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ABSTRACT

This thesis presents a method to detect structural damage using frequency response function
(FRF) data obtained from non-destructive vibration tests. The method is used to study cases of
early structural damage in which there is no appreciable change in mass and damping. The
resulting change in structural stiffness matrix is reflected in changes of FRF which can be
exemplified by the evaluation of the damage location vector. This requires the dynamic stiffness
matrix of the original undamaged structure and the frequency response curve of the currently
damaged structure. In this thesis, the former is obtained from a finite element model of the virgin
structure and the latter are obtained from an impact hammer test. The Damage Detection
Algorithm will be used to detect simulated damage FRF data applied to a simple mass spring
system, space truss structure and a plate structure and effects of noise. Both numerically
simulated and experimentally measured noises are investigated. Experimental FRF data were
obtained for a plate structure and used for detection of physical damage and comparisons made
with the simulated data. Results show that the Damage Detection Algorithm can be used to
successfully detect structure damage in situations where coordinate incompatibility and noise

exists.
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NOMENCLATURE

The following lists below are symbols and abbreviations that are used within this thesis.

[C] - Viscous damping matrix of a structure

E - Young’s modulus (GPa)

[H] - Hysteric damping matrix of a structure

(1] - Identity matrix

[K] - Stiffness matrix of a structure

M] - Mass matrix of a structure

ng - Number of averages

[T] - Linear transformation matrix

t - Thickness (m)

{x} - Vector of displacement

{x} - Second derivative of displacement with respect to time, acceleration
vector

{d(Q)} - Damage location vector

[z(Q)] - Dynamic stiffness matrix

{a(Q)} - Receptance frequency response function

[AZ(Q)] - Difference between dynamics stiffness matrix of damage and
undamaged structure

€, - Normalised error

Y(f) - Coherence function at a frequency

) - Density (kg/m3)

\Y - Poisson’s ratio

Q - Frequency of the system (Hz)




Operators and Symbols

2 - Summation

OLIT - Transpose

® - Matrix multiplication element by element operation
[ ]'l - Standard matrix inverse

[ Io - Subscript D represents damaged structure

[ Jup - Subscript UD represents undamaged structure
{™) - Superscript mc refers to measured coordinate
{3 - Superscript uc refers to unmeasured coordinate
Abbreviations

CDLV - Cumulative Damage Location Vector
COMAC - Coordinate Modal Assurance Criterion

DEM - Dynamic Expansion Method

DLV - Damage Location Vector

DOFs - Degrees of Freedom

EOM - Equation of Motion

FE - Finite element

FEM - Finite element model

FRF - Frequency response function

MAC - Modal assurance criterion

MDOF - Multiple degree of freedom

RFRF - Receptance frequency response function
SEREP - System equivalent reduction expansion process
Plate9 - Thin cantilever plate with 9 nodes and 4 elements

Plate28 - Thin cantilever plate with 28 nodes and 18 elements
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CHAPTER 1
INTRODUCTION

In recent years, structural damage detection has become a major research focus in the area of
structural dynamics. Advancements in material science have made it possible to build larger and
more complex structures that are much lighter in weight. It is therefore essential to periodically

monitor these structures to ensure that a catastrophic failure does not occur.

Despite existing non-destructive testing methods such as ultrasound, X-ray, dye penetrant,
magnetic particles and acoustic emissions, sporadic failures that have disastrous consequences in
terms of human life and resources still occur. This is largely due to the fact that existing non-
destructive testing methods are often limited to observations in a limited area and rely on a
presumption of the likely area of damage. Often it may be difficult to observe visually any
damage that may have occurred within a structure due to material degradation, since the surface
appearance may remain unchanged. It is therefore desirable to devise a method that can be used
to evaluate the integrity of a structure as a whole. Such a technique that can successfully detect

damage within a structure would greatly aid in ensuring the integral safety of a structural system.

Ideally, a method that can successfully detect damage must be able to address the following
criteria:

1. Assess that structural damage has occurred

2. Determine the location of the damage

3. Quantify the severity of the damage

4. Predict the remaining service life of the damaged structure
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In most cases, if the first three criteria are achieved, then the fourth criterion is obtainable.

Aside from successfully addressing the essential criteria for a successful damage detection
technique, the method must also be able to deal with the major barriers that have been hindering

successful damage detection.

In structural damage detection there are two major barriers that must be overcome, these are:
1. Noisy measurement data

2. Coordinate Incompatibility

It is relatively simple to determine damage from measurements that are free from errors.
However, in reality, measurements are always contaminated by various random errors or noise.
The amount of noise present in the measurement data ultimately affects the quality of the data
and the accuracy of the detected damage. An inability to cope with data that may be

contaminated by noise would lead to inaccurate damage detection.

Coordinate incompatibility is caused by the inability to adequately capture and describe the
characteristic behaviour of a structure. This is largely due to the fact that a real life structure has
an infinite number of degrees of freedom (DOFs), and in reality not all DOFs may be measured
on a structure. This leads to a coordinate incompatibility between the data obtained from the
spatial model of the structure and the data obtained from measurement. Methods to overcome

coordinate incompatibility will be discussed later in this chapter.
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1.1 REVIEW OF PREVIOUS WORK

At present structural damage detection is still in its infancy. In spite of the multitude of
techniques that have been developed, not many techniques are able to address all the criteria for a

successful damage detection technique.

To date, existing damage detection techniques can be categorized into two main areas of study.
There are as follows:
1. Damage detection techniques based on experimental data

2. Damage detection techniques based on modal data and finite element data

1.2 DAMAGE DETECTION TECHNIQUES BASED ON EXPERIMENTAL DATA

In the past, early structural damage detection techniques were very crude and inaccurate, as they
relied on visual or acoustic methods to determine damage. A common practice used by early
locomotive drivers in the 19" and 20" Century to detect the presence of damage was to hammer
each wheel of their locomotive to determine if there was any difference in the acoustic responses.
A difference in the norm would indicate the presence of damage. This was highly inaccurate as it
relied on the driver’s acoustic experiences. It was also difficult to produce the same consistent

impact each time.

Early damage detection techniques during the 19" Century involved determining frequency shifts
of resonant frequencies of a structure. It was found that changes in the stiffness of a structure
often indicated the presence of damage. It was also found that a change in the stiffness of a
structure was also linked to changes in natural frequencies of the same structure. Cawley and
Adams (1979) suggested that if one set of natural frequency was measured before the structure

was put into service, subsequent natural frequency measurements could be used to determine




Chapter 1: Introduction 4

whether the structure was still sound by comparing the measured frequency with the original
natural frequency. Furthermore, by measuring the natural frequencies of a structure at difference

stages of its life, it is possible to observe the frequency shifts as the damage propagates through

the structure.

A similar damage detection technique based on frequency used statistical methods to predict the
most likely damage location (Friswell et al. 1994). It was assumed that sets of frequencies were
measured before the structure was put into service, which represented the undamaged structure.
From these, frequencies shifts of the first several modes for all possible damage scenarios were
calculated mathematically. Measurements of natural frequencies of the structure at different
stages of its life would then be fitted against the postulated damage scenarios. The quality of the

fit to each postulated damage scenario indicated the existence of damage.

The method proposed by Cawley and Adams (1979) did not give any indication with regards to
the accuracy of their predictions. Their method would still locate damage from slight changes in
the natural frequencies due to temperature effects or measurement noise, even though no damage
actually exists. Statistical methods proposed by Friswell et al. (1994) postulating damage

scenarios were found to be impractical, as a lot of unnecessary calculations were required.

1.3 DAMAGE DETECTION TECHNIQUES BASED ON MODAL DATA AND FINITE
ELEMENT ANALYSIS DATA

Considerable advancements in Modal Analysis in the field categorised as “Model Updating”
were also applied to structural damage detection. It was possible to borrow techniques developed
for model updating because by nature damage detection and model updating are intrinsically

linked. Both aim to determine the differences between two models.
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The objective of model updating is to determine the difference between measured experimental

data and finite element model (FEM) data. Here, it is assumed that the measured experimental

data is correct and that the difference between the FEM data represents the modelling errors as

shown in Figure 1.1a.

Finite Element
Data

Experimental
Data

Modelling Errors

Updating

Figure 1.1a: Difference between Two Models resulting in Modelling Errors

For damage detection, the objective is to determine the difference between the undamaged

structure and the damaged structure. Here the data from the damaged structure is usually

obtained from experimental methods, while data from the undamaged structure is usually

obtained from a finite element model. The difference between the two models represents damage

as shown in Figure 1.1b.

Experimental
Data from Damaged

Model Structure

Damage

Data from FEM Modé¢
of Undamaged

Figure 1.1b: Difference between Two Models resulting in Damage




Chapter 1: Introduction 6

The relevant techniques of model updating that can be used for structural damage detection can
be broadly categorised into three fields and they are as follows:

1. Optimal Matrix Method

2. Eigen-structure Assignment

3. Sensitivity Analysis

1.3.1 OPTIMAL MATRIX METHOD

The goal of Optimal Matrix Method is to find an updated system matrix which is closest to the
original matrix that produces the measured natural frequencies and mode shapes. Rodden (1967)
was the first to use this optimal matrix approach. He used vibrational test data to determine the
influence coefficients of a structure. Brock (1968) postulated that since the data was determined
experimentally that errors might have been introduced. Hence, in order to determine the optimal
matrix, the matrix must satisfy a set of measurements, as well as meeting the requirements of
symmetry and positive definiteness. Berman and Flannely (1971) addressed the possibility of
deriving an optimal system matrix with incomplete vibration data (when the number of degrees
of freedom (DOFs) and the number of modes do not coincide). Baruch and Bar Itzack (1978)
developed a method that involved the minimisation of Euclidean norm subjected to the
orthogonality requirements. Berman and Ngay (1983) also adopted a similar approach, but were
able to improve on the mass and stiffness matrices, producing more refined mass and stiffness
matrices that conform to the orthogonality requirements. However, in order to achieve the
orthogonality requirement, the physical connectivity of the structure was not preserved. Hence, it
would not be possible to determine the location of damage within the structure. Kabe (1985)
showed that a more accurate stiffness matrix would be achieved if the structural connectivity
could be preserved. He proposed that this could be accomplished by insisting that all coefficients
with values of zero in the original stiffness matrix should also have zero values in the adjusted

stiffness matrix. Although the result was an adjusted stiffness matrix that predicted the measured
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mode data accurately and also preserved the connectivity of the original stiffness matrix, the
mathematical solution of the method required large eigen solutions that would not be practical for
large space structure problems that may have thousands of degrees of freedom. In order to avoid
the eigen solution requirements without losing the advantage of Kabe’s (1985) method, Krammer
(1988) utilised the projector matrix theory and the Moore-Penrose generalised theory to produce
a more computationally efficient solution. Zimmerman et al. (1998) also explored the
possibilities if using Linear Matrix Inequality (LMI) to provide an improved optimal matrix
update and parameter update methods for model refinements and damage detection in structures.
This was highly advantageous, since LMI optimisation problem have low computational

complexities and can be solved very efficiently.

Another type of approach that can be classified as an optimal matrix method involves
minimisation of the rank of the perturbation matrix, rather than the norm of the perturbation
matrix. This approach is based on the assumption that the damage will tend to be concentrated in
a few structural members, rather than be distributed throughout a large number of structural
members. Zimmerman and Kauok (1994) presented the basic minimum rank perturbation theory
(MRPT) algorithm to estimate the mass, stiffness and proportional damping perturbation matrices
simultaneously. A nonzero entry in the damage vector is interpreted as an indication of the
location of damage. The resulting perturbation matrices have the same rank as the numbers of

modes used to compute the model force errors.

Lim and Kashagaki (1994) used the concept of best achievable eigen-vectors, a method
developed by which measured modes and frequencies can be used to determine both the location
and magnitude of damage within the structure. Instead of identifying matrix coefficient changes,
this method identifies damaged structural elements directly, thus the additional step of

identifying damaged members from the matrix coefficient changes is avoided.
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1.3.2 EIGEN-STRUCTURE ASSIGNMENT

Eigen-structure assignment is another approach that may be used for structural damage detection.
This technique is used in engineering to dictate the force response of a structure. For structural
damage detection, eigen-structure assignment can be used to determine a pseudo-control value
that would be required to produce the measured modal properties with the initial finite element
model (FEM). This pseudo-control component is then translated into a matrix adjustment, which
can be applied to the initial FEM. Zimmerman and Widengren (1990) used a symmetric eigen-
structure assignment technique to produce the adjusted finite element model which incorporated

information regarding eigen parameters of the damaged structure.

1.3.3 SENSITIVITY ANALYSIS

Sensitivity Analysis is another approach that may be used for structural damage detection. This
method relies on the sensitivity analysis of the modal parameters with respect to the physical
variables and is based on the solution of the first order Taylor series that minimises an error
function of the matrix perturbations. Haug and Choi (1984) calculated the first and second order
derivatives from measured structural responses with respect to design variables using the
generalised global stiffness and mass matrices formulation of structural equation. The vanations
in the stiffness and mass matrices were shown to be accurate, thus avoiding the requirements for
explicit reduction of matrices as seen in other methods. However this method was only
successful for simple structures, since the sensitivity analysis was based on the derivatives of the
first and second order Taylor series meant that the method would be unable to deal with ‘large’

physical variable changes that may be present in larger and more complex structures.
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1.4 METHODS TO OVERCOME COORDINATE INCOMPATIBILITY

In reality, coordinate incompatibility exists and must be addressed. Any successful damage
detection technique must address this problem. The existing methods that address the problem of
coordinate incompatibility can be broadly categorised as follows:

1. Reducing the analytical data

2. Expanding the measured data

1.4.1 REDUCING THE ANALYTICAL DATA

There are a number of reduction techniques developed in recent year. The most commonly used
reduction technique is Guyan Reduction (1965). However, it is not a preferred technique used
for damage detection since the original connectivity among the DOFs may be distorted after the
reduction. As a result, it becomes impossible to locate accurately where the damage occurs (Tran
and He, 1998). For such reasons, many researchers have not utilised model reduction techniques,

since the structural connectivity is an important element required for the location of damage.

The System Equivalent Reduction Expansion Process (SEREP) developed by O’Callahan,
Avitable and Riemer (1989) allows the exact mapping of large analytical models down to much
smaller equivalent reduced models. Unlike other reduction processes, SEREP produces a
reduced model whose frequencies and mode shapes are exactly the same as the full model for the

selected modes of interest.

1.4.2 EXPANDING THE MEASURED DATA

The objective of these methods is to expand the DOFs of the measured FRF data to match the

DOFs of the analytical model. Choudhury (1996) devised a method referred to as the Dynamic
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Expansion Method A (D.E. A) that is based on Kidder’s (1973) approach, in which the
unmeasured FRF data can be related to the measured FRF data by a linear transformation. The
result is a complete set of FRF data made up with measured and expanded FRF data. This
complete FRF data has equal numbers of coordinates to that of the analytical FE model.
Choudhury and He (1993) have also used interpolation techniques based on an inverse reduction
procedure to also overcome coordinate incompatibility. The FE model data and experimental
receptance data were used to interpolate the receptance data corresponding to the unmeasured
coordinates. This also produced a complete set of FRF data that has an equal number of
coordinates to that of the analytical FE model. However, this technique was found to be

successful only under certain ideal conditions.

1.5 SCOPE OF PRESENT WORK

Damage detection methods using measured frequency response function (FRF) data has been
found to be a promising method that can address the criteria required for a successful damage
detection technique. It has been proposed by Choudhury (1996) to use measured FRF data and
finite element (FE) data, instead of modal data for damage detection, since using measured FRF

data for damage detection offers advantages over the traditional methods that utilises modal data.

Firstly, any numerical errors inherent in the modal analysis results caused by inaccurate curve
fitting are avoided. Secondly, no more effort is required to process measured FRF data in order
to derive modal data. Ultimately, the most significant advantage of using measured FRF data
over derived modal analysis data lies in the fact that FRF data provides an abundant amount of
information on the dynamic behaviour of a structure compared to modal data. Modal data
provides information on resonant frequencies, corresponding mode shapes and damping ratios

only. Hence modal data offers only limited information about the dynamic behaviour of a
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structure because much of the information is lost during numerical processes to obtain the modal
data. For this reason, it has been found that modal data cannot provide sufficient information

needed to describe the dynamic behaviour of the structure if it is contaminated with noise.

Frequency response function data on the other hand contains a greater number of elements, of
which each element contains information on the dynamic behaviour of the structure over a large
number of discrete frequencies. If one part of the FRF data is contaminated by noise, then the

other parts can be referred to since there is an abundant amount of information available.

The research program presented in this thesis will be concerned with the further development and
testing of the damage detection algorithm developed by Choudhury (1996). A detailed study into
the robustness of the Damage Detection Algorithm will be carried out. The content covered in

this thesis is outlined as follows:

Chapter 2: Introduces the theories involved in the developed Damage Detection Algorithm.
Components of the “Damage Location Vector (DLV)”, the “Damage Location
Vector Plot (DLV Plot”) and the “Cumulative Damage Location Vector Plot
(CDLYV Plot)”, which make up the Damage Detection Algorithm will be discussed
in details. How normalised random error (noise) can be simulated and its effects

on the developed algorithm will also be investigated.

Chapter 3: Theories discussed in Chapter 2 will be applied to a simple 12-DOFs mass spring
system to assess the effectiveness and robustness of the developed damage
detection algorithm in all types of situations. The simplicity of such an example

will allow detailed explanation of the Damage Detection Algorithm process.
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Chapter 4:

Chapter 5:

Chapter 6:

Chapter 7:

A large three dimensional NASA eight bay space truss structure will be
investigated theoretically. Simulated damage will be introduced to various
locations on the eight bay truss structure. The damage detection algorithm will
firstly be used to detect the simulated damage in conditions where no coordinate
incompatibility exists. Coordinate incompatibility and noise interference will then
be introduced into the structure. The success of the damage detection algorithm

under various conditions will be assessed.

The robustness of the Damage Detection Algorithm will then be tested on a
cantilevered plate structure using simulated damage at various locations. The
success of the Damage Detection Algorithm under various conditions will be

assessed.

Experimental FRF data will be obtained for the cantilevered plate used in Chapter
5. This experimental FRF data will be inputted into the Damage Detection
Algorithm and its success in determining the physical damage will be assessed.

Basic modal analysis techniques will also be covered.

Discussions and conclusion will be presented in this chapter. A proposal for

further investigation will also be raised.

1.6 ASSUMPTIONS OF THIS STUDY

Throughout this thesis, certain assumptions have been made to enable computations to be more

efficient. These assumptions have been made after an extensive literature review of the existing
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methods for structural damage detection and are consistent with the assumptions used in other

existing methods for structural damage detection. These assumptions are:

e Damage in the structure is seen as a change in the structural stiffness of the structure and
not changes in the mass of the structure. Therefore any damage present in the structure
will reflect changes in the stiffness matrix only. Any changes in the mass matrix are

considered to be small and can be neglected.

e Structural damping in the structure is considered to be small and can be neglected.

e Structures are assumed to exhibit linear behaviour. This means that the response of a
structure to a combination of forces applied simultaneously is the summation of the

responses to each individual force.




CHAPTER 2
DAMAGE DETECTION USING
FREQUENCY RESPONSE FUNCTION DATA

Measured frequency response function (FRF) data are usually the most compact form of data
obtained from vibration tests of structures. Unlike modal data, they can be retrieved without
further numerical processing and hence without the associated errors. The FRF data provides an
abundance of information on the structure’s dynamic behaviour, much of which would have been

lost in using modal analysis data, due to the necessary numerical process to extract them.

A damage detection technique using measured frequency response function (FRF) data has been
found to be a promising method that can successfully address the criteria required for successful

damage detection (Choudhury, 1996).

2.1 DAMAGE LOCATION VECTOR

Frequency response function data can be derived from the characteristics of the structural system
or the equation of motion. Its main characteristics are contained in its mass [M], stiffness [K]
and damping [C] or hysteric damping [H] matrices. Since damping and hysteretic effects will not
be considered in this thesis, the equation of motion of an undamped system without excitation

can be described as follows:

[M]UD {X}+ [K]UD {X} = {O} (2.1)
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where [M] and [K] are the NxN analytical mass and stiffness matrices of the structure, and {x} is

an Nx1 vector of displacement. The subscript symbol UD has been introduced to indicate that

the structure is undamaged.
Similarly, the system with structural damage is described by:
M}, i+ [Ko x} = {0} (2.2)
where the subscript D indicates that the structure is damaged.
Damage in this thesis will be considered to be a reduction in the stiffness of a structure rather
than the loss of mass, since a loss of mass would mean the likelihood of a catastrophic failure.

Therefore, the mass matrix of the damage structure can be assumed to be equal to the mass

matrix of the undamaged structure. Hence:

M]p =M, (2.3)

If a single column of receptance frequency response function (RFRF) at a particular frequency €2

1s given by {o(Q2)} then:

([K]D -Q’ [M]D ){O‘D (Q)} = ([K]UD - QZ [M]UD ){O‘ UD (Q)} (2-4)

The dynamic stiffness matrix before and after damage can be related as follows:

(2@}, Yoo (@)} = (2(Q)] Merwo ()} (2.5)
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Let:  [z(Q)], = [z(@)L, - [az(Q)] (2.6)

where [Z(€2)]p represents the dynamic stiffness matrix of the damaged RFRF at a particular
frequency Q. [Z(€2)]up represents that of the undamaged RFRF. [AZ(Q2)] represents the

difference in RFRFs between the damaged and undamaged structure at a frequency Q.

Equation (2.5) can also be rewritten as:

[Z(@)kuo fero (@)} = (Z(Q))5 - [2Z(Q)Ner, ()} 2.7)

or,  [2(@)kp (oo (@)}~ forn (@) = [AZ(Q)ffer, (@)} (2.8)
Let:  {d(Q)} = [AZ(Q)Ke, ()} 2.9)
Thus by (2.8) {d(Q)} = [Z(Q)] {ac(Q)} (2.10)

where the vector {Aa(€2)} represents the difference between RFRFs of the damaged and the
undamaged structure at a frequency 2. A straight multiplication of the undamaged dynamic
stiffness matrix and the vector {Aa(2)} would generate the corresponding vector {d(€2)}. This
{d(€2)} is an Nx1 vector containing non-zero values for DOFs that contain damage and zero

values for undamaged DOFs and is also referred to as “Damage Location Vector” (DLV).

The DLV can be shown in a 3D graph to locate damage. Figure 2.1a is an example of a 3D DLV
plot of a 12 DOFs mass spring system that will be studied in chapter 3 of this thesis. The first
axis of the graph represents the Degrees of Freedoms (DOFs) in the “Damage Location Vector”.
The second axis represents the frequency ranges for which the damage location algorithm is

applied and the third axis represents the absolute value obtained for the elements in the “Damage
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Location Vector”. Elements in the DLV whose value is due only to the effects of noise will
follow a random pattern with insignificant amplitudes when plotted over a certain frequency
range. The value of elements that are truly affected by damage will follow a more distinctive
pattern and occur with greater amplitude. It can be seen in Figure 2.1a that damage exists

between DOF 6 and DOF 9. All other peaks and ripples that occur outside of DOF6 and DOF 9

are due to noise.

A two dimensional representation of the DLV can be obtained by adding the values of each DLV
for each frequency to each other to obtain a resultant vector called a “Cumulative Damage
Location Vector” or (CDLV). This CDLV when plotted produces a 2D graph and can be seen in
Figure 2.1b. The first axis corresponds to the DOFs and the second axis represents the
cumulative amplitude of the DLV over a frequency range. Since the elements in the DLV due to
damage will be mostly bigger than those due to noise, the CDLV would magnify any presence of

damage greatly, making it easier to isolate the location of damage.

3D Demage Location Vecia Piot
P

-7 !

!
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Frequency (Hz)

Degrees of Freedam (DOFs)

Figure 2.1a: An Example of a 3D DLV Plot of a 12 DOFs Mass Spring System
without Noise
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Figure 2.1b: An Example of a 2D CDLYV Plot for a 12 DOFs Mass Spring System
without Noise

It can be clearly seen in Figure 2.1b that the damage is located at an element connected to DOF 7
and DOF 8 since their cumulative values are much greater than all the other remaining DOFs. It
must be noted that since the CDLV is a cumulative quantity base on the frequency ranges of the
DLV, the magnitude indicated on the 2D graph is not a static quantity and would change

according to the number of frequencies and frequency resolution.

By referring to the 3D DLV plot and the 2D CDLV plot, it is possible to determine the location
of damage and estimate the extent of damage when all the coordinates of the system are known.
It becomes more difficult to apply the 3D DLV plot and the 2D CDLV plot in systems where
coordinate incompatibility exists. In such a situation, a preliminary step is required to either
expand or reduce the systems to the same equivalent size before applying the 3D DLV plot and

the 2D CDLV plot.
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2.2 DAMAGE DETECTION WITH COORDINATE INCOMPATIBILITY

There are several reduction and expansion methods available that can be used to overcome this
coordinate incompatibility problem and these were presented in the previous chapter. The
Dynamic Expansion method A (D.E. A) investigated by Choudhury (1996) will be used within

this thesis to overcome coordinate incompatibility problems.

For example, let N denote the size of the matrix for an undamaged system and M denote the size
of the matrix for a damaged system. If all DOFs of a particular structure are measured, then there
will be no coordinate incompatibility between both the systems. This is further explained using

Figure 2.2.

AN

Figure 2.2: All Nodes are Measured, No Incompatibility Exists

In Figure 2.2 damage has been introduced into node no. 2 and node no. 6. If all the nodes are

measured then no coordinate incompatibility exists and the damage can be easily found. (Note

v represents the measured coordinates and @ represents damage present in the structure).

Let ® represent the change in Z(w) due to damage, then if the matrix operation represented by
equation (2.10) is carried out, the effect of such change would be present only in the damage
location vector elements corresponding to such change. The change in {d(w)} is denoted by ®

and is illustrated in the following diagram:
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From (2.11) it is clear that damage affects DOF no. 2 and DOF no. 6.

However in the following example as shown in Figure 2.3, not all the DOFs are measured. In
this example only 4 DOFs are measured (at nodes 1, 3, 5 and 6), thus the M x M matrix would
yield a 4 x 4 matrix, whereas the N x N matrix would yield an 8 x 8 Matrix. It can be seen in
this example that damage at DOF no. 6 can be detected, whilst damage at DOF no. 2 will not be

detected with pinpoint accuracy.

nn
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Figure 2.3: Not All Nodes are Measured, Coordinate Incompatibility Exists

Hence the damage (denoted by @) can be found for only the measured coordinate as follows:

2.12)
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From (2.12), the connectivity between the structures is lost and not all the damage can be located.
Only damage present within the measured coordinates appears. By applying a method referred to

as the Dynamic Expansion Method A (D.E. A), developed by Choudhury (1996) it becomes

possible to overcome this coordinate incompatibility.

2.3 DYNAMIC EXPANSION METHOD A (D.E. A)
The Dynamic Expansion Method A (D.E. A) relates the unmeasured FRF data to that of the

measured FRF data by a linear transformation [T]. Let’s consider the unmeasured FRF data in a
vector denotes as {agc ((o)} and the measured subset denoted as {on'l‘)‘c ((o)} where superscript UC

denotes unmeasured coordinates and superscript MC denotes measured coordinate. Hence the
main aim of the Dynamic Expansion Method A is to derive a suitable transformation matrix [T]
that relates the unmeasured coordinates to the measured coordinates as illustrated by equation

(2.13).

s (@)= [T ()} (2.13)

The dynamic stiffness matrix can then be re-arranged and partitioned into terms of measured and

unmeasured DOFs. Hence this becomes:

) ] fe5@-er @ pger@] g,

MC
12, Q)] 12, (@) |5(©Q) - 05 () op” (@

Without knowing matrix [AZ(Q)] it is quite impossible to expand the measured FRF data to that

of the unmeasured coordinates. However, it is possible to assume that matrix [AZ(£2)] is a null

matrix. By doing so, it becomes possible to calculate the sub-vector {agc (Q)} from {a He (Q)}

using equation (2.14). From this an expanded vector {o,(Q)} is obtained with full coordinates,

which may then be used for damage detection.
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In this method the transformation matrix is calculated by the inverse of the partitioned dynamic

stiffness matrix corresponding to the unmeasured DOFs. The transformation matrix becomes:

[TR]:_[[KZZ]UD _Qz[Mzz]wr[[Kzl]w_Qz[le]w] 2.15)

Here the partitioned dynamic stiffness matrix corresponding to unmeasured DOFs is a square
matrix and has a dimension of (N-M)X(N-M), where “N” is the number of DOFs for the
structure, and “M” is the number of measured DOFs. Here the subscript 21 corresponds to the
partitioned matrix that contains measured coordinates and subscript 22 corresponds to the

partitioned matrix that contains unmeasured coordinates.

Thus from the previous example using the D.E. A it becomes:

1«‘ > (v]1

2 Vi3

3 |v v|s >\

4% 716~ bt (2.16)
5 x|2 M) o,

6|v «| 4 >-/'

7 | x > Ix|7

8ix =LX8_/

Where ¥ represents the measured coordinates and X represents the unmeasured coordinate
against the degree of freedom of the structure. This is carried out by grouping all the measured

coordinates before the unmeasured coordinates. All measured coordinates can be represented by
OTI and all unmeasured coordinates are represented bya,. Thus an expanded vector {o.} with

full coordinates is obtained. This vector can be used in equation (2.9) to obtain the DLV and

subsequently the CDLV.
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2.4 NORMALISED RANDOM ERRORS

It is relatively simple to determine damage from measurements that are free from errors.
However, in reality, measurements are always contaminated by various random errors from noise
and/or measurement. It has been found that using FRF data over conventional modal analysis
data offers a distinct advantage that is capable of dealing with data contaminated with noise
(Choudhury, 1986). This is because errors such as noise would follow a random pattern,

becoming negligible at certain frequency points and becoming noticeable at others (Choudhury,

1986).

The random error in a typical FRF measurement can be quantified by the coherence function
(Ewins, 1984). Coherence gives a measure of the degree of linear dependence between two

signals, as a function of frequency (Ewins, 1984).

Theoretical randomised errors can be introduced into the FRF data in two different forms:
1. Random Number between +/- 0.05 x FRF + Original FRF

2. Random Number between 0.95 - 1.05 x FRF

It was found that the first instance was computationally better, since the first instance meant that
it was also possible to optionally include randomised errors without much trouble, by resetting

the randomised number generated back to a zero value.

Even though randomised errors are usually associated with the time domain. It is possible to
introduce the randomised errors in the frequency domain (Ewins, 1984). The randomly

generated errors can be simply added to the FRFs.
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2.5 DAMAGE DETECTION ALGORITHM WRITTEN IN MATLAB™

An algorithm was written in Matlab™ to calculate the Damage Location Vector, the Cumulative
Damage Location Vector and the Dynamic Expansion Method A when required. From this point
forward this algorithm shall be referred to as the “Damage Detection Algorithm” or “DDA”.
Using the same damage detection algorithm, it was also possible to simulate normalised random
errors in the calculations. Natural frequencies and mode shapes can also be calculated using the
same Damage Detection Algorithm. Figure 2.4 outlines the Damage Detection Algorithm logic

used in writing the Matlab™ program. The Damage Detection Algorithm codes written in

Matlab™ can be found in Appendix 1.

e Damage Detection Algorithm Logic in Matlab™ for scenarios without Coordinate
Incompatibility
1. Is there coordinate incompatibility involved? NO
2. Do you want to simulate random noise? If YES proceed to 3. If NO proceed to 4.
3. User Input is required. Here the user is asked to input the percentage of normal random errors
to generate. This is then stored for later usage in the DLV.
4. User Input is required. Here the user is asked to input the following:
¢ Frequency Range

e Number of Measured Coordinates

e [Klup Is represented by files with extension (*.USM)
o [M] Is represented by files with extension (*.MAS)
e [K]p Is represented by files with extension (¥*.DSM)

5. The DLV and CDLYV is calculated and the 3D DLV and 2D CDLYV Plot are outputted.
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e Damage Detection Algorithm Logic in Matlab™ for scenarios with Coordinate
Incompatibility

1. Is there coordinate incompatibility involved? YES
2. Do you want to simulate random noise? If YES proceed to 3. If NO proceed to 4.

3. User Input is required. Here the user is asked to input the percentage of normal random errors

to generate. This is then stored for later usage in the DLV.
4. User Input is required. Here the user is asked to input the following:
e Frequency Range

e Number of Measured Coordinates

e [Kl]up Is represented by files with extension (*.USM)
o [M] Is represented by files with extension (¥*.MAS)
e [K]p Is represented by files with extension (*.DSM)

e Vector {a} Isrepresented by files with extension (*.AIM)
5. The unmeasured coordinates are expanded using Dynamic Expansion Method A (D.E. A)

6. The DLV and CDLYV is calculated and the 3D DLV and 2D CDLV Plot are outputted.

Having briefly discussed the theories involved in the Damage Detection Algorithm, it is time to
apply the developed algorithm to a simple structure to study effectiveness of the algorithm. The
next chapter will see the Damage Detection Algorithm (DDA) applied to a relatively simple mass
spring structure that has only 12 translational DOFs. The performance of the DDA will be
assessed. It will then be used to investigate simulated damage in the NASA eight bay space truss

structure and finally in a thin flat cantilevered plate.
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DAMAGE DETECTION
ALGORITHM START

Do You
Want to Simulate
Random Noise ?

Is there
Coordinate
Incompatibility ?

Users Is Asked to
Enter the Percentage
of Random Noise

No

User Asked to Input
Random Coordinate
Order (*.AIM)

Do You
Want to Simulate
Random Noise ?

User Asked to Input

Frequency Range &
Number of Measured
Coordinates

Yes

User Asked to Input
Undamage Stiffness
Matrix (*.USM)

Users Is Asked to
Enter the Percentage
of Random Noise

User Asked to Input
Mass Matrix (*.MAS)

User Asked to Input
Damage Stiffness
Matrix (*.DSM)

Figure 2.4: Damage Detection Algorithm Logic

OQutput
3D DLV Plot &
2D CDLV Plot




CHAPTER 3
DAMAGE DETECTION
IN A SIMPLE MASS SPRING SYSTEM

Let’s consider a 12 DOFs simple undamaged mass spring system as shown in Figure 3.1, which
was studied by Choudhury (1996) using constrained minimisation damage quantification
(CMDQ) method. The stiffness matrix for the undamaged and damage system is presented in
Table 3.1 and Table 3.2 respectively. The mass matrix is presented in Table 3.3. For both cases
it is assumed that the mass matrix is unaffected by the introduction of damage. The natural

frequency for the 12 DOFs system before and after damage is presented in Table 3.4.

Damage was simulated by reducing the stiffness in the spring member that was located between
mass No.5 and mass No.6 from 6000 N/m to 5200 N/m, a reduction of 800 N/m. The Damage
Detection Algorithms and resultant Damage Location Vector (DLV) plot and Cumulative

Damage Location Vector (CDLV) plot were computed in Matlab™.,

6000 | -2000 0 0 0 0 -2000 0 0 0 0 0
-2000 | 6000 | -2000 0 0 0 0 -2000 0 0 0 0

0 -2000 | 6000 | -2000 0 0 0 0 -2000 0 0 0

0 0 -2000 | 6000 | -2000 0 0 0 0 -2000 0 0

0 0 0 -2000 | 6000 | -2000 0 0 0 0 -2000 0

0 0 0 0 -2000 | 6000 | -2000 0 0 0 0 -2000
-2000 0 0 0 0 -2000 | 6000 | -2000 0 0 0 0

0 -2000 0 0 0 0 -2000 | 6000 | -2000 0 0 0

0 0 -2000 0 0 0 0 -2000 | 6000 | -2000 0 0

0 0 0 -2000 0 0 0 0 -2000 | 6000 | -2000 0

0 0 0 0 -2000 0 0 0 0 -2000 | 6000 | -2000

0 0 0 0 0 -2000 0 0 0 0 -2000 | 6000

Table 3.1: Stiffness Matrix of the Undamaged Structure for the 12 DOFs Mass Spring System (N/m)
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m,

m,

Figure 3.1: Simple 12 DOFs Mass Spring System
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6000 | -2000 0 0 0 0 -2000 0 0 0 0 0
-2000 | 6000 | -2000 0 0 0 0 -2000 0 0 0 0

0 -2000 | 6000 | -2000 0 0 0 0 -2000 0 0 0

0 0 -2000 | 6000 | -2000 0 0 0 0 -2000 0 0

0 0 0 -2000 | 5200 | -1200 0 0 0 0 -2000 0

0 0 0 0 -1200 | 5200 | -2000 0 0 0 0 -2000
-2000 0 0 0 0 -2000 | 6000 | -2000 0 0 0 0

0 -2000 0 0 0 0 -2000 | 6000 | -2000 0 0 0

0 0 -2000 0 0 0 0 -2000 | 6000 | -2000 0 0

0 0 0 -2000 0 0 0 0 -2000 | 6000 | -2000 0

0 0 0 0 -2000 0 0 0 0 -2000 | 6000 | -2000

0 0 0 0 0 -2000 0 0 0 0 -2000 | 6000

Table 3.2: Stiffness Matrix of the Damaged Structure for the 12 DOFs Mass Spring System (N/m)
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Table 3.3: Mass Matrix for the Undamaged/Damaged 12 DOFs Mass Spring System (kg)

Natural Before Damage After Damage % Change from
Frequency No. (Hz) (Hz) Undamaged
1 0.92 0.92 0
2.50 2.50 0
3 2.94 2.84 3.4
4 3.96 3.94 0.5
5 4.28 4.26 0.5
6 4.60 4.53 1.5
7 5.06 4.98 1.6
8 5.56 5.53 0.5
9 6.38 6.06 5.0
10 7.32 7.27 0.7
11 8.98 8.98 0
12 13.00 13.00 0

Table 3.4: Natural Frequency Before and After Damage for the Simple 12 DOFs

Mass Spring System




Chapter 3: Damage Detection in a Simple Mass Spring System 30

Receptance FRF Plot for Before and After Damage for the Simple 12 DOF s Mass-Spring System

~ an
After Damage |
—— Undamaged

Magnitude (dB}

Frequency (Hz)

Figure 3.2: Receptance FRF Plot at a(1, 1) for Before and After Damage for the Simple
12 DOFs Mass Spring System

Shown in Figure 3.2 is the computed receptance FRF plot exhibited by the simple mass spring
system before and after damage at o1, 1). It must be noted that these receptance FRFs are
simulated results obtained from Matlab™ and that o(l, 1) would correspond to having the
accelerometer located on mass no. 1 while also exciting mass no. 1 in a real experiment. A
comparison of the receptance FRFs plot for the undamaged and the damaged condition shows
frequency shifts. The frequency trace corresponding to the system after damage can be seen to

be shifted lower at some frequencies compared to the undamaged frequency trace.
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3.1 DAMAGE DETECTION WITHOUT COORDINATE INCOMPATIBILITY AND NO
NOISE

The Damage Detection Algorithm which was written in Matlab™ and has been discussed in
Chapter 2 was first applied to data corresponding to the 12 DOFs mass spring system that was
free from any noise interference or numerical errors. All data points were also available, thus no
coordinate incompatibility exists. A frequency range of 0 — 14 Hz covering the 12 modes of

vibration for the system was chosen. A frequency resolution of 0.32Hz was found to be the best

sampling rate to adequately describe the structure.

3D Damage Location Vectar Pliot

Frequency (Hz)

Oegrees of Freedom (DOFs)

Figure 3.3a: 3D DLV Plot of the 12 DOFs Mass Spring System without Coordinate
Incompatibility and No Noise Interference

Figure 3.3a is the 3D Damage Location Vector (DLV) plot for the 12 DOF mass spring system
without any coordinate incompatibility and no noise interference. Peaks can be observed to
occur between DOF 5 and DOF 6. These peaks are the non-zero entry in the Damage Location
Vector and relate to damage present within the structure. The damage can be observed to occur
consistently throughout the frequency range of the structure. Reading from the vertical axis of

the 3D DLV plot the maximum damage can be estimated to be 800 N/m. Figure 3.3b is the
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corresponding 2D Cumulative Damage Location Vector (CDLV) plot and confirms that the

damage is indeed located between DOF S and DOF 6.
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Figure 3.3b: 2D CDLYV Plot of the 12 DOFs Mass Spring System without Coordinate
Incompatibility and No Noise Interference

It should be noted the CDLV plot accentuate the damage but the magnitudes thus found are not

as relevant as those in the 3D DLV.

3.2 DAMAGE DETECTION WITHOUT COORDINATE INCOMPATIBILITY AND
WITH 5% NOISE

Since the Damage Detection Algorithm was successful in locating the damage for error-free data,

5% noise will be introduced to the structure in the form of normalised random errors using the

method discussed in Chapter 2. The purpose of introducing 5% normalised random errors is to

simulate a noisy environment and to represent any measurement errors that may be observed on a

real structure.
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Figure 3.4a and Figure 3.4b show the 3D DLV Plot and the 2D CDLV Plot respectively for the
12 DOFs mass spring system with 5% normalised random errors introduced. When normalised
random errors have been introduced all elements of the DLV are non-zero. The DOFs associated
with damage can be observed to be much larger than those that are due to random errors
throughout the frequency range. It is also interesting to note that randomised errors can be
observed to affect the system at certain frequency ranges, while leaving other frequency ranges
unaffected. The 2D CDLV plot show the cumulative values for DOF 5 and DOF 6 to be much
larger than the other DOFs. This demonstrates that the Damage Detection Algorithm can

successfully detect damage with data that is contaminated with 5% normalised random errors.
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Figure 3.4a: 3D DLV Plot of the 12 DOFs Mass Spring System without Coordinate
Incompatibility and with 5% Noise Interference
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Figure 3.4b: 2D CDLYV Plot of the 12 DOFs Mass Spring System without Coordinate
Incompatibility and with 5% Noise Interference

3.3 DAMAGE DETECTION WITH COORDINATE INCOMPATIBILITY AND NO
NOISE

In a real life experiment, it may not always be possible to measure the entire coordinate system
on the structure. Ideally, one full column or one full row of data is required to adequately
describe the structure. The accuracy is increased if more than one full column or one full row is
available. However, what would happen if it were not possible to have one full row or one full
column of data? A coordinate incompatibility would occur and the Dynamic Expansion Method
A (D.E. A) discussed in Chapter 2 would be required to firstly expand the data. Consequently,
the Damage Detection Algorithm was then applied to the same mass spring system when only 6
measured coordinates were supplied. This meant that the remaining 6 unsupplied coordinates
were required to be expanded using the D.E. A. The 6 measured coordinate were randomly
chosen from the possible 12 DOFs. The randomly chosen measured coordinates are indicated in

Table 3.5.

Let us consider three cases:
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3.3.1 SIX MEASURED COORDINATE SUPPLIED

In this case only 6 measured coordinates are chosen from the random set. They are:

e =

& S R I~y O]

And the unmeasured coordinate would be the remaining coordinates and are as follows:

11
12

No. Measured Coordinates 1 2 3 4 5 6 7 8 9 10 11 12

Measured Coordinate
Randomly Ordered (DOF)

Table 3.5: Measured Coordinates Index
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Figure 3.5a: 3D DLV Plot of the 12 DOFs Mass Spring System with 6 Measured Coordinates
and 6 Expanded Coordinates and No Noise Interference
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Figure 3.5b: 2D CDLYV Plot of the 12 DOFs Mass Spring System with 6 Measured Coordinates
and 6 Expanded Coordinates and No Noise Interference

Figure 3.5a and Figure 3.5b show the 3D DLV plot and the 2D CDLV plot for the 12 DOFs mass
spring system with six measured coordinates and six expanded coordinates and no noise
interference respectively. Comparing Figure 3.3a with Figure 3.3b, it can be seen that Figure
3.5a and Figure 3.5b are incorrect. In fact Figure 3.5b suggests that damage may exist at DOF 2,
DOF 3, DOF 4, DOF 5 and DOF 7. The initial reaction to this is that the Damage Detection
Algorithm did not correctly detect the simulated damage. However on closer inspection, Figure
3.5a show that large peaks occur at DOF 5 and DOF 7. Smaller peak can be seen to occur at
DOF 2, DOF 3 and DOF 4, From the previous section it is known that the damage location
should in fact lie between DOF 5 and DOF 6. However, since DOF 6 is not a measured
coordinate and has not been supplied to the Damage Detection Algorithm, it cannot indicate
exactly the location of damage. Hence the next closest available measured DOF to the damage
DOF is displayed. Since not all the coordinates have been measured the results obtained cannot
be taken as the final and foremost results. The result should be interpreted as giving only an

indication of where the damage lies. From Figure 3.5b, the damage can be seen to lie between
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DOF 2, DOF 3, DOF 4, DOF 5 and DOF 7. Further measurements should be taken between

these DOFs in order to accurately identify the damage locations within the structure.

3.3.2 EIGHT MEASURED COORDINATES SUPPLIED
Now let us consider the case in which only 8 measured coordinates are chosen from Table 3.5.
Using the previously chosen 6 measured coordinates a further 2 measured coordinates will be

selected from Table 3.5. These 2 measured coordinates are DOF no. 10 and DOF no. 8.
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Figure 3.6a: 3D DLV Plot of the 12 DOFs Mass Spring System with 8 Measured Coordinates
and 4 Expanded Coordinates and No Noise Interference

Figure 3.6a and Figure 3.6b show the 3D DLV Plot and the corresponding 2D CDLV plot for the
12 DOFs mass spring system with eight measured coordinates supplied and four expanded

coordinates and no noise interference. Comparison with Figure 3.5a and Figure 3.5b show that
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the initial damage locations at DOF 2, DOF 3 and DOF 4 no longer exist when two more
measured coordinates are supplied.  In fact Figure 3.6b, now suggests that damage may lie
between DOF 5, DOF 7 and DOF 10. However, since not all the coordinate have been supplied

further measurements should be taken between these DOFs in order to accurately identify the

damage locations.
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Figure 3.6b: 2D CDLYV Plot of the 12 DOFs Mass Spring System with 8 Measured Coordinates
and 4 Expanded Coordinates and No Noise Interference

3.3.3 TEN MEASURED COORDINATES SUPPLIED
Now let us consider the case in which only 10 measured coordinates are chosen from Table 3.5.
Using the previously chosen 8 measured coordinates a further 2 measured coordinates will be

selected from Table 3.5. These 2 measured coordinates are DOF no. 9 and DOF no. 6.

Figure 3.7a and Figure 3.7b are the corresponding 3D DLV plot and 2D CDLV Plot for the

12DOFs mass spring system with ten measured coordinates supplied and twelve expanded
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coordinates and no noise interference. It can be seen that as more measured coordinates are

supplied to the Damage Detection Algorithm the location of damage within the structure can be

more accurately pinpointed.

Figure 3.7b show that the damage is located within DOF 5 and DOF 6. This corresponds to the
original simulated damage locations. However, since there are still some unmeasured
coordinates it cannot be concluded that damage only exist at DOF 5 and DOF 6 as further

damage locations may exist within the unmeasured part of the mass spring system. However, it

is highly unlikely since there are only 2 unsupplied DOFs remaining.
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Figure 3.7a: 3D DLV Plot of the 12 DOFs Mass Spring System with 10 Measured Coordinates
and 2 Expanded Coordinate and No Noise Interference
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Figure 3.7b: 2D CDLYV Plot of the 12 DOFs Mass Spring System with 10 Measured Coordinates
and 2 Expanded Coordinates and No Noise Interference

3.4 DAMAGE DETECTION WITH COORINDATE INCOMPATIBILITY AND WITH
5% NOISE

The effect of 5% random noise in the data with only ten measured coordinates supplied was also
studied. Figure 3.8a and Figure 3.8b show the 3D DLV plot and the 2D CDLV plot for the 12
DOFs mass spring system with ten measured and two expanded coordinates. It can be observed
that the effect of the 5% noise did not have a great effect on the results. The results are similar to
the previous section, with the exception that the random error now appears on all DOFs. The
detected damage location of DOF 5 and DOF 6 can still be observed to possess much larger DLV

values than those due to noise. This can be more clearly seen in Figure 3.8b.
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Frequency (Hz)
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Figure 3.8a: 3D DLV Plot of the 12 DOFs Mass Spring System with 10 Measured Coordinates

and 2 Expanded Coordinate and 5% Noise Interference
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Figure 3.8b: 2D CDLYV Plot of the 12 DOFs Mass Spring System with 10 Measured Coordinates

and 2 Expanded Coordinates and 5% Noise Interference
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3.5 DISCUSSION

The developed Damage Detection Algorithm works exceptionally well when at least one column
or row of the FRF matrix of the structure is supplied. It has been able to successfully detect the
location of damage with 5% normalised random errors introduced in the data. For cases that
involved coordinate incompatibility, the Damage Detection Algorithm detected additional
damage locations than the actual simulated locations when only six randomly selected measured
coordinates were supplied to the algorithm. As more measured coordinates are supplied to the
Damage Detection Algorithm the location of damage within the structure can be more accurately
pinpointed. However, it should be noted that the results obtained when there is a coordinate
incompatibility should not be assumed to be entirely accurate since the location of damage can
only be accurate to within the spatial resolution of the measured points. In cases where
coordinate incompatibility exists, the Damage Detection Algorithm should only be used as a tool

to estimate the location of damage within a structure.

The Damage Detection Algorithm is a simple procedure that has been shown to successfully
detect simulated damage compared to the Constrained Minimization Damage Quantification
(CMDQ) method investigated by Choudhury (1996). However, the CMDQ method involved
extensive calculations of various parameters and is not be computationally efficient.

(Choudhury, 1996).

To further test the robustness of the Damage Detection Algorithm, various simulated damage
scenarios were investigated for the NASA eight bay space truss structure using the Damage

Detection Algorithm. Results are shown in the next chapter.




CHAPTER 4
DAMAGE DETECTION IN
TRUSS STRUCTURES

The NASA 8 bay truss structure has been the focus of much attention in structural damage
detection and has provided a benchmark for testing developed Damaged Detection Algorithms
(Doebling et. al., 1996). Several simulated damage scenarios will be investigated in this chapter

to assess the robustness of the developed Damage Detection Algorithm.

The NASA 8 bay truss structure in reality is described by 36 nodes and has 6 DOFs (3
translational and 3 rotational) per node. The structure therefore has a total of 216 DOFs. To
simplify the problem, only translational degrees of freedom are considered for the study of this
truss structure. This is a valid assumption, as currently there are no accelerometers available that
can accurately measure rotational degrees of freedom. Under this assumption the NASA 8 bay
truss structure has a total of 108 DOFs. The structure is also grounded at one end, therefore a

further 4 nodes may be eliminated from the problem, thus leaving only 96 DOFs.

4.1 DESCRIPTION OF THE STRUCTURE

Figure 4.1 show the node configurations for the NASA 8 bay truss structure (Lim and
Kashangaki, 1994). It is important that the same order is maintained for numbering the nodes, as
this will allow easy interpretation for damage location in later processes. Figure 4.2 show the

NASA 8 bay truss lattice structure for a section.
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Figure 4.2: Section of Eight Bay Truss Lattice Structure

The mass configuration for the NASA 8 bay truss structure is given in Table 4.1. The masses
applied to this truss structure were considered to be concentrated masses on the nodes only. This
was achieved by distributing the mass of each longeron and diagonal between each of the nodes.

Appendix 2 and Appendix 3 details the exact mass per each of the 36 nodes.

Mass Quantity using in | Total Mass for 8

(grams) 8 Bay Truss Bay Truss (Kg)
Node Ball 5.80 36 0.2088
Longeron 180 68 1.2240
Diagonal 27 41 1.107
Joint Assembly 7.7 218 1.6786
Triax + Block 11.0 32 0.3520
Total 4.5704

Table 4.1: Mass Configuration

Table 4.2 15 a summary of the damage cases that will be introduced to the truss structure.
Simulated damage in the truss structure will be considered as a loss in stiffness of a longeron or
diagonal member. The damage introduced to the truss structure will firstly begin as a simple
simulation where the Young’s Modulus of one member will be reduced by 20%. Because the

NASA 8 bay truss structure is far more complex than the simple mass spring system, adjusting
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the Young’s Modulus of the truss element is a simple and efficient way of introducing simulated

damage into the structure.

These simulated cases are made on the assumption that it is possible to reduce the stiffness of

these members without causing catastrophic failures. Case C involves multiple damage

locations.
Damage Case Location Type Nodes
A Bay 3 Z-Batten 14-15
B Bay 7 Longeron 27-31
C Both of Above Both of Above Both of Above

Table 4.2: Summary of Damage Cases

Since the truss structure will be considered as a grounded structure, the DOFs associated with the
grounded nodes will not be considered and will be removed. The remaining nodes that are not
grounded will be assigned new corresponding DOFs when the grounded DOFs are removed.
Table 4.3 below gives the corresponding DOFs numbers, when the grounded DOFs are removed,
of the nodes numbers shown in Table 4.2. Since there are 3 DOFs (translational X, y, z) each
node will have 3 corresponding DOFs. The first DOF for any node number can be calculated

using the following relationship:

Corresponding DOF = [(Node Number — Number of Grounded Nodes) x 3] - 2

Node Number Corresponding DOFs
14 28, 29, 30
15 31,32,33
27 67, 68, 69
31 79, 80, 81

Table 4.3: Corresponding DOFs for Damage Cases
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4.2 CASE OF NON DAMAGED STRUCTURE

The mass and stiffness matrices were first calculated for the NASA 8 bay truss structure via an
algorithm written in Matlab™. This algorithm ensured that the mass and stiffness matrices were
constructed with the correct size to reflect the real life structure, and also took into account the
grounded nodes. A Young’s Modulus value of 210e9 N/m? and density of 7850 kg/m’ was used
in the calculations. Table 4.4 show the diagonal stiffness values at each of the DOFs concerned
taken from the calculated undamaged stiffness matrix. These values will be used later in this

chapter to compare with the adjusted damage stiffness matrix for each different damage case.

Node Number DOF No. D'*‘f:;&?ggg /Yn*;'“e
28 3298.1
14 29 6596.2
30 32981
31 2615.0
15 32 386.4
33 2615.0
67 3298.1
27 68 6596.2
69 3298.1
79 2615.0
31 80 386.4
31 2615.0

Table 4.4: Diagonal Undamage Stiffness Values at DOF Locations

To verify that the constructed mass and stiffness matrices were indeed correct, the natural
frequencies of the structure were also calculated. A frequency range of OHz to 400Hz at a
resolution of 0.5Hz was used. This range was sufficient to observe the first 10 natural
frequencies of the NASA 8 bay truss structure. The results of the natural frequencies were

compared with results obtained from ANSYS™, a finite element program.
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Table 4.5 show the results of the first 10 natural frequencies for the NASA 8 bay truss structure
obtained for Matlab™ compared to results obtained from ANSYS™, where consistent stiffness
and mass matrices were used, as so are the matrices developed here. This table clearly
demonstrates that very small differences exist between the results obtained from Matlab™ and
the results obtained from ANSYS™. This suggests that the theoretically constructed mass and
stiffness matrices are a representative of the real life structure. It can also be seen that as the
frequency increases the percentage of errors becomes larger. However, since this study is only

concerned with the first few frequency modes, increases in errors at higher frequency modes can

be neglected.
Natural Frequency Matlab™ ANSYS™ % Error from
Mode Numbers (Hz) (Hz) ANSYS™
1 11.69 11.778 0.75
2 12.13 12.221 0.74
3 40.88 41.260 0.92
4 55.90 56.071 0.30
5 60.37 60.498 0.21
6 97.80 100.15 2.35
7 121.42 122.29 0.71
8 122.41 124.31 1.53
9 131.86 133.42 1.17
10 184.33 189.51 2.73

Table 4.5: Comparison of Natural Frequencies between Matlab™ and ANSYS™
for Undamage Case

Receptance frequency response function (FRF) for the NASA 8 bay truss structure was also
calculated using Matlab™. Shown in Figure 4.3 is the corresponding receptance FRF plot for
a(1, 1) of the undamage NASA 8 bay truss structure. Where a(1, 1) in this case corresponds to
obtaining the receptance FRF data from an accelerometer that is fixed at node no.5 and the
structure is also excited at the same node. This is commonly referred to as a point FRF
measurement. It also must be noted that a(1, 1) corresponds to node no.5 for the truss structure

only, because the DOFs of the grounded nodes have been removed.
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Only point FRF measurements exhibit anti-resonance behaviour between two resonances (Ewins,
1984). This may be used as a simple check to confirm that the resultant FRF exhibits behaviour
that is consistent with a point FRF measurement. These peaks can be clearly seen in Figure 4.3

and confirms that it is indeed a point FRF measurement.

Recepance FRF Piot of the NASA 8 Bay Truss Structure Undamaged
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Figure 4.3: Receptance FRF Plot of o(1, 1) for Undamage Case

As a check the Damage Detection Algorithm was firstly tested on the NASA 8 bay truss structure
without any damage being introduced to the structure. Figure 4.4a and Figure 4.4b are the
corresponding 3D DLV plot and 2D CDLYV plot respectively, produced from the algorithm. As
expected, these plots do not show any peaks whatsoever, which leads to the conclusion that the

structure is free from damage.
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4.3 DAMAGE CASES

4.3.1 DAMAGE CASE A

In Damage Case A, simulated damage was introduced to the Z-batten link between node no. 14
and node no. 15 as shown in Figure 4.1. This is simulated by reducing the Young’s Modulus
corresponding to that link to 168e9 N/m, which represents a reduction by 20% and assuming that
damage did not affect the mass of the structure. The corresponding damaged stiffness matrix was
then calculated. Initial comparison for the diagonal of the undamaged stiffness matrix with the
newly calculated stiffness matrix for Damage Case A is shown in Table 4.6. A reduction of 20%
in the Young’s Modulus was seen to reduce the stiffness corresponding to DOF no. 30 of node
no. 14 by a stiffness of 386.4 KN/m or approximately 11.72% reduction from the original
undamaged stiffness and accordingly to DOF no. 33 of node no. 15 by a stiffness of 386.4 KN/m

or approximately 14.77% reduction from the original undamage stiffness.

Diagonal [K]yp | Diagonal [K]p
Node No. | DOF No. | Value at DOF | Value at DOF ngV(‘;i‘l'\f/ :;t)
(KN/m) (KN/m)
28 3208.1 3208.1 0
14 29 6596.2 6596.2 0
30 3298.1 2011.7 3864
31 2615.0 2615.0 0
15 32 386.4 386.4 0
33 2615.0 22286 386.4

Table 4.6: Comparison of the Change in Stiffness (Delta K) Values for Damage Case A

Following similar procedures in the previous section, natural frequencies were calculated from
Matlab™ and compared with natural frequencies from ANSYS™ for this Damage Case A as
shown in Table 4.7. The mass matrix used in the natural frequencies calculations via Matlab™

was the original mass matrix obtained from the undamaged structure.
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Comparison of the natural frequencies from the calculated mathematical model to that of the FE
model show that there are negligible differences between the two models. This suggests that the
stiffness matrix corresponding to Damage Case A calculated by the Matlab™ algorithm is

acceptably accurate.

Natural Frequency Matlab™ ANSYS™ % Error from
Mode Number (Hz) (Hz) ANSYS™
1 11.69 11.778 0.75
2 12.13 12.221 0.74
3 40.88 41.260 0.92
4 55.90 56.070 0.30
5 60.37 60.496 0.21
6 97.78 100.13 2.35
7 121.40 122.27 0.71
8 122.41 124.30 1.52
9 131.84 133.41 1.18
10 184.33 189.50 2.73

Table 4.7: Comparison of Natural Frequencies between Matlab™ and ANSYS™
for Damage Case A

Receptance FRFs for the NASA 8 bay space truss were also calculated using Matlab™. Shown
in Figure 4.5 is the receptance FRF plot for a(l, 1) of the NASA eight bay truss structure for
before and after Damage Case A was introduced. It can be barely observed that the effects of
Damage Case A caused a shift in some of the peaks compared to the original undamaged
receptance FRF trace, but nothing can be said about the location and severity of damage from

this plot.
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Recepance FRF Flot of the NASA 8 Bay Truss Striciwe for Damage Case A

Figure 4.5: Receptance FRF Plot of a(1, 1) for Damage Case A

4.3.2 DAMAGE CASE B

In Damage Case B, simulated damage was introduced to the longeron link between node no. 27
and node no. 31 as shown in Figure 4.1. Similar to Damage Case A, this is simulated by
reducing the Young’s Modulus corresponding to that longeron link to 168¢9 N/m, which
represents a reduction by 20%. The corresponding damaged structure stiffness matrix was then
calculated. Comparison of the diagonal of the undamaged stiffness matrix with the newly
calculated stiffness matrix for Damage Case B is shown in Table 4.8. A reduction of 20% in the
Young’s Modulus was seen to reduce the stiffness corresponding to DOF no. 68 of node no. 27
by a stiffness of 368.4 KN/m or approximately 5.86% reduction from the original undamage
stiffness and to DOF no. 80 of node no. 31 by a stiffness of 368.4 KN/m or approximately 10%

reduction from the original undamaged stiffness.
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Diagonal [K]yp | Diagonal [K]p
Node No. | DOF No. | Valee at DOF. | Valoo at lg()]F AK Value at
KN/m) (KN/m) | DOF (KN/m)
67 329813 329813 0
27 68 6596.26 6200.86 368.40
69 329813 329813 0
79 2615.06 2615.06 0
31 80 3864.00 3477.60 368.40
81 2615.06 2615.06 0

Table 4.8: Comparison of the Change in Stiffness (Delta K) Values for Damage Case B

Following similar procedures to the previous section, natural frequencies were calculated in
Matlab™ and compared with natural frequencies from ANSYS™ and these are presented in

Table 4.9. Again there are negligible differences between the two sets of natural frequencies.

(1]

" Mode Number | Matsb™ (Ho) | ANSYS™ (1) | 7 XU
1 11.69 11.78 0.76
2 12.13 12.22 0.74
3 40.88 41.26 0.92
4 55.90 56.07 030
5 60.32 60.45 022
6 97.74 100.09 2.34
7 121.42 122.29 0.71
3 12241 124.31 1.53
9 131.43 132.99 117
10 18433 189.50 273

Table 4.9: Comparison of Natural Frequencies between Matlab™ and ANSYS™
for Damage Case B

Receptance FRFs for the NASA 8 bay space truss were also calculated using Matlab™. Shown
in Figure 4.6 below is the receptance FRF plot for a(1, 1) of the NASA eight bay space truss
structure before and after Damage Case B. Again, there is a small shift obsevered in some of the

peaks.
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Receptance FRF Piol of the NASA 8 Bay Truss Suwcture for Damage Case A

L
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Figure 4.6: Receptance FRF Plot of (1, 1) for Damage Case B

4.3.3 DAMAGE CASE C

To further verify the developed Damage Detection Algorithm, a simulation involving multiple
damage locations was introduced to the truss structure. Damage Case C is the cumulation of
Damage Case A and Damage Case B as shown in Table 4.2. For changes in the diagonal
stiffness matrix for Damage Case C, Table 4.6 and Table 4.8, which correspond to Damage Case
A and Damage Case B respectively should be used. Natural Frequencies were then calculated
from Matlab™ and also compared with natural frequencies from ANSYS™. Shown in Table
4.10 are the natural frequencies of the truss structure with the damage introduced at the location
specified as Damage Case C. Comparison of the natural frequencies from that of the calculated
mathematical model to that o fthe FE model show that there is negligible d ifference b etween

corresponding frequencies.




Chapter 4: Damage Detection In Truss Structures

56

0
N;tl‘(‘):i‘zl 155‘:2;‘:;” Matlab™ (Hz) =~ ANSYS™ (Hz) | 7° Akgg‘;{rsﬂr;:m
1 11.60 11.78 0.76
> 12.13 12.22 0.74
3 40.88 41.26 0.92
4 55.90 56.07 0.30
5 60.32 60.45 0.22
6 97.72 100.07 2.35
7 121.40 12227 0.71
g 122.41 124.30 152
9 131.41 132.97 117
10 18433 189.49 272

Table 4.10: Comparison of Natural Frequencies between Matlab™ and ANSYS™ for

Damage Case C

Receptance FRFs for the NASA 8 bay space truss structure were also calculated using Matlab™.

Shown in Figure 4.7 is the receptance FRF plot at o1, 1) of the NASA 8 bay space truss

structure for before and after Damage Case C. It is again observed that damage causes a shift in

some of the peaks. This shift causes these peaks to occur at lower frequencies compared to the

undamaged receptance FRF, but it is only a qualitative indication that some damage has been

inflicted.

Receptance FRF Fiot of the NASA 8 Bay Truss Stwcture for Damage Case C

Figure 4.7: Receptance FRF Plot of a(1, 1) for Damage Case C

Frequency (Hz)
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4.4 DAMAGE DETECTION WITHOUT COORDINATE INCOMPATIBILITY AND
NO NOISE

The Damage Detection Algorithm was then applied to the three Damage Cases without any
coordinate incompatibility and no noise interference. The frequency range of these plots was

from OHz — 400Hz with a frequency resolution of 0.5Hz.

Figure 4.8a below is the 3D Damage Location Vector plot for Damage Case A. From Figure
4.8a peaks can be seen to occur at various frequencies and are contained between DOF 20 and
DOF 40. It may be difficult to see but many of the larger dominant peaks occur between DOF
20 and DOF 40, and the magnitude of the largest peak can be estimated to be approximately 350
KN/m. This estimate corresponds to the amount of stiffness that was reduced from the Z-batten
link, which from Table 4.6 was exactly 386.4 KN/m. It may be difficult to see the actual DOFs
in this 3D DLV Plot due to the amount of information it contains, however it is possible to utilise
this 3D DLV plot in conjunction with the corresponding 2D CDLV plot to locate and estimate
the damage extent. It also must be noted that due to computational constraints, the full natural

frequency spectrum of the whole truss structure has not been plotted.
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Figure 4.8a: 3D DLV Plot for Damage Case A without Coordinate Incompatibility
nor Noise
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Figure 4.8b is the corresponding 2D CDLV plot for Damage Case A. Here it can be clearly seen
that the damage is associated with DOF 30 and DOF 33. This confirms the location of the
damage since the original damage was introduced between node no. 14 (DOFs: 28, 29, 30) and
node no. 15 (DOFs: 31, 32, 33). The Damage Detection Algorithm successfully located the
simulated damage within the structure and no other damage was located. It is also interesting to
note that the introduced simulated damage was observed to affect only the translational Z
component at the point of damage. It must be noted that the magnitude in the 2D CDLV plot is
a cumulation of the magnitude at various frequencies for each of the DOFs. This cumulative
value can not be interpreted to be anything meaningful, since this cumulative magnitude depends
on the frequency resolution. If a finer frequency resolution is used then the cumulative

magnitude will be greater since there will be more magnitude per frequency resolution to be

added.
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Figure 4.8b: 2D CDLYV Plot for Damage Case A without Coordinate Incompatibility
nor Noise

Figure 4.9a is the 3D Damage Location Vector Plot for Damage Case B without coordinate
incompatibility and no noise interference. From Figure 4.9a peaks can be seen to occur at

various frequencies and are contained between DOF 60 and DOF 80. It may be difficult to see,
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but the magnitude of the damage is approximately 350 KN/m, which corresponds to the amount
of stiffness that was reduced from the longeron link. It may be also difficult to see the actual
DOFs where the damage occurs due to the amount of information that it contains, hence the 2D

Cumulative Damage Location Vector plot should be consulted.
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Figure 4.9a: 3D DLV Plot for Damage Case B without Coordinate Incompatibility
nor Noise

Figure 4.9b is the corresponding 2D CDLV plot for Damage Case B without coordinate
incompatibility and no noise interference. Here it can be clearly seen that the damage is
associated with DOF 68 and DOF 80. This confirms the location of the damage to exist between
node no. 27 (DOFs: 67, 68, 69) and node no. 31 (DOFs: 79, 80, 81). It is interesting to note that
the introduced simulated damage for this Longeron link was observed to affect only the
translational Y component at the point of damage. Again the Damage Detection Algorithm
successful detected and located the simulated damage within the structure and no other damage

was located.
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Figure 4.9b: 2D CDLYV Plot for Damage Case B without Coordinate Incompatibility
nor Nojse
Figure 4.10a shown is the 3D Damage Location Vector plot for Damage Case C without
coordinate incompatibility and no noise interference. Since Damage Case C represents simulated
damage from both Damage Case A and Damage Case B it can be seen that multiple peaks are
present in this plot. These peaks can be seen to occur at various frequencies, but are isolated
between DOF 20 and DOF 40 and between DOF 60 and DOF 80. However, due to the amount
of information that i s contained in this plot it is very difficult to accurately 1solate i ndividual
DOFs or pinpoint the location of damage on the truss. Again, the 2D CDLV should be consulted

in conjunctions with this plot to adequately pinpoint the location of damage.

Figure 4.10b is the corresponding 2D CDLV plot for Damage Case C without coordinate
incompatibility ad no noise interference. It can be clearly seen that the damage is associated with
DOF 30, DOF 33, DOF 69 and DOF 80. These DOFs correspond to node no. 14 (DOFs: 28, 29,
30), node no. 15 (DOFs: 31, 32, 33), node no. 27 (DOFs: 67, 68, 69) and node no. 31 (DOFs: 79,
80, 81). Although the Damage Detection Algorithm successfully located the damage, care must

be taken when interpreting the locations of damage in situations where multiple damages occur.
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At this point, knowledge of the connectivity within the structure becomes extremely important.
Fortunately, for this damage case, the only possible node (of the ‘damaged’ DOF set) relating to
node no. 14 is node no. 15. Therefore, damage exists between node no. 14 and node no. 15,
which corresponds to the Z-batten link. Similarly, the only possible node (of the ‘damaged’ DOF

set) relating to node no. 27 is node no. 31, and hence the location of damage is between node no.

27 and node no. 31, which corresponds to the longeron link.

3D Damage Localion Vectar Pt
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Figure 4.10a: 3D DLV Plot for Damage Case C without Coordinate Incompatibility
nor Noise
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Figure 4.10b: 2D CDLYV Plot for Damage Case B without Coordinate Incompatibility
nor Noise

4.5 DAMAGE DETECTION WITHOUT COORDINATE INCOMPATBILITY AND
WITH 5% NOISE

The Damage Detect Algorithm was successful in detecting the simulated damage in the previous
section under the ideal condition without any noise interference. To test the robustness of the
Damage Detection Algorithm, 5% random noise interference will now be introduced to the
algorithm. This 5% noise interference is chosen to represent measurement errors and
environmental interference. Its e ffectiveness will be assessed on the same damage scenario
cases adopted in the previous section. The frequency range of these plots was from 0Hz — 400Hz

with a frequency resolution of 0.5Hz.

Figure 4.11ais the 3D Damage Location V ector P lot for Damage Case A without ¢ oordinate
incompatibility and with 5% random noise interference introduced. The effects of the 5%
random noise on the 3D DLV plot can be seen to only affect the whole system within a certain
frequency range whilst leaving other frequencies untouched. This 5% random noise does not

affect the prominence of the peaks that were previously found in Figure 4.11a.
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Figure 4.11a: 3D DLV Plot for Damage Case A without Coordinate Incompatibility
(5% Noise)
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Figure 4.11b: 2D CDLYV Plot for Damage Case A without Coordinate Incompatibility
(5% Noise)

Figure 4.11b is the corresponding 2D CDLV plot for Damage Case A without coordinate
incompatibility and with 5% random noise introduced. A comparison between Figures 4.8b and
Figure 4.11b show that the effect of 5% randomised noise on the Damage Detection Algorithm

was minimal, and the algorithm was still able to successfully detect damage in the same location.
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The only effect from the introduction of the random noise was that it affected all DOFs within
the structure. When collated cumulatively every DOF had vectors of nonzero value. This was
due to the introduced noise influence. It can be clearly seen that these noise peaks are much
lower than the peaks that actually contain damage. This is because the DOFs that are truly
affected by damage occur only at certain frequencies, while those that are only affected by noise
occur at all frequencies. Hence, when collated cumulatively together over the frequency ranges,

those that truly contain damage would be much greater than those that are affected by noise only.

Figure 4.12a below is the 3D Damage Location Vector plot for Damage Case B without
coordinate incompatibility and 5% random noise interference introduced. The effects of the 5%
random noise on the 3D DLV plot can be seen to only affect the whole system within a certain
frequency range whilst leaving other frequencies essentially untouched. This 5% random noise
does not seem to affect the peaks that were previously shown in Figure 4.13a. The peaks still

show up in the same location between DOF 60 and DOF 80.
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Figure 4.12a;: 3D DLV Plot for Damage Case B without Coordinate Incompatibility
(5% Noise)
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Figure 4.12b is the corresponding 2D CDLV plot for Damage Case B without coordinate
incompatibility and with 5% random noise interference introduced. A comparison between
Figures 4.9b and Figure 4.12b show that the effects of 5% random noise on the Damage
Detection Algorithm was minimal, and the algorithm was still able to successfully detect damage
in the same location as previously. It can be seen that the introduction of the randomised noise
affected all DOFs within the structure. When collated cumulatively every DOF had vectors of
nonzero value. With careful observation, it can be clearly seen that these noise peaks are much

lower than the peaks that actually contain damage.

10’ 2D Cumulative Damage Location Vector Pt
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Figure 4.12b: 2D CDLYV Plot for Damage Case B without Coordinate Incompatibility
(5% Noise)

Figure 4.13a is the 3D DLV plot for Damage Case C without coordinate incompatibility and with
5% random noise interference introduced. The effects of the 5% random noise on the 3D DLV
plot can be seen to only affect the whole system within certain frequency ranges whilst leaving
other frequencies essentially untouched. This 5% random noise does not seem to affect the peaks

that were shown in Figure 4.13a. These peaks still show up in the same locations.
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Figure 4.13a: 3D DLV Plot for Damage Case C without Coordinate Incompatibility
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Figure 4.13b: 2D CDLYV Plot for Damage Case C without Coordinate Incompatibility

(5% Noise)

Figure 4.13b is the corresponding 2D CDLV plot for Damage Case C without coordinate

incompatibility and with 5% random noise introduced. A comparison between Figure 4.10b and

Figure 4.13b show that the effects of the 5% random noise on the Damage Detection Algorithm
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was minimal and the algorithm was still able to successfully detect damage in the same locations
as previously. The only effects from the introduction of the randomised noise were that it
affected all DOFs within the structure. When collated cumulatively every DOF has vectors of
nonzero value due to the noise influence. It can be seen that these noise peaks are much lower

than the peaks that actually contain damage.

4.6 DAMAGE DETECTION WITH COORDINATE INCOMPATIBILIY AND WITH
5% NOISE

Often in real life it is not possible to measure all the coordinates of a structure. To further test the
robustness of the Damage Detection Algorithm only FRF data for 72 DOFs will be supplied for
the three previous damage cases. The data for these 72 DOFs were randomly c hosen from a
possible 96 DOFs. Appendix 4 contains the sequence order for these 72 randomly chosen DOFs.
This will require the Damage Detection Algorithm to expand the 24 missing data to match the 96

DOFs found in the undamaged structure.

30 Damage Location Vector bt
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Figure 4.14a: 3D DLV Plot for Damage Case A with Coordinate Incompatibility
(5% Noise)




Chapter 4: Damage Detection In Truss Structures 68

Figure 4.14a show the 3D DLV plot for Damage Case A with 72 measured and 24 expanded
coordinates and 5% noise interference introduced. For this scenario only data for 72 DOFs were
supplied to the Damage Detection Algorithm, leaving the developed Damage Detection
Algorithm to expand the 24 missing data to match the DOFs of the undamaged case using
Dynamic Expansion method A as discussed previously in Chapter 2. Again the Damage
Detection Algorithm successfully detects the damage and the effect of damage is shown as

distinctive peaks on the plot.

Figure 4.14b is the corresponding 2D CDLYV plot for Damage Case with 72 measured and 24
expanded DOFs and 5% noise interference. On this plot the location of damage can be
distinctively observed to be the dominant peaks over those that are caused by noise interference.
The location of damage 1s DOF 30 and DOF 33 and corresponds to node no. 14 and node no. 15
on the truss structure. This is consistent with the location of damage for Damage Case A. The
Damage Detection algorithm was able to successfully detect the simulated damage in this case

since the DOFs that contain damage lie within the 72 randomly chosen DOFs.
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Figure 4.14b: 2D CDLYV Plot for Damage Case A with Coordinate Incompatibility
(5% Noise)
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Figure 4.15a show the 3D DLV plot for Damage Case B with 72 randomly supplied DOFs and
24 expanded DOFs and with 5% noise interference introduced. These peaks can be seen to occur
between DOF 60 and DOF 90. Comparison of Figure 4.13a and Figure 4.15a show that the
peaks do not occur between the same intervals, and yet both figures are produced for the same
Damage Case B. Thereason for this is due to the fact that DOF 80 was not supplied in the
measured DOFs. So the Damage Detection Algorithm displayed the next available DOFs closest

to the damage. This is demonstrated more clearly on the 2D CDLV Plot.
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Figure 4.15a: 3D DLV Plot for Damage Case B with Coordinate Incompatibility
(5% Noise)

Figure 4.15b is the corresponding 2D CDLYV Plot for Damage Case B with 72 randomly supplied
DOFs and 24 expanded DOFs and with 5% noise interference introduced. Here the location of
damage can clearly be seen to occur at DOF 69 and DOF 92. This translates to the damage being
located between node no. 27 (DOFs: 67, 68, 69) and node no. 35 (DOFs: 91, 92, 93). However,
since there is no direct connectivity between node no. 27 and node no. 35 on the truss structure
this would signify an erroneous damage detection. Therefore, results obtained from mcomplete

supplied data can only be interpreted as an indication of where damage exists. Hence, the
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interpretation of Figure 4.15b suggests that damage only exist between node no. 27 and node no.
35 on the truss structure. This correlates to the last two bays in the truss structure. In order to
determine the exact location where damage exists, further measurements are required to be made.
However not all FRF of DOFs on the structure are required to be supplied, only nodes with DOFs

that fall between DOF 69 and DOF 92 are required.
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Figure 4.15b: 2D CDLYV Plot for Damage Case B with Coordinate Incompatibility
(5% Noise)

Figure 4.16a is the 3D DLV Plot for Damage Case C with 72 DOFs randomly supplied and 24
expanded DOFs and with 5% noise interference introduced. As expected the Damage Detection
Algorithm detected the peaks that were consistent with Damage Case A and DOFs containing
peaks that were closest to describing Damage Case B. However since not all the measurements
have been supplied care must be taken in interpreting the damage locations. At this point the
information on the connectivity of the structure becomes important, as it allows further

interpretation.
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Figure 4.15a: 3D DLV Plot for Damage Case B with Coordinate Incompatibility
(5% Noise)

Figure 4.15b is the corresponding 2D CDLV Plot for Damage Case B with 72 randomly supplied
DOFs and 24 expanded DOFs and with 5% noise interference introduced. Here the location of
damage can clearly be seen to occur at DOF 69 and DOF 92. This translate to the damage being
located between node no. 27 (DOFs: 67, 68, 69) and node no. 35 (DOFs: 91, 92, 93). However,
since there is no direct connectivity between node no. 27 and node no. 35 on the truss structure
this would signify an erroneous damage detection. Therefore, results obtained from incomplete
supplied data can only be interpreted as an indication of where damage exists. Hence, the
interpretation of Figure 4.15b suggests that damage only exist between node no. 27 and node no.
35 on the truss structure. This correlates to the last two bats in the truss structure. In order to
determine the exact location where damage exists, further measurements are required to be made.
However not all nodes on the structure are required to be supplied, only nodes with DOFs that

fall between DOF 69 and DOF 92 are required.
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Figure 4.16b: 2D CDLYV Plot for Damage Case C with Coordinate Incompatibility
(5% Noise)

4.7 DISCUSSION

The developed Damage Detection Algorithm was found to be extremely robust in that it was able
to successfully detect simulated damage introduced to the truss structure at various locations.
Furthermore, the Damage Detection Algorithm did surprisingly well to detect the simulated
damage scenarios considering that the various cases studied only involved changes in stiffness
between 10% - 15%. The Damage Detection Algorithm was also subjected to 5% randomised
noise and was still able to successfully detect simulated damage. It also was still able to
successfully indicate the interval where damage may exist for cases that involved coordinate

incompatibility.

Further studies in the next chapter will utilise the Damage Detection Algorithm to study a thin

cantilever plate structure under various conditions.




CHAPTER 5

DAMAGE DETECTION IN

PLATE STRUCTURES

While a 3D space truss structure can be easily modelled using finite element philosophy and the
mass and stiffness matrices readily calculated, it is relatively difficult to manufacture ball joints
and members to satisfy the essential requirements of a 3D space truss structure for experimental
studies. Plate structures on the other hand can be easily manufactured. However, the mass and

stiffness matrices of a plate element are far more complex than those of a truss structure.

Thin flat plate elements are subjected to both in plane and transverse loads. This chapter will
apply the Damage Detection Algorithm presented in Chapter 2 to thin flat plate structures to

evaluate the Damage Detection Algorithm.

The aim of this chapter is firstly to formulate the mass and stiffness matrices for a single plate
element. This will then be verified using FE. Once this single element has been verified, it will
be used to construct plate structures. Damage will then be introduced to various locations on a
thin cantilevered plate. The Damage Detection Algorithm will then be used to locate the damage

within the cantilevered plate to investigate its performance.

5.1 BASIC THIN PLATE THEORY
Thin flat plate structures are used in many different applications in engineering, for instance the

outer surfaces of aircraft can be considered to be made of thin plates. In finite element modelling
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(FEM), a simple element can be described by three or four nodes. There are several theories that
can be used to describe thin flat plates, the two most common theories being the Discrete

Kirchoff’s Theory (DKT) and the Mindlin Theory. In this study, the DKT will be used.

The main features of the DKT for thin flat plates are outline below:

)
2 U7 A
Ug,‘
13
Uio 4
____________________________ n Uiz

Figure 5.1: A Single Rectangular Thin Flat Plate Element

Node P]att? Rotation in Rotation in
Deflection X-Axis Y-Axis
1 U, U, Us
2 Uy Us Us
3 U, Usg Uy
4 Ujg Uy Uj,

Table 5.1: DOFs with Respect to Node Numbers for a Single Plate Element

Consider the thin rectangular plate element defined by Figure 5.1. It is a single rectangular
element that is defined by width (a), height (b) and thickness (t). The single element is described
by 4 nodes each having 3 DOFs. The DOFs with respect to each node number are outlined in
Table 5.1. It is important to adopt a convention that can be used for numbering the nodes

describing an element. This convention can be either clockwise or anticlockwise. For example,
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from Figure 5.1, if the nodes were read starting from node | in an anticlockwise manner then the
node order would be 1-4-3-2. Similarly, if the nodes were read in a clockwise manner then the

node order would be 1-2-3-4. The clockwise convention will be used in this thesis.

The mass and stiffness for the single rectangular flat plate element can be found in Appendix 5,
and was derived from first principle by Przemieniecki (1967), (with an error in one element,
which has been corrected in this thesis). However, before Przemieniecki’s mass and stiffness

matrices are used they must first be validated to be correct for our application.

5.2 VALIDATION OF MASS AND STIFFNESS MATRICES

There are two different sets of mass and stiffness matrices presented by Przemieniecki (1967) for
the rectangular flat plate element, a non-compatible and a compatible one. In the non-compatible
case, the mass and stiffness matrices are derived so that the boundary d eflections on adjacent
plate elements are compatible, whilst rotations of the element edges on common boundaries are
not compatible and consequently, discontinuities in the slope exist across the boundaries. For
the compatible case, both the deflection and slope compatibility on the adjacent element are
ensured. Both cases will be examined to determine the most suitable mass and stiffness matrices

that will be required later in this chapter.

Now let’s consider an example shown in Figure 5.2, a thin flat plate structure that is made up of 4
smaller plate elements with properties shown. It is described by 9 nodes and for ease of
reference it will be referred to as “Plate9” from this point onwards. There are 3 DOFs per node.

Here nodes 1, 2 and 3 are the fixed nodes within this structure.
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3 6 9
(2) (4)
p=28179 Kg/m’
2 5 8 250 mm E =200 GPa
v=0.3
Thickness = 1.6mm
(1) (3)
1 4 7 .
L— 250 mm —W

Figure 5.2: Thin Flat Plate Structure with 4 Smaller Elements
also Known as Plate9

Matlab™ will be used to perform theoretical calculations for the mass and stiffness matrices for
both the compatible and non-compatible cases. ANSYS™ finite element software will also be
used to analyse this structure. Natural frequencies for the structure will be obtained from the
theoretical and finite element analysis. Natural frequencies from the theoretical calculations will
be compared to natural frequencies obtained from ANSYS™, in which a more elaborate shell

element was used.

5.2.1 FINITE ELEMENT ANALYSIS OF PLATEY

The plate is modelled in ANSYS™ using SHELL63 quadrilateral elements and is shown in
Figure 5.3. It is described by 4 elements and 9 nodes. The edges between nodes 1, 2 and 3 have
their DOFs fixed in all directions. The appropriate masters DOFs were chosen without rotations.
The modal analysis option was chosen in ANSYS™ using the reduced option. The first six
natural frequencies and mode shapes for the plate were then requested and are shown in Table

5.2.
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ELFM NUM PLOT NO. 1

u

Figure 5.3: The Plate9 Example Modelled in ANSYS™

Mode Natural .
Number | Frequency (Hz) Mode Shape Behaviour
1 21.17 Bending about Y-axis
2 52.06 Twisting about X-axis
3 130.25 Bending about Y-axis
4 166.40 Bending about X-axis
5 190.12 Twisting about X-axis
6 334.66 Twisting about Y-axis & Twisting about X-axis

Table 5.2: First Six Natural Frequencies and Mode Shape for Plate9 Example from ANSYS™

Mode shape analysis was also carried out to study the behaviour of the plate. Figure 5.4 shows
an isometric view and side view of the first mode shape for the Plate9 example. The first mode
shape occurs at approximately 21.17 Hz and the plate can be seen as bending about the Y-axis.

The bending mode behaviour experienced by the plate can be better seen in the side view.
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Figure 5.4: Mode Shape No.1 — Isometric and Side View of Plate9 Example

Figure 5.5 shows an isometric and side view of the Plate9 example at 52.06 Hz. This is where

the second mode shape occurs. In this mode a twisting behaviour about the X-axis can be

observed.

PLACEMENT
DISPLACEMENT e DIS T
STEP=1 STEP=1
SUB =2 SUB =2
FREQ=52.058 FREQ=52.058
DMK =3.229 DMX =3.229

Figure 5.5: Mode Shape No. 2 — Isometric and Side View of Plate9 Example
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Figure 5.6 shows an isometric and side view of the Plate9 example in the third mode shape,
which occurs at 130.25 Hz. At this frequency the plate seems to be bending principally in the

XY-plane. A clearer view can be seen from the corresponding side view.

AN AN
DISPLACEMENT PLOT NO ] DISPLACEMENT 5 NO 1
STEP=1 STEP=1 ]
SUB =3 SUB =3
FRE(Q=130.253 FREQ=130.253
DMK =2.674 DMX =2 .674

|

Figure 5.6: Mode shape no. 3 — Isometric and side view of Plate9 example

Only the first three modes of the Plate9 example have been presented. The third mode shape is

illustrated here to show the bending behaviour of the plate at modes of higher frequencies.

5.2.2 THEORETICAL CALCULATIONS USING MATLAB™

Theoretical calculations using the non-compatible deformation theory for the Plate9 example
were conducted using Matlab™. The mass and stiffness matrix used to describe a single plate
element can be found in Appendix 5 and Appendix 6 respectively and was derived by
Przemieniecki (1967). The mass and stiffness matrix for the Plate9 examples, which consisted of
4 single plate elements, is simply the assembly of the single plate element using simple matrix
assembly theory. An algorithm was written in Matlab™ to aid in the matrix assembly process.

Upon completion, the algorithm produced a mass and a stiffness matrix that were each 18 x 18 in
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size. The reason why each matrix is 18 x 18 in size rather than 27 x 27 in size is due to the fact
that node 1, 2 and 3 are grounded in the Plate9 example and hence only the reduced mass and

stiffness matrix were found. The first six natural frequencies were also found from an algorithm

written in Matlab™ and is shown in Table 5.3 in the next sub section.

Theoretical calculations were also performed for the Plate9 example using the mass and stiffness
matrix developed by Przemieniecki (1967) based on compatible deformation theory. The mass
and stiffness matrix for a single plate element based on compatible deformation theory can be
found in Appendix 7 and Appendix 8 respectively. The first six natural frequencies were also

found and are also shown in Table 5.3 in the next sub-section.

5.2.3 COMPARISON OF THEORETICAL RESULTS WITH FINITE ELEMENT

Natural frequencies from theoretical results and finite element results are shown in Table 5.3. It
can be seen that the non-compatible deformation theory yields a more accurate result than that of
the compatible deformation theory. The percentage error associated with using the non-
compatible deformation is very low for the first few modes and becomes large from mode four
onwards. Hence, for the purpose of this thesis Przemieniecki’s non compatible deformation

theory for thin plates will be used since the percentage errors for the first few modes are quite

small.

Non- % Error . % Error

Mode No. AN(%‘;)STM Compatible from f;:;f;t(lﬁlze) from
Theory (Hz) ANSYS™ ANSYS™

1 21.17 21.08 0.43 13.99 33.92

2 52.06 52.13 0.13 62.98 20.98

3 130.25 132.72 1.89 132.03 1.35

4 166.40 160.49 3.55 171.30 2.95

5 190.12 184.31 3.06 198.00 4.14

6 334.66 329.68 1.49 345.18 3.14

Table 5.3: Comparison of Results for Non-Compatible and Compatible Theories against ANSYS™
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5.3 SIMULATION OF DAMAGE

There are many different ways damage can occur in a structure such as a cantilever plate.

Consider a cantilever plate that is fixed at one edge and is modelled by several equally spaced

smaller elements. There are several different types of ways damage can be simulated on this

cantilever:

1.

A cut along the element boundary between two nodes in a plate. The effects of
simulating such a cut can be approximated as crack propagation in a real life structure,
and is shown in Figure 5.7a. Depending on the length and location of the cut, two or

more elements may be affected.

One element in a plate. The effects of simulating such damage can be seen to affect all

the surrounding elements as shown in Figure 5.7b.

A small cut in the centre of one element. The effect of simulating such damage is shown
in Figure 5.7c and can be assumed to affect only the nodes related to that element and no

other surrounding elements.

At the point where the cantilever plate is fixed. The effects of simulating such damage

would cause the boundary conditions to change and is shown in Figure 5.7d.

7

7

EamE—

/]

/|

Figure 5.7a: Damage between Nodes Figure 5.7b: Damage of One Whole Element
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Figure 5.7c: Partial Damage of One Element Figure 5.7d: Damage at the Fixing Point
Affecting Only the Nodes

In this thesis damage is isolated to one element and only affects the nodes associated with that
element. This does not suggest that multiple damages can not occur within the plate. In the
theoretical analysis, reducing the modulus of elasticity is one way to simulate this type of
damage, since each element in the elementary matrix is calculated separately. 1In the
experiméntal analysis which will be covered in the next chapter, drilling a hole in the centre or a

longitudinal cut of the desired element can simulate these simple types of damage.

5.4 DESCRIPTION OF THE PLATE STRUCTURE

The element and node configuration for the thin cantilever plate that will be studied is shown in
Figure 5.8. As defined previously, it is important than an order is maintained with the numbering
of the nodes and elements as this will allow easy interpretation later on. The thickness of the
plate is 3.0mm with a density of 8179 Kg/m® and a Young’s Modulus of 200 GPa. The plate is
cantilevered along one end (i.e. grounded), with nodes no. 1, 2, 3 and 4 as the grounding points.
The overall dimension of the plate is 0.3m x 0.6m. The dimension for each square element is
0.lmx 0.1m. Asithas28nodes this plate shall be referred to as “Plate28” throughout this

thesis.




Chapter 5: Damage Detection in Plate Structures 83
! AN
ELEMENTS
TLEM NUM PLOT NO. 1
A
ROT
Figure 5.8a: Nodes and Elements Configuration for Plate28 Example
4 12 16 20 24 28
3) (6) (9) (12) (15) (18)
3 11 15 19 23 27
(2) (5) (®) \ (14) (7) 300 mm
2 10 14 18 22 26
(1) (4) @) (10) (13) (16)
1 9 13 17 21 25
600 mm

Figure 5.8b: Nodes and Elements Configuration for Plate28 Example Illustrating Damage Case A
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4 8 12 16 20 24 28
(3) (6) 9) (12) (15) (18)
3 7 11 15 19 23 27
(2) (5) (8) (1) (14) (17) 300 mm
2 6 10 14 18 22 26
m 4) (7) (10) (13) (16)
1 5 9 13 17 21 25
600 mm
Figure 5.8c: Nodes and Elements Configuration for Plate28 Example Illustrating Damage Case B
4 8 12 16 20 24 28
(3) (6) (9) (12) (15) (18)
3 7 11 15 19 23 27
@) (5) ®) \ (14) (a7) 300 mm
2 6 10 14 18 22 26
(1) (4) ™) (10) (13) (18)
1 5 9 13 17 21 25
600 mm

Figure 5.8d: Nodes and Elements Configuration for Plate28 Example Illustrating Damage Case C




Chapter 5: Damage Detection in Plate Structures 85

Table 5.4 is a summary of the damage cases that will be introduced to the Plate28 structure as
illustrated by Figures 5.8b, 5.8c and 5.8d. Simulated damage is considered as a loss in stiffness
and any damage will be isolated to the four nodes that describe the damaged element. As
mentioned in the previous chapter, it is difficult to manipulate the stiffness matrix directly due to
the complexities of such a large matrix. It is however possible to simulate a loss in stiffness by
reducing the Young’s Modulus associated with the damage element. A reduction of 40% in the
Young’s Modulus has been found to be adequate in this thesis. Although a reduction of 40% in
the Young’s Modulus seems large, it will be shown later in this chapter that such a reduction is
only equivalent to a loss in stiffness of approximately 10%. A loss in stiffness of approximately
10% 1s large enough to be considered as damage, while not causing the structure to become
unstable, but small enough to test the sensitivity of the developed Damage Detection Algorithm.
Again any change in mass due to the change in stiffness can be considered to be negligible.
Damage will be introduced progressively to the thin cantilever plate structure, starting with

damage to a single element only and then moving to a simulation of multiple damage at two

elements.
DZ‘;‘:fe Location Nodes Effected Type of Damage
A Element No. 11 14, 15,18, 19 Fracture in the centre of the plate
B Element No. 16 21,22,25,26 Crack propagation at the edge of the plate
C Both of above Both of Above | All of Above

Table 5.4: Summary of Simulated Damage Cases for Plate28 Example

Since the thin plate structure is cantilevered, the DOFs associated with the grounded nodes are
not considered. Therefore, the remaining nodes that are not grounded will have renumbered
DOFs. Table 5.5 gives an outline of the corresponding DOFs numbers when the grounded DOFs

are removed for node numbers showed in Table 5.3.
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Corresponding DOFs
Node Number X, Y, Z)
14 28, 29, 30
15 31, 32,33
18 40, 41, 42
19 43, 44, 45
21 49, 50, 51
22 52,53, 54
25 61, 62, 63
26 64, 65, 66

Table 5.5: Corresponding DOFs for Damage Cases

5.5 UNDAMAGED CASE

The mass and stiffness matrices were first calculated for the cantilever plate based on
Prezemieniecki’s non compatible deformation theory in Matlab™. The Matlab™ algorithm
ensures that the constructed mass and stiffness matrices were assembled to the correct size to
reflect the real life structure and also accounted for the grounded nodes. To verify that the
constructed matrices from Matlab™ were indeed correct, the cantilever plate was also modelled
with ANSYS™., Table 5.6 shows the results for the first 10 natural frequencies obtained from
ANSYS™ and Matlab™. A comparison of the first 10 natural frequencies from the ANSYS™
to that of Matlab™ shows that the differences between the natural frequencies of the two models
are very small. This suggests that the constructed mass and stiffness matrices from the algorithm

are acceptably accurate.

Table 5.7 shows the diagonal stiffness values at each of the DOFs concerned taken from the
calculated undamaged stiffness matrix of the cantilever plate. These values will be used later in

this chapter to compare with the adjusted damage stiffness matrix for each different damage case.
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ANSYS™ Matlab™ % E h
Mode Number Natural Natural 0 A§§$S:3m
Frequency (Hz) | Frequency (Hz)
1 6.83 6.83 0.00
2 29.78 29.40 0.01
3 42.82 42.84 0.04
4 98.07 95.79 2.40
5 120.71 120.90 0.16
6 187.63 183.33 2.34
7 190.79 184.97 3.15
8 239.20 236.37 1.20
9 258.36 248.81 3.84
10 318.02 301.08 5.63

Table 5.6: Comparison of Natural Frequencies between Matlab™ and ANSYS™ for
Undamaged Case

Node Number DOF No. Dlaiﬁogg&(%z /::;lue
28 2088.79
Node 14 29 3.00
30 3.00
31 2088.79
Node 15 32 3.00
33 3.00
40 2088.79
Node 18 41 3.00
42 3.00
43 2088.79
Node 19 44 3.00
45 3.00
49 1044.39
Node 21 50 1.50
51 1.50
52 2088.79
Node 22 53 3.00
54 3.00
61 522.19
Node 25 62 0.75
63 0.75
64 1044.39
Node 26 65 1.50
66 1.50

Table 5.7: Diagonal Undamaged Stiffness Value at DOF Locations
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Receptance FRF for the thin cantilever plate was also calculated within Matlab™ from the

algorithm presented in Chapter 2 that utilised the following equation:

[2(0)]= (K]-o*[M]]" G.1)

Shown in Figure 5.9 is the corresponding receptance FRF plot at a1, 1) of the undamaged thin
cantilever plate. It must be noted that a(1, 1) corresponds to node no. 5 for this example, because
the DOFs of the grounded nodes have been removed. An inspection of Figure 5.9 shows that the
receptance plot exhibits behaviour consistent with a point FRF measurement. The receptance
plot also is consistent with structures that are considered to be in the grounded state. It must be

noted that only the first 400 Hz of the frequency spectrum have been presented here.

Receptance FRF Plot for the Undamaged Thin Cantilevered Plate

Magnitude (dB)

Frequency (Hz)

Figure 5.9: Point Receptance Plot at a(1, 1) for the Undamaged Case
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5.6 DAMAGE CASE A

In Damage Case A, simulated damage will be introduced to element no. 11 by reducing the
Young’s Modulus associated with that element by 40%. By doing so, this attempts to simulate
the effects of crack propagation. It is assumed that changing the Young’s Modulus of element

no. 11 only affects the elements of the stiffness matrix associated with this element. The nodes

describing element no. 11 are nodes no. 14, 15, 18 and 19.

Table 5.8 is a comparison of the first 10 natural frequencies from ANSYS™ and Matlab™ for
Damage Case A. It can be seen that the difference is very small, especially for the first three
modes. Therefore, it can be assumed that the algorithm used to calculate the mass and stiffness

matrices with for Damage Case A is correct.

ANSYSTH Matlab™ % Error from
Mode Number Natural Natural ANSYST™
Frequency (Hz) | Frequency (Hz)
1 6.81 6.80 0.15
2 29.42 29.05 0.13
3 41.85 41.86 0.03
4 96.89 94.65 2.31
5 119.46 119.67 0.18
6 181.23 178.47 1.52
7 189.21 182.12 3.75
8 237.06 234.49 1.08
9 254.92 245.52 3.69
10 314.82 298.57 5.16

Table 5.8: Comparison of Natural Frequencies between Matlab™ and ANSYS™ for Damage Case A

Table 5.9 is a comparison of the first 10 natural frequencies of the Matlab™ results for the

Undamaged Case against Damage Case A.
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Natural Natural % Chanee from
Mode Number Frequency (Hz) | Frequency (Hz) g
Undamage Damage Case A Undamage

{ 1 6.83 6.80 0.44
2 29.40 29.05 1.19

3 42.84 41.86 2.29

4 95.79 94.65 1.19

5 120.90 119.67 1.02

B 6 183.33 178.47 2.65
7 184.97 182.12 1.54

8 236.37 234.49 0.80

9 248.81 245.52 1.32

10 301.08 298.57 0.83

Table 5.9: Comparison of Natural Frequencies between Undamage and Damage Case A

A receptance FRF for the cantilever plate was also calculated using Matlab™. Shown in Figure
5.10 is the receptance FRF plot at a(1, 1) of the cantilever plate before and after Damage Case A.
The effect of reducing the Young’s Modulus of element no. 11 into the undamaged structure can

clearly be seen to cause a negative shift to some of the peaks.

Receptance FRF Pit for the Thin Cantievered Plale - Damage Case A
T

I
I
i
)
I
I
1
1
I

Magnitude (dB)

200
Frequency (Hz)

Figure 5.10: Point Receptance Plot at a(1, 1) for Damage Case A
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The developed Damage Detection Algorithm was then applied to Damage Case A firstly without
coordinate incompatibility. Randomly generated noise interference of approximately 5% was

also introduced into the Damage Detection Algorithm.

Figure 5.11a is the corresponding 3D Damage Location Vector Plot for Damage Case A. From
Figure 5.11a many scattered peaks can be seen to occur throughout the frequency spectrum. This
is the effects of the 5% noise interference. A close observation shows that most of the large
peaks occurring throughout the frequency spectrum are contained between DOFs 25 and 45. It
may be difficult to see the actual DOFs in this 3D DLV Plot due to the amount of information it
contains. Estimation on the extent of damage can also be found on the 3D DLV Plot by reading
the vertical axis. The damage extent for Damage Case A from Figure 5.11a can be said to be
approximately 200 KN/m. This value can be further quantified once the location of damage has
been pinpointed. The location of damage can be seen more clearly on the corresponding 2D
CDLV Plot. It must also be noted that due to computational constraints, the full natural

frequency spectrum of the cantilever plate has not been plotted.
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Figure S.11a: 3D DLV Plot for Damage Case A without Coordinate Incompatibility
(5% Noise)
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Figure 5.11b is the corresponding 2D CDLV plot for Damage Case A. Here it can be seen that
the damage is associated with DOF 28, DOF 33, DOF 40 and DOF 45, since these peaks can be
observed to be much larger than the other DOFs. The remaining DOFs which are much smaller
than the ones caused by damage are due to noise interference. The corresponding node numbers
that are associated with the above DOFs that contain damage are nodes no. 14, 15, 18 and 19.
This confirms the location of damage since the original damage was introduced into element no.
11, which is bounded by node no. 14 (DOFs: 28, 29, 30), node no.15 (DOFs: 31, 32, 33), node

no. 18 (DOFs: 40, 41, 42) and node no. 19 (DOFs: 43, 44, 45).

x 10S 20 Cunuiative Damage Location Veclor

Deogrees o Fresdom (DOFs)

Figure 5.11b: 2D CDLYV Plot for Damage Case A without Coordinate Incompatibility
(5% Noise)

Having found the location of damage it is possible to determine a quantitative damage extent
value for each of the DOFs by obtaining the change in stiffness AK, since the diagonal [K]yp and
the diagonal [K]p values corresponding to the DOFs are known. Table 5.10 shows the change in
stiffness corresponding to each DOF that contains damage. This table also shows the effects of

reducing the Young’s Modulus by 40% is seen as a reduction in stiffness by approximately 10%.
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Diagonal Diagonal Diagonal

Nodes | DOFs | [Klup Value | [Klp Value | A[K] Value | ° fCha“ge
No. No. at DOF at DOF at DOF | |, d”’“‘

(KN/m) (KN/m) (KN/m) ndamage
28 2088.79 1879.91 208.88 10%
14 29 3.00 2.70 0.30 10%
30 3.00 2.70 0.30 10%
31 2088.79 1879.91 208.88 10%
15 32 3.00 2.70 0.30 10%
33 3.00 2.70 0.30 10%
40 2088.79 1879.91 208.88 10%
18 41 3.00 2.70 0.30 10%
42 3.00 2.70 0.30 10%
43 2088.79 1879.91 208.88 10%
19 44 3.00 2.70 0.30 10%
45 3.00 2.70 0.30 10%

Table 5.10: Damage Extent Corresponding to DOFs for Damage Case A

This shows that the developed Damage Detection Algorithm successfully detected the simulated
damage and did not find any other damage within the plate. It is also interesting to note that the

detected damage was shown to be much larger for translational DOFs than rotational DOFs.

5.7 DAMAGE CASE B

In Damage Case B, simulated damage will be introduced to element no. 16 by reducing the
Young’s Modulus associated with that element by 40% to simulate the effects of a crack
propagation occurring at the edge. The nodes describing element no. 16 are nodes no. 21, 22, 25

and 26.

Table 5.11 is a comparison of the first 10 natural frequencies from ANSYS™ and Matlab™ for
Damage Case B. It can be seen that for the first few modes the errors are minimal. From this it
can be safely assumed that the theoretical calculations for the first few modes are sufficiently

accurate.
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Mode ANSYS™ Natural Matlab™ Natural | % Error from
Number Frequency (Hz) Frequency (Hz) ANSYS™
1 6.83 6.83 0.00
2 29.70 29.32 1.28
3 42.77 42.79 0.05
4 96.83 94.56 2.34
5 120.13 120.30 0.14
6 185.30 180.69 2.49
7 188.41 182.61 3.08
8 236.71 233.69 1.27
9 256.06 246.62 3.69
10 313.65 296.66 5.42

Table 5.11: Comparison of Natural Frequencies between Matlab™ and ANSYS™ for Damage Case B

Table 5.12 1s a comparison o f the first 1 0 natural frequencies o f the Matlab™ results for the

Undamaged Case and Damaged Case B.

Natural Natural % Change from

Mode Number | Frequency (Hz) | Frequency (Hz) Undamase Case
Undamage Case | Damage Case B g
1 6.83 6.83 0.00
2 29.40 29.32 0.27
3 42.84 42.79 0.12
4 95.79 94.56 1.28
5 120.90 120.30 0.49
6 183.33 180.69 1.44
7 184.97 182.61 1.28
8 236.37 233.69 1.13
9 248.81 246.62 0.88
10 301.08 296.66 1.47

Table 5.12: Comparison of Natural Frequencies between Undamage and Damage Case B

Receptance FRFs for the cantilevered plate for Damage Case B were also calculated. Shown in

Figure 5.12 is the receptance FRF plot at a1, 1) of the cantilever plate before and after Damage

Case B. The effects of introducing Damage Case B into the undamaged structure can be seen to

cause some of the peaks to occur at lower frequencies compared to the undamaged receptance

FRF.
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Receptance FRF Piot for the Thin Cantiever Plate - Damage Case B
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Figure S.12: Point Receptance Plot at a(1, 1) for Damage Case B

Figure 5.13a is the corresponding 3D Damage Location Vector Plot for Damage Case B without
coordinate incompatibility and with 5% noise interference. From Figure 5.13a peaks can be seen
to occur at various frequencies throughout the spectrum. A closer observation shows that a
majority of the larger peaks are contained between DOFs 45 — 65. It may be difficult to see the
actual DOFs in this 3D DLV due to the amount of information it contains. Estimation on the
extent of the damage can be found on the 3D DLV plot by reading the vertical axis. The damage
extent for Damage Case A from Figure 5.13a can be said to be approximately 200 KN/m. This
value can be further quantified once the location of damage has been pinpointed. The location of
damage can be observed more easily on the 2D CDLV plot as shown in Figure 5.13b. Here it
can be seen that the damage is associated with DOFs 49, 54, 61 and 66. The corresponding node
numbers that are associated with the above DOFs are node no. 21, 22, 25 and 26. This confirms
the location of damage, since the original damage was introduced into element no. 16, which is

bounded by node no. 21 (DOFs: 49, 50, 51), node no. 22 (DOFs: 52, 53, 54), node no. 25 (DOFs:

61, 62, 63) and node no. 26 (DOFs: 64, 65, 66).
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Figure 5.13a: 3D DLV Plot for Damage Case B without Coordinate Incompatibility
(5% Noise)
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Figure 5.13b: 2D CDLYV Plot for Damage Case B without Coordinate Incompatibility
(5% Noise)

Having found the location of damage it is possible to determine a quantitative damage extent
value for each of the DOFs by obtaining the change in stiffness AK, since the diagonal [K]up and

the diagonal [K]p values corresponding to the DOFs are known. Table 5.13 shows the change in
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stiffness corresponding to each DOF that contains damage. This table also shows the effects of

reducing the Young’s Modulus by 40% is seen as a reduction in stiffness by approximately 10%.

Diagonal Diagonal Diagonal | |

Nodes | DOFs | [K]yp Value | [K]p Value | A[K] Value | ° fcrha“ge
No. No. at DOF at DOF at DOF | d:ll:a .
(KN/m) (KN/m) (KN/m) g

49 1044.39 835.51 208.79 10%

21 50 1.50 1.20 0.3 10%

51 1.50 1.20 0.3 10%

52 2088.79 1879.12 208.79 10%

22 53 3.00 270 0.3 10%

54 3.00 2.70 0.3 10%

61 522.19 313.31 208.79 10%

25 62 0.75 0.45 0.3 10%

63 0.75 0.45 0.3 10%

64 1044.39 835.51 208.79 10%

26 65 1.5 1.20 0.3 10%

66 1.5 1.20 0.3 10%

Table 5.13;: Damage Extent Corresponding to DOFs for Damage Case B

This shows that the developed Damage Detection Algorithm successfully detected the simulated

damage and did not find any other damage within the plate structure. It is also interesting to note

that the detected damage was shown to be much larger for translational DOFs than rotational

DOQOFs.

An interesting observation is that the translational amount of damage shown in Figure

5.13b experienced by each node is not an equal distribution, taking into consideration the added

affects of the 5% noise interference. The reason for this is that the connectivity for various nodes

of element no. 16 is different for each node. For example, node no. 21 is an edge node and is

connected by nodes on 3 sides compared to node no. 25 which is a corner node and is only

connected by 2 nodes.
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3.8 DAMAGE CASE C

To further verify that the robustness o f the d eveloped D amage Detection Algorithm, multiple
damage scenarios will be introduced to the plate structure. Damage Case C is the combination of

damage simulated on the plate from Damage Case A and Damage Case B, simultaneously, that

simulates crack propagation at multiple locations.

Table 5.14 is a comparison of the first 10 natural frequencies from ANSYS™ and Matlab™ for

Damage Case C. It can be seen that the difference is very small, especially for the first three

modes.

Mode ANSYS™ Natural | Matlab™ Natural % Error from
Number Frequency (Hz) Frequency (Hz) ANSYS™
1 6.81 6.80 0.15
2 29.33 28.97 1.23
3 41.80 41.81 0.02
4 95.67 93.45 2.32
5 118.92 119.11 0.16
6 179.10 176.26 1.59
7 186.80 179.54 3.89
8 234.57 231.70 1.22
9 252.45 243.16 3.68
10 310.62 294.30 5.25

Table 5.14: Comparison of Natural Frequencies between Matlab™ and ANSYS™ for Damage Case C

Table 5.15 is a comparison of the first 10 natural frequencies of the Matlab™ results between the

Undamaged Case and Damage Case C.
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Natural Natural
Mode % Change from
Frequency (Hz Frequency (Hz)
Number Undglmagz éasl Damage Case C Undamage Case
1 6.83 6.80 0.44
2 29.40 28.97 1.46
3 42.84 41.81 2.40
4 95.79 93.45 2.44
5 120.90 119.11 1.48
6 183.33 176.26 3.86
7 184.97 179.54 2.93
8 236.37 231.70 1.98
9 248.81 243.16 2.27
10 301.08 294.30 2.25

Table 5.15: Comparison of Natural Frequencies between Undamage and Damage Case C

Receptance FRFs for the cantilevered plate were also calculated using Matlab™. Shown in
Figure 5.14 is the receptance FRF plot for location (1, 1) of the cantilever plate before and after
Damage Case C. It can be seen that the frequency shifts in some of the peaks are much larger

than previous shifts observed in either Damage Case A or Damage Case B.

Receplance FRF Piat for the Thin Cantiever Plate - Damage Case C
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Figure 5.14: Point Receptance Plot at a(1, 1) for Damage Case C

Figure 5.15a is the corresponding 3D Damage Location Vector Plot for Damage Case C. From

Figure 5.15a peaks can be seen to occur at various frequencies. However, it can be observed that
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the larger dominant peaks occur between DOFs 25 — 65, which is consistent with the locations

found in Damage Case A and Damage Case B.

26 -~

Fraquancy (Hz) Degrees of Freedan (DOFs)

Figure 5.15a: 3D DLV Plot for Damage Case C without Coordinate Incompatibility
(5% Noise)

Figure 5.15b is the corresponding 3D CDLV plot for Damage Case C. Here it can be seen that
the damage is associated with DOFs 28, 33, 40, 43, 49, 54, 61 and 64, since these peaks are much
greater than the rest of the peaks which are due to the 5% noise interference. The corresponding
node numbers that are associated with the above DOFs are nodes no. 14, 15, 18, 19, 21, 22, 25,
and 26. Although the Damage Detection Algorithm successfully located the damage, care must
be taken to interpret the location of damage in situations where multiple damage occur. At this
point the connectivity within the structure becomes extremely important. Fortunately, through
the process of elimination, it is possible to isolate each individual damage location. For instance,
in Damage Case C, it is known that four nodes shall describe each element. Interpretation of the
results shows that damage is present in 8 nodes. This suggests hat there are only two locations in
the plate structure that is damaged. Through the process of elimination it can be seen that only

element no. 11 is bounded by node no. 14 (DOFs: 28, 29, 30), node no. 15 (DOFs: 31, 32, 33),
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node no. 18 (DOFs: 40, 41, 42) and node no. 19 (DOFs: 43, 44, 45). Likewise, only element no.
16 is bounded by node no. 21 (DOFs: 49, 50, 51), node no. 22 (DOFs: 52, 53, 54), node no. 25

(DOFs: 61, 62, 63) and node no. 26 (DOFs: 64, 65, 66).

X 10s 2D Cumuiative Darmage Location Vector

_________________
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Figure 5.15b: 2D CDLYV Plot for Damage Case C without Coordinate Incompatibility
(5% Noise)

5.9 COORDINATE INCOMPATIBILITY

First only 48 DOFs out of a possible 72 DOFs will be supplied to the Damage Detection
Algorithm. This would require the Damage Detection Algorithm to utilise the Dynamic
Expansion method A (D.E. A), as discussed in Chapter 2, to expand the 24 missing DOFs to
match the 72 DOFs found in the undamaged analytical model. The 48 DOFs that were supplied
into the Damage Detection Algorithm were chosen randomly from the 72 DOFs available. See

Appendix 9 for the list of the randomly chosen DOFs.

For simplicity, Damage Case A scenario from the previous section will be used in this section. A
coordinate incompatibility study will only be applied to Damage Case A for this section, since

Damage Case B and Damage Case C would lead to essentially the same conclusion. As with
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previous studies, noise of 5% will also be introduced to the algorithm at the same time as

coordinate incompatibility.

Figure 5.16a is the corresponding 3D DLV Plot for Damage Case A when only 48 DOFs from a
possible 72 DOFs were supplied to the Damage Detection Algorithm. Since not all the
coordinates have been supplied to the Damage Detection Algorithm, the location of damage can
not be predicted with certainty. However it is possible to utilise the Damage Detection
Algorithm to determine an approximate area of damage. Once this approximate area of damage
has been located, further measurements within this area may aid in pinpointing the location of
damage. Once the location of damage has been pinpointed accurately then a quantitative value

may be determined for the damage using the same procedures as shown in the previous section.

It must be noted that unlike the previous section, in cases where coordinate incompatibility
exists, the vertical axis of the 3D DLV plot may not necessarily indicate the damage extent

within the structure.

Figure 5.16b is the corresponding 2D CDLYV Plot for Damage Case A with 48 DOFs supplied
and 24 expanded DOFs. Here the location of damage can be seen to occur at DOFs 25, 28, 31,
36, 52, 55, 61 and 70. This translates to the damage being associated with nodes no. 13 (DOFs:
26, 26, 27), node no. 14 (DOFs: 28, 29, 30), node no. 15 (DOFs: 31, 32, 33), node no. 20 (DOFs:
46, 47, 48), node no. 22 (DOFs: 52, 53, 54), node 23 (DOFs: 55, 56, 57) node no. 25 (DOFs: 61,
62, 63) and node no. 28 (DOFs: 70, 71, 72. It should be noted that damage for the cantilever

plate is considered as damage to the element rather than to a node.




Chapter 5: Damage Detection in Plate Structures 103

Frequency (Hz Degrees of Freadam (DOFs)

Figure 5.16a: 3D DLV Plot for Damage Case A with 48 Measured Coordinates and
24 Expanded Coordinates (5% Noise)
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Figure 5.16b: 2D CDLYV for Damage Case A with 48 Measured Coordinates and
24 Expanded Coordinates (5% Noise)
Recall that for Damage Case A, only element no. 11 is the damaged element. The initial
conclusion would suggest that the Damage Detection Algorithm did not detect the damage

accurately. However, if the location of these nodes were examined on the cantilever plate as
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shown in Figure 5.17, it can be seen that the nodes mapped out an area where the damage may be
located and that element no. 11 lies within this area. T he reason why it was not possible to
accurately pinpoint the damage to element no. 11 at this present stage is because the Damage
Detection Algorithm could only detect the damage to the closest available DOFs that were

supplied. In order to accurately pinpoint the damaged element, DOFs within the shaded area

shown in Figure 5.17 are required to be supplied.

4 8 12 16 Pl 24 PVl

3) (6) (9) (12) (15) (18)
3 7 11 P 19 Pk 27

(2) (5) (8) (1) (14) (17) 300 mm
2 6 10 PAL 18 .22 26

(1) 4) (7) (10) (13) (16)
1 5 9 PRK 17 21 pel

600 mm

@ Nodes Associated with Damage [ ] Damage Located within this Area

Figure 5.17: Node Map of Possible Damage Area for Damage Case A

In order to accurately pinpoint the damage further DOFs within the identified area were
subsequently supplied to the Damage Detection Algorithm. Figure 5.18a is the corresponding
3D DLV Plot for Damage Case A when 12 more DOFs, totalling 60 DOFs out of 72 DOFs were

supplied to the Damage Detection Algorithm.
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Figure 5.18a: 3D DLV Plot for Damage Case A with 60 Measured Coordinates and
12 Expanded Coordinates (5% Noise)

Figure 5.18b is the corresponding 2D CDLYV plot for Damage Case B with 60 DOFs supplied and
12 expanded DOFs. Here the location of damage can be seen to occur at DOFs 28, 31, 43 and 52
whose peaks are clearly dominate over the smaller peaks that are due to noise. This translates to
the damage being associated with node no. 14 (DOFs: 28, 29, 30), node no. 15 (DOFs: 31, 32,
33), node no. 19 (DOFs: 43, 44, 45) and node no. 22 (DOFs: 52, 53, 55). 1f these nodes were
examined onto the cantilever plate as shown in Figure 5.19, they map out an area on the plate
where damage may exist. Since not all the coordinates have been supplied, it is still not possible
to determine the exact location of damage. However comparison of Figure 5.17 and Figure 5.19,
shows that the area of damage is furthered refined when more DOFs for the cantilever plate are
supplied to the Damage Detection Algorithm. It can be seen that in order to improve the
resolution of the location of damage, all the DOFs that lie within the shaded area of Figure 5.19

must be supplied to the Damage Detection Algorithm.
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Figure 5.18b: 2D CDLYV Plot for Damage Case A with 60 Measured Coordinates and
12 Expanded Coordinates (5% Noise)
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Figure 5.19: Node Map of Possible Damage Area
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5.10 DISCUSSION

In this Chapter the Damage Detection Algorithm was found to be robust and demonstrated that it
could be used as a tool to locate damage within a thin flat plate structure. Furthermore, the
Damage Detection Algorithm was also able to give estimation on the extent of damage present
once the location was found. It was also shown that the algorithm was capable of detecting

damage for multiple simulated damages with 5% simulated noise interference.

For the case where coordinate incompatibility exists, the Damage Detection Algorithm
demonstrated that it could be used as a tool to firstly determine a broad area of damage within the
structure. Once an area of damage has been identified on the structure, further refinements to

pinpoint the damage can be effected if more FRF data in the area are available.

A real cantilever plate will be studied in the next chapter. An experimental FRF will be obtained
from a cantilever plate from vibration testing. Damage will be introduced to the cantilever plate

and the ability of the Damage Detection Algorithm to detect this damage will be assessed.




CHAPTER 6
EXPERIMENTAL STUDIES:
DAMAGE DETECTION IN A

CANTILEVER PLATE

The aim of this chapter is to utilise the Damage Detection Algorithm that has been studied in the
previous chapters and apply it to a real structure using experimental FRFs which will be obtained
from non destructive vibration tests. Physical damage will be introduced to the cantilever plate

and the performance of the Damage Detection Algorithm will be assessed.

The dimension of the physical test piece has been chosen to match the dimension of the Plate28
example from the previous chapter. This will enable a comparison to be made between the
results previously obtained from simulated damage to experimental results obtained in this

chapter. First basic concepts from experimental modal analysis are briefly presented.

6.1 BASIC MODAL ANALYSIS
The basic experimental setup required in order to obtain FRF data is simple and consists of three
main items:

1. Transducers

2. Excitation mechanism

3. Frequency Analyser
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6.1.1 TRANSDUCERS

Transducers are used to measure the parameters of interest in modal testing. There are a wide
variety of transducers available, the most common being the “Force Transducer” and the
“Accelerometer”.  These transducers consist of a piezoelectric element which exhibits an
electrical charge across its end face when subjected to mechanical stresses. With the appropriate
design, a piezoelectric element may be incorporated into devices that may induce a stress

proportional to the physical quantity to be measured such as force or acceleration.

It is important that the transducer such as an accelerometer is attached correctly to the test
structure and that the correct method of fixation is chosen for the desired frequency response
range of the test structure, as limitations in frequency response ranges exist for each method
(Ewins, 1984) and are shown in Figure 6.1. It is also important that when attaching the
transducer to the test structure that the selected method does not dramatically change the local
stiffness or mass of the structure. The simplest and easiest method to attach a transducer (of
small relative mass) to the test structure is to use a thin layer of wax which acts as a weak

adhesive. This method will be used for experiments in this chapter.

30

Cemented Wax
20 - stud Stud e

Figure 6.1: Limitation of Frequency Response Range (extracted from Ewins, 1984)
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6.1.2 EXCITATION MECHANISM

The excitation mechanism is important in modal testing as it is used to introduce vibration into
the test structure through a controlled excitation. The hammer excitor is a simple way to
introduce excitation into a test structure. The hammer consists of a handle with an impactor as
the head. For this reason the hammer excitor is often referred to as an “Impact Hammer”. This
impactor head can be fitted with different types of tips so that different frequency ranges and
force levels may be achieved for testing of different structures. The impactor head also

incorporates a force transducer, which records the force felt by the impactor.

The operator who controls the velocity of the impact on the test structure determines the
magnitude of the force. One of the difficulties associated with using the impact hammer is the
ability to ensure that consistent impact force is applied to the test structure. The location on the
test structure where the contact of the impact hammer is to occur is also important. Ensuring that
the impact is always normal to the test surface would result in greater accuracy and repeatability.
At the same time, multiple impacts should be avoided, that is to say that one impact should only
occur at any one time and the reverberation of the impact hammer should not make contact with

the test structure during this period.

6.1.3 FREQUENCY ANALYSER
The purpose of the analyser is to record and process the signal reported by the transducer. This
signal is transmitted to the analyser in analogue format and is converted to a digital signal by the

analyser.




Chapter 6: Experimental Studies: Damage Detection of a Cantilever Plate 111

6.2 EXPERIMENTAL SETUP
The experimental setup shown in Figure 6.2 that was used to obtain FRF data from the cantilever
plate in this chapter consisted of the following equipment:

1. Miniature Accelerometer (Type 4393 Bruel & Kjaer)

2. Instrumental Hammer (PCB 086B03)

3. Nexus Conditional Amplifier

4. Power Unit (PCB 480D06)

5. Oscilloscope

6. Dual Channel Signal Analyser (Bruel & Kjaer 2032)

7. Personal Computer

A single direction miniature accelerometer (Type 4393 Bruel & Kjaer) with a mass of 2.3g was
used to measure the response of the test structure. Its calibration chart can be found in Appendix
10. Attention was given to the selection of this accelerometer. Incorrect selection may

inadvertently change the overall test piece.

This miniature accelerometer with a sensitivity of 0.314 pc/ms™” was connected to the Nexus
Conditional Amplifier, which amplified the response signal to a suitable level before the signal
was fed into Channel B of the Signal Analyser. A gain of 10mV/ms* was also set on the Nexus
Conditional Amplifier. Additionally, the response signal from the miniature accelerometer was
also fed into an oscilloscope. The purpose of this was to observe the real time response from the

miniature accelerometer.

An instrumented hammer that incorporated a force transducer with a plastic tip was used to

excite the e xperimental test piece. T he sensitivity o f t he force transducers o f t his hammeris
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2.10mV/N and was connected to a power unit with a gain of 100mV/ms™. The signal output

from the power unit was connected to channel A of the Dual Channel Analyser and was also fed

into an oscilloscope to monitor the real time responses.

The output of the Dual Channel Analyser was connected to a personal computer via the GPIB
port on the Dual Channel Analyser. By connecting the Dual Channel Analyser to a personal
computer, this allows the FRFs to be stored, since the Dual Channel Analyser is not capable of

storing more than one FRF trace at any one time. Appendix 11 details the setting used on the

Dual Channel Analyser.

Oo

O ©) D

1. Miniature Accelerometer

O 2. Instrumental Hammer
3. Nexus Conditional Amplifier

4, Power Unit

L —] 5. Oscilloscope

6. Dual Channel Signail Analyser

7. Personal Computer

Figure 6.2: Sketch of Experimental Setup
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6.3 EXPERIMENTAL TEST PIECE

The test structure is a thin cantilever plate with similar properties of the Plate28 structure studied
in the previous chapter. The cantilever plate structure is a thin galvanised steel plate with
dimension 700mm x 300mm x 3mm and is larger than the defined working area to allow for
fixation. It is assumed that the galvanised steel has a Young’s Modulus (E) of 200 GPa,

Poisson’s Ratio (v) of 0.3 and density (p) of 8179 kg/m’.

Using a felt tip pen, a grid of squares the size of 100mm x 100mm was marked out on the surface
of the cantilever plate. Nodes were also marked at each intersection of the grid. This resulted in
28 nodes and 18 square elements over the cantilevered portion as shown in Figure 6.3. With the
plate under such a configuration the full length of the p late was not fully utilised. This was
deliberately done so that there was adequate amount of space left over on one side so that this
could be used to ground the plate. The test piece was clamped between two solid steel bars and

then fixed on a large tri-angular steel frame using several G-Clamps.

4 8 12 16 20 24 28

(3) (6) (9) (12) (15) (18)
3 7 11 15 19 23 27

(@) (5) (8) (11) (14) (17) 300 mm
2 6 10 14 18 22 26

1) (4) (7) (10) (13) (16)
1 5 9 13 17 21 25

600 mm

Figure 6.3: Experimental Test Piece
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In reality this thin cantilever plate is described by 28 nodes and had 6 DOFs (3 translational and 3
rotational) per node. This experimental structure therefore has a total of 168 DOFs. To simplify
the problem, only translation degrees of freedom are considered for the study of this structure.
This is justified, as the rotational degrees of freedom can not be practically measured with the
same degree of accuracy as translational DOF. Under this assumption, the thin cantilever plate
has a total of 84 DOFs. Since this thin cantilever plate is to be grounded at one end, therefore a

further 4 nodes may be eliminated, thus leaving only 72 DOFs.

6.4 CALIBRATION

It is critical that before any data is obtained that equipment calibration is performed to ensure that
all equipment is functioning correctly. Ewins, (1984) suggests that a simple and easy technique
of calibrating can be done by using a known mass. Calibration can be done by freely suspending
this known mass and attaching the accelerometer to be used for measurement onto this mass. A
hammer should then be used to excite the mass. The overall sensitivity of the equipment can be
calibrated by measuring the ratio of response to force of this mass. From this simple structure,

the overall result expected is a constant magnitude over the frequency range.

The mass that was used weighed 9.328 kg and was suspended from a free-free structure as shown

in Figure 6.4.

For this particular mass the calibration is given by;

mX =F
% 1 ) R
or 20108y g = 2010g0{ 7= 201081| 555 )= 17

Where m = 9.328 kg
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Figure 6.4 Free-Free Known Mass Structure

Therefore, for a known mass of 9.328 kg the expected accelerance FRF results obtained by the
Bruel & Kjaer analyser should show a constant magnitude of -19.4 dB across a range of

frequency. Averages of five measurements were obtained for the calibration run.

Initial measurements resulted in a recorded magnitude of -18.4 dB. This was not the value that
was expected for the mass that was used. The setup was adjusted until the desired result was
achieved (Ewins, 1984). The advantage of such type of calibration is that it is relatively simple
to perform and ensures that the complete measurement setup is calibrated in one process, rather

than having to calibrate each individual piece of equipment.

The sensitivity of the miniature accelerometer Bruel & Kjaer Type 4393 was adjusted from
0.314pc/ms™ to 0.354pc/ms™. By adjusting the s ensitivity o f the miniature accelerometer the

correct dB value of -19.4 dB was eventually achieved and is shown in Figure 6.5.
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Figure 6.5 shows the accelerance FRF plot obtained for the calibration of the known mass after
adjustments were made to the equipment to produce the correct theoretical desired dB as
indicated by the dotted line in Figure 6.5. It can also be seen that the accelerance FRF plot
decreases in dB as the frequency increases or rather it can be observed that the pulse is decaying.
This is consistent with experimental results. The coherence plot for the corresponding
accelerance FRF plot has also been provided. It can be seen that the coherence is extremely
good, in that most values are close to one or unity. This suggests that the FRF data obtained
corresponding to this coherence plot is fairly free from noise. However it can not be concluded
that the FRF data is free from errors. It can be observed that the calibration curve is extremely
good over most of the range of frequency studied, while between 5 Hz — 40 Hz, the error is of
order 5%. Poor FRF data at this frequency range could be caused by the existence of rotational
DOFs at the point of fixation causing inadequate grounding of the structure. Despite efforts to

adequately ground the structure, it was not possible to eliminate this problem.

Aocelergnoe Plot fa Calibration of Known Mass (9.328 Kg)
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Figure 6.5: Accelerance and Coherence Plot for Calibration of Known Mass
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6.5 STRUCTURE SETUP

As the plate is fixed at one end i.e. tested in grounded conditions, the test structure will not
exhibit any rigid bound modes. In theory, it is relatively simple to ground a test structure,
however in practice it is very difficult to provide a sufficiently rigid foundation on which the test
structure may be grounded. A common procedure is to measure the mobility of the rigid
foundation itself over a frequency range to establish that the foundation has a much lower
mobility t han the c orresponding levels o fthe test structure at the point of fixation. Ifthisis

satisfied then the test structure can be said to be sufficiently grounded.

However it is important to note that it may often not be very easy to fully ground a structure, as
most o ften there may b € s ome rotational d egrees o f freedom e xisting at the p oint o f fixation.

These rotational degrees of freedom may be very difficult to detect or measure.

6.6 SIMULATION OF DAMAGE

Similar damage cases used in Section 5.4 will be introduced to the experimental test piece (Table
5.4 and Table 5.5). Controlled damage will be firstly introduced to a single element on the
cantilever plate by a small cut across the element. Since it is desired to firstly study the different
damage cases individually before multiple damage scenarios are considered, two identical

cantilever plates have been used.

6.7 OBTAINING EXPERIMENTAL FREQUENCY RESPONSE FUNCTION DATA

Experimental FRFs data will be obtained for at least one row or column of the FRF matrix of the
structure. For example, in the case of Plate28, which is described by 72 DOFs, the minimum
FRFs data required without considering coordinate incompatibility is 72 experimental FRF data

traces. Having said this, it is not sufficient to supply 72 experimental FRF data traces in random
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order. Some order is required when obtaining the experimental FRF, which will satisfy the needs
of one row or column. Through reciprocity, it is easier to obtain a column of FRF data rather
thana row o f FRF data. S ince, in order to obtain a column o f FRF d ata o ne m ust have the
accelerometer fixed on one location w hile the e xcitation 1 ocation ¢ ycles t hrough a1l the n odal
locations. This is easier to realise than to obtain a row of FRFs data where the excitation location

remains fixed and the accelerometer location moves through all the nodal locations.

6.8 ICATS & CIRCLE FIT METHOD

The Bruel & Kjaer Frequency Analyser is used in the experimental setup to acquire the
experimental FRF. However, the analysis of the experimental FRF data will be done using a
modal analysis software, “ICATS” (Imperial College Analysis and Testing Software). ICATS is
a combination of several utilities that caters for specific applications within the modal analysis
field. The MODACQ component within ICATS is used to transfer the experimental FRF data
captured by the Bruel & Kjaer Frequency Analyser to the PC. This data is stored in an ASCII

format.

The circle fit analysis method relies on the fact that the Nyquist plot of the frequency response
function properties produces circle like curves at the vicinity of a resonance in the FRF data. A

proof can be found in Ewins (1984).

Within the ICATS program the circle fit analysis method can be invoked by running the
MODENT module of ICATS. This MODENT module allows the operator to analyse the

obtained FRF experimental data using different analysis methods.
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6.9 UNDAMAGED CASE

Figure 6.6 Experimental Setup of Plate28 without Damage

Figure 6.6 shows the experimental setup for the undamaged cantilever plate. The experimental
plate is clamped between two solid steel bars and fixed to a much larger steel frame by several G-
Clamps. It is assumed that this steel frame is fully grounded. Although theoretically, grounding
a structure is trivial, in reality this was found to be extremely difficult to ensure that all the
rotational DOFs were grounded at the point of fixation. One method to ensure that no rotational

DOFs exist at the fixing point is to obtain preliminary FRFs at or near the grounded nodes. In
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Figure 6.6, the accelerometer is attached to node no. 10 of the plate. A magnetic swivel arm was
used to ensure that the cabling of the accelerometer did not interfere with the vibration of the

cantilever plate during impact.

The Circle Fit Method was used to analyse and detect the mode shapes and natural frequencies of
the FRF data that were obtained from non-destructive impact testing of the undamaged cantilever
plate. Figure 6.7 shows the point FRF data corresponding to location (1, 1) which correlates to
node no. 5 since all previous (lower numbered) nodes have been grounded. Natural frequencies
were also obtained from ICATS and these are presented in Table 6.1. It can be seen from Figure
6.7 that this is indeed a point FRF data since it only contains well defined resonance and anti-
resonance. Itcanbe seenthat ICATS detect only 11 out of 12 natural frequencies shown in

Table 6.1. The frequency of 6.83 Hz is missed because of experimental limitation.
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Figure 6.7: ICATS Identification of Mode Shapes

From Table 6.1, it can be seen that the modes and natural frequencies correlated closely with the
natural frequencies obtained from Matlab and ANSYS. It must also be noted that the first mode

shape and corresponding natural frequency could not be obtained.
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Modes No. Matlab (Hz) ANSYS (Hz) Experimental (Hz)
1 6.83 6.83 Unobtainable
2 29.40 29.78 29.50
3 42.84 42.82 41.50
4 95.79 98.07 95.50
5 120.90 120.71 113.50
6 183.33 187.63 182.00
7 184.97 190.79 185.50
8 236.37 239.20 229.50
9 248.81 258.36 249.50
10 301.08 318.02 298.00

Table 6.1: Comparison of Natural Frequencies for the Cantilever Plate Undamage

Figure 6.8 shows the comparison of the experimental receptance FRF plot obtained from the
undamaged cantilever plate against theoretical calculations from the previous chapter. It can be
seen that at low frequencies both the experimental and theoretical receptances are fairly similar.
It also must be noted that the experimental receptance trace at the initial zero frequency does not
exhibit stiffness like characteristics as presented in modal analysis theories. This does not
suggest that the experimental results obtained are incorrect or that modal analysis is incorrect, but

is due to the erroneous results obtained at the initial zero frequency.

Receptance FRF Plot for tha Undamaged Cantilevered Plate
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Figure 6.8: Comparison of Experimental against Theoretical Receptance FRF
at o1, 1) for the Undamaged Cantilever Plate
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First the e ffect o fnoise is investigated by i nputting into the DLV algorithm t he ¢ xperimental
signals due to noise only by using only the undamaged structure. Figure 6.9a is the
corresponding 3D Damage Location Vector plot for the Undamaged Case between the frequency
ranges of 50Hz — 200Hz with a frequency resolution of 0.5Hz. The Damage Detection
Algorithm was applied to this frequency range so that it would be possible to avoid the erroneous

experimental results obtained at the beginning frequencies closest to zero hertz.

From Figure 6.9a peaks can be seen to occur in all DOFs and this would suggest that all DOFs
within the cantilever plate contained damage. Reading from the vertical axis the maximum
change in stiffness [ AK] can be estimated to be approximately 60N/m. Using Matlab™ itis
possible to investigate further into the DLV to determine the exact location and magnitude of
where the maximum change in stiffness occurs. The magnitude of the stiffness peak was found
to be 64N/m and occurred at DOF 1. From the undamaged stiffness matrix, the original stiffness
magnitude at DOF 1 is approximately 1.044MN/m. Comparison between the stiffness
magnitudes obtained from the DLV with the original magnitude shows that the percentage of
change from the original stiffness value to be approximately 0.006%. This suggests that the

effect of noise was not significant.

Figure 6.9b is the corresponding 2D CDLYV plot for the Undamaged Case which shows the effect
of noise. In this plot extremely large peaks can be seen to occur. However closer inspections
shows that the scale on the vertical axis is extremely small compared to later plots. It can be
seen that the effect of noise is small and present in most DOFs, relatively more dominant for

deflection DOFs compared to rotational DOFs.
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Figure 6.9a: 3D DLV Plot for Undamaged Case
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Figure 6.9b: 2D CDLYV Plot for Undamaged Case
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6.10 DAMAGE CASE A

Figure 6.10: Experimental Setup of Plate28 for Damage Case A

Figure 6.10 shows the experimental setup for the cantilever plate for Damage Case A. Physical
damage was introduced to the cantilever plate as a diagonal cut across element no. 11, affecting
nodes no. 14, 15, 18 and 19. This cut can clearly be seen in Figure 6.9. It is assumed that this
diagonal c ut d oes not change the mass o f t he c antilever p late significantly and thusitcanbe

assumed that there is no change in the mass of the structure.
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Once the experimental plate was securely fixed to the large steel frame structure, FRFs data
traces were obtained by systematically impacting each node at any one time with the impact

hammer. An average of five FRFs data traces were taken for each node.

Table 6.2 is a comparison of natural frequencies obtained from theoretical analysis in the
previous chapter compared with real experimental FRF data for Damage case A. It can be seen

that the experimental data correlate closely with the theoretical analysis.

Modes No. Matlab (Hz) ANSYS (Hz) Experimental (Hz)
1 6.79 6.80 Unobtainable
2 28.95 29.32 28.50
3 41.55 41.56 40.50
4 94.33 96.55 92.50
5 119.30 119.08 113.00
6 176.44 179.31 179.00
7 181.78 188.75 182.50
8 233.96 236.41 227.00
9 244.52 253.92 247.50
10 297.87 313.89 293.00

Table 6.2: Natural Frequency of the Cantilever Plate Obtained from Experiment for Damage Case A

Table 6.3, is a comparison of natural frequencies between the experimental undamaged data and
the experimental data obtained from Damage Case A. A percentage change between 0.44% -

3.39% from the undamaged cantilever plate can be seen at various natural frequencies.

Modes Experimental Experimental g:::r%;gft?l

No. Undamage (Hz) Damage Case A (Hz) Undamage (%
1 Unobtainable Unobtainable NA
2 29.50 28.50 3.39
3 41.50 40.50 2.41
4 95.50 92.50 3.14
5 113.50 113.00 0.44
6 182.00 179.00 1.65
7 185.50 182.50 1.62
8 229.50 227.00 1.09
9 249.50 247.50 0.80
10 298.00 293.00 1.68

Table 6.3: Change from Experimental Undamaged Natural Frequency for Damage Case A
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Figure 6.11 is a comparison of the receptance FRF plots of the theoretical undamaged structure
against Damage Case A for a1, 1), where a(l, 1) in this example corresponds to node no. 5
since all nodes with smaller numeral orders have been grounded. With the introduction of
damage, the receptance FRF plot can be seen to shift towards the lower frequencies ranges
compared to the original undamaged receptance FRF plot. Also it can be seen that the peaks on
the experimental receptance FRF plot are not as sharp and defined as the theoretical receptance

FRF plot. This is possibility due to noise, numerical errors, structural damping and numerical

damping (Ewins, 1984).

Receptance FRF plot for Damage Case A of the Cantilevered Plate
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Figure 6.11: Comparison of Experimental against Theoretical Receptance FRF
at o(1, 1) for Damage Case A.
Figure 6.12a is the corresponding 3D Damage Location Vector plot for Damage Case A between
the frequency range of SOHz — 200Hz with a frequency resolution of 0.5Hz. It must be noted that
a frequency resolution of 0.5Hz was chosen so that it would match the frequency resolution of

the Bruel & Kjaer frequency analysers. By applying the Damage Detection Algorithm within
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this range it was possible to avoid the erroneous experimental results obtained at the beginning

frequencies closest to zero hertz.

From Figure 6.12a peaks can be seen to occur between DOF 25 and DOF 55. This suggests that
the damage would lie between these DOFs. It should also be noted that since the peaks between

DOF 25 and DOF 55 are quite large, smaller peaks due to noise that are existent in other DOFs

may not show up clearly.

Reading from the vertical axis the maximum change in stiffness [AK] can be estimated to be
approximately 40000N/m. Using Matlab™ it is possible to investigate further into the DLV to
determine the exact location and magnitude of where the maximum changes in stiffness occurs.
The maximum magnitude of the stiffness peak was found to be 43088.45N/m and occurred at
DOF 43. This represents the largest change in value of elements of the stiffness matrix of
approximately 2% from the original undamaged stiffness matrix. This is quiet reasonable as the
cut is very small compared to the element surface area. Table 6.4 shows the relative percentage
changes from the original stiffness matrix for the DOFs identified in Figure 6.12b. These values

are ranked in accordance with maximum magnitude observed from the DLV.

Figure 6.12b is the corresponding 2D CDLYV plot for Damage Case A. Here it can be seen that
the damage is associated with quite a few DOFs. However the four most predominant DOFs are
DOF 28, DOF 31, DOF 40 and DOF 43. These predominant DOFs correspond to element no. 11
and clearly suggest that damage is present at this location. Having taken into account the DOFs
that correspond to element no. 11, this leaves approximately 8 DOFs that have a much lesser
magnitude than the four predominant DOFs. These DOFs of lower magnitude require some

interpretation.
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e | e
Rank | DOF DOF DOF o Change
Location Location in Stiffness
N/m
N/m
1 43 2088791.21 43088.45 2.06
2 40 2088791.21 39833.78 1.91
3 28 2088791.21 32198.13 1.54
4 31 2088791.21 29421.32 1.41
5 16 2088791.21 11828.22 0.57
6 19 2088791.21 11641.64 0.56
7 46 1044395.60 10640.49 1.02
8 55 2088791.21 10172.46 0.49
9 34 1044395.60 10017.76 0.96
10 25 1044395.60 9910.17 0.95
11 52 2088791.21 9606.97 0.46
12 37 1044395.60 8904.05 0.85

Table 6.4: Change in Stiffness for Damage Case A

Table 6.5 summarises the remaining smaller magnitude DOFs produced by the 2D CDLYV plot in
relation to their corresponding node numbers. The corresponding node numbers of the eight

smaller magnitude DOFs were then mapped onto the cantilever plate for analysis.

DOFs No. Corresponding Node No.
16 10
19 11
25 13
34 16
37 17
46 20
52 22
55 23

Table 6.5: Summary of Lower Magnitude DOFs for Damage Case A

Figure 6.13 shows the experimental test structure with the nodes of the lower magnitude DOFs
highlighted in relation to the damage element no. 11. It is interesting to see that the nodes

corresponding to the lower magnitude DOFs corresponds to elements that surround the identified
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damage element no. 11. This can be interpreted as either smaller damage exists at each of the
elements described by the nodes relating to the lower magnitude DOFs or that the damage from
element no. 11 is sufficient enough to affect the stiffness in all the surrounding element, thus the
appearance of the cross formation. The latter, explanation seems to be more plausible. This also
suggests that the initial assumption that a small cut in the centre of an element only affects the

stiffness of that element is in fact incorrect.
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1 5 9 ’13 ’17 21 25
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@ Nodes Associated with Damage  [_] Damage Located within this Area

@ Nodes with Lower Magnitudes

Figure 6.13: Configuration of Lower Magnitude DOFs for Damage Case A

6.11 DAMAGE CASE B

Figure 6.14 shows the damage introduced for Damage Case B: Physical damage was introduced
to a new equivalent galvanised cantilever plate and can be clearly seen as a straight horizontal cut
across element no. 16, affecting nodes no. 21, 22, 25 and 26. This experimental plate was then

securely fixed to the large steel frame structure and FRFs data traces were then systematically

obtained at each nodal point.
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Figure 6.14;: Experimental Setup for Plate28 for Damage Case B

Table 6.6 is a comparison of natural frequencies obtained from theoretical analysis in the

previous chapter against real experimental FRF data for Damage Case B. It can be seen that the

experimental natural frequencies correlate closely with the theoretical analysis.

Modes No. | Matlab (Hz) ANSYS (Hz) | Experimental
(Hz)
1 6.83 6.83 Unobtainable
2 29.30 29.67 29.50
3 42.27 42.75 41.00
4 94.13 96.42 93.50
5 120.06 119.91 112.00
6 179.73 184.36 172.00
7 181.62 187.58 185.50
8 232.66 235.76 222.50
9 245,58 255.04 242.50
10 294.77 311.78 272.50

Table 6.6: Natural Frequency of the Cantilever Plate Obtained
from Experiment for Damage Case B
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Table 6.7 is a comparison between the experimental undamaged data and the experimental data

obtained from Damage Case B. A percentage change between 0% - 8.5% from the undamage

cantilever plate can be seen at various natural frequencies.

Experimental Experimental Change from
Modes No. Undamage (Hz) Damage Case B Experimental
(Hz) Undamage (%)

1 Unobtainable Unobtainable NA
2 29.50 29.50 0.00
3 41.50 41.00 1.20
4 95.50 93.50 2.09
5 113.50 112.00 1.32
6 182.00 172.00 5.49
7 185.50 185.50 0.00
8 229.50 222.50 3.05
9 249.50 242.50 2.80
10 298.00 272.50 8.56

Table 6.7: Change from Experimental Undamage Natural Frequency for Damage Case B

Receplance FRF Plot for Damage Case B of the Cantilevered Plate
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Figure 6.15: Comparison of Experimental against Theoretical Receptance FRF
ata(l, 1) for Damage Case B.
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Figure 6.15 is a comparison of the receptance FRF plot of the theoretical Undamaged Case
against the receptance FRF plot of Damage Case B for a(1, 1), where a(1, 1) for this example
corresponds to node no. 5 and is the same location as in Damage Case A. The effect of
introducing the simulated Damage Case B can be seen to affect the higher end of the frequency

trace while leaving the lower end of the frequency trace unchanged.

Figure 6.16a is the corresponding 3D Damage Location Vector plot for Damage Case B between
the frequencies of SOHz — 200Hz with a frequency resolution of 0.5Hz. By applying the Damage
Detection Algorithm within this range it was possible to avoid the erroneous experimental results

obtained at the beginning frequencies close to zero hertz.

From Figure 6.16a peaks can be seen to occur between DOF 35 and DOF 55. This suggests that
the damage would lie between these DOFs. It should also be noted that since the peaks between
DOF 35 and DOF 55 are quite large, smaller peaks that are existent in other DOFs may not show

up clearly.

Reading from the vertical axis the maximum change in stiffness [AK] can be estimated to be
approximately 50000N/m. Using Matlab™ it is possible to investigate further into the DLV to
determine the exact location and magnitude of where the maximum change in stiffness occurs.
The magnitude of the maximum stiffness peak was found to be DOF 61 with a stiffness of
50770.28N/m. This represented a change in stiffness from the original undamaged stiffness
matrix of approximately 9.72%. This suggested that the cut introduced on the cantilever plate as
controlled damage causes approximately 9.72% in stiffness change to elements of the stiffness

matrix of the plate structure. Table 6.8 shows the relative percentage changes from the original
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stiffness matrix for the DOFs identified in Figure 6.16b. These values are ranked in accordance

with maximum magnitude observed from the DLV.

Degreea of Freedam (DOFs)

Frequency (Hz)

2D Cunulative Damage Location Veckor Piat
Degrees of Freedom (DOFs)

Figure 6.16a: 3D DLV Plot for Damage Case B
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Figure 6.16b: 2D CDLYV Plot for Damage Case B
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Figure 6.16b is the corresponding 2D CDLV plot for Damage Case B. Here the DOFs that are
associated with damage can clearly be seen. It also can clearly be seen that there are quite a few
DOFs that show an indication of damage. However, one can see that there are at least 4
predominant DOFs whose magnitudes are larger than the rest of the DOFs. These predominant
DOFs are DOF 49, 52, 61 and 64. These DOFs correspond to node nos. 21, 22, 25 and 26, which
describes element no. 16 and clearly suggest that damage is present at this location. Having
taken into account the DOFs that correspond to element no. 16, this leaves approximately 4
DOFs that have a much lower magnitude than the four DOFs that describe element no. 16. These

lower magnitude DOFs have been summarised in Table 6.8.

Rank | DOF DOF DOF 7o Change
. Location in Stiffness
Location N/m
N/m
1 61 522197.80 50770.28 9.72
2 64 1044395.60 41252.25 3.95
3 49 1044395.60 38724.14 3.71
4 52 2088791.21 32462.55 1.55
5 40 2088791.21 9475.50 0.45
6 67 1044395.60 7895.62 0.76
7 55 2088791.21 6851.95 0.33
8 37 1044395.60 6705.59 0.64

Table 6.8: Change in Stiffness for Damage Case B

Table 6.9 summarises the remaining lower magnitude DOFs produced by the 2D CDLV plot in
relation to their corresponding node numbers. The corresponding node numbers of the four

lower magnitude DOFs were then mapped on the cantilever plate for analysis.

DOFs No. Corresponding Node No.
37 17
40 18
55 23
67 27

Table 6.9: Summary of Lower Magnitude DOFs for Damage Case B




Chapter 6: Experimental Studies: Damage Detection of a Cantilever Plate 136

Figure 6.17 is the experimental test structure with the nodes of the lower magnitude DOFs
plotted in relation to damage element no. 16. It is interesting to see that the nodes of the lower
magnitude DOFs correspond to elements that surround the identified damage element no. 16.
This can be interpreted as either damage exists at each element described by these lower
magnitude DOFs or that the damage from element no. 16 is sufficient enough to also affect the

stiffness of the surrounding elements. The latter explanation seems to be more plausible.
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1 9 13 P *21 .25

600 mm

@ Nodes Associated with Damage [ ] Damage Located within this Area

@ Nodes with Lower Magnitudes

Figure 6.17: Configuration of Lower Magnitude DOFs for Damage Case B

6.12 DAMAGE CASE C
Figure 6.18 shows the experimental setup for Damage Case C. Damage Case C attempts to
Once again, a diagonal cut

simulate multiple damage locations within the cantilever plate.

similar to Damage Case A was introduced to element no. 11 and a horizontal cut similar to
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Damage Case B was introduced to element no. 16 of the experimental cantilever plate and can

clearly be seen in Figure 6.18.

Figure 6.18: Experimental Setup for Damage Case C

The experimental plate was then securely fixed to the large steel frame and FRFs data traces were
obtained by systematically impacting each node at any one time with the impact hammer.
Although only one column of FRFs data was required, three sets of FRFs data were obtained for

different locations of the accelerometer which were node no. 5, node no. 10 and node no. 19.
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These nodal locations were chosen randomly. An average of five FRF data traces were taken for

each node location.

Table 6.10 is a comparison of natural frequencies obtained from theoretical analysis in the
previous chapter compared with real experimental FRF data for Damage Case C. It can be seen

that the experimental data correlates closely with the theoretical analysis.

Modes No. Matlab (Hz) ANSYS (Hz) Experimental (Hz)
1 6.79 6.80 Unobtainable
2 28.84 29.20 28.50
3 41.49 41.49 40.50
4 92.73 94.94 91.00
5 118.53 118.35 112.00
6 173.41 176.40 168.50
7 178.22 185.49 182.00
8 230.07 233.00 238.00
9 240.97 250.29 269.00
10 291.81 307.95 328.50

Table 6.10: Natural Frequency of the Cantilever Plate Obtained from Experiment
for Damage Case C

Table 6.11 is a comparison between the experimental undamaged data and the experimental data
obtained from Damage Case C. A percentage change between 1.3% - 10.3% from the undamage

cantilever plate can be seen at various natural frequencies.

Experimental Experimental Change from
Modes No. Undamage (Hz) Damage Case C Experimental
(Hz) Undamage (%)
1 Unobtainable Unobtainable NA
2 29.50 28.50 3.39
3 41.50 40.50 2.41
4 95.50 91.00 4.71
5 113.50 112.00 1.32
6 182.00 168.50 7.42
7 185.50 182.00 1.89
8 229.50 238.00 3.70
9 249.50 269.00 7.82
10 298.00 328.50 10.23

Table 6.11: Change from Experimental Undamage Natural Frequency for Damage Case C
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Figure 6.19 is a comparison of the receptance FRF plot of the theoretical Undamaged Case
against Damage Case C for a(1, 1), where (1, 1) for this case is still node no. 5 and is the same
location as in all previous damage scenarios. It can be seen that the combination of multiple

damage location has caused the frequency shifts to be much greater as shown in Table 6.11 and

Figure 6.19.

Receptance FRF Plot of the Cantilevered Plate for Damage Case C
150

—— Theoretical Undamaged
—— Experimental Damage Case C
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Figure 6.19: Comparison of Experimental against Theoretical Receptance FRF at
a(1, 1) for Damage Case C

Figure 6.20a is the corresponding 3D Damage Location Vector plot for Damage Case C between
the frequencies of 50Hz — 200Hz with a frequency resolution of 0.5Hz. By applying the Damage
Detection Algorithm within this range it was possible to avoid the erroneous experimental results

obtained at the beginning frequencies closest to zero hertz.

From Figure 6.20a peaks can be seen to occur between DOF 25 and DOF 65. This suggests that

damage would lie between these DOFs. Since the node connectivity has been preserved and the
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DOFs are in relation to each node, it is possible to conclude from the 3D Damage Location

Vector plot that more than one damage location exists due to such a broad range.

Reading from the vertical axis the maximum magnitude corresponding to the change in stiffness
[AK] can be estimated to be approximately 50000N/m. Using Matlab™ it is possible to
investigate further into the DLV to determine the exact location and magnitude of where the
maximum change in stiffness occurs. The magnitude of the change in stiffness was found to be
46863.71N/m and occurred at DOF 61. The change in stiffness at DOF 61 from the original is

approximately 8.97%.

Frequency (Hz)

Degrees of Fresdam (DOFs)

Figure 6.20a: 3D DLV Plot for Damage Case C

Figure 6.20b is the corresponding 2D CDLV plot for Damage Case C. Here it is evident that
multiple damage location may exist within this structure. Care is required for analysis of
multiple damage locations. The easiest and simplest method to analyse this 2D CDLV plot is to
firstly rank the DOFs from highest value to lowest value as shown in Table 6.12. The first seven

values have been identified as possible damage locations since their values are much greater than
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the rest of the DOFs. Table 6.12 also shows the corresponding node numbers in relation to the
DOFs. Once the highest and lowest DOFs have been ranked and their node numbers identified, it

is just a simple case of mapping these damage locations to the experimental test piece. This is

shown in Figure 6.21.
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Figure 6.20b: 2D CDLYV Plot for Damage Case C

Rank No. DOFs Corresponding Node
No. No.
1 61 25
2 49 21
3 64 26
4 28 14
5 43 19
6 52 22
7 40 18
8 31 15
9 55 23
10 37 17
11 16 10
12 25 13
13 46 20
14 67 27
15 19 11
16 34 16

Table 6.12: Rank of DOFs from the 2D CDLYV Plot for Damage Case C
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Figure 6.21 is the experimental cantilever plate with the DOFs from the 2D CDLV for Damage
Case C mapped. The first 7 DOFs that have been identified as damage locations have been
mapped in red and the remaining DOFs have been mapped in blue. With the DOFs so mapped,
Figure 6.21 clearly shows that damage exists at element no. 16. It can also be said that damage
co-exist at element no. 11, even though only 3 of the DOFs have been identified, since it was

previously assumed that damage would affect all found nodes of an element.

Inspection of Figure 6.21 shows that element no. 14 may also contain damage. However, on
closer inspection and interpretation, it can be concluded with certainty that element no. 14 does
not contain any damage. This is because the magnitude of the DOFs describing element no. 14
from Table 6.10 can be seen to be ranked 5, 6" and 7. If element no. 14 indeed does contain
damage then it is expected that the magnitude of the DOFs describing element no. 14 to be much
larger, since some nodes are shared with element no. 11 and element no. 16 which both contain
damage. Therefore the magnitude of the overall shared DOFs would be much larger since

damage would have an effect on each of the shared DOFs.

The lower magnitude DOFs are mapped in blue on Figure 6.19 and can be observed to follow
similar behaviour as noted in Damage Case A and Damage Case B. It should also be noted that
the Damage Detection Algorithm detected the simulated damages in the cantilever plate
successfully and did not detect any other damage that was not implanted. It should also be noted

that no damage was detected for element no. 1, 2 and 3 as expected.
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Figure 6.21: Configuration of Lower Magnitude DOFs for Damage Case C

6.13 DISCUSSION

The developed damage detection was found to be extremely robust in detecting the simulated
damage in a real structure for single damage scenarios. The Damage Detection Algorithm was
also successful in detecting multiple damage locations, however care should be exercised in
interpreting the results produced from the Damage Detection Algorithm. It must be noted that it
was difficult to utilise the full FRF data spectrum due to the erroneous results obtained at the
initial frequency closest to zero hertz. Hence only data from 50Hz — 200Hz at a frequency

resolution of 0.5Hz was used in this section of the thesis.




CHAPTER 7
CONCLUSIONS

The main aim of this thesis was to investigate the performance of a damage detection method
called “Damage Detection Algorithm”, which utilises measured FRF data to locate the existence

of damage in a structure.

The DDA was firstly tested using simulated FRF data on a simple 12 DOF mass spring system.
It was found to be extremely efficient for cases where there is no coordinate i ncompatibility.
DDA is able to locate simulated damage even when 5% simulated normalised random noise was
introduced into the simulated FRF data. For cases where there is coordinate incompatibility
DDA is still able to detect the simulated damage within the mass spring system, however it can
only locate damage to the extent of elements defined by measured constraints. It requires further

data within this area to pinpoint damage. (Chapter 3, Section 3.3)

The DDA was found to be successful in locating the damage within the NASA eight bay space
truss structure. Again, DDA proved to be extremely robust, in that it is able to detect
successfully the location of the simulated damage even with 5% simulated normalised random
noise introduced to the simulated FRF data. It is also able to accurately detect the damage
location for multiple damages.  For cases that involved coordinate incompatibility DDA is able
to indicate successfully the area w here d amage may e xist and these locations w ere c onsistent

with the location of simulated damage. (Chapter 4, Section 4.6, Figure 4.16 and Figure 4.16b).
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The developed Damage Detection Algorithm was found to be capable of locating simulated

damage within a thin flat plate structure including multiple damages. (Chapter 5, Section 5.8,

Figure 5.15a and Figure 5.15b)

The DDA also proved to be capable of detecting real damage from a plate structure using
measured FRFs data, for single and multiple damage locations. (Chapter 6, Section 6.12, Figure

6.20a, Figure 6.20b and Figure 6.21)

In order to make DDA applicable to a general engineering structure the following areas need

further studies:

e A better measure of the amount of damage 1n a structure

e The smallest amount of damage that can be detected by DDA.

e The number of multiple damage locations that can be detected by DDA.

e To study the effects of gradually increasing the amount of noise interference until the

Damage Detection Algorithm ceases to detect damage.

e To study the effects of different extents of coordinate incompatibility and of different

types of DOFs incompatibility on the success of DDA.
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* To study the effects of varying the frequency resolution of the FRF data on the
performance of DDA, with the objective of finding the optimum frequency resolution

and the optimum frequency.

¢ To study the effects of non-linearity on DDA.

e To study the performance of DDA on more complex hybrid structures consisting of

truss, beam, plate and shell elements with damping.

e To integrate all steps of the algorithm including numerical processing and graphical

display into a compact program that will allow users to easily interpret the results.
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APPENDIX 1: DAMAGE DETECTION ALGORITHM WRITTEN IN MATLAB™

%Damage Detection Program V1.0

%For Problems with and without Coordinate Incompatibility
%lncorporating Kidders Expansion Method, which rearranges the mass and
%stiffness matrix as per points for which measurement have been taken.
%The matrix is then expanded and arranged back to original order.
%Random Errors have been implemented

%M-File Name=DAMAGEDETECT.m

%Last Updated=10/08/2002

%Files Required By this Program

% *.USM <= Undamaged Stiffness Matrix File in the form of ASCII delimited

% *.DSM <= Damaged Stiffnes Matrix File in the form of ASCII delimited
% *MAS <= Mass Matrix File in the form of ASCII delimited

% *.AIM <= Measured Coordinates File in the form of ASCII delimited

% SORT.M <= Matlab file required for Matrix Sorting/Manipulation

% INSN.M <= Matlab file generating random numbers

%%% %% % %% %% %% %0 %% % %% % % %% %0 %% %% % %% %% % 0% %0 %% % %0 % %0 %% % % % %% % %% % % % %0

clear all;
format long;

%Input
NN=input('Please enter the number of nodes (DOFs) :');
ifNN <=0
error('DOFs must be greater than 0')
end
NCOOR=input('Please enter the number of measured coordinates : ');
if NCOOR <=0
error('Number of Measured Coordinates must be greater than 0')
elseif NCOOR > NN

error('Number of Measured Coordinates cannot be greater than Number of DOFs')

end
NFREQ1=input('Please enter the first frequency (Hz) :');
if NFREQI1 <0
error('Initial frequency must be greater 0')
end
NFREQ2=input('Please enter the last frequency (Hz) :');
if NFREQ2 <= NFREQI
error('Last frequency must be larger than first frequency');
end
FREQRES=input('Please enter the Frequency Resolution (Delta F) :');
if FREQRES <=0
error('Frequency Resolution must be greater than 0');
end
ERR=input('Please enter the amount of random error to include (%) :');
if ERR <0
error('Random errors must be greater or equal to 0%)
elseif ERR > 100
error('Random errors cannot be greater than 100%)
end
%RECEPT=input('Please enter the node number to obtain RAW FRF trace :');
RECEPT=1,;

%Calculating Number of Points Required
NPOINTS=((NFREQ2-NFREQI)/FREQRES)+1;

%Loading the Undamaged Stiffness Matrix

STIFFU1=input('Please enter the Undamaged Stiffness Matrix filename (*.USM) :

STIFFU=DLMREAD(STIFFU1),
clear STIFFU1;

LIRS }

)
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%Loading the Damaged Stiffness Matrix

STIFFD 1=input('Please enter the Damaged Stiffness Matrix filename (*.DSM) : ','s');
STIFFD=DLMREAD(STIFFD1);

clear STIFFDI1;

%Loading the Mass Matrix

MASS1=input('Please enter the Mass Matrix filename (* MAS) : ','s");
MASS=DLMREAD(MASSI);

clear MASSI;

%Writing ModeShapes

a=modal(MASS,STIFFU);

b=modal(MASS,STIFFD),

for i=1:NN;
fid=fopen('MODESHAPE.TXT','A");
fprintf{fid,'%d %6.2f %6.2f\n’,i,b(1,i),a(1,1));
fclose(fid);

end
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APPENDIX 2: EQUIVALENT CONCENTRATED NODAL MASS THE NASA 8

BAY TRUSS STRUCTURE

Nodes Per Similar Mass Configuration For the NASA 8-Bay Truss Structure

77.1 (g) 88.1 (g) 98.3 (g) 104.8 (g) 109.3 (g) 168.4 (g)

Node 2 Node 34 Node 1 Node 5 Node 33 Node 6

Node 4 Node 36 Node 3 Node 7 Node 35 Node &
Node 10 Node 9
Node 12 Node 11
Node 13 Node 14
Node 15 Node 16
Node 18 Node 17
Node 20 Node 19
Node 21 Node 22
Node 23 Node 24
Node 26 Node 25
Node 28 Node 27
Node 29 Node 30
Node 31 Node 32
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APPENDIX 3: MASS CALCULATION PER NODE FOR THE NASA 8 BAY TRUSS

STRUCTURE
NODE 1
1 x Node Ball 58¢g 58¢g
3 x Longeron 3x;8g 27g
2 x Diagonal 2 x§7 g 27¢g
5 x Joint Assembly 5x77¢g 385¢g
0 x Triax + Block 0 0
Total 983 g
NODE 2
1 x Node Ball 58¢g 58¢g
3 x Longeron 3x;8g 27g
1x27
1 x Diagonal xz 8 135¢g
4 x Joint Assembly 4x7.7¢g 308 g
0 x Triax + Block 0 0
Total 77.1g
NODE 5
1 x Node Ball 58¢ 58¢g
4x18
4 x Longeron X2 g 36g
1x27
1 x Diagonal Xz g 13.5¢
5 x Joint Assembly 5x7.7¢g 385¢g
1 x Triax + Block 1xllg 11g
Total 104.8 g
NODE 6
1 x Node Ball 58g 58¢g
4x18
4 x Longeron Xz g 36g
4x27
4 x Diagonal X2 g 54 g
8 x Joint Assembly 8x7.7¢g 6l.6g
1 x Triax + Block 1xllg 11 g
Total 168.4 g
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[

NODE 33

1 x Node Ball 58¢g 58g

3 x Longeron 3x;8g 27g

2 x Diagonal 2 x;27g 27 g

5 x Joint Assembly 5x77¢g 385¢g

1 x Triax + Block Ixllg l1g
Total 109.3 g

NODE 34

1 x Node Ball 58¢g 58¢g
3x18

3 x Longeron x2 8 27g
1x27

1 x Diagonal z 5 5 135¢g

4 x Joint Assembly 4x7.7g 308 g

1 x Triax + Block 1xllg lg
Total 88.1g
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APPENDIX 4: DOFS RANDOM MEASUREMENT ORDER FOR THE NASA 8 BAY
TRUSS STRUCTURE

Measurement DOF No. Measurement DOF No. Measurement DOF No.
No. No. No.

1 96 33 15 65 92
2 25 34 27 66 71
3 11 35 46 67 65
4 12 36 47 68 19
5 18 37 68 69 2
6 1 38 89 70 20
7 10 39 90 71 41
8 21 40 70 72 49
9 34 41 69 73 39
10 56 42 50 74 42
11 78 43 62 75 36
12 32 44 61 76 43
13 35 45 52 77 26
14 44 46 83 78 37
15 86 47 82 79 24
16 77 48 93 80 40
17 5 49 23 81 53
18 63 50 13 82 84
19 73 51 16 83 74
20 94 52 8 84 81
21 95 53 29 85 64
22 85 54 9 86 57
23 30 55 6 87 67
24 38 56 31 88 80
25 59 57 33 89 91
26 60 58 66 90 75
27 51 59 7 91 79
28 72 60 54 92 58
29 22 61 54 93 48
30 3 62 45 94 17
31 4 63 88 95 28
32 14 64 87 96 76

Please note that all DOFs have been included in the sequence. If 72 DOFs are to be supplied,

then only the random DOFs corresponding to the first 72 measurement numbers should be used.
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APPENDIX 5: MASS MATRIX FOR PLATE STRUCTURES - NON COMPATIBLE
THEORY (SINGLE ELEMENT)

1

2

3 4 5 6 7 8 9 10 11 12
1| MA
2 MD | MB
3] ME | MF | MC
4 MG | MH | MI | MA Symmetric
5/-MH | MJ | MK | -MD | MB
6/ MI | -MK | ML [ ME | -MF | MC
7/MM | MN | MO | MG | MP | MQ | MA
8| -MN| MR | MS | MP | MT | MK | -MD | MB
9 MO MS | MU | -MQ|-MK | MV | -ME | MF | MC
10 MG | -MP | MQ | MM | -MN | MO | MG | -MH | -MI | MA
11[-MP| MT [ -MK|MN [MR | -MS| MH | MJ] | MK | MD | MB
2[-MQ| MK | MV | -MO| MS | MU | -MI | -MK | ML | -ME | -MF | MC
All values to be multiplied by ( ptab
176400
Where p = density, t=thickness, a = length, b = width
MA = 24178 ML = 280a’
MB = 560b* MM = 2758
MC = 560a° MN = -812a
MD = 3227b MO = -812a
ME = -3227a MP = -1393b
MF = -441ab MQ =-1918a
MG = 8582 MR = -210b*
MH = 1918b MS = 196ab
MI = -1393a MT = 280b>
MJ = -420b* MU = -210a°
MK = 294ab MV = -420a’
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APPENDIX 6: STIFFNESS MATRIX FOR PLATE STRUCTURES — NON
COMPATIBLE THEORY (SINGLE ELEMENT)

o~ (.
n
—_ m
= G| 4
o < | m| A
— ||
o AR o2
O n | PIel»n
o
=
=
T
0 s Lm)c%coao
S
%)
m A —
~ fEVJCQ%%VR
e ) =
o mmom%om
L a | v b
s %@mmoc@%o
o | O Z
< cfm-%%m@cngvﬂ
2 z
e | M| Z = | O - =
o U)U)Ommommom 8 —é’g
= o S
=4 s
> wnn n
= - B
g wl 5o
a. | » huggperan
™ 8%%5°§%°mm0 2 %—g%%ﬁg
=5
o S a3
= o
o oo
g mw>ﬂ.—o
< lmlaloZ | =1z % = v
mmmmm,mmc/gvgam,vg S o
= =

12

11




APPENDICES

159

SA = 4(p* +B'2)+%(l4—4v)

SB =

SC=

SD =

Lzs-z + %(1 + 4v)]b

(4., 4 2
5P +E(l—v)ilb

- [232 - %(1 - 4v)}a

SE = —vab
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SF—[g[S +E(l—v)}a

SG =
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SI=
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= FBZ ——4—(1—v) a’

2(p? - 2B )+%(14 —4v)

- [23-2 + %(1 - v)}b
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(2., 1 1.2
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3 15 ]

SL=-2(p? +p )+%(14 —4v)

SM

SN =

[- B+ %(1 - v)}b

[LV —%(l—v)}a

SO = -2(2B* —B?)-—(14 - 4v)

1
5

SP = [- B2+ %(1 ; 4v)}b
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SR =

SS =

ST =

SU =

)b’

:

:252 +%(l—v)}a
:%B‘Z +%(1 —v)-bz
2672
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APPENDIX 7: MASS MATRIX FOR PLATE STRUCTURES - COMPATIBLE THEORY

(SINGLE ELEMENT)

1 2 3 4 5 6 7 8 9 10 11
1| MA
2| MB | MC
3/ MD | ME | MF
4 MG | MH | MI | MA Symmetric
5/-MH| MJ | MK | -MB | MC
6 MI |-MK | ML | MD | -ME | MF
7 MM | MN | MO | MG | MP | MQ | MA
8/ MN| MR | MS | MP | MT | MK | -MB | MC
9 MO | MS | MU | - MQ | -MK | MV | -MD | ME | MF
10 MG | -MP | MQ | MM | -MN | MO | MG | -MH | -MI | MA
11[-MP| MT [ -MK| MN | MR | -MS [ MH | MJ] | MK | MB | MC
2 -MQ| MK [ MV |-MO| -MS | MU | -MI | -MK | ML | -MD | -ME
All values to be multiplied by( ptab j

176400

Where p = density, t= thickness, a = length, b = width
MA = 24336 ML = 2162’
MB = 3432b MM = 2916
MC = 624b’ MN = 702b
MD = -3432a MO = -702a
ME = -484ab MP =-1188b
MF= 624a’ MQ = -2028a
MG = 8424 MR = -162b°
MH = 2028b MS = 169ab
MI=-1188a MT =216b°
MJ = -468b° MU = -162a°
MK = 286ab MV = -486a°
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APPENDIX 8: STIFFNESS MATRIX FOR PLATE STRUCTURES — COMPATIBLE
THEORY (SINGLE ELEMENT)
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APPENDIX 9: DOFS RANDOM MEASUREMENT ORDER FOR THE
CANTILEVERED PLATE STRUCTURE

Meas;rement DOF No. Measurement DOF No. Measurement DOF No.
o. No. No.
] 25 25 28 49 45
5 11 26 27 50 71
3 12 27 46 51 65
4 18 28 47 52 19
5 1 29 68 53 2
6 10 30 70 >4 20
7 21 31 69 55 4
3 34 32 50 56 49
9 56 33 62 57 39
10 32 34 61 28 2
1 35 35 52 29 36
12 44 36 23 60 i
3 5 37 13 61 26
14 63 38 16 62 37
T 30 39 8 63 24
16 38 40 29 o4 &
17 59 41 9 65 >3
T 60 17 6 66 64
19 51 43 31 o7 =
20 72 44 33 oS o7
21 22 45 66 0 >
> 3 46 7 70 48
23 4 47 >3 7 o
24 14 48 S 72 =

Please note that all DOFs have been included in the sequence. If 48 DOFs are to be supplied,

then only the random DOFs corresponding to the first 48 measurement numbers should be used.
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CALIBRATION CHART FOR ACCELEROMETER

APPENDIX 10
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APPENDIX 11: BRUEL & KJAER DUAL FREQUENCY ANALYSER SETTINGS (2032)

Measurement: Dual Spectrum Averaging, zero pad
Trigger: CH. A + Slope Level -0.10 Max Input
Delay: Trig -> A: - 19.53ms CH.A -> B: 0.00ms

Averaging: Lin 5

Freq. Span:  400Hz Af:0.5Hz T=1s At=488us
Weight CH.A: Transient Shift: 3.90ms Length:42.48ms
Weight CH.B: Exponential Shift: Oms Length: 150.87ms
CH.A 6V +3Hz Dir Filt: 6.4kHz 20mV/N

CHB 6V  +3Hz DirFilt: 6.4kHz 31.6mV/m/s’







