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Abstract: Steel plates in double skin composite (DSC) panels are restrained by a concrete 

core and welded stud shear connectors at discrete positions. Local buckling of steel plates in 

DSC panels may occur in a unilateral mode between stud shear connectors when subjected to 

combined states of stresses. This paper studies the local and post-local buckling strength of 

steel plates in DSC panels under biaxial compression and in-plane shear by using the finite 

element method. Critical local buckling interaction relationships are presented for steel plates 

with various boundary conditions that include the shear stiffness effects of stud shear 

connectors. A geometric and material nonlinear analysis is employed to investigate the post-

local buckling interaction strength of steel plates in biaxial compression and shear. The initial 

imperfections of steel plates, material yielding and the nonlinear shear-slip behavior of stud 

shear connectors are considered in the nonlinear analysis. Design models for critical buckling 

and ultimate strength interactions are proposed for determining the maximum stud spacing 

and ultimate strength of steel plates in DSC panels.  
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Introduction 

 

Double skin composite (DSC) panels are innovative and efficient structural systems that can 

be used in submerged tube tunnels (Tomlinson et al. 1989), nuclear structures, liquid and gas 

containment structures, military shelters, offshore structures, bridges and shearwalls in 

buildings. A DSC panel is formed by placing concrete between two steel plates welded with 

headed stud shear connectors at a regular spacing, as illustrated in Fig. 1. Stud shear 

connectors are used to resist shear between steel plates and the concrete core as well as 

separation at the interface. Steel plates serve as biaxial steel reinforcement and permanent 

formwork for the concrete core. When DSC panels are used as slabs or shearwalls, the steel 

plates may be subjected to biaxial compression and in-plane shear. In DSC panels, local 

buckling of steel plates in combined states of stresses may occur between shear connectors, 

depending on the stud spacing and plate thickness.  

 

Considerable research effort has been made to investigate the behavior and design of DSC 

elements. Oduyemi and Wright (1989) and Wright et al. (1991a) have conducted experiments 

on DSC elements. Experimental and theoretical studies showed that DSC elements could be 

analyzed and designed in accordance with conventional theories for doubly reinforced 

concrete elements and composite structures, providing that the effects of local buckling and 

shear connection failures are adequately taken into consideration (Wright et al. 1991b; Wright 

and Oduyemi 1991). Tests and analysis of DSC beams carried out by Roberts et al. (1996) 

showed that DSC beams failed by the yielding of the tension plate when the stud spacing to 

compressed plate thickness ratio was limited to 40. Shanmugam et al. (2002) also studied the 

load-deformation behavior of DSC slabs by using the finite element modeling technique.  
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Thin steel plates in contact with concrete are constrained to buckle locally in one lateral 

direction when subjected to compression. The importance of understanding this unilateral 

stability problem has been highlighted in recent published work. Ge and Usami (1992, 1994) 

conducted tests and numerical analysis on the local buckling of concrete-filled steel box 

columns with and without internal stiffeners.  Limiting width-to-thickness ratios derived by 

Wright (1993, 1995) are useful for proportioning steel plates under uniaxial compression and 

shear. Experimental and theoretical research into the behavior and design of composite 

members including local buckling effects has been undertaken by Uy and Bradford (1995), 

Bridge et al. (1995), Uy (2000) and Uy et al. (2001).  In addition, Liang and Uy (1998, 2000) 

incorporated their effective width models into the ultimate strength design of concrete-filled 

steel box columns. Moreover, Bradford et al. (2000) presented slenderness limits for steel 

plates bolted to the sides of reinforced concrete beams. The local and post-local buckling 

interaction strength of steel plates under combined biaxial compression and shear in DSC 

panels, however, has not been reported in the literature.  

 

The strength of steel plates in biaxial compression has been studied by using various methods. 

Williams and Walker (1975) used the perturbation method to investigate the post-buckling 

behavior of biaxially loaded plates incorporating geometric imperfections and residual 

stresses. Little (1977) presented an energy method for the collapse analysis of steel plates with 

geometric imperfections under in-plane biaxial compression. Nonlinear finite element 

analysis was utilized by Valsgard (1980) to predict the biaxial strength of steel plates in ship 

structures. This study suggested that the biaxial strength should be determined on the basis of 

the proportional load increment approach in a nonlinear analysis. Dier and Dowling (1984) 

employed a finite difference approach to investigate the strength interaction relationships of 

plates subjected to biaxial forces that included compression and tension. Moreover, tests on 
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steel plates under biaxial compression have been undertaken by Bradfield et al. (1992). 

Guedes Soares and Gordo (1996) presented a survey of existing equations for the ultimate 

strength assessment of steel plates under biaxial loads.  

 

The biaxial compressive and in-plane shear stresses may coexist in plated structures, such as 

ship structures, slabs and shearwalls. Shear can have a significant effect on the strength 

performance of these structural elements. Davidson et al. (1989) used the ultimate strength of 

steel plates under uniaxial compression obtained by elasto-plastic analysis in analytical 

models to determine the interaction strength of steel plates subjected to shear and biaxial 

compression. Mendera (1994) presented interaction stability criteria for steel plates and shells 

in combined states of stresses. The buckling and ultimate strength interaction relationships for 

flat plates under in-plane biaxial and shear forces were studied by Ueda et al. (1995). These 

studies employed the von Mises yield criterion to express the strength interaction relationship 

for stocky plates.  

 

The local and post-local buckling behavior of steel plates in DSC panels under biaxial 

compression has been investigated by Liang et al. (2003). This paper extends the previously 

cited work to include the effects of in-plane shear stresses on the local and post-local buckling 

strength of steel plates in DSC panels. Finite element models, which account for initial 

imperfections, material stress-strain laws and the shear-slip behavior of headed stud shear 

connectors, are described. Numerical results for the critical buckling interactions of steel 

plates with various boundary conditions and for the ultimate strength interactions of steel 

plates with various width-to-thickness ratios are presented and discussed. Design models for 

buckling and strength interactions are proposed for the design of steel plates in DSC panels 

subjected to biaxial compression and shear, and are compared with existing results.  



 5

Finite Element Analysis 

 

General 

 

In the present study, the finite element code STRAND7 (2000) was utilized to investigate the 

critical local and post-local buckling strength of steel plates in DSC panels under biaxial 

compression and shear. Linear buckling analysis based on the bifurcation buckling theory was 

undertaken to predict the critical buckling interaction relationships of perfectly flat steel 

plates. The post-local buckling strength interactions of steel plates with initial imperfections 

were investigated by performing a geometric and material nonlinear analysis. The plasticity of 

a steel plate was treated using the von Mises yield criterion in the nonlinear analysis, in which 

the plate was divided into ten layers through its thickness. An eight-node quadrilateral 

plate/shell element was employed in all analyses. A 20 × 20 mesh was used to discretize a 

plate in the linear buckling analysis. A 10 × 10 mesh was employed in the nonlinear analysis 

and was found to be economic and adequate to yield accurate results for use in practice.  

 

Boundary Conditions 

 

In DSC panels, steel plates are restricted to buckle locally between stud shear connectors 

when subjected to combined states of stresses. To simulate this buckling situation, the 

structural model was considered to be a single plate field between stud shear connectors, as 

shown in Fig. 2. This model visualization enables the maximum stud spacing to plate 

thickness ratio and the ultimate strength of a single plate field to be determined (Liang et al. 

2003). The edge restraint depends on the stiffness of adjacent plate fields. It could be argued 

that the edges of the plate field are restrained from rotation by the adjacent plate fields and 
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concrete, but the degree of restraint is not complete as adjacent plate fields in a DSC panel are 

usually not stiff enough to offer a fully clamped boundary condition. It was assumed that the 

edges of the plate field between stud shear connectors at a worst case were hinged. This 

means that the edges of the plate field between stud shear connectors can rotate unilaterally 

but cannot deflect out of the plane. The plate field is welded with stud shear connectors of 

finite shear stiffness at its corners. Therefore, rotations at the corners are not permitted and 

their in-plane translations can be defined by the shear-slip model. This situation is similar to 

the simply supported boundary condition with additional restraint offered by shear 

connectors, and is denoted as S-S-S-S+SC (S = simply supported; SC = shear connectors). In 

actual construction, DSC panels as slabs and walls are used to build up a structure. The 

boundaries of a DSC panel are connected with reinforced concrete elements that rotationally 

restrain the boundaries of the panel. Therefore, the edge of a plate field located at the 

boundary of a DSC panel could be assumed as clamped. The boundary condition assumed for 

plate fields in DSC panels provided a good correlation with experimental results (Liang et al. 

2003). 

 

Initial Imperfections  

 

The initial imperfections of steel plates are present in the form of initial out-of-plane 

deflections and residual stresses. Initial imperfections cause reductions in the strength and 

stiffness of steel plates and are thus considered in the post-local buckling analysis. Different 

magnitudes of geometric imperfections have been used in the nonlinear analysis of steel plates 

(Williams and Walker 1975; Valsgard 1980; Dier and Dowling 1984; Davidson et al. 1989). 

The effect of initial geometric imperfections on the post-local buckling strength of steel plates 

in contact with concrete has been investigated by Liang and Uy (2000). In the present study, 
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the form of initial deflections was taken as the first local buckling mode under biaxial 

compression due to the fact that it is unlikely in practice to be dominated by the critical shear-

buckling mode (Davidson et al. 1989; Liang and Uy 2000; Liang et al. 2003). The maximum 

magnitude of initial geometric imperfections at the plate centre was taken as bw 003.00 =  for 

steel plates in DSC panels, as suggested by Wright (1993). A lateral pressure was applied to 

the plate to induce the initial geometric imperfections (Liang and Uy 2000). Residual stresses 

due to welding of stud shear connectors at discrete positions are less critical in DSC panels 

compared to continuously welded plate structures. Their effects were not considered in the 

model. 

 

Stress-Strain Relationship for Steel Plates 

 

The formula proposed by Ramberg and Osgood (1943) was employed in the nonlinear finite 

element analysis to define the material stress-strain relationship for steel plates. The formula 

is expressed by 

 

⎥
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where σ = stress; ε  = strain; E = the Young’s modulus; 7.0σ  = the stress corresponding to 

EE 7.07.0 = ; and n = the knee factor that defines the sharpness of the knee in the stress-strain 

curve. The knee factor n = 25 was adopted in the present study to account for the isotropic 

strain hardening of steel plates (Mofflin and Dwight 1984; Liang and Uy 2000). The stress 

7.0σ  can be determined from the experimental stress-strain curve of steel plates. Since the 

proof-yield stress and strain of structural steel are usually known, 7.0σ  can also be calculated 
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by substituting them into Eq. (1). An ultimate strain of 0.25 was applied to mild steel in the 

nonlinear analysis. 

 

Shear-Slip Relationship for Stud Shear Connectors 

 

Shear connectors influence the stability performance of steel plates in DSC panels. Stud shear 

connectors with finite shear stiffness enhance the resistance of simply supported steel plates to 

local buckling. Slender steel plates in DSC panels may buckle locally before shearing failure 

of stud shear connectors. On the other hand, stud shear connectors may fracture before stocky 

steel plates attain the full plastic capacities. In addition, interaction modes between local 

buckling and shear connection failure may exist. Therefore, the behavior of shear connectors 

must be considered in both the linear buckling and nonlinear analyses in order to give realistic 

design guidelines. 

 

The behavior of shear connectors in composite construction is expressed by the shear-slip 

relationship, which can be determined by push-out tests (Ollgaard et al. 1971; Oehlers and 

Coughlan 1986; Liang and Patrick 2001). The shear-slip model for stud shear connectors 

proposed by Ollgaard et al. (1971) was adopted in the present study, and it is expressed by 

 

( ) 4.018
u 1 δ−−= eQQ                                                         (2) 

 

where Q = the longitudinal shear force (N); uQ  = the ultimate shear strength of a stud shear 

connector (N); and δ  = the longitudinal slip (mm).  In AS 2327.1 (1996), the ultimate shear 

strength of a stud shear connector is calculated as the lesser value from the following 

equations: 
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uc
2
bsu 63.0 fdQ =                                                           (3a) 

c
'

cj
2
bsu 31.0 EfdQ =                                                    (3b) 

 

where bsd  = the shank diameter of a headed stud connector (mm); ucf  = the material 

characteristic tensile strength of shear connectors (MPa); '
cjf  = the characteristic compressive 

strength of concrete after j days caring (MPa); and cE = the elastic modulus of concrete 

(MPa). It should be noted that Eq. (2) was derived from the results of push-out tests in which 

the specimens were constructed by concrete slabs attached to steel beams. A DSC panel 

would offer greater confinement to the concrete than a composite beam. This beneficial effect 

was not considered in the present study. 

 

If 19-mm diameter headed stud shear connectors ( ucf = 410 MPa) are used in a DSC panel 

filled with concrete of a characteristic compressive strength of 32 MPa, Eq. (3) yields an 

ultimate shear strength of 93 kN.  A shear-slip curve for 19-mm diameter headed stud shear 

connectors obtained by using Eq. (2) is shown in Fig. 3. In the linear buckling analysis, a stud 

shear connector was modeled by using linear spring elements. The spring stiffness was taken 

as the tangent modulus of the shear-slip curve. In the post-local buckling analysis, a spring-

type beam element was employed to model stud shear connectors whose nonlinear shear-slip 

relationship was defined by Eq. (2). 

 

Numerical Results for Buckling Interaction 

 

General 
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The linear buckling analysis allows for the critical combinations of buckling stresses for steel 

plates under combined biaxial compression and shear to be determined. After the buckling 

analysis, the elastic buckling coefficients can be calculated from the following well-known 

equations (Bulson 1970): 
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where a = the length of a plate field; b = the width of a plate field; xcrσ = the critical buckling 

stress in the x direction; ycrσ = the critical buckling stress in the y direction; xycrτ = the critical 

shear buckling stress; xk  = the elastic buckling coefficient in the x direction; yk  = the elastic 

buckling coefficient in the y direction; xyk  = the elastic shear buckling coefficient; ν = 

Poisson’s ratio; and t = the thickness of the plate. 

 

Under a single stress component, the buckling coefficient is used to account for the effects of 

the plate aspect ratio and boundary condition on the critical buckling stress. In combined 

states of stresses, the buckling coefficient also needs to account for the interaction effects of 

biaxial compression and shear on the critical buckling stress. Elastic buckling coefficients 

were obtained for square steel plates with three boundary conditions, which were S-S-S-

S+SC, C-S-S-S+SC and C-C-S-S+SC (S = simply supported; C = clamped; SC = shear 

connectors). The configurations of plates used in all analyses were a = b = 500 mm, t = 10 
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mm, 200=E  GPa and ν = 0.3. If a stud shear connector is at the boundary of a DSC panel 

and resists shear from a single plate field, the shear stiffness 6
s 1052.4 ×=k  N/mm was used 

in the analysis. If a stud resists shear from two adjacent plate fields, the stud shear stiffness 

was taken as s5.0 k  regardless of its location. The applied stress ratios xxy /στ = 0.0, 0.5, 1.0, 

4/3, 2.0, 4.0, 5.0 and xyx /τσ = 0 were used in the buckling analysis to develop a complete 

interaction curve for plates. 

 

Buckling Interaction Curves 

 

Fig. 4 shows the critical local buckling interaction curves for steel plates with the S-S-S-S+SC 

boundary condition. It can be observed from Fig. 4 that the presence of shear stresses reduces 

the critical buckling strength of plates in both longitudinal and transverse directions. 

Increasing biaxial compressive stresses reduces the critical shear buckling strength of a plate. 

Fig. 4 also demonstrates the effects of the ratio of transverse to longitudinal loading 

( xy /σσα = ) on buckling interaction relationships for plates in combined states of stresses. It 

is seen that the presence of transverse loading ( yσ ) significantly reduces the longitudinal 

critical buckling stress and considerably reduces the critical shear buckling stress. When no 

shear stresses are applied to the plate, the effect of transverse loading on the critical buckling 

strength of the plate in the x direction is most pronounced. This effect is reduced due to the 

interaction of compression and shear. The buckling coefficient for pure shear is 10.84. The 

interaction between xk  and yk  in the presence of shear stresses with a constant value of 

xycrxy /ττ  is given in Fig. 5. These buckling interaction curves are linear because steel plates 

buckle in a single half-wave mode. 
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Buckling interaction curves for square plates with the boundary condition of C-S-S-S+SC are 

presented in Fig. 6. It is seen that the elastic buckling coefficient for plates under pure shear is 

14.25. When the biaxial loading ratio α  is increased from zero to 0.25, 0.5, 1.0 and 1.5, the 

elastic buckling coefficient for plates under biaxial compression is reduced from 5.55 to 4.71, 

4.06, 3.17 and 2.59, respectively. Fig. 7 shows the buckling interaction curves for plates with 

two adjacent edges clamped (C-C-S-S+SC). It can be observed from Fig. 7 that the elastic 

buckling coefficient for plates in pure shear is 18.6. When α  increases from zero to 0.25, 0.5, 

1.0 and 1.5, the buckling coefficient for plates in biaxial compression decreases from 7.8 to 

6.56, 5.51, 4.22 and 3.36, respectively. It is evident that the clamped edges considerably 

increase the stability performance of steel plates under combined biaxial compression and 

shear.  

 

Numerical Results for Strength Interaction 

 

General 

 

The post-local buckling interaction strength of steel plates with the boundary condition of S-

S-S-S+SC was investigated here. For a plate with a specific aspect ratio, slenderness and 

initial imperfection, the ultimate strength depends on the biaxial compression and shear 

forces. A strength interaction curve for a plate was developed by varying the applied shear 

and normal stresses in the nonlinear analysis. The applied stress ratios xxy /στ = 0.0, 0.2, 0.4, 

0.6, 1.0, 2.0, 2.5, 5.0 and xyx /τσ = 0 were used in the analysis. This study employed the 

proportional load increment scheme, in which the ratio of applied shear stress to biaxial 

compressive stress was kept constant at each load increment in a nonlinear analysis. Square 

steel plates (400 × 400 mm) with a yield stress of 0σ = 300 MPa subjected to shear and equal 
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biaxial compressive stresses )1( =α  were studied. The 19-mm diameter headed studs were 

used as shear connectors in the DSC panel filled with concrete having a compressive strength 

of 32 MPa. Half of the ultimate shear strength of a stud shear connector was used in Eq. (1) to 

account for the effect of the adjacent plate field.  

 

Strength Interaction Curves 

 

The strength interaction curves for square steel plates with various b/t ratios obtained from the 

results of a nonlinear finite element analysis are shown in Fig. 8. These curves were 

normalized to the yield stress of steel plates. The shear yield stress 0τ  was taken as 3/0σ . 

It can be observed that the ultimate strength of a plate under the combined states of stresses 

generally decreases with an increase in the b/t ratio. The ultimate strength of steel plates in 

two directions is reduced by the presence of shear stresses. Due to the effects of local 

buckling, shear connection failure and initial imperfections, steel plates under biaxial 

compression only cannot attain the yield strength, as shown in Fig. 8.  The ultimate strength 

of the stocky plate with a b/t ratio of 20 under pure shear is less than the shear yield stress 

because of the shearing failure of the stud shear connectors. In contrast, the strength of a 

slender plate a the b/t ratio of 100 is governed by elastic local buckling. It should also be 

noted that the ultimate strength of steel plates in the x direction is greatly reduced by any 

significant transverse loading.   

 

Proposed Design Models  

 

Design Models for Buckling Interaction 
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It can be observed from Figs. (4), (6) and (7) that the shapes of buckling interaction curves for 

plates with a specific aspect ratio and boundary condition vary with biaxial loads. By 

normalizing these interaction curves to the buckling coefficients of plates under a single stress 

component such as shear stress alone or biaxial compressive stress, it was found that the 

shapes of the curves were identical for the same boundary condition. Fig. 9 shows the 

normalized buckling interaction curves for plates with various boundary conditions. To 

express these curves, design models for critical buckling interactions of square plates under 

biaxial compression and shear are proposed as  
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where xok  = the buckling coefficient in the x direction in the absence of shear stresses; xyok  = 

the shear buckling coefficient in the absence of biaxial compression; and ξ  = the buckling 

shape factor that defines the shape of a buckling interaction curve. The values of buckling 

coefficients xok  and xyok  for steel plates with different boundary conditions are given in Table 

1 for design. The buckling shape factors proposed in Table 1 are shown to be adequate to 

express the buckling interaction curves of plates with these boundary conditions. It is seen 

from Table 1 that the buckling shape factor increases with an increase in the restraints of the 

plate edges. Eq. (7) is also applicable to the interaction of yk  and xyk .  

 

Buckling coefficients presented can be used to determine the limiting width-to-thickness 

ratios for steel plates under biaxial compression and shear in DSC panels. This ensures that 

the elastic local buckling of steel plates between stud shear connectors will not occur before 
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steel yielding. The relationship between critical buckling stress components at yield can be 

expressed by the von Mises yield criterion as 

 

2
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2
xycr

2
ycrycrxcr

2
xcr 3 στσσσσ =++−                                          (8) 

 

If the material properties E = 200 GPa and ν = 0.3, and the plate aspect ratio ba /=ϕ  are 

used, the limiting width-to-thickness ratio can be derived by substituting Eqs. (4), (5) and (6) 

into Eq. (8) as 
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An example is presented herein to illustrate the application of the proposed design models for 

determining the maximum stud spacing in DSC panels. Stresses acting at the edges of a plate 

field in a DSC panel can be determined by undertaking a global stress analysis on the DSC 

panel. If the spacing of stud shear connectors is the same in two directions, only square plate 

fields need to be considered. It is assumed that a plate field ( 1=ϕ ) with the S-S-S-S+SC 

boundary condition is subjected to biaxial compressive stresses ( 1=α ) and shear stress 

xxy 5.0 στ = . This gives yx kk =  and xxy 5.0 kk =  according to Eqs. (4-6). From Table 1, 

parameters for buckling interactions can be obtained as xok  = 2.404, xyok  = 10.84, and ξ = 

1.1. By substituting these parameters into Eq. (7), buckling coefficients are obtained as 

38.2x =k and 19.1xy =k . By using Eq. (9), the limiting width-to-thickness ratio for this plate 

field with a yield stress of 250 MPa is 48. If the compression steel skin with a thickness of 10 

mm is used, the maximum stud spacing in two directions in this DSC panel is 480 mm.  
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Design Models for Strength Interaction  

 

It is seen from Fig. 8 that the shape of strength interaction curves strongly depends on the 

plate slenderness. If these strength interaction curves are normalized to the ultimate strength 

of plates subjected to either pure shear or biaxial compression, the form of Eq. (7) can be used 

to express them for plates under combined states of stresses. Design models for ultimate 

strength interactions are proposed as 
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where xuσ = the ultimate strength of a plate in x direction under biaxial compression and 

shear; xuoσ  = the ultimate strength of a plate in x direction under biaxial compression only; 

xyuτ  = the ultimate shear strength of a plate ; xyuoτ  = the ultimate strength of a plate under pure 

shear only; and ζ  = the strength shape factor of the ultimate strength interaction curve, which 

depends on the plate slenderness. The ultimate strength of square steel plates under either 

biaxial compression or shear alone is given in Table 2. Based on numerical results, the 

strength shape factors for plates with various slenderness ratios are proposed in Table 2. By 

using Eq. (10) and Table 2, the strength interaction curves for plates with various slenderness 

ratios are plotted in Fig. 10. It should be noted that the curves presented here are for plates 

subjected to the same normal stresses in both directions ( 1=α ). 

 

A square plate field with a b/t ratio of 40 in a DSC panel under biaxial compression ( 1=α ) 

and shear is considered here to demonstrate the application of the proposed strength design 

models. The applied shear stress is equal to x6.0 σ . This gives xuxyu 6.0 στ = . The yield stress 
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of the steel plate is 300 MPa and shear yield stress is 3/300  MPa. The parameters for 

strength interaction can be obtained from Table 2 as 0xuo /σσ  = 0.481, 0xyuo /ττ  = 1.0, and 

6.1=ζ . By substituting these known values into Eq. (10), the ultimate strength xuσ  can be 

determined as 127 MPa and the ultimate shear strength ( xyuτ ) is 76.2 MPa. The only unknown 

in Eq. (10) can be easily solved using a spreadsheet.   

 

Comparison with Existing Results  

 

The proposed design models for the ultimate strength interactions of steel plates in combined 

biaxial compression and shear are compared with the results given by Davidson et al. (1989). 

Fig. 11 shows strength interaction curves for square steel plates with a b/t ratio of 40 and 

under biaxial compression ( 1=α ) and shear. The interaction curve given by the present study 

was generated using Eq. (10) for a plate with the S-S-S-S+SC boundary condition in a DSC 

panel. The curve obtained by Davidson et al. was for a simply supported steel plate that was 

not restrained by shear connectors. For the case of Davidson et al., the ultimate strength of the 

square plate depended on the plate slenderness but not on its width. It is seen from Fig. 11 that 

the normalized ultimate strength interaction curve obtained by the proposed design model 

agrees well with that given by Davidson et al.  

 

Conclusions 

 

This paper has investigated the critical local buckling and ultimate strength of steel plates in 

double skin composite panels under combined biaxial compression and shear by using the 

finite element analysis method. The finite element models developed have incorporated initial 

imperfections, material stress-strain behavior and the shear-slip characteristics of stud shear 
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connectors. Critical buckling interaction relationships have been developed for steel plates 

with various boundary conditions. Strength interaction curves have been generated by using 

the proportional load increment method in the nonlinear analysis for square plates with 

various width-to-thickness ratios. Design models for critical buckling and ultimate strength 

interactions have also been proposed for the design of square plates in DSC panels under 

biaxial compression and shear. 

 

The elastic buckling coefficients and design models for the buckling interactions of steel 

plates presented can be used to determine the critical stud spacing in DSC panels. This critical 

stud spacing predicted ensures that the critical local buckling of steel plates between stud 

shear connectors is prevented before the yielding of steel plates. Numerical investigations 

show that the ultimate strength of stocky plates is governed by the shear capacity of stud shear 

connections or local buckling of steel plates. Slender steel plates can attain their full post-local 

buckling reserve of strength without the premature fracture of stud shear connectors.  

 

This paper has focused on square steel plate fields in combined states of stresses in DSC 

panels in which shear connectors were placed at the same spacing in two directions. The 

proposed design models can be used in practice for the design of DSC panels with similar 

design situations. The finite element models and interaction equations developed can be 

extended to other design situations in DSC construction. If the size of a square plate field is 

larger than that used in the present study, the strength design equation can still be used but the 

values of xuoσ and xyuoτ  have to be determined. This is because of the limiting capacity of stud 

shear connectors. Experiments on the collapse behavior of DSC panels are needed to examine 

further the efficiency of proposed design models in evaluating the overall performance of 

DSC panels.  
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Notation 

 

The following symbols are used in this paper: 

a = length of plate field between shear connectors; 

b = width of plate field between shear connectors; 

bsd  = shank diameter of a headed stud; 

E = Young’s modulus of elasticity; 

7.0E  = secant modulus 7.0E = 0.7E; 

cE  = elastic modulus of concrete; 

'
cjf  = characteristic compressive strength of concrete at the j days; 

ucf  = material characteristic tensile strength of shear connector; 

sk  =  shear stiffness of shear connector; 

xk  = elastic local buckling coefficient in the x direction; 

yk  = elastic local buckling coefficient in the y direction; 

n = knee factor of material stress-strain curve; 

Q = longitudinal shear force; 

uQ  = ultimate shear strength of shear connector; 

t = thickness of steel plate; 

0w  = initial out-of-plane deflection; 

α  = ratio of transverse to longitudinal loading, xy σσα /= ; 

δ  = longitudinal slip; 

ξ  = buckling shape factor of buckling interaction curves; 

ζ  = strength shape factor of strength interaction curves; 
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ε  = strain; 

ν  = Poisson’s ratio; 

σ  = stress; 

0σ  = yield stress or 0.2% proof stress; 

7.0σ  = stress corresponding to 7.0E = 0.7E; 

xσ  = applied edge stress in x direction; 

xcrσ  = critical buckling stress in x direction; 

xuσ  = ultimate strength of plate in x direction; 

xuoσ  = ultimate strength of plate in x direction under biaxial compression only; 

yσ  = applied edge stress in y direction; 

ycrσ  = critical buckling stress in y direction; 

0τ  = shear yield stress; 

xyτ  = applied shear stress; 

xycrτ  = critical shear buckling stress; 

xyuτ  = ultimate shear strength of plate; 

xyuoτ  = ultimate shear strength of plate under pure shear; 

ϕ  = plate aspect ratio, ϕ  = a/b. 
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Figures and Tables 
 
 

 
 
 
 
 
 
 
 
 

Fig. 1. Cross-section of double skin composite panel 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2. Single plate field restrained by stud shear connectors  
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Fig. 3. Shear-slip curve for stud shear connectors  
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Fig. 4. Buckling interaction curves of plates (S-S-S-S+SC) 
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Fig. 5. Buckling interaction curves of plates under constant shear stresses (S-S-S-S+SC) 
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Fig. 6. Buckling interaction curves of plates (C-S-S-S+SC) 
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Fig. 7. Buckling interaction curves of plates (C-C-S-S+SC) 
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Fig. 8. Strength interaction curves of plates with various b/t ratios 
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Fig. 9. Normalized buckling interaction curves of plates with different boundary conditions 
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Fig. 10. Strength interaction curves of plates by proposed design models  
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Fig. 11. Comparison of present study with existing results for plate with b/ t= 40 
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Table 1. Parameters for Buckling Interaction Models 

 

xok  
(2) 

Boundary condition  
(1) 

α =0 α =0.25 α =0.5 α =1.0 α =1.5 

xyok  
(3) 

ξ  
(4) 

S-S-S-S+SC 4.782 3.84 3.204 2.404 1.923 10.838 1.1 
C-S-S-S+SC 5.552 4.705 4.06 3.168 2.589 14.249 1.7 
C-C-S-S+SC 7.797 6.56 5.514 4.216 3.362 18.596 2 

 
 
 
 
 
 
 

Table 2. Parameters for Strength Interaction Models 
 

b/t 
(1) 0xuo /σσ  

(2) 
0xyuo /ττ  

(3) 

ζ  
(4) 

20 
40 
60 
80 

100 

0.658 
0.481 
0.321 
0.248 
0.205 

0.927 
1 
1 

0.984 
0.875 

2 
1.6 
1.3 
1.1 
0.8 

 
 
 
 
 


