

EFFICIENT WEB SERVICES
DISCOVERY AND COMPOSITION

 YANAN HAO

 DOCTOR OF PHILOSOPHY

 2009

VICTORIA UNIVERSITY

DECLARATION

I, Yanan Hao, declare that the PhD thesis entitled Efficient Web Services Discovery

and Composition is no more than 100,000 words in length including quotes and

exclusive of tables, figures, appendices, bibliography, references and footnotes. This

thesis contains no material that has been submitted previously, in whole or in part, for

the award of any other academic degree or diploma. Except where otherwise indicated,

this thesis is my own work.

Signature Date

PUBLICATIONS

1. Yanan Hao, Yanchun Zhang, “A Two-phase Rule Generation and Optimization

Approach for Wrapper Generation”. Proceedings of the 17th Australasian
Database Conference (ADC’06), pp.39-48. Hobart, Tasmania, Australia,
January 16-19 2006.

2. Yanan Hao, Yanchun Zhang, “Web Services Discovery Based on Schema
Matching”. Proceedings of 23rd Australasian Computer Science Conference
(ACSC’07), pp. 107-113. Ballarat, Australia, 29 Jan - 2 Feb, 2007.

3. Yanan Hao, Yanchun Zhang and Jinli Cao, “WSXplorer: Searching for
Desired Web Services”, Proceedings of the 19th International Conference on
Advanced Information Systems Engineering (CAiSE'07), pp.173-187.
Trondheim, Norway, 11-15 June 2007.

4. Hongcan Yan, Dianchuan Jin, Lihong Li, Baoxiang Liu and Yanan Hao,
"Feature Matrix Extraction and Classification of XML Pages", Proceedings of
APWeb 2008 International Workshops, pp.210-219. Shenyang, China, April 26-
28, 2008.

5. Yanan Hao, Jinli Cao and Yanchun Zhang, “Efficient IR-Style Search over
Web Services”, Proceedings of the 21st International Conference on Advanced
Information Systems Engineering (CAiSE'09), pp.305-319. Amsterdam, The
Netherlands, 8-12 June 2009.

6. Yanan Hao, Yanchun Zhang, “Efficient IR-Style Search over Web Services”.
Submitted to Future Generation Computer Systems.

7. Yanan Hao, Yanchun Zhang, “A Relaxation-Based QoS Model and
Computation Framework for Service Selection”. Submitted EDBT/ICDT 2010
Joint Conference.

ACKNOWLEDGMENTS

First and foremost, I would like to express my deep gratitude to my supervisor,

Professor Yanchun Zhang, for his exceptional support, encouragement, patience

during all stages of this dissertation. This dissertation would not have been possible

without his invaluable advice and guidance. I feel so lucky to have Prof. Zhang as my

supervisor. I owe a special debt to him forever.

I also want to thank my co-supervisor, A/Prof. Yuan Miao for his constant help,

discussion, and many constructive suggestions throughout my doctoral study. I have

had the great pleasure to work with my colleagues in Centre for Applied Informatics

Research (CAI) at Victoria University. I would like to thank them for their valuable

suggestions and discussions during the process. I thoroughly enjoyed their fruitful

collaboration, and I gained invaluable skills by working with them.

I am grateful to the School of Engineering and Science for supplying very good

research environment, and the staff members who offered countless help, particularly,

Ponnusamy Rajendran, Danh Ho, Mark Mojic, the School Postgraduate Coordinator

Dr. Gitesh Raikundalia, Janet Grady, A/Prof. Xun Yi, Dr. Bai-ling Zhang, Dr. Fuchun

Huang, Professor Pietro Cerone, A/Prof. Hao Shi, and the Scholarship Coordinator of

Office for Postgraduate Research, Ms. Lesley Birth.

Special thanks go to Dr. Jinli Cao for her trust, support and recommendation. I

appreciate her help forever.

I wish to extend my deepest gratitude to my parents and my little sister for their love,

support and encouragement throughout my entire life. I thank my be-loved wife, Lina

Wang. Without her endless love and support, I could not possibly have reached this

far. I would also like to thank my daughter, Qihe Hao, for being there and making

everything I do meaningful.

ABSTRACT

As an emerging cross discipline area for distributed computing, Service-Oriented Comput-

ing (SOC) paradigm promises to bridge the gap between Business Services and IT Services,

enable technology to help people perform business processes more efficiently and effec-

tively, and enable businesses and organizations to collaborate globally through standard

services. With the rapid development and popularity of Internet and e-commerce, busi-

ness organizations are investigating ways to expose their current software components into

web services so as to make use of distributed service computing resources. Business orga-

nizations are also investigating ways on how to incorporate services running on different

platforms and hosted by service providers outside of their boundaries into more complex,

orchestrated services.

This conceptually new approach brings multiple issues to researchers. As the number

of web services and SOC applications increases, there is a growing need for mechanisms

for discovering services efficiently. Effective mechanisms for web services discovery and

ranking are critical for organizations to take advantage of the tremendous opportunities

offered by web services, to engage in business collaborations and service compositions, to

identify potential service partners, and to understand service competitors and increase the

competitive edge of their service offerings.

Apart from functional specification required by users during service discovery, some

non-functional requirements such as Quality of Service (QoS) and transactional proper-

ties are also major concerns, because users need to select and compose web services not

only according to their functional requirements but also to their transactional properties

and QoS characteristics defined using a quality model. On one hand, in service-oriented

environments multiple web services may provide similar functionality, but may offer dif-

ferent non-functional properties (e.g., price). When selecting existing web services from

web service communities to generate composite services, the number of composed services

may be very large. Therefore, it is a challenge on how to select appropriate web services

to satisfy users’ global QoS requirements based on a set of given QoS preferences. On

the other hand, as web services operate in a highly dynamic distributed environment and

interact with each other, the possibility of unexpected behavior is high. The unexpected be-

havior from an individual service may bring negative impact on all the component services

in the composition, even lead to failure of the running of the composite service. Thus we

need a mechanism that provides transactional support to service composition to ensure the

overall consistent and reliable execution of business processes.

In this thesis, we investigate the problem of efficient web services discovery and com-

position in service oriented environments. Firstly, we present an efficient IR-Style mech-

anism for discovering and ranking web services automatically, given a textual description

of desired services. We introduce the notion of preference degree for a web service, and

suggest relevance and importance as two desired properties for measuring its preference

degree. Also, various algorithms are given to obtain service relevance and importance. The

key part for computing service importance is a new schema tree matching algorithm, which

catches not only structures, but even better semantic information of schemas defined in web

services. Moreover, we develop an approach to identify associations between web-service

operations based on service operations matching. This approach uses the concept of at-

tribute closure to obtain sets of operations. Each set is composed of associated web-service

operations. Experimental results show the proposed IR-style search strategy is efficient and

practical.

Secondly, we propose a novel QoS model for performing flexible service selection in

web service composition with QoS constraints. The key idea of the model is to relax users’

QoS constraints and try to find the most possible services satisfying users’ QoS require-

ments. Based on the proposed QoS framework, we develop various algorithms for making

service selection on individual and composite services. We also introduce a top-k ranking

strategy to reflect users’ personalized requirements. We evaluate the performance of the

model in terms of time and space cost.

Finally, we propose a strategy to verify at design time whether a service composition

can be implemented by a set of selected web services according to the transactional re-

quirements specified by a user. We define transactional properties for component web ser-

vices and analyze the dependencies among them. Next, based on the Automata theory, we

model the transactional behavior of both component web services and composite services

as transition systems, and use Accepted Termination States (ATS) to describe the correct

execution of composite services. Then, by analyzing the message exchanges between com-

ponent services of a composite service we present a novel algorithm to verify all possible

state transitions of the composite service to ensure consistent termination states according

to the ATS specified by the user. In addition, for the cause of efficiency we use Temporal

Logic to describe the transactional properties of a composite service, and then we employ

SPIN, an automata-based model checker to carry out automated verification of temporal

logic properties on the composite service.

TABLE OF CONTENTS

Page

List of Figures . iv

List of Tables . vi

Chapter 1: Introduction . 1
1.1 Business Process and Web Service . 2
1.2 Problem Statement . 4

1.2.1 Efficient web services discovery 7
1.2.2 Dynamic web service selection with QoS constraints 9
1.2.3 Ensure reliable execution of composite services 10

1.3 Solution Overview . 11
1.3.1 Efficient IR-Style Search over Web Services 11
1.3.2 A Relaxation-Based QoS Model and Computation Framework for

Service Selection . 12
1.3.3 Verification of Transactional Requirements in Web Service Com-

position . 13
1.4 Thesis Structure . 14

Chapter 2: Background and Fundamentals . 17
2.1 Specification and Modeling of Web Services 17

2.1.1 XML, XML schema and DOM . 19
2.1.2 WSDL . 21
2.1.3 UDDI . 23
2.1.4 SOAP . 24

2.2 Web Service Composition . 25
2.2.1 Introduction . 25

i

2.2.2 Issues of Web Service Composition 27
2.2.3 Web Service Composition Standards 30

2.3 Query and Matching Techniques for Web Services Discovery 35
2.3.1 tModel . 36
2.3.2 Clustering Algorithms for Web Services Discovery 36

2.4 Relaxation Technique for QoS-driven Service Selection 42
2.4.1 Introduction to Skyline . 42
2.4.2 Algorithms of Skyline Computation 44

2.5 Modeling and Verification of Web Service Composition 46
2.5.1 Models . 46
2.5.2 Tools . 50

Chapter 3: Efficient IR-Style Search over Web Services 52
3.1 Introduction . 52
3.2 Related Work . 56
3.3 Desired Properties for Service Rank . 58
3.4 Service Relevance . 59
3.5 Service Importance . 60

3.5.1 Web-service Operation Modeling 61
3.5.2 Connectivity of Web Service Operations 62
3.5.3 Importance of Web Service Operations 64

3.6 Algorithm for Ranking Web Services . 64
3.6.1 Computing Connectivity Using Schema Tree Matching 65
3.6.2 The CompImp Algorithm . 75
3.6.3 Combining Service Relevance with Importance 75

3.7 Finding Associated Web-service Operations 77
3.7.1 Web-service operations matching 77
3.7.2 Clustering Web-service Operations 77
3.7.3 Identifying Associations . 79

3.8 Experiments and Evaluations . 81
3.9 Conclusions . 87

Chapter 4: A Relaxation-Based QoS Model and Computation Framework for
Service Selection . 88

ii

4.1 Introduction . 88
4.2 QoS Computing Model . 91

4.2.1 Computing Model for Individual Services 91
4.2.2 Computing Model for Composite Services 96

4.3 Algorithms for Answering a User’s QoS Query 103
4.3.1 Algorithms for QoS Query on Individual Services 104
4.3.2 Algorithms for QoS Query on Composite Services 108

4.4 Personalized Service Selection . 112
4.4.1 Selecting fully satisfying services 112
4.4.2 Top-k Answers on out-of-range services 113

4.5 Experiments . 114
4.6 Related Works . 116
4.7 Conclusions . 118

Chapter 5: Verification of Transactional Requirements in Web Service Compo-
sition . 120

5.1 Introduction . 120
5.2 Preliminaries . 122

5.2.1 Transactional Properties of Services 123
5.2.2 Transactional Composite Services 125

5.3 Modeling . 125
5.4 Verification with Transition Systems . 128

5.4.1 Objective and Overview . 128
5.4.2 Verification Algorithm . 129

5.5 Verification with SPIN . 129
5.6 Related works . 132
5.7 Conclusions . 134

Chapter 6: Conclusions . 135
6.1 Contributions . 135
6.2 Future Research Issues . 138

Bibliography . 140

iii

LIST OF FIGURES

Figure Number Page

1.1 An example of BPM service pattern. 3
1.2 Web service architecture in enterprises. 5
1.3 B2B integration via web services. 5
1.4 Structure of the thesis. 15

2.1 Web service roles and interactions through standardized protocols. 18
2.2 An example of XML file . 20
2.3 An example of XML schema . 20
2.4 XML DOM tree structure . 21
2.5 Loan Approver WSDL . 23
2.6 Four core constructions/types of UDDI . 25
2.7 A travel reservation scenario . 27
2.8 The loan approval process . 33
2.9 Role of a Web Service Level Agreement. 34
2.10 Skyline of hotels . 43
2.11 Example of a Petri Net . 47

3.1 Sample web-service operations . 54
3.2 XML schema tree of Order type . 54
3.3 An example of tree mapping . 66
3.4 XML Schema tree transformation . 71
3.5 Matching web service operations . 78
3.6 System Architecture . 83
3.7 Service Index Structure . 83
3.8 Time cost of building index and searching 84
3.9 Precision and recall of IRWService . 86
3.10 Performance of identifying associated operations 86

iv

4.1 Workflow patterns . 97
4.2 Composite service example . 99
4.3 Running time comparisons on individual and composite services 115

5.1 Service states describing their transactional properties 124
5.2 Transition of a seller service . 127
5.3 A composite service defined with AND-split and AND-join patterns. 129
5.4 Translate BPEL to FSP . 131

v

LIST OF TABLES

Table Number Page

4.1 Sample web services. Each web service provides the same postcode infor-
mation. 90

4.2 Normalization of QoS values of services in Table 4.1 94
4.3 Example of Composite Service . 101

vi

1

Chapter 1

INTRODUCTION

The Internet is one of the most important inventions in the world. It has already made

a profound impact on the way people work, live and communicate. Thanks to its basic fea-

tures such as widespread usability and access, individuals and organizations can easily than

ever publish and share information, interact with each other. The Internet has also redefined

how businesses operate. Realizing that the Internet has become a large market and has the

advantage of low-cost and high efficiency, more and more companies today are engaging

in business through the Internet, also known as e-commerce. With the increasing number

of e-commerce between companies, there is a strong demand for automating business acti-

vates in e-commerce applications and making them run efficiently, effectively and reliably.

Web service technology provides a solution for these challenges. Our research is motivated

by the need to facilitate the discovery and composition of web services effectively.

This chapter is organized as follows. We first retrospect some backgrounds of business

process, SOC, SOA and web service technology in Section 1.1. In Section 1.2, we give

an outline of the research issues on web services discovery and composition in service-

oriented environments. Section 1.3 summarizes our solutions and Section 1.4 presents the

thesis structure.

2

1.1 Business Process and Web Service

Business Processes play an important role in modern information systems. A business

process is a collection of related, structured activities that produce a service or product that

meets the needs of a client. Roughly speaking, the concept of process can be regarded as

tasks, production and outputs. Business processes are critical to any organization as they

generate revenue and often represent a significant proportion of costs. Business process

management (BPM) attempts to continuously improve processes. It could be described as

a “process optimization process” focusing on aligning organizations with the wants and

needs of clients, which aims to promote business effectiveness and efficiency while striving

for innovation, flexibility and integration with technology [2]. BPM is now widely accepted

as a design paradigm for organizational and IT-driven redesign initiatives. Figure 1.1 gives

an example of business process management (BPM) service pattern [21]. As can be seen,

through the orchestration of activities between people and system, BPM tools can manage

business processes effectively.

Increasingly, business processes are seen from the viewpoint of how well they con-

tribute to the efficient and coordinated delivery of services. Identification of inefficient

processes may lead to the planned improvement of those processes, or, in some cases, to

the decision to scrap the processes and outsource them to another organization [13]. With

the development of global economics, now business organizations operate their business

process in a globalized way. Business-to-Business (B2B) integration has become more

important than ever before in today’s IT markets. As the Internet proliferates and the e-

commerce activities explode, the B2B integration is driven by the automation of business

processes among business organizations through the Internet and the needs of cutting the

3

Figure 1.1: An example of BPM service pattern.

cost of developing, maintaining and integrating enterprises applications.

As an emerging cross discipline area for distributed computing, Service-Oriented Com-

puting (SOC) paradigm promises to bridge the gap between business services and IT ser-

vices, enable technology to help people perform business processes more efficiently and

effectively, and enable businesses and organizations to collaborate globally through stan-

dard services. The scope of services oriented computing covers the whole lifecycle of web

services research that includes business modulization, services modeling, services creation,

services realization, services annotation, services deployment, services discovery, services

composition, services delivery, service-to-service collaboration, services monitoring, ser-

vices optimization, as well as services management. Also, a lot of technical aspects are

currently covered in the service oriented computing paradigm, among which two important

4

technology are Service-Oriented Architecture (SOA) and Web service [6].

The Service-Oriented Architecture (SOA) provides the foundations for organizations

to identify and choose external services they would like to use, and also offer their own

services to other organizations or businesses. In other words, SOA supports web services

- the provision of business processes to interested parties via the Web. Web services are

the fundamental building blocks of SOA. Web services are loosely coupled, autonomous,

platform-independent, and reusable software components that semantically encapsulate

discrete functionality and are distributed and programmatically accessible over standard

Internet protocols [4]. They can be described, published, discovered, orchestrated and

programmed using standard protocols for collaborating applications distributed within and

across organizational boundaries. Web services provide the basis for the development and

execution of business processes that are distributed over the network and available via stan-

dard interfaces and protocols - they therefore enable the creation of dynamic virtual enter-

prises. Due to standard interfaces, web services have evolved as a dominant technology for

integrating business processes and applications across organization boundaries on the Web

[13]. Figure 1.2 and Figure 1.3 [92] give an intuitive impression on how enterprises use

web services as an application distribution and integration tool, and how the B2B business

is viable through web services.

This conceptually new approach brings multiple issues to researchers. In the next two

sections, we outline the research issues in this thesis and summarize our contributions.

1.2 Problem Statement

A Web Service is a set of related functionalities that can be loosely coupled with other

services programmatically through the Web. With the rapid development and popularity

5

Legacy
Application

Interaction
Logs

SAP R/3Resource (Data) Layer

Web
Service

Web
Service

Web
Service

Web
Service

Web
Service

Web
Service

Web
Service

Web
Service

Business
Services

Customer &
Order Service

Invoice &
Payment Service

Shipping
Service

Component
Services

Service Layer

Business Process Layer

Figure 1.2: Web service architecture in enterprises.

Workflow

Business
rules

Data
sources

Internal System

Workflow

Business
rules

Data
Sources

Internal System

Business Partner 1 Business Partner 2

Messages

Document
Transformation

Business
Logic Adapter

Service
Interface

Policy

Business
Protocol

Web Services

Messaging

Web Services

Service
Interface

Policy

Business
Protocol

Messaging Messages

Document
Transformation

Business
Logic Adapter

Figure 1.3: B2B integration via web services.

6

of Internet and e-commerce, business organizations are investigating ways to expose their

current software components into web services so as to make use of distributed service

computing resources. They are also investigating ways on how to incorporate services run-

ning on different platforms and hosted by service providers outside of their boundaries into

more complex, orchestrated services. As the number of web services available on the Web

and SOC applications increases, there is a growing need for mechanisms for discovering

and composing services efficiently. Actually, how to discover appropriate web services

and compose them has become an ever more important problem for organizations to take

advantage of the tremendous opportunities offered by web services, to engage in business

collaborations and service compositions, to identify potential service partners, and to un-

derstand service competitors and increase the competitive edge of their service offerings.

Apart from functional specification required by users during service discovery, some

non-functional requirements such as Quality of Service (QoS) and transactional properties

are also major concerns, because users need to select and compose web services not only

according to their functional requirements but also to their transactional properties and QoS

characteristics defined using a quality model. When users search and compose web services

to deploy business processes, there are three major issues that need to be tackled, which are

listed below.

• Efficient web services discovery

• Dynamic web service selection with QoS constraints

• Reliable execution of composite services

7

1.2.1 Efficient web services discovery

The problem of web services discovery has become a hot research topic in service-oriented

computing area. Currently, the Universal Description, Discovery, and Integration (UDDI)

[114] registries are the dominating scheme for web services discovery. The UDDI specifi-

cation provides a strategy to build an open framework for describing services, discovering

businesses, and integrating business services across the Internet. UDDI serves as a repos-

itory for businesses to publish their web services specifications, which are defined clearly

and described in a standard service description language - the Web Service Description

Language (WSDL) [36]. However, the UDDI-based web services discovery faces three

hurdles:

Firstly, in order to implement the inter-operations between distributed business ser-

vices, users usually search the UDDI repositories for desired services publicly available on

the Internet. The current UDDI repositories only enable users to retrieve services based on

keywords [84][70]. However, service registries in UDDI are classified manually into dif-

ferent categories according to their commercial objectives described by WSDL [36] rather

than the functions provided by them [44]. This category-based approach is quite informal

and relies extensively on the shared common understanding of publishers and consumers.

It does not provide any support for selecting competing alternative services that could po-

tentially be reused. As a result, simple keyword-based service discovery method usually

returns many useless retrieval results, which makes the task of finding relevant or desired

services within the search results time-consuming and difficult, and thus can not satisfy

common users. The task becomes even more challenging as the number of web services in-

creases and the UDDI repository is filled with more and more published services. It would

8

be helpful and significant if there is a ranking mechanism that can consider users’ specific

requirements and output desired web services within the top results. Furthermore, UDDI

can not enable users to efficiently discover web services based on certain requirements,

which can be either functional (the purpose of the service), and non-functional (constraints

on various properties such as Quality of Service, transactional characteristics, etc) [27].

Therefore, the current UDDI repositories cannot meet the needs of the business processes in

efficiency and requirement. The thesis aims to facilitate the discovery of web services based

on user requirements in service-oriented environments by proposing novel approaches and

tools.

Secondly, since many web services are created from existing applications and may not

contain enough semantic annotations or sufficient text documentation, simple keyword-

based queries may lead to low precision and recall ratio. Also, a good searching strategy

should not check the full semantic compliance between service specifications and user re-

quests, but return ranked lists of potentially useful services that are closest to the requests.

In this thesis, we achieve this goal by integrating both syntactic and semantic matching into

the web services discovery process.

Finally, in web service composition, based on the request information, a web services

discovery broker often generates composite services by combine a group of structural indi-

vidual services according to some business patterns. Then the discovered composite service

can be invoked to concrete the underlying business process. However, the current UDDI

model only enables the discovery of simple services. It does not provide a mechanism as-

sisting users in selecting relevant services and composing with them. In other words, the

implementation of automatically discovering or dynamically composing services is missing

in the UDDI model.

9

1.2.2 Dynamic web service selection with QoS constraints

In service-oriented environments, multiple web services may provide similar functional-

ity, but may offer different non-functional properties (e.g., different prices, different re-

sponse time, etc). Web services with similar functionality are typically grouped together

in a single community. The members of a community are differentiated according to their

non-functional properties. In the selection of a web service, the quality of service (e.g.,

execution duration and execution price, etc.) is a key factor for users, so it is important

to consider both functional and non-functional properties in order to satisfy the constraints

or requirements of users. To support dynamic composition of services, web services that

satisfy users’ functional requirements need to be located from a large number of service

providers based on their quality of service. Therefore, when selecting existing web ser-

vices from web service communities to generate composite services, the number of com-

posed services may be very large and it is a challenge on how to select appropriate web

services that are able to satisfy users’ global QoS requirements based on a set of given user

QoS preferences.

Furthermore, in addition to satisfying user QoS requirements by obtaining optimized

service selection, users’ personalized preferences need to be considered. Depending on

their context, different users may have different preferences about the services they need.

For instance, a user may say an expensive service a is better than a cheap service b, because

although a is more expensive than b and exceeds the user’s financial requirement a bit, it has

much better reliability, which is crucial to her because of her strict reliability requirement.

Similarly, another user running out of money prefers a cheaper service, while a cautious

user may prefer services with “excellent” reputation, etc. So, whether a service is good or

10

not in QoS depends on the user’s context and preference. It is essential to model the users’

personalized preferences and requests.

1.2.3 Ensure reliable execution of composite services

The composition of web services provided by different organizations provides an efficient

way to build complex application logics. However, as web services operate in a highly dy-

namic distributed environment and interact with each other, the possibility of unexpected

behavior is high. For example, the invocation of a service may fail because of temporary

unavailability of the service. The unexpected behavior from an individual service may bring

negative impact on all the component services in the composition, even lead to failure of

the running of the composite service. We need a mechanism that not only allows selecting

a set of component web services satisfying a user’s QoS criteria, but also provides trans-

actional support to business integration via composing individual web services to ensure

the overall consistent and reliable execution of business processes. A main problem that

remains is, given a user’s transactional requirements, how to select individual services and

verify their transactional properties to ensure a correct composition and a reliable execution

of a composite service.

Although there exist several transaction web service standards, they only provide lim-

ited support without giving much thought to the transactional features [80]. We need to

investigate further the transactional properties of component services, as well as the work-

flow patterns which are often used as basis to compose services and which also determine

the transactional behavior of composite services. In addition, we need an efficient verifi-

cation mechanism to determine whether a given composite service has valid transactional

characteristics or not according to some acceptable properties specified by the user.

11

1.3 Solution Overview

In this thesis, we present a web service composition framework for efficient web services

discovery and composition in service oriented environments. Various experiments have

been carried out to demonstrate the efficiency and effectiveness of the methods proposed

to support the framework. The contributions of the thesis are composed of three aspects,

which are listed below:

• Efficient IR-style search over web services.

• A relaxation-based QoS model and computation framework for service selection.

• Verification of transactional requirements in web service composition.

1.3.1 Efficient IR-Style Search over Web Services

We propose a novel IR-Style mechanism for discovering and ranking web services auto-

matically, given a textual description of desired services. The features of our approach are

summarized as follows:

• We propose algorithms for supporting web service operations matching. The key

part of our algorithms is a schema tree matching algorithm, which employs a new

cost model to compute tree edit distances. Our new schema tree matching algorithm

can not only catch structures, but also the semantic information of schemas.

• Based on service operations matching, we use the agglomeration algorithm to cluster

similar web service operations. Also, an approach to identify associations between

web-service operations is presented. This approach uses the concept of attribute

12

closure to obtain sets of operations. Each set is composed of associated web service

operations.

• We introduce the notion of preference degree for web services and then we define

service relevance and service importance respectively as two desired properties for

measuring the preference degree.

• We design novel algorithms for computing the relevance and importance degree of

services. Our algorithms take into account both textual and structural information of

web services.

• We define service connectivity, a novel metric to evaluate the importance of services.

• We do various experiments to search for desired web services. Initial results show

the proposed IR-style search strategy is efficient and practical.

1.3.2 A Relaxation-Based QoS Model and Computation Framework for Service Selection

In this part, we solve the problem of how to aggregate and leverage individual services’ QoS

information to derive the optimal QoS of composite services, given user QoS constraints.

In particular, the main contributions of this work are listed as follows:

• We propose a novel personalized QoS model for performing flexible and adaptable

service selection. The key idea of the model is to use skyline technique to relax

users’ QoS constraints and try to find the most possible services which meet users’

requirements. The problem of QoS computation and policing is converted into the

skyline deduction problem.

13

• Based on the proposed QoS framework, we develop various algorithms for making

service selection on individual and composite services, respectively. We also intro-

duce a top-k ranking strategy to reflect a user’s personalized requirements.

• We present the experimental results of a thorough evaluation. Experimental evalua-

tion shows the proposed QoS model is efficient and practical.

1.3.3 Verification of Transactional Requirements in Web Service Composition

We propose a novel verification method to support transactional composition of web ser-

vices. Service selection passing the verification can ensure a correct composition and a

reliable execution of a composite service according to user transactional requirements. In

particular, the contributions of this work can be summarized as below:

• We define a transactional model for composite web services. The model is based on

the transactional properties of component web services contributing to the composite

service, and the dependencies between component services, which are defined by

the workflow patterns that specify how services are combined together and how the

behavior of a service interacts with other services.

• We model web services as automata. Based on automata theory, we model both com-

ponent web services and composite services as transition systems, and use Accepted

Termination States to describe the transactional properties of composite services. A

verification algorithm is developed to carry out automated verification of Accepted

Termination States on composite services.

14

• In addition, for the cause of efficiency we use Temporal Logic to describe the transac-

tional properties of a composite service, and then we employ the SPIN model checker

to carry out automated verification of temporal logic properties on the composite ser-

vice.

1.4 Thesis Structure

The reminder of this thesis is organized as follows. In Chapter 2, we introduce some basic

concepts and definitions used in the thesis and survey some technologies that are related

to web services discovery and composition in service-oriented environments. Chapter 3

presents a novel IR-style web services discovery scheme. In Chapter 4, we give a person-

alized QoS-driven service selection technique in dynamic service environments. In chapter

5, we focus on the verification of service selection for satisfying user transactional require-

ments of composite services. Finally, in Chapter 6, we conclude the thesis and outline some

future work. Figure 1.4 illustrates the structure of the thesis chapters.

Chapter 2 starts from introducing the current web service specification and the state-

of-the-art in service computing. Afterwards, the methodology for modeling web service

match is illustrated. The next section of the chapter discusses the skyline technique in

spacial database and shows this idea can be applied into our personalized QoS-driven web

services discovery model. Then we review some classic model checking methods and

tools, including temporal logic, TLA logic, SPIN, CPN etc. Last, we give a brief summary

to conclude the chapter.

Chapter 3 firstly reviews research on web services discovery. Secondly, it introduces

the conception of preference degree for service ranking. Thirdly, it presents models and

definitions for service relevance and service importance, and then various algorithms for

15

1. Introduction

3.IR-Style search

Petri nets, automata,
MDPs, temporal logic

QoS model,
relaxation, Skyline

tModel, clustering,
 tree edit distance

2. Background and fundamentals

Concepts and specifications
of web services & composition

4. Relaxation-based QoS model
5. Verification of

transactional compositions

Web services discovery
QoS and transactional driven
service selection & composition

6. Conclusions

Functional
 requirements Non-functional requirements

Web service composition framework

Figure 1.4: Structure of the thesis.

ranking web services are provided, followed by a thorough experimental evaluation. The

last section gives concluding remarks.

Chapter 4 first gives a motivating example for personalized QoS-driven service discov-

ery. Secondly, it introduces the computing model for individual services and composite

services, and describes the corresponding QoS query algorithms on the two models, re-

spectively. Then we present the personalized service selection strategy using a relaxation

approach and its justification. Afterwards, we provide examples and experiments to demon-

strate the validity of our methods. Next, it discusses related work on QoS-driven web ser-

16

vices discovery and selection. Finally, the chapter is concluded with a short summary of its

contribution.

Chapter 5 first introduces the main points in our verification strategy. Then we ex-

plain the transactional properties of web services and how they determine the transactional

properties of the composite service they belong to. Next, we model both component web

services and composite services as transition systems, and use Accepted Termination States

to describe the transactional properties of composite services. A verification algorithm is

developed to carry out automated verification of Accepted Termination States on composite

services. Afterwards, we present the formal expression of user transactional requirements

using temporal logic. We illustrate how our formal expression can be verified by the classic

model checking tool SPIN so as to assist designers to compose valid composite services.

Finally, we discuss some related work, followed by some concluding remarks.

Finally, in Chapter 6, we give the concluding remarks of the thesis and point out some

future work.

17

Chapter 2

BACKGROUND AND FUNDAMENTALS

This chapter presents basic concepts and techniques for better understanding the algo-

rithms and methods developed in this thesis. We first introduce various web service speci-

fications and models, including WSDL, UDDI, SOAP, XML schema and BPEL. Then we

introduce the concept, models and research issues of web service composition. After that,

we spend more space on query and matching techniques for web services discovery such as

TF/IDF, clustering, tree edit distance, as they are very important foundations of our research

topic. Afterwards, we give some basics about Skyline and its computing algorithms, which

are used in our relaxation technique for QoS-driven service selection. Finally, we review

some formal representation and verification concepts, models and tools, including temporal

logic, automata, SPIN, etc, which are the basis of our verification scheme for transactional

composite web services. All the contents given here provides a foundation for further study

of web services discovery and composition, and will be the frame of references throughout

the remainder of the thesis.

2.1 Specification and Modeling of Web Services

Web service [48, 136] have become the preferred technology for realizing the SOC (Service-

oriented Computing) paradigms. A web service is a set of related application functions that

can be programmatically published, located, and invoked across the Web. Web services

perform encapsulated business functions that can range from simple request-reply to full

18

SOAP
Simple Object

Access Protocol

WSDL
Web Services

Description Language

UDDI
Universal Description,

Discovery and Integration

UDDI
Business
Registry

Address
Operation

Data
Specification
conditions
declarativeConnect

Discover

Publish

Describe
(contract)

XML

Service
provider

Service
requestor

Figure 2.1: Web service roles and interactions through standardized protocols.

business process interactions. Typical web services, for example, are currency conversion

service, stock quotes/stock charting service, credit card verification/payment processing

service, integrated travel planning service, etc.

The main conceptual characteristics and properties of web services are: self-contained,

self-describing and modular [48]. Firstly, web services are self-contained software compo-

nents, that is, no additional software is required on the client side. Client users can easily

start with programming languages support such as XML and HTTP. An existing application

can be invoked without writing a single line of code. Secondly, those software components

are self-describing. The client and server only need to recognize the format and content

of request and response messages. The definition of the message format is included in the

message. Finally, web services are modular, reusable software components, that is, they

allow developers to reuse the building blocks of code created by others. For example, sim-

19

ple web services can be aggregated to form more complex web services by using workflow

techniques through the BPEL language.

A group of standards have been established to manage web service lifecycles and

service-client communication. These standardized protocols play key roles in web ser-

vices, including: Extensible markup Language (XML), Universal Description, Discovery

and Integration (UDDI), Web Services Description Language (WSDL), and Simple Object

Access Protocol (SOAP). Figure 2.1 [136] presents the web service roles and interactions

through these protocols. The protocols mentioned here are described in the following sec-

tions.

2.1.1 XML, XML schema and DOM

EXtensible Markup Language(XML) [131][123] is a subset of the Standard Generalized

Markup Language (SGML), the standard for creating markup documents. XML is classi-

fied as an extensible language, because XML tags are not predefined and users can define

their own tags. XML is self-descriptive and it is designed to carry data, not to display data.

Via XML we can define the content of a document separately from its formatting, which

makes it easy to reuse that content in other applications or other presentation environments.

Most importantly, XML provides a basic syntax that can be used to share information be-

tween different kinds of computers, different applications, and different organizations with-

out needing to pass through many layers of conversion [116][54]. Therefore, XML is ideal

for use on the Internet. Figure 2.2 is a sample document taken from [88] showing how data

can be represented in XML format.

The XML Schema [111][122] language is also referred to as XML Schema Definition

(XSD) . An XML schema is a description of a type of XML document, typically expressed

20

 <?xml version="1.0"?>
 <books>
 <book>
 <author>Carson</author>
 <price format="dollar">31.95</price>
 <pubdate>05/01/2001</pubdate>
 </book>
 <pubinfo>
 <publisher>MSPress</publisher>
 <state>WA</state>
 </pubinfo>
 </books>

Figure 2.2: An example of XML file

 <xs:element name="book" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="author" type="xs:string"/>
 <xs:element name="price" type="xs:decimal"/>
 <xs:element name="pubdate" type="xs:date"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

Figure 2.3: An example of XML schema

in terms of constraints on the structure and content of documents of that type, above and

beyond the basic syntactical constraints imposed by XML itself. An XML schema provides

a view of the document type at a relatively high level of abstraction [110]. Figure 2.3 is a

segment of the XML schema file describing the XML file in Figure 2.2.

The XML DOM [86][124] defines the objects and properties of all XML elements, and

the methods (interface) to access them. It provides a standard way to get, change, add, or

delete XML elements. In XML DOM, an XML document is presented as a tree structure,

with elements, attributes, and text as nodes. Figure 2.4 shows how memory is structured

21

Figure 2.4: XML DOM tree structure

when the sample XML data [88] is read into the DOM tree structure.

Each circle represents a node in this XML DOM tree structure. Each node is called an

XmlNode object, which is the basic object in the DOM tree.

2.1.2 WSDL

The Web Services Description Language (WSDL) [132] is an XML-based language that

provides a model for describing web services. A WSDL document describes how to invoke

a service and provides information on the data being exchanged, the sequence of messages

for an operation, protocol bindings and location of a service.

More specifically, a WSDL document defines services as collections of network end-

points, or ports. In WSDL, the abstract definition of endpoints and messages is separated

from concrete implementation. Messages and port types provide abstract definitions of the

data being exchanged and the operations performed by a service. The concrete protocol

and data format specifications are associated with a particular port type, forming a reusable

22

binding. By associating a network address with a reusable binding, a port can be defined.

A collection of ports make up a service. To sum up, the elements defined in a WSDL

document are listed as follows [48][132]:

• Types - the structure of the data contained in messages, often defined by XML

schema specification.

• Message - an abstract definition of the data being transferred.

• Operation - an abstract description of an action a service can perform. Operation

defines which message is the input and which message is the output.

• Port Type - a collection of all operations exposed by the web.

• Binding - a specific protocol, data format or structure for an abstract message, oper-

ation or endpoint.

• Port - a single endpoint defined by specifying a single network address for a binding

endpoint.

• Service - a group of related ports or endpoints.

WSDL documents provide an efficient way for web developers to expose their applica-

tions as services accessible on the Internet. Once published through UDDI, WSDL docu-

ments can be found by other applications and bound with them to execute other complicated

business processes.

As an example, we use the classic Loan Approver [76] web service to show the com-

ponents of a WSDL file. The Loan Approver service contains one single operation, called

23

<definitions targetNamespace="http://tempuri.org/se rvices/loanapprover"
 xmlns:tns="http://tempuri.or g/services/loanapprover"
 xmlns:xsd="http://www.w3.org /2001/XMLSchema"
 xmlns:loandef="http://tempur i.org/services/loandefinitions"
 xmlns="http://schemas.xmlsoa p.org/wsdl/">

 <import namespace="http://tempuri.org/services/l oandefinitions"
 location="http://localhost:8080/bpws-sa mples/loanapproval/loandefinitions.wsdl"/>

 <message name="approvalMessage">
 <part name="accept" type="xsd:string"/>
 </message>

 <portType name="loanApprovalPT">
 <operation name="approve">
 <input message="loandef:creditInformationMes sage"/>
 <output message="tns:approvalMessage"/>
 <fault name="loanProcessFault"
 message="loandef:loanRequestErrorMess age"/>
 </operation>
 </portType>

 <binding ...> ... </binding>
 <service name="LoanApprover">....</service>
 </definitions>

Figure 2.5: Loan Approver WSDL

approve, to process a loan request. approve takes as input the information about the cus-

tomer, and outputs an approval message. The WSDL file defining the Loan Approver web

service is shown in Figure 2.5.

2.1.3 UDDI

Universal Description, Discovery, and Integration (UDDI) is an XML-based protocol which

provides a universally recognized directory model for publishing and discovering web ser-

vices. UDDI provides a foundation for developers and administrators to readily share in-

formation about internal web services across the enterprises and public web services across

the Internet [48][88][114]. UDDI manages the discovery of web services by relying on a

24

distributed registry of businesses and their service descriptions implemented in a common

XML format. Business registration is the main part of UDDI. A UDDI business registration

consists of three components: white pages, yellow pages and green page. White pages in-

clude business name, contact information, and a text description of the business’s services.

Yellow pages include industrial categorizations based on standard taxonomies. Green pages

are composed of technical information and references to specifications for services exposed

by the business.

The data structure within UDDI is comprised of four constructions: a businessEntity

structure, a businessService structure, a bindingTemplate structure and a tModel structure.

The relationship between these four core structures [94] is shown in Figure 2.6. The busi-

nessEntity represents a web Service provider; the businessService is a group of services

that may reside in a single businessEntity; the bindingTemplate gives technical information

needed to bind and interact with the target web service; whereas tModels is used to repre-

sent interfaces. Classification information and namespace can be added into the interface

to make UDDI search easier by tModels, which is playing an important role in UDDI.

2.1.4 SOAP

Simple Object Access Protocol (SOAP) is a simple XML-based protocol enabling applica-

tions to exchange of information in a decentralized, distributed environment over HTTP.

To put it simply, SOAP is a protocol for accessing a web service. A SOAP message is a

transmission of information from a sender to a receiver. In SOAP protocol, each message

is composed of three parts: (1) an envelope that defines a framework for describing what is

in a message and how to process it; (2) a set of encoding rules for expressing instances of

application-defined datatypes, and (3)a convention for representing remote procedure calls

25

Figure 2.6: Four core constructions/types of UDDI

and responses [48][23].

SOAP aims “to help developers build web services and link heterogeneous components

over the Internet. It provides an open, extensible way for applications to communicate using

XML-based messages over the Web, regardless of what operating system, object model or

language particular applications may use. SOAP facilitates universal communication by

defining a simple, extensible message format in standard XML and thereby providing a way

to send that XML message over HTTP” [104].

2.2 Web Service Composition

2.2.1 Introduction

Business Processes play an important role in modern information systems. A business

process is the scheduling of a set of activities that collaborated with each other for achieving

certain goals. The activities involved in a business process can be carried out within a single

26

organization or across several. Workflow technology aims for “automation of a business

process, in whole or part, during which documents, information or tasks are passed from

one participant to another for actions according to a set of procedural rules” [45].

With the rapid development of distributed computing and the Internet, web service

composition technology emerges as a new approach for efficient automation of business

processes based on Service-Oriented Architecture (SOA). SOA provides a standardized

platform for organizations to expose and access the functionality of their applications as

services, to communicate and manage services, and to combine exposed functionalities of

simple applications, possibly offered by different companies, into complex, orchestrated

business processes. Composite web services are often created from simple, basic and loose

coupling services. To get an intuitive understanding of web service composition, let us

present an example in the following.

Consider a travel reservation scenario [112] [10] illustrated in Figure 2.7, where a

travel agent offers customers to book complete travel packages, including air tickets, hotels,

car rental and excursions. The travel agency cooperates with external specialized service

providers (airlines, hotel chains, etc) that offer web services to query their offerings and

perform reservations. Also, Credit card companies provide services for the travel agency

to guarantee payments made by consumers. Because of the loosely coupled-nature of web

services, the credit card companies and the service providers can offer their services broadly

to satisfy their customers. Therefore, the travel agent is able to have access to more services,

offering more options to its customers. In this situation, once receiving the customer request

the travel agent will choose the required hotel and flight booking for it. Then the agent will

request specialized services, which work independently of each other and try to book the

desired reservations. Once both services are successfully completed, the agent asks for

27

Figure 2.7: A travel reservation scenario

confirmation from the customer. After getting the confirmation, the travel agent contacts

the bank service that the user chose to finish payment. We assume that all the services are

using common concepts (e.g. flight, economy class, room, etc), which can be described by

a travel industry ontology.

2.2.2 Issues of Web Service Composition

Composite services are the automation of business processes. Since composite services op-

erate in an open, different and dynamic environment, we need better tools and methods to

assist designers/developers to form process from services, to enable flexible and effective

enactment of processes and to improve the running performance of the processes com-

posed with services. There are many issues with the problem of web service composition.

28

Specifically, a web service composition method should consider a group of principles and

issues [85][51][115][143], including Service Description, Service Discovery, Conversa-

tion Modeling, Execution monitoring, Exception Handling and Recovery, and Transactions

Management.

• Service Description. Web service composition requires each service provider in-

volving in the composition to describe the properties of their explicitly in a descrip-

tive file, for example, using WSDL. The properties include functional properties,

where the functionalities, input and output of a service are stated; and non-functional

properties, including QoS (quality of service), transaction, conversation, dependabil-

ity, security, etc. Any tools and languages need to support description of both func-

tional and non-functional properties of a web service.

• Service Discovery. A web services discovery mechanism is needed to support find-

ing candidate web services using matching algorithms that compares “service re-

quests” with “service advertisements”. Matching strategies can be based on key-

words, the types of inputs/outputs, or semantic information, and so on in WSDL

files.

• Conversation Modeling. A conversation [40] is the global sequence of messages

exchanged among the components of a composite service. Conversation modeling

provides a formal method for specifying and analyzing the interactions among the

services participating in a composite web service. It facilitates service discovery and

dynamic binding, service composition validation, service composition framework

generation and analysis of conversations and conversation among services.

29

• Execution monitoring. In practice, there are two different approaches to monitor

the execution of composite services: Centralized and distributed. Centralized mode

is similar to the traditional client-service scheme. A central controller schedules

the execution of component services. Whereas in distributed mode, participating

web services share their execution context. The component services coordinate with

each other to execute the data and control flow, so as to guarantee a correct ordered

execution of the services.

• Transactions Management. In order to guarantee the interactions among services, it

is important to add a transaction management policy into the composite service exe-

cution environments. Typical transaction management protocols are WS-Transaction

standard, proposed by IBM and WS-TXM suggested by Sun. WS-Transaction builds

upon WS-Coordination framework, based on which the protocols for centralised and

peer-to-peer transactions are defined. WS-TXM is designed to ensure that a compos-

ite application always either reaches successful completion or transits to predictable,

known state if one or more of the individual web services fail in the composite appli-

cation.

• Exception Handling and Recovery. There should be an exceptional module that

monitors the exceptions web services throw. If a failure occurs at some point in

the execution of a process instance, some recovery actions need to be done, such as

compensation, backward recovery, forward recovery, etc.

30

2.2.3 Web Service Composition Standards

WSCL

The Web Service Conversation Language (WSCL) [18] was submitted to W3C by HP and

was published as Technical Notes. WSCL defines the overall input and output message

sequences for one web service using a finite state automaton FSA over the alphabet of mes-

sage types. It specifies the XML documents being exchanged, and the allowed sequencing

of these document exchanges. WSCL conversation definitions are themselves XML doc-

uments, and can therefore be interpreted by web services infrastructures and development

tools. WSCL may be used in conjunction with other service description languages like

WSDL, e.g., to provide protocol binding information for abstract interfaces and to specify

the abstract interfaces a concrete service is supporting.

WSCI

The Web Service Choreography Interface (WSCI) 1.0 [15] specification was submitted

to W3C by BEA Systems, BPMI.org, Commerce One, Fujitsu Limited, Intalio, IONA,

Oracle Corporation, SAP AG, SeeBeyond Technology Corporation, and Sun Microsystems.

It is an XML-based interface description language that describes the flow of messages

exchanged by a web service participating in choreographed interactions with other services.

WSCI describes the dynamic interface of the web service participating in a given mes-

sage exchange by means of reusing the operations defined for a static interface. WSCI

works in conjunction with the Web Service Description Language (WSDL), the basis for

the W3C Web Services Description Working Group; it can, also, work with another service

definition language that exhibits the same characteristics as WSDL.

31

WSCI describes the observable behavior of a web service. This is expressed in terms of

temporal and logical dependencies among the exchanged messages, featuring sequencing

rules, correlation, exception handling, and transactions. WSCI also describes the collec-

tive message exchange among interacting web services, thus providing a global, message-

oriented view of the interactions.

BPEL4WS

Developed by BEA, IBM, Microsoft, SAP, and Siebel, BPEL4WS (Business Process Ex-

ecution Language for Web Services) [1] is an XML-based language to specify business

processes and business interaction protocols. BPEL4WS is process-oriented. It defines a

business process as coordinated sets of web service interactions, in which a given task is

achieved by a subset of services. BPEL4WS merges the concepts of XLANG [22](Web

Services for Business Process Design) and WSFL [19] (Web Services Flow Language) as a

standard for web services flow specification, enabling the creation of compositions of web

services.

BPEL4WS supports the modeling of executable and abstract processes. An executable

business process models the actual behavior of a participant in a business interaction. An

abstract process is a partially specified process that is not intended to be executed.

Typically, a BPEL business process invokes the involved web services to fulfil user

requirement. A BPEL process consists of steps; each step is called an “activity”. BPEL

supports both primitive and structured activities. Primitive activities are used for common

tasks, including

• <invoke> - Invoking other web services.

32

• <receive> - Waiting for the client to invoke the business process by sending a mes-

sage.

• <reply> - Generating a response for synchronous operations.

• <assign> - Manipulating data variables.

• <throw> - Indicating faults and exceptions.

• <wait> - Waiting for some time.

• <terminate> - Terminating the entire process.

These primitive activities can be combined to form complex activities. BPEL supports

several structure activities to combine primitive activities. Typical structure activities are

• <sequence> - for definition of a set of activities that will be invoked in an ordered

sequence.

• <flow> - for defining a set of activities that will be invoked in parallel.

• <switch> - for implementing branches.

• <while> - for defining loops.

• <pick> - for selecting one of several alternative paths

Each BPEL process will also define partner links, using <partnerLink> , and declare vari-

ables, using <variable> .

33

<process name="loanApprovalProcess"
 targetNamespace="http://acme.com/simple loanprocessing"
 xmlns="http://schemas.xmlsoap.org/ws/20 02/07/business-process/"
 xmlns:lns="http://loans.org/wsdl/loan-a pproval"
 xmlns:loandef="http://tempuri.org/servi ces/loandefinitions"
 xmlns:apns="http://tempuri.org/services /loanapprover">
 <partners>
 <partner name="customer"
 serviceLinkType="lns:loanApproveLi nkType"
 myRole="approver"/>
 <partner name="approver"
 serviceLinkType="lns:loanApprovalL inkType"
 partnerRole="approver"/>
 </partners>
 <containers>
 <container name="request" messageType="loandef :CreditInformationMessage"/>
 <container name="approvalInfo" messageType="a pns:approvalMessage"/>
 </containers>
 <invoke name="invokeapprover"
 partner="approver"
 portType="apns:loanApprovalPT"
 operation="approve"
 inputContainer="request"
 outputContainer="approvalInfo">
 </invoke>
 <reply name="reply" partner="customer" portTyp e="apns:loanApprovalPT"
 operation="approve" container="appro valInfo">
 </reply>
 </sequence>
</process>

Figure 2.8: The loan approval process

34

 Service

 Instrumentation

 Service Using
Application

Service Invocation

Measurement

&
Management

Service Consumer Service Provider

Metrics

 Instrumentation

Metrics

Measurement

& Management

WSLA

Service

Description

e.g. WSDL

Figure 2.9: Role of a Web Service Level Agreement.

In order to demonstrate how a business process can be created by BPEL4WS, we de-

scribe a simple example taken from [76], which shows a loan approval process. In this

example, a customer sends a request for a loan, then the financial institution’s web ser-

vice is invoked, and finally replies to the customer. The running flow of the loan approval

process is shown in Figure 2.8.

WSLA

The Web Service Level Agreement language (WSLA) [16], presented by IBM, is a frame-

work for specifying and monitoring Service Level Agreements (SLA) for web services. A

WSLA document is an XML document which defines assertions of a service provider to

35

perform a service according to agreed guarantees for IT-level and business process-level

service quality parameters such as response time and throughput, and measures to be taken

in case of deviation and failure to meet the asserted service guarantees, for example, a

notification of the service customer. The assertions of the service provider are based on a

detailed definition of the service parameters including how basic metrics are to be measured

in systems and how they are aggregated into composite metrics for web service composi-

tion. In addition, a WSLA expresses which party monitors the service, third parties that

contribute to the measurement of metrics, supervision of guarantees or even the manage-

ment of deviations of service guarantees. Interactions among the parties supervising the

WSLA are also defined. WSLA can be used by both service provider and service customer

to configure their respective systems to provide and supervise their service. See Figure 2.9

[16] for the role of a web service level agreement in web service environments.

As far as web service composition is concerned, its Quality of Service (QoS) issue

can be solved by the WSLA language. With WSLA, we can specify the QoS property,

requirement and agreement.

2.3 Query and Matching Techniques for Web Services Discovery

In the previous sections, we introduced various web service specifications and models,

including WSDL, UDDI, SOAP, XML schema and BPEL. We also introduced the models

and research issues of web service composition. In this section, we will focus on important

related techniques and backgrounds for web services discovery. In the first part of this

section, we illustrate tModel, which serves as an important tool to facilitate discovery of

web services. Then we present some classic clustering algorithms, which lay basis for our

web services discovery, clustering and ranking approaches proposed in the thesis. After

36

that, we illustrate the tree edit distance algorithm, which is mainly used to calculate the

similarity degree of two web service messages represented as tree structures.

2.3.1 tModel

We have known that UDDI can be seen as an online “yellow book”, where service providers

register their web services, and service consumers try to find the desired service descrip-

tions from this online registry. tModel is an important tool to facilitate businesses to dis-

cover desired web services through UDDI [5][120]. A tModel is a single interface of the

web service that we are going to develop and register, i.e. a technical specification and a

data structure representing a service type (a generic representation of a registered service)

in the UDDI registry. Each tModel consists of a name, a service description, and a Univer-

sal Unique Identifier (UUID). Via tModel, service providers can register their web services

according to a predefined list of service types, and the tModel organizes the service type’s

information and makes it accessible in the registry database. Therefore, businesses can

search the registry’s service types list to find service providers in a much easier way.

2.3.2 Clustering Algorithms for Web Services Discovery

The Web Service Description Language (WSDL) specification provides a standard way for

describing web services in natural language. A WSDL file shows the relevant information

about a web service, such as service name, service operations and service description. Our

web services discovery methods are based on unsupervised clustering for web services.

They mainly focus on the textual features of WSDL files and depend on analyzing the

frequency of terms to make service matching. Furthermore, by schema matching, which

describe the grammatical XML structure used by web services to send and receive mes-

37

sages, we try to compute the similarity between two web services, and find any related

matches. The following sections briefly describe various clustering algorithms employed

in web services discovery processes of users, given a textual description of desired services.

Clustering Analysis

Clustering analysis is a widely used data mining algorithm for many data management ap-

plications. Clustering is a process of partitioning a set of data objects into a number of

object clusters, where each data object shares high similarity with the other objects within

same cluster but is quite dissimilar to objects in other clusters [135]. Different from clas-

sification algorithm that assigns a set of data objects with various labels previously defined

via a supervised learning process, clustering analysis is to partition data objects objectively

based on measuring the mutual similarity between data objects, i.e. via a unsupervised

learning process. Due to the fact that the class labels are often not known before data anal-

ysis, for example, in case of being hard to assign class labels in large databases, clustering

analysis is sometimes an efficient approach for analyzing such kind of data. To perform

clustering analysis, similarity measures are often utilized to assess the distance between

a pair of data objects based on the feature vectors describing the objects, in turn, to help

assign them into different object classes/clusters. There are a variety of distance functions

used in different scenarios, which are really dependent on the application background. For

example, cosine function and Euclidean distance function are two commonly used distance

functions in information retrieval and pattern recognition [61]. On the other hand, assign-

ment strategy is another important point involved in partitioning the data objects. There-

fore, distance function and assignment algorithm are two core research focuses that attract

a lot of efforts contributed by various research domain experts, such as from database, data

38

mining, statistics, business intelligence and machine learning etc.

The main data type typically used in clustering analysis is the matrix expression of

data. Suppose that a data object is represented by a sequence of attributes/features with

corresponding weights, for example, in the context of web services discovery, a web service

is modeled as a weighted keyword sequence. Like what we discussed above, this data

structure is in the form of object-by-attribute structure, or n×m matrix where n denotes

the number of data objects and m represents the number of attributes. In addition to data

matrix, similarity matrix where the element value reflects the similarity between two objects

is also used for clustering analysis. In this case, the similarity matrix is expressed by an

n× n table. For example, an adjacency matrix addressed in the web services discovery is

actually a similarity/relevance matrix. In this work, we adopt the first data expression, i.e.

data matrix to address web service clustering and discovery.

Cosine-Based Similarity Metric

The cosine coefficient is to measure the cosine function of angle between two feature vec-

tors. Cosine function is widely used in information retrieval research. The cosine coeffi-

cient can be calculated by the ratio of the dot product of two vectors with respect to their

vector norms. Given two vectors A and B, the cosine similarity is defined as:

sim(A,B) = cos(−→A ,
−→B) =

−→A ·−→B∣∣∣−→A
∣∣∣×

∣∣∣−→B
∣∣∣

where “·” denotes the dot operation and “×” denotes the norm form.

39

Tree-based Similarity Metric

Each web-service operation can be modeled as a multi-input-multi-output function of the

form f : s1,s2, ...,sn → t1, t2, ..., tm, where si and t j are data types in according with XML

schema specification. Intuitively, we consider two web-service operations similar if they

have similar input/output data types. Since XML schemas are usually modeled as trees,

the problem of web-service operation matching is converted to the problem of schema tree

matching.

Tree edit distance [118][146] is one of the efficient approaches to describe the similarity

between two trees. Tree edit distance between two trees A and B is the minimum cost with

the set of tree edit operations needed to transform A into B. Classic tree edit operations

include node removal, node insertion, and node relabeling. A cost is assigned to each tree

edit operation, so the tree edit distance can be derived by finding a minimum-cost map-

ping between two trees. Many algorithms have been proposed to address the problem of

finding the minimum-cost mapping, for example [118][147][126], etc, but their computing

complexity are usually high.

There are also some restricted tree matching algorithms, in which simple tree matching

(STM) [137] was proposed first and it does not allow node relabeling operation and level

crossing. STM evaluates the similarity of two trees by computing the maximum matching

using dynamic programming. We briefly explain how STM [146] works in the following

paragraph.

Let A, B be two trees and i, j are two nodes belonging to A and B respectively. A

matching between two trees is defined as a mapping M, such that for each non-root node

pair (i, j) ∈M, we have (parent(i), parent(j)) ∈M. A matching is maximum if it has the

40

input : A,B

output: The similarity of A,B

if the roots of the two trees A and B contain distinct symbols then1

return (0);2

else3

m := the number of first-level sub-trees of A;4

n := the number of first-level sub-trees of B;5

M[i,0] := 0, for i = 0, ., .,m;6

M[0, j] := 0, for j = 0, ., .,n;7

for i← 1 to m do8

for j ← 1 to n do9

M[i, j] := max(M[i, j−1],M[i−1, j],M[i−1, j−1]+W [i, j]);10

where W [i, j] = Simple-Tree-Matching(Ai,B j);11

end12

end13

return (M[m,n]+1);14

end15

Algorithm 2.1: The Simple-Tree-Matching algorithm

41

maximum number of pairs. STM compares the roots of A and B first. If the roots contain

distinct labels, then A and B do not match; otherwise the roots contain same labels, and

the algorithm recursively searches the maximum matching between first-level sub-trees of

A and B and store it as a matrix W . Based on W , the number of pairs in a maximum

matching between A and B is found using a dynamic programming method. The Simple-

Tree-Matching algorithm is shown in Algorithm 2.1.

The k-means Algorithm

To date, there are a large number of approaches and algorithms having been developed for

clustering analysis in the literature, such as [62, 61, 24, 39], etc. Based on the operation

targets and procedures, the major clustering methods can be categorized as: Partitioning

methods, Hierarchical methods, density-based methods, grid-based methods, Model-based

methods, High-dimensional clustering and constraint-based clustering [62, 71]. Partition-

ing method is to assign n objects into k predefined groups, where each group represents

a data segment sharing the highest average similarity in comparison to other groups. The

well-known k-means is one of the most conventional partitioning clustering algorithms.

The algorithm is expressed as four steps:

1. Arbitrarily choose k data points as initial cluster mean centers;

2. Assign each data to the cluster with the nearest centers, and update each mean center

of cluster;

3. Repeat step 2 until all centers don’t change and no reassignment is needed;

4. Finally, output subject clusters and their corresponding centers.

42

2.4 Relaxation Technique for QoS-driven Service Selection

In this section, we survey some related techniques about our QoS-driven web service se-

lection strategy, which are used to select web services with the best quality among those

that are able to satisfy users’ requirements or needs. Depending on user context, different

users may have different preferences about the quality of services they need. In order to

fulfill users’ personalized preferences and requests, we use skyline model to relax users’

constraints and try to find the most possible services which meet users’ requirements. The

QoS-driven service computation and policing can be achieved through skyline computa-

tion.

In the first part of this section, we illustrate the concept of skyline with an example.

Then we present some classic algorithms of skyline computation.

2.4.1 Introduction to Skyline

We use the common example in the literature. Suppose we have a group of candidate hotels

and we are looking for a hotel that is both cheap and close to the beach. Unfortunately, this

goal is hard to reach as the hotels near the beach tend to be more expensive. However, we

can at least pick those interesting hotels, which are not worse than any other hotel in both

price and distance. The set of interesting hotels chosen by us are called skyline [37].

The skyline has its graphical presentation, as shown in Figure 2.10 [14], in which each

point stands for one hotel, x axis shows its distance from the beach and its price is repre-

sented by y axis. Formally, the Skyline is defined as those points which are not dominated

by any other point. A point dominates another point if it is as good or better in all dimen-

sions and better in at least one dimension. For example, suppose we have three hotels,

43

Figure 2.10: Skyline of hotels

where a = (0.4mile ,$200), hotel b = (0.4mile ,$180) and hotel c = (1.2mile ,$200). Ac-

cording to the definition of skyline, we conclude hotel a dominates c and b dominates a.

Generally, given a set of d dimensional points P, we say that one point p1dominates

another point p2 if and only if:

• p1 is better than or equal to p2 on all dimensions, and

• p1 is better than p2 on at least one dimension.

The skyline points are those that are not dominated by any other points in P.

44

2.4.2 Algorithms of Skyline Computation

Computing the skyline is known as the maximum vector problem [79]. Given a set of d

dimensional points P, for each data point in P a naı̈ve approach is to make dominance

checking with all the other points in the dataset. However, the naı̈ve strategy is expensive

since every two data points needs to be compared. If we consider the large number of

data points, the cost of the naı̈ve approach would be even more expensive. Recently, there

are a lot of improved approaches and algorithms [98] having been developed for variants of

this problem, such as divide-and-conquer [83], index [119], nearest-neighbor [77], branch-

and-bound skyline [97], etc.

Divide-and-Conquer

The divide-and-conquer approach divides the dataset P into several partitions so that each

partition fits in memory. Then, the partial skyline of the points in every partition is com-

puted. Finally, all the partial skylines are merged to obtain the full skyline. The shortcom-

ings of the divide-and-conquer approach is that it does not suit large dataset. If the data set

is large, the partitioning process requires reading and writing entire data set at least once,

resulting in high I/O cost.

Index

The Index approach divides the data points of P into d lists, where a point p =(p1, p2, ..., pd)

is assigned to the ith list (1 ≤ i ≤ d) when pi is the smallest. Points in each list are sorted

in ascending order of their minimum coordinate and indexed by a B-tree. The ith list is

grouped into some batches, such that each batch consists of points having the same ith co-

45

ordinate. The algorithm begins with loading the first batch of each list and then deal with

the one with the minimum coordinate. It computes the skyline inside a batch and, within the

computed points, adds the ones not dominated by any of the already-found skyline points

into the skyline list. The index method has high I/O cost, because it involves a lot of scan

operations to find the best data point for merging. Also, it cannot be used to retrieve the

skyline on sub-dimensions of data points.

Nearest Neighbor

In the Nearest Neighbor (NN) algorithm, dataset P is indexed by a R-tree. Firstly, NN

performs a nearest-neighbor query on the R-tree, to find the point with the minimum dis-

tance from the beginning of the axes. Distances are computed according to L1 norm, i.e.,

the mindist of a point p from the beginning of the axes equals the sum of the coordinates

of p. All the points in the dominance region are abandoned without further consideration.

According to the results of NN search, the dataset P is partitioned recursively. After finding

a skyline point, the set of relevant partitions are inserted in a to-do list. NN removes one of

the partitions from the list and repeats the process recursively until the to-do list is empty.

Branch-and-Bound Skyline Algorithm

The branch-and-bound skyline (BBS) algorithm is also based on nearest-neighbor search on

the R-tree created from the data set P. In the R-tree, an intermediate entry ei corresponds to

the minimum bounding rectangle (MBR) of a node Ni at the lower level, while a leaf entry

corresponds to a data point. Similar to the NN algorithm, distances are computed according

to L1 norm, i.e., the mindist of a point equals the sum of its coordinates and the mindist of

a MBR (i.e., intermediate entry) equals the mindist of its lower-left corner point.

46

BBS starts from the root node of the R-tree and inserts all its entries in a heap sorted

according to their mindist. If an entry is not dominated by some already-found skyline

point, then we expand it. That is to say it is removed from the heap and all its children are

inserted into the heap. This process repeats until the heap is empty. The details of BBS

algorithm can be found in [97].

2.5 Modeling and Verification of Web Service Composition

In this section, we present some models, methods and tools related to our work on verifi-

cation of transactional properties to ensure a correct composition and a reliable execution

of a composite service, given a user’s transactional requirements. These related works are

used to formally represent and model composite web services.

2.5.1 Models

Recently, numerous formal models and approaches are applied into web service composi-

tion. Typical models are Petri nets, Automata, Temporal Logic, and so on.

Petri nets

A Petri net is a graphical tool for the description and analysis of concurrent processes which

arise in distributed systems. A Petri net is a directed bipartite graph, in which the nodes

represent places, transitions, and directed arcs[99][91]. Arcs only run between places and

transitions. The places from which an arc runs to a transition are called the input places of

the transition; the places to which arcs run from a transition are called the output places of

the transition. Places can have a number of tokens. If there is a token at the end of all input

arcs, a transition may fire, which will consume these tokens and place tokens at the end

47

Figure 2.11: Example of a Petri Net

48

of all output arcs. A firing is atomic, which means it is not interruptible. We borrow the

examples from [7] and [12] to show the intuitive meaning of Petri nets, as shown in Figure

2.11.

Just as some existing industry standards (e.g. UML), Petri nets can graphically present

choice, iteration, and concurrent execution structures in a process. More importantly,

the execution semantics of Petri nets have an exact mathematical definition and a well-

developed mathematical theory basis, so if we map a composite web service to a Petri

net, the formal model of the composite service can be derived. Moreover, we can apply

the verification techniques and tools developed for Petri nets to the context of composite

services.

Markov Decision Processes for web service composition

Web service composition can be viewed as a goal-driven problem. Markov decision pro-

cesses (MDPs) are decision-theoretic planning formalisms that model the inherent stochas-

tic nature of web services. Because the number of tasks defined in a composite web service

is usually finite, we can use the finite horizon MDP to model the composition problem. The

solution of an MDP is a optimal policy that guides a web service composition towards its

goal [50][102][58]. An MDP is formally defined as below:

(Markov Decision Process (MDP)) A Markov decision process is a tuple, M =(S,A,T,C,H)

where

• S is the set of all possible states;

• A is the set of all possible actions;

49

• T is a transition function, T : S×A→ ∆(S), which specifies the probability distribu-

tion over the next states given the current state and action;

• C is a cost function, C : S×A→ π, which specifies the cost of performing each action

from each state; and

• H is the period of consideration over which the plan must be optimal, also known as

the horizon, 0 < H≤ ∞

We regard a composite web service as a state machine whose set of states is the product

of the sets of states of the state machines for each service node. We assume that a composite

service C is composed of n service nodes, then a system state of C is written as a N-tuple:

< s1,s2, ...,si, ...,sn > (1≤ i≤ n), where si represents the current state of service i. Actions

are web service invocations. The set of invoked web services are bound to the current

active service nodes. The transition function is defined as the probability of reaching the

next state, depending on the current state and action. The cost function C defines the

cost associated with web service invocation, for example response time, price, etc. We let

0 < H≤ ∞ imply that the goal of our web service composition is getting the most optimal

workflow policy, for example, by minimizing the total expected response time, etc.

Modeling Composite Services with Temporal Logic

In [29] authors modeled workflows as a set of inter-task dependencies. Applying to the

context of web service composition, the tasks in a composite service are participant ser-

vices. The events related to tasks include starting, terminating, and execution of specific

functions of services, etc. Every time an event is received for execution, all dependencies

50

are checked so as to accept, reject, or delay the event.

The dependencies are formalized in Computational Tree Logic (CTL) [52], a branching

temporal logic by Edmund Clarke and E. Allen Emerson. For example, the order depen-

dency, e1 < e2, requiring that if e2 occurs then e1 will never occur later at any following

path, is specified in CTL as A¦ (e2 → A¦¬e1). For each dependency D, a finite state ma-

chine AD is created to enforce D. Formally, AD is a tuple < s0,S,∑,ρ >, where S is a set of

states, s0 is the initial state, ∑ is the alphabet, and ρ ⊆ S×∑×S is the transition relation.

The elements of ∑ can have one of the following forms:

• a(e1,e2, ...,en): This indicates that events e1,...,en are accepted by AD and scheduled

for execution.

• r(e1,e2, ...,en): This expression says that events e1,...,en are rejected by AD.

• σ1 ‖ ... ‖ σn. This says σ1,..., σn are run concurrently in an interleaved fashion.

• σ1; ...;σn. This says σ1,..., σn are run in sequence.

A legal sequence of events must be accepted by every finite state machine. More de-

tailed information can be found in [29] and [89].

2.5.2 Tools

In this section, we introduce two prominent public domain model-checking tools which can

also be used to model and verify composite web service and workflows, namely SPIN [65]

and CPN tools [73].

51

SPIN

SPIN is an automata-based model checker for verifying the correctness of distributed soft-

ware. It verifies systems that are described in Promela (Process Meta Language), which

supports modeling distributed algorithms as non-deterministic automata. The properties to

be verified by SPIN are described by Linear Temporal Logic (LTL) formulas.

In order to use SPIN to verify composite services, the execution process of composite

services, for example expressed by BPEL, needs to be translated into Promela. A lot of

works have focused on the translation of BPEL into Promela, such as [55][56][57] etc. We

omit their details here.

CPN Tools

CPN Tools is a tool for editing, simulating and analyzing colored Petri Nets [73][90]. Col-

ored Petri Nets (CP-nets or CPN) is a graphical oriented language for design, specification,

simulation and verification of systems. It extends the classical Petri Nets with colors (to

model data), time (to model durations), and hierarchy (to structure large models). Simi-

lar to classical Petri Nets, CPNs uses transition, place, and token as well. Because of these

characteristics, CPNs is in particular well-suited for modeling and verifying composite web

services. Related works are [138][73][47], etc.

52

Chapter 3

EFFICIENT IR-STYLE SEARCH OVER WEB SERVICES

3.1 Introduction

A web service is programmatically available application logic exposed over the Internet. It

can be accessed and invoked via standards such as XML, WSDL, UDDI and SOAP. With

the rapid development of e-commerce over Internet, web services have attracted much at-

tention in recent years. Nowadays, enterprises are able to outsource their internal business

processes as services and make them accessible via the Web [34]. Then they can combine

individual services into more complex, orchestrated services. As the number of web ser-

vices and Service Oriented Computing applications increases, there is a growing need for

mechanisms for discovering services efficiently. Effective mechanisms for web services

discovery and ranking are critical for organizations to take advantage of the tremendous

opportunities offered by web services, to engage in business collaborations and service

compositions, to identify potential service partners, and to understand service competitors

and increase the competitive edge of their service offerings [43].

Web services discovery introduces many new challenges. First, current web services

discovery methods are mostly based on the UDDI-registry. To find a service in UDDI, a

user needs to browse the relevant UDDI category to locate relevant web services. Consid-

ering a large amount of service entries, this process is time consuming and frustrating. So,

we need an effective mechanism for automatic web services discovery. Second, a user’s

53

requirement for desired web services may not always be precise and a service discovery

mechanism can potentially return a large number of results to satisfy the user’s require-

ment, especially when a large service repository is available. Consequently, an important

requirement for web services discovery is to rank the discovered results so that the most

relevant services appear first. Finally, a good web services discovery mechanism should

also be able to assist users in selecting relevant services and combining them. For example,

a typical strategy would allow users to see the services before they can start composing

their application. Consider the four services shown in Figure 3.1. The second and the third

services can process the order information for one transaction provided that a buyer’s or-

der has been generated, whereas the first and the fourth services provide the buyer’s order

according to her requirement. Obviously, it is reasonable to say the first and the fourth

services are more important than the others since they contribute indispensable informa-

tion for the other two services to be invoked. So, an ideal ranking strategy should put the

first or the fourth service on top. Also, as we can see from Figure 3.1, there are two links

between the first and the second and the third services respectively, in which the output

of CreateOrder service, BuyingOrder, is also the input of both ProcessPayment service

and TransportOrder service. The two links apply to the fourth service, too. This form

of link potentially involves more web services and thus is particular useful in web service

composition.

To address the problems above, in this chapter we propose a novel IR-Style mecha-

nism for discovering and ranking web services automatically, given a textual description of

desired services. The contribution of the work reported here is summarized as follows:

1. We introduce the notion of preference degree for web services and then we define

54

 WS1: Web Service: CreateOrder
 Operation:OrderBuilder
 Input: UserID DataType: int
 Requirement DataType: ItemList
 Output: ProductsList DataType:BuyingOrder

 WS2: Web Service: ProcessPayment
 Operation:CheckoutOrder
 Input: UserProducts DataType:UserOrder
 Output: PaymentConfirmation DataType: bool

 WS3: Web Service: TransportOrder
 Operation:ShippingOrder
 Input: Cargo DataType: Order
 Output: PickupTime DataType: TimeLimit

 WS4: Web Service: OrderGeneration
 Operation:GetOrder
 Input: UserName DataType: String

Output: MyProducts DataType: PurchaseOrder

Figure 3.1: Sample web-service operations

level0

level1

level2

level3

level4

Order

OrderID [,] ProductParts ExpectedShipDate

CustomerName CustomerContacts [m, n]

[|] Part

Telephone email PartName PartPrice PartQuantity

Figure 3.2: XML schema tree of Order type

55

service relevance and service importance, respectively as two desired properties for

measuring the preference degree.

2. We design novel algorithms for computing the relevance and importance degree of

services. Our algorithms take into account both textual and structural information of

web services.

3. We define service connectivity, a novel metric to evaluate the importance of services.

In addition, we also develop a new schema tree matching algorithm to measure the

service connectivity.

4. We present an approach to identify associations between web-service operations

based on service operations matching. This approach uses the concept of attribute

closure to obtain sets of operations. Each set is composed of associated web-service

operations.

5. We do various experiments to search for desired web services. Initial results show

that the proposed IR-style search strategy is efficient and practical.

The rest of this chapter is organized as follows. Section 3.2 reviews the related work.

Section 3.3 introduces the conception of preference degree for service ranking. Section

3.4 and Section 3.5 present models and definitions for service relevance and service impor-

tance, followed by Section 3.6, in which we present algorithms for ranking web services.

An approach to identify associations between web-service operations is presented in Sec-

tion 3.7 based on service operation matching. In Section 3.8 we describe our experimental

evaluation. Section 3.9 gives some concluding remarks.

56

3.2 Related Work

Finding similar web-service is closely related to software components matching. In [142],

signatures are used to describe a component’s type information (which is usually statically

checkable), and formal specifications are defined to describe the component’s dynamic

behavior. Two components match if their signatures and specifications match. However,

the formal specifications used are function’s post conditions, which are not available in web

services.

Several approaches use text or structural matching to find similar web services for a

given web service. The earlier technique tModel presents an abstract interface to enhance

service matching process. But the tModel needs to be defined while authors publishing in

UDDI [36]. In [108], the authors propose an SVD-Based algorithm to locate matched ser-

vices for a given service. This algorithm uses characteristics of singular value decomposi-

tion to find relationships among services. But it only considers textual descriptions and can

not reveal the semantic relationship between web services. Wang etc. [129] discover similar

web services based on structure matching of data types in WSDL. The drawback is that sim-

ple structural matching may be invalid when two web-service operations have many similar

substructures on data types. Woogle [49] develops a clustering algorithm to group names of

parameters of web-service operations into semantically meaningful concepts. Then these

concepts are used to measure similarity of web-service operations. However, it relies too

much on names of parameters and does not deal with composition problem. Further more,

it does not provide efficient ranking mechanism to facilitate user browsing services.

Recently, some methods have been proposed to annotate web services with additional

semantic information. These annotations are used to match and compose services. For ex-

57

ample, in [117] the authors extended DAML-S to support service specifications, including

behavior specifications of operations. The Web Service Modeling Ontology (WSMO) [106]

is a conceptual model for describing web services semantically, and defines the four main

aspects of semantic web service, namely Ontologies, Web services, Goals and Mediators.

However, most of existing web services currently use WSDL specifications, which do not

contain semantics. Annotating the collection of services requires much effort, and it is in-

feasible in web services discovery. [113] formally defines a behavior model for web service

by automata and logic formalisms. However, the behavior signature and query statements

need to be constructed manually, which can be very hard for common users. Also, ranking

mechanisms are lacking in these methods.

Other approaches include P2P-based service discovery [63], QoS-based discovery and

ranking [26], service crawler [28]. Although these work provide ranking strategies, they

overlook user’s semantic preferences and can not identify the semantic relationship between

services.

Some of our algorithms to be presented in this chapter are related to keyword search

in databases or Internet. For example, Discover [66, 67] and DBXplore [25] operate on

relational databases and facilitate information discovery on them by allowing users to issue

keyword queries without any knowledge of the database schema. They return sets of tuples

that are associated by joining on their primary and foreign keys. Google PageRank [38] uses

the Internet’s link structure as an indication of each web page’s importance value. Also,

our work is inspired by the work on XML schema. For instance, in [101] authors propose a

syntactic approach to web service composition, given only the input-output schema types of

web services available in their WSDL descriptions. [139] introduces the concept of schema

summary and suggests importance and coverage as two relevant properties by which to

58

judge the quality of a schema summary. Inspired by these methods, we model each web-

service operation as a dependency (schema) according to its data types (attributes), by

which we design an IR-style ranking mechanism for web services and find associations

between them.

3.3 Desired Properties for Service Rank

Our goal is to find services in a more automatic and IR-style way, given a potentially partial

specification of the desired service. We need an efficient mechanism to select the preferred

services from available ones to satisfy the user’s requirement. A natural idea is, firstly, to

evaluate the user’s preference for available services with respect to the textual service re-

quirement, rank them according to the degree of preference, and then return the top services

as search results.

But, what makes a good service to the user? What does “preference degree”mean and

how do we compute it? In [38], authors pointed that the final rank of a web page appearing

in search results pages is determined by both the goodness of the match of the search terms

on the page itself (relevance of the page) and this page’s PageRank (importance of the

page). Extending this idea to our context, we consider two factors for the user’s preference

degree for a service, in other words, the rank of the service. First, a good web service

should be relevant to the user’s requirement, i.e., to a certain extent, similar to the service

requirement. Second, we should select services that are important. Intuitively, a service

is important if it is employed by many other services in service composition; therefore,

services that can be employed by as many as services are worth looking at.

Having seen what we consider to be desired properties for ranking web services, in

the next two sections we will define the service relevance metric and service importance

59

metric respectively, and then we calculate the user’s preference degree for available services

in reference to a textual description of desired web services provided by the user.

3.4 Service Relevance

Let q be a natural language description of the desired web services, S = {s1,s2, ...,sk} be

the set of all available services published through UDDI, and D = {D1,D2, ...,Dk} be a

document collection containing WSDL specifications for all the services in S, where each

WSDL document Di corresponds to service si. Suppose there are N distinct words in D

after a pre-processing step, including word stemming, removing stop words and expanding

abbreviations and acronyms into the original forms. Applying the vector-space model to

the web services context, we describe each service si as an N-dimensional vector −→D i con-

taining all terms in its specification Di, denoted as −→D i = {(t1,wi1),(t2,wi2), ...,(tN ,wiN)},

where each term is assigned a weight. A well-known weighting method is TF/IDF, namely

the normalized term frequency (TF) and inverse document-frequency (IDF). Typically, the

weight for each term t j in document Di is given by wi j = t fi j × id f j = t fi j × log(k/n j),

where k is the total number of available web services and n j is the number of correspond-

ing WSDL documents in which the term t j appears. For more details, interested readers are

referred to see [109].

Given the weighted vector −→q for the user’s description of desired services and the

weighted vector −→D i for a service si’s WSDL specification document, we adopt the cosine

distance metric to compare their similarity. Formally, the service relevance can be defined

as follows:

Definition 1. (Service Relevance). The relevance of a service si, denoted as Rsi, with

respect to the user’s natural language description of desired web services, written as q, is

60

defined as:

Rsi =
∑N

k=1 wik×w′ik√
∑N

k=1 (wik)2.
√

∑N
k=1 (w′ik)2

(3.1)

where wik is the weight for term k in −→s i and w′ik is the weight for term k in −→q . Rsi

ranges from 0 to 1. The higher score Rsi is, the more relevance service si is with respect to

q, indicating a closer similarity between the user’s description of request q and the available

web service si.

3.5 Service Importance

A web service is in some way not different from a software component or module. Like in

a software library where different functions or modules have different tier, not all services

have equal importance in a web service repository. For example, consider the services

in Figure 3.1. Although all their WSDL descriptions contain terms provided by the user

to search for desired services, most people would agree that service CreateOrder is more

important than both the ProcessPayment service and the TransportOrder service, since the

output of the first service, BuyingOrder, is also the input of the two services, and thus a

required prerequisite for the other two services to be invoked. Based on this observation,

we argue that a service can have great importance if there are many other services that

employ it, or if there are some services that employ it and have a great importance. From

this point of view, a service having low relevance may be more important than a service

showing high relevance.

In order to reveal the nature of the importance of a service, we need to identify the

relationships between the service and other services. Furthermore, we need an appropri-

ate metric to capture how well a service can be used by other services. In the following

61

subsections, we describe models and algorithms to evaluate service importance; in partic-

ular, we show how to measure connectivity between two web-service operations based on

schema matching, and how by connectivity we can achieve the importance of a web-service

operation, which contributes to part of the importance of the service it belongs to.

3.5.1 Web-service Operation Modeling

Definition 2. A web service is a triple ws = (T pSet,MsgSet,OpSet), where TpSet is a set of

data types, MsgSet is a set of messages (parameters) conforming to the data types defined

in TpSet, and OpSet = {opi(inputi,out puti)|i = 1,2, ...,n} is a set of operations, where

inputi and out puti are parameters (messages) for exchanging data between web-service

operations.

Figure 3.1 has given four web-service operations used as examples in this chapter. Ac-

cording to Definition 2, a web service can be briefly described as a set of operations.

Definition 3. Each web-service operation is a multi-input-multi-output function of the form

f : s1,s2, ...,sn → t1, t2, ..., tm, where si and t j are data types in according with the W3C XML

schema specification. We call f a dependency and si
/

t j a dependency attribute.

A dependency attribute can be a complex data type or a primitive data type. Complex

data types, such as BuyingOrder and UserOrder in Figure 3.1, define the structure, content,

and semantics of parameters, whereas primitive data types, like int and bool, are typically

too coarse to reflect semantic information. Since parameters usually can be regarded as data

types, we can convert primitive data types to complex data types by replacing them with

their corresponding parameters. For example, in Figure 3.1 bool is converted into Payment-

Confirmation type while int is converted into UserID type. Both PaymentConfirmation and

62

UserID are considered as complex data types with semantics. Therefore, now each data

type defined in a web-service operation can carry a semantic meaning, in according with

XML schema specification at the same time.

An XML schema can be modeled as a tree of labeled nodes. We categorize a node n by

its label:

1. Tag node: Each tag node n is associated with an element type T. T is also the tag

name of node n.

2. Constraint node:

- Sequence node: A sequence node indicates its children are an ordered set of

element types. We use [,] to denote a sequence node.

- Union node: A union node represents a choice complex-type, that is, the in-

stance of which can only be one of the children types in accordance with the

XML Schema specification. We use [|] to denote a union node.

- Multiplicity node: Each node may optionally have a multiplicity modifier [m,

n] indicating that in the instance, its occurrence is between m and n. This cor-

responds to the minOccurs and maxOccurs constraints in an XML Schema. We

use [m, n] to denote a multiplicity node.

As an example, the schema tree of data type Order is shown in Figure 3.2.

3.5.2 Connectivity of Web Service Operations

As we can see, data types defined in web-service operations carry semantic information.

Intuitively, we can consider two web-service operations, say A and B, connected if the data

63

types of the output parameters of A are the same as the data types of the input parameters

of B, so service B could directly employ service A’s output result and they can potentially

collaborate in a user’s web-service composition process. Obviously, however, requiring that

A’s output and B’s input are the same so as to be connected is too strict and not practical in

many cases. Generally, the connectivity relationship between two web-service operations

can be defined formally as follows.

Definition 4. (Web-service Operation Connectivity). Given two web-service opera-

tions op1 : s1,s2, ...,sn→ t1, t2, ..., tm and op2 : u1,u2, ...,ul → v1,v2, ...,vk, let X = {t1, t2, ..., tm}

and Y = {u1,u2, ...,ul}. The connectivity of op1 with respect to op2 can be measured as the

similarity degree between X and Y , denoted as Conop2→op1 = sim(X ,Y).

Service operation op1 is said to be connected to op2 if the connectivity degree

Conop2→op1 is greater than some threshold value λ(0 < λ < 1). If op1 has exactly the same

output data type as op2’s input, we will have Conop2→op1 = sim(X ,Y) = 1, indicating the

highest possible degree of connectivity of op1 regarding op2. In this case, we say op1 is

well connected to op2. On the contrary, if the output of op1 is totally different from op2’s

input, we will have Conop2→op1 = sim(X ,Y) = 0, indicating the lowest possible degree of

connectivity of op1 regarding op2.

As we have known, a data type used in web service operations is a structure that is

presented by a schema tree, so X and Y are actually two groups of schema trees. Therefore,

we can convert the problem of measuring connectivity between two web-service operations

to the problem of schema tree matching. Section 3.6 will detail the algorithms for deriving

the connectivity of a web service operation.

64

3.5.3 Importance of Web Service Operations

Based on the notion of connectivity, the web-service operation importance is given by an

iterative equation below, similar to the technique used in PageRank [38] algorithm:

Definition 5. (Web-service Operation Importance). The importance of a web-service

operation op, written as Iop, is calculated as the following iterative formula until conver-

gence is reached:

Ir
op = (1− p)+ p∗ ∑

j∈Fop j

Conop j→op∗Ir−1
op j

∗1/Nop j (3.2)

where Conop j→op is the connectivity degree of op with respect to service operation op j,

r denotes the number of iterations, Fop j is the set of service operations connected by op j,

Nop j =
∣∣Fop j

∣∣ is the number of operations in Fop j , and 0 ≤ p ≤ 1 is a tuning parameter

indicating how well the importance of a web service operation is affected by that of oth-

ers. For all web-service operations, the initial importance I0 is set to 1/N, where N is the

total number of available web-service operations. The computing process of the iterative

equation above is shown by the CompImp algorithm in Section 3.6.2.

3.6 Algorithm for Ranking Web Services

We now turn to the main focus of this chapter, which is efficiently ranking web services.

Recall that in Section 3.3, two factors are considered for the rank of a service: service rel-

evance and service importance. Since service relevance has been discussed in Section 3.4,

now the key issue remaining is how to compute the importance of services. We start with

computing the connectivity of web-service operations by a new schema matching strategy,

then iteratively compute the importance of operations by using the CompImp algorithm

65

(Algorithm 3.3). Finally, we combine these two factors to achieve the final rank scores for

all web-service operations.

3.6.1 Computing Connectivity Using Schema Tree Matching

In this section, we propose a new schema tree matching algorithm to measure the connec-

tivity of a web-service operation, which is also a key step for evaluating its importance.

Tree Edit Distance

Many works have been done on the similarity computation on trees. Among them tree edit

distance is one of the efficient approaches to describe difference between two trees. We

introduce tree edit operations first. Generally, the tree edit distance operations include: (a)

node removal, (b) node insertion, and (c) node relabeling. Such a set of operations can

be represented by a mapping with minimum cost between the two trees. The concept of

mapping is formally defined as follows [105]:

Definition 6. Let Tx be a tree and let Tx[i] be the ith node of tree Tx when traversing it in

preorder. A mapping between a tree T1 and a tree T2 is a set M of ordered pairs (i, j),

satisfying the following conditions for all (i1, j1),(i2, j2) ∈M

1. i1 = i2 iff j1 = j2;

2. T1[i1] is on the left of T1[i2] iff T2[j1] is on the left of T2[j2];

3. T1[i1] is an ancestor of T1[i2] iff T2[j1] is an ancestor of T2[j2].

Figure 3.3 gives an example of tree mapping. This mapping also shows the way of

transforming the left tree to the right one. A dotted line from a node of T1 to a node of T2

66

R

T1 T2

A C

D E

B G

A E

R

Figure 3.3: An example of tree mapping

indicates that the node of T1 should be changed if the corresponding nodes are different,

remaining unchanged otherwise. Nodes of T1 not connected by dotted lines are deleted,

and nodes of T2 not connected are inserted. Each of these operations is assigned a cost. The

tree edit distance between two trees is defined as the minimal set of operations to transform

one tree into the other.

Our schema matching algorithm is based on tree edit distance. However, the problem

in our case is more complex than the traditional tree edit distance for the following reasons:

1. The labels of an XML Schema tree can carry complex type information (e.g., union,

multiplicity) which makes simple relabeling operations inapplicable. For instance, let

T1 and T2 be the schema trees of Order and BuyingOrder respectively. Let us assume

there exits a mapping M between T1 and T2, and there are two node-mapping pairs

(i1, j1),(i2, j2) ∈M, where T1[i1] =[telephone|email], T2[j1] =email, T1[i2]=price, and

T2[j2]=quantity. The edit operation of (i1, j1) should have a smaller cost than that

of (i2, j2). But the existing works consider all tree edit operations to have same unit

distance.

2. The labels of nodes carry semantic information. So a relabeling from one node to

another unrelated node will have a bigger cost than a semantic related node. For

67

example, relabeling part to item is less costing than relabeling price to email.

3. We argue that tree edit operations on low-level nodes of a tree should have more in-

fluence than operations on high-level nodes. For example, in Figure 3.2, node Order

is more important than node PartPrice, because Order denotes broader semantics in-

formation than PartPrice. So, if a PartPrice node of the first tree is mapped into an

Order node of the second tree, the edit operation cost should not be zero. But tra-

ditional works on tree edit distance do not consider the difference and assign a unit

cost to each edit operation.

In the next section, we present a new cost model to compute the cost of tree edit opera-

tions, by which the tree edit distance of two schema trees is achieved.

Cost Model

Measuring similarity between two XML schema trees equals to finding a mapping with

minimum cost. So, the cost of each edit operation involved in the mapping needs to be

computed first. [93] proposed an algorithm for fast computing tree edit distance, but it

assigns the same cost to each unit edit operation on all nodes and overlooks node difference.

In [133], the authors introduced a summary structure for computing structural distance and

took weight information into account for nodes in distance computation, but they did not

consider the semantic difference or similarity. In this section we introduce a new cost mode

based on tree edit distance as presented in [93] and [133]. The new cost model integrates

weights of nodes and semantic connections between nodes. Let T1 and T2 be two schema

68

trees and let n, node1 and node2 be tree nodes. Formally, the cost model is defined as

cost(ρ) =

weight(n)/W (T1,T2), ifρ = insert(n)

weight(n)/W (T1,T2), ifρ = delete(n)

α×wd(node1,node2) ifρ relabels

+β× sd(node1,node2) node1 to node2

(3.3)

where ρ indicates a tree edit operation. weight(n) shows the weight of node n, which

is defined in Definition 9. wd(node1,node2) and sd(node1,node2) give the weight and

semantic difference of node1 and node2, respectively. α and β are weights of wd and sd,

satisfying α+β = 1. W (T1,T2) is defined as W (T1,T2) = weight(T1)+ weight(T2), where

weight(Ti) is the sum of all node weights of tree Ti(i = 1,2). wd(node1,node2) is defined

as

wd(node1,node2) =
‖weight(node1)−weight(node2)‖

W (T1,T2)
(3.4)

where node1 ∈ T1 and node2 ∈ T2 .

In Equation 3.3, weight(n)/W (T1,T2) explains the cost of inserting or deleting node n.

For the relabel operation, both weight and semantics of node1 and node2 can be different,

so we use the combination of weight and semantic difference as the relabel cost. All costs

are normalized by W (T1,T2), i.e. the sum of all node weights of tree T1 and T2.

In the next two sections, we propose a set of schema-tree transformation rules and a

semantic similarity measure to compute wd and sd, i.e., the weight and semantic difference

of nodes.

XML Schema Tree Transformation

Definition 7. The tag name of a node is typically a sequence of concatenated words, with

the first letter of every word capitalized (e.g., ExpectedShipDate). Such a set of words is

69

referred to as a word bag. We use π(n) to denote the word bag of node n.

Definition 8. Two word bags π(n1) and π(n2) are said to be equal, only if they have the

same words.

Two nodes are considered different if they have different word bags. The word bag

reflects the semantic meaning of a node. As we shall see later, using word bags we can

measure the semantic similarity between two schema-tree nodes.

Definition 9. Let level(n) denote the level of node n in the schema tree T . The weight of

node n is defined by the following weight function:

weight(n) = 2depth(T)−level(n)(∀n ∈ T) (3.5)

The weights of all nodes fall in the range of [2,2depth(T)]. Each weight reflects the

importance of a node in schema tree T . From Section 3.6.1.1, it can be seen that traditional

tree-edit-distance algorithm is not suitable for XML schema trees, as it does not deal with

constraint nodes. We propose three transformation rules to solve this problem. These

rules are used to transform constraint nodes, specifically, sequence nodes, union nodes and

multiplicity nodes, to tag nodes. At the same time, the weights of nodes are reassigned

according to the following rules:

1. split: This rule is applied to sequence nodes. A sequence node l = [l1, l2, ..., ls] is split

into an ordered list of nodes l1, l2, ..., ls, where li(i = 1,2, ...,s) is a child node of the

sequence node l. After the split process, each sequence node is replaced by its child

nodes. Each child node li inherits the weight of its parent node l as a new weight.

Figure 3.4(a) gives an example of the split rule.

70

input : schema tree T

output: transformed schema tree T∗

d = GetDepth(T);1

for i← d to 0 do2

foreach node p ∈ leveli do3

if p is a sequence node then4

weight(each of p’s child nodes)=weight(p);5

add p’s child nodes to p’s parent’s child list;6

delete p;7

end8

if p is a union node with s options {li|i = 1, ..s} then9

merge p’s child nodes into a new node q;10

add q to p’s parent’s child list;11

weight(q) = weight(p)× s;12

π(q) =
s⋃

i=1
π(li) ;13

delete p;14

end15

if p is a multiplicity node [m,n] then16

add p’s child node to p’s parent’s child list;17

weight(p’s child node)=weight(p)× (m+n)/2;18

delete p;19

end20

end21

end22

Algorithm 3.1: Bottom-up-transformation

71

Order

[,]

ProductParts

CustomerName

[m, n]

PartCustomerContacts Telephone

[|]

CustomerContacts

email

2
5

2
3

2
4

2
3

2
5

2
4

ProductParts

PartTelephone, email

CustomerContacts

(a) Sequence node transformation (c) Multiplicity node transformation(b) Union node transformation

2
4

2
4

2
3

2
2

2
4

2
3

2
2

2 2

2
3

2
3CustomerName CustomerContacts

Order

2
3
*(m+n)/2

Figure 3.4: XML Schema tree transformation

2. merge: This rule is applied to union nodes. After the merge process, each union node

is replaced by all its option nodes, i.e. all its child nodes. All child nodes of the union

node l = [l1|l2|...|ls] are merged into a new node l∗, while the union node l is deleted.

The weight of node l∗ is s times the weight of l. Each li’s(i = 1,2, ...,s) word bag

is also merged into a new word bag. Formally, we have weight(l∗) = weight(l)× s.

Figure 3.4(b) gives an example of the merge rule.

3. delete: This rule is applied to multiplicity nodes. We delete a multiplicity node

l = [m,n](m,n ∈ N) and scale up the weight of each of its child nodes li. After

the deletion process, each multiplicity node is replaced by its child nodes. We have

weight(li) = weight(l)×(m+n)/2. Figure 3.4(c) gives an example of the delete rule.

Note that the definition of complex types can be nested according to the XML schema

specification. Thus, given a schema tree, we apply the three transformation rules to its

nodes level by level, from bottom to top. This process is formally described as the Bottom-

up-transformation algorithm (see Algorithm 3.1). The time complexity of Bottom-up-

transformation is O(n), where n is the number of nodes in the XML schema tree.

72

Semantic Measurement between Schema-tree Nodes

After the bottom-up transformation, schema tree T is converted into a new schema tree T∗.

Each node n of T∗ is a tag node, whose word bag may come from two or more word tags

because of nodes merge by the merge rule. Formally, node n can be regarded as a vector

(W,B), where W is the weight of node n and B is the word bag of node n. As we can see,

after the transformation the weight difference between two nodes can be computed by the

new cost model. In this section, we present a strategy to determine the semantic similarity

of two schema-tree nodes, i.e. the semantic distance between two word bags.

Our idea relies on a hypothesis that two co-occurrence words in a WSDL description

tend to have the same semantics. We exploit the co-occurrence of words in word bags to

cluster them into meaningful concepts. To improve accuracy of semantic measurement, we

first carry out the pre-processing step before words clustering, which has been done in the

service relevance computation.

Let I = {w1,w2, ...,wm} be a set of words. These words come from word bags of all

schema-tree nodes to which a similarity measurement is applied. Let D = {D1,D2, ...,Dk}

be a document collection containing WSDL specifications for all available services. We

introduce association rules to reflect the notion of word co-occurrence. An association

rule is an implication of the form wi → w j, where wi,w j ∈ I. The rule wi → w j holds in

the descriptions set D with support s and confidence c, where s is the probability that wi

occurs in a web-service description and c is the probability that w j occurs in an web-service

description, given wi is known to occur in it. All association rules can be found by the A-

Priori algorithm [75]. We are only interested in rules that have confidence above a certain

threshold t.

73

We use the agglomeration algorithm [75] to cluster words set I = {w1,w2, ...,wm} into

a concept set C = {C1,C2, ...}. There are three steps in the clustering process. It begins

with each word forming its own cluster and gradually merges similar clusters.

1. Set up a confidence matrix Mm×m. Mi j is a two-dimensional vector (si j,ci j), where

si j and ci j are the support and confidence of association rule wi → w j, respectively.

2. Find the two-dimensional vector Mi j = (si j,ci j) with the largest ci j in the confidence

matrix M. If, for both of them, ci j > t and si j > t then merge these two clusters and

update M by replacing the two rows with a new row that describes the association

between the merged cluster and the remaining clusters. The distance between two

clusters is given by the distance between their closest members. There are now m−1

clusters and m−1 rows in M.

3. Repeat the merge step until no more clusters can be merged.

Finally, we get a set of concepts C. Each concept Ci consists of a set of words {w1,w2, ...}.

To compute semantic similarity between schema-tree nodes, we replace each word in their

word bags with its corresponding concept, and then use the TF/IDF measure. After finish-

ing the schema-tree transformation and semantic similarity measure, the tree edit distance

can be applied to match two XML schema trees by the new cost model.

Obtaining Connectivity

As it has been mentioned before, we use tree edit distance to match two schema trees. It

is equivalent to finding the minimum cost mapping. Let M be a mapping between schema

trees T1 and T2, let S be a subset of pairs (i, j) ∈ M with distinct word bags. Let D be the

74

set of nodes in T1 that are not mapped by M, and I be the set of nodes in T2 that are not

mapped by M. The mapping cost is given by C = Sp + Iq + Dr, where p, q and r are the

costs assigned to the relabel, insertion, and removal operations according to the cost model

proposed in Section 3.6.1.2. We call C the match distance between T1 and T2, denoted as

C = ED(T1,T2). Match distance reflects semantic similarity of two schema trees. Now let

us see how to compute the connectivity of a web-service operation.

Given two web-service operations op1 : s1,s2, ...,sn → t1, t2, ..., tm and op2 : u1,u2, ...,ul

→ v1,v2, ...,vk, let X = {t1, t2, ..., tm} and Y = {u1,u2, ...,ul}. The connectivity of op1 with

respect to op2 is Conop2→op1 = sim(X ,Y). To achieve sim(X ,Y), for each schema tree ∈ X ,

we find its corresponding schema tree ∈ Y with the minimum match distance. We simply

identify all possible matches between two lists of schema trees X and Y , and return the

source-target correspondence that minimizes the overall match distance between the two

lists. It does not depend on whether the number of schema trees between X and Y is the

same or not. This process is illustrated by Algorithm 3.2.

input : op1 : s1,s2, ...,sn → t1, t2, ..., tm

op2 : u1,u2, ...,ul → v2, ...,vk

output: The connectivity of op1 with respect to op2

for i← 1 to m do1

Si = min{ED(ti,u j)| j = 1,2, ..., l};2

end3

Conop2→op1 =
m
∑

i=1
Si4

Algorithm 3.2: Algorithm for computing web-service operation connectivity

75

3.6.2 The CompImp Algorithm

Based on the strategies proposed in Section 3.5.3, we design the CompImp algorithm for

automatically computing the importance of a set of given web-service operations OP =

{op1,op2, ...,opN}. The algorithm iteratively computes the importance values for all oper-

ations until convergence. It initializes the importance of each service operation to 1/N and

then iteratively applying Equation 3.2 until the importance values converge, i.e., for each

operation, the difference between the old and the new importance value is less than some

threshold c (typically, we can choose c = 0.1%). The details of CompImp are shown in

Algorithm 3.3.

Once the importance of all available web-service operations has been obtained, we

simply define the importance of a web service as the average of the importance values of

all operations in the service. The process is straightforward and not presented due to space

limitations.

3.6.3 Combining Service Relevance with Importance

Recall that in Section 3.4, each web service s is assigned a relevance score by similarity

measure. In order to reflect the two factors we proposed for characterizing the user’s pref-

erence degree for s, we need to incorporate a service importance score into the relevance

score of s. Then, we can rank s according to its combination score, which is a weighted

sum of its relevance score with a query q and its importance score. Formally, we have

Ranking Score(q,s) =

w×Rs +(1−w)× Is

0

ifRs > 0

otherwise
(3.6)

76

input : A set of web-service operations OP = {op1,op2, ...,opN}

output: An array I[1 : N] to store the importance values of OP

foreach service operation opi ∈ OP do1

Icur
i = 1/N;2

convergence[1 : N]=false;3

end4

repeat5

foreach service operation opi ∈ OP do6

calculate Icur
i using Equation 3.2;7

if |Inew
i − Icur

i |/Icur
i ≤ c then8

convergence[i] = true;9

else10

convergence[i] = f alse;11

Icur
i = Inew

i ;12

end13

end14

until convergence[1:N]=true ;15

Return I;16

Algorithm 3.3: The CompImp Algorithm

77

where 0 ≤ w ≤ 1. Both Rs and Is need to be normalized to between [0, 1]. A higher rank

score indicates a more desirable web service, so the user’s top-k search requirement can be

satisfied.

3.7 Finding Associated Web-service Operations

In order to assist users to compose web services, we need to identify potentially relevant

web services given a textual description of services. In this section we propose an approach

to explore associations between web-service operations based on service operations match-

ing. This approach uses the concept of attribute closure to obtain sets of operations. Each

set is composed of associated web-service operations.

3.7.1 Web-service operations matching

Similar to the process of obtaining connectivity, now let us see how to match web-service

operations. Given two web-service operations op1 : s1,s2, ...,sn → t1, t2, ..., tm and op2 :

x1,x2, ...,xl → y1,y2, ...,yk, for each schema tree of op1, we find its corresponding schema

tree of op2 with the minimum match distance. We simply identify all possible matches

between two lists of schema trees, and return the source-target correspondence that mini-

mizes the overall match distance between the two lists, as shown in Figure 3.5. We formally

describe this process in algorithm 3.4.

3.7.2 Clustering Web-service Operations

Suppose OP = {op1,op2, ...,opq} is a set of web-service operations and each pair of op-

erations opi and op j (i, j = 1,2, ...,q) match with the distance of zi j. We classify OP into

a set of clusters {opc1,opc2, ...}. The clustering algorithm is described as below. It begins

78

Sn

X1

S1 Si

XlXi

Tm

Y1

T1 Ti

YkYi

Figure 3.5: Matching web service operations

input : op1 : s1,s2, ...,sn → t1, t2, ..., tm

op2 : x1,x2, ...,xl → y1,y2, ...,yk

output: The match distance Z between op1 and op2

for i← 1 to n do1

Si = min{ED(si,x j)| j = 1,2, ..., l};2

end3

for i← 1 to m do4

Ti = min{ED(ti,y j)| j = 1,2, ...,k};5

end6

Z =
n
∑

i=1
Si +

m
∑

i=1
Ti7

Algorithm 3.4: Algorithm for matching web-service operations

79

with each operation forming its own cluster and gradually merges similar clusters.

1. Set up a match matrix Mq×q. Mi j is the match distance of operation opi and op j.

2. Find the smallest Mi j in the match matrix M. If Mi j < threshold δ then merge these

two clusters and update M by replacing the two rows with a new row that describes

the association between the merged cluster and the remaining clusters. The distance

between two clusters is given by the distance between their closest members. There

are now q−1 clusters and q−1 rows in M.

3. Repeat the merge step until no more clusters can be merged.

Finally, a set of clusters {OPC1,OPC2, ...} is obtained. Given a cluster OPCi and an op-

eration OPCik ∈ OPCi, OPCik is called a pivot of OPCi if it minimizes the sum of match

distances to all the other operations in OPCi. We consider all operations in OPCi as in-

stances of OPCik.

For example, in Figure 3.1 we give a clustering result. There are two clusters of web-

service operations. One is {WS1,WS4}, and the others are {WS2} and {WS3}. In cluster

{WS1,WS4} the pivot is GetOrder and the instrances of GetOrder are GetOrder and Or-

derBuilder. In cluster {WS2} the pivot is CheckoutOrder, which is also an instance of

itself.

3.7.3 Identifying Associations

A set of web-service operations is said to be associated if they potentially contribute to a

user’s web-service composition. Clearly, given two web-service operations op1 and op2,

if the output attributes of op1 are similar to the input attributes of op2 then op1 and op2

80

may participate in a user’s service composition together. The objective of this step is to

find all associations between web-service operations. To do this, we first find associations

among clusters {OPC1,OPC2, ...}. Let OPCik, say x1,x2, ...,xk → y1,y2, ...,y j be a pivot of

OPCi. Let X = {x1,x2, ...,xk} and Y = {y1,y2, ...,y j}.We first compute the attribute closure

X+ with respect to X , which is the set of attributes A such that X → A can be inferred

by transitivity. At the same time, a pivot set PS associated with OPCik is computed. The

overall process is shown as algorithm 3.5.

We perform a worst case time analysis of Algorithm 3.5. The repeat loop is executed

at most |S| times, where |S| is the total number of pivots corresponding to all clusters. The

calculation of q takes time |S|− |T |, where T is the number of pivots in the pivot set PS.

Hence the total execution time takes in the worst case time O(S2).

We first choose a pivot OPCik for each cluster OPCi. For each pivot, we compute a

pivot set. We eliminate duplicate pivot sets. If two pivots are in the same pivot set, then

their corresponding instances are associated.

Each pivot set PS = {p1, p2, ..., pk, ...} can generate a set of operation groups in the

form of {p′1, p′2, ..., p′k, ...}, where p′i is an instance of pi. Operations in the same group are

associated. To obtain an operation group, we simply replace each pivot pi in PS with one

of its corresponding instances. All possible operation groups are output as search results.

For example, a pivot set for the clusters given in Figure 3.1 is {GetOrder, Shippin-

gOrder, CheckoutOrder}. It can generate two search results, one is {GetOrder,ShippingOrder,

CheckoutOrder} and the other is {OrderBuilder,ShippingOrder,CheckoutOrder}.

Recall that in Section 3.6, each web-service operation is assigned a ranking score com-

bining both service relevance and service importance. Thus, each operation group can

acquire a group score by counting the sum of operation scores in it. A higher group score

81

indicates a more desirable search result for web service composition.

input : A pivot p : x1,x2, ...,xk → y1,y2, ...,y j

output: A pivot set PS containing associated pivots

X = {x1,x2, ...,xk}; Y = {y1,y2, ...,y j};1

Closure = X ;2

PS = {X → Y};3

repeat4

if there is a pivot q : U →V such that the match distance of U and5

Closure is less than threshold δ then

set Closure = Closure
⋃

V ;6

set PS = PS
⋃

q;7

end8

until there is no change ;9

Algorithm 3.5: Algorithm for computing attribute closure and pivot set

3.8 Experiments and Evaluations

We have implemented a prototype system, called IRWService, to evaluate the techniques

presented in this chapter. The system architecture is shown in Figure 3.6. First, we devel-

oped a service index structure used in our experiments. Then the performance of building

the service index and searching with it was evaluated; finally, we evaluate the precision and

recall ratio of IRWService search compared with three other methods.

The experiments were conducted on a P4 Windows machine with a 2GHz Pentium IV

and 512M main memory. The data set used in our tests is a web service repository collected

82

from [134, 35, 130]. Their WSDL specifications are available so we can obtain the textual

descriptions and the XML schemas of input/output data types. The data set contains 525

web services, including 3873 web-service operations. Each web service has an average

number of operations of 7.

The web service repository is composed of the WSDL files for every service. In order

to improve the performance of searching for desired web services, we design a service in-

dex for the repository. The service index keeps information about each WSDL document.

Ordered by ServiceID, all WSDL documents occupy a fixed width and can be accessed

sequentially. The information stored in each item includes various statistics about its corre-

sponding web service, including a relevance entry and an importance entry. The relevance

entry is TF/IDF information, including a list of words occurring in this service, where each

word is accompanied by the number of its occurrences in the document and all the service

IDs it appears in; whereas the importance entry includes a list of service operations, where

each operation is combined with its importance and a list of connectivity it has with respect

to other operations. The details of the service index are shown in Figure 3.7. We build the

service index as follows. The relevance entry carrying TF/IDF information is implemented

using the publicly available Rainbow [68] classification tool, and the importance entry is

implemented by our proposed schema tree matching algorithm, based on an existing tree

edit distance method [93]. We update the service index when a new web service is added

into the repository.

We first evaluated the efficiency of building the service index. The time performance of

our algorithm is tested with the increase of the number of web services. Taking CPU time

as the standard measure, we get time costs of building the service index in Figure 3.8(a),

in which the time includes the costs of constructing relevance entry for all services, and

83

TF/IDF and Connectivity
Computation

Search Evaluator

Relevance Entry

Importance Entry

Web Service
Repository

Data access

Web Service Search Ranked Results

Building Service
Index

Service Index

Figure 3.6: System Architecture

Service 1 word1 HitCount1 service ID … service ID

word2 HitCount2 service ID … service ID

…

Service 2 word1 HitCount1 service ID … service ID

…
 …

Service 1 op 1 Iop1 con … con

op 2 Iop2 con … con

…

Service 2 op 1 Iop1 con … con

op 2 Iop2 con … con

…

 (b) Importance Entry

sorted by
service ID

(a) Relevance Entry

sorted by
service ID

Figure 3.7: Service Index Structure

84

(a) Time cost of building index

0
40
80

120
160
200
240
280
320
360
400
440
480
520
560
600

10 150 320 420

Number of web services

T
im

e(
s)

(b) Time cost of searching

0

0.5

1

1.5

2

2.5

3

0 80 140 220 300 380 480

Number of web sevices

T
im

e(
s)

Figure 3.8: Time cost of building index and searching

the computation of the importance entry as well. Figure 3.8(a) shows that, as the number

of services increases, the time cost of building the service index increases rapidly. This

indicates that, by adding web services, the number of schema trees increases, leading to

more cost of schema tree matching. To overcome this drawback, we take the linear tree

edit distance algorithm from [93] to reduce the time cost of building service index. The

reason for choosing Nierman and Jagadish’s method [93] as our basis for computing tree

edit distance is that it can find the edit distance between pairs of trees of various sizes in an

almost linear cost with tree size, considering schema tree matching is time consuming and

constitutes the main cost for building the importance entry in the service index.

We then evaluated the efficiency of searching for desired web services. The time cost is

given in Figure 3.8(b). It is can be seen that the time increases almost in a linear way with

respect to the number of web services. This demonstrates that by building the service index,

our searching performance is rather high, although building index is a bit time costing. But

considering the fact that the web service repository does not change frequently comparing

with a user’s query request, the service index is effective and practical.

85

Finally, we used recall and precision ratio to evaluate the effectiveness of our approach.

The precision(p) and recall(r) are defined as p = A
A+B ,r = A

A+C where A stands for the num-

ber of returned relevant services, B stands for the number of returned irrelevant services,

C stands for the number of missing relevant services, A +C stands for the total number of

relevant services, and A+B stands for the total number of returned services. Specially, the

top 50 search results were considered in our experiments for each web service search.

We evaluated IRWService by comparing the recall and precision of search with three

other methods: keyword searching method, structure matching [129] and Woogle [49]. We

chose 7 web services from three domains: order(3), travel(2) and finance(2). Each web

service was used as the basis for desired services. We computed the recall/precision ratio

manually and plotted them in Figure 3.9(a) and Figure 3.9(b), respectively. As can be

seen, the precisions of IRWService are 92%, 87% and 78% respectively, almost always

outperforming that of keyword, structure and Woogle. The precision is higher on order

services but lower in finance services because order services have more complex structures

and richer semantics in input/output data types. This indicates that, by combining structural

and semantic information, the precision of IRWService improves significantly, compared

to the results obtained with structural or semantic information only. It also can be seen

that by keyword method the precision is rather low whereas the recall is rather high. This

demonstrates textual description of web services contains much useful information but also

noise at the same time.

Then, we labeled the associated web-service operations in data set manually. The aver-

age recall/precision curve is used in Figure 3.10 to evaluate the performance of IRWService

on identifying associated operations. This figure illustrates that IRWService can achieve

good recall and precision by integrating structural and semantic measurements.

86

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Order Travel Finance

R
ec

a
ll

Keyword search Structural matching
Woogle IRWService

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Order Travel Finance

P
re

c
is

io
n

Keyword search Structural matching
Woogle IRWService

(a) (b)

Figure 3.9: Precision and recall of IRWService

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

P
re

ci
si

on

Figure 3.10: Performance of identifying associated operations

87

3.9 Conclusions

In this chapter, we have presented a novel IR-Style mechanism for discovering and rank-

ing web services automatically, given a textual description of desired services. We have

introduced the notion of preference degree for a web service, and suggested relevance and

importance as two desired properties for measuring its preference degree. Also, various

algorithms were given to obtain service relevance and importance. The key part for com-

puting service importance is a new schema tree matching algorithm, which catches not only

structures, but even better semantic information of schemas defined in web services. More-

over, we developed an approach to identify associations between web-service operations

based on service operations matching. This approach uses the concept of attribute closure

to obtain sets of operations. Each set is composed of associated web-service operations.

Experimental results show the proposed IR-style search strategy is efficient and practical.

As part of on-going work, we are interested in improving efficiency of the connectivity

computation algorithm in terms of running time, since the computation of extended tree edit

distance is costly. Second, our proposed technique assumes that structures of XML schema

are trees. However, their structures may also be graphs and contain cycles. In the future, we

plan to extend our algorithm to support graph matching. Finally, in order to further under-

stand the semantics of web services descriptions and integrate more semantic information

to our system, we also plan to use WordNet to handle word stems and synonyms to improve

the precision of our algorithm.

88

Chapter 4

A RELAXATION-BASED QOS MODEL AND COMPUTATION
FRAMEWORK FOR SERVICE SELECTION

4.1 Introduction

A web service is programmatically available application logic exposed over the Inter-

net. It has a set of operations and data types. The current set of web service specifica-

tions defines how to specify reusable operations through the Web-Service Description Lan-

guage(WSDL), how these operations can be discovered and reused through the Universal

Description, Discovery, and Integration(UDDI) API, and how the requests to and responses

from web-service operations can be transmitted through the Simple Object Access Protocol

API(SOAP). With the rapid development of e-commerce over Internet, web services have

attracted much attention in recent years. Nowadays, enterprises are able to outsource their

internal business processes as services and make them accessible via the Web. Then they

can combine individual services into more complex, orchestrated services.

Recently, the process-based approach to web service composition has gained consid-

erable momentum and standardization [30]. In this scenario, a service composition can

be regarded as a process model containing abstract service specifications, without specify-

ing actual services needed to be bound to the process model. With the increasing number

of web services having equivalent functionality, the binding procedure is driven by some

non-functional, Quality of Service (QoS) criteria, such as the money cost, response time,

reputation, reliability or a trade-off between them [41]. Thus, an important problem is,

89

given QoS constraints, how to aggregate and leverage individual services’ QoS informa-

tion to derive the optimal QoS of the composite service. Actually, dynamic binding of

service compositions constitutes one of the most interesting challenges for service-oriented

architectures.

A lot of methods have been proposed to solve this problem, including linear program-

ming [144], reduction rules method [42], utility function strategy [140], CP-nets [128] and

AND/OR graph method [125], etc. However, most approaches only focus on obtaining

optimized service selection under user requirements and overlook user preferences. As an

example, consider a user who is searching for the postcode of a given city. Table 4.1 gives

a collection of candidate web services with the same function. All these services can re-

trieve the postcode of a given city, although they have different non-functional properties,

e.g. Pri.(i.e. price($)), Res.(i.e. response time(s)), Rep.(i.e. reputation score(points/100))

and Rel.(i.e. reliability probability). A typical form of QoS query p issued by the user

is Mθv, where M is a QoS metric, v is a constant value, and θ is a comparison operator

such as =,<,>,≤ or ≥. Examples are p1 : price < $10 , p2: response time< 11s, p3:

reputation score≥ 70 and p4:reliable probability> 0.5, etc. These conditions can also be

combined by an “AND” operator, denoted as price < $10 AND response time < 11s AND

reputation ≥ 70 AND reliability > 0.5, forming a QoS query vector p = (p1, p2, p3, p4).

In order to fulfil the user’s request, existing methods need to seek services satisfying all

the four conditions above simultaneously and then return them. However, several prob-

lems may arise when applying these techniques: firstly, these methods can not solve the

empty result problem. Since the user issues his requirements without knowing all the de-

tailed QoS properties of all available services, maybe there are no fully satisfying services,

i.e. services satisfying all the conditions at one time. In such cases, obviously relaxing

90

Web Quality of Service(QoS)

services Pri. Res. Rep. Rel.

s1 26 5 88 0.1

s2 14 10 70 0.9

s3 35 9 36 0.3

s4 5 1 90 0.6

Table 4.1: Sample web services. Each web service provides the same postcode information.

the user’s request and returning some approximate results is a much better idea than just

reporting an empty result; secondly, these methods lack flexibility and the personalization

problem has been overlooked. Depending on their context, different users may have dif-

ferent preferences about the services they need. For instance, a user may say service s2 is

better than service s4, because although s2 is more expensive than s4 and exceeds the user’s

financial requirement a bit, it has much better reliability, which is crucial to her because of

her strict reliability requirements. Similarly, another user running out of money prefers a

cheaper service, while a cautious user may prefer services with ”excellent” reputation, etc.

So, whether a service is good or not in QoS depends on the user’s context and preference.

It is essential to model the user’s personalized preferences and requests.

In this chapter, we present novel techniques to solve the challenges above, and give

experimental evidence that shows our methods are efficient and practical. In particular, the

main contributions of this chapter are listed as follows:

1. We propose a novel QoS evaluation model for performing flexible and adaptable

service selection from the point of view of users. The key idea of the model is to

91

relax the user’s QoS constraints and try to find the most possible services which meet

the user’s QoS requirements.

2. Based on the proposed QoS framework, we develop various algorithms for making

service selection on individual and composite services, respectively. We also intro-

duce a top-k ranking strategy to reflect a user’s personalized requirements

3. We present the experimental result of a thorough evaluation. Experimental evaluation

shows the proposed QoS model is efficient and practical.

The rest of this work is organized as follows. Section 4.2 gives the QoS computing

model. Section 4.3 presents different approaches for answering a user’s QoS query. Sec-

tion 4.4 presents a personalized Service Selection strategy. In Section 4.5 we report our

experimental results. Section 4.6 discusses related works. Concluding remarks are given in

Section 4.7.

4.2 QoS Computing Model

In this section, we formulate the QoS computing model for individual services and com-

posite services, respectively.

4.2.1 Computing Model for Individual Services

QoS Metrics

Many QoS metrics have been proposed in the literature. Typical criteria include response

time, throughput, price, reputation, reliability, transactional properties and security, etc. In

92

this chapter, we only consider four basic metrics, which are available for almost all web

services [82]: price, duration, reputation and reliability.

1. Price. This is the amount of money that a service requester has to pay for executing

a task. The task may be either an element web service or a composite web service.

Users can get execution price via online advertisement or inquiry entry available

through service providers. Given a service s, we use price(s) to denote the price for

executing s.

2. Duration. The execution duration measures the response time from the submission

of a request to the receiving of the response. The average response time can be esti-

mated based on observation of past executions. Given a service s, we use duration(s)

to denote its execution duration.

3. Reputation. The reputation of a service s reflects its trustworthiness. It mainly

depends on usage evaluation carried out by end users. Usually, users are given a

range, for example from 1 point to 100 points, to rank a web service. We define

the reputation of service s as the average ranking given by users during or up to a

particular period, denoted as reputation(s).

4. Reliability. The reliability of a service is the probability that the service can suc-

cessfully complete within a time limit. Its value is computed from past invocations

history. We use reliability(s) to describe the reliability of a service s.

Given the QoS metrics above, the quality of a web service s is defined as a four-dimensional

vector: q(s) = (price(s),duration(s),reputation(s),reliability(s)). Let S = {s1,s2, ...,sn}

93

be a group of web services with the same functional properties. For each service si ∈ S, its

quality vector is represented as q(si) = (qi(1),qi(2),qi(3),qi(4)), corresponding to price,

duration, reputation and reliability in order. Given a user’s QoS constraints, our algorithms

aim to determine the best services in S satisfying the user’s requirement. It is worth noting

that although the number of metrics criteria is limited in this chapter, our model is extensi-

ble. New metric factors can be easily added without fundamentally changing the algorithms

for QoS computation. As the quality of a web service s is represented as a four-dimensional

vector, we will use dimension and metric interchangeably in the remainder of the chapter.

Normalization of QoS Values

The QoS metrics proposed in Section 4.2.1.1 are not consistent with each other. As we

can see, the higher the value of price or duration is, the lower the quality; whereas the

higher the reputation or reliability is, the better the quality is. In order to provide a uni-

form representation of QoS metrics, we need to normalize QoS values before we do QoS

computation. Suppose we have the quality vectors for all services ∈ S. For each service

si’s quality vector q(si) = (qi(1),qi(2),qi(3),qi(4))(1 ≤ i ≤ n), we normalize its values to

obtain q′(si) = (q′i(1),q′i(2),q′i(3),q′i(4)), where

q′i(j) =
q j

max−qi(j)

q j
max−q j

min

, j = price(1),duration(2) (4.1)

q′i(j) =
qi(j)−q j

min

q j
max−q j

min

, j = reputation(3),reliability(4) (4.2)

In the equations above, we can safely assume q j
max 6= q j

min, where qi(j) is the QoS of si on

metric j, q j
max = Max{qi(j)},1 ≤ i ≤ n and q j

min = Min{qi(j)},1 ≤ i ≤ n. When a user

needs to find services satisfying his or her quality requirements, for consistency, it is also

94

Web Quality of Service(QoS)

services Pri. Res. Rep. Rel.

p > 0.8 > 0.2 > 0.3 > 0.8

s1 0.3 0.6 0.9 0

s2 0.7 0 0.6 1

s3 0 0.1 0 0.3

s4 1 1 1 0.6

Table 4.2: Normalization of QoS values of services in Table 4.1

needed to include the QoS query vector p in the normalization process, so we have q j
max =

Max{{qi(j)|i = 1,2, ..}∪{p j}},1≤ i≤ n and q j
min = Min{{qi(j)|i = 1,2, ..}∪{p j}},1≤

i≤ n.

Example 1. Suppose there are four web services in S and that their values of QoS

metrics are given in Table 4.1. We also assume that a user’s QoS query vector is p =

(p1, p2, p3, p4), where p1 is price < $10, p2 is response time < 8s, p3 is reputation > 50,

and p4 is reliability > 0.7. Using Equation 4.1 and Equation 4.2, we have the normalized

Table 4.2.

After normalization, the quality on each metric is monotonic increasing with its corre-

sponding metric value, i.e. the greater the QoS value on one metric is, the better the quality

of the service on the metric. So, users only need to issue a QoS query vector using the form

of: M > v, where M is a QoS metric and v is a constant value related to M. For instance,

the query vector p in example 1 can be converted into p′ = (p′1, p′2, p′3, p′4), where p′1 is

price > 0.8, p′2 is response time > 0.2, p′3 is reputation > 0.3, and p′4 is reliability > 0.8.

95

Answering a User’s QoS Query

In this section, we focus on how to return desirable services from a group of services S with

the same function, given a QoS query. Before giving the definition of query result, we first

define the quality difference of a user’s QoS query p with regard to a service si’s quality

vector q(si) as follows:

Definition 1. Suppose p = (p1, p2, p3, p4) is a four-dimensional QoS query vector, such

that pk is of the form of Mk > vk ,where k ∈ {1,2,3,4}, Mk ∈ {price,duration,reputation,

reliability}, and vk is the QoS value of Mk. q(si) = (qi(1),qi(2),qi(3),qi(4)) is an indi-

vidual service si’s quality vector, where qi(1), qi(2), qi(3) and qi(4) are the QoS value on

price, duration, reputation and reliability, respectively. Let δik = vk− qi(k)(k = 1,2,3,4).

We say D(p,q(si)) = (δi1,δi2,δi3,δi4) is the individual quality difference between the user’s

QoS query vector p and the individual service si’s quality vector q(si).

Based on the monotonic increasing property of each QoS metric, it is straightforward

to draw the following property:

Property 1. The less δik is, the better the quality of service si is on metric k.

In order to describe the quality of service si relative to a query vector p, by Property

1, we say that si satisfies p strictly if ∀k ∈ {1,2,3,4},δik ≤ 0. si is said not to satisfy

p strictly if ∃k ∈ {1,2,3,4},δik > 0. Generally, ∀i 6= j,D(p,q(si)) 6= D(p,q(s j)), which

means service si may be better or worse than s j on some metrics. But, how can we compare

these two services as a whole? To formally describe this kind of relationship, we employ

dominance checking between the individual quality difference of p with regard to different

services in S.

96

Definition 2. Given a QoS query vector p and two services si,s j ∈ S, if the value of

D(p,q(si)) on each dimension is not larger than that of D(p,q(s j)) and strictly smaller

on at least one dimension, then we say service si dominates service s j with respect to the

query vector p, denoted as si Â s j. In other words, we can say service si is better than

service s j.

For example, consider the running example in Table 4.2. According to Definition 1, we

have D(p,q(s1)) = (0.5,−0.4,−0.6,0.8), D(p,q(s2)) = (0.1,0.2,−0.3,−0.2),

D(p,q(s3)) = (0.8,0.1,0.3,0.5), and D(p,q(s4)) = (−0.2,−0.8,−0.7,0.2). D(p,q(s4)) is

smaller than D(p,q(s3)) and D(p,q(s1)) on every dimension, but its fourth metric is larger

than D(p,q(s2)). Hence, s4 Â s1 and s4 Â s3.

Definition 3. The query result of a QoS query vector p on a group of services S, denoted

as R(p,S), is the set of all the services ∈ S, each of which is not dominated by any other

service ∈ S.

In the example in Table 4.2, since s4 Â s1 and s4 Â s3, we can say s1 and s3 /∈ R(p,S).

Also, s2 is not dominated by any other service in S. Thus the query result of p on S is

R(p,S) = {s2,s4}.

4.2.2 Computing Model for Composite Services

A composite service is actually a business process integrating necessary individual services.

So, the quality metrics for individual services are also applied to composite services. The

QoS metric value of a composite service is determined by the QoS metric values of its

individual services, and the workflow pattern capturing the control flow and dependencies

between individual services. There are more than twenty different patterns [121] through

97

which individual services can be integrated to form a composite service, but only four basic

workflow patterns among them are essential: sequential, for defining an execution order;

parallel, for parallel routing; switch, for conditional routing; and while, for looping. Figure

4.1 shows these four basic workflow patterns. Each pattern contains some nodes, which are

also called tasks in this chapter. We deal with the sequential workflow pattern first. Later

we will see its computing methods with QoS can also be applied to the other three patterns.

S1 S3S2

(a) sequential

S1 S4

S2

(c) conditional

S3

p1

p2

p1+p2=1 (0<p1,p2<1)

S

(d) while

n

S loops n times

S1 S4

S2

(b) parallel

S3

Figure 4.1: Workflow patterns

Sequential Composition Model

Now let us see how to compute the QoS metric values of a sequential composite service s

with the running pattern like Figure 4.1(a). Using the same quality metrics as individual

services, the aggregation functions for s are given below:

1. Price. The price of s is the sum of each of its individual service si’s price. Formally,

we have price(s) =
n
∑

i=1
price(si).

98

2. Duration. The duration of s is the sum of each of its individual service si’s duration;

that is duration(s) =
n
∑

i=1
duration(si).

3. Reputation. The reputation of s is the average of each of its individual service si’s

reputation point, denoted as reputation(s) = (
n
∑

i=1
reputation(si))/n. In this chap-

ter, we map reputation(s)× n to reputation′(s), thus the function above becomes

reputation′(s) =
n
∑

i=1
reputation(si).

4. Reliability. The reliability of s is the probability product of each of its individual

service si’s reliability probability: reliability(s) =
n
∏
i=1

reliability(si). We use the loga-

rithmic function ln(x) to linearize this function. Let lnreliability(s)= ln
n
∏
i=1

reliability(si),

and reliability′(si) = lnreliability(si), then we have a linear aggregation function to

compute the reliability of s: reliability′(s) =
n
∑

i=1
reliability′(si).

Using the aggregation functions above, the quality of a sequential composite service s can

be unified as q(s) =
n
∑

i=1
q(si). Here s and si have been mapped and linearized.

General Composition Model

Besides sequential structures, real-world composite services often have loop operations,

conditional operations, and parallel operations to run services simultaneously. These oper-

ations can be converted into sequential model according to a group of rules similar to [141],

[72] and [144]:

1. We unfold a loop operation to a sequential structure by cloning the cyclic nodes n

times, where n is the looping count of the loop structure.

99

2. Both conditional and parallel operations contain multiple branches. Each of the

branches can be regarded as an independent sequential operation.

(a) For a conditional operation, since only one branch is executed with a probability

p at runtime, we calculate its QoS value by averaging the QoS values of all its

branches.

(b) In parallel structures, all branches are executed simultaneously at runtime, so

we need to combine the QoS values of all branches. For price, reputation and

reliability metrics, all branch QoS values are summed up as the overall QoS of

the parallel operation; whereas for execution duration, the overall QoS value is

defined as the maximum QoS value of all branches on this metric.

S1 S4

S2

S3

p1

p2

n

S5 S8

S6

S7

start end

Figure 4.2: Composite service example

As an example, Figure 4.2 gives a composite service E with the four workflow patterns

above. S1 is followed by either S2 or S3 with a probability of p1 or p2; S5 is followed by

both S6 and S7 in a parallel way. S6 is iterated for at most n times. Using the same notations

as the sequential model, the overall duration and price of E are formulated as follows:

dur(E) = dur(s1)+ p1 ∗dur(s2)+ p2 ∗dur(s3)+dur(s4)

+dur(s5)+max(dur(s6)∗n,dur(s7))+dur(s8)
(4.3)

100

pri(E) = pri(s1)+ p1 ∗ pri(s2)+ p2 ∗ pri(s3)

+ ∑
i=4,5,7,8

pri(si)+ pri(s6)∗n
(4.4)

Similar to price, the QoS value on reliability and reputation can be derived the same way.

We omit their equations here due to space limit.

Normalization

As we have seen in individual services, in order to provide consistent QoS metrics for

composite services, we need to normalize each of its individual service’s QoS value before

we do QoS computation, except that this time the normalization is within all candidate

groups of services instead of a single group. Suppose we have a composite service C

with k tasks in its execution flow. Each task is executed by a service Si j(i = 1,2, ...,k; j =

1,2, ...) from service group Si(i = 1,2, ...,k), which consists of |Si| services having the same

functionality as Si j. For each service Si j ∈ Si, its quality vector q(Si j) is normalized by the

two equations below:

q′i j(m) =
qm

max−qi j(m)
qm

max−qm
min

,m = price,duration (4.5)

q′i j(m) =
qi j(m)−qm

min
qm

max−qm
min

,m = reputation,reliability (4.6)

where qi j(m) is the quality value of service Si j on metric m, qm
max = Max{qi j(m)},1 ≤

i≤ k, j = 0,1, ..., |Si| and qm
min = Min{qi j(m)},1≤ i≤ k, j = 0,1, ..., |Si|.

Similar to individual services, we also include the user’s QoS query vector in the nor-

malization process. Before formally defining the QoS Query on composite services, we

give a running example first.

Example 2. Figure 4.1 (a) shows a composite service with three sequential functions.

Each function is executed by an individual service Si j from service group Si(i = 1,2,3).

101

Service Individual Quality of Service(QoS)

group service Pri. Res. Rep. Rel.

p > 0.8 > 0.2 > 0.3 > 0.8

S1 s11 0.8 0.2 0.3 0.8

S1 s12 0.3 0.6 0.9 0

S2 s21 0.7 0 0.6 1

S2 s22 0 0.1 0 0.3

S3 s31 1 1 1 0.6

S3 s32 0.9 0.1 0.2 0.7

S3 s33 0.4 0.3 0.5 0.2

Table 4.3: Example of Composite Service

The QoS metric values of all individual services in each service group are shown in Table

4.3. Also, the QoS query vector for this composite service is given at the first row, i.e. p =

(p1, p2, p3, p4), where p1 is price > 0.8, p2 is response time > 0.2, p3 is reputation > 0.3,

and p4 is reliability > 0.8. Without loss of generality, we assume all these values have been

normalized and linearized, as shown in Section 4.2.2.1.

Answering a User’s QoS Query on Composite Services

Following the definition of QoS query result for individual services, in this section we

discuss how to return desirable services contributing to a composite service. In order to

simplify the problem, we need to give several definitions first.

Definition 4. We assume Ci is a process with k tasks, each of which is executed by a can-

102

didate service Ski
i from service group Si(i = 1,2, ...,k). Then Ci = {Sk1

1 ,Sk2
2 , ...,Ski

i , ...,Skk
k }

is called a composite service. We use C to denote the composite service set containing all

composite services.

Definition 5. Given a QoS query vector p = (p1, p2, p3, p4), where pk is of the form of Mk >

vk,k ∈ {1,2,3,4}, Mk ∈ {price,duration,reputation,reliability} and vk is the QoS value of

Mk; and given the quality vector q(Ci) = (qi(1),qi(2),qi(3),qi(4)) of a composite service

Ci, where qi(1), qi(2), qi(3) and qi(4) is the QoS value of Ci on price, duration, reputation

and reliability, respectively. Let δik = vk − qi(k)(k = 1,2,3,4) . We say D(p,q(Ci)) =

(δi1,δi2,δi3,δi4) is the composite quality difference between the user’s QoS query vector p

and the composite service Ci’s quality vector q(Ci).

Clearly, according to the definition and the aggregation functions proposed in Section

4.2.2.1, we can conclude the composite quality difference between a user’s QoS query

vector p and a sequential composite service Ci’s quality vector q(Ci) can be calculated as

the sum of all the individual quality difference of p with regard to each candidate service

contributing to Ci. We formulate this as

D(p,q(Ci)) =
k

∑
i=1

D(p,Ski
i) (4.7)

where Ski
i is the service from service group Si contributing to Ci.

Similar to individual services, the dominance relationship between composite services

is defined below:

Definition 6. Given a QoS query vector p and two services Ci,C j, if the value of D(p,q(Ci))

on each dimension is not larger than that of D(p,q(C j)) and strictly smaller on at least one

dimension, then we say service Ci dominates service C j with respect to the query vector p,

denoted as Ci ÂC j.

103

For example, in Table 4.3, consider a QoS query vector p = {0.8,0.2,0.3,0.8} and two

sequential composite services C1 = {s11,s21,s31}, C2 = {s12,s22,s33}. By Definition 5, we

have D(p,q(C1)) = D(p,q(s11))+D(p,q(s21))+D(p,q(s31)) = {−0.1,−0.6,−1,0}, and

D(p,q(C2)) = D(p,q(s12))+D(p,q(s22))+D(p,q(s33)) = {1.7,0.5,−0.5,1.9}.

D(p,q(C1)) is smaller than D(p,q(C2)) on every dimension, so C1 ÂC2. In other words,

we can say C1 is better than C2 for satisfying the query vector p.

Following the same way as Definition 3, the computing model for composite services

is shown as follows:

Definition 7. The query result of a QoS query vector p on a composite service set C, de-

noted as R(p,C), is the set of all the composite services ∈C, each of which is not dominated

by any other composite service ∈C.

In the example of Table 4.3, there are a total of 12 candidate composite services, each

with different composite quality difference with regard to query vector p. The number

of possibilities goes up exponentially with an increasing number of service groups. So,

developing efficient algorithms for computing the query result of p on a composite service

set is particularly challenging in our case. In this chapter, we design various algorithms to

achieve this goal.

4.3 Algorithms for Answering a User’s QoS Query

In this section, we present different approaches of answering a user’s QoS query on indi-

vidual services and composite services, respectively.

104

4.3.1 Algorithms for QoS Query on Individual Services

Recall the model we defined in Section 4.2.1.3. Our goal is to compute the query result of

a QoS query vector p on a group of services S, R(p,S), i.e., the set of all the services ∈ S,

each of which is not dominated by any other service ∈ S.

A naı̈ve Approach

A naı̈ve strategy for the QoS query is to compute the individual quality difference of every

service in S and then, for each quality difference, make dominance checking with all the

other quality differences to find the satisfying services. However, the naı̈ve strategy is ex-

pensive since every two quality differences are compared. If we consider the rapid increase

of available services, the cost of the naı̈ve approach would be even more expensive.

The RC Algorithm

The main cost the naı̈ve approach is the duplicate comparison between quality differences.

This algorithm, called Reduce Comparison (RC) approach, tries to reduce the number of

comparisons by using the comparing result already available. It traverses all the services in

S and maintains a set R to keep the satisfying services obtained so far. For each service s,

the RC algorithm checks if s is dominated by a service in R with respect to the query vector

p. We discard s if it is dominated; otherwise we insert it to R and discard those services

in R dominated by s. When all services in S have been traversed, the RC algorithm ends

and returns R as the QoS query result. Detailed steps of the RC algorithm are presented in

Algorithm 4.1.

105

input : A QoS query vector p, A group of services S

output: A query result set R containing satisfying services

R = φ;1

foreach service s ∈ S do2

if there exists a service s′ ∈ R such that s′ Â s with respect to p then3

discard s;4

else5

inset s to R;6

remove every service s′ ∈ R such that sÂ s′ with respect to p;7

end8

end9

return R;10

Algorithm 4.1: The RC algorithm for QoS query on individual services

106

R-tree Based RC Algorithm (RCC)

input : A QoS query vector p, an R-tree T indexing a group of services S

output: A query result set R containing satisfying services

R = φ;1

insert into the heap all entries of the root node of T ;2

while heap not empty do3

remove top entry E;4

if there exists a service s′ ∈ R such that s′ Â E with respect to p then5

discard E;6

else7

if E is an intermediate entry then8

foreach child ei of E do9

if ei is not dominated by a service s′ ∈ R with respect to p then10

inset ei into the heap;11

end12

end13

else14

insert E to R;15

// E is a leaf entry, i.e. the quality vector of an individual service;16

end17

end18

end19

return R;20

Algorithm 4.2: The RCC algorithm for QoS query on individual services

107

The RC algorithm outperforms the naı̈ve approach, as it avoids duplicate comparisons.

However, the performance of RC algorithm may decrease as the number of services in R

increases. To overcome the problem, the R-tree based RC algorithm (RRC) is proposed

to facilitate the retrieval of services. Following most methods in the relevant references,

we index the metric values of each quality vector corresponding to each service in S. An

intermediate entry Ei corresponds to the minimum bounding rectangle (MBR) of a node

Ni at the lower level, while a leaf entry corresponds to a quality vector. The dominance

relationship between services can be easily determined by bound check similar to BBS

algorithm in [97]. In the RRC algorithm, the maximum quality difference between p and

a MBR, say E (i.e., intermediate entry), denoted as Dmax(p,q(E)), equals to the quality

distance of its lower bound (e.g. the lower-left corner point in two dimension space) quality

vector with respect to p, while the minimum quality difference between p and E , denoted

as Dmin(p,q(E)), equals to the quality distance of its upper bound (e.g. the higher-right

corner point in two dimension space) quality vector with respect to p. We say a service s

dominates a MBR E, if the following equation holds: D(p,q(s))≤ Dmin(p,q(E)), and the

inequality is strict on at least one QoS metric, as in this case service s must dominate all

services in E.

Based on the explanations above, we show how the algorithm works: it starts with the

root node of the R-tree and inserts all its entries in a heap. If an entry is not dominated by the

query quality vector p, then we expand it. That is to say it is removed from the heap and all

its children are inserted into the heap. This process repeats until the heap is empty. Detailed

steps of RCC algorithm are presented in Algorithm 4.2. As our experiments verified, the

RRC algorithm is efficient and its performance is much better than RC.

108

4.3.2 Algorithms for QoS Query on Composite Services

In this section, we propose methods to process the problem of QoS query on composite

services. Recall Definition 7 in Section 4.2.2.3. Now the goal is to compute the query

result of a QoS query vector p on a composite service set C, denoted as R(p,C), i.e., the set

of all the composite services ∈C, each of which is not dominated by any other composite

service ∈C.

Straightforward Strategy

Suppose each composite service Ci ∈C has k tasks in its execution flow. Each task is exe-

cuted by a candidate service Ski
i (i = 1,2, ...,k) belonging to service group Si(i = 1,2, ...,k),

the cardinality of which is |Si|. A straightforward strategy for the QoS query on compos-

ite service set C is to enumerate all possible Ci = {Sk1
1 ,Sk2

2 , ...,Ski
i , ...,Skk

k } firstly and then

compute their composite quality difference with respect to p, and finally return R(p,C) by

applying the proposed algorithms in Section 4.3.1 on C. Clearly, each service in Si can con-

tribute to Ci, so the total number of composite services in C is
k
∏
i=1
|Si|, which leads to much

more expensive cost than QoS queries on individual services. If the number of services in

service groups or the number of service groups increases, the cost of the straightforward

strategy is even more expensive.

Locally Pruning Method

As we can see, the straightforward approach traverses all services in each service group then

combines traversed individual services to find qualifying composite services, so the number

of services in each service group is a key factor in the cost, and it would be useful if we

109

can reduce the number of services in service groups. To achieve this, we need to identify

and remove those services from each service group, which are impossible to appear in the

final query result R(p,C). In this section, the locally pruning method(LPM) is developed

to address this issue. The intuition behind this approach is that a locally dominated service,

i.e., it is dominated by some other service in the same group, does not appear in R(p,C).

This idea can be summarized by the following heuristic:

Heuristic 1. Let Si be a group of services and Ski
i be an arbitrary service ∈ Si. Service Ski

i

can be safely pruned if there exists a service Ski′
i ∈ Si such that Ski′

i Â Ski
i .

Proof. According to the four different workflow patterns in Figure 4.1, we give the proof

separately.

Firstly, assume Ski
i is selected to a sequential structure Ci = {Sk1

1 ,Sk2
2 , ...,Ski

i , ...,Skk
k } of a

composite service in R(p,C). Now we modify Ci by replacing Ski
i with Ski′

i to obtain another

sequential structure C′i = {Sk1
1 ,Sk2

2 , ...,Ski′
i , ...,Skk

k }. According to Equation 4.7, we have

D(p,q(Ci))=
k
∑

l=1
D(p,Skl

l), and D(p,q(C′i))=
i−1
∑

l=1
D(p,Skl

l)+D(p,Ski′
i)+

k
∑

l=i+1
D(p,Skl

l).The

dominance check between Ci and C′i can be done using formula

D(p,q(C′i))−D(p,q(Ci)) = D(p,Ski′
i)−D(p,Ski

i). Note that Ski′
i Â Ski

i , so the QoS value of

D(p,q(C′i))−D(p,q(Ci)) on each metric is not larger than zero and strictly smaller on at

least one metric. That is to say, the value of D(p,q(C′i)) on each dimension is not larger than

that of D(p,q(Ci)) and strictly smaller on at least one dimension. Therefore, C′i dominates

Ci and Ci can not appear in R(p,C), which is contradictory to the fact that Ci ∈ R(p,C).

As for loop structures and conditional structures, since they can be converted into linear

sequential structures according to the conversion rules in Section 4.2.2.2, the conclusion

can be derived similarly.

110

Now we suppose Ski
i is selected to a parallel structure Ci of a composite service in

R(p,C). Since Ci’s QoS values on price, reliability and reputation can be accumulated,

effectively it can be regarded as a sequential structure and the deduction above still ap-

plies. Therefore, we only need to prove the heuristic rule works on duration metric as

well. Without loss of generality, we suppose Ci only contains two service groups Si and S j,

where Si = {Ski′
i ,Ski

i }, Ski′
i Â Ski

i and S j = {Sk j
j }. If dur(Sk j

j) ≤ dur(Ski′
i), then dur(Ci) is

determined by Ski
i or Ski′

i , so service Ski
i can be safely pruned; if dur(Sk j

j) ≥ dur(Ski
i), then

dur(Ci) is determined by Sk j
j , thus clearly service Ski

i can also be safely pruned; otherwise

dur(Sk j
j) falls in between dur(Ski′

i) and dur(Ski
i) and we have the dominance relationship be-

tween two compositions: {Ski′
i ,Sk j

j }Â {Ski
i ,Sk j

j }, therefore, service Ski
i can be safely pruned,

too.

111

input : A QoS query vector p

k service groups S1,S2, ...,Sk

output: A query result set R containing satisfying composite services

R = φ;1

foreach service service group Si do2

Locate S∗i for Si;3

Obtain S
′
i by removing those services from Si dominated by S∗i ;4

end5

repeat6

select one candidate service from each service group S
′
i;7

form a composite service Ci;8

if ∃C′i ∈ R such that C′i ÂCi with respect to p then9

discard Ci;10

else11

insert Ci to R;12

remove every service C′i ∈ R such that Ci ÂC′i with respect to p;13

end14

until no more services can be traversed ;15

Return R;16

Algorithm 4.3: The LPM algorithm for QoS query on composite services
Based on the heuristic rule above, now we consider how to find such Ski′

i s for service group

Si. For a service Ski′
i in Si, its ability to prune and exclude other services from further con-

sideration is determined by its own QoS value and the extent of the distribution of the QoS

values of services in Si. Suppose the value range on metric k(k = 1,2,3,4) is [ak,bk] in Si.

112

Then the pruning ability of Ski′
i , denoted as PA(Ski′

i), is evaluated as PA(Ski′
i)=

4
∏

l=1
(bl−ql

ki′).

We select the service from Si with the maximum pruning ability, termed S∗i to prune non-

qualifying services. After pruning non-qualifying services for each service group Si, the

straightforward strategy is applied to compute the query result R(p,C). Let S
′
i represent

Si from which some services have been pruned. The number of pruned services for Si is

|Si|− |S′i|. Therefore, the total number of pruned composite services in C is
k
∏

l=1
(|Sl|− |S′l|).

Algorithm 4.3 shows the pseudo-code of the LPM algorithm.

4.4 Personalized Service Selection

Having shown QoS models and their corresponding computing algorithms for answering

a user’s QoS query on both individual services and composite services, we know that our

strategy can solve the empty result problem, as shown in the introduction section, and

can provide at lease one result to satisfy the user’s QoS requirement. But meanwhile,

another problem appears: the number of services in the query result may exceed the user’s

requirement and sometime she or he does not need all services in the query result. For

example, a strict user may only needs fully satisfying services; whereas a user running

out of money prefers a relatively cheaper service with other QoS metrics being satisfied

approximately. So, a natural question is how to select good or appropriate services from

the returned query result to satisfy the user’s personalized requirement. We categorize this

question into two cases as follows.

4.4.1 Selecting fully satisfying services

For a strict user requiring fully satisfying services, a question to ask is whether these ser-

vices are included in the returned query result or not. Actually, it is important to point that

113

the query result specified by Definition 3 or Definition 7 is consistent with the user’s quality

requirements. This fact can be derived from the following lemma.

Lemma 1. The query result of a QoS query vector p on a group of services S, R(p,S),

contains at lease one fully satisfying service if such services exist.

Proof. Suppose F is a set of all the fully satisfying services. Obviously, there exists a

service a ∈ F such that a is not dominated by any other service in F . If a /∈ R(p,S), there

must exist a non-fully satisfying service b ∈ R(p,S), such that b Â a. So, by Definition 2

we conclude the value of D(p,b) on each dimension is not larger than that of D(p,a)) and

strictly smaller on at least one dimension, which is wrong because all the dimension values

of D(p,a) are strictly less than zero and at least one dimension value of D(p,b) is larger

than or equal to zero.

Notice that not all fully satisfying services are contained in R(p,S), as there may exist

dominance relationship between them. By Lemma 1, we can simply select the fully satis-

fying services in R(p,S) as the best answers for the strict user. Here we only discuss the

case of individual services. For composite services, by slightly modifying Lemma 1, we

can obtain fully satisfying composite services similarly.

4.4.2 Top-k Answers on out-of-range services

Since we try to obtain the query result using a relaxation method by computing the quality

difference, rather than seeking services satisfying all the four conditions at one time, our

proposed models can still return services to answer a user’s QoS query, even when no fully

satisfying services are available. Reasonably, the user may only be interested in part of the

returned out-of-range services. However, different users may have different preferences for

114

one fixed metric, and even one user may have different preference for different metrics. So,

an important problem is how to compute the k best out-of-range services.

In our models, the metrics are treated equally. In order to satisfy the user’s personalized

QoS requirements, we allow the user to specify a weight for each metric to adjust the

quality difference when she issues QoS queries. Specifically, the quality difference of a

service s with respect to a query vector p is modified as D(p,q(s)) = (w1×δ1,w2×δ2,w3×

δ3,w4× δ4), where wi(i = 1,2,3,4) are weights specifying the importance of the quality

difference on each metric. Furthermore, we define the user’s preference score for s as

w1×δ1 +w2×δ2 +w3×δ3 +w4×δ4. Thus, after the out-of-range service set R is available,

we can select k services in R with the k smallest preference scores to satisfy the user’s top-k

requirement.

The step of finding the top-k answers can also be combined into the algorithms for

computing R(p,S) or R(p,C). To achieve this, we use a queue to store the k best services

obtained so far. When a new candidate service is available, we compute its preference score

and update the queue. For the limit of space, the detailed procedure is omitted here.

4.5 Experiments

In this section, experiments are conducted to evaluate the performance of the proposed

algorithms. The experiments are implemented on a P4 Windows XP machine with a 2GHz

Pentium IV and 512M main memory. Our experiments are divided into two groups. Group

1 is for evaluating the performance of naı̈ve , RC and RRC algorithms for QoS query

on individual services. Group 2 is for evaluating the performance of algorithms for QoS

query on composite services, including straightforward method and LPM algorithm. We

use the simulation approach in [141] to study the performance of these algorithms. The

115

comparisons of these algorithms are done by running time.

We first evaluate the efficiency of algorithms running on individual services. For simu-

lation, we generate a group of candidate services, the number of which ranging from 1000

to 5000. Four quality values for each service are randomly generated with a uniform dis-

tribution between [0, 1]. Figure 4.3(a) shows the result of the three proposed methods as

the number of services increases. The test result shows RC is much better than the naı̈ve

method. The reason is that in the naı̈ve strategy every pair of services is compared with-

out any pruning. However, RRC is faster than RC, especially when the services are large.

This is because RRC uses R-tree to index all service quality vectors, and the number of

comparisons is reduced largely with its minimum bounding rectangles (MBRs).

0.00

0.50

1.00

1.50

2.00

2.50

1 2 3 4 5
Services (thousands)

(a)

R
u

n
n

in
g

 t
im

e
(m

s)

Naive

RC

RRC

0

2

4

6

8

10

12

14

16

18

20

4 5 6 7 8
Service groups

(b)

R
u

n
n

in
g

 t
im

e
(s

)

Straightforward

LPM

Figure 4.3: Running time comparisons on individual and composite services

Then, the algorithms for QoS query on composite services are evaluated. We randomly

construct 4-8 groups of services, each group having 10 candidate services. The results

of straightforward and LPM algorithms are shown in Figure 4.3(b). As can be seen, the

straightforward method is the most expensive because it has to traverse all services in each

service group, which leads to the exponential increase of running time. LPM performs

116

much better, indicating that by pruning the number of services in each group, the efficiency

of finding qualifying composite services improves significantly. Although LPM spends

time to compute QoS query on each service group first, its performance is still good due to

fact that the number of services in each service group is a key factor in the cost.

4.6 Related Works

QoS-based web service selection is an active research area and has attracted many re-

searchers. A lot of methods are proposed in previous work, such as workflow model, global

planning strategy using linear programming, graph/tree approach, QoS based selection of

semantic web services, etc. In this section, we briefly discuss the relationships between our

work and existing methods.

Industrial standard specifications have been proposed to provide infrastructure for web

services composition. Among them BPEL4WS (Business Process Execution Language for

Web Services) is the most widely used language for process-based service composition. It

describes the execution procedure and abstract process of workflow. Other specifications

include E-Flow, BPML, etc. WSLA [16] provides a framework for specifying and mon-

itoring Service Level Agreements (SLA) for Web Services. A WSLA document defines

assertions of a service provider to perform a service according to agreed guarantees for

IT-level and business process-level service quality parameters such as response time and

throughput, and measures to be taken in case of deviation and failure to meet the asserted

service guarantees.

However, these specifications only provide mechanisms to carry out local services se-

lection in dynamic environment, and QoS optimization from a global view is not supported.

Our work is based on these proposals and aims to provide a QoS-based and personalized

117

services selection model for the underlying workflow.

Besides industrial standards, many prototypes have been developed to assist in services

composition. In particular, SWORD [100] uses a rule-based engine to realize a composi-

tion by existing web services; SELF-SERVE [31] proposes a declarative language to carry

out service composition based on state-chart. But these projects only focus on planning

or analyzing workflow process, and neither QoS criteria nor QoS optimization issues are

addressed.

QoS-based service selection could be considered as a special case of the more general

problem of global optimization. [42] presents a QoS model, addressing time, cost, and reli-

ability dimensions. The model computes the quality of service for workflows automatically

based on QoS attributes of an atomic task. In [144], the QoS of web services is computed

using a muti-dimensional model, and the global QoS optimization is solved by linear pro-

gramming techniques. In [140], authors present a QoS broker to maximize the user-defined

utility value. In the broker, the optimized services selection is modeled as the Multiple

Choice Knapsack Problem and the shorted path problem in graph theory. In [128], authors

use an AND/OR tree structure to model the service composition problem. The procedure

of service composition is implemented through tree traversal, and a heuristic-based search

method is proposed to retrieve composite services with top-k QoS values. [125] uses a

qualitative graphical representation of preference, CP-nets, to deal with services selection

in terms of user preferences. However, these approaches can not handle the cases where

there is no fully satisfying service available, and the personalization issue is not discussed

either.

Several works are related to QoS-based selection of semantic web services. Specif-

ically, DAML-S and ebXML provide well defined, computer-interpretable semantics for

118

web services. Reference [127] describes a QoS model using the Web Service Modeling

Ontology. Also, the idea of QoS model extension has been presented by some researchers,

such as [41], [74], etc. In [41], the extended QoS model includes generic and domain or

business specific criteria and allows users to express their preferences. [74] models web

service configurations, associated prices and preferences using utility function policy, and

the optimal service selection combines declarative logic-based matching rules with linear

programming optimization methods. However, these works do not solve the empty result

problem either. Furthermore, although users’ interest is concerned, it is only based on

one preference and thus infeasible for practical purpose. To the contrary, our model takes

into account all QoS criteria factors and a relaxation strategy is applied to describe users’

comprehensive preference.

Another area related to this chapter is skyline query. For example, [37] proposed the

skyline operator; [97] developed an optimal and progressive algorithm for skyline queries;

[78] introduced a skyline framework for defining the semantics of selection and join queries

on relational database. Inspired by these works, we use a relaxation-based approach to

perform QoS-based web service selection.

4.7 Conclusions

In this chapter we studied the problem of service selection with QoS constraints. A novel

QoS model was proposed to perform flexible service selection. Based on the presented

model, we developed various algorithms for making service selection on individual and

composite services, respectively. We also introduced a top-k ranking strategy to reflect a

user’s personalized requirement. The performance of the algorithms has been evaluated,

showing the proposed QoS model is an efficient and practical strategy to satisfy users’ QoS

119

requirements. As part of on-going work, we are interested in improving performance of the

QoS query algorithms, as well as investigating more complicated workflow patterns. We

also plan to integrate exception handling mechanism into our model during personalized

service selection.

120

Chapter 5

VERIFICATION OF TRANSACTIONAL REQUIREMENTS IN
WEB SERVICE COMPOSITION

5.1 Introduction

Web services are loosely coupled reusable software components that semantically encap-

sulate discrete functionality and are distributed and programmatically accessible over stan-

dard Internet protocols. Web services provide integration and interaction mechanism for

automating B2B interactions. Nowadays, enterprises are able to outsource their internal

business processes as services and make them accessible via the Web. Then they can dy-

namically combine individual services to provide new value-added services [34]. The com-

position of web services provided by different organizations provides an efficient way to

build complex application logics. In order to create a new web service satisfying user re-

quirements, it is necessary to provide a web service composition mechanism that supports

the combination of existing simple web services and design the interaction relation among

them. Therefore, web services composition has been a hot research area. Many works have

been done on this issue, including BPEL [1], OWL-S [11], WS-CDL [17], Petri-net [60],

planning [95][103], etc.

However, these methods can not address the transactional problem with service com-

position context. As web services operate in a highly dynamic distributed environment and

interact with each other, the possibility of unexpected behavior is high. For example, the

invocation of a service may fail because of temporary unavailability of the service. The

121

unexpected behavior from an individual service may bring negative impact on all the com-

ponent services in the composition, even lead to failure of the running of the composite

service. So, we need a strategy that not only allows selecting a set of component web ser-

vices satisfying a user’s functional and non-functional (for example, QoS criteria such as

cost, response time, reliability, etc) requirements, but also provides transactional support to

business integration via composing individual web services to ensure the overall consistent

and reliable execution of a business process. A main problem that remains is, given a user’s

transactional requirements, how to select individual services and verify their transactional

properties to ensure the correct composition and reliable execution of a composite service.

Although there exist several transaction web service standards, they only provide lim-

ited transactional support for composite web services without giving much thought to the

transactional features [80]. In this chapter, we propose a novel approach to verify at design

time whether a service composition can be implemented by a set of web services satisfying

transactional requirements specified by a user. Service selection passing the verification

can ensure the correct composition and reliable execution of a composite service according

to user transactional requirements. In particular, the contributions of this chapter can be

summarized as below:

• We define transactional models for component web services. The transactional prop-

erties of component web services together with the dependencies between compo-

nent services, which are defined by the workflow patterns that specify how services

are combined together and how the behavior of a service interacts with other services,

contribute to the transactional properties of composite services.

• Based on automata theory, we model both component web services and composite

122

services as transition systems, and use the Accepted Termination States to describe

the transactional properties of a composite service. Then we propose a novel al-

gorithm to carry out automated verification of Accepted Termination States on the

composite service.

• In addition, for the cause of efficiency we use Temporal Logic to describe the transac-

tional properties of a composite service, and then we employ the SPIN model checker

to carry out automated verification of temporal logic properties on the composite ser-

vice.

The rest of the work is organized as follows. Section 5.2 provides a brief overview of trans-

actional properties of web services. In Section 5.3, we formally present the model of web

services and describe it with automata. In Section 5.4, we discuss our transition-based al-

gorithm on how to ensure the consistent termination of composite web services. In Section

5.5, we discuss the use of SPIN for verification of transactional composite services. Related

work is shown in Section 5.6. We give concluding remarks and some future research work

in Section 5.7.

5.2 Preliminaries

In this section, we define the transactional properties offered by component services, and

the accepted termination states for composite services, which are normally used as the

notion of correction of transactional web service composition.

123

5.2.1 Transactional Properties of Services

Transactions are one of the most fundamental mechanisms for reliable applications. How-

ever, traditional transactions which support ACID properties do not apply to the context of

web services well because of the characteristics of web services such as long-running, loose

coupling, internet basis, etc. Also, a set of component web services can be combined to

carry out very complex activities, which makes it very hard for composite services to follow

the ACID properties strictly. In order to ensure the reliable execution of web services in

distributed environments, we need to add transactional support into web services and their

composition. As the first step, we identify transactional properties of elementary services.

The main transactional features of an elementary web service that we are considering are

retriable (r), compensatable (c) and pivot (p) [34][59][80][87][81]. More specifically, we

have the definitions as follows:

Definition 1. Retriable. A service is said to be retriable if it is sure to complete successfully

after a finite number of invocations. A retriable service is able to offer forward recovery

mechanism.

Definition 2. Compensatable. A service is said to be compensatable if it is able to offer

compensatable supports. A compensatable service has operations to semantically undo the

original activity effect.

Definition 3. Pivot. A service is said to be pivot if it is neither compensatable nor retriable.

A pivot service supports atomic transactions which means once it successfully completes,

its effects remains forever and cannot be semantically undone. It is worth to note that a

pivot service may fail or have no effect at all. In other words, there is no guarantee that

this type of service can execute successfully.

124

initial

compensateabort fail

active complete initial

abort fail

active complete

initial

abort fail

active complete

compensate

initial

abort fail

active complete

(a) Pivot service (b) Compensatable service

(c) Retriable service (d) Compensatable and retriable service

Figure 5.1: Service states describing their transactional properties

A service can combine behavioral properties. For example, a service could be compen-

satable and retriable at the same time, the combination of which leads to a new behavioral

property of this service. In order to understand the transactional behavior of a service, we

adopt the states model to describe its state transitions. A service has a minimal set of states

(initial, active, abort, fail and complete). Figure 5.1 shows the state transitions of services

according to their different transactional properties. The internal state transitions diagram

of a pivot service is shown in Figure 5.1(a). Basically, the service enters the initial state

when it starts, then its execution can be either active or abort. If it is active, the instance can

normally continue its execution. The execution can complete successfully or it can fail. We

add a new state compensate for a compensatable service, as shown in Figure 5.1(b). Figure

5.1(c) illustrates the states diagram of a retriable service; Figure 5.1(d) gives the state tran-

sitions of a compensatable and retriable service that combines both compensatable property

and retriable property.

125

5.2.2 Transactional Composite Services

The transactional property of a composite service depends on its component services and

the dependencies between them. Therefore, the transactional property of a composite ser-

vice can be derived from those of component services conforming to {c,r, p} with work-

flow patterns specifying the dependencies. Given a composite service CS, there exist many

executions according to the same pattern, since different component services can be instan-

tiated for each workflow task. At a given time, the state of CS is an n-tuple (t1, t2, ..., tn),

where ti is the state of service si. The states considered in this work are: initial, abort, ac-

tive, fail, complete and compensate. We say that a composite service execution succeeds if

it leads the service into a termination state, where the composite service terminates and its

termination state falls in the set of all Accepted Termination States (ATS) [107] for which

the designer of the service accepts the service termination. We use the concept of ATS as

the notion of correction.

Different users may specify different ATS to reflect their transactional requirements.

Our goal is to verify a web service composition according to the given ATS.

5.3 Modeling

In this section, we give a conversation-based transition model for component services and

composite services respectively. In our composite service model, service choreography is

based on component service actions and message exchanges between them. Each message

exchange is associated with an action offered by a service and implies an exchange of

information between the invoking service and the service providing the desired function.

A linearization of messages is called a conversation. We formally model services and their

126

choreography as follows [96][40][56].

Definition 4. Web service transition system. The model of a web service ws is a transition

system, denoted as Tws = (∑,S,δ,s0,F). In Tws, ∑ = ∑in ∪∑out is the alphabet of the

transition system. Each element in ∑ is a tuple (op,msg,dir), where op represents an

operation, msg represents an input or output message of op and dir equals to → if msg ∈

∑in, i.e., msg is an input message or ← if msg ∈ ∑out , i.e., it is an output message. S is a

finite set of states. s0 ∈ S is the initial state, and F is the set of final states. δ is the transition

function S×∑→ S.

A state in the transition system represents the state of the interaction between the service

and another service. The role of a web service in interaction with another web service can

be client, server or both. If the initial state of the web service is only in the state of waiting

for receiving messages, then it is a server; if its initial state is only in the state of sending

messages, then it is a client; otherwise the web service have both roles. A transition is

the result of the receipt of an input message or the sending of an output message of an

operation.

Let us assume Figure 5.1(a) denotes a Seller service with the pivot transactional prop-

erty. We give its transition diagram in Figure 5.2.

Definition 5. Composite service transition system. Given a composite service CWS con-

sisting of services s1,s2, ...,sn, the interaction of services s1,s2, ...,sn can be described by a

non deterministic transition system TCWS = (S,A,T,s0,s f), where S is a finite set of chore-

ography states, of which each state is a tuple of the form ((s1,state1),(s2,state2), ...,

(sn,staten)), where in each tuple statei represents the state of service si. s0 ∈ S is the ini-

tial state and s f ∈ S is the set of final states. A is a sequence of messages. Each message

127

s0

initial

s1

active

1. (getQuote, requestQuote,)

F
complete

2. (getQuote, responseQuote,)
s'1

abort

3. (abort, requestAbort,)

F

F

4. (abort, responseAbort,)

fail

5. (getQuote, failQuote,)

1.

2.

3.

4.

5.

Figure 5.2: Transition of a seller service

exchange is represented by a tuple (sout ,sin,sop,m), where sout is the service sending the

message, sin is the service receiving the message, sop is one operation of sin invoked by sout

initiating the message exchange, and m is the message being exchanged. T is the transition

function T : S×A→ S. A transition (s,a,s′) ∈ T if there exists a = (sout ,sin,sop,m) and the

tuples (sout ,stateout) and (sin,statein) in state s are replaced by the tuples (sout ,state′out)

and (sin,state′in) in state s′ respectively because of the invocation of operation sop.

Note that the message exchanges in a composite service transition system is chore-

ographed by workflow patterns. A workflow pattern can be seen as an abstract description

of activation dependency between an invoking service and an invoked service. For exam-

ple, the AND-join pattern shown in Figure 5.3 specifies that service D can not enter an

active state until it receives the complete messages from both service B and service C.

The transition system for a composite service may have multiple termination states,

which shows the different execution results of the composite service. Based on the defini-

tion of ATS, we have the following theorem.

Theorem 1. A composite service is not valid if s f /∈ AT S, i.e., there exists some termination

128

state s f that does not belong to ATS specified by a designer.

Proof. Given a composite service CS, its termination state is a subset of {initial,abort,

active, f ail,complete,compensate}. There are only a limited number of subsets that are

acceptable to users, which is AT S. So, if the termination of CS falls out of AT S, we say CS

is invalid.

5.4 Verification with Transition Systems

5.4.1 Objective and Overview

The problem is how to ensure a composite service can terminate in an accepted state re-

quired by a designer. By Theorem 1, we only need to verify if there is a final state in the

transition system for the composite service that is not acceptable for the designer. There-

fore, in order to carry out the verification process, the transition system model for each

component service participating in the composition is needed.

The WSDL descriptions of web services specify their behavior. Firstly, we assume that

an application analyst has already provided the transition system representing the behavior

of each component service and the designer has selected a set of component services whose

function match the sub-task requirements in the composition. Secondly, we ask the designer

to compose a new service using a set of predefined operators (AND, OR, split or join) and

a set of workflow patterns (sequence, synchronize, ...), and then to specify the ATS for

the composite service. Figure 5.3 shows a sample composite service defined using AND-

split and AND-join patterns. Next, we check for correctness of the composition based on

available transition systems. If a wrong s f can be reached by the set of services chosen

by the designer, we ask the designer to select again by choosing new services with same

129

A D

C

B
A
N
D

A
N
D

Figure 5.3: A composite service defined with AND-split and AND-join patterns.

function yet new behavior (transition system). Finally, If the selected services are consistent

with the ATS specified, the composite service can be deployed and executed.

5.4.2 Verification Algorithm

In this section, we present the algorithm for verification of transactional requirements (ATS)

given a composite web service CS = {s1,s2, ,si, ,sn}. We select a web service si for each

sub-task participating in CS. The Verification algorithm has as inputs Ts1 , Ts2 , ..., Tsn , where

Tsi is the transition system for service si. It constructs the transition system TCS and re-

turns its final set of states s f . If some of the states are not consistent with ATS, then the

composition needs to be corrected.

The main idea of the algorithm is to dynamically generate all the possible states and

transitions of TCS and store the current sates in a temporary set state. For reducing memory

cost, we create the states and transitions only if they are reachable. Algorithm 5.1 outlines

the computation procedure.

5.5 Verification with SPIN

As we have seen in the previous section, our algorithm enumerates all possible states of the

transition systems of component services. With the number of states increases, the cost of

130

input : Ts0,Ts1, ...,Tsn , ATS

output: Flag: satisfying transactional requirements or not

S0 = {Ts0 .s0,Ts1.s0, ...,Tsi.s0,Tsn .s0};1

State = {S0};2

Flag = True;3

repeat4

if ∃(op,msg,dir) such that Tsi.scur× (opi,msgi,diri) = Tsi .s
′
cur AND5

Ts j .scur× (op j,msg j,dir j) = Ts j .s
′
cur AND opi = op j and msgi = msgi

AND diri 6= dir j then

obtain State′cur by replace Tsi.scur and Ts j .scur with Tsi .s
′
cur and6

Ts j .s
′
cur, respectively;

set State = State
⋃

State′cur;7

end8

until there is no change ;9

if ∃E ∈ State such that all Tsi ∈ E having F states AND E /∈ AT S then10

Flag = False;11

end12

Return Flag;13

Algorithm 5.1: Verification of transactional requirements

131

BPEL struct FSP notation

<sequence>
<receive

name=”act1”>
</receive>
<receive

name=”act2”>
</receive>

</sequence>

ACT1 =
(action1 -> END).

ACT2 =
(action2 -> END).

SEQUENCE =
ACT1;ACT2;END.

<switch name=
"MPS">

<case condition=
"cond1" =

“true”>…… [act1]
<otherwise>…[act2]

</switch>

 SWITCH =
 if cond1-true
 then ACT1;END
 else if cond2-true
 then ACT2;END
 else END.

<while condition =
"cond1" = "true">

<sequence>...
</sequence>

</while>

 WHILE =
 If condition-true
 then ACT1;WHILE
 else END.

<pick name
="pick1">

<onMessage>
<invoke ACT1>...

<onAlarm>
<invoke ACT2>...

</pick>

 PICK1 = (
 event1 -> ACT1;
 END | event2 ->
 ACT2; END).

<flow
name="flow1">

<receive
name="act1">...

<receive
name="act2">...

</flow>

 ||FLOW1 =
 (ACT1 || ACT2).

Figure 5.4: Translate BPEL to FSP

132

the algorithm will increase as well. In order to reduce cost, in this section we discuss the

use of the SPIN model checker to verify the transactional properties of composite services.

SPIN model checker verifies LTL properties of Promela specifications using an exhaustive

state space search [64], so we need to convert the composite service represented with BPEL

into Promela, then the ATS needs to be expressed in temporal logic properties.

We use the idea in [55] to do the translation of the control flow of BPEL to finite

state machines expressed by Finite State Process (FSP), which can then easily be converted

into the Promela specification consisting of a set of concurrent processes, one for each

automaton. Figure 5.4 lists the translation from BPEL to FSP.

After we have obtained the Promela specification for the composite service to be veri-

fied, we can express the correct ATS states as temproal logic properties against which the

verification process can be implemented by SPIN automatically.

5.6 Related works

Transactional support for web services has been a hot area. Many works have been done

recently to address this issue. Industrial standards, such as Business Transaction Proto-

col (BTP) [3], WS-Coordination [8], WS-Transaction [20], WS-Atomic Transaction, WS-

BusinessActivity, have defined standardized ways for transaction processing of distributed

web services. Specifically, BTP defines how to track and manage such complex, multi-

step B2B transactions over the Internet using XML messages; WS-Coordination describes

an extensible framework for providing protocols that coordinate the actions of distributed

applications; WS-Transaction builds upon WS-Coordination framework and defines the

protocols for centralized and peer-to-peer transactions; WS-Atomic Transaction defines

completion, volatile two-phase commit, and durable two-phase commit protocols; WS-

133

BusinessActivity specification provides the definition of a business activity coordination

type used to coordinate activities that apply business logic to handle business exceptions;

WS-TXM [9] is designed to ensure a composite application always either reaches success-

ful completion or transits to predictable, known state if one or more of the individual web

services fail in the composite application. All these standards provide support for compen-

sation mechanism for long running business activities.

Some efforts aim at analyzing transactional properties of composite web services. In

[80] authors investigate the transactional properties of workflow constructs. The concept of

connection point is also introduced to derive the transactional properties of composite web

services. [59] propose a model, in which web services are selected to satisfy both users’

QoS requirements and transactional requirements at some risk level. Other efforts focus on

how to assist users to design composite services with required transactional properties. For

example, In [34][33], authors propose a transactional approach to ensure the failure atom-

icity of a composite service. The Accepted Termination States (ATS) property is used to

express the required failure atomicity. Then, a set of transactional rules are derived to assist

designers to compose a valid composite service regarding to the specified ATS. Authors

of [87] propose a new process to automate the design of transactional composite web ser-

vices. The resulting composite web service is compliant with the consistency requirements

expressed by business application designers and its execution can easily be coordinated

using the coordination rules. A framework to ensure consistent termination of composite

web services with temporal constraints is designed in [81]. Some works focus on exception

handling in web services composition, such as [145][46][32][53].

There are also some works discussing the modeling of behavior of web services. In

[56][57], authors model the interactions of composite web services as conversations, the

134

global sequence of messages exchanged by the web services. The guarded automata model

is used as an intermediate representation for composite web services. In [96], authors verify

whether a choreography can be implemented by a set of web services based on their access

control policies and the disclosure policies. Web services are modeled as transition systems

and credential disclosure policies are represented as directed graphs. Our work tries to

combine the ideas of conversation model and ATS to ensure the consistent termination

states of composite web services.

5.7 Conclusions

In this work, we have proposed a novel approach to verify at design time whether a service

composition can be implemented by a set of web services satisfying transactional require-

ments specified by a user. We defined transactional properties for component web services

and analyzed the dependencies between them. Based on automata theory, we modeled both

component web services and composite services as transition systems, and used the Ac-

cepted Termination States to describe the transactional properties of a composite service.

Then, we presentd a novel algorithm to verify all possible state transitions of a composite

service to ensure consistent termination states according to the specified ATS by the user.

In addition, for the cause of efficiency we used Temporal Logic to describe the transactional

properties of a composite service, and then we employed the SPIN model checker to carry

out automated verification of temporal logic properties on the composite service.

As part of on-going work, we plan to improve the efficiency of our verification algo-

rithm. We are also interested in investigating how to use other model checking tools, such

as CPN-tools to verify transactional properties of composite web services.

135

Chapter 6

CONCLUSIONS

In this thesis, a web service composition framework has been presented for efficient

web services discovery and composition in service oriented environments. We have studied

three major problems in the framework: (1) efficient web services discovery, (2) dynamic

web service selection with QoS (Quality of Service) constraints, and (3) verification of web

service selection for transactional composition.

In this chapter, we summarize the contributions of this thesis in Section 6.1, and then in

Section 6.2 we discuss some future research issues and directions.

6.1 Contributions

A Web Service is a set of related functionalities that can be loosely coupled with other

services programmatically through the Web. With the rapid development and popularity

of Internet and e-commerce, business organizations are investigating ways to expose their

current software components into web services so as to make use of distributed service

computing resources. As a growing number of web services are available on the Web, how

to discover appropriate web services and compose them has become an ever more important

problem to many business organizations. Apart from functional specification required by

users during service discovery process, some non-functional requirements such as QoS

(Quality of Service) and transactional properties are also major concerns, because users

need to select and compose web services not only according to their functional requirements

136

but also to their transactional properties and QoS characteristics defined using a quality

model. They are particularly important in web service composition.

In this thesis, we have proposed a service composition framework assisting users to

discover web services and compose them according to QoS and transactional constraints.

The main contributions of this thesis are stated below.

1. We have proposed a novel IR-Style mechanism for discovering and ranking web

services automatically, given a textual description of desired services. We designed

novel algorithms for supporting web service operations matching. The key part of our

algorithms is a schema tree matching algorithm, which employs a new cost model to

compute tree edit distances. Our new schema tree matching algorithm can not only

catch structures, but also the semantic information of schemas. Based on service

operations matching, we used the agglomeration algorithm to cluster similar web

service operations. Also, an approach to identify associations between web-service

operations is presented. This approach uses the concept of attribute closure to obtain

sets of operations. Each set is composed of associated web service operations. More-

over, we introduced the notion of preference degree for web services and then we de-

fined service relevance and service importance respectively as two desired properties

for measuring the preference degree. Novel algorithms for computing the relevance

and importance degree of services were developed. In addition, we defined service

connectivity, a novel metric to evaluate the importance of services. Various exper-

iments have been done to evaluate our approach. Initial results show the proposed

IR-style search strategy is efficient and practical.

2. We have proposed a novel personalized QoS model for performing flexible and adapt-

137

able service selection. Our model can solve the problem of how to aggregate and

leverage individual service’s QoS information to derive the optimal QoS of the com-

posite service, given personalized user QoS constraints. The key idea of the model

is to use skyline technique to relax users’ QoS constraints and try to find the most

possible services which meet users’ requirements. The problem of QoS computation

and policing is converted into the skyline deduction problem. Furthermore, based on

the proposed QoS framework, we developed various algorithms for making service

selection on individual and composite services, respectively. We also introduced a

top-k ranking strategy to reflect a user’s personalized requirements. In addition, we

presented experimental results of a thorough evaluation. Experimental evaluation

shows the proposed QoS model is efficient and practical.

3. We have proposed a strategy for verification of web service selection for transactional

composition. Our approach is able to verify at design time whether a service compo-

sition can be implemented by a set of web services satisfying transactional require-

ments specified by a user. Service selection passing the verification can ensure the

correct composition and reliable execution of a composite service according to user

transactional requirements. Firstly, we defined a transactional model for component

web services. The transactional properties of component web services together with

the dependencies between component services, which are defined by the workflow

patterns that specify how services are combined together and how the behavior of a

service interacts with other services, contribute to the transactional properties of com-

posite services. Secondly, based on automata theory, we modeled both component

web services and composite services as transition systems, and used the Accepted

138

Termination States to describe the transactional properties of a composite service. A

verification algorithm was developed to carry out automated verification of Accepted

Termination States on composite services. In addition, for the cause of efficiency we

use Temporal Logic to describe the transactional properties of a composite service,

and then we employ the SPIN model checker to carry out automated verification of

temporal logic properties on the composite service.

6.2 Future Research Issues

In the following, several research issues of our interests for future work are identified.

• Semantic web services discovery. In this thesis, our focus has been on discovering

desired web services according to users’ textual description. Currently, there is a

trend to annotate web services with semantic information, such as OWL-S standard,

etc., in order to enable service discovery to be more accurate and intelligent. Usually,

web services discovery processes use the same domain ontologies. Therefore, it is

possible to build a knowledge base based on web service ontologies, construct formal

description of web services and user interest model, and then match services using

their ontological classifications. However, building a reasonable and efficient service

oriented knowledge base poses a big challenge.

• Monitoring the QoS for web services. As web services operate in dynamic environ-

ments, service providers may provide lower QoS than expected because of hardware

failure, network delay, etc. So, sometimes the service selection result according to

user QoS requirements may not be reliable or accurate. it is necessary to build a

QoS monitoring architecture which is based on not only detecting and measuring the

139

quality of services actively and automatically so as to make the available QoS values

up to date, but also collecting user feedbacks actively.

• Exception handling and recovery management in web service composition. The

loosely coupled, distributed and dynamic nature of web services makes it possible

for exceptions. For example, new services may become available at any time; exist-

ing services may become obsolete or temporarily unavailable, etc. Therefore, it is

crucial to provide support for exception handling and recovery management policy

in service composition to ensure reliable and consistent execution of services.

140

BIBLIOGRAPHY

[1] Business process execution language for web services, version 1.0, 2000.
http://www-106.ibm.com/developerworks/library/ws-bpel/.

[2] Business process management.
http://en.wikipedia.org/wiki/business process management.

[3] Business transaction protocol (btp) specification.
http://www.oasis-open.org/committees/business-transaction/.

[4] Defining web services.
http://www.perfectxml.com/xanalysis/tsg/tsg definingwebservices.pdf.

[5] http://searchsoa.techtarget.com.

[6] Ieee services computing community.
https://www.ieeecommunities.org/services.

[7] Matrix representation of petri nets.
http://www.techfak.uni-bielefeld.de/∼mchen/biopnml/intro/mrpn.html.

[8] Oasis web services coordination specification.
http://docs.oasis-open.org/ws-tx/wscoor/2006/06.

[9] Oasis web services transaction (ws-tx).
http://www.oasis-open.org/committees/ws-tx.

[10] Overview of w3c technologies.
http://www.w3.org/consortium/offices/presentations/overview.

[11] Owl-s: Semantic markup for web services.
http://www.w3.org/submission/owl-s/.

[12] Petri nets. http://www.cse.fau.edu/∼maria/courses/cen4010-se/c10/10-7.html.

[13] Service computing and business process management.
http://www.eii.edu.au/taskforce0506/bpm.

141

[14] Skyline website developer manual 1.0.
http://www.ccs.neu.edu/home/jarodwen/skylinedoc/html/.

[15] Web service choreography interface (wsci) 1.0.
http://www.w3.org/tr/wsci/.

[16] Web service level agreement (wsla) language specification version 1.0.
http://www.research.ibm.com/wsla/.

[17] Web services choreography description language version 1.0.
http://www.w3.org/tr/2004/wd-ws-cdl-10-20041217/.

[18] Web services conversation language (wscl) 1.0, 2002.
http://www.w3.org/tr/wscl10/.

[19] Web services flow language (wsfl 1.0).
http://www-4.ibm.com/software/solutions/webservices/pdf/wsfl.pdf.

[20] Web services transactions specifications.
http://www.ibm.com/developerworks/library/specification/ws-tx/.

[21] Workflow/business process management (bpm) service pattern.
http://enterprisearchitecture.nih.gov/archlib/at/ta/workflowservicepattern.htm.

[22] Xlang: Web services for business process design, 2002.
http://www.gotdotnet.com/team/xml wsspecs/xlang-c/default.htm.

[23] SOAP Version 1.2. http://www.w3.org/tr/soap/.

[24] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association
rules in large databases. In VLDB, pages 487–499, Santiago de Chile, Chile, 1994.

[25] S. Agrawal, S. Chaudhuri, and G. Das. Dbxplorer: A system for keyword-based
search over relational databases. In ICDE, 2002.

[26] Eyhab Al-Masri and Qusay H. Mahmoud. Qos-based discovery and ranking of web
services. In ICCCN, pages 529–534, 2007.

[27] Eyhab Al-Masri and Qusay H. Mahmoud. Relevancy ranking of web services. In
SMC, pages 783–788, 2007.

[28] Eyhab Al-Masri and Qusay H. Mahmoud. Investigating web services on the world
wide web. In WWW, pages 795–804, 2008.

142

[29] Paul C. Attie, Munindar P. Singh, Amit P. Sheth, and Marek Rusinkiewicz. Specify-
ing and enforcing intertask dependencies. In VLDB, pages 134–145, 1993.

[30] Boualem Benatallah and Fabio Casati. Guest editorial. Distributed and Parallel
Databases, 12(2/3):115–116, 2002.

[31] Boualem Benatallah, Marlon Dumas, and Zakaria Maamar. Definition and execution
of composite web services: The self-serv project. IEEE Data Eng. Bull., 25(4):47–
52, 2002.

[32] Sami Bhiri, Walid Gaaloul, and Claude Godart. Discovering and improving recovery
mechanisms of compositeweb services. In ICWS, pages 99–110, 2006.

[33] Sami Bhiri, Claude Godart, and Olivier Perrin. Transactional patterns for reliable
web services compositions. In Proceedings of International Conference on Web
Engineering (ICWE), pages 137–144, 2006.

[34] Sami Bhiri, Olivier Perrin, and Claude Godart. Ensuring required failure atomicity
of composite web services. In WWW, pages 138–147, 2005.

[35] BindingPoint. http://www.bindingpoint.com.

[36] D. Booth, H. Haas, F. McCab, E. Newcomer, M. Champion, C. Ferris, and D. Or-
chard. Web services architecture. http://www.w3.org/tr/ws-arch/. 2004.

[37] Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker. The skyline operator.
In ICDE, pages 421–430, 2001.

[38] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web
search engine. Computer Networks, 30(1-7):107–117, 1998.

[39] Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and Geoffrey Zweig. Syn-
tactic clustering of the web. Comput. Netw. ISDN Syst., 29(8-13):1157–1166, 1997.

[40] Tevfik Bultan, Jianwen Su, and Xiang Fu. Analyzing conversations of web services.
IEEE Internet Computing, 10(1):18–25, 2006.

[41] Gerardo Canfora, Massimiliano Di Penta, Raffaele Esposito, Francesco Perfetto, and
Maria Luisa Villani. Service composition (re)binding driven by application-specific
qos. In ICSOC, pages 141–152, 2006.

143

[42] Jorge Cardoso, Amit P. Sheth, John A. Miller, Jonathan Arnold, and Krys Kochut.
Quality of service for workflows and web service processes. Journal of Web Seman-
tics, 1(3):281–308, 2004.

[43] James Caverlee, Ling Liu, and Daniel Rocco. Discovering and ranking web services
with basil: a personalized approach with biased focus. In ICSOC, pages 153–162,
2004.

[44] D. Chappel and T. Jewell. Java Web Services. OReilly, 2002.

[45] The Workflow Management Coalition. ”terminology and glossary,wfmc-tc-1011,
http://www.wfmc.org/standards/docs/tc-1011 term glossary v3.pdf, 1999.

[46] Francisco Curbera, Rania Khalaf, Frank Leymann, and Sanjiva Weerawarana. Ex-
ception handling in the bpel4ws language. In Business Process Management, pages
276–290, 2003.

[47] Xinguo Deng, Ziyu Lin, Weiqing Cheng, Ruliang Xiao, Lina Fang, and Ling Li.
Modeling web service choreography and orchestration with colored petri nets. In
SNPD ’07: Proceedings of the Eighth ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Comput-
ing, pages 838–843, Washington, DC, USA, 2007. IEEE Computer Society.

[48] IBM Developerworks. www.ibm.com/developerworks/webservices.

[49] X. Dong, A. Y. Halevy, J. Madhavan, E. Nemes, and J. Zhang. Simlarity search for
web services. In VLDB, pages 372–383, 2004.

[50] Prashant Doshi, Richard Goodwin, Rama Akkiraju, and Kunal Verma. Dynamic
workflow composition: Using markov decision processes. Int. J. Web Service Res.,
2(1):1–17, 2005.

[51] Schahram Dustdar and Wolfgang Schreiner. A survey on web services composition.
International Journal of Web and Grid Services, pages 1–30, August 2008.

[52] E. Allen Emerson. Temporal and modal logic. pages 995–1072, 1990.

[53] Xiaocong Fan, Karthikeyan Umapathy, John Yen, and Sandeep Purao. Team-based
agents for proactive failure handling in dynamic composition of web services. In
ICWS, pages 782–, 2004.

144

[54] Charles Foster. Xml databases and xml information exchange.
http://www.cfoster.net/articles/xmldb-business-case. 2008.

[55] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based verification of web
service compositions. In ASE ’03, pages 152–161. IEEE, 2003.

[56] Xiang Fu, Tevfik Bultan, and Jianwen Su. Analysis of interacting bpel web services.
In WWW, pages 621–630, 2004.

[57] Xiang Fu, Tevfik Bultan, and Jianwen Su. Wsat: A tool for formal analysis of web
services. In CAV, pages 510–514, 2004.

[58] Aiqiang Gao, Dongqing Yang, Shiwei Tang, and Ming Zhang. Web service compo-
sition using markov decision processes. In WAIM, pages 308–319, 2005.

[59] Joyce El Haddad, Maude Manouvrier, Guillermo Ramirez, and Marta Rukoz. Qos-
driven selection of web services for transactional composition. Web Services, IEEE
International Conference on, 0:653–660, 2008.

[60] Rachid Hamadi and Boualem Benatallah. A petri net-based model for web service
composition. In ADC ’03: Proceedings of the 14th Australasian database confer-
ence, pages 191–200, Darlinghurst, Australia, Australia, 2003. Australian Computer
Society, Inc.

[61] Eui-Hong Han, George Karypis, Vipin Kumar, and Bamshad Mobasher. Hypergraph
based clustering in high-dimensional data sets: A summary of results. IEEE Data
Eng. Bull., 21(1):15–22, 1998.

[62] Jiawei Han. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2005.

[63] Qiang He, Jun Yan, Yun Yang, Ryszard Kowalczyk, and Hai Jin. Chord4s: A p2p-
based decentralised service discovery approach. In IEEE SCC (1), pages 221–228,
2008.

[64] G. J. Holzmann. The SPIN Model Checker: Primer and Reference Manual. Addison-
Wesley, Boston, Massachusetts, 2003.

[65] Gerard J. Holzmann. The model checker spin. IEEE Trans. Softw. Eng., 23(5):279–
295, 1997.

145

[66] V. Hristidis, L. Gravano, and Y. Papakonstantinou. Efficient ir-style keyword search
over relational databases. In VLDB, pages 850–861, 2003.

[67] V. Hristidis and Y. Papakonstantinou. Discover: Keyword search in relational
databases. In VLDB, pages 670–681, 2002.

[68] http://www.cs.umass.edu/∼mccallum. rainbow.

[69] Zhiyong Huang, Christian S. Jensen, Hua Lu, and Beng Chin Ooi. Skyline queries
against mobile lightweight devices in manets. In ICDE, page 66, 2006.

[70] IBM. Web services and uddi.
http://www.ibm.com/services/uddi. 2001.

[71] Danish Irfan, Xiaofei Xu, Shengchun Deng, and Zengyou He. K-means clustering -
a survey. In IKE, pages 190–196, 2007.

[72] Michael C. Jaeger, Gregor Rojec-Goldmann, and Gero Mühl. Qos aggregation for
web service composition using workflow patterns. In EDOC, pages 149–159, 2004.

[73] Kurt Jensen, Lars Kristensen, and Lisa Wells. Coloured petri nets and cpn tools for
modelling and validation of concurrent systems. International Journal on Software
Tools for Technology Transfer (STTT), 9(3):213–254, June 2007.

[74] Radu Jurca, Boi Faltings, and Walter Binder. Reliable qos monitoring based on client
feedback. In WWW, pages 1003–1012, 2007.

[75] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Introduction to
Cluster Analysis. John Wiley, New York, 1990.

[76] Rania Khalaf. Business process with bpel4ws: Learning bpel4ws.
http://www.ibm.com/developerworks/webservices/. 2002.

[77] Donald Kossmann, Frank Ramsak, and Steffen Rost. Shooting stars in the sky: An
online algorithm for skyline queries. In VLDB, pages 275–286, 2002.

[78] Nick Koudas, Chen Li, Anthony K. H. Tung, and Rares Vernica. Relaxing join and
selection queries. In VLDB, pages 199–210, 2006.

[79] H. T. Kung, Fabrizio Luccio, and Franco P. Preparata. On finding the maxima of a
set of vectors. J. ACM, 22(4):469–476, 1975.

146

[80] Li Li, Chengfei Liu, and Junhu Wang. Deriving transactional properties of com-
positeweb services. IEEE International Conference on Web Services (ICWS’07),
0:631–638, 2007.

[81] An Liu and Qing Li. Ensuring consistent termination of composite web services.
In Proceedings of SIGMOD2007 Ph.D. Workshop on Innovative Database Research
2007 (IDAR 2007), pages 15–20, 2007.

[82] Yutu Liu, Anne H. H. Ngu, and Liangzhao Zeng. Qos computation and policing in
dynamic web service selection. In WWW (Alternate Track Papers & Posters), pages
66–73, 2004.

[83] Jiřı́ Matoušek. Computing dominances inen (short communication). Inf. Process.
Lett., 38(5):277–278, 1991.

[84] Microsoft. Microsoft advanced uddi search.
http://uddi.microsoft.com/search.aspx. 2001.

[85] Nikola Milanovic and Miroslaw Malek. Current solutions for web service composi-
tion. IEEE Internet Computing, 8(6):51–59, 2004.

[86] Document Object Model. http://en.wikipedia.org/wiki/dom.

[87] Frederic Montagut, Refik Molva, and Silvan Tecumseh Golega. Automating the
composition of transactional web services. Int. J. Web Service Res., 5(1):24–41,
2008.

[88] MSDN. http://msdn.microsoft.com.

[89] Saikat Mukherjee, Hasan Davulcu, Michael Kifer, Pinar Senkul, and Guizhen Yang.
Logic based approaches to workflow modeling and verification. In Logics for Emerg-
ing Applications of Databases, pages 167–202, 2003.

[90] Petri net. Coloured petri nets. http://www.daimi.au.dk/cpnets/intro/.

[91] Petri net. http://en.wikipedia.org/wiki/petri net.

[92] Hamid Reza Motahari Nezhad. Discovery and adaptation of process views. PhD
thesis, The University of New South Wales.

[93] Andrew Nierman and H. V. Jagadish. Evaluating structural similarity in xml docu-
ments. In WebDB, pages 61–66, 2002.

147

[94] OASIS. Introduction to uddi: Important features and functional concepts.
http://www.uddi.org/pubs/uddi v3.htm. October 2004.

[95] Seog-Chan Oh, Dongwon Lee, and Soundar R. T. Kumara. A comparative illus-
tration of ai planning-based web services composition. SIGecom Exch., 5(5):1–10,
2006.

[96] Federica Paci, Mourad Ouzzani, and Massimo Mecella. Verification of access con-
trol requirements in web services choreography. In IEEE SCC (1), pages 5–12, 2008.

[97] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. An optimal and pro-
gressive algorithm for skyline queries. In SIGMOD Conference, pages 467–478,
2003.

[98] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. Progressive skyline
computation in database systems. ACM Trans. Database Syst., 30(1):41–82, 2005.

[99] Carl Adam Petri and Wolfgang Reisig. Petri net. Scholarpedia, 3(4):6477, 2008.

[100] Shankar R. Ponnekanti and Armando Fox. Sword: A developer toolkit for web
service composition. In Proceedings of the 11th International WWW Conference
(WWW2002), Honolulu, HI, USA, 2002.

[101] K. Pu, V. Hristidis, and N. Koudas. Syntactic rule based approach toweb service
composition. In ICDE, page 31, 2006.

[102] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley-Interscience, April 1994.

[103] Lirong Qiu, Fen Lin, Changlin Wan, and Zhongzhi Shi. Semantic web services
composition using ai planning of description logics. Asia-Pacific Conference on
Services Computing. 2006 IEEE, 0:340–347, 2006.

[104] SOAP Reference. http://msdn.microsoft.com/en-us/library/aa909268.aspx.

[105] D. D. C. Reis, P. B. Golgher, A. S. d. Silva, and A. H. F. Laender. Automatic web
news extraction using tree edit distance. In WWW, pages 502–511, 2004.

[106] D. Roman, H. Lausen, and U. Keller. Web Service Modeling Ontology (WSMO).
WSMO Final Draft 10, 2005.

148

[107] Marek Rusinkiewicz and Amit Sheth. Specification and execution of transactional
workflows. In Modern Database Systems: The Object Model, Interoperability, and
Beyond, pages 592–620. ACM Press, 1995.

[108] A. Sajjanhar, J. Hou, and Y. Zhang. Algorithm for web services matching. In APWeb,
volume 3007, pages 665–670, 2004.

[109] G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic indexing.
Commun.ACM, 18(11):613–620, 1975.

[110] Schema. http://www.w3.org/xml/schema.

[111] XML Schema. http://en.wikipedia.org/wiki/xml schema.

[112] Web service usage scenario. http://www.w3.org/2002/04/17-ws-usecase.html.

[113] Z. Shen and J. Su. Web service discovery based on behavior signatures. In SCC,
volume 1, pages 279–286 vol.1, 2005.

[114] UDDI Specification. http://www.uddi.org/pubs/uddi v3.htm.

[115] Biplav Srivastava. Web service composition - current solutions and open problems.
In In: ICAPS 2003 Workshop on Planning for Web Services, pages 28–35, 2003.

[116] Simon St.Laurent. Why xml?.
http://www.simonstl.com/articles/whyxml.htm. 1998.

[117] Katia P. Sycara, Seth Widoff, Matthias Klusch, and Jianguo Lu. Larks: Dynamic
Matchmaking Among Heterogeneous Software Agents in Cyberspace. Autonomous
Agents and Multi-Agent Systems, 5(2):173–203, 2002.

[118] Kuo-Chung Tai. The tree-to-tree correction problem. J. ACM, 26(3):422–433, 1979.

[119] Kian-Lee Tan, Pin-Kwang Eng, and Beng Chin Ooi. Efficient progressive skyline
computation. In VLDB ’01: Proceedings of the 27th International Conference on
Very Large Data Bases, pages 301–310, San Francisco, CA, USA, 2001. Morgan
Kaufmann Publishers Inc.

[120] UDDI Registry tModels. http://www.uddi.org/taxonomies/uddi registry tmodels.htm.

[121] Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, Bartek Kiepuszewski, and Alis-
tair P. Barros. Workflow patterns. Distributed and Parallel Databases, 14(1):5–51,
2003.

149

[122] w3school tutorials. http://www.w3schools.com/schema.

[123] w3school tutorials. http://www.w3schools.com/xml.

[124] w3school XML DOM Tutorial. http://www.w3schools.com/dom.

[125] Hongbing Wang, Junjie Xu, and Peicheng Li. Incomplete preference-driven web
service selection. In IEEE SCC (1), pages 75–82, 2008.

[126] Jason Tsong-Li Wang, Bruce A. Shapiro, Dennis Shasha, Kaizhong Zhang, and
Kathleen M. Currey. An algorithm for finding the largest approximately common
substructures of two trees. IEEE Trans. Pattern Anal. Mach. Intell., 20(8):889–895,
1998.

[127] Xia Wang, Tomas Vitvar, Mick Kerrigan, and Ioan Toma. A qos-aware selection
model for semantic web services. In ICSOC, pages 390–401, 2006.

[128] Xiaoling Wang, Sheng Huang, and Aoying Zhou. Qos-aware composite services
retrieval. J. Comput. Sci. Technol., 21(4):547–558, 2006.

[129] Y. Wang and E. Stroulia. Flexible interface matching for web-service discovery. In
WISE, 2003.

[130] WebServiceList. http://www.webservicelist.com.

[131] XML Wikipedia. http://en.wikipedia.org/wiki/xml.

[132] Web Service Definition Language (WSDL). www.w3.org/tr/wsdl.

[133] T. Xie, C. Sha, X. Wang, and A. Zhou. Approximate top-k structural similarity
search over xml documents. In APWeb, volume 3841, pages 319–330, 2006.

[134] XMethod. http://www.xmethods.org.

[135] Guandong Xu. Web mining techniques for recommendation and personalization.
PhD thesis, Victoria University.

[136] Jian Yang and Prof Mike P. Papazoglou. The web-services phenomenon: Concepts
technologies trends and research directions. In CAiSE’02 Tutorial.

[137] Wuu Yang. Identifying syntactic differences between two programs. Softw., Pract.
Exper., 21(7):739–755, 1991.

150

[138] YanPing Yang, QingPing Tan, and Yong Xiao. Verifying web services composition
based on hierarchical colored petri nets. In IHIS ’05: Proceedings of the first inter-
national workshop on Interoperability of heterogeneous information systems, pages
47–54, New York, NY, USA, 2005. ACM.

[139] Cong Yu and H. V. Jagadish. Schema summarization. In VLDB, pages 319–330,
2006.

[140] Tao Yu and Kwei-Jay Lin. Service selection algorithms for web services with end-
to-end qos constraints. Inf. Syst. E-Business Management, 3(2):103–126, 2005.

[141] Tao Yu, Yue Zhang, and Kwei-Jay Lin. Efficient algorithms for web services selec-
tion with end-to-end qos constraints. TWEB, 1(1), 2007.

[142] Amy Moormann Zaremski and Jeannette M. Wing. Specification Matching of Soft-
ware Components. ACM Trans. Softw. Eng. Methodol., 6(4):333–369, 1997.

[143] Liangzhao Zeng. Dynamic web services composition. PhD thesis, The University
of New South Wales.

[144] Liangzhao Zeng, Boualem Benatallah, Marlon Dumas, Jayant Kalagnanam, and
Quan Z. Sheng. Quality driven web services composition. In WWW, pages 411–
421, 2003.

[145] Liangzhao Zeng, Hui Lei, Jun-Jang Jeng, Jen-Yao Chung, and Boualem Benatallah.
Policy-driven exception-management for composite web services. In CEC, pages
355–363, 2005.

[146] Yanhong Zhai and Bing Liu. Web data extraction based on partial tree alignment. In
WWW, pages 76–85, 2005.

[147] K. Zhang and D. Shasha. Simple fast algorithms for the editing distance between
trees and related problems. SIAM J.Comput., 18(6):1245–1262, 1989.

	front-cover
	declaration-page
	thesis-main-content

