
RRP1	rRNA processing	-3.3
PRP42	mRNA splicing- RNA binding activity	-3.2
RVB1	Regulation of transcription from Pol II promoter- ATPase activity	-3.2
PHD1	Specific RNA polymerase II transcription factor activity	-3.2
GAT3	Transcription - Transcription factor activity	-3.2
RPC37	Transcription from Pol III promoter_ DNA_directed RNA polymerase activity	_3.2
EMC1	Droadsging of 20S pro Brng (ribosomal small subunit biogenesis)	-3.2
DOD2	rDNA and tDNA recessing. Dihemuslesse MDD setuits (riberuslesse D	-3.2
POP3	rkina and tkina processing- kiloonuclease MikP activity (ribonuclease P	-3.2
	activity)	
MAK5	rRNA processing (ribosomal large subunit assembly and maintenance- ATP	-3.2
	dependent RNA helicase activity	
PAN2	mRNA processing (postreplication repair)- Poly (A)-specific ribonuclease	-3.2
	activity	
CBS1	Translation factor activity, nucleic acid binding	-3.2
REX2	RNA processing 3'-5' exonuclease activity	-3.1
MST1	Thranul tPNA aminoaculation Thranning tPNA ligase activity	-3.1
	Description of transporting from Dol II promotion. Transporting of transport	-3.1
ALPHA2	Regulation of transcription from Pol II promoter- Transcription co-repressor	-3.1
	activity	
RIM4	RNA binding activity- Meiotic recombination (and meiosis)	-3.0
GBP2	Poly (A)+ mRNA-nucleus export (telomere maintenance)- RNA binding	-3.0
	activity, telomeric DNA binding activity	
RRN6	RNA polymerase I transcription factor activity- Transcription from Pol I	-3.0
	promoter	
DBP8	ATP dependent RNA helicase activity-35S primary transcript processing	-3.0
RRP/3	358 primary transcript processing 3'-5' evoribonuclease activity	-3.0
NCL 1	4DNA methalation 4DNA (subscine 5.) methalterrations activity	-3.0
NCL1	IKINA methylation- IKINA (cytosme-5-)-methylitansielase activity	-3.0
MO12	Poly (A) tail shortening (regulation of transcription from Pol II)- 3'-5'	-3.0
	exoribonuclease activity (transcriptional repressor activity)	
DIS3	35S primary transcript processing (mRNA catabolism) 3'-5' exoribonuclease	-3.1
	activity	
HMS2	Pseudohyphal growth- Transcription factor activity	-3.1
ROX1	Negative regulation of transcription from Pol II promoter-specific	-31
	transcriptional repressor activity	••••
TIF4631	Translational initiation- Translation initiation factor activity	_3 1
CDD1	rDNA processing DNA methyltronsforess activity	2 1
STD1	ININA PLOUTSSING- NINA INCUIVILIAIISICIASE ACHVILY	-3.1
NSKI	valyi-tKINA aminoacylation- Valine-tKINA ligase activity- KNA binding	-3.1
	activity (single-stranded DNA binding activity)	
VAS1	rRNA processing (ribosomal small subunit assembly and maintenance)	-3.1
REF2	mRNA processing- Cleavage /polyadenylation specificity factor activity	-3.1
SOH1	Transcription from Pol II promoter and DNA repair	-3.1
BUR6	Negative regulation of transcription from Pol II promoter- Transcription co-	-3.1
	repressor activity	
YGL151W	Regulation of transcription from Pol II promoter	-31
		<i>-</i>

CAM1	Regulation of translational elongation- Translation elongation factor activity	-3.0
GAT2	Transcription- Transcription factor activity	-3.0
LOS1	tRNA-nucleus export (tRNA splicing)- tRNA binding activity (RAN protein	-3.0
	binding activity)	
POP1	tRNA and rRNA processing- Ribonuclease MRP activity (ribonuclease P	-3.0
	activity)	
YNR048W	Transcription regulator activity	-3.0
NOT5	Poly (A) tail shortening-3'-5' exoribonuclease activity	-3.0
PRT1	Translational initiation- Translation initiation factor activity	-3.0
MED7	Transcription from Pol II promoter- RNA polymerase II transcription mediator	-3.0
	activity	
RRP5	Processing of 20S pre-rRNA (Rrna processing)- RNA binding activity (snoRNA binding activity)	-3.0
POP2	Regulation of transcription from Pol II promoter (poly (A) tail shortening)- 3'-5' exoribonuclease activity	-3.0
CDC1	DNA recombinantion and bud growth	-3.0
RSC1	Positive regulation of transcription from Pol II promoter (high affinity ion iron transport)- Transcription factor activity	-3.0
Cytoskeleton organ	ization and maintenance	
Cytosketetoli orgali SEK 1	Δ etin evtockeleton organization and biogenesis	-13 8
#SIM1	Microtubule cytoskeleton organization and biogenesis	-13.8
#SINT TUR3	Mitotic and homologous chromosome segregation. Structural constituent of	-10.7
1005	cytoskeleton	-5.0
TUB1	Homologous and mitotic chromosome segregation- Structural constituent of cytoskeleton	-5.5
CTS1	Cytokinesis, completion of separation- Chitinase activity	-5.5
RDI1	Actin filament organization	-5.2
ACT1	Structural constituent of cytoskeleton	-5.1
SHS1	Cytokinesis- Structural constituent of cytoskeleton	-4.8
TUB4	Microtubule nucleation- Structural constituent of cytoskeleton	-4.3
GIM5	Tubulin folding- Tubulin binding activity	-4.2
CHS2	Cytokinesis- Chitin synthase activity	-3.8
ENT1	Actin cortical patch assembly (actin filament organization- Cytoskeletal adaptor	-3.7
CCT5	Cytoskeleton organization and biogenesis (protein folding)- Chaperone activity	-36
ABP140	Actin cytoskeleton organization and biogenesis- Actin cross-linking activity	-3.6
NDC1	Microtubule nucleation (protein-nucleus import) (RNA-nucleus export)-	-3.3
VKI 104C	Call wall abitin biosynthesis	2.2
ENT3	Actin filament organization (Golgi to endosome transport- Cytoskeletal adaptor	-3.2
SDC42	activity Microtubula nucleation Structural constituent of outcoledican	2.2
SPC42	Cutoalcaleten ergenization and biogeneois. Cutoalcaletel regulater estivity	-3.2
DECI	Spindle note hady duplication (consul Seechersmyless). Distain degradation	-3.2
DSK2	spindle pole body duplication (sensu Saccharomyces)- Protein degradation	-3.1
NILIEO	lagging activity Migratubule nucleation (abramageme sogragation) Structural constituent of	2 1
NOF2	cytoskeleton	-3.1
MAD1	Mitotic spindle checkpoint	-3.1
TUB2	Structural constituent of cytoskeleton- Homologous chromosome segregation	-3.1**
APP1	(mitotic chromosome segregation) Actin cytoskeleton organization and biogenesis	-3.0
Coll wall & mombr	and protains	
	Cell well organization and biogenesis. Structural constituent of cell well	20.1
C155 #CWD2	Structural constituent of call wall	-20.1
	Cell wall organization and hisgonosis	-19.7
DCI 2	Cell wall organization and biogenesis. Chucan 1.2 bets glucosides activity	-10.4
	Cell wall organization and biogenesis (signal transduction)	-7.0
KDE0	Cell wall organization and biogenesis	-1.1
CCR 1	Cell wall organization and biogenesis. Phoenbatidylinosital transporter activity	-0.5
SCW/	Conjugation with cellular fusion. Glucosidase activity	-5.2
SRE22	Cell wall organization and biogenesis.	-3.6
DSE22	Cell wall organization and biogenesis. Glucan 1.3-beta-alucosidase activity	-4.5
KBE1	Cell wall organization and biogenesis. Structural constituent of cell wall	- - 3 _4 1
MTL1	Cell wall organization and biogenesis	- - .1 -4 1
RMD7	Cell wall organization and biogenesis	-4.1

ECM14	Cell wall organization and biogenesis	-3.9
ECM3	Cell wall organization and biogenesis- ATPase activity	-3.8
MID2	Cell wall organization and biogenesis	-3.7
ECM25	Cell wall organization and biogenesis	-3.5
YOL155C	Cell wall organization and biogenesis- Glucosidase activity	-3.3
MYO3	Cell wall organization and biogenesis (endocytosis&exocytosis)-	-3.1
CWP1	Cell wall organization and biogenesis- Structural constituent of cell wall	-3.0
Lipid metabolism		
FEN1	Sphingolipid biosynthesis	-19.9
OLE1	Fatty acid desaturation- Stearoyl-CoA desaturase activity	-16.1
ERG13	Ergosterol biosynthesis- Hydroxymethylglutaryl-CoA synthase activity	-14.4
ERG2/	Ergosterol biosynthesis-3-keto sterol reductase activity	-10.5
EKGII VDD042C	Ergosterol blosynthesis- Sterol 14-demethylase activity	-9.3
I BR042C	Phospholipid biosynthesis- Acyltransferase activity	-8.5
ERG25 ERC10	Ergosterol biosynthesis. C-4 methyl sterol oxidase activity	-8.0
ERG10 ERG0	Ergo sterol biosynthesis- Accivi-COA C-accivitiansiciase activity	-6.3
ERG1	Ergosterol biosynthesis- Famesyr-approsphate famesyntansierase activity	-5.8
ACP1	Fatty acid biosynthesis- Acyl carrier activity	-5.6
PLB3	Phosphoinositide metabolism- Lysophospholipase activity	-5.4
ERG26	Ergosterol biosynthesis- C-3 sterol dehydrogenase	-5.4
ERGEO	(C-4 sterol decarboxylase) activity	0.1
MVD1	Ergosterol biosynthesis (isoprenoid biosynthesis)- Diphosphomevalonate	-4.7
	decarboxylase activity	,
ERG6	Ergosterol biosynthesis- Delta (24)-sterol C-methyltransferase activity	-4.7
SUR2	Sphingolipid biosynthesis (sphingolipid metabolism)- Sphingosine hydroxylase	-4.7
ERG8	Ergosterol biosynthesis- Phosphomeyalonate kinase activity	-4.6
SUR4	Fatty acid biosynthesis	-4.4
ELO1	Fatty acid elongation, unsaturated fatty acid	-4.3
ERG5	Ergosterol biosynthesis- C-22 sterol desaturase activity	-3.9
ECI1	Fatty acid beta-oxidation- Unknown dodecenoyl-CoA	-3.4
	Delta-isomerase activity	
EHT1	Lipid metabolism	-3.4
ERG2	Ergosterol biosynthesis- C-8 sterol isomerase activity	-3.1
ERG7	Ergosterol biosynthesis- Lanosterol synthase activity	-3.0
Unknown function		
YOL109W		-42.1
YDL228C		-38.2
YGL102C		-31.7
YLL044W		-30.1
YJR115W		-29.1
UTR2		-28.3
YLK339C		-28.2
I DL109W		-27.5
RUD28		-20.9
YMR244C-A		-20.0
BUD19		-23.9
YLR040C		-23.0
YDR544C		-19.8
YOR277C		-19.2
YDR544C		-18.9
YDR417C		-18.1
TOS1		-16.1
PRM7		-16.1
YPR044C		-16.1
YEL001C		-15.9
YARF1-1		-15.5
YLR076C		-15.1
YPL142C		-15.0
YLR391W		-14.9
YOK309C		-14.5
INKU40W		-14.4
I DICO / /C		-14.1

YKL202W	-13.5
YDR134C	-13.4
PKR1	-13.0
YDR442W	-12.8
YGL231C	-12.7
YGR106C	-12.6
YEL033W	-12.6
SNT2	-12.1
MKH1	-12.1
RIM	-11.8
VOR248W	-11.7
ECM22	-11.7
VND021W	-11.0
I INKUZI W	-11.5
WC25	-11.0
YOR2/IC	-11.0
YDR119W	-10.2
YCR025C	-10.1
NUGI	-9.8
ARX1	-9.8
YLR041W	-9.4
YER156C	-9.3
YOL092W	-9.2
YPL197C	-9.2
YGL072C	-9.0
YMR002W	-8.9
YKL056C	-8.7
YJR023C	-8.6
GAS5	-8.5
YML125C	-8.4
YRF1-6	-8.4
YMR321C	-8.3
FIT2	-8.1
VBR238C	-8.0
PRV2	-7.9
VI R194C	-7.7
TVD28	-7.7
	-7.7
AKK4 ESU1	-1.1
roni VDD200C	-7.0
YDK209C	-7.5
KINI VKL 020W	-7.5
Y KL030W	-7.5
YPR118W	-7.4
YJR114W	-7.4
RBSI	-7.3
YKR075C	-7.3
YIL110W	-7.2
YBR089W	-7.1
YDL050C	-7.0
STP4	-7.0
YHR045W	-6.9
YMR298W	-6.9
YOL124C	-6.9
YOL111C	-6.8
YDR157W	-6.7
YDR133C	-6.6
BCP1	-6.6
YPL272C	-6.6
PIL1	-6.5
NPC2	-6.5
VI R064W	-6.5
1 LIX004 W	-6.5
115F 52 SVD26	-0.5
SVF20 VDD520W	-0.4 6.2
I DK339W	-0.5
Y AKU/5W	-0.3
YHRII5C	-6.2
Y BL083C	-6.2
YOR305W	-6.2

YOR238W	-(6.0
YGL068W	-(6.0
YMR221C		5.9
YOR286W		5.9
YMR130W		5.9
LSB1	مــ	58
VII 096C		58
VDR367W		5.0 5.7
VIID 100C		5.1 5 7
I IKIUUU		5.1
YGRI60W	-	5.7
UTP30		5.7
YFR044C		5.6
YNL303W		5.6
ILM1		5.6
YMR252C		5.6
YOL073C		5.6
YER049W		56
YBL077W		5 5
SAM35		5 5
VDI 159C		5.5
TID2		5.5
TIK3	-	5.5
YGRISIC		5.4
HAS1		5.3
YGR283C		5.3
YDR071C		5.3
YJL122W		5.2
YPL014W		5.2
YGR093W		5.1
VBR187W		5 1
USE1		5.1
VHP151C		5.1
		5.1
HUKI	-	5.0
YDL041W		5.0
ERD1		5.0
YER113C		5.0
YIL105C		5.0
YOR051C		5.0
YJL193W		5.0
YNL114C		4.9
PWP1	-2	49
VI R414C		4 9
VCI 080W		т .) 4 0
I GL080W		4.9
I GL159W		4.9
SNA4		4.9
YIL127C		4.9
YGR137W		4.9
YHR217C	-4	4.8
PAN5	-4	4.8
YOL022C		4.8
YOR102W		4.8
YFR039C		47
VDR198C		47
		т./ 1.6
VDD154C		т.0 1 С
IDRI34C		4.0
YDR411C		4.0
YOR164C	-2	4.6
YLR236C		4.5
YKL207W	_2	4.5
YNR061C	-4	4.5
YJR024C		4.5
YHR214W-A		4.5
UTR4		4 5
YGLORRW		4 5
		1.5
IDL23/W		+.4 1 1
I BKU/I W	-2	4.4 4 4
YDR094W	-4	4.4
RNH202	-2	4.4

YLR065C	-4.4
YKL177W	-4.4
TOS7	-4.4
YNL010W	-4.3
HUA2	-4.3
YLR198C	-43
VIR124C	-4.3
VNI 010W	-4.3
VNI 122C	-4.5
YILLO20W	-4.5
YHLU39W	-4.5
YCR041W	-4.3
YBR025C	-4.3
YFR043C	-4.3
YDR066C	-4.3
ENP2	-4.2
TVP23	-4.2
YCL045C	-4.2
YJL097W	-4.2
YOR283W	-4.2
TOS6	-4.2
YKL206C	-4 2
YOR121C	-4.2
VI R230W	-4.2
DTM1	4.2
VVD065C	-4.2
I KK005C	-4.1
Y NL043C	-4.1
YPL098C	-4.1
YJL123C	-4.1
YOR118W	-4.1
YER071C	-4.1
YDR365C	-4.1
GGA2	-4.1
YDR339C	-4.1
YLF2	-4.1
YDL089W	-4.0
ARP1	-4.0
YDR336W	-4.0
VCR051W	-4.0
TRM10	-4.0
VI DA12W	-4.0
1 LK412 W	-4.0
I LR202C	-4.0
YNK009W	-4.0
YPL264C	-4.0
YOR015W	-4.0
YOR331C	-4.0
YOR169C	-4.0
YLR073C	-4.0
YLR101C	-4.0
YLR021W	-4.0
FSH3	-4.0
YKR087C	-3.9
YPL066W	-39
YOL 070C	-3.9
CTH1	_3.9
VCD26W	-3.9
Y GK200W	-3.9
YCR0/2C	-3.9
YDR132C	-3.9
YHR095W	-3.9
YBR287W	-3.9
YFR041C	-3.9
YIL169C	-3.9
YGR024C	-3.9
YDL037C	-3.8
YFR042W	-3.8
YBL081W	-3.8
YDL012C	-3.8
VHR121W	-3.8
1111X121W	-5.0

VID22	-3.8
MIA1	-3.8
IPI3	-3.8
VPI 073C	-3.8
VMP184W	3.8
VOL 107W	-3.8
YOL10/W	-3.7
YLR042C	-3.7
YKL027W	-3.7
YLR413W	-3.7
YKR089C	-37
VHI 0/1W	-3.7
VDD210C	-3.7
I DK219C	-5.7
YDL016C	-3.7
YHR036W	-3.7
YDR126W	-3.7
TVP15	-3.7
LIN1	-37
VHR087W	-3.7
VDI1	-3.7
	-5.7
Y HR085 W	-3.7
YBL028C	-3.6
SGI1	-3.6
YCL069W	-3.6
YDL121C	-36
CWC15	-3.6
VID21	2.6
VID21	-5.0
YDR3/0C	-3.6
YDL063C	-3.6
YCL065W	-3.6
YGR001C	-3.6
YCR016W	-3.6
VBR267W	-3.6
VCD026W	-5.0
I GK020W	-5.0
SE16	-3.6
YNL305C	-3.6
YKR074W	-3.6
AKR2	-3.6
YPL041C	-3.6
VVI 225W	2.6
I KL225 W	-5.0
CO86	-3.6
YOR170W	-3.6
YLL025W	-3.6
LTV1	-3.5
YKL070W	-3.5
DRF2	-3.5
VOL 070W	2.5
VOL 125W	-3.5
YOL125W	-3.5
YLR050C	-3.5
YFL006W	-3.5
YSC83	-3.5
YHL026C	-3.5
VHR133C	-3.5
VCP026C	3.5
1 CK020C	-3.5
YMR155W	-3.5
YML053C	-3.5
YAF9	-3.5
YOR240W	-3.5
YLR404W	-3.5
VOR252W	-3.4
T OK232 W	-J. T 2.4
Y UKU91 W	-3.4
YLR243W	-3.4
YML119W	-3.4
YMR237W	-3.4
YIR054W	-3.4
YOL 003C	-3.4
DDM10	2.T 2.1
PKIVIIU	-3.4
SG12	-3.4

YKR033C	-3.4
IES3	-3.4
YMR099C	-3.4
YML096W	-3.4
YNL313C	-3.4
YOL024W	-3.4
YJLISIC VID140C	-3.4
I IIK149C	-5.4
VGI 103C	-5.4
VHP032W	-J.+ 3.4
VDI 180W	-3.4
YGR163W	-33
YGR211W	-3.3
TOM71	-3.3
YHR202W	-3.3
YHL017W	-3.3
YGR111W	-3.3
YBR151W	-3.3
YDR056C	-3.3
YFL061W	-3.3
RNQ1	-3.3
PSTI	-3.3
CHRI VEL 010W	-3.3
IDI2	-3.3
VDI 211C	-3.3
VHR192W	-3.3
YIL103W	-3.3
YDR210W	-33
TOS9	-3.3
YHR009C	-3.3
RTS2	-3.3
YOR292C	-3.3
YMR074C	-3.3
YNL184C	-3.3
YJR070C	-3.3
YMR299C	-3.3
MUKI	-3.3
YPL009C	-3.3
I NL203C	-3.5
VPI 245W	-3.3
YML020W	-3.3
YNL226W	-3.2
YOR062C	-3.2
YPL052W	-3.2
YLR317W	-3.2
PSY1	-3.2
YPL068C	-3.2
YOR072W	-3.2
YPL039W	-3.2
YOR200W	-3.2
YPR050C	-3.2
YPL2/9C	-3.2
DCP3	-3.2
VII 022W	-3.2
YDR415C	-3.2
YDR371W	-3.2
YHL044W	-3.2
QRD2	-3.2
YDR458C	-3.2
YCR023C	-3.2
YGR035C	-3.2
YJL027C	-3.2
YBL009W	-3.2

-

YCR001W		-3.2
YDR307W		-3.2
YMR148W		-3.1
YNL047C		-3.1
YMR185W		-3.1
TIR4		-3.1
YMR181C		-3.1
YMR102C		-3.1
YJR015W		-3.1
YOL057W		-3.1
YLL012W		-3.1
YNR029C		-3.1
YPL199C		-3.1
YKR035C		-3.1
YOR131C		-3.1
YPL207W		-3.1
YOR315W		-3.1
YNL149C		-3.1
FRE7		-3.1
YOR152C		-3.1
YOL137W		-3.1
YPR013C		-3.1
YPL047W		-3.1
YLR140W		-3.1
YAR068W		-31
YGR294W		-3.1
HGH1		-3.1
YBR094W		-3.1
YGL114W		-3.1
YHR040W		-3.1
YFR186C		-3.1
VDL 027C		-3.1
VGR064W		-3.1
VEL 050W		-3.1
VAL 053W		-3.1
VDI 221W		-3.1
		3.1
FVV5		-3.1
VPD112W		-J.1 3 1
VDD141C		2 1
I DK141C		2 1
VDP210C		2 1
IDK519C		-3.1 2.1
MTM1		2.0
VID002C		-5.0
YJK005C		-3.0
Y NLUSOW		-3.0
YML0/9W		-3.0
I JKI 10W		-3.0
SCD6		-3.0
YPL144W	-	-3.0
Y KR045C	-	-3.0
YNLII6W		-3.0
YLR053C		-3.0
YOL00/C		-3.0
YOL099C		-3.0
HSDI	· · · · · · · · · · · · · · · · · · ·	-3.0
YNL129W		-3.0
YOR268C		-3.0
YLR251W		-3.0
YKL069W		-3.0
YNR071C		-3.0
YLR132C		-3.0
YOR073W		-3.0
YKL037W		-3.0
YOL029C		-3.0
YLR187W		-3.0
YOL085C		-3.0

YKL077W		-3.0
YGL152C		-3.0
YDR333C		-3.0
YGL177W		-3.0
YDR527W		-3.0
SHE1		-3.0
YCL044C		-3.0
YGL004C		-3.0
YCR082W		-3.0
YDL023C		-3.0
YHR097C		-3.0
YGR081C		-3.0
SOL4		-3.0
YIL039W		-3.0
GIR1		-3.0
YDR117C		-3.0
YBR004C		-3.0
YGL020C		-3.0
Missellanoous		
SAG1	Agglutination during conjugation with callular fusion. Call adhesion recentor	28.0
SAUI	activity	-28.0
IMD4	IMP dehydrogenase activity	-191
AGA1	Againstian during conjugation with cellular fusion- Cell adhesion recentor	-17.0
10/11	activity	17.0
CCW12	Agalutination during conjugation with cellular fusion	-16.0
VGI 039W	Dihydrokaempferol 4-reductase activity	-10.4
ALIR1	Sphingolinid metabolism- Inositol phosphoceramide synthese activity	-10.0
CPR5	nentidyl-prolyl cis-trans isomerase activity	_9.9
SCS2	Myo.inositol metabolism-	-9.9
HOP2	Synansis	-8.5
PMI40	GDP-mannose biosynthesis- Mannose-6-phosphate isomerase activity	-8.1
DIE3	Dephosphorylation (cell wall organization and biogenesis), inosital 1.4.5.	-8.0
T IL5	trisphosphate 5 phosphatase activity	-8.0
MNN9	N-linked glycosylation- mannosyltransferase activity	-8.0
SIZ1	Sumovlation- SUMO ligase activity	-7.8
SEC53	Protein-ER targeting- Phosphomannomutase activity	-7.8
STT3	N-linked glycosylation- Dolichyl-diphospho-oligosaccharide protein	-7.8
KTR1	O-linked glycosylation (N-glycan processing)- Alpha-1, 2-mannosyltransferase	-7.8
	activity	
PMT4	O-linked glycosylation- Dolichyl-phosphate-mannose-protein	-7.4
	mannosyltransferase activity	
OST1	N-linked glycosylation (N-linked glycosylation via	-7.0
	asparagines)- Dolichyl-diphospho-oligosaccharide-protein glycosyltransferase	
	activity	
HEM13	Heme biosynthesis- Coproporphyrinogen oxidase activity	-7.0
ALG8	Oligosaccharide-lipid intermediate assembly- Oligosaccharyl transferase activity	-6.9
RIB4	Vitamin B2 biosynthesis-6, 7 –dimethyl-8-ribityllumazine synthase activity	-6.7
PET9	ATP/ADP exchange- ATP/ADP antiporter activity	-6.4
TSC13	Very-long-chain fatty acid metabolism- Oxidoreductase activity	-6.4
SNF4	Peroxisome organization and biogenesis (peroxisome organization and	-6.3
	biogenesis)- Protein kinase activator activity	
GP18	Attachment of GPI anchor to protein- GPI-anchor transamidase activity	-6.3
QCR6	Aerobic respiration (oxidative phosphorylation, ubiquinone to cytochrome c)-	-6.3
¹	Ubiquinol-cytochrome c reductase activity	
NPI46	Peptidyl-prolyl cis-trans isomerase activity	-6.3
UTH1	Mitochondrion organization and biogenesis	-6.2
KRE2	N-glycan processing (O-linked glycosylation) (cell wall mannoprotein	-6.1
	Biosynthesis)- Alpha-1, 2-mannosyltransferase activity	
ADE17	'de novo' IMP biosynthesis- IMP cyclohydrolase activity	-5.8
IPP1	Phosphate metabolism- Inorganic diphosphatase activity	-5.8
YOR084W	Peroxisome organization and biogenesis- Lipase activity	-5.7
DPH5	Peptidyl-diphthamide biosynthesis from peptidyl-histidine- Diphthine synthase	-5.6
	activity	
KTR3	N-linked glycosylation (O-linked glycosylation)- Mannosyltransferase activity	-5.6
IPT1	Mannosyl diphosphorylinositol ceramide metabolism- Transferase activity.	-5.5

	transferring phosphorus-containing groups	
GPI11	GPI anchor biosynthesis- Phosphoethanolamine N-methyltransferase activity	-5.3
NUP49	Structural molecule activity- See SGD (nuclear pore complex subunit)	-5.2
PMT2	O-linked glycosylation- Dolichyl-phosphate-mannose-protein	-5.2
	mannosyltransferase activity	
RHKI	Dolichol-linked oligosaccharide biosynthesis (protein amino acid	-5.0
10101	glycosylation)- alpha-1, 3-mannosyltransferase activity	5.0
MNSI	N-linked glycosylation- Mannosyl-oligosaccharide 1,2-alpha-mannosidase	-5.0
CDD 0	activity	4.0
CPK8	Pepudyi-protyl cis-trans isomerase activity.	-4.9
SUUS	Protoin vieweler torgeting	-4.8
CSH2	Clutathione biosynthesis. Clutathione synthese activity	-4.8
THI80	Thiamine biosynthesis- Thiamin pyrophosphokingse activity	-4.8
STF14	Pentide pheromone maturation. Protein-S-isoprenylcysteine O-methyltransferase	-4.7
SILII	activity	,
ERG8	Ergosterol biosynthesis- Phosphomevalonate kinase activity	-4.6
YNL213C	Mitochondrion organization and biogenesis	-4.6
PH036	Membrane protein involved in zinc metabolism	-4.6
KES1	Steroid biosynthesis- Oxysterol binding activity	-4.5
TRF5	Sister chromatide cohesion- DNA-directed DNA polymerase activity	-4.5
YIM1	Mitochondrial processing- Peptidase activity	-4.5
OST2	N-linked glycosylation- Dolichyl-diphospho-oligosaccharide protein	-4.5
	glycosyltransferase activity	
SSF1	Conjugation with cellular fusion (ribosomal large subunit assembly and	-4.5
	maintenance)- rRNA binding activity	
PEX7/PAS7	Peroxisome organization and biogenesis (protein-peroxisome targeting)-	-4.4
	Peroxisome targeting signal receptor activity (peroxisome targeting signal-2	
	receptor activity)	
YGR250C	RNA binding	-4.4
YGL142C	GPI anchor biosynthesis	-4.4
	Peptidyi-prolyi cis-trans isomerase activity	-4.3
DPP1	phospholipid metabolism- Diacytgrycetol pytophosphate	-4.5
DHD1	Protectivity Protectivity	13
DFR1	Folic acid and derivative metabolism. Dibydrofolate reductase activity	-4.3
ALG6	Dolichol-linked oligosaccharide biosynthesis- Transferase activity transferring	-4 2
neou	hexosyl groups	1.2
PMT1	O-linked glycosylation- O-linked glycosylation	-4.1
OCH1	N-linked glycoprotein maturation- Alpha-1,6-mannosyltransferase activity	-4.1
	(transferase activity, transferring glycosyl groups)	
SEC1	Exocytosis (nonselective vesicle docking and fusion)- SNARE binding activity	-4.1
SHM1	One-carbon compound metabolism- Glycine hydroxymethyltransferase	-4.1
	activity	
SOD1	Copper, Zinc ion homeostasis (superoxide metabolism)- Copper, zinc superoxide	-4.1
	dismutase activity	
ORD1	Pantothenate biosynthesis- Ornithine decarboxylase activity	-4.1
PMP2/	Peroxisome organization and biogenesis	-4.0
5011	Phospholipid biosynthesis- Gryceror-o-phosphale O-acyntansierase	-4.0
GUA1	activity GMP metabolism- GMP synthase (glutamine hydrolyzing) activity	-3.9
GPI13	GPL anchor biosynthesis. Phosphoethanolamine N-methyltransferase activity	-3.9
ERP4	Secretory nathway	-3.9
MAP1	Proteolysis and pertidolysis- Methionyl aminopeptidase activity	-3.9
VPS1	Peroxisome organization and biogenesis- GTPase activity	-3.9
PMT6	O-linked glycosylation- Dolichyl-phosphate-mannose-protein	-3.9
	mannosyltransferase activity	
FUS1	Conjugation with cellular fusion	-3.9
PRM5	Conjugation with cellular fusion	-3.8
EXG2	Glucan 1,3-beta-glucosidase activity	-3.8
YOR251C	Thiosulfate sulfurtransferase activity	-3.8
RMA1	Folylpolyglutamate synthase activity	-3.7
BTS1	Terpenoid biosynthesis- Farnesyltranstransferase activity	-3.7
SCW10	Conjugation with cellular fusion- Glucosidase activity	-3.7
MUKI	vierosis (mitotic chromosome Segregation)- Glycogen synthase kinase 3 activity	-3./
۸ DT 1	(protein theonine/tyrosine kinase activity) Hydrolase activity, acting on aster bonds	27
1111	myaronase activity, acting on ester bolius	-5.7

FMN1	FMN biosynthesis- FMN adenylyltransferase activity (riboflavin kinase activity)	-3.7
QRI1	UDP-N-acetylglucosamine biosynthesis- UDP-N-acetylglucosamine	-3.7
	pyrophosphorylase activity	
CDC20	Enzyme activator activity- Cyclin catabolism (mitotic chromosome segregation)	-37
SCS3	Phospholipid metabolism	-3.6
DEP1	Phospholipid metabolism	-3.6
VER078C	Xaa-Pro aminonentidase activity	-3.5
VPS70	Protein-vacualar targeting	-3.5
COX7	Aerobic respiration- Cytochrome c oxidase activity	-3.5
BCS1	A erobic respiration. A TPase activity	-3.5
EDT1	Phoenbatidulathanolomina biosunthasis. Ethanolominanhoenbotranefarasa activity	-5.5
	Hama a biosynthesis (iron ion homoostasis). NADDU adrenadovin raduetase	-3.5
АКПІ	neme a diosynthesis (non ion noneostasis)- NADE n-adrenodoxin reductase	-3.5
SM11	activity Data 1, 2 alugar higgyrthagia	2.4
	Detta-1, 5 glucial biosynthesis	-5.4
IKKI	(NA DDI), a stight	-3.4
ODT1	(NADPH) activity	2.4
OPTI	Sultur metabolism- Oligopeptide transporter activity	-5.4
PKM10	Conjugation with cellular fusion	-5.4
FKSI	Beta-1, 3 glucan biosynthesis-1,3-beta-glucan synthase activity	-3.4
AYTI	Secondary metabolism- Trichothecene 3-O-acetyltransferase activity	-3.4
CYC2	Mitochondrial intermembrane space protein import	-3.4
DIA4	Aerobic respiration 9 invasive growth)- Serine-tRNA ligase activity	-3.4
FLO5	Flocculation- Cell adhesion molecule activity	-3.3
VTC1	Vacuole fusion (non-autophagic)	-3.3
CPR2	peptidyl-prolyl cis-trans isomerase activity	-3.3
AUT1	Autophagy (protein-vacuolar targeting)	-3.3
HEM15	Heme biosynthesis- Ferrochelatase activity	-3.3
VPS68	Protein-vacuolar targeting	-3.3
PNT1	Inner mitochondria membrane organization and biogenesis	-3.2
CDC43	Calcium ion homeostasis (small GTPase mediated signal transduction)- Protein	-3.2
	geranylgeranyltransferase activity (signal transducer activity)	
FAD1	FAD biosynthesis- FMN adenylyltransferase activity	-3.2
ALG2	Oligosaccharide-lipid intermediate assembly- Glycolipid mannosyltransferase	-3.2
11202	activity	<i></i>
LSG1	Conjugation with cellular fusion	-32
UGA3	Nitrogen utilization (regulation of transcription from Pol II promoter)- Specific	-3.2
00115	RNA nolymerase II transcription factor activity	5.2
CC71	Autonbagic vacuale fusion (protein-vacualar targeting)- Guanyl-nucleotide	-3.1
CCLI	Autophagic vacuole fusion (protein-vacuolar targeting)- Outinyi-nucleonuc	-5.1
DMT2	O linked alwaagulation. Daliakul nhaanhata mannaga protain	2.1
PM15	O-iniked grycosylation- Donchyl-phosphate-inannose-protein	-3.1
CDE2	mannosyltransferase activity	2 1
SPE3 DEV12	Pantomenate diosynthesis (spermidine diosynthesis)- Spermidine synthase activity	-3.1
rEA12	Peroxisome organization and biogenesis	-3.1
ILLUS/C	Suitur metabolism- Suitonate dioxygenase activity	-5.1
AHPI	Regulation of redox homeostasis- Thioredoxin peroxidase activity	-5.1
Y LR294C	Cellular respiration	-3.1
rDR140W	S-adenosylmethionine-dependent methyltransferase activity	-3.1
CSG2	Calcium ion homeostasis	-3.1
ALG7	N-linked glycosylation- UDP-N-acetylglucosamine-dolichyl-phosphate N-	-3.1
	acetylglucosamine-1-phosphate transferase activity	
YLL057C	Sulfur metabolism- Sulfonate dioxygenase activity	-3.1
EBS1	Telomerase-dependent telomere maintenance	-3.0
ECM39	Mannosyltransferase- Alpha-1, 6-mannosyltransferase activity	-3.0
HRK1	Cell ion homeostasis- Protein kinase activity	-3.0
FPR4	Peptidyl-prolyl cis-trans isomerase activity	-3.0
PRS5	'de novo' IMP biosynthesis (ribose-phosphate pyrophosphokinase)- Ribose-	-3.0
	phosphate pyrophosphokinase activity	
YDR115W	Aerobic respiration- Structural constituent of ribosome	-3.0
HEM2	Heme biosynthesis- Porphobilinogen synthase activity	-3.0
KTR4	N-linked glycosylation- Mannosyltransferase	-3.0
		-

Table 3.2a: Macroarray data: Genes that were MHE following five hour exposure to 7% ethanol relative to control.

* Genes also found to be MHE in macroarray experiments for the same conditions at one-hour time point.

ORF/Gene name	Description of gene product	Fold increase	Putative Transcription factors
Stress response			
*YBR072W/HSP26	Small HSP of unknown function	20.4	Msn2/4p, Hsf1p
YJL159W / HSP150	Heat shock protein, secretory glycoprotein	6.8	Msn2/4p, Yap1/2p
YER103W/SSA4	HSP of the HSP70 family, cytosolic	4.2	Msn2/4p, Hsf1p, Yap1/2p
YNL160W / YGP1	Glycoprotein synthesized in response to nutrient limitation	4.1	Msn2/4p, Hsf1p, Yap1/2p
YAL005C/SSA1	Heat shock protein of HSP70 family	4.0	Msn2/4p, Hsf1p, Yap1/2p
YDR533C/HSP31	Heat shock protein	3.5	Msn2/4p, Hsf1p, Yap1/2p
YLL026W / HSP104	Heat shock protein 104	3.1	Msn2/4p, Hsf1p, Yap1/2p
Energy utilization			
YLR134W / PDC5	Pyruvate decarboxylase	5.9	Msn2/4p, Hsf1p, Yap1/2p
YCR012W/PGK1	Phosphoglycerate kinase activity - gluconeogenesis	4.2	Msn2/4p, Hsf1p, Yap1/2p
YFR053C/HXK1	Hexokinase activity - fructose metabolism	4.2	Msn2/4p, Hsf1p
YBR020W/GAL1	Galactokinase activity - galactose metabolism	4.0	Yap1/2p
*YCL040W/GLK1	Glucokinase activity - carbohydrate metabolism	4.0	Msn2/4p
YBR019C/GAL10	Galactose metabolism	3.7	Hsf1p, Yap1/2p
YBL030C/PET9	ATP/ADP antiporter activity - ATP/ADP exchange	3.5	Msn2/4p, Hsf1p
YML100W / TSL1	Similar to TPS3 gene product, trehalose-6-phosphate synthase/phosphatase complex	3.1	Msn2/4p, Hsf1p
YLR258W / GSY2	Glycogen synthase (UDP-glucose-starch glucosyltransferase)	3.1	Msn2/4p, Hsf1p, Yap1/2p
Transport & transloc	ation		
YDR432W/NPL3	mRNA binding - mRNA-nucleus export	78	Msn2/4p, Hsf1p,
YIL166C	Transporter activity	7.5	Msn2/4p, Hsf1p, Yap1/2p
YMR058W / FET3	Multicopper oxidase-transport	3.8	Msn2/4p
Lipid metabolism YMR008C / PLB1	Phospholipase B	6.5	Msn2/4p
Protein metabolism			
YDR019C/GCV1	Glycine dehydrogenase (decarboxylating) activity- Glycine metabolism as nitrogen source	3.2	Yap1/2p
Signal transduction p	roteins		
YAL056W/GPB2	Signal transducer activity - signal transduction	3.2	Msn2/4p, Hsf1p, Yap1/2p
Transcription and tra	anslation factor and process		
YMR053C / STB2	Transcriptional repressor	39	Msn2/4p, Hsf1p
YMR042W / ARG80	Transcription factor	3.1	Msn2/4p, Hsf1p, Yap1/2p
YJL076W / NET1	Ribosomal DNA (rDNA) binding	3.0	Msn2/4p
YOL004W / SIN3	DNA binding protein, involved in transcriptional	3.0	Msn2/4p, Hsf1p
YOR290C / SNF2	Transcriptional regulator	3.0	Msn2/4p, Hsf1p
Nucleatida Matabalia	m		
*YBR012W-B	RNA-directed DNA polymerase activity - ribonuclease	9.6	Yap1/2p
YLR466W / YRF1-4	Y'-helicase protein 1	6.0	-

YPL283C / YRF1-7	Y'-helicase protein 1	5.2	-
YLR398C / SKI2	RNA helicase	5.0	-
YHL050C	Helicase activity	4.4	-
YKR048C / NAP1	Nucleosome assembly protein I	4.0	Msn2/4p, Hsf1p
YLR467W / YRF1-5	Y'-helicase protein 1	3.8	Hsflp, Yap1/2p
YOR204W / DED1	RNA helicase	3.5	Msn2/4p, Hsf1p, Yap1/2p
YFR037C/RSC8	Chromatin modeling	3 3	Hsf1p, Yap1/2p
111007010000	enionaun nouenng	5.5	r, r, r
Cell wall & membran	e proteins		
YJL079C / PRY1	Nuclear membrane	7.2	Msn2/4p, Hsf1p,
YDR077W/SED1	Structural constituent of cell wall - cell wall	6.7	Msn2/4p
	organization and biogenesis		
YJR034W / PET191	Mitochondrial inner membrane	5.3	Msn2/4p, Hsf1p
YNL283C / WSC2	Contains novel cysteine motif, integral membrane protein	3.3	-
	(putative		
Misselleneeus			
VDL 025C	Protein kinase activity	78	Msn2/4n Hsf1n Yan1/2n
VMD287C / MSUI	2' 5' evonuclease complex component	7.0	Hsfln Van $1/2n$
$1 \text{ MR}_{20}/\text{C} / \text{MSU}_{1}$	S-S exonuclease complex component	7.2	11311p, 14p1/2p
I WIKU58C / LIS/	Distain Lineas activity C1/S transition of mitatic call	1.2	- Man2/An Van1/2n
YCK008W/SA14	Protein kinase activity - G1/S transition of mitotic cell	5.7	MISH2/4p, 1 ap1/2p
	Cycle Vacualar aminonantidada vacı	5.0	Man2/4n Hafln Van1/2n
I KL103C / LAP4	Vacuolar anniopeptidase ysci	5.0	Msn2/4p, $Hs11p$, $Tap1/2p$
YJKUSOC / HUL4	Ubiquitin ligase (E5)	4.9	$M\sin^2/4p$, $1ap1/2p$ $Man^2/4n$ $Mafle Nap1/2n$
YHR008C/SOD2	Manganese superoxide dismutase activity - oxygen and	4.3	Msn2/4p, Hs11p, Tap1/2p
	A sid showshotses astisity	2.2	Man2/An Hafln Van1/2n
YDL024C/DIA3	Citate (SI) south as a stinite with the line	3.2	Man2/4p, HS11p, Tap1/2p
YCR005C/C112	Citrate (SI)-synthase activity - citrate metabolism	3.2	MSn2/4p
Unknown function			
*YCL042W		25.2	Msn2/4p, Yap1/2p
*YBL005W-A		11.6	Msn2/4p, Yap1/2p
YHR219W		11.5	Msn2/4p, Hsf1p, Yap1/2p
YBL113C		11.2	Msn2/4p, Hsf1p, Yap1/2p
*YCL020W		11.2	Hsflp
YFL067W		11.0	Msn2/4p
*VBR012W-A		9.9	Yap1/2p
*VMI 045W		9.6	- up 1, - p
*VML 040W		9.0	Msn2/4n Yan1/2n
*VDI 101W A		0.3	1013112/ 1p, 1 up1/2p
*VID026W		9.5	- Van1/2n
* I JK020 W		9.0	Heftn
*VMD046C		0.9	Msn2//n Van1/2n
* Y ID 029W		0.0	Msn2/4p, $Tap1/2pMsn2/4p$, $Vap1/2p$
* Y JKU28W		8.4	$M\sin^{2}/4p$, $1ap^{1}/2p$
* Y MK051C		8.2	MSH2/4p
YDL023C		/.1	HSIIP
YLL06/C		6.5	Hstip, Yapi/2p
YBR054W/YRO2		6.2	Msn2/4p, Yap1/2p
YAL004W		5.8	Hsf1p, Yap1/2p
YML133C		5.8	Hst1p, Yap1/2p
YER188W		5.7	Msn2/4p
YLL066C		5.3	Hsf1p, Yap1/2p
YJL116C / NCA3		5.1	Msn2/4p, Hsf1p,
YEL077C		4.6	Yap1/2p
YER190W/YRF1-2		4.4	Msn2/4p, Yap1/2p
YLR465C / BSC3		4.2	Msn2/4p, Hsf1p, Yap1/2p
YOL106W		4.1	Hsf1p, Yap1/2p
YEL076C-A		4.3	Msn2/4p, Yap1/2p
YJL225C		3.3	Msn2/4p, Hsf1p, Yap1/2p
YNR042W		3.3	-

YLR162W	3.3	Hsf1p, Yap1/2p
YBR209W	3.2	Msn2/4p, Hsf1p
YLR279W	3.1	Msn2/4p, Hsf1p, Yap1/2p
YLR190W / MMR1	3.1	Msn2/4p, Hsf1p
YBL012C	3.0	Msn2/4p, Hsf1p
YHR145C	3.0	Yap1/2p

Table 3.2b: Macroarray data: Genes that were LHE following five hour exposure to7% ethanol relative to control.

* Genes also found to be LE in macroarray experiments for the same conditions at one-hour time point.

ORF/Gene name	Description of gene product	Fold decrease
Ribosomal proteins		
YGL147C/RPL9A	Cytosolic large ribosomal subunit	-18.7
YER131W/RPS26B	Cytosolic small ribosomal subunit	-17.3
YKL156W /	Cytosolic small ribosomal subunit	-17.1
RPS27A		
YDL061C/RPS29B	Cytosolic small ribosomal subunit	-17.0
YDR450W/RPS18A	Cytosolic small ribosomal subunit	-16.2
YBR084C-	Cytosolic large ribosomal subunit	-15.7
A/RPL19B		
YGL031C/RPL24A	Cytosolic large ribosomal subunit	-15.5
YER056C-	Cytosolic large ribosomal subunit	-15.4
A/RPL34A		
YOR096W / RPS7A	Cytosolic small ribosomal subunit	-15.2
YGR214W/RPS0A	Cytosolic small ribosomal subunit	-14.6
YDR471W/RPL27B	Cytosolic large ribosomal subunit	-14.5
YOL077C / BRX1	Ribosomal large subunit assembly and maintenance	-14.2
YJL190C / RPS22A	Cytosolic small ribosomal subunit	-14.2
YLR340W / RPP0	Cytosolic small ribosomal subunit	-13.9
YHL015W / RPS20	Cytosolic small ribosomal subunit	-13.7
YOR167C / RPS28A	Cytosolic small ribosomal subunit	-13.6
YDL083C / RPS16B	Cytosolic small ribosomal subunit	-13.6
YKR094C / RPL40B	Cytosolic large ribosomal subunit	-13.2
YBR191W /	Cytosolic large ribosomal subunit	-13.2
RPL21A		
YGR103W / NOP7	Ribosomal large subunit biogenesis	-13.1
YKL009W / MRT4	Ribosomal large subunit biogenesis	-12.9
YBL027W / RPL19B	Cytosolic large ribosomal subunit	-12.9
YGR118W /	Cytosolic small ribosomal subunit	-12.8
RPS23A		
YML026C / RPS18B	Cytosolic small ribosomal subunit	-12.8
YPL079W / RPL21B	Cytosolic large ribosomal subunit	-12.8
YGL123W / RPS2	Cytosolic small ribosomal subunit	-12.6
YML073C / RPL6A	Cytosolic large ribosomal subunit	-12.5
YGR148C / RPL24B	Cytosolic large ribosomal subunit	-12.5
YDL191W /	Cytosolic large ribosomal subunit	-12.4
RPL35A		
YHR021C / RPS27B	Cytosolic small ribosomal subunit	-12.4
YOR312C / RPL20B	Cytosolic large ribosomal subunit	-12.4
YMR242C / RPL20A	Cytosolic large ribosomal subunit	-12.4
YNL162W /	Cytosolic large ribosomal subunit	-12.4
RPL42A		
YHL001W / RPL14B	Cytosolic large ribosomal subunit	-12.0
YLR388W / RPS29A	Cytosolic small ribosomal subunit	-11.9

YJL177W / RPL17B	Cytosolic large ribosomal subunit	-11.9
YJL136C / RPS21B	Cytosolic small ribosomal subunit	-11.8
YLR344W / RPL26A	Cytosolic large ribosomal subunit	-11.8
YGR085C / RPL11B	Cytosolic large ribosomal subunit	-11.7
YIL052C / RPL34B	Cytosolic large ribosomal subunit	-11.7
YHR010W /	Cytosolic large ribosomal subunit	-11.5
RPL27A		
YDL082W /	Cytosolic large ribosomal subunit	-11.5
RPL13A		
YDR418W /	Cytosolic large ribosomal subunit	-11.4
RPL12B	, ,	
YLR167W / RPS31	Cytosolic small ribosomal subunit	-11.4
YIL148W / RPL40A	Cytosolic large ribosomal subunit	-11.3
YJL189W / RPL39	Cytosolic large ribosomal subunit	-11.2
YML024W /	Cytosolic small ribosomal subunit	-11.2
RPS17A	- ,	
YLR061W / RPL22A	Cytosolic large ribosomal subunit	-11.2
YMR143W /	Cytosolic small ribosomal subunit	-11.0
RPS16A		1110
YKL006W /	Cytosolic large ribosomal subunit	-11.0
RPL14A	Cytosono luigo noosoniui suounit	11.0
VDR025W /	Cytosolic small ribosomal subunit	-11.0
RPS11A	Cytosone sman noosoniai subunit	-11.0
VOR234C / RPI 33R	Cutosolic large ribosomal subunit	-11.0
VML 063W / RPS1B	Cytosolie small ribosomal subunit	-10.0
VDI 136W / RPI 35B	Cytosolic Iarge ribosomal subunit	-10.9
VDI 075W /	Cytosolic large ribosomal subunit	-10.8
	Cytosofie large floosofilar subulit	-10.8
VKD057W /	Cutosolie small ribosomal subunit	10.8
	Cytosone sinan noosoniai subunit	-10.0
NI 521A VOL 127W / DDI 25	Cutosolio largo ribogomal gubunit	10.8
I OLIZ / W / KFL23	Cytosolic large ribosolial subunit	-10.6
INLIOUW / DDI 17A	Cytosofic large fibosofilar subunit	-10.0
NFL1/A VID141C / DDI 42D	Critegolio lerro ribogorol gubunit	10.6
I IIRI4IC / KPL42D	Cytosofic large fibosofial subunit	-10.0
YOL 121C / RPS15	Cytosolic small ribosomal subunit	-10.5
YL DO20C / DDL 15A	Cytosofic sinan noosofial subunit	-10.5
YLR029C / RPLI5A	Cytosofic large ribosomal subunit	-10.5
YGLI35W / KPLIB	Cytosolic large ribosomal subunit	-10.5
YBR048W / KPS11B	Cytosolic small ribosomal subunit	-10.5
YGRU2/C/RPS25A	Cytosolic small ribosomal subunit	-10.3
YOL144W / NOP8	Ribosomal large subunit assembly and maintenance	-10.1
Y BK189W / KPS9B	Cytosolic small ribosomal subunit	-10.1
YELUSAC / RPL12A	Cytosolic large ribosomal subunit	-10.1
YBL092W / RPL32	Cytosolic large ribosomal subunit	-10.0
YOR293W /	Cytosolic small ribosomal subunit	-10.0
KPSI0A		0.0
YNL06/W/RPL9B	Cytosolic large ribosomal subunit	-9.9
YGL189C / RPS26A	Cytosolic small ribosomal subunit	-9.8
YGL103W / RPL28	Cytosolic large ribosomal subunit	-9.7
YPL090C / RPS6A	Cytosolic small ribosomal subunit	-9.6
YKR08IC / RPF2	Ribosomal large subunit assembly and maintenance	-9.5
YLK441C / KPS1A	Cytosolic small ribosomal subunit	-9.3
YDR447C / RPS17B	Cytosolic small ribosomal subunit	-9.2
YGLIIIW / NSAI	Cytosolic large ribosomal subunit	-9.2
YMR121C / RPL15B	Cytosolic large ribosomal subunit	-9.0
YDR064W / RPS13	Cytosolic small ribosomal subunit	-8.7
YIL069C / RPS24B	Cytosolic small ribosomal subunit	-8.7
YLR325C / RPL38	Cytosolic large ribosomal subunit	-8.7
YPL220W / RPL1A	Cytosolic large ribosomal subunit	-8.7
YMR230W /	Cytosolic small ribosomal subunit	-8.6

RPS10B
YLR048W / RPS0B
RPP2A/RPLA2
YDR500C / RPL37B
YBR181C / RPS6B
VCD005C / DDD46
I UKU93C / KKF40
YCL031C/RRP/
YNL178W / RPS3
YPL081W / RPS9A
YPL143W / RPL33A
VER07AW / RPS2AA
1 LK0/4 W / KI 524A
YLK555C/RPS25B
YGL030W / RPL30
YOR063W / RPL3
YBR031W / RPL4A
YPR102C/RPL11A
VDR012W / RPI 4B
VID102W / DDC5
I JK125 W / KP55
YOL120C / RPL18A
YBL087C / RPL23A
YIL018W / RPL2B
YIR145C / RPS4A
VHI 033C / RPI 8A
VUD202C / DDC4D
YHK203C / KPS4B
YKR006C / MRPL13
YLR186W / EMG1
YLR075W / RPL10
YIL133C/RPL16A
VII 191W / RPS14B
VID AACC / DDI 21D
YLK406C / RPL31B
YLL045C / RPL8B
YLR287C-A /
RPS30A
YNL069C / RPL16B
VHR147C / MRPI 6
111111111111111111111111111111111111
1 JL090 W / MIKPL49
YMR142C / RPL13B
YPL131W / RPL5
YNL002C / RLP7
YCR031C / RPS14A
VER050C / RSM18
VNI 00 C / DDS7D
INLU90C/RPS/D
YNL30IC / RPL18B
YDR041W / RSM10
YFR031C-A /
RPL2A
VDR312W / SSF2
IDK382W/KPP2D
YKR085C / MRPL20
YBL090W / MRP21
YER117W / RPL23B
YER102W / RPS8B
YDR347W / MRP1
VI D105W/ / DDI 27A
$1 L \times 103 W / K \Gamma L 3 / A$
Y NKU22C / MKPL50
YGL076C / RPL7A
YBL072C / RPS8A
YDL130W / RPP1B
VDD 202W/
I BK282W /

Cytosolic small ribosomal subunit	-8.3
Cytosolic large ribosomal subunit	-8.2
Cytosone large noosonial subant	0.2
Cytosolic large ribosomal subunit	-8.1
Cytosolic small ribosomal subunit	-0.1
Cytosolic small ribosomal subunit	-0.1
Cytosolic small ribosomal subunit	-0.0
Cytosolic sinali ribosoliai subunit	-1.9
Cytosofic small ribosomal subunit	-7.5
Cytosolic small ribosomal subunit	-/.4
	-7.5
Cytosolic small ribosomal subunit	-7.3
Cytosolic small ribosomal subunit	-7.3
Cytosolic large ribosomal subunit	-7.2
Ribosomal large subunit assembly and maintenance	-7.2
Cytosolic large ribosomal subunit	-7.1
Ribosomal large subunit assembly and maintenance	-/.1
Cytosolic large ribosomal subunit	-6.8
Ribosomal protein S5 (S2) (rp14) (YS8)	-6.8
Ribosomal protein L18A (rp28A)	-6.7
Cytosolic large ribosomal subunit	-6.7
Cytosolic large ribosomal subunit	-6.3
Cytosolic small ribosomal subunit	-6.2
Cytosolic large ribosomal subunit	-6.0
Cytosolic small ribosomal subunit	-6.0
Cytosolic large ribosomal subunit	-5.9
Ribosome biogenesis	-5.9
Cytosolic large ribosomal subunit	-5.9
Cytosolic large ribosomal subunit	-5.8
Cytosolic small ribosomal subunit	-5.8
Cytosolic small ribosomal subunit	-5.7
Cytosolic large ribosomal subunit	-5.6
Cytosolic small ribosomal subunit	-5.5
Cytosolic large ribosomal subunit	-5.4
Mitochondrial large ribosomal subunit	-5.2
Mitochondrial large ribosomal subunit	-5.2
Cytosolic large ribosomal subunit	-5.2
Ribosomal large subunit biogenesis	-5.1
Ribosomal large subunit biogenesis	-5.1
Cytosolic small ribosomal subunit	-4.8
Mitochondrial ribosome small subunit component	-4.8
Cytosolic small ribosomal subunit	-4.8
Cytosolic large ribosomal subunit	-4.8
Mitochondrial ribosome small subunit component	-4.6
Cytosolic large ribosomal subunit	-4.3
Ribosomal large subunit assembly and maintenance	-4.2
Cytosolic small ribosomal subunit	-4.2
Mitochondrial large ribosomal subunit	-4.2
Mitochondrial ribosome small subunit component	-4.1
Cytosolic large ribosomal subunit	-4.1
Cytosolic small ribosomal subunit	-4.0
Mitochondrial ribosomal protein	-3.9
Ribosomal protein L37A (L43) (YL35)	-3.8
Mitochondrial large ribosomal subunit	-3.8
Cytosolic large ribosomal subunit	-3.8
Cytosolic small ribosomal subunit	-3.7
Cytosolic small ribosomal subunit	-3.6
Cytosolic large ribosomal subunit	-36

MRPL27		
YJL063C / MRPL8	Ribosomal protein	-3.5
YIR012W / SOT1	Ribosomal large subunit assembly and maintenance	-3.4
YBL038W/	Mitochondrial large ribosomal subunit	-3.4
MRPL16		
YER126C / NSA2	Ribosomal large subunit biogenesis	-3.4
YPR016C / TIF6	Ribosomal large subunit biogenesis	-3.3
YNL302C / RPS19B	Ribosomal protein S19B	-3.3
YOR369C / RPS12	Ribosomal protein S12	-3.2
YBR146W / MRPS9	Mitochondrial small ribosomal subunit	-3.0
YKL003C / MRP17	Mitochondrial small ribosomal subunit	-3.0
Energy utilization		
YML106W / URA5	Orotate phosphoribosyltransferase 1	-7.8
YOR095C / RKI1	Ribose-5-phosphate ketol-isomerase	-7.3
YOL058W / ARG1	Arginosuccinate synthetase	-6.8
YHR183W / GND1	Glucose metabolism	-6.7
YOR067C / ALG8	Glycosyl transferase	-5.5
YOR002W / ALG6	Glucosyltransferase	-5.3
YBR221C / PDB1	Pyruvate dehydrogenase beta subunit	-4.9
YGR192C / TDH3	Glyceraldehyde-3-phosphate dehydrogenase	-4.8
YLL041C / SDH2	Succinate dehydrogenase (ubiquinone) iron-sulfur protein subunit	-4.5
YOL126C / MDH2	Malate dehydrogenase	-4.5
YBL058W / SHP1	Glycogen metabolism	-4.4
YBR196C / PGI1	Glucose-6-phosphate isomerase	-4.4
YIL074C / SER33	3-phosphoglycerate dehydrogenase	-4.3
YIL167W / ERG20	Arnesyl diphosphate synthetase (FPP synthetase)	-4.1
YKL016C / ATP7	ATP synthese d subunit	-3.9
YOL136C / PFK27	Fructose 2 6-bisphosphate metabolism	-3.7
VIR131W / MNS1	Alpha-mannosidase	-3.6
$VBR149W / \Delta R \Delta 1$	D-arabinose dehydrogenase	-3.4
VOR360C / PDE2	High affinity cAMP phosphodiesterase	-3.4
VII 162W / SUC2	Invertase (sucrose hydrolyzing enzyme)	-3.3
VBR084W / MIS1	C1_tetrabydrofolate synthase	-3.2
VDR368W / VPR1	A rabinose metabolism	-3.1
YPL061W / ALD6	Aldehyde dehydrogenase	-3.1
Stugg uppaga		
Stress response		11.0
YDL229W / SSBI	HSP/0 family	-11.0
YNL209W / SSB2	SSB1 homolog, heat shock protein of HSP/0 family	-7.5
YDL235C / YPD1	Response to osmotic stress	-6.5
YILU53W / KHK2	Glycerol-I-phosphatase -response to osmotic stress	-6.2
YML028W / ISAI	Response to oxidative stress	-5.2
YDL120W / YFH1	Iron homeostasis	-5.2
YILI53W / KKDI	Response to osmotic stress	-4.9
YGL09/W/SRMI	Pheromone response pathway suppressor	-4.9
YLR043C / TRXT	Response to oxidative stress	-4.5
YERII8C / SHOI	Transmembrane osmosensor	-4.4
YHR064C / SSZI	HSP/0 family	-4.0
YDL166C / FAP7	Response to oxidative stress	-4.0
YML086C / ALO1	Response to oxidative stress	-3.8
YBR244W/GPX2	Response to oxidative stress	-3.4
YDR214W / AHA1	Hsp90 system cochaperone; Aha1 binds to the middle domain of Hsp90 and	-3.1
	improves client protein activation in vivo	• •
YFLUT/C/GNA1	Glucosamine-phosphate N-acetyltransferase	-3.0
Y GR209C / TRX2	Response to oxidative stress	-3.0
YJK14/W/HMS2	Heat shock transcription factor homolog	-3.0

Cell cycle and growth

YPL187W	Mating factor alpha	-14.7
YLR062C / BUD28	Bud site selection	-12.0
YJL188C / BUD19	Bud site selection	-10.3
YOR212W / STE4	G protein beta subunit, coupled to mating factor receptor	-8.9
YPR120C / CLB5	B-type cyclin	-8.7
YNL078W / NIS1	Regulation of mitosis	-7.8
YBR247C / ENP1	Cell growth and/or maintenance	-7.1
YGL134W / PCL10	Cyclin-dependent protein kinase, regulator	-6.1
YHR152W / SPO12	Protein- positive regulator of exit from M-phase in mitosis and meiosis	-5.7
YBR057C / MUM2	Premeiotic DNA synthesis	-5.2
YOL001W / PHO80	Pho80p cyclin	-4.7
YBR160W / CDC28	Cyclin-dependent protein kinase	-4.5
YGL215W / CLG1	Cyclin-dependent protein kinase holoenzyme complex	-4.5
YDR303C / RSC3	Regulation of cell cycle	-4.2
YBL084C / CDC27	Anaphase promoting complex (APC) subunit	-3.9
YLR210W / CLB4	B-type cyclin	-3.7
YBR135W / CKS1	Regulation of cell cycle	-3.5
YLR226W / BUR2	Cyclin-dependent protein kinase, regulator	-3.5
YDL155W / CLB3	Cyclin-dependent protein kinase, regulator	-3.4
YIR025W / MND2	Anaphase-promoting complex	-3.4
YJL098W / SAP185	G1/S transition of mitotic cell cycle	-3.4
YGL169W / SUA5	Cell growth and/or maintenance	-3.2
YPL256C / CLN2	G1 cyclin	-3.2
YKR063C / LAS1	Bud growth	-3.1
YLR074C / BUD20	Bud site selection	-3.1
Transport & translocat	ion	
YMR011W / HXT2	High affinity hexose transporter-2	-257
YHR094C/HXT1	Hexose transport	-16.1
YHL047C / ARN2	Triacetylfusarinine C transporter	-12.5
YER009W / NTF2	Nuclear transport factor	-11.1
YDR011W / SNO2	ABC transporter	-10.8
YHR026W / PPA1	Hydrogen-transporting ATPase	-10.1
YEL051W / VMA8	Hydrogen-transporting ATPase	-9.9
YKL186C / MTR2	mRNA transport regulator	-9.5
YBR291C / CTP1	Citrate tranporter	-9.3
YDR441C / APT2	Adenine phosphoribosyltransferase	-9.2
YKL120W / OAC1	Oxaloacetate transport protein	-8.8
YFL048C / EMP47	Golgi apparatus	-7.7
YKL196C / YKT6	V-SNARE-intra-Golgi transport	-7.5
YDR276C / PMP3	Cation transport	-7.2
YDR384C / ATO3	Transmembrane protein-transport protein	-7.1
YGR289C / MAL11	Alpha-glucoside transporter, hexose transporter, maltose permease	-7.0
YBL102W / SFT2	Golgi to endosome transport	-7.0
YLR078C / BOS1	v-SNARE - ER to Golgi transport	-7.0
YDR425W / SNX41	Protein transport	-6.9
YDR002W / YRB1	RNA-nucleus export	-6.8
YOR115C / TRS33	ER to Golgi transport	-6.4
YJL145W / SFH5	Phospholipid transport	-6.1
YHR110W / ERP5	p24 protein involved in membrane trafficking	-6.1
YAL014C / SYN8	Syntaxin family	-6.1
YNL044W / YIP3	ER to Golgi transport	-6.1
YGR082W / TOM20	20 kDa mitochondrial outer membrane protein import receptor	-5.9
YML067C / ERV41	ER to Golgi transport	-5.9
YOR079C / ATX2	Manganese-trafficking protein	-5.8
YML077W / BET5	ER to Golgi transport	-5.7
YLR130C / ZRT2	Low affinity zinc transport protein	-5.6
YBR104W / YMC2	Mitochondrial inner membrane-transport	-5.6
YHL003C / LAG1	Protein transport	-5.6
YLR411W / CTR3	Copper transporter (-5.6

YOR153W / PDR5	Multidrug resistance transporter	-5.6
YFR051C / RET2	ER to Golgi transport	-5.2
YLR208W / SEC13	Nuclear pore complex subunit, protein involved in release of transport	-5.1
	vesicles from the ER	
YDR395W / SXM1	Protein carrier	-5.1
YNR039C / ZRG17	Zinc ion transport	-5.0
YKL175W / ZRT3	Zinc ion transporter	-5.0
YDR202C / RAV2	Hydrogen-transporting ATPase V1 domain	-4.8
YJL133W / MRS3	Carrier protein	-4.7
YDR091C / RLI1	ATP-binding cassette (ABC) transporter	-4.6
YBR106W / PHO88	Phosphate transporter	-4.6
YJR117W / STE24	Zinc metallo-protease	-4.6
YKR014C / YPT52	Protein-vacuolar targeting	-4 5
YDL198C / YHM1	Mitochondrial inner membrane-transporter	-4 5
VGR055W / MUP1	High affinity methionine nermease	-4.4
$V \parallel 024C / APS3$	Golgi to vacuale transport	-1.4
VDP166C / SEC5	Execute complex 107 kDa component	-4.4
VID044C / VID55	Involved in Colgi to vegual r targeting	-4.4
1 JK044C / VFS33	ED to Coloi transport	-4.5
I LK020C / SED3	EK to Goigi transport	-4.1
IJL129C / IKKI	High attinity potassium transporter	-4.1
YKR068C/BE13	Transport protein particle (TRAPP) component	-4.1
YGL077C/HNMI	Transporter (permease) for choline and nitrogen mustard; share homology	-4.1
	with UGA4	
YDR345C / HXT3	Low affinity glucose transporter	-4.0
YBR132C / AGP2	Plasma membrane carnitine transporter	-3.9
YDR299W / BFR2	ER to Golgi transport	-3.9
YKL080W / VMA5	Hydrogen-transporting ATPase V1 domain	-3.9
YLR214W / FRE1	Cupric reductase, ferric reductase-iron transport	-3.8
YOR075W / UFE1	t-SNARE (ER)	-3.7
YLR093C / NYV1	Vacuolar v-SNARE	-3.7
YFR009W / GCN20	ATP-binding cassette (ABC) family	-3.6
YBR017C / KAP104	Protein-nucleus import	-3.6
YDL090C / RAM1	Farnesyltransferase beta subunit	-3.6
YGL136C / MRM2	2'O-ribose methyltransferase	-3.6
YDL018C / ERP3	P24 protein involved in membrane trafficking	-3.6
YGL223C / COG1	Golgi transport complex	-3.6
YOL103W / ITR2	Myo-inositol transporter	-3.5
YCR004C / YCP4	Electron transporter	-3.5
YGL161C / YIP5	ER to Golgi transport	-3.5
YBL089W / AVT5	Transporter	-3.5
YML130C / FRO1	Electron carrier	-3.5
YGL002W / ERP6	P24 protein involved in membrane trafficking	-3.4
YOR016C / FRP4	Protein involved in membrane trafficking	-3.4
VIR309C / IMH1	Vesicle-mediated transport	-3.3
VGR166W / KRE11	FR to Golgi transport	-3.3
VER1/45C / FTR1	Iron nermesse	-3.3
VHP002C / HYTA	High affinity glucose transporter	-5.5
VHD117W / TOM71	Drotein transporter	-3.2
VOD244W/ESA1	A contribution of the SAS goes family $NuA4$ complex component	-3.2
1 OK 244 W / ESA1	Transmost most in the tinter of suith Social maning for motion to more at	-3.2
1 GL143 W / 11P20	framsport protein that interacts with Sec2op, required for protein transport	-3.1
VCI 222W / SEC15	From the endoptastille reneuturin to the goigt apparatus	2 1
$1 \text{ UL}_{233} \text{ W} / \text{ SEU13}$	EXOCYST COMPLEX 113KDA COMPONENT	-3.1
YJLU34W / 11M134	membrane	-3.1
YIL022W / TIM44	Protein involved in mitochondrial protein import	-3.1
YAL007C / ERP2	P24 protein involved in membrane trafficking	-3.1
YLR380W / CSR1	Phosphatidylinositol transporter	-3.1
YPL252C / YAH1	Iron-sulfur protein similar to human adrenodoxin	-3.1
YLL027W / ISA1	Iron transport	-3.1
YKL019W / RAM2	CAAX farnesyltransferase alpha subunit	-3.0

YGR057C / LST7	Protein transport	-3.0
YOL020W / TAT2	Tryptophan permease, high affinity (transport)	-3.0
Lipid metabolism		
YLR056W / ERG3	Ergosterol biosynthesis- C-5 sterol desaturase	-8.3
YML008C / ERG6	Ergosterol biosynthesis	-8.2
YGR060W / ERG25	C-4 sterol methyl oxidase	-7.8
VPL 028W / FRG10	Acetoacetyl CoA thiolas	-5.5
VI R100W / FRG27	3-keto sterol reductase	-5.4
1 EK(100 W / EK(12))	J-Kelo Stefol Teducidse	-5.4
IDL052C / SLCI	Lipid particle	-4.0
INKU43W/MVDI		-4.0
YPRI28C / ANTI	Fatty acid beta-oxidation	-4.2
YDR036C / EHD3	Fatty acid beta-oxidation	-4.2
YML126C / ERG13	3-hydroxy-3-methylglutaryl coenzyme A synthase	-3.9
YHR190W / ERG9	Squalene synthetase	-3.8
YHR007C / ERG11	Cytochrome P450 lanosterol 14a-demethylase	-3.4
Protein metabolism		
YNR050C / LYS9	Lysine biosynthesis, aminoadipic pathway	-10.0
YIL020C / HIS6	Histidine biosynthesis	-8.4
YHR052W / CIC1	Protein catabolism	-8.0
YHR025W / THR1	Homoserine kinase	-74
VHR181W / SVP26	Integral membrane protein	-73
$\overline{VHR208W}$ / $\overline{BAT1}$	Branched-chain amino acid transaminase	-6.9
VBR133C / HSL7	Has homology to argining methyltransferases	-6.6
VER052W / RPN12	Libiquitin_dependent protein catabolism	-6.0
VCD155W/CVS4	Cystethioning beta synthese	-0.4
VID024C/IVS1	Lysian biogenthesis	-0.3
1 IK034C / L 1 S1	Threepine sumthese	-3.4
ICR033W / IHR4	A streated linese	-3.4
YERUSZC / HOMIS	Aspartate kinase	-4.9
YILII6W/HISS	Histidinoi-phosphate aminotransferase	-4.9
YBRI/3C/UMPI	20S proteasome maturation factor	-4.8
RRS1/YDR341C	Arginine-tRNA ligase	-4.8
YBR034C / HMT1	Arginine methyltransferase	-4.7
YDR390C / UBA2	SUMO activating enzyme	-4.6
YER081W / SER3	Serine family amino acid biosynthesis	-4.6
YJL101C / GSH1	Gamma-glutamylcysteine synthetase	-4.6
YPR033C / HTS1	Histidine-tRNA ligase	-4.4
YER069W / ARG5,6	Arginine biosynthesis	-4.4
YJR023C	Protein disulfide isomerase related protein	-4.3
YDR158W / HOM2	Aspartic beta semi-aldehyde dehydrogenase	-4.0
YLR027C / AAT2	Aspartate aminotransferase	-4.0
YKL106W / AAT1	Aspartate aminotransferase	-4.0
YDL131W/LYS21	Lysine biosynthesis	-3.9
YBL080C / PET112	Protein biosynthesis	-3.6
YDR354W / TRP4	Tryptophan biosynthesis	-3.5
VBI 091C / MAP2	Methionine aminopentidase	-3.3
VMR164C / MSS11	A mino acid polypeptide with poly-glutamine and poly-asparagine domains	-3.3
VCI 030C / HISA	Histidinol debudrogenace	_2 2
VCI 202W / ADOP	A remetie amine acid aminetransformer	-3.2
I UL2U2 W / AKU8 VNI 161W / CDV1	Atomatic ammo acid ammotransierase	-3.2
INLIDIW / UBKI	Chatemate his same that	-3.2
YLKUI/W/MEUI	Giutamate biosynthesis	-5.1

Protein folding, synthesis, modification, translocation, degradation and complex assembly

o com - o camp, sy - comosis, o a	canony comprehension, acgradation and comprehension	
YGL018C / JAC1	Co-chaperone	-11.2
YGR135W / PRE9	proteasome component Y13	-11.8
YBR155W / CNS1	Protein folding	-8.0
YIL034C / CAP2	Capping protein beta subunit	-6.5
YHR111W / UBA4	Protein modification	-6.4
YHL002W / HSE1	Endosome	-6.3
YHR135C / YCK1	Casein kinase I homolog	-6.2
---------------------------	---	-------
YGR185C / TYS1	Tyrosine-tRNA ligase	-6.2
YHR170W / NMD3	Factor required for a late assembly step of the 60S subunit	-6.2
YER003C / PMI40	Mannose-6-phosphate isomerase	-6.2
YBR121C / GRS1	Glycine-tRNA ligase	-6.1
YJL111W / CCT7	Chaperonin containing T-complex subunit seven component	-5.9
YEL053C / MAK10	Amino acid N-acetyltransferase	-5.9
YDR321W / ASP1	Asparaginase I, intracellular isozyme	-5.9
YFR028C / CDC14	Protein phosphatase	-5.6
YGL229C / SAP4	Protein serine/threonine phosphatase	-5.6
YIL131C / FKH1	Forkhead protein	-5.6
YDR212W / TCP1	Chaperonin subunit alpha	-5.4
YFR040W / SAP155	Protein serine/threonine phosphatase	-5.3
YOR089C / VPS21	Small GTP-binding protein	-5.1
YDR00/W/TRPI	Tryptophan biosynthesis	-4.7
YGL035C / MIGI	C2H2 zinc finger protein that resembles	-4.0
YKLII/W/SBAI	HSP90 associated co-chaperone	-3.7
YERI33W/GLC/	Protein phosphatase type I	-3.4
YDR300C / PROT	Glutamate 5-kinase	-3.3
YJL008C / CC18	Chaperonin containing 1-complex subunit eight component	-3.2
YJR064W / CC15	Chaperonin subunit epsilon subunit	-3.2
YDL040C / NATT	N-terminal acetyltransferase	-3.1
Signal transduction n	rotains	
VKI 122C / SRP21	Signal recognition particle component	_7 2
VPI 243W / SRP68	Signal recognition particle component	-6.4
YLR066W / SPC3	Signal nentidase complex	-6.1
YDL 092W / SRP14	Signal recognition particle	-5.2
YDL135C / RDI1	Signal transducer	-5.2
YDR142C / PEX7	Beta-transducin-related (WD-40) protein family	-4.4
YDR364C / CDC40	Beta transducin family	-3.1
YDR103W / STE5	Signal transduction during conjugation with cellular fusion	-3.0
Transcription and tra	inslation factor and process	
YPL037C / EGD1	Pol II transcribed genes regulator	-12.9
YGR104C / SRB5	RNA polymerase II transcription mediator	-11.1
YER148W / SPT15	TFIID subunit	-11.0
YCL067C /	Transcription co-repressor	-9.7
HMLALPHA2		
DR429C / TIF35	Translation initiation factor eIF3 subunit	-9.2
YGL099W / LSG1	Ribosome nucleus export	-9.1
YKR059W / TIF1	Translation initiation factor eIF4A subunit	-8.9
YBR088C / POL30	Proliferating Cell Nuclear Antigen	-8.7
YEL034W / HYP2	Translation initiation factor eIF-5A	-8.7
YGL078C / DBP3	ATP dependent RNA helicase	-8.5
YCR039C/	Ranscription co-repressor	-8.5
MATALPHA2		0.4
YBR083W / TECI	Specific RNA polymerase II transcription factor	-8.4
YMR005W / TAF4	I ranscription factor IFIID complex	-8.0
YJL138C / 11F2	I ranslation initiation factor eIF4A subunit	-8.0
YUKI68W / GLN4	Glutamine-tKNA ligase	-7.8
YPKU41W / TIF5	I ranslation initiation factor ell 5	-7.8
YCKU4UW /	ranscription co-activator	-/.8
MAIALPHAI VDD154C/DDD5	DNA directed DNA polymetrics II acres counter	7 (
IBKIJ4U / KPBJ	DINA-ultected KINA polymerase II, core complex	-/.0
IJKUU/W/SUI2	I ransiation initiation factor eff-2 alpha subunit	-/.5
I CLUOD W /	involved in the regulation of alpha-specific genes, transcription factor	-1.3
TWILALPHAI	Illator in the general control of amino acid biosynthesis, translation initiation	_7 2
	factor eIF2B subunit	-1.2

YOL097C / WRS1	Tryptophan-tRNA ligase	-7.1
YJL148W / RPA34	DNA-directed RNA polymerase	-7.1
YKL110C / KTI12	Elongator associated protein	-6.9
YKR026C / GCN3	Translation initiation factor	-6.9
YEL009C / GCN4	Transcriptional activator of amino acid biosynthetic genes	-6.8
YAL003W / EFB1	Translation elongation factor EF-1beta	-6.8
YGL209W / MIG2	Contains zinc fingers very similar to zinc fingers in Mig1p	-6.7
YNL255C / GIS2	Transcription factor	-6.5
YOR224C / RPB8	DNA-directed RNA polymerase II, core complex	-6.4
YGL043W / DST1	Positive transcription elongation factor	-6.3
YDL150W / RPC53	RNA polymerase III subunit	-6.3
YHR088W / RPF1	rRNA primary transcript binding	-6.2
YCL055W / KAR4	Transcription regulator	-6.2
YNL229C / URE2	Glutathione transferase (putative) transcriptional regulator prion	-6.1
YMR260C / TIF11	Translation initiation factor eIF1A	-6.0
VFR025W / GCD11	Translational initiation factor eIE-2 gamma subunit	-5.8
VKR056W / TRM2	tRNA methyltransferase	-5.0
VGI 070C / DDD0	DNA polymerase II core subunit	-5.7
VDP120C / TPM1	N2 dimethylayangsing specific tPNA methyltransferese	-5.7
VGL025C/DGD1	DNA nalymerosa II transcription mediator	-5.5
VDD022W/SES1	- KIVA polymenase in transcription methator	-3.4
I DK025 W / SEST	Scille-trive initiation factor sIE1	-3.4
YNL244C / SUII	I ranslation initiation factor eIF I	-5.4
YKLU8IW / IEF4	I ranslation elongation factor EF-Igamma	-5.4
YDR005C / MAFI	Negative regulation of transcription from Pol III promoter	-5.3
YDR143C / SANI	I ranscriptional regulator (putative)	-5.3
YERI65W / PABI	Poly (A) binding protein	-5.2
YDR279W /	Required for RNase H2 activity - one of three subunits	-5.2
RNH202		
YKR099W / BASI	Transcription factor	-5.1
YGL105W / ARCI	Methionyl glutamyl tRNA synthetase complex	-5.0
YBL057C / PTH2	aminoacyl-tRNA hydrolase	-5.0
YOL005C / RPB11	RNA polymerase II core subunit	-4.8
YKL205W / LOS1	tRNA splicing and binding	-4.8
YAL033W / POP5	RNase MRP subunit (putative), RNase P integral subunit	-4.7
YDR216W / ADR1	Positive transcriptional regulator	-4.7
YDR311W / TFB1	Transcription initiation factor IIb,	-4.7
YDR172W / SUP35	Translation termination factor eRF3	-4.6
YMR043W / MCM1	(MCM1, AG, DEFAm SRF)-box motif within its DNA binding domain,	-4.5
	plays a central role in the formation of both repressor and activator complexes,	
	transcription factor	
YLR005W / SSL1	RNA polymerase transcription factor TFIIH component	-4.5
YBR049C / REB1	RNA polymerase I enhancer binding protein	-4.5
YJR047C / ANB1	Translation initiation factor eIF-5A, anaerobically expressed form	-4.5
YKL144C / RPC25	RNA polymerase III subunit	-4.5
YNL206C / RTT106	Negative regulation of DNA transposition	-4.5
YPL016W / SWI1	Zinc finger transcription factor	-4.4
YER127W / LCP5	Small nucleolar ribonucleoprotein complex	-4.4
YJL025W / RRN7	RNA polymerase I transcription factor complex	-4.3
YDL005C / MED2	RNA polymerase II holoenzyme/mediator subunit	-4.3
YGL013C / PDR1	Zinc finger transcription factor of the $Zn(2)$ -Cvs(6) binuclear cluster domain	-4.3
	type	
YGR083C / GCD2	Translation initiation factor eIF2B subunit	-4.2
YDR037W / KRS1	Lysine-tRNA ligase	-4.2
YGR271W / SLH1	Regulation of translation	-4.1
YGR162W /	Translation initiation factor	-4.1
TIF4631		1
YNL199C / GCR2	Transcription factor	-4 1
YMR146C / TIF34	Translation initiation factor eIF3 p39 subunit	-4 1
YPL169C / MEX67	a poly(A)+RNA binding protein	-4 0
YOR340C / RPA43	DNA dependent RNA polymerase I subunit A43	-4.0

YHR187W / IKI1	Transcription elongation factor complex	-4.0
YGL195W / GCN1	Translational activator of GCN4 through activation of GCN2 in response to	-4.0
	starvation	
YGR044C / RME1	Zinc finger protein, negative regulator of meiosis; directly repressed by a1-	-4.0
	alpha 2 regulator	
YHL009C / YAP3	Transcription factor	-4.0
YDR190C / RVB1	Regulation of transcription from Pol II promoter	-3.9
YIL021W / RPB3	RNA polymerase II 45 kDa subunit	-3.9
YNL016W / PUB1	Poly(A) binding protein	-3.9
YPL212C / PUS1	tRNA pseudouridine synthase	-3.9
YOR281C / PLP2	Positive regulation of transcription from Pol II promoter by pheromones	-3.8
YPL129W / TAF14	Transcription initiation factor TFIIF small subunit	-3.8
YIR006W / HYS2	DNA polymerase delta 55 kDa subunit	-3.8
YCR077C / PAT1	Regulation of translational initiation	-3.8
YDL031W / DBP10	ATP dependent RNA helicase	-3.8
VIR063W / RPA12	RNA polymerase I A12.2 subunit	-3 7
YDR289C / RTT103	Negative regulation of DNA transposition	-3 7
VIR023W / DAI 81	Transcriptional activator for allantoin and GABA catabolic genes	-3 7
VII 087C / TRI 1	tRNA ligase	-3.7
VPI 122C / TFB2	TFIIH subunit	-3 7
VI R182W / SWI6	Transcription factor	-3.6
YPI 190C / NAB3	Polyadenylated RNA binding protein polyadenylated single strand DNA-	-3.6
11 21/00 / 10 200	hinding protein	5.0
VHR058C / MED6	RNA polymerase II transcription mediator	-3.6
VGR276C / RNH70	Ribonuclease H	-3.6
VDR404C / RPR7	RNA polymerase II dissociable subunit	-3.6
VIR140C / HIR3	Transcription co_repressor	-3.5
VDR045C / RPC11	TEUS-like small Pol III subunit C11	-3.4
VER160W / RPH1	Specific transcriptional repressor	-3.4
VOI 051W / GAI 11	RNA polymerase II holoenzyme complex component positive and negative	-3.4
I OLOSI W / ORLII	transcriptional regulator	5.4
VII 140W / RPR4	RNA polymerase II fourth largest subunit	-3.4
VER159C / RUR6	Transcription co-repressor	-3.3
VDR228C / PCF11	Cleavage/polyadenylation specificity factor of mRNA	-3 3
VBR112C / CVC8	Transcription co-activator	-3.3
YOI 148C / SPT20	Transcription cofactor	-3.3
VPI 101W / FI P4	RNA polymerase II Flongator protein subunit	-3.3
VML 080W / DUS1	tRNA dihydrouridine synthase	-3.3
VKI 125W / RRN3	DNA independent RNA polymerase I transcription factor	-3.2
YGL096W / TOS8	Transcription factor	-3.2
YBR212W / NGR1	Glucose-repressible RNA binding protein	-3.2
YBR143C / SUP45	Translation release factor	-3.2
YKL025C / PAN3	Pah1n-dependent poly(A) ribonuclease (PAN) 76 kDa subunit	-3.2
VDI 108W / KIN28	Transcription factor TFIIH complex	-3.1
YDR448W / ADA2	ADA and SAGA component, two transcriptional adaptor/HAT	-3.1
YKR002W / PAP1	nolv(A) nolvmerase	-3.1
VNR052C / POP2	Transcription factor (nutative)	-3.1
YJL124C / LSM1	mRNA can complex	-3.1
YDR145W / TAF12	Transcription factor TFIID subunit	-3.0
YDR167W / TAF10	Transcription factor TFIID subunit	-3.0
YGL162W / SUT1	Specific RNA polymerase II transcription factor	-3.0
YBR188C / NTC20	Pre-mRNA solicing factor	-3.0
YGL071W / RCS1	Positive regulation of transcription from Pol II promoter	-3.0
1 0L0/1 10 / ICO1	r on the regulation of autoenpuoli nom r of it promoter	5.0
Nucleotic metabolism		
YOR276W / CAF20	mRNA can complex	-177
YGL090W/LIF1	Double-strand break repair via nonhomologous end-joining	-17.1

YGL090W/LIF1
YBL003C/HTA2
YHR089C / GAR1
YER006W / NUG1

YCR028C-A / RIM1	DNA binding protein	-13.0
YEL026W / SNU13	U3 snoRNP protein	-12.8
YOL149W / DCP1	Deadenylation-dependent decapping	-12.8
YCL059C / KRR1	RRNA processing	-11.9
YDL051W / LHP1	RNA binding	-11.8
YHR163W / SOL3	TRNA processing	-11.5
YNL141W / AAH1	Adenine aminohydrolase (adenine deaminase)	-11.0
YCR057C / PWP2	U3 snoRNP protein	-10.9
YFR001W / LOC1	MRNA binding	-10.9
YGR158C / MTR3	Nuclear exosome	-9.1
YOL139C / CDC33	mRNA cap binding protein eIF-4E	-8.9
YDL084W / SUB2	ATP-dependent RNA helicase	-8.9
YOL123W / HRP1	Cleavage and polyadenylation factor CF I component involved in pre-mRNA	-8.8
	3'-end processing	
YOL041C / NOP12	rRNA metabolism	-8.8
YDL192W / ARF1	ADP-ribosylation factor	-8.5
YGL171W / ROK1	ATP dependent RNA helicase	-8.5
YHR196W / UTP9	U3 snoRNP protein	-8.4
YHR066W / SSF1	RNA binding	-7.9
YDR409W / SIZ1	Chromatin protein; SUMO1/Smt3 ligase	7.7
YMR290C / HAS1	RNA-dependent helicase (putative)	-7.6
YDR280W / RRP45	3'->5' exoribonuclease	-7.5
YFR005C / SAD1	Pre-mRNA splicing factor	-7.4
YGR280C / PXR1	Possible telomerase regulator or RNA-binding protein	-7.3
YDR195W / REF2	mRNA processing	-7.2
YLR321C / SFH1	Snf5p homolog, chromatin remodeling complex member	-7.0
YDR324C / UTP4	U3 snoRNP protein	-7.0
YKR008W / RSC4	Nucleosome remodeling complex	-6.9
YDR087C / RRP1	RRNA processing	-6.7
YCL050C / APA1	Nucleotide metabolism	-6.7
YDR381W / YRA1	RNA-binding RNA annealing protein	-6.7
YLR002C / NOC3	DNA replication initiation	-6.7
YHR069C / RRP4	mRNA catabolism	-6.6
YOR078W / BUD21	U3 snoRNP protein	-6.5
YDL111C / RRP42	3'-5' exoribonuclease	-6.4
YNL339C / YRF1-6	Y'-helicase protein 1	-6.4
YDR545W / YRF1-1	Y'-helicase protein 1	-6.4
YGL094C / PAN2	Post-replication repair	-6.3
YGL128C / CWC23	Spliceosome complex	-6.3
YBR061C / TRM7	tRNA methyltransferase	-6.3
YNL175C / NOP13	Nucleoplasm	-6.2
YLR150W / STM1	Purine motif triplex-binding protein	-6.1
YJL121C / RPE1	D-ribulose-5-Phosphate 3-epimerase	-5.1
YDR083W / RRP8	Nucleolar protein required for efficient processing of pre-rRNA at site A2	-5.1
YDL125C / HNT1	Nucleotide binding	-4.9
YGR159C / NSR1	Nuclear localization sequence binding protein	-4.9
YHR065C / RRP3	ATP dependent RNA helicase	-5.8
YOR046C / DBP5	RNA helicase	-5.7
YJL033W / HCA4	RNA helicase (putative)	-5.6
YER056C / FCY2	Purine-cytosine permease	-5.4
YBR142W / MAK5	ATP dependent RNA helicase	-5.2
YIR008C / PRI1	DNA primase p48 polypeptide	-5.1
YLR033W / RSC58	Subunit of RSC Chromatin Remodeling Complex	-5.1
YML113W / DAT1	Datin, oligo(dA).oligo(dT)-binding protein	-4.9
YMR153W / NUP53	Nuclear pore complex subunit	-4.8
YHR146W / CRP1	Cruciform DNA binding protein	-4.7
YDR416W / SYF1	Spliceosome complex	-4.7
YPR065W / ROX1	HMG-domain site-specific DNA binding protein	-4.7
YOL146W / PSF3	a subunit of the GINS complex required for chromosomal DNA replication	-4.7
YNL061W / NOP2	RNA methyltransferase	-4.7

YPL178W / CBC2	Nuclear cap binding complex subunit	-4.6
YJR068W / RFC2	Replication factor C subunit 2, similar to human RFC 37 kDa subunit	-4.6
YHL034C / SBP1	RNA binding	-4.6
YGR285C / ZUO1	Z-DNA binding protein (putative	-4.5
YOR048C / RAT1	5'-3' exoribonuclease	-4.5
YOL093W / TRM10	tRNA (guanine) methyltransferase	-4.4
YBR167C / POP7	RNase MRP subunit (putative), RNase P integral subunit	-4.5
YOR304W / ISW2	ATPase component of a two subunit chromatin remodeling complex	-4.4
YEL032W / MCM3	DNA replication initiation	-4.4
YGL207W / SPT16	Alpha DNA polymerase:primase complex	-4.3
YGL120C / PRP43	RNA helicase	-4.3
YDR254W / CHL4	Chromosome segregation	-4.3
YGL213C / SKI8	mRNA catabolism	-4.2
YNL110C / NOP15	Ribosome biosynthesis	-4.1
YMR061W / RNA14	Cleavage and polyadenylation factor CF I component involved in pre-mRNA	-4.1
	3'-end processing	
YIR001C / SGN1	mRNA metabolism	-4.1
YML069W / POB3	DNA polymerase delta binding protein	-4.1
YDR021W / FAL1	RNA helicase (putative), dead box protein	-4.1
YGR030C / POP6	RNase P integral subunit, subunit of RNase MRP (putative)	-4.0
YDL060W / TSR1	Ribosome biogenesis and assembly	-4.0
YER161C / SPT2	Non-specific DNA binding protein	-4.0
YGL224C / SDT1	Pyrimidine base metabolism	-4.0
YER171W / RAD3	Nucleotide excision repair factor 3 complex	-3.9
YGR074W / SMD1	Small nuclear ribonucleoprotein complex	-3.9
YDL013W / HEX3	DNA binding	-3.9
YGL08/C/MMS2	DNA repair	-3.8
YLR059C / REX2	RNA processing	-3.8
YDR305C / HN12	Nucleoside catabolism	-3.8
YGRI56W / PIII	pre-mRNA cleavage factor	-3.7
YGR169C / PUS6	Pseudouridylate synthase	-3.7
YBL068W / PRS4	Ribose-phosphate pyrophosphokinase	-3.7
YBL039C/UKA/	CIP synthase	-3./
YNLU62C / GCDIU	ATD demondary DNA haliana	-3.3
YHKIO9W / DBP8	A I P dependent KNA nelicase	-3.3
YNKU38W / DBP6	RNA nelicase (putative	-3.3
YDL030W / PKP9	KNA splicing factor	-3.4
YBL024W / NCL1	tKNA:m5C-methyltransferase	-3.4
YDDOGOC / ODC2	Undine kindse	-3.4
I BRUOUC / URC2	DNA replication origin binding	-3.3
YUL 025W / YUU	Wittouc chromosome condensation	-3.2
$I \Pi L 0 2 3 W / S N \Gamma 0$	Chromatin remodeling Shi/Swi complex subunit	-3.2
I DLUJZC / SASS	Chromotin gilonoing at rehogomal DNA	-3.2
IDR459W / LR54 VNID015W / SMM1	tPNA dihydrouriding synthase	-3.2
VDP10AC / MSS116	PNA helicase DEAD box	-3.2
IDK194C / MISSIIO	KINA liclicase DEAD 00x	-3.0
Cytoskoloton organiza	ation and maintananaa	
VNI 166C / BNI5	Sentin ring (sensu Saccharomyces	7.5
VML 00/W / GIM5	Tubulin binding	-6.3
VII 050C / COF1	Actin binding and severing protein	-0.5
YOR239W / ARP140	Actin filament hinding protein	-5.5 -5.4
YCR009C / RVS161	Cytoskeletal protein hinding	-5.4
YDL225W / SHS1	Structural constituent of cytoskeleton	-5.1
YBR156C / SL115	Kinetochore microtubule	-5.1
YML124C / TUB3	Alpha-tubulin	-5.1
YER016W / BIM1	Structural constituent of cytoskeleton	-4 8
YJL030W / MAD2	Spindle checkpoint complex subunit	-4.8
YFL037W / TUB2	Beta-tubulin	-4 8
YJR125C / ENT3	Actin cortical patch	-4.6
	· · · I · · · ·	

YGR241C / YAP1802	Actin cortical patch	-4.4
YKL042W / SPC42	Spindle pole body component	-43
YOR326W / MYO2	Class V myosin	-4.3
YOL076W / MDM20	Cytoskeletal regulator	-4.2
YEL061C / CIN8	Microtubule motor	-4.0
YLR175W / CBF5	Major low affinity 55 kDa centromere/microtubule binding protein	-3.9
YPR034W / ARP7	Actin related protein, chromatin remodeling Snf/Swi complex subunit	-3.9
YPL253C / VIK1	Cik1p homolog	-3.9
YHR129C / ARP1	Structural constituent of cytoskeleton	-3.8
YBR117C / TKL2	Transketolase, similar to TKL1	-3.7
YLR227C / ADY4	Spindle pole body	-3.7
YDR188W / CCT6	Cytoskeleton organization	-3.6
YGL093W / SPC105	Spindle pole component	-3.6
YGR080W / TWF1	Twinfilin A, an actin monomer sequestering protein	-3.6
YGR109C / CLB6	Cyclin-dependent protein kinase, regulator	-3.5
YDR309C / GIC2	Actin cap (sensu Saccharomyces	-3.5
YIL095W / PRK1	Actin filament organization	-3.4
YGL061C / DUO1	Structural constituent of cytoskeleton	-3.4
YFL039C / ACT1	Actin cable	-3.4
YDL161W / ENT1	Actin cortical patch	-3.4
YEL003W / GIM4	Tubulin binding	-3.4
YHR107C / CDC12	10 nm filament component of mother-bud neck, septin	-3.3
YDR016C / DAD1	Structural constituent of cytoskeleton	-3.3
Histone metabolism		
YBL002W/HTB2	Histone H2B	-9.5
YHR099W / TRA1	Histone acetylation	-8.2
YBR009C / HHF1	Histone H4 (HHF1 and HHF2 code for identical proteins)	-5.2
YDR224C / HTB1	Histone H2B (HTB1 and HTB2 code for nearly identical proteins)	-5.2
YJL168C / SET2	istone-lysine N-methyltransferase	-5.0
YDL042C / SIR2	Histone deacetylase	-4.4
YGL066W / SGF73	Subunit of SAGA histone acetyltransferase complex	-4.4
YBR010W / HHT1	Histone H3 (HH11 and HH12 code for identical proteins)	-4.3
YOL068C / HST1	histone deacetylase complex	-3.9
YEL056W / HA12	Histone acetyltransferase subunit	-3.8
YDR225W / HTAI	Histone H2A (HTA1 and HTA2 code for nearly identical proteins	-3.4
YDR181C / SAS4	H3/H4 histone acetyltransferase	-3.3
Cell wall & membrane	proteins	
YEL040W/UTR2	Cell wall organization and biogenesis	-36.2
YJR004C / SAG1	Alpha-agglutinin, cell wall, cell adhesion receptor	-34.5
YNR044W / AGA1	a-agglutinin anchorage subunit, cell wall, cell adhesion receptor	-31.7
		14/

1 EEO IO III O III O		00.1
YJR004C / SAG1	Alpha-agglutinin, cell wall, cell adhesion receptor	-34.5
YNR044W / AGA1	a-agglutinin anchorage subunit, cell wall, cell adhesion receptor	-31.7
YHR143W / DSE2	Cell wall organization and biogenesis	-14.6
YOR254C / SEC63	Endoplasmic reticulum membrane	-7.9
YHR103W / SBE22	Cell wall organization and biogenesis	-7.3
YER083C / RMD7	Cell wall organization and biogenesis	-6.7
YOR327C / SNC2	Vesicle-associated membrane protein	-6.7
YPL065W / VPS28	Protein-membrane targeting	-6.4
YCR002C / CDC10	Cell wall structure	-6.2
YKR088C / TVP38	Integral membrane protein	-6.2
YMR292W / GOT1	Membrane protein	-6.0
YKL051W / SFK1	Plasma membrane	-5.8
YPR028W / YOP1	Membrane organization and biogenesis	-5.1
YGR120C / COG2	Peripheral membrane protein of membrane fraction	-4.9
YJL208C / NUC1	Mitochondrial inner membrane	-4.9
YGL200C / EMP24	Type I transmembrane protein	-4.8
YJL073W / JEM1	Peripheral membrane protein of membrane fraction	-4.8
YLR110C / CCW12	Cell wall mannoprotein	-4.8
YJL174W / KRE9	Cell wall organization and biogenesis	-4.7

YJL201W / ECM25Cell wall organization and biogenesis-4.3YLR330W / CHS5Cell wall chitin catabolism-4.3YOR311C / HSD1ER membrane protein-4.2YOR099W / KTR1Type II transmembrane protein-4.0YER031C / YPT31GTPase, YPT32 homolog, ras homolog-3.9YKL039W / PTM1Membrane protein (putative)-3.9YDR351W / SBE2Cell wall organization and biogenesis-3.7YER157W / COG3Peripheral membrane protein of membrane fraction-3.7YGR152C / RSR1Plasma membrane-3.6YHR195W / NVJ1Nuclear membrane-3.6YIL005W / EPS1Endoplasmic reticulum membrane-3.5YBR205W / KTR3Membrane and cell wall organization and biogenesis-3.5YNL154C / YCK2Plasma membrane-3.4YIL041W / GVP36Peripheral membrane protein-3.4YLR083C / EMP70Membrane-associated glycoprotein-3.4YDR057W / YOS9Membrane-associated glycoprotein-3.3YDR126W / SWF1Integral to membrane-3.3	
YLR330W / CHS5Cell wall chitin catabolism-4.3YOR311C / HSD1ER membrane protein-4.2YOR099W / KTR1Type II transmembrane protein-4.0YER031C / YPT31GTPase, YPT32 homolog, ras homolog-3.9YKL039W / PTM1Membrane protein (putative)-3.9YDR351W / SBE2Cell wall organization and biogenesis-3.7YER157W / COG3Peripheral membrane protein of membrane fraction-3.7YGR152C / RSR1Plasma membrane-3.6YHR195W / NVJ1Nuclear membrane-3.6YIL005W / EPS1Endoplasmic reticulum membrane-3.6YIL041W / GVP36Peripheral membrane protein-3.4YLL041W / GVP36Peripheral membrane protein-3.4YLR083C / EMP70Membrane-associated glycoprotein-3.3YDR126W / SWF1Integral to membrane-3.3	
YOR311C / HSD1ER membrane protein-4.2YOR099W / KTR1Type II transmembrane protein-4.0YER031C / YPT31GTPase, YPT32 homolog, ras homolog-3.9YKL039W / PTM1Membrane protein (putative)-3.9YDR351W / SBE2Cell wall organization and biogenesis-3.7YER157W / COG3Peripheral membrane protein of membrane fraction-3.7YGR152C / RSR1Plasma membrane-3.6YHR195W / NVJ1Nuclear membrane-3.6YLR05W / EPS1Endoplasmic reticulum membrane-3.6YIL005W / EPS1Endoplasmic reticulum membrane-3.5YBR205W / KTR3Membrane and cell wall organization and biogenesis-3.5YNL154C / YCK2Plasma membrane-3.4YIL041W / GVP36Peripheral membrane protein-3.4YLR083C / EMP70Membrane fraction-3.4YDR057W / YOS9Membrane-associated glycoprotein-3.3YDR126W / SWF1Integral to membrane-3.3	
YOR099W / KTR1Type II transmembrane protein-4.0YER031C / YPT31GTPase, YPT32 homolog, ras homolog-3.9YKL039W / PTM1Membrane protein (putative)-3.9YDR351W / SBE2Cell wall organization and biogenesis-3.7YER157W / COG3Peripheral membrane protein of membrane fraction-3.7YGR152C / RSR1Plasma membrane-3.6YHR195W / NVJ1Nuclear membrane-3.6YCR044C / PER1Vacuolar membrane-3.6YIL005W / EPS1Endoplasmic reticulum membrane-3.5YBR205W / KTR3Membrane and cell wall organization and biogenesis-3.5YNL154C / YCK2Plasma membrane-3.4YIL041W / GVP36Peripheral membrane protein-3.4YLR083C / EMP70Membrane fraction-3.4YDR057W / YOS9Membrane-associated glycoprotein-3.3YDR126W / SWF1Integral to membrane-3.3	
YER031C / YPT31GTPase, YPT32 homolog, ras homolog-3.9YKL039W / PTM1Membrane protein (putative)-3.9YDR351W / SBE2Cell wall organization and biogenesis-3.7YER157W / COG3Peripheral membrane protein of membrane fraction-3.7YGR152C / RSR1Plasma membrane-3.6YHR195W / NVJ1Nuclear membrane-3.6YCR044C / PER1Vacuolar membrane-3.6YIL005W / EPS1Endoplasmic reticulum membrane-3.5YBR205W / KTR3Membrane and cell wall organization and biogenesis-3.5YNL154C / YCK2Plasma membrane-3.4YIL041W / GVP36Peripheral membrane protein-3.4YLR083C / EMP70Membrane fraction-3.4YDR057W / YOS9Membrane-associated glycoprotein-3.3YDR126W / SWF1Integral to membrane-3.3	
YKL039W / PTM1Membrane protein (putative)-3.9YDR351W / SBE2Cell wall organization and biogenesis-3.7YER157W / COG3Peripheral membrane protein of membrane fraction-3.7YGR152C / RSR1Plasma membrane-3.6YHR195W / NVJ1Nuclear membrane-3.6YCR044C / PER1Vacuolar membrane-3.6YIL005W / EPS1Endoplasmic reticulum membrane-3.5YBR205W / KTR3Membrane and cell wall organization and biogenesis-3.5YNL154C / YCK2Plasma membrane-3.4YIL041W / GVP36Peripheral membrane protein-3.4YLR083C / EMP70Membrane fraction-3.4YDR057W / YOS9Membrane-associated glycoprotein-3.3YDR126W / SWF1Integral to membrane-3.3	
YDR351W / SBE2Cell wall organization and biogenesis-3.7YER157W / COG3Peripheral membrane protein of membrane fraction-3.7YGR152C / RSR1Plasma membrane-3.6YHR195W / NVJ1Nuclear membrane-3.6YCR044C / PER1Vacuolar membrane-3.6YIL005W / EPS1Endoplasmic reticulum membrane-3.5YBR205W / KTR3Membrane and cell wall organization and biogenesis-3.5YNL154C / YCK2Plasma membrane-3.4YIL041W / GVP36Peripheral membrane protein-3.4YLR083C / EMP70Membrane fraction-3.4YDR057W / YOS9Membrane-associated glycoprotein-3.3YDR126W / SWF1Integral to membrane-3.3	
YER157W / COG3Peripheral membrane protein of membrane fraction-3.7YGR152C / RSR1Plasma membrane-3.6YHR195W / NVJ1Nuclear membrane-3.6YCR044C / PER1Vacuolar membrane-3.6YIL005W / EPS1Endoplasmic reticulum membrane-3.5YBR205W / KTR3Membrane and cell wall organization and biogenesis-3.5YNL154C / YCK2Plasma membrane-3.4YIL041W / GVP36Peripheral membrane protein-3.4YLR083C / EMP70Membrane fraction-3.4YDR057W / YOS9Membrane-associated glycoprotein-3.3YDR126W / SWF1Integral to membrane-3.3	
YGR152C / RSR1Plasma membrane-3.6YHR195W / NVJ1Nuclear membrane-3.6YCR044C / PER1Vacuolar membrane-3.6YIL005W / EPS1Endoplasmic reticulum membrane-3.5YBR205W / KTR3Membrane and cell wall organization and biogenesis-3.5YNL154C / YCK2Plasma membrane-3.4YIL041W / GVP36Peripheral membrane protein-3.4YML052W / SUR7Integral membrane protein-3.4YLR083C / EMP70Membrane fraction-3.4YDR057W / YOS9Membrane-associated glycoprotein-3.3YDR126W / SWF1Integral to membrane-3.3	
YHR195W / NVJ1Nuclear membrane-3.6YCR044C / PER1Vacuolar membrane-3.6YIL005W / EPS1Endoplasmic reticulum membrane-3.5YBR205W / KTR3Membrane and cell wall organization and biogenesis-3.5YNL154C / YCK2Plasma membrane-3.4YIL041W / GVP36Peripheral membrane protein-3.4YML052W / SUR7Integral membrane protein-3.4YLR083C / EMP70Membrane fraction-3.4YDR057W / YOS9Membrane-associated glycoprotein-3.3YDR126W / SWF1Integral to membrane-3.3	
YCR044C / PER1Vacuolar membrane-3.6YIL005W / EPS1Endoplasmic reticulum membrane-3.5YBR205W / KTR3Membrane and cell wall organization and biogenesis-3.5YNL154C / YCK2Plasma membrane-3.4YIL041W / GVP36Peripheral membrane protein-3.4YML052W / SUR7Integral membrane protein-3.4YLR083C / EMP70Membrane fraction-3.4YDR057W / YOS9Membrane-associated glycoprotein-3.3YDR126W / SWF1Integral to membrane-3.3	
YIL005W / EPS1Endoplasmic reticulum membrane-3.5YBR205W / KTR3Membrane and cell wall organization and biogenesis-3.5YNL154C / YCK2Plasma membrane-3.4YIL041W / GVP36Peripheral membrane protein-3.4YML052W / SUR7Integral membrane protein-3.4YLR083C / EMP70Membrane fraction-3.4YDR057W / YOS9Membrane-associated glycoprotein-3.3YDR126W / SWF1Integral to membrane-3.3	
YBR205W / KTR3Membrane and cell wall organization and biogenesis-3.5YNL154C / YCK2Plasma membrane-3.4YIL041W / GVP36Peripheral membrane protein-3.4YML052W / SUR7Integral membrane protein-3.4YLR083C / EMP70Membrane fraction-3.4YDR057W / YOS9Membrane-associated glycoprotein-3.3YDR126W / SWF1Integral to membrane-3.3	
YNL154C / YCK2Plasma membrane-3.4YIL041W / GVP36Peripheral membrane protein-3.4YML052W / SUR7Integral membrane protein-3.4YLR083C / EMP70Membrane fraction-3.4YDR057W / YOS9Membrane-associated glycoprotein-3.3YDR126W / SWF1Integral to membrane-3.3	
YIL041W / GVP36Peripheral membrane protein-3.4YML052W / SUR7Integral membrane protein-3.4YLR083C / EMP70Membrane fraction-3.4YDR057W / YOS9Membrane-associated glycoprotein-3.3YDR126W / SWF1Integral to membrane-3.3	
YML052W / SUR7Integral membrane protein-3.4YLR083C / EMP70Membrane fraction-3.4YDR057W / YOS9Membrane-associated glycoprotein-3.3YDR126W / SWF1Integral to membrane-3.3	
YLR083C / EMP70Membrane fraction-3.4YDR057W / YOS9Membrane-associated glycoprotein-3.3YDR126W / SWF1Integral to membrane-3.3	
YDR057W / YOS9Membrane-associated glycoprotein-3.3YDR126W / SWF1Integral to membrane-3.3	
YDR126W / SWF1 Integral to membrane -3.3	
YOR049C / RSB1 Plasma membrane -3.3	
YDR292C / SRP101Endoplasmic reticulum membrane-3.2	
YMR200W / ROT1 Membrane protein (putative) -3.2	
YIL140W / AXL2Integral to plasma membrane-3.1	
YOR176W / HEM15Ferrochelatase (protoheme ferrolyase)-3.1	
YLR220W / CCC1 Transmembrane Ca2+ transporter (putative) -3.1	
YBL020W / RFT1Integral membrane protein-3.0	
YGR216C / GPI1 Membrane-proteins -3.0	
YLR390W / ECM19 Cell wall organization and biogenesis -3.0	
Missallanaous	
VCL 080C/ Decrements activity response to pheromena during conjugation 78.4	
ME(AL DHA)? Pheromone activity -response to pheromone during conjugation -/8.4	
MF(ALFRA)2 with central fusion VDL 014W/NOD1 Methyltroneferese activity 25.1	
VKI 178C / STE2 a factor recentor 10.2	
VIL 088W / ARG3 Ornithine carbamovitransferase	
VKL 216W / LIR A 1 Dibydroorotate debydrogenase	
VI P107W / SIK1 U3 snoPNP protein -11.8	
= 1 + 0 + 2 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0	
VER122C/GLO3 Zinc finger protein 11.2	
YER122C / GLO3 Zinc finger protein -11.2 VDR144C / MKC7 Aspartyl protease -11.1	
YER122C / GLO3 Zinc finger protein -11.2 YDR144C / MKC7 Aspartyl protease -11.1 VGR119C / NUP57 Nuclear pore protein -11.1	
YER122C / GLO3Zinc finger protein-11.2YDR144C / MKC7Aspartyl protease-11.1YGR119C / NUP57Nuclear pore protein-11.1VDR372C / VPS74Protein-vacualar targeting-11.0	
YER122C / GLO3Zinc finger protein-11.2YDR144C / MKC7Aspartyl protease-11.1YGR119C / NUP57Nuclear pore protein-11.1YDR372C / VPS74Protein-vacuolar targeting-11.0VDL 212W / SHR3FR integral membrane component-10.6	
YER122C / GLO3Zinc finger protein-11.2YDR144C / MKC7Aspartyl protease-11.1YGR119C / NUP57Nuclear pore protein-11.1YDR372C / VPS74Protein-vacuolar targeting-11.0YDL212W / SHR3ER integral membrane component-10.6YGL115W / SNE4Associates with Snf1 p-10.6	
YER122C / GL03Zinc finger protein-11.2YDR144C / MKC7Aspartyl protease-11.1YGR119C / NUP57Nuclear pore protein-11.1YDR372C / VPS74Protein-vacuolar targeting-11.0YDL212W / SHR3ER integral membrane component-10.6YGL115W / SNF4Associates with Snf1p-10.6YGR183C / OCR9Ubiquinol cytochrome c oxidoreductase complex-10.6	
YER122C / GLO3Zinc finger protein-11.2YDR144C / MKC7Aspartyl protease-11.1YGR119C / NUP57Nuclear pore protein-11.1YDR372C / VPS74Protein-vacuolar targeting-11.0YDL212W / SHR3ER integral membrane component-10.6YGL115W / SNF4Associates with Snf1p-10.6YGR183C / QCR9Ubiquinol cytochrome c oxidoreductase complex-10.6YKL 172W / EBP2Nuclealar protein-10.6	
YER122C / GLO3Zinc finger protein-11.2YDR144C / MKC7Aspartyl protease-11.1YGR119C / NUP57Nuclear pore protein-11.1YDR372C / VPS74Protein-vacuolar targeting-11.0YDL212W / SHR3ER integral membrane component-10.6YGL115W / SNF4Associates with Snf1p-10.6YGR183C / QCR9Ubiquinol cytochrome c oxidoreductase complex-10.6YKL172W / EBP2Nucleolar protein-10.6YHR005C / GPA1G protein alpha subunit-10.2	
YER122C / GLO3Zinc finger protein-11.2YDR144C / MKC7Aspartyl protease-11.1YGR119C / NUP57Nuclear pore protein-11.1YDR372C / VPS74Protein-vacuolar targeting-11.0YDL212W / SHR3ER integral membrane component-10.6YGL115W / SNF4Associates with Snf1p-10.6YGR183C / QCR9Ubiquinol cytochrome c oxidoreductase complex-10.6YHR005C / GPA1G protein alpha subunit,-10.2YDR410C / STE14Farnesyl cysteine-carboxyl methyltransferase-10.0	
YER122C / GLO3Zinc finger protein-11.2YDR144C / MKC7Aspartyl protease-11.1YGR119C / NUP57Nuclear pore protein-11.1YDR372C / VPS74Protein-vacuolar targeting-11.0YDL212W / SHR3ER integral membrane component-10.6YGL115W / SNF4Associates with Snf1p-10.6YGR183C / QCR9Ubiquinol cytochrome c oxidoreductase complex-10.6YKL172W / EBP2Nucleolar protein-10.6YHR005C / GPA1G protein alpha subunit,-10.2YDR410C / STE14Farnesyl cysteine-carboxyl methyltransferase-10.0YL R355C / IL V5Acetohydroxyacid reductoisomerase-10.0	
YER122C / GL03Zinc finger protein-11.2YDR144C / MKC7Aspartyl protease-11.1YGR119C / NUP57Nuclear pore protein-11.1YDR372C / VPS74Protein-vacuolar targeting-11.0YDL212W / SHR3ER integral membrane component-10.6YGL115W / SNF4Associates with Snf1p-10.6YGR183C / QCR9Ubiquinol cytochrome c oxidoreductase complex-10.6YHR005C / GPA1G protein alpha subunit,-10.2YDR410C / STE14Farnesyl cysteine-carboxyl methyltransferase-10.0YLR355C / ILV5Acetohydroxyacid reductoisomerase-10.0YL R286C / CTS1Endochitinase-9.9	
YER122C / GL03Zinc finger protein-11.2YDR144C / MKC7Aspartyl protease-11.1YGR119C / NUP57Nuclear pore protein-11.1YDR372C / VPS74Protein-vacuolar targeting-11.0YDL212W / SHR3ER integral membrane component-10.6YGL115W / SNF4Associates with Snf1p-10.6YGR183C / QCR9Ubiquinol cytochrome c oxidoreductase complex-10.6YHR005C / GPA1G protein alpha subunit,-10.2YDR410C / STE14Farnesyl cysteine-carboxyl methyltransferase-10.0YLR355C / ILV5Acetohydroxyacid reductoisomerase-10.0YLR286C / CTS1Endochitinase-9.9YHR193C / EGD2GAL4 enhancer protein-9.9	
YER122C / GL03Zinc finger protein-11.2YDR144C / MKC7Aspartyl protease-11.1YGR119C / NUP57Nuclear pore protein-11.1YDR372C / VPS74Protein-vacuolar targeting-11.0YDL212W / SHR3ER integral membrane component-10.6YGL115W / SNF4Associates with Snf1p-10.6YGR183C / QCR9Ubiquinol cytochrome c oxidoreductase complex-10.6YHR005C / GPA1G protein alpha subunit,-10.2YDR410C / STE14Farnesyl cysteine-carboxyl methyltransferase-10.0YLR286C / CTS1Endochitinase-9.9YHR193C / EGD2GAL4 enhancer protein-9.9YGL098WSNAP recentor-9.9	
YER122C / GLO3Zinc finger protein-11.2YDR144C / MKC7Aspartyl protease-11.1YGR119C / NUP57Nuclear pore protein-11.1YDR372C / VPS74Protein-vacuolar targeting-11.0YDL212W / SHR3ER integral membrane component-10.6YGL115W / SNF4Associates with Snf1p-10.6YGR183C / QCR9Ubiquinol cytochrome c oxidoreductase complex-10.6YHR005C / GPA1G protein alpha subunit,-10.2YDR410C / STE14Farnesyl cysteine-carboxyl methyltransferase-10.0YLR355C / ILV5Acetohydroxyacid reductoisomerase-10.0YLR286C / CTS1Endochitinase-9.9YGL098WSNAP receptor-9.9YGL054C / ERV14Endoplasmic reticulum membrane (IDA)-9.9	
YER122C / GLO3Zinc finger protein-11.2YDR144C / MKC7Aspartyl protease-11.1YGR119C / NUP57Nuclear pore protein-11.1YDR372C / VPS74Protein-vacuolar targeting-11.0YDL212W / SHR3ER integral membrane component-10.6YGL115W / SNF4Associates with Snf1p-10.6YGR183C / QCR9Ubiquinol cytochrome c oxidoreductase complex-10.6YHR005C / GPA1G protein alpha subunit,-10.2YDR410C / STE14Farnesyl cysteine-carboxyl methyltransferase-10.0YLR355C / ILV5Acetohydroxyacid reductoisomerase-10.0YLR286C / CTS1Endochitinase-9.9YGL098WSNAP receptor-9.9YGL098WSNAP receptor-9.9YQR253W / NAT5N-acetyltransferase-9.7	
YER122C / GLO3Zinc finger protein11.2YDR144C / MKC7Aspartyl protease-11.1YGR119C / NUP57Nuclear pore protein-11.1YDR372C / VPS74Protein-vacuolar targeting-11.0YDL212W / SHR3ER integral membrane component-10.6YGR183C / QCR9Ubiquinol cytochrome c oxidoreductase complex-10.6YKL172W / EBP2Ubiquinol cytochrome c oxidoreductase complex-10.6YLR355C / ILV5G protein alpha subunit,-10.2YDR410C / STE14Farnesyl cysteine-carboxyl methyltransferase-10.0YLR355C / ILV5Acetohydroxyacid reductoisomerase-10.0YLR286C / CTS1Endochitinase-9.9YGL098WSNAP receptor-9.9YGL098WSNAP receptor-9.9YOR253W / NAT5N-acetyltransferase-9.7YDR165W / TRM82Protein binding-9.6	
YER12/C / GLO3Zinc finger protein-11.2YDR144C / MKC7Aspartyl protease-11.1YGR119C / NUP57Nuclear pore protein-11.1YDR372C / VPS74Protein-vacuolar targeting-11.0YDL212W / SHR3ER integral membrane component-10.6YGL115W / SNF4Associates with Snf1p-10.6YGL12W / SHR4Disposition of the protein-10.6YGL12W / SHR4G protein alpha subunit,-10.6YKL172W / EBP2Ubiquinol cytochrome c oxidoreductase complex-10.6YKL172W / EBP2Nucleolar protein-10.6YLR355C / ILV5Acetohydroxyacid reductoisomerase-10.0YLR355C / ILV5Acetohydroxyacid reductoisomerase-10.0YLR286C / CTS1Endochitinase-9.9YGL098WSNAP receptor-9.9YGL054C / ERV14Endoplasmic reticulum membrane (IDA)-9.9YOR253W / NAT5N-acetyltransferase-9.7YDR165W / TRM82Protein binding-9.6YLR06C / MDN1Midasin-9.4	
YER122C / GLO3Zinc finger protein-11.2YDR144C / MKC7Aspartyl protease-11.1YGR119C / NUP57Nuclear pore protein-11.1YDR372C / VPS74Protein-vacuolar targeting-11.0YDL212W / SHR3ER integral membrane component-10.6YGL115W / SNF4Associates with Snf1p-10.6YGR183C / QCR9Ubiquinol cytochrome c oxidoreductase complex-10.6YKL172W / EBP2Nucleolar protein-10.6YDR410C / STE14Farnesyl cysteine-carboxyl methyltransferase-10.0YLR355C / ILV5Acetohydroxyacid reductoisomerase-10.0YLR286C / CTS1Endochitinase-9.9YGL098WSNAP receptor-9.9YGL054C / ERV14Endoplasmic reticulum membrane (IDA)-9.9YOR253W / NAT5N-acetyltransferase-9.7YDR165W / TRM82Protein binding-9.6YLR106C / MDN1Midasin-9.4YOL/43C / RIB46 7-dimethyl-8-ribityllumazine synthase-9.3	
YER122C / GLO3Zinc finger protein11.2YDR144C / MKC7Aspartyl protease-11.1YGR119C / NUP57Nuclear pore protein-11.1YDR372C / VPS74Protein-vacuolar targeting-11.0YDL212W / SHR3ER integral membrane component-10.6YGL115W / SNF4Associates with Snf1 p-10.6YGR183C / QCR9Ubiquinol cytochrome c oxidoreductase complex-10.6YHR005C / GPA1G protein alpha subunit,-10.2YDR410C / STE14Farnesyl cysteine-carboxyl methyltransferase-10.0YLR355C / ILV5Acetohydroxyacid reductoisomerase-10.0YLR286C / CTS1Endochitinase-9.9YGL098WSNAP receptor-9.9YGL054C / ERV14Endoplasmic reticulum membrane (IDA)-9.9YDR165W / TRM82Protein binding-9.6YLR106C / MDN1Midasin-9.4YDL43C / RIB46,7-dimethyl-8-ribityllumazine synthase-9.3YDL208W / NHP2HMG-like protein-9.3	
YER122C / GLO3Zinc finger protein-11.0YDR144C / MKC7Aspartyl protease-11.1YDR144C / MKC7Aspartyl protease-11.1YDR372C / VPS74Protein-vacuolar targeting-11.0YDL212W / SHR3ER integral membrane component-10.6YGL115W / SNF4Associates with Snf1 p-10.6YGR183C / QCR9Ubiquinol cytochrome c oxidoreductase complex-10.6YHR005C / GPA1G protein alpha subunit,-10.2YDR410C / STE14Farnesyl cysteine-carboxyl methyltransferase-10.0YLR286C / CTS1Endochitinase-9.9YGL098WSNAP receptor-9.9YGL054C / ERV14Endoplasmic reticulum membrane (IDA)-9.9YOR253W / NAT5N-acetyltransferase-9.7YDR165W / TRM82Protein binding-9.6YLR106C / MDN1Midasin-9.4YOL143C / RIB46,7-dimethyl-8-ribityllumazine synthase-9.3YER112W / LSM4U6 snRNA associated protein-9.3	

YOR184W / SER1	Phosphoserine transaminase	-8.9
YGR167W / CLC1	Clathrin light chain	-8.5
YOR232W / MGE1	GrpE homolog	-8.5
YGL143C / MRF1	Mitochondrial polypeptide chain release factor	-8.4
YGR123C / PPT1	Protein amino acid phosphorylation	-8.3
YLR293C / GSP1	GTP-binding protein	-8.3
YGL009C / LEU1	Isopropylmalate isomerase	-8.2
YCL027W / FUS1	Plasma membrane	-8.1
YGL148W / ARO2	Chorismate synthase	-8.1
YER021W / RPN3	19S proteasome regulatory particle	-8.1
YDR098C / GRX3	Glutaredoxin	-7.9
YDL064W / UBC9	SUMO-conjugating enzyme	-7.9
YNL131W / TOM22	Mitochondrial import receptor protein	-7.5
YGL238W / CSE1	Nuclear membrane	-7.5
YIL076W / SEC28	Epsilon-COP coatomer subunit	-7.5
YML074C / FPR3	Peptidyl-prolyl cis-trans isomerase (PPIase)	-7.4
YDR044W / HEM13	Coproporphyrinogen III oxidase	-7.4
YHR216W / IMD2	IMP dehydrogenase homolog	-7.4
YOR056C / NOB1	Associated with the 26S proteasome	-7.3
YMR149W / SWP1	Oligosaccharyl transferase glycoprotein complex, delta subunit	-7.3
YDL226C / GCS1	ADP-ribosylation factor GTPase-activating protein	-7.3
YGL100W / SEH1	Nuclear pore complex subunit	-7.3
YDR399W / HPT1	Hypoxanthine guanine phosphoribosyltransferase	-7.2
YBR165W / UBS1	Protein ubiquitination	-7.2
YPL050C / MNN9	Required for complex glycosylation	-7.2
YOR310C / NOP58	U3 snoRNP protein	-6.9
YPL204W / HRR25	Casein kinase I isoform	-6.9
YIL044C / AGE2	ARF GAP with effector function(s)	-6.9
YBR101C / FES1	Hsp70 nucleotide exchange factor	-6.9
YDR174W / HMO1	High mobility group (HMG) family	-6.8
YDL097C /RPN6	Regulatory Particle Non-ATPase	-6.8
YGL086W /MAD1	Coiled-coil protein involved in the spindle-assembly checkpoint	-6.8
YOL052C / SPE2	Adenosylmethionine decarboxylase	-6.7
YNL213C	Mitochondrion organization and biogenesis	-6.7
YBR171W / SEC66	Protein transporter- an integral endoplasmic reticulum membrane protein complex	-6.7
YKL184W / SPE1	Ornithine decarboxylase	-6.7
YHR061C / GIC1	Incipient bud site	-6.6
YCL011C / GBP2	Contains RNA recognition motifs	-6.6
YHR074W / QNS1	Glutamine-dependent NAD synthetase	-6.6
YOR145C / PNO1	Associated with Nob1	-6.6
YOR209C / NPT1	Nicotinate phosphoribosyltransferase	-6.6
YDR151C / CTH1	CCCH zinc finger protein family that has two or more repeats of a novel zinc	-6.5
	finger motif	
YGR128C / UTP8	U3 snoRNP protein	-6.5
YFR004W / RPN11	Endopeptidase	-6.5
YBR186W / PCH2	ATPase (putative)	-6.5
YPL218W / SAR1	ARF family, GTP-binding protein	-6.4
YDL153C / SAS10	U3 snoRNP protein	-6.2
YDL148C / NOP14	U3 snoRNP protein	-6.2
YHR060W / VMA22	Endoplasmic reticulum membrane	-6.1
YHR148W / IMP3	U3 snoRNP protein	-6.1
YBR015C / MNN2	Golgi alpha-1,2-mannosyltransferase (putative)	-6.1
YGR163W / GTR2	Similar to Gtr1, small GTPase (putative)	-6.1
YOR103C / OST2	Oligosaccharyl transferase complex	-6.0
YJL110C / GZF3	GATA zinc finger protein 3 homologous to Dal80 in structure and function	-6.0
YELOT/C-A/PMP2	Proteolipid associated with plasma membrane $H(+)$ -ATPase (Pmalp)	-6.0
YILU62C/ARC15	Mitochondrial membrane	-6.0
YFLU45C / SEC53	Phosphomannomutase	-0.0
1 UKU39W / UKB2	Protein Kinase CK2, beta' subunit	-0.0

YNR026C / SEC12	Guanine nucleotide exchange factor for Sar1p	-6.0
YBR290W / BSD2	Endoplasmic reticulum	-5.9
YGL011C / SCL1	Proteasome subunit YC7alpha/Y8 (protease yscE subunit 7)	-5.9
YER107C / GLE2	Nuclear pore complex subunit, rae1 S. pombe homolog	-5.9
YDL039C / PRM7	Integral to membrane	-5.8
YER136W / GDI1	GDP dissociation inhibitor	-5.8
YOR043W / WHI2	Phosphatase activator	-5.8
YOR323C / PRO2	Gamma-glutamyl phosphate reductase	-5.8
YNL231C / PDR16	Pdr17p homolog, Sec14p homolog	-5.7
YOR236W / DFR1	Dihvdrofolate reductase	-5.7
YHR133C / YIG1	Potential homolog to mammalian Insig1	-5.7
YDR177W / UBC1	Ubiquitin-conjugating enzyme	-5.7
YDL207W / GLE1	Nuclear pore complex subunit.	-5.7
YOL062C / APM4	Clathrin associated protein complex medium subunit	-5.7
YPL125W/KAP120	Structural constituent of nuclear pore	-5.6
YOR061W / CKA2	Protein kinase CK2 alnha' subunit	-5.6
YPL273W / SAM4	AdoMet-homocysteine methyltransferase	-5.6
YER174C / GRX4	Glutaredoxin	-5.6
VHR013C / ARD1	Alpha-acetyltransferase major subunit	-5.6
VDI 015C / TSC13	Endonlasmic reticulum membrane	-5.6
VGR184C / UBR1	I biquitin-protein ligase	-5.6
VDR189W / SI V1	t-SNARE-interacting protein that functions in ER-to-Golgi traffic	-5.6
VFR123W / VCK3	Casein kinase I homolog	-5.6
VKI 166C / TPK3	cAMP dependent protein kinase catalytic subunit	-5.5
VDI 188C / DDH22	Protein phoenbatase ture 2A complex	-5.5
VII 117C / DDM5	Integral to membrane	5.5
VDP221W/GDI9	Endonlasmic raticulum membrane	-5.5
VCD024W/EEN1	1.2 beta glucon gynthesa gybunit (nytatiya)	-5.5
1 CR034 W / FENT VEP 100W / LIPC6	I,5-beta-glucali synthase subunit (putative),	-5.5
VIP220C/CDC42	Pho subfamily of Pas like proteins	-5.5
1 LK229C / CDC42 VOP101W / PAS1	Kilo sublatility of Kas-like proteins	-3.4
VVI 004W / AUD1	Colgi apportus	-3.4
I KL004W / AUKI VDR257W / DOD4	Dihenvelaaga Diaemplay	-3.4
I DR23 / W / POP4	Kibonuclease P complex	-3.4
I ERIZUW / SCSZ	Distance Percentian	-3.4
I DR414C / ERDI	Protessame regulatory portials subunit	-3.3
1 DK42 / W / KPN9 VII 052W / DED9	Vacualar protein similar to mouse some USP	-3.3
YJLUSSW / PEP8	vacuolar protein similar to mouse gene H58	-3.3
YGL225W / VRG4	Goigi apparatus	-5.5
YDL14/W/KPN5	Proteasome regulatory particle subunit	-3.3
YKL00/W/CAPI	Capping protein	-5.5
YDRII3C / PDSI VID105W / ADO1	INUCLEAR SECURIN	-5.2
Y D 200C / DDE1	Adenosine kinase	-3.1
ILR399C / BDF1	I wo oromodomains	-3.1
YUR321W / PM13	Dolicnyl phosphate-D-mannose: protein O-D-mannosyltransierase	-3.1 5.1
Y DR240C / SINU30	UI SIRINP protein	-3.1
YGL142C / GP110	Alpha 1,2 mannosyltransferase (putative)	-3.1
YULOOLW / VMA21	Endoplasmic reliculum	-3.1
YDD020W / ATD2	205 proteasome subunit	-5.1
I BRU39W / ATP3	A I P Synthase gamma subunit	5.0
YHRU46C / INMI YHD07(W / DTC7	Myo-mostol-1(or 4)-monophosphatase	-5.0
I HKU/OW / PIC/	Type 2C Protein Phosphatase	-5.0
I DKIUUW / IVPIJ	aCMD doomingoo	-3.0
$I \Pi K 144 U / DUD1$ VII 002C / OST1	activity deaminase	-5.0
IJLUUZU / USII VUD201C / DDV1		-3.0
$I \Pi \Lambda 2 U I C / P \Gamma \Lambda I$ VCD 122C / DUD 1	EXOPOLYPHOSPHALASE Dhh2n homeles mitechendricherstein	-3.0
I UKI 52U / PHBI VDD 150W / AMNU	Priozp nomolog, innochondriai protein	-3.0
IDRIJOW / AIVINI VVD020W / CAD100	Turne 2.4 related protein phoephotoco	-3.0
1 KKU20W / SAP19U VID 120C / HOM6	I ype 2A-related protein prosphatase	-4.9
IJKIJYU / HUIVIO VMD120C / ADE17	5 aminoimidazela 4 aarbayamida ribarualastida	-4.9
I WIKIZUC / ADEI /	5-ammoningazore-4-carboxamide infonucieotide	-4.7

YDR302W / GPI11	Endoplasmic reticulum	-4.9
YDR073W / SNF11	SWI/SNF global transcription activator complex component	-4.9
YHR188C / GPI16	Endoplasmic reticulum membrane, intrinsic protein	-4.9
YGL172W / NUP49	Nuclear pore complex subunit	-4.9
YGL065C / ALG2	Glycosyltransferase	-4.9
YMR116C / ASC1	G-beta like protein	-4.9
YDR235W / PRP42	U1 snRNP protein	-4.8
YEL060C / PRB1	Vacuolar protease B	-4.8
YBR119W / MUD1	U1 snRNP A protein	-4.8
YOR119C / RIO1	Protein serine kinase	-4.8
YPL059W / GRX5	Glutaredoxin	-4.8
YIR066W / TOR1	Phosphatidylinositol kinase homolog	-4.8
YOR108W / I FI19	Alpha-isopronylmalate synthase (2-isopronylmalate synthase)	-4 7
YKL 099C / LITP11	II3 snoRNP protein	-4.7
VKI 012W / PRP40	U1 snRNP protein	-4.7
VDD271W/CTS2	Sporulation specific chitinase	-4.7
VDP312C / DIP1	Vacualar membrane	-4.7
VED002C / UTD7	Vacuotal memorane	-4.7
IERUOZC/UIF/	Zing finger protein (putative)	-4.0
YEKU08W/MU12	Zinc linger protein (putative)	-4.0
$I DLU32W / \PiEK2$	A grant d ADNA grant to togo	-4.0
YLLUISC / DPSI	Aspartyl-tKINA synthetase	-4.6
YKLUI8W / SWD2	Compass (complex proteins associated with Set Ip) component	-4.6
YLKI8IC / VIAI	Class E Vacuolar-Protein Sorting	-4.5
YOL094C / RFC4	Replication factor C subunit 4, similar to human RFC 40 kDa subunit	-4.5
YPRI06W / ISRI	Protein kinase	-4.5
YCR035C / RRP43	Exosome 3->5 exoribonuclease complex	-4.5
YGL187C / COX4	Cytochrome c oxidase subunit IV	-4.5
YFL038C / YPT1	GTP-binding protein, ras homolog, similar to mammalian Rab1A protein	-4.5
YFR002W / NIC96	96 kDa nucleoporin-interacting component, nuclear pore complex subunit	-4.4
YGR172C / YIP1	Golgi apparatus	-4.4
YGL095C / VPS45	Protein complex assembly	-4.4
YDR236C / FMN1	Riboflavin kinase	-4.4
YBR199W / KTR4	Alpha-1, 2-mannosyltransferase (putative)	-4.4
YOR320C / GNT1	N-acetylglucosaminyltransferase	-4.4
YMR006C / PLB2	Lysophospholipase, phospholipase B	-4.3
YJR104C / SOD1	Cu, Zn superoxide dismutase	-4.3
YPR073C / LTP1	Phosphotyrosine phosphatase	-4.3
YJR086W / STE18	G protein gamma subunit, coupled to mating factor receptor	-4.3
YGL058W / RAD6	Ubiquitin-conjugating enzyme	-4.3
YDR072C / IPT1	Inositolphosphotransferase 1	-4.3
YBR166C / TYR1	Prephenate dehydrogenase (NADP+)	-4.3
YGR020C / VMA7	Vacuolar ATPase V1 domain subunit F	-4.3
YLR180W / SAM1	Methionine adenosyltransferase	-4.3
YFR033C / QCR6	Ubiquinol cytochrome C oxidoreductase subunit 6 (17 kDa)	-4.2
YHR057C / CPR2	Cyclophilin, peptidyl-prolyl cis-trans isomerase	-4.2
YBR283C / SSH1	Endoplasmic reticulum membrane	-4.2
YJL031C / BET4	Geranylgeranyltransferase type II alpha subunit	-4.2
YDR297W / SUR2	Sphingosine hydroxylase	-4.2
YOR261C / RPN8	Proteasome regulatory particle subunit	-4.2
YOR319W / HSH49	Mammalian splicing factor/U2 snRNP protein homolog	-4.1
YOR047C / STD1	MTH1 homolog	-4.1
YML121W / GTR1	Small GTPase (putative)	-4.1
YDR192C / NUP42	Protein associated with nuclear pore complexes	-4.1
YIL149C / MLP2	Coiled-coil protein (putative), similar to myosin and TPR)	-4.1
YAL041W / CDC24	Guanine nucleotide exchange factor	-4 1
YGR234W / YHR1	flavohemoglohin	-4 1
YBR109C / CMD1	Calcium ion binding	-4 1
YDL123W / SNA4	vacuolar membrane	-4 1
YBR153W / RIR7	Vitamin B2 hiosynthesis	-4.0
YGL154C / LY85	Alpha aminoadinate reductase phosphopantetheinvl transferase	-4.0
	pris annious provide prosprioparterionity i tansferabe	1.0

YBL036C	Alanine racemase	-4.0
YDR483W / KRE2	Alpha-1,2-mannosyltransferase	-4.0
YCL052C / PBN1	Protease B nonderepressible form	-4.0
YFL008W / SMC1	SMC chromosomal ATPase family member	-4.0
YER027C / GAL83	Protein amino acid phosphorylation	-4.0
YLR420W / URA4	Dihydrooratase	-4.0
YOR241W / MET7	Folylpolyglutamate synthetase	-4.0
YKL032C / IXR1	Intrastrand crosslink recognition protein	-3.9
YMR012W / CLU1	Sometimes copurifies with translation initiation factor eIF3	-3.9
YCL008C / STP22	Putative ubiquitin receptor	-3.9
YFR050C / PRE4	Necessary for peptidyl glutamyl peptide hydrolyzing activity	-3.9
YHR200W / RPN10	26S proteasome component, mammalian S5a protein homolog	-3.9
YAR002W / NUP60	Nuclear pore complex subunit	-3.9
YEL036C / ANP1	Mannosyltransferase complex	-3.9
YHR019C / DED81	Asparaginyl-tRNA synthetase	-3.9
VBR185C / MBA1	Aerobic respiration (IMP)	-3.9
YER072W / VTC1	S nombe Nrf1n homolog	-3.9
VFR177W / BMH1	Member of conserved eukaryotic 14-3-3 gene family	-3.9
VOR126C / IAH1	Isoamul acetate.hydrolyzing esterase	_3.9
VOL 056W / GPM3	Phosphoglycerate mutace	_3.9
VMR229C / RRP5	LI3 snoRNP protein	_3.9
VPL 117C / IDI1	Isopentenul diphosphate:dimethylallyl diphosphate isomerase	-3.9
VND035C / ADC25	$\Lambda rp 2/2$ protein complex	-3.9
VMD264W/CLIE1	Libo7n hinding and rearritment protein	-3.8
1 MR 204 W / COE1	obc/p billing and recruitment protein	-3.0
YCD007W / MU01	p-introphenyi phosphatase	-3.8
YOR007W/MUQI		-3.8
1 OK03 / W / SG11	A developmente luces	-3.7
YLK339W / ADE13	Adenyiosuccinate lyase	-3.7
YNKUU6W / VPS2/	Cysteine rich putative zinc ringer essential for function, hydrophilic protein	-3.7
YOL049W/GSH2	Glutatnione synthetase	-3.7
YHRI42W / CHS/	Endoplasmic reticulum memorane	-3.7
YBR2/4W/CHKI	Protein kinase	-3.7
YILII9C/RPII	Kas inhibitor	-3.7
YER012W / PREI	Proteasome subunit	-3.7
YDR226W / ADK1	Adenylate kinase	-3.7
YDR304C / CPR5	Cyclophilin D, peptidyl-prolyl cis-trans isomerase	-3.7
YBL026W / LSM2	snRNA-associated protein	-3.7
YGR202C / PCTT	Cholinephosphate cytidylyltransferase	-3.7
YPL031C / PHO85	Cyclin-dependent protein kinase	-3.6
YOL102C / TPT1	tRNA 2'-phosphotransferase	-3.6
YOR122C / PFY1	Actin polymerization and/or depolymerization	-3.6
YOR106W / VAM3	Syntaxin family	-3.6
YMR217W / GUA1	GMP synthase	-3.6
YCL028W / RNQ1	Transferable epigenetic modifier	-3.6
YIL118W / RHO3	GTP-binding protein, ras homolog	-3.6
YBL082C / RHK1	Dol-P-Man dependent alpha (1-3) mannosyltransferase	-3.5
YFR036W / CDC26	Anaphase-promoting complex	-3.5
YIL094C / LYS12	Homo-isocitrate dehydrogenase	-3.5
YBR011C / IPP1	Inorganic pyrophosphatase	-3.5
YAL016W / TPD3	Protein phosphatase 2A regulatory subunit A	-3.5
YGL210W / YPT32	GTPase, YPT31 homolog, ras homolog	-3.5
YHR011W / DIA4	Aerobic respiration	-3.5
YNL085W / MKT1	Retroviral protease signature protein	-3.5
YOR267C / HRK1	Protein kinase similar to Npr1	-3.4
YPL091W / GLR1	Glutathione oxidoreductase	-3.4
YDL116W / NUP84	Nuclear pore complex subunit	-3.4
YDL045C / FAD1	FAD biosynthesis	-3.4
YHR165C / PRP8	U5 snRNP and spliceosome component	-3.4
YDR004W / RAD57	RecA homolog, interacts with Rad 55p by two-hybrid analysis	-3.4
YGL092W / NUP145	Nuclear pore complex subunit	-3.4

YHE.013W / YAC8 Armadillo repeat-containing protein -3.3 YDR097C/WSH6 Human GTB protein homolog -3.3 YWR23SC / RNA1 GTPase activating protein (GAP) for Gsp1p -3.2 YPR113W / PIS1 Phosphatdylinositol symbase -3.2 YR023SC / RNA1 GTPase activating protein (GAP) for Gsp1p -3.2 YR023SC / RIB5 Vitamin B2 biosynthesis -3.2 YR023SC / RIB5 Vitamin B2 biosynthesis -3.2 YR0603W / CUL3 Ubiquitin-protein ligase -3.2 YR0603W / CUL3 Ubiquitin-protein ligase -3.2 YBR/64C / ARL1 ADP-ribosylation factor-like protein 1 -3.2 YDL13W / NRF2 ADP-ribosylation factor-like protein 1 -3.2 YDL3W / RAF2 ADP-ribosylation factor-like protein 1 -3.2 YDL07AC / BRE1 Ubiquitin-protein ligase -3.2 YDL07AC / BRE1 Ubiquitin-protein ligase -3.2 YOR136W / MP1 Protease, similar to E. coil leader proteinse -3.2 YOR136W / MP15 198 protease regulatory particle -3.2 YOR136W / MP15 ND-Acpendent iscointrate dehydrogenase	YOR094W / ARF3	GTP-binding ADP-ribosylation factor	-3.3
YDR097C/MSH6Human GTBP protein homolog-33YKL011C/CCEICurciform cuting endouclesse-33YMR13SV/RNA1GTPase activating protein (GAP) for Gsp1p-32YGL019W/CKB1Protein kinase CK2 beta subunit-32YBR25SC/RD5V titamin B2 biosynthesis-32YGR000W/CU13Ubiquitin-protein ligase-32YGR000W/CU03Ubiquitin-protein ligase-32YGR000W/COX6Cytochrome c oxidase subunit-32YCR052W/RSC6Nucleosme remodeling complex-32YDL13W/NAEE2ADP-ribosylation factor-lk protein 1-32YDL13W/NAEE2ADP-ribosylation factor-lk protein 1-32YDL07AC/BE1Ubiquitin-protein ligase-32YDL07AC/BE1Ubiquitin-protein ligase-32YDL07AC/BE1By proteasome regulatory particle-32YOR13W/RP1519S proteasome regulatory particle-32YOR13W/RP15NAD-dependent isocitrate dehydrogenase-31YGR10W/KAP122Karyopherin beta family member-31YGR10W/KAP122Karyopherin beta family member-31YGR10W/K102Protein kinase cunknown (U2)-31YHR23W/PP11sn-1.2-diacylglycerol ethanolamine- and cholinephosphatraferase-31YOR35C/HIS1Histidine biosynthesis-31YHR23W/K16S7 ecoribonuclease complex subunit-31YHR35U/S02t-SNARE-31YHR35U/S02t-SNARE-31YHR35U/CR2Cyclophilm 40, periodyl-proby list-rans isomerase (PPIase-31YHR35U/CR2 </td <td>YEL013W / VAC8</td> <td>Armadillo repeat-containing protein</td> <td>-3.3</td>	YEL013W / VAC8	Armadillo repeat-containing protein	-3.3
YKL011C / CCB1 Cruciform cuting endonuclease -33 YRR13CV (RNAI GTPase activating protein (GAP) for Gsp1p -32 YRR13CV (SNAI Phosphatidylinositol synthase -32 YRR13CV (CKB1 Photein kinase (CX bet asubunit) -32 YRR5SCV (RB5 Vitamin B2 biosynthesis -32 YRR603W (CU13 Ubiquiti-protein ligase -32 YRR6164C (ARL1 ADP-rhosylation factor-like protein 1 -32 YCR052W (RSC6 Nucleosome remodeling complex -32 YDR33W (PAD1 Phenylation factor-like protein 1 -32 YDR33W (PAD1 Phenylatryfic acid decraboxylase -32 YDR33W (PAD1 Phenylatryfic acid decraboxylase -32 YDR33W (VMH2 Disputi-protein ligase -32 YOR13W (XMPT5 JDS proteasome regulatory particle -32 YOR13W (NH2 NAD-dependent isocitrate dehydrogenase -32 YDR042C (MR1 ND-dependent isocitrate dehydrogenase -32 YOR13W (NH2 Member of conserved etkaryotic 14-33 gene family -31 YGL016W / KAP122 Karyopherin beta family member -31 <td>YDR097C / MSH6</td> <td>Human GTBP protein homolog</td> <td>-3.3</td>	YDR097C / MSH6	Human GTBP protein homolog	-3.3
YMR.23SC / RNA1 GTPase activating proferin (GAP) for Gsp1p -3.2 YGR.13W / PIS1 Phosphatdylinositol synthase -3.2 YGR.019W / CKB1 Protein kinase CK2 beta subunit -3.2 YBR.25SC / RB5 Vitamin B2 biosynthesis -3.2 YBR.056W / PIC3 Protein phosphatase type 2C -3.2 YIB.056W / PIC3 Protein phosphatase type 2C -3.2 YDR.137W / CX6 Cytochrome co coldase subunit -3.2 YDR.137W / CX6 Cytochrome co coldase subunit -3.2 YDR.137W / ARF2 ADP-ribosylation factor 2 -3.2 YDR.137W / ARF2 ADP-ribosylation factor 2 -3.2 YDR.38W / NAMS snRNP U1 -3.2 YDR.137W / ARF2 ADP-dependent isocitrate dehydrogenase -3.2 YOR.137W / RPT5 19 Sp proteasome regulatory particle -3.2 YOR.137W / RPT5 19 Sp proteasome regulatory particle -3.2 YOR.137W / RPT5 19 Sp proteasome regulatory particle -3.2 YOR.137W / RPT5 19 Sp proteasome regulatory particle -3.2 YOR.136W / PM12 Mabo dependent isocitrate dehydrogenase	YKL011C / CCE1	Cruciform cutting endonuclease	-3.3
YPR.113W / PIS1Phosphalidylinositol symthase3.2YGLO19W / CKB1Protein kinase (CX bet subunit3.2YGR003W / CUL3Ubiquitin-protein ligase3.2YGR003W / CUL3Ubiquitin-protein ligase3.2YGR003W / COL4Protein phosphatase type 2C3.2YHR051W / COX6Cytochrome c oxidase subunit3.2YHR014C / ARL1ADP-ribosylation factor-like protein 13.2YDL37W / K8C6Nucleosome remodeling complex3.2YDL37W / NRF2ADP-ribosylation factor 23.2YDL37W / NRF2ADP-ribosylation factor 23.2YDL074C / BRE1Ubiquitin-protein ligase3.2YDL074C / BRE1Ubiquitin-protein ligase3.2YOR136W / NAM8snRNP U13.2YDR086W / NAM8snRNP U13.2YOR136W / MP12Member of conserved eukaryotic 14-3-3 gene family3.1YGL104W / KAP122Karyopherin beta family member3.1YGR136W / NK16RNAse PH homolog3.1YHR125W / PHO12Biological process unknown (N2D)3.1YHR215W / PHO12Biological process unknown (N2D)3.1YR123W / PHO12Biological process unknown (N2D)3.1YR124C /	YMR235C / RNA1	GTPase activating protein (GAP) for Gsp1p	-3.2
YGL019W / CKB1Protein kinase CK2 beis subunit-3.2YRR256C / RIB5Vitamin B2 biosynthesis-3.2YRC050W / CUL3Ubiquitin-protein ligase-3.2YRL056W / PTG3Protein phosphatase type 2C-3.2YRR051W / COX6Cytochrome c oxidase subunit-3.2YRR164C / ARL1ADP-ribosylation factor-like protein 1-3.2YDL053W / NSC6Nucleosome remodeling complex-3.2YDL053W / ARP2ADP-ribosylation factor 2-3.2YDL053W / ARP2ADP-ribosylation factor 2-3.2YDL053W / NAM8similar to E. coli leader peptidase-3.2YDR053W / NAM8similar to E. coli leader peptidase-3.2YOR17W / RPT519 Sp totesome regulatory particle-3.2YOR17W / RPT519 Sp totesome regulatory particle-3.2YOR17W / RPT519 Sp totesome regulatory particle-3.2YOR17W / KPT519 Sp totesome regulatory particle-3.2YOR17W / KPT519 Sp totesome regulatory particle-3.1YGR15W / KPT2Karyopherin beta family member-3.1YGR15W / KSI6RNAse PI homolog-3.1YHR215W / PH012Biological_process unknown (ND)-3.1YHR215W / PH012Biological_process unknown (ND)-3.1YLR053C / HIS1Ilistidine biosynthesis-3.1YNL020C / DIS3-3-5 ecoribonuclease complex subunit-3.1YLR055C / MP54Inositol polyphosphate sphosphatase-3.1YLR055C / NP54Inositol polyphosphate sphosphatase-3.0YLR055C / MP	YPR113W / PIS1	Phosphatidylinositol synthase	-3.2
YBR256C / RIB5 Vitamin B2 biosynthesis -32 YGR003W / CUT 3 Ubiquith-protein igase -32 YHR051W / COX6 Cytochrome c oxidase subunit -32 YR0703W / RSC5 Nucleosome remodeling complex -32 YBR164C / ARL1 ADP-ribosylation factor-like protein 1 -32 YDL37W / ARI2 ADP-ribosylation factor-like protein 1 -32 YDR36K / NAM8 snRNP U1 -32 YDR36W / NAM8 snRNP U1 -32 YOR13W / VIM1 Protease, similar to E, coil leader peptidase -32 YOR13W / VIM1 Protease, similar to iscoritrat edbydrogenase -32 YOR10W / NH2 Nab-dependent iscoritrat edbydrogenase -32 YDR090W / BMH2 Member of conserved eukaryotic 14-3-3 gene family -31 YGR15W / KI6 RNAse PI homolog -31 YHR21SW / FPT1 sn-12-diacylglycerol ethanolamine- and cholinephosphotranferase -31 YHR21SW / HO12 Biological_proces unknown (KD2) -31 YHR21SW / PH012 Biological_proces unknown (KD2) -31 YHR21SW / PH012 Biological_proces unknown (KD2)	YGL019W / CKB1	Protein kinase CK2 beta subunit	-3.2
YGR003W / CUL3Ubiquitin-protein ligase3.2YBL056W / PTC3Protein phosphatase type 2C3.2YHR051W / COX6Cytochrome c oxidase subunit3.2YCR052W / RSC6Nucleosome remodeling complex3.2YDL157W / RSC6Nucleosome remodeling complex3.2YDL137W / ARL2ADP-ribosylation factor-like protein 13.2YDL137W / ARL2ADP-ribosylation factor 23.2YDL538W / NAD1Phenylacrylic acid decarboxylase3.2YDL074C / JRE1Ubiquitin-protein ligase3.2YMR086W / NAM8snRNP U13.2YMR152W / YIM1Protease, similar to E, coli leader peptidase3.2YOR136W / RPT5J9S proteasome regulatory particle3.2YOR136W / RPT5J9S proteasome regulatory particle3.2YOR107W / RPT5J9S proteasome regulatory particle3.1YGR108W / KN122Karyopherin beta family member3.1YGR108W / KN122Karyopherin beta family member3.1YGR107W / RD12sn-1.2-diacitylgevorel dtanolanime- and cholinephosphotranferase3.1YHR255W / HO11sn-1.2-diacitylgevorel dtanolanise- and cholinephosphotranferase3.1YHR055C / HISIHistidin biosynthesis3.1YHR055C / HISIHistidin biosynthesis3.1YL0205C / HISIHistidine adphate-type subunit3.1YL0205C / HISIHistidine adphate-type subunit3.1YL0205C / INP54Incoinal ophynphosphate 5-phosphates3.0YDL036C / LNP54Incoinal ophynphosphate 5-phosphates3.	YBR256C / RIB5	Vitamin B2 biosynthesis	-3.2
YBL056W / PTC3 Protein phosphatase type 2C -3.2 YIR051W / COX6 Cytochrome coxidase subunit -3.2 YRR05W / RSC6 Nucleosome remodeling complex -3.2 YBR0164C / ARL1 ADP-ribosylation factor-like protein 1 -3.2 YDL37W / ARF2 ADP-ribosylation factor-like protein 1 -3.2 YDD1074C / RRE1 Ubiquith-protein ligase -3.2 YDR086W / NAM8 snRNP U1 -3.2 YMR152W / YIM1 Protesse, similar to E. coli leader peptidase -3.2 YOR136W / YIM1 Protesse, similar to E. coli leader peptidase -3.2 YOR136W / IDH2 NAD-dependent isocitrate dehydrogenase -3.2 YOR136W / IDH2 NAD-dependent isocitrate dehydrogenase -3.1 YGL016W / KAP122 Karyopherin beta family member -3.1 YGR05W / NK16 RNAse PH homolog -3.1 YHR215W / PHO12 Biological process unknown (ND) -3.1 YHR23W / PHO12 Biological process unknown (ND) -3.1 YHR23W / PHO12 Biological process unknown (ND) -3.1 YHR23W / PHO12 Protein kinase -3.1 </td <td>YGR003W / CUL3</td> <td>Ubiquitin-protein ligase</td> <td>-3.2</td>	YGR003W / CUL3	Ubiquitin-protein ligase	-3.2
YIR051W / COX6 Cytochrome c oxidas submit -32 YCR052W / RSC6 Nucleosome remodeling complex -32 YR0164C / ARL ADP-ribosylation factor-like protein 1 -32 YDL137W / ARF2 ADP-ribosylation factor -like protein 1 -32 YDL37W / ARF2 ADP-ribosylation factor -like protein 1 -32 YDL074C / BRE1 Ubiquitin-protein ligase -32 YMR16W / NAM8 snRNP U1 -32 YMR175 195 protesame regulatory particle -32 YOR117W / RPT5 195 protesame regulatory particle -32 YOR113W / KAP12 NAD-dependent isocitrate dehydrogenase -32 YOR099W / BMH2 Member of conserved eukaryotic 14-3-3 gene family -31 YGR17W / KR15 ns1-2-diacylglycrol ethanolamine- and cholinephosphotranferase -31 YGR016W / KAP122 Karyopberin beta family member -31 YGR017W / KR15 nositol polyphosphots -31 YGR018W / KAP122 Biological_process unknown (ND) -31 YHR128W / PTT1 sn-12-diacylglycerol ethanolamolamolymbes -31 YHR215W / PHO12 Biological_proce	YBL056W / PTC3	Protein phosphatase type 2C	-3.2
YCR052W / RSC6 Nucleosome remodeling complex -3.2 YBR164C / ARL1 ADP-ribosylation factor-like protein 1 -3.2 YDR33W / PAD1 Phenylacrylic acid decarboxylase -3.2 YDR33W / PAD1 Phenylacrylic acid decarboxylase -3.2 YDL074C / BRE1 Ubiquitin-protein ligase -3.2 YMR152W / VIM1 Protease, similar to E. coli leader peptidase -3.2 YOR136W / IDH2 NAD-dependent isocitrate dehydrogenase -3.2 YOR136W / IDH2 NAD-dependent isocitrate dehydrogenase -3.2 YOR09W / IBM12 Member of conserved eukaryotic 14-3-3 gene family -3.1 YGR106W / KAP122 Karyopherin beta family member -3.1 YGR107W / SK16 RNAse PH homolog -3.1 YHR012 Biological process unknown (ND) -3.1 YHR012 Biological process unknown (ND) -3.1 YHR012 Protein kinase -3.1 YHR012 Protein kinase -3.1 YHR012 Protein kinase -3.1 YHR012 Protein kinase -3.1 YLR020 Cytochrome	YHR051W / COX6	Cytochrome c oxidase subunit	-3.2
YBR164C / ARL1 ADP-ribosylation factor-like protein 1 -3.2 YDL33W / ARF2 ADP-ribosylation factor 2 -3.2 YDR33W / PAD1 Phenylacrylic acid decarboxylase -3.2 YTR085W / PAD1 Phenylacrylic acid decarboxylase -3.2 YRR086W / NAM8 snRNP U1 -3.2 YMR17W / RP15 19S proteasom regulatory particle -3.2 YOR136W / IDH2 NAD-dependent isocitrate dehydrogenase -3.2 YDR099W / BMH2 Member of conserved eukaryotic 14-3-3 gene family -3.1 YGR106W / KAP122 Karyopherin beta family member -3.1 YGR17W / PHO12 sn-1.2-diacylglycerol ethanolamine- and cholinephosphotranferase -3.1 YHR23W / PHO12 sn-1.2-diacylglycerol ethanolamine- and cholinephosphotranferase -3.1 YHR21W / RIO2 Protein kinase -3.1 YHL20TW / RIO2 Protein kinase -3.1 YHC30W / RIO2 Fortein kinase -3.1 YH023C / COX8 Cytochrome c oxidase chain VIII -3.1 YUR32W / CR7 Cytochrome c oxidase chain VIII -3.1 YUR32G / CN84 Inositol polyhophosphate	YCR052W / RSC6	Nucleosome remodeling complex	-3.2
YDL 137W / ARF2 ADP-ribosylation factor 2 -3.2 YDR 338W / PADI Phenylacrylic acid decarboxylase -3.2 YDL 074C / BRE I Ubiquitur protein figase -3.2 YHR 058W / NAM8 snRNP UI -3.2 YMR 152W / YIMI Protease, similar to E. coli leader peptidase -3.2 YOR 136W / IDH2 NAD-dependent isocitrate dehydrogenase -3.2 YOR 136W / IDH2 Member of conserved eukaryotic 14-3-3 gene family -3.1 YGL 016W / KAP122 Karyopherin beta family member -3.1 YGR 135W / FP11 sn-1,2-diacylglycerol eukaryotic 14-3-3 gene family -3.1 YIR 123W / PHO12 Biological_process unknown (NUD) -3.1 YIR 215W / PHO12 Biological_process unknown (NDD) -3.1 YIR 035C / HIS1 Hisidine biosyntheesis -3.1 YIR 035C / COX8 Cytochrome coxidase chain VIII -3.1 YIR 035C / COX8 Cytochrome coxidase chain VIII -3.1 YIR 035C / COX8 Cytochrome coxidase chain VIII -3.1 YIR 035C / COX8 Cytochrome to axidase chain VIII -3.1 YUR 0302 / CPR7 Cyc	YBR164C / ARL1	ADP-ribosvlation factor-like protein 1	-3.2
YDR538W / PAD1Phenylacrylic acid decarboxylase-3.2YDL074C / BRE1Ubiquifn-protein ligase-3.2YHR086W / NAM8snRNP UI-3.2YMR152W / YIM1Protease, similar to E, coli leader peptidase-3.2YOR173W / RPT5I9S proteasome regulatory particle-3.2YOR173W / RPT5I9S proteasome regulatory particle-3.2YOR173W / RPT5I9S proteasome regulatory particle-3.2YOR099W / BMH2Member of conserved eukaryotic 14-3-3 gene family-3.1YGL016W / KAP122Karyopherin beta family member-3.1YGR173W / EPT1sn-1,2-diacylglycerol ethanolamine- and cholinephosphotranferase-3.1YHR213W / PHO12Biological_process unknown (ND)-3.1YHR215W / PHO12Biological_process unknown (ND)-3.1YHR123W / PHO12Biological_process unknown (ND)-3.1YHR32G / COX8Cytochrome c oxidase chain VIII-3.1YUL03C / DIS33-5' exoribonuclease complex subunit-3.1YUR03SC / LAC1LAG1 longevity gene homolog-3.1YKL040S / LAC1LAG1 longevity gene homolog-3.1YNL07C / TPM1Tropomyosi 1-3.1YNL07C / TPM1Tropomyosi 1-3.1YNL07C / TPM1Protein kinase-3.0YDL01C / DIN1Protein kinase-3.0YDL01C / D	YDL137W / ARF2	ADP-ribosvlation factor 2	-3.2
YDL074C / BRE1Unitary1.1YDL074C / BRE1Uniquitin-protein ligase-3.2YHR086W / NAM8snRNP U1-3.2YMR152W / IM1Protease, similar to E. col leader peptidase-3.2YOR136W //DH12NAD-dependent isocitrate dehydrogenase-3.2YOR136W //DH12Member of conserved eukaryotic 14-3-3 gene family-3.1YGR195W //SL6RNAse PH homolog-3.1YGR195W //SL6RNAse PH homolog-3.1YHR123W //EPT1sn-1,2-diacylglycerol ethanolamine- and cholinephosphotranferase-3.1YHR215W //PHO12Biological process unknown (ND)-3.1YL207W / RIO2Protein kinase-3.1YL1392C / CDNS3'5' exoribonuclease complex subunit-3.1YUR302W / CPR7Cyclophilin 40, peptidyl-prolyl cis-trans isomerase (PPIase-3.1YUR302C / COX8Cytochrome c oxidase chain VIII-3.1YUL032C / COX8Cytochrome coxidase chain VIII-3.1YUL036C / INP54Inositol polyphosphate 5-phosphatase-3.1YNL080C / LACIL AGI longevity gene homolog-3.1YNL080C / ARO43-deoxy-D-arabisome alpha-type subunit-3.1YNL080C / ARO43-deoxy-D-arabisome alpha-type subunit-3.1YNL080C / ARO43-deoxy-D-arabisome alpha-type subunit-3.1YNL080C / INP51Deoxyhypusine synthase-3.0YDL134C / PHA1Protein phosphatase type 2A complex-3.0YDL134C / PHA1Protein phosphatase type 2A complex-3.0YDL134C / PHA1Protein phosphatase type 2A co	YDR538W / PAD1	Phenylacrylic acid decarboxylase	-3.2
INDUCT Control Instruction -1.2 Sink PUI -5.2 YMR086W / NAMS sink PUI -5.2 YMR152W / YIMI Protease, similar to E, coli leader peridase -3.2 YOR117W / RP15 198 proteasome regulatory particle -3.2 YOR099W / BMH2 Member of conserved eukaryotic 14-3-3 gene family -3.1 YGL016W / KAP122 Karyopherin beta family member -3.1 YGR17W / KP15 sn-1,2-diacylglycerol ethanolamine- and cholinephosphotranferase -3.1 YHR215W / FP11 sn-1,2-diacylglycerol ethanolamine- and cholinephosphotranferase -3.1 YHR215W / FP112 Biological_process unknown (ND) -3.1 YHR205W / RIO2 Protein kinase -3.1 YUL027W / RIO2 Protein kinase -3.1 YUR032W / CPR7 Cyclophilin 40, peridyl-prolyl cis-trans isomerase (PPIase -3.1 YUR032W / CPR7 Cyclophilin 40, peridyl-prolyl cis-trans isomerase (PPIase -3.1 YUR032W / CPR7 Cyclophilin 40, peridyl-prolyl cis-trans isomerase (PPIase -3.1 YUR032W / CPR4 Inostiol polyphosphate 5-phosphates -3.1 YUR032W / PR66 20S proteasome alphat-type subunit -3.1	VDI 074C / BRE1	I lbiquitin-protein ligase	-3.2
TARGONU / YIM0Protease, similar to E. coli leader peptidase-1.2YOR117W / RPT5195 proteasom regulatory particle-3.2YOR136W / DID12NAD-dependent isocitrate dehydrogenase-3.2YDR099W / BMH2Member of conserved eukaryotic 14-3-3 gene family-3.1YGL016W / KAP122Karyopherin beta family member-3.1YGR15SW / SK16sn-1.2-diacylglycerol ethanolamine- and cholinephosphotranferase-3.1YHR21SW / PHO12Sn-1.2-diacylglycerol ethanolamine- and cholinephosphotranferase-3.1YHR21SW / PHO12Biological process unknown (M2)-3.1YHR21SW / RIO2Protein kinase-3.1YNL207W / RIO2Protein kinase-3.1YNL207W / RIO2Cytochrome c oxidase chain VIII-3.1YUR3SC / CX8Cytochrome coxidase chain VIII-3.1YUL3SV / CPR7Cyclophilin 40, peptidyl-projly cis-trans isomerase (PPIase-3.1YNL382C / SSO2Cytochrome coxidase chain VIII-3.1YNL080C / LACILAGI longevity gene homolog-3.1YNL080C / LACILAGI longevity gene homolog-3.1YNL080C / LACILAGI longevity gene homolog-3.1YNL148C / PR14Tropomyosin 1-3.1YNL207W / PR5205 proteasome alpha-type subunit-3.1YNL207W / PR5Otsportasome alpha-type subunit-3.1YNL207W / PR5Otsportasome alpha-type subunit-3.1YNL148C / PR14Protein kinase-3.0YDL134C / PR14Protein kinase-3.0YDL134C / PR14Protein phosphata	VHR086W / NAM8	snBNP U1	-3.2
110112 W / IPIT 1101 Trobusty, imital 195 proteasome regulatory particle -3.2 YOR117W / IPITS NAD-dependent isocitrate dehydrogenase -3.2 YOR017W / RPTS NAD-dependent isocitrate dehydrogenase -3.1 YGL016W / KAP122 Karyopherin beta family member -3.1 YGL17W / RPTS sn-1,2-diacylglycerol ethanolamine- and cholinephosphotranferase -3.1 YHR123W / EPT1 sn-1,2-diacylglycerol ethanolamine- and cholinephosphotranferase -3.1 YHR23W / EPT1 sn-1,2-diacylglycerol ethanolamine- and cholinephosphotranferase -3.1 YHR23W / PHO12 Biological_process unknown (ND) -3.1 YHR23W / PHO12 Histidine biosynthesis -3.1 YNL207W / RIO2 Protein kinase -3.1 YUL021C / DIS3 3'-5' exoribonuclease complex subunit -3.1 YUR032W / CPR7 Cyclophilt 40, peptidyl-bryld i:st-trans isomerase (PPIase -3.1 YUR052W / CRS2 Lytorhome c oxidase chain VIII -3.1 YOL065C / INP54 Inositol polyphosphate 5-phosphates -3.1 YOL038W / PRE6 205 proteasome alpha-type subunit -3.1 YOL038W / PRE6 205 proteasome alpha-type subunit -3.1	VMR152W/VIM1	Protesse similar to E coli leader pentidase	-3.2
TORTTW /TH12Th2 processing equation2.2YOR136W / IDH2NAD-dependent isocitrated dehydrogenase-3.2YDR099W / BMH2Member of conserved eukaryotic 14-3-3 gene family-3.1YGR195W / SK16RNAse PH homolog-3.1YGR195W / SK16RNAse PH homolog-3.1YHR123W / EPT1sn-1,2-diacylglycerol ethanolamine- and cholinephosphotranferase-3.1YHR215W / PHO12Biological process unknown (ND)-3.1YHR215W / PHO12Biological process unknown (ND)-3.1YHR215W / PHO12Protein kinase-3.1YNL207W / RIO2Protein kinase-3.1YNL207W / RIO2Protein kinase-3.1YUR322W / CPR7Cyclophilin 40, peptidyl-prolyl cis-trans isomerase (PPIase-3.1YUR325C / IN54Inositol polyphosphate 5-phosphatase-3.1YNL079C / IN54Inositol polyphosphate 5-phosphatase-3.1YNL079C / IPM1Tropomyosin I-3.1YNL079C / IPM1Tropomyosin alpha-type subunit-3.1YNL079C / IPM1Functional and limited sequence similarity to CAF20-3.0YDL101C / DUNIProtein kinase-3.0YDL1024W / EAP1Functional and limited sequence similarity to CAF20-3.0YDL134C / PAN6Panothenate synthase-3.0YDL134C / PAN6Panothenate synthase-3.0YDL134C / PH21Protein phosphatase type 2A complex-3.0YDL134C / PH21Protein phosphatase type 2A complex-3.0YDL134C / PH21Protein phosphatase type 2A complex-3.0	$V \cap R 117W / RPT5$	10S protessome regulatory particle	-3.2
10100W / IBMI2 Introductional modulation of the set family inspectation of the set family inspectation of the set family interval of the	VOR136W / IDH2	NAD dependent isocitrate debudrogenase	-3.2
HDK097W / BMP2 Mellide in Collise Ved cakal yold: 14-5-3 geter failing -5.1 YGL016W / KAP122 Karyopherin beta family member -3.1 YGR195W / SK16 RNAse PH homolog -3.1 YHR123W / EPT1 sn-1,2-diacylglycerol ethanolamine- and cholinephosphotranferase -3.1 YHR215W / PHO12 Biological_process unknown (ND) -3.1 YEK055C / HIS1 Histidine biosynthesis -3.1 YOL01CV / RI02 Protein kinase -3.1 YOL21C / DIS3 3'-5' exoribonuclease complex subunit -3.1 YUR302W / CPR7 Cyclophilin 40, peptidyl-prolyl cis-trans isomerase (PPIase -3.1 YUR305C / LAC1 LAG1 longevity gene homolog -3.1 YKL008C / LAC1 LAG1 longevity gene homolog -3.1 YKL008C / LAC1 LAG1 longevity gene homolog -3.1 YKL004W / FAP1 Functionally analogous to mammalian 4E-BPs -3.0 functional and limited sequence similarity to CAF20 YBR249C / ARO4 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase isoenzyme -3.0 YDL101C / DUN1 Protein kinase -3.0 YDL191C / DUN1 Protein kinase -3.0 YDR497W / CBS2 Cytochrome b translational	VDD000W / DMU2	Mamber of concerned subgraptic 14.2.2 gene family	-3.2
1 OLDIOW / KAT122Karyophelm Ded falminy member-3.1YGR195W / SKI6RNAse PH homolog-3.1YHR123W / EPT1sn-1,2-diacylglycerol ethanolamine- and cholinephosphotranferase-3.1YHR215W / PHO12Biological_process unknown (ND)-3.1YER055C / HIS1Histidine biosynthesis-3.1YUL207W / RIO2Protein kinase-3.1YUL207W / RIO2Protein kinase-3.1YUR032W / CPR7Cyclophilin 40, peptidyl-prolyl cis-trans isomerase (PPIase-3.1YUR05C / COX8Cytochrome c oxidase chain VIII-3.1YUL05C / LNP54Inositol polyphosphatase-3.1YMR183C / SSO2t-SNARE-3.1YNL079C / TPM1Tropomyosin I-3.1YOL065C / TPM1Tropomyosin I-3.1YUL070C / TPM1Tropomyosin I-3.1YUL145C / PAN6Pantothenate synthase-3.0YUR179C / RS2Cytochrome b translational activator-3.0YUL145C / PAN6Pantothenate synthase-3.0YUL145C / PAN6Pantothenate synthase-3.0YUL145C / PAN6Pantothenate synthase-3.0YUL145C / PAN6Pantothenate synthase-3.0YUL145C / PAN6Protein kinase-3.0YUL145C / PAN6Pantothenate synthase-3.0YUL145C / PAN6	I DR099W / DWH2	Koryonharin hata family momhar	-3.1
TOR195W / Sk10CRNAB PT HOLINOIG-3.1YHR123W / EPT1sn-1,2-diacylglycerol ethanolamine- and cholinephosphotranferase-3.1YHR215W / PHO12Biological_process unknown (ND)-3.1YER055C / HIS1Histidine biosynthesis-3.1YNL207W / RIO2Protein kinase-3.1YUR027W / RIO2Protein kinase-3.1YUR027W / RIO2Protein kinase-3.1YUR032W / CPR7Cyclophilin 40, peptidyl-prolyl cis-trans isomerase (PPIase-3.1YUR035C / COX8C/tochrome c oxidase chain VIII-3.1YUR05C / INP54Inositol polyphosphate 5-phosphatase-3.1YKL006SC / INP54Inositol polyphosphate 5-phosphatase-3.1YKL008C / LAC1LACI longevity gene homolog-3.1YKL008C / LAC1LACI longevity gene homolog-3.1YKL024W / ERE620S proteasome alpha-type subunit-3.1YKL204W / EAP1Functional and limited sequence similarity to CAF20-YBR249C / ARO43-deoxy-D-arabine-heptulosonate 7-phosphate (DAHP) synthase isoenzyme-3.0YDL101C / DUN1Protein kinase-3.0YDL194C / PPH21Protein phosphatase type 2A complex-3.0YDL134C / PPH21Protein phosphatase type 2A complex-3.0YDL228C-13.4-13.4YOR207C-16.7YOL19W-12.7YDR417C-12.6YBR321C-12.7YDR417C-12.6YBR315W / APD1-12.5YGR150C-11.9YGR102C-11.9YG	I GLUIOW / NAPI22 VCD105W / SVI6	Raiyopherin deta family memoer	-3.1
THR15W / PH012Biological_process unknown (ND)-3.1YER055C / HIS1Histidine biosynthesis-3.1YNL207W / RIO2Protein kinase-3.1YNL207W / RIO2Protein kinase-3.1YUR021C / DIS33'-5' exoribonuclease complex subunit-3.1YR032W / CPR7Cyclophilin 40, peptidyl-prolyl cis-trans isomerase (PPlase-3.1YUR032W / CPR7Cyclophilin 40, peptidyl-prolyl cis-trans isomerase (PPlase-3.1YUR05C / INP54Inositol polyphosphate 5-phosphatase-3.1YKL008C / LAC1LAG1 longevity gene homolog-3.1YNL070C / TPM1Tropomyosin I-3.1YUL038W / PRE620S proteasome alpha-type subunit-3.1YUL070C / TPM1Tropomyosin I-3.1YUL038W / PRE620S proteasome alpha-type subunit-3.1YUL240W / EAP1Functional and limited sequence similarity to CAF20-YDR145C / PAN6Pantothenate synthase-3.0YUL145C / PAN6Pantothenate synthase-3.0YUL101C / DUN1Protein kinase-3.0YDL134C / PPH21Protein phosphatase type 2A complex-3.0YDL134C / PPH21Protein phosphatase type 2A complex-16.7YOL28C-15.7-16.7YDL28C-13.4YOR390C-12.9YBR151W / APD1-12.7YDR417C-12.6YBR151W / APD1-12.5YGE1030W-11.9YGL030W-11.9YGL030W-11.9YGL02C-11.9YGR081C-11.7	I UK193W / SKIO	KNASE PH nonolog	-3.1
YHR215W // FN012Biological_process unknown (<u>MD</u>)-3.1YER055C // HIS1Histidine biosynthesis-3.1YNL207W / RIO2Protein kinase-3.1YNL207W / RIO2Protein kinase-3.1YIR032W / CPR7Cyclophilin 40, peptidyl-projel cis-trans isomerase (PPIase-3.1YLR395C / COX8Cytochrome c oxidase chain VIII-3.1YUL05C / INP54Inositol polyphosphate 5-phosphatase-3.1YKL008C / LAC1LAG1 longevity gene homolog-3.1YKL008C / LAC1LAG1 longevity gene homolog-3.1YKL008C / LAC1Functional and limited sequence similarity to CAF20-YBR249C / AR043-deoxy-D-arabino-heptulosonate 7-phosphate (DAF2)-YDL101C / DUN1Protein kinase-3.0YDL101C / DUN1Protein kinase-3.0YDL104C / PH21Protein phosphatase type 2A complex-3.0YDL134C / PPH21Protein phosphatase type 2A complex-3.0YDL134C / PPH21Protein phosphatase type 2A complex-3.0YDL134C / PPH21Protein phosphatase type 2A complex-16.2YOR277C-16.7-15.7-15.7YDL228C-13.4-13.4YOR309C-13.4-12.7YDR417C-12.6-12.5YB610 / BORN-12.5-12.5YGE102C-11.9-12.5YGL039W-11.9-11.9YGL030W-11.9-11.7	YHKIZ3W / EPII VUD215W / DUO12	sn-1,2-diacyigiyeeroi ethanoiamine- and choinephosphotranierase	-3.1
YHL207W / RIO2 Protein kinase -3.1 YNL207W / RIO2 Protein kinase -3.1 YOL021C / DIS3 3'-5' exoribonuclease complex subunit -3.1 YIR032W / CPR7 Cyclophilin 40, peptidyl-prolyl cis-trans isomerase (PPlase -3.1 YIR032W / CPR7 Cyclophilin 40, peptidyl-prolyl cis-trans isomerase (PPlase -3.1 YIR052C / COX8 Cytochrome c oxidase chain VIII -3.1 YOL05C / INP54 Inositol polyphosphate 5-phosphatase -3.1 YKL008C / LAC1 LAGI longevity gene homolog -3.1 YKL07VC / TPM1 Tropomyosin 1 -3.1 YUL13C 20S proteasome alpha-type subunit -3.1 YKL07VC / TPM1 Functional and limited sequence similarity to CAF20 - YBR249C / ARO4 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase isoenzyme -3.0 YDL13C / DN1 Protein kinase -3.0 -3.0 YDL13C / PAN6 Pantothenate synthase -3.0 -3.0	YHK2ISW / PHOI2	Biological_process unknown (<u>ND</u>)	-3.1
YNL20/W / RI02 Protein kinase -5.1 YOL021C / DIS3 3'-5' exoribonuclease complex subunit -3.1 YJR032W / CPR7 Cyclophilin 40, peptidyl-prolyl cis-trans isomerase (PPlase -3.1 YIR395C / COX8 Cytochrome c oxidase chain VIII -3.1 YOL026C / INP54 Inositol polyphosphate 5-phosphatase -3.1 YMR183C / SS02 t-SNARE -3.1 YNL079C / TPM1 Tropomyosin I -3.1 YNL079C / TPM1 Tropomyosin I -3.1 YNL038W / PRE6 20S proteasome alpha-type subunit -3.1 YNL020W / EAP1 Functionally analogous to mammalian 4E-BPs -3.0 functional and limited sequence similarity to CAF20	YERUSSU / HIST	Histidine biosynthesis	-3.1
YUD21C / D1535-5 exoribonuclease complex subunit-5.1YIR032W / CPR7Cyclophili 40, peptidyl-prolyl cis-trans isomerase (PPIase-3.1YLR395C / COX8Cytochrome c oxidase chain VIII-3.1YOL065C / INP54Inositol polyphosphate 5-phosphatase-3.1YMR183C / SSO2t-SNARE-3.1YKL008C / LAC1LAG1 longevity gene homolog-3.1YNL079C / TPM1Tropomyosin 1-3.1YOL038W / PRE620S proteasome alpha-type subunit-3.0YKL204W / EAP1Functionally analogous to mammalian 4E-BPs-3.0functional and limited sequence similarity to CAF20-3.0YDR197W / CBS2Cytochrome b translational activator-3.0YDL197C / PAN6Pantothenate synthase-3.0YDL197C / DAN1Protein kinase-3.0YDL197C / PAN6Pantothenate synthase-3.0YDR197W / CBS2Cytochrome b translational activator-3.0YDL134C / PPH21Protein phosphatase type 2A complex-3.0YDL134C / PPH21Protein phosphatase type 2A complex-3.0YDL228C-15.7-16.7YDL228C-13.4YOR309C-12.9YBR17W / APD1-12.7YDR477C-12.6YBL077W-12.5R361C / BCP1-12.5YER156C-12.1YGL039W-11.9YGL039W-11.9YGR030C-11.9YDR442W-11.8	YNL20/W/RIO2	Protein kinase	-3.1
YIR352W / CPK/Cyclophilin 40, pepidyl-proly (cis-trans isomerase (PPlase-3.1YIR352C / COX8Cytochrome c oxidase chain VIII-3.1YOL065C / INP54Inositol polyphosphate 5-phosphatase-3.1YKL08C / LAC1LAG1 longevity gene homolog-3.1YKL08C / LAC1LAG1 longevity gene homolog-3.1YNL079C / TPM1Tropomyosin I-3.1YOL038W / PRE620S proteasome alpha-type subunit-3.1YUL204W / EAP1Functionally analogous to mammalian 4E-BPs-3.0YBR249C / AR043-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase isoenzyme-3.0YDR197W / CBS2Cytochrome b translational activator-3.0YDL101C / DUN1Protein kinase-3.0YDL101C / DUN1Protein kinase-3.0YDL134C / PPH21Protein phosphatase type 2A complex-3.0YOR277C-16.7-16.2YGL131C-15.7-15.7YDL28C-13.4-12.9YBR31W / APD1-12.7-12.6YBR147C-12.6-12.5R361C / BCP1-12.5-12.5R361C / BCP1-12.5-12.5YER156C-12.5-12.5YER156C-12.5-11.9YGR081C-11.8YGR081C	YOL021C / DIS3	3-5 exoribonuclease complex subunit	-3.1
YLL395C / COX8 Cytochrome c oxidase chain VIII -3.1 YML065C / INP54 Inositol polyphosphate 5-phosphatase -3.1 YMR183C / SS02 t-SNARE -3.1 YNL079C / TPM1 Tropomyosin I -3.1 YNL079C / TPM1 Tropomyosin I -3.1 YKL204W / EAP1 Functionally analogous to mammalian 4E-BPs -3.0 functional and limited sequence similarity to CAF20 -3.0 YBR249C / AR04 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase isoenzyme -3.0 YDL165C / PAN6 Pantothenate synthase -3.0 YDL101C / DUN1 Protein kinase -3.0 YDL134C / PPH21 Protein phosphatase type 2A complex -3.0 YDL134C / PPH21 Protein phosphatase type 2A complex -3.0 YDL134C / PPH21 Protein phosphatase type 2A complex -16.7 YOL109W -16.2 -15.7 YDL131C -15.7 -16.2 YGR309C -13.4 -12.9 YBR151W / APD1 -12.7 -12.6 YBR151W / APD1 -12.5 -12.5 YEG16C -12.5 -12.5 YGR039W	YJR032W / CPK/	Cyclophilin 40, peptidyi-prolyl cis-trans isomerase (PPlase	-3.1
YOL06SC / INP54 Inositol polyphosphate 5-phosphatase 5.1 YMR183C / SSO2 t-SNARE 3.1 YKL008C / LAC1 LAG1 longevity gene homolog 3.1 YNL079C / TPM1 Tropomyosin I 3.1 YKL204W / EAP1 Functionally analogous to mammalian 4E-BPs 3.0 functional and limited sequence similarity to CAF20	YLR395C / COX8	Cytochrome c oxidase chain VIII	-3.1
YMR183C / S802 t-SNARE -3.1 YKL008C / LAC1 LAG1 longevity gene homolog -3.1 YNL079C / TPM1 Tropomyosin I -3.1 YOL038W / PRE6 20S proteasome alpha-type subunit -3.1 YKL204W / EAP1 Functionally analogous to mammalian 4E-BPs -3.0 functional and limited sequence similarity to CAF20 -3.0 YBR249C / AR04 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase isoenzyme -3.0 YDL145C / PAN6 Pantothenate synthase -3.0 YDL134C / PPH21 Protein phosphatase type 2A complex -3.0 VDL134C / PPH21 Protein phosphatase type 2A complex -16.7 YOL139C -16.2 -16.2 YGL131C -15.7 -16.2 YDL128C -13.4 -13.4 YOR309C -13.4 -13.4 YOR309C -12.9 -12.7 YDR417C -12.6 -12.6 YBR151W / APD1 -12.5 </td <td>YOL065C / INP54</td> <td>Inositol polyphosphate 5-phosphatase</td> <td>-3.1</td>	YOL065C / INP54	Inositol polyphosphate 5-phosphatase	-3.1
YKL008C / LACILAGI longevity gene homolog-3.1YNL079C / TPM1Tropomyosin I-3.1YQL038W / PRE620S proteasome alpha-type subunit-3.1YKL204W / EAP1Functionally analogous to mammalian 4E-BPs-3.0functional and limited sequence similarity to CAF20-3.0YBR249C / AR043-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase isoenzyme-3.0YUL145C / PAN6Pantothenate synthase-3.0YUL145C / PAN6Pantothenate synthase-3.0YDL101C / DUN1Protein kinase-3.0YDL134C / PPH21Protein phosphatase type 2A complex-3.0YDL134C / PPH21Protein phosphatase type 2A complex-3.0YOR277C-16.7-16.2YGL131C-15.7-15.7YDL228C-13.4-13.4YOR309C-13.4-12.9YBR417C-12.6-12.6YBL077W-12.5R361C / BCP1-12.5YGL039W-11.9-11.9YGL02C-11.9-11.7	YMR183C / SSO2	t-SNARE	-3.1
YNL079C / IPM1Tropomyosin 1-3.1YOL038W / PRE620S proteasome alpha-type subunit-3.1YKL204W / EAP1Functionally analogous to mammalian 4E-BPs-3.0functional and limited sequence similarity to CAF203-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase isoenzyme-3.0YBR249C / ARO43-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase isoenzyme-3.0YBR197W / CBS2Cytochrome b translational activator-3.0YDL101C / DUN1Protein kinase-3.0YDL134C / PPH21Protein phosphatase type 2A complex-3.0YOR277C-16.7YOL109W-16.2YGL131C-15.7YDL28C-13.4YMR321C-12.9YBR151W / APD1-12.7YDR417C-12.6YBL077W-12.5R361C / BCP1-12.5YER156C-12.1YGL039W-11.9YDR442W-11.8YGR81C-11.7	YKL008C / LACI	LAGI longevity gene homolog	-3.1
YOL038W / PRE620S proteasome alpha-type subunit-3.1YKL204W / EAP1Functionally analogous to mammalian 4E-BPs-3.0Functional and limited sequence similarity to CAF203-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase isoenzyme-3.0YDR197W / CBS2Cytochrome b translational activator-3.0YDL145C / PAN6Pantothenate synthase-3.0YDL101C / DUN1Protein kinase-3.0YDL104C / PPH21Protein phosphatase type 2A complex-3.0YDL134C / PPH21Protein phosphatase type 2A complex-3.0YOR277C-16.7YOL109W-15.7YDL228C-13.4YOR309C-13.4YMR321C-12.7YDR417C-12.6YBL077W-12.5R361C / BCP1-12.5YER156C-12.1YGL039W-11.9YDL102C-11.9YDR442W-11.8YGR81C-11.7	YNL079C / TPM1	Tropomyosin I	-3.1
YKL204W / EAP1Functionally analogous to mamalian 4E-BPs-3.0functional and limited sequence similarity to CAF20YBR249C / ARO43-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase isoenzyme-3.0YDR197W / CBS2Cytochrome b translational activator-3.0YIL145C / PAN6Pantothenate synthase-3.0YDL101C / DUN1Protein kinase-3.0YDL134C / PPH21Protein phosphatase type 2A complex-3.0VDL134C / PPH21Protein phosphatase type 2A complex-3.0VDL134C / PPH21Protein phosphatase type 2A complex-3.0VDL134C / PPH21Protein phosphatase type 2A complex-3.0YDL28C-16.7-16.7YOL28C-15.7-15.7YDL28C-13.4-13.4YMR321C-12.9-12.9YBR151W / APD1-12.7-12.6YBL077W-12.5-12.5YER156C-12.1-12.5YER156C-12.1-11.9YGL02C-11.9-11.7	YOL038W / PRE6	20S proteasome alpha-type subunit	-3.1
functional and limited sequence similarity to CAF20YBR249C / ARO43-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase isoenzyme-3.0YDR197W / CBS2Cytochrome b translational activator-3.0YIL145C / PAN6Pantothenate synthase-3.0YDL101C / DUN1Protein kinase-3.0YHR068W / DYS1Deoxyhypusine synthase-3.0YDL134C / PPH21Protein phosphatase type 2A complex-3.0VDL134C / PPH21Protein phosphatase type 2A complex-3.0Unknown function-16.2YGL131C-15.7YDL228C-13.4YOR309C-13.4YMR321C-12.9YBR151W / APD1-12.5YBL077W-12.6YBL077W-12.5YER156C-12.1YGL039W-11.9YDR442W-11.8YGR081C-11.7	YKL204W / EAP1	Functionally analogous to mammalian 4E-BPs	-3.0
YBR249C / ARO43-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase isoenzyme-3.0YDR197W / CBS2Cytochrome b translational activator-3.0YIL145C / PAN6Pantothenate synthase-3.0YDL101C / DUN1Protein kinase-3.0YHR068W / DYS1Deoxyhypusine synthase-3.0YDL134C / PPH21Protein phosphatase type 2A complex-3.0VoR277C-16.7YOL109W-16.2YGL31C-15.7YDL228C-13.4YOR309C-13.4YMR321C-12.9YBR151W / APD1-12.7YDR417C-12.5R361C / BCP1-12.5YER156C-12.1YGL039W-11.9YDR442W-11.8YGR081C-11.7		functional and limited sequence similarity to CAF20	
YDR197W / CBS2 Cytochrome b translational activator -3.0 YIL145C / PAN6 Pantothenate synthase -3.0 YDL101C / DUN1 Protein kinase -3.0 YHR068W / DYS1 Deoxyhypusine synthase -3.0 YDL134C / PPH21 Protein phosphatase type 2A complex -3.0 VIRnown function -3.0 -3.0 YOR277C -16.7 -3.0 YOL134C / PPH21 Protein phosphatase type 2A complex -3.0 Unknown function -3.0 -3.0 YOR277C -16.7 -16.2 YGL131C -15.7 -16.2 YDL228C -13.4 -13.4 YOR309C -13.4 -12.7 YDR417C -12.6 -12.7 YDR417C -12.6 -12.5 YE150K / APD1 -12.5 -12.5 YE160C -12.5 -11.9 YGL039W -11.9 -11.9 YGR081C -11.7 -11.7	YBR249C / ARO4	3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase isoenzyme	-3.0
YIL145C / PAN6 Pantothenate synthase -3.0 YDL101C / DUN1 Protein kinase -3.0 YHR068W / DYS1 Deoxyhypusine synthase -3.0 YDL134C / PPH21 Protein phosphatase type 2A complex -3.0 Unknown function YOL109W -16.7 YOL131C -15.7 YDL28C -13.4 YOR309C -13.4 YMR321C -12.7 YDR417C -12.6 YBL077W -12.5 R361C / BCP1 -12.5 YER156C -12.1 YGL039W -11.9 YGL102C -11.8 YGR081C -11.7	YDR197W / CBS2	Cytochrome b translational activator	-3.0
YDL101C / DUN1 Protein kinase -3.0 YHR068W / DYS1 Deoxyhypusine synthase -3.0 YDL134C / PPH21 Protein phosphatase type 2A complex -3.0 Unknown function -3.0 YOR277C -16.7 YOL109W -16.2 YGL131C -15.7 YDL228C -13.4 YOR309C -13.4 YMR321C -12.9 YBR151W / APD1 -12.7 YDR417C -12.6 YBL077W -12.5 R361C / BCP1 -12.5 YGL039W -11.9 YGL102C -11.9 YDR442W -11.8 YGR081C -11.7	YIL145C / PAN6	Pantothenate synthase	-3.0
YHR068W / DYS1 Deoxyhypusine synthase -3.0 YDL134C / PPH21 Protein phosphatase type 2A complex -3.0 Unknown function	YDL101C / DUN1	Protein kinase	-3.0
YDL134C / PPH21 Protein phosphatase type 2A complex -3.0 Unknown function -16.7 YOL109W -16.2 YGL131C -15.7 YDL228C -13.4 YOR309C -13.4 YMR321C -12.9 YBR151W / APD1 -12.7 YDR417C -12.6 YBR1077W -12.5 R361C / BCP1 -12.5 YGL039W -11.9 YDR442W -11.8 YGR081C -11.7	YHR068W / DYS1	Deoxyhypusine synthase	-3.0
Unknown function -16.7 YOR277C -16.2 YOL109W -16.2 YGL131C -15.7 YDL228C -13.4 YOR309C -13.4 YMR321C -12.9 YBR151W / APD1 -12.7 YDR417C -12.6 YBL077W -12.5 R361C / BCP1 -12.5 YGL039W -11.9 YGL102C -11.9 YDR442W -11.8 YGR081C -11.7	YDL134C / PPH21	Protein phosphatase type 2A complex	-3.0
YOR277C -16.7 YOL109W -16.2 YGL131C -15.7 YDL228C -13.4 YOR309C -13.4 YMR321C -12.9 YBR151W / APD1 -12.7 YDR417C -12.6 YBL077W -12.5 R361C / BCP1 -12.5 YER156C -12.1 YGL039W -11.9 YGL102C -11.9 YGR081C -11.7	Unknown function		
YOL109W -16.2 YGL131C -15.7 YDL228C -13.4 YOR309C -13.4 YMR321C -12.9 YBR151W / APD1 -12.7 YDR417C -12.6 YBL077W -12.5 R361C / BCP1 -12.5 YER156C -12.1 YGL039W -11.9 YGL102C -11.9 YGR081C -11.7	YOR277C		-16.7
YGL131C -15.7 YDL228C -13.4 YOR309C -13.4 YMR321C -12.9 YBR151W / APD1 -12.7 YDR417C -12.6 YBL077W -12.5 R361C / BCP1 -12.5 YGL039W -11.9 YGL102C -11.9 YDR442W -11.8 YGR081C -11.7	YOL109W		-16.2
YDL228C -13.4 YOR309C -13.4 YMR321C -12.9 YBR151W / APD1 -12.7 YDR417C -12.6 YBL077W -12.5 R361C / BCP1 -12.5 YGL039W -11.9 YGL102C -11.9 YDR442W -11.8 YGR081C -11.7	YGL131C		-15.7
YOR309C-13.4YMR321C-12.9YBR151W / APD1-12.7YDR417C-12.6YBL077W-12.5R361C / BCP1-12.5YER156C-12.1YGL039W-11.9YGL102C-11.9YDR442W-11.8YGR081C-11.7	YDL228C		-13.4
YMR321C -12.9 YBR151W / APD1 -12.7 YDR417C -12.6 YBL077W -12.5 R361C / BCP1 -12.5 YGL039W -11.9 YGL102C -11.9 YDR442W -11.8 YGR081C -11.7	YOR309C		-13.4
YBR151W / APD1 -12.7 YDR417C -12.6 YBL077W -12.5 R361C / BCP1 -12.5 YER156C -12.1 YGL039W -11.9 YGL102C -11.8 YGR081C -11.7	YMR321C		-12.9
YDR417C -12.6 YBL077W -12.5 R361C / BCP1 -12.5 YER156C -12.1 YGL039W -11.9 YGL102C -11.9 YDR442W -11.8 YGR081C -11.7	YBR151W / APD1		-12.7
YBL077W -12.5 R361C / BCP1 -12.5 YER156C -12.1 YGL039W -11.9 YGL102C -11.9 YDR442W -11.8 YGR081C -11.7	YDR417C		-12.6
R361C / BCP1 -12.5 YER156C -12.1 YGL039W -11.9 YGL102C -11.9 YDR442W -11.8 YGR081C -11.7	YBL077W		-12.5
YER156C -12.1 YGL039W -11.9 YGL102C -11.9 YDR442W -11.8 YGR081C -11.7	R361C / BCP1		-12.5
YGL039W -11.9 YGL102C -11.9 YDR442W -11.8 YGR081C -11.7	YER156C		-12.1
YGL102C -11.9 YDR442W -11.8 YGR081C -11.7	YGL039W		-11.9
YDR442W -11.8 YGR081C -11.7	YGL102C		-11.9
YGR081C -11.7	YDR442W		-11.8
	YGR081C		-11.7

YNR046W	-11.6
YIL096C	-11.6
YHR039C / MSC7	-11.5
YLR040C	-11.2
YPL156C / PRM4	-11.0
YGL072C	-10.8
YHR128W / FUR1	-10.8
YDL050C	-10.6
YDR209C	-10.2
YLR221C / RSA3	-10.1
YGL033W / HOP2	-10.1
YIL080W	-10.0
YGL139W	-9.9
YPL142C	-9.8
YOR302W	-9.7
YKR060W / UTP30	-9.7
YPR044C	-9.5
YGL088W	-9.4
YDR101C / ARX1	-9.4
YOR169C	-9.4
YLR076C	-9.3
YAL036C / FUN11	-9.3
YBR042C	-9.3
YOR051C	-8.9
YHL039W	-8.9
YFR043C /	-8.7
YFR043C	
YDL121C	-8.6
YDR346C	-8.6
YNR061C	-8.5
YIL051C / MMF1	-8.5
YIR011C / STS1	-8.5
YDR367W	-8.2
YDL201W / TRM8	-8.2
YGL168W / HUR1	-8.1
YAR075W	-8.1
YIL110W	-8.0
YIL129C / TAO3	-7.9
YHR020W	-7.9
YNR021W	-7.9
YGL232W	-7.9
YGL080W	-7.9
YDR184C / ATC1	-7.8
YGL231C	-7.8
YOR091W	-7.8
YIL127C	-7.7
YOR164C	-7.6
YGL127C / SOH1	-7.6
YDR339C	-7.6
YHR083W	-7.5
YDR071C	-7.5
YHR100C	-7.4
YGR001C	-7.4
YDR133C	-7.4
YBL109W	-7.3
YHR081W / LRP1	-7.3
YEL001C	-7.2
YHR045W	-7.2
YMR049C / ERB1	-7.1
YGR283C	-7.1

-

YJR114W	-7.0
YCR096C / HMRA2	-7.0
YCR041W	-7.0
YJL122W	-6.9
YPR118W	-6.9
YJR115W	-6.8
YGR093W	-6.8
YLR198C	-6.8
YDR365C	-6.7
YDR094W	-6.7
YKL206C	-6 7
YIL 169W	-6.7
VBR089W	-6.6
YKR071C / DRF2	-6.6
VMR123W / PKR1	-6.6
VI R073C	-6.5
VPI 032C / SVI 3	-6.5
VHR040W / BCD1	-6.5
VDR110W	-6.5
VBR006W	-6.5
VMP130W	-6.5
VDI 1/6C	-0.5
VCD145W / END2	-0.4
I UK143W / ENF2 VLID095W / IDI1	-0.4
	-0.4
I KKU/4W	-0.4
IJL09/W	-0.3
Y KRU/4W	-0.3
1089 / YEL00 / W	-0.3
Y DK544C	-6.3
YJL09/W	-6.3
YNL338W	-6.2
YLR003C	-6.2
YGL068W	-6.1
YBR014C	6.0
YGL069C	-6.0
YNL303W	-6.1
YPL199C	-6.1
YMR074C	-6.0
YHR192W	-5.9
YDL193W	-5.9
YMR298W	-5.9
YLL044W	-5.9
YBR273C	-5.8
YCL065W	-5.7
YHR214W-A	-5.7
YMR131C / RRB1	-5.7
YOR118W	-5.7
YJR118C / ILM1	-5.7
YGL107C / RMD9	-5.6
YDR157W	-5.6
YHR162W	-5.6
YIL027C / KRE27	-5.6
YGR151C	-5.6
YNL190W	-5.6
YOR305W	-5.5
YLR064W	-5.5
YDR458C	-5.5
YCR016W	-5.5
YGR106C	-5.5
YLR230W	-5.4

YOL111C	-5.4
YML125C	-5.4
TOS11 / YOR248W	-5.4
YDR117C	-5.4
YDR415C	-5.4
YGR173W / GIR1	-5.3
YEL033W	-5.3
YOR247W / SRL1	-5.2
YMR226C	-5.2
YJL217W	-5.2
YDL100C / ARR4	-5.2
YCL045C	-5.2
YBL083C	-5.1
YGL042C	5.1
YDR370C	-5.1
YDL099W	-5.1
YNL010W	-5.1
YKR030W / GMH1	-5.1
YL R243W	-5.0
YPR129W / SCD6	-5.0
YDR210W	-5.0
YBR159W	-5.0
YOL022C	-5.0
YI R301W	-5.0
VOR004W	-5.0
YIL151C / SNA3	-5.0
VNI 174W	-4.9
VBR219C	-4.9
VNR009W	-4.9
VI R101C	-4.9
VMI 096W	-4.9
VOR271C	-4.9
VDI 107C	-4.9
VI R022C	-4.8
VMD195W	-4.8
VHI 012W	-4.8
VHP121W	-4.8
VOP015W	-4.8
VCR025C	-4.7
VBL006C/LDB7	-4.7
VPR126C	-4.6
VNI 246W / VPS75	-4.6
VOI 125W	-4.6
VNI 0/3C	-4.6
VOR021C	-4.6
VGL070W	-4.6
VGI 150W	-4.6
VDR132C	-4.6
VER006W	-4.6
VGL083W / SCV1	-4.5
VGR038W / ORM1	-4.5
VHR050W / GVVA	-4.5
VII 023C / PET130	-4.5
VHI 014C / VIF2	-4.J 1 5
VDR222C	-4.J 1 5
VI R050C	-4.J 1 5
VOD252W	-4.J 1 5
1 OA252 W VEL 177W	-4.3 1 5
1 KL 1 / / W VOD297C	-4.3 1 5
	-4.3 / /
I UK236W	-4.4

YDL089W	4.4
YGR026W	-4.4
YGR024C	-4.4
YKR047W	-4.4
YNR051C / BRE5	-4.4
YKL084W	-4.3
YJR023C	-4.3
YPL144W	-4.3
YKR065C	-4.3
YBL051C / PIN4	-4.3
YDR198C	-4.3
YHL017W	-4.3
YGR086C / PIL1	-4.3
YDR182W / CDC1	-4.2
YER049W	-4.2
YIL091C	-4.2
YFL006W	-4.2
YBR141C	-4.2
YBR162W-A /	-4.2
YSY6	
YBL028C	-4.2
YDL211C	-4.2
YHR036W	-4.2
YLR065C	-4.2
YLR196W / PWP1	-4.2
YNL337W	-4.2
YLR172C / DPH5	-4.2
YPL068C	-4.2
YLR104W	-4.1
YLR041W	-4.1
YMR099C	-4.1
YHR132C / ECM14	-4.1
YDR134C	-4.1
YGR137W	-4.1
YDR063W	-4.1
YGL050W	-4.1
YHL043W / ECM34	-4.0
YHL008C	-4.0
YDL177C	-4.0
YEL048C	-4.0
YDR336W	-4.0
YDL237W	-4.0
YEL059W	-4.0
YBR190W	-4.0
YGRIIIW	-4.0
YLR412W	-4.0
YOL029C	-4.0
YOL124C	-4.0
YLR021W	-4.0
YGL174W / BUD13	-3.9
YGL2I9C / MDM34	-3.9
YBR161W	-3.9
YFRUIIC	-3.9
Y CR090C	-3.9
YBR004C	-3.9
YBR293W	-3.9
YBL054W	-3.9
Y GR035C	-3.9
YJR070C	-3.9
YOR286W	-3.9

YKR087C	-3.9
YKR007W	-3.8
YPL158C	-3.8
YOL014W	-3.8
YOL003C	-3.8
YLR250W / SSP120	-3.8
YHR032W	-3.8
YIL105C / LIT2	-3.8
YEL015W / EDC3	-3.8
YDR068W / DOS2	-3.8
YGR002C / GOD1	-3.8
YGR042W	-3.8
YDL172C	-3.8
YIL130W	-3.8
YCL005W	-3.7
YGR073C	-3.7
YGL010W	-3.7
YDR327W	-3.7
YOL092W	-3.7
YJR142W	-3.7
YOR355W / GDS1	-3.7
YJL152W	-3.7
YNL107W / YAF9	-3.7
YMR010W	-3.7
YNL074C / MLF3	-3.7
YOR131C	-3.7
YMR126C / DLT1	-3.7
YKL040C / NFU1	-3.7
YBL081W	-3.7
VIR124C	-3 7
VKI 030W	-3.6
VI R261C / VPS63	-3.6
VGR125W	-3.6
VDR288W	-3.6
VBL000W	-3.6
VGL081W	-3.6
VDP352W	-3.6
1 DR352 W VDP222W	-5.0
I DR222 W VBD025C	-5.0
VDP040W	-5.0
1 DK047 W VI D257W	-5.0
$\frac{1 \text{ LK23}}{\text{W}}$	-5.0
VI D0/2C	-5.0
VCI 102C	-5.0
YOL 075W	-5.5
I CLU/3 W	-5.5
I DR090C	-5.5
I DLUJY W VIL 002W	-5.5
YDD411C	-5.5
I DR4IIC	-3.5
Y DR219C	-3.5
I MILU82 W	-3.5
YJKU24C	-3.5
Y KRU/9C	-3.5
Y MILUDOU / IMILU4	-3.5
Y UKU88W	-3.5
Y OL 0990	-3.5
YFR041C	-3.4
YNL140C	-3.4
YGL110C/CUE3	-3.4
YEL006W	-3.4

YBR238C	-3.4
YIL103W	-3.4
YCL033C	-3.4
YGR272C	-3.4
YGR117C	-3.4
YDR486C / VPS60	-3.4
YER186C	-3.4
YEL029C / BUD16	-3.4
YHR151C	-3.4
YLR294C	-3.4
YNL182C / IPI3	-3.4
YOR315W	-3.4
YOL101C	-3.4
YPL 229W	-3.4
VPI 052W	-3.4
VMI 070W	-3.3
VOR29-24 /	-3.3
VOD072W	-5.5
VID 007W	2.2
$VOP_2/2C$	-5.5
VOR121C	-3.5
	-3.5
Y MRU91C / NPLO	-3.3
Y UK102W	-3.3
Y DRU66C	-3.3
YGLIUIW	-3.3
YHLU26C	-3.3
YGRI36W / LSBI	-3.3
YDR539W	-3.3
YBR016W	-3.3
FSH1 / YHR049W	-3.3
YER080W	-3.3
YBR022W	-3.3
YFR020W	-3.3
YIL161W	-3.3
YDR154C	-3.3
YMR134W	-3.3
YNL234W	-3.2
YML053C	-3.2
YOR322C	-3.2
YKR075C	-3.2
YEL074W	-3.2
YER113C	-3.2
YDR360W	-3.2
YGR102C	-3.2
YDR295C / PLO2	-3.2
YGR033C	-3.2
YGR294W	-3.2
YGL082W	-3.2
YDL063C	-3.2
YGL188C	-3.2
YDR056C	-3.2
YDR466W	-3.1
YBL107C	-3.1
YGR071C	-3.1
YGL181W/GTS1	-3.1
YGL057C	-3.1
YBR233W / PBP2	-3.1
YBR242W	-3.1
YGL060W / YBP2	-3.1
YDR149C	-3.1
1200172	-5.1

YGR187C / HGH1	-3.1
YOR112W	-3.1
YLL037W	-3.1
YKL179C / COY1	-3.1
YNR054C	-3.1
YJR134C / SGM1	-3.1
YMR184W	-3.1
YHR115C	-3.0
YFR042W	-3.0
YDR344C	-3.0
YGL152C	-3.0
YER057C / HMF1	-3.0
YJR013W	-3.0
YJR126C / VPS70	-3.0
YOR390W	-3.0
YJR129C	-3.0
YJL193W	-3.0
YMR073C	-3.0
YKL174C	-3.0
YLR202C	-3.0
YPL056C	-3.0
YOR200W	-3.0

Table 3.3a: Macroarray data: genes that were MHE after one hour exposure to 7% ethanol in the presence of acetaldehyde.

*Genes that also found to be MHE in the five-time point experiments for the same conditions (in the macroarray experiments). #Genes also found to be MHE in microarray experiments for the same conditions at one -hour time point. Names of Gene Description of Genes Fold Increase Putative Transcription Factors /ORF Ribosomal proteins

/ORF			
Ribosomal proteins			
RPL10	Ribosomal large subunit biogenesis	8.1	Hsflp
RPS8A	Cytosolic small ribosomal subunit	7.6	Msn2/4p, Hsf1p, Yap1/2p
#RPL15A	Ribosomal large subunit biogenesis	7.6	Msn2/4p, Hsf1p
#RPS4A	Cytosolic small ribosomal subunit	7.6	Msn2/4p, Hsf1p
#RPL6A	Ribosomal large subunit biogenesis	7.2	Msn2/4p
#RPS26A	Cytosolic small ribosomal subunit	6.8	Msn2/4p, Hsf1p, Yap1/2p
*RPS31	Cytosolic small ribosomal subunit	6.8	Hsflp
#RPL21A	Ribosomal large subunit biogenesis	6.4	Msn2/4p, Hsf1p
*RPL9A	Ribosomal large subunit biogenesis	6.4	Msn2/4p
#RPL5	Ribosomal large subunit biogenesis	6.4	Msn2/4p
*RPL35A	Ribosomal large subunit biogenesis	6.3	Hsflp
#*RPS1B	Cytosolic small ribosomal subunit	6.3	Msn2/4p, Hsf1p, Yap1/2p
#RPS1A	Cytosolic small ribosomal subunit	6.2	Msn2/4p, Hsf1p, Yap1/2p
*RPL1B	Ribosomal large subunit biogenesis	6.2	Hsf1p
RPL35B	Ribosomal large subunit biogenesis	6.1	Hsflp
RPL40A	Ribosomal large subunit biogenesis	6.1	Hsf1p, Yap1/2p
#RPS8B	Cytosolic small ribosomal subunit	6.0	Hsf1p, Yap1/2p
#RPL2A	Ribosomal large subunit biogenesis	5.9	Msn2/4p
RPL15B	Ribosomal large subunit biogenesis	5.8	-
#RPS7A	Cytosolic small ribosomal subunit	5.7	Hsflp
RPS2	Cytosolic small ribosomal subunit	5.7	Msn2/4p, Hsf1p, Yap1/2p
#*RPL1A	Ribosomal large subunit biogenesis	5.7	Msn2/4p, Hsf1p, Yap1/2p
#RPS0A	Cytosolic small ribosomal subunit	5.6	Hsf1p, Yap1/2p
#*RPL30	Ribosomal large subunit biogenesis	5.5	-
#RPS24A	Cytosolic small ribosomal subunit	5.5	Hsflp
#RPL2B	Ribosomal large subunit biogenesis	5.4	Msn2/4p, Hsf1p

#RPS5	Ribosomal large subunit biogenesis	5.4	Msn2/4p, Hsf1p
*RPL24A	Ribosomal large subunit biogenesis	5.2	Yap1/2p
#RPL16A	Ribosomal large subunit biogenesis	5.2	Hsf1p, Yap1/2p
RPS14A	Cytosolic small ribosomal subunit	5.2	Hsflp
*RPL32	Ribosomal large subunit biogenesis	5.1	Msn2/4p, Hsf1p
#*RPL34A	Ribosomal large subunit biogenesis	5.1	
RPL18A	Ribosomal large subunit biogenesis	5.0	-
#*RPS15	Cytosolic small ribosomal subunit	4.8	Msn2/4p, Hsf1p
RPS13	Cytosolic small ribosomal subunit	4.7	Msn2/4p, Hsf1p
#*RPL34B	Ribosomal large subunit biogenesis	4.7	Msn2/4p
#RPS10A	Cytosolic small ribosomal subunit	4.7	Hsf1p
*RPL25	Ribosomal large subunit biogenesis	4.7	Msn2/4p, Hsf1p
#RPL8B	Ribosomal large subunit biogenesis	4.6	Msn2/4p, Hsf1p
RPL3	Ribosomal large subunit biogenesis	4.5	
#*RPS26B	Cytosolic small ribosomal subunit	4.5	Msn2/4p, Yap1/2p
#RPL8A	Ribosomal large subunit biogenesis	4.5	Hsf1p
#*RPL28	Ribosomal large subunit biogenesis	4.4	Hsf1p
#RPS4B	Cytosolic small ribosomal subunit	4.5	Msn2/4p
#RPS10B	Cytosolic small ribosomal subunit	4.4	Msn2/4p
RPL4B	Ribosomal large subunit biogenesis	4.3	-
*RPP0	Ribosomal large subunit biogenesis	4.3	Hsf1p
#*RPL17B	Ribosomal large subunit biogenesis	4.3	Msn2/4p, Yap1/2p
#*RPS27B	Cytosolic small ribosomal subunit	4.2	Msn2/4p, Yap1/2p
#RPS0B	Cytosolic small ribosomal subunit	4.2	Msn2/4p
*RPS29B	Cytosolic small ribosomal subunit	4.1	Msn2/4p, Hsf1p
#*RPS9B	Cytosolic small ribosomal subunit	4.0	Msn2/4p
RPL21B	Ribosomal large subunit biogenesis	4.0	Msn2/4p
*RPS20	Cytosolic small ribosomal subunit	4.0	Msn2/4p, Hsf1p
RPL24B	Ribosomal large subunit biogenesis	4.0	Hsflp
RPL17A	Ribosomal large subunit biogenesis	4.0	Msn2/4p, Hsf1p,
#*RPS18B	Cytosolic small ribosomal subunit	4.0	Msn2/4p, Yap1/2p
RPL13A	Ribosomal large subunit biogenesis	3.9	Msn2/4p, Hsf1p
RPL14B	Ribosomal large subunit biogenesis	3.8	Msn2/4p
#*RPL20B	Ribosomal large subunit biogenesis	3.8	Hsflp
#RPL11A	Ribosomal large subunit biogenesis	3.8	Msn2/4p
#RPL38	Ribosomal large subunit biogenesis	3.8	Msn2/4p, Hsf1p
RPS28S	Cytosolic small ribosomal subunit	3.7	-
#*RPL39	Ribosomal large subunit biogenesis	3.6	-
RPL42B	Ribosomal large subunit biogenesis	3.6	Msn2/4p
#RPL22A	Ribosomal large subunit biogenesis	3.6	Msn2/4p
#*RPL27A	Ribosomal large subunit biogenesis	3.4	Msn2/4p
#RPL11B	Ribosomal large subunit biogenesis	3.4	Msn2/4p
#RPL20A	Ribosomal large subunit biogenesis	3.4	Msn2/4p, Hsf1p, Yap1/2p
#RPL19A	Ribosomal large subunit biogenesis	3.3	Msn2/4p, Hsf1p
#RPS19A	Cytosolic small ribosomal subunit	3.3	Msn2/4p
#RPL14A	Ribosomal large subunit biogenesis	3.2	Msn2/4p, Hsf1p
#RPL31A	Ribosomal large subunit biogenesis	3.2	Msn2/4p, Hsf1p
#RPL19B	Ribosomal large subunit biogenesis	3.2	Hsf1p, Yap1/2p
RPS21A	Cytosolic small ribosomal subunit	3.1	Msn2/4p, Hsf1p
Stress resnonse			
ALO1	Response to oxidative stress-D-arabinono-1.4-	3.4	Msn2/4p, Hsf1p, Yap1/2p
	lactone oxidase activity		r,r,r, -/-P
HSP82	Stress response (heat shock protein)	3.3	Hsf1p
#SVS1	Response to chemical substance	3.3	Hsflp
#SSZ1/YHR064	Chaperone activity- protein biosynthesis	3.7	Msn2/4p, Hsf1p
C		2.1	
55A3 TPV2	Stress response (Heat shock protein) Oxidative stress response (Thial digulfide	5.1 3.0	- Van1/2n
ΙΝΑΖ	exchange intermediate)	5.0	1 ap1/2p

Transport			
#*VRG4	Nucleotide-sugar transporter activity	6.7	Msn2/4p, Hsf1p
#PHO84	Inorganic phosphate transporter (transmembrane protein)	5.8	Msn2/4p
#HXT3	Inorganic phosphate transport	5.2	Hsf1p
TFP1	Glucose transporter	4.6	Msn2/4p, Hsf1p
#KAP123	Hydrogen-transporting two-sector ATPase	4.5	Msn2/4p, Hsf1p
PHO3	Protein carrier activity- protein-nucleus import	4.3	Msn2/4p, Yap1/2p
YPT1	Thiamine transport (acid phosphatase)	3.4	Msn2/4p, Hsf1p
PMA1	Plasma membrane H+-ATPase	3.4	Msn2/4p, Hsf1p
CPR1	Electron transporter activity	3.3	Msn2/4p
TOM20	Endocytosis (actin cross-linking)	3.2	Msn2/4p, Hsf1p
SEC13	Mitochondrial translocation (protein transporter)	3.2	Hsflp
ATP1	ER to Golgi transport* (M.F Unknown)	3.1	Msn2/4p, Hsf1p
PHO88	ATP synthesis coupled proton transport	3.1	Hsflp
	(Hydrogen-transporting two-sector ATPase)		•
SSH1	Phosphate transport	3.1	Msn2/4p, Yap1/2p
OAC1	Co-translational membrane targeting (protein transport)	3.1	Hsflp
SEC61	Sulfate transporte	31	Msn2/4n
ERV29	SRP-dependent, co-translational membrane	3.1	Msn2/4p, Hsf1p
SEC63	ER to Golgi transport	3.1	Hsf1p
Energy utilizatio	on		
#PDC5	Pyruvate decarboxylase activity-pyruvater metabolims	15.2	Msn2/4p, Hsf1p, Yap1/2p
PDA1	Pyruvate dehydrogenase (Lipoamide)	4.7	Hsflp, Yap1/2p
PDC1	Pyruvate decarboxylase- pyruvate metabolism	4.7	Msn2/4p, Hsf1p
TRR1	Thioredoxin reductase (NADPH) activity- regulation of redox hemostasis	3.1	Msn2/4p, Hsf1p
Ductoin motoh	liam		
Protein metabo		(a	TT (1
EFT1	Protein synthesis elongation	6.2	Hstlp
IEF1	Protein synthesis elongation)	5.6	Msn2/4p, $Hst1p$
EF12	Protein synthesis elongation	5.4	Msn2/4p, Hst1p
LEUI	leucine biosynthesis	5.4	Msn2/4p, Hsf1p, Yap1/2p
#YEF3	Protein synthesis elongation	5.0	Msn2/4p
#YPS3	Protein metabolism and modification	5.0	Msn2/4p, Hst1p
THSI	Protein biosynthesis –threonine-tKINA ligase activity	4.9	Msn $2/4$ p, Yap $1/2$ p
#HSL1	Protein animo acid phosphorylation	4.0	Msn2/4p, $Yap1/2p$
#SAMI	Methionine metabolism	3.8	Msn2/4p, Yap1/2p
PRE6	Ubiquitin-dependent protein degradation	3.4	Msn2/4p
#GRS1	glycine-tRNA ligase activity	3.3	Msn2/4p
CYS3	Cystathionine-gamma-lyase	3.3	Yap1/2p
DPSI	Protein biosynthesis (Aspartate-tRNA ligase)	3.2	Hstlp
AAT2 LYS2	Aspartate catabolism (Aspartate aminotransferase) Amino acid biosynthesis (Aminoadipate-	3.2 3.1	Hsf1p Hsf1p
PRE9	ubiquitin-dependent protein degradation (Proteasome	3.1	Hsflp
KRS1	Lysine-tRNA ligase activity	3 1	Hefln Van1/2n
SES1	Serine-tRNA ligase activity	3.1	
HSL 7	Bud growth (Protein kinase inhibitor)	3.0	Men2/An Hef1n
ASN2	Asparagine synthese (glutamine-hydrolyzing)	3.0	Hefln $Van1/2n$
ILV5/ YLR355C	Branched chain family amino acid biosynthesis – ketol-acid reductoisomerase activity	3.0	Msn2/4p, Hsf1p
Protein folding			
KAR2	Proteins folding (m.f. Adenosinetriphosphatase*)	5.3	Msn2/4p
SSB2	Protein biosynthesis (m.f. chaperone)	4.6	Hsflp
SSE1	Proteins folding (MF chaperone)	4.0	Msn2/4p, Hsf1p
ZUO1	Protein folding (MF chaperone)	3.5	Msn2/4p, Hsf1p
EFB1	Protein synthesis elongation (MF. Translation elongation factor)	3.5	Msn2/4p, Hsf1p

STI1	Protein folding (m.f. Unknown)	3.5	
Transarintian fo			
	ACIOF	2.0	11.01.
KSC30	Transcription regulation- DNA binding	3.8	HSIIP
CLUI	fractor)	3.5	Misn2/4p, Hst1p
KEM1	Idclo1) 35S primary transcript processing* (ME 5' 3'	3.5	Men2/An Hefln
KEIVI I	evoribonuclease)	3.5	WISH2/4p, HSH1p
MSS116	RNA splicing (MF_RNA helicase)	34	Hsfln Van1/2n
ADR1	Transcription factor activity	33	Msn2/4n Hsf1n
<i>I</i> IDRI	Transcription factor activity	5.5	Wi3ii2/4p, 11311p
Histone and DN	A /chromosome synthesis, repair, replication and r	nodification	
HTA1	Histone H2A (Chromatin assembly/disassembly)	63	Hsf1n
*HTB2	Histone H2B (Chromatin assembly/disassembly)	5.1	Hsflp
STM1	Telomeric DNA binding activity- telomere	5.0	Hsflp
01111	maintenance	0.0	
HTB1	Histone H2B (Chromatin assembly/disassembly)	48	Hsf1n
*POL30	Nucleotide-excision repair	4.6	Msn2/4n Hsf1n
RFA1	Nucleotide-excision repair (RNA hinding)	43	Msn2/4n Hsf1n
*HTA2	Histone H2A (Chromatin assembly/disassembly)	4.0	Hsfln
MSH2	DNA renair	4.0	Msn2/4n Hsf1n
#RTT107/VHR1	Negative regulation of DNA transposition	3.7	Hsfln
54W	regarive regulation of Drvr transposition	5.7	11311p
RNR2	Ribonucleoside-dinhosphate reductase	35	Msn2/4n Hsf1n
ICI (IC2	Ribbindeleoside alphosphile reductise	5.5	115112/ 1p, 11511p
Cell wall organi	zation		
#CWP2	Structural constituent of cell wall- Cell wall	53	Msn2/4n Hsf1n
#C #12	organization and biogenesis	0.0	1010112/ 1p, 11011p
VBR078W	Cell wall organization and biogenesis	42	Msn2/4n Hsf1n
(ECM33)	Con wan organization and biogenesis	1.2	(i)sin2, ip, iisiip
BGL2	Cell wall organization and biogenesis	39	Hsf1n Yan1/2n
0012	con wan organization and progeneous	5.9	11511p, 14p1/2p
Cell cycle and g	rowth		
BUD19	Bud site selection	4 5	_
BUD28	Bud site selection	4.4	Msn2/4n Hsf1n
00020	Catalyzers the interconversion of fructose-6-P and	4.0	Msn2/4n Hsf1n
*PMI40	mannose-6-P	1.0	wish2/ ip, iisiip
$\Delta XI 2$	Axial budding	3.2	_
SHS1	Establishment of cell polarity (Structural constituent	3.2	Msn2/4n
51151	of cytoskeleton)	5.2	1115112/10
CUP1-2	Response to copper ion-required for cell growth	3 1	Hsf1n Van1/2n
RSR1	Polar budding (Signal tranducer)	3.1	$\frac{11311p}{Msn^2/4n} + \frac{11p}{Msn^2/2n}$
RBRI	i olar budding (orginal tranducer)	5.1	wish2/4p, 11311p, 1 ap1/2p
Linid metabolis	m		
#EPG25	Ergosteral biosynthesis	4.1	Men2/An Hefln
#ERG25 #*EPG3	Ergosterol biosynthesis	4.1	Msn2/4p, HSHp
#*EEN1	Eigosteror biosynthesis	4.1	$\frac{WiSH2/4p}{Men^{2}/4n} = \frac{WiSH2}{4p}$
# TENI	Fatty actd biosynthesis	3.0	Msn2/4p, $Hs11p$, $Tap1/2p$
ERG11 ERG26	Ergosterol biosynthesis	3.3	Msn2/4p Msn2/4n Heftn
EKG20	Elgosteror biosynthesis	3.5	WISH2/4p, HSH1p
Miscollonoous			
SIM1	Microtypyle systemization and	5 1	Man2/An Hafin Van1/2n
511/11	Microtubule cytoskeleton organization and	3.1	MSh2/4p, HSh1p, Tap1/2p
OTEO/		4.0	Man 2/4m Hafter
STE24	Zinc metalio-protease	4.8	Mish2/4p, Hs11p
SUS2	Myo-mositoi metabolism	4.5	-
S113	Protein amino acid glycosylation	4.0	-
#DED81	Cytosolic asparaginyl-tRNA synthetase	3.9	Msn2/4p
BAII	Branched-chain amino acid aminotransferase	3.9	Hstip
GNDI	Phosphogluconate dehydrogenase (decarboxylating)	3.8	Msn2/4p
PMTT	O-linked glycosylation	3.6	Msn2/4p, Hst1p
MSB2	Establishment of cell polarity	3.3 2.5	Msn2/4p
VASI	vanne-tKNA ligase activity (MF. Valine-tKNA	3.3	Misn2/4p, Hst1p
OB11	ligase)	2.2	11-£1
QKII	N acetulalucesamine proventies (MF. UDP-	3.3	HSIIp
*("""""""""""""""""""""""""""""""""""""	IN-acetyigiucosamine pyrophosphorylase)	2.2	Mar 2/4
"CPK5	repugyi-profyl cis-trans isomerase activity	3.3	NISN2/4p, Yap1/2P

*PSA1	Synthesizes GDP-mannose from GTP and mannose-	3.3	Hsflp
	1-phosphate.		P
HOM6	Homoserine dehvdrogenase activity)- catalyzes third	3.2	Msn2/4p
	step in common pathway for methionine and		- · · r
	threonine biosynthesis		
UBA1	ubiquitin activating enzyme	3.2	Msn2/4p. Hsf1p
MCD4	GPI anchor biosynthesis	3.1	Hsflp
		0.1	11011p
Unknown functi	on		
YHR049W	Gene of unknown function	114	Msn2/4n Hsf1n
TOS1	Gene of unknown function	8.8	Msn2/4n Hsf1n
ASC1	Gene of unknown function	7.6	-
AHA1	Gene of unknown function	7.0	Msn2/4n Hsf1n
VII.044W	Gene of unknown function	6.8	Msn2/4n Hsf1n
YLR076C	Gene of unknown function	6.0	Msn2/4p, $Hsf1p$
*YGL102C	Gene of unknown function	6.1	Hsfln
*PRY2	Gene of unknown function	6.0	Msn2/4n
VBR077C	Gene of unknown function	5.8	-
SGT2/	Gene of unknown function	5.5	Hsfln
YOR007C	Gene of unknown function	5.5	113119
*VDR417C	Gene of unknown function	54	Msn2/4n Van1/2n
*VDI 228C	Gene of unknown function	5.1	1000000000000000000000000000000000000
VFR044C	Gene of unknown function	5.2 4 8	Msn2/4p, HSHp Msn2/4n
VI R339C	Gene of unknown function	4.8	Hefln
*VOI 100W	Gene of unknown function	4.8	Heftn
*VBR080W	Gene of unknown function	4.0	-
#*VEL001C	Gene of unknown function	4.2	
VGR106C	Gene of unknown function	37	Msn2/4n Hsf1n Van1/2n
*VML133C	Gene of unknown function	37	$\frac{1000}{Msn^2/4n}$
ARRA/VDI 100	Gene of unknown function	3.6	Msn2/4p
C	Gene of unknown function	5.0	WISH2/+p
#VGR151C	Gene of unknown function	35	Msn2/4n Van1/2n
YKL030W	Gene of unknown function	3.5	-
*VPI 197C	Gene of unknown function	3.5	Van1/2n
FIT2/VOR382W	Gene of unknown function	3.5	
VKI 056C	Gene of unknown function	3.5	Hsfln
VOP1/VPR028	Gene of unknown function	3.4	-
W	Gene of unknown function	5.1	
VBR025C	Gene of unknown function	34	Msn2/4n Hsf1n
*YGL131C	Gene of unknown function	3.4	Msn2/4n Hsf1n
TRA1	Gene of unknown function	3.4	Msn $2/4$ n Hsf1n Yan $1/2$ n
YDR154C	Gene of unknown function	33	Msn2/4n
#YHR095W	Gene of unknown function	33	Msn2/4p
YFL066C	Gene of unknown function	3 3	Msn2/4n
*VBI 109W	Gene of unknown function	33	Msn2/4p
VKR012C	Gene of unknown function	33	Msn2/4p Msn2/4n Hsf1n
VNI 134C	Gene of unknown function	33	Msn2/4n, $Van1/2n$
DRF2/YKR071	Gene of unknown function	3.1	Msn2/4n Hsfln Yan1/2n
C	Gene of unknown function	5.1	10012/4p, $11011p$, $14p1/2p$
*YIR115W	Gene of unknown function	3.1	Msn2/An Hsf1n
TOS4/VI R183C	Gene of unknown function	3.0	Msn2/4n Hefln
1004/1LK103C		5.0	wisii2/+p, 11511p

*ORFs without identified transcription factors

Table 3.3b: Macroarray data: genes that were LHE after one hour exposure to 7% ethanol in the presence of acetaldehyde.

#Genes also found to be MHE in microarray experiments for the same conditions.

Names of Gene /ORF	Description of Genes	Fold Decrease	Putative Transcription Factors
Energy utilization			
RHR2	Glycerol-1-phosphatase activity-response to	4.3	Msn2/4p

	osmotic shock		
Cell cycle and g #SPS100	rowth Spore wall assembly (sensus Saccharomyces)	5.5	Msn2/4p, Hsf1pYap1/2p
Unknown function #SPI1 #YDL223C/ HBT1	Gene of unknown function Gene of unknown function	3.0 3.5	Msn2/4p, Yap1/2p Msn2/4p, Hsf1p

Table 3.4a: Macroarray data: genes that were MHE after five hour exposure to 7% ethanol in the presence of acetaldehyde.

*Genes that also found to be MHE in the one-hour time point experiment for the same

conditions.

ORF/Gene Name	Description of Gene Product	Fold	Putative Transcription
D'I I ('		Increase	Factors
Ribosomal proteins		5.2	No. 2/4-
KP52/A *DDL 1 A	Cytosolic small ribosomal subunit	5.2	Man 2/4n Uastan Van 1/2n
*RPLIA	Ribosomal large subunit biogenesis	5.0	Msn2/4p, $Hs11p$, $Yap1/2p$
*RPS20	Cytosolic small ribosomal subunit	4.6	Misn2/4p, Histip
Y RPS18A	Cytosolic small ribosomal subunit	4.4	Yap1/2p
*RPL9A	Ribosomal large subunit biogenesis	4.2	Msn2/4p, Hst1p
*RPL30	Ribosomal large subunit biogenesis	4.2	-
RPL27B	Ribosomal large subunit biogenesis	4.1	Msn2/4p, Hsf1p
*RPL39	Ribosomal large subunit biogenesis	4.0	-
RPL33B	Ribosomal large subunit biogenesis	4.0	Msn2/4p, Hsf1p
RPL22B	Ribosomal large subunit biogenesis	3.9	Hsf1p
*RPS18B	Cytosolic small ribosomal subunit	3.8	Msn2/4p
RPS7A	Cytosolic small ribosomal subunit	3.6	Msn2/4p, Hsf1p
*RPL25	Ribosomal large subunit biogenesis	3.6	Msn2/4p, Hsf1p
RPS16B	Cytosolic small ribosomal subunit	3.6	Msn2/4p, Hsf1p
RSM25	Mitochondrial small ribosomal subunit	3.6	-
RPS23A	Cytosolic small ribosomal subunit	3.6	Msn2/4p, Hsf1p
*RPL34A	Ribosomal large subunit biogenesis	3.5	-
*RPS31	Cytosolic small ribosomal subunit	3.5	Hsf1p
RPS28A	Cytosolic small ribosomal subunit	3.4	Msn2/4p, Hsf1p
RPS2	Cytosolic small ribosomal subunit	3.4	Msn2/4p, Hsf1p, Yap1/2p
RPS25A	Cytosolic small ribosomal subunit	3.4	Yap1/2p
MRP21	Mitochondrial small ribosomal subunit	3.4	Msn2/4p
RPS17B	Cytosolic small ribosomal subunit	3.4	Hsf1p
*RPL1B	Ribosomal large subunit biogenesis	3.3	Hsf1p
*RPL34B	Ribosomal large subunit biogenesis	3.3	Msn2/4p
*RPS26B	Cytosolic small ribosomal subunit	3.3	Msn2/4p, Yap1/2p
*RPL28	Ribosomal large subunit biogenesis	3.3	Hsf1p
*RPL20B	Ribosomal large subunit biogenesis	3.3	Hsflp
RPS17A	Cytosolic small ribosomal subunit	3.3	Msn2/4p
*RPP0	Protein biosynthesis	3.2	Hsflp
*RPL24A	Ribosomal large subunit biogenesis	3.2	Yap1/2p
*RPL16A	Ribosomal large subunit biogenesis	3.2	Hsf1p, Yap1/2p
*RPS29B	Cytosolic small ribosomal subunit	3.2	Msn2/4p, Hsf1p
RPL40B	Ribosomal large subunit biogenesis	3.2	Msn2/4p, Hsf1p, Yap1/2p
*RPL17B	Ribosomal large subunit biogenesis	3.2	Msn2/4p, Yap1/2p

*PPS1B	Cutogolia small ribogomal subunit	37	Men2/An Hefln Van1/2n
*DDI 22		2.1	Mar 2/4p, 11511p, 1 ap1/2p
*RPL32	Ribosomal large subunit biogenesis	3.1	Msn2/4p, Hst1p
*RPS27B	Cytosolic small ribosomal subunit	3.1	Msn2/4p, Yap1/2p
*RPL27A	Ribosomal large subunit biogenesis	3.1	Msn2/4p
RPS11B	Cytosolic small ribosomal subunit	3.1	Hsf1p, Yap1/2p
*RPL35A	Cytosolic small ribosomal subunit	3.1	Hsf1p
RPS21B	Cytosolic small ribosomal subunit	3.1	Msn2/4p, Hsf1p
RPL42A	Ribosomal large subunit biogenesis	3.1	Hsfln
RPI 3	Pibosomal large subunit biogenesis	3.1	-
	Catagolia amoltaile subuiit biogenesis	2.0	Man2/4n Hafln
KF511A		3.0	Msh2/4p, $Hsh1p$
*RPS9B	Cytosolic small ribosomal subunit	3.0	Msn2/4p
*RPS15	Cytosolic small ribosomal subunit	3.0	Msn2/4p, Hst1p
Ribosomal subunit			
NOP1	Methyltransferase activity-RNA methylation	6.8	Msn2/4p, Hsf1p
MRT4	Ribosomal large subunit assembly and	5.0	Msn2/4p
	maintenance		1
NUG1	rRNA processing	4.2	Hsf1p
KRR1	rRNA processing	3.8	Msn2/4p.
NSA1	Ribosomal large subunit biogenesis	3.4	Msn2/4p, Hsf1p, Yap1/2p
ARX1	Ribosomal large subunit	3.3	Hsflp
SOT1	Ribosomal large subunit assembly and	3.2	Msn2/4p
~ <	maintenance		
BRX1	Ribosomal large subunit assembly and maintenance	3.2	-
Cell cycle and growth			
MSC7	Mejotic recombination	48	Men2/4n Hefln
RHC21	Mitotic chromosome condensation	43	Msn2/4p, $Hsf1p$
PCL 2	Cell cycle-cyclin-dependent protein kinase	4.2	Msn2/4p, $Hsrrp$
I CL2	regulator activity	7.2	wish2/+p
STS1	Chromosome segregation	4.1	Msn2/An
WH12	Pagulation to growth/response to stress	4.1	Heftn Van1/2n
W 1112	nhosphatase activator activity	5.7	11s11p, 1ap1/2p
CDC28	Pagulation of cell cycle, cyclin dependent protein	3.6	Man2/An Hafln
CDC28	kinase activity	5.0	Wish2/4p, 11511p
	Nagative regulation of evit from mitoris	2 /	Man2/An Hafln Van1/2n
	G2/M transition of mitotic coll cycle, ubiquitin like	5.4 2.2	Msn2/4p, $Hs11p$, $Tap1/2p$
UBC9	02/M transition of initotic cen cycle- ubiquitin-like	5.5	MSh2/4p, HSHp
CI D5	Cualin dependent protein kingsa, regulator activity	2 2	Man2/4n
CLB3	C_1/S_1 and C_2/M transition of mitatic call evolution	5.5	WISH2/4p
DUD29	- G1/S and G2/M transition of initotic cell cycle	2 2	Man2/4n Haftn
BUD28 VBD1	Bud site selection	3.2 2.1	MSn2/4p, HS11p
I KBI	G1/S transition of mitotic cell cycle	3.1 2.1	HSIIP
	GI phase of mitotic cell cycle $C1/S \approx C2/M$ transition of mitotic cell cycle	3.1	Misn2/4p
UKD2	protein kinase CK2 activity	5.0	HSTIP
	F		
Stress response			
YNL234W	Response to stress-heme binding	4.5	Msn2/4p, Hsf1p
CUP1-1	Response to copper ion	4.3	Hsf1p, Yap1/2p
GRX3	Response to oxidative stress- thiol-disulfide	4.2	Msn2/4p, Hsf1p
	exchange intermediate activity		
HOR2	Glycerol-1-phosphatase activity- glycerol	4.0	Hsflp
	biosynthesis (Response to osmotic shock)		
CUP1-2	Response to copper ion	4.0	Hsf1p, Yap1/2p
HAL1	Salinity response		Msn2/4p, Hsf1p
RHR2	Glycerol-1-phosphatase activity- glycerol	3.1	Msn2/4p, Hsf1p
	biosynthesis (Response to osmotic stress)		
SHO1	Osmosensor activity- osmosensory signaling	3.0	-
	pathway via Sho1 osmosensor		
Transport & translocat	ion		
MRS3	Carrier activity- Transport	4.0	Msn2/4n Hsf1n
VIP3	ER to Golgi transport	3.8	Msn2/4n
ARN2	siderochrome-iron transporter activity	37	Msn2/4n
			·····

MTR2	Poly (A)+ mRNA-nucleus export-Protein binding	3.7	Msn2/4p, Hsf1p
YKT6	v-SNARE activity-intra Golgi transport	3.7	Msn2/4p
HXT1	hexose transport-fructose, glucose, mannose and	3.6	Hsflp
	galactose transporter activity		
*VRG4	Nucleotide-sugar transport-activity	3.6	Msn2/4p, Hsf1p
VID24	Vesicle-mediated transport	3.6	Hsflp
TOM20	Protein transport activity- mitochondrial translocation	3.5	Msn2/4p, Hsf1p
PEP8	Retrograde (endosome to Golgi) transport	3.5	Msn2/4p
NTF2	RNA protein binding- nucleocytoplasmic transport	3.5	Msn2/4p, Hsf1p
SARI	SAR small monomeric GIPase activity- ER to Golgi transport	3.5	Msn2/4p
BOS1	v-SNARE activity-intra Golgi transport	3.4	-
ATP/	ATP synthesis coupled proton transport-ATP synthesis coupled proton transport	3.3	Msn2/4p, Hst1p, Yap1/2p
SCO2	Copper transport	3.3	Msn2/4p, Hsf1p
LSM4	Pre-mRNA splicing factor activity-mRNA splicing and rRNA processing	3.2	Msn2/4p, Hst1p, Yap1/2p
YDR061W	ATP-binding cassette (ABC) transporter activity	3.2	Hsf1p
ZRT3	Zinc ion transporter activity	3.2	Msn2/4p
OACI	Oxaloacetate transport- oxaloacetate carrier activity	3.2	Hsflp
ERV41	ER to golgi transport	3.2	Msn2/4p, Hst1p
VPS55	Late endosome to vacuole transport	3.2	Msn2/4p, Hst1p
ERV14	ER to golgi transport	3.1	Hstlp
COG2	Protein binding- ER to golgi transport	3.1	Msn2/4p, Hst1p
Y IP I VD (A 7	Vesicle-mediated transport	3.1 2.1	HSTIP
VMA/ EPO1	Flootron corrier activity	5.1 2.1	Msn2/4p Msn2/4n Hsf1n Van1/2n
CHS7	Election callel activity	5.1 2.0	Msn2/4p, $Hs11p$, $fap1/2p$
DDI1	SNAPE binding, vericle mediated transport	3.0	Msn2/4p Msn2/4p
GLO3	FR to Golgi transport	3.0	Msn2/4p Msn2/4p
BET5	ER to Golgi transport	3.0	Msn2/4p
DL15	ER to Goigi transport	5.0	1v15112/ +p
Energy utilization			
OYE2	NADPH dehydrogenase activity	3.3	Msn2/4p, Hsf1p, Yap1/2p
SDH3	succinate dehydrogenase activity - oxidative	3.3	-
SER33	phosphorylation, succinate to ubiquinone Phosphoglycerate dehydrogenase activity- serine	3.2	Msn2/4p
TRR1	Regulation of redox homeostasis- thioredoxin	3.1	Msn2/4p Hsf1p
*PMI40	reductase (NADPH) activity Mannose-6-phosphate isomerase activity	31	Msn2/4n Hsf1n
		5.1	11012/ 1p 11011p
Protein folding, synth	iesis, modification, translocation, degradation and	complex	x assembly
YPT1	Protein complex assembly-RAB small monomeric GTPase activity	4.2	Msn2/4p, Hst1p
VMA22	Protein complex assembly-Chaperone activity	3.8	Msn2/4p, Hsf1p
HIS6	Histidine biosynthesis- 1-(5-phosphoribosyl)-5-[(5- phosphoribosylamino)	3.7	-
	methylideneaminojimidazole-4-carboxamide		
MRF1	Isomerase activity Protein biosynthesis- translation release factor	3.7	Msn2/4p,
SAP4	activity Protein serine/threonine phosphatase activity-G1/S	3.7	Msn2/4p
MKC7	Aspartic-type signal peptidase activity- proteolysis	3.7	Hsf1p, Yap1/2p
SER1	Serine biosynthesis - phosphoserine transaminase	3.7	Msn2/4p,
HSL7	activity Protein-arginine N-methyltransferase activity-	3.6	Msn2/4p, Hsf1p
A D O 2	Aromatic amino acid family biosynthesis	36	Men2/An Heftn
SHB3	Chaperone activity	3.0	Men2/4p, 11511p Men2/4n, Heftn
GIC1	Small GTPase regulatory/interacting protein	3.5	Msn2/4p, $Hs11pMsn2/4n$
ECDI	activity	2.5	Man 2/4- H-fl-
EGDI MCE1	Chaperone activity mitachandrial translocation	5.5 2 1	wisn2/4p, Hst1p
	\mathbf{x} HARACONG ACTIVITY = HTHOGHOHOHOHOHAI HAHSIOCAHOH	, +	-

GIC2	Small GTPase regulatory/interacting protein	3.4	Msn2/4p, Hsf1p
RPN4	ubiquitin-dependent protein catabolism-	3.3	Msn2/4p, Hsf1p, Yap1/2p
	endopeptidase activity	2.2	11 0
UMPI	proteasome activator activity- protein catabolism	3.3	Hstlp
HSE1	Protein binding	3.2	Msn2/4p, Hsf1p
CYS9	Lysine biosynthesis, aminoadipic pathway	3.2	Hsf1pYap1/2p
PBN1	Protein processing	3.1	-
LVS1	Lysine biosynthesis aminoadinic nathway	3.1	Hsfln
SCD1	Drotain biosynthesis	2 1	listip
CN04	Contained his and a size of a third had a sufficient	2.0	
C I 54	activity	3.0	MISn2/4p, HS11p
EGD2	Chaperone activity	3.0	Msn2/4p, Yap1/2p
PPH21	Protein phosphatase type 2A activity- protein amino acid dephosphorylation	3.0	Hsflp, Yap1/2p
Signal transduction p	roteins		
STE4	Signal transduction during conjugation with	3.1	Msn2/4p
	cellular fusion - heterotrimeric G-protein GTPase activity		
RSR1	RAS small monomeric GTPase activity-signal	3.0	Msn2/4p, Hsf1p, Yap1/2p
DEV7	transducer activity	2.0	Man 2/4m Hafter
PEA/	Peroxisome targeting signal receptor activity	3.0	MSn2/4p, HSI1p
Transcription and tra	anslation factor and process		
URE2	Transcription co-repressor activity	4.5	Msn2/4p
GCN4	Transcriptional activator activity- regulation of	4.1	Msn2/4p, Hsf1p, Yap1/2p
RRP33	ATP dependent RNA helicase activity-35S primary	4.1	-
	transcript processing Or mRNA splicing	41	
NRG1	transcription from Pol II promoter	7.1	Msn2/4p
SNU13	Pre-mRNA splicing factor activity-mRNA splicing- processing 20S pre-rRNA	4.0	Msn2/4p, Hsf1p
ELP4	Pol II transcription elongation factor activity- regulation of transcription from Pol II promoter	4.0	Msn2/4p
MED6	RNA polymerase II transcription mediator activity- transcription from Pol II promoter	3.9	Msn2/4p, Hsf1p
YOR302W	Translation regulator activity- regulation of protein	3.9	Msn2/4p
CAF20	Translation regulation activity/ negative regulation	3.5	Msn2/4p, Hsf1p
IKI1	Pol II transcriptional elongation factor activity-	3.4	Msn2/4p
	regulation of transcription from Pol II promoter		
MTR3	35S primary transcript processing and mRNA catabolism- 3'-5' exoribonuclease activity	3.4	Msn2/4p, Hsf1p, Yap1/2p
PXR1	35S primary transcript processing-RNA bingding	3.3	Msn2/4p, Hsf1p
SOH1	Transcription from Pol II promoter	33	- F, - F
RDB8	Transcription from Pol L II and III promoter	33	Hefin
	"DNA and "DNA measuring with smullasse MDD	2.2	IIshp IIsh
KPP1	activity	3.2	HSTIP
GAR1	35S primary transcript processing-RNA binding	3.2	Msn2/4p, Hsf1p
UTP1	SnoRNA binding	3.2	-
RRP45	3'-5' exoribonuclease activity- 35S primary	3.2	Msn2/4p, Hsf1p
SNF4	Protein kinase activator activity- regulation of	3.2	Msn2/4p, Hsf1p
I IID1	DNA binding and tDNA pagaging	2.2	Man 2/4n
	Translation initiation and tRINA pocessing	3.4	1V1S112/4p
CDC33	ranslation initiation - translation initiation factor activity	5.2	Msn2/4p, Hst1p
PGD1	RNA polymerase II transcription mediator activity	3.1	Msn2/4p
SAD1	RNA polymerase II transcription mediator activity-	3.1	Msn2/4p
IMP3	Pre-mRNA splicing factor activity-mRNA splicing	31	Msn2/4n
	358 primary transprint processing anoDNA hinding	2.0	$M_{on}2/4n$
CUP2	Transcription co-repressor activity-regulation of transcription from Pol II promoter	3.0	Hsf1p

ELP2	ligand-regulatedtranscription factor activity- transcription initiation from Pol II promoter	3.0	Msn2/4p, Hsf1p
SMD3	(response to copper ion) Pol II transcription elongation factor activity- regulation of transcription from Pol II promoter	3.0	Hsflp
TIF2	mRNA splicing – pre-mRNA splicing factor	3.0	Msn2/4p, Hsf1p
USE1	ER to Golgi vesicle-mediated transport	3.0	Msn2/4p, Hsf1p
Nucleotide Metabolism			
*HTB2	DNA binding-chromatin assembly/disassembly	4.2	Hsflp
*HTA2	DNA binding- chromatin assembly/disassembly	4.0	Hsflp
FCY2	Cytosine-purine permease activity-purine transport/Cytosine transport	3.8	Msn2/4p, Hsf1p
*POL30	DNA polymerase processivity factor activity	3.6	Msn2/4p, Hsf1p
BMH1	DNA binding	3.5	Hsflp
CDC1	DNA recombinant ion	3.5	Msn2/4p, Yap1/2p
HEX3	DNA binding/DNA recombinantion/response to DNA damage	3.4	Hsf1p, Yap1/2p
HRR25	DNA repair - protein and casein kinase activity	3.4	Msn2/4p
AAHI	Adenine catabolism- adenine deaminase activity	3.3	Msn2/4p
FURI	Uracıl phosphoribosyltransferase activity- pyrimidine salvage	3.2	Hst1p
SKLI	Nucleobase, nucleoside, nucleotide and nucleic acid metabolism	3.2	Msn2/4p, Hst1p
PRII	Alpha DNA polymerase –DNA replication and priming activity	3.2	Msn2/4p, Hst1p
ADO1	Purine base metabolism- adenosine kinase activity	3.1	Yap1/2p
Cytoskeleton organization	on and maintenance		
CDC10	Structural constituent of cytoskeleton- Cytokinesis	3.3	Msn2/4p, Hsf1p
ARC15	Actin binding-actin cortical patch assembly	3.1	Hsf1p
BN15	Cytokinesis	3.1	Hsflp
ENT4	Actin cortical patch assembly - cytoskeletal adaptor activity	3.1	Hsflp
SPC34	Structural constituent of cytoskeleton - microtubule nucleation	3.0	-
Cell wall organization			
DSE2	Glucan 1 3-beta-glucosidase activity-cell wall	46	_
	organization and biogenesis		
CWP2	Structural constituent of cell wall	3.6	Msn2/4p, Hsf1p
KTR6	Cell wall organization and biogenesis-	3.6	Msn2/4p, Hsf1p
	mannosylphosphate transferase activity		
KTR7	Cell wall organization and biogenesis-	3.5	Msn2/4p, Hsf1p
	mannosyltransferase activity		
ECM34	Cell wall organization and biogenesis	3.4	-
SBE22	Cell wall organization and biogenesis	3.2	Msn2/4p, Hsf1p
UTR2	Cell wall organization and biogenesis	3.2	Hstlp
CWH43	Cell wall organization and biogenesis	3.1	Msn2/4p, Hst1p
Lipid metabolism			
*ERG3	Ergosterol biosynthesis-C-5 sterol desaturase activity	4.5	Msn2/4p
ERG9	Farnesyl-diphosphate farnesyltransferase activity- ergosterol biosynthesis	3.3	Msn2/4p, Hsf1p
*FEN1	Fatty acid elongation	3.0	Msn2/4p, Hsf1pYap1/2P
Miscellaneous			
QCR9	Ubiquinol-cytochrome C reductase activity- oxidative phosphorylation, ubiquinone to	5.2	-
CTS1	Cytochrome C Chitinase activity- cytokinesis, completion of	4.3	Msn2/4p
YBR159W	Separation Ketoreductase activity-fatty acid elongation	4.3	Msn2/4p

FPR1	Peptidyl-prolyl cis-trans isomerase activity	4.0	-
MF(APHA)1	Pheromone activity-response to pheromone during	3.9	Msn2/4p, Hsf1p
	conjugation with cellular fusion		
MMS2	Ubiquitin conjugating enzyme activity- ubiquitin-	3.8	Hsf1p
	dependent protein catabolism		
PRE9	Endopeptidase activity- ubiquitin-dependent	3.8	Hsf1p
	protein catabolism		1
SWP1	Dolichyl-diphospho-oligosaccharide-protein	3.8	Msn2/4p
	glycosyltransferase activity-N-linked glycosylation		
URA1	Dihydroorotate dehydrogenase activity -	36	Msn2/4n Hsf1n Yan1/2P
orari	nyrimidine base biosynthesis	5.0	1010112, 1p, 11011p, 14p1, 21
FPP3	Secretory pathway	35	Heftn
VCI 020W	Dibudrokaempferol 4 reductase activity	3.5	$M_{sn}^{2/4n}$ Hefln
SAS4	A actultrangforese activity	2.5	$Man^{2}/4n$ Hafln
EDD5	Activitialistelase activity	2.5	Wish2/4p, HSHp
ERF3 DID1	Vitamin D2 his surth asis availabudes lass activity	3.3	HSIIP Mar 2/4r
KIB1	vitamin B2 biosynthesis- cyclonydrolase activity	3.5	Msn2/4p
CPR2	Peptidyl-prolyl cis-trans isomerase activity	3.5	Msn2/4p
VPS/4	Protein-vacuolar targeting	3.4	Msn2/4p, Hsf1p
*PSA1	Mannose-1-phosphate guanylyltransferase activity- GDP-mannose biosynthesis	3.3	Msn2/4p, Hsf1p
SHP1	Glycogen metabolism	3.3	Msn2/4p, Yap1/2P
DFG10	Pseudohyphal growth	3.3	Msn2/4p, Hsf1p
CSN9	Adaptation to pheromone during conjugation with	3.3	Msn2/4p, Hsf1p
	cellular fusion		
SCC3	Pentidyl-prolyl cis-trans isomerase activity	33	-
SOL 3	nentose-phosphate shunt oxidative branch	33	Msn2/4n Hsf1n
VFR006W	Xaa-Pro aminopentidase activity	3.2	Msn2/4p, $Hsf1pMsn2/4n$ Hsf1n
BIO2	Riotin synthese activity Riotin biosynthesis	3.2	Msn2/4p, $Hsf1p$
VDB042C	A sultrongforges activity phogpholipid hissurthesis	2.2	Man2/4p, HSHp
I BR042C	Acyltransierase activity-phospholipid biosynthesis	3.2	Mish2/4p, Hs11p
OCHI	Alpha-1,6-mannosyltransferase activity- N-linked glycoprotein maturation	3.2	Misn2/4p, Histip
YDR140W	S-adenosylmethionine-dependent methyltransferase activity	3.2	Msn2/4p, Hsf1p, Yap1/2P
*CPR5	Peptidyl-prolyl cis-trans isomerase activity	3.1	Msn2/4p, Yap1/2P
NUP57	Essential subunit of the nuclear pore complex	3.1	Hsf1p, Yap1/2P
NUP42	Essential subunit of the nuclear pore complex	3.1	-
SPE1	Ornithine decarboxylase activity - pantothenate biosynthesis	3.1	Hsf1p
YPL176C	Recentor activity	31	Hsfln
OST2	Dolichyl-dinhospho-oligosaccharide-protein	3.1	Msn2/4n
0512	glycosyltransferase activity	5.1	wish2/+p
PDS1	Mitotic sister chromatid separation	3.1	Hsf1p
YFL035C	Protein kinase activity	3.1	-
UBR1	Ubiquitin-protein ligase activity-protein monoubiquitination	3.1	Msn2/4p, Hsf1p
YDC1	Ceramidase activity or metabolims	3.1	Msn2/4p
NFU1	Iron ion homeostasis	3.1	Msn2/4p, $Hsf1p$
MG(ALPHA) 2	Pheromone activity-response to pheromone during	3.0	Msn2/4p, Hsf1p, Yap1/2P
- ()	conjugation with cellular fusion		r, r, r, r
TSC13	Oxidoreductase activity-very-long-chain fatty acid	3.0	Msn2/4p, Hsf1p
EXG2	Glucan 1 3-beta-glucosidase activity	3.0	Men2/An Van1/2P
LAG2 LSG1	Conjugation with cellular fusion	3.0	Msn2/4p, $Tap1/21Msn2/4p$ Heftp
	Conjugation with central fusion	2.0	Man2/4p, HSHp
PLB2	lysophospholipase activity	3.0	MSn2/4p
NPT1	Nicotinate phosphoribosyltransferase activity -	3.0	Msn2/4p, Hsf1p
	nicotinate nucleotide biosynthesis, salvage pathway		
VPS28	Protein-membrane targeting/ protein-vacuolar targeting	3.0	Msn2/4p, Hsf1p
HEM15	Ferrochelatase activity/ heme biosynthesis	3.0	Hsf1p
OPI3	Phosphatidylcholine biosynthesis	3.0	Msn2/4p
Unknown function			
YOL007C		5.9	Hsf1p
YDR133C		5.7	Msn2/4p, Hsf1p
FYV4		5.0	Msn2/4p
*YBR089W		4.8	-

*PRY2	4.7	Msn2/4p
*YGL131C	4.6	Msn2/4p, Hsf1p
SCD6	4.5	Msn2/4p
YJR114W	4.4	Msn2/4p
YGR042W	4 2	Msn2/4n
VRF1-1	4.1	Msn2/4n
VDP246C	4.0	Usflp
	4.0	Haftp
AP12	4.0	
YHR040W	4.0	Msn2/4p, Yap1/2P
YPR126C	4.0	Msn2/4p
YBL083C	4.0	Msn2/4p, Hsf1p
SNA3	4.0	Msn2/4p, Hsf1p
YNL213C	4.0	Msn2/4p, Yap1/2P
YGR151C	3.9	Msn2/4n Yan1/2P
VGL 231C	3.9	Msn2/4n Hsf1n
VBL077W	3.8	Msn2/4n Hsf1n
	5.0	Wish2/4p, Hsrip
SYN8	3.8	Hstlp
YBR096W	3.8	Msn2/4p, Hsf1p, Yap1/2P
*YDR417C	3.8	Msn2/4p, Yap1/2P
GIR2	3.8	-
SYP1	3.7	Msn2/4p
*YBL109W	37	Msn2/4n
VER0/3C	3 7	Msn2/4n Hefln
VVD097C	2.7	$M_{cn}2/4p$
I KRUO / C MAIL 227W	2.7	MISH2/4p
YNL33/W	3./	-
*YJR115W	3.7	Msn2/4p, Hst1p
YGR081C	3.6	Msn2/4p, Hsf1p
YCR025C	3.6	Msn2/4p
YBR141C	3.6	Msn2/4p, Hsf1p
YGL188C	3.6	Hsflp
YLR073C	3.6	Hsfln
VKI 206C	3.6	-
VED154C	5.0	- Man2/4n
I EKI JOU	5.5	Misn2/4p
APDI	3.5	Msn2/4p
YDR544C	3.5	Msn2/4p
YIL012W	3.5	Msn2/4p, Hsf1p
YDR209C	3.5	Msn2/4p, Hsf1p
BCP1	3.5	Msn2/4p, Hsf1p, Yap1/2P
TOSH	3 5	Msn2/4n Hsf1n
$VMR304C_{-}\Lambda$	3.5	Msn2//n
VOP277C	3.5	Msn2/4p Heflp
I UK2//C	5.4	Mar 2/4
Y INKU46 W	3.4	Msn2/4p
*YEL001C	3.4	-
SWF1	3.4	Msn2/4p, Hsf1p, Yap1/2P
YGR283C	3.4	Yap1/2P
YGL139W	3.4	Msn2/4p, Hsf1p
YGL193C	3.4	Hsflp
YHL012W	3.4	Msn2/4n Hsf1n
YGL117W	3.4	$Msn^2/4n$ Hsf1n Yan1/2P
VHP083W	3.1	$\frac{Msn2}{4n} Hsfln$
	3.4	Man 2/4n Haftn
IPRISOC	5.4	Misli2/4p, Histip
NCE103	3.4	Msn2/4p
*YPL197C	3.4	Yap1/2P
YOR051C	3.3	Hsf1p
YDR442W	3.3	Hsflp
YER049W	3.3	Hsflp
YFR035C	3.3	Hsflp
YGL168W	3 3	Msn2/4n
CWC23	2.2	
UW 025 VII 100W	<i>3.3</i>	- Man 2/An JJ-fl-
IJL122W	3.3	MSn2/4p, HSI1p
YOL003C	3.3	Msn2/4p, Hst1p, Yap1/2P
YPL014W	3.3	Msn2/4pYap1/2P
TOS6	3.2	Msn2/4p
YDL050C	3.2	Msn2/4p
YDR317W	3.2	Msn2/4p, Hsf1p
YDR370C	3.2	Msn2/4n
*YDL228C	3.2	Msn2/4n Hsf1n
		······································

YGR079W	3.2	Msn2/4p, Hsf1p
FUN11	3.2	Msn2/4p, Hsf1p
YHR032W	3.2	-
YDR015C	3.2	-
SNA4	3.2	Msn2/4p, Hsf1p
YKL207W	3.2	-
*YOL109W	3.2	Hsf1p
YNL043C	3.2	Msn2/4p, Hsf1p
TVP38	3.2	Msn2/4p, Hsf1p, Yap1/2P
YML096W	3.2	Msn2/4p, Hsf1p, Yap1/2P
RSA3	3.2	-
PSP2	3.1	Msn2/4p, Hsf1p
YEL023C	3.1	-
YDR134C	3.1	-
YFR042W	3.1	Msn2/4p
YIL083C	3.1	Msn2/4p
YGR001C	3.1	-
YGR102C	3.1	Msn2/4p, Hsf1p
YNR009W	3.1	Msn2/4p, Hsf1p
YMR027W	3.1	Msn2/4p, Hsf1p
YNL144C	3.1	Msn2/4p, Hsf1p
YLR199C	3.1	Msn2/4p
YPL144W	3.1	Msn2/4p, Hsf1p
YOL125W	3.1	Msn2/4p, Hsf1p
*YGL102C	3.0	Hsflp
YBR273C	3.0	Msn2/4p
YGR290W	3.0	Hsf1p
FSH1	3.0	Msn2/4p, Hsf1p
YEL059W	3.0	Msn2/4p, Hsf1p
YBR267W	3.0	-
YLR194C	3.0	Msn2/4p, Hsf1p
HSD1	3.0	Hsflp

Table 3.4b: Macroarray data: genes that were LHE after five-hour exposure to 7% ethanol in the presence of acetaldehyde.

*Genes that also found to be MHE in the macroarray experiments at one hour time point for the same conditions.

ORF/Gene Name Description of Gene Product		Fold
	_	Decrease
Cell cycle and growth		
SAT4	Protein kinase activity - G1/S transition of mitotic cell cycle	-3.1
Transport & translocati	ion	
YIL166C	Transporter activity	-3.3
FET3	Multicopper ferroxidase iron transport mediator activity/high affinity iron ion transport	-3.5
YLYS7	Superoxide dismutase copper chaperone activity- intracellular copper ion transport	-3.7
NPL3	Protein carrier in mRNA export-mRNA nucleus export	-7.0
Energy utilization		
GAL10	Galactose metabolism	-3.1
GAL1	Galactokinase activity / galactose metabolism	7
Transcription and trans	slation factor and process	
ĀRG80	Regulation of translational initiation - translation initiation	-3.2
DED1	Specific RNA polymerase II transcription factor activity	-3.3

SKI2	RNA helicase activity- translational initiation	-5.2
Nucleotide Metabolism		
YBR012W-B	RNA-directed DNA polymerase activity / peptidase activity/	-14.7
	ribonuclease activity	
MSU1	Exoribonuclease II activity / RNA catabolism / mRNA	-6.4
	splicing	
YHL050C	Helicase activity	-6.3
YDR334W	Helicase activity	-3.9
SCP160	RNA binding/ chromosome segregation	-3.2
Cell wall organization		
BBC1	Myosin I binding /actin cytoskeleton organization and	-5.3
	biogenesis	
SSD1	Cell wall organization and biogenesis	-6.5
Miscellaneous		
HUL4	ubiquitin-protein ligase activity / protein monoubiquitination	-4.0
	protein polyubiquitination	
YDL025C	Protein kinase activity	-3.9
Unknown function		
YRF1-5	Genes of unknown function	-3.1
YDR348C	Genes of unknown function	-3.1
YOL098C	Genes of unknown function	-3.5
YHR145C	Genes of unknown function	-3.6
YRF1-3	Genes of unknown function	-3.6
YBL012C	Genes of unknown function	-3.6
YRF1-7	Genes of unknown function	-3.9
YEL077C	Genes of unknown function	-3.9
YRF1-4	Genes of unknown function	-4.3
YOL106W	Genes of unknown function	-4.4
YAL004W	Genes of unknown function	-5.0
YRF1-2	Genes of unknown function	-5.6
YLL067C	Genes of unknown function	-5.8
YLL066C	Genes of unknown function	-6.4
*YML133C	Genes of unknown function	-7.4
YBL113C	Genes of unknown function	-8.1
YHR219W	Genes of unknown function	-10.0
YBL101W-A	Genes of unknown function	-11.5
YJR026W	Genes of unknown function	-13.9
YAR010C	Genes of unknown function	-13.9
YJR028W	Genes of unknown function	-14.2
YFL067W	Genes of unknown function	-14.6
YBL005W-A	Genes of unknown function	-15.4
YBR012W-A	Genes of unknown function	15.6
YMR051C	Genes of unknown function	16.4
YCL020W	Genes of unknown function	16.8
YMR046C	Genes of unknown function	17.2
YCL042W	Genes of unknown function	17.3
YML040W	Genes of unknown function	17.9
YML045W	Genes of unknown function	19.9

Table 3.5a: Macroarray data: genes that were MHE and LHE after one-hour exposure to acetaldehyde only.

Genes that are also MHE in the 'ethanol and acetaldehyde' conditions relative to ethanol control macroarray experiments at one-hour time point.

Genes/ORF	Description of Gene Products	Fold Increase/Decrease	Putative Transcription Factors
Energy utilizaton			
*PDC5	Pyruvate decarboxylase activity - pyruvate metabolism	4.2	Msn2/4p, Hsf1p, Yap1/2p
GPM1	Phosphoglycerate mutase activity – gluconeogenesis or Glycolysis	-3.0 [¶]	Msn2/4p
Unknown function			
YNL179C	Protein of unknown function	3.7	Msn2/4p, Hsf1p
YRF1-5	Protein of unknown function	3.3	Msn2/4p
YHR219W	Protein of unknown function	3.2	Msn2/4p, Hsf1p
YKL153W	Protein of unknown function	-3.0 [¶]	Msn2/4p, Hsf1p
YGL088W	Protein of unknown function	-3.0 [¶]	Msn2/4p Hsf1p, Yap1/2p
YLR064W	Protein of unknown function	-3.0 [¶]	Hsflp

Legend - = $\[\]$ Fold decrease

*

Table 3.6a: Macroarray data: Shift in gene expression level following five-hour exposure to acetaldehyde only.

Genes/ORF	Description of Gene Products	Fold	Putative Transcription		
		Increase/Decrease	Factors		
MON2	Protein-vascular targeting	3.4	Msn2/4p, Hsf1p		
PCL1	Cell cycle - cyclin-dependent protein kinase, regulator activity	3.3	Msn2/4p		
VPS65	Protein-vascular targeting	-3.0 [¶]	Hsflp		

Legend - = "Fold decrease

APPENDIX IV

4.0 Analysis of glass slides, microarray, data for ethanol-stressed cells compared to unstressed, control cells.

Table 4.1a: Microarray data: genes that were MHE after one-hour exposure to 7% ethanol in the presence of acetaldehyde.

The following table contains genes that appeared to be MHE in at least two of the three replicates. Genes that were apparently MHE in only one of the replicates were not considered to have changed expression and therefore are not included in this table.

#Genes also found to be MHE in macroarray experiments for the same conditions.

*Genes that also found to be MHE in the five hour time point experiments for the same conditions.

*Genes that are also MHE in the 'acetaldehyde only' conditions relative to an untreated control

		Function	Fo	Fold increase		
Open-reading frame	Gene name		Slide 1	Slide 2	Slide 3	Putative Transcription Factors
Ribosomal prote	eins					
YDL184C	RPL41A	Protein component of the large (60S) ribosomal subunit	-	3.8	9.6	Msn2/4p, Hsf1p
YDL133C-A	RPL41B	Protein component of the large (60S) ribosomal subunit	-	3.6	9.2	Hsflp, Yaplp
YFR032C-A	RPL29	Protein component of the large (60S) ribosomal subunit	-	7.9	5.0	Msn2/4p, Hsf1p, Yap1p
#YIL052C	RPL34B	Protein component of the large (60S) ribosomal subunit	-	7.9	3.4	Msn2/4p, Hsf1p
#YKL180W	RPL17A	Protein component of the large (60S) ribosomal subunit,	3.4	6.6	3.2	Hsflp
YOR182C	RPS30B	Protein component of the small (40S) ribosomal subunit	-	3.8	6.8	Hsflp, Yaplp
		Protein component of the small (40S) ribosomal subunit			-	
#YLR048W	RPS0B	(Ribosomal protein S0B)	7.1	6.3		Hsflp
#YML063W	RPS1B	Ribosomal protein 10 (rp10) of the small (40S) subunit	6.9	7.3	4.4	Msn2/4p, Hsf1p, Yap1p
#YGR214W	RPS0A	Protein component of the small (40S) ribosomal subunit	6.5	8.5	-	Msn2/4p, Yap1p
YNL067W	RPL9B	Protein component of the large (60S) ribosomal subunit	6.4	7.2	-	Msn2/4p
#YLR029C	RPL15A	Protein component of the large (60S) ribosomal subunit	6.3	4.5	6.9	Msn2/4p, Hsf1p

#YGL123W	RPS2	Protein component of the small (40S) subunit	6.3	6.4	-	Msn2/4p, Yap1p
YLR448W	RPL6B	Protein component of the large (60S) ribosomal subunit	6.1	7.0	-	Msn2/4p, Hsf1p, Yap1p
YDR025W	RPS11A	Protein component of the small (40S) ribosomal subunit	5.9	4.4	-	Hsflp
#YHL033C	RPL8A	Ribosomal protein L4 of the large (60S) ribosomal subunit	5.7	4.7	-	Msn2/4p, Hsf1p,
YNL248C	RPA49	RNA polymerase I subunit A49	5.7	3.6	-	Hsflp
#YER074W	RPS24A	Protein component of the small (40S) ribosomal subunit	5.6	4.3	4.0	Hsflp
YGL076C	RPL7A	Protein component of the large (60S) ribosomal subunit	5.5	5.0	-	Yap1p
#YBR189W	RPS9B	Protein component of the small (40S) ribosomal subunit	5.4	5.0	-	Hsflp
#YLL045C	RPL8B	Ribosomal protein L4 of the large (60S) ribosomal subunit,	5.4	6.5	-	Msn2/4p
YMR229C	RRP5	Part of small ribosomal subunit (SSU)	5.4	3.2	-	Hsflp
YPL198W	RPL7B	Protein component of the large (60S) ribosomal subunit,	5.4	7.3	-	Yap1p
#YKL006W	RPL14A	Protein component of the large (60S) ribosomal subunit	5.3	4.3	3.1	Hsflp
YGR034W	RPL26B	Protein component of the large (60S) ribosomal subunit	5.2	4.5	3.5	Hsflp
#YOL121C	RPS19A	Protein component of the small (40S) ribosomal subunit	5.2	4.0	-	Hsf1p, Yap1p
#YJR145C	RPS4A	RNA polymerase I subunit 190 (alpha)	5.1	4.5	3.3	Msn2/4p, Hsf1p, Yap1p
		RNA polymerase I subunit alpha; largest subunit of RNA		4.0	-	
YOR341W	RPA190	polymerase I	5.1			-
YLR406C	RPL31B	Protein component of the large (60S) ribosomal subunit	-	6.2	4.4	Yap1p
YEL054C	RPL12A	Protein component of the large (60S) ribosomal subunit	4.0	4.5	3.3	Hsflp
#YHR010W	RPL27A	Ribosomal protein L27A	-	6.1	4.5	Msn2/4p, Hsf1p
#YJL189W	RPL39	Protein component of the large (60S) ribosomal subunit	-	5.9	7.4	Hsflp, Yap1p
YJR094W-A	RPL43B	Protein component of the large (60S) ribosomal subunit	-	4.2	6.2	Hsflp
#YLR325C	RPL38	Protein component of the large (60S) ribosomal subunit	-	3.9	6.0	Msn2/4p, Hsf1p
		N-terminally acetylated protein component of the large (60S)				
#YML073C	RPL6A	ribosomal subunit,	3.1	5.8	-	-
YLR287C-A	RPS30A	Protein component of the small (40S) ribosomal subunit	-	3.5	5.6	Hsflp
YML024W	RPS17A	Ribosomal protein S17A (rp51A)	-	5.2	4.1	
YPR043W	RPL43A	Protein component of the large (60S) ribosomal subunit	-	5.1	8.1	Msn2/4p
#YGL030W	RPL30	Protein component of the large (60S) ribosomal subunit	-	4.4	5.1	Hsflp
YPL090C	RPS6A	Protein component of the small (40S) ribosomal subunit	4.8	5.0	3.4	Hsflp
YBR181C	RPS6B	Protein component of the small (40S) ribosomal subunit	4.9	3.4	3.4	Msn2/4p, Hsf1p
YJL190C	RPS22A	Protein component of the small (40S) ribosomal subunit	4.8		3.6	Hsflp, Yap1p
YBL087C	RPL23A	Protein component of the large (60S) ribosomal subunit	4.7	4.3	4.1	-
#YLR441C	RPS1A	Ribosomal protein 10 (rp10) of the small (40S) subunit	4.7	4.1	-	Hsflp, Yap1p
YNL096C	RPS78	Protein component of the small (40S) ribosomal subunit	4.7	3.6	-	-

#YOR312C	RPL20B	Protein component of the large (60S) ribosomal subunit	4.7	4.3	-	Msn2/4p, Yap1p
#YOR096W	RPS7A	Protein component of the small (40S) ribosomal subunit	4.7	4.0	-	Msn2/4p, Yap1p
#YHR021C	RPS27B	Protein component of the large (60S) ribosomal subunit	-	3.9	4.7	Msn2/4p, Hsf1p, Yap1p
#YIL133C	RPL16A	Protein component of the large (60S) ribosomal subunit	4.6	3.7	-	Msn2/4p, Hsf1p, Yap1p
#YER102W	RPS8B	Protein component of the small (40S) ribosomal subunit	4.5	4.9	-	Msn2/4p, Hsf1p, Yap1p
YOR369C	RPS12	Protein component of the large (60S) ribosomal subunit	-	4.9	4.5	-
YNL162W	RPL42A	Protein component of the large (60S) ribosomal subunit	-	4.3	4.4	Hsflp
YLR388W	RPS29A	Protein component of the large (60S) ribosomal subunit	-	4.7	4.4	Hsflp
YDR450W	RPS18A	Protein component of the small (40S) ribosomal subunit	4.3	4.7	-	Msn2/4p
YDR500C	RPL37B	Protein component of the large (60S) ribosomal subunit	-	3.1	4.3	Hsf1p,
#YJR123W	RPS5	Protein component of the small (40S) ribosomal subunit	4.2	4.9	3.2	Msn2/4p, Hsf1p
YBR048W	RPS11B	Protein component of the small (40S) ribosomal subunit	4.2	4.2	-	Hsflp, Yap1p
#YHR203C	RPS4B	Protein component of the small (40S) ribosomal subunit	4.2	3.3	-	Hsflp
YJL136C	RPS21B	Protein component of the small (40S) ribosomal subunit	-	4.6	4.1	Msn2/4p, Hsf1p
YDR418W	RPL12B	Protein component of the large (60S) ribosomal subunit	4.0	4.4	3.3	Msn2/4p
#YML026C	RPS18B	Protein component of the small (40S) ribosomal subunit	4.0	4.0	3.5	Msn2/4p, Hsf1p, Yap1p
#YBL027W	RPL19B	Protein component of the large (60S) ribosomal subunit	4.0	4.6	3.7	Hsflp, Yap1p
YER117W	RPL23B	Protein component of the large (60S) ribosomal subunit	3.9	-	3.3	Msn2/4p, Yap1p
#YOR293W	RPS10A	Protein component of the small (40S) ribosomal subunit	3.8	3.6	-	Msn2/4p, Hsf1p, Yap1p
#YMR230W	RPS10B	Protein component of the small (40S) ribosomal subunit	-	4.3	3.8	Hsflp
YLR197W	SIK1	Component of the small (ribosomal) subunit (SSU) processosome	3.5	3.7	3.7	Msn2/4p, Hsf1p
#YGL103W	RPL28	Ribosomal protein L29 of the large (60S) ribosomal subunit	3.5	4.0	-	Msn2/4p
#YPL220W	RPL1A	Protein component of the large (60S) ribosomal subunit	3.5	4.9	-	Hsflp, Yap1p
YDL083C	RPS16B	Protein component of the large (60S) ribosomal subunit	3.5	4.1	3.1	Msn2/4p, Hsf1p
#YJL177W	RPL17B	Protein component of the large (60S) ribosomal subunit	3.4	4.5	4.7	Msn2/4p, Hsf1p, Yap1p
YNL302C	RPS19B	Protein component of the small (40S) ribosomal subunit	3.4	4.6	3.7	Hsflp
YNL069C	RPL16B	Protein component of the large (60S) ribosomal subunit	3.3	4.3	-	Hsflp
YPR132W	RPS23B	Ribosomal protein 28 (rp28) of the small (40S) ribosomal subunit	3.3	-	3.5	Hsf1p
#YMR242C	RPL20A	Protein component of the large (60S) ribosomal subunit	3.3	4.6	-	Msn2/4p, Yap1p
#YPR102C	RPL11A	Protein component of the large (60S) ribosomal subunit	3.2	3.1	6.1	Hsflp
YLR344W	RPL26A	Protein component of the large (60S) ribosomal subunit	3.2	4.4	-	Hsflp
YLR264W	RPS28B	Protein component of the small (40S) ribosomal subunit	3.2	4.0	3.0	Msn2/4p, Hsf1p, Yap1p
#YFR031C-A	RPL2A	Protein component of the large (60S) ribosomal subunit	3.2	4.0	3.7	Msn2/4p, Hsf1p
YMR143W	RPS16A	Protein component of the small (40S) ribosomal subunit	-	4.5	3.7	Yap1p
YLR185W	RPL37A	Protein component of the large (60S) ribosomal subunit	-	4.6	3.6	Msn2/4p, Hsf1p
YOL039W	RRP2A	Protein component of the large (60S) ribosomal subunit	-	4.6	3.6	-
----------------	----------	--	------	------	------	-----------------------
#YER056C-A	RPL34A	Protein component of the large (60S) ribosomal subunit	-	4.9	3.6	Msn2/4p, Hsf1p
#YBR191W	RPL21A	Protein component of the large (60S) ribosomal subunit	-	4.9	3.4	Hsflp
#YGL189C	RPS26A	Protein component of the small (40S) ribosomal subunit	-	4.8	3.4	Hsf1p, Yap1p
#YER131W	RPS26B	Protein component of the small (40S) ribosomal subunit	-	4.9	3.4	Msn2/4p, Hsf1p, Yap1p
YKR094C	RPL40B	Protein component of the large (60S) ribosomal subunit	-	3.4	3.3	Yap1p
#YGR085C	RPL11B	Protein component of the large (60S) ribosomal subunit	3.2	3.6	-	Msn2/4p, Hsf1p
#YIL018W	RPL2B	Protein component of the large (60S) ribosomal subunit	3.1	4.6	-	-
#YLR061W	RPL22A	Protein component of the large (60S) ribosomal subunit	3.1	3.7	3.0	-
YDR471W	RPL27B	Protein component of the large (60S) ribosomal subunit	3.1	3.7	3.1	-
#YBR084C-A	RPL19A	Protein component of the large (60S) ribosomal subunit	3.1	4.5	-	Msn2/4p, Hsf1p
YPL143W	RPL33A	Protein component of the large (60S) ribosomal subunit	-	3.4	3.1	Yap1p
YGR118W	RPS23A	Ribosomal protein 28 (rp28) of the small (40S) ribosomal subunit	3.0	3.4	6.2	Msn2/4p
#YPL131W	RPL5	In component of the large (60S) ribosomal subunit	3.0	3.2	-	Yap1p
#YOL040C	RPS15	Protein component of the small (40S) ribosomal subunit	3.0	4.0	-	Msn2/4p
#YDL075W	RPL31A	Protein component of the large (60S) ribosomal subunit	-	3.4	3.4	Msn2/4p, Hsf1p
Stress respon	ise					
YGR234W	YHB1	May play a role in the oxidative stress response	5.0	7.4	3.3	Hsflp, Yap1p
YKL143W	LTV1	Protein required for growth at low temperature	-	5.7	3.0	Msn2/4p, Hsf1p
		Cell wall and vacuolar protein, required for wild-type resistance to				
#YPL163C	SVS1	vanadate	-	6.7	4.7	Hsf1p
#YHR064C	SSZ1	Unfolded protein binding	-	3.6	3.4	-
YFR034C	PHO4	Cellular response to phosphate starvation	3.0	8	-	Msn2/4p, Hsf1p
Energy utiliza	tion					
		Minor isoform of pyruvate decarboxylase, key enzyme in		30.0	-	
*#YLR134W	PDC5	alcoholic fermentation, decarboxylate pyruvate to acetaldehyde	70.1			Msn2/4p, Hsf1p
YER073W	ALD5	Aldehyde dehydrogenase activity	3.5	3.8	-	Msn2/4p, Yap1p
Cell cycle and	d growth					
YPL256C	CLN2	Role in cell cycle START; G (sub)1 cyclin	7.5	7.8	-	-
YNL247W		Protein required for cell viability	-	6.7	4.2	Msn2/4p, Hsf1p
YDL003W	MCD1	Mitotic sister chromatid cohesion	-	5.2	15.8	Hsflp

YDR241W	BUD26	Bud site selection	-	3.7	8.0	Hsflp, Yap1p
YMR199W	CLN1	Cyclin-dependent protein kinase regulator activity	3.1	4.2	-	Msn2/4p
Protein m	etabolism					
#YLR121C	YPS3	Aspartic protease	7.5	3.5	-	Yap1p
YGR155W	CYS4	Cysteine biosynthesis	6.9	3.5	-	Msn2/4p, Yap1p
YOR108W	LEU9	Leucine biosynthesis	4.2	3.7	-	Yap1p
#YLR180W	SAM1	Methionine synthetase	9.1	3.8	-	Yap1p
YOR335C	ALA1	Alanine-tRNA ligase activity	4.1	3.7	-	Hsf1p
YHR025W	THR1	Homoserine kinase activity	4.1	3.7	-	Msn2/4p
#YKL101W	HSL1	Protein kinase activity (G2/M transition of mitotic cell cycle)	3.1	7.2	6.1	Hsflp, Yap1p
YDR502C	SAM2	Methionine metabolism	4.0	-	3.3	Msn2/4p, Hsf1p, Yap1p
#YBR121C	GRS1	Glycine-tRNA ligase activity	3.1	4.1	-	Msn2/4p, Hsf1p
Cytoskeleton	genes					
YGR245C	SDA1	Actin cytoskeleton organization and biogenesis	-	3.1	3.4	Hsflp
YPL241C	CIN2	Microtubule-based process	-	5.0	3.0	Hsflp, Yap1p
Transcriptio	n and trans	lation				
•		General transcription elongation factor TFIIS, enables RNA		3.6	-	
YGL043W	DST1	polymerase II to read	28.1			Msn2/4p, Hsf1p
YOR340C	RPA43	RNA polymerase I subunit A43	5.3	4.4	-	Msn2/4p, Hsf1p
YOR310C	NOP58	Protein involved in pre-rRNA processing, 18S rRNA synthesis	5.6	4.5	-	Hsf1p, Yap1p
YPL160W	CDC60	Leucine-tRNA ligase activity	4.9	3.6	-	Hsflp, Yap1p
YPL266W	DIM1	rRNA (adenine-N6,N6-)-dimethyltransferase activity	4.5	3.4	4.5	Hsflp, Yaplp
YJL109C	UTP10	Processing of 20S pre-rRNA	4.4	-	5.1	Msn2/4p, Hsf1p
YMR260C	TIF11	Translation initiation factor eIF1A	-	3.8	4.1	-
YOR095C	RKI1	Ribose-5-phosphate ketol-isomerase	4.0	-	3.5	Msn2/4p, Hsf1p, Yap1p
YLL008W	DRS1	ATP-dependent RNA helicase activity	-	4.5	4.0	Hsf1p
YOR207C	RET1	DNA-directed RNA polymerase activity	3.9	3.4	-	Msn2/4p, Hsf1p, Yap1p
YGR162W	TIF4631	Translation initiation factor activity	3.9	3.6	-	Msn2/4p, Hsf1p, Yap1p
YJL050W	MTR4	ATP-dependent RNA helicase activity	3.8	-	3.7	Hsflp, Yap1p
YDR120C	TRM1	Trna (guanine-N2-)-methyltransferase activity	3.7	4.8	-	-
YDL112W	TRM2	tRNA (guanosine) methyltransferase activity	3.6	-	3.0	Hsflp

YPL043W	NOP4	RNA processing	3.6	3.9	-	Msn2/4p, Hsf1p, Yap1p
YKL078W	DHR2	RNA helicase activity	3.5	3.3	-	Hsflp
YHR020W		Proline-tRNA ligase activity	3.5	4.1	-	Yap1p
YPR010C	RPA135	DNA-directed RNA polymerase activity	3.5	4.8	-	Msn2/4p, Yap1p
YOL077C	BRX1	rRNA primary transcript binding	3.4	-	3.0	Hsflp
YJL148W	RPA34	RNA polymerase I subunit A34.5	3.4	-	4.3	Msn2/4p, Hsf1p
YLR409C	UTP21	Processing of 20S pre-rRNA	3.3	3.7	3.8	Msn2/4p
#YLR249W	YEF3	Translation elongation factor activity	3.3	-	3.3	Msn2/4p, Hsf1p, Yap1p
YEL055C	POL5	rRNA transcription	3.2	3.4	3.3	Yap1p
YJL011C	RPC17	DNA-directed RNA polymerase activity	3.1	3.6	-	Msn2/4p, Hsf1p
YGR158C	MTR3	3'-5'-exoribonuclease activity	3.0	4.0	-	Hsflp, Yap1p
YNL062C	GCD10	tRNA methyltransferase activity	3.0	4.5	-	Msn2/4p, Hsf1p
YPL217C	BMS1	35S primary transcript processing	3.0	4.6	4.0	Hsflp, Yap1p
YDL208W	NHPS	35S primary transcript processing	3.0	3.2	-	-
Nucleotide m	netabolism					
#YER070W	RNR1	Ribonucleotide-diphosphate reductase (RNR), large subunit	6.6	5.9	9.2	Hsflp
YOR074C	CDC21	Thymidylate synthase activity	-	3.6	8.2	Msn2/4p, Hsf1p
YHR089C	GAR1	RNA binding	5.0	5.2	-	Msn2/4p, Hsf1p
YDL227C	НО	Endonuclease activity	4.2	4.9	4.5	Hsflp, Yap1p
YNL262W	POL2	Epsilon DNA polymerase activity	3.1	3.6	-	Msn2/4p, Hsf1p
Transport						
YHR092C	HXT4	High-affinity glucose transporter of the major facilitator superfamily	24.7	10.5	8.1	Msn2/4p
#YML123C	PHO84	Inorganic phosphate (Pi) transporter	9.7	3.9		Msn2/4p
#YDR345C	HXT3	Low affinity glucose transporter of the major facilitator superfamily,	5.4	-	3.4	Msn2/4p, Hsf1p
#YER110C	KAP123	Protein carrier activity	-	5.5	3.8	Hsflp, Yap1p
YJL145W	SFH5	Phosphatidylinositol transporter activity	3.7	4.9	-	Msn2/4p, Hsf1p, Yap1p
#YGL225W	VRG4	Nucleotide-sugar transporter activity	3.0	-	3.4	Msn2/4p, Hsf1p
Cell Wall						
YKL163W	PIR3	Structural constituent of cell wall	12.1	6.0	-	Msn2/4p
YGL028C	SCW11	Cell wall protein with similarity to glucanases	7.4	4.0	-	-
YGR189C	CRH1	Putative glycosidase of the cell wall, may have a role in cell wall	6.7	3.5	-	Hsflp, Yap1p

		architecture				
#YKL096W-A	CWP2	Structural constituent of cell wall	-	5.0	3.8	Msn2/4p, Hsf1p
YBR038W	CHS2	Chitin synthase activity	4.3	-	3.3	Msn2/4p, Yap1p
YML066C	SMA2	Spore Membrane Assembly	3.0	4.7	-	Msn2/4p, Hsf1p
Lipid metabo	olism					
#*YGR060W	ERG25	C-4 methylsterol oxidase activity	5.0	5.7		-
#*YLR056W	ERG3	C-5 sterol desaturase	4.4	5.1	6.5	Msn2/4p, Hsf1p
#*YCR034W	FEN1	Fatty acid elongase, involved in sphingolipid biosynthesis	-	6.3	6.1	Msn2/4p, Yap1p
Miscellaneou	S					
YPR002W	PDH1	Mitochondrial protein that participates in respiration	9.4	3.6	4.3	Msn2/4p, Yap1p
YCL054W	SPB1	Suppressor of PaB1 mutant	7.2	-	5.1	Hsflp
YMR095C	SNO1	Biological and molecular functions unknown	5.3	6.4	-	Yap1p
YBR244W	GPX2	Glutathione peroxidase activity	5.3	4.9	-	Msn2/4p, Hsf1p, Yap1p
#YHR019C	DED81	Cytosolic asparaginyl-tRNA synthetase	5.3	4.0	-	Msn2/4p, Hsf1p, Yap1p
YLR401C	DUS3	tRNA dihydrouridine synthase activity	5.2	4.0	-	Msn2/4p, Hsf1p
YMR290C	HAS1	Putative RNA-dependent helicase	5.1	6.4	-	Msn2/4p
#YHR154W	RTT107	Regulator of Ty1 Transposition	-	5.4	4.0	Hsflp
YPL093W	NOG1	GTPase activity	4.7	3.3	-	-
YDR144C	MKC7	Aspartic-type signal peptidase activity	-	3.6	4.7	Msn2/4p, Hsf1p, Yap1p
YLR342W	FKS1	1,3-beta-glucan synthase activity	4.6	3.4	-	Hsf1p, Yap1p
YLL022C	HIF1	Chromatin silencing at telomere	-	3.2	-4.4	Hsflp
YJR143C	PMT4	Dolichyl-phosphate-mannose-protein mannosyltransferase activity	4.3	3.1	-	Msn2/4p, Hsf1p
YDL014W	NOP1	Methyltransferase activity	4.0		3.3	Msn2/4p, Hsf1p, Yap1p
YDR097C	MSH6	ATP binding (IDA) (ATPase activity)	-	3.1	3.6	Msn2/4p, Hsf1p, Yap1p
YGL148W	ARO2	Aromatic amino acid family biosynthesis	3.5	4.7	-	Msn2/4p, Yap1p
YGR109C	CLB6	Cyclin-dependent protein kinase regulator activity	3.4	4.5	7.0	Hsflp
YCL024W	KCC4	Protein kinase activity	3.3	-	5.3	Msn2/4p, Hsf1p, Yap1p
YCL026C-A	FRM2	Negative regulation of fatty acid metabolism	3.3	3.2	-	Msn2/4p
YDR507C	GIN4	Protein kinase activity	3.2	4.1	3.6	Msn2/4p, Hsf1p, Yap1p
YIL066C	RNR3	Ribonucleoside-diphosphate reductase activity	3.2	3.9	-	Msn2/4p
YER001W	MNN1	Alpha-1, 3-mannosyltransferase activity	-	3.1	3.1	Hsflp, Yap1p
YDL219W	DTD1	Hydrolase activity, acting on ester bonds	-	3.3	3.1	Msn2/4p, Yap1p

	1.07.01					
YBR084W	MIS1	Mitochondrial C1-tetrahydroflate synthase	3.0	-	3.8	Msn2/4p, Hsf1p, Yap1p
YLR172C	DHP5	Diphthine synthase activity	3.0	4.9	-	-
#YIL140W	AXL2	Axial bud site selection	3.0	4.6	4.3	-
YLR348C	DIC1	Dicarboxylic acid transporter activity	3.0	3.3	-	-
YLR153C	ACS2	Acetate-CoA ligase activity	3.0	3.3	-	Msn2/4p
YOL147C	PEX11	Peroxisome organization and biogenesis	3.0	4.0	-	-
YLR024C	UBR2	Ubiquitin-protein ligase activity	3.0	3.4	-	Msn2/4p, Yap1p
YOR243C	PUS7	Pseudouridine synthase activity	3.0	3.1	-	-
YHR170W	NMD3	Ribosomal large subunit assembly and maintenance	3.0	3.8	-	Hsflp
Unknown fu	nction					
YLR303W-R			38.9	4.1	-	-
YLR180W-R			11.8	4.5	-	-
YGL034C			3.9	-	9.5	Msn2/4p, Hsf1p
YLR364W			9.8	5.2	9.5	Hsflp, Yap1p
#YHR095W			8.6	8.5	-	Msn2/4p
YIL141W			4.2	6.2	-	Hsflp
YKR075C			6.0	4.0	-	Msn2/4p
YOL007C			5.6	9.6	-	Msn2/4p
YDR345C-R			5.0	-	4.0	-
YNL132W	KREE33		4.9	-	4.2	Hsflp, Yap1p
#YGR151C			-	4.3	4.8	Hsflp, Yap1p
YOL141W	PPM2		4.7	-	4.0	Yap1p
YKL014C	URB1		-	3.9	4.5	Hsflp
YCL036W	GFD2		4.2	3.8	-	-
YOR325W			4.1	3.6	-	Yap1p
YGR145W	ENP2		-	4.6	4.1	Hsflp, Yap1p
YPL267W	ACM1		-	3.8	4.1	Msn2/4p, Hsf1p
YHR153C	SPO16		3.9	4.4	7.5	Hsflp, Yap1p
YML037C			-	3.0	4.0	Msn2/4p,
YJL118W			-	3.6	4.0	-
YOR287C			3.9	4.0	-	Hsflp
YOL124C	TRM11		3.9	3.7	3.7	Msn2/4p, Hsf1p
YOL131W			3.8	-	3.0	Hsflp
YJR146W			3.7	3.1	-	Msn2/4p, Hsf1p, Yap1p

YGL165C		3.7	4.3	-	-
YGR103W	NOP7	-	3.0	3.7	Hsflp, Yap1p
YOR195W	SLK19	-	3.2	3.7	Msn2/4p
YJL043W		3.6	-	10.7	Hsflp
YGR269W		3.5	3.7	-	Msn2/4p, Yap1p
YLR331C		3.5	3.3	3.6	Yap1p
YCL065W		3.5	-	5.7	?
YGR141W	VPS62	3.4	-	3.6	Msn2/4p, Hsf1p
YJL122W		3.4	3.3	-	Msn2/4p, Hsf1p
YGL196W		-	4.2	3.4	-
YGL081W		-	4.9	3.4	-
YIL064W		-	4.1	3.2	Msn2/4p
YMR305C-R		3.1	3.3	-	-
#YEL001C		3.1	3.3	-	Msn2/4p, Hsf1p
YIL096C		-	3.5	3.1	Msn2/4p, Hsf1p, Yap1p
YBR134W		3.0	3.6	7.3	Hsflp

Table 4.1b: Microarray data: genes that were LHE after one-hour exposure to 7% ethanol in the presence of acetaldehyde.

The following table contains genes that appeared to be LHE in at least two of the three replicates. Genes that were apparently LHE in only one of the replicates were not considered to have changed expression and therefore are not included in this table.

*Genes that are also LE in the 'acetaldehyde only' conditions relative to an untreated control #Genes also found to be LE in macroarray experiments for the same conditions.

			Fa	old decrea	ise
Open reading			Slide	Slide	Slide
frame	Genes	Function	1	2	3
Stress response prot	tein folding	genes			
YCR021C	HSP30	Response to stress	96.3	48.2	24.1
YDR258C	HSP78	Unfolded protein binding	36.2	22.9	5.0
YOL052C-A	DDR2	Response to stress	-	21.5	13.5
YNL007C	SIS1	HSP40 family chaperone	18.9	15.8	3.5
*YBR067C	TIP1	Cold and heat-shock induced protein of the Srp1p/Tip1p family	-	17.7	26.5
YNL077W	APJ1	Unfolded protein binding	14.8	4.0	-
YBR054W	YRO2	Putative plasma membrane protein (homolog to HSP30)	3.9	11.6	10.5
YBR072W	HSP26	Unfolded protein binding	-	13.1	5.6
YER103W	SSA4	Unfolded protein binding	13.2	15.5	6.1
YGR088W	CTT1	Cytoplasmic catalase T	12.0	-	3.6
YLL026W	HSP104	Heat shock protein that cooperates with Ydj1p (Hsp40) and Ssa1p (Hsp70) to	11.0	13.6	-
YBR169C	SSE2	HSP70 family member, highly homologous to Sse1p	10.8	12.7	-
		Glycoprotein required for oxidative protein folding in the endoplasmic		6.8	-
YML130C	ERO1	reticulum	10.4		
YPL240C	HSP82	Protein folding (response to stress)	6.8	7.4	3.4
YFL016C	MDJ1	Chaperone binding (unfolded protein binding)	6.1	6.5	-
YNL160W	YGP1	Response to nutrients (response to stress)	-	5.7	6.3
		Heat shock protein also induced by canavanine and entry into stationary	3.8		
YOR027W	STI1	phase		5.6	4.0
YAL005C	SSA1	Heat shock protein of HSP70 family,	3.7	5.0	3.6

HRK1	Protein kinase with a role in ion homeostasis	3.5	4.2	3.5
HSC82	Constitutively expressed heat shock protein	-	3.8	3.2
	Possible chaperone and cysteine protease with similarity to E. coli Hsp31 and		3.6	-
HSP33	S. cerevisiae Hsp32p, Hsp33p, and Sno4p	-		
SSA3	Heat-inducible cytosolic member of the 70 kDa HSP family	-	3.6	3.0
HOR7	Hyperosmotic stress response	3.1	3.3	-
1				
TSL1	Trehalose-6-phosphate synthase\/phosphatase	11.6	10.1	6.8
GPM2	Converts 3-phosphoglycerate to 2 phosphoglycerate in glycolysis	9.2	9.6	-
HXK1	Hexokinase activity	4.8	8.0	-
GPP1	Glycerol biosynthesis (response to osmotic stress)	6.4	4.3	4.9
GPD1	Glycerol-3-phosphate dehydrogenase	-	7.4	5.6
GPD2	Glycerol-3-phosphate dehydrogenase (NAD+) activity	5.0	7.2	5.0
ENO1	Catalyses the first common step of glycolysis and gluconeogenesis	-	4.3	8.2
PGM2	Phosphoglucomutase activity	-	6.5	3.6
TPS2	Trehalose-6-phosphate phosphatase	-	5.9	3.0
GDB1	Glycogen debranching enzyme containing glucanotranferase	-	5.7	4.0
SER3	phosphoglycerate dehydrogenase activity	-	5.5	-
GSY2	Glycogen (starch) synthase activity	-	-	3.9
SOL4	6-phosphogluconolactonase activity	-	5.5	3.5
SOL1	6-phosphogluconolactonase activity	3.7	-	3.3
UGP1	UTP-glucose-1-phosphate uridylyltransferase activity	-	4.9	6.1
TDH1	Glyceraldehyde-3-phosphate dehydrogenase 1	-	4.4	7.9
	Glucokinase, catalyzes the phosphorylation of glucose at C6 in the first	-		
GLK1	irreversible step of glucose metabolism		3.8	5.3
ADH2	Alcohol dehydrogenase activity (ethanol metabolism)	3.7	-	4.2
es				
PIN3	Actin cytoskeleton organization and biogenesis	17.1	10.8	9.8
ATG8	Microtubule binding	3.5	5.2	-
	ž			
d translation				
YE7	Transcription factor activity	30.8	6.3	4.3
	HRK1 HSC82 HSP33 SSA3 HOR7 Image: Constraint of the second s	HRK1 Protein kinase with a role in ion homeostasis HSC82 Constitutively expressed heat shock protein Possible chaperone and cysteine protease with similarity to E. coli Hsp31 and S. cerevisiae Hsp32p, Hsp33p, and Sno4p SSA3 Heat-inducible cytosolic member of the 70 kDa HSP family HOR7 Hyperosmotic stress response TSL1 Trehalose-6-phosphate synthase\/phosphatase GPM2 Converts 3-phosphoglycerate to 2 phosphoglycerate in glycolysis HXK1 Hexokinase activity GPP1 Glycerol biosynthesis (response to osmotic stress) GPD1 Glycerol-3-phosphate dehydrogenase GPD2 Glycerol-3-phosphate dehydrogenase (NAD+) activity ENO1 Catalyses the first common step of glycolysis and gluconeogenesis PGM2 Phosphoglucomutase activity TPS2 Trehalose-6-phosphate phosphatase GDB1 Glycogen debranching enzyme containing glucanotranferase GB2 Phosphogluconolactonase activity SOL4 6-phosphogluconolactonase activity GSY2 Glycogen (starch) synthase activity SOL1 6-phosphogluconolactonase activity SOL4 6-phosphogluconolactonase activity TDH1 Glycogen-phospha	HRK1 Protein kinase with a role in ion homeostasis 3.5 HSC82 Constitutively expressed heat shock protein - Possible chaperone and cysteine protease with similarity to E. coli Hsp31 and - HSP33 S. cerevisiae Hsp32p, Hsp33p, and Sno4p - SSA3 Heat-inducible cytosolic member of the 70 kDa HSP family - HOR7 Hyperosmotic stress response 3.1 TSL1 Trehalose-6-phosphate synthase\/phosphatase 11.6 GPM2 Converts 3-phosphoglycerate to 2 phosphoglycerate in glycolysis 9.2 HXK1 Hexokinase activity 4.8 GPD1 Glycerol-3-phosphate dehydrogenase - GPD2 Glycerol-3-phosphate dehydrogenase - GPD1 Catalyses the first common step of glycolysis and gluconeogenesis - FGM2 Phosphoglycerate dehydrogenase activity - TPS2 Trehalose-6-phosphate phosphatase - GDB1 Glycogen debranching enzyme containing glucanotranferase - GDB1 Glycogen (starch) synthase activity - SOL4 6-phosphogluconulactonase activity - SOL1 6-phosphogluconolactonase activity<	HRK1 Protein kinase with a role in ion homeostasis 3.5 4.2 HSC82 Constitutively expressed heat shock protein - 3.8 Possible chaperone and cysteine protease with similarity to E, coli Hsp31 and 3.6 3.6 HSP33 S. cerevisiae Hsp32p, Hsp33p, and Sno4p - 3.6 SSA3 Heat-inducible cytosolic member of the 70 kDa HSP family - 3.6 HOR7 Hyperosmotic stress response 3.1 3.3 TSL1 Trehalose-6-phosphate synthase/phosphatase 11.6 10.1 GPM2 Converts 3-phosphate to 2 phosphoglycerate in glycolysis 9.2 9.6 HXK1 Hexokinase activity 4.8 8.0 GPD1 Glycerol-biosynthesis (response to osmotic stress) 6.4 4.3 GPD2 Glycerol-3-phosphate dehydrogenase - 7.4 GPD2 Glycerol-3-phosphate dehydrogenase - 5.9 GPM2 Phosphoglycerate dehydrogenase activity - 6.5 TPS2 Trehalose-6-phosphate phosphatase - 5.9 GDB1 Glycogen (starch) synthase activity - - 5.5 SOL4<

YKL043W	PHD1	Specific RNA polymerase II transcription factor activity	13.6	6.7	8.1
YDL020C	RPN4	Transcription factor that stimulates expression of proteasome genes	11.3	5.9	-
YDR043C	NRG1	Transcriptional repressor activity	10.5	-	3.5
YOR298C-A	MBF1	Transcriptional co-activator that bridges the DNA-binding region of Gcn4p and	7.5	8.8	3.2
YOR178C	GAC1	Regulatory subunit for Glc7p (protein phosphatase I) for glycogen synthesis	7.5	-	4.3
YDL005C	MED2	RNA Polymerase II transcriptional regulation mediator	8.1	-	3.7
YJL035C	TAD2	tRNA-specific adenosine-34 deaminase subunit Tad2p	6.6	3.3	-
YDR040C	ENA1	P-type ATPase sodium pump, involved in Na+ and Li+ efflux to allow salt tolerance	5.9	-	3.9
YMR070W	MOT3	Nuclear transcription factor with two Cys2-His2 zinc fingers; involved in repression	5.9	3.4	-
YBR066C	NRG2	Transcriptional repressor activity	5.8	5.5	-
YNL251C	NRD1	RNA-binding protein that interacts with the C-terminal domain of the RNA	5.6	-	7.8
YPL177C	CUP9	Specific RNA polymerase II transcription factor activity	4.4	-	3.7
YPL075W	GCR1	Transcriptional activator of genes involved in glycolysis	4.3	4.8	-
YOR028C	CIN5	Basic leucine zipper transcriptional factor of the yAP-1 family	4.3	3.3	-
YER045C	ACA1	Basic leucine zipper (bZIP) transcription factor of the ATF/CREB family,	4.1	4.1	-
YDR073W	SNF11	Component of SWI/SNF global transcription activator complex	4.0	3.4	-
YGL096W	TOS8	Transcription factor activity	3.8	4.5	-
YOL081W	IRA2	Inhibitory Regulator of the RAS-cAMP pathway	3.8	3.4	-
YIL122W	POG1	Specific RNA polymerase II transcription factor activity	-	3.9	3.8
YPR008W	HAA1	Specific RNA polymerase II transcription factor activity	-	3.7	3.9
YKR034W	DAL80	Negative regulator of genes in multiple nitrogen degradation pathways	3.6	3.3	-
YKL185W	ASH1	Specific transcriptional repressor activity	-	3.6	3.6
YFR001W	LOC1	mRNA localization, intracellular	-	3.5	3.2
YMR136W	GAT2	Protein containing GATA family zinc finger motifs	3.5	-	3.1
YFL031W	HAC1	Specific RNA polymerase II transcription factor activity	3.0	4.0	6.6
		Sterol regulatory element binding protein, regulates transcription of the sterol		3.2	3.1
YLR228C	ECM22	biosynthetic genes ERG2 and ERG3	-		
YOR230W	WTM1	Transcription corepressor activity	-	3.1	3.1
YFL021W	GAT1	Specific RNA polymerase II transcription factor activity	-	3.0	7.2
Protein metab	oolism				
YJR036C	HUL4	Ubiquitin-protein ligase activity	3.5	4.6	-
YEL012W	UBC8	Ubiquitin conjugating enzyme activity	3.4	3.6	-
YBR082C	UBC4	Ubiquitin conjugating enzyme activity	3.2	4.4	-

Nucleotied mt	abolism				
VBR214W	SDS24	DNA metabolism	4.8	5.0	
YNL107W	YAF9	Chromatin remodelling	4.0	4.0	_
YKL032C	IXR1	DNA hinding	3.4	3.7	_
11(10520		Divitoniung	5.1	5.1	
Transport					
YGR142W	BTN2	Intracellular protein transport	-	48.6	4.3
YNL006W	LST8	Protein required for transport of permeases from the Golgi to the plasma membrane	24.7	17.4	5.6
YEL039C	CYC7	Electron carrier activity	18.4	30.3	4.4
YGR121C	MEP1	Ammonium transporter activity	8.2	4.4	3.2
YOR161C	PNS1	Choline transporter activity	8.6	10.1	3.6
YNL142W	MEP2	Ammonia transport protein	6.2	-	6.5
YOR273C	TPO4	Spermidine transporter activity (Polyamine transport protein)	4.2	8.0	3.5
YER053C	PIC2	Inorganic phosphate transporter activity	4.1	6.0	4.1
YKR039W	GAP1	General amino acid permease	4.1	-	3.9
YCL025C	AGP1	Amino acid transport	3.8	4.2	6.6
YDR358W	GGA1	Golgi to vacuole transport	3.4	3.2	3.4
YGR009C	SEC9	Golgi to plasma membrane transport	3.2	4.1	-
YPR138C	MEP3	Ammonium transporter activity	3.0	4.6	5.9
YHR096C	HXT5	Hexose transport	3.0	3.2	8.8
YOR348C	PUT4	Amino acid permease activity	-	3.1	5.1
Transposable	element ge	ne			
YDR034C-D	-	TyB Gag-Pol protein. Gag processing	-	6.4	5.4
YLR410W-B	-	TyB Gag-Pol protein. Gag processing	-	6.0	4.9
YFL002W-A	-	TyB Gag-Pol protein. Gag processing	3.5	5.5	6.8
YGR161W-B	-	TyB Gag-Pol protein. Gag processing	4.5	5.0	6.9
YDR261W-B	-	TyB Gag-Pol protein. Gag processing	4.3	3.6	7.5
YBL101W-B	-	TyB Gag-Pol protein. Gag processing	4.3	3.8	-
YDR210W-A	-	TyB Gag-Pol protein. Gag processing	3.9	4.4	6.5
YNL054W-B	-	TyB Gag-Pol protein. Gag processing	3.6	-	3.3
YBL101W-A	-	TyB Gag-Pol protein. Gag processing	-	3.5	3.7
YPL257W-A	-	TyB Gag-Pol protein. Gag processing	-	3.3	3.9

YDR261W-A	-	TyB Gag-Pol protein. Gag processing	-	3.3	5.0
Miscellaneous					
YGR161C	RTS3	Protein phosphatase type 2A activity	39.5	10.3	4.8
YHR055C	CUP1-2	Copper ion binding	15.3	14.2	3.5
YGR211W	ZPR1	Zinc finger protein	11.7	3.3	-
#YHR139C	SPS100	Involved in spore development; sporulation-specific wall maturation protein	9.1	32.1	8.0
					12.4
YPR149W	NCE102	Involved in secretion of proteins that lack classical secretory signal sequences	8.2	8.2	
YHR053C	CUP1-1	Copper ion binding	7.6	7.5	3.4
YJL034W	KAR2	ATPase activity	7.3	4.4	-
YIL113W	SDP1	MAP kinase phosphatase activity	7.0	7.7	3.7
YPL003W	ULA1	NEDD8 activating enzyme activity	6.8	10.3	3.1
YGR008C	STF2	ATPase stabilizing factor	-	5.5	3.4
YGR052W	FMP48	Kinase activity	5.1	3.0	-
YIR032C	DAL3	Allantoin catabolism	4.9	4.9	3.1
YLR178C	TFS1	Carboxypeptidase Y inhibitor; (putative) lipid binding protein	-	4.7	5.3
YJL166W	QCR8	Ubiquinol cytochrome-c reductase subunit 8	4.8	4.5	-
YML128C	MSC1	Meiotic recombination	-	4.6	4.1
YOR193W	PEX27	Involved in peroxisome proliferation	4.5	3.2	-
YGR144W	THI4	Biosynthetic pathway of thiamin biosynthesis	-	4.3	3.9
YJL141C	YAK1	Protein kinase activity	-	4.1	6.9
YMR232W	FUS2	Plasma membrane fusion	3.9	3.1	-
YJR059W	PTK2	Protein kinase activity	-	3.9	3.3
YML054C	CYB2	Expression is repressed by glucose and anaerobic conditions	-	3.9	6.0
YGR007W	MUQ1	Ethanolamine-phosphate cytidylyltransferase activity	3.7	3.1	4.6
YDR516C	EMI2	Sporulation (sensu Fungi)	3.4	3.8	4.2
YIL099W	SGA1	Sporulation (sensu Fungi)	3.3	3.6	3.8
YGR028W	MSP1	40 kDa putative membrane-spanning ATPase	3.2	-	3.2
YGR143W	SKN1	Involved in (1->6)-beta-glucan biosynthesis (Cell wall organization)	-	3.3	3.4
Unknown f	unction				
#YER150W	SPI1		34.1	30.1	5.6
YOL032W	-		33.9	14.8	4.5

YNL194C	-	23.7	14.0	-
YBR099C	-	23.1	27.8	-
YPR158W	-	20.6	13.9	3.1
YOL014W	-	19.1	4.3	-
YOL084W	PHM7	18.6	13.7	4.8
YPL250C	ICY2	17.5	9.3	4.8
*ARA13	-	17.2	10	-
YNL195C	-	14.5	22.1	-
YNR034W-A	-	-	13.9	6.3
YLR413W	-	11.5	3.0	-
YKL044W	-	10.9	8.6	11.7
YMR320W	-	10.4	7.0	4.6
YER054C	-	-	9.6	3.4
YJL144W	-	9.4	-	3.2
YHR087W	-	8.4	10.7	7.0
YOR220W	-	8.2	-	6.5
YMR316W	DIA1	7.9	3.2	-
YAR020C	PAU7	7.8	4.0	5.7
YOL161C	-	7.6	4.0	-
YJL016W	?-	7.5	7.5	6.7
YER053C-A	-	7.3	-	3.9
YJL017W	?-	-	7.1	3.4
YOL114C	-	7.0	4.2	-
YAL068C	-	6.8	3.5	-
YPL230W	-	6.8	5.0	-
YER067W	-	6.5	17.3	6.8
YNL193W	-	6.5	4.4	-
YER053C-A		6.4	4.4	6.2
YOR173W	DCS2	-	7.8	3.1
YMR325W	-	6.2	9.1	4.6
YLR461W	PAU4	6.0	3.6	-
YNR076W	PAU6	6.0	5.5	-
YIL176C	-	5.9	4.0	-
YER091C-A	-	5.9	3.0	-

YLR177W	-	5.8	6.4	5.5
YJL223C	PAU1	5.8	4.5	-
YBR085C-A	-	5.7	14.0	3.9
YNR068C	-	5.7	8.5	3.6
YLR327C	-	5.6	3.1	
YDR070C	FMP16	5.6	12.0	6.3
YFL020C	PAU5	3.9	5.4	-
YMR040W	YET2	5.3	-	5.0
YMR087W	-	5.2	5.6	-
YOL123W-R	?	-	5.2	-
YGL261C	-	4.9	3.6	3.0
YBR012C	-	4.5	3.3	-
#YDL223C	HBT1	-	4.5	5.0
YMR324C	-	4.4	3.8	-
YDR185C	-	4.4	3.1	-
YIL056W	-	4.3	3.4	-
YLR311C	-	4.3	3.3	3.4
YLR312C	-	4.3	3.1	-
*YJL142C	-	4.3	3.0	-
YOL154W	ZPS1	3.9	3.1	-
YMR084W	-	3.8	4.4	-
YHL021C	FMP12	3.8	4.2	4.9
YOR009W	TIR4	3.7	3.4	-
YBR285W	-	3.7	3.9	-
YBR090C	-	3.7	4.1	-
YLR064W	-	3.7	-	3.1
YLL064C	-	3.6	4.3	-
YMR265C	-	3.6	3.3	3.7
YIR014W	-	3.6	-	4.9
YOR393W	ERR1	-	3.9	3.6
YOR186W	-	3.5	4.2	3.0
YIL055C	-	3.5	4.2	-
YHR054C	-	3.5	3.6	-
YLR149C	-	3.5	3.1	-
YLR437C-R	?	3.4	-	3.1

YLR446W	-	3.4	-	3.4
YBL086C	-	3.4	3.6	-
YMR181C	-	3.4	3.4	-
YCR100C	-	3.3	3.2	-
YIL130W	-	3.3	3.3	-
YDR276C-R	?	3.3	4.1	-
YPL168W	-	3.2	3.5	-
YPR150W	-	3.2	3.4	-
YPL247C	-	-	3.2	4.0
YJL163C	-	-	3.2	3.4
YPR035W-R	-	-	3.2	3.0
YLR219W	MSC3	3.1	-	3.1
YPL054W	LEE1	-	3.1	9.4
YDR482C	CWC21	3.0	3.0	5.5
YCL042W	-	-	3.0	3.6

Table 4.2: Microarray data: genes that were MHE after one-hour exposure to acetaldehyde only.

*Genes that are also MHE in the 'ethanol-stressed cells in presence of acetaldehyde' conditions relative to an ethanol stress.

Open		Function	Fold increase		Putative Transcription Factors	
reading	G					
frame	Genes		Slide 1	Slide 2		
Stress response	2					
YHR106W	TRR2	Response to oxidative stress (IMP)	3.3	28.5	Msn2/4p, Hsf1p	
					Msn2/4p, Hsf1p, Yap1p	
Cytoskeleton genes						
YLR319C	BUD6	Cytoskeletal regulatory protein binding	3.9	3.2	Hsflp, Yap1p	
Transcription and translation						
YGL035C	MIG1	Specific RNA polymerase II transcription factor activity	4.9	4.3	-	
Transport						
YAL002W	VPS8	Late endosome to vacuole transport	5.3	53.6	Msn2/4p, Hsf1p, Yap1p	
Miscellaneous						
YBR136W	MEC1	Protein kinase activity	5.1	3.1	-	
YCR005C	CIT2	Citrate (Si)-synthase activity	4.9	3.8	Msn2/4p	
YLR321C	SFH1	Protein binding	4.3	4.1	Yap1p	
YGL194C	HOS2	NAD-dependent histone deacetylase activity	3.3	3.5	Msn2/4p, Hsf1p, Yap1p	
Unknown func	tion					
*YFR048W	RMD8		17.7	7.1	Yap1p	
YCR025C			14.8	3.9	-	
YGL007W			8.9	7.5	Msn2/4p, Hsf1p, Yap1p	
YGR139W			8.4	5.9	Msn2/4p	
YER139C			8.3	3.4	-	
YBR178W			7.6	3.8	Msn2/4p, Hsf1p	
YMR086C-A			7.3	4.0	Msn2/4p, Hsf1p	
YDR417C			5.9	5.0	Hsflp, Yap1p	

YFR023W	PES4	4.9	21.7	Yap1p		
YDR522C	SPS2	4.6	4.0	Msn2/4p, Hsf1p		
YFL061W	DDI2	4.6	3.5	Msn2/4p, Hsf1p, Yap1p		
YPR195C		4.5	4.9	Yap1p		
YJL043W		4.4	4.7	Hsf1p, Yap1p		
YBR134W		4.4	3.7	Hsflp		
YBR113W		4.1	6.2	Hsflp		
YMR118C		3.9	4.1	Yap1p		
YFL032W		3.8	3.4	Yap1p		