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ABSTRACT 

This thesis presents a method to detect structural damage using frequency response function 

(FRF) data obtained from non-destructive vibration tests. The method is used to study cases of 

early structural damage in which there is no appreciable change in mass and damping. The 

resulting change in structural stiffness matrix is reflected in changes of FRF which can be 

exemplified by the evaluation of the damage location vector. This requires the dynamic stiffness 

matrix of the original undamaged structure and the frequency response curve of the currently 

damaged structure. In this thesis, the former is obtained from a finite element model of the virgin 

structure and the latter are obtained from an impact hammer test. The Damage Detection 

Algorithm will be used to detect simulated damage FRF data applied to a simple mass spring 

system, space truss structure and a plate structure and effects of noise. Both numerically 

simulated and experimentally measured noises are investigated. Experimental FRF data were 

obtained for a plate structure and used for detection of physical damage and comparisons made 

with the simulated data. Results show that the Damage Detection Algorithm can be used to 

successfully detect structure damage in situations where coordinate incompatibility and noise 

exists. 
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NOMENCLATURE 

The following lists below are symbols and abbreviations that are used within this thesis. 

[C] 

E 

[H] 

[I] 

[K] 

[M] 

Hd 

[T] 

t 

{X} 

{i} 

{d(Q)} 

[z(Q)] 

{a(Q)} 

[AZ(Q)] 

Sr 

Y'(f) 

P 

V 

Q 

- Viscous damping matrix of a structure 

- Young's modulus (GPa) 

- Hysteric damping matrix of a structure 

- Identity matrix 

- Stiffness matrix of a structure 

- Mass matrix of a structure 

- Number of averages 

- Linear transformation matrix 

- Thickness (m) 

- Vector of displacement 

- Second derivative of displacement with respect to time, acceleration 

vector 

- Damage location vector 

- Dynamic stiffness matrix 

- Receptance frequency response function 

- Difference between dynamics stiffness matrix of damage and 

undamaged structure 

- Normalised error 

- Coherence function at a frequency 

- Density (kg/m3) 

- Poisson's ratio 

- Frequency of the system (Hz) 



Operators and Symbols 

E - Summation 

{ }^, [ ]^ - Transpose 

0 - Matrix multiplication element by element operation 

[ ]"' - Standard matrix inverse 

[ ]D - Subscript D represents damaged structure 

[ ]uD - Subscript UD represents undamaged structure 

{™} - Superscript mc refers to measured coordinate 

l"*̂ } - Superscript uc refers to unmeasured coordinate 

Abbreviations 

CDLV 

COMAC 

DEM 

DLV 

DOFs 

EOM 

FE 

FEM 

FRF 

MAC 

MDOF 

RFRF 

SEREP 

Plate9 

Plate28 

- Cumulative Damage Location Vector 

- Coordinate Modal Assurance Criterion 

- Dynamic Expansion Method 

- Damage Location Vector 

- Degrees of Freedom 

- Equation of Motion 

- Finite element 

- Finite element model 

- Frequency response function 

- Modal assurance criterion 

- Multiple degree of freedom 

- Receptance frequency response function 

- System equivalent reduction expansion process 

- Thin cantilever plate with 9 nodes and 4 elements 

- Thin cantilever plate with 28 nodes and 18 elements 
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CHAPTER 1 

INTRODUCTION 

In recent years, structural damage detection has become a major research focus in the area of 

structural dynamics. Advancements in material science have made it possible to build larger and 

more complex structures that are much lighter in weight. It is therefore essential to periodically 

monitor these structures to ensure that a catastrophic failure does not occur. 

Despite existing non-destructive testing methods such as ultrasound. X-ray, dye penefrant, 

magnetic particles and acoustic emissions, sporadic failures that have disastrous consequences in 

terms of human life and resources still occur. This is largely due to the fact that existing non­

destructive testing methods are often limited to observations in a limited area and rely on a 

presumption of the likely area of damage. Often it may be difficult to observe visually any 

damage that may have occurred within a structure due to material degradation, since the surface 

appearance may remain unchanged. It is therefore desirable to devise a method that can be used 

to evaluate the integrity of a structure as a whole. Such a technique that can successfully detect 

damage within a structure would greatly aid in ensuring the integral safety of a structural system. 

Ideally, a method that can successfully detect damage must be able to address the following 

criteria: 

1. Assess that structural damage has occurred 

2. Determine the location of the damage 

3. Quantify the severity of the damage 

4. Predict the remaining service life of the damaged structure 
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In most cases, if the first three criteria are achieved, then the fourth criterion is obtainable. 

Aside from successfully addressing the essential criteria for a successful damage detection 

technique, the method must also be able to deal with the major barriers that have been hindering 

successful damage detection. 

In structural damage detection there are two major barriers that must be overcome, these are: 

1. Noisy measurement data 

2. Coordinate Incompatibility 

It is relatively simple to determine damage from measurements that are free from errors. 

However, in reality, measurements are always contaminated by various random errors or noise. 

The amount of noise present in the measurement data ultimately affects the quality of the data 

and the accuracy of the detected damage. An inability to cope with data that may be 

contaminated by noise would lead to inaccurate damage detection. 

Coordinate incompatibility is caused by the inability to adequately capture and describe the 

characteristic behaviour of a structure. This is largely due to the fact that a real life structure has 

an infinite number of degrees of freedom (DOFs), and in reality not all DOFs may be measured 

on a structure. This leads to a coordinate incompatibility between the data obtained from the 

spatial model of the structure and the data obtained from measurement. Methods to overcome 

coordinate incompatibility will be discussed later in this chapter. 
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LI REVIEW OF PREVIOUS WORK 

At present structural damage detection is still in its infancy. In spite of the multitude of 

techniques that have been developed, not many techniques are able to address all the criteria for a 

successful damage detection technique. 

To date, existing damage detection techniques can be categorized into two main areas of study. 

There are as follows: 

1. Damage detection techniques based on experimental data 

2. Damage detection techniques based on modal data and finite element data 

1.2 DAMAGE DETECTION TECHNIQUES BASED ON EXPERIMENTAL DATA 

In the past, early structural damage detection techniques were very crude and inaccurate, as they 

relied on visual or acoustic methods to determine damage. A common practice used by early 

locomotive drivers in the 19 and 20 Century to detect the presence of damage was to hammer 

each wheel of their locomotive to determine if there was any difference in the acoustic responses. 

A difference in the norm would indicate the presence of damage. This was highly inaccurate as it 

relied on the driver's acoustic experiences. It was also difficult to produce the same consistent 

impact each time. 

Early damage detection techniques during the 19"̂  Century involved determining frequency shifts 

of resonant frequencies of a structure. It was found that changes in the stiffhess of a structure 

often indicated the presence of damage. It was also found that a change in the stifftiess of a 

structure was also linked to changes in natural frequencies of the same structure. Cawley and 

Adams (1979) suggested that if one set of natural frequency was measured before the structure 

was put into service, subsequent natural frequency measurements could be used to determine 
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whether the structure was still sound by comparing the measured frequency with the original 

natural frequency. Furthermore, by measuring the natural frequencies of a structure at difference 

stages of its life, it is possible to observe the frequency shifts as the damage propagates through 

the structure. 

A similar damage detection technique based on frequency used statistical methods to predict the 

most likely damage location (Friswell et al. 1994). It was assumed that sets of frequencies were 

measured before the structure was put into service, which represented the undamaged structure. 

From these, frequencies shifts of the first several modes for all possible damage scenarios were 

calculated mathematically. Measurements of natural frequencies of the structure at different 

stages of its life would then be fitted against the postulated damage scenarios. The quality of the 

fit to each postulated damage scenario indicated the existence of damage. 

The method proposed by Cawley and Adams (1979) did not give any indication with regards to 

the accuracy of their predictions. Their method would still locate damage from slight changes in 

the natural frequencies due to temperature effects or measurement noise, even though no damage 

actually exists. Statistical methods proposed by Friswell et al. (1994) postulating damage 

scenarios were found to be impractical, as a lot of unnecessary calculations were required. 

1.3 DAMAGE DETECTION TECHNIQUES BASED ON MODAL DATA AND FINITE 
ELEMENT ANALYSIS DATA 

Considerable advancements in Modal Analysis in the field categorised as "Model Updating" 

were also applied to structural damage detection. It was possible to borrow techniques developed 

for model updating because by nature damage detection and model updating are intrinsically 

linked. Both aim to determine the differences between two models. 



Chapter 1: Introduction 

The objective of model updating is to determine the difference between measured experimental 

data and finite element model (FEM) data. Here, it is assumed that the measured experimental 

data is correct and that the difference between the FEM data represents the modelling errors as 

shown in Figure 1.1a. 

Modelling Errors 

Updating 

Figure 1.1a: Difference between Two Models resulting in Modelling Errors 

For damage detection, the objective is to determine the difference between the undamaged 

structure and the damaged structure. Here the data from the damaged structure is usually 

obtained from experimental methods, while data from the undamaged structure is usually 

obtained from a finite element model. The difference between the two models represents damage 

as shown in Figure 1.1b. 

Experimental 
Data from Damaged ) "^ 

Model 

)ata from FEM Mode 
of Undamaged 

Structure 

y 
Damage 

Figure 1.1b: Difference between Two Models resulting in Damage 
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The relevant techniques of model updating that can be used for structural damage detection can 

be broadly categorised into three fields and they are as follows: 

1. Optimal Matrix Method 

2. Eigen-Structure Assignment 

3. Sensitivity Analysis 

1.3.1 OPTIMAL MATRIX METHOD 

The goal of Optimal Matrix Method is to find an updated system matrix which is closest to the 

original matrix that produces the measured natural frequencies and mode shapes. Rodden (1967) 

was the first to use this optimal matrix approach. He used vibrational test data to determine the 

influence coefficients of a structure. Brock (1968) postulated that since the data was determined 

experimentally that errors might have been introduced. Hence, in order to determine the optimal 

matrix, the matrix must satisfy a set of measurements, as well as meeting the requirements of 

symmetry and positive definiteness. Berman and Flannely (1971) addressed the possibility of 

deriving an optimal system matrix with incomplete vibration data (when the number of degrees 

of freedom (DOFs) and the number of modes do not coincide). Baruch and Bar Itzack (1978) 

developed a method that involved the minimisation of Euclidean norm subjected to the 

orthogonality requirements. Berman and Ngay (1983) also adopted a similar approach, but were 

able to improve on the mass and stiffhess matrices, producing more refined mass and stiffhess 

matrices that conform to the orthogonality requirements. However, in order to achieve the 

orthogonality requirement, the physical connectivity of the structure was not preserved. Hence, it 

would not be possible to determine the location of damage within the structure. Kabe (1985) 

showed that a more accurate stiffhess matrix would be achieved if the structural connectivity 

could be preserved. He proposed that this could be accomplished by insisting that all coefficients 

with values of zero in the original stiffhess matrix should also have zero values in the adjusted 

stiffhess matrix. Although the result was an adjusted stiffhess matrix that predicted the measured 



Chapter 1: Introduction 

mode data accurately and also preserved the connectivity of the original stif&iess matrix, the 

mathematical solution of the method required large eigen solutions that would not be practical for 

large space structure problems that may have thousands of degrees of freedom. In order to avoid 

the eigen solution requirements without losing the advantage of Kabe's (1985) method, Krammer 

(1988) utilised the projector matrix theory and the Moore-Penrose generalised theory to produce 

a more computationally efficient solution. Zimmerman et al. (1998) also explored the 

possibilities if using Linear Matrix Inequality (LMI) to provide an improved optimal matrix 

update and parameter update methods for model refinements and damage detection in structures. 

This was highly advantageous, since LMI optimisation problem have low computational 

complexities and can be solved very efficiently. 

Another type of approach that can be classified as an optimal matrix method involves 

minimisation of the rank of the perturbation matrix, rather than the norm of the perturbation 

matrix. This approach is based on the assumption that the damage will tend to be concentrated in 

a few structural members, rather than be distributed throughout a large number of structural 

members. Zimmerman and Kauok (1994) presented the basic minimum rank perturbation theory 

(MRPT) algorithm to estimate the mass, stiffhess and proportional damping perturbation matrices 

simultaneously. A nonzero entry in the damage vector is interpreted as an indication of the 

location of damage. The resulting perturbation matrices have the same rank as the numbers of 

modes used to compute the model force errors. 

Lim and Kashagaki (1994) used the concept of best achievable eigen-vectors, a method 

developed by which measured modes and frequencies can be used to determine both the location 

and magnitude of damage within the structure. Instead of identifying matrix coefficient changes, 

this method identifies damaged structural elements directly, thus the additional step of 

identifying damaged members from the matrix coefficient changes is avoided. 
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1.3.2 EIGEN-STRUCTURE ASSIGNMENT 

Eigen-Structure assignment is another approach that may be used for structural damage detection. 

This technique is used in engineering to dictate the force response of a structure. For structural 

damage detection, eigen-structure assignment can be used to determine a pseudo-confrol value 

that would be required to produce the measured modal properties with the initial finite element 

model (FEM). This pseudo-control component is then translated into a matrix adjustment, which 

can be applied to the initial FEM. Zimmerman and Widengren (1990) used a symmetric eigen-

structure assignment technique to produce the adjusted finite element model which incorporated 

information regarding eigen parameters of the damaged structure. 

1.3.3 SENSITIVITY ANALYSIS 

Sensitivity Analysis is another approach that may be used for structural damage detection. This 

method relies on the sensitivity analysis of the modal parameters with respect to the physical 

variables and is based on the solution of the first order Taylor series that minimises an error 

function of the matrix perturbations. Haug and Choi (1984) calculated the first and second order 

derivatives from measured structural responses with respect to design variables using the 

generalised global stiffhess and mass matrices formulation of structural equation. The variations 

in the stiffhess and mass matrices were shown to be accurate, thus avoiding the requirements for 

explicit reduction of matrices as seen in other methods. However this method was only 

successful for simple structures, since the sensitivity analysis was based on the derivatives of the 

first and second order Taylor series meant that the method would be unable to deal with 'large' 

physical variable changes that may be present in larger and more complex structures. 
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1.4 METHODS TO OVERCOME COORDINATE INCOMPATIBILITY 

In reality, coordinate incompatibility exists and must be addressed. Any successful damage 

detection technique must address this problem. The existing methods that address the problem of 

coordinate incompatibility can be broadly categorised as follows: 

1. Reducing the analytical data 

2. Expanding the measured data 

1.4.1 REDUCING THE ANALYTICAL DATA 

There are a number of reduction techniques developed in recent year. The most commonly used 

reduction technique is Guyan Reduction (1965). However, it is not a preferred technique used 

for damage detection since the original connectivity among the DOFs may be distorted after the 

reduction. As a result, it becomes impossible to locate accurately where the damage occurs (Tran 

and He, 1998). For such reasons, many researchers have not utilised model reduction techniques, 

since the structural connectivity is an important element required for the location of damage. 

The System Equivalent Reduction Expansion Process (SEREP) developed by O'Callahan, 

Avitable and Riemer (1989) allows the exact mapping of large analytical models down to much 

smaller equivalent reduced models. Unlike other reduction processes, SEREP produces a 

reduced model whose frequencies and mode shapes are exactly the same as the full model for the 

selected modes of interest. 

1.4.2 EXPANDING THE MEASURED DATA 

The objective of these methods is to expand the DOFs of the measured FRF data to match the 

DOFs of the analytical model. Choudhury (1996) devised a method referred to as the Dynamic 
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Expansion Method A (D.E. A) that is based on Kidder's (1973) approach, in which the 

unmeasured FRF data can be related to the measured FRF data by a linear fransformation. The 

result is a complete set of FRF data made up with measured and expanded FRF data. This 

complete FRF data has equal numbers of coordinates to that of the analytical FE model. 

Choudhury and He (1993) have also used interpolation techniques based on an inverse reduction 

procedure to also overcome coordinate incompatibility. The FE model data and experimental 

receptance data were used to interpolate the receptance data corresponding to the unmeasured 

coordinates. This also produced a complete set of FRF data that has an equal number of 

coordinates to that of the analytical FE model. However, this technique was found to be 

successful only under certain ideal conditions. 

1.5 SCOPE OF PRESENT WORK 

Damage detection methods using measured frequency response function (FRF) data has been 

found to be a promising method that can address the criteria required for a successful damage 

detection technique. It has been proposed by Choudhury (1996) to use measured FRF data and 

finite element (FE) data, instead of modal data for damage detection, since using measured FRF 

data for damage detection offers advantages over the traditional methods that utilises modal data. 

Firstly, any numerical errors inherent in the modal analysis results caused by inaccurate curve 

fitting are avoided. Secondly, no more effort is required to process measured FRF data in order 

to derive modal data. Ultimately, the most significant advantage of using measured FRF data 

over derived modal analysis data lies in the fact that FRF data provides an abundant amount of 

information on the dynamic behaviour of a structure compared to modal data. Modal data 

provides information on resonant frequencies, corresponding mode shapes and damping ratios 

only. Hence modal data offers only limited information about the dynamic behaviour of a 
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structure because much of the information is lost during numerical processes to obtain the modal 

data. For this reason, it has been found that modal data cannot provide sufficient information 

needed to describe the dynamic behaviour of the structure if it is contaminated with noise. 

Frequency response function data on the other hand contains a greater number of elements, of 

which each element contains information on the dynamic behaviour of the structure over a large 

number of discrete frequencies. If one part of the FRF data is contaminated by noise, then the 

other parts can be referred to since there is an abundant amount of information available. 

The research program presented in this thesis will be concerned with the further development and 

testing of the damage detection algorithm developed by Choudhury (1996). A detailed study into 

the robustness of the Damage Detection Algorithm will be carried out. The content covered in 

this thesis is outlined as follows: 

Chapter 2: Introduces the theories involved in the developed Damage Detection Algorithm. 

Components of the "Damage Location Vector (DLV)", the "Damage Location 

Vector Plot (DLV Plot") and the "Cumulative Damage Location Vector Plot 

(CDLV Plot)", which make up the Damage Detection Algorithm will be discussed 

in details. How normalised random error (noise) can be simulated and its effects 

on the developed algorithm will also be investigated. 

Chapter 3: Theories discussed in Chapter 2 will be apphed to a simple 12-DOFs mass spring 

system to assess the effectiveness and robustness of the developed damage 

detection algorithm in all types of situations. The simplicity of such an example 

will allow detailed explanation of the Damage Detection Algorithm process. 
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Chapter 4: A large three dimensional NASA eight bay space truss structure will be 

investigated theoretically. Simulated damage will be infroduced to various 

locations on the eight bay truss structure. The damage detection algorithm will 

firstly be used to detect the simulated damage in conditions where no coordinate 

incompatibility exists. Coordinate incompatibility and noise interference will then 

be introduced into the structure. The success of the damage detection algorithm 

under various conditions will be assessed. 

Chapter 5: The robustness of the Damage Detection Algorithm will then be tested on a 

cantilevered plate structure using simulated damage at various locations. The 

success of the Damage Detection Algorithm under various conditions will be 

assessed. 

Chapter 6: Experimental FRF data will be obtained for the cantilevered plate used in Chapter 

5. This experimental FRF data will be inputted into the Damage Detection 

Algorithm and its success in determining the physical damage will be assessed. 

Basic modal analysis techniques will also be covered. 

Chapter 7: Discussions and conclusion will be presented in this chapter. A proposal for 

further investigation will also be raised. 

1.6 ASSUMPTIONS OF THIS STUDY 

Throughout this thesis, certain assumptions have been made to enable computations to be more 

efficient. These assumptions have been made after an extensive literature review of the existing 
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methods for structural damage detection and are consistent with the assumptions used in other 

existing methods for structural damage detection. These assumptions are: 

• Damage in the structure is seen as a change in the structural stiffhess of the structure and 

not changes in the mass of the structure. Therefore any damage present in the structure 

will reflect changes in the stiffhess matrix only. Any changes in the mass matrix are 

considered to be small and can be neglected. 

• Structural damping in the structure is considered to be small and can be neglected. 

• Structures are assumed to exhibit linear behaviour. This means that the response of a 

structure to a combination of forces applied simultaneously is the summation of the 

responses to each individual force. 



CHAPTER 2 

DAMAGE DETECTION USING 

FREQUENCY RESPONSE FUNCTION DATA 

Measured frequency response function (FRF) data are usually the most compact form of data 

obtained from vibration tests of structures. Unlike modal data, they can be retrieved without 

further numerical processing and hence without the associated errors. The FRF data provides an 

abundance of information on the structure's dynamic behaviour, much of which would have been 

lost in using modal analysis data, due to the necessary numerical process to extract them. 

A damage detection technique using measured frequency response function (FRF) data has been 

found to be a promising method that can successfully address the criteria required for successful 

damage detection (Choudhury, 1996). 

2.1 DAMAGE LOCATION VECTOR 

Frequency response function data can be derived from the characteristics of the structural system 

or the equation of motion. Its main characteristics are contained in its mass [M], stiffhess [K] 

and damping [C] or hysteric damping [H] matrices. Since damping and hysteretic effects will not 

be considered in this thesis, the equation of motion of an undamped system without excitation 

can be described as follows: 

[ML{X}+[KL{X}={0} (2.1) 
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where [M] and [K] are the NxN analytical mass and stiffriess matrices of the structure, and {x} is 

an Nxl vector of displacement. The subscript symbol UD has been infroduced to indicate that 

the structure is undamaged. 

Similarly, the system with structural damage is described by: 

[ML{X}+[KL{X}={0} (2.2) 

where the subscript D indicates that the structure is damaged. 

Damage in this thesis will be considered to be a reduction in the stiffriess of a structure rather 

than the loss of mass, since a loss of mass would mean the likelihood of a catastrophic failure. 

Therefore, the mass matrix of the damage structure can be assumed to be equal to the mass 

matrix of the undamaged structure. Hence: 

[MLD = [M]D (2.3) 

If a single column of receptance frequency response function (RFRF) at a particular frequency Q. 

is given by {a(Q)} then: 

JKL - Q' [ML ho (")}=([KL - " ' [MLD hvu (")} (2.4) 

The dynamic stiffhess matrix before and after damage can be related as follows: 

([Z(Q)L ){a, (Q)} = ([Z(Q)L ){a,o (Q)} (2.5) 
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Let: [Z(Q)L = [Z(Q)L, - [AZ(Q)] (2.6) 

where [Z(Q)]D represents the dynamic stiffhess matrix of the damaged RFRF at a particular 

frequency Q. [Z(a)]uD represents that of the undamaged RFRF. [AZ(Q)] represents the 

difference in RFRFs between the damaged and undamaged structure at a frequency Q. 

Equation (2.5) can also be rewritten as: 

[z(Q)L{a,^(Q)}= ([Z(Q)L -[AZ(Q)]Ka,(Q)} (2.7) 

or, [z(Q)L({a„(Q)}- {a^M}) = [AZ(Q)]{a„(Q)} (2.8) 

Let: {d(Q)} = [AZ(Q)]{a^ (Q)} (2.9) 

Thus by (2.8) {d(Q)} = [Z(Q)L„ {Aa(Q)} (2.10) 

where the vector {Aa(Q.)} represents the difference between RFRFs of the damaged and the 

undamaged structure at a frequency Q.. A straight multiplication of the undamaged dynamic 

stiffhess matrix and the vector {Aa(Q)} would generate the corresponding vector {d(t2)}. This 

{d(Q)} is an Nxl vector containing non-zero values for DOFs that contain damage and zero 

values for undamaged DOFs and is also referred to as "Damage Location Vector" (DLV). 

The DLV can be shown in a 3D graph to locate damage. Figure 2.1a is an example of a 3D DLV 

plot of a 12 DOFs mass spring system that will be studied in chapter 3 of this thesis. The first 

axis of the graph represents the Degrees of Freedoms (DOFs) in the "Damage Location Vector". 

The second axis represents the frequency ranges for which the damage location algorithm is 

applied and the third axis represents the absolute value obtained for the elements in the "Damage 
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Location Vector". Elements in the DLV whose value is due only to the effects of noise will 

follow a random pattern with insignificant amplitudes when plotted over a certain frequency 

range. The value of elements that are truly affected by damage will follow a more distinctive 

pattem and occur with greater amplitude. It can be seen in Figure 2.1a that damage exists 

between DOF 6 and DOF 9. All other peaks and ripples that occur outside of D0F6 and DOF 9 

are due to noise. 

A two dimensional representation of the DLV can be obtained by adding the values of each DLV 

for each frequency to each other to obtain a resultant vector called a "Cumulative Damage 

Location Vector" or (CDLV). This CDLV when plotted produces a 2D graph and can be seen in 

Figure 2.1b. The first axis corresponds to the DOFs and the second axis represents the 

cumulative amplitude of the DLV over a frequency range. Since the elements in the DLV due to 

damage will be mostly bigger than those due to noise, the CDLV would magnify any presence of 

damage greatly, making it easier to isolate the location of damage. 
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Figure 2.1a: An Example of a 3D DLV Plot of a 12 DOFs Mass Spring System 
without Noise 
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Figure 2.1b: An Example of a 2D CDLV Plot for a 12 DOFs Mass Spring System 
without Noise 

It can be clearly seen in Figure 2.1b that the damage is located at an element connected to DOF 7 

and DOF 8 since their cumulative values are much greater than all the other remaining DOFs. It 

must be noted that since the CDLV is a cumulative quantity base on the frequency ranges of the 

DLV, the magnitude indicated on the 2D graph is not a static quantity and would change 

according to the number of frequencies and frequency resolution. 

By referring to the 3D DLV plot and the 2D CDLV plot, it is possible to determine the location 

of damage and estimate the extent of damage when all the coordinates of the system are knovm. 

It becomes more difficult to apply the 3D DLV plot and the 2D CDLV plot in systems where 

coordinate incompatibility exists. Li such a situation, a preliminary step is required to either 

expand or reduce the systems to the same equivalent size before applying the 3D DLV plot and 

the 2D CDLV plot. 
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2.2 DAMAGE DETECTION WITH COORDINATE INCOMPATIBILITY 

There are several reduction and expansion methods available that can be used to overcome this 

coordinate incompatibility problem and these were presented in the previous chapter. The 

Dynamic Expansion method A (D.E. A) investigated by Choudhury (1996) will be used vdthin 

this thesis to overcome coordinate incompatibility problems. 

For example, let N denote the size of the matrix for an undamaged system and M denote the size 

of the matrix for a damaged system. If all DOFs of a particular structure are measured, then there 

will be no coordinate incompatibility between both the systems. This is further explained using 

Figure 2.2. 
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Figure 2.2: All Nodes are Measured, No Incompatibility Exists 

In Figure 2.2 damage has been introduced into node no. 2 and node no. 6. If all the nodes are 

measured then no coordinate incompatibility exists and the damage can be easily found. (Note 

^ represents the measured coordinates and • represents damage present in the structure). 

Let <E) represent the change in Z(w) due to damage, then if the matrix operation represented by 

equation (2.10) is carried out, the effect of such change would be present only in the damage 

location vector elements corresponding to such change. The change in {d(w)} is denoted by © 

and is illustrated in the following diagram: 
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From (2.11) it is clear that damage affects DOF no. 2 and DOF no. 6. 

However in the following example as shovm in Figure 2.3, not all the DOFs are measured. In 

this example only 4 DOFs are measured (at nodes 1, 3, 5 and 6), thus the M x M matrix would 

yield a 4 x 4 matrix, whereas the N x N matrix would yield an 8 x 8 Matrix. It can be seen in 

this example that damage at DOF no. 6 can be detected, whilst damage at DOF no. 2 will not be 

detected with pinpoint accuracy. 
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Figure 2.3: Not All Nodes are Measured, Coordinate Incompatibility Exists 

Hence the damage (denoted by ®) can be found for only the measured coordinate as follows: 

(8) 
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(2.12) 
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From (2.12), the connectivity between the structures is lost and not all the damage can be located. 

Only damage present within the measured coordinates appears. By applying a method referred to 

as the Dynamic Expansion Method A (D.E. A), developed by Choudhury (1996) it becomes 

possible to overcome this coordinate incompatibihty. 

2.3 DYNAMIC EXPANSION METHOD A (D.E. A) 

The Dynamic Expansion Method A (D.E. A) relates the unmeasured FRF data to that of the 

measured FRF data by a linear transformation [T]. Let's consider the unmeasured FRF data in a 

vector denotes as |ao^(co)| and the measured subset denoted as|ap*^(co)|, where superscript UC 

denotes unmeasured coordinates and superscript MC denotes measured coordinate. Hence the 

main aim of the Dynamic Expansion Method A is to derive a suitable transformation matrix [T] 

that relates the unmeasured coordinates to the measured coordinates as illustrated by equation 

(2.13). 

^-(co)}=[T]ix-(co)} (2.13) 

The dynamic stiffhess matrix can then be re-arranged and partitioned into terms of measured and 

unmeasured DOFs. Hence this becomes: 

[Z„(Q)] [Z„(Q)I 
|Z„(Q)] [Z,,(Q)1 

UD 

(2.14) 

Without knowing matrix [AZ(Q)] it is quite impossible to expand the measured FRF data to that 

of the unmeasured coordinates. However, it is possible to assume that matrix [AZ(U)] is a null 

matiix. By doing so, it becomes possible to calculate the sub-vector jaD^(Q)| from {a^'^(Q)j 

using equation (2.14). From this an expanded vector {aD(Q)} is obtained with fiill coordinates, 

which may then be used for damage detection. 
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In this method the transformation matrix is calculated by the inverse of the partitioned dynamic 

stif&iess matrix corresponding to the unmeasured DOFs. The transformation matrix becomes: 

[TR] = - [ l K , , ] ^ - Q H M , , ] ^ ] - ' [ l K i - Q ^ [ M , , ] ^ ] (2.15) 

Here the partitioned dynamic stiffriess matrix corresponding to unmeasured DOFs is a square 

matrix and has a dknension of (N-M)x(N-M), where "N" is the number of DOFs for the 

structure, and "M" is the number of measured DOFs. Here the subscript 21 corresponds to the 

partitioned matrix that contains measured coordinates and subscript 22 corresponds to the 

partitioned matrix that contains urmieasured coordinates. 

Thus from the previous example using the D.E. A it becomes: 
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Where "^ represents the measured coordinates and x represents the unmeasured coordinate 

against the degree of freedom of the structure. This is carried out by grouping all the measured 

coordinates before the unmeasured coordinates. All measured coordinates can be represented by 

a, and all unmeasured coordinates are represented bya2. Thus an expanded vector {a} with 

full coordinates is obtained. This vector can be used in equation (2.9) to obtain the DLV and 

subsequently the CDLV, 
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2.4 NORMALISED RANDOM ERRORS 

It is relatively simple to determine damage from measurements that are free from errors. 

However, in reality, measurements are always contaminated by various random errors from noise 

and/or measurement. It has been found that usmg FRF data over conventional modal analysis 

data offers a distinct advantage that is capable of dealing with data contaminated with noise 

(Choudhury, 1986). This is because errors such as noise would follow a random pattem, 

becoming negligible at certain frequency points and becoming noticeable at others (Choudhury, 

1986). 

The random error in a typical FRF measurement can be quantified by the coherence function 

(Ewins, 1984). Coherence gives a measure of the degree of linear dependence between two 

signals, as a function of frequency (Ewins, 1984). 

Theoretical randomised errors can be introduced into the FRF data in two different forms: 

1. Random Number between +/- 0.05 x FRF + Original FRF 

2. Random Number between 0.95 - 1.05 x FRF 

It was found that the first instance was computationally better, since the first instance meant that 

it was also possible to optionally include randomised errors without much trouble, by resetting 

the randomised number generated back to a zero value. 

Even though randomised errors are usually associated with the time domain. It is possible to 

introduce the randomised errors in the frequency domain (Ewins, 1984). The randomly 

generated errors can be simply added to the FRFs. 
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2.5 DAMAGE DETECTION ALGORITHM WRITTEN IN MATLAB^M 

An algorithm was written in Matlab™ to calculate the Damage Location Vector, the Cumulative 

Damage Location Vector and the Dynamic Expansion Method A when required. From this point 

forward this algorithm shall be referred to as the "Damage Detection Algorithm" or "DDA". 

Using the same damage detection algorithm, it was also possible to simulate normalised random 

errors in the calculations. Natural frequencies and mode shapes can also be calculated using the 

same Damage Detection Algorithm. Figure 2.4 outlines the Damage Detection Algorithm logic 

used in writing the Matlab"̂ *̂  program. The Damage Detection Algorithm codes vmtten in 

Matlab"̂ ** can be found in Appendix 1. 

• Damage Detection Algorithm Logic in Matlab̂ "̂  for scenarios without Coordinate 
Incompatibility 

1. Is there coordinate incompatibility involved? NO 

2. Do you want to simulate random noise? If YES proceed to 3. If NO proceed to 4. 

3. User Input is required. Here the user is asked to input the percentage of normal random errors 

to generate. This is then stored for later usage in the DLV. 

4. User Input is required. Here the user is asked to input the following: 

Frequency Range 

Number of Measured Coordinates 

[K]uD Is represented by files with extension (*.USM) 

[M] Is represented by files with extension (*.MAS) 

[K]D IS represented by files with extension (*.DSM) 

5. The DLV and CDLV is calculated and the 3D DLV and 2D CDLV Plot are outputted. 
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• Damage Detection Algorithm Logic in Matlab^^ for scenarios with Coordinate 
Incompatibility 

1. Is there coordinate incompatibility involved? YES 

2. Do you want to simulate random noise? If YES proceed to 3. If NO proceed to 4. 

3. User Input is required. Here the user is asked to input the percentage of normal random errors 

to generate. This is then stored for later usage in the DLV. 

4. User Input is required. Here the user is asked to input the following: 

Frequency Range 

Number of Measured Coordinates 

[K]uD Is represented by files with extension (*.USM) 

[M] Is represented by files with extension (*.MAS) 

[K]D IS represented by files with extension (*.DSM) 

Vector {a} Is represented by files with extension (*.AIM) 

5. The unmeasured coordinates are expanded using Dynamic Expansion Method A (D.E. A) 

6. The DLV and CDLV is calculated and the 3D DLV and 2D CDLV Plot are outputted. 

Having briefly discussed the theories involved in the Damage Detection Algorithm, it is time to 

apply the developed algorithm to a simple structure to study effectiveness of the algorithm. The 

next chapter will see the Damage Detection Algorithm (DDA) applied to a relatively simple mass 

spring stiiicture that has only 12 franslational DOFs. The performance of the DDA will be 

assessed. It will then be used to investigate simulated damage in the NASA eight bay space truss 

structure and finally in a thin flat cantilevered plate. 
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Figure 2.4: Damage Detection Algorithm Logic 



CHAPTER 3 

DAMAGE DETECTION 

IN A SIMPLE MASS SPRING SYSTEM 

Let's consider a 12 DOFs simple undamaged mass spring system as shown in Figure 3.1, which 

was studied by Choudhury (1996) using constrained minimisation damage quantification 

(CMDQ) method. The stiffhess matrix for the undamaged and damage system is presented in 

Table 3.1 and Table 3.2 respectively. The mass matrix is presented in Table 3.3. For both cases 

it is assumed that the mass matrix is unaffected by the introduction of damage. The natural 

frequency for the 12 DOFs system before and after damage is presented in Table 3.4. 

Damage was simulated by reducing the stiffhess in the spring member that was located between 

mass No.5 and mass No.6 from 6000 N/m to 5200 N/m, a reduction of 800 N/m. The Damage 

Detection Algorithms and resultant Damage Location Vector (DLV) plot and Cumulative 

Damage Location Vector (CDLV) plot were computed in Matlab'̂ *̂ . 
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Table 3.1: Stiffness Matrix of the Undamaged Structure for the 12 DOFs Mass Spring System (N/m) 
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Table 3.2: Stiffness Matrix of the Damaged Structure for the 12 DOFs Mass Spring System (N/m) 
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Table 3.3: Mass Matrix for the Undamaged/Damaged 12 DOFs Mass Spring System (1^) 

Natural 
Frequency No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Before Damage 
(Hz) 

0.92 

2.50 

2.94 

3.96 

4.28 

4.60 

5.06 

5.56 

6.38 

7.32 

8.98 

13.00 

After Damage 
(Hz) 

0.92 

2.50 
2.84 

3.94 

4.26 

4.53 

4.98 

5.53 

6.06 

7.27 

8.98 

13.00 

% Change from 
Undamaged 

0 
0 
3.4 
0.5 
0.5 
1.5 
1.6 
0.5 
5.0 
0.7 
0 
0 

Table 3.4: Natural Frequency Before and After Damage for the Simple 12 DOFs 
Mass Spring System 
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Receptance FRF Plot for Before and After Damage for the Simple 12 DOFs Mass-Spring System 

Frequency (Hz) 

Figure 3.2: Receptance FRF Plot at a ( l , 1) for Before and After Damage for the Simple 
12 DOFs Mass Spring System 

Shovm in Figure 3.2 is the computed receptance FRF plot exhibited by the simple mass spring 

system before and after damage at a(l, 1). It must be noted that these receptance FRFs are 

simulated results obtained from Matlab'̂ '̂  and that a(l, 1) would correspond to having the 

accelerometer located on mass no. 1 while also exciting mass no. 1 in a real experiment. A 

comparison of the receptance FRFs plot for the undamaged and the damaged condition shows 

frequency shifts. The frequency trace corresponding to the system after damage can be seen to 

be shifted lower at some frequencies compared to the undamaged frequency trace. 
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3.1 DAMAGE DETECTION WITHOUT COORDINATE INCOMPATIBILITY AND NO 
NOISE 

The Damage Detection Algorithm which was written in Matlab''"'̂  and has been discussed in 

Chapter 2 was first applied to data corresponding to the 12 DOFs mass spring system that was 

free from any noise interference or numerical errors. All data points were also available, thus no 

coordinate incompatibility exists. A frequency range of 0 - 14 Hz covering the 12 modes of 

vibration for the system was chosen. A frequency resolution of 0.32Hz was found to be the best 

sampling rate to adequately describe the structure. 

3D Damage Location Vectcr PW 

Degress of freedon (DOFs) 

Figure 3.3a: 3D DLV Plot of the 12 DOFs Mass Spring System without Coordinate 
Incompatibility and No Noise Interference 

Figure 3.3a is the 3D Damage Location Vector (DLV) plot for the 12 DOF mass spring system 

witiiout any coordinate incompatibility and no noise interference. Peaks can be observed to 

occur between DOF 5 and DOF 6. These peaks are the non-zero entry in the Damage Location 

Vector and relate to damage present within the structtire. The damage can be observed to occur 

consistently throughout the frequency range of the structure. Reading from the vertical axis of 

the 3D DLV plot the maximum damage can be estimated to be 800 N/m. Figure 3.3b is the 
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corresponding 2D Cumulative Damage Location Vector (CDLV) plot and confirms that the 

damage is indeed located between DOF 5 and DOF 6, 
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Figure 3.3b: 2D CDLV Plot of the 12 DOFs Mass Spring System without Coordinate 
Incompatibility and No Noise Interference 

It should be noted the CDLV plot accentuate the damage but the magnitudes thus found are not 

as relevant as those in the 3D DLV. 

3.2 DAMAGE DETECTION WITHOUT COORDINATE INCOMPATIBILITY AND 
WITH 5% NOISE 

Since the Damage Detection Algorithm was successftil in locating the damage for error-free data, 

5% noise will be introduced to the structure in the form of normalised random errors using the 

method discussed in Chapter 2. The purpose of introducing 5% normalised random errors is to 

simulate a noisy environment and to represent any measurement errors that may be observed on a 

real structure. 
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Figure 3.4a and Figure 3.4b show the 3D DLV Plot and the 2D CDLV Plot respectively for the 

12 DOFs mass spring system w t̂h 5% normalised random errors introduced. When normalised 

random errors have been introduced all elements of the DLV are non-zero. The DOFs associated 

with damage can be observed to be much larger than those that are due to random errors 

throughout the frequency range. It is also interesting to note that randomised errors can be 

observed to affect the system at certain frequency ranges, while leaving other frequency ranges 

unaffected. The 2D CDLV plot show the cumulative values for DOF 5 and DOF 6 to be much 

larger than the other DOFs. This demonstrates that the Damage Detection Algorithm can 

successfiiUy detect damage with data that is contaminated with 5% normalised random errors. 
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Figure 3.4a: 3D DLV Plot of the 12 DOFs Mass Spring System without Coordinate 
Incompatibility and with 5% Noise Interference 
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Figure 3.4b: 2D CDLV Plot of the 12 DOFs Mass Spring System without Coordinate 
Incompatibility and with 5% Noise Interference 

3.3 DAMAGE DETECTION WITH COORDINATE INCOMPATIBILITY AND NO 
NOISE 

In a real life experiment, it may not always be possible to measure the entire coordinate system 

on the structure. Ideally, one full column or one full row of data is required to adequately 

describe the structure. The accuracy is increased if more than one fiill column or one fiill row is 

available. However, what would happen if it were not possible to have one full row or one fiill 

column of data? A coordinate incompatibility would occur and the Dynamic Expansion Method 

A (D.E. A) discussed in Chapter 2 would be required to firstly expand the data. Consequently, 

the Damage Detection Algorithm was then applied to the same mass spring system when only 6 

measured coordinates were supplied. This meant that the remaining 6 unsupplied coordinates 

were required to be expanded using the D.E. A. The 6 measured coordinate were randomly 

chosen from the possible 12 DOFs. The randomly chosen measured coordinates are indicated in 

Table 3.5. 

Let us consider three cases: 
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3.3.1 SIX MEASURED COORDINATE SUPPLIED 

In this case only 6 measured coordinates are chosen from the random set. They are: 

'2 
4 

7 

1 

3 

5 

And the unmeasured coordinate would be the remaining coordinates and are as follows: 

Wmc 

Rc = 

10 
8 
9 
6 
11 
12 

No. Measured Coordinates 

Measured Coordinate 
Randomly Ordered (DOF) 

1 

2 

2 

4 

3 

7 

4 

1 

5 

3 

6 

5 

7 

10 

8 

8 

9 

9 

10 

6 

11 

11 

12 

12 

Table 3.5: Measured Coordinates Index 

Frequency (Hz) 
Degrees o( Freedom (DOFs) 

Figure 3.5a: 3D DLV Plot of the 12 DOFs Mass Spring System with 6 Measured Coordinates 
and 6 Expanded Coordinates and No Noise Interference 
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2D CunUatiw Damage Location Vector Plot 
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Figure 3.5b: 2D CDLV Plot of the 12 DOFs Mass Spring System with 6 Measured Coordinates 
and 6 Expanded Coordinates and No Noise Interference 

Figure 3.5a and Figure 3.5b show the 3D DLV plot and the 2D CDLV plot for the 12 DOFs mass 

spring system with six measured coordinates and six expanded coordinates and no noise 

interference respectively. Comparing Figure 3.3a with Figure 3.3b, it can be seen that Figure 

3.5a and Figure 3.5b are incorrect. In fact Figure 3.5b suggests that damage may exist at DOF 2, 

DOF 3, DOF 4, DOF 5 and DOF 7. The initial reaction to this is that the Damage Detection 

Algorithm did not correctly detect the simulated damage. However on closer inspection. Figure 

3.5a show that large peaks occur at DOF 5 and DOF 7. Smaller peak can be seen to occur at 

DOF 2, DOF 3 and DOF 4. From the previous section it is known that the damage location 

should in fact lie between DOF 5 and DOF 6. However, since DOF 6 is not a measured 

coordinate and has not been supplied to the Damage Detection Algorithm, it cannot indicate 

exactly the location of damage. Hence the next closest available measured DOF to the damage 

DOF is displayed. Since not all the coordinates have been measured the results obtained cannot 

be taken as the final and foremost results. The result should be interpreted as giving only an 

indication of where the damage lies. From Figure 3.5b, the damage can be seen to lie between 
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DOF 2, DOF 3, DOF 4, DOF 5 and DOF 7. Further measurements should be taken between 

these DOFs in order to accurately identify the damage locations within the structure. 

3.3.2 EIGHT MEASURED COORDINATES SUPPLIED 

Now let us consider the case in which only 8 measured coordinates are chosen from Table 3.5. 

Using the previously chosen 6 measured coordinates a fiirther 2 measured coordinates will be 

selected from Table 3.5. These 2 measured coordinates are DOF no. 10 and DOF no. 8. 

30 Damage Uicallon Vector PM 

Degrees o( Freetkm (DOFs) 

Figure 3.6a: 3D DLV Plot of the 12 DOFs Mass Spring System with 8 Measured Coordinates 
and 4 Expanded Coordinates and No Noise Interference 

Figure 3.6a and Figure 3.6b show the 3D DLV Plot and the corresponding 2D CDLV plot for the 

12 DOFs mass spring system with eight measured coordinates supplied and four expanded 

coordinates and no noise interference. Comparison with Figure 3.5a and Figure 3.5b show that 
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the initial damage locations at DOF 2, DOF 3 and DOF 4 no longer exist when two more 

measured coordinates are supplied. In fact Figure 3.6b, now suggests that damage may lie 

between DOF 5, DOF 7 and DOF 10. However, since not all the coordinate have been supplied 

fiirther measurements should be taken between these DOFs in order to accurately identify the 

damage locations. 
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Figure 3.6b: 2D CDLV Plot of the 12 DOFs Mass Spring System with 8 Measured Coordinates 
and 4 Expanded Coordinates and No Noise Interference 

3.3.3 TEN MEASURED COORDINATES SUPPLIED 

Now let us consider the case in which only 10 measured coordinates are chosen from Table 3.5. 

Using the previously chosen 8 measured coordinates a fiirther 2 measured coordinates will be 

selected from Table 3.5. These 2 measured coordinates are DOF no. 9 and DOF no. 6. 

Figure 3.7a and Figure 3.7b are the corresponding 3D DLV plot and 2D CDLV Plot for the 

12DOFs mass spring system with ten measured coordinates supplied and twelve expanded 
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coordinates and no noise interference. It can be seen that as more measured coordinates are 

supplied to the Damage Detection Algorithm the location of damage within the structure can be 

more accurately pinpointed. 

Figure 3.7b show that the damage is located within DOF 5 and DOF 6. This corresponds to the 

original simulated damage locations. However, since there are still some unmeasured 

coordinates it cannot be concluded that damage only exist at DOF 5 and DOF 6 as fiirther 

damage locations may exist within the unmeasured part of the mass spring system. However, it 

is highly unlikely since there are only 2 unsupplied DOFs remaining. 

3D Damaoe Location Vector Plot 
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Figure 3.7a: 3D DLV Plot of the 12 DOFs Mass Spring System with 10 Measured Coordinates 
and 2 Expanded Coordinate and No Noise Interference 
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Figure 3.7b: 2D CDLV Plot of the 12 DOFs Mass Spring System with 10 Measured Coordinates 
and 2 Expanded Coordinates and No Noise Interference 

3.4 DAMAGE DETECTION WITH COORINDATE INCOMPATIBILITY AND WITH 
5% NOISE 

The effect of 5% random noise in the data with only ten measured coordinates supplied was also 

studied. Figure 3.8a and Figure 3.8b show the 3D DLV plot and the 2D CDLV plot for the 12 

DOFs mass spring system v^th ten measured and two expanded coordinates. It can be observed 

that the effect of the 5% noise did not have a great effect on the results. The results are similar to 

the previous section, with the exception that the random error now appears on all DOFs. The 

detected damage location of DOF 5 and DOF 6 can still be observed to possess much larger DLV 

values than those due to noise. This can be more clearly seen in Figure 3.8b. 
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3D Damage Location Vector Plot 
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Figure 3.8a: 3D DLV Plot of the 12 DOFs Mass Spring System with 10 Measured Coordinates 
and 2 Expanded Coordinate and 5% Noise Interference 
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Figure 3.8b: 2D CDLV Plot of the 12 DOFs Mass Spring System with 10 Measured Coordinates 
and 2 Expanded Coordinates and 5% Noise Interference 
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3.5 DISCUSSION 

The developed Damage Detection Algorithm works exceptionally well when at least one column 

or row of the FRF matrix of the structure is supplied. It has been able to successfiiUy detect the 

location of damage with 5% normalised random errors introduced in the data. For cases that 

involved coordinate incompatibility, the Damage Detection Algorithm detected additional 

damage locations than the actual simulated locations when only six randomly selected measured 

coordinates were supplied to the algorithm. As more measured coordinates are supplied to the 

Damage Detection Algorithm the location of damage within the structure can be more accurately 

pinpointed. However, it should be noted that the results obtained when there is a coordinate 

incompatibility should not be assumed to be entirely accurate since the location of damage can 

only be accurate to within the spatial resolution of the measured points. In cases where 

coordinate incompatibility exists, the Damage Detection Algorithm should only be used as a tool 

to estimate the location of damage within a structure. 

The Damage Detection Algorithm is a simple procedure that has been shovm to successfully 

detect simulated damage compared to the Constrained Minimization Damage Quantification 

(CMDQ) method investigated by Choudhury (1996). However, the CMDQ method involved 

extensive calculations of various parameters and is not be computationally efficient. 

(Choudhury, 1996). 

To fiirther test the robustness of the Damage Detection Algorithm, various simulated damage 

scenarios were investigated for the NASA eight bay space truss structure using the Damage 

Detection Algorithm. Results are shovm in the next chapter. 



CHAPTER 4 

DAMAGE DETECTION IN 

TRUSS STRUCTURES 

The NASA 8 bay truss structure has been the focus of much attention in structural damage 

detection and has provided a benchmark for testing developed Damaged Detection Algorithms 

(Doebling et. al., 1996). Several simulated damage scenarios will be investigated in this chapter 

to assess the robustness of the developed Damage Detection Algorithm. 

The NASA 8 bay truss structure in reality is described by 36 nodes and has 6 DOFs (3 

translational and 3 rotational) per node. The structure therefore has a total of 216 DOFs. To 

simplify the problem, only translational degrees of freedom are considered for the study of this 

truss structure. This is a valid assumption, as currently there are no accelerometers available that 

can accurately measure rotational degrees of freedom. Under this assumption the NASA 8 bay 

truss structure has a total of 108 DOFs. The structure is also grounded at one end, therefore a 

fiirther 4 nodes may be eliminated from the problem, thus leaving only 96 DOFs. 

4.1 DESCRIPTION OF THE STRUCTURE 

Figure 4.1 show the node configurations for the NASA 8 bay truss structure (Lim and 

Kashangaki, 1994). It is important that the same order is maintained for numbering the nodes, as 

this will allow easy interpretation for damage location in later processes. Figure 4.2 show the 

NASA 8 bay truss lattice structure for a section. 
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Figure 4.2: Section of Eight Bay Truss Lattice Structure 

The mass configuration for the NASA 8 bay truss structure is given in Table 4.1. The masses 

applied to this truss structure were considered to be concentrated masses on the nodes only. This 

was achieved by distributing the mass of each longeron and diagonal between each of the nodes. 

Appendix 2 and Appendix 3 details the exact mass per each of the 36 nodes. 

Node Ball 
Longeron 
Diagonal 

Joint Assembly 
Triax + Block 

Mass 
(grams) 

5.80 
180 
27 
7.7 
11.0 

Quantity using in 
8 Bay Truss 

36 
68 
41 

218 
32 

Total 

Total Mass for 8 
Bay Truss (Kg) 

0.2088 
1.2240 
1.107 
1.6786 
0.3520 
4.5704 

Table 4.1: Mass Configuration 

Table 4.2 is a summary of the damage cases that will be infroduced to the truss structure. 

Simulated damage in the truss structure will be considered as a loss in stiffriess of a longeron or 

diagonal member. The damage infroduced to the truss structure will firstly begin as a simple 

simulation where the Young's Modulus of one member will be reduced by 20%. Because the 

NASA 8 bay truss structure is far more complex than the simple mass spring system, adjusting 
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the Young's Modulus of the truss element is a simple and efficient way of infroducing simulated 

damage into the structure. 

These simulated cases are made on the assumption that it is possible to reduce the stif&iess of 

these members without causing catastrophic failures. Case C involves multiple damage 

locations. 

Damage Case 
A 
B 
C 

Location 
Bay 3 
Bay 7 

Both of Above 

Type 
Z-Batten 
Longeron 

Both of Above 

Nodes 
14-15 
2 7 - 3 1 

Both of Above 

Table 4.2: Summary of Damage Cases 

Since the truss structure will be considered as a grounded structure, the DOFs associated with the 

grounded nodes will not be considered and will be removed. The remaining nodes that are not 

grounded will be assigned new corresponding DOFs when the grounded DOFs are removed. 

Table 4.3 below gives the corresponding DOFs numbers, when the grounded DOFs are removed, 

of the nodes numbers shown in Table 4.2. Since there are 3 DOFs (franslational x, y, z) each 

node will have 3 corresponding DOFs. The first DOF for any node number can be calculated 

using the following relationship: 

Corresponding DOF = [(Node Number - Number of Grounded Nodes) x 3] - 2 

Node Number 
14 
15 
27 
31 

Corresponding DOFs 
28, 29, 30 
31,32,33 
67, 68, 69 
79, 80, 81 

Table 4.3: Corresponding DOFs for Damage Cases 
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4.2 CASE OF NON DAMAGED STRUCTURE 

The mass and stif&iess matrices were first calculated for the NASA 8 bay truss structure via an 

algorithm written in Matlab''"'̂ . This algorithm ensured that the mass and stiffiiess matrices were 

constructed with the correct size to reflect the real life structure, and also took into account the 

grounded nodes. A Young's Modulus value of 210e9 N W and density of 7850 kg/m^ was used 

in the calculations. Table 4.4 show the diagonal stiffiiess values at each of the DOFs concemed 

taken from the calculated undamaged stif&iess matrix. These values will be used later in this 

chapter to compare with the adjusted damage stiffness matrix for each different damage case. 

Node Number 

14 

15 

27 

31 

DOF No. 

28 
29 
30 
31 
32 
33 
67 
68 
69 
79 
80 
81 

Diagonal [KJUD Value 
at DOF (KN/m) 

3298.1 
6596.2 
3298.1 
2615.0 
386.4 

2615.0 
3298.1 
6596.2 
3298.1 
2615.0 
386.4 

2615.0 

Table 4.4: Diagonal Undamage Stiffness Values at DOF Locations 

To verify that the constructed mass and stif&iess matrices were indeed correct, the natural 

frequencies of the structure were also calculated. A frequency range of OHz to 400Hz at a 

resolution of 0.5Hz was used. This range was sufficient to observe the first 10 natural 

frequencies of the NASA 8 bay tiiiss structiire. The resuhs of the natural frequencies were 

compared with results obtained from ANSYS'̂ '̂ , a finite element program. 
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Table 4.5 show the results of the first 10 natural frequencies for the NASA 8 bay truss structure 

obtained for Matlab^^ compared to results obtained from ANSYS'̂ **, where consistent stiffiiess 

and mass matrices were used, as so are the matrices developed here. This table clearly 

demonstrates that very small differences exist between the results obtained from Matlab'̂ ** and 

the results obtained from ANSYS'̂ '̂ . This suggests that the theoretically constiiicted mass and 

stifftiess matrices are a representative of the real life structure. It can also be seen that as the 

frequency increases the percentage of errors becomes larger. However, since this study is only 

concemed with the first few frequency modes, increases in errors at higher frequency modes can 

be neglected. 

Natural Frequency 
Mode Numbers 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

MatlabTM 

(Hz) 
11.69 
12.13 
40.88 
55.90 
60.37 
97.80 
121.42 
122.41 
131.86 
184.33 

ANSYSTM 

(Hz) 
11.778 
12.221 
41.260 
56.071 
60.498 
100.15 
122.29 
124.31 
133.42 
189.51 

% Error from 
ANSYSTM 

0.75 
0.74 
0.92 
0.30 
0.21 
2.35 
0.71 
1.53 
1.17 
2.73 

Table 4.5: Comparison of Natural Frequencies between Matlab^^ and ANSYŜ "̂  
for Undamage Case 

Receptance frequency response fimction (FRF) for the NASA 8 bay truss structure was also 

calculated using Matiab '̂̂ . Shown in Figure 4.3 is the corresponding receptance FRF plot for 

a(l, 1) of the undamage NASA 8 bay truss stiiicture. Where a(l, 1) in this case corresponds to 

obtaining the receptance FRF data from an accelerometer that is fixed at node no.5 and the 

structure is also excited at the same node. This is commonly referred to as a point FRF 

measurement. It also must be noted that a(l, 1) corresponds to node no.5 for the truss structure 

only, because the DOFs of the grounded nodes have been removed. 
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Only point FRF measurements exhibit anti-resonance behaviour between two resonances (Ewins, 

1984). This may be used as a simple check to confirm that the resultant FRF exhibits behaviour 

that is consistent with a point FRF measurement. These peaks can be clearly seen in Figure 4.3 

and confirms that it is indeed a point FRF measurement. 

ReceptarKe FRF Plot of the NASA 6 Bay Truss Structure Unjarragad 

Figure 4.3: Receptance FRF Plot of a( l , 1) for Undamage Case 

As a check the Damage Detection Algorithm was firstly tested on the NASA 8 bay truss structure 

without any damage being introduced to the structure. Figure 4.4a and Figure 4.4b are the 

corresponding 3D DLV plot and 2D CDLV plot respectively, produced from the algorithm. As 

expected, these plots do not show any peaks whatsoever, which leads to the conclusion that the 

structure is free from damage. 
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4.3 DAMAGE CASES 

4.3.1 DAMAGE CASE A 

hi Damage Case A, simulated damage was introduced to the Z-batten link between node no. 14 

and node no. 15 as shown in Figure 4.1. This is simulated by reducing the Young's Modulus 

corresponding to that link to 168e9 N/m, which represents a reduction by 20% and assuming that 

damage did not affect the mass of the structure. The corresponding damaged stiffiiess matrix was 

then calculated, friitial comparison for the diagonal of the undamaged stiffiiess matiix with the 

newly calculated stiffiiess matrix for Damage Case A is shown in Table 4.6. A reduction of 20% 

in the Young's Modulus was seen to reduce the stiffiiess corresponding to DOF no. 30 of node 

no. 14 by a stiffiiess of 386.4 KN/m or approximately 11.72% reduction from the original 

undamaged stiffiiess and accordingly to DOF no. 33 of node no. 15 by a stiffiiess of 386.4 KN/m 

or approximately 14.77% reduction from the original undamage stiffiiess. 

Node No. 

14 

15 

DOF No. 

28 
29 
30 
31 
32 
33 

Diagonal [K]UD 
Value at DOF 

(KN/m) 
3298.1 
6596.2 
3298.1 
2615.0 
386.4 

2615.0 

Diagonal [K]D 
Value at DOF 

(KN/m) 
3298.1 
6596.2 
2911.7 
2615.0 
386.4 

2228.6 

AK Value at 
DOF (KN/m) 

0 
0 

386.4 
0 
0 

386.4 

Table 4.6: Comparison of the Change in Stiffness (Delta K) Values for Damage Case A 

Following similar procedures in the previous section, natural frequencies were calculated from 

Matlab'̂ '̂  and c ompared with natural frequencies from ANSYS"̂ ^ for this Damage Case A as 

shown in Table 4.7. The mass matrix used in the natural frequencies calculations via Matlab""^ 

was the original mass matrix obtained from the undamaged structure. 
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Comparison of the natural frequencies from the calculated mathematical model to that of the FE 

model show that there are negligible differences between the two models. This suggests that the 

stiffiiess matrix corresponding to Damage Case A calculated by the Matlab™ algorithm is 

acceptably accurate. 

Natural Frequency 
Mode Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Matlab^M 
(Hz) 
11.69 
12.13 
40.88 
55.90 
60.37 
97.78 
121.40 
122.41 
131.84 
184.33 

ANSYSTM 
(Hz) 

11.778 
12.221 
41.260 
56.070 
60.496 
100.13 
122.27 
124.30 
133.41 
189.50 

% Error from 
ANSYSTM 

0.75 
0.74 
0.92 
0.30 
0.21 
2.35 
0.71 
1.52 
1.18 
2.73 

Table 4.7: Comparison of Natural Frequencies between Matlab^^ and ANSYS^M 
for Damage Case A 

Receptance FRFs for the NASA 8 bay space truss were also calculated using Matlab'̂ '̂ . Shown 

in Figure 4.5 is the receptance FRF plot for a(l, 1) of the NASA eight bay truss structure for 

before and after Damage Case A was introduced. It can be barely observed that the effects of 

Damage Case A caused a shift in some of the peaks compared to the original undamaged 

receptance FRF trace, but nothing can be said about the location and severity of damage from 

this plot. 
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Receptance FRF Plot of the NASA 8 Bay Truss Stricture for Oanage Caee A 

Figure 4.5: Receptance FRF Plot of a( l , 1) for Damage Case A 

4.3.2 DAMAGE CASE B 

In Damage Case B, simulated damage was introduced to the longeron link between node no. 27 

and node no. 31 as shown in Figure 4.1. Similar to Damage Case A, this is simulated by 

reducing the Young's Modulus corresponding to that longeron link to 168e9 N/m, which 

represents a reduction by 20%. The corresponding damaged structure stiffness matrix was then 

calculated. Comparison of the diagonal of the undamaged stiffiiess matrix with the newly 

calculated stiffiiess matrix for Damage Case B is shown in Table 4.8. A reduction of 20%) in the 

Young's Modulus was seen to reduce the stiffiiess corresponding to DOF no. 68 of node no. 27 

by a stiffiiess of 368.4 KN/m or approximately 5.86%) reduction from the original undamage 

stiffiiess and to DOF no. 80 of node no. 31 by a stiffiiess of 368.4 KN/m or approximately 10% 

reduction from the original undamaged stiffiiess. 
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Node No. 

27 

31 

DOF No. 

67 
68 
69 
79 
80 
81 

Diagonal [K]UD 
Value at DOF 

(KN/m) 
3298.13 
6596.26 
3298.13 
2615.06 
3864.00 
2615.06 

Diagonal [K]D 
Value at DOF 

(KN/m) 
3298.13 
6209.86 
3298.13 
2615.06 
3477.60 
2615.06 

AK Value at 
DOF (KN/m) 

0 
368.40 

0 
0 

368.40 
0 

Table 4.8: Comparison of the Change in Stiffness (Delta K) Values for Damage Case B 

Following similar procedures to the previous section, natural frequencies were calculated in 

MatlabT*̂  and compared with natural frequencies from ANSYS"̂ ^ and these are presented in 

Table 4.9. Again there are negligible differences between the two sets of natural frequencies. 

Natural Frequency 
Mode Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Matlab™ (Hz) 

11.69 
12.13 
40.88 
55.90 
60.32 
97.74 
121.42 
122.41 
131.43 
184.33 

ANSYSTM (Hz) 

11.78 
12.22 
41.26 
56.07 
60.45 
100.09 
122.29 
124.31 
132.99 
189.50 

% Error from 
ANSYS^M 

0.76 
0.74 
0.92 
0.30 
0.22 
2.34 
0.71 
1.53 
1.17 
2.73 

Table 4.9: Comparison of Natural Frequencies between Matlab^** and ANSYS'''*' 
for Damage Case B 

Receptance FRFs for the NASA 8 bay space truss were also calculated using Matlab''"'̂ . Shown 

in Figure 4.6 below is the receptance FRF plot for a(l, 1) of the NASA eight bay space truss 

structure before and after Damage Case B. Again, there is a small shift obsevered in some of the 

peaks. 
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ReceptarKW FRF Plol cf the NASA d Bay Truss Structure for Danage Case A 

Figure 4.6: Receptance FRF Plot of a(l, 1) for Damage Case B 

4.3.3 DAMAGE CASE C 

To fiirther verify the developed Damage Detection Algorithm, a simulation involving multiple 

damage locations was introduced to the truss structure. Damage Case C is the cumulation of 

Damage Case A and Damage Case B as shown in Table 4.2. For changes in the diagonal 

stiffiiess matrix for Damage Case C, Table 4.6 and Table 4.8, which correspond to Damage Case 

A and Damage Case B respectively should be used. Natural Frequencies were then calculated 

from Matlab'""'̂  and also compared with natural frequencies from ANSYS'^'^. Shown in Table 

4.10 are the natural frequencies of the truss structure with the damage introduced at the location 

specified as Damage Case C. Comparison of the natural frequencies from that of the calculated 

mathematical m odel t o t hat o f t he F E m odel s how t hat t here i s n egligible d ifference b etween 

corresponding frequencies. 
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Natural Frequency 
Mode Numbers 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

MatlabTM (Hz) 

11.69 
12.13 
40.88 
55.90 
60.32 
97.72 
121.40 
122.41 
131.41 
184.33 

ANSYSTM (Hz) 

11.78 
12.22 
41.26 
56.07 
60.45 
100.07 
122.27 
124.30 
132.97 
189.49 

% Error from 
ANSYSTM 

0.76 
0.74 
0.92 
0.30 
0.22 
2.35 
0.71 
1.52 
1.17 
2.72 

Table 4.10: Comparison of Natural Frequencies between Matlab^^ and ANSYS^M for 
Damage Case C 

Receptance FRFs for the NASA 8 bay space truss structure were also calculated using Matlab"^^. 

Shown in Figure 4.7 is the receptance FRF plot at a( l , 1) of the NASA 8 bay space truss 

structure for before and after Damage Case C. It is again observed that damage causes a shift in 

some of the peaks. This shift causes these peaks to occur at lower frequencies compared to the 

undamaged receptance FRF, but it is only a qualitative indication that some damage has been 

inflicted. 

Receptance FRF Ptol of the NASA 8 Bay Truss Structure for Damage Case C 

Frequency (Hz) 

Figure 4.7: Receptance FRF Plot of a(l, 1) for Damage Case C 
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4.4 DAMAGE DETECTION WITHOUT COORDINATE INCOMPATIBILITY AND 
NO NOISE 

The Damage Detection Algorithm was then applied to the three Damage Cases without any 

coordinate incompatibility and no noise interference. The frequency range of these plots was 

from OHz - 400Hz with a frequency resolution of 0.5Hz. 

Figure 4.8a below is the 3D Damage Location Vector plot for Damage Case A. From Figure 

4.8a peaks can be seen to occur at various frequencies and are contained between DOF 20 and 

DOF 40. It may be difficult to see but many of the larger dominant peaks occur between DOF 

20 and DOF 40, and the magnitude of the largest peak can be esthnated to be approximately 350 

KN/m. This estimate corresponds to the amount of stiffiiess that was reduced from the Z-batten 

link, which from Table 4.6 was exactly 386.4 KN/m. It may be difficult to see the actual DOFs 

in this 3D DLV Plot due to the amount of information it contains, however it is possible to utilise 

this 3D DLV plot in conjunction with the corresponding 2D CDLV plot to locate and estimate 

the damage extent. It also must be noted that due to computational constraints, the full natural 

frequency spectrum of the whole truss structure has not been plotted. 

30 Dama^ Location Vectcr Pbt 

_ - - T ~ . 

0-

x10^ 
^ , - ' T 

' - -̂  " ' 
— —'""" ( 

' 1 
' ^ - T " 

- ~ " ' i 

' _ 
--"•"' 

- ~ ' ' 
- "• " 1 1 

' , -t- ' ' 

' ~ " 1 

J - - " ^ 

- r ' 
^ u -

' r " 

1 ^ 

- r " 

) ^ 

, ( - ' 

'__ , 

-.--"" "̂  
- " l ' " 1 ' ^ - - J -

' J- - " ' i ' ' 
• J - ' ' 1 ' -

' 1 1 '_^ - - 1 

' _ ^ - T "" " [ ^ 1 
" '' ' U 
- - ' " ' 1 

- -f ' 1 
, - J ^ 1 

1 _ L 

' ' " ' 
' - "̂  ' " 1 

__ ^ — " 1 

- " 1 ' ' 
^ - " 1 

, - ' i 

, _ - ( " " 

- " " i 

I _ _j -

J - t ' 
1 

_ 

-

" 

" 

~ 

' r 
1 

_ i. -
1 

- r " 
1 

--'-*' 1 

' / 1 

_ 4- -

1 

' T 

" 

" 

1 

, J . 
) ""• 

- -T- ... 

I 

1 

^ -s ^ 

1 

- -̂  ^ 
1 

- f -

1 

- ( • - . , 

" " • 1 - ^ 

" " • •« • ^ 

1 

1 ^ 

" " T -

- 4. __̂  

" T -

^ -j- --

-
^ 1 

7 -

^ -i. 

" T -

^ 

^ 

' " " " 1 - ^ 
" '- -. ' " r - ^ 

1 ^ ~i - 1 "!~~ - ' ' 

"" ^' ' ^ 1 ^ ; 

1 1 " ^ - ' ' " - -L 1 
"- - ^ -~ 1 1 "̂  - . , 

" ' • " - - ' ^^~~ ^ ' ( 

1 •" ^ ^ 1 "" .^ ^ ' 

^ - ' ^ ^ ^ 1 7 ^ - 1 

1 " 7 ^ , " ' - ^ 1 1 
•~~^i , " ~- ' " •+ 1 
^ • ^ • ^ ^ ^ ^ ^ 1 1 -

Fre<iuency (Hz) 
D^rees o( Freedom (DOFs) 

Figure 4.8a: 3D DLV Plot for Damage Case A without Coordinate Incompatibility 
nor Noise 
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Figure 4.8b is the corresponding 2D CDLV plot for Damage Case A. Here it can be clearly seen 

that the damage is associated with DOF 30 and DOF 33. This confirms the location of the 

damage since the original damage was introduced between node no. 14 (DOFs: 28, 29, 30) and 

node no. 15 (DOFs: 31, 32, 33). The Damage Detection Algorithm successfiiUy located the 

simulated damage within the structure and no other damage was located. It is also interesting to 

note that the introduced simulated damage was observed to affect only the translational Z 

component at the point of damage. It must be noted that the magnitude in the 2D CDLV plot is 

a cumulation of the magnitude at various frequencies for each of the DOFs. This cumulative 

value can not be interpreted to be anything meaningful, since this cumulative magnitude depends 

on the frequency resolution. If a finer frequency resolution is used then the cumulative 

magnitude will be greater since there will be more magnitude per frequency resolution to be 

added. 

Degrees of Freedom (DOft) 

Figure 4.8b: 2D CDLV Plot for Damage Case A without Coordinate Incompatibility 
nor Noise 

Figure 4.9a is the 3D Damage Location Vector Plot for Damage Case B without coordinate 

incompatibility and no noise interference. From Figure 4.9a peaks can be seen to occur at 

various frequencies and are contained between DOF 60 and DOF 80. It may be difficult to see. 
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but the magnitude of the damage is approximately 350 KN/m, which corresponds to the amount 

of stiffiiess that was reduced from the longeron link. It may be also difficult to see the actual 

DOFs where the damage occurs due to the amount of information that it contains, hence the 2D 

Cumulative Damage Location Vector plot should be consulted. 

Degrees of Freedom (DOFs) 

Figure 4.9a: 3D DLV Plot for Damage Case B without Coordinate Incompatibility 
nor Noise 

Figure 4.9b is the corresponding 2D CDLV plot for Damage Case B without coordinate 

incompatibility and no noise interference. Here it can be clearly seen that the damage is 

associated with DOF 68 and DOF 80. This confirms the location of the damage to exist between 

node no. 27 (DOFs: 67, 68, 69) and node no. 31 (DOFs: 79, 80, 81). ft is interesting to note that 

the introduced simulated damage for this Longeron link was observed to affect only the 

translational Y component at the point of damage. Again the Damage Detection Algorithm 

successfiil detected and located the simulated damage within the structure and no other damage 

was located. 
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2D Cumutative Darrtage Location Vector Plot 

] ] 1 1 1 1 

. ,_ 1 . .. _ J i 1 1 1 

1 

Degrees of Freedom (DOFs) 

Figure 4.9b: 2D CDLV Plot for Damage Case B without Coordinate Incompatibility 
nor Noise 

Figure 4.10a shown is the 3D Damage Location Vector plot for Damage Case C without 

coordinate incompatibility and no noise interference. Since Damage Case C represents simulated 

damage from both Damage Case A and Damage Case B it can be seen that multiple peaks are 

present in this plot. These peaks can be seen to occur at various frequencies, but are isolated 

between DOF 20 and DOF 40 and between DOF 60 and DOF 80. However, due to the amount 

of i nformation t hat i s c ontained i n t his p lot i t is v ery d ifficult t o a ccurately i solate i ndividual 

DOFs or pinpoint the location of damage on the truss. Again, the 2D CDLV should be consulted 

in conjunctions with this plot to adequately pinpoint the location of damage. 

Figure 4.10b is the corresponding 2D CDLV plot for Damage Case C without coordinate 

incompatibility ad no noise interference. It can be clearly seen that the damage is associated with 

DOF 30, DOF 33, DOF 69 and DOF 80. These DOFs correspond to node no. 14 (DOFs: 28, 29, 

30), node no. 15 (DOFs: 31, 32, 33), node no. 27 (DOFs: 67, 68, 69) and node no. 31 (DOFs: 79, 

80, 81). Although the Damage Detection Algorithm successfiiUy located the damage, care must 

be taken when interpreting the locations of damage in situations where multiple damages occur. 
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At this point, knowledge of the connectivity within the structure becomes exfremely important. 

Fortunately, for this damage case, the only possible node (of the 'damaged' DOF set) relating to 

node no. 14 is node no. 15. Therefore, damage exists between node no. 14 and node no. 15, 

which corresponds to the Z-batten link. Similarly, the only possible node (of the 'damaged' DOF 

set) relating to node no. 27 is node no. 31, and hence the location of damage is between node no. 

27 and node no. 31, which corresponds to the longeron link. 
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Figure 4.10a: 3D DLV Plot for Damage Case C without Coordinate Incompatibility 
nor Noise 
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Figure 4.10b: 2D CDLV Plot for Damage Case B without Coordinate Incompatibility 
nor Noise 

4.5 DAMAGE DETECTION WITHOUT COORDINATE INCOMPATBILITY AND 
WITH 5% NOISE 

The Damage Detect Algorithm was successfiil in detecting the simulated damage in the previous 

section under the ideal condition without any noise interference. To test the robustness of the 

Damage Detection Algorithm, 5% random noise interference will now be introduced to the 

algorithm. This 5% noise interference is chosen to represent measurement errors and 

environmental interference. Its effectiveness will be assessed on the same damage scenario 

cases adopted in the previous section. The frequency range of these plots was from OHz - 400Hz 

with a frequency resolution of 0.5Hz. 

Figure 4 . 1 1 a i s t h e 3 D D amage Location V ector P lot for Damage C ase A w ithout c oordinate 

incompatibility and with 5% random noise interference introduced. The effects of the 5% 

random noise on the 3D DLV plot can be seen to only affect the whole system within a certain 

frequency range whilst leaving other frequencies untouched. This 5% random noise does not 

affect the prominence of the peaks that were previously found in Figure 4.1 la. 
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Figure 4.11a: 3D DLV Plot for Damage Case A without Coordinate Incompatibility 
(5% Noise) 
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Figure 4.11b: 2D CDLV Plot for Damage Case A without Coordinate Incompatibility 
(5% Noise) 

Figure 4.11b is the corresponding 2D CDLV plot for Damage Case A without coordinate 

incompatibility and with 5% random noise introduced. A comparison between Figures 4.8b and 

Figure 4.11b show that the effect of 5% randomised noise on the Damage Detection Algorithm 

was minimal, and the algorithm was still able to successfiiUy detect damage in the same location. 
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The only effect from the introduction of the random noise was that it affected all DOFs within 

the structure. When collated cumulatively every DOF had vectors of nonzero value. This was 

due to the introduced noise influence. It can be clearly seen that these noise peaks are much 

lower than the peaks that actually contain damage. This is because the DOFs that are truly 

affected by damage occur only at certain frequencies, while those that are only affected by noise 

occur at all frequencies. Hence, when collated cumulatively together over the frequency ranges, 

those that truly contain damage would be much greater than those that are affected by noise only. 

Figure 4.12a below is the 3D Damage Location Vector plot for Damage Case B without 

coordinate incompatibility and 5% random noise interference introduced. The effects of the 5% 

random noise on the 3D DLV plot can be seen to only affect the whole system within a certain 

frequency range whilst leaving other frequencies essentially untouched. This 5% random noise 

does not seem to affect the peaks that were previously shown in Figure 4.13a. The peaks still 

show up in the same location between DOF 60 and DOF 80. 

FrequBDcy (Hz) 
Degrees al Freedom (DOFs) 

Figure 4.12a: 3D DLV Plot for Damage Case B without Coordinate Incompatibility 
(5% Noise) 
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Figure 4.12b is the corresponding 2D CDLV plot for Damage Case B without coordinate 

incompatibility and with 5% random noise interference introduced. A comparison between 

Figures 4.9b and Figure 4.12b show that the effects of 5% random noise on the Damage 

Detection Algorithm was minimal, and the algorithm was still able to successfiiUy detect damage 

in the same location as previously. It can be seen that the introduction of the randomised noise 

affected all DOFs within the structure. When collated cumulatively every DOF had vectors of 

nonzero value. With carefiil observation, it can be clearly seen that these noise peaks are much 

lower than the peaks that actually contain damage. 
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Figure 4.12b: 2D CDLV Plot for Damage Case B without Coordinate Incompatibility 
(5% Noise) 

Figure 4.13a is the 3D DLV plot for Damage Case C without coordinate incompatibility and with 

5% random noise interference infroduced. The effects of the 5% random noise on the 3D DLV 

plot can be seen to only affect the whole system within certain frequency ranges whilst leaving 

other frequencies essentially untouched. This 5% random noise does not seem to affect the peaks 

that were shown in Figure 4.13a. These peaks still show up in the same locations. 
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Figure 4.13a: 3D DLV Plot for Damage Case C without Coordinate Incompatibility 
(5% Noise) 
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Figure 4.13b: 2D CDLV Plot for Damage Case C without Coordinate Incompatibility 
(5% Noise) 

66 

Figure 4.13b is the corresponding 2D CDLV plot for Damage Case C without coordinate 

incompatibility and with 5% random noise introduced. A comparison between Figure 4.10b and 

Figure 4.13b show that the effects of the 5% random noise on the Damage Detection Algorithm 
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was minimal and the algorithm was still able to successfiiUy detect damage in the same locations 

as previously. The only effects from the introduction of the randomised noise were that it 

affected all DOFs within the structure. When collated cumulatively every DOF has vectors of 

nonzero value due to the noise influence. It can be seen that these noise peaks are much lower 

than the peaks that actually contain damage. 

4.6 DAMAGE DETECTION WITH COORDINATE INCOMPATIBILIY AND WITH 
5% NOISE 

Often in real life it is not possible to measure all the coordinates of a structure. To further test the 

robustness of the Damage Detection Algorithm only FRF data for 72 DOFs will be supplied for 

the three previous damage cases. The data for these 72 DOFs were randomly chosen from a 

possible 96 DOFs. Appendix 4 contains the sequence order for these 72 randomly chosen DOFs. 

This will require the Damage Detection Algorithm to expand the 24 missing data to match the 96 

DOFs found in the undamaged structure. 
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Figure 4.14a: 3D DLV Plot for Damage Case A with Coordinate Incompatibility 
(5% Noise) 



Chapter 4: Damage Detection In Truss Structures 68 

Figure 4.14a show the 3D DLV plot for Damage Case A with 72 measured and 24 expanded 

coordinates and 5% noise interference infroduced. For this scenario only data for 72 DOFs were 

supplied to the Damage Detection Algorithm, leaving the developed Damage Detection 

Algorithm to expand the 24 missing data to match the DOFs of the undamaged case using 

Dynamic Expansion method A as discussed previously in Chapter 2. Again the Damage 

Detection Algorithm successfiiUy detects the damage and the effect of damage is shown as 

distinctive peaks on the plot. 

Figure 4.14b is the corresponding 2D CDLV plot for Damage Case with 72 measured and 24 

expanded DOFs and 5% noise interference. On this plot the location of damage can be 

distinctively observed to be the dominant peaks over those that are caused by noise interference. 

The location of damage is DOF 30 and DOF 33 and corresponds to node no. 14 and node no. 15 

on the truss structure. This is consistent with the location of damage for Damage Case A. The 

Damage Detection algorithm was able to successfiiUy detect the simulated damage in this case 

since the DOFs that contain damage lie within the 72 randomly chosen DOFs. 
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Figure 4.14b: 2D CDLV Plot for Damage Case A with Coordinate Incompatibility 
(5% Noise) 
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Figure 4.15a show the 3D DLV plot for Damage Case B with 72 randomly supphed DOFs and 

24 expanded DOFs and with 5% noise interference introduced. These peaks can be seen to occur 

between DOF 60 and DOF 90. Comparison of Figure 4.13a and Figure 4.15a show that the 

peaks do not occur between the same intervals, and yet both figures are produced for the same 

Damage Case B. The reason for this is due to the fact that DOF 80 was not supplied in the 

measured DOFs. So the Damage Detection Algorithm displayed the next available DOFs closest 

to the damage. This is demonstrated more clearly on the 2D CDLV Plot. 
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Figure 4.15a: 3D DLV Plot for Damage Case B with Coordinate Incompatibility 
(5% Noise) 

Figure 4.15b is the corresponding 2D CDLV Plot for Damage Case B with 72 randomly supplied 

DOFs and 24 expanded DOFs and with 5% noise interference introduced. Here the location of 

damage can clearly be seen to occur at DOF 69 and DOF 92. This translates to the damage being 

located between node no. 27 (DOFs: 67, 68, 69) and node no. 35 (DOFs: 91, 92, 93). However, 

since there is no direct connectivity between node no. 27 and node no. 35 on the truss structure 

this would signify an erroneous damage detection. Therefore, results obtained from incomplete 

supplied data can only be interpreted as an indication of where damage exists. Hence, the 
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interpretation of Figure 4.15b suggests that damage only exist between node no. 27 and node no. 

35 on the truss structure. This correlates to the last two bays in the truss structure. In order to 

determine the exact location where damage exists, fiirther measurements are required to be made. 

However not all FRF ofDOFs on the structure are required to be supplied, only nodes with DOFs 

that fall between DOF 69 and DOF 92 are required. 

X 10** 20 Cunuialt^e Damage Location Vector 

50 GO 
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Figure 4.15b: 2D CDLV Plot for Damage Case B with Coordinate Incompatibility 
(5% Noise) 

Figure 4.16a is the 3D DLV Plot for Damage Case C with 72 DOFs randomly supphed and 24 

expanded DOFs and with 5% noise interference introduced. As expected the Damage Detection 

Algorithm detected the peaks that were consistent with Damage Case A and DOFs containing 

peaks that were closest to describing Damage Case B. However since not all the measurements 

have been supplied care must be taken in interpreting the damage locations. At this point the 

information on the connectivity of the structure becomes important, as it allows fiirther 

interpretation. 
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Figure 4.15a: 3D DLV Plot for Damage Case B with Coordinate Incompatibility 
(5% Noise) 

Figure 4.15b is the corresponding 2D CDLV Plot for Damage Case B with 72 randomly supplied 

DOFs and 24 expanded DOFs and with 5% noise interference introduced. Here the location of 

damage can clearly be seen to occur at DOF 69 and DOF 92. This translate to the damage being 

located between node no. 27 (DOFs: 67, 68, 69) and node no. 35 (DOFs: 91, 92, 93). However, 

since there is no direct connectivity between node no. 27 and node no. 35 on the truss structure 

this would signify an erroneous damage detection. Therefore, results obtained from incomplete 

supplied data can only be interpreted as an indication of where damage exists. Hence, the 

interpretation of Figure 4.15b suggests that damage only exist between node no. 27 and node no. 

35 on the truss structure. This correlates to the last two bats in the truss structure. In order to 

determine the exact location where damage exists, fiirther measurements are required to be made. 

However not all nodes on the structure are requked to be supplied, only nodes with DOFs that 

fell between DOF 69 and DOF 92 are required. 
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Figure 4.16b: 2D CDLV Plot for Damage Case C with Coordinate Incompatibility 
(5% Noise) 

4.7 DISCUSSION 

The developed Damage Detection Algorithm was found to be extremely robust in that it was able 

to successfiiUy detect simulated damage introduced to the truss structure at various locations. 

Furthermore, the Damage Detection Algorithm did surprisingly well to detect the simulated 

damage scenarios considering that the various cases studied only involved changes in stiffiiess 

between 10% - 15%. The Damage Detection Algorithm was also subjected to 5% randomised 

noise and was still able to successfully detect simulated damage. It also was still able to 

successfully indicate the interval where damage may exist for cases that involved coordinate 

incompatibility. 

Further studies in the next chapter will utilise the Damage Detection Algorithm to study a thin 

cantilever plate structure under various conditions. 



CHAPTER 5 

DAMAGE DETECTION IN 

PLATE STRUCTURES 

While a 3D space truss structure can be easily modelled using finite element philosophy and the 

mass and stiffiiess matrices readily calculated, it is relatively difficult to manufacture ball joints 

and members to satisfy the essential requirements of a 3D space truss structure for experimental 

studies. Plate structures on the other hand can be easily manufactured. However, the mass and 

stiffiiess matrices of a plate element are far more complex than those of a truss structure. 

Thin flat plate elements are subjected to both in plane and transverse loads. This chapter will 

apply the Damage Detection Algorithm presented in Chapter 2 to thin flat plate sfi-uctures to 

evaluate the Damage Detection Algorithm. 

The aim of this chapter is firstly to formulate the mass and stiffiiess matrices for a single plate 

element. This will then be verified using FE. Once this single element has been verified, it will 

be used to construct plate structures. Damage will then be introduced to various locations on a 

thin cantilevered plate. The Damage Detection Algorithm will then be used to locate the damage 

within the cantilevered plate to investigate its performance. 

5.1 BASIC THIN PLATE THEORY 

Thin flat plate sti^ctures are used in many different applications in engineering, for instance the 

outer surfaces of aircraft can be considered to be made of thin plates. In finite element modelling 
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(FEM), a simple element can be described by three or four nodes. There are several theories that 

can be used to describe thin flat plates, the two most common theories being the Discrete 

KirchofTs Theory (DKT) and the Mindlin Theory, hi this stiidy, the DKT will be used. 

The mam features of the DKT for thin flat plates are outiine below: 

U 4 * 

Thickness (t) 

Figure 5.1: A Single Rectangular Thin Flat Plate Element 

Node 

1 
2 
3 
4 

Plate 
Deflection 

Ui 
U4 
UT 

Uio 

Rotation in 
X-Axis 

U2 
Us 
Ug 
u„ 

Rotation in 
Y-Axis 

U3 
U6 
U9 
U,2 

Table 5.1: DOFs with Respect to Node Numbers for a Single Plate Element 

Consider the thin rectangular plate element defined by Figure 5.1. It is a single rectangular 

element that is defined by width (a), height (b) and thickness (t). The single element is described 

by 4 nodes each having 3 DOFs. The DOFs with respect to each node number are outlined in 

Table 5.1. It is important to adopt a convention that can be used for numbering the nodes 

describing an element. This convention can be either clockwise or anticlockwise. For example, 
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from Figure 5.1, if the nodes were read starting from node 1 in an anticlockwise manner then the 

node order would be 1-4-3-2. Similarly, if the nodes were read in a clockwise manner then the 

node order would be 1-2-3-4. The clockwise convention will be used in this thesis. 

The mass and stiffiiess for the single rectangular flat plate element can be found in Appendix 5, 

and was derived from first principle by Przemieniecki (1967), (with an error in one element, 

which has been corrected in this thesis). However, before Przemieniecki's mass and stiffiiess 

matrices are used they must first be validated to be correct for our application. 

5.2 VALIDATION OF MASS AND STIFFNESS MATRICES 

There are two different sets of mass and stiffiiess matrices presented by Przemieniecki (1967) for 

the rectangular flat plate element, a non-compatible and a compatible one. In the non-compatible 

case, the mass and stiffness matrices are derived so that the boundary d eflections on adjacent 

plate elements are compatible, whilst rotations of the element edges on common boundaries are 

not compatible and consequently, discontinuities in the slope exist across the boundaries. For 

the compatible case, both the deflection and slope compatibility on the adjacent element are 

ensured. Both cases will be examined to determine the most suitable mass and stiffiiess matrices 

that will be required later in this chapter. 

Now let's consider an example shown in Figure 5.2, a thin flat plate stiiicture that is made up of 4 

smaller plate elements with properties shown. It is described by 9 nodes and for ease of 

reference it will be referred to as "Plate9" from this point onwards. There are 3 DOFs per node. 

Here nodes 1, 2 and 3 are the fixed nodes within this structure. 



Chapter 5: Damage Detection in Plate Structures 76 

1^ û  
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Figure 5.2: Thin Flat Plate Structure with 4 Smaller Elements 
also Known as Plate9 

Matlab"̂ "̂  will be used to perform theoretical calculations for the mass and stiffiiess matrices for 

both the compatible and non-compatible cases. ANSYS'''"'̂  finite element software will also be 

used to analyse this structure. Natural frequencies for the structure will be obtained from the 

theoretical and finite element analysis. Natural frequencies from the theoretical calculations will 

be compared to natural frequencies obtained from ANSYS^M, in which a more elaborate shell 

element was used. 

5.2.1 FINITE ELEMENT ANALYSIS OF PLATE9 

The plate is modelled in ANSYS"̂ "̂  using SHELL63 quadrilateral elements and is shovm in 

Figure 5.3. It is described by 4 elements and 9 nodes. The edges between nodes 1, 2 and 3 have 

their DOFs fixed in all directions. The appropriate masters DOFs were chosen without rotations. 

The modal analysis option was chosen in ANSYS'̂ '̂  using the reduced option. The first six 

natural frequencies and mode shapes for the plate were then requested and are shown in Table 

5.2. 



Chapter 5: Damage Detection ui Plate Structures 77 

1 
ELEMENTS 

ELEM NUM 
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^ 4 

AN 
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Figure 5.3: The Plate9 Example Modelled in ANSYS^M 

Mode 
Number 

1 
2 
3 
4 
5 
6 

Natural 
Frequency (Hz) 

21.17 
52.06 
130.25 
166.40 
190.12 
334.66 

Mode Shape Behaviour 

Bending about Y-axis 
Twisting about X-axis 
Bending about Y-axis 
Bending about X-axis 
Twisting about X-axis 
Twisting about Y-axis & Twisting about X-axis 

Table 5.2: First Six Natural Frequencies and Mode Shape for Plate9 Example from ANSYŜ "̂* 

Mode shape analysis was also carried out to study the behaviour of the plate. Figure 5.4 shows 

an isometric view and side view of the first mode shape for the Plate9 example. The first mode 

shape occurs at approximately 21.17 Hz and the plate can be seen as bending about the Y-axis. 

The bending mode behaviour experienced by the plate can be better seen in the side view. 
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Figure 5.4: Mode Shape No.l - Isometric and Side View of Plate9 Example 

Figure 5.5 shows an isometric and side view of the Plate9 example at 52.06 Hz. This is where 

the second mode shape occurs. In this mode a twisting behaviour about the X-axis can be 

observed. 
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Figure 5.5: Mode Shape No, 2 - Isometric and Side View of Plate9 Example 
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Figure 5.6 shows an isometric and side view of the Plate9 example m the thfrd mode shape, 

which occurs at 130.25 Hz. At this frequency the plate seems to be bending principally in the 

XY-plane. A clearer view can be seen from the corresponding side view. 
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Figure 5.6: Mode shape no. 3 - Isometric and side view of Plate9 example 

Only the first three modes of the Plate9 example have been presented. The third mode shape is 

illusfrated here to show the bending behaviour of the plate at modes of higher frequencies. 

5.2.2 THEORETICAL CALCULATIONS USING MATLABTM 

Theoretical calculations using the non-compatible deformation theory for the Plate9 example 

were conducted using Matlab'̂ '̂ . The mass and stiffiiess matrix used to describe a single plate 

element can be found in Appendix 5 and Appendix 6 respectively and was derived by 

Przemieniecki (1967). The mass and stiffiiess matrix for the Plate9 examples, which consisted of 

4 single plate elements, is simply the assembly of the single plate element using simple matrix 

assembly theory. An algorithm was vmtten in Matlab'r*^ to aid in the matrix assembly process. 

Upon completion, the algorithm produced a mass and a stiffiiess matrix that were each 18 x 18 in 
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size. The reason why each matiix is 18 x 18 in size rather than 27 x 27 in size is due to the fact 

that node 1, 2 and 3 are grounded in the Plate9 example and hence only the reduced mass and 

stiffiiess matrix were found. The first six natural frequencies were also found from an algorithm 

written in Matiab"̂ ** and is shown in Table 5.3 in the next sub section. 

Theoretical calculations were also performed for the Plate9 example using the mass and stiffiiess 

matrix developed by Przemieniecki (1967) based on compatible deformation theory. The mass 

and stiffiiess matrix for a single plate element based on compatible deformation theory can be 

found in Appendix 7 and Appendix 8 respectively. The first six natural frequencies were also 

found and are also shown in Table 5.3 in the next sub-section. 

5.2.3 COMPARISON OF THEORETICAL RESULTS WITH FINITE ELEMENT 

Natural frequencies from theoretical results and finite element results are shown in Table 5.3. It 

can be seen that the non-compatible deformation theory yields a more accurate result than that of 

the compatible deformation theory. The percentage error associated with using the non-

compatible deformation is very low for the first few modes and becomes large from mode four 

onwards. Hence, for the purpose of this thesis Przemieniecki's non compatible deformation 

theory for thin plates will be used since the percentage errors for the first few modes are quite 

small. 

Mode No. 

1 
2 
3 
4 
5 
6 

ANSYS^M 
(Hz) 

21.17 
52.06 
130.25 
166.40 
190.12 
334.66 

Non-
Compatible 
Theory (Hz) 

21.08 
52.13 
132.72 
160.49 
184.31 
329.68 

% Error 
from 

ANSYSTM 
0.43 
0.13 
1.89 
3.55 
3.06 
1.49 

Compatible 
Theory (Hz) 

13.99 
62.98 
132.03 
171.30 
198.00 
345.18 

% Error 
from 

ANSYSTM 
33.92 
20.98 
1.35 
2.95 
4.14 
3.14 

Table 5.3: Comparison of Results for Non-Compatible and Compatible Theories against ANSYS™ 
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5.3 SIMULATION OF DAMAGE 

There are many different ways damage can occur in a structure such as a cantilever plate. 

Consider a cantilever plate that is fixed at one edge and is modelled by several equally spaced 

smaller elements. There are several different types of ways damage can be smiulated on this 

cantilever: 

1. A cut along the element boundary between two nodes in a plate. The effects of 

simulating such a cut can be approximated as crack propagation in a real life structure, 

and is shown in Figure 5.7a. Depending on the length and location of the cut, two or 

more elements may be affected. 

2. One element in a plate. The effects of simulating such damage can be seen to affect all 

the surrounding elements as shown in Figure 5.7b. 

3. A small cut in the centre of one element. The effect of simulating such damage is shown 

in Figure 5.7c and can be assumed to affect only the nodes related to that element and no 

other surrounding elements. 

4. At the point where the cantilever plate is fixed. The effects of simulating such damage 

would cause the boundary conditions to change and is shown in Figure 5.7d. 

'A 

Figure 5.7a: Damage between Nodes Figure 5.7b: Damage of One Whole Element 
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Figure 5.7c: Partial Damage of One Element 
Affecting Only the Nodes 

Figure 5.7d: Damage at the Fixing Point 

In this thesis damage is isolated to one element and only affects the nodes associated with that 

element. This does not suggest that multiple damages can not occur within the plate. In the 

theoretical analysis, reducing the modulus of elasticity is one way to simulate this type of 

damage, since each element in the elementary matrix is calculated separately. In the 

experimental analysis which will be covered in the next chapter, drilling a hole in the cenfre or a 

longitudinal cut of the desired element can simulate these simple types of damage. 

5.4 DESCRIPTION OF THE PLATE STRUCTURE 

The element and node configuration for the thin cantilever plate that will be stiidied is shown in 

Figure 5.8. As defined previously, it is important than an order is maintained with the numbering 

of the nodes and elements as this will allow easy interpretation later on. The thickness of the 

plate is 3.0mm with a density of 8179 Kg/m^ and a Young's Modulus of 200 GPa. The plate is 

cantilevered along one end (i.e. grounded), with nodes no. 1, 2, 3 and 4 as the grounding points. 

The overall dimension of the plate is 0.3m x 0.6m. The dimension for each square element is 

0.1 m x 0.1 m. As i t h as 2 8 n odes this p late s hall b e r eferred t o a s "Plate28" t hroughout t his 

thesis. 
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Figure 5.8a: Nodes and Elements Configuration for Plate28 Example 
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Figure 5.8b: Nodes and Elements Configuration for Plate28 Example Illustrating Damage Case A 



Chapter 5: Damage Detection in Plate Structures 84 

(3) 

(2) 

(1) 

8 12 16 20 24 28 

(6) 

(5) 

(9) 

11 

(8) 

(4) 

10 

(7) 

(12) 

15 

(11) 

14 

(10) 

13 

(15) 

19 

(14) 

18 

(13) 

17 

(18) 

23 

(17) 

22 

(16) 

21 

27 

300 mm 

26 

25 Sp' 

^ 
600 mm 

^ 

Figure 5.8c: Nodes and Elements Configuration for Plate28 Example Illustrating Damage Case B 
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Figure 5.8d: Nodes and Elements Configuration for Plate28 Example Illustrating Damage Case C 
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Table 5.4 is a summary of the damage cases that will be infroduced to the Plate28 structure as 

illustrated by Figures 5.8b, 5.8c and 5.8d. Simulated damage is considered as a loss m stiffiiess 

and any damage will be isolated to the four nodes that describe the damaged element. As 

mentioned in the previous chapter, it is difficuh to manipulate the stiffiiess matiix dfrectly due to 

the complexities of such a large matrix. It is however possible to simulate a loss in stiffiiess by 

reducing the Young's Modulus associated with the damage element. A reduction of 40% in the 

Young's Modulus has been found to be adequate in this thesis. Although a reduction of 40% in 

the Young's Modulus seems large, it will be shown later in this chapter that such a reduction is 

only equivalent to a loss in stiffiiess of approximately 10%. A loss in stiffiiess of approximately 

10% is large enough to be considered as damage, while not causing the structure to become 

unstable, but small enough to test the sensitivity of the developed Damage Detection Algorithm. 

Again any change in mass due to the change in stiffiiess can be considered to be negligible. 

Damage will be introduced progressively to the thin cantilever plate structure, starting with 

damage to a single element only and then moving to a simulation of multiple damage at two 

elements. 

Damage 
Case 

A 
B 
C 

Location 

Element No. 11 
Element No. 16 
Both of above 

Nodes Effected 

14,15,18,19 
21, 22, 25, 26 
Both of Above 

Type of Damage 

Fracture in the cenfre of the plate 
Crack propagation at the edge of the plate 
All of Above 

Table 5.4: Summary of Simulated Damage Cases for Plate28 Example 

Since the thin plate structure is cantilevered, the DOFs associated with the grounded nodes are 

not considered. Therefore, the remaining nodes that are not grounded will have renumbered 

DOFs. Table 5.5 gives an outline of the corresponding DOFs numbers when the grounded DOFs 

are removed for node numbers showed in Table 5.3. 
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Node Number 

14 
15 
18 
19 
21 
22 
25 
26 

Corresponding DOFs 
(X, Y, Z) 
28, 29, 30 
31,32,33 
40,41,42 
43, 44, 45 
49, 50, 51 
52, 53, 54 
61,62,63 
64, 65, 66 

Table 5.5: Corresponding DOFs for Damage Cases 

5.5 UNDAMAGED CASE 

The mass and stiffiiess matrices were first calculated for the cantilever plate based on 

Prezemieniecki's non compatible deformation theory in Matlab''"'̂ . The Matlab''"^ algorithm 

ensures that the constructed mass and stiffiiess matrices were assembled to the correct size to 

reflect the real life structure and also accounted for the grounded nodes. To verify that the 

constructed matrices from Matlab'̂ '̂  were indeed correct, the cantilever plate was also modelled 

with ANSYS"̂ .̂ Table 5.6 shows the results for the first 10 natural frequencies obtained from 

ANSYS'̂ '̂  and Matiab'̂ '̂ . A comparison of the first 10 natural frequencies from the ANSYS'̂ '̂  

to that of Matlab'̂ ** shows that the differences between the natural frequencies of the two models 

are very small. This suggests that the constructed mass and stiffiiess matrices from the algorithm 

are acceptably accurate. 

Table 5.7 shows the diagonal stiffiiess values at each of the DOFs concemed taken from the 

calculated undamaged stiffiiess matrix of the cantilever plate. These values will be used later in 

this chapter to compare with the adjusted damage stiffiiess matrix for each different damage case. 



Chapter 5: Damage Detection in Plate Structures 87 

Mode Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

ANSYSTM 
Natural 

Frequency (Hz) 
6.83 
29.78 
42.82 
98.07 
120.71 
187.63 
190.79 
239.20 
258.36 
318.02 

MatlabTM 
Natural 

Frequency (Hz) 
6.83 

29.40 
42.84 
95.79 
120.90 
183.33 
184.97 
236.37 
248.81 
301.08 

% Error from 
ANSYSTM 

0.00 
0.01 
0.04 
2.40 
0.16 
2.34 
3.15 
1.20 
3.84 
5.63 

Table 5.6: Comparison of Natural Frequencies between Matlab̂ ** and ANSYS''̂ ** for 
Undamaged Case 

Node Number 

Node 14 

Node 15 

Node 18 

Node 19 

Node 21 

Node 22 

Node 25 

Node 26 

DOF No. 

28 
29 
30 
31 
32 
33 
40 
41 
42 
43 
44 
45 
49 
50 
51 
52 
53 
54 
61 
62 
63 
64 
65 
66 

Diagonal [K]UD Value 
at DOF (KN/m) 

2088.79 
3.00 
3.00 

2088.79 
3.00 
3.00 

2088.79 
3.00 
3.00 

2088.79 
3.00 
3.00 

1044.39 
1.50 
1.50 

2088.79 
3.00 
3.00 

522.19 
0.75 
0.75 

1044.39 
1.50 
1.50 

Table 5.7: Diagonal Undamaged Stiffness Value at DOF Locations 
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Receptance FRF for the thin cantilever plate was also calculated within Matlab^̂ ^ from the 

algorithm presented in Chapter 2 that utilised the followmg equation: 

[z(a>)] = ([K]-«^[M])- (5.1) 

Shown in Figure 5.9 is the corresponding receptance FRF plot at a(l, 1) of the undamaged thin 

cantilever plate. It must be noted that a(l, 1) corresponds to node no. 5 for this example, because 

the DOFs of the grounded nodes have been removed. An inspection of Figure 5.9 shows that the 

receptance plot exhibits behaviour consistent with a point FRF measurement. The receptance 

plot also is consistent with structures that are considered to be in the grounded state. It must be 

noted that only the first 400 Hz of the frequency spectrum have been presented here. 

Receptance FRF Plot for the Undamaged Thin Cantilevered Plate 

Figure 5.9: Point Receptance Plot at a(l, 1) for the Undamaged Case 



Chapter 5: Damage Detection in Plate Structures 89 

5.6 DAMAGE CASE A 

hi Damage Case A, simulated damage will be introduced to element no. 11 by reducing the 

Young's Modulus associated with that element by 40%. By doing so, this attempts to simulate 

the effects of crack propagation. It is assumed that changing the Young's Modulus of element 

no. 11 only affects the elements of the stiffiiess matrix associated with this element. The nodes 

describing element no. 11 are nodes no. 14, 15,18 and 19. 

Table 5.8 is a comparison of the first 10 natural frequencies from ANSYS'̂ '̂  and Matiab™ for 

Damage Case A. It can be seen that the difference is very small, especially for the first three 

modes. Therefore, it can be assumed that the algorithm used to calculate the mass and stiffiiess 

matrices with for Damage Case A is correct. 

Mode Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

ANSYS™ 
Natural 

Frequency (Hz) 
6.81 

29.42 
41.85 
96.89 
119.46 
181.23 
189.21 
237.06 
254.92 
314.82 

Matlab™ 
Natural 

Frequency (Hz) 
6.80 

29.05 
41.86 
94.65 
119.67 
178.47 
182.12 
234.49 
245.52 
298.57 

% Error from 
ANSYS^M 

0.15 
0.13 
0.03 
2.31 
0.18 
1.52 
3.75 
1.08 
3.69 
5.16 

Table 5.8: Comparison of Natural Frequencies between Matlab^** and ANSYS^M for Damage Case A 

Table 5.9 is a comparison of the first 10 natural frequencies of the Matlab'™ results for the 

Undamaged Case against Damage Case A. 
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Mode Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Natural 
Frequency (Hz) 

Undamage 
6.83 
29.40 
42.84 
95.79 
120.90 
183.33 
184.97 
236.37 
248.81 
301.08 

Natural 
Frequency (Hz) 
Damage Case A 

6.80 
29.05 
41.86 
94.65 
119.67 
178.47 
182.12 
234.49 
245.52 
298.57 

% Change from 
Undamage 

0.44 
1.19 
2.29 
1.19 
1.02 
2.65 
1.54 
0.80 
1.32 
0.83 

Table 5.9: Comparison of Natural Frequencies between Undamage and Damage Case A 

A receptance FRF for the cantilever plate was also calculated using Matlab '̂̂ . Shown in Figure 

5.10 is the receptance FRF plot at a(l, 1) of the cantilever plate before and after Damage Case A. 

The effect of reducing the Young's Modulus of element no. 11 into the undamaged structure can 

clearly be seen to cause a negative shift to some of the peaks. 

Receptance FRF Plot fcr the THn Cartlewred Plate - Damage Case A 

Figure 5.10: Point Receptance Plot at a(l, 1) for Damage Case A 



Chapter 5: Damage Detection in Plate Structures 91 

The developed Damage Detection Algorithm was then applied to Damage Case A firstly without 

coordinate incompatibility. Randomly generated noise interference of approximately 5% was 

also introduced into the Damage Detection Algorithm. 

Figure 5.1 la is the corresponding 3D Damage Location Vector Plot for Damage Case A. From 

Figure 5.1 la many scattered peaks can be seen to occur throughout the frequency spectrum. This 

is the effects of the 5% noise interference. A close observation shows that most of the large 

peaks occurring throughout the frequency spectrum are contained between DOFs 25 and 45. It 

may be difficult to see the actual DOFs in this 3D DLV Plot due to the amount of information it 

contains. Estimation on the extent of damage can also be found on the 3D DLV Plot by reading 

the vertical axis. The damage extent for Damage Case A from Figure 5.11a can be said to be 

approximately 200 KN/m. This value can be fiirther quantified once the location of damage has 

been pinpointed. The location of damage can be seen more clearly on the corresponding 2D 

CDLV Plot. It must also be noted that due to computational constraints, the fiill natural 

frequency spectrum of the cantilever plate has not been plotted. 

3D Damage Location Vector Pbt 

Degreee of Freedon (DOFs) 

Figure 5.11a: 3D DLV Plot for Damage Case A without Coordinate Incompatibility 
(5% Noise) 
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Figure 5.1 lb is the corresponding 2D CDLV plot for Damage Case A. Here it can be seen that 

the damage is associated with DOF 28, DOF 33, DOF 40 and DOF 45, since these peaks can be 

observed to be much larger than the other DOFs. The remaining DOFs which are much smaller 

than the ones caused by damage are due to noise interference. The corresponding node numbers 

that are associated with the above DOFs that contain damage are nodes no. 14, 15, 18 and 19. 

This confirms the location of damage since the original damage was introduced into element no. 

11, which is bounded by node no. 14 (DOFs: 28, 29, 30), node no. 15 (DOFs: 31, 32, 33), node 

no. 18 (DOFs: 40, 41, 42) and node no. 19 (DOFs: 43,44, 45). 

X10 ^ Cimuldve Damage Location Vector 

nil l l l l II .1 

1 

III 1 1 

1 

1 1 1 1 1 1 1 1 

. . .iillfilh 
Degrees al Freedom (DOFs) 

Figure 5.11b: 2D CDLV Plot for Damage Case A without Coordinate Incompatibility 
(5% Noise) 

Having found the location of damage it is possible to determine a quantitative damage extent 

value for each of the DOFs by obtaining the change in stifftiess AK, since the diagonal [K]UD and 

the diagonal [K]D values corresponding to the DOFs are knovm. Table 5.10 shows the change in 

stiffiiess corresponding to each DOF that contams damage. This table also shows the effects of 

reducing the Young's Modulus by 40%) is seen as a reduction in stiffiiess by approximately 10%. 
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Nodes 
No. 

14 

15 

18 

19 

DOFs 
No. 

28 
29 
30 
31 
32 
33 
40 
41 
42 
43 
44 
45 

Diagonal 
[K]uD Value 

at DOF 
(KN/m) 
2088.79 

3.00 
3.00 

2088.79 
3.00 
3.00 

2088.79 
3.00 
3.00 

2088.79 
3.00 
3.00 

Diagonal 
[K]D Value 

at DOF 
(KN/m) 
1879.91 

2.70 
2.70 

1879.91 
2.70 
2.70 

1879.91 
2.70 
2.70 

1879.91 
2.70 
2.70 

Diagonal 
A[K] Value 

at DOF 
(KN/m) 
208.88 

0.30 
0.30 

208.88 
0.30 
0.30 

208.88 
0.30 
0.30 

208.88 
0.30 
0.30 

% Change 
from 

Undamage 

10% 
10% 
10% 
10% 
10% 
10% 
10% 
10% 
10% 
10% 
10% 
10% 

Table 5.10: Damage Extent Corresponding to DOFs for Damage Case A 

This shows that the developed Damage Detection Algorithm successfiiUy detected the simulated 

damage and did not find any other damage within the plate. It is also interesting to note that the 

detected damage was shovm to be much larger for translational DOFs than rotational DOFs. 

5.7 DAMAGE CASE B 

In Damage Case B, simulated damage will be introduced to element no. 16 by reducing the 

Young's Modulus associated with that element by 40% to simulate the effects of a crack 

propagation occurring at the edge. The nodes describing element no. 16 are nodes no. 21, 22, 25 

and 26. 

Table 5.11 is a comparison of the first 10 natural fi-equencies fi-om ANSYS™ and Matiab™ for 

Damage Case B. It can be seen that for the first few modes the errors are minimal. From this it 

can be safely assumed that the theoretical calculations for the first few modes are sufficiently 

accurate. 
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Mode 
Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

ANSYS™ Natural 
Frequency (Hz) 

6.83 
29.70 
42.77 
96.83 
120.13 
185.30 
188.41 
236.71 
256.06 
313.65 

MatlabTM Natural 
Frequency (Hz) 

6.83 
29.32 
42.79 
94.56 
120.30 
180.69 
182.61 
233.69 
246.62 
296.66 

% Error from 
ANSYS^M 

0.00 
1.28 
0.05 
2.34 
0.14 
2.49 
3.08 
1.27 
3.69 
5.42 

Table 5.11: Comparison of Natural Frequencies between Matlab^** and ANSYS^M for Damage Case B 

Table 5.12 i s a c omparison o f t he first 1 0 n atural frequencies o f t he Matlab"̂ *̂  r esults for t he 

Undamaged Case and Damaged Case B. 

Mode Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Natural 
Frequency (Hz) 
Undamage Case 

6.83 
29.40 
42.84 
95.79 
120.90 
183.33 
184.97 
236.37 
248.81 
301.08 

Natural 
Frequency (Hz) 
Damage Case B 

6.83 
29.32 
42.79 
94.56 
120.30 
180.69 
182.61 
233.69 
246.62 
296.66 

% Change from 
Undamage Case 

0.00 
0.27 
0.12 
1.28 
0.49 
1.44 
1.28 
1.13 
0.88 
1.47 

Table 5.12: Comparison of Natural Frequencies between Undamage and Damage Case B 

Receptance FRFs for the cantilevered plate for Damage Case B were also calculated. Shown in 

Figure 5.12 is the receptance FRF plot at a(l, 1) of the cantilever plate before and after Damage 

Case B. The effects of intioducing Damage Case B into the undamaged structure can be seen to 

cause some of the peaks to occur at lower fi-equencies compared to the undamaged receptance 

FRF. 
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Receptance FRF Plot for the Thn Cartlever Ptate - Damage C a w B 

Figure 5.12: Point Receptance Plot at a(l, 1) for Damage Case B 

Figure 5.13a is the corresponding 3D Damage Location Vector Plot for Damage Case B without 

coordinate incompatibility and with 5% noise interference. From Figure 5.13a peaks can be seen 

to occur at various fi"equencies throughout the spectrum. A closer observation shows that a 

majority of the larger peaks are contained between DOFs 45-65 . It may be difficult to see the 

actual DOFs in this 3D DLV due to the amount of information it contains. Estimation on the 

extent of the damage can be found on the 3D DLV plot by reading the vertical axis. The damage 

extent for Damage Case A from Figure 5.13a can be said to be approximately 200 KN/m. This 

value can be fiirther quantified once the location of damage has been pinpointed. The location of 

damage can be observed more easily on the 2D CDLV plot as shown in Figure 5.13b. Here it 

can be seen that the damage is associated with DOFs 49, 54, 61 and 66. The corresponding node 

numbers that are associated with the above DOFs are node no. 21, 22, 25 and 26. This confirms 

the location of damage, since the original damage was introduced into element no. 16, which is 

bounded by node no. 21 (DOFs: 49, 50, 51), node no. 22 (DOFs: 52, 53, 54), node no. 25 (DOFs: 

61, 62, 63) and node no. 26 (DOFs: 64, 65, 66). 
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Figure 5.13a: 3D DLV Plot for Damage Case B without Coordinate Incompatibility 
(5% Noise) 
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Figure 5.13b: 2D CDLV Plot for Damage Case B without Coordinate Incompatibility 
(5% Noise) 

Having found the location of damage it is possible to determine a quantitative damage extent 

value for each of the DOFs by obtaining the change in stifftiess AK, since the diagonal [K]UD and 

the diagonal [K]D values corresponding to the DOFs are known. Table 5.13 shows the change m 
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stiffiiess corresponding to each DOF that contains damage. This table also shows the effects of 

reducing the Young's Modulus by 40% is seen as a reduction in stiffiiess by approximately 10%. 

Nodes 
No. 

21 

22 

25 

26 

DOFs 
No. 

49 
SO 
51 
52 
53 
54 
61 
62 
63 
64 
65 
66 

Diagonal 
IK]UD Value 

at DOF 
(KN/m) 
1044.39 

1.50 
1.50 

2088.79 
3.00 
3.00 

522.19 
0.75 
0.75 

1044.39 
1.5 
1.5 

Diagonal 
IK]D Value 

at DOF 
(KN/m) 
835.51 

1.20 
1.20 

1879.12 
2.70 
2.70 

313.31 
0.45 
0.45 

835.51 
1.20 
1.20 

Diagonal 
AIK] Value 

at DOF 
(KN/m) 
208.79 

0.3 
0.3 

208.79 
0.3 
0.3 

208.79 
0.3 
0.3 

208.79 
0.3 
0.3 

% Change 
from 

Undamage 

10% 
10% 
10% 
10% 
10% 
10% 
10% 
10% 
10% 
10% 
10% 
10% 

Table 5.13: Damage Extent Corresponding to DOFs for Damage Case B 

This shows that the developed Damage Detection Algorithm successfiiUy detected the simulated 

damage and did not find any other damage within the plate structure. It is also interesting to note 

that the detected damage was shown to be much larger for translational DOFs than rotational 

DOFs. An interesting observation is that the translational amount of damage shown in Figure 

5.13b experienced by each node is not an equal distribution, taking into consideration the added 

affects of the 5% noise interference. The reason for this is that the connectivity for various nodes 

of element no. 16 is different for each node. For example, node no. 21 is an edge node and is 

connected by nodes on 3 sides compared to node no. 25 which is a comer node and is only 

connected by 2 nodes. 
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5.8 DAMAGE CASE C 

To further v erify t hat t he r obustness o f t he d eveloped D amage Detection Algorithm, m ultiple 

damage scenarios will be introduced to the plate structure. Damage Case C is the combination of 

damage simulated on the plate fi-om Damage Case A and Damage Case B, simultaneously, that 

simulates crack propagation at multiple locations. 

Table 5.14 is a comparison of the first 10 natural fi-equencies fi-om ANSYS"'"'̂  and Matlab''''̂  for 

Damage Case C. It can be seen that the difference is very small, especially for the first three 

modes. 

Mode 
Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

ANSYSTM Natural 
Frequency (Hz) 

6.81 
29.33 
41.80 
95.67 
118.92 
179.10 
186.80 
234.57 
252.45 
310.62 

MatlabTM Natural 
Frequency (Hz) 

6.80 
28.97 
41.81 
93.45 
119.11 
176.26 
179.54 
231.70 
243.16 
294.30 

% Error from 
ANSYSTM 

0.15 
1.23 
0.02 
2.32 
0.16 
1.59 
3.89 
1.22 
3.68 
5.25 

Table 5.14: Comparison of Natural Frequencies between Matlab^** and ANSYŜ ™ for Damage Case C 

Table 5.15 is a comparison of the first 10 natural fi-equencies of the Matlab'̂ '̂  results between the 

Undamaged Case and Damage Case C. 
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Mode 
Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Natural 
Frequency (Hz) 
Undamage Case 

6.83 
29.40 
42.84 
95.79 
120.90 
183.33 
184.97 
236.37 
248.81 
301.08 

Natural 
Frequency (Hz) 
Damage Case C 

6.80 
28.97 
41.81 
93.45 
119.11 
176.26 
179.54 
231.70 
243.16 
294.30 

Vo Change from 
Undamage Case 

0.44 
1.46 
2.40 
2.44 
1.48 
3.86 
2.93 
1.98 
2.27 
2.25 

Table 5.15: Comparison of Natural Frequencies between Undamage and Damage Case C 

Receptance FRFs for the cantilevered plate were also calculated usmg Matlab'̂ '̂ . Shown in 

Figure 5.14 is the receptance FRF plot for location (1, 1) of the cantilever plate before and after 

Damage Case C. It can be seen that the fi-equency shifts in some of the peaks are much larger 

than previous shifts observed in either Damage Case A or Damage Case B. 

Rece|lance FFiF Plot f o tha Thn CantAevar Ptete • Damage Case C 

Figure 5.14: Point Receptance Plot at a(l, 1) for Damage Case C 

Figure 5.15a is the corresponding 3D Damage Location Vector Plot for Damage Case C. From 

Figure 5.15a peaks can be seen to occur at various fi-equencies. However, it can be observed that 
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the larger dominant peaks occur between DOFs 25 -65 , which is consistent with the locations 

found in Damage Case A and Damage Case B. 

3D Damage Location \fectcr Pbt 
- - ' T - . 

Degrees of Freedcm (DOFs) 

Figure 5.15a: 3D DLV Plot for Damage Case C without Coordinate Incompatibility 
(5% Noise) 

Figure 5.15b is the corresponding 3D CDLV plot for Damage Case C. Here it can be seen that 

the damage is associated with DOFs 28, 33, 40, 43, 49, 54, 61 and 64, since these peaks are much 

greater than the rest of the peaks which are due to the 5% noise interference. The corresponding 

node numbers that are associated with the above DOFs are nodes no. 14, 15, 18, 19, 21, 22, 25, 

and 26. Although the Damage Detection Algorithm successfiiUy located the damage, care must 

be taken to interpret the location of damage in situations where multiple damage occur. At this 

point the connectivity within the structure becomes extremely important. Fortunately, through 

the process of elimination, it is possible to isolate each individual damage location. For uistance, 

in Damage Case C, it is known that four nodes shall describe each element. Interpretation of the 

results shows that damage is present in 8 nodes. This suggests hat there are only two locations in 

the plate structure that is damaged. Through the process of elimination it can be seen that only 

element no. 11 is bounded by node no. 14 (DOFs: 28, 29, 30), node no. 15 (DOFs: 31, 32, 33), 

file:///fectcr
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node no. 18 (DOFs: 40, 41, 42) and node no. 19 (DOFs: 43, 44, 45). Likewise, only element no. 

16 is bounded by node no. 21 (DOFs: 49, 50, 51), node no. 22 (DOFs: 52, 53, 54), node no. 25 

(DOFs: 61, 62, 63) and node no. 26 (DOFs: 64, 65, 66). 
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Figure 5.15b: 2D CDLV Plot for Damage Case C without Coordinate Incompatibility 
(5% Noise) 

5.9 COORDINATE INCOMPATIBILITY 

First only 48 DOFs out of a possible 72 DOFs will be supplied to the Damage Detection 

Algorithm. This would require the Damage Detection Algorithm to utilise the Dynamic 

Expansion method A (D.E. A), as discussed in Chapter 2, to expand the 24 missmg DOFs to 

match the 72 DOFs found in the undamaged analytical model. The 48 DOFs that were supplied 

into the Damage Detection Algorithm were chosen randomly from the 72 DOFs available. See 

Appendix 9 for the list of the randomly chosen DOFs. 

For simplicity. Damage Case A scenario from the previous section will be used in this section. A 

coordinate incompatibility study v^ll only be applied to Damage Case A for this section, since 

Damage Case B and Damage Case C would lead to essentially the same conclusion. As with 



Chapter 5: Damage Detection in Plate Stinctures 102 

previous studies, noise of 5% will also be introduced to the algorithm at the same time as 

coordinate incompatibility. 

Figure 5.16a is the corresponding 3D DLV Plot for Damage Case A when only 48 DOFs from a 

possible 72 DOFs were supplied to the Damage Detection Algorithm. Since not all the 

coordinates have been supplied to the Damage Detection Algorithm, the location of damage can 

not be predicted with certainty. However it is possible to utilise the Damage Detection 

Algorithm to determine an approximate area of damage. Once this approximate area of damage 

has been located, fiirther measurements within this area may aid in pinpointing the location of 

damage. Once the location of damage has been pinpointed accurately then a quantitative value 

may be determined for the damage using the same procedures as shown in the previous section. 

It must be noted that unlike the previous section, in cases where coordinate incompatibility 

exists, the vertical axis of the 3D DLV plot may not necessarily indicate the damage extent 

within the structure. 

Figure 5.16b is the corresponding 2D CDLV Plot for Damage Case A with 48 DOFs supplied 

and 24 expanded DOFs. Here the location of damage can be seen to occur at DOFs 25, 28, 31, 

36, 52, 55, 61 and 70. This translates to the damage being associated with nodes no. 13 (DOFs: 

26, 26, 27), node no. 14 (DOFs: 28, 29, 30), node no. 15 (DOFs: 31, 32, 33), node no. 20 (DOFs: 

46, 47, 48), node no. 22 (DOFs: 52, 53, 54), node 23 (DOFs: 55, 56, 57) node no. 25 (DOFs: 61, 

62, 63) and node no. 28 (DOFs: 70, 71, 72. It should be noted that damage for the cantilever 

plate is considered as damage to the element rather than to a node. 
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Figure 5.16a: 3D DLV Plot for Damage Case A with 48 Measured Coordinates and 
24 Expanded Coordinates (5% Noise) 

4.5 

1 

1 

0.5 

B 

x10 
2D Cunulative Damage Location Vector Plot 

1 ( 1 ( 1 

• 
1 

1 

• 
1 

1 

• 
! 

! 

• 

1 

0 10 2 0 3 0 4 0 5 0 6 0 70 80 
Degrees of Freedcm (DOFs) 

Figure 5.16b: 2D CDLV for Damage Case A with 48 Measured Coordinates and 
24 Expanded Coordinates (5% Noise) 

Recall that for Damage Case A, only element no. 11 is the damaged element. The initial 

conclusion would suggest that the Damage Detection Algorithm did not detect the damage 

accurately. However, if the location of these nodes were examined on the cantilever plate as 
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shown in Figure 5.17, it can be seen that the nodes mapped out an area where the damage may be 

located a nd t hat e lement n o. 111 ies w ithin t his area. T he r eason w by i t w as n ot p ossible t o 

accurately pinpoint the damage to element no. 11 at this present stage is because the Damage 

Detection Algorithm could only detect the damage to the closest available DOFs that were 

supplied. In order to accurately pinpoint the damaged element, DOFs within the shaded area 

shown in Figure 5.17 are required to be supphed. 
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Figure 5.17: Node Map of Possible Damage Area for Damage Case A 

In order to accurately pinpoint the damage further DOFs within the identified area were 

subsequently supplied to the Damage Detection Algorithm. Figure 5.18a is the corresponding 

3D DLV Plot for Damage Case A when 12 more DOFs, totalling 60 DOFs out of 72 DOFs were 

supplied to the Damage Detection Algorithm. 
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Figure 5.18a: 3D DLV Plot for Damage Case A with 60 Measured Coordinates and 
12 Expanded Coordinates (5% Noise) 

105 

Figure 5.18b is the corresponding 2D CDLV plot for Damage Case B with 60 DOFs supplied and 

12 expanded DOFs. Here the location of damage can be seen to occur at DOFs 28, 31, 43 and 52 

whose peaks are clearly dominate over the smaller peaks that are due to noise. This translates to 

the damage being associated wdth node no. 14 (DOFs: 28, 29, 30), node no. 15 (DOFs: 31, 32, 

33), node no. 19 (DOFs: 43, 44, 45) and node no. 22 (DOFs: 52, 53, 55). If these nodes were 

examined onto the cantilever plate as shown m Figure 5.19, they map out an area on the plate 

where damage may exist. Since not all the coordinates have been supplied, it is still not possible 

to determine the exact location of damage. However comparison of Figure 5.17 and Figure 5.19, 

shows that the area of damage is fiirthered refined when more DOFs for the cantilever plate are 

supplied to the Damage Detection Algorithm. It can be seen that in order to improve the 

resolution of the location of damage, all the DOFs that lie withm the shaded area of Figure 5.19 

must be supplied to the Damage Detection Algorithm. 
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12 Expanded Coordinates (5% Noise) 
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5.10 DISCUSSION 

In this Chapter the Damage Detection Algorithm was found to be robust and demonstrated that it 

could be used as a tool to locate damage within a thin flat plate structure. Furthermore, tiie 

Damage Detection Algorithm was also able to give estimation on the extent of damage present 

once the location was found. It was also shown that the algorithm was capable of detecting 

damage for multiple simulated damages with 5% simulated noise interference. 

For the case where coordinate incompatibihty exists, the Damage Detection Algorithm 

demonstrated that it could be used as a tool to firstly determine a broad area of damage within the 

structure. Once an area of damage has been identified on the structure, further refinements to 

pinpoint the damage can be effected if more FRF data in the area are available. 

A real cantilever plate will be studied in the next chapter. An experimental FRF will be obtained 

from a cantilever plate from vibration testing. Damage will be introduced to the cantilever plate 

and the ability of the Damage Detection Algorithm to detect this damage will be assessed. 



CHAPTER 6 

EXPERIMENTAL STUDIES: 

DAMAGE DETECTION IN A 

CANTILEVER PLATE 

The aim of this chapter is to utihse the Damage Detection Algorithm that has been studied in the 

previous chapters and apply it to a real structure using experimental FRFs which will be obtained 

from non destructive vibration tests. Physical damage will be introduced to the cantilever plate 

and the performance of the Damage Detection Algorithm will be assessed. 

The dimension of the physical test piece has been chosen to match the dimension of the Plate28 

example from the previous chapter. This will enable a comparison to be made between the 

results previously obtained from simulated damage to experimental results obtained in this 

chapter. First basic concepts from experimental modal analysis are briefly presented. 

6.1 BASIC MODAL ANALYSIS 

The basic experimental setup required in order to obtain FRF data is simple and consists of three 

main items: 

1. Transducers 

2. Excitation mechanism 

3. Frequency Analyser 
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6.1.1 TRANSDUCERS 

Transducers are used to measure the parameters of interest in modal testmg. There are a wide 

variety of transducers available, the most common being the "Force Transducer" and the 

"Accelerometer". These transducers consist of a piezoelectric element which exhibits an 

electrical charge across its end face when subjected to mechanical stresses. With the appropriate 

design, a piezoelectric element may be incorporated into devices that may induce a sfress 

proportional to the physical quantity to be measured such as force or acceleration. 

It is important that the transducer such as an accelerometer is attached correctly to the test 

structure and that the correct method of fixation is chosen for the desired frequency respouse 

range of the test structure, as limitations in frequency response ranges exist for each method 

(Ewins, 1984) and are shown in Figure 6.1. It is also important that when attaching the 

transducer to the test structure that the selected method does not dramatically change the local 

stiffhess or mass of the structure. The simplest and easiest method to attach a transducer (of 

small relative mass) to the test structure is to use a thin layer of wax which acts as a weak 

adhesive. This method will be used for experiments in this chapter. 
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Figure 6.1: Limitation of Frequency Response Range (extracted from Ewins, 1984) 
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6.1.2 EXCITATION MECHANISM 

The excitation mechanism is important in modal testing as it is used to introduce vibration mto 

the test structure through a controlled excitation. The hammer excitor is a simple way to 

inti-oduce excitation into a test structure. The hammer consists of a handle with an impactor as 

the head. For this reason the hammer excitor is often referred to as an "Impact Hammer". This 

impactor head can be fitted with different types of tips so that different frequency ranges and 

force levels may be achieved for testing of different structures. The impactor head also 

incorporates a force transducer, which records the force felt by the impactor. 

The operator who controls the velocity of the impact on the test structure determines the 

magnitude of the force. One of the difficulties associated with using the impact hammer is the 

ability to ensure that consistent impact force is applied to the test structure. The location on the 

test structure where the contact of the impact hammer is to occur is also important. Ensuring that 

the impact is always normal to the test surface would result in greater accuracy and repeatability. 

At the same time, multiple impacts should be avoided, that is to say that one impact should only 

occur at any one time and the reverberation of the impact hammer should not make contact with 

the test structure during this period. 

6.1.3 FREQUENCY ANALYSER 

The purpose of the analyser is to record and process the signal reported by the transducer. This 

signal is transmitted to the analyser in analogue format and is converted to a digital signal by the 

analyser. 
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6.2 EXPERIMENTAL SETUP 

The experimental setup shown in Figure 6.2 that was used to obtain FRF data from the cantilever 

plate in this chapter consisted of the following equipment: 

1. Miniature Accelerometer (Type 4393 Bruel & Kjaer) 

2. histrumental Hammer (PCB 086B03) 

3. Nexus Conditional Amplifier 

4. Power Unit (PCB 480D06) 

5. Oscilloscope 

6. Dual Channel Signal Analyser (Bruel & Kjaer 2032) 

7. Personal Computer 

A single direction miniature accelerometer (Type 4393 Bruel & Kjaer) with a mass of 2.3g was 

used to measure the response of the test structure. Its calibration chart can be found in Appendix 

10. Attention was given to the selection of this accelerometer. Incorrect selection may 

inadvertently change the overall test piece. 

This miniature accelerometer with a sensitivity of 0.314 pc/ms" was connected to the Nexus 

Conditional Amplifier, which amplified the response signal to a suitable level before the signal 

was fed into Channel B of the Signal Analyser. A gain of lOmV/ms'̂  was also set on the Nexus 

Conditional Amplifier. Additionally, the response signal from the miniature accelerometer was 

also fed into an oscilloscope. The purpose of this was to observe the real time response from the 

miniature accelerometer. 

An instrumented hammer that incorporated a force fransducer with a plastic tip was used to 

excite t he e xperimental t est p iece. T he s ensitivity o f t he force t ransducers o f t his h ammer i s 
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2.10mV/N and was connected to a power unit with a gain of lOOmV/ms''̂ . The signal output 

from the power unit was connected to channel A of the Dual Channel Analyser and was also fed 

into an oscilloscope to monitor the real time responses. 

The output of the Dual Channel Analyser was connected to a personal computer via the GPIB 

port on the Dual Channel Analyser. By connecting the Dual Channel Analyser to a personal 

computer, this allows the FRFs to be stored, since the Dual Channel Analyser is not capable of 

storing more than one FRF trace at any one time. Appendix 11 details the setting used on the 

Dual Channel Analyser. 
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1. Miniature Accelerometer 

2. Instrumental Hammer 

3. Nexus Conditional Amplifier 

4. Power Unit 

5. Oscilloscope 

6. Dual Channel Signal Analyser 

7. Personal Computer 

Figure 6.2: Sketch of Experimental Setup 
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6.3 EXPERIMENTAL TEST PIECE 

The test sti^cture is a thin cantilever plate with smiilar properties of the Plate28 stiiicture studied 

in the previous chapter. The cantilever plate structure is a thin galvanised steel plate with 

dimension 700nim x 300mm x 3mm and is larger than the defined working area to allow for 

fixation. It is assumed that the galvanised steel has a Young's Modulus (E) of 200 GPa, 

Poisson's Ratio (v) of 0.3 and density (p) of 8179 kg/m^ 

Using a felt tip pen, a grid of squares the size of 100mm x 100mm was marked out on the surface 

of the cantilever plate. Nodes were also marked at each intersection of the grid. This resuhed in 

28 nodes and 18 square elements over the cantilevered portion as shown m Figure 6.3. With the 

plate u nder s uch a c onfiguration t he full 1 ength of t he p late w as n ot fully u tilised. This w as 

deliberately done so that there was adequate amount of space left over on one side so that this 

could be used to ground the plate. The test piece was clamped between two solid steel bars and 

then fixed on a large tri-angular steel frame using several G-Clamps. 
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Figure 6.3: Experimental Test Piece 
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hi reahty this thin cantilever plate is described by 28 nodes and had 6 DOFs (3 translational and 3 

rotational) per node. This experimental stiiicture therefore has a total of 168 DOFs. To simplify 

the problem, only translation degrees of freedom are considered for the study of this structure. 

This is justified, as the rotational degrees of freedom can not be practically measured with the 

same degree of accuracy as translational DOF. Under this assumption, the thin cantilever plate 

has a total of 84 DOFs. Since this thin cantilever plate is to be grounded at one end, therefore a 

further 4 nodes may be eliminated, thus leaving only 72 DOFs. 

6.4 CALIBRATION 

It is critical that before any data is obtained that equipment calibration is performed to ensure that 

all equipment is functioning correctly. Ewins, (1984) suggests that a simple and easy technique 

of calibrating can be done by using a known mass. Calibration can be done by freely suspending 

this known mass and attaching the accelerometer to be used for measurement onto this mass. A 

hammer should then be used to excite the mass. The overall sensitivity of the equipment can be 

calibrated by measuring the ratio of response to force of this mass. From this simple structure, 

the overall result expected is a constant magnitude over the frequency range. 

The mass that was used weighed 9.328 kg and was suspended from a free-free structure as shown 

in Figure 6.4. 

For this particular mass the calibration is given by; 

mX = F 

or, 20 log 
rx̂  _„. rn .„, r i 

10 

vFy 
= 20log,o - =201og 

\ 

vm; 
MO 

9.328 
= -19.4dB 

Where m = 9.328 kg 
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Figure 6.4 Free-Free Known Mass Structure 

Therefore, for a knovm mass of 9.328 kg the expected accelerance FRF results obtained by the 

Bruel & Kjaer analyser should show a constant magnitude of -19.4 dB across a range of 

frequency. Averages of five measurements were obtained for the calibration run. 

Initial measurements resulted in a recorded magnitude of-18.4 dB. This was not the value that 

was expected for the mass that was used. The setup was adjusted until the desired result was 

achieved (Ewins, 1984). The advantage of such type of calibration is that it is relatively simple 

to perform and ensures that the complete measurement setup is calibrated in one process, rather 

than having to calibrate each individual piece of equipment. 

The sensitivity of the miniature accelerometer Bruel & Kjaer Type 4393 was adjusted from 

0.314pc/ms'^to0.354pc/ms"^. B y adjusting the sensitivity of the miniature accelerometer the 

correct dB value of-19.4 dB was eventually achieved and is shown in Figure 6.5. 
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Figure 6.5 shows the accelerance FRF plot obtamed for the calibration of the known mass after 

adjustments were made to the equipment to produce the correct theoretical desfred dB as 

indicated by the dotted Ime in Figure 6.5. ft can also be seen that the accelerance FRF plot 

decreases in dB as the frequency increases or rather it can be observed that the pulse is decaymg. 

This is consistent with experimental results. The coherence plot for the corresponding 

accelerance FRF plot has also been provided. It can be seen that the coherence is extremely 

good, in that most values are close to one or unity. This suggests that the FRF data obtained 

corresponding to this coherence plot is fairly free from noise. However it can not be concluded 

that the FRF data is free from errors. It can be observed that the calibration curve is extremely 

good over most of the range of frequency studied, while between 5 Hz - 40 Hz, the error is of 

order 5%. Poor FRF data at this frequency range could be caused by the existence of rotational 

DOFs at the point of fixation causing inadequate grounding of the structure. Despite efforts to 

adequately ground the structure, it was not possible to eliminate this problem. 
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Figure 6.5: Accelerance and Coherence Plot for Calibration of Known Mass 
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6.5 STRUCTURE SETUP 

As the plate is fixed at one end i.e. tested in grounded conditions, the test structure will not 

exhibit any rigid boimd modes. In theory, it is relatively simple to ground a test structure, 

however in practice it is very difficult to provide a sufficiently rigid foundation on which the test 

stiiicture may be grounded. A common procedure is to measure the mobility of the rigid 

foundation itself over a frequency range to estabhsh that the foimdation has a much lower 

mobility t ban t he c orresponding 1 evels o f t he t est s tructure a 11 he p oint of fixation. If t his i s 

satisfied then the test structure can be said to be sufficiently grounded. 

However it is important to note that it may often not be very easy to fully ground a structure, as 

most o ften t here m ay b e s ome r otational d egrees o f freedom e xisting a 11 he p oint o f fixation. 

These rotational degrees of freedom may be very difficult to detect or measure. 

6.6 SIMULATION OF DAMAGE 

Similar damage cases used in Section 5.4 will be introduced to the experimental test piece (Table 

5.4 and Table 5.5). Controlled damage will be firstly introduced to a single element on the 

cantilever plate by a small cut across the element. Since it is desired to firstly study the different 

damage cases individually before multiple damage scenarios are considered, two identical 

cantilever plates have been used. 

6.7 OBTAINING EXPERIMENTAL FREQUENCY RESPONSE FUNCTION DATA 

Experimental FRFs data will be obtained for at least one row or column of the FRF matrix of the 

shiicture. For example, in the case of Plate28, which is described by 72 DOFs, the minimum 

FRFs data required without considering coordinate incompatibility is 72 experimental FRF data 

fraces. Having said this, it is not sufficient to supply 72 experimental FRF data traces in random 
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order. Some order is required when obtaining the experimental FRF, which will satisfy the needs 

of one row or column. Through reciprocity, it is easier to obtain a column of FRF data rather 

thana row ofFRF data. S ince, in order to obtain a columnof FRF data one must have the 

accelerometer fixed on one 1 ocation while the excitation location cycles through all the nodal 

locations. This is easier to reahse than to obtain a row of FRFs data where the excitation location 

remains fixed and the accelerometer location moves through all the nodal locations. 

6.8 ICATS & CIRCLE FIT METHOD 

The Bruel & Kjaer Frequency Analyser is used in the experimental setup to acquire the 

experimental FRF. However, the analysis of the experimental FRF data will be done using a 

modal analysis software, "ICATS" (Imperial College Analysis and Testing Software). ICATS is 

a combination of several utilities that caters for specific applications within the modal analysis 

field. The MOD ACQ component within ICATS is used to fransfer the experimental FRF data 

captured by the Bruel & Kjaer Frequency Analyser to the PC. This data is stored in an ASCII 

format. 

The circle fit analysis method relies on the fact that the Nyquist plot of the frequency response 

function properties produces circle like curves at the vicinity of a resonance in the FRF data. A 

proof can be found in Ewins (1984). 

Within the ICATS program the circle fit analysis method can be invoked by running the 

MODENT module of ICATS. This MODENT module allows the operator to analyse the 

obtained FRF experimental data using different analysis methods. 
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6.9 UNDAMAGED CASE 

Figure 6.6 Experimental Setup of Plate28 without Damage 

Figure 6.6 shows the experimental setup for the undamaged cantilever plate. The experimental 

plate is clamped between two solid steel bars and fixed to a much larger steel frame by several G-

Clamps. It is assumed that this steel frame is fully grounded. Although theoretically, grounding 

a structure is trivial, m reality this was found to be extremely difficult to ensure that all the 

rotational DOFs were grounded at the point of fixation. One method to ensure that no rotational 

DOFs exist at the fixing pomt is to obtain preliminary FRFs at or near the grounded nodes. In 
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Figure 6.6, the accelerometer is attached to node no. 10 of the plate. A magnetic swivel arm was 

used to ensure that the cabling of the accelerometer did not mterfere with the vibration of the 

cantilever plate during impact. 

The Circle Fit Method was used to analyse and detect the mode shapes and natural frequencies of 

the FRF data that were obtained from non-destructive impact testing of the undamaged cantilever 

plate. Figure 6.7 shows the point FRF data corresponding to location (1,1) which correlates to 

node no. 5 since all previous (lower numbered) nodes have been grounded. Natural frequencies 

were also obtained from ICATS and these are presented in Table 6.1. It can be seen from Figure 

6.7 that this is indeed a point FRF data since it only contains well defined resonance and anti-

resonance. It c an b e s een t hat ICATS d etect o nly 1 1 o ut o f 1 2 n atural frequencies s hown i n 

Table 6.1. The frequency of 6.83 Hz is missed because of experimental limitation. 
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Figure 6.7: ICATS Identification of Mode Shapes 

From Table 6.1, it can be seen that the modes and natural frequencies correlated closely with the 

natural frequencies obtained from Matlab and ANSYS. It must also be noted that the first mode 

shape and corresponding natural frequency could not be obtained. 
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Modes No. 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Matlab (Hz) 
6.83 

29.40 
42.84 
95.79 
120.90 
183.33 
184.97 
236.37 
248.81 
301.08 

ANSYS (Hz) 
6.83 
29.78 
42.82 
98.07 
120.71 
187.63 
190.79 
239.20 
258.36 
318.02 

Experimental (Hz) 
Unobtainable 

29.50 
41.50 
95.50 
113.50 
182.00 
185.50 
229.50 
249.50 
298.00 

Table 6.1: Comparison of Natural Frequencies for the Cantilever Plate Undamage 

Figure 6.8 shows the comparison of the experimental receptance FRF plot obtained from the 

undamaged cantilever plate against theoretical calculations from the previous chapter. It can be 

seen that at low frequencies both the experimental and theoretical receptances are fairly similar. 

It also must be noted that the experimental receptance trace at the initial zero frequency does not 

exhibit stiffhess like characteristics as presented in modal analysis theories. This does not 

suggest that the experimental results obtained are incorrect or that modal analysis is incorrect, but 

is due to the erroneous results obtained at the initial zero frequency. 

Receptance FRF Plot for the Undamaged Cantilevered Plate 

Theoretical Undamaged 
Experimental Undamaged 
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Figure 6.8: Comparison of Experimental against Theoretical Receptance FRF 
at a(l, 1) for the Undamaged Cantilever Plate 
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First t he e ffect o f n oise i s i nvestigated b y i nputting i nto t he D LV algorithm t he e xperimental 

signals due to noise only by using only the undamaged structure. Figure 6.9a is the 

corresponding 3D Damage Location Vector plot for the Undamaged Case between the frequency 

ranges of 50Hz - 200Hz with a frequency resolution of 0.5Hz. The Damage Detection 

Algorithm was applied to this frequency range so that it would be possible to avoid the erroneous 

experimental results obtained at the beginning frequencies closest to zero hertz. 

From Figure 6.9a peaks can be seen to occur in all DOFs and this would suggest that all DOFs 

within the cantilever plate contained damage. Reading from the vertical axis the maximum 

change i n s tiffhess [ AK] c an b e estimated t o b e a pproximately 60N/m. U sing M atlab"̂ ^ i t i s 

possible to investigate further into the DLV to determine the exact location and magnitude of 

where the maximum change in stiffhess occurs. The magnitude of the stiffiiess peak was found 

to be 64N/m and occurred at DOF 1. From the undamaged stiffiiess matrix, the original stiffiiess 

magnitude at DOF 1 is approximately 1.044MN/m. Comparison between the stiffiiess 

magnitudes obtained from the DLV with the original magnitude shows that the percentage of 

change from the original stiffhess value to be approximately 0.006%. This suggests that the 

effect of noise was not significant. 

Figure 6.9b is the corresponding 2D CDLV plot for the Undamaged Case which shows the effect 

of noise. In this plot extremely large peaks can be seen to occur. However closer inspections 

shows that the scale on the vertical axis is exfremely small compared to later plots. It can be 

seen that the effect of noise is small and present in most DOFs, relatively more dominant for 

deflection DOFs compared to rotational DOFs. 
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Figure 6.9a: 3D DLV Plot for Undamaged Case 

2D CuniJd\e Damage Localicr Vector 
2S0O -

2000-

1S0O-

1000 

500 -

"o 

- -

• • 

1 0 20 30 i 0 

1 
1 

1 
1 

• 

50 

I 

- T 

00 
•• • • 

7 0 a 0 

Degrees of Freedom (IDOFs) 

Figure 6,9b: 2D CDLV Plot for Undamaged Case 



Chapter 6: Experimental Studies: Damage Detection of a Cantilever Plate 124 

6.10 DAMAGE CASE A 

Figure 6.10: Experimental Setup of Plate28 for Damage Case A 

Figure 6.10 shows the experimental setup for the cantilever plate for Damage Case A. Physical 

damage was infroduced to the cantilever plate as a diagonal cut across element no. 11, affecting 

nodes no. 14, 15, 18 and 19. This cut can clearly be seen in Figure 6.9. It is assumed that this 

diagonal c ut d oes n ot c hange t he m ass o f t he c antilever p late s ignificantly and t hus i t c an b e 

assumed that there is no change in the mass of the structure. 
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Once the experimental plate was securely fixed to the large steel frame structure, FRFs data 

fraces were obtained by systematically impacting each node at any one time witii tiie unpact 

hammer. An average of five FRFs data traces were taken for each node. 

Table 6.2 is a comparison of natural frequencies obtained from theoretical analysis in the 

previous chapter compared with real experimental FRF data for Damage case A. It can be seen 

that the experimental data correlate closely with the theoretical analysis. 

Modes No. 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Matlab (Hz) 
6.79 

28.95 
41.55 
94.33 
119.30 
176.44 
181.78 
233.96 
244.52 
297.87 

ANSYS (Hz) 
6.80 
29.32 
41.56 
96.55 
119.08 
179.31 
188.75 
236.41 
253.92 
313.89 

Experimental (Hz) 
Unobtainable 

28.50 
40.50 
92.50 
113.00 
179.00 
182.50 
227.00 
247.50 
293.00 

Table 6.2: Natural Frequency of the Cantilever Plate Obtained from Experiment for Damage Case A 

Table 6.3, is a comparison of natural frequencies between the experimental imdamaged data and 

the experimental data obtained from Damage Case A. A percentage change between 0.44% -

3.39% from the undamaged cantilever plate can be seen at various natural frequencies. 

Modes 
No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Experimental 
Undamage (Hz) 

Unobtainable 
29.50 
41.50 
95.50 
113.50 
182.00 
185.50 
229.50 
249.50 
298.00 

Experimental 
Damage Case A (Hz) 

Unobtainable 
28.50 
40.50 
92.50 
113.00 
179.00 
182.50 
227.00 J 
247.50 
293.00 

Change from 
Experimental 

Undamage (%) 
NA 
3.39 
2.41 
3.14 
0.44 
1.65 
1.62 
1.09 
0.80 
1.68 

Table 6.3: Change from Experimental Undamaged Natural Frequency for Damage Case A 
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Figure 6.11 is a comparison of the receptance FRF plots of the theoretical undamaged structtn-e 

against Damage Case A for a(l, 1), where a(l, 1) in this example corresponds to node no. 5 

since all nodes with smaller numeral orders have been grounded. With the mtroduction of 

damage, the receptance FRF plot can be seen to shift towards the lower frequencies ranges 

compared to the original undamaged receptance FRF plot. Also it can be seen that the peaks on 

the experimental receptance FRF plot are not as sharp and defined as the theoretical receptance 

FRF plot. This is possibility due to noise, numerical errors, structural dampmg and numerical 

damping (Ewins, 1984). 

Receptance FRF plot (or Damage Case A of the Cantilevered Plate 
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Figure 6.11: Comparison of Experimental against Theoretical Receptance FRF 
at a(l, 1) for Damage Case A. 

Figure 6.12a is the corresponding 3D Damage Location Vector plot for Damage Case A between 

the frequency range of 5 OHz - 200Hz with a frequency resolution of 0.5Hz. It must be noted that 

a frequency resolution of 0.5Hz was chosen so that it would match the frequency resolution of 

the Bruel & Kjaer frequency analysers. By applying the Damage Detection Algorithm within 
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this range it was possible to avoid the erroneous experimental resuhs obtained at the beginning 

frequencies closest to zero hertz. 

From Figure 6.12a peaks can be seen to occur between DOF 25 and DOF 55. This suggests that 

the damage would lie between these DOFs. It should also be noted that since the peaks between 

DOF 25 and DOF 55 are quite large, smaller peaks due to noise that are existent in other DOFs 

may not show up clearly. 

Reading from the vertical axis the maximum change in stiffiiess [AK] can be estimated to be 

approximately 40000N/m. Using Matlab''"'̂  it is possible to investigate further into the DLV to 

determine the exact location and magnitude of where the maximum changes in stiffhess occurs. 

The maximum magnitude of the stiffiiess peak was found to be 43088.45N/m and occurred at 

DOF 43. This represents the largest change in value of elements of the stiffiiess matrix of 

approximately 2% from the original undamaged stiffhess matrix. This is quiet reasonable as the 

cut is very small compared to the element surface area. Table 6.4 shows the relative percentage 

changes from the original stiffhess matrix for the DOFs identified in Figure 6.12b. These values 

are ranked in accordance with maximum magnitude observed from the DLV. 

Figure 6.12b is the corresponding 2D CDLV plot for Damage Case A. Here it can be seen that 

the damage is associated with quite a few DOFs. However the four most predominant DOFs are 

DOF 28, DOF 31, DOF 40 and DOF 43. These predominant DOFs correspond to element no. 11 

and clearly suggest that damage is present at this location. Having taken into account the DOFs 

that correspond to element no. 11, this leaves approximately 8 DOFs that have a much lesser 

magnitude than the four predominant DOFs. These DOFs of lower magnitude require some 

interpretation. 
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Rank 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

DOF 

43 
40 
28 
31 
16 
19 
46 
55 
34 
25 
52 
37 

Diagonal 
[K]uD at 

DOF 
Location 

N/m 
2088791.21 
2088791.21 
2088791.21 
2088791.21 
2088791.21 
2088791.21 
1044395.60 
2088791.21 
1044395.60 
1044395.60 
2088791.21 
1044395.60 

[AK] at 
DOF 

Location 
N/m 

43088.45 
39833.78 
32198.13 
29421.32 
11828.22 
11641.64 
10640.49 
10172.46 
10017.76 
9910.17 
9606.97 
8904.05 

% Change 
in Stiffness 

2.06 
1.91 
1.54 
1.41 
0.57 
0.56 
1.02 
0.49 
0.96 
0.95 
0.46 
0.85 

Table 6.4: Change in Stiffness for Damage Case A 

Table 6.5 summarises the remaining smaller magnitude DOFs produced by the 2D CDLV plot in 

relation to their corresponding node numbers. The corresponding node niunbers of the eight 

smaller magnitude DOFs were then mapped onto the cantilever plate for analysis. 

DOFs No. 
16 
19 
25 
34 
37 
46 
52 
55 

Corresponding Node No. 
10 
11 
13 
16 
17 
20 
22 
23 

Table 6.5: Summary of Lower Magnitude DOFs for Damage Case A 

Figure 6.13 shows the experimental test stiiicture with the nodes of the lower magnitude DOFs 

highlighted in relation to the damage element no. 11. It is interesting to see that the nodes 

corresponding to the lower magnitude DOFs corresponds to elements that smround the identified 
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damage element no. 11. This can be interpreted as either smaller damage exists at each of the 

elements described by the nodes relating to the lower magnitude DOFs or that the damage from 

element no. 11 is sufficient enough to affect the stiffriess in all the surrounding element, thus the 

appearance of the cross formation. The latter, explanation seems to be more plausible. This also 

suggests that the initial assumption that a small cut in the centre of an element only affects the 

stiffiiess of that element is in fact incorrect. 
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Figure 6.13: Configuration of Lower Magnitude DOFs for Damage Case A 
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6.11 DAMAGE CASE B 

Figure 6.14 shows the damage introduced for Damage Case B: Physical damage was introduced 

to a new equivalent galvanised cantilever plate and can be clearly seen as a straight horizontal cut 

across element no. 16, affecting nodes no. 21, 22, 25 and 26. This experimental plate was then 

securely fixed to the large steel frame structure and FRFs data traces were then systematically 

obtained at each nodal point. 
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Figure 6.14: Experimental Setup for Plate28 for Damage Case B 

Table 6.6 is a comparison of natural frequencies obtained from theoretical analysis in the 

previous chapter against real experimental FRF data for Damage Case B. It can be seen that the 

experimental natural frequencies correlate closely with the theoretical analysis. 

Modes No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Matlab (Hz) 

6.83 
29.30 
42.27 
94.13 
120.06 
179.73 
181.62 
232.66 
245.58 
294.77 

ANSYS (Hz) 

6.83 
29.67 
42.75 
96.42 
119.91 
184.36 
187.58 
235.76 
255.04 
311.78 

Experimental 
(Hz) 
Unobtainable 

29.50 
41.00 
93.50 
112.00 
172.00 
185.50 
222.50 
242.50 
272.50 

Table 6.6: Natural Frequency of the Cantilever Plate Obtained 
from Experiment for Damage Case B 
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Table 6.7 is a comparison between the experimental undamaged data and the experimental data 

obtained from Damage Case B. A percentage change between 0% - 8.5% from the undamage 

cantilever plate can be seen at various natural frequencies. 

Modes No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Experimental 
Undamage (Hz) 

Unobtainable 
29.50 
41.50 
95.50 
113.50 
182.00 
185.50 
229.50 
249.50 
298.00 

Experimental 
Damage Case B 

(Hz) 
Unobtamable 

29.50 
41.00 
93.50 
112.00 
172.00 
185.50 
222.50 
242.50 
272.50 

Change from 
Experimental 

Undamage (%) 
NA 
0.00 
1.20 
2.09 
1.32 
5.49 
0.00 
3.05 
2.80 
8.56 

Table 6.7: Change from Experimental Undamage Natural Frequency for Damage Case B 

Receptance FRF Plot for Damage Case B of the Cantilevered Plate 
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Figure 6.15: Comparison of Experimental against Theoretical Receptance FRF 
at a(l, 1) for Damage Case B. 
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Figure 6.15 is a comparison of the receptance FRF plot of the theoretical Undamaged Case 

against the receptance FRF plot of Damage Case B for a(l, 1), where a(l, 1) for this example 

corresponds to node no. 5 and is the same location as in Damage Case A. The effect of 

introducing the simulated Damage Case B can be seen to affect the higher end of the frequency 

frace while leaving the lower end of the frequency trace unchanged. 

Figure 6.16a is the corresponding 3D Damage Location Vector plot for Damage Case B between 

the frequencies of 50Hz - 200Hz with a frequency resolution of 0.5Hz. By applying the Damage 

Detection Algorithm within this range it was possible to avoid the erroneous experimental results 

obtained at the beginning frequencies close to zero hertz. 

From Figure 6.16a peaks can be seen to occur between DOF 35 and DOF 55. This suggests that 

the damage would lie between these DOFs. It should also be noted that since the peaks between 

DOF 35 and DOF 55 are quite large, smaller peaks that are existent in other DOFs may not show 

up clearly. 

Reading from the vertical axis the maximum change in stiffiiess [AK] can be estimated to be 

approximately 50000N/m. Using Matlab'̂ '̂  it is possible to investigate further into the DLV to 

determine the exact location and magnitude of where the maximum change in stiffiiess occurs. 

The magnitude of the maximiun stiffiiess peak was found to be DOF 61 with a stiffiiess of 

50770.28N/m. This represented a change in stiffiiess from the original undamaged stiffiiess 

matiix of approximately 9.72%. This suggested that the cut infroduced on the cantilever plate as 

confrolled damage causes approximately 9.72% in stiffiiess change to elements of the stiffiiess 

matrix of the plate structure. Table 6.8 shows the relative percentage changes from the original 
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stiffiiess matrix for the DOFs identified m Figure 6.16b. These values are ranked in accordance 

with maximum magnitude observed from the DLV. 

3D Danage Location Vector Pbt 
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Figure 6.16a: 3D DLV Plot for Damage Case B 
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Figure 6.16b: 2D CDLV Plot for Damage Case B 
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Figure 6.16b is the corresponding 2D CDLV plot for Damage Case B. Here the DOFs that are 

associated with damage can clearly be seen. It also can clearly be seen that there are quite a few 

DOFs that show an indication of damage. However, one can see that there are at least 4 

predominant DOFs whose magnitudes are larger than the rest of the DOFs. These predominant 

DOFs are DOF 49, 52, 61 and 64. These DOFs correspond to node nos. 21, 22, 25 and 26, which 

describes element no. 16 and clearly suggest that damage is present at this location. Having 

taken into account the DOFs that correspond to element no. 16, this leaves approximately 4 

DOFs that have a much lower magnitude than the four DOFs that describe element no. 16. These 

lower magnitude DOFs have been summarised in Table 6.8. 

Rank 

1 
2 
3 
4 
5 
6 
7 
8 

DOF 

61 
64 
49 
52 
40 
67 
55 
37 

Diagonal 
[K]uD at 

DOF 
Location 

N/m 
522197.80 
1044395.60 
1044395.60 
2088791.21 
2088791.21 
1044395.60 
2088791.21 
1044395.60 

[AK] at 
DOF 

Location 
N/m 

50770.28 
41252.25 
38724.14 
32462.55 
9475.50 
7895.62 
6851.95 
6705.59 

% Change 
in Stiffness 

9.72 
3.95 
3.71 
1.55 
0.45 
0.76 
0.33 
0.64 

Table 6.8: Change in Stiffness for Damage Case B 

Table 6.9 summarises the remaining lower magnitude DOFs produced by the 2D CDLV plot in 

relation to their corresponding node numbers. The corresponding node numbers of the four 

lower magnitude DOFs were then mapped on the cantilever plate for analysis. 

DOFs No. 
37 
40 
55 
67 

Corresponding Node No. 
17 
18 
23 
27 

Table 6.9: Summary of Lower Magnitude DOFs for Damage Case B 
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Figure 6.17 is the experimental test structure with the nodes of the lower magnitude DOFs 

plotted in relation to damage element no. 16. It is uiteresting to see that the nodes of the lower 

magnitiide DOFs correspond to elements that surround the identified damage element no. 16. 

This can be interpreted as either damage exists at each element described by these lower 

magnitude DOFs or that the damage from element no. 16 is sufficient enough to also affect the 

stiffiiess of the surrounding elements. The latter explanation seems to be more plausible. 
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Figure 6.17: Configuration of Lower Magnitude DOFs for Damage Case B 
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6.12 DAMAGE CASE C 

Figure 6.18 shows the experimental setup for Damage Case C. Damage Case C attempts to 

simulate multiple damage locations within the cantilever plate. Once again, a diagonal cut 

similar to Damage Case A was introduced to element no. 11 and a horizontal cut similar to 
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Damage Case B was introduced to element no. 16 of the experimental cantilever plate and can 

clearly be seen in Figure 6.18. 

Figure 6.18: Experimental Setup for Damage Case C 

The experimental plate was then securely fixed to the large steel frame and FRFs data traces were 

obtained by systematically impacting each node at any one time with the impact hammer. 

Although only one column of FRFs data was required, three sets of FRFs data were obtained for 

different locations of the accelerometer which were node no. 5, node no. 10 and node no. 19. 
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These nodal locations were chosen randomly. An average of five FRF data fraces were taken for 

each node location. 

Table 6.10 is a comparison of natural frequencies obtained from theoretical analysis in the 

previous chapter compared with real experimental FRF data for Damage Case C. It can be seen 

that the experimental data correlates closely with the theoretical analysis. 

Modes No. 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Matlab (Hz) 
6.79 

28.84 
41.49 
92.73 
118.53 
173.41 
178.22 
230.07 
240.97 
291.81 

ANSYS (Hz) 
6.80 

29.20 
41.49 
94.94 
118.35 
176.40 
185.49 
233.00 
250.29 
307.95 

Experimental (Hz) 
Unobtainable 

28.50 
40.50 
91.00 
112.00 
168.50 
182.00 
238.00 
269.00 
328.50 

Table 6.10: Natural Frequency of the Cantilever Plate Obtained from Experiment 
for Damage Case C 

Table 6.11 is a comparison between the experimental undamaged data and the experimental data 

obtained from Damage Case C. A percentage change between 1.3% - 10.3% from the undamage 

cantilever plate can be seen at various natural frequencies. 

Modes No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Experimental 
Undamage (Hz) 

Unobtainable 
29.50 
41.50 
95.50 
113.50 
182.00 
185.50 
229.50 
249.50 
298.00 

Experimental 
Damage Case C 

(Hz) 
Unobtainable 

28.50 
40.50 
91.00 
112.00 
168.50 
182.00 
238.00 
269.00 
328.50 

Change from 
Experimental 

Undamage (Vo) 
NA 
3.39 
2.41 
4.71 
1.32 
7.42 
1.89 
3.70 
7.82 
10.23 

Table 6.11: Change from Experimental Undamage Natural Frequency for Damage Case C 



Chapter 6: Experimental Sttidies: Damage Detection of a Cantilever Plate 139 

Figure 6.19 is a comparison of the receptance FRF plot of the theoretical Undamaged Case 

against Damage Case C for a(l, 1), where a(l, 1) for this case is still node no. 5 and is the same 

location as in all previous damage scenarios. It can be seen that the combmation of multiple 

damage location has caused the frequency shifts to be much greater as shown m Table 6.11 and 

Figure 6.19. 

Receptance FRF Plot of the Cantilevered Plat© for Damage Case C 

1 i 1 1 1 1 

1 1 1 1 1 

Theoretical Undamaged 
Experimental Damage Case C 

1 
. 

_ 
-

L 
1 

- 
1 

L 

\ 

1 1 1 1 1 1 1 

1 1 1 1 1 1 1 

1 1 ' il ' l' i 1 ' 
. 1 i ' l ' A ' R A 1 ' 

1 1 1 1 1 ( 1 

1 1 1 1 1 1 1 

1 1 1 1 1 1 1 

150 200 250 
Fre<;uency (Hz) 

Figure 6.19: Comparison of Experimental against Theoretical Receptance FRF at 
a(l, 1) for Damage Case C 

Figure 6.20a is the corresponding 3D Damage Location Vector plot for Damage Case C between 

the frequencies of 50Hz - 200Hz with a frequency resolution of 0.5Hz. By applymg the Damage 

Detection Algorithm within this range it was possible to avoid the erroneous experimental resuhs 

obtained at the beginning frequencies closest to zero hertz. 

From Figure 6.20a peaks can be seen to occur between DOF 25 and DOF 65. This suggests that 

damage would lie between these DOFs. Since the node connectivity has been preserved and the 
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DOFs are in relation to each node, it is possible to conclude from the 3D Damage Location 

Vector plot that more than one damage location exists due to such a broad range. 

Reading from the vertical axis the maximum magnitude corresponding to the change in stiffiiess 

[AK] can be estimated to be approximately 50000N/m. Usmg Matiab™ it is possible to 

investigate fiirther into the DLV to determine the exact location and magnitude of where the 

maximum change in stiffiiess occurs. The magnitude of the change in stifftiess was found to be 

46863.7IN/m and occurred at DOF 61. The change in stiffiiess at DOF 61 from the original is 

approximately 8.97%. 

3D Damage Location Vecta Pbt 
- - - T -

[>egreea al Freedcm (DOFs) 

Figure 6.20a: 3D DLV Plot for Damage Case C 

Figure 6.20b is the corresponding 2D CDLV plot for Damage Case C. Here it is evident that 

multiple damage location may exist within this structure. Care is required for analysis of 

muhiple damage locations. The easiest and smiplest method to analyse this 2D CDLV plot is to 

firstly rank the DOFs from highest value to lowest value as shown in Table 6.12. The first seven 

values have been identified as possible damage locations since their values are much greater than 



Chapter 6: Experimental Studies: Damage Detection of a Cantilever Plate 141 

the rest of the DOFs. Table 6.12 also shows the corresponding node numbers in relation to the 

DOFs. Once the highest and lowest DOFs have been ranked and thefr node numbers identified, it 

is just a simple case of mapping these damage locations to the experimental test piece. This is 

shown in Figure 6.21. 

2D Cunii2ti\e Damage Uxslaan Vector Pld 

.1] 
0 2 

;1 
0 

l l l l 

"I ~1 1 T 

T 
30 40 

50 

1 1 1 1 

1 1 

• .1 . . • i M B J - i 
60 70 80 

Degrees of Freedom (DOFs) 

Figure 6.20b: 2D CDLV Plot for Damage Case C 

Rank No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

DOFs 
No. 
61 
49 
64 
28 
43 
52 
40 
31 
55 
37 
16 
25 
46 
67 
19 
34 

Corresponding Node 
No. 
25 
21 
26 
14 
19 
22 
18 
15 
23 
17 
10 
13 
20 
27 
11 
16 

Table 6.12: Rank ofDOFs from the 2D CDLV Plot for Damage Case C 
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Figure 6.21 is the experimental cantilever plate with the DOFs from the 2D CDLV for Damage 

Case C mapped. The first 7 DOFs that have been identified as damage locations have been 

mapped in red and the remaining DOFs have been mapped in blue. With the DOFs so mapped. 

Figure 6.21 clearly shows that damage exists at element no. 16. It can also be said that damage 

co-exist at element no. 11, even though only 3 of the DOFs have been identified, since it was 

previously assumed that damage would affect all found nodes of an element. 

Inspection of Figure 6.21 shows that element no. 14 may also contain damage. However, on 

closer inspection and interpretation, it can be concluded with certainty that element no. 14 does 

not contain any damage. This is because the magnitude of the DOFs describing element no. 14 

from Table 6.10 can be seen to be ranked 5***, 6^^ and 7*. If element no. 14 indeed does contain 

damage then it is expected that the magnitude of the DOFs describing element no. 14 to be much 

larger, since some nodes are shared with element no. 11 and element no. 16 which both contain 

damage. Therefore the magnitude of the overall shared DOFs would be much larger since 

damage would have an effect on each of the shared DOFs. 

The lower magnitude DOFs are mapped in blue on Figure 6.19 and can be observed to follow 

similar behaviour as noted in Damage Case A and Damage Case B. It should also be noted that 

the Damage Detection Algorithm detected the simulated damages in the cantilever plate 

successfiiUy and did not detect any other damage that was not implanted. It should also be noted 

that no damage was detected for element no. 1,2 and 3 as expected. 
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Figure 6.21: Configuration of Lower Magnitude DOFs for Damage Case C 
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6.13 DISCUSSION 

The developed damage detection was found to be extremely robust in detecting the simulated 

damage in a real structure for single damage scenarios. The Damage Detection Algorithm was 

also successfiil in detecting multiple damage locations, however care should be exercised in 

interpreting the results produced from the Damage Detection Algorithm. It must be noted that it 

was difficult to utilise the frill FRF data spectrum due to the erroneous results obtained at the 

initial frequency closest to zero hertz. Hence only data from 5 OHz - 200Hz at a frequency 

resolution of 0.5Hz was used in this section of the thesis. 



CHAPTER 7 

CONCLUSIONS 

The main aim of this thesis was to investigate the performance of a damage detection method 

called "Damage Detection Algorithm", which utilises measured FRF data to locate the existence 

of damage in a structure. 

The DDA was firstly tested using simulated FRF data on a simple 12 DOF mass spring system. 

It was found to be extremely efficient for cases where there is no coordinate incompatibility. 

DDA is able to locate simulated damage even when 5% simulated normalised random noise was 

introduced into the simulated FRF data. For cases where there is coordinate incompatibility 

DDA is still able to detect the simulated damage within the mass spring system, however it can 

only locate damage to the extent of elements defined by measured constraints. It requires fiirther 

data within this area to pinpoint damage. (Chapter 3, Section 3.3) 

The DDA was found to be successfiil in locating the damage within the NASA eight bay space 

truss structure. Again, DDA proved to be extremely robust, in that it is able to detect 

successfiiUy the location of the simulated damage even with 5% simulated normalised random 

noise introduced to the simulated FRF data. It is also able to accurately detect the damage 

location for multiple damages. For cases that involved coordinate incompatibility DDA is able 

to indicate successfiiUy the area where damage may exist and these locations were consistent 

with the location of simulated damage. (Chapter 4, Section 4.6, Figure 4.16 and Figure 4.16b). 
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The developed Damage Detection Algorithm was found to be capable of locating simulated 

damage within a thin flat plate structure including multiple damages. (Chapter 5, Section 5.8, 

Figure 5.15a and Figure 5.15b) 

The DDA also proved to be capable of detecting real damage from a plate structure using 

measured FRFs data, for single and multiple damage locations. (Chapter 6, Section 6.12, Figure 

6.20a, Figure 6.20b and Figure 6.21) 

In order to make DDA applicable to a general engineering structure the following areas need 

fiirther studies: 

e A better measure of the amount of damage in a structure 

• The smallest amount of damage that can be detected by DDA. 

e The number of muhiple damage locations that can be detected by DDA. 

• To study the effects of gradually increasing the amount of noise interference until the 

Damage Detection Algorithm ceases to detect damage. 

• To study the effects of different extents of coordinate incompatibility and of different 

types ofDOFs incompatibility on the success of DDA. 
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• To study the effects of varying the frequency resolution of the FRF data on the 

performance of DDA, with the objective of finding the optimum frequency resolution 

and the optimum frequency. 

• To study the effects of non-linearity on DDA. 

• To study the performance of DDA on more complex hybrid structures consisting of 

truss, beam, plate and shell elements with damping. 

e To integrate all steps of the algorithm including numerical processing and graphical 

display into a compact program that will allow users to easily interpret the results. 
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APPENDIX 1: DAMAGE DETECTION ALGORITHM WRITTEN IN MATLABTM 

%Damage Detection Program Vl.O 
%For Problems with and without Coordinate Incompatibility 
%Incorporating Kidders Expansion Method, which rearranges the mass and 
%stiffhess matrix as per points for which measurement have been taken. 
%The matrix is then expanded and arranged back to original order. 
%Random Errors have been inplemented 
%M-File Name=DAMAGEDETECT.m 
%Last Updated=l 0/08/2002 
%Files Required By this Program 
% *.USM <= Undamaged Stifftiess Matrix File in the form of ASCII delimited 
% *.DSM <= Damaged Stiffnes Matrix File in the form of ASCII delimited 
% *.MAS <= Mass Matrix File in the form of ASCII delimited 
% *.AIM <= Measured Coordinates File in the form of ASCII delimited 
% S O R T . M <= Matlab file required for Matrix Sorting/Manipulation 
% INSN.M <= Matlab file generating random numbers 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear all; 
format long; 

%Input 
NN=input('Please enter the number of nodes (DOFs):'); 
ifNN<=0 

error('DOFs must be greater than 0') 
end 
NCOOR=input('Please enter the number of measured coordinates : '); 
if NCOOR <= 0 

errorCNumber of Measured Coordinates must be greater than 0') 
elseifNCOOR>NN 

errorCNumber of Measured Coordinates cannot be greater than Number ofDOFs') 
end 
NFREQl=input('Please enter the first frequency (Hz):'); 
ifNFREQKO 

error('Initial frequency must be greater 0') 
end 
NFREQ2=input('Please enter the last frequency (Hz):'); 
ifNFREQ2<=NFREQl 

error('Last frequency must be larger than first frequency'); 
end 
FREQRES=input('Please enter the Frequency Resolution (Delta F):'); 
ifFREQRES<=0 

error('Frequency Resolution must be greater than 0'); 
end 
ERR=input('Please enter the amount of random error to include (%):'); 
ifERR<0 

error('Random errors must be greater or equal to 0%') 
elseifERR>100 

error('Random errors cannot be greater than 100%') 
end 
%RECEPT=input('Please enter the node number to obtain RAW FRF frace :'); 
R E C E P T = 1 ; 

%Calculating Number of Points Required 
NP0INTS=((NFREQ2-NFREQ 1 )/FREQRES)+1; 

%Loading the Undamaged Stiffhess Matrix 
STIFFUl=input('Please enter the Undamaged Stiffness Mattix filename (*.USM): ','s'); 
STIFFU=DLMREAD(STIFFU1); 
clear STIFFUl; 
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%Loading the Damaged Stiffhess Matrix 
STIFFDl=input('Please enter the Damaged Stiffiiess Matrix filename (*.DSM): ','s'); 
S T I F F D = D L M R E A D ( S T I F F D 1); 
clear STIFFDl; 

%Loading the Mass Matrix 
MASSl=input('Please enter the Mass Matrix filename (*.MAS): ','s'); 
M A S S = D L M R E A D ( M A S S 1); 

clear MASS 1; 

%Writing ModeShapes 
a=modal(MASS,STIFFU); 
b=modal(MASS,STIFFD); 
fori=l:NN; 

fid=fopen('MODESHAPE.TXT','A'); 
fprintf(fid,'%d %6.2f %6.2f\n',i,b( 1 ,i),a( 1 ,i)); 
fclose(fid); 

end 



APPENDICES 153 

APPENDIX 2: EQUIVALENT CONCENTRATED NODAL MASS THE NASA 8 
BAY TRUSS STRUCTURE 

Nodes Per Similar Mass Configuration For the NASA 8-Bav Tmss Stiiicture 
77.1 (g) 
Node 2 
Node 4 

88.1 (g) 
Node 34 
Node 36 

98.3 (g) 
Nodel 
Node 3 

104.8 (g) 
Node 5 
Node 7 
Node 10 
Node 12 
Node 13 
Node 15 
Node 18 
Node 20 
Node 21 
Node 23 
Node 26 
Node 28 
Node 29 
Node 31 

109.3 (g) 
Node 33 
Node 35 

168.4(g) 
Node 6 
Node 8 
Node 9 
Node 11 
Node 14 
Node 16 
Node 17 
Node 19 
Node 22 
Node 24 
Node 25 
Node 27 
Node 30 
Node 32 
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APPENDIX 3: MASS CALCULATION PER NODE FOR THE NASA 8 BAY TRUSS 
STRUCTURE 

NODEl 

1 X Node Ball 

3 X Longeron 

2 X Diagonal 

5 X Joint Assembly 
0 X Triax + Block 

5.8 g 
3xl8g 

2 
2x27g 

2 
5 X 7.7 g 

0 
Total 

5.8 g 

27 g 

27 g 

38.5 g 
0 

98.3 g 

NODE 2 
1 X Node Ball 

3 X Longeron 

1 X Diagonal 

4 X Joint Assembly 
0 X Triax + Block 

5.8 g 
3xl8g 

2 
lx27g 

2 
4 x 7 . 7 g 

0 
Total 

5.8 g 

27 g 

13.5 g 

30.8 g 
0 

77.1 g 

NODES 
1 X Node Ball 

4 X Longeron 

1 X Diagonal 

5 X Joint Assembly 
1 X Triax + Block 

5.8 g 
4xl8g 

2 
lx27g 

2 
5 x 7 . 7 g 
I x l l g 
Total 

5.8 g 

36 g 

13.5 g 

38.5 g 

ore
 

104.8 g 

NODE 6 
1 X Node Ball 

4 X Longeron 

4 X Diagonal 

8 X Joint Assembly 
1 X Triax + Block 

5.8 g 
4x l8g 

2 
4x27g 

2 
8x7 .7g 
I x l l g 

Total 

5.8 g 

36 g 

54 g 

61.6 g 
l l g 

168.4 g 
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NODE 33 

1 X Node Ball 

3 X Longeron 

2 X Diagonal 

5 X Joint Assembly 
1 X Triax + Block 

5.8 g 
3xl8g 

2 
2x27g 

2 
5 x 7 . 7 g 
I x l l g 

Total 

5.8 g 

27 g 

27 g 

38.5 g 
l l g 

109.3 g 

NODE 34 

1 X Node Ball 

3 X Longeron 

1 X Diagonal 

4 X Joint Assembly 
1 X Triax + Block 

5.8 g 
3xl8g 

2 
lx27g 

2 
4 x 7 . 7 g 
I x l l g 

Total 

5.8 g 

27 g 

13.5 g 

30.8 g 

ere
 

88.1 g 
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APPENDIX 4: DOFS RANDOM MEASUREMENT ORDER FOR THE NASA 8 BAY 
TRUSS STRUCTURE 

Measurement 
No. 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

DOF No. 

96 
25 
11 
12 
18 
1 
10 
21 
34 
56 
78 
32 
35 
44 
86 
77 
5 
63 
73 
94 
95 
85 
30 
38 
59 
60 
51 
72 
22 
3 
4 
14 

Measurement 
No. 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 

DOF No. 

15 
27 
46 
47 
68 
89 
90 
70 
69 
50 
62 
61 
52 
83 
82 
93 
23 
13 
16 
8 
29 
9 
6 
31 
33 
66 
7 
54 
54 
45 
88 
87 

Measurement 
No. 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 

DOF No. 

92 
71 
65 
19 
2 
20 
41 
49 
39 
42 
36 
43 
26 
37 
24 
40 
53 
84 
74 
81 
64 
57 
67 
80 
91 
75 
79 
58 
48 
17 
28 
76 

Please note that all DOFs have been included in the sequence. If 72 DOFs are to be supphed, 

then only the random DOFs corresponding to the first 72 measurement numbers should be used. 
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APPENDIX 5: MASS MATRIX FOR PLATE STRUCTURES - NON COMPATIBLE 
THEORY (SINGLE ELEMENT) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

1 
MA 
MD 
ME 
MG 
-MH 
MI 

MM 
-MN 
-MO 
MG 
-MP 
-MQ 

2 

MB 
MF 
MH 
MJ 

-MK 
MN 
MR 
MS 
-MP 
MT 
MK 

3 

MC 
MI 
MK 
ML 
MO 
MS 
MU 
MQ 
-MK 
MV 

4 

MA 
-MD 
ME 
MG 
MP 
-MQ 
MM 
MN 
-MO 

5 

MB 
-MF 
MP 
MT 
-MK 
-MN 
MR 
MS 

6 

MC 
MQ 
MK 
MV 
MO 
-MS 
MU 

7 

MA 
-MD 
-ME 
MG 
MH 
-MI 

8 9 

Symmetric 

MB 
MF 
-MH 
MJ 

-MK 

MC 
-MI 
MK 
ML 

10 

MA 
MD 
-ME 

11 

MB 
-MF 

12 

MC 

All values to be multiplied by 
ptab 

176400 

A 

Where p = density, t = thickness, a ^ length, b = width 

MA = 24178 

MB = 560b^ 

MC = 560a^ 

MD = 3227b 

ME = -3227a 

MF = -441ab 

MG = 8582 

MH= 1918b 

MI =-1393a 

MJ = -420b^ 

MK = 294ab 

ML = 280a^ 

MM = 2758 

MN = -812a 

MO =-812a 

MP = -1393b 

MQ =-1918a 

MR = -210b^ 

MS = 196ab 

MT = 280b^ 

MU = -210a^ 

MV = -420a^ 
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APPENDIX 6: STIFFNESS MATRIX FOR PLATE STRUCTURES - NON 
COMPATIBLE THEORY (SINGLE ELEMENT) 
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SA=4(p'4-p-')-^i(l4-4v) SO=-2(2p ' - (3 ' ) - i ( l4 -4v) 

SB = 2p-^+i(l + 4v) SP = p-^+l(l + 4v) 

sc = i r + - ( i - v ) 
3̂ ^ 15^ ^ 

SQ = 2P^-H^(l-v) 

S D = - 2p^+i(l + 4v) SR = V+±(l_v) 
3^ 15^ ' 

SE= -vab SS = 
3 15^ ' 

SF = 
3^ 15^ ' 

ST = 
3 15^ ' 

SG= 2(p' -2p - ' )+ - ( l4 -4v) SU = 
3 15^ ' 

SH= - 2 p - + i ( l - v ) 

SI = P^+i(l-H4v) 

SJ = •V_±(l_v) 
3 15^ ' 

SK = 
3^ 15^ ' 

SL=-2(p '+(3" ' )+-( l4-4v) 

SM = r^\{^-^) 

SN = P ^ - i ( l - v ) 
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APPENDIX 7: MASS MATRIX FOR PLATE STRUCTURES - COMPATIBLE THEORY 
(SINGLE ELEMENT) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

1 
MA 
MB 
MD 
MG 
-MH 
MI 

MM 
-MN 
-MO 
MG 
-MP 
-MQ 

2 

MC 
ME 
MH 
MJ 

-MK 
MN 
MR 
MS 
-MP 
MT 
MK 

3 

MF 
MI 
MK 
ML 
MO 
MS 
MU 
MQ 
-MK 
MV 

4 

MA 
-MB 
MD 
MG 
MP 
-MQ 
MM 
MN 
-MO 

5 

MC 
-ME 
MP 
MT 
-MK 
-MN 
MR 
-MS 

6 

MF 
MQ 
MK 
MV 
MO 
-MS 
MU 

7 

MA 
-MB 
-MD 
MG 
MH 
-MI 

8 9 

Symmetric 

MC 
ME 
-MH 
MJ 

-MK 

MF 
-MI 
MK 
ML 

10 

MA 
MB 
-MD 

11 

MC 
-ME 

12 

MF 

All values to be multiplied by 
ptab 

176400 

A 

Where p = density, t = thickness, a = length, b = width 

MA = 24336 

MB = 3432b 

MC = 624b^ 

MD = -3432a 

ME = -484ab 

MF= 624a^ 

MG = 8424 

MH = 2028b 

MI =-1188a 

MJ = -468b^ 

MK = 286ab 

ML = 216a^ 

MM = 2916 

MN = 702b 

MO = -702a 

MP =-1188b 

MQ = -2028a 

MR = -162b^ 

MS = 169ab 

MT = 216b^ 

MU = -162a^ 

MV = -486a^ 
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APPENDIX 8: STIFFNESS MATRIX FOR PLATE STRUCTURES - COMPATIBLE 
THEORY (SINGLE ELEMENT) 
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SA=^^^(p^+p-)3 
35 ^̂  ^ ^ 25 

SB = 

SC = 

.35 35 25^ . 

.35 35 25. 
b^ 

b 

S0 = 

SP=-

SQ = 

"^p .̂Hp-̂ .A" 
.35 35^ 25. 

-^^S^ + ^̂ B-̂  ^̂  U 1 • p 

35 35 25 

a 

"2^p^_2Zp-2^A(i + 5v)' 
L35 35^ 25^ . 

b 

S D = -
Z8p2^22 2_̂ _6_̂ ^̂ ^̂ >̂  
35 35 25^ ^ 

SR = 
35 35 25^ ^ 

S E = - 11 fe'-hp-O-^—(l + 60v) 
35^ ^ 5 0 ^ ^ 

ab SS = i _ p 2 + A p - 2 + A 
35 35 25 

SF = ^p^.Ap-^,A 
35 35 25 

ST - (P^+P-^) - -" 70^ ^ 50 
ab 

sG=^p'-i^r-2^ 
35 35 25 

SU = .Ap^3p--A 
35 35 25 

SH Hp^-Z8p-2_A 
35 35 25 

SV = _iip2+llp-^_J_(l + 5v) 
35 70 50^ ^ 

ab 

SI = 
.2Zp2^22 ,^_6_^^^^^j 
35 35 25^ ^ 

SW = 
35 35 25 

SJ = _±p^,^p-^_A 
35 35*^ 25 

SX = 2^P^-Ap--A 
35 35 25 

SK = 
70 35 50^ 

ab 

SL = iip^-Ap-^_A 
35 35 25 

54, 72 SM=-—(p'-^p-')^-
35^ ^ 25 

35 35 25 
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APPENDIX 9: DOFS RANDOM MEASUREMENT ORDER FOR THE 
CANTILEVERED PLATE STRUCTURE 

Measurement 
No. 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

DOF No. 

25 
11 
12 
18 
1 
10 
21 
34 
56 
32 
35 
44 
5 
63 
30 
38 
59 
60 
51 
72 
22 
3 
4 
14 

Measurement 
No. 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 

DOF No. 

28 
27 
46 
47 
68 
70 
69 
50 
62 
61 
52 
23 
13 
16 
8 
29 
9 
6 
31 
33 
66 
7 
55 
54 

Measurement 
No. 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 

DOF No. 

45 
71 
65 
19 
2 
20 
41 
49 
39 
42 
36 
43 
26 
37 
24 
40 
53 
64 
57 
67 
58 
48 
17 
15 

Please note that all DOFs have been included in the sequence. If 48 DOFs are to be supplied, 

then only the random DOFs corresponding to the first 48 measurement numbers should be used. 
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APPENDIX 10: CALIBRATION CHART FOR ACCELEROMETER 

Miniature Accelerometer Type 4393 Serial No.: 2066511 
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APPENDIX 11: BRUEL & KJAER DUAL FREQUENCY ANALYSER SETTINGS (2032) 

Measurement: Dual Spectrum Averaging, zero pad 

Trigger: CH. A + Slope Level -0.10 Max hiput 

Delay: Trig -> A: - 19.53ms CH.A -> B: 0.00ms 

Averaging: Lin 5 

Freq. Span: 400Hz Af:0.5Hz T=ls At=488ns 

Weight CH.A: Transient Shift: 3.90ms Length:42.48ms 
Weight CH.B: Exponential Shift: 0ms Length: 150.87ms 

CH.A 6V +3Hz DirFilt: 6.4kHz 20mV/N 
CH.B 6V +3Hz DirFilt: 6.4kHz 31.6mV/m/s^ 




