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ABSTRACT 

Continuum topology and shape optimization has received considerable attentions in 

recent years. However, no performance-based optimality criteria are used in existing 

continuum topology optimization methods to obtain the global optimum. In addition, 

existing methods mainly focus on theoretical aspects rather than practical applications. 

This thesis presents the systematic development of a Performance-Based Optimization 

(PBO) method for topology and shape design of continuum stmctures subject to stress, 

displacement and overall stiffness constraints, and its practical applications to stmctural 

engineering. 

In the PBO method, the effective stress levels, virtual strain energy density and strain 

energy density of elements are proposed as element removal criteria for stmctures with 

stress, displacement and overall stiffiiess constraints, respectively. A set of performance 

indices is developed for evaluating the performance of stmctural topologies and shapes 

and used to monitor the optimization process. The maximization of performance indices 

is proposed as performance-based optimality criteria. These performance-based 

optimality criteria can be incorporated in any continuum topology optimization methods 

to obtain globally optimal designs. 

The PBO method is extended to automatically generating optimal stmt-and-tie models 

for the design and detailing of stmctural concrete, which includes reinforced and 

prestressed concrete stmctures. Moreover, the PBO method formulated on the basis of 

overall stiffness performance criteria is proposed for the optimal topology design of 

bracing systems for multistory steel building frameworks. 

The PBO method is verified by existing analytical solutions as well as experimental 

evidence. It is shown that the proposed PBO method is a rational, efficient and reliable 

design tool for practicing engineers in stmctural design, especially in generating optimal 

stmt-and-tie models in stmctural concrete and bracing systems for multistory steel 

building frameworks. The PBO method for stmt-and-tie modeling would significantly 

improve the performance of concrete stmctures, and thus is suitable for inclusion in 

concrete model codes, such as the Asian Concrete Model Code and AS 3600. 
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NOTATIONS 

b width of a member 

60 initial width of a structure 

C mean compliance or strain energy of a stmcture 

C* prescribed limit of the mean compliance imposed on a stmcfore 

AC change of strain energy of a stmcture due to element removal 

c, strain energy of the eth element 

D depth of a stmcfore 

[D^ ] matrix of material elastic constants 

[Dl ] matrix of scaled material elastic constants 

E Young' s modulus of material 

E^ Young' s modulus of concrete 

E^ current Young's modulus of the eth element 

EQ original Young's modulus of the eth element 

/ , compressive design strength of concrete 

/J compressive cylinder strength of concrete at 28 days 

/ ^ mean value of compressive strength of concrete at the relevant age 

/yp yield strength of steel tendons 

/ yield strength of steel reinforcement 

{F.} virfoal unit load vector 

[K\ stiffiiess matrix of a stmcfore 

[K^] stiffiiess matrix of the resulting stmcture 

[AK] change of stiffiiess matrix due to element removal 

[k^] stiffiiess matrix of the eth element 

L span of beam 

m total number of displacement constraints 

n total number of elements 
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p total number of loading cases 

[f ] load vector 

PI performance index 

PI^ performance index for bending plates with mean compliance 

constraint 

PI^^ performance index for plane stress stmcture with mean 

compliance constraint 

P/jp performance index for bending plates with displacement 

constraints 

P/^j performance index for plane stress stmcfores with displacement 

constraints 

Pl^^ performance index for plane stress stmctures with stress 

constraints 

g ' vector of the lowest strain energy density of elements under load 

case 1 

Qi vector of the lowest strain energy density of elements under load 

case q 

R element removal ratio 

/?Q initial element removal ratio 

R. incremental element removal ratio 

R. element removal ratio at theyth steady state 

s virfoal strain energy of the eth element 

t thickness of the eth element 
e 

t^ scaled thickness of the eth element 

u. absolute value of theyth constrained displacement 

u' prescribed limit of Uj 

u the y'th constrained displacement that is the most critical in initial 

design 

II theyth constrained displacement that is the most critical in current 

design 
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theyth constrained displacement under load case / 

prescribed limit of w'. 

nodal displacement vector 

change of displacement vector 

displacement vector of the eth element under real loads 

displacement vector of the eth element under the virfoal unit load 

displacement vector of a stmcture under virfoal unit load 

volume of the current design at the ith iteration 

volume of the initial design domain 

volume of the eth element 

total weight of a stmcfore 

weight of the eth element 

acfoal weight of the initial design 

scaled weight of the initial design 

acfoal weight of the current design at the /th iteration 

scaled weight of the current design at the ith iteration 

design variable 

scaled design variable 

stress vector of elements 

scaled stress vector of elements 

prescribed stress limit 

maximum von Mises stress of an element in a stmcfore 

maximum von Mises stress of an element in the current design 

maximum von Mises stress of an element in the initial design 

domain 

scaling factor 

weighting parameter 
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v Poisson's ratio 

P density of material 

c,^ virfoal strain energy density of the eth element 

q" virfoal strain energy density of the eth element under multiple 

constraints and loading cases 

C^ strain energy density of the eth element under one loading case 

(̂  j strain energy density of the eth element under the yth loading case 
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Chapter 1: Introduction 

Chapter 1 

INTRODUCTION 

1.1 TOPOLOGY AND SHAPE OPTIMIZATION 

The objective of stmcforal optimization is to maximize the utilization of limited 

material resources. The increasing realization of the scarcity of raw materials and 

environmental considerations has demanded lightweight, low cost and high performance 

constmction. In addition, the need to simplify the designer's tasks by automating the 

design process has become increasingly apparent with advances in high-speed 

computers. These growing demands have recently attracted much attention in the field 

of stmctural optimization. Topology and shape optimization is the selection of the best 

configurations for the design of stmctures. Since the topology and shape are changing 

during the optimization process, it is difficult to develop algorithms that produce 

optimal configurations. Therefore, topology and shape optimization is regarded as the 

most challenging design task. On the other hand, it is also considered as the most 

economically rewarding design task because it can result in much more material savings 

than the pure sizing optimization (Prager and Rozvany 1977; Kirsch 1993a). 

Various stmctural optimization methods have been developed for the layout design of 

stmctures in the past few decades (Haftka and Giirdal 1992). These methods can be 
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Chapter 1: Introduction 

classified into two categories, namely analytical methods and numerical methods. 

Analytical methods search for optimal configurations of stmctures using the 

mathematical theory of calculus and variational methods. They are suitable for sfodying 

the fondamental behavior of the material layouts of stmcforal components and simple 

skeletal stmcfores under a single loading. Analytical methods cannot be used to deal 

with the topology optimization of complex practical problems. Numerical methods 

generate optimal designs automatically in an iterative manner using mathematical 

programming and optimality criteria. Numerical methods can be used to solve large-

scale practical design problems. 

Stmcforal optimization techniques are effective tools for improving the performance of 

stmcfores in terms of the material efficiency in carrying applied loads. However, the 

performance of optimized designs is often limited to optimization methods used. It is of 

importance to realize that the formulation of a design problem in stmctural optimization 

significantly affects the results. Incomplete and improper problem formulation may lead 

to poor or meaningless designs. It is realistic to minimize the weight or cost of a 

stmcfore subject to geometry and behavioral constraints, such as stress, displacement, 

mean compliance, frequency and buckling load constraints. This is because behavioral 

constraints are usually prescribed in the national design codes of practice (Rozvany et al. 

1995). Unforfonately, some stmcforal optimization methods use the behavioral quantity 

such as the compliance as the objective fonction and a somewhat arbitrarily chosen 

material volume as the constraint to search for optimal configurations. Optimization 

methods based on such a problem formulation may not resuh m minimum weight 

designs. The reason for this is that the arbitrarily specified material volume may not be 

the mmimum value that is needed for supporting applied loads. Moreover, it is difficult 

for the designer to decide what percentage of the prescribed material volume should be 

sufficient to produce an optimum of a real world engmeering design problem. 

It is difficult to develop appropriate termination criteria that can be used in optimization 

algorithms to obtain the global optunum. The number of iterations or the percentage 

difference in the weight of a stmcture between the consecutive iterations has been used 
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as the termination criterion (Morris 1982; Seireg and Rodriguez 1997). The prescribed 

material volume has commonly been employed in topology optimization algorithms as 

the termination criterion (Bendsoe and Kikuchi 1988; Suzuki and Kikuchi 1991; Diaz 

and Bendsoe 1992; Tenek and Hagiwara 1993; Ramm et al. 1994; Gea 1996; Swan and 

Kosaka 1997; Youn and Park 1997; Krog and Olhoff 1999). In these approaches, using 

different amounts of material as the constraint can result in different locally optimal 

designs or even worst designs. Behavioral constraints have been employed in continuum 

topology optimization as the termination criterion, which is the only driving force for 

determining final results (Chu et al. 1996; Yang 1997). Moreover, no objective 

fonctions and constraints are used to control the optimization process in some topology 

optimization methods (Baumgartner et al. 1992; Xie and Steven 1993; Hinton and Sienz 

1995; Zhao et al.l998). The result satisfying these termination criteria mentioned above 

might not be the global optimum for a given design space. In addition, although these 

optimization methods can generate many topologies in the optimization process, it is 

impossible to decide which topology produced at a particular iteration is the optimum 

due to the lack of performance indicators. Therefore, there is a strong need to develop 

performance-based optimality criteria, which can be used to monitor the optimization 

process so that the global optimum can be identified from the optimization history. 

There have been a large number of stmctural topologies and shapes in the literature 

produced by various stmcforal optimization methods, such as those in the books by 

Bendsoe and Mota Soares (1993) and by Steven et al. (1998). However, it has been 

foimd that different optunization methods often provide different topologies and shapes 

for the same design problem. Unfortunately, little work has been undertaken to evaluate 

the performance of stmctural topologies and shapes generated by different optimization 

methods. Since there are no rational mles for measuring the efficiency of topologies and 

shapes and optimization methods used, it is difficult for the designer to select the best 

topologies and shapes for the design of engineering stmcfores. Therefore, performance 

indices that objectively evaluate the efficiency of stmctural topologies and shapes could 

be extremely useful for design engineers and researchers. 
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Performance indices have been used to assist the selection of materials and geometry for 

the optimal design of stmctures by several researchers. The methodology for developing 

performance indices for assistmg the selection of materials and cross-section shapes for 

mechanical components has been proposed by Ashby (1992). Weaver and Ashby (1996) 

have applied these performance indices to the optunal selection of materials and cross-

section shapes for mechanical components. This approach has recently been extended by 

Burgess (1998a, 1998b) to the derivation of performance indices known as form factors 

for optimizing the stmcforal layout of simply supported tmss stmctures and beams 

under a single load with strength or stiffiiess constraints. Burgess has used these 

performance indices to compare the efficiency of the MBB beam obtained by various 

stmcforal optimization methods. However, it is difficult to extend this approach to 

continuum stmctures because the objective fonction can no longer be expressed by the 

separable fonctional, geometrical and material parameter fonctions, as would be the case 

for single components and tmss stmctures. An attempt to derive a performance index for 

measuring the efficiency of stmctural topologies has also been undertaken by Querin 

(1997). However, his performance index does not consider any behavioral constraints, 

and thus cannot be used for optimizing continuum stmctures with stress, displacement 

and stiffiiess constraints. 

Recently, building codes of practice have been changing the focus from prescriptive to 

performance-based design approach, such as the Asian Concrete Model Code (ACMC) 

(ICCMC 1999). In the ACMC, the stmctural performance of a design is quantified by 

the performance index. As discussed previously, the goal of topology and shape 

optimization is often to improve the stmcforal performance of the design in terms of the 

efficiency of material usage in carrying applied loads. Incorporating the performance-

based design concept into the topology and shape optimization of continuum stmcfores 

can overcome problems in continuum topology optimization methods. Therefore, the 

performance-based optimization (PBO) method developed in this thesis is of significant 

practical importance. 
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1.2 STRUCTURAL OPTIMIZATION IN CIVIL ENGINEERING 

A sfody on the theoretical development and practice of stmctural optimization 

conducted by Cohn (1993) shows that over 150 books and 2,500 papers on stmcforal 

optimization had been published since 1960. Most of the published work deals with 

mathematical aspects of stmcforal optimization rather than practical applications. There 

is a clear gap between the development of structural optimization theory and its 

practical application to aeronautical, mechanical and civil engineering industries, as 

pointed out by Lev (1981), Ashley (1982), and Cohn (1993). One major reason for the 

gap between the theory and practice of stmcforal optimization is the priority of 

mathematical over engineering aspects (Cohn and Dinovitzer 1994). The mathematical 

complexity of stmcforal optimization methods is one of the main obstacles for stmctural 

designers to apply optimization techniques to practice even if they have the motivation 

to use them. Although simple topology optimization methods (Rodriguez and Seireg 

1985; Mettheck and Burkhardt 1990; Yang and Chuang 1994; Xie and Steven 1997) for 

continuum stmcfores have been developed recently, their incomplete problem 

formulation and the lack of performance indices prevent their practical applications to 

civil engineering. 

The aeronautical, mechanical and automotive industries might have realized the 

potential of modem stmcforal optunization techniques, but they are still viewed by civil 

engmeers as an academic exercise, which is far from practical relevance. Structural 

optimization techniques could become more attractive to practicing civil engineers if 

they are developed not only for saving materials but also for simplifying the designer's 

tasks by automating the major design process. 

A survey carried out by Cohn and Dinovitzer (1994) shows that steel is the most used 

material in published optimization examples due to its homogenous property, which is 

easiest to model in die elastic and plastic ranges. Concrete stmctures are less illustrated 

in the literafore because the nonlinear nature of concrete such that it has a considerable 

sfrength in compression and a very low strength m tension. Moreover, reinforced 
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concrete is a composite material that causes difficulty in modeling for optimization. 

However, reinforced concrete is an economical constmction material, which is widely 

used in the constmction of large infrastmcfores. Although extensive research has been 

undertaken on the shear behavior of stmcforal concrete, it is still difficult to understand 

due to its complex nafore. Stmt-and-tie modeling is a rational approach for the design of 

stmcforal concrete (Marti 1985; Schlaich et al. 1987). However, conventional methods 

for developing stmt-and-tie models in stmcforal concrete usually involve a trial-and-

error iterative process based on the designer's infoition and past experience. It is a 

challenging task for the designer to select an appropriate stmt-and-tie model for a 

stmctural concrete member with complex geometry and loading conditions from many 

possible equilibrium configurations. Therefore, it is one of the objectives of diis thesis 

to provide concrete designers with a rational, efficient and reliable design tool for 

automatically generating optimal stmt-and-tie models in stmctural concrete. 

It is clear that the gap between the development of stmcforal optimization theory and its 

practical applications to civil engineering does not appear to have been reduced in the 

last two decades. The challenge in structural optimization is to transform continuum 

topology optimization from an exotic and fruitless academic exercise into a rational and 

efficient design tool for practicing civil engineers. The research work presented in this 

thesis is to answer this challenge. 

1.3 AIMS OF THIS RESEARCH WORK 

The aims of this research work are given as follows: 

• Develop performance indices for evaluatmg the performance of stmcforal topologies 

and shapes subject to stress, displacement, and mean compliance constraints. 

• Rank the efficiency of stmcforal topologies and shapes generated by different 

stmctural optunization methods using performance indices. 
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Develop performance-based optimality criteria that can be incorporated in any 

continuum topology optimization methods to obtain globally optimal designs. 

Develop the Performance-Based Optimization (PBO) method into an efficient and 

reliable tool for topology and shape design of continuum stmcfores with sfress, 

displacement and overall stiffness constraints. 

Develop the PBO method into an automated design tool for generating optimal stmt-

and-tie models for the design and detailing of stmcforal concrete, which includes 

reinforced and presfressed concrete stmcfores. Develop optimal stmt-and-tie models 

in stmcforal concrete for the Asian Concrete Model Code. 

Develop the PBO method for the topology design of bracing systems for multistory 

steel building frameworks. 

1.4 LAYOUT OF THIS THESIS 

Chapter 2 presents a literature review on stmcforal optimization. Research work on the 

tmss topology optimization, and continuum topology and shape optimization is 

reviewed. The development of performance indices for stmctural optimization is 

highlighted. 

The Performance-Based Optimization (PBO) method for the folly sfressed topology 

design of continuum stmctures subject to maximum allowable stress constraints is 

presented in Chapter 3. In the proposed PBO method, element removal criteria are 

based on the effective stress levels of elements. The stress constraint is imposed on the 

maximum von Mises stress of elements. A performance index developed using the 

scaling design approach is used to monitor the optimization process, from which the 

optimal topology can be identified. Examples are provided to demonstrate the validity of 

the proposed method for folly sfressed topology design. 

Chapter 4 describes the Performance-Based Optunization method for topology and 

shape design of continuum stmcfores for displacement performance. Element removal 
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criteria are derived by undertaking a design sensitivity analysis on the change in 

constrained displacements due to element removal. Performance indices are developed 

for evaluating the performance of topologies and shapes for plane sfress stmctures and 

for plates in bending. Maximizing the performance indices in the design space is 

proposed as performance-based optimality criteria. Performance indices developed are 

employed to compare the performance of stmcforal topologies and shapes generated by 

different optimization methods. The effectiveness of the proposed method is shown 

through its applications to plane sfress stmcfores and bending plates under various 

loading conditions. 

In Chapter 5, a Performance-Based Optimization approach is developed for the 

mmimum-weight topology design of continuum stmctures for overall stiffiiess 

performance. The lowest strain energy density of elements is derived as element 

removal criteria. Performance indices are developed for optimization of plane stress 

continuum stmcfores and bending plates. Performance-based optimality criteria are 

proposed as maximizing the performance indices in the optimization process. Examples 

are provided to show the validity of the method. 

The PBO method is extended and proposed for automatically generating optimal stmt-

and-tie models in stmcforal concrete in Chapter 6. The stmt-and-tie modeling of 

stmcforal concrete is transformed into the topology optimization problem of continuum 

stmctures. The PBO method for continuum stmctures with displacement consfraints is 

used to develop optimal stmt-and-tie models in reinforced concrete deep beams with 

openings, continuum beams, beams with various span-to-depth ratios and corbels. The 

PBO method is also utilized to investigate the effect of presfressing forces on optimal 

stmt-and-tie models in nonpresfressed, partially presfressed and folly presfressed 

concrete beams. Optimal stmt-and-tie models in low-rise concrete shearwalls are 

developed by using the PBO method for continuum stmcfores with mean compliance 

consfraint. Results obtained are compared with existing analytical solutions and 

experimental observations. 
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Chapter 7 presents the extension of the PBO method formulated on the basis of system 

performance criteria to optimal topology design of bracing systems for multistory steel 

building frameworks under multiple lateral loading conditions. The imbraced framework 

is initially designed by using commercial standard steel sections from databases under 

the strength constraints. The optimal topology of a bracing system for the multistory 

framework is then generated by gradually eliminating inefficient material from a 

continuum design domain that is used to stiffen the framework. Two design examples 

are provided to illustrate the efficiency of the design optimization procedure. 

Chapter 8 gives conclusions on the development of the Performance-Based 

Optimization method for topology and shape design of continuum stmctures with sfress, 

displacement and overall stiffness constraints and on its applications to real world 

stmcforal engineering problems. Significant achievements in this research work are 

summarized. Further research in this field is recommended. 
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Chapter 2 

LITERATURE REVIEW 

2.1 INTRODUCTION 

Stmcforal optimization has been an important and active research area for over one 

hundred years. Modem stmcforal optimization couples the finite element analysis with 

mathematical programming techniques or optimality criteria methods to search for 

optimal configurations for the layout design of stmcfores. With advances in high-speed 

computers, modem stmcforal optimization has the potential to become an automated 

design tool for practicing engineers in aeronautical, mechanical, automotive and civil 

engineering mdustries. Extensive research and development work has been undertaken 

in this multidisciplinary field during the last four decades. Several survey papers have 

appeared in the literature (Toppmg 1983; Dmg 1986; Haftka and Grandhi 1986; Kfrsch 

1989; Topping 1993; Rozvany et al. 1995). 

This chapter is to review the development of stmctural optimization. Although this 

thesis focuses on continuum topology and shape optimization, the early development of 

stmctural optimization for discrete stmctures will also be reviewed in order to 

understand important issues in stmcforal optunization. Published work on the topology 

optimization of discrete stmcfores will firstly be reviewed. Extensive reviews are then 
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devoted to the topology and shape optimization of continuum structures and associated 

problems. Finally, the sfody on the performance-based design concept for stmctural 

optimization is highlighted. 

2.2 TRUSS TOPOLOGY OPTIMIZATION 

Tmss topology optimization is to select the best geometry of a tmss, which has the 

minimum material for supporting the applied loads while satisfying certain constraints. 

The first analytical work on stmcforal optimization was undertaken by Maxwell (1890). 

Michell (1904) developed the basic optimal layout theory for the minimum-weight 

design of tmsses subject to stress constraints under a single load condition. Michell 

stmctures are statically determinate and impractical tmsses that usually consist of an 

indefinitely large number of members. However, the significance of Michell's work is 

justified by the fact that it provides important insights into the optimal layouts of 

stmctural systems. In addition, Michell stmctures can be used as reference solutions for 

evaluating the efficiency of stmcforal layouts obtained by using numerical methods. 

Michell stmcfores have extensively been sfodied by other researchers (Cox 1956; Hemp 

1958,1973; Chan 1960; Owen 1975; Parkes 1974). The methods for graphical 

constmction of strain fields have been proposed by Chan (1960). The superposition 

principle has been used to derive Michell tmsses under two altemative load conditions 

(Hemp 1973; Nagtegaal and Prager 1973; Spillers and Lev 1971). Rozvany and Hill 

(1978) derived the Michell tmsses and optimal grillages under four altemative loading 

conditions using the superposition concept. Prager (1974,1978) proposed techniques for 

evaluating the mass efficiency of near optimal tmsses and modified design criteria for 

members of a discretized Michell stmcture. 

To overcome the impracticalities of Michell stmcfores, the ground stmcfore approach 

was proposed for the topology optimization of tmsses (Chan 1960; Hemp 1964; Dom et 

al. 1964). In this approach, redundant members are removed from a highly connected 
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stmcfore to achieve an optimal topology using a mathematical programming technique 

in an iterative process. The optimal design of a pm-jointed stmcture is obtained by 

maximizing the extemal virfoal work while satisfying sfrain consframts. The 

investigation of the effects of ground stmcfore grid on the optimal layout conducted by 

Dom et al. (1964) indicates that the ground stmcfore grid has a significant effect on the 

weight and topology of optimal stmcfores. Their work leads to another optimization 

method for optimizing stmcforal layouts where the joint coordinates and the member 

cross-sectional areas are treated as design variables. 

The optimal layout theory has been developed as a generalization of Michell's work by 

Prager and Rozvany (1977), Rozvany (1976,1984), and Rozvany and Wang (1983). This 

theory deals with the layout optimization of gridlike stmctures. Optimal layouts for the 

minimum-weight design of gridlike stmctures can be determined by solving the primal 

problem or the dual problem. The basic concepts of Prager and Rozvany's layout theory 

are the Prager-Shield theory of optimal plastic design (Prager and Shield 1967) and the 

stmcforal universe (Rozvany 1981,1984). 

Nonlinear mathematical programming techniques have been used by Schmidt (1960) to 

solve the topology optimization problems of tmsses with nonlinear inequality 

consfraints under multiple loading cases. In this approach, the joint coordinates are 

treated as design variables and the minimum weight design of stmcfores is stated as a 

nonlinear mathematical programming problem. This work is significant because it 

contributed an idea of combming the nonlinear mathematical programming with the 

finite element analysis to an optimization scheme so that optimal designs can be 

generated automatically. Modem stmcforal optunization evolved from this early work. 

Dobbs and Felton (1969) used a nonlmear programming algorithm to modify the 

member areas of an initial grotmd stmcture under the consideration of elastic 

compatibility and multiple loading conditions. Members whose cross-sectional areas are 

close to zero are deleted from the stmcture. Remaining members are modified until the 

optimum is reached. However, the deletion of members from the ground stmcfore 
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cannot be proved theoretically. Moreover, members can only be deleted from the 

stmcfore where buckling constraints are not considered. Using this approach, buckling 

constraints are imposed on the final optimal stmcture. Methods based on such an 

optimization process are heuristic and no mathematical formulation is given to obtain 

the global optimum. 

Russell and Reinschmidt (1971) employed a two-step iterative optimization procedure 

to solve the optimal design problem of tmss stmcfores. In this approach, compressive 

limiting stresses are firstly estimated by assuming the slendemess ratios of members. 

After each linear programming solution, member sizes are modified and the required 

compressive limiting stresses are calculated on the basis of member forces obtained 

from linear programming results. The convergence of the solution can be improved by 

using commercial standard rolled steel sections from databases. This procedure was 

improved by Reinschmidt and Russell (1974) by considering compatibility, buckling 

and discrete rolled sections. The final design obtained by using this procedure is usually 

folly stressed but not necessarily minimum weight. 

Majid and Elliott (1973a, 1973b) proposed a method for tmss topology optimization 

using a ground stmcfore. In this approach, the weight of a stmcfore with sfress, 

displacement and buckling constraints under multiple loading cases is minimized using 

a steepest descent-alternate mode algorithm. The stmcfore only needs to be analyzed 

once in the whole optimization process using the formulated theorems of stmctural 

variation. The theorems and influence coefficients are applied to the sensitivity analysis, 

which provides information on which member should be removed from the ground 

stmcture. The theorems are also used to indicate the effect of member removal on the 

stability of the stmcfore. This method is applicable only to small size stmcforal systems 

because of its efficiency. 

Barnes et al. (1977) and Topping (1978) applied the folly sfressed design stress-ratio 

method to a highly connected ground stmcfore in which many of the member cross-

sectional areas are reduced to zero. For stmcfores under one loading case with the same 
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sfress constraints on tension and compression members, the final topology obtained 

using this approach will be statically determinate and will be the same as that generated 

by using linear programming methods. For stmcfores under multiple loadmg cases and 

with different stress constraints, the final stmcforal layout will be statically 

indeterminate. 

Topping (1978) compared stmcforal topologies obtained by using the folly sfressed 

design stress-ratio method with those generated by linear programming techniques. The 

results show that final topologies produced by using the stress-ratio method are not 

always minimum weight designs. This is because only stress consfraints but no objective 

fonction are considered in the optimization process in the stress-ratio method. However, 

the linear programming approach does not consider compatibility. This problem can be 

overcome by resizing the topology obtained by the linear programming technique using 

the sfress-ratio method (Reinschmidt and Russell 1974; Topping 1978). This 

optimization procedure of resizing the stmcforal layout obtained by the linear 

programming using the stress-ratio method is very usefol in dealing with practical 

problems. 

Saka (1980) presented a method for topology optimization of tmsses with stiffoess, 

sfress and buckling constraints under multiple loading cases. In this method, member 

cross-sectional areas, nodal coordinates and joint displacements are treated as design 

variables. The direct differentiation is used to linearize the consfraints. The results show 

that the efficiency of topologies obtained by this technique is better than that produced 

by methods not freating nodal coordmates as design variables. 

Kirsch (1982) proposed an optimal design procedure for skeletal stmcfores to reduce the 

number of exact analyses during the optimization process by using the high quality 

explicit approximations of the stmcforal behavior and the scaling design approach. 

Explicit behavior models are introduced for the moving lines in the design space. The 

stmctural behavior is evaluated for each design in a given line that is generated by the 

mathematical programming technique. The feasible design path is traced by scaling the 
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current design with respect to the most critical consframt imposed on the stmcture. The 

optimal topology of the stmcfore can be determmed from the feasible design path. The 

scalmg design approach can be applied to stmcforal optimization to monitor the 

reduction of the weight of the stmcfore when the stiffoess matrix of the stmcfore is the 

linear fonction of the design variables such as member cross-sectional areas (Morris 

1982). 

Ringertz (1985) proposed an optimization procedure for tmsses with sfress and 

displacement constraints under a single loading condition. After performing the 

stmcforal analysis on the initial design, the stmcfore is uniformly scaled based on the 

calculated sfresses and displacements to obtain the feasible design. Member cross-

sectional areas are then modified for the given stresses and displacements by using the 

linear programming algorithm. The nonlinear programming technique is employed to 

optimize the cross-sectional areas of members in the resulting topology. The main 

drawback of this optimization procedure is that the resulting topology is only optimal 

for the prescribed displacement limits and may not be the global optimum. This is 

because the method provides different locally optimal designs for different displacement 

limits. 

Rozvany (1989) proposed a continuum-type optimality criteria (COC) method for 

optimizing large stmcforal systems with sfress and displacement constraints based on 

the earlier work of Rozvany and Ong (1986). This COC methodology was reformulated 

as the discretized continuum-type optimality criteria (DCOC) method by using the finite 

element formulation (Zhou and Rozvany 1992,1993). The COC/DCOC is shown to be 

efficient for large stmctural systems subject to sfress and displacement constraints and 

have been extended to naforal frequency, local buckling and system stability constraints. 

Optimality criteria methods in layout optunization are limited to topology optimization 

but not for geometry optimization that allows for movable nodal joints. 

The simultaneous analysis and design (SAND) method has been applied to tmss 

topology optimization by Bendsoe et al. (1991), Achtziger et al. (1992), Achtziger 
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(1993), Ben-Tal and Bendsoe (1993), and Bendsoe and Ben-Tal (1993). hi the SAND 

approach, extremum requirements based on energy theorems are used to replace some of 

the analysis equations. Since the SAND method employs a single optimization 

algorithm that combines the extremum problem and cost minimization problem, it 

avoids the repeated analysis and thus is computationally highly efficient. However, die 

efficiency of the SAND method is currently limited to the compliance design problems. 

For large stmcforal systems with stress and displacement constraints, the computational 

cost will be prohibitively high (Sankaranarayanan et al. 1992). 

2.3 CONTINUUM TOPOLOGY AND SHAPE OPTIMIZATION 

Continuum topology and shape optimization is the selection of the best configurations 

for the design of continuum structures. Continuum topology optimization allows for 

holes in the interior of a design domain to be created. On the other hand, continuum 

shape optimization only allows for inefficient material to be removed from the 

boimdaries of a stmcfore. The difficulty arising from topology and shape optimization of 

continuum stmcfores is that topology and shape are changing during the optimization 

process. 

The shape optimization problem of continuum stmcfores has been solved by 

Zienkiewicz and Campbell (1973) using a sequential programming technique. Modem 

continuum topology and shape optimization evolved from this earlier work. Haftka and 

Grandhi (1986) have presented a survey on stmcforal shape optimization in which the 

boundary variation method has extensively been used. The boundary variation method is 

implemented by using the mesh moving schemes to express the shape of a given design. 

The coordinates of nodal points of the finite element model are freated as design 

variables. Special techniques for maintaming the regularity of the fmite element model 

are requued to obtain a sound optimal shape in the boundary variation method (Kikuchi 

et al. 1986). The sensitivity analysis for shape optimization has been sfodied by 

Rousselet and Haug (1983) and by Haug et al. (1986). 
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In shape optimization using the boundary variation method, the fmite element model is 

changing during the optimization process so that remeshing the model is requfred at 

each iteration. To avoid these, Bends0e and Kikuchi (1988) proposed a 

homogenization-based optimization (HBO) method for the topology and shape design of 

continuum stmcfores using a fixed design domain. In the HBO method, topology and 

shape optimization is transformed to a material redistribution problem using composite 

material with microstmcfores. Effective material properties are computed using the 

theory of homogenization. For the stiffness design, the mean compliance of a stmcture 

is used as the objective fonction while the constramt is imposed on the material volume. 

Further development of the HBO method was undertaken by Bendsoe (1988,1989), 

Suzuki and Kikuchi (1991) and Thomsen (1991). The HBO method has been extended 

by Diaz and Bends0e (1992) and Bends0e et al. (1995) for the topology design of 

continuum stmcfores under multiple loading conditions. Tenek and Hagiwara (1993) 

applied the HBO method to plates in bending. The dynamic problems of continuum 

stmcfores were solved by Diaz and Kikuchi (1992), Ma et al. (1993,1995) and Krog and 

Olhoff (1999) using the homogenization-based design concept. The HBO method gives 

a rigorous mathematical formulation for the topology design problem, but its 

mathematical complexity may be beyond the understanding of practicing engineers. The 

main drawback of the HBO method is that the final design depends on a somewhat 

arbifrarily chosen material volume, which is the only constraint. As a result of this, the 

topology optimized by the HBO method is only "optimal" for the specified material 

volume and it does not mean that it is a minimum weight design. 

Oda (1977) proposed a geometric approach to two-dimensional shape optimization by 

the utilization of the fmite element analysis. No formal mathematical optimization 

algorithm is used m the geometric approach. The shape is modified based on the sfresses 

obtained from the resuhs of the finite element analysis. The cycle of fmite element 

analysis and shape modification is repeated until the optunal shape is obtamed. Oda and 

Yamazaki (1977,1979) extended this approach to problems of axisynunetric solids and 

under body forces. Umetani and Hirai (1978) presented a growing-reformmg procedure 
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for shape optimization of stmctural beams with displacement consfraints under multiple 

loading conditions. 

Rodriguez and Seireg (1985) developed a mle-based approach for topology and shape 

optimization of continuum stmcfores. The objective of this approach is to seek the 

optimal shape that maximizes the utilization of the material and with the most uniform 

stress distribution without violating the maximum allowable stress and the continuity of 

the shape. This is achieved by using an elimination scheme in which elements with 

relatively low magnifode of sfress are removed from the design domain in an iterative 

manner after the finite element analysis. Wu (1993) extended the mle-based approach to 

topology optimization of two-dimensional continuum stmcfores under dynamic loading. 

The objective function is defined as the ratio of volume reduction normalized to foe 

initial volume to the stress range normalized to the allowable sfress (Seireg and 

Rodridguez 1997). In the mle-based optimization approach, the final topology is 

determined when no forther improvement is possible or the prescribed percentage of 

remaining elements is reached or the objective fonction is maximized or the prescribed 

maximum number of iterations is executed. Obviously, the main drawback of the mle-

based optimization approach is that none of these termination criteria can guarantee the 

optimum is obtained. 

A zero-one discrete variable optimization program for the topology and shape design of 

continuum stmctures with stress, displacement and stiffoess consfraints under multiple 

loadmg conditions has been developed by Afrek (1989) by utilizing the element removal 

concept. This program is capable of removing material from inside the design domam as 

well as from immediate boundaries. Only the most critical consframt imposed on the 

stmcture is considered in a given tune in derivmg the optimal shape. Stress constramts 

are applied on the von Mises equivalent stresses of elements. The zero-one decision­

making scheme has also been used for topology design by Bendsoe (1989) and Rozvany 

etal. (1991,1992, 1994). 
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Mattheck and Burkhardt (1990) proposed a computer-aided shape optimization (CAO) 

method for reducing the notch sfresses and lightweight design of stmcforal components 

based on biological growth. The CAO seeks the optimal design with a constant von 

Mises sfress at the surface of a growing stmcfore (Mattheck 1998). Baumgartner et al. 

(1992) presented the soft kill option (SKO) approach for topology optunization of 

continuum stmcfores by simulating adaptive bone mineralization, fo this method, the 

Young's modulus is treated as design variables. The design domain is firstly analyzed 

by undertaking a finite element analysis, which provides von Mises sfress distribution in 

the domain. The local E-modulus is then set equal to the sfress computed at the 

particular place. This means that the more highly loaded region becomes harder, and the 

less loaded region becomes softer. The cycle of the finite element analysis and E-

modulus redistribution is repeated in an iterative process. Consequently, the acfoal load-

bearing region is characterized by the variation in its modulus and the non-load-bearing 

region can be removed from the design domain. The limitation of this method is that it 

does not involve objective fonction and sfress constraints in the optimization process. 

Therefore, the minimum weight design cannot be guaranteed without a performance 

index as an indicator of material efficiency. 

Xie and Steven (1993,1994a) proposed an evolutionary stmctural optimization (ESO) 

procedure for topology and shape design of continuum stmcmres based on the folly 

sfressed design and element removal concepts. In this approach, by gradually removing 

lowly stressed elements from the design domain after each finite element analysis, the 

remaining stmcfore evolves towards an optimum. The ESO method has been extended 

to stmcforal frequency optimization of contmuum stmcfores by Xie and Steven (1994b, 

1996, 1997). The frequency of a stmcfore can be shifted towards a desfred direction by 

removing part of the material from the design based on the sensitivity analysis. The ESO 

method is also a discrete variable optimization approach, which involves a zero-one 

decision-making scheme. The lunitation of the ESO method is that the fmal design is 

determined when the prescribed number of iterations is reached or the specified amount 

of material that allows to be removed from the design is reached. This is similar to the 

volume constraint used in the homogenization-based optimization method. Moreover, 

Q. Q. Liang: Performance-Based Optimization Method for Structural Topology and Shape Design 19 



Chapter 2: Literature Review 

no objective fonction and constraints are used m the evolutionary optimization process. 

Therefore, it is difficuh for the designer to decide which topology generated in the 

evolutionary path is the optimum. 

Chu et aL (1996) extended the ESO method for continuum stmctures with displacement 

constraints. The change of constrained displacements due to element removal is used as 

the sensitivity number for element elimination. Elements with the lowest sensitivity 

numbers are gradually removed from the design domain to obtain the maximum 

stiffoess design. The optimization process is termmated when one of the constrained 

displacements reaches the prescribed limit. The only criterion used to derive the 

optimum is the displacement constraint. It should be noted that for two-dimensional 

continuum stmcfores, displacement limits could be easily satisfied by uniformly 

changing the thickness of elements. The drawback of this optimization procedure is that 

no criterion is used to obtam the global optimum for the given design space. 

The ESO method has been extended by Querin et al. (1998) to a so-called bi-directional 

evolutionary stmcforal optimization (BESO) method based on the idea of adding and 

removing elements. Further application of the BESO for stiffoess optimization is given 

by Yang et al. (1998). fo the BESO approach, the material property number of all 

elements in the ground stmcfore is firstly set to zero. This means that these elements are 

still stored in the data file but they do not physically exist as part of the stmcture and the 

finite element model for the solution. The initial design is constmcted by the designer, 

who has to use necessarily elements one by one to connect applied loads and supports. 

After elements are added to the initial design up to a specified percentage of elements 

(e.g. 50%) referred to the physically non-existing ground stmcfore, elements are 

removed and added simultaneously until the termmation condition is satisfied. The 

original idea of the BESO method is to reduce the computational cost of the ESO 

method. However, it will take more time to obtain the solution using the BESO than the 

ESO for some cases since the designer has to spend the time on settmg up the initial 

design, which has to grow up big enough to be "killed", fo addition, the addmg-and-
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removing process is acfoally a forward-and-backward process. This method may not 

work well for practical stmcfores with complex geometry and loading conditions. 

The density fonction approach for continuum topology optimization has been proposed 

by Mlejnek and Schirrmacher (1993) and Yang and Chuang (1994). This approach uses 

the material density of each finite element as the design variable to solve the topology 

optimization problem. The effective material properties are computed by using the 

assumed relationships between the material density and Young's modulus without 

considering their microstmcfores. Yang (1997) extended the density fonction approach 

to general topology optimization problems where compliance, displacements and natinal 

frequencies are treated as constraints. The shortcoming of this approach is that it gives 

no theoretical proof of the relationships between the material density and property, fo 

addition, the consframt is the only driving force in determining the final design, which 

may not be the global optimum. Gea (1996) presented a microsfructure-based design 

domain method, which provides a closed-form expressions for the effective Young's 

modulus and shear modulus in terms of phase properties and volume fractions. 

However, the method by Gea uses material volume as the constraint to determine the 

final design. 

Swan and Kosaka (1997) presented a continuum topology optimization method for the 

minimum compliance problem of linearly elastic stmcfores. fo this approach, the 

effective material properties of the mixfores without microstmcture are calculated usmg 

the classical Voigt-Reuss mixmg mle. The limitation of this method is that it cannot 

guarantee a global optunum smce the material volume is used as the constraint. 

2.4 PERFORMANCE INDICES FOR STRUCTURAL 

OPTIMIZATION 

Perf-ormance indices have been used fo assist foe optunal selection of stmcforal 

topologies and shapes by several researchers. Boiten (1963) used a performance index to 
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optimize the energy storage devices. A methodology for deriving performance indices 

for the selection of the material and section shapes of stmctural components has been 

proposed by Ashby (1992). fo his method, the performance of a stmcforal component is 

expressed by the objective fonction, which can usually be described by the separable 

fonctional, geometrical and material property fonctions. Design variables such as cross-

sectional areas are eliminated by substifoting the constraint equation into the objective 

fonction. The optimal selection of the shape design of a stmctural component is 

independent of the fonctional requirements and material used. Therefore, shape 

optimization can be undertaken without solvmg the whole objective fonction or 

knowing all details of fonctional and material parameters in advance. Minimizing the 

weight of a stmcforal component is achieved by maximizing the geometrical parameter 

fonction. The performance index can be obtained from the group of geometrical 

parameters. This procedure is efficient for deriving performance index for optimizing 

the shapes of stmcforal components and provides an important insight into the 

development of performance indices for evaluating the efficiency of stmctural 

topologies and shapes. Weaver and Ashby (1996) have used this approach to select 

material and section shapes. 

Burgess (1998a, 1998b) extended the approach outlined by Ashby (1992) to derive 

performance indices known as form factors for ranking the mass efficiency of stmcforal 

layouts for simply supported tmsses and beams with stiffoess and strength constramts 

under a single load. For tmsses and beams, the mass is expressed by the separable 

consfraint, geometrical and material parameters. Burgess found that the mass of a 

skeletal stmcture for sfrength design is proportional to the applied load, the span and the 

ratio of material density to the material ultimate strength. The mass is inversely 

proportional to the performance index, which can be used to calculate the minimum 

mass required for the optimal material layout. The performance index is a dimensionless 

number that depends on the topology of the stmcfore. Burgess has also employed such a 

performance index to evaluate the efficiency of the MBB beam produced by different 

stmcforal optimization methods. However, it is difficult to extend this approach to 

optimization of tmss-like stmcfores under multiple loading cases and discretized 
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continuum stmcfores. This is because the objective fonction can no longer be expressed 

by the separable fonctional, geometrical and material parameter fonctions, as would be 

the case for stmcforal elements and tmsses under a smgle load. 

Querin (1997) presented a performance index for measuring the efficiency of stmctural 

topologies and shapes for any type of stmcfores. This performance index was derived 

from the Michell type pin-jomted framework based on the folly stressed design concept. 

However, this performance index is only valid for folly stressed tmsses with a single 

span under a single load condition and can be simply derived from the objective 

fonction for strength design given by Burgess (1998b). The mathematical formulation of 

the performance index for discretized continuum stmctures is incorrect, fo addition, this 

performance mdex does not consider any type of constramts. Therefore, it cannot 

objectively measure the efficiency of topologies and shapes for tmss stmctures under 

multiple loading conditions and for discretized continuum stmctures. 

The ESO method presented by Zhao et al. (1998) is based on the strain energy principle. 

In this approach, which element should be removed for the design is determined by the 

contribution of the sfrain energy within the element. This method does not involve any 

objective fonction and constramt in the optimization process. An indicator defined using 

the work done by the extemal loads is employed in the ESO to indicate the efficiency of 

material layouts for continuum stmcmres. However, this indicator does not take any 

consframt mto account so that its application is very lunited. 
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Chapter 3 

TOWARDS FULLY STRESSED TOPOLOGY 

DESIGN 

3.1 INTRODUCTION 

fo the design of aeronautical, mechanical and civil engineering stmcfores, the engineer 

needs to specify the exact topology of a stmcture for a given design space and loading 

condition. In the absence of an efficient topology design tool, the selection of topology 

in current design practice usually involves a trial-and-error process based on the 

designer's infoition and previous experience. The automation of the design process and 

optimal designs are motivated by the considerations of limited material resources, 

technological competition and environmental issues. Stmcforal topology optimization, 

which is the selection of the best topology for the design of a stmcfore, is an important 

part of the design process. Contmuum topology optimization has recently atfracted 

considerable attentions in the field of stmcforal optimization. It has the potential to 

become an automated design tool for practicing engineers. 

The folly stressed design has fraditionally been used as one of the optimality criteria for 

the optimal design of skeletal stmctures. However, the folly sfressed design procedure 

may not lead to minimum-weight designs since no objective fonction is involved in the 

optimization algorithm. Due to its simplicity and fast convergence, the folly sfressed 
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design is still used in other optunization procedures as a startmg point for searchmg for 

optimal designs. The folly sfressed design concept has been adopted m topology and 

shape optimization of continuum stmcfores. Oda (1977) presented the two-dimensional 

shape optimization method in which the shape is modified based on the sfresses of 

elements obtained from the finite element analysis. The mle-based approach by 

Rodriguez and Seireg (1985) seeks optimal topology designs with the most uniform 

stress distribution at minimum weight by usmg the element elimmation concept. 

Baumgartner et al. (1992) proposed topology optimization as the Young's modulus 

distribution problem based on local stress levels. Moreover, Xie and Steven (1993) 

presented an evolutionary optimization procedure, which utilizes the folly stressed 

design and element removal concepts. However, these stress-based contmuum topology 

optunization approaches suffer the same problem as the folly stressed design does 

because no performance-based optimality criteria are used to obtain globally minimum-

weight designs. 

This chapter presents a Performance-Based Optimization (PBO) method for folly 

sfressed topology designs of two-dimensional linearly elastic continuum stmctures. In 

the proposed approach, the finite element method is used as the modeling and analytical 

tool for calculating sfresses of elements. The performance objective is to seek folly 

stressed topology designs with minimum consumption of material and acceptable stress 

levels. The performance-based design concept is incorporated in continuum topology 

optimization. A performance index is proposed to monitor the optimization process and 

used as a termination criterion. Maximizing the performance mdex is proposed as 

performance-based optimality criteria. Some of the results have recently been reported 

in the work of Liang et al. (1999a, 1999b). 

3.2 PERFORMANCE-BASED CONCEPT AND OBJECTIVE 

The performance-based design has become a popular design concept in stmcforal 

engineering profession in recent years. The stmctural design codes of practice in many 
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countries are currently changing from prescriptive specifications to performance-based 

provisions for technical, economical, social and environmental reasons. The 

performance-based design is to design a stmcfore or stmcforal component that can 

perform physical fonctions in a specified manner throughout its design life. The intent is 

to provide owners and designers with the capability to select different performance 

objectives for different stmcfores. Performance objectives are qualitatively expressed by 

non-engineering terms, which can be easily understood by the owners and commimity. 

The performance-based optimal design is to design a structure or structural component 

that can perform physical functions in a specified manner throughout its design life at 

minimum cost or weight. The cost-performance objective is of practical importance, but 

it is usually difficult to constmct an appropriate cost-objective fonction that depends on 

many parameters. Therefore, the minimum weight for required design specifications is 

frequently used as an objective fonction in stmcforal optimization smce it is readily 

quantified. The advantages of minimum-weight stmcfores are low material cost, high 

technical performance and low environmental impact. 

To be a minimum-weight design, all parts of a stmcfore should be loaded equally and 

safely. This means that the design should be folly stressed within the maximum 

allowable sfress level. It has been found that biological components always grow into a 

state of constant sfress on then surface (Mattheck and Burkhardt 1990). Therefore, the 

performance objective of topology design for strengfo is to seek the folly stressed design 

at minimum weight while satisfying allowable sfress consframts. This can be expressed 

in the mathematical form as follows: 

minimize W = ^w^{t) (3.1) 

subject to C7̂ ^ < CT* (3-2) 

where ^ i s the total weight of the stmcture, w, is the weight of the eth element, t is the 

thickness of all elements, n is the total number of elements, CT"Z is the maximum von 
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Mises stress of an element in the stmcfore under applied loads and cr*is the maximum 

allowable stress. 

The stresses of elements are localized and highly nonlinear with respect to the changing 

topology in an optimization process. The maximum stress may shift from element to 

element in the optimization process. This leads to difficulty in imposing the maximum 

sfress constraint on a particular element. To simplify the formulation, only the global 

maximum stress constraint on the von Mises sfress is considered in the proposed 

method, fo order to achieve the performance objective, undemtilized elements should be 

removed from the discritized stmcfore. Hence, every element in a stmcfore is treated as 

a design variable. The element thickness has a significant effect on the stmcforal weight 

as well as the state of sfress in elements because the stiffoess matrix of a plane stress 

continuum stmcfore is a linear fonction of its thickness, fo the design of a plane stress 

stmcfore, its thickness needs to be specified by the designer. Therefore, the thickness is 

also treated as one of the design variables. However, the simultaneous topology and 

sizing optimization of continuum stmctures will be very complicated and 

computationally highly expensive. As a result of this, only the uniform sizing of element 

thickness is considered in the proposed method. 

3.3 ELEMENT REMOVAL CRITERIA BASED ON EFFECTIVE 

STRESS LEVEL 

Topology optimization of continuum stmctures is the most complicated problem in 

stmcforal optimization. To solve the topology optimization problem, an initial design 

domain is usually used as a startmg point for deriving the optimum (Bendste and 

Kikuchi 1988; Xie and Steven 1993). The design domam concept is similar to the 

ground stmcture concept used in tmss topology optimization, fo the design domain 

approach, a design domain without violating any geometric consfraints is discretized 

into fine finite elements. Under applied loads, it is found that the sfress distribution of 

elements in the design domain is not uniform. This means that some of the elements are 
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not effective in carrying loads. Thus, these lowly stressed elements should be elimmated 

from the design domain so as to achieve the performance objective. 

The equivalent stress of an element that represents its sfress level in plane sfress 

conditions can be evaluated by using the von Mises stress criteria for isotropic materials. 

Different element elimination criteria can be used to defme the standard for elimination, 

fo the mle-based approach by Rodriguez and Seireg (1985), elements that posses the 

von Mises stress values below a certain level of the average sfress of elements are 

removed from the stmcfore. By implying this criterion, the efficiency of a stmcfore can 

be gradually improved. However, since the average stress of elements is used for 

elimination, the stress distribution in the final topology is still not uniform when no 

more elimination is possible. Further modification is often needed in order to achieve a 

better design. The maximum von Mises stress of elements in a continuum design 

domain can also be employed as criteria for element removal (Xie and Steven 1993). 

Element removal criteria can be expressed by 

VM ^ D _ V M (1 T \ 

where a^^ is the von Mises stress of the eth element at the /th iteration, cr^^ is the 

maximum von Mises sfress of an element in the stmcfore at the /th iteration and Rj is 

the element removal ratio at theyth steady state. All elements that satisfy Eq. (3.3) are 

removed from the stmcfore. The cycle of the finite element analysis and the element 

removal is repeated by usmg the same Rj until no more elements can be removed from 

the stmcture at the current state, fo order to continue the optimization process, the 

element removal ratio R is increased by an incremental removal ratio (i?,). The 

element removal ratio can be expressed by 

R.=R^+{j-\)R, (/•=1,2,3,4,...) (3.4) 

where /?„ is the initial removal ratio. 
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The optimal topology of a continuum stmcfore under one loadmg case is iteratively 

generated by usmg element removal criteria described m Eq. (3.3). For stmctures subject 

to multiple loading cases, only those elements that satisfy Eq. (3.3) for all load cases are 

removed from the design domain at each iteration. This criterion for multiple loadmg 

cases generates an optimal design that can perform the required fonction under all 

loading conditions. 

The optimal design can also be generated by gradually eliminating a small number of 

elements with the lowest von Mises stress from a continuum design domain. A loop can 

be set up to count these lowly stressed elements until they make up the prescribed 

amount, which is the element removal ratio times the total number of elements in the 

initial design domain. The design is iteratively modified by removing these lowly 

stressed elements at each iteration until the optimum is obtained. It should be noted that 

the number of elements to be removed at each iteration must be sufficiently small m 

order to achieve a smooth solution. The elimination of a large number of elements from 

a design domain may cause discontinuity and the model may become singular. The 

initial element removal ratio/?(, = 1% and incremental removal ratio R. = 1% are found 

to be typical for use in engineering practice. 

3.4 ELEMENT ELIMINATION TECHNIQUE 

The topology design of a contmuum stmcture is to determme the optimal layout of a 

given isofropic material m the design space. It needs to determme which regions should 

be filled with material and which regions should be void. Thus, the design problem 

becomes a discrete zero-one problem, to which there are no direct solutions. The 

mefoodology presented here is to search for the optimal solution usmg the 

design/redesign scheme in an iterative manner. The topology of a continuum stmcfore is 

modified by gradually removing undemtilized portions from the design domain, fo the 

optimization algorithm, foe state of an element in the model is represented by the bmary 

integer zero or one. The integer zero represents that the element is deleted from the 
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model whilst the integer one mdicates that the element is remamed in the model, fo the 

stmcforal analysis, the state of an element is represented by the Young's modulus as 

follows: 

, max 

where^"^ is the current Young's modulus of the eth element and £(, is the original 

Young's modulus of the eth element. The elimination of elements from a design domain 

can be done by setting then material property number to zero. These deleted elements 

are not assembled in the global stiffness of the stmcfore. 

3.5 PERFORMANCE-BASED OPTIMALITY CRITERIA 

Stmcforal topology is changmg during the optimization process. The performance of the 

resulting topology at each iteration needs to be assessed in order to obtain the optimum, 

fo the performance-based design, the performance of a design is quantified by using the 

performance index {PI). Stmcforal responses such as stress and displacement are used as 

performance indices to evaluate the stmcforal performance of a design. However, it is 

not sufficient to use stmctural responses alone as performance indices for evaluating the 

performance of optimized designs. The performance objective of topology optimization 

is to minimize the weight of a stmcfore while its stmcforal responses are mamtamed 

within acceptable limits. Therefore, the minimum material that can support applied 

loads without violating behavioral constraints should be used as a measure of the 

performance of optimal designs. 

The method presented by Burgess (1998a, 1998b) for derivmg performance indices is 

only valid for simple ttnsses and beams under a single load, ft is difficult to extend this 

approach to optimize tmss stiaicfores under multiple load cases and discretized 
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continuum stmcfores because the objective fonction can no longer be expressed by the 

separable fonctional, geometrical and material parameter fonctions. Moreover, the form 

factors given by Burgess can only be used to evaluate the efficiency of tmsses with a 

single span under a single load as the load and span are present m the objective function, 

fo the present sfody, a methodology based on the scaling design concept is proposed for 

developing performance indices, which can be used to evaluate the performance of 

stmcforal topologies and shapes with various constraints. 

The scaling design concept has been used in stmcforal optimization after each iteration 

to obtain the best feasible constrained design (Kirsch 1982; Morris 1982). The 

advantages of scaling the design are that it can trace the history of the reduction in the 

weight of a stmcfore after each iteration and pick the most active constraints. This 

method can be applied to stmcforal optimization when the stiffoess matrix of a stmcture 

is a linear fonction of design variables. By scaling the design, the scaled design variable 

is expressed by 

x\=(px^ (3.6) 

in which x\ is the scaled value of the design variable such as the element thickness of 

the eth element, ^ is a scaling factor that is same for all elements, and x^ is the acmal 

design variable of the eth element. The force-displacement relationship in the finite 

element formulation can be written as 

- [ i : ^ ] M = {P} (3.7) 
9 

where [A:'] is the stiffoess mafrix of the scaled sttaicture and is calculated by usmg the 

scaled design variablex^. The equilibrium equation for the scaled design can be 

expressed in terms of the scaled design variable by 
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[K']{u'} = {P} (3.8) 

From Eqs. (3.7) and (3.8), one obtains 

{u'}=-{u} (3.9) 
(P 

From the expressions of the sfrain-displacement and stress-strain relations m terms of 

the scaled design variable, the scaled stress vector can be derived as 

{cT'}=-{<r} (3.10) 
<P 

in which {cr} is the stress vector of elements. Obviously, in order to satisfy the sfress 

constraint imposed on a stmcfore, the acfoal design needs to be scaled by 

a 

VM 

^™^ (3.11) 

where al^ is the maximum von Mises stress of an element in the sttoicUire and a' is 

the prescribed stress limit. 

For Imear elastic plane sfress problems, foe stiffoess matrix of a stmcfore is a Imear 

fimction of foe element foickness foat is one of foe design variables. By scaling foe 

design wifo respect to foe maximum allowable stress consfraint, foe scaled weight of foe 

initial design domain can be represented by 

w: = 
f —VM \ 

W, (3.12) ^O.max 

V ^ J 
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in which W^ is the acfoal weight of the initial design domain and cr^^ is the maximum 

von Mises stress of an element in the initial design domam under applied loads, fo an 

iterative optimization process, the scaled weight of the current design at the/th iteration 

can be expressed by 

W' = 
( _VM A 

W, (3.13) /.max 

V ^ 

where W^ is the acfoal weight of the current design at the /th iteration and <7, „,;„ is the 

maximum von Mises stress of an element in the current design at the/th iteration. 

The performance index for evaluating the efficiency of the resuUmg topology at foe/th 

iteration is proposed as 

If the material density is uniformly distributed within the stmcmre, the performance 

index can be written in terms of the volume of the stmcfore as 

CJ,-.max^ 

where V^ is the volume of the mitial design domam and V^ is the volume of the current 

design at foe rth iteration. 

h can be seen from Eq. (3.15) that the performance index is a dunensionless number, 

which measures the performance of a stt̂ cUu-al topology m terms of material usage and 

the uniformity of stresses. The performance mdex reflects the changes m the weight and 

the maximum sfress levels m the stmcfore fo an optimization process. For the mitial 
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design domam, the performance index is equal to unity. The performance of a stmctural 

topology is unproved by elimmating lowly stressed elements from the stmcture. Since 

the performance index is inversely proportional to the weight of the current design, the 

performance objective of minimizing the weight of a stmcfore with stress consframts 

can be achieved by maximizmg the performance mdex in the optimization process. 

Therefore, the performance-based optimality criteria can be proposed as follows 

ay^„^, rtr O.max 0 , - , ^^ 

maximize Pf, = -TJTT—- (3.16) a^^ W. 
I,max 

The optimal topology that corresponds to the maximum performance index can be 

identified from the performance index history. The higher the value of the performance 

index, the better the performance of the topology. The stress limit is elimmated from the 

performance index formulas. This indicates that the optimal topology for the minimum-

weight design of a plane stress continuum stmcfore is unique for any value of prescribed 

sfress limits. The maximum allowable stress constraint is easily satisfied by uniformly 

changing the thickness of elements. 

The performance index formulas proposed herein do not involve the loads and 

geometrical parameters such as the span. This illustrates that the optimal topology of a 

plane stress contmuum stmcfore is independent of the scale of the loads and the 

stmcfore. The performance mdex measures the stmcforal response (maximum stress) 

and material efficiency (weight of the stmcture). Therefore, it is very convenient for the 

designer to use fois performance index to evaluate the performance of an optimized 

design. The performance index can also be used to compare the performance of 

stmcforal topologies produced by different stmctural optimization methods. 

The performance index proposed herein can be incorporated m any stress-based 

stmcforal optimization method to identify the optimum. When optimization methods 

employ principal sfresses as optimization criteria, maximum principal stresses should be 

used to calculate the performance index fo Eq. (3.14). The proposed performance index 

Q. Q. Liang: Performance-Based Optimization Method for Structural Topology and Shape Design 34 



Chapter 3: Towards Fully Sfressed Topology Design 

can also be incorporated in tmss topology optimization methods using ground stmctures 

when the cross-sectional areas of members are design variables. This is because the 

design can be uniformly scaled with respect to the cross-sectional area of members in 

the optimization process (Kirsch 1982). 

3.6 PERFORMANCE OPTIMIZATION PROCEDURE 

Stmcforal topology optimization is acfoally a performance-improving process, which 

couples the finite element analysis and the element elimination scheme. The 

performance optimization process mvolves the modeling of an mitial design, stmcttn-al 

analysis, performance evaluation, element elimination, checking the model connectivity 

and the termination criterion. A flow chart is presented in Fig. 3.1 to show the main 

steps of the performance-based optimization procedure, which is described as follows: 

(1) Model a continuum design domain with fine finite elements. The material 

properties, applied loads and boundary conditions are specified. Non-design 

regions can be specified by assigning their material property to a different number 

from the design domain. 

(2) Perform a linearly elastic finite element analysis on the stmcfore. 

(3) Evaluate the performance of the resultmg topology usmg Eq. (3.14). For a 

stmctiire under multiple load cases, the highest values of cTo'̂ l̂ ând a.^^of an 

element in foe sttaicttne under all load cases should be used to calculate the PI,,. 

(4) Eliminate elements foat satisfy Eq. (3.3). For mfotiple loadmg cases, onfy 

elements foat satisfy Eq. (3.3) for all load cases are removed from the sfrucfore at 

each iteration. The mitial removal ratio R, and foe incremental removal ratio i?, 

are specified before carrying out the optunization. 
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Model foitial Design Domain 

Perform FE Analysis 

Evaluate Performance of 
Resultmg Topology 

Yes 

focrease removal ratio by 
Rj=R,+R,(j-l) 

Check Topology Continuity 

Check Topology Symmetry 

Save Current Topology 

Plot P/History and Select 
Optimal Topology 

Fig. 3.1 Flowchart of PBO procedure for folly sfressed topology designs 
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(5) focrease the element removal ratioi?^. such that Rj = R^ + i?, (y -1) . 

(6) Check topology coimectivity. It is considered that two elements are connected if 

they have at least one common edge. Elements that are not connected with others 

are treated as singular elements, which will be deleted from the model. 

(7) Check the symmetry of the resulting topology with an initially symmefrical 

condition. 

(8) Save current topology. The data for resultmg topologies at each iteration is saved 

to files. This will allow all topologies obtained at each iteration to be displayed at 

later states. 

(9) Repeat step (2) to (8) until the performance index is kept constant or less than 

unity. 

(10) Plot the performance index history and select the optimal topology from the 

optimization history. 

The design is gradually modified by using the above optimization procedure. The 

performance index is used to monitor the performance improving history and as the 

termination criterion. When lowly sfressed elements are deleted from the design, the 

performance index will increase from unity to foe maximum value. After foe 

performance mdex reaches foe peak, it may keep constant fo later iterations if the design 

is folly sfressed. When the stress disfribution in the design is uniform, no more elements 

can be removed from the design according to Eq. (3.3). However, the folfy stressed 

designs of discretized contmuum stmctures can onfy be obtamed in some special cases, 

fo most cases, elements can be continuousfy removed from a sfructtire because of the 

non-uniformity of sfresses m the stmcture. Consequently, the performance mdex fo the 

final stage will be less foan unity. If foe performance index of a resultmg topology is less 

foan unity, its performance is lower foan that of the initial design domam. Therefore, the 
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optunization process can be terminated when the performance mdex is less than unity or 

kept constant. It is apparent that the folly stressed condition cannot be used as the only 

optimality criterion for continuum stmcfores in the proposed approach. 

3.7 EXAMPLES 

The PBO method is used to solve the topology optimization problems of various 

continuum stmcfores in this section. It is assumed that the strength of the stmctiue 

dominants the design so that the stress constraint is considered. The magnimde of stress 

limits might have significant influence on the weight of the final design but not on the 

optimal topology. As a result of this, the topology optimization process could be 

conveniently divided into two steps. The first step is to generate the optimal topology of 

a continuum stmcfore using the PBO method regardless the magnimde of stress limit. 

The second step is to size the optimal topology obtained by uniformly changmg the 

thickness of the stmcfore in order to satisfy the stress constraint. Only the first step is 

considered in the foUowmg examples. 

3.7.1 Two-Bar Frame Structure 

To verify the PBO method, the optimal design problem of a two-bar frame stmcture 

shown in Fig. 3.2 is solved by using the performance optimization procedure. The 

optimal height//of the two-bar frame stmcture can be obtained asH = lL by usmg the 

analytical method if the stmcture is assumed to be a tmss for the minimum-weight 

design. A continuum design domain that is larger than the size! x 21 as shown in Fig. 

3.3 is used as a starting point to derive the optimal two-bar frame stmcfore. The design 

domain is discretized into a 32 x 72 mesh using four-node plane sfress elements. The 

left side of foe design domain is fixed. A point load of 200 N is applied to the centre of 
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the free end. The Young's modulus E = 200 GPa, the Poisson's ratio v = 0.3 and the 

thickness of elements t=l mm are used. The plane sfress condition is assumed. The 

Fig. 3.2 Two-bar frame stmcture 

Fig. 3.3 Design domain for the two-bar frame stmcture 
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initial removal ratio/?o =1% and the incremental removal ratio R. =1% are used m the 

optimization process. 

The performance index history of the stmcfore is presented in Fig. 3.4. It can be seen 

that at the initial iteration, the performance index is equal to unity because no elements 

have been removed at this stage. By gradually eliminatmg lowly sfressed elements from 

the stmcture, the performance index gradually increases from unity up to the maximum 

value of 10.86. This means that the scaled weight of the mitial design domam is 10.86 

times that of the optimal design obtamed. It can be observed from Fig. 3.4 that the 

maximum performance index is constant in later iterations. This mdicates that the 

distribution of element effective sfresses withm the optimal topology is approximately 

uniform. In other words, the optimal topology generated by the PBO method is a folly 

stressed design at minimum weight. The performance index considering the maximum 

allowable stress constraint can indicate not only the optimum but also the uniformity of 

sfresses within the optimum. 

c a 
B 
a 
u 
ft. 

Fig. 3.4 Performance index history of the two-bar frame stmcture 
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The topology optimization history of the two-bar frame stmcfore is presented m Fig. 3.5. 

The optimal topology that corresponds to the maximum performance mdex evolves 

towards a two-bar frame stmcfore, where its optimal height is exactly two tunes of its 

span as shown in Fig. 3.5(c). This proves that the performance-based optimization 

method is a reliable design tool for continuum stmcture with strength constraints. The 

capability of the performance index in selecting the optimal topology from the 

optimization history is demonstrated m Table 3.1, where a comparison of material 

volumes required for the initial design domain and tfoee topologies shown m Fig. 3.5 

for various stress limits is presented. It can be seen from the table that material volumes 

of the optimal topology are always less than those of the rest for each sfress limits. This 
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Fig. 3.5 Topology optunization history of the two-bar frame stmcfore 
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illustrates that the topology shown in Fig. 3.5(c) is the best topology, which is 

independent of the prescribed stress limits. 

Table 3.1 Material volumes required at different iteration for various stress limits 

* 

a 
(MPa) 

100 
150 
250 

(mm )̂ 

18855 
12570 
7542 

V^ 

(mm )̂ 

11117 
7412 
4447 

* 150 

(mm )̂ 

4086 
2724 
1634 

F ' 
optimal 

(mm )̂ 

1735 
1157 
694 

Piss 
F' 

max r^s 
optimal 

10.86 
10.86 
10.86 

A similar solution to this two-bar frame stmcfore has been obtained by Xie and Steven 

(1993). However, no performance index was used in then approach to indicate the 

optimum. This means that the designer has to select one from hundreds of topologies 

generated in the evolutionary optimization process as the "optimum" for design 

according to his or her desire. Such a trial-and-error selection process would be 

cumbersome for the designer when dealing with real world engineering design 

problems. Although optimization methods can be exammed by comparing results with 

analytical solutions, such as this example, this can only be done for simple stmcmres. 

For practical problems wifo complex geometry and loading conditions, no classical 

solutions would be available. Therefore, the performance-based optimality criteria 

proposed here are exfremely usefol tool for stmctural designers for assisting the 

selection of optimal topologies in stmcforal design. 
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3.7.2 Michell Type Structures with Height Constraints 

fo practice, the design space is often limited and significantly affects the optimal 

configurations of a stmcfore. For example, the height of a beam in a building has to be 

limited in order to satisfy fonctional requirements, fo addition, the designer should know 

how to select an mitial design domain for derivmg the optimal stmcture in a given 

design space. The design generated by design domam methods is optimum in the sense 

of the given design domain. The effect of geometrical restrictions such as height 

constraints is investigated fo the section. 

The design domain for the simply supported Michell type stmcfores with various height 

constraints is illustrated in Fig. 3.6. fo case (a), the design domain with h/L = 1/2 is 

divided into 100 x 50 mesh using four-node plane stress elements and/?,, = 1% and i?, 

= 0.5% are used in the optimization process, fo case (b), the design domain with h/L = 

1/4 is divided into 100 x 25 mesh, fo case (c), the design domain with h/L = 1/8 is 

divided into 100 x 13 mesh, fo case (d), a 100 x 9 mesh is used for the stioicttire with 

h/L = 1/12. The Young's modulus E = 200 GPa, Poisson's ratio v=0.3 and foe thickness 

of elements t = 2 mm are assumed in the analysis. A point loadP = 400 N is applied to 

the sttaicture. /?o= 1% and /?,= 1% are used for cases (b) to (d). The plane stress 

condition is assumed for all cases. 

v/////,m'/A TV 
L 

y/Mmm. W//M. 

Fig. 3.6 Design domain for Michell stmcttnes with height constraints 

Q. Q. Liang: Performance-Based Optimization Method for Structural Topology and Shape Design 43 



Chapter 3: Towards Fully Stressed Topology Design 

The performance mdex history of case (a) is shown in Fig. 3.7. It can be seen that the 

performance index increases with the elimmation of lowly sfressed elements from the 

stmcfore. However, forther element removal from the optimal design evenfoally leads to 

the collapse of the stmcfore, which is indicated by the sharp decrease of the performance 

index. This means that there are still lowly stressed elements in foe optimal topology. 

However, the uniformity of sfresses in the optimal design has ultimately been 

maximized. The stress distribution in the initial design domam of a contmuum stmcture 

is hardly uniform owing to the stress concentration m the regions of loading and 

supports. The objective of the proposed method is to generate the optimal topology with 

the most uniform sfress distribution and minimum weight. This example shows that a 

minimum-weight design is not necessarily a folly stressed design. 

Fig. 3.7 Performance index history of case (a) 
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The effect of height constraints on the performance index of Michell type stmctures is 

illustrated in Fig. 3.8. It is seen that the performance index focreases with the increase in 

the height when compared with the initial design domains. The maxunum performance 

indices for cases (a) to (d) are 6.8, 4.97, 1.89 and 1.44. This illustrates that the 

performance of stmcforal topologies can be improved by increasing the height of foe 

initial design domain. Optimal topologies obtained for each case are shown m Fig. 3.9. 

The optimal topologies shown in Figs. 3.9 (a) and (b) exhibit tmss like stmctures that 

can be designed as tmsses. When h«L, the optimal topology as shown in Fig. 3.9(d) 

evolves to a continuum stmcfore from which not much material could be removed. 

0.1 0.2 0.3 0.4 

Height constraint h/L 

0.5 

Fig. 3.8 Effect of height consfraints on performance mdices 
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(a) Optimal topology {h/L=V2), Pf, = 6.8 

(b) Optimal topology (h/L=l/4), PI,, = 4.97 

(c) Optimal topology (h/L=\/S), Pl„ =1.89 

(d) Optimal topology (h/L=in2), PI„ =1.44 

Fig. 3.9 Effects of height constramts on optimal topologies 
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3.7.3 Ranking the Performance of Structural Topologies 

Topology optimization methods are effective tools for improving the performance of 

stmcfores. However, it should be noted that the performance of optimized designs 

depends on the methods and criteria used. It has been found that different optimization 

methods usually lead to different final designs for the same design problem considered. 

It is difficult to evaluate the performance of different optimization algorithms because 

they usually involve different formulations. Little work has been done in this area fo 

stmcforal optimization. However, the efficiency of different stmcforal optimization 

methods can be evaluated by comparing the results produced by them. The performance 

index developed herein is used to compare the performance of stmctoral topologies 

generated by different optimization methods. 

A fransverse beam of homogeneous material with fixed supports shown in Fig. 3.10 is 

optimized by using the PBO method. The design domain is discretized into a 90 x 30 

mesh using four-node plane stress elements. A concentrated load of 400 N is applied to 

the center of the bottom. The Young's modulus £" = 200 GPa, Poisson's ratio v = 0.3 

and the thickness of elements/ = 2 mm are used. R^ = 1 % and R. = 1 % are employed 

in optimization process 

Fig. 3.10 Design domain of the beam with fixed supports 
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The performance index history of this beam is presented in Fig. 3.11. The maximum 

performance index is 14.32. The topology optimization history is shown fo Fig. 3.12, 

where the optimal topology is uniformly stressed, as fodicated by the performance index 

history. Fig. 3.12(d) shows the fmal design proposal given by Mattheck (1998) usmg the 

Soft Kill Option (SKO) approach. This proposal is regenerated by usmg the same mesh 

as used in the PBO. A linear finite element analysis is undertaken to analyze the design 

proposal. The performance index of the proposal calculated using Eq. (3.14) is 1.92, 

which is much less than that obtained by the PBO method. It can be observed that this 

final proposal obtained by Mattheck is very similar to the topology shown in Fig. 

3.12(b), which is far from the optimum for the mmimum weight design subject to the 

sfrength consfraint. Therefore, it can be concluded that the proposed performance mdex 

is a usefol tool for ranking the performance of stmctiual topologies. 

16 
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Fig. 3.11 Performance mdex history of the beam with fixed supports 
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Fig. 3.12 Topology optimization history of the beam with fixed supports 
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3.8 CONCLUDING REMARKS 

This chapter has presented a Performance-Based Optunization (PBO) method for folly 

sfressed topology design at minimum weight. The maximum allowable stress consframt 

is considered in the formulation. A performance index has been developed for 

evaluating the efficiency of stmcforal topologies by using the scaling design procedure. 

The performance index is incorporated in optimization algorithms to monitor the 

optimization process and as the termination criterion. The performance objective of 

minimizing the weight of the stmcfore with sfress constraint is achieved by gradually 

eliminating lowly stressed elements from a continuum design domain until the 

performance index is maximized. 

It has been shown that the proposed PBO method can generate efficient stmctural 

topologies that are verified by analytical solutions. The performance index can mdicate 

not only the optimum from the optimization history but also the uniformity of sfress 

within an optimal stmcfore. Performance-based optimality criteria developed herein can 

overcome problems in stress-based continuum topology optimization methods. 

Moreover, the performance index can be used to rank the performance of stmcforal 

topologies produced by different stmcforal optimization methods. Examples presented 

show that increasing the height of an initial design domain usually improves the 

efficiency of the final optimal design. However, it needs to point out that sfress-based 

continuum topology optimization methods are suitable for the design of elastic 

stmctural components or stmctures where the sfrength performance is a main concern. 
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Chapter 4 

OPTIMAL TOPOLOGY AND SHAPE DESIGN FOR 

DISPLACEMENT PERFORMANCE 

4.1 INTRODUCTION 

The PBO method for folly stressed topology designs at minimum weight has been 

presented in Chapter 3. fo folly stressed topology design, element removal criteria are 

based on the effective stress levels of elements. However, it should be noted that the 

folly stressed design procedure might not lead to the stiffest stmcmral topologies. 

Therefore, the folly stressed optimization approach is suitable for finding optimal 

topologies for the sfrength design of stmcfores where the system performance is not a 

major concern. It has wide applications in aeronautical and mechanical engineering 

industries. 

fo civil engineering, stmcfores are often designed for requfred serviceability 

performance. For example, the maximum deflection of a steel tmss under service loads 

must be within an acceptable limit. To generate the stiffest sttncforal topologies and 

shapes, optimization methods should be formulated on the basis of displacement 

performance criteria, fo other words, displacements should be treated as constraints. 

Several researchers have considered topology optimization of continuum stmcfores 

subject to displacement consfraints. Afrek (1989) developed a program for topology and 
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shape optimization of continuum stmcfores subject to displacement constraints based on 

the classical optimality criteria method. The inefficient material is removed from a 

design domain to achieve a lighter design that has a more acceptable level of stmctural 

responses compared to other feasible designs with the same material volume. 

Displacement constramts are used as the termfoation criterion in the evolutionary 

stmcforal optimization method by Chu et al. (1996) and in the density fimction approach 

by Yang (1997) to determme the optimum. However, it is worth noting that consfrained 

displacements are significantly affected by the element thickness since the stiffoess 

matrix of a plane sfress continuum stmcture is a linear fonction of the element thickness. 

Prescribed displacement limits can easily be satisfied by uniformly sizing the element 

thickness. The result satisfying displacement constramts alone may not be the global 

optimum in a given design space. Therefore, it is of significant importance to develop 

performance-based optimality criteria that can be incorporated in optimization 

algorithms to obtam globally optimal designs. 

fo this chapter, a Performance-Based Optimization (PBO) method is proposed for the 

optimal topology and shape design of continuum stmctures for displacement 

performance. Continuum topology and shape optimization is treated as the problem of 

improving the performance of a continuum design domain in terms of the efficiency of 

material usage in resisting deformations. Two performance indices are developed for 

ranking the performance of resulting designs for plane sfress continuum stmctures and 

for plates fo bendmg in the optimization process. These performance fodices are also 

used as termination criteria in performance-based optimization algorithms. Maximizmg 

the performance index of a design domain is proposed as performance-based 

optimization criteria. The proposed performance indices and performance-based 

optimality criteria can be incorporated in any contmuum topology and shape 

optimization methods to obtain optimal designs. Some of the resuhs have been 

presented recently by Liang et al. (1999a, 2000a, 2001a). 
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4.2 OPTIMIZATION PROBLEM FORMULATION 

Continuum topology and shape optimization is to seek the optimal material disttibution 

within a given design domain. After the fmite element analysis, it is found that some 

parts of the initial design domam are ineffectively used. These ineffectively used 

portions should be removed from the design domam to achieve a better design. By 

gradually eliminating undemtilized material from the design, a lighter design can be 

generated. The performance objective is to minimize the weight of a continuum 

stmcfore while mafotaining concemed displacements within acceptable limits, and can 

be expressed in mathematical forms as follows 

minimize W = ^w^(t) (4.1) 
e=l 

subject to Uj <u*j j^l,..,m (4.2) 

where W is the total weight of a stmcfore, w^ is the weight of the eth element, / is the 

thickness of elements, M is the absolute value of they'th constrained displacement, u' is 

the prescribed limit of u .,mis the total number of displacement constraints and n is the 

total number of elements in the stmcfore. Since the thickness of a plane continuum 

stmcfore has a significant effect on the stmctural weight and it needs to be specified by 

the designer in practice, it is treated as one of the design variables. However, 

simultaneous topology and thickness (sizing) optimization will make the optimization 

problem rather complicated. Moreover, m many practical design problems, the thickness 

of stmctures needs to be uniform. Therefore, only uniform sizing of the element 

thickness is considered in the proposed method. 
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4.3 ELEMENT REMOVAL CRITERIA BASED ON VIRTUAL 

STRAIN ENERGY DENSITY 

fo stress-based topology optimization, lowly stressed elements are systematically 

removed from the design domain to achieve a folly stressed topology. For stmctures 

under displacement constraints, elements with the least effect on the change fo 

constrained displacements should be listed as candidates for elimmation. The resulting 

stmcfore will be the stiffest design at minimum weight with respect to the specific 

displacements. The main point is to find out which element should be removed from the 

design. This can be done by undertaking a design sensitivity analysis on consfrafoed 

displacements due to element removal. From the design sensitivity analysis, element 

removal criteria can be established for element removal and used in performance-based 

optimization algorithms. 

The equilibrium equation for a static stmcture in the finite element analysis is expressed 

by 

[K]{u} = {P) (4.3) 

If the eth element is removed from a structure discretized foto finite elements, the 

stiffoess and displacements of the stmcture will be changed accordingly, and Eq. (4.3) 

can be rewritten as 

(m-H[A^])(M + {AM}) = {P} (4.4) 

in which [AÂ ] is the changes of the stiffoess matrix and {Aw} is the change of the nodal 

displacements vector. The change of the stiffoess matrix is 

[/^]=[K^-{K\=-[k^ (4.5) 
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where [/CJis the stiffness matrix of the resultfog stmcture and [ytj is the stiffness 

matrix of the eth element. The change of displacement vector due to element elimfoation 

can be obtained approximately from Eqs. (4.3) and (4.4) by neglecting higher order 

terms as 

{Au} = -[K]-'[AK]{u} (4.6) 

It is assumed that the constraint is imposed on a specific displacement Uj. The change 

of the specific displacement due to an element removal needs to be evaluated, fo order 

to extract the required displacement component, a virfoal unit load is applied at Uj and 

acting in the direction of the displacement component. By multiplyfog Eq. (4.6) with foe 

virtual unit load vector {Fj}^, in which only the component corresponding to theyth 

consfrained displacement is equal to unity and all the others are equal to zero, the 

change of the constrained displacement can be obtained approximately as 

Auj = -{FJV[KV[AK]{U} = -{ujy[AK]{u} = {u,jV[kJ{uJ (4.7) 

where {«.}^is the nodal displacement vector of the stmcture under the virmal unit load, 

{u^.y is the nodal displacement vector of the eth element under the virtual unit load and 

{w } is the nodal displacement vector of the eth element under real loads. It is seen from 

Eq. (4.7) that the change in the consfrafoed displacement due to the elimination of the 

eth element can be calculated approximately by the vutual sfrain energy of the eth 

element, which is denoted as 

s.=W,V[K]{uJ (4.8) 

The element virfoal strain energy can be calculated at the element level after the fmite 

element analysis. To obtain the maximum stiffoess design at mmimum weight, it is 

obvious that elements with the lowest virtual sfrain energy should be elimmated 
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systematically from the continuum design domain befog optimized, fo other words, 

elements that have the least effect on the change in consfrafoed displacements are 

eliminated from the design domafo to achieve the performance objective. 

The lowest virfoal strain energy of elements is used as the element removal criteria for 

continuum stmcfores, which are discretized foto equal size finite elements, fo sifoations 

where a continuum stmcfore is divided into different size elements, element weights 

will differ from each other. Considering two elements with the same virtual sfrafo 

energy, eliminating the element with a larger weight will result in a lighter design while 

the changes in specific displacements are the same. Therefore, in order to obtain the 

most efficient design, the virfoal sfrain energy per unit volume of an element, which is 

defined as the element virtual strain energy density, should be used as the element 

removal criteria. The virfoal strain energy density of the eth element can be calculated 

by 

(4.9) 

where \sj is the absolute value of s^. If the material density is not uniformly 

disfributed in a continuum design domain, the weight of an element (w J should be used 

in Eq. (4.9) for calculating the element virttial sfrain energy density. 

For a stmcture subject to multiple displacement consfraints under multiple load cases, 

the virfoal sfrain energy density of the eth element can be evaluated by using the 

weightfog average approach as 

P m 

l=\ 7=1 

in which the weighting parameter pj is defined as u\ tu'j, which is the ratio of theyth 

consfrafoed displacement fo the prescribed limit under the/fo foad case, and/j is the 
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total number of load cases, ft is noted that the absolute values of displacements are used 

in Eq. (4.10). If the consfrained displacement is far from its prescribed limit, it will be 

less critical in the optimization process. 

Since the virfoal strain energy density of elements are approximately evaluated by 

neglectfog higher order terms in the sensitivity analysis, only a small number of 

elements with the lowest virfoal sfrafo energy density are allowed to be removed from a 

stmcfore at each iteration in order to obtain a sound optimal design. The element 

removal ratio (R)for each iteration is defined by the ratio of the number of elements to 

be removed to the total number of elements in the initial design domain and is kept 

constant during the whole optimization process. The accuracy of the solution is 

obviously improved by using a smaller element removal ratio but the computational cost 

will considerably be increased. The element removal ratio used in the proposed 

performance-based optimization method is similar to the step size employed fo 

conventional optimality criteria methods (Morris 1982; Rozvany 1989). 

4.4 PERFORMANCE-BASED OPTIMALITY CRITERIA 

4.4.1 General 

By removing a small number of elements with the lowest virmal strafo energy density 

from a discretized continuum stmcture, a more uniform distribution of element virtual 

sfrain energy density in the resultmg stmcture can be achieved. The uniformity of 

element virfoal sfrain energy density in skeletal stmcfores has been used as an optimality 

criterion, which can be derived on the basis of the Kuhn-Tucker condition (Morris 1982; 

Rozvany 1989). fo conventional optimality criteria (OC) methods (Rozvany 1989), the 

optimality criterion is derived for the dominant type of consfraint imposed on a 

stmcfore, and used to develop a recurrence relation. This recurrence relation is then used 

to update design variables so that the initial design is moved towards an optimum, 

which satisfies the optimality criterion. However, the uniformity of element virfoal 
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strain energy density in a continuum stmcfore may not be achieved fo some cases even if 

consfrafoed displacements are active. This means that a minimum-weight optimal design 

is not necessarily a design in which the distribution of the element virtual strain energy 

density is absolutely uniform. This is especially tme for practical design problems. 

Therefore, the uniformity of element virfoal strain energy density cannot be used as a 

termination condition in continuum topology optimization algorithms for determinmg 

optimal designs. To obtam globally optimal designs, new type performance-based 

optimality criteria (PBOC) must be developed and incorporated into continuum 

topology optimization methods. Performance-based optimality criteria that form the core 

of the PBO method for displacement consfraints are derived in this section for plane 

stress and bending plate optimization problems. 

4.4.2 PBOC for Plane Stress Problem 

Topology and shape optimization based on the element removal concept is a design 

problem of improving the performance of a continuum design domam in terms of the 

efficiency of material usage in resisting deformations. To obtain an optimum for the 

minimum-weight design, the performance of the resulting topology at each iteration 

must be evaluated by using the performance index, which can be derived on the basis of 

the scaling design procedure. Smce the stiffness matrix of a plane stress continuum 

stmcfore is a linear fonction of the thickness of elements, the element thickness can be 

uniformly scaled to keep the critical constrafot at the consfraint surface (Kirsch 1982; 

Morris 1982). As seen from Eq. (3.9), in order to satisfy the displacement constraints 

imposed on a stmcture, the acfoal design needs to be scaled by the following scaling 

factor 

^ = ^ (4.11) 
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where Uj is the absolute value of the yth consfrained displacement that is the most 

critical in the design. By scaling the initial design with respect to the most critical 

constrained displacement, the scaled weight of the initial design domain can be 

represented by 

K K (4.12) 

in which W^ is the acfoal weight of the initial design domam and u^j is the absolute 

value of the most critical consfrafoed displacement in the initial design under applied 

loads, fo a similar marmer, the current design can be scaled to satisfy the prescribed 

displacement limit at each iteration in the optimization process. The scaled weight of the 

current design at the rth iteration is expressed by 

w; ^ W. (4.13) 

where M,.. is the absolute value of the most critical constrained displacement in the 

current design at the rth iteration under the applied loads and W^ is the actual weight of 

the current design at the rth iteration. 

The performance index of the resultmg design at the rth iteration is proposed as 

"' W: (Uy/u'j)W, u^W, 

It can be seen from Eq. (4.14) that the performance index is a dimensionless number that 

indicates the performance of a stmctural topology or shape in terms of the material 

efficiency in resisting deformations. It depends on the topology or shape but not the 

scale of a stmcfore. The performance index of the initial design is equal to unity. The 
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performance of a stmcforal topology is gradually improved when elements with foe 

lowest virtual strain energy density are systematically removed from the design domain. 

The displacement limit (wp is consequently elimfoated from Eq. (4.14). This mdicates 

that an optimal topology for the minimum-weight design of a contmuum stmcture is 

unique for any value of prescribed displacement limits. The performance objective can 

be achieved by maximizing the performance index fo the optimization process. 

Therefore, the performance-based optimality criterion for plane stress continuum 

structures subject to displacement constraints is proposed as 

maximize Pl^, = (4.15) 
u^.W. 

It is noted that uniformly changing the element thickness does not affect the topology of 

a plane sfress continuum stmcfore and the performance index, but significantly 

influences the weight of the stmcfore and the constrained displacements. As a result of 

this, the thickness of elements is not changed in the finite element analysis at each 

iteration. Displacement limits are usually set to large values in order to obtain foe 

optimum design, which can then be sized to satisfy acfoal displacement limits. 

4.4.3 PBOC for Plate Bending Problem 

Plate stmcfores are commonly used as stmctural systems fo engineering practice. 

Research work on the optimal topology and shape design and reinforcement of plates 

has been undertaken by many researchers (Olhoff, 1975; Lurie and Cherkaev 1976; 

Cheng and Olhoff 1982). Their results show that there are an infinite number of fine ribs 

in the optimal reinforcement of plates. Afrek (1989) used a material removal procedure 

to generate optimal topologies of bending plates subject to displacement constrafots. 

The homogenization-based optimization method has been applied to the topology 

optimization of bending plates (Tenek and Hagiwara 1993). 
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The performance-based optimization method can also be applied to plates fo bending, fo 

the proposed method, the optimal design is fo seek the stiffest topology of a bendmg 

plate at minimum weight. Unlike plane sfress problems, the bendfog stiffness of a plate 

is not a linear fonction of the plate thickness. As a resuh of this, the performance index 

proposed for plane stress stmcfores cannot be used for plates in bendfog. However, the 

scaling design concept used in deriving performance indices for plane sfress stmctures 

can be adopted for bending plates if an appropriate-scaling factor is found. 

To obtain the best topology for the design of a plate in bending, the thickness of the 

plate is treated as one of design variables. The plate thickness is uniformly scaled to 

satisfy displacement constraints. By scaling the design, the scaled thickness of the plate 

is represented by 

(pt (4.16) 

in which ^ is the scaling factor which is the same for all elements. The material elastic 

constants of an element are written in matrix form as 

[D^ 
12 

Ev 
\~v' 

Ev 

\-v' 

0 

1-v^ 
E 

\-v' 

0 

0 

E 
2(1+ v) 

(4.17) 

Eq. (4.17) can be denoted as 

[DA = t\C] (4.18) 

where E is the Young's modulus and v is the Poisson's ratio. The material elastic 

constants of an element can be expressed in term of the scaled design variable as 
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m= r,^y 

V'P. (p 
(4.19) 

in which \PW is the scaled material elastic constant matrix of an element. The 

equilibrium equation for a plate can be expressed in the finite element analysis as 

\r\{u) = {P) (4.20) 

where \K^\ is the stiffness matrix of the scaled plate, which is calculated by usmg the 

scaled design variable f, {«} is the acfoal nodal displacement vector and {P} is the 

nodal load vector. Using the scaled design variables, the equilibrium equation for the 

scaled plate is denoted as 

{K^W) = {P} (4.21) 

From Eqs. (4.20) and (4.21), the scaled displacement vector can be obtained as 

(p 
(4.22) 

ft can be seen from Eqs. (4.16) and (4.22) that when the foickness of the plate is reduced 

by a factor (p, the defiections will increase with a factor of 1/ ^ \ fo order to satisfy the 

displacement limit, the acfoal design needs to be scaled by 

^ = 

1/3 

(4.23) 

By using the above scaling factor, the design can be scaled to keep the most consfrained 

displacement active after each iteration in the optimization process. Consequently, the 
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best possible consfrained design can be obtafoed from the history of the reduction fo the 

weight of a plate. The performance index of a bendfog plate at the rth iteration is defmed 

as the ratio of the scaled weight of the mitial design to the scaled weight of the current 

design at the rth iteration, and is proposed as 

pj ^w:_(u,,/u-rw, ( 
*«-•(„, /„;r«^. 

"oy 

U.. 
\ V J 

1/3 

- ^ (4.24) 
W. 

It can be seen from Eq. (4.24) that topology performance does not depend on the 

prescribed displacement limits. However, it is noteworthy that large values must be 

given to displacement limits in order to obtain the global optimum from the 

optimization history. The scaling design concept allows for the stmctural response 

(displacement) to be entered into the performance index formulas, fo other words, the 

performance index is a measure of stmcforal responses and the reduction in the weight 

of plates in an optimization process, and thus quantifies the performance of a bending 

plate. Therefore, the performance-based optimality criterion for bending plates subject 

to displacement constraints can be proposed as 

,1/3 

maximize PI^^ = 
"oy w 

-^ (4.25) 

The performance-based optimality criterion can be achieved by gradually removfog 

elements with the lowest virfoal strain energy density from the discritized plate. 

fo the optimality criteria method, a Lagrangian fonction is usually constmcted for the 

objective fonction and consfraints to obtain the optimality condition. A recurrence 

formula derived from this optimality condition is used to modify design variables in 

order to generate foe next stmctural layout. The optimality condition provides 

information on how to modify the design but it does not fodicate which topology 

generated in the optimization process is the optimum fo the given design space, fo 

confrast, in the PBO method proposed herein, the stmcfore is modified by removfog/? 
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(%) elements with the lowest vutual strain energy density from the design at each 

iteration. Maximizing the performance fodices is proposed as performance-based 

optimality criteria. The mafo advantage of the PBO method is that performance-based 

optimality criteria can be used to monitor the optimization process and to identify the 

optimum from the optimization history. 

4.5 PERFORMANCE OPTIMIZATION PROCEDURE 

The performance optimization process for plane sfress problems is basically the same as 

that for plates in bending, except that different performance indices are used in the 

optimization algorithms to evaluate the performance of resulting designs. The 

performance optimization process includes modeling of the initial design, finite element 

analysis, performance evaluation, element removal, checkfog model connectivity and 

maintaining symmetry of resulting design under symmetrical conditions. A flowchart is 

given in Fig. 4.1 to illustrate the performance-based optimization procedure for topology 

and shape design of continuum stmctures subject to displacement constraints. The 

optimization procedure is also explained as follows: 

(1) Model the foitial design domafo with applied loads, material properties and 

boundary conditions. Elements around the applied loads are usually treated as the 

non-design region and are not removed fo the optimization process. 

(2) Carry out a Imear elastic finite element analysis on the stmcfore. 

(3) Evaluate the performance of resulting topology or shape using Eq. (4.14) for plane 

sfress stmcfores and Eq. (4.24) for plates fo bendfog. fo the evaluation of topology 

or shape performance, the most critical constrafoed displacement is used. 

(4) Calculate the virfoal strain energy density of elements (q") for each loading case. 
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Start 

Model foitial Design Domain 

Perform FE Analysis 

Evaluate Performance of 
Resulting Design 

Yes 

Calculate Element Virfoal 
Strain Energy Density q" 

Remove R (%) Elements 
with the Lowest q" 

Check Stmcfore Continuity 

Check Stmcfore Symmetry 

Save Current Stmcfore 

Plot PI History and Select 
Optimal Topology/Shape 

(^^End J ^ 

Fig. 4.1 Flowchart of PBO procedure for optimal design for displacement performance 
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(5) Eliminate R (%) elements with the lowest vutual sfrafo energy density (q") from 

the design domain, fo topology optimization, undemtilized elements can be 

removed from the interior of the design as well as the boundary. However, in 

shape optimization, elements can only be eliminated from the boundary of a 

stmcfore. 

(6) Check topology/shape connectivity. It is assumed that two elements are coimected 

together if they have at least one common edge. Any element that is not connected 

with other elements is considered as a singular element, and is removed from the 

model. 

(7) Maintain the symmetty of resuhing sttncfore under initially symmefrical geometry 

and loading conditions. It may be necessary to remove extra elements from the 

stmcfore to maintain the symmetry. 

(8) Save information for current stmcture. 

(9) Repeat step (2) to (8) until the performance index is kept constant in later 

iterations or less than unity. 

(10) Plot the performance index history and select the optimal topology or shape. 

ft is noteworthy that the optimal design produced by the PBO method depends on the 

element removal ratio (R), which is similar to the step size used in the conventional 

optimality criteria method (Rozvany 1989). The smooth convergence of the performance 

index to the maximum value may not be guaranteed in the optimization process. 

Moreover, the stmcfore can always be modified by eliminatmg elements from the 

stmcfore since foe distribution of the element virtual stram energy density is seldom 

uniform in a continuum design domain. Therefore, foe prescribed tolerance for foe 

relative change in foe performance index cannot be used as a termination criterion in the 

optimization procedure. If foe perf-ormance index is less foan unity, the performance of 

the corresponding topology is less foan foe foitial design domam. The iterative 
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performance optimization process can be termmated when the performance mdex is less 

than unity. This can ensure that the optimal topology that corresponds to the maximum 

performance index is included in the optimization history. It is also possible that the 

performance index is kept constant in later iterations, fo such sifoations, the 

optimization process can be termfoated. fo order to contfoue the optimization process, 

displacement limits must be set to large values that allow for the performance mdex to 

be less than unity. Acfoal displacement limits are easily satisfied by changing the 

thickness of the optimal design obtamed. 

4.6 EXAMPLES: PLANE STRESS STRUCTURES 

4.6.1 General 

Several examples are provided in this section to demonstrate the effectiveness and 

validity of the PBO method for optimal topology design of plane stress continuum 

stmcfores for displacement performance. The PBO method is verified by the well-

known analytical solution of a two-bar frame stmcture and the Michell stmcfore, which 

are presented in Sections 4.6.2 and 4.6.3. The effect of geometry constraints imposed on 

initial design domafos on the optimal designs is also illustrated in Section 4.6.3. 

Multiple displacement constraints are treated in Section 4.6.4. The performance 

evaluation of stmctural topologies generated by different stmcforal optimization 

methods is presented in Section 4.6.5. Ffoally, m Section 4.6.6, topology and shape 

optimization of plates in bending is considered. 

4.6.2 Verification of the PBO Method 

The PBO method for optimal topology design of contmuum stmcfores for displacement 

performance is examined by solving a simple optimization problem whose optimal 

solution may be obtained by the analytical method. The optimization problem of a two-
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bar frame stmcfore shown in Fig. 3.2 is treated here for displacement performance. If the 

frame stmcfore is assumed to be a tmss for the mfoimum-weight design, its optimal 

height H is obtained as H =^ IL using the analytical method (Rozvany 1976). This 

problem was considered by Suzuki and Kikuchi (1991) usmg the homogenization-based 

optimization method for the mean compliance minimization. 

A continuum design domain that is slightly larger than the two-bar frame stmcture is 

used to derive the optimal topology of the stmcfore as shown in Fig. 4.2. A 

displacement consfraint is imposed at the loaded point in the vertical direction, and its 

limit is set to a large value fo order to ensure the optimum is included in the 

optimization process. The design domain is divided foto a 32 x 72 mesh usmg four-node 

plane stress elements. The left edge of the design domain is fixed. A concenfrated load 

of 200 N is applied to the cenfre of the free end. The values of Young's modulus^' = 

200 GPa, the Poisson's ratio v = 0.3 and the thickness of elements t= I mm are used in 

the finite element analysis. Plane stress conditions are assumed. The element removal 

ratio /? = 1% is adopted in the optimization process. 

Fig. 4.2 Design domain of two-bar frame stmcfore 
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Figure 4.3 shows the performance index history of the two-bar frame stmcfore. While 

elements with the lowest virfoal strain energy density are elimfoated from the design 

domain, the performance index gradually focreases from unity to the maximum value of 

2.08. It is seen from Fig. 4.3 that the performance index may jump in the optimization 

process. This is because the element removal ratio of 1% used is still high. A smoother 

solution may be obtained by using a smaller removal ratio such as /? = 0.5% for this 

two-bar frame stmcfore as shown in Fig. 4.4, but the computational time is 

approximately double of that using a removal ratio of 1%. The maximum performance 

index of the optimal design obtained using R = 0.5% is 2.05. This mdicates that the 

element removal ratios do not have a significant effect on the performance of optimal 

topologies produced by the PBO method. Moreover, it can be observed from Fig. 4.5 

that optimal topologies obtained using different element removal ratios are almost the 

same. Therefore, it is concluded that theR = 1% can be used in the design of practical 

engineering optimization problems with sufficient accuracy and efficiency. 

2.5 

2 -

•S 1.5 
c 

e 
a 
*- 0.5 

20 40 60 

Iteration 

80 100 

Fig. 4.3 Performance index history of the two-bar frame sttncttn-e (R - 1%)) 
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Fig. 4.4 Performance index history of the two-bar frame stmcture (?? = 0.5%) 

The topology optimization history is presented in Fig. 4.5. The optimal topology evolves 

to a two-bar tmss-like stmcfore whose optimal height is two times of its span (Rozvany 

1976). This proves that the PBO method can generate reliable optimal topologies for the 

design of continuum stmcmres. 

As discussed previously, the performance of an optimal topology does not depend on the 

acfoal values of displacement limits. This is illusfrated in Table 4.1 where a comparison 

of material volumes requfred for the initial design and four topologies shown fo Fig. 4.5 

(a) to (d) for various displacement limits is made. It can be seen from the table that the 

volumes of the optimal topologies are always less then those of other four topologies for 

each displacement limit. It also shows that the maximum performance indices are the 

same for different displacement limits. 
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Fig. 4.5 Topology optimization history of two-bar frame stt^cture: (a) topology at 

iteration 50; (b) topology at iteration 70; (c) optimal topology ^ = 1%); (d) topology at 

iteration 90; (e) optimal topology {R = 0.5%). 
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Table 4.1 Performance of topologies with various displacement limits 

u. 

(mm) 

0.5 
0.75 
1.0 

(mm )̂ 

740 
493 
370 

(mm )̂ 

468 
312 
234 

(mm )̂ 

405 
270 
203 

F' 
optimal 

(mm )̂ 

355 
237 
178 

(mm^) 

390 
260 
195 

PI 
ds.max 

2.08 
2.08 
2.08 

4.6.3 Effect of Geometry Constraints 

The design spaces fo practical engmeering design problems are often limited and have a 

significant effect on the performance of final optimal designs. This example is to 

investigate the effects of height consfraints imposed on the initial design domains of 

Michell type stmcfores on the performance of optimal topologies, fo addition, the 

optimal topology obtained by the PBO method is compared with the classical solution 

given by Michell (1904). 

The design domain for Michell type stmcfores with fixed supports subject to various 

height constraints is shown in Fig. 4.6. fo case (a), the design domain withh/L = 1/2 is 

divided into 100 x 50 mesh using plane sfress elements, fo case (b), the design domain 

wifo h/L = 1/4 is divided into 100 x 25 mesh, fo case (c), the design domafo with A/I = 

1/8 is divided into 100 x 13 mesh, fo case (d), a 100 x 9 mesh is used for the stmcfore 

with h/L = 1/12. The Young's modulus E = 200 GPa, Poisson's ratio v = 0.3 and 

thickness of elements t = 2 mm are used for all cases. A pomt loadP = 400 N is applied 

to the stmcture. A displacement constraint imposed at the loaded point in the vertical 

direction is set to large value in the analysis. TheR = 1% is used in the optimization 

process. 
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Design domain 

J400N 
4 0 0 

Fig. 4.6 Design domain of Michell type stmcfores with height consfraints 

Optimal topologies selected by the performance index Eq. (4.14) from the optimization 

history of continuum stmcfores with various height constraints are shown in Fig. 4.7. 

The case (a) is the well-known Michell type stmcture with fixed supports. The optimal 

topology produced by the PBO method as shown fo Fig. 4.7(a) agrees extremely well 

with the analytical solution derived by the Australian inventor A.G.M. Michell (1904). 

Maximum performance indices for cases (a) to (d) are 1.89, 1.67, 1.73 and 1.58. It is 

noted that the performance index may not increase with the increase fo height 

constraints imposed on initial design domains. This is because the performance index 

for each stmcfore is defined by the scaled weights of the initial design and the current 

design at each iteration. Therefore, the performance of optimal topologies for different 

stmcfores such as stmcfores with different heights carmot be ranked by comparing then 

performance indices. The suitable method is to compare their scaled weights or volumes 

with respect to the same displacement limit such as 0.5 mm imposed at the loaded point. 

A comparison of material volumes requfred for each optimal design while satisfying the 

same displacement performance level is given in Table 4.2. It is seen from the Table 4.2 

that the material volume of the optimal design increases with the decrease in the height 

consfraints. Therefore, the performance of the optimal topology of a stmcfore is 

improved when increasing the height of its initial design domain. 
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(c) Optimal topology {hlL=\l%), Pl^, = 1.73 

(d) Optimal topology (/z/L=l/12), Pl^, =1.58 

Fig. 4.7 Effect of height constraints on optimal topologies 
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Table 4.2 Effects of height consfrafots on the material volumes of optimal topologies 

Height 

h/L 

1/2 
1/4 
1/8 
1/12 

"optj 

(mm) 

0.023 
0.036 
0.244 
0.428 

u] 

(mm) 

0.5 
0.5 
0.5 
0.5 

V 
opt 

(mm )̂ 

28800 
20864 
7138 
9125 

opt 

(mm )̂ 

1342 
1481 
3483 
7811 

4.6.4 Multiple Displacement Constraints 

This example is to demonsfrate the effectiveness of the PBO method in dealmg with 

continuum topology design problems subject to multiple displacement constraints. Fig. 

4.8 illustrates the design domain of a simply supported beam under three concentrated 

loads of 10 kN, each, applied at points A, B and C. This beam are subjected to multiple 

displacement constraints of the same limit imposed at three loaded points. The design 

domain is discertized into a 96 x 32 mesh using four-note plane stress elements. The 

Young's modulus E = 200 GPa, Poisson's ratio v = 0.3 and the thickness of elements t = 

5 mm are assumed. Thei? = 1% is used in the optimization process. 

A 

Des ign d o m a i n 

B 

lOkN llOkN 
300 

o 
o 

lOkN 
v//>A///i 

Fig. 4.8 Design domain of stmcture with mufriple displacement constraints 
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The performance index history of the simply supported beam is shown in Fig. 4.9. Due 

to symmetry, the displacements at points A and C are the same. The performance fodex 

curves shown in Fig. 4.9 are obtafoed by using Eq. (4.14) based on the constrafoed 

displacements at points A and B in the optimization process. The maximum 

performance index calculated for pofot A is 1.46 whilst it is 1.43 for point B. The 

optimal topology that corresponds to the maximum performance index occurs at 

iteration 76 for both displacement constramts. It is obvious that the material volume 

required for the optimal design is governed by the critical displacement constraint 

imposed at point B. 

S: 1.5 

« 
E 

a 
fe 0.5 
a. 

Points A & C 

•Point B 

20 40 60 

Iteration 

80 100 

Fig. 4.9 Performance index history of stmcture with multiple displacement constraints 

The topology optimization history of the stmcfore subject to multiple displacement 

consfraints is shown in Fig. 4.10. The optimal topology presented fo Fig. 4.10(c) 

indicates a tmss-like stmcfore. ft is observed that the in-plane size of members in the 

tmss is approximately proportional to the force carried by that member since the vimral 

sfrain energy density of elements within the optimal topology is approximately uniform. 

Q. Q. Liang: Performance-Based Optimization Method for Structural Topology and Shape Design 76 



Chapter 4: Optimal Topology and Shape Design for Displacement Performance 

i i: i: •••••"••IftWjBI 

•#t«M««««<«««4«^«<««««« 

pr::::Hw|m{| 
-I « f i ' ' r « r t t " " ^ ^ 

It9 

I5r 

1 r 
1 
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(d) Topology at iteration 83 

Fig. 4.10 Topology optimization history of stmcture with muftiple displacement 
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4.6.5 Ranking the Performance of Structural Topologies 

For a same design problem, different optimization methods usually lead to different 

final designs, fo order to select the best topology for the design of contfouum stmctures, 

the proposed performance index is used to rank the performance of stmcforal topologies 

produced by different continuum topology optimization methods. 

A short cantilever beam subject to a displacement constraint imposed at the loaded pofot 

in the vertical direction as shown in Fig. 4.11 is optimized by using the PBO method. 

The design domain is divided into 32 x 20 plane stress elements. A concenfrated load of 

3 kN is applied to the center of the free end. The Young's modulus E = 207 GPa, 

Poisson's ratio v = 0.3 and the thickness of the stmcfore t = 1 mm are adopted in the 

analysis. The element removal ratio/? = 2%) is used in this problem. 

^ 

Design doma in 

160 

o 
o 

3kN 

Fig. 4.11 Design domain of short cantilever beam 
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The performance index history of this short cantilever beam is shown in Fig, 4.12. For 

the initial design without any hole, the performance fodex is equal to unity whilst the 

maximum performance index of 1.20 occurs at iteration 27. The optimal topology 

obtained by the PBO method is presented in Fig. 4.13(a). The topology shown in Fig. 

13(b) is given by Chu et al (1996). The performance index corresponding to Fig. 13(b) 

is 1.11. The topology given by Zhao et al (1998) is presented fo Fig. 13(c), where the 

model is regenerated. The performance index of the topology shown in Fig. 13(c) is 

obtained as 1.18. The performance index of the topology given by Suzuki and Kikuchi 

(1991) using the homogenization-based optimization method as shown in Fig. 13(d) is 

found to be 1.04. This indicates that the performance of the optimal topology obtained 

by the PBO method is higher than those presented by other researchers. It also 

demonstrates that the PBO method developed in this sfody is a reliable and efficient 

topology optimization technique. 

10 20 30 

Iteration 

40 50 

Fig. 4.12 Performance index history of short cantilever beam 
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(a) Topology by PBO method 

{PI ^=1.20) 

(b) Topology by Chu et al. (1996) 

(/'/,, =1.11) 

(c) Topology by Zhao et al. (1998) 

( i ' /ds=l-18) 

(d) Topology by Suzuki and Kikuchi (1991) 

( / ' /ds=104) 

Fig. 4.13 Ranking the Performance of stmcforal topologies produced by different 

continuum topology optimization methods 
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4.7 EXAMPLES: PLATES IN BENDING 

4.7.1 General 

It is traditionally believed that continuum topology optimization can offer more material 

savings than continuum shape optimization. However, this statement may hold tme only 

for plane stress stmcfores, and it may not be the case for optimal design of plates fo 

bending. Little work has been undertaken so far to compare the performance of optimal 

designs for bending plates, which are generated by using topology and shape 

optimization methods. Therefore, the PBO method is used to investigate the effects of 

topology and shape optimization techniques, loading and boundary conditions on the 

optimal designs of plates in bending in this section. 

4.7.2 Clamped Plate under Concentrated Loading 

The design domain of a clamped square plate under a concenfrated load of 500 N 

applied to the cenfre of the plate is shown in Fig. 4.14. A single displacement constraint 

is imposed at the loaded point in foe vertical direction. The design domain is divided 

into a 50 X 50 mesh using four-node plate elements. The Young's modulus £ = 200 

GPa, Poisson's ratio v = 0.3 and the thickness of the plate t = 5 mm are used fo the finite 

element model. Four elements around the loaded point are frozen so that this region is 

not removed during the optimization process. The element removal ratio 7? = 1% is 

adopted in the performance optimization process. 

Fig. 4.15 shows foe performance index histories for topology and shape optimization of 

clamped plate in bending, ft can be seen that performance fodices are gradually 

increased while inefficient elements are eliminated from the plate in the optimization 

process. It is interesting of that performance indices for topology and shape optimization 

are almost identical up to iteration 59. However, shape optimization provides a slightly 

higher performance index than topology optimization. The maximum performance 
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index of the topology is 2.09 whilst the maximum performance fodex of the shape is 

2.13. After the performance is maximized, forther element removal will desfroy the 

stmcfore as indicated by performance fodex histories shown m Fig. 4.15. 

Design domain 

V777777777777777777777777V777?V777777777y7777: 

I. 
! 

400 

Fig. 4.14 Design domafo of clamped plate under concenfrated loading 

Fig. 4.15 Performance index histories of clamped plate under concenfrated loading 
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The histories of topology and shape optimization for the plate are shown in Fig. 4.16 

and Fig. 4.17. It is noted that cavities in the interior of the plate are created by topology 

optimization whilst no holes in the interior of the plate are generated by shape 

optimization. Based on the consideration of manufacfore and stmctural performance, 

shape optimization technique should be used to optimize plates fo bendmg. 
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(a) Topology at iteration 10 (b) Topology at iteration 20 

(c) Topology at iteration 40 (d) Optimal topology 

Fig. 4.16 Topology optimization history of clamped plate under concenfrated loading 
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(a) Topology at iteration 10 (b) Topology at iteration 20 

(c) Topology at iteration 40 (b) Optimal topology 

Fig. 4.17 Shape optimization history of clamped plate under concentrated loading 

4.7.3 Simply Supported Plate under Area Loading 

Figure 4.18 shows the design domafo of a simply supported plate under a local area 

pressure of 0.1 MPa normal to the surface of the plate. A sfogle displacement constraint 

is imposed at foe centre of the plate. The mesh and material properties used are the same 
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as the previous example. The loading region is frozen. The element removal ratio/? 

1% is used. 

Fig. 4.18 Design domain of simply supported plate under area loading 

The performance index histories for topology and shape optimization are demonstrated 

in Fig. 4.19. It is seen that performance indices at each iteration are almost identical up 

to iteration 32 for the plate using topology and shape optimization techniques. However, 

the maximum performance fodex of the optimal shape is 1.53 while the maximum 

performance index of the optimal topology is only 1.34. This illusfrates that shape 

optimization for plates in bendfog can generate higher performance optimal designs than 

topology optimization. 

The histories of topology and shape optimization are presented in Figs. 4.20 and 4.21. It 

is observed that hinge lines are formed between foe comers and the central region of the 
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Fig. 4.19 Performance index histories of simply supported plate under area loading 

optimal topology using the topology optimization technique. However, no hinge lines 

are observed fo the optimal shape because elements are only eliminated from the 

boundaries of the plate in shape optimization. Moreover, it is seen that checkerboard 

pattern appear in resulting topologies whilst no checkerboard pattern is present in shapes 

obtained. It is difficult to manufacfore stmcfores with checkerboard pattern. Although 

the checkerboard pattern can be eliminated by incorporating an infoitive smoothing 

scheme into the PBO algorithms, the computational cost will be penalized. From the 

manufacturing, computational cost and stmcforal performance points of view, it is 

suggested that shape optimization technique should be used to optimize plates in 

bending. The effects of boundary conditions on optimal topologies and shapes of 

bending plates can be seen from the example presented in Section 4.7.2 and this 

example. 
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(a) Topology at iteration 10 (b) Topology at iteration 20 

(c) Topology at iteration 40 (d) Optimal Topology 

Fig. 4.20 Topology optimization history of simply supported plate under area loadmg 
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(b) Shape at iteration 20 

(c) Shape at iteration 25 (d) Optimal shape 

Fig. 4.21 Shape optimization history of simply supported plate under area loading 

4.7.4 Clamped Plate under Strip Loading 

The design domain of a clamped square plate under strip pressures of 0.1 MPa is 

illusfrated in Fig. 4.22. A single displacement consfraint imposed at the centre of the 

plate is considered. The mesh and material properties are the same as used in previous 

Q. Q. Liang: Performance-Based Optimization Method for Structural Topology and Shape Design 88 



Chapter 4: Optimal Topology and Shape Design for Displacement Performance 

example. Elements in the two loaded strips are frozen. The element removal ratio/? = 

1% is employed in this problem. This plate is optimized usmg the PBO method for 

topology and shape optimization. 

•////////////////////////y///////////////////// 

/. / V, 

Fig. 4.22 Design domain of clamped plate under strip loading 

Figure 4.23 shows performance index histories for the topology and shape optimization 

of the clamped plate under a strip loading. It can be observed that the performance fodex 

curve obtained using the shape optimization method is smoother than the one generated 

using the topology optimization scheme. This may be the effect of holes, which are 

created in the interior of the plate in topology optimization process. However, it is 

shown that these two optimization methods provide optimal designs with the same 

maximum performance index of 5.44, which is constant fo later iterations. This is 

because loaded strips are frozen so that no elements can be removed from loading strips 

after eliminating all of the un-frozen elements from the design. 
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Fig. 4.23 Performance index histories of clamped plate under strip loading 

The topology and shape optimization histories of the plate under the strip pressure are 

presented in Figs. 4.24 and 4.25. It is seen from these figures that although the results 

generated at the same iteration in the performance optimization process are different 

usfog different optimization techniques, final optimal designs are the same for this plate 

under strip loading. The optimal shape suggests that the most efficient design can be 

achieved by using beam to support the strip loading. 
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(a) Topology at iteration 20 (b) Topology at iteration 40 

(a) Topology at iteration 80 (b) Optimal topology 

Fig. 4.24 Topology optimization history of clamped plate under strip loading 
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(c) Shape at iteration 80 (d) Optimal shape 

Fig. 4.25 Shape optimization history of clamped plate under strip loadmg 

4.8 CONCLUDING REMARKS 

fo this chapter, the performance-based optimization (PBO) method has been developed 

for the optimal topology and shape design of contfouum stmctures subject to 
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displacement consfrafots. The PBO mefood is formulated on foe basis of displacement 

performance criteria, which allows for elements wifo foe lowest vutual strafo energy 

density to be gradually elimmated from a contmuum design domam to achieve a 

lightweight design wifo minimum deformations, fo foe proposed mefood, continuum 

topology and shape optimization is treated as the problem of improvfog foe performance 

of a continuum design domain in terms of the material usage in effectively resistfog 

deformations. Maximizmg the performance indices fo foe design space is proposed as 

performance-based optimization criteria. The proposed performance mdices are used to 

monitor the optimization process and as a termination criterion in performance 

optimization algorithms. 

It has been demonstrated that the PBO method can effectively generate optimal 

topologies and shapes, which have been verified by analytical solutions, fr is shown that 

a smoother solution can be achieved by using a smaller element removal ratio in the 

performance optimization process but at the expense of a higher computational cost. 

The results indicate that increasing the height of an initial design domain usually 

improves the efficiency of the final optimal design. It has been shown that the shape 

optimization technique provides higher performance optimal designs than the topology 

optimization method does. From the manufacforing and efficient points of view, the 

shape optimization technique should be used to optimize plates in bending. 

Performance-based optimality criteria developed herein can be focorporated in any 

existing continuum topology optimization methods to guarantee success fo obtaining the 

global optimal designs with reasonable effort. Furthermore, the proposed performance 

indices can be used to rank the performance of stmcforal topologies and shapes 

produced by different stmctural optimization methods and the efficiency of continuum 

topology optimization methods. 
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Chapter 5 

OPTIMAL TOPOLOGY DESIGN FOR OVERALL 

STIFFNESS PERFORMANCE 

5.1 INTRODUCTION 

The Performance-Based Optimization (PBO) method for topology and shape designs of 

continuum stmcfores with displacement constraints has been presented in Chapter 4. 

Element removal criteria are based on the virfoal strain energy density of elements, fo 

order to calculate the virfoal strain energy density of elements, the stmcmre has to be 

analyzed under virfoal unit loads, which are applied to loaded points. The optimal 

design produced by using the PBO method for displacement performance is in favor of 

specific displacements. This means that the optimal design is a maximum stiffoess 

design at mfoimum-weight with respect to specific displacements. For a stmcfore under 

only a few point loads, the PBO method for stmcfores with displacement constraints is 

efficient in generatfog minimum-weight designs for stiffness. However, for a contfouum 

stmcfore imder many concentrated loads and multiple loadfog conditions, many virfoal 

unit loads have to be used in order to calculate the virtual strain energy density of 

elements for elimination. This will considerably focrease the computational cost, fo 

addition, the weightfog average approach used to evaluate the virtual stafo energy 

density of elements may not be efficient for stmcfores under muhiple displacement 
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constraints and loading conditions. To overcome these limitations, a more general 

approach that considers the overall stiffoess performance needs to be developed. 

Stmcforal topology optimization involves a large number of design variables and is the 

most computationally expensive design task. To simplify the design optimization 

problem, the objective for stiffness design is usually to mfoimize the mean compliance 

of a stmcfore. It is noted that minimizing the mean compliance of a stmcture is 

equivalent to maximizing its overall stiffoess. The homogenization-based design 

concept has been extensively adopted in continuum topology optimization for 

compliance minimization problems (Bendsoe and Kikuchi 1988; Suzuki and Kikuchi 

1991; Diaz and Bendsoe 1992; Tenek and Hagiwara 1993; Youn and Park 1997; Krog 

and Olhoff 1999). Other optimization approaches for the stiffness design of continuum 

stmcfores have also been developed recently (Gea 1996; Swan and Kosaka 1997; Yang 

1997). 

The difficulty involved in continuum topology optimization is to focorporate an 

appropriate termination criterion in optimization algorithms to obtain the global 

optimum. The prescribed material volume has commonly be used in optimization 

approaches as the termination criterion (Bendsoe and Kikuchi 1988; Suzuki and Kikuchi 

1991; Diaz and Bendsoe 1992; Tenek and Hagiwara 1993; Youn and Park 1997; Krog 

and Olhoff 1999; Gea 1996; Swan and Kosaka 1997). Based on this termination 

criterion, using a different percentage of material volume as the constraint leads to 

different designs. The mean compliance has been used as the termfoation criterion that 

is the only condition for determining the fmal design (Yang 1997). The results satisfying 

these termination criteria mentioned might not be the global optimum in the given 

design space. Therefore, there is a sfrong need to develop performance-based 

termination criteria that can be used in continuum topology optimization methods to 

identify globally optimal designs for overall stiffoess performance. 

fo this chapter, the Performance-Based Optimization (PBO) method is developed for 

optimal topology design of continuum sttiicfores for overall stiffness performance, fo 

Q. Q. Liang: Performance-Based Optimization Method for Structural Topology and Shape Design 95 



Chapter 5: Optimal Topology Design for Overall Stiffness Performance 

the proposed method, the weight of a stmcfore is used as the objective fimction and the 

constraint is imposed on the mean compliance of the stmcfore. Continuum topology 

optimization is treated as the problem of improving the performance of a contfouum 

design domain in terms of the efficiency of material usage and overall stiffoess. Two 

stiffness performance indices are developed for evaluating the performance of resultfog 

topologies for plane stress continuum stmcfores and for plates in bendfog fo the 

optimization process. These performance indices are also used as termination criteria in 

performance-based optimization algorithms. The maximization of performance indices 

is proposed as performance-based optimization criteria. Part of the performance-based 

optimization theory has been addressed by Liang et al. (2000b) and Liang and Steven 

(2001a) 

5.2 TOPOLOGY DESIGN PROBLEM FORMULATION 

The formulation of a design optimization problem is of significant importance to the 

success of an optimization method. A poor formulation can lead to poor results or to 

prohibitive development cost. Moreover, an improper problem formulation may lead to 

meaningless results that cannot be used fo practical design. 

For the maximum stiffoess topology design, the mean compliance of a stiaicture has 

commonly been used as the objective function, and the constt-aint is imposed on a 

somewhat arbifrarily specified material volume (Bendsoe and Kikuchi 1988; Suzuki and 

Kikuchi 1991; Diaz and Bendsoe 1992; Tenek and Hagiwara 1993; Youn and Park 

1997; Krog and Olhoff 1999; Gea 1996; Swan and Kosaka 1997). However, it is 

noteworthy that the designer usually does not know what percentage of the material 

volume is the mmimum for supporting applied loads in advance. Optimization mefoods 

based on such a problem formulation certafoly lead fo a trail-and-error design process if 

the designer really wants to find the minimum-weight design. The optimal material 

usage shall be sought by using optimization mefoods rafoer than specified by foe 

designer. Therefore, realistic optimization approaches for stiffness design are to treat 
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the weight of a stmcfore as the objective fonction and behavior quantities such as the 

mean compliance or displacements as consfrafots smce limitations on behavior 

quantities are specified in national or fotemational design codes. 

fo the proposed method, the weight of a stmcfore is used as the objective function and 

the mean compliance is treated as the constramt. fo other words, the performance 

objective is to minimize the weight of a contmuum design domain while maintaining its 

overall stiffness within an acceptable limit. The performance objective can be expressed 

in mathematical forms as follows; 

minimize fV = '^w^it) (5.1) 
£•=1 

subject to C<C* (5.2) 

in which W is the total weight of a stmcmre, w^ is the weight of the eth element, / is the 

thickness of elements, C is absolute value of the mean compliance of the stmcmre, C* 

is the prescribed limit of C, and « is the total number of elements fo the stmcmre. The 

mean compliance of a stmcfore is usually used as an inverse measure of foe overall 

stiffness of a stmcfore. Since the thickness of a continuum sttxicttne, which is specified 

by the designer in practice, has a significant effect on the weight of the stmcmre it is 

treated as one of design variables. However, only uniform sizing of the element 

thickness is considered in the proposed method owing to its practical engineering 

applications. 

Q. Q. Liang: Performance-Based Optimization Method for Structural Topology and Shape Design 97 



Chapter 5: Optimal Topology Design for Overall Stiffness Performance 

5.3 ELEMENT REMOVAL CRITERIA BASED ON STRAIN 

ENERGY DENSITY 

Element removal criteria have been derived for element elimination in the PBO method 

for continuum stmcfores with stress and displacement constraints in Chapters 3 and 4. 

To obtain folly stressed topology designs, lowly stressed elements are gradually 

removed from a discritized continuum design domain, fo contrast, elements with the 

lowest virfoal strain energy density are gradually deleted from a design domain in order 

to generate an optimal topology with the least deformations at specific locations at 

minimum weight. However, these element removal criteria cannot be used to optimize 

continuum stmcfores under an overall stiffoess constraint. As a result of this, new 

element removal criteria need to be derived for topology designs when considerfog the 

system performance. As presented in Chapter 4, the criteria for element removal can be 

developed on the basis of the design sensitivity analysis of constraints with respect to 

design variables, fo the PBO method, the design sensitivity analysis is to study the effect 

of element removal on the changes of the mean compliance of a continuum stmcmre. 

Approximate concepts are employed in the design sensitivity analysis (Kirsch 1993). 

The equilibrium equation for a linearly elastic stmcture in the finite element formulation 

can be expressed by 

[K]{u} = {P} (5.3) 

The element removal concept is used fo the proposed topology optimization method. 

When a stmcfore is modified by eliminating the eth element from a contfouum design 

domain modeled by finite elements, the stiffoess matrix and displacement vector of the 

stmcfore will be changed accordingly. Eq. (5.3) can be rewritten as 

([K] + [AK])({u} + {Au}) = {P} (5.4) 
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in which [AK] is the changes of the stiffness matrix and {Aw} is the change of nodal 

displacements vector. It is noted that the loads applied to the stmcture are unchanged. 

Since only the eth element is removed from the stmcfore, the change of the stiffoess 

matrix can be derived as 

[AK] = [K,]-[K] = -[kJ (5.5) 

where [A'̂ Jis the stiffness matrix of the resulting stmcture and [^J is the stiffness 

mafrix of the eth element. The change of displacement vector due to element elimination 

can approximately be obtained from Eqs. (5.3) and (5.4) by neglecting higher order 

terms as 

{Au} = -[K]-'[AK]{u} (5.6) 

The strain energy or mean compliance of a stmcfore can be expressed by 

C = ^{Py{u} (5.7) 

The change of the strain energy of a stmcfore due to the removal of the eth element can 

approximately be determined by 

AC = -{Py{Au} = --{PV[Kr[AK]{u} = -\{uy[AK]{u}=Uuy[K]{u^}{5.S) 
2 2 2 ^ 

in which {uJ is the displacement vector of the eth element. Eq. (5.8) shows that the 

change of the strain energy of a stmcfore due to the removal of the eth element can be 

approximately evaluated by the sfrain energy of the eth element. Therefore, the element 

strain energy can be used as a measure of element confribution to the overall stiffness of 

a stmcfore, and is denoted as 
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Ce=\We)"[UWe} (5-9) 

To achieve the performance objective, it is obvious that a small number of elements 

with the lowest strain energy should be systematically removed from a stmcture. For 

continuum stmcfores modeled with different size fmite elements, the element sfrain 

energy per unit volume (mass), which is defined as the strain energy density of 

elements, should be calculated for element removal. The strain energy density of theeth 

element is calculated by 

^ ^ = 1 ^ (5.10) 

in which v̂  is the volume of the eth element. If the material density and element 

thickness are uniformly distributed in a design domain, either the volume or foe weight 

(wjof an element can be used to calculate the element strain energy density in Eq. 

(5.10). However, if the material density is varied in the continuum design domain, the 

element weight (w j shall be used in Eq. (5.10). 

For stmcfores subject to multiple loading conditions, a logical AND scheme can be used 

in optimization algorithms to take account of the effects of different loading conditions 

on optimal designs, fo the logical AND scheme, an element is elimfoated from the 

design domain only if its sfrafo energy density is foe lowest for all loadmg conditions. 

The element removal criteria can be expressed as follows: 

Loadcasel:Cle{Q'} (5-lla) 

Load case ^: C,] ^iQ") (^-Hb) 

fowhich ; ' , ..., C are the sfrafo energy density of the efo element under load case 1, 

..., ^; {Q'}, ..., {Q'} are the vectors of the lowest strain energy density of elements 
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under load case 1, ...,q; and q is the total number of loading cases. A loop is used to 

count elements with the lowest strain energy density until they made up the specified 

amount that is the element removal ratio times the total number of elements in the initial 

design domain. The element removal ratio ^ ) for each iteration is defmed as the ratio of 

the number of elements to be removed to the total number of elements in the foitial 

design domafo. The element removal ratio is not changed fo the whole optimization 

process. 

5.4 PERFORMANCE-BASED OPTIMALITY CRITERIA 

5.4.1 General 

By gradually eliminating elements with the lowest sfrain energy density from a design 

domain, the distribution of element strain energy density will consequently become 

more and more uniform within the resulting stmcfore. The uniform strain energy density 

has been used as an optimality condition fo continuum topology optimization 

approaches, and can be derived by using Kuhn-Tucker conditions (Ramm et al. 1994). 

However, the uniform condition of element sfrain energy density in a continuum design 

domain may not be achieved even if the overall stiffness constraint is violated. This 

means that a minimum-weight design with acceptable overall stiffness performance is 

not necessarily a design where the distribution of element strain energy density is 

absolutely uniform. Therefore, as stated in the folly sfressed design and design for 

displacement performance, the uniformity of element sfrafo energy density cannot be 

incorporated in continuum topology optimization methods as a termmation condition for 

identifying the optimal topology. Performance-based optimality criteria for plane stress 

and plates in bending problems are developed in this section. 
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5.4.2 PBOC for Plane Stress Problem 

fo design problems with element thickness or cross-sectional design variables, an 

infeasible design in the optimization process can be converted into a feasible one by the 

scaling procedure. Due to its simplicity and efficiency, this scaling procedure has been 

used in conventional Optimality Criteria (OC) methods (Morris 1982; Kfrsch 1993) for 

tmss layout optimization. The scalfog design concept has been utilized to develop 

performance indices in previous chapters for evaluating the performance of stmcforal 

topologies and shapes with stress and displacement constraints. The scaling design 

procedure is also employed to derive a performance index for stmcfores with overall 

stiffness constraint in this section. 

For plane stress continuum stmcfores, the stiffness matrix of a stmcture is a Imear 

fonction of the element thickness. Therefore, for stmcfores with the mean compliance 

constraint, the element thickness can be uniformly scaled to keep the mean compliance 

constraint active in the optimization process. By scaling the initial design with a factor 

of CQ /C*, the scaled weight of the initial design can be expressed by 

K 
fc ^ 
' "̂^ K (5.12) 

0 

in which WQ is foe acfoal weight of the initial design domafo and CQ is the absolute 

value of the strain energy of the initial design under applied loads. Similarly, by scaling 

the current design with respect to the mean compliance limit, the scaled weight of the 

current design at the rth iteration can be determmed by 

W' = 
f C \ -b -W (5.13) 
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where C,. is the absolute value of the strain energy of the current stmcture under applied 

loads at the rth iteration and ^ is the acfoal weight of the current sfrucfore at the rth 

iteration. 

The performance of the resulting topology at the ith iteration can be quantified by the 

performance index, which is proposed as 

PL. = 
W: (CJC')W, C,W, 0 

cs W^ {CJC')W, C.W. 
(5.14) 

To obtain the optimum, the performance-based optimality criterion (PBOC) for plane 

stress structures with overall stiffness constraint can be proposed as 

C W 
maximize PI^ = " ° (5.15) 

C.W 

This PBOC means that the optimal topology of a continuum structure under applied 

loads is found when its associated strain energy and material consumption are a 

minimum. The optimal topology obtained represents an efficient load-canying 

mechanism within the design domain. It can be seen that the format of the performance 

index for plane stress stmcfores with mean compliance constraint is the same as that for 

plane stress stmctures with displacement consfraints. 

It is traditionally believed that the optimization problems of minimizmg the mean 

compliance for a somewhat arbitrarily chosen material volume constraint and 

minimizing the weight of a stmcture for a given mean compliance consfraint result in 

equivalent solutions. However, it can be seen from Eq. (5.14) that this statement holds 

tme only when the chosen material volume is the mfoimum value, which maximizes the 

performance index in Eq. (5.14). fo practice, the minimum material usage is difficuh to 

be determined a priori by the design engineer. Therefore, the applications of stt̂ icforal 
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optimization methods formulated with an objective of minimizing the mean compliance 

for a somewhat arbitrarily chosen material volume are limited. 

h can be observed from Eq. (5.14) that the optimal topology does not depend on the 

mean compliance limit, which is usually set to a large value in an optimization process. 

Since the performance index is a dimensionless number, the uniform scalmg of element 

thickness does not affect its values, fo other words, the element thickness of an initial 

design domain can be assumed and needs not to be changed in the finite element 

analysis and optimization process. The performance index can be employed fo 

optimization algorithms to monitor the optimization history so that the optimum can be 

identified. After obtaining the optimum, the actual mean compliance constraint can be 

satisfied by changing the element thickness. The mean compliance constraint can be 

interpreted as displacement constraints. Maximum displacements that are the most 

critical can be checked after obtaining the optimal topology. 

For a stmcture subjected to multiple loading cases, the performance index of the 

stmcfore at each iteration can be calculated by using the strain energy of the stmcfore 

under the most critical loading case in the optimization process. 

5.4.3 PBOC for Plate Bending Problem 

The performance index and performance-based optimality criterion for topology and 

shape optimization of bending plates subject to displacement constraints have been 

deduced by using foe scalmg procedure in Chapter 4. When the thickness of a bending 

plate is uniformly scaled, the displacement vector of the scaled plate as given by Eq. 

(4.22) is represented by 

{u'} = \{u} (5.16) 
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h can be seen from Eq. (5.7) that the mean compliance of a bending plate is proportional 

to the displacement vector. When the thickness of a bending plate is reduced by a 

factorcp, the mean compliance will increase with a factor of l/tp^. fo order to satisfy the 

mean compliance constraint, the plate needs to be scaled by 

9 
, ^ V / 3 

C'J 
(5.17) 

By using the scaling procedure, the performance index of a bendfog plate at the rth 

iteration can be derived as follows 

Ph,= 
J/3 

w. (5.18) 

h can be seen from Eq. (5.18) that the performance index formula is composed of the 

stmcforal response (the mean compliance) and the weight of the stmcture. fo other 

words, the performance index is a measure of stmcforal responses and the reduction in 

the weight of the plate in the optimization process, and thus quantifies the performance 

of a bending plate. To obtain the optimum, the performance-based optimality criterion 

for plates in bending with an overall stiffness constraint can be proposed as 

maximize Pl,.„ = 
^C ^ 

1/3 

v^.y 

W^ 

W. 
(5.19) 

For a bending plate under multiple load cases, the sfrafo energy of the plate under the 

most critical load case should be used in the calculation of the performance mdex. 
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5.5 PERFORMANCE OPTIMIZATION PROCEDURE 

The performance-based optimization method proposed herein utilizes the finite element 

method as the modeling and analytical tool. Based on the information obtained from the 

results of the finite element analysis (FEA), undemtilized elements can be identified. 

The performance of a stmcforal topology can then be improved by gradually eliminating 

these undemtilized elements from the stmcfore. The process of FEA and performance 

improvement is repeated until the termfoation criterion is satisfied. The main steps of 

the performance-based optimization procedure are illustrated in the flowchart given in 

Fig. 5.1. The optimization procedure is also explained as follows: 

(1) Model the initial design domain with fine finite elements. Applied loads, material 

properties and support conditions are specified. Non-design regions that are not 

removed in the optimization process are defined by specifyfog the number of their 

material properties to a different number from that of design regions. 

(2) Perform a linear elastic finite element analysis on the stmcfore. 

(3) Evaluate the performance of resulting topology using Eq. (5.14) for plane sfress 

stmcfores and Eq. (5.18) for plates in bending. 

(4) Calculate the sfrain energy density of elements (C,i) under each loading case. 

(5) Remove R (%) elements wifo the lowest sfrain energy density (C,^) from the 

design domain. 

(6) Check continuity of the resulting stmcfore. The continuity constraint affects 

resulting topologies in the optimization process. Implementing the continuity 

scheme in optimization algorithms will prevent the discontinuity of the design 

domain from occurring. It is assumed that two elements are connected together if 
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Start 

Model foitial Design Domain 

Perform FE Analysis 

Evaluate Performance of 
Resuhing Design Using/'/ 

Yes 

Calculate Element Sfrain 
Energy Density: C^l 

Remove R (%) Elements 
with the Lowest C,l 

Check Design Continuity 

Check Design Symmetry 

Save Current Stmcture 

I 
Plot PI History and Select 

Optimal Topology 

End 

Fig. 5.1 Flowchart of performance optimization procedure for topology design with 
overall stiffoess consfraint 
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they have at least one common edge. Any element that is not connected with other 
elements is considered as a singular element, and is removed from the model. 

(7) Check the symmetry of the resulting stmcfore in the optimization process. The 

symmetrical conditions of the initial design domain are specified before 

performing the analysis and optimization. Numerical errors may occur in the 

calculation of strain energy density for elements, in which approximate concepts 

are adopted. This may result in an unsymmetrical stmcture even if the initial 

stmcfore has a symmetrical geometry, loading and support condition. A scheme 

for checking the symmetry of resulting stmcfores is incorporated in the 

optimization algorithm. Extra elements are removed from the stmcfore to maintain 

the symmetry of resulting stmcfores under an initially symmetrical condition. 

(8) Save current stmcfore. The data for stmcfores generated in the optimization 

process is saved to files so that the optimization history can be kept frack. 

(9) Repeat step (2) to (8) until the performance index is kept constant in later 

iterations or less than unity. 

(10) Plot the performance index history and select the optimum. The optimal topology 

that corresponds to the maximum performance index can be identified from the 

plot of the performance index history. 

5.6 EXAMPLES 

Benchmark examples are provided in this section to demonstrate the effectiveness and 

validity of the PBO method proposed for optimal topology design of continuum 

stmcfores with overall stiffness constraint. Firstly, the PBO method is verified by the 

well-known analj^ical solution of the Michell type stmcfore. fo Section 5.6.2, the PBO 

technique is used to find the best layout of a bridge stmcfore. Topology optimization of 

a stmcture under multiple load cases is treated in Section 5.6.3. The characteristics of 
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foe performance mdex for plates fo bendfog are investigated fo Section 5.6.4. Finally, 

the effects of mesh discritization on optimal designs are investigated in Section 5.6.5. 

5.6.1 Verification of the PBO Method 

The Michell tmss shown fo Fig. 5.2 is known as an optimal sofotion, which was 

obtafoed by using foe analytical mefood (Michell 1904). This example is to show foat 

whefoer the PBO method proposed for topology design problems considering the system 

performance criteria can reproduce foe Michell tmss. A continuum stmcfore shown m 

Fig. 5.3 is used as the initial stmcfore for deriving the Michell tmss (Bendsoe, Diaz and 

Kikuchi 1993). The initial stmcfore is discritized into 110 x 80 four-node finite 

elements. The circular non-design domain constmcted approximately on the basis of 

rectangular elements is freated as the fixed support in which no deformations are 

allowed. A tip load is applied to the centre of the free end as illustrated in Fig. 5.3. The 

Young's modufos of material E = 200 GPa, Poisson's ratio v= 0.3, and thickness of 

elements / = 5 mm are assumed in the analysis. The element removal ratio/? = 2% is 

employed in the optimization process. 

Fig. 5.2 Michell truss 
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Fig. 5. 3 Design domain of the Michell type stmcture 

The performance index history of the Michell type stmcture is presented in Fig. 5.4. It is 

seen that the performance of resulting topologies in the optimization process is 

gradually improved by the elimination of elements with the lowest sfrain energy density 

from the design domain. The maximum performance index is 1.33, which occurs at 

iteration 14. The optimal topology corresponding to the maximum performance index is 

shown in Fig. 5.5 based on the performance-based optimality criteria. It is observed that 

the optimal topology obtafoed is a continuum rather than a tmss-like Michell stmcture. 

h is noted foat continuum topology optimization may or may not result fo tmss-like 

stmctures, and is a more general approach than the tmss topology optimization method. 

fo order to generate a tmss-like stmcture, the optimization process is contmued. The 

resulting topologies at iterations 17, 20, 23 and 25 are shown in Figs. 5.6 to 5.9. h can 

be seen from these figures that when more and more elements are removed from the 

design domain, the resulting topology is gradually evolved towards a tmss-like stmcfore. 
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Fig. 5.4 Performance index history of the Michell type stmcfore 

If the resulting sfrucfore is to be designed as a tmss, the topology shown in Fig. 5.8 

agrees exfremely well with the Michell tmss given fo Fig. 5.2 and solutions produced by 

the homogenization-based optimization method (Suzuki and Kikuchi 1991; Bendsoe, 

Diaz and Kikuchi 1993). 
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Fig. 5.5 Optimal topology at iteration 14, PI =1.23 

Fig. 5.6 Topology at iteration 17, PI^,= 1.22 
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Fig. 5.7 Topology at iteration 20, Pf, =1.21 

Fig. 5.8 Topology at iteration 23,Pf,-\A9 
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Fig. 5.9 Topology at iteration 25, P/„ =1.14 

It is observed from Fig. 5.4 that the performance of resulting topology at iterations from 

14 to 23 decreases only slightly. This means that the material volume that is needed to 

constmct these stmcfores is almost the same while maintainfog their overall stiffness 

performance within the same acceptable level, fo other words, the stmcfore can be 

designed by selecting one of these topologies shown in Figs. 5.5 to 5.8. After iteration 

23, the interior of the topology obtained is broken up as shown in Fig. 5.9. As a result of 

this, the performance of the resulting topologies decreases considerably as indicated by 

the performance index history. Continuum topology optimization is acfoally the 

selection of the best configurations for the design of contfouum stmcfores. The 

performance index is an extremely usefol tool for assisting the selection of the best 

topology fo stmcforal design when considering the stmctural performance, aesthetic and 

constmction constraints. The importance of the system performance should be ranked 

the first since it relates to the safety of the design. 
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5.6.2 Layout Design of Bridge Structures 

fo this example, the PBO method is used to produce the best layout of a bridge stmcfore 

under uniformly distributed traffic loadfog at the concepfoal design stage. The design 

domain and support conditions of a bridge stmcfore are illustrated in Fig. 5.10, where 

the bottom supports are fixed. The continuum design domain is discretized into 90 x 30 

four-node finite elements. The two rows of elements below the loadfog level are freated 

as the non-design domain, which represents the bridge deck. The uniformly distributed 

loading is modeled by applying a 500 kN pofot load per node. The Young's modulus of 

material E = 200 GPa, Poisson's ratio v = 0.3 and the thickness of elements t = 300 mm 

are used in the analysis. The/? = 1% is adopted fo the optimization process. 

l l l l l l l l l l l l l l U l l l l U l l l l l l l l l l l I 

-o \ 

o 
CO 

180 m 

Fig. 5.10 Design domain of a bridge stmcture 

Fig. 5.11 shows the performance index history of the bridge stmcfore optimized by the 

PBO method. When undemtilized elements are eliminated from the design domam, the 

strain energy of the bridge increases. The increase of strafo energy and the reduction fo 

the weight of the bridge are characterized by the performance index. The maximum 

performance index is 1.40, which corresponds to the iteration 56 as shown in Fig. 5.11. 

After iteration 64, the performance index drops sharply and this indicates that the load-

carrying mechanism is desfroyed by forther element elimination. Therefore, the 

topologies obtained after iteration 64 are not recommended as the final design proposal. 
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Fig. 5.11 Performance index history of the bridge stmcfore 

The topology optimization history of the bridge stmcmre is presented in Fig. 5.12. It is 

observed that the part below the bridge deck is systematically removed sfoce they have 

no contributions to the stmcforal efficiency. The optimal topology obtained is shown in 

Fig. 5.12(c). This optimum design indicates a well-known tie-arch bridge stmcforal 

system that has commonly been used in bridge engineering, fo the design of bridge 

stmcfores, the designer usually needs to consider various important aspects, such as 

stmctural performance, economy, aesthetic and constmctability. To select a bridge 

layout that is not only beautifol but also has a high stmctural performance, the 

performance index plays an important role. It is seen from Fig. 5.12 that the 

performance of the topology obtained at iteration 64 is almost the same as that of the 

optimum. However, foe layout shown in Fig. 5.12 (d) is more beautifol than the 

optimum. Therefore, it is suggested that the topology shown in Fig. 5.12 (d) shall be 

used as the final design proposal for the bridge layout. The arch can be constmcted by 

using either concrete or steel tmsses, which were the constmction form used in the 

Sydney Harbor Bridge. 
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Fig. 5.12 Layout optimization of a tie-arch bridge stmcture 
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5.6.3 Multiple Loading Conditions 

This example is to investigate the effect of multiple loading conditions on the optimal 

topology. For multiple loading cases, the performance fodex at each iteration is 

determined by the sfrain energy of the resulting stmcfore under the most critical loadfog 

case, as discussed in Section 5.4.2. To verify this statement, a simply supported 

stmcfore under three loading cases is considered herein as shown in Fig. 5.13. The 

concentrated load P, = P̂  ^ -̂ 3 ^ 100 kN is applied to the stmcfore at a different time. 

Since in loading case 2 the load P^ results in the maximum deflection, it is the most 

critical loading case. The design domain is modeled using 80 x 32 four-node plane 

stress elements. The Young's modulus£• = 200 GPa, Poison's ratio v = 0.3 and element 

thickness ^ = 10 mm are used in the analysis. The element removal ratio/? = 2% is 

employed in the optimization process. 
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Fig. 5.13 Design domain of the stmcture under multiple loading conditions 
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fo order to compare foe performance of resuhing topologies under different loadmg 

cases, the performance indices for loading cases 1 and 2 are computed usfog Eq. (5.14). 

h is noted that the loading conditions 1 and 3 are symmetrical about foe vertical axis of 

the stmcfore. The calculated performance indices are shown in Fig. 5.14. ft is observed 

that at the same iteration in the optimization process, the performance index of the 

resulting topology under loading case 2 is lower than that under loading case 1 or 3. 

This is because the absolute value of the strain energy of the resulting stmcfore under 

loading case 2 is higher than that of the same stmcfore under loading case 1 or 3. If the 

maximum deflection of the stmcfore under three loading cases must be within an 

acceptable limit, the weight of the final design will be determined by the loading case 2. 
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Fig. 5.14 Performance index history of the stmcfore under multiple load cases 

The topologies obtained at iterations 10, 20 and 26 are shown in Fig. 5.15. The optimal 

topology presented in Fig. 5.15(b) indicates a symmetrical contifoum stmcfore with 

holes insered. It is seen that the loads are fransmitted from the bottom part of the 
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stmcfore to the arch, and then form the arch to the supports. However, the members that 

trasnmits the loads are intersected under multiple loading cases as shown fo Fig. 5.15(b). 

Since undemtilized elements for three loading cases were systematically removed from 

the design domain, the optimal topology obtained is the best possible design in the sense 

of the load combination. 

To maximize the utilitation of material for the design of the optimal topology shown in 

Fig. 5.15(b), it has to be desinged as a continuum stmcfore. However, a continuum 

stmcfore with many holes inserted usually complicates the constmction process and 

consequently increases the constmction cost, fo civil engineering, such stmctures are 

usually designed as tmsses, which are easily constmcted using standard members. The 

performance index of the stmcfore shown in Fig. 5.15(c) under loadmg case 2 is 1.01 

while it is 1.24 under loading case 1 or 3. Although its performance is not much better 

than that of the initial design domain, the topology shown in Fig. 5.15(c) clearly 

indicates a stable tmss stmcfore in which its members are connected together by 

following the principle of triangle. If this stmcfore is to be designed as a tmss, its 

interpretation is illustrated in Fig. 5.16. This tmss can be constmcted by using standard 

steel sections. 
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(a) Topology at iteration 10, PI, =1.11 

(b) Optimum at iteration 20, PI^, =1.18 

(c) Topology at iteration 26, P /„ =1.01 

Fig. 5.15 Topology optimization history of the stt^icttire under multiple loading cases 
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Fig. 5.16 Tmss interpretation 

5.6.4 Plate in Bending 

For a stmcfore under a single point load, both of the PBO methods for stmcmres with 

displacement constraints and overall stiffoess constraint are equally efficient and shall 

produce a same solution for the same design problem. This example is to investigate 

whether the PBO methods with different formulations can produce the same optimal 

topology for a bending plate. The clamped plate under a concentrated load applied at its 

cenfre presented in Section 4.7.2 is optimized using the PBO method for overall 

stiffness performance. The design and optimization parameters given in Section 4.7.2 

are adopted, except that the overall stiffoess consfraint in stead of a displacement 

consfrafot is considered herein. 

Fig. 5.17 shows the history of the performance index calculated using Eq. (5.18). The 

performance index curve shown fo Fig. 5.17 is similar to that presented in Fig. 4.15. 

This is because for a stmcfore under a single point load, the performance index 

calculated using Eq. (4.24) based on the displacement under the pofot load is the same 

as that calculated using Eq. (5.18) based on the mean compliance of the stmcfore. The 

maximum performance index by the PBO method for stmcfores with displacement 
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constraints is 2.09 wfolst it is 2.13 by the PBO mefood for stmcfores wifo overall 

stiffness constraint, h is shown that the PBO method based on the overall stiffiiess 

performance criteria provides higher performance topologies than foat based on 

displacement performance criteria. 

20 40 

Iteration 

60 80 

Fig. 5.17 Performance index history of clamed plate in bending 

The topology optimization history of the plate in bending is presented fo Fig. 5.18. The 

topology obtained at iteration 10 as shown in Fig. 5.18(a) is identical to that presented fo 

Fig. 4.16(a). The slight differences between topologies obtafoed by the two PBO 

methods are observed at iteration 20, 40 and the optimum. These differences may be 

caused by the element removal criteria adopted fo the optimization algorithms sfoce the 

virfoal sfrain energy density and sfrain energy density are approximately calculated for 

element elimination in both methods. 
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(a) Topology at iteration lO,Pl^^l.n (b) Topology at iteration 20, PI =1.24 
cp 

(c) Topology at iteration 40, PI^^ = 1.59 (d) Optimal at iteration 59, Pl^^ =2.13 

Fig. 5.18 Topology optimization history of bending plate under overall stiffness 
constraint 
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5.6.5 Effects of Finite Element Meshes 

This example is to investigate the effects of finite element meshes on the optimal 

topologies of continuum stmcfores optimized by the performance-based optimization 

method while other conditions are fixed. The Michell type stmcfore with a simply 

supported condition is used as the test example. 

Fig. 5.19 shows the design domain for the simply supported Michell type stmcture 

under a concentrated load of P = 100 kN. The design domain is divided into three 

different meshes, such as 70 x 35, 100 x 50 and 120 x 60, using four-node plane sfress 

elements. The Young's modulus E = 200 GPa, Poison's ratio v = 0.3 and the thickness 

of all elements / = 10 mm are specified. Plane stress conditions are assumed in the fmite 

element modeling. To eliminate the effects of the element removal ratio on the 

solutions, the element removal ratio R = 1% is used for all cases. The stmcmre is 

analyzed and optimized by using the PBO method for tfoee different finhe element 

discretizations. 

Fig. 5.19 Design domain of Michell type stmcttu-e 
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Fig. 5.20 shows the performance index histories for the Michell type stmcture foat is 

modeled using three different meshes. It is observed from Fig. 5.20 foat the 

discrepancies of the performance index value between different mesh focrease with foe 

increases in the iteration numbers. The finer the mesh used to model the stmcture, the 

higher the performance of the optimal topology obtafoed. The maximum performance 

indices of optimized stmcfores for meshes 70 x 35, 100 x 50 and 120 x 60 are 1.53, 

1.60 and 1.67. It is seen that performance fodices reach the peak values at different 

iterations for the stmcfore optimized usfog different meshes for the same element 

removal ratio. After reachfog the peak, performance indices decrease and finally drop 

very sharply. It is also observed that more iteration is usually needed for a stmcfore 

modeled using a finer mesh to obtain the optimum. 
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Fig. 5.20 Effects of fmite element meshes on performance fodices 

Optimal topologies obtained using three different finite element meshes are presented in 

Figs. 5.21 to 5.23. The optimal topology generated usfog 70 x 35 fmite elements 

indicates a tmss-like stmcfore as shown in Fig. 5.21. By inspection, it is seen foat the in-

plane member size of the tt^ss is approximately proportional to the axial force carried 
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by that member, fo other words, the distribution of element strain energy density wifoin 

the optimal topology is approximately uniform sfoce elements with the lowest sfrafo 

energy density are systematically eliminated from the design domafo. Fig. 5.22 shows 

the optimal topology obtained by using a 100 x 50 mesh. It is observed from Figs. 5.21 

and 5.22 that the topologies of these two optimal designs are almost identical. However, 

the optimal design with a finer mesh discretization exhibits a tmss-like stmcfore in 

which the in-plane member size is smaller than that with a coarse one. 

The optimal solution obtained by Michell (1904) using the analytical method mdicates a 

pin-jointed tmss with finite members. The strain field in the Michell tmss was assumed 

to be linearlized. The compression and tension members are subjected to the same 

allowable stress. It should be noted that the Michell tmss is theoretical optima, which is 

not necessarily a practical design. It has been shown that a more accurate solution can be 

achieved by using a finer mesh in the finite element analysis. To see whether the optimal 

design can approach the Michell tmss, a 120 x 60 mesh is used to divide the design 

domain. The optimal topology obtained using 120 x 60 elements is presented in Fig. 

5.23. It is seen that a more Michell tmss-like stmcture is obtained by usfog the fmer 

elements in continuum topology optimization. If elements are refined infinitely, the 

optimal stmcfore will be towards the Michell tmss. 

This investigation shows that the optimal stmcfore converges to the theoretical optimum 

as sufficiently fine elements are used. Even coarse mesh can produce a rough idea of 

the optimal sttoicfore. At the concepfoal design stage, if the PBO method is used to find 

the primary layout of an optimal stmcfore, a coarse mesh can be used to solve the 

optimization problem. After obtainfog the optimal topology, shape optimization 

techniques can be employed to fiirther improve its performance. 
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Fig. 5.21 Optimal topology obtained using a 70 x 35 mesh, Pl^, = 1.53 
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Fig. 5.22 Optimal topology obtained using a 100 x 50 mesh, Pl„ = 1.60 
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Fig. 5.23 Optimal topology obtafoed using a 120 x60 mesh, P/„ = 1.67 

5.7 CONCLUDING REMARKS 

A Performance-Based Optimization (PBO) method formulated on the basis of system 

performance criteria for optimal topology design of continuum stmcmres has been 

developed fo this chapter, fo the proposed approach, element removal criteria are based 

on the strain energy density of elements. By gradually deleting elements with the lowest 

sfrain energy density from a continuum design domafo, the optimal topology of the 

stmcfore with maximum stiffoess at minimum weight can be generated. Two stiffoess 

performance indices have been derived usfog the scalfog design concept for evaluatfog 

the topology performance of plane sfress stmctures and of plates fo bending. 

Performance indices are used in optimization algorithms as the termmation criteria fo 

the PBO method. Maximization of performance indices is proposed as performance-

based optimality criteria. Benchmark examples have been provided to demonstrate the 

effectiveness and validity of the PBO method for topology design for stiffness. 

Based on the sfody presented in this chapter, the following conclusions are drawn. 
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(1) The PBO method is a realistic stmcforal optimization approach, in which the 

performance objective is to minimize the weight of a stmcture while mamtamfog 

its mean compliance within an acceptable performance level. 

(2) The sensitivity analysis shows that the element sfrain energy density is a measure 

of the element contribution to the overall stiffoess performance of a stmcture, and 

thus can be used as element removal criteria fo continuum topology optimization. 

The maximum stiffness topology design at minimum weight can be obtained by 

removing elements with the lowest strain energy density from a stmcfore. 

(3) The proposed performance indices are dimensionless and can be used to evaluate 

the performance of stmcforal topologies in terms of the mass and overall stiffness 

efficiency. 

(4) Stiffoess performance indices are extremely usefol tools in continuum topology 

optimization approaches. They can be used to monitor the optimization process 

and as termination criteria. 

(5) Performance-based optimality criteria can be incorporated in any stiffoess-based 

continuum topology optimization methods to obtain the global optimum. For 

example, they can be incorporated in the homogenization-based optimization 

method (Bendsoe and Kikuchi 1988; Bendsoe 1995), and the density fimction 

approach (Yang and Chuang 1994). 

(6) Continuum topology optimization is a generalized shape optimization approach, h 

has been shown that continuum topology optimization methods may or may not 

result in tmss-like stmcfores, they are in this sense more general than the tmss 

topology optimization based on the ground sttiicture approach. 

(7) The optimal topology produced by continuum topology optunization methods is 

not necessarily the one that meets the consttaiction requfrements. As a result of 
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this, performance indices can be used to assist the selection of the best design in 

terms of the stmcforal performance, aesthetics and constmctability. 

(8) For a stmcfore under multiple loading conditions, a logical AND scheme is 

employed in the optimization method to take account of the effects of multiple 

load cases on the optimal design. The performance index at each iteration is 

determined by using the strain energy of the resultfog stmcture under the most 

critical loading case. 

(9) It has been shown that the finer the mesh used to model a stmcfore, the higher the 

performance of the optimal topology obtained. 

(10) More iteration is usually needed for a stmcfore modeled using a finer mesh to 

obtain the optimum. 

Chapters 3, 4 and 5 concem with the theoretical development and verification of the 

Performance-Based Optimization (PBO) method for layout design of continuum 

stmcfores for strength, displacement and overall stiffness performance. Examples 

presented in these chapters are mainly used to verify the proposed methods from 

theoretical aspects rather than practical application. However, in order to develop 

continuum topology optimization methods into practical design tools for practicfog 

design engineers, the PBO method for stmcfores with displacement and overall stiffoess 

consfraints are extended to solve real world civil engfoeering problems in Chapters 6 

and 7. fo Chapter 6, the PBO method is proposed as an automated design tool for 

generating optimal stmt-and-tie models in stmcforal concrete, fo Chapter 7, the PBO 

method formulated on the basis of system performance criteria is developed for 

concepfoal layout design of bracing systems for multistory steel buildfog frameworks. 
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Chapter 6 

OPTIMIZATION OF STRUT-AND-TIE MODELS 

IN STRUCTURAL CONCRETE 

6.1 INTRODUCTION 

6.1.1 General 

The tmss model is considered as the basic tool in the design and detailfog of reinforced 

concrete beams under shear and torsion. However, standard tmss models can only be 

used to design regions of a concrete sfoicfore where the Bernoulli hypothesis of plane 

strain distribution is assumed valid. At regions where the sfrain distribution is 

significantly nonlinear such as point loads, corbels, deep beams, beam-column 

connections, and openings, the tmss model theory is not applicable. The strut-and-tie 

model which is a generalization of the truss analogy method for beams, is therefore 

used to design the disturbed regions of structural concrete, which includes reinforced 

and prestressed concrete structures. The stmt-and-tie model approach is justified by foe 

fact that loads applied to a stmcforal concrete member are transmitted through a set of 

compressive sfress fields that are disfributed and foterconnected by tensile ties. The flow 

of compressive sfresses is idealized using compression members called stmts, and the 

tension is carried by tension ties. Tensile ties can be reinforcfog bars or prestressed 

tendons or concrete tensile sfress fields. 
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The stmt-and-tie model developed is employed to fovestigate the equilibrium between 

the loads, the reactions and the intemal forces fo the concrete stmts and in foe 

reinforcement (Marti 1985). The acfoal load carried by the sttiit-and-tie model is freated 

as a lower bound uhimate load for the stmcforal concrete member based on the lower 

bound theorem of plasticity. This simple approach provides a clear understandfog of the 

behavior of stmctural concrete. The designer can easily idealize the flow of forces in a 

stmcforal concrete member by stmt-and-tie modeling. Moreover, the influence of shear 

and moment are accounted for simultaneously and dfrectly in one model. Furthermore, it 

offers a unified, mtelligible, rational and safe design framework for stmcforal concrete 

under combined load effects (ASCE-ACI Committee 445 on Shear and Torsion 1998). 

6.1.2 Historical Development of Strut-and-Tie Model Approach 

The tmss model was originally developed by Ritter (1899) for the analysis and design of 

reinforced concrete beams under shear in 1899. Ritter found that a reinforced concrete 

beam after cracking due to diagonal tension stresses can be idealized as a parallel chord 

tmss with compressive diagonals inclined at 45° with respect to the longifodinal axis of 

the beam. Later, Morsch (1920, 1922) extended tmss models to the design of reinforced 

concrete members under torsion. The tmss analogy method was refined and expanded 

by Kupfer (1964), and Leonhardt (1965). The tmss model with diagonals having a 

variable angle of inclination was considered as a viable model for design of reinforced 

and prestressed concrete beams under shear and torsion (Kupfer 1964; Lampert and 

Thuriimann 1971; Thurlimann et al. 1983). Collins and Mitchell (1980) proposed the 

tmss model approach considering deformations for the design of reinforced and 

prestressed concrete. 

Marti (1985) developed the sttiit-and-tie model approach which considers the consistent 

equilibrium and ultimate sfrength for reinforced concrete beams. The determmation of 

the ultimate sfrength of a stmt-and-tie model is based on the lower-boimd plastic theory. 

Struts, ties, nodes, fans and arches were proposed as basis tools for the design and 
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detailing of reinforced concrete beams. Schlaich et al. (1987, 1991) extended the tmss 

model theory for beams to a consistent stmt-and-tie model approach for the design and 

detailing of sfrucforal concrete that includes reinforced and presfressed concrete 

stmcfores. This consistent design approach allows any part of a concrete stmcture to be 

designed using stmt-and-tie systems. The concept of B- and D-regions was infroduced 

by Schlaich et al. The distribution of strams in B-regions (where B stands for beam or 

Bernoulli) is linear whereas the distribution of strains in D-regions (where D stands for 

discontinuity or disforbance) is nonlinear. More often, a concrete stmcfore can be 

divided into B and D regions. The B-regions are designed on the basis of standard tmss 

models. However, specific stmt-and-tie models have to be developed for D-regions 

where standard tmss models are not applicable. 

The modified tmss model approach with variable angle of inclination diagonals and a 

concrete contribution has been proposed for design of reinforced and presfressed 

concrete beams by Ramirez and Breen (1991). Ramirez (1994) gave some guidelines 

for the stmt-and-tie design of pretensioned concrete members. Experimental and 

analytical sfody on the use of stmt-and-tie models for the design of post-tensioned 

anchorage zones has been conducted by Sanders and Breen (1997). The stmt-and-tie 

model approach and related theories for the design of stmctural concrete were 

summarized in the state-of-the-art report by the ASCE-ACI Committee 445 on Shear 

and Torsion (1998). Modem concrete model codes and standards rely on the sfrut-and-

tie model approach as the basis for the design and detailfog of reinforced and prestressed 

concrete sfructtnes (CEB 1978; AS 3600 1994). 

6.1.3 Conventional Methods for Developing Strut-and-Tie Models 

The elastic sfress distribution and load path methods can be used to develop stmt-and-tie 

models in stmcttnal concrete, as suggested by Schlaich et al. (1987). fo foe elastic sfress 

disfrfoution approach, the stt^it-and-tie model is constmcted by orientating sttiits and ties 

to the mean dfrection of principal stress trajectories, which are obtained by performfog a 
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Imear elastic finite element analysis on an uncracked homogenization concrete member. 

However, due to the uncracked assumption of concrete fo the elastic finite element 

analysis, the stmt-and-tie model obtafoed by this approach may differ from the acfoal 

load transfer mechanism at ultimate limit states, as shown by Schlaich and Schafer 

(1991). h is often required to adjust the stmt-and-tie model obtafoed on the basis of the 

elastic stress analysis in order to represent the real behavior of cracked stmctural 

concrete, fo the load path method, it is firstly required to determme all loads and 

reactions actfog on the D region for the outer equilibrium. The load paths are then traced 

by following the centre of gravity of the corresponding stress diagrams. The principle to 

be followed is that loads transmit tfoough the shortest paths in nafore. After plotting all 

load paths in the direction of applied loads, forther struts and ties must be added for 

transverse equilibrium acting between nodes. However, it is difficult to find the correct 

models in members with complex loadfog and geometry conditions usfog these 

conventional methods, which usually fovolve a trial-and-error process. It is also a 

difficult design task for the designer to select correct stmt-an-tie models from many 

possible equilibrium configurations for complex design sifoations by using fraditional 

drawing board methods. 

Because of the limitations of conventional methods for developing stmt-and-tie models, 

Marti (1985) called for the development of computer-based design aids for stmt-and-tie 

modeling of sttnictural concrete. Attempts to develop computer programs with graphical 

input and output routines for stmt-and-tie modeling have been made by several 

researchers. Kumar (1978) applied the tmss topology optimization theory to finding the 

load fransfer mechanism in reinforced concrete deep beams. A continuum concrete 

stmcture with specified geometry and loadfog conditions was modeled by usfog a highly 

indeterminate tmss (ground stmcfore). The best tmss used as a basis for the design of 

remforced concrete beams is the one with the maximum stiffness, fo other words, the 

minimum sfrain energy principle was used as the optimal design criterion for tmsses. 

The linear programming technique was employed to solve the tmss topology 

optimization problem. Kumar's sfody provides important fosight into the practical 

application of tmss optimization theory to the specific field of sttaicforal concrete. The 
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tmss topology optimization technique has also been used by Biondini et al. (1998) to 

find optimal stmt-and-tie models in stmctural concrete members based on the ground 

stmcfore approach. These methods offer an automatic search for stmt-and-tie models fo 

reinforced concrete members in an iterative process. However, sfoce the ground 

stmcfore grid has a significant effect on the optimal topology of the stmcture (Dom et 

al. 1964), the chosen ground stmcfore may not adequately simulate the nature of a 

continuum concrete stmcfore. fo other words, the load paths are restricted to the chosen 

ground stmcfore grid. 

Computer graphics have been used as a design aid for the stmt-and-tie modeling of 

stmcforal concrete by Alshegeir and Ramirez (1992), and by Mish (1994). fo these 

computer graphical methods, finite element analysis packages are used in the 

constmction of a stmt-and-tie model. After a continuum finite-element model of the 

stmcforal concrete member is created and analyzed, the load paths fo the stmcfore may 

be visualized by locating the maximum principal stresses and the direction of these 

principal stresses. The equivalent force resultant in the member is obtained by the 

summation of stresses. These computer graphical methods are usefol design aids for 

developing stmt-and-tie models in stmcforal concrete. It might be necessary to 

incorporate stiffness-based optimization procedures into computer graphical methods to 

develop stmt-and-tie models for complex design sifoations. 

More recently, Yun (2000) has presented a so-called nonlinear stmt-and-tie model 

approach for stmcforal concrete, fo this approach, the principal stresses and then 

trajectories are firstly evaluated by performing a nonlfoear fmite element analysis on the 

plain concrete member. The stmt-and-tie model is then sketched by the designer 

according to the principal sfress frajectories. A linear analysis on the stmt-and-tie model 

obtained is then carried out fo order to determme the cross-sectional areas of stmts and 

ties. If the stmt-and-tie model does not satisfy the geometric compatibility condition, a 

new stmt-and-tie model must be selected, and the above process is repeated until the 

condition is satisfied. At this stage, the stmt-and-tie model obtained is analyzed 

nonlinearly to verify the bearing capacities of nodal zones. The limitations of this 
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approach are that the success of this approach depends on the designer's ability to sketch 

an appropriate model for members with complex loadmg and geometry conditions. 

Although the nonlfoear analysis is used for developing stmt-and-tie models in this 

approach, it does not have much meaning to the real behavior of remforced concrete 

stmcfores. This is because the nonlfoear analysis is performed on a plain concrete 

member rather than a reinforced concrete member. 

6.1.4 Research Significance 

The shear design of stmcforal concrete members is a complex problem that has not been 

solved folly although extensive work has been carried out on shear in stmctural 

concrete. Empirical equations adopted in current concrete model codes lead to complex 

design procedures for shear and generally yield shear strength predictions, which deviate 

considerably from experimental results. The load transfer mechanism of a structural 

concrete member is not the function of a single variable and it depends on the geometry, 

loading and support conditions of the member. Design procedures based on test results, 

rules of thumb, guess work and past experience have been one of the main reasons for 

poor structural performance and even failure of concrete structures. Experiments 

should be used to verify a theory but not to derive it. A consistent theory associated with 

reliable design approaches will significantly improve the performance of concrete 

stmcfores. 

It has been recognized that the simple stmt-and-tie model theory provides a better 

understanding of the behavior of stractural concrete under bending, shear and torsion. 

The strut-and-tie model is primarily used to represent the actual load transfer 

mechanism in a structural concrete member under the ultimate loading condition. As 

discussed previously, however, conventional methods are not efficient in developing 

stmt-and-tie models of stmcforal concrete sfoce they involve a trial-and-error process, 

which largely depends on the designer's infoition and previous experience. It is time 

consuming and difficult for the designer to find correct stmt-and-tie models for 
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members with complex loading and geometry conditions by using trial-and-error 

methods. Therefore, the development of an efficient and reliable technique for stmt-and-

tie modelfog of stmcforal concrete will be of significant practical importance. 

Continuum topology and shape optimization has received considerable development fo 

the past two decades. Several textbooks have been published (Bendsoe 1995; Seireg and 

Rodriguez 1997; Xie and Steven 1997; Mattheck 1998; Hassani and Hfoton 1999). 

However, these continuum topology optimization methods focus mainly on 

mathematical aspects rather than engineering applications. Examples used to test these 

methods are very simple, and far from practical relevance. Moreover, no performance-

based optimality criteria are used in these methods to obtam the global optimum. The 

gap between the progress of continuum topology optimization theory and its application 

to practice of civil engineering does not appear to have been reduced during the last 

two decades, as addressed by Cohn and Dinovitzer (1994). The work presented fo this 

chapter plays a significant role in reducing the gap between the theoretical development 

of continuum topology optimization and its practical applications to civil engineering. It 

is also a significant contribution to the field of stmcforal concrete. 

6.1.5 Scope and Objective 

fo this chapter, the Performance-Based Optimization (PBO) method formulated on the 

basis of displacement and overall stiffoess performance criteria is extended and 

proposed for automatically developfog optimal stmt-and-tie models in reinforced and 

presstressed concrete stmctures. fo the proposed approaches, developing stmt-and-tie 

models in stmctural concrete is fransformed to the topology optimization problem of 

continuum stmctures. The optimal stmt-and-tie model in a stmcforal concrete member 

is generated by gradually removing inefficient elements from the continuum concrete 

member. An fotegrated design optimization procedure is proposed for stmt-and-tie 
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design. Some of the findings have been reported by Liang et al. (1999c, 1999d, 2000c, 

2001b) and Liang and Steven (2001b). 

The rest of this chapter is organized as follows, fo Section 6.2, the stmt-and-tie model 

optimization problem is formulated. This is followed by the presentation of the limit 

analysis and fmite element modeling for stmt-and-tie models fo Section 6.3. fo Section 

6.4, optimization criteria for stmt-and-tie models are described. The design optimization 

procedure of stmt-and-tie models is presented in Section 6.5. Section 6.6 provides 

design criteria for dimensioning stmts, ties and nodes. The PBO method is used to 

develop stmt-and-tie models in reinforced concrete members fo Section 6.7. The 

generation of optimal stmt-and-tie models in prestressed concrete beams is freated fo 

Section 6.8. The optimization of stmt-and-tie models in low-rise shearwalls is presented 

in Section 6.9. Finally, Section 6.10 gives significant conclusions on the present work. 

6.2 STRUT-AND-TIE MODEL OPTIMIZATION PROBLEM 

Since the concrete permits only limited plastic deformations, the stmt-and-tie model in a 

stmcforal concrete member has to be selected so that the stmctural system has the least 

deformations. Based on the principle of the minimum strain energy for the linear elastic 

behavior of stmt-and-tie models after cracking, Schlaich et al. (1987) proposed the 

following equation for assistfog the selection of stmt-and-tie models as 

N 

Z Fl e , = minimum (6.1) 
; / mt 

f=l 

where F. is the force in the ith sfrnt or tie, /,. is the length of the ith member and e„. is 

the mean strafo of the ith member and Â  is the total number of members fo a stmt-and-

tie system. This equation is helpfol for selecting a better stmt-and-tie model from 

several possible ones. However, it will be cumbersome to fmd the optimal stmt-and-tie 
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model that represents the load transfer mechanism using this mefood, sfoce there are a 

large number of possibilities for the equilibrium configurations of a complex stmcture. 

Stmt-and-tie models are used to idealize the load transfer mechanism fo a cracked 

stmcforal concrete member at ultimate limit states. The design task is mainly to identify 

the load transfer mechanism in a stmcforal concrete member and reinforce the member 

such that this load path will safely transfer applied loads to the supports. Obviously, 

some regions of a stmcforal concrete member are not as effective in carryfog loads as 

others. By eliminating these undemtilized portions from a stmcforal concrete member, 

the acfoal load transfer mechanism in the stmcfore can be found. The PBO method has 

the capacity to find the undemtilized portions of a stmcfore and remove them from the 

stmcfore to improve its performance. Therefore, developing an appropriate strut-and-tie 

model in a structural concrete member can be transformed to the topology optimization 

problem of continuum structures. 

fo nafore, loads are transmitted by the principle of minimum sfrain energy (Kumar 

1978). This means that strut-and-tie systems in structural concrete should be developed 

on the basis of system performance criteria (stiffness) rather than component 

performance criteria (strength). Component performance criteria can be satisfied by 

dimensioning the component. Based on these design criteria, the PBO methods for 

stmcfores with displacement constraints and overall stiffoess constraint are modified 

and tailored for the development of stmt-and-tie models for the design and detailfog of 

sttiicttiral concrete. The performance objective of stmt-and-tie model optimization is to 

minimize the weight of a concrete stmcture while mafotafoing its stiffoess within an 

acceptable performance level. The performance objective can be expressed in 

mathematical forms as follows: 

minimize W = ^w^ (/) (6.2a) 
e=I 

subject to Uj<u] j=\,2,...,m (6.2b) 

or C<C' (6-2c) 
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If the PBO method for stmcfores with displacement consfraints is used to develop stmt-

and-tie models in stmcforal concrete, sufficient displacement constrafots have to be 

specified fo order to generate the stiffest stmt-and-tie models, fo practice, the width of a 

stmcforal concrete member is designed as uniform. As a result of this, only uniform 

sizing of the element thickness (or the width of the member) is considered in foe 

optimization process. By means of systematically removing elements from the 

discretized concrete member, acfoal load paths within the stmctural concrete member 

can be gradually characterized by remaining elements. 

6.3 LIMIT ANALYSIS AND FINITE ELEMENT MODELING 

Topology optimization theory is rarely applied to the special and important field of 

remforced and pretressed concrete due to the difficulty fo modeling the nonlinear 

behavior of stmcforal concrete for optimization. Concrete has a considerable sfrength in 

compression, but a very low sfrength in tension. Moreover, reinforced concrete is a 

composite material. The nonlinear behavior of refoforced concrete is characterized by 

the cracking of concrete and the yielding of steel reinforcement. The behavior can be 

well approximated by the uncracked linear, cracked linear and limit analysis (Marti 

1999), as shown in Fig. 6.1. 

Load 
Cracked linear 

Uncracked linear/ 
Limit analysis 

Deformation 

Fig. 6.1 Load-deformation curves of reinforced concrete 
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The shrinkage and temperafore have significant effects on the load-deformation 

response of reinforced concrete. However, neither the sfresses induced by them nor 

associated deformations can be determined accurately in practice. If a sufficiently 

ductile behavior is ensured, the ultimate strength of a stmcforal concrete member is not 

affected by the loading history including the effects of shrinkage and temperafore (Marti 

1999). Therefore, the ultimate strength based on the limh analysis will be reliable if a 

stmcforal concrete member is designed with adequate ductility and detailfog. 

The limit analysis is well documented in the lABSE state-of-the-art report (1979) and fo 

the book by Nielsen (1984). The limit analysis can be divided foto lower-bound and 

upper-bound methods. Lower-bound methods requfre the designer to design a concrete 

stmcfore by sfrengthening its load transfer mechanism. They are particularly suitable for 

designing new stmcfores. On the other hand, upper-bound methods allow for quick 

checks for ultimate strength, dimensions and details of existing stmcfores. They are 

suitable for the performance evaluation of existing stmcmres. For example, the 

nonlinear finite element analysis developed for reinforced concrete is an upper-bound 

method, which is suitable for the evaluation of load-deformation response, but rarely 

used in designing new stmcfores in practice. Strut-and-tie models correspond to the 

lower-bound limit analysis, and can indicate the necessary amount, the correct location 

and the required detailing of the steel reinforcement. Moreover, they allow for checking 

of critical zones of concrete. Therefore, the stmt-and-tie model approach is a rational 

method for the design and detailfog of sttucfrual concrete. 

After extensive cracking of concrete, loads applied to a remforced concrete member are 

mafoly carried by concrete sttiits and steel refoforcement. The foilure of a remforced 

concrete member cannot simply be explained by foat foe tensile sfress attains foe tensile 

sfrength of concrete, rather it is due to foe breakdown of foe load transfer mechanism, 

such as foe yielding of steel reinforcement in ductile stmcmral concrete members 

(ASCE-ACI Committee 445 on Shear and Torsion 1998). Before designing a stmcforal 

concrete member, foe locations of tensile ties and foe amounts of steel reinforcement are 

not known fo advance. Acfoally, it is foe designer's task fo identify an appropriate stmt-
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and-tie model in a stmcforal concrete member in order to reinforce it. As a result of this, 

the stiffness of reinforcing steel and the nonlinear behavior of reinforced concrete 

cannot be taken into account in the finite element model for developing strut-and-tie 

systems. 

Only two-dimensional models are considered here. Plain concrete members are freated 

as homogenization continuum stmcfores, and modeled using plane stress elements in the 

present sfody. The linear elastic behavior of cracked concrete stmcfores is assumed in 

the proposed method, as suggested by Schlaich et al. (1987). Since tensile ties in the 

stmt-and-tie model obtained will be refoforced with steel reinforcement fo a reinforced 

concrete stmcfore, the effect of cracking due to stresses attafoing the tensile sfrength of 

concrete is not considered. However, the progressive cracking of a concrete member is 

characterized by gradually removing concrete from the member, which is folly cracked 

at the optimum. The proposed method is to find a stmt-and-tie system as stiff as 

possible. The strength of stmts, ties and nodes can be freated when dimensioning the 

stmt-and-tie model obtained. 

It is proposed here to develop strut-and-tie models in structural concrete based on the 

linear elastic theory of cracked concrete for system performance criteria (stiffness) and 

to design the structure based on the theory of plasticity for component performance 

criteria (strength). It is worth noting that the load-deformation response of a concrete 

member in optimization process is highly nonlinear due to the changfog of the topology 

of the stmcture at each iteration. Generally, only two material properties are involved in 

the limiting performance analysis of reinforced concrete stmcfores. One is the effective 

compressive sfrength of concrete (/e.cai), and the other is the yield strength of the steel 

reinforcement ( / ^ ) . 
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6.4 OPTIMIZATION CRITERIA FOR STRUT-AND-TIE MODELS 

6.4.1 Element Removal Criteria 

fo the PBO method formulated on the basis of displacement performance criteria, the 

objective is to maximize the performance of an initial continuum design domafo in 

terms of the efficiency of material usage in resistfog deformations. The element removal 

criteria are based on the virfoal strain energy density (VSED) of elements. For concrete 

stmcfores, the optimal stmt-and-tie model can be generated by gradually eliminating a 

small number of elements with the lowest virfoal strain energy density from a 

discretized concrete stmcfore. The virfoal sfrain energy density of the eth element is 

approximately calculated by 

{u.VikJWe) 

w„ 
(6.3) 

For a concrete stmcture under multiple displacement constraints and loading cases, the 

weighted average approach is used to calculate the virfoal strain energy density of 

elements for elimination. The virfoal strain energy density of the efo element for 

multiple displacement constraints and load cases is determined by 

p m 

Similarly, in the PBO method formulated on the basis of overall stiffoess performance 

criteria, element removal criteria are based on the sfrafo energy density (SED) of 

elements. For concrete stmcfores, the optimal stmt-and-tie model can be generated by 

gradually elimfoating a small number of elements with the lowest sfrafo energy density 

from a discretized concrete stmctme. The sfrain energy density of the eth element is 

approximately evaluated by 
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wy{kA{u\ 
C = (6.5) 

2w^ 

For a concrete stmcfore under multiple load case, a logical AND scheme is employed in 

the calculation of element strain energy density for elimfoation, as described fo Chapter 

5. An element is deleted from the concrete stmcfore only if its strain energy density is 

the lowest for all load cases. 

By systematically removing elements with the lowest VSED or SED from a concrete 

stmcfore, the maximum stiffness topology design at minimum weight can be obtained. It 

is possible to select the best one from resultmg topologies in the optimization process as 

the stmt-and-tie model for a stmcforal concrete member. These two stiffoess-based 

optimization methods can be used to develop stmt-and-tie models in stmcforal concrete. 

6.4.2 Performance-Based Optimality Criteria 

fo order to obtain the optimal stmt-and-tie model, the performance of the resulting 

stmcfore at each iteration must be quantitatively evaluated by using performance 

indices, fo performance-based design, stmcforal responses such as stresses and 

displacements are used as performance indices to quantify the performance of stmcfores 

(ICCMC 1999). fo performance-based optimal design, the performance objective is to 

mfoimize the weight of the stmcture while mafotafoing stmcttiral responses withfo 

acceptable limits. Therefore, displacements alone are not sufficient for evaluating the 

performance of optimal designs. The minimum weight of a stmcfore with acceptable 

stmcforal responses is a sound measure of the performance of optimal designs for 

stiffoess. 

// is proposed here to treat optimal topologies generated by the PBO technique as 

optimal strut-and-tie models in structural members. Therefore, the performance-based 

optimality criteria for sttiit-and-tie models can be expressed as follows: 
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For concrete stmcfores with displacement constraints. 

maximize PI^, = — (6 6) 
u^^W. 

and for concrete stmcfores with the overall stiffness consfrafot. 

C W 
maximize PL, = ̂ — ^ (6.7) 

" CW 

The optimal topology, which satisfies the performance-based optimality criteria, adapts 

to the condition of the member geometry, loading and supports, and acfoally represents 

the load-carrying mechanism of a stmcforal concrete member at ultimate limit states. 

The physical meaning of the performance-based optimality criteria is that the optimal 

strut-and-tie model transmits loads in a way such that the associated strain energy and 

material consumption are a minimum. 

It is worth noting that changing the width of a concrete stmcmre under a plane sfress 

condition has no effect on the topology of the stmcfore or on the performance index, but 

it has a significant influence on the weight of the stmcfore and stmcmral responses. As a 

result of this, it is not necessary to change the width of the concrete stmcmre in the 

finite element model at each iteration. Performance indices can be employed to evaluate 

the performance of the resultfog topology at each iteration and to identify the optimum, 

which can then be sized by adjustfog the width of the stmcture fo order to satisfy acfoal 

displacement or overall stiffoess requirements. 

6.5 DESIGN OPTIMIZATION PROCEDURE 

The design of a concrete sttuchne by usfog stmt-and-tie models usually involves the 

estimation of an initial size, finding an appropriate stmt-and-tie model and 

Q. Q. Liang: Performance-Based Optimization Method for Structural Topology and Shape Design 146 



Chapter 6: Optimization of Strat-and-Tie Models in Stracmral Concrete 

dimensioning stmts, ties and nodes. Developing an appropriate stmt-and-tie model for a 

complex stmcforal concrete member perhaps is the most challengfog task fo the design 

process. Afterwards, dimensioning the stmt-and-tie model is sfraightforward according 

to codes of practice. The main steps of the design optimization procedure are illusfrated 

in Fig. 6.2, and explained as follows: 

(1) Model the two-dimensional concrete stmcfore usfog the finite element method. 

The initial size of a concrete stmcfore should be estimated on the basis of 

serviceability performance criteria. Experienced engineers can usually select an 

appropriate size for the concrete stmcfore. It should be pointed out that it is not 

necessary to use a very fine mesh to divide the concrete stmcfore. A rough layout 

of a stmt-and-tie model is usually adequate for designfog a concrete stmcmre, as 

demonsfrated in Chapter 5. At this step, the loads, support conditions and 

openings, if any, are specified. The material properties of concrete such as the 

Young's modulus (EJ and Poisson's ratio (v) must be input for a linear elastic 

analysis. The Young's modulus of concrete can be determined in accordance with 

AS 3600 (1994) by 

^c=0.043p'^VZr (6.8) 

•J 

where p = the density of concrete (kg/m ); 

y ^ = the mean value of foe compressive strength of concrete at the relevant 

age. 

The values of Poisson's ratio (v) for concrete are between 0.11 and 0.21. ft is 

suggested that the value of 0.15 should be used fo the optimization of sttiit-and-tie 

models. 

(2) Perform a linear elastic finite element analysis on the concrete sfrucfore. If 

displacement consfraints are considered, the concrete sttiicttire must also be 
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analyzed for virtual unit loads. The fmite element analysis provides element 

stresses and nodal displacements. 

Model Concrete Stmcmre 

Perform FE Analysis 

Evaluate Performance of 
Resulting Stmcmre 

Yes 

Calculate Element VSED 
or SED 

Remove Elements with the 
Lowest VSED or SED 

Check Model Continuity 

Check Model Symmetry 

Save Current Model 

Transform Optimal 
Topology to STM 

Analyze Stmt-Tie Model 

Dimension Stmts, Ties and 
Nodes 

Detail Reinforcement 

I 

Fig. 6.2 Flowchart of design optimization procedure for stmt-and-tie models fo 

stractural concrete 
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(3) Evaluate the performance of resulting stmcture by usfog performance mdices for 

plane sfress stmcfores. Eq. (4.14) should be used for stmctures subject to 

displacement constraints, whilst Eq. (5.14) should be used for stmctures with 

overall stiffoess constraint. The strain energy of the stmcture under each load 

cases must be calculated in order to evaluate its performance when usfog Eq. 

(5.14). 

(4) Calculate the virfoal strain energy density or sfrain energy density of elements for 

each loading case. R (%) Elements with the lowest virmal strain energy density or 

strain energy density are accounted and grouped together. 

(5) Remove R (%) elements with the lowest virmal sfrafo energy density or sfrain 

energy density from the concrete stmcmre. It has been found that the element 

removal ratio of 1% or 2% provides reasonable results for use fo engineering 

practice. 

(6) Check model continuity. This is to ensure that the stmt-and-tie model obtained by 

the optimization method must be a continuous model and satisfies the equilibrium 

condition. 

(7) Check model symmetry for a concrete stmcfore with an initial symmetrical 

loading, geometry and support condition. 

(8) Save current model. The resulting models generated at each iteration are saved to 

files for use in latter stage. 

(9) Repeat step (2) to (8) until the performance index is less than unity. 

(10) Transform the optimal topology to the discrete stt^it-and-tie model. After the 

optimal topology has been obtained, it is a straightforward matter to fransform it 

to a discrete stmt-and-tie model for designing the stmcfore. The optimal topology 

is a continuum stmcmre that represents the acmal sfress fields in cracked concrete. 
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It should be noted that the flow of stress fields in cracked stmctural concrete might 

not be straight in many simations. The arch-tie action that is the most efficient 

load-carrying mechanism is frequently found fo stmcforal concrete members 

(Marti 1985; Liang et al. 2000c). Therefore, the stt^t-and-tie modeling is extended 

to include straight stmts, arches and ties. The discrete stmt-and-tie model is an 

idealization of the optimal topology. It may be necessary to make some 

modifications to the discrete stmt-and-tie model for practical purposes. 

(11) Analyze the discrete stmt-and-tie model, fotemal force in each member of the 

stmt-and-tie model is determined. 

(12) Dimension stmts, ties and nodes. More details are given in Section 6.6. 

(13) Detail steel reinforcement based on the stmt-and-tie model obtained. Additional 

reinforcement should be provided to ensure that the concrete stmcmre has 

adequate serviceability and ductility performance and to prevent concrete in highly 

sfressed regions from splitting. 

6.6 DIMENSIONING STRUTS, TIES AND NODES 

6.6.1 General 

Dimensioning stmts, ties and nodes is of significant importance to the overall 

performance of a concrete stmcture. Dimensioning a stmt-and-tie model focludes not 

only sizing the stmts and reinforcing the ties based on the forces they carry, but also 

checking nodal zones for safe transmission of the loads between them. The detailing of 

nodes directly affects foe strength performance of concrete stmts connected to them and 

of the ties anchored in them. Moreover, the details of nodes fofluence the flow of forces 

in a concrete stmcfore. As a result of this, it is necessary to ensure that the optimal stmt-
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and-tie model predicted by the PBO technique can still be realized at ultimate after 

detailing. 

6.6.2 Concrete Struts 

The compressive sfrength of concrete in stmts is influenced by its state of stresses, 

cracks and the arrangement of steel reinforcement. The transverse compression 

considerably improves the compressive strength performance of concrete. It may be 

provided by the transverse reinforcement that confines the concrete. Transverse tensile 

stresses and cracks induced by them detrimentally reduce the compressive strength of 

concrete. If steel reinforcement is not provided to carry these tensile sfresses, the 

concrete may fail at below its cylinder compressive sfrength. The compressive sfrength 

of concrete in stmts is also reduced by cracks that are not parallel to compressive 

stresses. For safety, the effective compressive strength of concrete should be used in 

design of concrete stmts. 

Marti (1985) suggested that the effective compressive strength of concrete (/<.<.3|) in 

stmts should be taken as 0.6/J. This value may be increased or decreased depending on 

the state of transverse stress and the arrangement of steel reinforcement. The effective 

compressive sfrength of concrete in stmts has also been proposed by Schlaich et al. 

(1987) as follows: 

For an uncracked and imiaxial state of compressive stresses, 

/c.ca,=0.85/: (6.9) 

where /J = the characteristic compressive cylinder strength of concrete at 28 days. 

When transverse compressive stresses are present, 

Q. Q. Liang: Performance-Based Optimization Method for Structural Topology and Shape Design 151 



Chapter 6: Optimization of Strat-and-Tie Models in Stracmral Concrete 

/cca, = 0.935/; (6.10) 

With transverse tensile reinforcement that may cause crackfog parallel to the stmt, 

/cca. = 0.68/: (6-11) 

When cracks or steel bars are skewed to the direction of the stmt, 

/c.cai=0.51/: (6.12) 

fo AS 3600 (1994), the effects of fransverse stress, cracking and steel reinforcement are 

not taken into account in the determination of the effective compressive sfrength of 

concrete in stmts, fo AS 3600, the effective compressive sfrength of concrete in stmts is 

calculated by 

J c.cal 

/ • ^ 

200 
/ : (613) 

The effective width of a concrete stmt should be determined by three-dimensional 

conditions in the regions, ft should not be greater than the width of any adjacent bearing 

plates or supports. The effective depth of a concrete stmt measured perpendicular to the 

longifodinal axis of the stmt depends on the geometry of end nodes. 

It should be noted that the PBO method produces the optimal strut-and-tie model which 

indicates the locations of struts, ties and nodes but not necessarily their exact 

dimensions. The optimal sttiit-and-tie model in a concrete sfoicfore is developed on the 

basis of stiffoess performance criteria without consideration of strength performance 

criteria. Therefore, dimensionfog the sttiit-and-tie model should be based on the bearing 

conditions and sfrength performance criteria. 

Q. Q. Liang: Performance-Based Optimization Method for Structural Topology and Shape Design 152 



Chapter 6: Optimization of Strat-and-Tie Models in Stracmral Concrete 

6.6.3 Ties 

Reinforcing steel should be provided to carry tensile forces in ties. The sfrength of a 

tensile tie reinforced by steel bars and tendon is determined by 

T = A,J^+A^f^ (6.14) 

where 

A,^ = the cross-sectional area of reinforcing Steel; 

f^ = the yield strength of reinforcing steel; 

A^ = the cross-sectional area of presfressing steel; and 

/yp = the effective yield strength of presfressing steel for tensile ties. 

fo the proposed method, prestressed forces are treated as external loads in the analysis, 

optimization and dimensioning of a structural system, as suggested by Schlaich et al. 

(1987). Since part of the strength of the prestressed steel has been utilized by 

presfressing, only the rest is effective in resisting tensile forces. The effective yield 

sfrength of presfressing steel is used in the calculation of the sfrength of the tensile tie. 

Sufficient anchorage of reinforcing bars should be provided to ensure that the stress in 

bars could be developed to their yield strength. The bar anchorage length measured from 

the intermost boundary of the stmt or node should not be less than the stress 

development length of the bar. If the space is not available for anchorage, cogs, bends 

and U-bars should be used. 

6.6.4 Nodes 

Nodes are the interaction points of three or more stmts and ties in a stmt-and-tie system. 
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The flow of forces changes its direction at a node in the model. Nodes can be classified 

into singular nodes, where one of the stmts or ties represents a concentrated sfress field, 

and smeared nodes, where wide compressive stress fields join together or with tensile 

ties reinforced with closely distributed steel bars. 

Singular nodes are usually formed due to point loads, support reactions, concentrated 

forces induced by steel reinforcement through anchor plates, and geometrical 

discontinuities. It is clear that singular nodes are the most highly stressed regions in a 

concrete stmcfore, and thus the most critical regions that need to be designed carefoUy. 

The sizes of stmts are likely to be governed by the shapes and sizes of adjacent nodes. 

Therefore, AS 3600 (1994) requires that the sizes of stmts and ties shall not be larger 

than the capacity of nodes to transfer forces between stmts and ties in a stmt-and-tie 

model. 

Dimensioning a node in a stmt-and-tie system usually includes the following steps: 

(a) Choose the geometry of the node with applied forces; 

(b) Check whether the compressive stresses of concrete within the node exceed the 

limits; 

(c) Ensure that each reinforcing bar has an adequate anchorage. 

For a node joining with three concrete stmts, the borders of the node can be designed in 

a way such that they are perpendicular to the longifodinal axis of the stints. Moreover, 

the dimensions of the tfoee borders (a,,02,^3)can be proportioned to the forces in the 

stints (Schlaich et al. 1987), such as: 

a,:a,:a,=F,:F,:F, (6.15) 

For nodes jofoing with tensile ties, the dimensions of nodes are governed by the sizes of 

any anchorage plates for reinforcing bars as well as the concrete cover to the bars. 
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6.7 OPTIMAL STRUT-AND-TIE MODELS IN REINFORCED 

CONCRETE MEMBERS 

6.7.1 General 

The proposed method for developing optimal stmt-and-tie models in stinctural concrete 

is based on a very simple engineering design concept that by gradually removing lowly 

strained elements from a discretized concrete stmcfore, the acfoal load transfer 

mechanism of the stmcfore can be found, fo this section, numerical examples are 

provided to demonstrate the effectiveness and validity of the proposed PBO method for 

automatically generating optimal stmt-and-tie models in reinforced concrete stmcmres, 

such as deep beams with openings, continuous beams, beams with various span-to-depth 

ratios, and corbels. Optimal stmt-and-tie models obtained by the PBO method are 

compared with experimental observation as well as existing analytical solutions. 

Dimensioning stmts, ties and nodes according to codes of practice is so sfraightforward 

that it is not considered in illustrative examples. 

6.7.2 Verification by Experimental Evidence 

To verify foe proposed PBO method for developing optimal stmt-and-tie models in 

stmctmal concrete, two deep beams with web openings are investigated by using the 

PBO technique, and the results are compared with experimental observations. 

A simply supported deep beam with two web openings based on the test specimen (O-

0.3/3) conducted by Kong and Sharp (1977) is shown in Fig. 6.3. fo the tested 

specimen, one 20-mm diameter deformed bar was used as the bottom longifodfoal steel 

refoforcement, and no web refoforcement was provided. Two pofot loads of/; = 140 kN 

are applied to the top of the deep beam. By neglecting the effect of the bottom 

longifodinal refoforcement, the plain concrete beam is modeled using 25-mm square 
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four-node plane sfress elements. The displacement constraints of the same limit are 

imposed at the two loaded points in the vertical dfrection. The compressive cylfoder 

strength of concrete /J = 35.5 MPa, Young's modulus of concrete E^ = 30088 MPa, 

Poisson's ratio v =0.15 and the width of the beam b = 100 mm are used in the analysis. 

Plane stress conditions are assumed. The element removal ratioi? = 1% is adopted in the 

optimization process. 

P1 = 140 kN P1 = 140 kN 
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Fig. 6.3 Deep beam with web openings 

The performance index history of the deep beam with web openfogs generated by the 

PBO method is presented in Fig. 6.4. The maximum performance index is 1.58, which 

corresponds to foe optimal topology of foe deep beam. The topology optimization 

history is shown fo Fig. 6.5, from wfoch it can be observed that the foad transfer 

mechanism of foe deep beam is gradually manifested by foe remafoing elements in foe 
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deep beam. Since the undemtilized portions of concrete are removed from the deep 

beam, the concrete deep beam as shown in Fig. 6.5(c) is folly cracked. This means that 

loads are mainly carried by the resulting stmcforal system fo the deep beam at a folly 

cracked state under the ultimate condition. The optimal topology shown fo Fig. 6.5(c) is 

interpreted as the optimal stmt-and-tie model in the deep beam shown in Fig. 6.5(d), 

where solid bold lines represent concrete stmts and dotted lines represent tensile ties. 

5 '•' 

•g 0.5 

20 40 

Iteration 

60 80 

Fig. 6.4 Performance fodex history of deep beam with openings 
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iimiiiinniffi 

(a) Topology at iteration 20 (b) Topology at iteration 40 

(c) Optimal topology (d) Optimal stmt-and-tie model 

Fig. 6.4 Optimization history of stmt-and-tie model fo deep beam with web openings 

fo nafore, the loads are usually transmitted along the shortest naforal load paths between 

the loading and support points to mfoimize the associated sfrain energy of the load-

carrying system. If the opening intercepts the nattnal load path, foe load is to be re-

rofoed around foe openfog (Kumar 1978). This is confirmed by foe optimal stmt-and-tie 

model shown in Fig. 6.5(d), which indicates that loads are fransmitted to supports by foe 

upper and lower stints around foe opening. The test conducted by Kong and Sharp 
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(1977) shows that diagonal crackfog occurred at above and below the opening. It is clear 

that tensile stresses were developed across the comers of the openings. The presence of 

two inclined tensile ties that coimect the upper and lower stmts around the openfog in 

Fig. 6.5(d) is confirmed by experimental observations. Optimal stmt-and-tie model 

clearly indicates the location of tensile ties, fo dimensionfog foe optimal stmt-and-tie 

model, inclined web reinforcement should be provided to carry inclined tensile forces, 

foclined web reinforcement has been proved to be the most effective for increasfog the 

ultimate strength and for crack control of such deep beams with web openings (Kong 

and Sharp 1973, 1977). 

A forther verification of the proposed method is conducted on a simply supported 

lightweight-concrete deep beam with two openings located below the axis of the depth 

of the beam as shown in Fig. 6.6. This deep beam is based on the test specimen (O-

0.3/16) presented by Kong and Sharp (1977). fo the tested specimen, one 20-mm 

diameter deformed bar was used as the longimdinal tensile steel reinforcement placed at 

the bottom of the beam. No web reinforcement was used in the tested specimen, fo this 

sfody, two concentrated loads of P, = 97.5 kN are applied to the top of the beam. The 

Young's modulus of concrete E^ = 30966 MPa, Poisson's ratio v =0.15 and the width 

of the beam 6 = 100 mm are adopted in the analysis. The plain concrete beam is divided 

into 25-mm square, four-node plane sfress elements. Two displacement consfraints of 

the same limit are imposed at the two loaded points in the vertical direction. The 

element removal ratio R=\Vo is used in the optimization process. 
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Fig. 6.6 Simply supported deep beam with web openings 

The performance index history of this deep beam is shown in Fig. 6.7. It can be seen 

from Fig. 6.7 that when inefficiently used concrete is gradually removed from the beam, 

the performance index will increase from unity to the maximum value of 1.52. This 

maximum performance index corresponds to the optimal topology of the deep beam for 

the given geometry and loading conditions. Topologies obtained at iterations 20, 40, and 

50 are shown in Figs. 6.8 to 6.10. It is observed from these figures that the acfoal load 

transfer mechanism in the cracked concrete deep beam is gradually represented by the 

resultmg topology when elements with the least contribution to the stiffness of the beam 

are deleted from the finite element model. 
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Fig. 6.7 Performance index history of deep beam with web openings 

The optimal topology shown in Fig. 6.10 can be idealized by the optimal strat-and-tie 

model presented in Fig. 6.11. By comparison of the optimal strut-and-tie model with the 

tested specimen shown in Fig. 6.12, it can be observed that tensile ties in the optimal 

model exactly indicate the patterns and locations of cracks in the tested specimen. This 

sfrongly proves that the proposed PBO method can predict extremely well the acmal 

load fransfer mechanism of stmcmral concrete members at the ultimate limit states. 

Therefore, it is appropriate to develop stmt-and-tie models in stmcmral concrete based 

on the linear elastic theory of cracked concrete for system performance criteria, and to 

design concrete stmcmres based on the theory of plasticity for sfrength performance 

criteria, as pofoted out previously. 
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Fig. 6.9 Topology at iteration 40 

Fig. 6.10 Optimal Topology at iteration 50 
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Fig. 6.11 Optimal stmt-and-tie model 
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Fig. 6.12 Test resuh by Kong and Sharp (1977) 
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6.7.3 Continuous Beam 

Continuous reinforced concrete beams are commonly used in building constmction. 

More efforts are usually needed to develop stmt-and-tie models fo continuous concrete 

beams than in single span beams if conventional methods are used. This example is to 

show the efficiency of the PBO method in dealing with the stmt-and-tie modeling of 

continuous concrete beams. 

The PBO technique is used to find the optimal stmt-and-tie model in a continuous 

concrete beam under two point loads of/; = 1000 kN and P.^ = 550 kN, as shown in 

Fig. 6.13. The continuous plain concrete beam is modeled using 50-mm square four-

node plane stress elements in the finite element analysis. The compressive cylinder 

strength of concrete /J = 32 MPa, the Young's modulus of concrete E^ = 28600 MPa, 

Poisson's ratio v =0.15 and the initial width of the beam b^ = 200 mm are assumed in 

the analysis. The same deflection limit is imposed at the two loaded points A and B. The 

i? = 1% is adopted in the optimization process. It should be noted that the beam width is 

uniformly sizing during the optimization process to keep the displacement constraints 

active. The width of the beam can be adjusted to meet the acfoal sfrength and deflection 

performance requfrements after the optimal stmt-and-tie model has been obtained. 
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Fig. 6.13 Continuous beam 
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The performance index history of the continuous beam is presented fo Fig. 6.14, where 

the performance index curves are obtafoed by using Eq. (4.14) with the deflections at 

points A and B. It can be seen from Fig. 6.14 that the performance index at the point A 

is less than that at the point B from iterations 1 to 55. This is because the deflection is 

more critical at point A than at point B. After iteration 55, however, the performance 

index at point B drops sharply since forther element removal leads to the large 

deflection at point B, which becomes the most critical displacement. By comparing 

these two curves, it is obvious that the topology of the continuous beam reaches the 

optimum at iteration 55. 

Fig. 6.15 presents the optimization history of the stmt-and-tie model in this beam. The 

stmt-and-tie idealization illustrated in Fig. 6.15(d) indicates a complex model, which is 

difficult to be found if using conventional methods. It is seen that loads are fransferred 

through stmts and ties to supports, foclined tensile ties are developed in shear spans, as 

shown in Fig. 6.15(d). This optimal stmt-and-tie model suggests that the inclined 

Fig. 6.14 Performance index history of the continuous beam 
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(a) Topology at iteration 20 

(b) Topology at iteration 40 
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(c) Optimal topology at iteration 55 

(d) Optimal stmt-and-tie model 

Fig. 6.15 Optimization history of stmt-and-tie model in contmuous beam 
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reinforcement bent up from the bottom steel reinforcement should be used to resist 

tensile forces developed in shear spans and extended to the end of the cantilever to carry 

tensile forces induced by the load P-^. A layout arrangement of steel reinforcement fo 

the continuous beam is illustrated in Fig. 6.16. fr should be noted that steel 

reinforcement in the bottom or the top of the beam could be in one layer if they can fit 

in. 

Fig. 6.16 Reinforcement layout of the continuous beam 

6.7.4 Deep Beam with a Large Hole 

fo this example, the stmt-and-tie model in a simply supported deep beam with a large 

hole as shown in Fig. 6.17 is fovestigated by the PBO method and the result obtained is 

compared with the solution given by Schlaich et al. (1987). The concrete beam is 

discretized by using 100-mm square four-node plane sfress elements. A displacement 

consfraint is imposed at the loaded pofot in the vertical direction. The compressive 

design sfrength of concrete /^ = 17 MPa, Young's modulus of concrete E^ = 20820 

MPa, Poisson's ratio v =0.15 and the initial width of the beam bg = 400 mm are 

adopted in this sfody. The/? = 1% is used in the optimization process. 
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Fig. 6.17 Deep beam with a large hole 

Fig. 6.18 shows the performance index history of the deep beam with a large hole. After 

reaching the peak value, the performance index drops sharply. This is caused by the 

breakdown of the load-carrying mechanism. The maximum performance index is 1.65 

that corresponds to the optimal topology shown in Fig. 6.19(c). The topologies obtamed 

at different iterations in the optimization process are presented in Fig. 6.19. h is seen 

that the load is to be re-routed around the opening even if the opening is very close to 

the support. The foclined tensile tie is developed across the upper right comer of the 

opening, which will tend to crack under the applied load. The basic layout of the load 

transfer system is cleariy shown by the topology obtamed at iteration 40, as presented in 

Fig. 6.19(b). Further element removal only sizes the model. The two intemal concrete 

stiTits join together at iteration 40, but depart from each other at the optimum shown in 

Fig. 6.19(c). This may be caused by the checkerboard pattem, which results in the 

stiffest stioicttne. The optimal stiiit-and-tie model interpreted from the optimal topology 

is illusfrated in Fig. 6.19(d), where the two intemal stints have been joined together. The 

optimal stint-and-tie model obtained by foe present smdy is similar to foe model given 

by Schlaich et al. (1987). The layout of main steel reinforcement for tfos deep beam is 
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illusfrated fo Fig. 6.20. It is worth notfog that additional refoforcfog meshes should be 

provided for crack control in accordance with codes of practice. 
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Fig. 6.18 Performance index history of the deep beam with a large hole 
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(a) Topology at iteration 20 (b) Topology at iteration 40 
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(c) Optimal topology (d) Optimal stmt-and-tie model 

Fig. 6.19 Optimization history of stint-and-tie model in the deep beam with a large hole 

Fig. 6.20 Reinforcement layout of the deep beam with a large hole 
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6.7.5 Effects of Span-to-Depth Ratios 

The load fransfer mechanism in a concrete stmcfore depends on the geometiy, loadfog 

and support conditions of the stmcfore. This example is to fovestigate the effects of 

span-to-depth ratios on optimal stmt-and-tie models in reinforced concrete beams when 

other conditions are fixed. Simply supported concrete beams under a concenfrated load 

acting at the mid-span of the beams as shown m Fig. 6.21 are considered here. The 

depth of the beams D is 1000 mm for all cases whilst the span-to-depth ratio for cases 

(a) to (d) is 2, 3, 4, and 5. The applied pofot loadP = 1200 kN and the initial width of 

the beam b^ = 250 mm are assumed for all cases. The concrete beams are modeled 

using 50-mm square four-node plane stress elements. A displacement consfraint 

imposed at the loaded point in the vertical direction is considered. The compressive 

cylinder strength of concrete / ' = 32 MPa, Young's modulus of concrete £, = 28567 

MPa, Poisson's ratio v = 0.15 are used for all cases. The element removal ratioi? = 1% 

is employed in the optimization. 

Fig. 6.21 Simply supported beams wifo various span-to-depfo ratios 
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The maximum performance indices obtained by usfog Eq. (4.14) for case (a) to (d) are 

1.88, 1.3, 1.23 and 1.21. The optimal topology and correspondfog stmt-and-tie model 

for each case are presented in Fig. 6.22. It is demonsfrated that the load ti-ansfer 

mechanism in concrete beams changes with the changes in span-to-depth ratios of 

beams. When the span-to-depth ratio of the beam is equal to 2, the load is transferred 

from the loaded point to the supports tfoough sfraight stmts. For beams with a span-to-

depth ratio greater than 3, inclined tensile ties connectfog compressive concrete stmts 

are necessary to form the stmt-and-tie model as shown in Fig. 6.22(b) to (d). For very 

slender beams, optimal topologies obtained by the PBO method are continuum-like 

stmcfores, in which stmt-and-tie actions are difficult to be identified, such as that shown 

in Fig. 6.22(d). For such cases, the flexural beam theory or standard tmss models may 

be used to design these concrete beams. These optimal stmt-and-tie models indicate that 

the angles between compressive concrete stmts and longifodinal ties are equal to or 

larger than 45°. fo detail design, some of the bottom steel bars may be bent up to carry 

the forces in inclined tensile ties. 

h is clearly shown that the load transfer mechanism in a stmcmral concrete member 

adapts to its geometry. Without modification, a stmt-and-tie system developed for a 

specific stmcmral concrete member cannot be used in the design of members with 

different geometry, loading and support conditions. 
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Fig. 6.22 Optimal topologies and stiiit-and-tie models showing the fransition from deep 

beams to slender beams 
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6.7.6 Corbel 

The PBO technique is used to find the stmt-and-tie model for the design of a corbel 

joining with a column as shown in Fig. 6.23. To look at how the load is fransmitted 

from the corbel to the column, the corbel and column are freated as a whole stmcture in 

the development of the stmt-and-tie system. The corbel is designed to support a point 

load of 500 kN as illustrated fo Fig. 6.23. The column is fixed at both ends. This 

stmcfore is discretized using 25-mm square, four-node plane stress elements. A 

displacement consfraint is imposed at the loaded point in the vertical direction. The 

compressive cylfoder strength of concrete / J= 32 MPa, Young's modulus of concrete 

E^ = 28567 MPa, Poisson's ratio v =0.15, and the initial width of the corbel and 

column b^ = 300 mm are assumed. The element removal ratio i? = 1% is used in the 

optimization process. 
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Fig. 6.23 Corbel connecting with a column 
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Fig. 6.24 shows the performance index history of the stmcfore in the optimization 

process. The maximum performance index is 1.34 and the correspondfog optunal stmt-

and-tie topology is shown in Fig. 6.25(c). From the optimization history of the stmcfore 

presented in Fig. 6.25, the checkerboard pattem is observed fo the topology obtamed at 

iteration 40. The load is transferred from the corbel to the whole range of the colunrn 

along the paths of concrete stmts and tensile ties. The stmt-and-tie model obtained is 

rather complicated. It is suggested that the corbel and column should be considered as a 

whole stmcfore in developing the stmt-and-tie model. The optimal stmt-and-tie model 

illustrated in Fig. 6.25(d) is supported by the solution obtained by Schlaich et al. (1987) 

using the load path method. 
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Fig. 6.24 Performance index history of the corbel 
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(a) Topology at iteration 20 (b) Topology at iteration 40 

y////////////y. 

(c) Optimal topology (d) Optimal stmt-and-tie model 

Fig. 6.25 Optimization history of stmt-and-tie model in corbel 
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6.8 OPTIMAL STRUT-AND-TIE MODELS IN PRESTRESSED 

CONCRETE BEAMS 

6.8.1 General 

fo prestressed concrete beams, compressive presfressing forces are artificially applied to 

the concrete beam with the help of hydraulic jacks in order to reduce or elimfoate 

cracking due to high tensile stresses and deflection induced by applied loads. Choosing 

the appropriate tendon profile, the type and the magnimde of presfressing forces can 

favorably and efficiently alter the load transfer mechanism in concrete beams. A folly 

prestressed concrete beam has no tensile chord at its bottom whilst a partially 

prestressed concrete beam has a tensile chord at its bottom, which is shorter than that of 

a nonprestressed concrete beam. Schlaich et al. (1987) suggested that by treatfog 

presfressing forces as extemal loads, presfressed concrete beams could be analyzed and 

dimensioned like reinforced concrete ones with stmt-and-tie systems. Ramfrez (1994) 

applied the stmt-and-tie model approach to the design of pretensioned concrete 

members. 

Kirsch (1993b) proposed a procedure for optimizing foe member size, initial 

presfressing force and tendon profile of a prestressed concrete system. However, no 

work has been underfoken so far on optimization of stmt-and-tie models fo prestressed 

concrete beams by contfouum topology optimization methods, fo this section, therefore, 

optimal stiiit-and-tie models in nonpresfressed, partially presfressed and folly 

prestressed concrete beams are investigated by usfog the PBO method for stmctures 

with displacement constraints. It is proposed here that strut-and-tie models in 

prestressed concrete structures can also be optimized by treating presfressing forces as 

external loads. 
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6.8.2 Nonprestressed Concrete Beam 

Fig. 6.26 shows a simply supported prestressed concrete beam with a rectangular cross-

section under two concentrated loads ofF = 500 kN and the presfressfog force P. When 

the presfressing force P = 0, the beam is a nonpresfressed concrete beam, which is 

considered herein for comparison purposes. This concrete beam is modeled usfog a 160 

X 20 mesh with four-node plane stress elements. The depth of the beam is 1000 mm. 

The initial width of the concrete beam b^ =300 mm is assumed. The values of the 

Young's modulus of concrete E^ =31940 MPa, Poisson's ratio v = 0.15 are used in the 

analysis. Two displacement constraints of the same limit are imposed at the pomts of 

load F in the vertical direction. The element removal ratio /? = 1 % is used in the 

optimization process. 
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Fig. 6.26 Presfressed concrete beam 

The performance index history of the nonpresfressed concrete beam obtamed by the 

PBO method is shown in Fig. 6.27. When a small number of elements with the lowest 

virfoal sfrain energy density is removed from the beam, the performance index increases 

from unity to the maximum value of 1.38. After reaching the peak, it drops sharply and 

this means that forther element removal will result in large deflections. The performance 
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index may jump in the optimization history as shown fo Fig. 6.27 because the element 

removal ratio used is still high. As presented in Chapter 4, it is possible to achieve 

smoother solutions to nonprestressed members by using a smaller element removal 

ratio, but the computational cost will be increased considerably. 
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Fig. 6.27 Performance index history of prestressed concrete beams 

The optimization history of the stmt-and-tie model in the nonprestressed concrete beam 

is presented in Fig. 6.28, in which only half of the model is shown by takfog the 

advantage of symmetry. It can be seen from Fig. 6.28 that when inefficiently used 

concrete is removed from the beam, the stmt-and-tie model is gradually characterized by 

the remafoing elements. This optimal strut-and-tie model indicates that inclfoed 

reinforcing steel bent up from the bottom reinforcement should be used to resist foclfoed 

tensile forces developed fo shear spans. The stmt-and-tie model of this reinforced 

concrete beam shown in Fig. 6.28(e) was obtained by Schlaich et al. (1987) usfog the 

load path method, fo their stmt-and-tie model, vertical ties were assumed to form the 

model. 
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(e) Stmt-and-tie model by Schlaich et al. (1987) 

Fig. 6.28 Optimization history of stmt-and-tie model in nonpresfressed concrete beam 
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6.8.3 Partially Prestressed Concrete Beam 

Cracking and deflections of a concrete beam can be reduced or elimmated by applyfog 

presfressing forces to the beam. Prestressmg reduces the length of the tension chord 

along the bottom of a concrete beam. By freating presfressing forces as extemal loads, 

prestressed concrete beams can be analyzed, designed and dimensioned with stmt-and-

tie models in the same manners as reinforced concrete beams as suggested by Schlaich 

etal. (1987). 

A presfressing force of/* = 1650 kN is apphed to the concrete beam shown in Fig. 6.26. 

Two equal vertical displacement constraints are imposed at the points of loadfogF since 

the deflections of the beam are to be reduced. The R = 1% is adopted in the 

performance-based optimization process. The performance index history of this 

prestressed concrete beam is also shown in Fig. 6.27. The maximum performance index 

of the prestressed concrete beam is 1.85, which is higher than that of the non-presfressed 

concrete beam. 

Fig. 6.29 shows the optimization history of this presfressed concrete beam. The load 

transfer mechanism in the beam becomes more and more clear when elements are 

systematically eliminated from the model. It can be seen from Fig. 6.29(d) that there is a 

tension chord at the bottom of the beam that is shorter than that of the nonpresfressed 

concrete beam shown in Fig. 6.28(d). Thus, this concrete beam is partially prestressed. It 

can be observed from a comparison of Figs. 6.28(d) and 6.29(d) that presfressing loads 

significantly affect the stmt-and-tie model in the concrete beam and loads transmit along 

a more direct load path. Furthermore, Fig. 6.27 shows that the partially presfressed 

concrete member has the highest performance index. This means that the most 

economic design can be achieved by using partial presfressing. The stmt-and-tie model 

of a partially prestressed concrete beam given by Schlaich et al. (1987) is illustrated in 

Fig. 6.29(e). fo Schlaich et al.'s model, however, the sti^t at the bottom of the beam is 

absent. 
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Fig. 6.29 Optimization history of sti^t-and-tie model in partially-prestressed concrete 
beam 
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6.8.4 Fully Prestressed Concrete Beam 

The stmt-and-tie model of a folly prestressed concrete beam has no tension chord at the 

bottom of the beam as demonstrated by Schlaich et al. (1987). By choosmg the 

presfressing force P = 2500 kN, the PBO technique is used to generate the stmt-and-tie 

model in the prestressed concrete beam illustrated in Fig. 6.26. The maximum 

performance index obtained is 1.62, as seen from Fig. 6.27. h can be observed from Fig. 

6.27 that the performance index increases after decreasing at a few iterations. This is 

because forther element removal results in a more direct load transfer mechanism in the 

beam. 

The optimization history is shown in Fig. 6.30, from which it can be seen that the stmt-

and-tie model has no tensile chord at the bottom of the beam because the foil 

presfressing transforms the beam under applied loads into a beam-column. However, the 

inclined tensile tie still exists in the shear span since a tensile force is developed in shear 

spans. Schlaich et al. (1987) presented the stmt-and-tie model of a folly presfressed 

concrete beam as illustrated in Fig. 6.30(e). They suggested that in a folly prestressed 

condition, the resultant of the prestressed force and the support force meet the line of 

action of the load F within the kem of the section. However, the optimal stmt-and-tie 

model shown in Fig. 6.30(d) indicates that the foil presfressing condition may be 

achieved without the resultant meetfog the action line of the loadF. Moreover, the folly 

presfressing is characterized by the absence of a tension chord along the bottom of a 

prestressed beam. 
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(e) Stmt-and-tie model by Schlaich et al. (1987) 

Fig. 6.30 Optimization history of sti^t-and-tie model fo folly-prestressed concrete beam 
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6.9 OPTIMAL STRUT-AND-TIE MODELS IN LOW-RISE 

SHEARWALLS 

6.9.1 General 

Reinforced concrete shearwalls are commonly used in buildings to resist lateral loads 

arising from wind or earthquakes. High-rise shearwalls in tall buildings behave 

essentially in the same maimer as flexural reinforced concrete members, which can be 

designed by using the flexural beam theory. Low-rise shearwalls in low-rise buildings 

more often have the height-to-length ratio less then 1.5 and thus their behavior cannot 

be predicted by conventional methods applied to tall shearwalls. The design of low-rise 

shearwalls in the past practice was largely based on the findings of experimental work 

on low-rise shearwalls (Benjamin and Williams 1957) and on deep beams. The tmss 

model theory considering the softening of concrete has been used to predict the load-

deformation responses of low-rise reinforced concrete shearwalls with boundary 

elements. 

Low-rise reinforced concrete shearwalls are acfoally deep beams, which can be designed 

by using stmt-and-tie models. Marti (1985) has used the load path method to develop 

stmt-and-tie models in reinforced concrete shearwalls with openings. However, the 

utility of stmt-and-tie models in engineering practice is often limhed by the designer's 

ability to develop appropriate models for stmcfores with complicated loadmg and 

geometry conditions using conventional methods, which usually involve a trial-and-

adjustment iterative process. 

fo this section, the Performance-Based Optimization (PBO) method formulated on the 

basis of overall stiffoess performance criteria is used to develop stiiit-and-tie models in 

low-rise reinforced concrete shearwalls with and without openfogs. The PBO method is 

efficient in dealing with complex shearwalls under a large number of point loads as well 

as muhiple loading cases. 
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6.9.2 Shearwall under One Loading Case 

The PBO method is used to develop the optimal stmt-and-tie model in a low-rise 

concrete shearwall with a rectangular cross section, as shown in Fig. 6.31. The applied 

load at the top is 1200 kN. The shearwall is fixed on the foundation. The compressive 

cylinder strength of concrete /J = 32 MPa, Young's modulus of concrete E^ = 28600 

MPa, Poisson's ratio v =0.15 and the initial thickness of the shearwall fo=150 mm are 

assumed. The concrete shearwall is modeled using 40 x 30 four-node plane sfress 

elements. The mean compliance limit is set to a large value fo order to obtain the global 

optimum. The /? = 1% is used in the optimization process. 

P 

4000 

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 

Fig. 6.31 Low-rise shearwall under one loading case 
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Fig. 6.32 shows the performance index history of the low-rise shearwall obtained by the 

optimization procedure, fr is seen that the performance of the resultfog topology is 

gradually improved by eliminatfog a small number of elements with the lowest sfrafo 

energy density from the model at each heration. The maximum performance fodex is 

1.51. At the final stage, the performance index drops sharply. This means that further 

element removal leads to a large increase in strafo energy, which may be caused by the 

breakdown of the load transfer mechanism. 

The optimization history of stmt-and-tie model in the low-rise shearwall is 

demonstrated in Fig. 6.33. It can be observed that the load fransfer mechanism in the 

shearwall gradually become clear by removing undemtilized material from the model. 

The optimal topology shown in Fig. 6.33(c) is obtained while the performance index is 

maximized. This optimal topology can be interpreted as the optimal stmt-and-tie model 

of the shearwall shown in Fig. 6.33(d). Although the shearwall considered here has no 

columns and beams as boundary elements, the optimal stmt-and-tie model provides 

insight into the crack patterns of tested reinforced concrete shearwalls conducted by 

Benjamin and Williams (1957). 

20 40 60 

Iteration 

80 

Fig. 6.32 Performance index history of shearwall under one loadmg case 
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(a) Topology at iteration 20 (b) Topology at iteration 40 

(a) Topology at iteration 20 (b) Topology at iteration 40 

Fig. 6.33 Optimization history of shearwall under one loading case 

6.9.3 Shearwall under Multiple Loading Cases 

This example is to show the capacities of the computer-based topology optimization 

method in producing optimal stmt-and-tie models in concrete shearwalls under multiple 

loading cases. The concrete shearwall shown in Fig. 6.32 is now considered under a 

reversible loading. The material properties and modeling are the same as used in 

previous example. The R = 1% is also adopted in the optimization process. The 
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performance index of the concrete shearwall under two load cases is presented fo Fig. 

6.34, where the maximum performance index is 1.14. 

Fig. 6.34 Performance index history of shearwall under multiple loadfog cases 

Fig. 6.35 shows the topology optimization history of stmt-and-tie model in the 

shearwall. By removing elements whose sfrain energy density is the lowest under two 

load cases from the stmcture, acfoal load paths in the shearwall under the folly cracked 

condition can be represented by remainfog elements fo the model. The optimal topology 

is obtained at iteration 52 as shown fo Fig. 6.35(d). By fospection of this optimal 

topology, it is seen that the load carried by the horizontal compressive stmt at the top is 

very small. At iteration 55, this stmt is removed as shown in Fig. 6.35(e), but the 

performance index only has a minor change as seen from Fig. 6.34. Hence, the topology 

obtained at iteration 55 can be used as the optimal stmt-and-tie model for the design of 

the shearwall under two load cases and is interpreted fo Fig. 6.35(f). By comparison of 

the stmt-and-tie model illusfrated in Fig. 6.35(f) with the one shown fo 
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(a) Topology at iteration 20 (b) Topology at iteration 30 

(c) Topology at iteration 40 (d) Optimum at iteration 52 
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S '• 
\ 
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(e) Topology at iteration 55 (f) Sfriit-tie model showing superposition 

Fig. 6.35 Optimization history of shearwall under muhiple loading case 
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Fig. 6.35(d), the superposition of the model under the reversible loadmg can be 

observed. It should be noted that a member fo a stmt-and-tie model could be in 

compression under one load case and in tension under another load case. Therefore, it is 

important to reinforce all tension members with steel bars under each load case. 

6.9.4 Shearwall with Openings 

This example is to demonsfrate the efficiency of the PBO method in dealing with 

concrete shearwalls with complex geometry and loading conditions. Fig. 6.36 shows a 

low-rise concrete shearwall with openfogs under many concentrated loads in one load 

case. This shearwall is based on the example presented by Marti (1985).fo the present 

sfody, the loads P, = 1000 kN and P^ = 500 kN are assumed. The compressive cylinder 

sfrength of concrete f = 32 MPa, Young's modulus of concrete E^ = 28600 MPa, 

Poisson's ratio v =0.15 and the initial thickness of the shearwall f(,= 200 mm are used 

in the analysis. The shearwall is modeled using 100-mm square, four-node plane stress 

elements. The mean compliance constraint is considered. The/? = 1% is used in the 

optimization process. 

Fig. 6.37 shows the performance index history of the shearwall with openings. It can be 

seen from Fig. 6.37 that even if there are a large portion of openings in the shearwall, 

the performance of the shearwall is still improved by eliminating unnecessary concrete 

from the model. The maximum performance index of 1.2 occurs at iteration 35. The 

optimization history of stmt-and-tie model in the shearwall with openfogs is presented 

in Fig. 6.38. When elements are removed from the shearwall, the resultmg topology 

evolves towards a frame-like stmcfine. Optimal topology is obtafoed at iteration 35 as 

shown in Fig. 6.38(d), which can be idealized as the optimal model shown in Fig. 

6.38(e). This model consists of only stmts. The optimal stmt model in the shearwall 

with openings generated by the PBO method agrees exfremely well with the solution 

shown in Fig. 6.38(f), which was presented by Marti (1985). Since the stmt-and-tie 
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model obtained has no tensile ties, it is not necessary to provide mafo steel 

reinforcement to resist tensile forces in the shearwall. However, reinforcfog meshes 

must be provided in the shearwall to control cracking that may be induced by shrinkage 

and temperafore effects. 
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Fig. 6.36 Shearwall with openings 
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Fig. 6.37 Performance index history of shearwall with openings 
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(a) Topology at iteration 10 (b) Topology at iteration 20 
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(c) Topology at iteration 30 (b) Optimum at iteration 35 

(e) Optimal stint model (f) Stmt model by Marti (1985) 

Fig. 6.38 Optimization history of stmt-and-tie model in shearwall with openfogs 
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6.10 CONCLUDING REMARKS 

fo this chapter, the Performance-Based Optimization (PBO) methods formulated on the 

basis of stiffness performance criteria have been extended and developed for 

automatically generating optimal stmt-and-tie models in reinforced and prestressed 

concrete stmcfores. fo the proposed methods, the development of stmt-and-tie models in 

stmcforal concrete is transformed to the topology optimization problem of continuum 

stmcfores. The optimal topology of a concrete stmcfore obtafoed by the PBO method is 

treated as the optimal stmt-and-tie model for the design of the concrete stmcfore. An 

integrated design optimization procedure has been proposed for optimizfog and 

dimensioning stmcforal concrete with stmt-and-tie systems. The proposed methods have 

been used to develop stmt-and-tie models in reinforced concrete members, presfressed 

concrete beams and low-rise shearwalls. Optimal stmt-and-tie models generated by the 

proposed design optimization procedure have been verified by existing analytical 

solutions and experimental observations. 

Based on the work presented in this chapter, the following conclusions are drawn: 

(1) The PBO method is a rational, efficient and reliable tool for concrete designers for 

automatically generating optimal stmt-and-tie models for the design and detailing 

of stmcforal concrete, which include reinforced and presfressed concrete 

stmcfores, especially for complex concrete stmctiires where no previous 

experience is available. 

(2) The PBO method is also a usefol tool for concrete researchers for quantifying the 

shear transfer mechanism in stmctiual concrete. 

(3) It has been proved to be appropriate to develop stirit-and-tie systems in stmcttiral 

concrete based on the linear elastic theory of cracked concrete for system 

performance criteria (stiffness) and to design the concrete stincfores based on the 

theory of plasticity for component performance criteria (sfrength). 
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(4) Performance-based optimization concepts are consistent with performance-based 

design concepts being adopted in current building codes of practice fo many 

countries. The PBO method for stmt-and-tie modelfog would significantly 

improve the performance of stmcforal concrete, and is appropriate to be adopted 

in concrete model codes, such as the Asian Concrete Model Code (ICCMC 1999) 

and AS 3600 (1994). 

(5) When openings intercept naforal load paths, the load is to be re-routed around the 

openings where inclined tensile ties join the upper and lower stmts. It is important 

to provide inclined reinforcement at the top and bottom of the openfog based on 

the stmt-and-tie model. This inclined reinforcement is efficient for increasing the 

ultimate load capacity of the deep beam and for crack confrol. 

(6) The load fransfer mechanism in concrete stmcfore relates to its geometry, loading 

and support condition. Without modification, a stmt-and-tie model developed for 

a specific stmcfore cannot be used for the design of other stmcmres. 

(7) For reinforced concrete beams with L/D>3, inclined reinforcement bent up from 

bottom steel bars is most efficient in resisting inclined tensile forces developed in 

shear spans. It should be noted that a stmcforal concrete member reinforced with 

inclined steel bars must be designed by using the correct stmt-and-tie model 

developed for the member. Some of the reinforced concrete stmcfores built in the 

past using inclined refoforcement have shown signs of distress and crackfog due to 

fosufficient flexural reinforcement. The reasons for this are that the foclined and 

flexural refoforcements in these stmctures were designed by using empirical 

equations, mles of thumb, guess work and past experience rather than by stmt-

and-tie modeling. This problem can be overcome by usfog optimal stmt-and-tie 

models generated by the PBO technique. 

(8) For very slender concrete beams, optimal topologies obtafoed by the PBO method 

are continuum-like stmcfores in which stmt-and-tie actions are difficult to be 
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identified. For such cases, standard tmss models with vertical ties or sectional 

methods can be used to design these concrete beams. The PBO technique is most 

appropriately used for developfog optimal stmt-and-tie models fo complex non-

flexural concrete stmcfores, where standard tmss models with vertical ties are not 

applicable. 

(9) fo the stmcforal idealization of corbels, the column coimecting with the corbel 

should be considered together with the corbel in developfog the stmt-and-tie 

model. 

(10) By treating presfressed forces as extemal loads, presfressed concrete stmcfores can 

be analyzed, optimized and dimensioned with stmt-and-tie systems like reinforced 

concrete stmcfores. 

(11) The PBO method can be used to develop stmt-and-tie models for the design of 

low-rise reinforced concrete shearwalls under multiple loading conditions. 

(12) For concrete stmcfores under multiple loading cases, a member of a stmt-and-tie 

model may be fo compression under one loading case and in tensile under other 

loading case. Therefore, reinforcfog steel must be provided to carry tensile forces 

in tension members under each load case. 

(13) The stmt-and-tie modeling corresponds to a lower-bound limit analysis, h is of 

significant importance to ensure the detailfog of the refoforcement so that the load 

fransfer mechanism predicted by the PBO method can be realized at ultimate. 

Adequate anchorage of steel reinforcement must be provided. 

(14) Optimal stioit-and-tie models generated by the PBO method indicate only the 

location of stints, ties and nodes, but not necessarily the exact dimensions. 

Dimensioning the stint-and-tie model should be based on the limit analysis and 

sfrength performance criteria. 
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Chapter 7 

LAYOUT DESIGN OF BRACING SYSTEMS 

FOR MULTISTORY STEEL FRAMES 

7.1 INTRODUCTION 

The design of a multistory steel building under lateral loads is usually governed by 

system performance criteria (overall stiffness) rather than by component performance 

criteria (strength). An important task in the design of a tall steel building for stincmral 

designers is to select cost-efficient lateral load resistance systems. Pure rigid frame 

systems alone are not efficient fo resistfog lateral loads for tall steel buildings since the 

shear racking component of deflections induced by the bendmg of columns and girders 

will cause the building drift too large (Taranath 1988). Braced frameworks can 

significantiy improve the performance of pure rigid frame actions by eliminating the 

bending effects of columns and girders. This is achieved by using tmss members such as 

diagonals to brace steel frameworks so those diagonals absorb the shear. The braced 

framework is an efficient lateral-load resistance system as all members are subjected to 

axial forces only, fo the absence of an efficient optimization technique, the selection of 

lateral bracing systems for multistory steel frameworks is usually undertaken by the 

designer based on frial-and-error and previous experience. Traditional design methods 

for lateral-bracing systems in a multistory steel building are highly iterative and time-

consuming. The optimal layout design of bracing systems is a challenging task for 

stmcforal designers as it involves a large number of possibilities for the arrangement of 

bracing members. Fig. 7.1 shows the possible layouts of bracing systems for a six-story 
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steel building framework. 

(a) (h) 

v^Ji 

(c) (d) 

Fig. 7.1 Possible layouts of bracing systems for multistory steel frameworks 
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Various researchers have developed stiffness-based sizfog techniques for the minimum-

weight design of lateral load resistance systems in multistory steel buildings. Baker 

(1990) presented a sizing technique based on energy methods for lateral load resistance 

systems in multistory steel buildings. The discretized optimality criteria method 

proposed by Zhou and Rozvany (1992) is shown to be efficient in sizfog large stioictiu-al 

systems subject to stress and displacement consfrafots under muhiple loading 

conditions. Chan et al. (1995) developed an automatic resizing technique for foe optimal 

design of tall steel building frameworks under lateral loads. The optimality criteria 

method is employed to solve the minimum-weight design problem of a tall steel 

building framework subject to multiple inter-story drifts and member sfrength and sizing 

constraints in accordance with building codes and constmction requirements, fo these 

approaches mentioned above, all members of a lateral load resistance system are resized 

on the basis of uniform strain energy density criteria. Kim et al. (1998) presented a 

method for the design of tall steel buildmgs where steel frameworks are designed for 

sfrength criteria, and only bracing members are resized for stiffness performance 

criteria. They suggested that it is most efficient to increase the lateral stiffoess of lower-

stories in a tall building to improve the performance of lateral load resistance systems. 

However, all of these sizfog techniques only work for lateral bracfog systems with fixed 

topologies. The efficiency of a resized stmcforal system in resisting lateral loads is 

obviously limited by the chosen topology of bracing systems. 

Continuum shape and topology optimization has received extensive developments fo the 

last few decades. Review papers on these topics have been presented by Haftka and 

Grandhi (1986) and Rozvany et al. (1995). Several methods have been developed for the 

topology design of continuum stmctures, such as the homogenization-based 

optimization method (Bendsoe and Kikuchi 1988; Suzuki and Kikuchi 1991; Tenek and 

Hagiwara 1993; Bendsoe et al. 1995), density ffoiction approaches (Meljnek and 

Schirrmacher 1993; Yang and Chuang 1994), hard kill optimization methods 

(Rodriguez and seireg 1985; Afrek 1989; Xie and Steven 1993,1997), and the soft kill 

option mefood (Mattheck 1998). However, these contfouum topology optimization 

methods focus mainly on theoretical aspects rather than practical applications, fo 
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addition, forther work on developing performance-based optimization criteria for 

obtaining globally optimal designs fo continuum topology optimization is needed. 

The homogenization-based optimization method has been used by Diaz and Kikuchi 

(1992) to find optimal reinforcement layouts, which improve the naforal frequency of a 

plane sfress continuum stmcfore. Walther and Mattheck (1993) used the soft kill option 

method to generate efficient frameworks for supportfog floor systems fo constmction 

engfoeering. The layout design of bracing systems for multistory steel buildfog frames 

under one lateral load case has been attempted by Mijar et al. (1998) using a topology 

optimization method based on classical Voigt-Resuss mixing mles. fo this method, the 

objective is to minimize the compliance of a steel frame braced by a continuum design 

domain under the given loading and boundary condition. The constraint is imposed on 

an amount of solid material used for the bracing system. Obviously, the bracing system 

produced by this method largely depends on the material volume constraint, which is 

arbitrarily specified by the designer. 

fo this chapter, the Performance-Based Optimization (PBO) method formulated on the 

basis of system performance criteria is extended and proposed for the topology design of 

bracing systems for multistory steel building frameworks under multiple lateral loading 

conditions, fo the PBO methods described in previous chapters, either plane sfress 

elements or plate elements are used to model the stioicture for optimization. However, in 

dealing with practical design problems, different element types have to be used to model 

a stmcfore. The capacity of the PBO method is extended to foclude both beam and plane 

stress elements in one model, fo the proposed design optimization procedure, unbraced 

frameworks are firstly designed for component performance criteria by selecting 

standard steel sections from databases. The optimal topology of a bracing system is 

generated by gradually removing undemtilized plane stress elements from a continuum 

design domain that braces the framework. Two design examples are provided to 

demonsti^te the effectiveness and validity of the PBO method for layout design of 

bracing systems. Results obtained by the present sfody are compared with existing 

solutions. Some of the results have been reported by Liang et al. (2000b). 
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7.2 TOPOLOGY DESIGN PROBLEM FORMULATION 

Bracing systems are used to reinforce steel buildfog frameworks so that lateral drifts are 

maintained within acceptable performance levels, fo the proposed PBO mefood, a 

continuum design domain under plane stress conditions is used to stiffen a multistory 

steel building framework. The continuum design domafo is modeled usfog plane sfress 

finite elements. The framework itself with a fixed topology is treated as a non-design 

domain, which is modeled by beam elements. Beam elements are not removed during 

the optimization process. A steel framework folly braced by a contfouum design domafo 

is used as a starting point for deriving the optimal bracing system for the framework. 

This is achieved by removing undemtilized elements from the continuum design 

domain. Therefore, the performance objective of the layout design for bracfog systems is 

to minimize the weight of the continuum design domain while maintaining the overall 

stiffoess constraint of the braced framework within an acceptable limit. The 

performance objective can be expressed as follows: 

minimize 
e=l 

JF = XH' . (7.1) 

subject to C < C* (7.2) 

where Wis the total weight of the continuum design domain, w^ is the weight of the eth 

element in the contmuum design domain, C is the absolute value of the mean 

compliance of a braced framework, C* is the prescribed limit of C and n is the total 

number of elements fo the discretized continuum design domafo. It is noted that the 

mean compliance of a stmcfore is usually used as an inverse measure of its overall 

stiffoess. As a result of this, the maximization of the overall stiffoess of a stiiicfore is 

equivalent to minimizmg its mean compliance. 
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7.3 ELEMENT REMOVAL CRITERIA 

Some portions of a continuum reinforcfog system are not effective in resistfog lateral 

loads, and are thus removed from the continuum design domain to improve foe 

performance of the lateral load resistance system. Element removal criteria are used to 

identify these undemtilized portions in the optimization algorithm, and can be derived 

by undertaking a sensitivity analysis. The sensitivity analysis in the proposed method is 

to investigate the effects of element removal on the change of the mean compliance of a 

braced framework. 

fo finite element analysis, the equilibrium equation of a braced framework can be 

written by 

[K]{u} = {P} (7.3) 

where [K] is the stiffoess matrix of a braced framework, {«} is nodal displacement 

vector of the braced framework, and {P} is nodal load vector that is not changed. When 

the eth element is removed from a discritized continuum design domain, the stiffness 

and displacements will be changed accordingly, and Eq. (7.3) can be rewritten as 

[K + AK]{u + Au} = {P} (7.4) 

in which AÂ  is the changes of the stiffness matrix and {AM} is the change of nodal 

displacement vector of the braced framework. When only the eth element is removed 

from the continuum design domain, the change of the stiffoess matrix can be derived as 

[AK] = [K^]-[K] = -[kJ (7.5) 

in which [/TJis the stiffness matiix of the resultmg stmcfore and [kj is the stiffness 

matrix of the eth element in the contfouum design domain. 
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The change of displacement vector can be obtafoed approximately by subfractfog Eq. 

(7.3) from Eq. (7.4) and neglectfog higher order terms as 

{Au} = -[K]-'[AK]{u} (7.6) 

The mean compliance or strain energy of a braced framework is calculated by 

C = -{P}''{u} (7.7) 

The change of the strafo energy of the braced framework due to the elimination of the 

eth element can approximately be expressed by 

AC^l{P}^Au}^--{P}'[K-'][AK]{u} = -\{u}'[AK]{u}=Uuy[kJ{uMl.S) 
2 2 z z 

where {M,}is the displacement vector of the eth element in the continuum design 

domain, ft is seen from Eq. (7.8) that the change of the sfrain energy of a braced 

framework due to the removal of theeth element can be approximately evaluated by the 

sfrain energy of the eth element. Therefore, the element strain energy can be used as a 

measure of the efficiency of an element in contribution to the overall stiffoess of a 

lateral bracing system and is denoted as 

C^=\K}'[K]{UA (7-9) 

To achieve foe perf-ormance objective, elements wifo foe lowest strain energy should be 

gradually removed from foe continuum design domafo. If a contfouum design domafo is 

divided into different size elements, foe lowest sfrafo energy density of elements should 

be used as element removal criteria. The sfrafo energy density of the efo element is 

calculated by ^^ =| ê I ^ '̂ e • 
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Multistory buildings are often subjected to reverse wind loads, which can be freated as 

multiple loading cases. For a braced framework subject to multiple loadmg cases, a 

logical AND scheme is used in the proposed method to take account of the effect of 

different loading cases, as described in Chapter 5. fo the logical AND scheme, an 

element is removed from the design domafo only if its strain energy density is the lowest 

for all load cases. 

Elements with the lowest strain energy density are counted by a loop until they make up 

the specified amount, which is the element removal ratio times the number of elements 

in the initial design domafo. The element removal ratio Ql) for each iteration is defined 

by the ratio of the number of elements to be removed to the total number of elements in 

the initial continuum design domain. 

7.4 PERFORMANCE-BASED OPTIMALITY CRITERIA 

fo the proposed method, braced systems are gradually modified by removing elements 

with the lowest sfrain energy density from a continuum design domain that braces a 

multistory steel framework. To obtain the optimal bracing system, the performance of 

resulting bracing system at each iteration must be evaluated using some sort of 

performance indicators. Performance-based optimization criteria in terms of 

performance indices have been proposed in previous chapters using the scalfog design 

concept for selectfog the optimum from the optimization history. These performance 

indices are also usefol tools for ranking the performance of stmctural topologies and 

shapes generated by different optimization mefoods. 

For the layout optimization of bracing systems, a continuum design domafo is 

stiiicforally connected to a steel framework. The overall stiffness of a braced framework 

is not a linear fonction of the thickness of the continuum design domain. As a resuh of 

this, the thickness of elements cannot be linearly scaled to keep the mean compliance 

consfraint active at each iteration. However, it is known that the best stmcfore is the one 
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that has the maximum stiffness at mfoimum weight, as pointed out by Hemp (1973). 

Therefore, the performance index in the form of Eq. (5.14) can still be used to evaluate 

the performance of a bracing system for a steel building framework under the mean 

compliance constramt, and is given by 

« » = f ^ (7.10) 
I I 

where Q is the absolute values of the mean compliance of the initial braced framework, 

C. is the absolute values of the mean compliance of the current braced framework at the 

rth iteration, W^ is the weight of the initial continuum design domafo and W^ is the 

weight of the current continuum design domain. It is not necessary to take the weight of 

the steel framework foto account in the calculation of the performance index since beam 

elements are not removed in the optimization process. 

The performance index can indicate the efficiency of a lateral bracing system in terms of 

the material usage and the overall stiffness. The performance of a bracfog system is 

improved when elements with the lowest sfrain energy density are gradually removed 

from the continuum design domain. By systematically eliminating undemtilized 

elements, the most uniform distribution of strain energy density within a continuum 

design domafo can be achieved. However, in some cases the uniformity of element 

sfrain energy density may not be achieved even if the mean compliance constrafot is 

active. As a result of this, the uniform strain energy density condition is not used fo 

optimization algorithms as a termination criterion, fo the proposed method, the 

performance-based optimization criterion is maximizing the performance index of a 

braced framework, which is written as 

C W 
maximize PL, = PAl) 

The performance fodex is used in the optimization algorithm to monitor the 
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optimization process, from which the optimal topology can be identified. 

7.5 DESIGN OPTIMIZATION PROCEDURE 

The design optimization process of bracmg systems is divided into two main stages, fo 

the first stage, after analyzing the unbraced steel framework with fmite elements, the 

members of a steel framework are designed for sfrength performance criteria by 

selecting commercial standard steel sections from databases, fo the second stage, a 

repeated finite element analysis and topology optimization cycle is undertaken for the 

framework braced by a continuum design domain until the termination criterion is 

satisfied. The main steps of the design optimization procedure are illustrated in Fig. 7.2, 

and summarized as follows: 

(1) Model the unbraced steel framework with beam elements. The loads, support 

conditions and material properties of the assumed steel sections are specified. 

(2) Perform a linear elastic finhe element analysis on the unbraced steel framework. 

(3) Size the members of the unbraced framework for sfrength performance criteria by 

selectfog commercial standard steel sections from databases. 

(4) Model the continuum design domafo with plane sfress elements. The 

discretization of foe contfouum design domain must be consistent with that of the 

steel framework. 

(5) Perform a linear elastic finhe element analysis on the braced framework. 

(6) Evaluate the performance of resulting bracing system usfog Eq. (7.10). For a 

braced framework under multiple loading cases, foe sfrafo energy density of foe 

braced framework under the most critical foadfog case must be used fo Eq. (7.10). 
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Model Unbraced Framework 

Analyze Unbraced Framework 

Size Members of Framework 

Model Continuum Domain 
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Resulting Bracing System 
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Density 

Remove R (%) Elements with the 
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Check Symmetry of System 

Save Current Braced Framework 

Plot/Y History and Select 
Optimal Bracing System 

End 

Fig. 7.2 Flowchart of design optimization procedure for bracmg systems 
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(7) Calculate the strain energy density of elements for each loadfog case. 

(8) Remove R (%) elements with the lowest strafo energy density from the contfouum 

design domain. 

(9) Check the symmetry of the bracing system under an initially symmetiical 

condition. 

(10) Save information for the current braced framework. 

(11) Repeat step (5) to (11) until the performance index is less than unity. 

(12) Plot the performance index history and select the optimal bracfog system. 

If the performance index of a bracing system is less than unity, its performance of 

resisting lateral loads is lower than that of the initial braced steel framework. Therefore, 

the iterative optimization process can be terminated when the performance index is less 

than unity. This termination criterion ensures that the optimal bracing system is included 

in the optimization history. It is desirable that the mean compliance constraint in terms 

of the drifts of the building is active at the optimum. However, it may not always be the 

case because the thickness of the continuum design domain significantly fofluences the 

efficiency of resultfog systems. To deal with this problem, shape and sizing optimization 

techniques can be used to ffolher optimize the bracing system until lateral drifts reach 

prescribed limits. Another way to handle this is to uniformly change the element 

thickness that leads to the satisfaction of the requfred system performance level. This 

can also be done by uniformly changfog the thickness of the continuum design domain 

to keep the mean compliance consframt active in the optimization process. However, the 

derivatives of the mean compliance consfraint with respect to the thickness have to be 

calculated. 

It is noted that continuum topology optimization is a generalized layout design method 
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for stmcfores. It may or may not result fo tmss-like optimal stmcfores. For practical 

purposes, some modifications to the optimal bracing system obtained may be necessary. 

It is also possible to select a bracfog system that meets the constmction and archhecmral 

requirements from the optimization history as the final design proposal. However, the 

performance of the selected bracfog system must be within an acceptable level. The 

performance index is a usefol tool in the selection of bracing systems for the design of 

muhistory steel building frameworks. 

7.6 ILLUSTRATIVE EXAMPLES 

7.6.1 Bracing System for Six-Story Steel Framework 

This example is to demonstrate the effectiveness of the proposed design optimization 

procedure for producing the best layout of a bracing system for a six-story steel building 

framework under multiple lateral loading cases. The result obtained is compared with 

the solution given by Mijar et al. (1998). A two-bay, six-story plane steel building 

framework shown in Fig. 7.3(a) is to be designed to confrol the lateral drifts. This 

unbraced framework was initially designed by Huang (1995) using standard steel 

sections under stress constrafots according to the American fostifote of Steel 

Constiaiction design code, fo Huang's design, the uniformly distributed load applied to 

floor beams was 14.59 kN/m and the wfod loads of 40.05 kN were apphed as horizontal 

point loads at each floor level. The wide flange sections used for 14 member groups 

shown fo Fig. 7.3(a) are hsted as W 8 x 21, W 8 x 28, W 10 x 26, W 12 x 26, W 14 x 

26, W 14 X 19, W 10 X 17, W 8 X 10, W 12 x 19, W 12 x 14, W 14 x 22, W 16 x 26, W 

16 X 31 and W 24 X 62. The lateral wind loads shown in Fig. 7.3(a) were used by Mijar 

et al. (1998) to find the bracing system for this framework. Under fois lateral loadfog, 

stresses in foe members of the unbraced framework may exceed the allowable sfress. 

Since wfod loads are often reversible, two lateral loading cases are considered in foe 
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present sfody. Lateral bracing systems fo multistory steel buildfogs are mafoly designed 

to resist lateral loads. Floor loads that are carried by beams and columns have a 

negligible effect on the layout of bracing systems so that they are not considered in the 

analysis. The steel framework itself is modeled using 342 linear beam elements with all 

moment connections. The unbraced framework is treated as a non-design domain fo 

which beam elements are not removed during the optimization process. The continuum 

design domain is discretized by 1620 four-node plane stress elements as shown fo Fig. 

7.3(b). The supports of the framework at points A, B and C are fixed. The Young's 

modulus of material E = 200 GPa, Poisson's ratio v = 0.3 and a uniform thickness t = 

0.0254 m are used for the continuum design domain. The maximum lateral 

displacement of the unbraced steel framework is 0.56 m. The element removal ratioi? = 

1% is used in the optimization process. 

The optimization history of the bracing system for the six-story steel framework is 

shown in Fig. 7.4. It can be seen that the bracing system gradually evolves towards a 

tmss-like stmcfore when elements with the lowest strain energy density are removed 

from the continuum design domain. All topologies obtained are symmetrical about the 

vertical axis of the frame as expected under the reversible wind loading conditions. The 

topology shown in Fig. 7.4(b) is similar to that shown in Fig. 7.4(c). 

The optimized topology of the bracmg system for this steel building frame given by 

Mijar et al. (1998) is regenerated here, as shown in Fig. 7.4(d). This topology was 

obtained by mfoimizing the mean compliance of the braced framework under a volume 

consfrafot that allowed the solid material to occupy up to 30% of the initial contfouum 

design domam. The maximum lateral displacement of the optimized bracfog system 

shown in Fig. 7.4(d) is 0.07 m. The material volume of the bracing system shown in Fig. 

7.4(c) is 22% of the initial continuum design domain, but its maximum lateral 

displacement is only 0.024 m. By using Eq. (7.10), the performance index of the bracing 

system shown in Fig. 7.4(c) is 1.15 whilst it is only 0.32 for the topology presented in 

Fig. 7.4(d). This indicates that the layout of bracing systems for multistory steel frames 

significantly affects the stmctural performance of lateral resistance systems. 
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It is possible to achieve mmimum-weight designs for bracing systems by usfog topology 

optimization techniques while lateral drifts are maintained withfo acceptable limits. The 

topology of the bracing system shown in Fig. 7.4(c) is foterpreted as the layout 

arrangement of bracing members illustrated in Fig. 7.5. This bracing system can be 

constmcted by using available standard steel sections from databases. 

Fig. 7.5 Layout of bracing system for the six-story steel framework 

7.6.2 Bracing System for the 12-Story Steel Framework 

The PBO method is used to generate an optimal bracfog system for a 3-bay, 12-story tall 

steel building framework shown in Fig. 7.6. The tall steel framework is subjected to two 

lateral wind-loadmg cases, i.e. one from the left and the ofoer from the right. Gravity 

loads are not considered in the analysis. The framework is fixed at points A, B, C and D. 

All beams and columns are rigidly connected. The framework itself is modeled using 

Q. Q. Liang: Performance-Based Optimization Method for Structural Topology and Shape Design 213 



Chapter 7: Layout Design of Bracmg Systems for Multistory Steel Frames 

684 linear beam elements. The Young's modulus £ = 200 GPa, shear modulus G = 7690 

MPa, and the material density p = 7850 kg / m^ are used for steel sections. A linear 

elastic finite element analysis on the unbraced framework is performed. The BHP hot 

rolled standard steel sections are selected from databases to size the members of the 

framework based on strength performance criteria. For practical purposes, beams are 

grouped together as having a common section for each floor whilst columns are grouped 

for every two stories. Sized members are summarized in Table 7.1. 
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Fig. 7.6 3-bay, 12-story steel building framework 
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Table 7.1 Member Sizes of the 12-Story Steel Building Framework 

Member No. 
(1) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Section 
(2) 

150 UB 18.0 
180 UB 18.1 
200 UB 29.8 
250 UB 27.3 
310 UB 40.4 
360 UB 50.7 
360 UB 56.7 
410 UB 53.7 
460 UB 67.1 
460 UB 74.6 

Member No. 
(3) 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Section 
(4) 

150 UC 23.7 
150 UC 37.2 
200 UC 46.2 
200 UC 59.5 
200 UC 52.2 
250 UC 72.9 
250 UC 89.5 
310 UC 96.8 
310UC118 
310UC137 

A continuum design domain with a uniform thickness oft = 0.025 m is used to brace the 

framework. The continuum design domain is divided into a 45 x 108 mesh using four-

node plane sfress elements. The discretization of the continuum design domain is 

consistent with that of the steel framework. The Young's modulus E = 200 GPa and 

Poisson's ratio v = 0.3 are used for the continuum design domain. The R = 2% is 

adopted in the optimization process. 

The maximum lateral displacement of the unbraced framework is 0.618 m, which 

exceeds the drift limit ofH I 400 (H is the total height of the framework). The overall 

behavior of a braced steel buildfog framework is like that of a cantilever stmcfore where 

beams and columns can be freated as stiffeners. The performance index history of the 

bracing system obtained by the proposed method is shown in Fig. 7.7. By elimfoating 

elements with the lowest sfrain energy density from the contfouum design domain, the 

performance index of the bracing system is gradually increased from unity to the 

maximum value in the optimization process. After reaching the peak, the performance 

index decreases if ffother elements are removed from the continuum design domain. 

The maximum performance index is 1.51. 

Fig. 7.8 shows the topology obtained at iteration 20 and the optimal topology obtained 
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at iteration 31. The optimal layout of the bracing system exhibits a large-scale discrete 

stmcfore. The optimal topology provides very usefol information for the stmcforal 

designer on which member of the framework should be stiffened by resizfog. Exterior 

columns from the ground level up to the fifth level are needed to be resized. The optimal 

topology of the bracing system for this 12-story steel buildfog framework can be 

interpreted as the bracing layout illustrated in Fig. 7.9, where columns that need to be 

resized are not shown Since the mean compliance constraint in terms of the lateral drift 

does not reach the acfoal limit at the optimum, sizfog techniques can be employed to 

ffother optimize the design using available standard steel sections. 

10 20 30 
Iteration 

40 50 

Fig. 7.7 Performance index history of bracing system 
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Fig. 7.8 Optimization history of bracing system for the 12-story steel frmaework 
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Fig. 7.9 Layout of bracfog system for the 12-story steel framework 
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7.7 CONCLUDING REMARKS 

fo this chapter, the Performance-Based Optimization method tailored for the minimum-

weight topology design of bracing systems for multistory steel buildfog frameworks 

under multiple lateral loading conditions has been presented. The proposed method 

allows for an unbraced steel building framework to be initially sized for sfrength 

performance criteria by selecting commercially available standard steel sections from 

databases. Bracing systems for multistory steel frameworks are developed on the basis 

of system performance criteria. The optimal topology of the bracing system is obtafoed 

by systematically removfog elements with the lowest sfrain energy density from a 

continuum design domain that is used to stiffen the framework while the performance-

based optimization criterion is satisfied. 

The proposed performance index is a usefol tool for the stmcforal designer in assisting 

the selection of the best topology for lateral bracfog systems when considering the 

stmcforal performance, aesthetic and constmction requirements. Examples presented 

have demonstrated that the design method can produce efficient bracing systems, which 

provide the stmcforal designer with usefol information on bracing and stiffening 

multistory steel building frameworks. 

The performance-based topology optimization method proposed has atfractive feafores 

such as clear in concept and simple fo mathematical formulation compared to other 

continuum topology optimization methods. The PBO method is suitable for use fo 

engineering practice in foe concepfoal layout design of bracing systems for multistory 

steel buildfog frameworks under lateral loads. 
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Chapter 8 

CONCLUSIONS 

8.1 SUMMARY 

The systematic development of the Performance-Based Optimization (PBO) method for 

topology and shape design of continuum stmcfores subject to sfress, displacement and 

overall stiffoess constraints have been presented in this thesis. The performance-based 

design concept has been incorporated into continuum topology and shape optimization, 

which is freated as the problem of improving the performance of continuum design 

domains. Based on the design sensitivity analysis, the element effective stress level, 

virfoal strain energy density and sfrain energy density have been proposed as element 

removal criteria. A set of performance indices has been developed for rankmg the 

performance of stmctural topologies and shapes produced by different stmctural 

optimization methods. These performance indices are used to monitor the optimization 

process and as termination criteria in optimization algorithms. Performance-based 

optimality criteria have been developed and proposed as the maximization of 

performance indices fo the optimization process. 

The PBO method has been forther developed for automatically generatfog optunal stmt-

and-tie models for the design and detailing of stmcforal concrete, which focludes 
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reinforced and prestressed concrete stmcfores. Developing stmt-and-tie models in 

stmcforal concrete is transformed into the topology optimization problem of contfouum 

stmcfores. It has been proposed to develop stmt-and-tie models fo stmctural concrete 

based on the linear elastic theory of cracked concrete for system performance criteria 

(stiffness) and to design concrete stmcfores based on component performance criteria 

(strength). Optimal stmt-and-tie models in reinforced concrete members, presfressed 

concrete beams and low-rise shearwalls have been investigated by the PBO technique. 

The proposed PBO method for stmt-and-tie modeling has been verified by analytical 

solutions and experimental evidence. 

The PBO method has also been forther developed for optimal topology design of 

bracing systems for multistory steel building frameworks. The proposed method allows 

for an unbraced steel building framework to be foitially designed for strength 

performance by selecting standard steel sections from databases. The optimal bracing 

system is generated by gradually removing elements with the lowest sfrain energy 

density from a continuum design domain, which is used to brace the framework. The 

PBO method can be used in the concepfoal layout design of bracing systems for 

multistory steel frameworks under multiple lateral loading conditions. 

h has been demonstrated that the PBO method is a rational, efficient and reliable design 

tool for practicing engineers in the topology and shape design of continuum stmctures. 

h offers not only concrete designers an automated tool for generating optimal stmt-and-

tie models in stmcforal concrete, but also steel designers an efficient tool for concepfoal 

layout design of bracmg systems. Performance indices and performance-based 

optunality criteria developed in this thesis can overcome problems fo many contfouum 

topology optunization methods, and can be focorporated in any continuum topology 

optimization methods to guarantee success in obtafoing globally optimal designs. 
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8.2 ACHIEVEMENTS 

This thesis has made many significant contributions to the fields of stmctural 

optimization, stmcforal concrete and steel stmcfores. These significant achievements are 

summarized as follows: 

(1) Developed the Performance-Based Optimization (PBO) method for folly sfressed 

topology design of continuum stmcfores. The PBO method can produce folly 

stressed topologies at minimum weight. 

(2) Derived a strength performance index for evaluatfog the performance of stmctural 

topologies with stress constraints. The performance index is used in the PBO 

method to monitor the optimization history. 

(3) Proposed performance-based optimality criteria based on element effective stress 

levels for identifying the global optimum in the optimization process. 

Performance-based optimality criteria can be incorporated into any stress-based 

continuum topology optimization methods, such as the soft kill option (Mattheck 

1998), the evolutionary stmcforal optimization (Xie and Steven 1993), and the 

mle-based optimization method (Seireg and Rodriguez 1997). 

(4) Developed the PBO method for topology and shape design of continuum 

stmcfores for displacement performance. 

(5) Derived two performance fodices for evaluatfog the performance of topologies 

and shapes of plane sfress stmctines and of bendmg plates subject to displacement 

constraints. 

(6) Proposed performance-based optimality criteria for identifying the global 

optimum of stmctures with displacement consfraints in the optunization process. 

Performance-based optimality criteria can be incorporated into any continuum 

topology optimization methods for stmcfores with displacement constrafots, such 
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as the hard kill optimization method (Afrek 1989), the evolutionary stmcforal 

optimization method (Chu et al. 1996), and the density fimction approach (Yang 

1997). 

(7) Developed the PBO method for topology design of continuum stmctures for 

overall stiffoess performance. 

(8) Derived two performance fodices for evaluating the performance of stmcmral 

topologies of plane stress stmcfores and of bendfog plates with overall stiffoess 

constraint. 

(9) Proposed performance-based optimality criteria for identifyfog the optunum of 

contmuum stmcfores with overall stiffoess consfrafot in the optimization process. 

Performance-based optimality criteria can be incorporated into any continuum 

topology optimization methods for stmctures with overall stiffoess consideration, 

such as the HBO method (Bendsoe 1995; Tenek and Hagiwara 1993; Youn and 

Park 1997; Krog and Ofooff 1999), the density fonction approach (Yang 1997), 

and the topology optimization approach (Swan and Kosaka 1997). 

(10) Developed the PBO method for stmcmres with displacement and overall stiffoess 

constraints info a rational, efficient and reliable tool for automatically generating 

optimal stmt-and-tie models for the design and detailfog of stmctural concrete. 

The PBO mefood is also a usefol tool for concrete researchers for quantifyfog the 

shear behavior of stmctural concrete. The PBO method for stmt-and-tie modelfog 

of stmcforal concrete would significantiy unprove the performance of concrete 

stmcfores, and thus is suitable for inclusion in concrete model codes, such as the 

Asian Concrete Model Code (ICCMC 1999) and AS 3600 (1994). 

(11) Proposed the PBO method for optimal topology design of bracing systems for 

multistory steel building frameworks with overall stiffoess constramt under 

multiple lateral loading conditions. 
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8.3 FURTHER RESEARCH 

The proposed PBO method is an efficient tool for topology and shape design of 

continuum stmcfores. Further research is still needed to make h an integrated, general 

and user-friendly design tool for practicing engfoeers. The reconunendations for fmther 

research are summarized as follows: 

4 

(1) Further research should focus on the development of the PBO method for 

topology, shape and sizing design of continuum stmcmres subject to the 

combination of sfress, displacement and overall stiffness consframts. Optimal 

topology of a stmcforal system is firstly generated on the basis of overall stiffoess 

performance criteria. The optimal topology obtained is forther modified by shape 

and sizing optimization techniques to meet stress and displacement requirements. 

(2) Extend the PBO method to dynamic and 3D problems. 

(3) Develop a technique that can eliminate the effect of finite element meshes on the 

optimal topologies and shapes. 

(4) focorporate smoothing techniques into the PBO method for post-processing. 

(5) Develop approximate techniques that can significantly reduce the computation 

time. 

(6) focorporate constmction consfrafots into the PBO method. 

Q. Q. Liang: Performance-Based Optimization Method for Stmctural Topology and Shape Design 224 



References 

REFERENCES 

Achtziger, W. (1993). "Minimax comphance tmss topology subject to multiple 

loading." In Topology Design of Structures, M.P. Bends0e and C.A. Mota Soares (eds), 

Kluwer Academic Publishers, Dordrecht, 43-54. 

Achtziger, W., Bends0e, M. P., Ben-Tal, A. and Zowe, J. (1992). "Equivalent 

displacement based formulation for maximum strength tmss topology design." IMPACT 

ofComp. in Sci. and Engng, 4, 315-345. 

Alshegeir, A. and Ramirez, J. (1992). "Computer graphics in detailing stmt-tie models." 

Journal of Computing in Civil Engineering, ASCE, 6(2), 220-232. 

AS 3600. (1994). Concrete Structures, Standards Australia, Sydney. 

ASCE-ACI Committee 445 on Shear and Torsion. (1998). "Recent approaches to shear 

design of stmctural concrete." Journal of Structural Engineering, ASCE, 124(12), 

1375-1417. 

Ashby, M. F. (1992). Materials Selection in Mechanical Design. Pergamon Press, 

Oxford. 

Ashley, H. (1982). "On making things the best-Aeronautical uses of optimization." 

Journal of Aircraft, 19(1), 5-28. 

Afrek, E. (1989). "Shape: a program for shape optimization of continuum stmctures." fo 

Computer Aided Optimization Design of Structures: Applications, C.A. Brebbia and S. 

Hernandez (eds). Computational Mechanics Publications, Southampton, 135-144. 

Baker, W. (1990). "Sizing technique for lateral systems in multi-story steel buildings." 

Proc of the 4^ World Congress on Tall Buildings, Council on Tall Buildings and Urban 

Habitat, Hong Kong, 868-875. 

Q. Q. Liang: Performance-Based Optimization Method for Stmctural Topology and Shape Design 225 



References 

Barnes, M. R., Topping, B. H. V. and Wakefield, D. S. (1977). "Aspects of form-

finding by dynamic relaxation." International Conference on the Behaviour of Slender 

Structures, London, September. 

Baumgarfoer, A. Harzheim, L. and Mattheck, C. (1992). "SKO (soft kill option): the 

biological way to find an optimum stmcfore topology." International Journal of 

Fatigue, 14(6), 387-393. 

Bends0e, M. P. (1988). "Composite material as a basis for generating optimal 

topologies in shape design." fo Structural Optimization (Proc. lUTAM Symp. 

Melboume), G.I.N. Rozvany and B.L. Karihaloo (eds), Kluwer Academic Publishers, 

Dordrecht, 31-37. 

Bends0e, M. P. (1989). "Optimal shape design as a material distribution problem." 

Structural Optimization, 1, 193-202. 

Bends0e, M. P. (1995). Optimization of Structural Topology, Shape and Material. 

Springer-Verlag, Berlin. 

Bends0e, M. P. and Ben-Tal, A. (1993). "Tmss topology optimization by a 

displacement based optimality criterion approach." fo Optimization of Large Structural 

Systems, G.I.N. Rozvany (ed), Kluwer Academic Publishers, Dordrecht, 1, 139-155. 

Bends0e, M. P., Ben-Tal, A. and Haftka, R. T. (1991). "New displacement-based 

mefood for topology design." fo Proc AlAA/ASME/ASCE/AHS/ASC 32""^ Stru. Struct 

Dyn Mat Conf (Baltimore MD), AIAA, Wasfongton DC. 

Bends0e, M. P. and Kikuchi, N. (1988). "Generating optimal topologies in stmcforal 

design using a homogemzation method." Computer Methods in Applied Mechanics and 

Engineering, 71, 197-224. 

Q. Q. Liang: Performance-Based Optimization Method for Structural Topology and Shape Design 226 



References 

Bendsoe, M. P., Diaz, A. R., Lipton, R. and Taylor, J. E. (1995). "Optimal design of 

material properties and material distribution for multiple loadmg conditions." 

International Journal of Numerical Methods in Engineering, 35, 1449-1170. 

Bends0e, M. P. and Mota Soares, C. A. (1993). Topology Design of Structures. Kluwer 

Academic Publishers, Dordrecht. 

Benjamin, J. R. and Wilhams, H. A. (1957). "The behavior of one-story reinforced 

concrete shear walls." Journal of Structural Division, ASCE, 83(ST3), 1254(1-49). 

Ben-Tal, A. and Bends0e, M. P. (1993). "A new method for optimal tmss topology 

design." SIAMJ Optim. 3, 323-358. 

Biondini, F., Bontempi, F. and Malerba, P. G. (1998). "Optimization of sfrut-and-tie 

models in reinforced concrete sttnicttues." fo Proceedings of the Australasian 

Conference on Structural Optimization, Sydney, Australia, 115-122. 

Boiten, R. G. (1963). "Mechanics of instmmentation." Proc Instn Mech. Engrs, 177, 

269. 

Burgess, S. C. (1998a). "The ranking of efficiency of sttxicforal layouts using form 

factors. Part 1: design for stiffness." Proc Instn Mech. Engrs, Pari C, J Mech. Engng 

5c/. 212(C2), 117-128. 

Burgess, S. C. (1998b). "The ranking of efficiency of stmcforal layouts usfog form 

factors. Part 2: design for sfrength." Proc Instn Mech. Engrs, Pari C, J Mech. Engng 

Sci., 212(C2), 129-140. 

CEB (1987). CEB-FIP Model Code for Concrete Structures. Comite Euro-fotemational 

du Beton (CEB). 

Q. Q. Liang: Performance-Based Optimization Method for Smictural Topology and Shape Design 227 



References 

Chan, C. -M., Grierson, D. E. and Sherboume, A. N. (1995). "Automatic optunal design 

of tall steel building frameworks." Journal of Structural Engineering, ASCE, 121(5), 

838-847. 

Chan, H. S. Y. (1960). "The design of Michell optimum sfoicfores." CoUege of 

Aeronautics, Cranfield, UK, Report No. 142. 

Cheng, K. T. and Olhoff, N. (1982). "An investigation concerning optimal design of 

solid elastic plates." International Journal of Solids and Structures, 16, 305-323. 

Chu, D. N., Xie, Y. M., Hira, A. and Steven, G. P. (1996). "Evolutionary stmcttiral 

optimization for problems with stiffness constraints." Finite Elements inAnalysis and 

Design, 21, 239-251. 

Cohn, M. Z. (1993). "Theory and practice of stmctural optimization." fo Optimization 

of Large Structural Systems, G. I. N. Rozvany (ed), Kluwer Academic Publishers, 

Dordrecht, The Netherlands, 2, 843-862. 

Cohn, M. Z. and Dinovitzer, A. S. (1994). "Application of stmcmral optimization." 

Journal of Structural Engineering, ASCE, 120(2), 617-650. 

Collins, M. P. and Mitchell, D. (1980). "Shear and torsion design of presfressed and 

non-prestressed concrete beams." PCI Journal, 25(5), 32-100. 

Cox, H. L. (1956). The Design of Structures of Least Weight Pergamon, London. 

Diaz, A. R. and Bends0e, M. P. (1992). "Shape optimization of stt^cfores for multiple 

loading condition using a homogemzation method." Structural Optimization, 4, 17-22. 

Diaz, A. R. and Kikuchi, N. (1992). "Solution to shape and topology eigenvalue 

optimization problems usfog a homogenization method." International Journal of 

Numerical Methods in Engineering, 35, 1487-1502. 

Q. Q. Liang: Performance-Based Optimization Method for Stmctural Topology and Shape Design 228 



References ^ ^ ^ 

Ding, Y. (1986). "Shape optimization of stmcfores." Computers & Structures, 24(6), 

985-1004. 

Dobbs, M. W. and Felton, L. P. (1969). "Optimization of tmss geometry." Journal of 

Structural Division, ASCE, 95, 2105-2118. 

Dom, W. S., Gomory, R. E., Greenberg, H. J. (1964). "Automatic design of optimal 

stmctures." J. de Mecanique, 3(Mars). 

Gea, H. C. (1996). "Topology optimization: a new microstmcfore-based design domain 

method." Computers & Structures, 61(5), 781-788. 

Haftka, R. T. and Grandhi, R. V. (1986). "Stmcforal shape optimization—a survey." 

Computer Methods in Applied Mechanics and Engineering, 57(1), 91-106. 

Haftka, R. T. and Giirdal, Z. (1992). Elements of Structural Optimization, 3^ edn., 

Kluwer Academic Publishers, Dordrecht. 

Hassani, B. and Hinton, E. (1999). Homogenization and Structural Topology 

Optimization. Springer-Verlag, Berlin. 

Haug, E. J., Choi, K. K. and Komkov, V. (1986). Design Sensitivity Analysis of 

Structural Systems. Academic Press, New York. 

Hemp, W. S. (1958). "Theory of sttucttnal design." College of Aeronautics, Granfield, 

Report No. 115. 

Hemp, W. S. (1964). "Sfodies in foe theory of Michell sttiicttires." fo Proceedings of the 

International Congress of Applied Mechanics, Mubich, West Germany. 

Hemp, W. S. (1973). Optimum Structures. Clarendon Press, Oxford. 

Q. Q. Liang: Performance-Based Optimization Method for Stractural Topology and Shape Design 229 



References ^ ^ 

Hinton, E. and Sienz, J. (1995). "Fully stressed topological design of sttnctures using an 

evolutionary procedure." Engineering Computations, 12, 229-244. 

Huang, M. -W. (1995). "Algorithms for mixed continuous-discrete variable problems in 

stmcforal optimization." PhD Dissertation, University of Iowa, Iowa City, Iowa, USA. 

lABSE (1979). lABSE Colloquium on Plasticity in Reinforced Concrete, Copenhagen 

1979, Final Report, lABSE V. 29, fotemational Association for Bridge and Sttaicforal 

Engineering (lABSE). 

ICCMC (1999). Asian Concrete Model Code, fotemational Committee on Concrete 

Model Code (ICCMC). 

Kikuchi, N, Chung, K. Y., Torigaki, T. and Taylor, J. E, (1986). "Adative fmite element 

methods for shape optimization of linear elastic stmcfores." Computer Methods in 

Applied Mechanics and Engineering, 57( 1), 67-91. 

Kim, C. K., Kim, H. S., Hwang, J. S. and Hong, S. M. (1998). "Stiffoess-based optimal 

design of tall steel frameworks subject to lateral loads." Structural Optimization, 15, 

180-186. 

Kirsch, U. (1982). "Optimal design based on approximate scaling." Journal of 

Structural Engineering, ASCE, 108(ST4), 888-909. 

Kirsch, U. (1989). "Optimal topologies of sttuctures." Applied Mechanics Review, 

ASME, 42(8), 223-239. 

Kirsch, U. (1993a). "Fundamental properties of optimal topologies." In Topology 

Design of Structures, M.P. Bends0e and C.A. Mota Soares (eds), Kluwer Academic 

Publishers, Dordrecht, 3-18. 

Q. Q. Liang: Performance-Based Optimization Method for Stractural Topology and Shape Design 230 



References 

Kirsch, U. (1993b). Structural Optimization: Fundamentals and Applications, Springer-

Verlag, Berlin. 

Kong, F. K. and Sharp, G. R. (1973). "Shear sfrength of lightweight reinforced concrete 

deep beams with web openings." The structural Engineer, 51(8), 267-275. 

Kong, F. K. and Sharp, G. R. (1977). "Stmctural idealization for deep beams with web 

openings." Magazine of Concrete Research, 29(99), 81-91. 

Krog, L. A. and Olhoff, N. (1999). "Optimum topology and reinforcement design of 

disk and plate stmcfores with multiple stiffoess and eigenfrequency objectives." 

Computers & Structures, 72, 535-563. 

Kumar, P. (1978). "Optimal force fransmission in reinforced concrete deep beams," 

Computers & Structures, 8(2), 223-229. 

Kupfer, H. (1964). "Generalization of Morsch's tmss analogy using principle of 

minimum strain energy." CEB Bulletin d'information. No. 40, Comite Ero-fotemational 

du Beton, No. 40, 44-57. 

Lampert, P., and Thuriimann, B. (1971). "Ultimate strength and design of reinforced 

concrete beams in torsion and bending." Publication No. 31 -\, lABSE, Zurich, 107-131. 

Leonhardt, F. (1965). "Reducing the shear reinforcement in reinforced concrete beams 

and slabs." Magazine of Concrete Research, 17(53), 187. 

Lev, O. ed. (1981). Structural Optimization. ASCE, New York. 

Liang, Q. Q. and Steven, G. P. (2001a). "A performance-based optimization method for 

topology design of continuum sttncttu-es with mean compliance consfraints." Computer 

Methods in Applied Mechanics and Engineering, 2001. (In press) 

Q. Q. Liang: Performance-Based Optimization Method for Stractural Topology and Shape Design 231 



References 

Liang, Q. Q. and Steven, G. P. (2001b). "Performance-based optimization for sfoit-tie 

modeling of stmcforal concrete." Journal of Structural Engineering, ASCE, 2001. 

(Submitted for publication) 

Liang, Q. Q., Xie, Y. M. and Steven, G. P. (1999a). "Optimal topology selection of 

continuum stmcfores with stress and displacement consfraints." fo Proceedings of the 

Seventh East Asia-Pacific Conference on Structural Engineering and Construction, 

Kochi, Japan, 560-565. 

Liang, Q. Q., Xie, Y. M. and Steven, G. P. (1999b). "Optimal selection of topologies for 

the minimum-weight design of continuum stmcfores with sfress consfraints." 

Proceedings of the fostifotion of Mechanical Engfoeers, Part C, Journal of Mechanical 

Engineering Science, 213(C8), 755-762. 

Liang, Q. Q., Xie, Y. M. and Steven, G. P. (1999d). "Optimal sttnt-and-tie models in 

stmcforal concrete members." fo Optimization and Control in Civil and Structural 

Engineering, Proceedings of the Seventh International Conference on Civil and 

Structural Engineering Computing, Oxford, England, B.H.V. Topping and B. Kumar 

(eds), Civil-Comp Press, 1-8. 

Liang, Q. Q., Xie, Y. M. and Steven, G. P. (2000a). "Optimal topology selection of 

continuum stmcfores with displacement constraints." Computers & Structures, 77(6), 

635-644. 

Liang, Q. Q., Xie, Y. M. and Steven, G. P. (2000b). "Optimal topology design of 

bracing systems for muhistory steel frames." Journal of Structural Engineering, ASCE, 

126(7), 823-829. 

Liang, Q. Q., Xie, Y. M. and Steven, G. P. (2000c). "Topology optunization of stmt-

and-tie models in reinforced concrete sttiicfores using an evolutionary procedure." ACI 

Structural Journal, 97(2), 322-330. 

Q. Q. Liang: Performance-Based Optimization Method for Stractural Topology and Shape Design 232 



References 

Liang, Q. Q., Xie, Y. M. and Steven, G. P. (2001a). "A performance index for topology 

and shape optimization of plate bending problems with displacement constraints." 

Structural and Multidisciplinary Optimization, 2001, 21(5), 393-399. 

Liang, Q. Q., Xie, Y. M. and Steven, G. P. (2001b). "Generating optimal sfoif-and-tie 

models in prestressed concrete beams by performance-based optinuzation." ACI 

Structural Journal, 98(2), 226-232. 

Liang, Q. Q., Xie, Y. M., Steven, G. P. and Schmidt, L.C. (1999c). "Topology 

optimization of stmt-and-tie models in non-flexural reinforced concrete members." fo 

Proceedings of the International Conference on Mechanics of Structures, Materials and 

Systems, Wollongong, Ausfraha, 309-315. 

Lurie, K. A. and Cherkaev, A. V. (1976). "Prager theorem application to optimal design 

ofthin plates." M r r (Mechanics of Solids), 11, 157-159. 

Ma, Z. D., Kikuchi, N., Cheng, H. C. (1995). "Topological design for vibrating 

stmcfores." Computer Methods in Applied Mechanics and Engineering, 121, 259-280. 

Ma, Z. D., Kikuchi, N., Cheng, H. C. and Hagiwara, I. (1993). "Topology and shape 

optimization methods for stmcforal dynamic problems." In Optimal Design with 

Advanced Materials, P. Pederson (ed), Elsevier, Oxford, 247-261. 

Majid, K. I. and Elliott, D. W. C. (1973a). "Topological design of pm-jofoted sttoicfores 

by non-linear programming." Proc. Instn Civ. Engrs, 55, Pt. 2, 129-149. 

Majid, K. I. and Elhott, D. W. C. (1973b). "Forces and deflections in changing 

stmctures." The Structural Engineer, 51(3), 93-101. 

Marti, P. (1985). "Basic tools of reinforced concrete beam design." ACI Structural 

Journal, 82(1), 46-56. 

Q. Q. Liang: Performance-Based Optimization Method for Stractural Topology and Shape Design 233 



References 

Marti, P. (1999). "A simple, consistent approach to stmcforal concrete." The Structural 

Engineer, 77(9), 20-26. 

Mattheck, C. (1998). Design in Nature: Learning from Trees, Springer-Verlag, Berlin. 

Mattheck, C. and Burkhardt, S. (1990). "A new method of stmcforal shape optimization 

based on biological growth." International Journal of Fatigue, May, 185-190. 

Maxwell, J. C. (1890). "On reciprocal figures, frames and diagrams of forces." fo 

Scientific Papers, Cambridge University Press, UK, 2, 175-177. 

Michell, A. G. M. (1904). "The limits of economy of material in frame-stmcfores." Phil. 

Mag 8, 589-597. 

Mijar, A. R., Swan, C. C, Arora, J. S. and Kosaka, I. (1998). "Continuum topology 

optimization for concept design of frame bracing systems." Journal of Structural 

Engineering, ASCE, 124(5), 541-550. 

Mish, K. D. (1994). "Stt^t-and-tie modeling of reinforced concrete: a case sttidy in 

interactive visualization," fo Proc. National Science Foundation Workshop on 

Visualization Applications in Earthquake Engineering, Cfoco, California. 

Mlejnek, H. P. and Schirrmacher, R. (1993). "An engineer's approach to optimal 

material disttibution and shape finding." Computer Methods in Applied Mechanics and 

Engineering, 106, 1-26. 

Morris, A. J. (ed) (1982). Foundations of Structural Optimization: A Unified Approach. 

John Wiley & Sons, New York. 

Morsch, E. (1920, 1922). Der Eisenbetonbau-Seine Theorie und Anwendung 

(Reinforced concrete Construction-Theory and Application), 5* Edition, Wittwer, 

Sfottgart, l(Part 1), 2(Part 2). 

Q. Q. Liang: Performance-Based Optimization Method for Stractural Topology and Shape Design 234 



References 

Nagtegaal, J. C. and Prager, W. (1973). "Optimal layout of a tmss for ahemative loads." 

International Journal of Mechanical Science, 15, 583-592. 

Nielsen, M. P. (1984). Limit Analysis and Concrete Plasticity. Prentice-Hall. 

Oda, J. (1977). "On a technique to obtain an optimum strength shape by the fimte 

element method." Bulletin oftheJSME, 20(140), 160-167. 

Oda, J. and Yamazaki, K. (1977). "On a technique to obtain an optimum sfrength shape 

of an axisynunetric body by the finite element method." Bulletin of the JSME, 20(150), 

1524-1532. 

Oda, J. and Yamazaki, K. (1979). "On a technique to obtain an optimum sfrength shape 

by the finite element method: application to the problems under body force." Bulletin of 

the JSME, 22(164), 131-140. 

Olhoff, N. (1975). "On singularities, local optima and formulation of stiffeners in 

optimal design of plates." fo Optimization in Structural Design, Sawczuk, A. and Mroz, 

Z. (eds). Springer-Veriag, New York, 82-103. 

Owen, J. B. B. (1975). The Analysis and Design of Light Structures. Edward Arnold, 

London. 

Parkes, E. W. (1974). Braced Frameworks. Pergamon, London. 

Prager, W. (1974). "A note on discretized Michell stmctures." Computer Methods in 

Applied Mechanics and Engineering, 3, 349-355. 

Prager, W. (1978). "Nearly optimal design of tmsses." Computers & Structures, 8, 451-

454. 

Q. Q. Liang: Performance-Based Optimization Method for Stractural Topology and Shape Design 235 



References 

Prager, W. and Rozvany, G. I. N. (1977). "Optimal layout of grillages." Journal of 

Structural Mechanics, ASCE, 5, 1-18. 

Prager, W. and Shield, R. T. (1967). "A general theory of optimal plastic design." 

Journal of Applied Mechanics, 34, 184-186. 

Querin, O. M. (1997). Evolutionary Structural Optimization: Stress Based Formulation 

and Implementation. PhD Thesis, Department of Aeronautical Engineering, The 

University of Sydney, Australia. 

Querin, O. M., Steven, G. P. and Xie, Y. M. (1998). "Evolutionary sfoicforal 

optimization using a bi-directional algorithm." Engineering Computations, 15, 1031-

1048. 

Ramirez, J. A. (1994). "Stmt-and-tie design of pretensioned concrete members," ACI 

Structural Journal 91(4), 572-578. 

Ramirez, J. A., and Breen, J. E. (1991). "Evaluation of a modified tmss-model approach 

for beams in shear." ACI Structural Journal, 88(5), 562-571. 

Ramm, E., Bletzinger, K. U., Reitinger, R. and Maute, K. (1994). "The challenge of 

stmcforal optimization." In Advances in Structural Optimization, B. H. V. Topping and 

M. Papadrakakis (eds), Civil-Comp Press, Scotland, 27-52. 

Reinschmidt, K. F. and Russell, A. D. (1974). "Applications of linear programming in 

stmctural layout and optimization." Computers & Structures, 4, 855-869. 

Ringertz, U. T. (1985). "On topology optimization of foisses." Engineering 

Optimization, 9, 209-218. 

Ritter, W. (1899). "Die bauweise henebique." Schweizerische Bauzeitung, 33(7), 

Ziirich, 59-61. 

Q. Q. Liang: Performance-Based Optimization Method for Stractural Topology and Shape Design 236 



References 

Rodriguez, J. and Seireg, A. (1985). "Optimizing the shapes of sttncfores via a mle-

based computer program." Computing in Mechanical Engineering ASME, 40(1), 20-

29. 

Rousselet, B. and Haug, E. J. (1983). "Design sensitivity analysis in sfoicforal 

mechanics, III. Effects of shape variation." Journal of Structural Mechanics, ASCE, 

10(3), 273-310. 

Rozvany, G. I. N. (1976). Optimum Design of Flexural Systems. Pergamon, Oxford. 

Rozvany, G. I. N. (1981). "Optimality criteria for grids, shells and arches." fo 

Optimization of Distribution Parameter Structures, Proc. NATO-ASl, Sijthoff and 

Noordhoff, Iowa City, 112-151. 

Rozvany, G. I. N. (1984). "Sttaictural layout theory, the present state of knowledge." fo 

New Directions in Optimum Structural Design, Wiley, Chichester, U.K., 167-196. 

Rozvany, G. I. N. (1989). Structural Design via Optimality Criteria. Kluwer, Dordrecht. 

Rozvany, G. I. N., Bends0e, M. P. and Kirsch, U. (1995). "Layout optimization of 

stmctures." Applied Mechanics Review, 48, 41-119. 

Rozvany, G. I. N. and Hill, R. H. (1978). "Optimal plastic design: superposition 

principles and bounds on the minimum cost." Computer Methods in Applied Mechanics 

and Engineering, 13, 151-173. 

Rozvany, G. I. N. and Ong, T. G. (1986). "A general theory of optimal layouts for 

elastic stmctures." Journal of Engineering Mechanics, ASCE, 112, 851-857. 

Rozvany, G. I. N. and Wang, C. M. (1983). "Extensions of Prager's layout theory." fo 

Optimization in Structural Design, H. Eschenauer and N. Olhoff (eds), 

Wissenschafsverlag, Manifoeim, 103-110. 

Q. Q. Liang: Performance-Based Optimization Method for Stractural Topology and Shape Design 237 



References 

Rozvany, G. I. N., Zhou, M. (1991). "Apphcations of the COC method in layout 

optimization." fo Proc. Int. Conf on Engineering optimization in Design Processes, H. 

Eschenauer, C. Mattheck andN. Ofooff (eds). Springer-Verlag, Berlin, 59-70. 

Rozvany, G. I. N., Zhou, M. and Birker, T. (1992). "Generahzed shape optimization 

without homogenization." Structural Optimization, 4, 250-252. 

Rozvany, G. I. N., Zhou, M., Birker, T. and Lewinski, T. (1994). "Discretized mefoods 

for topology optimization." fo Discrete Structural Optimization, W. Gutkowski and J. 

Bauer (eds). Springer-Verlag, Berlin. 

Russell, A. D. and Reinschmidt, K. F. (1971). Dicussion on "Optimal design of ttnsses 

for ultimate loads", Lapay, W.S. and Goble, G.G., Journal of Structural Division, 

ASCE, 97(ST9), 2437-24. 

Saka, M. P. (1980). "Shape optimization of tmsses." Journal of Structural Division, 

ASCE, 106(ST5), 1155-1174. 

Sanders, D. H. and Breen, J. E. (1997). "Post-tensioned anchorage zone with single 

straight concentric anchorages," ACI Structural Journal, 94(2), 146-158. 

Sankaranarayanan, S., Haftka, R. T. and Kapania, R. K. (1992). "Tmss topology 

optimization with simultaneous analysis and design." fo Proc. 33"^"^ 

AlAA/ASME/ASCE/AHS/ASC Struct. Dyn Mat Conf (Dallas), AIAA, Washington DC, 

2576-2585. 

Schmidt, L. A. (1960). "Stmctural design by systematic synthesis." fo Proc. of the 2"'' 

National Conference on Electronic Computation, ASCE, Pittsburgh, 79-126. 

Schlaich, J. and Schafer, K. (1991). "Design and detailfog of sttiicforal concrete using 

stmt-and-tie models." The Structural Engineer, 69(6), 113-125, 

Q. Q. Liang: Performance-Based Optimization Method for Stractural Topology and Shape Design 238 



References 

Schlaich, J., Schafer, K. and Jennewein, M. (1987). "Toward a consistent design of 

stmcforal concrete." PCI Journal, 32(3), 74-150. 

Seireg, A. A. and Rodriguez, J. (1997). Optimizing the Shape of Mechanical Elements 

and Structures. Marcel Dekker, foe. 

Spillers, W. R. and Lev, O. (1971). "Design for two loading conditions." International 

Journal of Solids and Structures, 7, 1261-1267. 

Steven, G. P., Querin, O. M., Gan, H. and Xie, Y. M. (eds). (1998). Structural 

Optimization: Proc. Australasian Conf. On Structural Optimization, Oxbridge Press, 

Melboume. 

Suzuki, K. and Kikuchi, N. (1991). "A homogenization method for shape and topology 

optimization." Computer Methods in Applied Mechanics and Engineering, 93, 291-318. 

Swan, C. C. and Kosaka, I. (1997). "Voigt-Reuss topology optimization for stmcfores 

with linear elastic material behaviours." International Journal of Numerical Methods in 

Engineering, 40, 3033-3057. 

Taranath, B. S. (1988). Structural Analysis and Design of Tall Buildings. McGraw-Hill, 

foe. New York. 

Tenek, L. H. and Hagiwara, I. (1993). "Static and vibrational shape and topology 

optimization using homogemzation and mathematical programming." Computer 

Methods in Applied Mechanics and Engineering, 109, 143-154. 

Thomsen, J. (1991). "Optimization of composite discs." Structural Optimization, 3, 89-

98. 

Q. Q. Liang: Performance-Based Optimization Method for Stractural Topology and Shape Design 239 



References 

Thiirlimann, B., Marti, P., Pralong, J., Ritz, P. and Zimmerli, B. (1983). "Voriesung 

zum Fortbildungskurs for Bauingemeure." fostifot for Baustatik und Konstruktion ETH 

Zurich. 

Topping, B. H. V. (1978). Form-Finding of Modular Space Structures using Dynamic 

Relaxation. PhD Thesis, The City University, London. 

Topping, B. H. V. (1983). "Shape optimization of skeletal stmcfores: a review." Journal 

of Structural Engineering ASCE, 109(8), 1933-1951. 

Topping, B. H. V. (1993). "Topology design of discrete stmctures." fo Topology Design 

of Structures, M.P. Bends0e and C.A. Mota Soares (eds), Kluwer Academic Publishers, 

Dordrecht, 517-534. 

Umetani, Y. and Hirai, S. (1978). "Shape optimization for beams subject to 

displacement restrictions on the basis of the growing-reforming procedure." Bulletin of 

the JSME, 21(157), 1113-1119. 

Walther, F. and Mattheck, C. (1993). "Local stiffening and sustaining of shell and plate 

sttiictures by SKO and CAO." Proc of InL Conf on Structural Optimization, 

Computational Mechanics, Southampton, U.K., 181-188. 

Weaver, P. M. and Ashby, M. F. (1996). "The optimal selection of material and section-

shape."/oMrna/o/£'ngmeermgZ)ej/g«, 7(2), 129-150. 

Wu, C. Y. (1993). Automatic Rule-Based Shape Optimization of Two-Dimensional 

Structures Subjected to Static Loading Body Forces and Impact PhD Thesis, 

University of Florida-GainesviUe, USA. 

Xie, Y. M. and Steven, G. P. (1993). "A simple evolutionary procedure for stmcforal 

optimization." Computers & Structures, 49(5), 885-896. 

Q. Q. Liang: Performance-Based Optimization Method for Stractural Topology and Shape Design 240 



References 

Xie, Y. M. and Steven, G. P. (1994a). "Optimal design of multiple load case stmctures 

using an evolutionary procedure." Engineering Computations, 11, 295-302. 

Xie, Y. M. and Steven, G. P. (1994b). "A simple approach to stmctural frequency 

optimization." Computers & Structures, 53(6), 1487-1491. 

Xie, Y. M. and Steven, G. P. (1996). "Evolutionary stmcforal optimization for dynamic 

problems." Computers & Structures, 58, 1067-1073. 

Xie, Y. M. and Steven, G. P. (1997). Evolutionary Structural Optimization. Springer-

Verlag, Berlin. 

Yang, R. J. (1997). "Multidiscipline topology optimization." Computers & Structures, 

63(6), 1205-1212. 

Yang, R. J. and Chuang, C. H. (1994). "Optimal topology design using linear 

programming." Computers & Structures, 52(2), 265-275. 

Yang, X. Y., Xie, Y. M., Steven, G. P. and Querin, O. M. (1998). "Bi-directional 

evolutionary method for stiffoess optimization." fo Proc. of the Seventh 

AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, 

St. Louis, USA, 1449-1457. 

Youn, S. -K. and Park, S. -H. (1997). "A sttidy on the shape exfraction process in the 

stt^cttu-al topology optimization using homogenized material." Computers & 

Structures, 62(3), 527-538. 

Yun, Y. M. (2000). "Nonlinear stt^t-and-fie model approach for sttiicforal concrete." 

ACI Structural Journal 97(4), 581-590. 

Q. Q. Liang: Performance-Based Optimization Method for Smictural Topology and Shape Design 241 



References 

Zhao, C. B., Hornby, P., Steven, G. P. and Ix, Y. M. (1998). "A generahzed 

evolutionary method for numerical topology optimization of sttnctures under static 

loading conditions." Structural Optimization, 15, 251-260. 

Zhou, M. and Rozvany, G. I. N. (1992). "DCOC: an optimality criteria method for large 

systems. Part I: theory." Structural Optimization, 5, 12-25. 

Zhou, M. and Rozvany, G. I. N. (1993). "DCOC: an optimality criteria method for large 

systems. Part II: algorithm." Structural Optimization, 6, 250-262. 

Zienkiewicz, O. C. and Campbell, J. S. (1973). "Shape optimization and sequential 

linear programming." In Optimum Structural Design, R. H. Gallagher and O. C. 

Zienkiewicz (eds), Wiley, New York, 109-126. 

Q. Q. Liang: Performance-Based Optimization Method for Stractural Topology and Shape Design 242 








