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ABSTRACT 
 
 

This thesis presents an investigation and a comparative study of four different approaches 

namely ANSI/IEEE standard models, Adaptive Neuro-Fuzzy Inference System (ANFIS), 

Multilayer Feedforward Neural Network (MFNN) and Elman Recurrent Neural Network 

(ERNN) to modeling and prediction of the top and bottom-oil temperatures for the 8 

MVA Oil Air (OA)-cooled and 27 MVA Forced Air (FA)-cooled class of power 

transformers. The models were derived from real data of temperature measurements 

obtained from two industrial power installations. A comparison of the proposed 

techniques is presented for predicting top and bottom-oil temperatures based on the 

historical data measured over a 35 day period for the first transformer and 4.5 days for 

the second transformer with either a half or a quarter hour sampling time. Comparisons of 

the results obtained indicate that the hybrid neuro-fuzzy network is the best candidate for 

the analysis and prediction of the power transformer top and bottom-oil temperatures. 

The ANFIS demonstrated the best comparative performance in temperature prediction in 

terms of Root Mean Square Error (RMSE) and peak error. 
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CHAPTER 1 : INTRODUCTION 
 

1.1 Background 

A power transformer is a static piece of apparatus with two or more windings. By 

electromagnetic induction, it transforms a system of alternating voltage and current into 

another system of alternating voltage and current of different values, of the same 

frequency, for the purpose of transmitting electrical power. For example, distribution 

transformers convert high-voltage electricity to lower voltage levels acceptable for use in 

homes and businesses (IEC, 1993).  

 

A power transformer is one of the most expensive pieces of equipment in an electricity 

system. Monitoring the performance of a transformer is crucial in minimizing power 

outages through appropriate maintenance thereby reducing the total cost of operation. 

The transformer top-oil temperature value is one of the most critical parameters when 

defining the power transformer thermal conditions (Feuchter, 1993). Therefore, it is very 

useful to accurately predict these temperature values. Traditional approaches to modeling 

a transformer�s top-oil temperature rely a great deal on mathematical formulae which 

require a high level accuracy of each parameter involved. The use of these mathematical 

formulae is valid and acceptable when the system is simple and properly monitored. 

However, in the case of a typical transformer system like those under consideration in 

this thesis, which is not a straightforward linear system, mathematical formulae like IEEE 

and MIT become less effective as shown in Chapter 6. To replace these mathematical 

modeling approaches, this thesis provides the use of neural fuzzy and other soft 

computing techniques in order to better predict temperatures of a transformer.  

 

1.2 Introduction 

Accurate prediction is the most fundamental but not necessarily be the only objective in 

modeling. The model should serve as a good description of the data for enlightening the 
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properties of the input-output relationship. The model should also be interpretable, so that 

the user can gain insight and understand the system that produced the data.  

 

In nearly all everyday systems, models are derived from two fundamental sources: 

empirical data acquired from observation and a priori knowledge about the system. 

These two knowledge sources are invaluable in any modeling process, where all 

available a priori knowledge should be utilized. In addition where inadequacies are 

found in these two knowledge sources these be compensated by the ability to learn from 

the data. Depending on the extent to which these two types of knowledge are 

investigated, three basic levels of model synthesis can be defined (Ljung, 1987): 

 

1. White Box.  The model is completely constructed from a priori knowledge and 

physical insight. Here, empirical data are not used during model identification and 

are only used for validation. Complete a priori knowledge of this kind is very 

rare, because usually some aspects of the distribution of the data are unknown. 

2. Grey Box. An incomplete model is constructed from a priori knowledge and 

physical insight, and then the available empirical data are used to adapt the model 

by finding several specific unknown parameters. 

3. Black Box. No a priori knowledge is used to construct the model. The model is 

chosen as a flexible parameterized function, which is used to fit the data. 
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Figure 1.1: The different modeling approaches 

 

The three different modeling approaches are shown in Figure 1.1. When the available a 

priori knowledge and the empirical data are poor, the most suitable approach is expected 

to be the grey-box modeling type, even though none of the three modeling approaches 

can be easily applied, due to the lack of knowledge. For most applications, both a priori 

knowledge and empirical data need to be employed when developing a model. 

 

The a priori knowledge comes in many different forms, a common one being linguistic 

constructs or rules describing the input-output relationships. These are qualitative 

descriptions where qualitative refers only to the characteristics of something being 

described, rather than exact numerical values. For example: the temperature is high. This 

type of knowledge can be of a great benefit in the modeling process. 

 

Fuzzy sets (Zadeh, 1965) developed by Zadeh are powerful tools for capturing such 

qualitative a priori knowledge, especially in engineering fields such as control and 

system identification. Fuzzy models consist of a series of linguistic rules, which can 

easily be understood and constructed. As the information is stored as a set of interpretable 

rules, fuzzy models are said to be transparent. Conventionally, the fuzzy modeling 

approach assumes the a priori knowledge is correct, equivalent to the white box modeling 
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approach. This often proves to be unrealistic, as with the vagueness and subjectivity of 

language. Indeed, it is unlikely an expert can accurately describe the complete behavior 

of a system by simply using the underlying data. For example, a priori knowledge is 

expressed in the following linguistic rule (see Chapter 3): 

 

If the temperature is high then the pressure will increase 

 

The vagueness in this rule is the statement �the temperature is high�. The temperature can 

be any value in a range. 

 

On the other hand, neural networks have been used extensively in black box modeling 

approaches. These are highly flexible models that can be successfully adapted to model 

many different input-output mappings by learning from data. However, there is one major 

set back of neural networks is that they do not produce transparent models, that is the 

stored knowledge is not easily interpretable. Thus, the main criticism addressed to neural 

networks concerns their black box nature (Lee, 1990). 

 

Recently, to avoid the inadequacies of both fuzzy and neural networks modeling, neural 

fuzzy modeling approaches have been introduced as an ideal technique for utilizing both 

a priori knowledge and empirical data. Neural fuzzy approaches combine the desired 

attributes of fuzzy logic and neural networks, hence producing flexible models that can 

learn from empirical data and can be represented linguistically by fuzzy rules. With 

reference to the different levels of model synthesis described above, neural fuzzy 

modeling can be regarded as grey box modeling. The advantages of neural fuzzy 

modeling are: 

 

1. Model identification can be performed using both empirical data and qualitative 

knowledge. 

2. The resulting models are transparent.  
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1.3 Neural Fuzzy Modeling: The Basics 

Fundamentally, neural fuzzy modeling is the task of building models from a combination 

of a priori knowledge and empirical data. Normally, such a priori knowledge is used to 

define a suitable model structure; this model is then adapted such that it successfully 

reproduces the available empirical data. This adaptation step is often called learning. The 

main objective of neural fuzzy modeling is to construct a model that accurately predicts 

the value(s) of the output variable(s) when new values of the input variables are 

presented. 

 

1.3.1 Objectives  

The basic objectives of neural fuzzy modeling are summarized below: 

 

 Predictability. This is generally the most important objective, which aims to 

construct a model from observed data so that the model approximates the 

behavior of the system that produced the data. The ability to model unseen data is 

called generalization and is the fundamental principle of neural fuzzy modeling.  

 

 Interpretability. This can only be achieved if the final model is transparent, that is 

the representation of the extracted knowledge can be clearly defined. There are 

several different levels of model transparency: 

 

1. Indication of which input variables affect the output variable(s). 

2. Use of simple mathematical relationships. 

3. Qualitative descriptions of the modeled system. 

 

 Efficiency. For many applications, resources are limited and therefore physical 

constraints are placed on the model�s computational requirements; small models 

that can be implemented by efficient algorithms are required. 
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 Adaptability. The ability to adapt and learn from the patterns of data that were not 

present in the original training and testing sets. 

 

1.3.2 Main Phases 

The preliminary phase is the first and most important step of a neural fuzzy modeling 

process. It aims to collect a set of data, which is expected to be a representative sample of the 

system to be modeled. In this phase, known as data preprocessing, data are cleaned to 

make learning easier. This involves incorporation of all relevant domain knowledge at the 

level of an initial data analysis, including any sort of preliminary filtering on the observed 

data such as missing data treatment or feature selection. The preprocessing phase returns 

the data set in a structured input-output form, commonly called a training set. 

 

Once this preliminary phase is completed, the learning phase begins. This thesis will focus 

exclusively on this second phase assuming that data have already been preprocessed. The 

learning phase is essentially a search, in a space of possible model configurations, of the 

model that best represents the power transformer temperature values. As in any other 

search task, the learning procedure requires a search space, where the solution is to be 

found, and some assessment criterion to measure the quality of the solution. As far as the 

search space is concerned, the Adaptive Neuro-Fuzzy Inference System (ANFIS), 

Multilayer Feedforward Neural Network (MFNN) and Elman Recurrent Neural Network 

(ERNN) are chosen to compare with the conventional Institute of Electrical and Electronics 

Engineers (IEEE) and Massachusetts Institute of Technology (MIT) models for this thesis. 

As far as the assessment of a model is concerned, both qualitative and quantitative criteria 

are defined, according to the main goal of neural fuzzy modeling that is to attain a good 

generalization. The next step is to search for the best model. The search algorithm consists 

of three main steps: structural identification, parametric identification and model 

validation. 

� Structural identification is typically an iterative process that seeks 

the structure that is expected to have the best performance. The model 
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structure from the previous step in the iteration is usually used as basis 

for the selection of a more promising structure, either refined or simplified. 

� Parametric identification is the process to determine the relevant 

parameters of the model. This is typically an inner loop into the structural 

identification, since it returns the best model for a fixed structure. 

� Model validation. At this stage the quality of the model is evaluated by analyzing 

how well it represents (captures) the data. Typically validation is performed by a 

combination of statistical measures that evaluate the generalization capability of the 

model, together with qualitative criteria, whose purpose is to establish how the model 

relates to the a priory knowledge, how easy it will be to use and interpret. 

 

1.4 Organization of the Thesis 

The objectives of this thesis are to: 
 

- describe the steps involved in building a neural fuzzy model. 
 
- briefly describe the current conventional methods. 
 
- review the methodologies of fuzzy logic and neural networks and the significance 

of combining the two technologies. 
 

- develop a neural fuzzy model to predict the temperatures of a power transformer. 
 

- compare the results when using conventional techniques against Adaptive Neuro-
Fuzzy Inference System (ANFIS), Multilayer Feedforward Neural Network 
(MFNN) and Elman Recurrent Neural Network (ERNN) to predict the 
temperatures of a power transformer. 

 
- make recommendations for future research in the field. 

Chapter 2 presents an overview of the conventional approaches used in this thesis to 

model the thermal behavior of a transformer. It provides the derivation of relevant 

equations used in the prediction of the transformer�s top and bottom oil temperatures 

based on ANSI/IEEE standard models.  
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Chapter 3 presents the notations, structures and operations on fuzzy logic and neural 

networks. 

Chapter 4 describes the strengths and weaknesses of fuzzy logic and neural network 

modeling approaches. An integrated model (neural fuzzy) that benefits from the strengths 

of each of fuzzy logic and neural network models are presented, namely ANFIS 

(Adaptive Neuro Fuzzy-based Inference System). 

Chapter 5 shows the application of ANFIS modeling the transformer�s thermal behavior. 

Particularly, ANFIS is used to predict the transformer�s top and bottom-oil temperature. 

A comparison between ANFIS and other models, i.e. the IEEE and neural network 

models (multilayer feedforward and Elman) are carried out in this chapter. 

Finally, in Chapter 6, conclusions of this research and recommended directions for 

further investigation are discussed. 
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CHAPTER 2 : THERMAL MODELING OF A POWER 

TRANSFORMER 

 

2.1 Introduction 

Abnormal temperature readings almost always indicate some type of failure in a 

transformer. For this reason, it has become common practice to monitor the top and 

bottom-oil temperatures of a transformer. Utilities can save millions of dollars by using a 

model that allows them to predict these values accurately. Accurate top and bottom-oil 

temperature prediction also allows system planners and operators to plan for and take 

necessary corrective action in response to transformer outages. 

2.2 Conventional Models 

There are several models that have been used in practice for predicting transformer 

temperatures (Pierce, 1992), (Pierce, 1994), (IEEE, 1995) and (Lesieutre, 1997). These 

models can be used with manufacturer-supplied coefficients (e.g. rated load, thermal 

capacity, oil exponent, etc.) provided that the necessary transformer parameters are 

monitored. If the required parameters are not monitored routinely then the models cannot 

be used. Parameters that are routinely measured include the ambient temperature, top-oil 

temperature, bottom oil temperature and load current. One model that has been employed 

is the so-called top-oil-rise model (IEEE, 1995). The top-oil-rise model is governed by 

the first order differential equation, 

 

uo
o

o dt

d
T 


                                                  (2.0) 

 

which has the solution, 

 

iiuo
oT

t

e  


)1)((                                           (2.1) 
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where, 
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fl

fl
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C
T


                                                             (2.3) 

 

ratedI

I
  K                                                              (2.4) 

and, 

:o  top-oil-rise over ambient temperature ( Co ); 

:fl  top-oil-rise over ambient temperature at rated load ( Co ); 

:u  ultimate top-oil-rise for load L ( Co ); 

:i  initial top-oil-rise for t = 0 ( Co ); 

:amb  ambient air temperature ( Co ); 

:oT  time constant at rated KVA (h); 

:flP  rated load (MVA); 

:C  is the thermal capacity of the transformer, Watt-hours/ Co  (Wh/ Co ); 

:n  is an empirically derived exponent used to calculate the variation of top or bottom-oil 

temperature with changes in load. The value of n has been specified by the manufacturer 

for each mode of cooling to approximately account for effects of change in resistance 

with change in load (IEEE, 1995). 

:K  ratio of load L to rated load;  

:R  ratio of load loss to no-load loss at rated load. 

 

If Equation 2.1 is solved, the top ( top ) oil temperature, is then given by:  

 

ambiiuambobottop
oT

t

e  


)1)((or                           (2.5) 
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To accurately predict top , we need to find the parameters oT , R  and fl . There are 

several ways to do this. One way is using linear regression along with measured data. To 

use linear regression we must first construct a discrete-time form of (2.1). Applying the 

forward Euler discretization rule, 

 

t

kk

dt

kd ooo


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]1[][][ 
                                             (2.6) 

 

where t is the sampling period. Solving we get, 
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where ][kI is the per-unit transformer current (based on the rated value of the 

transformer) at time step index k. 

 

when the load current is near its rating, or R > 1 and 12 RK , top-oil temperature rise 

over ambient temperature from (2.7) may then be given by, 
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n
oo kIKkKk 2

21 ][]1[][                                          (2.9) 

 

For comparison purposes, this model will be called Model 1. This is the model used in 

the MIT monitoring system, and has been shown to be reliable in the MIT pilot 

transformer test facility (Lesieutre, 1997). 
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Using the value n = 1 for a transformer in the forced cooling state (IEEE, 1995), Equation 

(2.7) is given by (Lesieutre, 1997): 
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In this thesis this is called Model 2. 

 

Model 2 is a simplified model that has the limitation that it does not accurately account 

for the effects of ambient temperature dynamics on top-oil temperature. It can be shown 

that the model proposed by (Lesieutre, 1997) accounts for dynamic variations in ambient 

temperature. The model proposed by Lesieutre can be viewed as a slight modification of 

model 1, 

 

uambtop
top

o dt

d
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botor                                       (2.12) 

 

where, 

u  is still defined by Equation (2.2) and amb  is the ambient temperature. Following the 

same assumptions as above, when n = 1, Equation (2.12) has the solution: 
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This model has been designated Model 3. 

 

It has been shown in (Tylavsky, 2000) that if )1( 1K  in (2.14) is replaced by another 

coefficient, 4K , the result, 

 

3
2

2amb4o1botor  top K]k[IK]k[K ]1k[K]k[                      (2.15) 

 

is a model whose performance is slightly better due to the additional free parameter. This 

model is referred to as the semi-physical model because it is not entirely based on 

physical principles. This model has not been used in the work presented in this thesis and 

has been included here for the sake of completeness. 
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CHAPTER 3 : NEURAL NETWORKS AND FUZZY LOGIC 

 

3.1 Introduction 

This chapter describes the basic concepts, operations and structures of neural networks 

and fuzzy systems, and reviews previous work as presented in the literature. 

More specifically section 3.2 will introduce: 

 

 the concepts, notations and operations of neural networks, and, 

 two of the most popular neural networks: multilayer feedforward and Elman 

recurrent neural networks. 

 

The learning rules and structures of two of the most commonly used neural networks will 

also be briefly described. 

 

In Section 3.3, the following will be introduced: 

 

 the concepts, notations and operations of fuzzy sets; 

 fuzzy inference systems which employ fuzzy �if-then� rules and fuzzy reasoning, 

and; 

 Mamdani and Takagi-Sugeno fuzzy inference systems. 

 

3.2 Neural Networks 

Artificial neural networks, commonly referred to as �neural networks� are systems that 

are intentionally constructed to make use of some organizational principles similar to 

those of the human brain. They represent a promising new generation of information 

processing systems. 
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Neural networks have a large number of highly interconnected processing elements 

(nodes or units). A neural network is a massively parallel distributed processor inspired 

by the real biological neuron in the brain; therefore, it has the ability to learn, recall, and 

generalize as a consequence of training patterns or data.   

 

3.2.1 Biological Neural Networks 

Almost 100 years ago, a Spanish histologist, Santiago Ramon y Cajal (1911), the father 

of modern brain science, realized that the brain was made up of discrete units (processing 

elements) he called neurons, the Greek word for nerves. A typical biological neuron 

is shown in Figure 3.1. A human brain consists of approximately 1110  neurons of 

different shapes. Cajal described neurons as polarized cells that receive signals via 

highly branched extensions, called dendrites, and send information along unbranched 

extensions, called axons. The end of an axon splits into strands. Each strand 

terminates in a small bulblike shape called a synapse (There are approximately 410  

synapses per neuron in a human brain), where the neuron introduces its signal to the 

neighboring neurons. The signal in the form of an electric impulse is then received by a 

dendrite. This type of signal transmission involves a complex chemical process in which 

specific transmitter substances are released from the sending side. This raises or lowers 

the electric potential inside the cell body called soma of the receiving neuron. The 

receiving neuron fires if its electric potential reaches a certain level called threshold, and 

a pulse or action potential of fixed strength and duration is sent out through the axon to 

synaptic junctions to other neurons. After firing, a neuron has to wait for a period of time 

called the refractory period before it can fire again. Synapses are excitatory if they let 

passing impulses cause the firing of the receiving neuron, or inhibitory if they let passing 

impulses hinder the firing of the neuron. A good overview of biological neural networks 

can be found in (Hassoun, 1995).  
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Figure 3.1: A biological neuron 
 

3.2.2 Artificial Neural Networks 

The goal of artificial neural network research is to develop mathematical models of 

its biological counterpart in order to imitate the capabilities of biological neural 

structures with a view to the design of intelligent control systems. 

The first mathematical model of the neuron, shown in Figure 3.2, was introduced by 

Warren McCulloch and Walter Pitts (McCulloch, 1943). It is known as the 

McCulloch-Pitts model, it does not possess any learning or adaptation capability. 

Many of the later neural network models use this model as the basic building block. 

This model consists of a single neuron, which receives a set of inputs ( nxxx  , , , 21  ). 

This set of inputs is multiplied by a set of weights ( nwww    ,,, 21  ). Here, weights are 

referred to as strengths of the synapses. These weighted values are then summed and the 

output is passed through an activation (transfer) function. The activation function is also 

referred to as a squashing function in that it squashes (limits) the permissible range of the 

output signal to some finite value. 

 

 The output y is 1 (firing) or 0 (not firing) according to whether the weighted 

input sum is above or below a certain threshold (bias)  .  
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where the weight vector w =  Tnwww          21  and the input vector x = 

 Tnxxx          21  . In this model, the weight vector and the threshold (bias) term are 

fixed. In general, TA  is the transpose of a vector A. 
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Figure 3.2: An artificial neuron 

 

3.2.3 The Perceptron 

Researchers used the McCulloch-Pitts model to develop many neural network models 

with learning and adaptation capabilities. One such model is the Perceptron as shown 

in Figure 3.3 as developed by Frank Rosenblatt in 1958. The perceptron is the 

simplest form of a neural network used for pattern classification. Basically, it 

consists of a single neuron with adjustable weights ( swi ' ) and threshold ( ). The 

main purpose is to train the perceptron until the neuron�s output y matches the 

desired output dy . To do this a learning procedure was used by Rosenblatt to adjust 

the free parameters (i.e. swi ' ) for his perceptron brain model. For an in depth 
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description of the training, formulation and convergence of the perceptron, the reader 

is directed to (Rosenblatt, 1958) and (Rosenblatt, 1962). 

 

Since Rosenblatt�s original Perceptron was introduced, many other neural network 

models, that make use of this Perceptron model, have been developed.  
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Figure 3.3: Structure of a perceptron 

 

3.2.4 Feedforward Neural Networks 

The feedforward neural network is the first and simplest type of artificial neural 

networks. In this network, the data moves in only one direction, forward, from the input 

nodes, through the hidden nodes (if any) and to the output nodes. There are no cycles or 

loops in the network. Feedforward Neural Networks are Neural Networks that utilize 

more than one neuron (node) and contain no feedback paths within the network. There 

are two different configurations of feedforward neural networks, namely Single-Layer 

Feedforward Neural Networks and Multilayer Feedforward Neural Networks. 

 

3.2.4.1 Single-Layer Feedforward Neural Networks 

A Single-Layer Feedforward Neural Network is shown in Figure 3.4. In this network, 

there is only one input layer and one output layer. A layer can be one to several neurons 

(nodes) connecting in parallel. The network is strictly feedforward, that is, there is no 
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feedback connections from the outputs back to the inputs. Usually, no connections exist 

between the neurons (nodes) in a particular layer. The network shown in Figure 3.4 is 

fully connected, that is, all inputs are connected to all the nodes. Partially connected 

networks are those where some of the connection links are missing. 
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Jy

 
Figure 3.4: Structure of a single-layer feedforward neural network 

 

3.2.4.2 Multilayer Feedforward Neural Networks (MFNN) 

A Multilayer Feedforward Neural Network is shown in Figure 3.5 is the most widely 

used neural networks, particularly within the area of systems and control (Narendra, 

1990). Similar to the single-layer feedforward neural networks, there is one input layer 

and one output layer, and no interconnections between the nodes in a particular layer. But 

different from the single-layer feedforward neural networks, multilayer neural networks 

have a number of intermediate or hidden layers (any layer between the input and output 

layers, is called a hidden layer because it is internal to the network and has no direct 

contact with the external environment) existing between the input and output layer. One, 

two or even no hidden layers are used for most applications. The small number of hidden 

layers is due to the fact that the training process becomes too long and tedious if the 

architecture of the neural network becomes large. In Figure 3.5, one hidden layer is 

present in this multilayer neural network, where          NKJNKJ ,,; . To get the 

output from the network, a set of input data is first presented as inputs to the input layer 

in turn. The outputs from this layer are then fed, as inputs to the first hidden layer, and 

subsequently the outputs from the first hidden layer are fed, as weighted inputs (the 

outputs from the first hidden layer are multiplied by the weights), to the second hidden 

layer. This process carries on until the output layer is reached. An example of a 



Chapter 3: Neural Networks and Fuzzy Logic 

 20 

feedforward neural network is the multilayer perceptron (MLP) (commonly called the 

multilayer feed forward network). The reader is referred to the discussion of other 

feedforward neural networks in (Haykin, 1994). 
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Figure 3.5: Structure of a multilayer feedforward neural network 

 

3.2.5 Recurrent Neural Networks 

The feedforward neural networks previously discussed are strictly �feedforward� 

networks in which there are no feedbacks from the output of one layer to the inputs of the 

same layer (i.e. no interconnection between the nodes within the same layer) or earlier 

layers of nodes. Also, these networks have no memory (i.e. the input vector [input data 

set] at any time instant determines the output, assuming the weights do not vary).  A 

recurrent neural network as shown in Figure 3.6 is different from the feedforward neural 

network because it has feedback connections. Similar to the use of feedback in control 

systems, recurrent neural networks take into consideration the dynamic behavior of 

systems. 

 

1y
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inputs outputshidden
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Figure 3.6: Structure of a recurrent neural network 
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The output of a node at any time instant t depends on its inputs at time instant t and those 

feedback connections whose values are a time instant earlier (t - t ), where t  is the 

sampling time. As the current output of the recurrent neural network depends on both 

current and prior inputs, recurrent networks function behave just like memories which 

have stored values. Examples of recurrent neural networks include the Elman neural 

network (Elman, 1990), the Hopfield network (Hopfield, 1982) and the Jordan network 

(Jordan, 1986). The Elman network will be discussed in Section 3.2.6 of this thesis. 

Readers may refer to (Haykin, 1994) for more details of other neural networks. 

 

3.2.6 Elman Recurrent Neural Network (ERNN) 

The Elman neural network is a partial recurrent network model that was first proposed by 

Elman (Elman, 1990). Different to the original recurrent network, an Elman network has 

a number of context nodes in the input layer as shown in Figure 3.7. The context nodes 

do nothing more than duplicate the activity of a hidden layer, at the previous time step, at 

the input of the network. This variation allows the Elman network to deal with conflicting 

patterns. (Conflicting patterns refer simply to a one-to-many mapping: that is, multiple 

outputs generated from a single input pattern.) Such a condition will confound a standard 

recurrent network. The Elman network, however, deals with such a situation by 

augmenting the input pattern with the condition of a hidden layer at the previous time 

step. Thus, the feedback units are essentially establishing a context for the current input, 

allowing the network to discriminate between �identical� input patterns that occur at 

different times. The advantage of Elman networks over fully recurrent networks is that 

back propagation (Werbos, 1974) is used to train the network while this is not possible 

with other recurrent networks where the training algorithms are more complex and 

therefore slower (El Choubassi, 2003). 
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Figure 3.7: Structure of an Elman recurrent neural network 
 

3.2.7 Neural Networks Selection 

The multilayer Feedforward neural network is one of the more commonly used structures 

within the neural network development. Applications using multilayer feedforward neural 

networks include image processing, prediction, signal processing, and robotics. The 

multilayer feedforward neural network has proven to be quite capable of approximating 

non-linear functions (Rumelhart, 1986). Recently, many papers have been published on 

the use of Feedforward Neural Networks (FNN) for a variety of applications with good 

results (Brouwer, 2004), (Mirhassani, 2005), (Thukaram, 2006) and (Marashdeh, 2006). 

To date none of the reported applications are in the field of transformer top-oil 

temperature prediction. 

 

Elman networks have been applied widely in the fields of identification, prediction and 

control. Recently, Elman networks have been found to provide good results in electric 

load forecasting (Tsakourmis, 2002), daily peak temperature forecasting (Vitabile, 2004) 

and detecting and classifying attacks in computer networks (Aquino, 2005). 

 

For the above reasons, Elman and multilayer feedforward neural networks have been 

employed to predict the transformer�s top-oil temperature in this thesis. A comparison of 

these two networks with the conventional ANSI/IEEE standard models (see Chapter 2) 

and the ANFIS model (see Chapter 4) can be found in Chapter 5. 
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3.2.8 Learning in Neural Networks 

The ability of neural networks to learn about their environment and to adaptively fine-

tune their parameters to improve the systems� performance is one of their strong points. 

Being able to model systems allows neural networks to be used in a variety of control 

systems applications. Learning in a neural network is performed to mimic the behavior of 

a biological neuron and is still undergoing intense research. Through learning a neural 

network is able to adapt itself and subsequently improve its performance in a gradual 

manner. The learning process is completed when the neural network is able to produce 

the desired outputs when different inputs are applied to it. More specifically, the neural 

network learns or adapts itself by adjusting its parameters (i.e. weights and threshold). 

There are three major learning paradigms, each corresponding to a particular abstract 

learning task. These are supervised learning, unsupervised learning and reinforcement 

learning. 

 

In this thesis, the scope is confined to modeling the transformer�s top and bottom-oil 

temperatures prediction with desired input-output data sets, so the resulting networks 

must have adjustable parameters (i.e. weights and threshold) that are update by a 

supervised learning rule. 

 

3.2.9 Supervised Learning 

Supervised learning is also known as learning with a teacher. Figure 3.8 shows the 

structure of this form of learning. The teacher (supervisor) has the knowledge of the 

system�s environment. A training data set, comprising an input vector x (input data set) 

and the corresponding desired output vector desiredy  (output data set), is presented to the 

network by the teacher. With a priori knowledge of the environment, the teacher is able 

to provide the neural network with desired outputs for the set of training data. The teacher 

is often an uncontrollable or unknown part of the learning process. The aim in supervised 

learning is to make the neural network emulate the teacher. The actual output vector 

actualy  is produced by the network, and compared with the desired outputs presented by 
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the teacher. The error )( actualdesired yye   is then used to adjust the parameters of the 

network, so as to make the neural network emulate the teacher more and more closely. 

Usually, many training cycles or epochs (from a few to hundreds) are required to 

properly train the network. When the neural network is able to emulate the teacher well 

enough, the learning process is then completed. One of the most popular supervised 

learning methods is backpropagation (also known as the backward error propagation) 

(Werbos, 1974).  The gradient descent (Boyd, 2004) and the (Levenberg, 1944, 

Marquardt, 1963) Levenberg-Marquardt methods are often used for neural network 

learning in conjunction with the backpropagation process to form two types of learning, 

they are called Levenberg-Marquardt backpropagation (Hagan, 1994) and gradient 

descent backpropagation (Jang, 1997). 
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Figure 3.8: Structure of a supervised learning. 

 

The Levenberg-Marquardt backpropagation method has been proven to be more reliable 

and faster than the gradient descent backpropagation method (Burns, 2001). In this thesis, 

the Levenberg-Marquardt backpropagation method is used for training the multilayer 

feedforward and Elman networks. 
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3.3 Fuzzy Logic 

3.3.1 Fuzzy Sets 

This section summarizes the basic concepts and notations of fuzzy set theory and fuzzy 

logic that will be needed in the following sections. Since research on the subject has been 

underway for over 30 years it is difficult to cover all aspects of developments in this area. 

A detailed treatment of the subject may be found in (Zadeh, 1965), (Zadeh, 1973) and 

(Zimmermann, 1985). 

  

The idea of fuzzy sets is introduced by way of an example. Let X be the range of 

temperature values known as the universe of discourse (or more simply universe) and its 

elements be denoted as x. Let A be a set of high temperature values that are at least C30  

and )(xf A  be the function called the characteristic function of A. 

 

)(xf A : X 0, 1,                                                          (3.2) 

 

where, 

)(xf A = 1, if x   A; 

)(xf A = 0, if x   A; 

 

This set maps universe X to a set of two elements. For any element x of universe X, the 

characteristic function )(xf A  is equal to 1 if x is ( C30 ) belonging to set A, and is 

equal to 0 if x is ( C30

 ) not belonging to set A. A is commonly known as a classical or 

crisp set which has a �clear-cut� boundary. The characteristic function )(xf A  is shown in 

Figure 3.9. It describes the crisp set of all temperature values greater than or equal 

to C30 . 
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Figure 3.9: The characteristic function )(xf A  of all temperature values greater than or equal to 

C30 . 
 

In a crisp set, the almost identical elements like the temperature values of C9.29   and 

C1.30   are treated as being completely different. On the other hand, a fuzzy set is a set 

with a vague boundary. Each value of temperature is associated with a degree of 

membership. A degree of membership may assume values between 0 and 1. That is, the 

transition from �belonging to a set� to �not belonging to a set� is gradual. A fuzzy set A 

of universe X is defined by )(xA called the membership function (MF) of x  in A. 

 

)(xA : X    1 ,0 ,                                                     (3.3) 

 

where 

)(xA = 1 if x is totally in A; 

)(xA = 0 if x is not in A at all; 

0  )(xA  1 if x is partly in A. 

 

Figure 3.10 shows the membership function )(xA  of all temperature values, e.g. the 

temperature C25  with a value of 0.7. This means the temperature of C25  corresponds 

to the property �high temperature� with a membership degree of 0.7 on a scale from 0 to 

1. The closer the membership degree is to 1 the more strongly x satisfies the property 

�high temperature�. 
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Figure 3.10: The membership function )(xA  of all temperature values 

 

Obviously the definition of a fuzzy set is a natural extension of the definition of a 

classical set in which the characteristic function is permitted to have continuous values 

between 0 and 1. If the value of the membership function )(xA  is restricted to either 0 

or 1, then A is reduced to a classical set, and )(xA  is the characteristic function of A. 

  

3.3.2 Linguistic Variables and Linguistic Values 

The following simple example serves as an introduction to the concept of linguistic 

variables and linguistic values. 

 

In everyday communication we often use short sentences, which carry the same amount 

of information as their longer counterparts. When we say that �the weather is too hot� we 

actually mean that �the weather�s temperature belongs to the too hot (very high) 

category.� Even if we knew that the temperature was exactly 
42 C, in everyday 

communication we prefer saying that �the weather is too hot,� as we would assume that 

there is a common understanding what a very high temperature in weather terms means. 

The term temperature may attain two different values: numerical ( 42 C) and linguistic 

(too hot). Variables, for which values are words or sentences, rather than numbers, are 

called linguistic variables. In this example, the variable temperature may have linguistic 

values such as very high (too hot), high, medium, low, and very low. This is why 

linguistic values are sometimes referred to as fuzzy sets. 
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A fuzzy set is uniquely specified by its membership function. To describe membership 

functions more specifically, the nomenclature used in the literature (Jang, 1997) will be 

followed. 

 
Support 
 
The support of a fuzzy set A is the set of all points x in X such that 0)( xA : 
 

support(A) = { 0)( xx A }.                                           (3.4) 

 
Core 
 
The core of a fuzzy set A is the set of all points x in X such that 1)( xA : 
 

Core(A) = { 1)( xx A }.                                               (3.5) 

 
Normality 
 
A fuzzy set A is normal if its core is non-empty. In other words, we can always find a 
point x X such that 1)( xA . 
 
Crossover points 
 
A crossover point of a fuzzy set A is a point Xx  at which 5.0)( xA : 
 

crossover(A)={ 5.0)( xx A }.                                       (3.6) 

 
Fuzzy singleton 
 
A fuzzy set whose support is a single point in X with 1)( xA  is called a fuzzy singleton 
 

Corresponding to the ordinary set operations, i.e., union, intersection and complement, 

fuzzy sets have similar operations, which were initially defined by Zadeh in (Zadeh, 

1965) . These fuzzy sets operations are containment (or subset), union (or disjunction), 

intersection (or conjunction), complement (or negation), Cartesian product and co-

product. 
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As mentioned earlier, a fuzzy set is completely characterized by its MF. A more 

convenient way to define a MF is to express it as a mathematical formula.  

 

3.3.3 Types of Membership Functions 

Eight types of membership function (MF) will be described. They are bell MF, triangular 

MF, Gaussian MF, two-sided Gaussian MF, pi-shaped MF, product of two sigmoidal 

MFs, difference between two sigmoidal MFs, and trapezoidal MF. 

 

The triangular MF, is expressed as: 
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where the parameters  b a, and c  describe the shape of the triangular MF. 

 

The trapezoidal MF is expressed as: 
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where the shape of the trapezoidal MF is decided by the parameters  c b a ,, and d . 

 

For the Gaussian MF, the expression is: 
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where the parameters  c and   decide the shape of the Gaussian MF. 

 

The two-sided Gaussian MF is expressed as: 
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where the shape is decided by the parameters 2211  , and  , cc   which correspond to the 

widths and centres of the left and right half Gaussian functions. 

 

The bell-shaped MF, is expressed as: 
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where the parameters a, b, and c describe the shape of bell-shaped MF. 

 

The product of two sigmoidal MFs is expressed as: 

 

)e1)(e1(
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)()(2211
2211 cxacxa
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where the parameters 2211  and  , , caca describe the shapes of two sigmoid MFs. 
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The difference between two sigmoidal MFs is expressed as: 

 

)e1(

1

)e1(

1
) , , , ;(

)()(2211
2211 cxacxa

cacaxf






                 (3.13) 

 

where the parameters 2211  and  , , caca  describe the shapes of two sigmoid MFs 

 

The pi-shaped MF is the product of Z shape and S shape functions. It is expressed as: 
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where c is the centre and a (  0) is the spread on each side of the MF. 

 

3.3.4 Fuzzy if-then Rules 

The goal of fuzzy systems is to mimic a human operator�s action or to make 

humanlike decisions by using the knowledge about a target system (without 

knowing its model). This is achieved with fuzzy if-then rules (also known as fuzzy 

rules, fuzzy implications, or fuzzy conditional statements). For example 

 

If x  is A then y is B                                                (3.15) 

 

where x and y are linguistic variables; A and B are linguistic values determined by fuzzy 

sets on (ranges of possible values) universe of discourses X and Y, respectively. Often 

the if part of the rule � x  is A� is called the antecedent or premise part and the then part 

of the rule �y is B� is called the consequence or conclusion part.  

 

Due to their concise form, fuzzy if-then rules are often employed to capture the imprecise 

modes of reasoning that play an important role in the human ability to make decision in 

an environment of uncertainty and imprecision. 
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The following examples describe the difference between classical and fuzzy rules 

 

A classical if-then rule uses binary logic, for example, 

 

Rule: 1 

if the temperature is C30  then the weather is hot 

Rule: 2 

if the temperature is C20

  then the weather is cold  

 

In this example the linguistic variable temperature can have any numerical value between 

0 and C50 , but the linguistic variable weather can only take either value hot or cold. In 

other words, classical rules are expressed in the true or false form. 

 

A fuzzy if-then rule of the above example can be expressed as: 

 

Rule: 1 

if the temperature is high then the weather is hot 

Rule: 2 

if the temperature is low then the weather is cold  

 

Here the linguistic variable temperature also has the range (universe of discourse) 

between 0 and C50 , but this range includes fuzzy sets, such as low, medium, and high. 

The linguistic variable weather may include fuzzy sets as cold, warm and hot. Thus fuzzy 

rules relate to fuzzy sets.  

 

Another form of fuzzy if-then rule, proposed by (Takagi, 1983), has fuzzy sets involved 

only in the premise part. The consequent part of Takagi-Sugeno (TS for short) fuzzy if-

then rule is a real-valued function of the input variables instead of a fuzzy set. A TS fuzzy 

if-then can be expressed in the following general form: 
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), , , ,(  , is  and , and , is  2111 nnn xxxfythenAxAxif                     (3.16) 

 

where  f  is a real-valued function. 

 

3.3.5 Fuzzy Reasoning 

Fuzzy reasoning, also known as approximate reasoning, is an inference (inferencing is 

the process of reasoning about a particular state of the underlying system, using all 

available knowledge to produce a best estimate of the output) procedure that derives 

conclusions from a set of fuzzy if-then rules and known facts. Before describing fuzzy 

reasoning, we need to understand the concept behind the compositional rule of inference, 

which can be found in (Zadeh, 1973).  

 

Several types of fuzzy reasoning have been used in the literature, a sample of these can 

be found in (Lee, 1990). In general, the process of fuzzy reasoning can be divided into 

four steps: 

 

1. Degree of compatibility: Compare the known facts with the antecedents of fuzzy 

rules to find the degrees of compatibility with respect to each antecedent MF. 

 

2. Firing Strength: Combine degrees of compatibility with respect to antecedent 

MFs in a rule using fuzzy AND (intersection) or OR (union) operators to form a 

firing strength that indicates the degree to which the antecedent part of the rule is 

satisfied. 

 

3. Qualified (induced) consequent MFs: Apply the firing strength to the 

consequent MF of a rule to generate a qualified consequent MF. 

 

4. Overall output MF: Aggregate all the qualified consequent MFs to obtain an 

overall output MF. 
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3.3.6 Fuzzy Inference Systems 

The fuzzy inference system is a popular computing framework based on the concepts 

of fuzzy set theory, fuzzy if-then rules, and fuzzy reasoning (Jang, 1997). It has 

found successful applications in a wide variety of fields such as automatic control, 

data classification, decision analysis, expert systems, time series prediction, 

robotics, and pattern recognition (Jamshidi, 1997). Because of its multidisciplinary 

nature, the fuzzy inference system is known by numerous other names, such as 

fuzzy expert system (Kandel, 1992), fuzzy model (Sugeno, 1988), fuzzy associative 

memory (Kosko, 1991), and simply fuzzy system. 

 

Fuzzification

Knowledge 

Base

Fuzzy Inference 

Engine

Defuzzificationcrisp 

inputs

fuzzy 

inputs
fuzzy 

outputs

crisp 

outputs

 
Figure 3.11: The basic components of a fuzzy inference system 

 

A fuzzy inference system (FIS) consists of four functional blocks as shown in 

Figure 3.11. 

1. Fuzzification: transforms the crisp inputs into degrees of match with linguistic 

values. 

2. Knowledge base: consists of a rule base and a database. A rule base contains a 

number of fuzzy if-then rules. A database defines the MFs of the fuzzy sets used in 

the fuzzy rules. 
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3. Fuzzy inference engine: performs the inference operations on the rules. 

4. Defuzzification: transforms the fuzzy results of the inference into a crisp output. 

As indicated in Figure 3.11, the FIS can be envisioned as involving a knowledge base and 

a processing stage (consisting of fuzzification, fuzzy inference engine and defuzzication 

stages). The knowledge base provides MFs and fuzzy rules needed for the process. In the 

processing stage, numerical crisp variables are the input of the system. These variables 

are passed through a fuzzification stage where they are transformed to linguistic 

variables, which become the fuzzy input for the fuzzy inference engine. This fuzzy input 

is transformed by the rules of the fuzzy inference engine to fuzzy output. The linguistic 

results are then changed by a defuzzication stage into numerical values that become the 

output of the system. 

 
Depending on the types of fuzzy reasoning and fuzzy if-then rules employed, a fuzzy 

inference system can be classified into three types: The Tsukamoto-type FIS (Tsukamoto, 

1979), Mamdani-type FIS (Mamdani, 1975) and Takagi-Sugeno-type FIS (Sugeno, 

1988). An in depth analysis of each of these fuzzy inference systems can be found in 

(Jang, 1997). 
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CHAPTER 4 : NEURAL FUZZY MODELING  

 

4.1 Introduction 

Modeling, in a general sense, refers to the establishment of a description of a physical 

system (a plant, a process, etc.) in mathematical terms, which characterizes the input-   

output behavior of the underlying system. The real system can then be explained, 

controlled, simulated, predicted or even improved. The development of reliable and 

comprehensible models is the main objective in systems modeling. 

 

To describe a physical system, such as a circuit or a microprocessor, one has to use a 

mathematical formula or equation that can represent both qualitatively (patterns) and 

quantitatively (numbers). Such a formulation is, by nature, a mathematical representation, 

called a mathematical model, of the physical system in interest. 

 

Most physical systems are extremely difficult to model by an accurate and precise 

mathematical formula or equation due to the complexity of the system structure, 

nonlinearity, uncertainty, randomness, etc. Therefore, approximate modeling is often 

necessary and indeed practical in real world applications. 

 

Intuitively, approximate modeling is always possible. However, the key questions are 

what kind of approximation is good (where the sense of �goodness� has to first be 

defined) and how to formulate such a good approximation in modeling a system such that 

it is mathematically rigorous and can produce satisfactory results in both theory and 

application. 

 

From the decriptions given in the last two chapters, it is clear that fuzzy logic can provide 

a promising alternative to mathematical modeling for many physical systems particularly 

those that are too vague or too complicated to be described by simple mathematical 

equations. When fuzzy logic is employed, the fuzzy membership functions are used as 

approximation measures, leading to the so-called fuzzy systems modeling. 
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Ever since fuzzy systems were applied in industrial applications, developers have realized 

that the construction of a well performing fuzzy system is not always easy. The problem 

of finding appropriate membership functions and fuzzy rules is often a tiring process of 

trial and error. Therefore the idea of applying learning algorithms to fuzzy systems was 

considered early.  

 

Fuzzy systems can easily handle imprecise data, and explain their decision in the context 

of the available facts in linguistic form but they are not capable of learning from the 

environment. On the other hand, neural networks are capable of learning but they cannot 

interpret imprecise data that can be helpful in making decisions. Therefore, fuzzy systems 

and neural networks are often considered as two technologies that complement each 

other. 

 

Interest in hybrid intelligent systems that combine neural networks and fuzzy systems has 

grown in the last few years and a summary may be obtained from (Abraham, 2001). 

Among these hybrid intelligent systems, there is one important system called the neural 

fuzzy (or sometimes called neuro-fuzzy) system that can learn from its environment and 

then make decisions. A neural fuzzy system is based on fuzzy inference system, which is 

trained by a learning algorithm derived from artificial neural network theory. A detailed 

treatment of neuro-fuzzy systems can be found in (Yager, 1994) and (Ying, 2000). 

 

4.2 Modeling the Transformer�s Top-oil Temperature Using an 

Adaptive Network-based Fuzzy Inference System 

 
An adaptive network here refers to as a special kind of feedforward neural network with 

supervised learning capability. It is a network structure consisting of nodes and 

directional links through which the nodes are connected. In this network, part or all of the 

nodes are adaptive, which means that the output of each node depends on the 
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parameter(s) pertaining to it. The parameter(s) should be changed to minimize a 

prescribed error measure according to the network�s learning algorithm. 

 
This Section will explain the modeling aspects of the transformer�s top-oil temperature 

prediction using the hybrid neural fuzzy learning technique ANFIS (Nguyen, 2002). The 

ANFIS stands for Adaptive Network based Fuzzy Inference System, which was 

developed by Jang (Jang, 1993). The ANFIS is based on the architecture of the Takagi-

Sugeno-type fuzzy inference system. ANFIS is one of the most popular and well 

documented neural fuzzy systems, which has a good software support (The MathWorks, 

1999). Jang (Jang, 1997) presented the ANFIS architecture and application examples in 

modeling a nonlinear function, a dynamic system identification and a chaotic time series 

prediction. Given its potential in building neural fuzzy models with good prediction 

capabilities (Cai, 2003) and (Mastacam, 2005), the ANFIS architecture was chosen for 

modeling of this work. 

 

ANFIS has a similar structure to a real multilayer feed forward neural network as shown 

in Figure 4.1. Each node performs a particular function (node function) on incoming 

signals as well as providing a set of parameters pertaining to this node. The nature of 

node functions may vary from node to node, and the choice of each node function 

depends on the overall input-output function that the adaptive network is required to 

carry out. Note that unlike the real multilayer feedforward neural network, the links in an 

ANFIS only indicate the flow direction of signals between nodes and no weights are 

associated with the links. 

 

To reflect different adaptive capabilities, both circle and square nodes are used in an 

ANFIS. A square node (adaptive node) has parameters while a circle node (fixed) has 

none. 

 

As for the transformer�s top-oil temperature prediction, the ANFIS has two input 

variables amb  and loadI ; and each input variable has three membership functions (MF) 
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321  and , , AAA  and 321  and , , BBB  respectively, then a Takagi-Sugeno-type fuzzy if-then 

rule is set up as: 

 

nloadnambnniloadiambn rIqpfthenBIAifRule      is  and  is                (4.1) 

 

where, I is an index I = 1, 2, 3 and n is the rule number; and nnn rqp  and  , are the linear 

parameters of function nf . Using the grid partitioning method (Jang, 1993), two input 

variables and three MFs for each input variable, the ANFIS for the transformer�s top-oil 

temperature prediction will have 9 ( )932   Takagi-Sugeno fuzzy rules.  Some layers of 

ANFIS have the same number of nodes and the nodes in the same layer have similar 

functions. For convenience, the output of the ith and nth node in layer l is denoted as 

ilO , and nlO ,  respectively. The function of each layer is described as follows. 
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Figure 4.1: An ANFIS model for the transformer�s top-oil temperature prediction 
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Layer 1 is the input layer. Nodes in this layer simply pass incoming signals (crisp 

values) to Layer 2. That is, 

  

ambamb
O  ,1                                                       (4.2) 

loadI IO
load

,1  

 

Layer 2 is the fuzzification layer. Every node i in this layer is an adaptive node. The 

output of nodes in this layer are presented as, 

 

)(,2 ambAi i
O  , for i = 1, 2, 3, or                                    (4.3) 

)(,2 loadBi IO
i

 , for i = 1, 2, 3. 

 

Where amb  (or loadI ) is the input to node i and )(or  ii BA  is a linguistic label (such as 

�small�, �medium�, or �large�) associated with this node. In other words, iO ,2  is the 

membership grade of a fuzzy set M (= 321321 or  , , , , , BBBAAA ) and it specifies the degree 

to which the given input amb  (or loadI ) satisfies the quantifier M. Here the membership 

function for M can be any appropriate parameterized membership function introduced in 

Section 3.3.3, for instance, the membership function is the generalized bell function: 
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Where iii cba  and  ,  are the parameters that control, respectively, the centre, width and 

slope of the bell-shaped function of node i. As the values of these parameters change the 
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bell-shaped function varies accordingly, thus exhibiting various forms of membership 

functions for fuzzy set M. Parameters in this layer are referred to as premise parameters. 

 

Layer 3 is the rule layer. Every node in this layer is a fixed node and labeled as n . 

Each node in this layer corresponds to a single Takagi-Sugeno fuzzy rule. A rule node 

receives inputs from the respective fuzzification nodes and calculates the firing strength 

of the rule it represents. Each node output is the product of all incoming signals: 

 

3. 2, ,1  ),()(,3  iIwO loadBambAnn ii
                                    (4.5) 

 

where nw  represents the firing strength, or the truth value, of the nth rule; and 

9 , ,2 ,1 n   is the number of Takagi-Sugeno fuzzy rules.  

 

Layer 4 is the normalization layer. Every node in this layer is a fixed node and labeled 

as nN . Each node in this layer receives inputs from all nodes in the rule layer, and 

calculates the normalized firing strength of a given rule. The normalized firing strength 

of the nth node is the ratio the nth rule�s firing strength to the sum of all rule�s firing 

strengths: 
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The number of nodes in this layer is the same the number nodes in layer 3. That is 9 

nodes. The outputs of this layer are called normalized firing strengths. 

 

Layer 5 is the defuzzification layer. Every node in this layer is an adaptive node and 

labeled as iZ . Each node in this layer is connected to the respective normalization node, 

and also receives initial inputs, loadamb I and  . A defuzzification node calculates the 

weighted consequent value of a given rule as, 
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)(,5 nloadnambnnnnn rIqpwfwO                                      (4.7) 

 

where nw is a normalized firing strength from layer 3 and { nnn rqp  , , } is the parameter set 

of this node. These parameters are also called consequent parameters. 

 

Layer 6 is represented by a single summation node.  This single node is a fixed node and 

labeled as  . This node calculates the sum of outputs of all defuzzification nodes and 

produces the overall ANFIS output, ,top  
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Thus, the ANFIS model for the transformer�s top-oil temperature as shown in Figure 4.1 

is functionally equivalent to a first order polynomial Takagi-Sugeno fuzzy model. It is 

not necessary to have any prior knowledge of rule consequent parameters for an ANFIS. 

An ANFIS uses a hybrid-learning rule with a combination of a gradient descent (to tune 

the membership function parameters) and a least squares estimate algorithm (to learn the 

rule consequent parameters) (Jang, 1993). 

 

ANFIS only supports Sugeno-type systems, and ANFIS must have the following 

properties (Demuth, 1998): 

 

 Be first or zeroth order Sugeno-type systems. 

 

 Have a single output, obtained using weighted average defuzzification. All output 

MFs must be the same type and either be linear or constant. 
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 Have no rule sharing. Different rules cannot share the same output MF, namely 

the output MFs must be equal to the number of rules. 

 

 Have unity weight for each rule. 

4.3 Hybrid Learning of an ANFIS 

The hybrid learning algorithm of ANFIS in Matlab can be explained as follows: each 

epoch is composed from a forward pass and a backward pass.  

 

Forward pass 

In the forward pass, a training set of input patterns [as input vectors i.e. ambient 

temperature ( amb ) and load current ( loadI )] is presented to the ANFIS, node outputs are 

calculated on layer by layer basis, and rule consequent parameters are identified by the 

least-squares estimator. In the TS type fuzzy inference, an output vector, top-oil 

temperature ( top ), is a linear function. Thus, given the values of the membership 

parameters (for example triangular MF which has 3 parameters   , ba and c ) and a 

training set of 1702 input [ amb     loadI ] and output [ top ] patterns, one can form 1702 

linear equations in terms of the consequent parameters (   , qp and )r  as: 
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or  
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where m  = input/output patterns = 1702; n  = number of nodes in the rule layer = 9 and 

ptop _  is the predicted top-oil temperature of the ANFIS when inputs amb  and loadI  are 

presented to it. 

 

Equation (4.10) can be written in a matrix form, such as 

 

ptop _ = k A                                                       (4.11) 

where ptop _ is a m 1 = 17021 predicted top-oil temperature vector, 
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 A is a m  n (1+ number of input variables) = 170227 matrix, 

 
 A = 
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And k  is an 1(n number of input variables) 1 = 271 vector of unknown consequent 

parameters, 

 

k  = [ n222111                                              rqprqprqp nn ] T                  (4.14)                 

 

In this case, the number of input � output patterns m = 1702 used in training is greater 

than the number of consequent parameters 1(n number of input variables) = 27. It 

means that we are dealing with an over-determined problem, and thus an exact solution to 

Equation (5.20) may not even exist. Instead, one should find a least-square estimate of k , 

*k , that minimizes the squared error 
2

_ ptopAk  . This is achieved using the pseudo-

inverse technique: 

 

*k = ptop
TT AAA _

1)(  ,                                          (4.15) 

 

where TA is the transpose of A , and TT AAA 1)(  is the pseudo-inverse of A  if )( AAT  is 

non-singular. 

 

As soon as the rule consequent parameters are established, we can compute an actual 

network output vector top , and the error vector e , can be determined as, 

 

e  = ptop _ top                                                   (4.16) 

 

Backward pass 

In the backward pass, the back-propagation algorithm is applied. The error signals are 

propagated back, and the antecedent parameters are updated according to the chain rule. 
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For instance, consider a correction applied to parameter a  of the bell-shaped membership 

function used in node 1A  of Figure 5.6. The chain rule can be expressed from Equation 

(5.12) as, 
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where   is the learning rate, and E  is the instantaneous value of the squared error for the 

ANFIS output neuron, i.e., 
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Similarly, the corrections applied to parameters b and c can also be obtained. 
 
 

Root Mean Square Error (RMSE) 

In order to evaluate the predicting accuracy of different models, the transformer�s top-oil 

temperature prediction uses the root mean square error (RMSE) to measure the difference 

between the predicted and measured temperature values. 
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For example with top-oil temperature,  

ptop _ = predicted top-oil temperature 

and 

mtop _  = measured top-oil temperature 

and the RMSE is given by the following equation, 

 

RMSE = 




P

i
ptopmtopP

1

2
__ )(

1
                                         (4.20) 

 

Where P is the total number of temperature samples. 

 

Although RMSE is a good tool to measure the prediction accuracy but sometimes it 

cannot give a true meaning of how well a model performs. The RMSE value can be small 

but the model does not work properly. The model comparison in this thesis is conducted 

on the basis of both peaks of error and RMSE results.  
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CHAPTER 5 : TESTING AND COMPARISON 

 

5.1 Introduction  

This Chapter presents in detail the calculation and simulation of: ANFIS, IEEE, 

multilayer feedforward and Elman neural networks. This chapter also compares the 

results of all four models and identifies the most successful model. 

 

The parameters that are routinely monitored by staff of the Power Engineering 

Department at Monash University include the: top-oil temperature, bottom oil 

temperature, ambient temperature and load current of the distribution transformers. These 

parameters are measured every 30 minutes for the 8 MVA OA-cooled transformer 

(transformer 1) and every 15 minutes for the 27 MVA FA-cooled transformer 

(transformer 2). Load current figures were rounded to their closest integer value in 

Amperes. The top-oil, bottom-oil and ambient temperature measurements were rounded 

to one tenth of a degree, Celsius. For transformer 1, the measured top-oil temperature, 

bottom-oil temperature, ambient temperature, and load current are labeled as T1_top_m , 

T1_bot_m , T1_amb_m and T1_load_mI  respectively, whereas for transformer 2 these parameters 

are labeled as T2_top_m , T2_bot_m , T2_amb_m and T2_load_mI  respectively. For more detail of 

these parameters refer to Figure A.1 to A.8. in Appendix A.  

 

The most important aspect in building a successful neural fuzzy or neural network based 

transformer temperature model is the selection of the input variables. There is no 

guaranteed rule that one could follow in this process. The selection of input variables for 

this project has been carried out almost entirely by trail and error. However, the ambient 

temperature and load current are understood to be the main factors that affect the top-oil 

temperature of transformers (Lesieutre, 1997). Therefore, in all the models considered 

herein, the inputs include the ambient temperature and load current signals while the 

output will be the top-oil or bottom-oil temperature signal unless stated otherwise. In 
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order to evaluate the prediction ability of each model, the available transformer data sets 

were divided into two halves, the first half was used as the training set, and the remaining 

half as the test set. 

  

5.2 The Transformer Temperatures Prediction Using the ANFIS Model  

This section presents the training and testing of the ANFIS model for transformer 

temperature prediction with batch (off line) learning. In a conventional fuzzy inference 

system, an expert who is familiar with the system to be modeled decides the number of 

rules. In the following simulation, however, no expert is available and as a consequence 

the parameters assigned to each input and output variable were determined by trial and 

error. For the 8 MVA transformer, the training data set covers from day 1 to 35.5, 

whereas the test set covers from day 35.5 to 71. For the 27 MVA transformer, the training 

data set was from day 1 to 4.5 and from day 4.5 to 9 was for test data set. 

 
There are many parameters one can select to obtain better results in ANFIS. For the most 

common case, these parameters are: the number and type of membership function for 

each input, the output membership function type (either �linear� or �constant�), the 

training epoch number, the training error goal, the initial step size, the step size decrease 

rate and the step size increase rate. In addition to the parameter selection one can also 

ensure that appropriate test data are used to detect overfitting of the training data set. The 

test data have the same format as the training data. Overfitting can be detected when the 

test error (difference between the measured and predicted outputs) starts increasing while 

the training error is still decreasing.  

 
The ANFIS model used in the preparation of this thesis is shown in Figure 5.1.  
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Figure 5.1: The ANFIS model used to predict top-oil temperature for the case of three MFs. 

 

5.2.1 The ANFIS Top-oil Temperature Prediction with Two Input Variables 

(8 MVA Transformer) 

A practical approach is to choose the smallest number of membership functions (MFs). 

Thus the number of MFs of each input is assigned to two. The effect of different MFs of 

input for predicting the top-oil temperature will be discussed in this section. The names 

of these MFs are bell MF, Gaussian MF, two-sided Gaussian MF, triangular MF, 

trapezoidal MF, product of two sigmoid MFs, difference between two sigmoidal MFs, 

and pi-shaped MF. 
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5.2.1.1 Standard Data Set � Bell-shaped Membership Function 
 

Prediction with the bell-shaped MF 

First the bell MF was chosen as MFs for this ANFIS. There were two inputs, amb  and 

loadI . Each input has two MFs which were named as low and high. The initial step size 

was 0.01. The comparison of the predicted and measured top-oil temperature is shown in 

Figure 5.2. The comparison of peak error, RMSE (root mean square error) and the 

training step sizes for the bell MFs using the ANFIS model are illustrated in Figure 5.3 

and 5.4. The changes in the bell MFs before and after training are shown in Figure 5.5(a) 

to (d). 
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Figure 5.2: Waveform of the measured and predicted top-oil temperature by using the ANFIS model 
with the bell MFs. 
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Figure 5.3: An error waveform of the measured and predicted top-oil temperature (transformer 1) 

using the ANFIS model with the bell MFs. 
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Figure 5.4: (a) Training and testing RMSE curves; (b) Training step sizes of the bell MFs. 
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Figure 5.5: The changes in the bell MFs before and after training. 

 
 

The above presentation, for the bell MF, has shown a number of graphs detailing features 

of the simulation conducted. The critical parameters (root-mean-square error, largest 

positive and negative difference) may be readily tabulated (table 5.1 on page 59) so that 

for other MFs only the changes in MFs before and after training graphs are presented. 
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5.1.1.2 Comparison between Membership Functions 
 
Prediction with the Triangular MF 

The triangular MF was chosen to predict the top-oil temperature of the 8 MVA 

transformer. The changes in triangular MFs before and after training are shown in Figure 

5.6(a) to (d). 
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Figure 5.6: The changes in the triangular MFs before and after training. 
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Prediction with the Gaussian MF 
 
The Gaussian MF was used to predict the top-oil temperature of the 8MVA transformer. 

The MFs before and after training are shown in Figure 5.7(a) to (d). 
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Figure 5.7: The changes in the Gaussian MFs before and after training. 
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Prediction with the Two-Sided Gaussian MF 
 
The two-sided Gaussian membership function was used to predict top-oil temperature of 

the 8 MVA transformer. Figure 5.8(a) to (d) show the two-sided Gaussian MFs before 

and after training. 
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Figure 5.8: The changes in the two-sided Gaussian MFs before and after training. 
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Prediction with the product of Two Sigmoid MFs 
 
The product of the two sigmoid membership functions was introduced to predict the top-

oil temperature of the 8MVA transformer. Figure 5.9(a) to (d) show the product of two 

sigmoid MFs before and after training. 
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Figure 5.9: The changes in the product of the two sigmoid MFs before and after training. 
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Prediction with the Trapezoidal MF 
 
The trapezoidal membership function was used to predict the top-oil temperature of the 

8MVA transformer. Figure 5.10(a) to (d) show the trapezoidal MFs before and after 

training. 
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Figure 5.10: The changes in the trapezoidal MFs before and after training. 
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Prediction with the Difference between Two Sigmoidal MFs 
 
The difference between two sigmoidal membership functions was used to predict to top-

oil temperature of the 8MVA transformer. Figure 5.11(a) to (d) show the changes in the 

two sigmoidal MFs before and after training. 
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Figure 5.11: The changes in the difference between two sigmoidal MFs before and after training. 
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Prediction with the Pi-Shaped MFs 
 
The pi-shaped membership function was used to predict the top-oil temperature of the 

8MVA transformer. Figure 5.12(a) to (d) show the pi-shaped MFs before and after 

training. 
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Figure 5.12: The changes in the pi-shaped MFs before and after training. 

 
 
Summary of All Membership Functions 
 
All RMSE and peak errors (minimum and maximum) results, processed with different 

type of membership functions, are listed in descending order in Table 5.1 for comparison 

purposes. It was found that the top-oil temperature prediction of the 8 MVA transformer 

do not vary to any great extent between the various MFs however the best prediction was 

obtained when using the Gaussian MF. The bell MF, the triangular MF, and the two-

sided Gaussian MF are only slightly poorer than the Gaussian MF. The trapezoidal and 

the pi-shaped are poorer still than the above-mentioned MFs. The poorest MFs are the 

difference between two sigmoidal and the product of two sigmoid. From Figure 5.9(d) 

and 5.11(d), the (high) MFs for the load current have led to values (degree of 
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membership) away from 1, the results appear worse. In contrast to Figure 5.5(c) and 

5.7(c) where the (high) MFs for the ambient temperature have led to values away from 1, 

but the results appear to be better. This indicated that the load current is the most 

important predictor than the ambient temperature. 

  

Name of MFs RMSE Min Max 

Product of two sigmoid 3.5730 -23.4103 21.5172 
Difference between two sigmoidal 3.5730 -23.4103 21.5172 
Pi-shaped 3.5727 -23.7039 21.4434 
Trapezoidal 3.5698 -23.6164 21.4316 
Two-sided Gaussian 3.5606 -23.3889 22.0064 
Triangular 3.5443 -23.7103 21.5504 
Bell 3.5390 -23.1811 21.5615 
Gaussian 3.5376 -23.2740 21.5182 

 
Table 5.1: The RMSE between the measured and predicted top-oil temperature of the 8 MVA 

transformer with all types of MFs. 
 

5.2.1.3 Step Size 
As shown in Table 5.1, the most of the MFs give a satisfactory result under the following 

conditions: initial step size = 0.01, step size decrease rate = 0.9, step size increase rate = 

1.1; epochs = 100. The step size decrease of 0.9 and increase rate of 1.1 were chosen 

according to the two heuristic rules (Jang, 1997). 

 

By varying the initial step size it may be possible to achieve a better RMSE. However, if 

the initial step size is large, convergence will initially be very fast, but the RMSE curve 

will oscillate about the optimum as shown in Figure 5.13 (a) and (b). Though an initial 

step size of 0.01 was chosen more or less arbitrarily, the results shown in Figure 5.13(a) 

indicate that an initial step size of 0.04 will achieve a smaller RMSE and does not lead to 

oscillation about the optimum point; therefore 0.04 is considered a better choice for this 

case.  
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Figure 5.13: (a) RMSE curves with different initial step sizes (from 0.01 to 0.34) of Gaussian MFs; (b) 

Osciallation occured when initial step size is increased. 
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5.2.1.4 Epoch Numbers 
The epoch number was set to 150 for the comparison between different. To test the 

validity of this, the Gaussian MF has been further studied using various epoch numbers. 

Figure 5.14(a) shows the waveforms of training and testing error. It is obvious that 

RMSE waveforms start descending before 50 epochs. After 70 epochs, the curves of 

RMSE tend to stabilize in value and any improvement in RMSE is small. As a practical 

consideration, increasing the epoch number simply consumes more time for computation: 

thus it is enough to train within 70 epochs. It can be observed that when the step size 

increases, RMSE decreases consistently as can be appreciated by comparing Figure 

5.14(a) with (b). 
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Figure 5.14: (a) The RMSE training and testing curves; (b) Training step sizes of the Gaussian MFs. 

 
A list of the RMSE values between the measured and predicted of top-oil temperature 

with various training epoch number is shown in Table 5.2. As the training epoch number 

increases, the forecast of top-oil temperature with ANFIS becomes better, however after 

70 epochs there is little improvement in the predicted values. It is therefore concluded 
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that 70 epochs should be sufficient for training purposes and that the use of 150 epochs 

for the comparison of MFs is valid. 

 

Epoch number RMSE Min Max 
20 3.5536 -23.2140 21.4800 
50 3.5398 -23.2695 21.5179 
70 3.5299 -23.2437 21.4646 

150 3.5293 -23.2176 21.4588 
200 3.5293 -23.2110 21.4547 
400 3.5293 -23.2110 21.4547 
600 3.5293 -23.2110 21.4547 

 
Table 5.2: RMSE and peaks values of the predicted top-oil temperature with the different number of 

training epochs for 2 Gaussian MFs in each input case. 
 

5.2.1.5 Number of Membership Functions for Each Input 
The effect of the number of Gaussian MFs for each input is discussed in this section. The 

number of Gaussian MFs for each input was set to 2 (see Figure 5.7), 3, 4, 5 and 6 

Gaussian MFs separately. Figure 5.15 to 5.18 show the changes of MFs before and after 

training for 3 (low, medium and high), 4 (low, medium, high and very high), 5 (very low, 

low, medium, high and very high) and 6 (very low, low, medium, high, very high and 

extremely high) Gaussian MFs respectively. For more details on the use of linguistic 

values (low, high, etc) refer to Section 3.3.2. 
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(c) Final MFs with training data for Ambient temp.
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Figure 5.15: The changes in the 3 Gaussian MFs for each input before and after training. 
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(c) Final MFs with training data for Ambient temp.
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Figure 5.16: The changes in the 4 Gaussian MFs for each input before and after training. 
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(c) Final MFs with training data for Ambient temp.
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(d) Final MFs with training data for Load current

very low low medium high very high  
Figure 5.17: The changes in the 5 Gaussian MFs for each input before and after training. 
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Figure 5.18: The changes in 6 Gaussian MFs for each input before and after training. 
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A list of RMSE of the predicted top-oil temperature with the different number of 

Gaussian MFs for each input can be seen in Table 5.3. Intuitively, one would expect more 

parameters would result in greater accuracy. But in this case when the number of MFs for 

each input increases from 3 to 6, the ANFIS model produces redundancy for the structure 

of data, hence the RMSE and peaks of error values increase. 

 

Membership Number RMSE Min Max 
2 3.5299 -23.2437 21.4646 
3 3.6033 -22.9690 28.6498 
4 3.6881 -22.7558 21.3954 
5 3.9091 -43.6313 21.5300 
6 8.8467 -312.5036 21.2901 

 
Table 5.3: The RMSE and peaks error values with the different number of Gaussian MFs for each. 

 

5.2.1.6 Optimization Method Used in ANFIS Training 
ANFIS uses either a hybrid learning algorithm or the back-propagation method to 

identify the MF parameters of the output. A combination of least-squares and back-

propagation gradient descent methods can be used for training fuzzy inference system 

(Sugeno type FIS) membership function parameters to model a given set of input/output 

data or just the back-propagation method. 

 

The RMSE of top-oil temperature of the 8 MVA transformer as predicted by using the 

back-propagation method and by using the hybrid learning algorithm are shown in Table 

5.4. From this table, the capability of the ANFIS model in predicting top-oil temperature 

(8 MVA transformer) using the hybrid learning algorithm is much better than when using 

the back-propagation method. This is because the hybrid method comprises of back-

propagation and Least-Square methods. 

 

Method RMSE Min Max 
Back-propagation 9.6917 -41.8128 46.9765 

Hybrid 3.5299 -23.2437 21.4646 
 

Table 5.4: The RMSE and peaks error values by the back-propagation method and the hybrid 
learning algorithm. 
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5.2.1.7 Output Membership Function Type 
ANFIS usually uses linear or constant to identify the output MF type. The linear or the 

constant can be used for training fuzzy inference system MF parameters to model a given 

set of input/output data.  

In the constant output MF, a typical fuzzy rule has the following form: 

if x is A and y is B then z = k 

where A and B are the fuzzy sets while k is an exact constant.  

In the linear output MF, it has the following format: 

If x is A and y is B then z = px + qy + r 

where p, q and r are constants. 

 

The RMSE values of the predicted top-oil temperature by linear and constant output MF 

are shown in Table 5.5. 

 

The types of output MF RMSE Min Max 
The constant output MF 3.5713 -23.5180 21.2769 
The linear output MF 3.5299 -23.2437 21.4646 

 
Table 5.5: RMSE of the predicted top-oil temperature by the linear and constant output. 

 

From Table 5.5, it is evident that the effect of predicting top-oil temperature by the output 

MF type as linear is better than by the output MF type as constant. 

 

5.2.1.8 ANFIS Model Validation 
As mentioned in Section 5.1, one half of the total samples are used as the training data 

and the other half the test (validation) data. The test data are to detect any overfitting of 

the training data set. The test data has the same format as the training data. Overfitting 

can be detected when the testing error starts increasing while the training error is still 

decreasing. 

 

Figure 5.19(a) shows the RMSE curves of the test and training data. Overfitting cannot be 

detected because when the training error slightly decreases from 3.39 to 3.38, the test 
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error also descends slightly from 3.56 to 3.55. The changes in the Gaussian MFs of the 

training and test data before and after training are shown in Figures 5.20(a) to (f). 
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Figure 5.19: (a) RMSE curves; (b) Training step size of Gaussian MFs 
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(c) Final MFs with training data for Ambient temp.
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(d) Final MFs with training data for Load current
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Figure 5.20: The changes in the Gaussian MFs of the training data and test data before and after 

training. 
 

5.2.1.9 Summary 
This Chapter initially illustrated the range of data generated by the standard model and 

then produced selected data for variations of that model thereby demonstrating that the 

model chosen (2 Gaussian MFs, initial step size of 0.01, 70 epochs, hybrid learning type, 

linear output) was the one best suited to predict the top-oil temperature. A summary of 

particular conclusions reached in this section is listed below: 

 

 The Gaussian MF type is the best choice of MF for top-oil temperature prediction as 

shown in Table 5.1. 

 

 Increasing the number of training epochs, improves the RMSE performance. Even 

though error is reduced further after 70 epochs, the improvement in the prediction of 

the top-oil temperature is small. On the other hand, increasing the number of epochs 
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consumes more time. Therefore, it was considered sufficient to train within 70 

epochs. 

 

 The number of MFs for each input that gave the best match for the top-oil 

temperature data was 2 as shown in Table 5.3. 

  

 A comparison of the result of varying the number of MFs for each input reflects the 

complexity of ANFIS for choosing parameters. When the number of MFs for each 

input is 3, 4, 5 or 6, it produces redundancy for the structure of data, therefore the 

RMSE increases.  

 

It is important for the structure of the system used to match the available data. Therefore, 

to build a model with ANFIS, the choice of data must express all the properties of the 

system. The choice for the system structure should have enough parameters to reflect all 

the characteristics. However, the number of parameters should also be restrained. It is by 

no means true that the more complex the structure, the better the effect. The structure 

should match the data. A decision needs to be made on the structure based on experience 

or by changing it to observe the effect in a special application. For the optimization 

method, the effect of choosing a combination of least-squares and back-propagation 

gradient descent methods is much better than that of the back-propagation method alone. 

Choosing the linear output MF type is much better than choosing the constant output MF 

type. It can be observed from Figure 5.19(a) that the changes in RMSE between the test 

data and the training data all decrease and match well after training. This establishes that 

no overfitting has occurred in the ANFIS training process. A number of large peaks error 

values occurred in the predicted top-oil temperature values because the load current 

values have dropped unexpectedly. 

 

The ANFIS prediction of top-oil temperature of the 8 MVA transformer has produced the 

following results: RMSE = 3.5299, minimum peak error = -23.2437 and maximum peak 

error = 21.4646 under the following conditions: number of MFs = 2 Gaussian MFs (low 

and high), initial step size = 0.04, step size decrease rate = 0.9, step size increase rate = 
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1.1, epoch number = 100 epochs, learning type = hybrid and linear type output. However, 

the peaks error values are high when the top-oil temperature patterns vary rapidly as in 

the case on days 13, 21, 28, 35, 43 and 71 due to the sudden decrease of load ( Figure A.1 

in appendix A). In order to overcome this problem, one can increase the number of input 

variables (Jang, 1993).  

 

In the next section an extra input variable (bottom-oil temperature)1 (refer to Figure A.2 

in appendix A) has been added to the input vector (input data set) to investigate whether 

an improved RMSE can be achieved.  

 

5.2.2 The ANFIS Top-oil Temperature Prediction with Three Input Variables 

(8 MVA Transformer) 

The ANFIS model now has three inputs, amb  , bot  and loadI . The input and output data 

sets have been divided into two halves similar to the ANFIS with two input variables 

case. Each input has two MFs designated low and high. As a result of the findings for the 

two input case the following parameters were set: initial step size 0.04, step size decrease 

rate = 0.9, step size increase rate = 1.1, epoch number = 100 epochs, the learning type is 

hybrid with linear type output. 

 

The measured and predicted top-oil temperature of the 8 MVA transformer is shown in 

Figure 5.21 (see Appendix B for the Matlab source codes). 

 

The comparison of peak error, RMSEs (root mean square error) and the training step 

sizes are illustrated in Figure 5.22 and Figure 5.23(a) and (b). From Figure 5.22, one can 

clearly see that the RMSE decreases significantly from 3.5299 (two input variables) to 

0.8915 (three input variables). The changes in the Gaussian MFs of the training and test 

data before and after training are shown in Figures 5.24(a) to 5.24(i).  

                                                 
1 Using the bottom-oil temperature to predict the top-oil temperature is not practical for a real system as it 
is just as simple to measure the top-oil temperature as it is to measure the bottom-oil temperature. However 
the success of the bottom-oil temperature in predicting the top-oil temperature demonstrates the value of 
the technique where a strong link exists between the predictor and the parameter being predicted. 
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Figure 5.21: The measured and predicted of the top-oil temperature (8 MVA transformer) by using 
the ANFIS model with 3 inputs. 



Chapter 5: Testing and Comparison 

 74 

-5

-4

-3

-2

-1

0

1

2

3

4

5

35 40 44 48 52 56 60 65 69

Time (days)

T
em

pe
ra

tu
re

 (
ºC

)

minimum error = - 4.3810 ºC 

maximum error = 4.0526 ºC

 
Figure 5.22: The difference between the measured and predicted top-oil temperature (8 MVA) using 

the ANFIS model with 3 inputs. 
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Figure 5.23: (a) RMSE curves; (b) Training step size of Gaussian MFs. 
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(b) Initial MFs for Bottom oil temp.
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(c) Initial MFs for Load current
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(d) Final MFs with training data for Ambient temp.
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(e) Final MFs with training data for Bottom oil temp.
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(f) Final MFs with training data for Load current
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(g) Final MFs with test data for Ambient temp.
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(h) Final MFs with test data for Bottom oil temp.
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Figure 5.24: The changes in the Gaussian MFs of the training data and test data before and after 

training. 
 
 
From Figure 5.21, the 3 input ANFIS model demonstrates that by using more input 

variables, the performance is improved dramatically. Although, a small overfitting 

occurred between the training and testing RMSE curves this can be considered 

insignificant because the results shown in Table 5.6 confirmed that in this case 3 inputs is 

better than 2. This positive result does not indicate that including more input variables 

necessarily leads to an improved performance. Inputs should be carefully selected by 

using experience from the expert, or by trial and error. For the 8 MVA transformer, the 

bottom oil temperature has a similar pattern to that of the top-oil temperature and 

therefore, was a logical choice for the input selection process for the ANFIS. 

 
The final results for both ANFIS with 2 and 3 input variables are summarized in Table 
5.6. 
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Number of inputs RMSE Min Max 
2 3.5299 -23.2437 21.4646 
3 0.8915 -4.381 4.5026 

 
Table 5.6: The RMSE values for the top-oil temperature (8 MVA transformer) using the ANFIS 

model with the different number of input variables. 
 

5.2.3 The ANFIS Bottom-oil Temperature Prediction (8 MVA Transformer) 

A further test of the capability of ANFIS model used in predicting the top-oil temperature 

was achieved by application to the bottom oil temperature data. The training and test data 

sets remain the same as in the top-oil temperature prediction for the ANFIS model with 2 

variables. An extra variable (top-oil temperature) was added to the ANFIS model with 3 

input variables. 

 

Two Input Variables 
 
Following the same methodology as in Section 5.1.1, the prediction of bottom oil 

temperature of the 8 MVA transformer produced the following results: RMSE = 2.9099, 

minimum peak error = -15.6571 and maximum peak error = 14.8042. These results were 

obtained under the following conditions: number of MFs = 2 Gaussian MFs (low and 

high), initial step size = 0.04, step size decrease rate = 0.9, step increase rate = 1.1, epoch 

number = 50 epochs, learning type = hybrid and linear type output. Similar to the top-oil 

temperature prediction case, the ANFIS prediction of bottom oil temperature does show 

poor performance where the load current has a sudden change in its value. Figure 5.25(a) 

shows that no overfitting has occurred during the ANFIS training process.  

 
Each of the RMSE, minimum and maximum peak error values show improvement over 

those for the top temperature predictions as discussed in Section 5.1.1.1. This is not a 

surprising result since the temperature at the bottom of the transformer is less extreme 

than at the top, which is a direct consequence of heat rising. The bottom temperature 

therefore is both less extreme than the top and takes a longer period of time to vary: 

hence the model is better able to cope with temperature changes when they occur.  
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Figure 5.25: (a) RMSE curves; (b) Training step sizes of the Gaussian MFs. 

 
Three Input Variables 
Follow the same manner as in Section 5.1.2, an extra input variable (top-oil temperature)2 

(Figure A.1 in appendix A) has been added to the ANFIS model. 

 

Now, with the same conditions as in the ANFIS model for bottom oil temperature (8 

MVA transformer) prediction with 2 input variables. There was a small overfitting as 

indicated on graph in Figure 5.26(a) which once again can be considered insignificant by 

comparing the overall result in Table 5.7. The measured and predicted bottom oil 

temperature waveforms are shown in Figure 5.27, whereas the difference between these 

two waveforms is shown in Figure 5.38. 

                                                 
2 Using the top-oil temperature to predict the bottom-oil temperature is not practical for a real system as it 
is just as simple to measure the bottom-oil temperature as it is to measure the top-oil temperature. However 
the success of the top-oil temperature in predicting the bottom-oil temperature demonstrates the value of 
the technique where a strong link exists between the predictor and the parameter being predicted. 
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Figure 5.26: (a) The changes in RMSE of the training and test data; (b) Training step sizes. 
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Figure 5.27: The measured and predicted bottom oil temperature (8 MVA transformer) by using the 
ANFIS model with 3 input variables. 
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Figure 5.28: The difference between the measured and predicted bottom oil temperature (8 MVA 

transformer). 
 
 

Number of inputs RMSE Min Max 
2 2.9099 -15.6571 14.8042 
3 0.7617 -3.9086 2.5578 

 
Table 5.7: The RMSE values for the bottom oil temperature (8 MVA transformer) prediction by 

using the ANFIS model with three input variables. 
 

5.2.4 The ANFIS Top-oil Temperature Prediction (27 MVA Transformer) 

In this Section, the data of the 27 MVA transformer were used to further examine the 
capability of the ANFIS model. 
 
Two Input Variables 
Following the same methodology as in Section 5.1.1, the ANFIS prediction of top-oil 

temperature for the 27 MVA transformer has produced the following results: RMSE = 

2.9608, minimum peak error = -6.6134 and maximum peak error = 2.7499. These results 

were obtained when simulating ANFIS under the following conditions: number of MFs = 

2, triangular MFs (low and high), initial step size = 0.04, step size decrease rate = 0.9, 
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step increase rate = 1.1, epoch number = 20 epochs, learning type = hybrid and linear 

type output. It should be noted that some parameters have changed from those used for 

the 8 MVA transformer data set. These are: the triangular MF and an epoch number of 

20. These were selected for the data set of the 27 MVA transformer from a trial and error 

process as was the case for the 8 MVA transformer. 

 

The ANFIS prediction with 2 input variables has suffered a similar problem to that of the 

ANFIS with 2 input variable of the 8 MVA transformer, that is the peak error values are 

high in comparison to the maximum measured value of the top-oil temperature is 

28.4 Co . 

 
Three Input Variables 
Following the same methodology as in Section 5.1.2, an extra input variable (bottom oil 

temperature) (see Figure A.6) has been added to the input data set of the ANFIS model.   

 

The same conditions as in the ANFIS prediction of 2 input variables case were used here. 

The measured and predicted waveforms of top-oil temperature of the 27 MVA 

transformer are shown in Figure 5.29 and the error wave form can be seen in Figure 5.30. 

The changes in the Gaussian MFs of the training and test data before and after training 

are shown in Figures 5.31(a) to (i). For comparison purposes, the final results for both 

ANFIS with 2 and 3 input variables are summarized in Table 5.12. 
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Figure 5.29: The measured and predicted waveforms of top-oil temperature (27 MVA transformer) 
with ANFIS (3 inputs) of triangular MFs. 
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Figure 5.30: The error waveform between the measured and predicted top-oil temperature (27 MVA 

transformer) by using the ANFIS model with 3 input variables. 
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(a) Initial MFs for Ambient temp.
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(b) Initial MFs for Bottom oil temp.
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(c) Initial MFs for Load current
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(d) Final MFs with training data for Ambient temp.
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(e) Final MFs with training data for Bottom oil temp.
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(f) Final MFs with training data for Load current
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(g) Final MFs with test data for Ambient temp.
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(h) Final MFs with test data for Bottom oil temp.
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Figure 5.31: The changes in triangular MFs of training and test data before and after training. 

 
 

Number of inputs RMSE Min Max 
2 2.9608 -6.6134 2.7499 
3 0.4492 -1.1554 0.6953 

 
Table 5.8: RMSE and peak error values of the measured and predicted top-oil temperature with 

ANFIS of 2 and 3 input variables. 
 

5.2.5 The ANFIS Bottom-oil Temperature (27 MVA Transformer) 

 
Two Input Variables 
Following the same methodology as in Section 5.1.2 the ANFIS prediction of bottom oil 

temperature of transformer 27 MVA has produced these results: RMSE = 2.9222; 

minimum peak error = -6.6692 and maximum peak error = 2.5354. This was carried out 

under the following conditions: number of MFs = 2 triangular MFs (low and high); initial 

step size = 0.04; step size decrease rate = 0.9; step increase rate = 1.1; epoch number = 20 

epochs; learning type = hybrid and linear type output. However, similar to the top-oil 



Chapter 5: Testing and Comparison 

 84 

temperature (27 MVA transformer) the ANFIS prediction with 2 input variables has a 

poor performance in terms of peak errors. 

 
Three Input Variables 
An extra input variable (top-oil temperature) (see Figure 5.52) has been added to the 

input data set.  The input and output data sets have been divided into two halves. One half 

of the data (from day 1 to day 4.5) is used for training, the other half (from day 4.5 to day 

9) is used for testing. 

 

The same conditions (number of MFs = 2 triangular MFs (low and high); initial step size 

= 0.04; step size decrease rate = 0.9; step increase rate = 1.1; epoch number = 20 epochs; 

learning type = hybrid and linear type output) as in the ANFIS prediction of 2 input 

variables case.  

 

The result of predicting top-oil temperature of the 27 MVA with ANFIS (3 input 

variables) is shown Figure 5.32 and the error waveform between the measured and 

predicted can be seen in Figure 5.33. 
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Figure 5.32: The measured and predicted of the bottom oil temperature using ANFIS with 3 input 
variables. 
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Figure 5.33: The difference between the measured and predicted bottom oil temperature (27 MVA 

transformer) using ANFIS with 3 inputs. 
 
 
For comparison purposes, the results of using ANFIS with 2 and 3 input variables are 
summarized in Table 5.9. 
 

Number of inputs RMSE Min Max 
2 2.9222 -6.6692 2.5354 
3 0.6449 -1.9242 0.9824 

 
Table 5.9: RMSE and peak error values of bottom oil temperature prediction using ANFIS with 2 

and 3 inputs. 
 

5.2.6 Summary and Analyses 

 
From the above investigation and comparisons, the following summary and analyses can 

be generated: 

 

 Eight different MFs were used to predict the transformer�s temperatures. They 

were bell MFs, triangular MFs, Gaussian MFs, trapezoidal MFs, two-sided 

Gaussian MFs, product of two sigmoidal MFs, different between two sigmoidal 
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MFs, and pi-shaped MFs. In predicting top and bottom oil temperatures, the 

differences in these MFs are very small, as reflected in the RMSE values. In 

predicting the top and bottom oil temperatures of the 8 MVA transformer, the 

Gaussian MFs produce the smallest error. However, with the 27 MVA 

transformer, the triangular MFs is the best for predicting top and bottom oil 

temperatures. The Gaussian MFs have a continuous differential function whereas 

the triangular MFs do not. This indicates that the temperature patterns of the 27 

MVA transformer are simpler than the 8 MVA transformer. 

 

 When ANFIS is used to predict the top and bottom oil temperatures of the 8 MVA 

and 27 MVA transformers, the effect of choosing the combination of least-squares 

and back-propagation gradient descent method is much better than that of the 

back-propagation method alone.  

 

 Through increasing the number of the training epochs, the temperature prediction 

improves but consumes more time. For the top-oil temperature (8 MVA 

transformer) prediction, after 100 epochs, the RMSE curve tended to stabilize. 

Even though the error is reduced after 100 epochs, the difference is insignificant. 

For bottom oil temperature prediction (8 MVA transformer) prediction, it is 

sufficient to train within 50 epochs. For the top and bottom oil temperatures (27 

MVA transformer), 20 epochs have shown to be sufficient. 

 

 For both transformers, the linear output MF produces much better results than the 

constant output MF.  

 

 For both transformers, the hybrid learning algorithm is shown to be superior in 

predicting top and bottom oil temperatures. 

 

 The step size of training data for all MFs in ANFIS is related to the RMSE. If the 

RMSE decreases, the step size increases. However, if the RMSE oscillates, the 
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step size decreases. When the initial step size number is increased, the RMSE is 

likely to oscillate. 

 

 Choosing the number of MFs for each input reflects the complexity of ANFIS for 

choosing parameters. For both transformers, the number of MFs for each input is 

2 and that is enough to reflect the structure of the top and bottom oil temperature 

data. However when the number of MFs for each input is increased, it produces 

redundancy for the structure of top and bottom temperature data. It is important 

that the structure of the system matches the data. Therefore, to build the model 

with ANFIS, the choice of data must express all the properties of the system. It is 

by no means true that the more complex the structure, the better the prediction.  

 

 The ANFIS model was tested with 2 and 3 input variables. When using 3 inputs, 

the prediction capability of ANFIS is extremely good. This result may simply 

reflect the fact that the third input (bottom oil temperature to predict the top-oil 

temperature or the top-oil temperature to predict the bottom oil temperature) was 

more directly correlated with the parameter being predicted. Table 5.10 provided 

the summary of ANFIS used in predicting the top and bottom oil temperatures. 

 
 

TRANSFORMER 
Type of 

temperatures 
Number 
of inputs RMSE 

Min. 
peak 
error 

Max. 
peak 
error 

2 3.5299 -23.2437 21.4646 
top-oil  

3 0.8915 -4.3810 4.5026 

2 2.9099 -15.6571 14.8042 

8 MVA 
transformer 

bottom oil 
3 0.7617 -3.9086 2.5578 

2 2.9608 -6.6134 2.7499 
top-oil  

3 0.4492 -1.1554 0.6953 

2 2.9222 -6.6692 2.5354 

27 MVA 
transformer 

bottom oil 
3 0.6449 -1.9242 0.9824 
 

Table 5.10: ANFIS performances in predicting the top and bottom oil temperatures with different 
number of inputs. 

 



Chapter 5: Testing and Comparison 

 88 

5.3 Transformer Temperature Prediction Using Neural Network 

Models 

 

This section presents detailed simulation and results for the prediction of top-oil 

temperature using two specific neural network models: Multilayer Feedforward Neural 

Network (MFNN) and Elman Recurrent Neural Network (ERNN). 

 

The determination of neural network architecture is a designer-defined process. In most 

cases it follows a heuristic approach where several networks have various parameters 

[type of activation functions, number of hidden layers, and number of nodes (neurons)] in 

the hidden layer that are trained: the best performing network among them is then 

selected.  

 

This section also provides some guidelines as to how to construct neural network models 

for the prediction of top-oil temperature using Matlab. 

 

 

Network Structures 

The commonly used MFNN and ERNN are shown in Figure 5.34 and 5.34 respectively. 

It has been established that a network of these types can approximate any continuous 

function as closely as desired (Haykin, 1994). With appropriate arrangement of the input 

variables one can obtain different system models from these neural networks between the 

input(s) and the output(s). Though neural networks can have any number of hidden 

layers, typically one hidden layer is used. Otherwise, the number of possible interactions 

between nodes may make the model unnecessarily complex and difficult to train.  
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Figure 5.34: A MFNN for case of M inputs, 1 hidden layer (N hidden nodes) and 1 output layer. 
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Figure 5.35: An ERNN for case of P inputs, 1 hidden layer (J hidden nodes) and 1 output layer. 

 

Training of Neural Networks 

In this thesis, the Levenberg-Marquardt algorithm is used for the training of Multilayer 

feedforward and Elman neural networks in the prediction of top-oil temperature for the 

simple reason that it is faster than the other techniques in Matlab (The MathWorks, 

1999). 

 

Determining the number of hidden nodes 

A combined consideration of training error and testing error has demonstrated to be an 

appropriate criterion for determining the number of hidden nodes in neural networks 

(Cortes, 1995). Let P be the total number of training samples and hn be the number of 

hidden nodes. In the top-oil temperature prediction case, P is fixed and hn is determined 

by the following principle. Consider the case of hn being much less than P, both training 
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and testing errors are large because the number of parameters available to model the 

irregularities of the training data is small. Increasing hn allows the model to more closely 

represent the training data (as measured by smaller training error). The training error will 

continue to decline as hn is increased and eventually, may even reach zero. However, the 

testing error will initially decrease as hn increases but at some stage, "nh , the testing error 

will start increasing. The rise of testing error is due to overfitting. Therefore, "nh should 

be the appropriate number of hidden nodes, which normally will result in both smaller 

training and testing errors. In this thesis for the neural networks application of top-oil 

temperature prediction, the process described above for determining the number hidden 

nodes was used.  

 

In the case of determining the optimal number of hidden nodes, for each hn , ten different 

training processes were executed in order to eliminate the random effect of arbitrary 

initialization of neural network weights. Therefore, the optimal number of hidden nodes 

was chosen from averaged minimum training and testing errors. The number of hidden 

nodes was varied from 2 to 20 in order to choose the right number of hidden nodes.  

 

5.3.1 The MFNN Top-oil Temperature Prediction with Two Input Variables 

(8 MVA Transformer) 

 

This network has 2 inputs (ambient temperature and load current), 1 hidden layer, and 1 

output layer (top-oil temperature). The activation function used in each node of a layer 

can be any standard function (The MathWorks, 1999) that provides a meaningful 

relationship between the input and output. Several feedforwad neural networks with 

different activation functions (i.e. linear, symmetric saturation linear, logarithmic 

sigmoid, hyperbolic tangent sigmoid, symmetric hard limit, etc) and number of nodes 

within the hidden layer were tried in order to find the architecture that modeled the data 

most effectively. It was found that the logarithmic sigmoid function (logsig) is suitable 

for each hidden node, whereas the linear transfer function (purelin) is suitable for the 
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output node. The network was then trained by the implementation of backpropagation 

algorithm with Levenberg-Marquardt technique in Matlab. The study commenced by 

using the smallest number of hidden nodes.  Table 5.11 Shows the RMSE and peak error 

values of the measured and predicted top-oil temperature of the 8 MVA transformer by 

using a two layer feedforward neural network with different number of hidden nodes in 

the in hidden layer.  

 

Number of hidden 
nodes RMSE Min Max 

2 3.6834 -23.1107 21.9852 
4 3.6984 -22.1694 21.5040 
6 3.6508 -23.9462 21.9656 
8 3.5667 -23.0794 21.9265 
10 3.6459 -23.3562 21.4455 
12 3.6611 -27.8921 21.3158 
14 3.6183 -24.3391 21.4898 
16 3.6946 -27.4761 21.5601 
18 3.6588 -22.7552 21.3557 
20 3.6339 -23.3131 21.5840 

 
Table 5.11: The RMSE and peaks error values for a 2-layer feedforward neural network with 

different number of hidden nodes of top-oil temperature prediction (8 MVA transformer). 
 

The multilayer feedforward neural network prediction of top-oil temperature of 

transformer 8 MVA has produced the following results of RMSE = 3.5667 with 

minimum peak error = -23.0794 and maximum peak error = 21.9265 under the following 

condition: number of hidden nodes = 8 (logsig); learning rate = 0.01; epoch number = 

100 epochs; output node = 1 (purelin). 

 

In the next section an extra input variable (bottom oil temperature) (see Figure A.2 in 

appendix A) has been added to the input vector (input data set) to investigate whether an 

improved RMSE can be achieved. 
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5.3.2 The MFNN Top-oil Temperature Prediction with Three Input Variables 

(8 MVA Transformer) 

The MFNN model now has three inputs, amb  , bot  and loadI . The input and output data 

sets have been divided into two halves similar to the MFNN with two input variables 

case. As a result of the findings for the two input case the following parameters were set: 

number of hidden nodes = 8 (logsig); learning rate = 0.01; epoch number = 100 epochs; 

output node = 1 (purelin). Figure 5.36 shows the measured and predicted top-oil 

temperature (see Appendix C for the Matlab source codes). The error waveform is shown 

in Figure 5.37. Table 5.12 shows the comparison between the MFNN with 2 and 3 input 

variables. 
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Figure 5.36: The measured and predicted top-oil temperature (8 MVA transformer) by using MFNN 
with 3 inputs. 

 



Chapter 5: Testing and Comparison 

 93 

-5

-4

-3

-2

-1

0

1

2

3

4

5

35 40 44 48 52 56 60 65 69

Time (days)

T
em

pe
ra

tu
re

 (
ºC

)

minimum error = -3.9878 ºC 

maximum error = 4.3841 ºC

 
Figure 5.37: The error waveform of the predicted top-oil temperature using MFNN with 3 inputs. 

 

Number of inputs RMSE Min Max 
2 3.5667 -23.0794 21.9265 
3 0.8783 -3.9878 4.3841 

 
Table 5.12: A comparison of the predicted top-oil temperature (8 MVA transformer) by using MFNN 

with 2 and 3 input variables. 
 

5.3.3 The MFNN Bottom-oil Temperature Prediction (8 MVA Transformer) 

An additional test of the capability of the MFNN model used in predicting the top-oil 

temperature was achieved by application to the bottom oil temperature data. The training 

and test data sets remain the same as in the top-oil temperature prediction for the MFNN 

model case with 2 variables. An extra variable (top-oil temperature) was added for the 

MFNN model with 3 input variables case. 

 

The following parameters were set for the MFNN model with 2 and 3 input variables: 

number of hidden nodes = 8 (logsig); learning rate = 0.01; epoch number = 100 epochs; 
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output node = 1 (purelin). Table 5.13 shows the comparison between the MFNN with 2 

and 3 inputs. 

 

Number of inputs RMSE Min Max 
2 2.9361 -15.4849 15.4849 
3 0.7909 -3.8191 4.1215 

 
Table 5.13: A comparison of the predicted bottom-oil temperature (8 MVA transformer) by using the 

MFNN with 2 and 3 input variables. 
 

5.3.4 The MFNN Top-oil Temperature Prediction (27 MVA Transformer) 

The data of the 27 MVA transformer were used to further examine the ability to forecast 

of the MFNN model in this Section. 

 

Following the same methodology as in Section 5.3.1, the optimum values of RMSE and 

peaks of error were achieved under the following conditions: number of hidden nodes = 4 

(logsig), learning rate = 0.01, epoch number = 100 epochs and output node = 1 (purelin). 

The results of top and bottom-oil temperatures prediction for the 27 MVA transformer 

with 2 and 3 input variables are shown in Table 5.14 and 5.15 respectively. The source 

code for the three input variables case can be referred to Appendix C. 

 
Number of inputs RMSE Min Max 

2 3.3310 -7.6340 1.8398 
3 0.2631 -1.1171 0.3642 

 
Table 5.14: A comparison of the predicted top-oil temperature (27 MVA transformer) by using the 

MFNN with 2 and 3 input variables. 
 
 

Number of inputs RMSE Min Max 
2 3.0615 -6.9128 2.1698 
3 0.3154 -0.5323 0.9681 

 
Table 5.15: A comparison of the predicted bottom-oil temperature (27 MVA transformer) by using 

the MFNN with 2 and 3 input variables. 
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5.3.5 The ERNN Temperatures Prediction (8 MVA Transformer) 

Following the same procedure as in Section 5.3.1, the ERNN model was used to predict 

the top and bottom-oil temperatures for the 8 MVA transformer. The optimum values of 

RMSE and peaks of error were obtained under the following conditions:  number of 

hidden nodes = 8 (logsig); learning rate = 0.01; epoch number = 100 epochs; output node 

= 1 (purelin). Table 5.16 shows the comparison between the ERNN with 2 and 3 input 

variables. Refer to Appendix D for the Matlab source codes. 

 

Type of 
temperatures 

Number 
of inputs RMSE MIN MAX 

2 3.6439 -23.983 21.9549 
Top-oil 

3 0.9467 -3.2013 4.5050 
2 2.9579 -15.532 14.7587 

Bottom-oil 
3 0.8199 -3.5119 3.5131 

 
Table 5.16: A comparison of the predicted temperatures for the 8 MVA transformer by using the 

ERNN model with 2 and 3 input variables. 
 

5.3.6 The ERNN Temperatures Prediction (27 MVA Transformer) 

Following the same procedures as in Section 5.3.1, the optimum values of RMSE and 

peaks of error were achieved under the following conditions:  number of hidden nodes = 

4 (logsig); learning rate = 0.01; epoch number = 100 epochs; output node = 1 (purelin). 

Table 5.17 shows the comparison between the ERNN with 2 and 3 input variables. 

 
Type of 

temperatures 
Number 
of inputs RMSE MIN MAX 

2 3.0149 -6.7041 1.1003 
Top-oil 

3 0.3482 -1.0118 0.7040 
2 2.9828 -6.3518 1.6420 

Bottom-oil 
3 0.3043 -0.4985 1.0560 

 
Table 5.17: A comparison of the predicted temperatures for the 27 MVA transformer by using the 

ERNN model with 2 and 3 input variables. 
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5.3.7 Summary 

In this Section, two different neural network models (MFNN and ERNN) were applied to 

the prediction of transformer temperatures. The two models performed comparably in 

terms of RMSEs and peaks of error. The MFNN provided the best performance in 

predicting the top-oil temperature of the 27 MVA transformer with: RMSE = 0.2631, 

minimum peak error = -1.1171 (degree C) and maximum peak error = 0.3642 (degree C). 

In choosing the right network structure, different number of hidden nodes and type of 

activation functions for each node were trained and tested. The Levenberg-Marquardt 

algorithm was used in training of all the networks. This algorithm was indicated in (The 

MathWorks, 1999) to provide fast and stable training results when compared to the other 

available methods.  

 

5.4 The Transformer Temperatures Prediction Using the Conventional 

Models 

This section describes the calculation and analysis of the conventional approaches in 

predicting the top and bottom oil temperature of power transformers. 

 

5.4.1 Top-oil Temperature Prediction Using Models 2 and 3 (27 MVA 

Transformer) 

The calculation of the transformer�s top-oil temperature based on Model number 2 is 

given by Equation (2.10). For FA cooling mode, n = 0.9 (IEEE, 1995), Equation (2.10) 

becomes, 
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where, 
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:top top-oil temperature, Co  

:fl top-oil temperature at rated load, Co  

:amb ambient air temperature, Co  

:oT time constant at rated KVA 

:C thermal capacity (Wh/ Co ) 

:n oil exponent 

:K ratio of load to rated load 

:R ratio of load loss to no-load loss at rated load. 

k: step index. 

 

Rated current is given as: AI rated 915  

 

Sampling time is 15 min = 0.25 h 

 

The top-oil temperature at rated load is: 

Cfl  1.26  

 

Ratio of load loss at rated load to no-load loss is: 

 

R = 1.9
12576

114519
  

 

For FA cooling mode, the thermal capacity is given by: 

 

C 0.06   (weight of core and coil assembly in pounds) 

+ 0.04   (weight of tank and fittings in pounds) 

+ 1.33   (gallons of oil) 

 

72.24279)1148433.1()8160004.0()9570006.0( C Wh/ Co  
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Thermal time constant at rated KVA is given by Equation (2.3): 

 

h
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From the data given in table 1 below,  

 

2.27]1[ ktop Co  (sample number 1) 

 

Then (5.1) becomes, 
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This value can be checked with the measured value (sample number 2) given in Table 

5.18. 

 

Similarly, the transformer�s top-oil temperature can be calculated using IEEE Model 

number 3, Equation (2.13) becomes: 
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Please note that, IEEE Model number 3 has taken into account the affects of ambient 

temperature. By substituting the parameter values into Equation (5.2). The top-oil 

temperature was obtained as: 
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Once again, this value can then be checked with the actual value in Table 5.18.  

 

Following in the same manner as above the results of the subsequent samples were 

tabulated for Models 2 and 3 in Table 5.18. 

 

 

Predicted  Sample 
Number 

Measured 
using Model 2 using Model 3 

1 27.2 27.2 27.2 
2 27.3 26.9 27.3 
3 27.4 26.6 27.5 
4 27.7 26.4 27.6 
5 27.8 26.1 27.7 
6 28.0 25.9 27.9 
7 28.1 25.7 28.1 
8 28.2 25.5 28.3 
9 28.2 25.3 28.5 
10 28.3 25.1 28.6 

 
Table 5.18: The first 10 samples of the measured and predicted top-oil temperature (27 MVA 

transformer) using Models 2 and 3. 
 

As indicated in Table 5.18, Model 3 has produced a better result than Model 2. Therefore, 

Model 3 was chosen as for the conventional approach. 

 

In a similar manner as above, the top-oil temperature for day 4.5 to 9 (sample numbers 

300 to 598) can be predicted by using Model 3 as shown in Figure 5.38. 
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Figure 5.38: The measured and predicted top-oil temperature (27 MVA transformer) using Model 3. 
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Figure 5.39: The error waveform of the measured and predicted top-oil temperature (27 MVA) by 

using Model 3. 
 
A comparison of Model 2 and 3 results can be seen in Table 5.19. 
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Type of 
temperatures Model RMSE MIN MAX 

2 4.7347 -0.0814 10.8086 Top-oil 
3 4.5194 -3.4876 7.1133 

 
Table 5.19: A comparison of the predicted top-oil temperature (27 MVA transformer) by using 

Models 2 and 3. 
 

5.4.2 Bottom-oil Temperature Prediction Using Models 2 and 3 (27 MVA 

Transformer) 

Following the same methodology as in Section 5.4.1, the predicted bottom-oil 

temperature for the 27 MVA  transformer were tabulated in Table 5.20. 

 

Type of 
temperatures Model RMSE MIN MAX 

2 14.6544 9.4169 21.0539 
Bottom-oil 

3 10.9647 8.5946 16.7406 
 

 Table 5.20: A comparison of the predicted top-oil temperature (27 MVA transformer) by 

using Models 2 and 3. 

 

5.4.3 The Temperatures Prediction by Using Models 2 and 3 (8 MVA 

Transformer) 

 
The temperatures for the 8 MVA transformer can be obtained by following the same 

methodology as in Section 5.4.1. 

 

A plot of the measured and predicted top-oil temperature was obtained by using Model 3 

is shown in Figure 5.40. The error waveform can be seen in Figure 5.41. 
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Figure 5.40: The measured and predicted top-oil temperature using Model 3. 
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Figure 5.41: The error waveform of the predicted top-oil temperature (8 MVA transformer) by using 

Model 3. 
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The results of the top and bottom-oil temperatures prediction of the 8 MVA transformer 

by using Models 2 and 3 can be seen in Table 5.21 below. 

 
 

Type of 
temperatures Model RMSE MIN MAX 

2 24.1166 14.8103 38.7340 
Top-oil 

3 4.0162 -8.4637 14.0173 
2 17.2837 8.5972 23.9825 

Bottom-oil 
3 8.7596 -12.9589 -2.2866 

 
 

Table 5.21: A comparison of the predicted temperatures (8 MVA transformer) by using Models 2 
and 3. 

 

5.4.4 Summary 

Two models have been used in this Section. They were Models 2 and 3 from the 

ANSI/IEEE standards. Model 3 was outperformed Model 2 in terms of RMSE and peaks 

of error as shown in Tables 5.19, 5.20 and 5.21. These results were consistent with 

(Lesieutre, 1997). 
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CHAPTER 6 : CONCLUSIONS AND 

RECOMMENDATIONS 

 
In this thesis, a neural fuzzy technique has been applied for modeling and prediction of 

the transformer top and bottom-oil temperatures. A summary of the results of all models 

used in this thesis can be seen in Table 6.1 (a) and (b). Comparison with the commonly 

used ANSI/IEEE standard techniques showed superiority of the proposed technique in 

terms of predictability (RMSEs and peaks of error were improved comparatively), 

interpretability (besides load current and ambient temperature, top and bottom oil 

temperatures have a direct effect on each other), adaptability (tested on unseen data) and 

efficiency (tested on Pentium IV computer system with 512 MB of RAM, the 

computation time was less than 35 seconds) of reconstruction results. In addition, the 

developed technique shows a strong link between the top and bottom oil temperatures and 

also overcomes the problem of uncertainty and unavailability of transformer�s parameters 

necessary when using the ANSI/IEEE numerical techniques. The described techniques 

are fast and easy to implement in any iterative reconstruction algorithm. Of the three soft 

computing models (MFNN, ERNN and ANFIS), the ANFIS model is improved over the 

MFNN and ERNN models in RMSE when used to predict the top-oil temperature of the 8 

MVA transformer [with RMSE = 3.5299, minimum peak error = -23.2437 Co  and 

maximum peak error = 21.4646 Co ] and produces comparable outcomes when used to 

predict the bottom and top-oil temperatures for the 27 MVA transformer. When 

comparing the ANFIS model with the neural networks model, one has to average out the 

results over twenty different runs (training processes) for a given neural network due to 

the effect of arbitrary initialization of the neural network weights, whereas with the 

ANFIS model this process was not required.   

 

Neuro-fuzzy models, like ANFIS, are well documented techniques which have been 

widely applied to other problems. In order to use it with a significant effect sufficient 

training data has to be collected, and data has to be representative of the problem for 

successful prediction. If the training data set size is increased, the prediction accuracy is 
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higher. The practicality of the ANFIS technique can be concluded as follows: the load 

current is the most important predictor and the ambient temperature is less important and 

appears to be irrelevant for the bell and Gaussian MFs. The ANFIS model uses the grid 

partitioning method and there are only two choices for the output membership function: 

constant and linear. This limitation of output membership function choices is because 

ANFIS only operates on Sugeno-type systems.  

(a) 

Method Transformer 
Type of 

temperatures RMSE Min Max 
Top-oil 3.5299 -23.244 21.4646 

8 MVA 
Bottom-oil 2.9099 -15.657 14.8042 

Top-oil 2.9608 -6.6134 2.7499 
ANFIS 

27 MVA 
Bottom-oil 2.9222 -6.6692 2.5354 

Top-oil 3.5667 -23.079 21.9265 
8 MVA  

Bottom-oil 2.8971 -15.677 15.2908 
Top-oil 2.9102 -7.7301 1.9395 

MFNN 
27 MVA  

Bottom-oil 2.9537 -7.4847 4.0262 
Top-oil 3.6439 -23.983 21.9549 

8 MVA 
Bottom-oil 2.9579 -15.532 14.7587 

Top-oil 3.0149 -6.7041 1.1003 
ERNN 

27 MVA  
Bottom-oil 2.9828 -6.3518 1.6420 

 

(b) 

Method Transformer 
Type of 

temperatures 
MODEL 

RMSE Min Max 
2 24.1166 14.8103 38.734 

Top-oil 
3 4.0162 -8.4637 14.0173 
2 17.2837 8.5972 23.9825 

8 MVA 
Bottom-oil 

3 8.7596 -12.9589 -2.2866 
2 4.7347 -0.0814 10.8086 

Top-oil 
3 4.5194 -3.4876 7.1133 
2 14.6544 9.1469 21.0539 

IEEE 
MODELS 

27 MVA 
Bottom-oil 

3 10.9647 8.5946 16.7406 
 

Table 6.1: A summary of the results for all models. 
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APPENDIX A: Transformers Details 

 
8 MVA TRANSFORMER  
Application Power Transformer 
Transformer name 8 MVA OA-cooled 
Serial No 28629 
Manufacturer ASEA 
Year of manufacture 1990 
Years in operation 5yrs 
Rating, kVA 8000 kVA  
Voltage, kV 11kv/2,96kv 
Core/shell type Core 
Cooling type OA 
Oil type Napthenic 
Oil capacity 6695 L 
Oil preservation Conservator 
Cooling elements Finned radiators 

 

27 MVA TRANSFORMER  
Application Power Transformer 
Transformer name 27 MVA FA-cooled 
Serial No M162241B 
Manufacturer G.E. 
Year of manufacture 1991 
Years in operation 8 
Rating, kVA 27000 
Voltage, kV 138 - 13.8 
Core/shell type Core 
Cooling type FA 
Oil type TYPE I 
Oil capacity 10500 gal 
Oil preservation N2 GAS SPACE 
Cooling elements Radiators 
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APPENDIX A CON�T: Transformers Data 
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Figure A.1: The measured top-oil temperature T1_top_m  waveform of the 8 MVA transformer. 
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Figure A.2: The measured bottom oil temperature T1_bot_m  of the 8 MVA transformer. 
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Figure A.3: The measured load current T1_load_mI  waveform of the 8 MVA OA-cooled transformer. 
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Figure A.4: The measured ambient temperature T1_amb_m  waveform of the 8 MVA transformer. 
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Figure A.5: The measured top-oil temperature T2_top_m  waveform of the 27 MVA transformer. 
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Figure A.6: The measured bottom oil temperature T2_bot_m  waveform of the 27 MVA transformer. 
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Figure A.7: The measured load current T2_load_mI  waveform of the 27 MVA transformer. 
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Figure A.8: The measured ambient temperature T2_amb_m  waveform of the 27 MVA transformer. 
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APPENDIX B: The 3-Input ANFIS Model Matlab Files 

 
% Computer Program for training and testing the ANFIS model when used  
% to predict the top-oil temperature of the 8 MVA transformer. 
% See Figures 5.21, 5.22, 5.23 and 5.24 of the thesis. 
% Huy Nguyen, 2007. 
  
close all 
clear all 
 
% Load the input training data set i.e 1702 samples over 35.5 days 
load input_train.dat; 
% Load the input test data set i.e 1702 samples over 35.5 days 
load input_test.dat; 
% Load the output training data set i.e 1702 samples over 35.5 days 
load output_train_top.dat;  
% Load the output test data set i.e 1702 samples over 35.5 days 
load output_test_top.dat;  
  
% Let x1 be the input training data set 
x1=input_train; 
% Let x2 be the input test data set 
x2=input_test; 
% Let y1 be the output training data set 
y1=output_train_top; 
% Let y2 be the output test data set 
y2=output_test_top; 
% To create a training data set 
traindata=[x1 y1];  
% To create a test data set  
testdata =[x2 y2]; 
  
%====================================================================== 
% Genfis1: generates an initial Sugeno-type FIS for the ANFIS training  
% using a grid partition. 
% Number of membership functions: 2 
% Type of membership functions: gaussmf 
%====================================================================== 
mfType = str2mat('gaussmf','gaussmf','gaussmf'); 
 
% To generate an initial FIS 
in_fis = genfis1(traindata,2,mfType,'linear'); 
  
%====================================================================== 
% ANFIS: Adaptive Neuro-Fuzzy training of Sugeno-type FIS. 
% Epoch number: 100 
%====================================================================== 
numEpochs=100; 
[fismat1,trnErr,ss,fismat2,tstErr]=anfis(traindata,in_fis,[numEpochs 0 
0.04 0.9 1.1],[],testdata,1);  
numepochs=1:numEpochs; 
figure (1) 
subplot(2,1,1); 
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plot(numepochs,trnErr,'o',numepochs,tstErr,'x'); 
ylabel('RMSE'); 
xlabel('Epochs'); 
legend('Training error','Testing error'); 
hold on 
plot(numepochs,[trnErr tstErr]); 
hold off 
subplot(2,1,2); 
plot(numepochs,ss,'-',numepochs,ss,'x'); 
ylabel('Step Size'); 
xlabel('Epochs'); 
  
%====================================================================== 
% Evalfis: performs fuzzy inference calculations. 
% Z: the predicted top-oil temperature 
% Using the input test data set to determine the top-oil temperature 
%====================================================================== 
z = evalfis(x2,fismat2); 
  
%====================================================================== 
% To export the output to a file 
%====================================================================== 
fid = fopen('ANFIS_3INPUT.txt', 'w'); 
fprintf(fid,'%6.2f\n',z); 
fclose(fid); 
  
%====================================================================== 
% A plot of the measured and predicted top-oil temperature versus the  
% testing error 
%====================================================================== 
e = y2 - z;  
numPts=1702; 
for i=1:numPts 
p(i)=e(i)^2; 
end 
s=1:1702; 
t=s/48; 
figure (2) 
% Plot the error between the measured and the predicted top-oil  
% temperature  
plot(t,e,'g'); 
hold 
% Plot the measured top-oil temperature 
plot(t,y2,'r'); 
hold on 
% Plot the predicted top-oil temperature 
plot(t,z,'b'); 
hold off 
grid; 
ylabel('Temperature (degree C)'); 
xlabel('Time (days)'); 
legend('error','measured','predicted'); 
title('Prediction of the top-oil temperature by using the ANFIS 
model'); 
  
figure (3) 
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subplot(3,3,1); plotmf(in_fis,'input',1); 
title('(a) Initial MFs for Ambient temp.') 
xlabel('Ambient temperature (degree C)') 
subplot(3,3,2); plotmf(in_fis,'input',2); 
title('(b) Initial MFs for Bottom oil temp.') 
xlabel('Bottom oil temperature (degree C)') 
subplot(3,3,3);plotmf(in_fis,'input',3); 
title('(c) Initial MFs for Load current') 
xlabel('Load current (A)') 
  
subplot(3,3,4); plotmf(fismat1,'input',1); 
title('(d) Final MFs with training data for Ambient temp.') 
xlabel('Ambient temperature (degree C)') 
subplot(3,3,5); plotmf(fismat1,'input',2); 
title('(e) Final MFs with training data for Bottom oil temp.') 
xlabel('Bottom oil temperature (degree C)') 
subplot(3,3,6); plotmf(fismat1,'input',3); 
title('(f) Final MFs with training data for Load current') 
xlabel('Load current (A)') 
  
  
subplot(3,3,7); plotmf(fismat2,'input',1); 
title('(g) Final MFs with test data for Ambient temp.') 
xlabel('Ambient temperature (degree C)') 
subplot(3,3,8); plotmf(fismat2,'input',2); 
title('(h) Final MFs with test data for Bottom oil temp.') 
xlabel('Bottom oil temperature (degree C)') 
subplot(3,3,9); plotmf(fismat2,'input',3); 
title('(i) Final MFs with test data for Load current') 
xlabel('Load current (A)') 
  
% Calculate RMSE and peaks of error 
rmse=sqrt(sum(p)/1702) 
minimum=min(e) 
maximum=max(e) 
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APPENDIX C: The 3-Input MFNN Model Matlab Files 

% Computer Program for training and testing the Multilayer Feedforward 
% Neural Network when used to predict the top-oil temperature of the 8 
% MVA transformer. 
% See Figures 5.36 and 5.37 of the thesis. 
% Huy Nguyen, 2007. 
  
clear all 
close all 
  
% Load the training and test data sets into the workspace 
load input_train.dat; 
load input_test.dat; 
load output_train_top.dat; 
load output_test_top.dat; 
  
% Let x1 and y1 be the input and output for training data set  
% respectively. 
% Let x2 and y2 be the input and output for test data set respectively. 
x1=input_train.' 
x2=input_test.' 
y1=output_train_top.' 
y2=output_test_top.' 
  
% Initialize the network 
% Backpropagation network training function:  
% Levenberg-Marquardt, i.e. trainlm. 
% Backpropagation weight/bias learning function: 
% Gradient descent, i.e. learngd. 
% Performance function: Mean Square Error, i.e. mse 
net=newff(minmax(x1),[8 1],{'logsig' 
'purelin'},'trainlm','learngd','mse');  
  
% Initialize some of the parameters for backpropagation training 
net.trainParam.epochs = 100; % Maximum number of epochs to train 
net.trainParam.lr = 0.01; % Learning rate 
net.trainParam.show = 50; % Epochs between updating display 
net.trainParam.goal = 0; % Sum-squared error goal 
  
% Train the network with net.trainParam.epochs 
net=train(net,x1,y1) 
  
% Test the trained network with the unseen data 
output=sim(net,x2); 
  
% Write output to a file 
fid = fopen('MFNN_3INPUT.txt', 'w'); 
fprintf(fid,'%6.2f\n',output); 
fclose(fid); 
  
% Calculate the residual between the measured and predicted top-oil 
% temperature 
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e= y2 - output; 
  
numPts=1702; 
for i=1:numPts; 
p(i)=e(i)^2; 
end 
s=1:1702; 
t=s/48; 
  
% Plot the measured and predicted top-oil temperature waveforms 
figure (3) 
plot(t,e,'g'); 
hold 
plot(t,y2,'r'); 
hold on 
plot(t,output,'b'); 
grid; 
ylabel('Temperature (degree C)'); 
xlabel('Time (days)'); 
legend('error','measured','predicted'); 
title('Prediction of the top-oil temperature by using the MFNN model'); 
  
% Display weights and biases 
W1=net.IW{1,1} 
b1=net.b{1,1} 
W2=net.LW{2,1} 
b2=net.b{2,1} 
  
% Calculate RMSE and peaks of error 
rmse=sqrt(sum(p)/1702) 
minimum = min(e) 
maximum = max(e) 
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APPENDIX D: The 3-Input ERNN Model Matlab Files 

% Computer Program for training and testing the Elman Recurrent Neural  
% Network model when used to predict the top-oil temperature of the 8  
% MVA transformer. 
% See Table 5.16 of the Thesis. 
% Huy Nguyen, 2007. 
  
clear all 
close all 
  
% Load data sets 
load input_train.dat; 
load input_test.dat; 
load output_train_top.dat; 
load output_test_top.dat; 
  
% Let x1 and y1 be the input and output for training data set  
% respectively. 
% Let x2 and y2 be the input and output for test data set respectively. 
x1=input_train.' 
x2=input_test.' 
y1=output_train_top.' 
y2=output_test_top.' 
  
% Initialize the network 
% Backpropagation network training function:  
% Levenberg-Marquardt, i.e. trainlm. 
net=newelm(minmax(x1),[8 1],{'logsig' 'purelin'},'trainlm'); 
  
%Initialize some of the parameters for backpropagation training 
net.trainParam.epochs = 100; % Maximum number of epochs to train 
net.trainParam.lr = 0.01; % Learning rate 
net.trainParam.show = 50; % Epochs between updating display 
net.trainParam.goal = 0; % Sum-squared error goal 
  
% Train the network with net.trainParam.epochs 
net=train(net,x1,y1) 
  
% Test the trained network with unseen data 
output=sim(net,x2); 
  
% Write output to a file 
fid = fopen('ERNN_3INPUT.txt', 'w'); 
fprintf(fid,'%6.2f\n',output); 
fclose(fid); 
  
% Calculate the difference between the measured and predicted 
e= y2 - output; 
  
numPts=1702; 
for i=1:numPts; 
p(i)=e(i)^2; 
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end 
s=1:1702; 
t=s/48; 
  
% Plot the measured and predicted waveforms 
figure (2) 
plot(t,e,'g'); 
hold 
plot(t,y2,'r'); 
hold on 
plot(t,output,'b'); 
grid; 
ylabel('Temperature (degree C)'); 
xlabel('Time (days)'); 
legend('error','measured','predicted'); 
title('Prediction of top-oil temperature using ELMAN neural network 
model'); 
  
% Display weights and biases 
W1=net.IW{1,1} 
b1=net.b{1,1} 
W2=net.LW{2,1} 
b2=net.b{2,1} 
  
% Calculate RMSE and peaks of error 
rmse=sqrt(sum(p)/1702) 
minimum = min(e) 
maximum = max(e) 
 


