


OPTIMUM DESIGN OF STRUCTURES WITH
STABILITY CONSTRAINTS USING THE
EVOLUTIONARY OPTIMISATION METHOD

Dhayanthi Manickarajah, BSc, MEngSc

A thesis submitted in fulfilment of the requirements for the Degree of

DOCTOR OF PHILOSOPHY

Faculty Engineering and Science
Victoria University of Technology
Melbourne, Victoria 8001, Australia
March 1998



FTS THESIS

624.17713 MAN

30001006465613

Manickarajah. Dhavanthi.
1963—

Dptimum desiagn of structures
with stability constraints



DECLARATION

This thesis does not contain any material, which has been previously submitted for a
degree or diploma at any university. Except where due reference is made in the text, the

work described in this thesis is the result of the candidate’s own investigations.

Candidate

Supervisor



Acknowledgements

ACKNOWLEDGEMENTS

[ sincerely thank Professor Mike Xie for the supervision that he provided throughout
this dissertation. His advice on technical matters, constant encouragement and
motivation, ready accessibility and constructive criticism are greatly acknowledged. He
made every effort to ensure that I was provided with excellent equipment and a
comfortable working environment. In addition, Mike encouraged me to attend
conferences and to publish our findings in international journals and sought all possible
avenues to further my knowledge. Also Mike’s keen interest in the topic, Evolutionary
Structural Optimisation gave me inspiration to accomplish in the area of research

covered.

[ am also grateful to the Faculty of Engineering, Victoria University of Technology and
in particular to the former Dean of Faculty of Engineering, Professor Ian Johnson for
the Dean’s Research Scholarship that I received, providing financial support throughout

this study.

I wish to thank Professor Grant Steven from the Department of Aeronautical
Engineering, University of Sydney for allowing me to get access to some source codes
of STRANDG6 finite element analysis software, which enabled me to carry out the

research.

I wish to thank the academic and administrative staff of the Department of Civil and

Building Engineering for their encouragement, support and friendship throughout my



Acknowledgements

study. I would also like to express my appreciation to the technical staff of the

Department in particular to Mr. Jack Li for their help.

I thank my fellow postgraduates, Aftab, Annie, Gali, Gavin, Mahesh, Nelum, Nha,
Nina, Rahman, Sujay and Sunil, for the invaluable friendship and support provided
during my stay at Victoria University. I wish you all the very best in the future and hope

that we will always be friends.

Finally, I should like to express my heartfelt gratitude to my parents for their love,
tireless support and encouragement throughout this study and during the many years of
study that preceded it. Without their support this thesis would not have been possible. It

1s to them I dedicate this thesis.

v



Summary

SUMMARY

In the past most of the works on structural optimisation have been based on either
mathematical programming or optimality criteria methods and have mainly
concentrated on static responses of structures. These optimisation methods are
mathematically complex and have limited applications. A novel approach to structural
optimisation is being developed for practical applications based on the concept of
slowly removing the inefficient material or gradually shifting the material from the
strongest part of the structure to the weakest part until the structure evolves towards the
desired optimum. From the results of finite element analysis, the contribution of each
element to the required structural response may be assessed. Based on this assessment,
material is gradually shifted or removed in the design domain. In doing so optimum
designs can be easily achieved without resorting to any complex mathematics. This
optimisation procedure is called Evolutionary Structural Optimisation (ESO). Compared
to other methods for structural optimisation, ESO is overwhelmingly attractive due to its
simplicity and effectiveness. ESO has been demonstrated to be capable of solving many

problems of size, shape and topology optimisation.

This project examines the suitability of the ESO for the design of structures with
buckling constraints. In recent years, more attention has been focused on stability and
dynamic responses of structures. With the use of high strength materials and robust
design methods, many structural elements are becoming thinner and more slender which
makes them more susceptible to buckling. Structural optimisation for problems with
buckling constraints is complicated because the calculation of buckling loads requires
the solution of the prebuckling stress distribution (static analysis) and then the

eigenvalue solution (buckling analysis) at each optimisation step.

In this thesis, the ESO method has been successfully applied to sizing optimisation of
structures to enhance buckling resistance. This method has shown to be capable of
solving multimodal structures, multiple load case structures and with multiconstraints
including stress, displacement and stiffness. Some difficulties have been encountered in
applying ESO method to the layout design of plate structures and these are also

discussed in this thesis.
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Principal Notations and Abbreviations

PRINCIPAL NOTATIONS AND ABBREVIATIONS

Principal Notations

A - cross-sectional area

a - length of a rectangular plate

[B]; - strain-displacement relation matrix

b - breadth of a rectangular cross-section or width of a rectangular plate
C - mean compliance

Car - allowable limit for the mean compliance

C, - coefficient of variation

d - depth of the rectangular cross-section

d; -/ d.o.f displacement component

d’  -allowable limit for d;

{d} - nodal displacement vector

{di} - i"element displacement vector associated with {d}

{dj} - i"" element displacement vector associated with {d;}

{d;} - displacement vector due to the virtual unit load vector {£}}
E - Young's modulus
[E]; - element material property matrix

FS - factor of safety against buckling

{F;} - virtual unit load vector at ;" d.o.f
{ - moment of inertia

[K] - global stiffness matrix

[K,] - global geometric stiffness matrix
[k] - i element stiffness matrix

X1l



Principal Notations and Abbreviations

[AK] - change in the global stiffness matrix

[AK,] - change in the global geometric stiffness matrix
[Ak;]] - change in the i element stiffness matrix

L - member length

[M] - global mass matrix

[m] - i"element mass matrix

nl - number of load cases

NSE - normalised specific strain energy

N, - thickness distribution parameter

OF - optimum factor

{P} - nodal force vector

F - radius of a circular cross-section

Sp - uniform scaling factor for buckling constraint

AYS - uniform scaling factor for stiffness constraint

Sa - uniform scaling factor for displacement constraint

SE - strain energy

S; - size of the i element (surface area or member length)

SPE - specific strain energy

S - uniform scaling factor for stress constraint
t - plate thickness

tmax - allowable maximum plate thickness

tmin - allowable minimum plate thickness

L, - uniform plate thickness

{uy} - ™ eigenvector associated with the i element
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Principal Notarions and Abbreviaiions

{u}y -j" eigenvector

V - total volume of a structure

w - lateral deflection of the rectangular plate

o _i" element sensitivity number for removal

o _i" element sensitivity number for size increment

oy _ " element sensitivity number for size reduction

Qip, iy and oy - sensitivity number for buckling constraint; removal, size

increment and size reduction, respectively

Qie, Olic” and e - sensitivity number for stiffness constraint; removal, size

increment and size reduction, respectively

Qg Oig and oz - sensitivity number for displacement constraint; removal, size

increment and size reduction, respectively

Qif, a,f and o - sensitivity number for frequency constraint; removal, size

increment and size reduction, respectively

+ - e . . . .
Qs, Qs and s - sensitivity number for stress constraint; removal, size increment

and size reduction, respectively

on; - nodal sensitivity number
o - re- distributed modified sensitivity number
€ - eigenvalue multiplicity parameter
; - ™ natural frequency
o™ - maximum von Mises stress in the i element
c'm - maximum von Mises stress in the whole structure
ca; - allowable stress

X1V



Principal Notations and Abbreviations

{c}; - element stress matrix

E - dimensionless minimum cross-sectional area

Aer - critical buckling load factor

Mt - critical buckling load factor of the uniform design
AZ" - critical buckling load factor of the optimum design
Aj _ /" eigenvalue

p - density

c - normal stress

v - Poisson’s ratio

T - shear stress

Abbreviations

ER - Evolutionary Rate

ESO - Evolutionary Structural Optimisation
FEA - Finite Element Analysis

FSD - Fully Stressed Design

MP - Mathematical Programming

OC - Optimality Criteria

RQA - Rayleigh Quotient Approximation

RR - Rejection Ratio or Resizing Ratio
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Chapter 1 - Introduction

CHAPTER 1 - INTRODUCTION

1.1 General

The notion of an optimum solution of an engineering problem is intriguing and has been
investigated for a long time. Earlier, engineering design was conceived as a kind of art
that demanded great ingenuity and experience of the designer, and the development of
the field was characterised by gradual evolution in terms of continual improvement of
existing types of engineering designs. The design process generally was a sequential
trial-and-error process where the designer’s skills and experience were most important
prerequisites for successful decisions for the trial phase. However, nowadays strong
technological competition which requires reduction of design time and costs of products
with high quality and functionality, and current emphasis on saving of energy, saving of
material resources, consideration of environmental problems, etc., often involves
creation of new products for which prior engineering experience is totally lacking.
Development of such products must naturally resort to application of scientific methods.
Hence, during recent decades, engineering design has changed from art and evolution to

scientifically based methods of rational design and optimisation.

Structural optimisation deals with the optimal design of structural elements and systems
employed in several engineering fields. Much research has been carried out on
structural optimisation methods during the past three decades. Structural optimisation
combines mathematics and mechanics with engineering and has now become a multi-
disciplinary subject with applications in many fields. It was first applied in the aerospace

industry, where reducing the structural weight is of utmost importance. Nowadays, use
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of structural optimisation is rapidly growing in automotive, aeronautical, mechanical,
civil, nuclear, naval and off-shore engineering. As the result of the growing pace of
applications, research into structural optimisation methods is increasingly driven by
real-life problems. This significant development has been strongly boosted by the advent
of reliable and efficient general structural analysis methods such as the finite element
method, design sensitivity analysis and rapid improvements in optimisation methods,
along with the exponentially increasing speed and capacity of digital computers at low
cost. The high performance of digital computers makes large scale structural
optimisation possible and profitable in a large number of applications where thousands

of design variables and constraints may need to be handled.

With the introduction of high speed computers, finite element analysis has become a
very powerful tool in solving various complex structural engineering problems. After
being able to determine the structural behaviour by means of finite element analysis, an
important goal for engineers to achieve is to improve and optimise structural designs. In
the past, the modification of a structure and the subsequent evaluation of the modified
structure have been manually carried out. However, it is now possible to control
repetitive modifications, re-analyses and re-evaluations automatically. Thus, a
systematic improvement of structural systems may be achieved through computer
simulation. In this context, structural optimisation based upon finite element method 1s

becoming an advanced Computer Aided Design (CAD) tool.

Although there has been considerable work done on structural optimisation, the

application of optimisation into practice is comparatively modest and limited to special
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Chapter I - Introduction

problems solved by optimisation experts. There is an obvious gap between the progress
of the optimisation theory and its application to practical design problems. The vast
majority of published work deals with the mathematical aspects of structural
optimisation. It has been suggested that one major reason for the gap between the theory
and practice of structural optimisation is the excessive emphasis on mathematical
aspects rather than structural aspects of optimisation. Often the latter are confined to
rather trivial examples, intended only to illustrate the successful application of a

particular structural optimisation method.

Currently the research activity is directed towards making structural optimisation
methods available to practising engineers and scientists in an easy, reliable, inexpensive
and mathematically less complex form so that the optimisation techniques can be
promoted as a viable tool in the design office. It is important to understand the basic
concepts behind the structural optimisation methods for proper application of these
methods to practical problems. The complex interactions of interdisciplinary constraints
and the large number of design variables of the finite element models can severely test

the limits of existing methods in this context.

1.2 Structural Optimisation

The general aim of structural optimisation is to find a better design with minimum cost
or weight while satisfying the safety and performance requirement(s) of the structure.
The scope for structural optimisation is very wide and a particular structural

optimisation problem is formulated depending on the objectives of the problem, the

1-3



Chaptrer 1 - Introduction

constraints involved and the nature of the design variables. In general, the aim of a
structural optimisation problem is formally given as:
e minimise (or maximise) objective functions subject to behavioural and geometrical

constraints.

The following criteria can be used either as the objective function or as the behavioural

constraint.

e Structural weight (volume), storage capacity

e Cost (material, manufacturing, life cycle etc.)

e Global measure of the structural performance such as stiffness, buckling load,
plastic collapse load, natural vibration frequency, dynamic response etc.

e Local structural responses such as stress, strain or displacement at prescribed points;
maximum stress, strain or displacement in the whole structure; stress intensity factor

etc.

Single criterion optimisation is associated with only one objective function whilst multi-
criterion optimisation involves several objectives. The constraints may be given in the
form of equality or inequality conditions. Since these objective functions and constraints
are implicit functions of design variables, most structural optimisation problems are

highly non-linear.

There is another kind of constraints involved in structural optimisation called
geometrical constraints or side constraints. These are restrictions imposed explicitly on

the design variables due to design considerations such as manufacturing limitations,

1-4



Chapter 1 - Introduction

availability of member sizes, fabrication, physical practicability, aesthetics etc.
Constraints of this kind are typically inequality constraints that specify lower and/or
upper bounds on the design variables. Geometrical constraints may prescribe the limit

on cross-sectional dimensions, restriction on height or span of the structure etc.

The design variables, i.e. the structural parameters which are at the choice of the
designer, and are required to be determined during the solution process, may be cross-
sectional dimensions or member sizes, parameters controlling the geometry and layout
of the structure, its material properties etc. Design variables may be continuous or

discrete.

Regardless of the optimisation method used, the structural optimisation task can be
mathematically stated as follows:

Find the set of design variables X = {x|, x2, ....., X}, that will

Optimise Wi(X) (k=1,)

Subject to g(X)<0 (=1m)

xt<xi<x’ (i=1n)

where Wi X) - Objective functions
g(X) - Constraint functions
x and x,-U - lower and upper limits for x;.



Chapter 1 - Introduction

1.2.1 Classifications
Depending on the design variables to be optimised, the structural optimisation
encountered commonly in engineering practice can be classified into the following three

broad categories:

Cross-sectional or sizing optimisation - This is a significant class of structural
optimisation in which the layout of the structure is fixed. Such problems involve one- or
two- dimensional systems where the centroidal axis (or middle surface) of all members
is prescribed and only element stiffness properties such as cross-sectional areas or
moments of inertia of bars, beams, columns and arches or thickness of membranes,
plates or shells are the design variables for optimisation. Design variables for sizing may

be discrete or continuous.

Shape optimisation - The term shape optimisation is often used in a narrow sense
referring only to the optimum design of the shape of the boundary of two- and three-
dimensional structural components. Shape optimisation aims at the selection of the
optimum shape of external boundaries and surfaces, interior interfaces of a structure,

interface between different materials and middle surfaces.

Layout optimisation - It aims at optimising topological design variables (such as
spatial sequence, number and connectivity of members and joints of skeletal structures,
location and number of holes in continuous structures) and geometrical design variables

(such as the co-ordinates of the joints of skeletal structures or the centre-line or mid-

1-6
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surface of continuous structures like curved beams, arches and shells) in addition to the

above described shape and sizing design variables.

Both the topological and the geometrical variables define the layout of the structure.
While sizing variables may be optimised under either fixed or variable layout, the layout
optimisation is usually accompanied or followed by sizing optimisation. Shape and
layout optimisations are typically more difficult to tackle than sizing optimisation. Even
for a simple two or three member skeletal structure, simultaneous optimisations of cross
sectional dimensions, nodal locations and connectivity of members are very involved.
Apart from these three broad classifications, support and loading design variables such
as the number, position and types of supports and external load distribution and
positions and material design variables may also be changed during the optimisation

process. These design variables will make the optimisation problem more complicated.

1.2.2 Major approaches

Optimisation problems are highly non-linear in general. It is therefore necessary to
employ iterative numerical solution schemes and determine the optimum design through
a sequence of reanalyses and redesigns. The optimisation procedure generally consists
of two major steps in each cycle of iteration. These are the analysis of the structure and
the modification of design variables. In the past, most of the optimisation methods were
based on either mathematical programming (MP) methods or optimality criteria (OC)
methods. The basic concepts of MP and OC methods can be found in Morris (1982),

Hafta et al.(1992) and Kamat (1993).

1-7
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Many practical problem are so complex that their solutions cannot be found by closed
form of mathematical methods, and systematic search techniques have been developed
since 1960s for use in such cases. The study of these mathematical methods and search
techniques is the concern of a branch of numerical analysis known as mathematical
programming. The MP methods are also referred as direct optimisation methods. These
methods require derivatives of objective functions and constraints with respect to all the
design variables. At present, a number of MP methods compete with each other for
finding the nearest local optimum in the least number of steps or in making the
intervening calculations simpler by using suitable approximations. Such MP methods
include feasible direction method, penalty function method, sequential linear
programming, sequential convex programming, sequential quadratic programming,

augmented Lagrangian multiplier method etc. (Vanderplaats 1993).

The MP methods have been applied not only to structural optimisation problems but
also to several other fields of engineering, management and science etc. However, all
MP methods require derivatives, whose efficient calculation can be highly problem
dependent. The main disadvantage of MP methods is their limited capability in terms of
the number of design variables. Although MP methods are mathematically elegant, as
the number of design variables and constraints increases, the cost of computing
derivatives becomes expensive and convergence to the optimum solution become erratic
and unreliable. These limitations have caused serious impediments to practical
applications to large scale problems. To overcome some of these difficulties, optimality

criteria methods emerged during the 1960s and 1970s.

1-8
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Optimality criteria are necessary and sometimes sufficient conditions for minimising the
objective function and these can be derived by using either variational methods or
extremum principles of mechanics. Initial applications were based on the intuitive
criteria such as fully stressed design and uniform strain energy density methods. OC
methods consist of two complementary ingredients. The first is the stipulation of the
optimality criteria, which can be rigorous mathematical statements such as the Kuhn-
Tucker conditions, or an intuitive one. The second ingredient is the algorithm used to re-
size the structure for the purpose of satisfying the optimality criterion. Again, a rigorous
mathematical method may be used or one may devise an ad hoc method which
sometimes works and sometimes not. Different forms of the optimality criterion are
required for different optimisation problems. A direct derivation of all potentially
optimal solutions can be difficult if the number of optimality criteria is large and if they
are highly non-linear. For most cases, the general optimality criteria are either not

available or not tractable numerically.

In recent years these two approaches have begun to converge. The efficiency of the
mathematical programming methods are improved by employing constraint
approximations and faster algorithms for sensitivity calculations. Optimality criteria
methods have moved from partially intuitive and ad hoc algorithms to more formal
methodology. The dual methods of mathematical programming were shown to yield

some of the popular optimality criteria methods.

During the last decade, stochastic search methods are also emerging as viable tool for

structural optimisation. Genetic algorithms and simulated annealing are such methods

1-9



Chapter 1 - Introduction

proposed in recent years (Jenkins 1991). These methods have their philosophical basis
in processes found in nature, namely natural evolution. More recently the
Homogenisation method (Bensoe and Kikuchi 1988) has proven to be successful in
generating optimum topologies for continuum structures. In this method a material with
microscale voids is introduced and the optimisation problem is defined by seeking the
optimal porosity for the porous medium using one of the optimality criteria (Bendsoe
1995). Many interesting results have been produced using this method, although the

model of the homogenisation method is complicated.

Realising the fact that almost all the existing structural optimisation methods usually
involve complicated mathematical operations, Xie and Steven (1997) have recently
presented an Evolutionary Structural Optimisation (ESO) method to avoid the use of
any complicated mathematical operations. This novel approach to structural
optimisation has been developed on the concept of slowly removing the unwanted
material or gradually shifting the material from the strongest part of the structure to the
weakest part until the structure evolves towards the desired optimum. In doing so
optimum designs can be easily achieved without resorting to any complex mathematics.
In the past four years the ESO methods have been demonstrated to be capable of solving
the whole range of static and dynamic structural optimisation problems. The basic
features of the ESO method will be described in Chapter 3. The rest of the thesis will
explore the suitability of the ESO method and its application to the optimum design of

structures with stability constraints.

1-10
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1.3 Aims of the Project

This project aims at investigating some simple, more general, computationally efficient

approaches based on ESO method for the design of structures with stability constraints.

Specific aims of this project are as follows:

e To derive an efficient algorithm to determine the change in buckling eigenvalue
when locally modifying an element in the finite element model of a structure under
specified loading conditions.

e To develop optimisation procedures based on the concept of systematically re-sizing
the elements to increase the critical buckling load factor of a structure while keeping
the structural weight constant.

e To develop optimisation procedures for the minimum weight design of structures for
prescribed values of buckling loads by systematic re-sizing and re-scaling of
elements.

e To develop optimisation procedures for the optimum design of frame structures to
resist buckling under multiple load cases.

e To develop optimisation procedures for the optimum design of frame structures
subject to multiple constraints such as stress, displacement and stiffness along with
stability constraints.

e To investigate the influence of the parameters pertaining to the optimisation
procedures.

e And finally to develop sophisticated computer programs for the successful
optimisation routines and to link these programs with the finite element analysis

software STRANDSG, developed by G+D Computing Pty Ltd, Australia and create
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computer software which will carry out structural optimisation automatically so that

it can be used as a design tool.

1.4 Significance of the Project

Since the 1960s considerable research has been carried out on structural optimisation. In
the past, substantial efforts have been devoted to the associated mathematical and
computational backgrounds, and the methods explored have been wide ranging and
often mathematically complex. The development of commercial software for practical
structural optimisation is held back by the lack of a really robust and efficient
optimisation methods suitable for solving general engineering design problems. It is
therefore important that simpler and computationally more efficient methods for

structural optimisation should be developed.

Two major difficulties are associated with the process of interfacing a structural analysis
package with an optimisation program. The first is a programming difficulty. Stand-
alone optimisation packages typically expect subroutines that evaluate the values and
derivatives of the objective functions and constraints. When the structural analysis
program is large, or if the analyst does not have access to the source of the program, it is
difficult to transform the analysis package into a subroutine called by the optimisation
program. The second serious problem is the high computational cost required for many
applications. For many structural optimisation problems the evaluation of derivatives of
objective functions and constraints with respect to all design variables requires the
execution of costly finite element analyses several hundred times. These difficulties

have been avoided by the proposed ESO method. Furthermore, ESO procedures can be
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easily implemented with any of the commercially available finite element analysis
software packages. Even without the access to the source codes of FEA software, ESO
can be carried out in batch files running FEA software and the structural modifications

subroutine repeatedly.

In spite of extensive research in structural optimisation, only a small number of works
have dealt with buckling optimisation. The majority of works on structural optimisation
so far have concentrated on stress and displacement responses of structures. The
stimulus for this project is that in recent years, more attention has been focused on
stability and frequency responses of structures. With the use of high strength materials
and robust design methods, many structural elements are becoming thinner and more
slender which makes them more susceptible to buckling. Among a great deal of optimal
structural design problems the stability factor has become one of the most important as a
result of the very fast expansion of aerospace research, ship building, high-rise buildings

etc.

Historically, the earliest efforts in formal structural optimisation were made by Lagrange
in 1770 and later by Clausen in 1849. Coincidentally, they concerned with the stability
of an elastic column. Over two centuries later, the purview of structural optimisation has
widened considerably, but optimisation to enhance elastic structural stability continues
to be an active area of research. Optimum structural design with stability constraints is
complicated because the solution of buckling load depends on the membrane forces
arising from the applied loads. Difficulties have been encountered in applying buckling

optimisation methods to statically indeterminate structures including plate, shell and
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solid structures. There has been some fruitful research carried out on frame structures,
but the research on plate structures is very scarce. This project is expected to make a
significant contribution to the optimum design of plate structures with stability

constraints.

1.5 Layout of the Thesis

The following is a brief outline of the material presented in this thesis. Chapter 2
presents a comprehensive review of previous research carried out on the optimum
design of structures with stability constraints. In Chapter 3, basic concepts of ESO

methods for problems with stress, displacement and frequency constraints are described.

Chapter 4 presents the theoretical basis of the ESO method for structures with stability
constraints. Sensitivity number for the buckling load with a single eigenvalue 1s derived
and the optimisation procedure for maximising the critical buckling load for structures
of specified weight is presented. The influence of various parameters pertaining to the
optimisation procedure is also investigated. Chapter 5 is devoted to the application of

the proposed method to structures with repeated eigenvalues.

Chapter 6 describes the application of ESO method to the minimum weight design of
frame structures for a prescribed value of buckling load. Chapter 7 outlines the ESO
method for structures with multiple load cases. In Chapter 8, ESO method 1s extended to
the optimum design of frame structures with stress, displacement and stiffness

constraints in addition to the stability constraints.
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As it was mentioned earlier, optimum design of plate structures with stability constraints
i1s much more complicated than frame structures and very little research has been
conducted with plate structures so far. In Chapter 9 optimum thickness distribution of
plate structures with various support and loading conditions are obtained and the results
are compared with previously reported designs. The validity of the uniform strain energy
density optimality criteria and the buckling analysis of variable thickness plates using
different approaches are discussed in detail. This chapter also investigates the problem
of checkerboard patterns that is often encountered in finite element solution of
distributed parameter optimisation problems, and a simple technique to effectively

remove the checkerboard patterns is presented.

Chapter 10 summarises the conclusions and gives suggestions for further investigations.

A list of references is given in alphabetical order of first authors.
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CHAPTER 2 - LITERATURE REVIEW

2.1 Introduction

The literature on structural optimisation is vast and this review is therefore focused on
the works on structural optimisation with stability constraints. Most of the literature on
structural optimisation with stability constraints is concerned with sizing optimisation
with fixed layout. This literature review is brief, however some recent useful
developments will be discussed in detail then and there in the forthcoming chapters and
will be compared with the proposed method. In the following sections, the literature
review is organised according to the types of structures, i.e. columns, frames/trusses
(skeletal structures) and plates. This classification 1s not unique, however it gives an
outline in chronological order of how the optimisation methods for structures with

stability constraints have been developed over the years.

2.2 Optimum Design of Columns

The simplest stability problem is the optimisation of Euler-buckling columns. Most of
the early research was concerned with the development of optimum design of these
columns with different loading and boundary conditions. Historically, one of the first
optimal structural design problems addressed was treated by Lagrange in 1770 and later
by Clausen in 1849. The first modern treatment of this problem, which sparked
substantial interest in optimisation by the mechanics community, was presented in a
paper by Keller (1960). Keller treated the problem of maximising the fundamental
buckling load for a pinned-pinned column of constant volume. Keller addressed both the

question of optimum tapering of the column and selection of the optimum cross-
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sectional geometry. He employed a directional derivative approach to obtain necessary

conditions of optimality and obtained closed form solutions.

In a subsequent paper, Tadjbakhsh and Keller (1962) dealt with a variety of boundary
conditions for column optimisation, using the analytical method Keller had earlier
presented. It is interesting to note that since no lower bound on cross-sectional area or
upper bound on stress was specified, zero cross-sections (singularities) occurred in the
designs obtained. Trahair and Booker (1970) later extended these analytical solutions

with the introduction of minimum size constraints.

More general findings, based on energy considerations, were reported in a sequence of
papers by Taylor (1967) and Taylor and Prager (1968), who proposed originally that an
optimum structure with respect to buckling should have the configuration for which the
specific strain energy of the buckling mode is uniform. Taylor and Prager developed a
variational formulation of the problem of column optimisation, employing stationary of
the Rayleigh quotient to obtain optimality criteria for fixed volume and maximum
buckling loads, including lower bounds on cross-sectional areas. There was a subtle
difference in the technical approach to developing necessary conditions of optimality by
Keller and Tadjbakhsh, where a directional derivative of the buckling eigenvalue with
respect to design variables was calculated, and by Taylor and Prager, where a first
variation of the Rayleigh quotient was employed to calculate the derivative of the
eigenvalue, which was then used with a Lagrange multiplier method to obtain necessary

conditions of optimality.
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The study of Olhoff and Rasmussen (1977) on clamped columns was the earliest work
on bimodal buckling optimisation. In studying the optimum design of clamped column
under axial load for maximum fundamental buckling load, they discovered that there
was a threshold value of minimum area constraint which separated the single and
bimodal buckling modes and proved that the design obtained earlier by Tadjbakhsh and
Keller (1962) using single mode formulation was not optimum. Olhoff and Rasmussen
(1977) established the differential equations for optimisation under the double
eigenvalue formulation by using variational calculus and solved these equations by
means of a numerical method. This landmark study was particularly important since it
required a change in the previous mathematical formulations in order to take into
account the possibility that the optimum fundamental buckling load corresponding to
multiple buckling modes. This discovery led to many later publications on multiple

eigenvalue buckling problems.

Simitses et al. (1973) appear to be the first to report the use of finite element analysis
and iterative procedure to optimise the shape of columns. They used the uniform strain
energy density optimality criteria as the basis for their analysis. This was a major
breakthrough in stability optimisation because previous methods were based on
continuum theory whereas this method could be applicable to built-up structures such as
frames and trusses. So far the optimum designs of columns were concerned with
maximising the fundamental buckling load for columns with a specified volume.
Murthy and Christiano (1973) appear to be the first to report on the minimum weight

design of columns for a prescribed buckling load. They considered both linear and
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quadratic size-stiffness relationships and used some iterative procedures to re-scale the

optimum design to meet the specified buckling load.

2.3 Optimum Design of Frames

The first systematic approach to the derivation of optimality criteria for a variety of
design conditions to minimise the weight of large structural systems using finite element
method and numerical iterative procedures was presented by Venkayya et al. (1973).
However the assumption of linear size-stiffness relations in their method was a major
restriction. Khot et al. (1976) extended this method to frame structures with stability
constraints. Optimality criteria were derived using Lagrangian multiplier method and it
was stated that for single load case structures, the structure would be optimum when the
ratio of the strain energy density to the mass density, associated with the buckling mode
was the same for all the elements. They derived the recurrence relations and scaling
procedures for linear size-stiffness structures and applied to other structures with some
additional modifications. However the theory proposed by Khot et al. (1976) is valid
only for statically determinate single mode structures and under the assumption of the
linear size-stiffness relationship. The recursion relation and scaling algorithm used in

their paper will be discussed in detail in Chapters 4 and 6.

Later, in a sequence of papers, Szyszkowski and co-workers developed a more general
method based on finite element method for the optimisation of the buckling load of
columns and frames. Unlike the previously discussed method, in this method the critical
buckling load was maximised for a specified weight of structure. At first Szyszkowski

and Watson (1988) developed the optimisation method for single modal structures.
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Using the variational approach and Lagrangian multipliers, they proposed that the
optimum shape of the structure with respect to buckling should have the configuration
for which the specific bending energy due to the fundamental buckling mode was
uniform. A structure was divided into a number of elements and the specific bending
energy of each element due to the first buckling mode was calculated. An re-sizing
algorithm was formulated using the specific energy of elements based on the constant
weight condition and the rule of uniform specific energy. They also pointed out that the
rule of uniform specific bending energy due to the fundamental buckling load was not
applicable for multimodal problems. This method is more general than the previously
discussed method because the former method was more suitable for structures with

linear size-stiffness relationship.

Szyszkowski et al. (1989) extended their method to bimodal structures. The iterative
method presented here treated any frame structures from the bimodal optimisation
viewpoint. The real number of modes participating in the final optimal design was
determined by the numerical procedure. For a single mode optimal design the influence
of the second mode was automatically eliminated by the iterative procedure. This
generality was made possible because the method does not directly use the buckling
load or the minimum weight of the structure as the objective function. Instead the
bimodal optimality condition was used for this purpose. Szyszkowski (1992) later
extended this method to general multimodal problems. Using variational calculus and
Lagrangian multipliers the multimodal optimality condition was derived. The optimality
condition for multimodal structures stated that a linear combination of the normalised

specific energies due to the participating buckling modes must sum to unity at every
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point of the structure. The whole approach was concerned only with a single load case.
Resizing algorithms which use the specific energy of elements, require some arbitrary
constants. The choice of these arbitrary constants sometimes hampers the convergence
of optimum designs. The theory behind these methods will be discussed in detail in

Chapters 4 and 5.

Canfield (1993) obtained optimum designs of frames using non-linear mathematical
programming method and Rayleigh quotient approximation (RQA). RQA approximates
buckling eigenvalues by separately estimating the modal strain energy due to the linear
and geometric stiffness of the structure. The derivation of geometric stiffness matrix
was estimated using only a first-order approximation of the internal forces. This method
1s suitable for small scale structures and the convergence of the optimum design is

sensitive to move limits used in the process.

Lin and Liu (1989) presented a multiple criteria optimisation method for the minimum
weight design for truss and frame structures with size, stress, displacement and buckling
constraints. Only the first buckling mode was considered with an assumption that the
internal forces acting in the structure prior to buckling are taken to be statically
determinate. The optimality criterion derived for all the constraints imposed on the
structure was equivalent to the Kuhn-Tucker conditions of non linear mathematical
programming for a local optimum design. A general redesign equation was derived
from the optimality criteria and combined with fully stressed design (FSD) formula to
reduce the number of redesign iterations. They suggested that when the initial design

was far away from the optimum design, the use of FSD could make the design variables
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approach to the vicinity of optimum design rapidly and then applying the optimality
criterion to optimise the design variables would give an economical approach. They
adopted the uniform scaling of all the design variables after each iteration considering
linear size-stiffness relationship. The scaling factor was obtained from the maximum of

stress ratio, displacement ratio, size ratio and buckling load ratio.

Liu and Lin (1992) later proposed a method to overcome the preclusive assumption of
statical indeterminancy. The optimisation method was based on the advanced primal-
dual algorithm, the augmented Lagrange multipliers method (ALM). Statical
indeterminacy of the structure was incorporated via an efficient gradient calculation of
internal forces as obtained from the derivatives of stresses. It was shown that the
statically indeterminate approach resulted in a higher computer cost per iteration than
the usual statically determinate approach, but with less number of iterations. However,
the indeterminate approach converged to designs no better than the determinate

approach.

Barson (1994) presented another method for the optimisation of planer frames based
mainly on the structural stability and dynamic behaviour of the structure. Iterative
optimality criteria method was used and the strategy adopted here for searching the
optimal solution had two stages. In first stage, the buckling load of the structure was
taken as the objective function and the prescribed values of the fundamental frequency
or the period of vibration was the only constraint, whereas in the second stage the stress,
displacement and stability constraints were taken into account to verify the sizes of the

cross-sections of the structural members from the first stage of analysis. If the
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constraints were violated, uniform scaling procedure was applied to place the violated
constraints inside the permissible domain. Barson indicated that by improving the
overall elastic stability characteristics of the structure, the static, dynamic and post-
elastic performances of the structure were often improved. However, in general this

assertion 1s found to be incorrect and it will be discussed in detail in Chapter 8.

Karihaloo and Kanagasundaram published a series of papers on the minimum weight
design of planar frames under multiple load systems with constraints on stress, stiffness,
stability and geometry using various non-linear mathematical programming methods.
The summary of all these approaches were given in Karihaloo and Kanagasundaram
(1993). The solution of non-linear programming was attempted by several methods,
namely Augmented Lagrangian Multiplier method (ALM), Sequential Convex
Programming (SCP), Sequential Linear Programming (SLP), Sequential Quadratic
Programming (SQP) and Sequential Unconstrained Minimisation Technique (SUMT)
and 1t was concluded that both SCP and SLP were relatively more efficient methods for

optimisation.

Multilevel optimisation of frames with bucking constraints as well as stress,
displacement and size constraints was studied by Ding (1989). The weight of the
structure, the areas of cross-sections for the independent elements and overall
displacement and overall buckling were taken at the system level as objective function,
design variables and constraints respectively. At the component level, the objective was
to minimise the weight of each independent element subject to local stress and local

buckling constraints. The hybrid approximation technique in combination with the dual
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solution from mathematical programming was simultaneously used in the so-called two

level optimisation processes.

Turner and Plaut (1981) discussed the optimal design of elastic structures under
multiple independent loads. The iterative optimisation procedure utilised the finite
element and the optimality criterion. For a constant weight structure, the critical
buckling load was maximised for a given ratio of loads. This procedure was applied to
variety of load ratios, and the results were plotted in the loading space in terms of
stability boundaries (interaction curves or surfaces) and a stability envelope. The
objective was to enlarge the stability region as much as possible by an appropriate
distribution of the material of the structure. However this method is cumbersome with
regard to the solution for multiple load cases as it requires the optimum solution of

structure with a variety of load ratios to obtain the stability boundary.

Pezeshk and Hjelmstad (1991) suggested an optimisation based design methodology for
improving the strength and stability of framed structures, the capacities of which were
governed by inelastic limit-load behaviour. They also indicated that by improving the
stability characteristics of the structure, the dynamic and static performance of the
structure was often improved. In the companion paper by Hjelmstad and Pezeshk
(1991), a novel approach to solving problems with multiple loading conditions was
introduced where each eigenvalue in the objective was weighted in accordance with the

degree of participation of the mode in the loading.
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2.4 Optimum Design of Plate Structures

Although there has been considerable amount of work carried out on optimisation of
frame structures, very few papers have appeared in the literature concerning the
optimum design of plates against buckling. This is because, for frame structures, the
axial stress resultant in the prebuckling state is not sensitive to changes in cross-
sectional areas along the length of the member. For statically determinate frame
structures changes of cross-section do not have any effect on axial forces. However, this
is not true for plates. The in-plane stress-resultants in the prebuckling state of plates are
indeed functions of the thickness distribution. The problem of optimising plates for
stability is, therefore, significantly more complicated than that for frame structures.
Under the assumption of in-extensional pre-buckling deformations, which leads to
thickness-independent in-plane stress-resultants in the pre-buckling state, a condition of
uniform strain energy density has been established in the past as the optimality condition
for plates by several researchers. However, optimisation of plates on the basis of such
assumptions has led to unsatisfactory solutions. More discussion on this point will be

presented in Chapter 9.

Pandey and Sherbourne (1992) carried out an extensive study on finding the optimum
thickness distribution for a rectangular, isotropic plate of given volume that would
maximise its uniaxial buckling load. Determination of optimum thickness distribution of
uniaxially loaded rectangular plates has been an interesting and long-standing problem
discussed widely in the literature. This is because the governing non-linear fourth order
partial differential equations used for the solution of buckling load for rectangular plates

are widely known to the mechanics community.
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Pandey and Sherbourne (1992) pointed out the differences between the optimal profiles
of rectangular plates previously reported. Early studies by Parsons (1955) and Mansfield
(1973) reported that higher thickness near the edges than at the centre (concave profile)
increased the buckling load whereas Spillers and Levy (1990) obtained convex profile
for the optimum design. Pandey and Sherbourne (1992) also reported that the optimal
shapes discussed in the above literature were characterised by a severely
disproportionate thickness distribution resulting in very fhin sections in certain regions,
which indicates the possibility of local buckling at a load far lower than that predicted

by the analytical methods using a limited terms of displacement function.

Pandey and Sherbourne investigated most of the previously reported optimum shapes
and intuitively proposed a thickness distribution for uniaxially loaded rectangular plates
based on Parsons (1955). Optimum shapes were obtained for a square plate with three
boundary conditions: all edges simply supported, all edges clamped, and loaded edges
simply supported and unloaded edges clamped. Rayleigh-Ritz method was used for
buckling analysis. Simply supported plates were analysed with Fourier sine series
whereas Gram-Schmidt orthogonal polynomials were used for plates containing
clamped edges. Two prebuckilng stages characterised by constant stress and constant
force were considered in the analysis. Details of this analysis will be discussed in
Chapter 9. Pandey and Sherbourne also highlighted that the selection of suitable
displacement function, possibly with high number of terms, was crucial in the use of

series solution to accurately identify the critical modes and localised effects.
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Spillers and Levy (1990), Levy and Ganz (1991), Levy and Sokolinsky (1995) and Levy
(1996) have carried out a series of studies to find the optimum shape of simply
supported rectangular plate that would maximise its uniaxial buckling load. Originally
Spillers and Levy (1990) extended the Keller’s (1960) classic solution for the optimal
design of columns to the case of plates. They derived an optimality condition via
variational calculus which states that the plate thickness should be proportional to the
strain-energy density in an optimal design. Buckling solution was obtained using
Rayleigh-Ritz method and a double sine Fourier series was used to represent the lateral

plate displacement.

Optimum profile for a square plate was initially obtained by Spillers and Levy (1990)
with one term symmetric double sine displacement function. The buckling load of such
plate was calculated to be 2.12 times that of an equivalent uniform plate. Levy and Ganz
(1991) later re-analysed the above plate using a six term displacement function with a
multiple of half sine waves in the direction of loading and only one half sine wave in the
other direction and predicted a 44% increase in the buckling load. However, all these
results were later invalidated by Pandey and Sherbourne (1992) considering the
localised buckling which Spillers and Levy (1990) and Levy and Ganz (1991) failed to
capture by either one term or six term displacement functions. Pandey and Sherbourne
(1992) re-analysed this plate with a displacement function of half sine waves in both
plate directions of total 289 terms and found a locally buckled mode. Recently Levy and
Sokolinsky (1995) and Levy (1996) re-analysed the whole problem and proposed a new
optimum shape which yields 32% increase in the buckling load. All these controversial

optimum designs and their buckling solutions will be discussed in detail in Chapter 9.
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An optimisation method for plate buckling using finite element method was recently
proposed by Folgado et al. (1995). They extended the homogenisation method, a
material based model for the layout design of plate reinforcement with a buckling load
criterion. The model used a laminate theory and the optimum designs were obtained
using a mathematical programming method. This method took account of repeated
eigenvalues while the previously discussed techniques were solely based on the
traditional energy methods and were unable to handle the multimodal behaviour. Detail
analysis of optimum designs obtained by Folgado et al. (1995) will be discussed in

Chapter 9 along with the solutions of the proposed method.

2.5 Summary

Most of the early works on buckling optimisation were concerned with columns and
were based on the directional derivative approach. Later more general methods based on
optimality criteria were established. For single modal structures the optimality criterion
stated that the optimum shape of the structure should have the configuration for which
the specific bending energy due to the fundamental buckling mode is uniform. With this
uniform specific energy optimality criterion and the use of finite element method,
iterative procedures were set-up for the design of built-up structures such as frames and
trusses. Later, multimodal optimisation methods were also established and applied to
frame structures. Optimisation of frame structures with multiple constraints such as size,
stress, displacement and buckling were analysed by various people using either

optimality criteria methods or mathematical programming methods.
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Extensive search by the candidate reveals that the literature on the optimum designs of
plate buckling is very little and the available designs are mainly concerned with a
particular class of problem: uniaxially loaded rectangular plates. Different controversial
optimum profiles were reported for such plates by various researchers using distributed
parameter optimisation methods. Buckling solutions of these plates were obtained using
Rayleigh-Ritz method and assumed displacement functions. Few papers, e.g. Folgado et

al. (1995) used the finite element method for optimisation of plate buckling.
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CHAPTER 3 - EVOLUTIONARY STRUCTURAL OPTIMISATION (ESO)

3.1 Introduction

Recently a simple new approach to structural optimisation has been proposed by Xie
and Steven (1993, 1994a) based on the concept of slowly removing the inefficient
material from the structure and/or gradually shifting the material from the strongest part
of the structure to the weakest part until the structure evolves to the desired optimum.
This optimisation procedure is named as Evolutionary Structural Optimisation (ESO).
The ESO method offers a simple way to obtain optimum designs using any of the
standard finite element analysis codes. Compared to other structural optimisation
methods, the ESO method is overwhelmingly attractive due to its simplicity and
effectiveness. The original work on ESO involves obtaining optimum shapes and
layouts of continuum structures of given loading and support conditions, by gradually
removing the lowly stressed part of material from the structure (Xie and Steven 1993,
1994a). Since then during the last four years ESO has been demonstrated to be capable
of solving many problems of size, shape and topology optimum designs for static and

dynamic problems.

In this chapter, the basic theory behind the ESO methods for problems with stress,
displacement, stiffness and frequency constraints is outlined. This chapter 1s kept brief
and it gives only an introduction to ESO. Not all aspects of ESO methods are covered
here. In the following sections, ESO method is described only for simple structural
problems such as with single objective or constraint function and with single loading or

single modal cases. For a wider range of applications of ESO methods, the reader is

3-1



Chapter 3 - Evolutionary Structural Optimisation (ESO)

referred to Xie and Steven (1997) and other published papers cited in the list of

references.

3.2 Basic Concept and General Steps in ESO

Like most other structural optimisation methods, the evolutionary structural
optimisation method is iterative because of the highly non-linear nature of the structural
optimisation problems. ESO methods consist of two complementary ingredients. The
first is the calculation of the contribution of each element to the required structural
behaviour. The second ingredient is the optimisation procedures used for resizing or

gradually removing elements without violating certain requirements.

To find out the optimum locations for structural modifications, gradients (sensitivity) of
structural responses are often needed. Sensitivity analysis plays a central role in
structural optimisation, since virtually all the optimisation methods require the
computation of the derivatives of structural response quantities and objective functions
with respect to design variables. In ESO, the sensitivity of structural behaviour is
expressed at each element level. Since ESO is based on the concept of slowly removing
or resizing the material in the structure, each element in the design domain should have
an indication whether it can be removed or resized after each cycle of analysis. From the
results of finite element analysis, for shape and layout optimisation (which involves
element removal) the contribution of each element to the structural behaviour such as
stress, displacement, frequency, buckling load etc. is assessed. For sizing optimisation,
the effects on these structural responses due to the local modification of each element

need to be estimated. This contribution indication of an element with respect to the
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required structural responses is referred as the sensitivity number of that particular

element and 1s denoted by «; for the i™ element.

Based on this element sensitivity assessment, material is gradually removed or resized in
the design domain. An iterative procedure needs to be set-up so that the optimisation
can be done automatically. The following sections illustrate the optimisation procedures

and the determination of element sensitivity numbers for various design considerations.

3.2.1 ESO for structures with stress criterion

In the original application of ESO, the shape and layout of two- and three- dimensional
continuum structures have been obtained by gradually removing lowly stress material
(Xie and Steven 1993). Initially a design domain is chosen large enough to cover the
final design and discretised into a fine mesh of elements. Static analysis is performed
using a standard finite element software for the prescribed set of loading and boundary
conditions. A reliable sign of potential structural failure is excessive stress or strain.
Inversely a reliable sign of inefficient material use is low stress or strain. Since lowly
stressed material is under-utilised it will be removed from the structure gradually and
the stress level in the subsequent designs will become more and more uniform. Since the
structure has been divided into many small elements, the removal of lowly stress
material can be conveniently represented by deleting lowly stress elements from the

structure.

The stress level at each point in a structure can be measured by some means of average

of the normal and shear stress components. For this purpose the von Mises stress has
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been frequently used for isotropic materials. By comparing the von Mises stress of each
element ;" (where the subscript / refers the element number) with the maximum von

Mises stress in the whole structure o

max >

a local normalised stress level o /o™ is
calculated for each element. Hence the contribution of /™ element for stress problem is

defined as

G vm

o, =— (3.1)

o

max

where the subscript, s in o refers to stress problems. Only a small amount of lowly
stress material should be removed from the structure at each iteration. Thus a rejection

ratio RR is introduced. After the static analysis, an element will be removed if

vm

o, =—— < RR (3.2)

IA) o vm

max

The cycle of finite element analysis and element elimination is repeated for this same
value of RR until a steady state is reached, i.e., no more elements or only a few elements
are deleted. At this stage the current rejection ratio RR,4 1S increased to a new rejection
ratio RR,., by adding an evolutionary rate ER.
RRyew = RRo1a + ER (3.3)

With this new rejection ratio, the cycle of finite element analysis and element
elimination is repeated until a new steady state is reached. Such an evolutionary process
is continued until a desired optimum is reached, for example, when all stress levels are

within 25% of the maximum stress.

In this method two parameters, the initial rejection ratio RR, and the evolutionary rate

ER need to be given. The typical values, RR, = 1% and ER = 1%, are small enough to
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give satisfactory results. For certain problems where stress levels do not vary much over

the whole design domain, RR, as high as 10% and ER as large as 5% can also be used.

This evolutionary optimisation procedure for stress problems can be easily extended to
structures with multiple load cases (Xie and Steven 1994a). After the static analysis, the
stress distribution 1s obtained for each load case. The ratio of the element stress to
maximum stress is calculated for each load case and an element is removed from the
structure only if the ratio is less than RR for all the load cases present in the model.
Thus, compromises are made at each iteration among these load cases. The final
structure 1s the optimal design in the sense that every part of the remaining material has

its own role to play for at least one load case and possibly for all load cases.

Initially this method has been applied to two dimensional plane stress and plane strain
problems. It has also been shown to give good results for three dimensional structures.
This ESO concept can also be applied to sizing optimisation of structures with fixed
layout. Here again the stress ratio of each element is calculated and the cross-sectional
areas of lowly stressed elements are gradually decreased and the cross-sectional areas of
highly stress elements are gradually increased until a more uniform stress design is
obtained. Simultaneous size and topology optimisation of discrete structures is also
possible by allowing the size of the lowly stressed members to go to zero and

subsequently remove them from the structure.

This ESO method for improving the strength characteristics of the structure can be made

analogous to the Fully Stressed Design (FSD). FSD is the earliest intuitive optimality
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criteria method used for sizing optimisation of discrete structures to improve the
strength characteristics of the structure. In this method the design variables are scaled by
the ratio of the element stress to the allowable stress using the formula

C.
xinew = xiold i (34)
G

where o,y 1s the allowable stress. An iterative process of analysis and resizing can result
in a structure where all members, except those which are at the minimum or maximum
sizes, are fully stressed, i.e. their stresses are at allowable limit. However this method
can give satisfactory results only for statically determinate structures under single

loading condition with equal allowable stresses on tension and compression.

Both the ESO and FSD methods are based on element stress ratios and are aimed at
creating lighter designs with more uniform stress distributions. The main advantage of
ESO method over the FSD method is that the ESO method can be used for layout and
shape optimisation. Furthermore, ESO method can be effectively used for the design of
structures with multiple load cases. Since FSD is complemented by the resizing
algorithm based on the assumption that the load distribution in the structure is
independent of member sizes, this method may lead to non-optimum design for highly
indeterminate structures. Whereas in ESO method for sizing optimisation, at each
iteration only a few elements are subjected to small cross-sectional modifications. Thus
the cross-sectional changes at each iteration do not cause significant changes in the
element forces. This gradual evolution treats the statically indeterminate structures more

effectively than the FSD method.
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3.2.2 ESO for structures with displacement and stiffness constraints

This section describes the evolutionary procedure for the optimum design of structures
with displacement and stiffness constraints. The material presented in this section
derives from the work by Chu es al. (1996, 1997a, 1997b). The structural stiffness and
displacement are major considerations when designing structures such as high-rise
buildings and bridges. It is often required that the structure should be stiff enough so
that the maximum deflection in the structure is within the prescribed limit satisfying

serviceability requirements.

In this method, the effect of element removal on the overall stiffness of the structure or
on a prescribed deflection is calculated. The direct approach to obtaining changes in the
displacement field or structural stiffness is based on differentiation of the finite element

discretised equilibrium equations of the structure.

3.2.2.1 The sensitivity number for problems with overall stiffness constraints
The global equilibrium equation of a finite element discretised linearly elastic structure
subjected to static loading is given by

K {d}={P} (3.5)
where [K] is the global stiffness matrix, {d} is the nodal displacement vector and {P} is
the nodal force vector. If the applied load {P} is independent of design variables, the
derivative of the displacement field with respect to any design variable x is given by

0 4d} L 9LK]
Ox = 1K] Ox

{d} (3.6)
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The inverse measure of the overall stiffness of a structure is known as the mean
compliance, C, and is defined as

C=7{P}7{d} 3.7)
The overall stiffness of the structure is maximised by minimising its mean compliance.
If the applied load {P} is independent of design variables, the derivative of the mean

compliance with respect to any design variable x is given by

8C , _ 8ld}

o TP (3.8)
From (3.6), it leads to

2—S=—%{P}T[K]"'%{d}=—%{d}rag€<] {d} 3.9)
The above equation is approximated to

AC = -7 {d}T[AK]{d} (3.10)

Suppose that an element, i, is removed from the structure. Due to the removal of this
element, the change in global stiffness matrix [AK] = -[k;] where [k;] is the stiffness
matrix of the i element in the global co-ordinate system. It is assumed that the removal
of the element has no effect on the load vector {P}. Hence the change in the mean
compliance due to the removal of an element i, AC; is given by

AC, =3{d,} Tk 1{d,} (3.11)
where {d,} is the displacement vector associated with the element, i. AC; indicates the
change in the strain energy due to the removal of /" element. Both C and AC; are always
positive values. The value of AC; can be calculated for each element in the structure.

Hence the sensitivity number for element, i, for problems with stiffness constraint is

defined as
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o, =AC, =5{d,} Tk ){d,} (3.12)
where the subscript, ¢ in o refers to compliance constraint. The objective is to find the
lightest structure while satisfying the stiffness constraint, typically in the form C < Cyy,
where C,y is the prescribed allowable limit for C. When an element is removed, the
stiffness of the structure reduces and correspondingly the mean compliance increases.
Thus it is obviously most effective to remove the element which has the lowest o, so

that the increase in C 1s minimum.

3.2.2.2 The sensitivity number for problems with displacement constraints
Displacement constraints may be imposed on certain degrees of freedoms (d.o.f) of the
structure. The constraint imposed on the j‘h d.o.f displacement component, d; is given in
the form, | d;| < d" , where d;" is the allowable limit for d;. To determine the change in
the /" d.o.f displacement, Adj, a unit virtual load vector {F}} is introduced in which only
the corresponding j‘h component 1s equal to unity and all the other components are
equal to zero. Multiplying equation (3.6) by {F}} " gives

i 2K gy 01K
L= {FY K Ay = )T

{d) (3.13)

where {d;} is the displacement vector due to the unit virtual load vector {F;}. This
equation is approximated to

Ad; = —{d }T[AK]{d} (3.14)

;=

} . . . th
As above, if the i element is removed from the structure, the change in /" d.o.f

displacement component due to this element removal, Ad; is reduced to

Ad; ={d,;}T[k]){d,} (3.15)
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where {d;} and {d;} are the i" element displacement vectors associated with {d} and
{d;} respectively. It should be noted that unlike AC; in (3.11), Adj; can be positive or
negative. As the displacement may take positive or negative value, the aim is to reduce
the absolute value of the constrained displacement. Thus it is best to remove the element
which gives the lowest absolute change in displacement, |Ad,;|. Hence the sensitivity

number for the i™ element for problems with a displacement constraint is defined as

o, =|ad,| = |, )71k 14} (3.16)

where the subscript, d in o, refers to displacement constraint.

3.2.2.3 Evolutionary optimisation procedures for stiffness or displacement
constraints

As discussed earlier, an iterative procedure has to be adopted and a small number of

elements should be removed from the structure after each iteration depending on the

element sensitivity numbers. The procedure is given as follows:

Step 1: Discretise the structure using a fine mesh of elements.

Step 2: Analyse the structure for the prescribed loading and support conditions.

Step 3: Calculate sensitivity number for each element.

Step 4: Remove a small number of elements which have the lowest sensitivity numbers.

Step 5: Repeat Steps 2 to 4 until the constraint reaches its limit.

For problems with displacement constraints, additional static analyses with virtual unit

loads corresponding to the constrained displacements need to be included in Step 2. The
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number of elements to be removed at each iteration can be prescribed by its ratio to the
total number of elements of the initial or the current structure. This ratio is called the
element removal ratio. In Step 3 the sensitivity number for each element should be
calculated depending on the type of constraint involved. In Step 5 the evolutionary
procedure can also be terminated when a prescribed percentage of volume has been
eliminated from the structure. The influence of the element removal ratio on the final
optimum design has been investigated with several examples by Chu et al. (1997a). In
general the accuracy of the solution will improve with a smaller removal ratio but at the

expense of higher computational costs.

The derivation of sensitivity numbers has been discussed here only for single constraint,
single load case structures. This can be easily extended to multiple displacement
constraints and multiple loading conditions by introducing weighting factors in the
sensitivity number calculations to take account of the active participation of each
constraint and load case appropriately. Details of this analysis can be found in Chu et al.
(1996). This ESO method has been extended by Chu et al. (1997b) to the topology

design of truss structures.

In this section sensitivity numbers have been derived for element removal and the
optimisation procedures have been set-up for removing inefficient material which
results in layout optimisation of structures. A new extension of this ESO method for
resizing of frame structures has been accomplished by the candidate and this will be

presented in Chapter 8.
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3.2.3 ESO for problems with frequency constraints

The response of a structure to dynamic excitation depends, to a large extent, on the first
few natural frequencies of the structure. Excessive vibration occurs when the frequency
of the dynamic excitation is close to one of the natural frequency of the structure. The
optimum design with frequency constraints is of great importance, particularly in the
aeronautical and automotive industries. The material presented in this section derives

from the work by Xie and Steven (1994a, 1996).

The dynamic behaviour of the structure is represented by the following general
eigenvalue problem:

(K-} [M]){u,} = {0} (3.17)
where [M] is the global mass matrix, ®; is the /™ natural frequency and {u;} 1s the
corresponding eigenvector. The eigenvalues representing the natural frequencies can be

arranged 1n order of magnitude as

Multiplying (3.17) by the transpose of the eigenvector {u;} produces the following

Rayleigh quotient for the squared natural frequency w;.

{u; }TTKHu,

J J
w? =
J

(3.18)

}
b {u T IM Ty )
For single modal structures, the derivative of the eigenvalue with respect to any design

variable x is given by

Jolk)  alM]]
oy M| o T e M G.19)
ox {w }TIM{u,}
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Details of this eigenvalue derivation will be discussed in detail in Chapter 4. To

determine the change in natural frequency, the above equation is approximated to

{u;} T ([AK] - w2 [AM]){u,}

A~ M T

(3.20)

To obtain the value of A(cojz) from the previous eigenvalue solution, it is assumed that
the eigenvector {u;} is approximately the same before and after the change in the
structure. The assumption that the mode shape does not change significantly in between
design cycles has been commonly used in frequency optimisation. As discussed earlier,
suppose if an arbitrary element, i, is removed from the structure, the change in global
mass matrix [AM] = -[m;] and the change in global stiffness matrix [AK] = -[4;]. Hence
the change in the j[h natural frequency (squared) due to the removal of " element,
A(oa,-jz) is given by

A 25 {uj}T(wjz[mi]_[ki]){uj}
)~ VM)

(3.21)

If only one particular frequency, say o, is considered for optimisation, the following

sensitivity number need to be calculated for each element:

e, - 16 D}

N TRUTYIN 22

a

where the subscript, f in a; refers to frequency constraint. This sensitivity number
indicates which elements should be removed from the structure so that the concerned
frequency will be shifted towards a desired direction. From the definition of eigenvalue
problem in finite element method (equation 3.17), the summation of oy for all the
elements in the structure should be zero. Thus the values of as range from minimum

negative value to maximum positive value. Hence to increase the natural frequency w;,
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elements with highest o values should be removed and to decrease w;, elements with
lowest oy values should be removed. It is also possible to reduce the structural weight

with least change in @; by removing elements with o,/ close to zero.

The denominator in equation (3.22) can be omitted in sensitivity number calculations if
only one frequency is considered since it is the same for all elements. However, when
multiple frequencies are considered, this term cannot be omitted unless all the
concerned eigenvectors have been normalised with respect to [M]. Sensitivity numbers
are also needed to be redefined according to the requirement. For example in the case of

optimising the gap between two frequencies, say wand ; (k> /), o= Alwy” - co,»j-z).

The evolutionary procedure for frequency optimisation is summarised as follows:

Step 1: Discretise the structure using a fine mesh of elements.

Step 2: Perform dynamic analysis and solve the eigenvalue problem.

Step 3: Calculate sensitivity number o,/ for each element.

Step 4: Remove a small number of elements to shift the concerned frequencies towards a
desired direction.

Step 5: Repeat Steps 2 to 4 until desired optimum design is obtained.
This method has also been extended to problems with multiple frequency constraints

(Xie and Steven 1996). This is very similar to the situation of optimisation with multiple

static load cases. Recently Zhao et al. (1996¢) extended this method to structures with
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non-structural lumped masses. It should be noted here that the sensitivity number for
frequency changes are obtained only for single modal cases. The extension of this to

multimodal structures will be dealt with in detail in Chapter 5.

3.3 Implementation of ESO Methods into Finite Element Codes

A batch file needs to be set up to handle the iteration cycles automatically. In each
iteration, after the static or dynamic analysis, a subprogram is used for the sensitivity
number calculations and subsequent element removal. From the expressions of
sensitivity numbers, s, i, 0Lig and iy, it is seen that the computational cost involved in
calculating these values, all at element level, are nominal when compared with the cost

of solving the static or dynamic problem.

The element removal can be done by simply assigning the material property number of
the rejected elements to zero and ignore these elements when the global stiffness matrix
1s assembled in the subsequent solutions. As more and more elements are eliminated,
the solution time becomes less and less. When removing elements it is important to
maintain the integrity of the structure. From the finite element formulation, violating the
integrity of the structure may lead to a non-positive definite stiffness matrix or singular
stiffness matrix. Chu et al. (1997b) and Zhao et al. (1996b) have proposed methods to
overcome this problem. Symmetric nature of some structures should also be preserved

during element removal and throughout the iteration cycles.

One useful feature in any structural optimisation method is the incorporation of non-

design domain. For example, in stress problems some region in the structure may be at
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low stress level but are essential for attachment or any other purposes and should not be
removed during the iterations. The elements in the non-design domain may have the
same material properties as other elements, but are assigned to a special material
property number. During the optimisation process, elements with this special material

property number are simply ignored for element removal.

At the end of each iteration, a picture of the remaining elements may be stored. Once the
whole process is finished, the evolution history of the structure can be viewed from the
stored pictures in a sequence. This option allows the designer to know every stage of the
process and lets him to consider intermediate designs as well. Unlike many other FEA
based structural optimisation methods, the ESO does not require re-generating new
finite element meshes even when the final structure departs substantially from the initial
structure. This makes the ESO methods very easy to be implemented into existing FEA

codes.

3.4 Discussion on Existing ESO Methods

From the previous sections, it is noted that for stiffness, displacement and frequency
problems, sensitivity numbers are obtained from the first derivative of the corresponding
structural response and these sensitivity numbers indicate the change in structural
response due the removal of a particular element. However for stress problems the
element stress level is used as an indicator for element removal. (For the sake of
consistency, the notation used to define the sensitivity number of an element, o, is used

to indicate the element stress ratio as well.) This is because the derivative of element
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stress matrix or element stress level is computationally very expensive. In finite element
method, the element stress matrix, {c}; can be expressed by the following equation.

o} = [EL[Bl{d}, (3.23)
where [E]; is the element material property matrix, [B]; is the strain-displacement
relation and {d},; is the element displacement vector. The derivative of {c}; with respect

to any design variable x is given by

oo} _ 04d},
5 LEILB] o

(3.24)

where [E]; and [B]; are independent of design variables. Substituting equation (3.6) for
element displacement derivative, the above equation is reduced to

_ dlK]
Ox o Oox

{d} (3.25)

Hence to determine element stress gradient [K]"' should be known. None of the FEA
packages stores or calculates [K]". Simultaneous linear equations for static analysis are
usually solved by Gaussian elimination of forward reduction and backward substitution.
Even if the [K]"' is available, gradient of element displacement matrix need to be
established. This problem does not arise when obtaining gradient of a particular
displacement component. In such case a virtual load is applied at that particular degree

-1

of freedom and the use of virtual load displacement eliminates the need of [K]™ in the

calculations.

Since there is no explicit stress-nodal force relations for continuum finite element
models, the cost of evaluating even the approximate stresses is quite high. Much

attention has been paid to solve problems with stress constraints using approximate
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techniques such as the use of intermediate variables, approximations of element forces
(Vanderplaats and Salajegheh 1987) or approximate displacement models (Kirsch
1992). However in all these methods either [K]" is known or decomposed matrices of
[K]'l are used. This high computational cost involved with stress constraints is one of

the reason for the popularity of fully stressed design even it does have drawbacks.

The ESO methods described in this chapter for stress and frequency problems do not
contain any clear statements for objectives or constraints. In these methods either stress
distribution of the structure is brought to uniform or the concerned frequencies are
optimised while reducing the weight of the structure. These ESO methods are not
formulated to give minimum weight designs for a prescribed frequency or for a
prescribed allowable stress or reversibly these methods cannot be used to extremise the
concerned frequency or the maximum stress for a specified weight of structure. Zhao et
al. (1996a, 1996b) attempted to solve this issue for problems with frequency constraints
by providing a design chart or an evolutionary path. This design chart describes the
evolutionary process of the structure and can be generated using the information
associated with removing the most inefficiently used material gradually from the initial
design domain until the minimum weight is met for maintaining the integrity of the
structure. However ESO methods described here for stiffness and displacements
constraints, can be effectively used to obtain minimum weight designs for prescribed

values of displacement and compliance.
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3.5 Summary

In the preceding sections, concepts of ESO methods for problems with stress, stiffness,
displacement and frequency constraints have been discussed. These methods have been
used to solve many complex problems and validated against various classical optimum
solutions. Many shape and layout designs of the existing solutions obtained by using
other complex methods such as homogenisation and mathematical programming
methods have been reproduced by this simple evolutionary method (Xie and Steven
1997). The rest of the thesis will be devoted to discussions on the candidate’s findings
in her attempt to extend the ESO method to optimum designs of structures against

buckling.
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CHAPTER 4 - ESO FOR STRUCTURES AGAINST BUCKLING

4.1 Introduction

In Chapter 3, evolutionary structural optimisation (ESO) methods for problems with
stress, displacement, stiffness and frequency constraints have been discussed. This
chapter describes the theoretical basis of the ESO method for structures with stability
constraints. In general the instability is connected with several catastrophic failures such
as buckling, overturning, sliding, collapse etc. In structural problems, the most common
instability condition is buckling. Buckling occurs when the applied load reaches a
critical value where a member in a structure or the whole structure converts its

membrane strain energy into bending strain energy.

Optimum design against buckling may be obtained by finding the minimum weight
design of a structure that satisfies the prescribed buckling load constraint. Alternatively
it may be achieved by maximising the critical buckling load of the structure while
keeping its weight, volume or mass constant. For the convenience of comparing the
efficiency of different designs, the latter approach is generally used. In this chapter ESO
method is proposed for maximising the critical buckling load of a structure of constant
weight. The extension of ESO method to minimum weight design of frame structures

for a prescribed buckling load is presented in Chapter 6.

In the following sections, the derivation of sensitivity number for buckling load,
optimisation procedure and some criteria needed for the optimisation process are
described. Two of the optimality criteria methods cited in the literature for the optimum

design of frame structures against buckling are discussed and compared with the
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proposed method. Illustrative examples are given to show the applicability of the ESO
method for buckling optimisation. Chapters 4 to 8 focus on the optimum design of
skeletal structures such as frames and trusses modelled with beam or bar elements.
Optimum design of plate structures is considered in Chapter 9. This chapter applies the
proposed ESO method to the optimum design of single modal frame structures only.

The extension of ESO method to multimodal structures is given in Chapter 5.

4.2 Buckling Analysis of Structures

Buckling of bars, frames, plate and shell structures may occur as a structural response to
membrane forces. Membrane forces act along member axes and tangent to plate and
shell midsurfaces. The membrane force in a bar or a beam element is the axial force, P,
and the membrane forces in a plate or a shell element are the in-plane forces, N, N, and

Ny, as shown in Figure 4.1.

Ny
Ny
Nr,\‘ yv‘

Figure 4.1- Membrane forces in a plate element

M

Small membrane deformations can store a large amount of strain energy, but
comparatively large lateral deflections and rotations are needed to absorb this energy in
bending deformations. Thin-walled structures and slender structures with low bending

stiffness to membrane stiffness often fail as a result of buckling rather than material
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yielding. There are two types of buckling that may occur in a structure. These are the
local buckling of an isolated member and the overall buckling of the whole structure.
Since the ESO method is based on the discrete finite element analysis, both local and

global instabilities can be captured in the optimisation process.

The buckling problem may be described as determining the buckling load associated
with structural instability for a prescribed loading configuration. The effects of
membrane forces in an element are accounted for by an element matrix [k,] that
augments the conventional element stiffness matrix [£] in discretised system equations.
The element matrix [4,] is the non-linear element stiffness, a function of the stress state
and hence of the internal element forces. Matrix [k,] has been given various names such
as element stress stiffness matrix and element geometric stiffness matrix. Assuming that
the membrane forces can be obtained from the linear equations involving linear stiffness
matrix only and that they remain constant during the transition to the buckled state, the
linear buckling behaviour of an elastic structure is governed by the following eigenvalue
problem:
([KT+ XK, Diu, 3 = {0} (4.1)

where [K] is the global stiffness matrix, [K,] is the global geometric stiffness matrix or

stress matrix, A; is the ;™ eigenvalue and {u;} is the corresponding eigenvector. The
eigenvalues from equation (4.1) are those which scale the applied load to give the
buckling load. The eigenvalues are arranged in order of magnitude as

0 <A SAg S €A S S A (4.2)
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The most critical buckling load is the lowest one, which is equal to the first eigenvalue
A, multiplied by the applied loading. Multiplying equation (4.1) by the transpose of the
eigenvector {u;} produces the following Rayleigh quotient for the jlh eigenvalue

TR
T IR, )

(4.3)

where the numerator represents the strain energy of the ;™ buckling mode and the
denominator represents the work done by the applied load during the transition from

initial to buckled configurations.

4.3 Sensitivity Number for Buckling Load - Simple Eigenvalue

In ESO method, the contribution of each element to the concerned structural response
needs to be assessed. For buckling optimisation, the aim is to raise the fundamental
buckling load factor A,. Hence the design sensitivity (or gradient) of the eigenvalue
(buckling load factor) needs to be determined. In this section sensitivity number for
buckling load of simple eigenvalue is derived. A simple (or distinct or single)
eigenvalue A; is associated with a unique eigenvector {u;} and is differentiable with
respect to any design variables. The direct approach to obtaining the eigenvalue
sensitivity is to differentiate equation (4.1) with respect to a design variable x and is

given below.

O([KT+ MK, Diu} o (4.4)
Ox
. 0 {u;
OURI+ AR, D b+ ([(K1+ 4K, D) byl 0 (4.5)
Ox / s Ox

Multiplying equation (4.5) by {u;} " gives

8 ([K]+ M [K 8 {u;)
oy ZE D kD

~0 (4.6)
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Since [K]T= [K] and [Kg]r= [K,], taking transpose of equation (4.1) leads to
[(CKT+ 1K, DA, 31T = {u (KT + 4 LK, D) = {0} (4.7)
Thus the second term in equation (4.6) is reduced to zero. Therefore the eigenvector

derivative is not involved in the simple eigenvalue derivative. By re-arranging equation

(4.6), the eigenvalue derivative is reduced to

lork] . 0lK,1]
o W T th e [
o ), ) (45

By normalising the eigenvectors such that {uj}T[Kg] {u;} = 1, equation (4.8) is reduced to

o, [o1k] . OIK,]]
Ez—{uj}rt [x]+kj . J{uj} (4.9)

Assuming that the eigenvector is approximately the same before and after a small
structural modification, the change in ;™ eigenvalue, AA;, due to this structural

modification is approximated to

AN, = —fu, 3T ([AK)+ A, [AK, D} (4.10)

4.3.1 Sensitivity number for element removal

Consider that an element, i, is removed from the structure. As described in Chapter 3,
the change in global stiffness matrix [AK] = -[Ak] which can be easily calculated.
However, since [K,] depends on the current stress distribution in the structure and the
removal of the i element affects the stress in its surrounding elements, it cannot be
assumed that [AK,] is equal to the change in the element stress stiffness matrix of the i
element only. Stress stiffness matrix of the old system (before element removal) does
not provide enough information for [AK,] and a static analysis needs to be carried out

after the element removal to determine the current stress distribution. If it is to be done
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for each and every element it will be computationally very expensive. Therefore the
change in buckling load due to element removal cannot be obtained from the finite
element results of the old system unless a very computationally expensive method is
employed. This difficulty does not arise in the eigenvalue optimisation of frequency

problems which involve the mass matrix instead of the stress stiffness matrix.

4.3.2 Sensitivity number for element resizing

Now consider a small change in the cross-sectional area of an arbitrary element, i. This
local cross-sectional modification of an element may be the change in plate thickness or
the change in cross-sectional dimensions of bar or beam element such as width, breadth,
radius etc. The change in the global stiffness matrix, [AK] is equal to the change in the
i element stiffness matrix, [Ak;], which can be easily calculated. The change in global
stress stiffness matrix, [AK,], is equal to zero if the axial or membrane stress resultant
remains constant before and after the cross-sectional change in the elements. Such is the
situation of all statically determinate structures. For a statically determinate frame, the
cross sectional changes do not affect the axial forces in the members. For statically
indeterminate structures, [AK,] is only negligible if the cross-sectional modifications at
each iteration are so small that they do not cause significant changes in the axial or
membrane stress resultants. When [AK,] is ignored, from equation (4.10) the change in
the buckling eigenvalue due to the cross-sectional change in the i" element is reduced

to

A)‘y‘ :_{uij}T[Aki]{uij} (4.11)

where {u;} is the j‘h eigenvector associated with the /" element. The objective of

buckling optimisation is to increase the fundamental eigenvalue A,. Therefore from the
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above equation, the sensitivity number for buckling load of single modal structures is
defined as follows:

oy =—{uy, }T[Ak; {uwy, ) (4.12)
where the subscript & in oy refers to buckling problem. Note that this sensitivity number

is for resizing only and cannot be used for element removal.

The critical buckling load is increased when the cross-sectional area of elements with
highest a; is increased. If the structural weight is to be kept constant, the elements with
highest a;; need to be strengthened and the elements with lowest a;; values may be
weakened. In the case of an increase in the cross-sectional area 4 of the /™ element by
AA

[Ak, ] =[Ak )" =[k (A+AA)] [k, (A4)] (4.13a)
and in the case of a reduction in the cross-sectional area by A4

[Ak,] = [Ak,]- = [k, (A~ A~ [k, (A)] (4.13b)
Hence to estimate the effect of cross-sectional changes on the fundamental buckling
load factor, the following two sensitivity numbers need to be calculated for each
element, one for area increase

o, =~} TIAK ) ) (4.14a)
and the other for area reduction

o, =~} IOk, ] {1y} (4.14b)
So far the influence of the cross-sectional change of an element on the buckling load
factor has been studied. Further if the elements in the finite element mesh are of

different sizes, the element sensitivities depend also on their sizes. Here the size of the

4-7



Chapter 4 - ESO for Structures Against Buckling

element, say S; for i element, is not referred to the cross-sectional dimensions. In the
case of skeletal structures S; refers to the length of the i element. In the case of plate or
shell structures S; refers to the surface area of the i element. When comparing two
elements with the same oy as defined in (4.14a), increasing the cross-sectional area of
a smaller element will result in a lighter design. Similarly for elements with same Qp as
defined in (4.14b), the cross-sectional area of a smaller element should be decreased.
Consequently, the element sensitivity numbers for buckling load of single modal
structures are redefined as follows:

oyt =—{u, }T[Ak ] {u, } /S, (4.15a)

o, =—{u $T[Ak ] {u,} /S, (4.15b)

The calculation of these sensitivity numbers only involves small matrices of individual
elements. The computation cost for calculating these sensitivity numbers for all
elements is nominal when compared with the cost of solving the eigenvalue problem

4.1).

4.4 Evolutionary Procedure for Buckling Optimisation

Unlike the other ESO procedures described in Chapter 3, the buckling optimisation is
carried out by changing the cross-sectional areas of elements for structures of fixed
layout. Optimum designs against buckling may be obtained either by finding the
minimum weight design for a prescribed buckling load or by maximising the buckling
load of the structure while keeping its weight constant. The former approach may start
with an over-designed structure with excess weight followed by gradually removing

material from the structure. The latter approach involves gradually shifting material
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from the strongest locations to the weakest without adding or losing any weight. The
optimisation procedure for the latter approach is described below. It is obvious that the
optimum solution cannot be achieved in one step. An iterative procedure has to be

adopted, i.e. only a small number of elements should be resized at each iteration.

Step 1: Discretise the structure using a fine mesh of finite elements to adequately
represent the prebuckling stress distribution and buckling modes.

Step 2: Solve the eigenvalue problem (4.1).

Step 3: Calculate the sensitivity numbers o, and o™ for each element.

Step 4: Increase the cross-sectional areas of elements which have the highest a3 values
and decrease the cross-sectional areas of the same number of elements which
have the highest a;; values. Impose the sizing constraints, i.e. if the design
variable (which represents the cross-sectional area) of an element x; is greater
than the prescribed maximum xmay, let x; = Xuq and similarly if x; < X, let x; =
Xmin-

Step 5: Calculate the total volume and if it is not equal to the original volume, scale the
cross-sectional areas obtained after Step 4 to give the original volume.

Step 6: Repeat Steps 2 to 5 until the buckling load factor cannot be increased any

further.

A batch file is set up to handle the iteration cycles automatically so that the optimisation
process becomes as simple as repeated finite element analyses. In each cycle of iteration,
after the static and buckling analyses using standard FEA packages, a subprogram is

used to calculate sensitivity numbers and carry out subsequent element resizing. When
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resizing, the cross-sectional area of elements is allowed to vary in small steps in a
prescribed manner. The geometric properties of the cross-section (design variables)
could be one or several from breadth or depth of a rectangular section, radius of the
circular section, web or flange thickness of I or L section, thickness of plate and shell
elements etc. For such simple variations [Ak;]" and [Ak] matrices can be easily
calculated. All the other information required for the calculation of sensitivity number is

readily available from the finite element solution obtained in Step 2.

At each iteration only a small number of elements should be subjected to resizing. The
percentage of elements subjected to resizing is called here as the resizing ratio. The
resizing ratio and the step size of design variables used for the cross-sectional
modification at each iteration have to be given in the above evolutionary procedure. The
resizing ratio and the step size are usually kept constant throughout the optimisation
process. However, different values of resizing ratio and step size can be prescribed at
different stages of the optimisation process. At final stages of the optimisation process
these parameters can be made smaller to obtain more accurate designs. The influence of
these parameters on the optimum solutions will be discussed with the examples in later

sections.

When resizing the elements based on their sensitivity numbers, certain requirements of

the problem need to be accommodated. They are described below.

Non-design domain: In certain cases some part of the structure has to be kept

unchanged. In such cases it is possible to freeze this part of the structure as the non-
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design domain. The elements within this non-design domain are assigned a special
material property number even if they have the same material properties as other
elements. During the optimisation process, elements with this special property number

are not subjected to resizing.

Sizing constraint: If the design variables of elements reach their prescribed upper or
lower bounds, these elements are not considered for resizing. However these elements
are not frozen as those in non-design domain. Because in subsequent iterations design
variables of these elements might vary in opposite directions. At each iteration the
number of elements reached their extreme values should be monitored to calculate the

actual required number of elements to be resized.

Structural symmetry: If the structural layout and the loadings are symmetric about any
axis, the symmetric nature of the structural system should be preserved at each iteration
through out the optimisation process. Unlike in static analysis, the full structure has to
be considered for eigenvalue solutions even the structure has any symmetry. If the
structure loses its symmetry during resizing it will lead to non-optimal design. Usually
the number of elements subjected to resizing should be determined by considering the
number of symmetric axes in the system. For example, if there are two symmetric axes
in the system as shown in Figure 4.2a, the number of elements to be strengthened or
weakened in an iteration should be equal to four or products of four so as to maintain
the symmetric nature of the target structure. However if elements fall on the symmetric
axes as shown in Figure 4.2b, the above rule cannot be adopted. The elements which are

symmetric to each other should have the same value of sensitivity number. Hence by
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using the limiting values of sensitivity numbers (which determines which element
should be resized) instead of considering the number of elements directly, structural
symmetry can be preserved. When determining the limiting values of sensitivity
numbers, the elements which have already reached their upper or lower bounds should

not be considered.

(a) (b)

Figure 4.2 - Symmetric elements in structures

Constant volume/weight: After resizing the elements, the volume of the structure has to
be checked. If it is not equal to the original volume, design variables (cross-sectional
dimensions) should be uniformly scaled to get the original volume. When uniformly
scaling the design variables it is again necessary to impose the sizing constraints.
Uniform scaling with sizing constraints need to be carried out in succession until the

volume becomes equal (with tolerance) to the original volume.
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4.5 Examples
The capability of the proposed method for cross-sectional optimisation of structures
against buckling of single modal structures is illustrated with several examples. In the

following sections an optimum buckling load factor, OF, defined as the ratio of the
critical buckling load factor of the optimum design, A*" to that of the equivalent

uniform design, Au is used for comparing the efficiency of the optimum shape to that of

the uniform shape (OF = A7'/\=i). The total number of elements resized at each
iteration is expressed as the resizing ratio (RR), a percentage of the total number of
elements. Half the number of elements resized will be strengthened and the other half
will be weakened. In all the following examples the initial design is of uniform cross-

section and the Young’s modulus £ =200 GPa.

4.5.1 Example of column optimisation

A slender column of variable, but geometrically similar cross-sections where the area
A(x) and the moment of inertia /(x) at section x are correlated by I(x) = cA(x)’, with the
constant ¢ given by the cross-sectional geometry is considered for optimisation. Three
cases, where p = 1, 2 and 3, are considered. The column is simply supported at both
ends and is subjected to a compressive axial load. The column is divided into 100 linear

elements of equal length.

Case l: p=1
The simplest cross-sectional shape which may satisfy the relationship /(x) = cA(x) is the
rectangle with constant depth d and variable width b(x) so that I(x) = b(x)d3/12 =

A(x)d’/12. The dimensions of the column are as follows: length L = 1 m, d = 50 mm,
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initial value for 5 = 65 mm. During the optimisation, b is allowed to vary in steps of 5
mm to the maximum of 125 mm and to the minimum of 5 mm. Hence 25 different

cross-sectional areas are allowed in the design.

Case 2:p=2

For a circular cross-section, I/(x) = 7U‘(X)4 / 4 = A(x)* / 4r, where r(x) 1s the radius at
section x. The dimensions of the column are as follows: length L = 1 m, initial value for
# = 40 mm®. During the optimisation, * is allowed to vary in steps of 1 mm? to the
maximum of 60 mm’ and to the minimum of 10 mm? Hence 51 different cross-

sectional areas are allowed in the design.

Case3:p=3

For the rectangular cross-section with constant width b and variable depth 4, the
relationship I(x) = cA(x)’ is satisfied since I(x) = bd(x)’/12 = A(x)’ /12b°. The
dimensions of the column are the same as in Case 1 but in this case the depth d is
allowed to change in the range of 5 mm to 125 mm in steps of 5 mm instead of the

width b. Again 25 different cross-sectional areas are allowed in the design.

The optimum shapes of the column for the above three cases are obtained after between
12 and 20 iterations. For all three cases, a resizing ratio of RR = 40% is used. These
shapes are given in Figure 4.3. Due to symmetry only a quarter of each column is
shown. The evolutionary histories of the buckling load factors are shown in Figure 4.4.
In Table 4.1 the final optimum buckling load factors obtained by the ESO method are

compared with the exact solutions obtained from variational calculus method (see Hafta
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’4

and Gurdal, 1992). Excellent agreements between the results from two methods are

observed.
b/bo At
0.5L p=1 L
r/ry A
1 \
0.5L p=2 L
d/dy »
1 B \_‘—_L_‘—\__\_I—I‘
0.5L p= 3 L
Figure 4.3 - Optimum shapes of simply supported columns
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Figure 4.4 - Optimisation histories of the simply supported columns
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Table 4.1 - Optimum buckling load factors for simply supported columns

p OF =1, [ he,™™ %
Exact ESO difference

I 12/7*=1215 1.214 -0.1

2 4/3=1333 1.328 0.4

3 125/ n* = 1.407 1.400 -0.5

4.5.2 Examples of frame optimisation

4.5.2.1 Optimum design of a three member portal frame

A three member portal frame which was analysed by Szyszkowski and Watson (1988) is
considered. The frame is pinned at the base and is statically indeterminate by one
redundancy. The frame layout and the loading are shown in Figure 4.5. All the three
members are of circular cross-sections and of equal length of Im. Each member is
divided into 10 elements of equal length. Initial uniform ¥ is equal to 100 mm® A

resizing ratio of 40% is used. No maximum or minimum is specified for .

The final optimum shape of the frame is shown in Figure 4.5 and the final design values
are tabulated in Table 4.2 for half of the symmetric frame. The critical buckling
eigenvalues of initial design and optimum design are 2.86 and 4.00 respectively.
Optimum designs are obtained independently with two step sizes, 5 mm” and 2.5 mm’.
The evolutionary histories of the buckling load factors of these two step sizes are shown
in Figure 4.6. The history of the second buckling eigenvalue is not shown since in this
case it is far from the first eigenvalue. From the uniform to the optimum design the

second eigenvalue has decreased from 20.26 to 15.28.
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I m

Figure 4.5 - Optimum shape of the three member frame (without sizing constraints)
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Figure 4.6 - Optimisation histories of the 3-member frame (without sizing constraints)

Obviously the smaller step size requires a high number of iterations. However the
optimum designs obtained with these two step sizes are not much different although the

smaller step size gives slightly better design. Optimum buckling load factors for these
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designs are very close and they equal to 1.401 and 1.400 for step sizes 2.5 mm? and 5

mm’ respectively. Szyszkowski and Watson (1988) also obtained OF = 1.401 with the

same number of elements.

Table 4.2 - Optimum design values of the three member portal frame

Element Optimum design »* (mm?)
number Without sizing With sizing constraints
constraints

1 31.9 70.0
2 60.4 70.0
3 79.8 73.2
4 94.8 88.5
5 109.7 101.3
6 119.4 114.0
7 129.0 121.4
8 136.2 130.0
9 140.9 130.0
10 145.8 130.0
11 138.6 130.0
12 116.9 111.4
13 94.8 88.4
14 67.5 70.0
15 34.2 70.0

For the optimum design with no sizing constraints, the design variable #* range from

maximum 145.8 mm? at element 10 to minimum 31.9 mm” at element 1. This portal

frame is reanalysed with sizing constraints. In this case, % is allowed to vary to the

maximum 130 mm? and to the minimum 70 mm®. Again RR = 40% is used. The final
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optimum shape and the iteration histories are shown in Figure 4.7 and Figure 4.8
respectively. Again two step sizes, 5 mm® and 2.5 mm?, are used independently to
obtain the optimum designs. No difference is observed in the final designs obtained with
these two step sizes although the smaller step size obviously requires a high number of
iterations. The critical buckling eigenvalue of the optimum design is equal to 3.705 (OF
= 1.295). During optimisation the second eigenvalue has decreased from 20.26 at the
uniform design to 17.33 at the optimum design. The final design values are also given in

Table 4.2 (column 3).

1 kN

l m

A
.—W;\

1m

Figure 4.7 - Optimum shape of the three member frame (with sizing constraints)
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Figure 4.8 - Optimisation histories for the 3-member frame (with sizing constraints)

4.5.2.2 Optimum design of a 2-cell frame

Optimum design of a pin based 2-cell frame as shown in Figure 4.9(a) is sought using
the proposed ESO method. All the members are of circular cross-sections and of equal
length of 1 m. Each member is divided into three elements of equal length. Initial
uniform #° is equal to 100 mm? for all the members and 7* is allowed to vary to the

maximum of 200 mm? to the minimum of 10 mm?® in steps of 5 mm?. RR = 40%.

The optimum to initial uniform area ratios (normalised areas) for half of the symmetric
frame and the evolutionary histories of the first two eigenvalues are shown in Figures
49(a) and 4.9(b), respectively. Critical buckling eigenvalues of the uniform and the
optimum designs are 2.861 and 5.602 respectively (OF = 1.960). The maximisation of

the first eigenvalue brings about some reduction of the second eigenvalue. The second

4-20



Chapter 4 - ESO for Structures Against Buckling

eigenvalue decreases from 9.475 at the uniform design to 6.842 at the optimum design.

Szyszkowski and Watson (1988) also obtained the same optimum design for this frame.

I kKN
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I'm Number of Iterations
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Figure 4.9 - Optimum design and iteration history of the 2-cell frame (18 design
variables)

In the above examples each member of the structure is divided into several elements. In
most cases, it is not practical to have different cross-sections within a member. One
might seek an optimum design by treating each member as a single segment having the
same cross-sectional area. If each member in the structure is treated as a single element,
finite element solutions may not be accurate enough and the final design may not be
optimum. This problem can be overcome by using the finite element modelling,

allowing a number of elements to model each member (as in the case of above
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examples), but assigning a modified member sensitivity number for all the elements
within a particular member. If all the elements in a member have the same sensitivity
number, when resizing all the elements in that particular member will acquire a single
design value. This modified member sensitivity number is obtained from the average of

the element sensitivity numbers of all the elements of that particular member.

The 2-cell frame is reanalysed allowing only one design variable for each member by
using the modified member sensitivity number instead of element sensitivity numbers.
The final design normalised areas and the iteration histories are shown in Figure 4.10.
The critical buckling eigenvalue of the final design is equal to 4.425 (OF = 1.546)
compared to the previous optimum eigenvalue 5.601. However, a more practical design

is obtained with the latter approach.

1 kN
(0.61) y e
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Im Nunber of Iterations
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Figure 4.10 - Optimum design and iteration history of the 2-cell frame (6 design
variables)
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4.5.2.3 Optimum design of a three storey frame

A 3-bay, 3-storey, pin based frame as shown in Figure 4.11 is considered for buckling
optimisation. The frame layout, loadings and member numbering are shown in the
figure. All the members are of rectangular cross-section with constant breadth, b = 10
mm. Initial uniform depth d is equal to 20 mm for all members and 4 is allowed to
change in steps of 1 mm. 20% of the total elements are subjected to resizing at each
iteration. Initially the frame is optimised with no sizing constraints i.e. the design

variable d can vary to any value.

0.2 kN 0.2 kN
0.1 kN D | @ W T3 J' 0.1 kN

@{ (o} 5 e 4m

@ (10 {94
1

(20 :')/\- \-)d\ L 2a; 4m
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4m 4m 4m

Figure 4.11 - Structural layout of the 3-storey frame
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The following three cases are considered for optimisation.

Case 1: Each member of the frame is divided into 4 elements of equal length and
allowed to have different depth for each element (optimisation using element
sensitivity numbers).

Case 2: Each member of the frame is divided into 4 elements of equal length, but each
member is allowed to have only one design variable (optimisation using
modified member sensitivity numbers).

Case 3: Each member of the frame is modelled with a single element.

The evolutionary histories of the first two eigenvalues for all three cases are shown in
Figure 4.12. The first two eigenvalues of initial and optimum designs of all three cases

are tabulated in Table 4.3.
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Figure 4.12 - Optimization histories of the 3-story frame
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Table 4.3 - Buckling load factors of the 3-storey frame (without sizing constraints)

B Al A2 OF
Initial design 1.084 3.111 1.000

| Final design - Case | 3.440 3.780 3.173
Final design - Case 2 2.872 3.032 2.649
Final design - Case 3 2.958 2.985 2.748

Final design depths of all the members for Case 2 and Case 3 optimum designs are
given in Table 4.4. However if the final design obtained in Case 3 is solved again using
the finite element model of 4 elements per member, A, is dropped to 2.574 compared to

the value 2.958 obtained with the finite element model of one element per member.

Table 4.4 - Optimum member depths for the 3-storey frame

Element Member depths in mm
number Without sizing constraints With sizing constraints
Case 2 Case 3 Case 2 Case 3
1, 1a 13.93 11.41 23.29 25.06
2,2a 19.81 19.26 20.27 21.09
3,3a 12.01 11.64 10.18 10.00
4,4a 37.49 35.54 30.00 30.00
5, 5a 19.87 19.30 16.23 15.07
6, 6a 25.65 25.09 23.30 23.09
7, 7a 17.77 21.17 30.00 30.00
8 35.56 34.85 13.21 10.00
9, 9a 17.81 19.26 20.27 21.09
10 21.82 23.21 20.28 18.11
11,11a 4.09 5.68 10.00 10.00
12 25.75 23.25 19.26 22.09
A1 obtained with four 2.872 2.574 2472 2.205
elements per member
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Optimum depths of Case 2, which is the most preferred case practically, range from
minimum of 4.09 mm (elements 11 and 11a) to maximum of 37.49 mm (elements 4 and
4a). Optimisation of this 3-storey frame is again carried out with sizing constraints.
Member depths are now allowed to vary to maximum of 30 mm and minimum of 10
mm in steps of 1 mm. RR = 20% is used. All three cases as mentioned above are
considered. The first two eigenvalues of initial and optimum designs of all three cases
are tabulated in Table 4.5. The final design depths of all the members for Case 2 and
Case 3 are given in Table 4.4 (columns 4 and 5). However if the final design obtained in
Case 3 is solved again using the finite element model of 4 elements per member, A, is
dropped to 2.205 compared to the value 2.582 obtained with the finite element model of

one element per member.

Table 4.5 - Buckling load factors of the 3-storey frame (with sizing constraints)

A A2 OF
Initial design 1.084 3.111 1.000
Final design - Case 1 3.017 3.180 2.783
Final design - Case 2 2.472 2.565 2.280
Final design - Case 3 2.582 2.645 2.382

4.6 Influence of ESO Parameters on Optimum Designs

In this section the influence of the step size and the resizing ratio RR on final optimum
designs is studied with the previous examples of 3-member portal frame and 3-storey
frame (Case 1, without sizing constraints). Optimum buckling eigenvalues and the

numbers of iterations required to reach the optimum design are tabulated for different

427
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step sizes and resizing ratios in Table 4.6 for the three member frame and in Table 4.7

for the 3-storey frame (Case 1).

Table 4.6 - The influence of step size and RR on the optimum design of the portal frame

RR (%) Step size 7 inmm” | Number of Iterations e
10 2.5 65 4.0089
20 2.5 37 4.0089
40 2.5 26 4.0086
60 2.5 22 4.0081
10 5.0 39 4.0059
20 5.0 23 4.0048
40 5.0 14 4.0044
60 5.0 13 4.0044
10 10.0 24 4.0000
20 10.0 12 3.9975
40 10.0 9 3.9846

Table 4.7 - The influence of step size and RR on the optimum design of the 3-storey

frame
RR (%) Step size d in mm | Number of Iterations i
10 0.5 103 3.5870
20 0.5 89 3.5381
40 0.5 78 3.5167
10 1.0 72 3.4557
20 1.0 62 3.4363
40 1.0 37 3.4407
10 2.0 54 3.4661
20 2.0 43 3.3890
40 2.0 27 3.3071
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From Table 4.6 for the 3 member portal frame, it is observed that the optimum designs
are not much affected by the choice of RR and step size. Even with the values as high as
40% for RR and step size 10 mm® for /%, a reasonably accurate optimum design is
obtained with only 9 iterations. Since this portal frame is simple and consists of only
three members, and the fundamental buckling mode is only a side sway mode, high RR
values and step sizes are acceptable. However if the structural layout and the buckling
mode are complex, as in the case of 3-storey frame, it is always better to use small
resizing ratios and small step sizes. The optimum design also depends on the finite
element mesh. If the structural members are divided into more elements, more accurate

distribution of material can be obtained.

4.7 Optimality Criteria Methods Based on Uniform Strain Energy Concept

Based on energy considerations, optimality criteria were established in the past for
buckling optimisation of structures. The derivation of optimality condition for single
modal frame structures by Khot ef a/l. (1976) and Szyszkowski and Watson (1988) are

described in the following sections.

4.7.1 Optimality criterion by Khot et al. (1976)

Khot et al. (1976) established optimality conditions for frame structures with linear size-
stiffness relations and presented a minimum weight design method using finite element
analysis. In the following the derivation of optimality criteria by Khot et al. (1976) is

described.

For linear size-stiffness structures, design variables can be represented by the cross-

sectional areas of elements. Thus the optimisation problem is posed as follows: Find the
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vector of design variables X = {x|, x3, ......... x,,}T which minimise the total structural

weight of n elements
WX = 2P, (.16)
i=1

where p;, x; and /; are the mass density, cross-sectional area and length of the "™ element
respectively, subject to the constraint that the fundamental eigenvalue A, should be
greater than the desired buckling load factor A",

A2 A (4.17)
Hence the Lagrangian functional for the minimum weight design subject to a single

constraint 1s formed as
L(X, 0 w) = 20,50, + (=A%) (4.18)
i=1

where p is the undetermined Lagrangian multiplier. Kuhn-Tucker optimality conditions
is obtained by differentiating the Lagrangian functional with respect to any design

variable, x;.

BL(X,\,, 5
(XA, w) p.l.+p.—7\1=0 (4.19)
ox. KR

1
For linear size-stiffness relation

o[K] _[k] (4.20)

Ox, X

! !

Khot et al. (1976) assumed

o[K,]
ox,

]

~0 (4.21)

Substituting (4.20) and (4.21) into equation (4.8) leads to

a% L {”n}r[kJ{”n} (4.22)

ox,  x {u }TLK, u,}
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Substituting (4.22) into (4.19), the optimality condition is obtained as

= A constant (4.23)

Since the {u;} T[Kg} {u;1} 1s the same for all the elements, the optimality criterion can be
interpreted as follows: “The optimum structure for stability is the one in which the ratio
of the strain energy density to the mass density, associated with the buckling mode is
same for all elements”. This optimality condition is valid for single modal, single load

and statically determinate conditions.

The optimality criterion derived above is valid only at the optimum and has to be
converted into a recurrence relation so that it can be used in an optimisation algorithm.
The following two recurrence relations are commonly used in optimality criteria

methods (Morris 1982). Equation (4.23) is re-written as

O,
el (4.24)

1 [

where O =- (4.25)

Exponential recurrence relation: A recurrence relation can be written by multiplying

both sides of equation (4.24) by x;” and taking the #" root. This gives

1/r
xi‘“'l = xi‘/[“ p%[ ] (426)

Linear recurrence relation: A linear recurrence relation is given by the following

equation.

1 .
xiv+l — xiv[1+_[“ QI _ 1]] (427)
r P X, ,
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In equation (4.27) the term (nQ; / paxil; - 1) 1s the error in satisfying the optimality
criterion. In equations (4.26) and (4.27), v and v+1 indicate the iteration numbers and
the parameter r determines the step size. For most problems it has been found that » = 2
is generally adequate, but it 1s required for some problems to increase it to reduce the
step size. In addition the Lagrangian multiplier p has also to be found by using some
iterative procedure. Note that the above recurrence relations are only for single

constraint problems.

4.7.2 Optimality criterion by Szyszkowski and Watson (1988)

Szyszkowski and Watson (1988) also obtained the optimality conditions using the
variational approach in a slightly different way from Khot e al. (1976). They derived
the optimality conditions and presented a resizing algorithm to maximise the critical
buckling eigenvalue of structures of constant volume. In the following derivation of

optimality criteria by Szyszkowski and Watson (1988) is described.

The optimisation problem is stated as follows: Find the vector of design variables X =
X1, X2, eeeen.. xn}T which would maximise the first buckling eigenvalue, A;, for the

structure of a given total volume ¥, which 1s given by

V=2V, (4.28)

i
i=|

where V; is the volume of the i element. Hence the Lagrangian functional for the

optimisation problem is given as
n \

LX) =2+ u[Vo -2 (4.29)
=)
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where u is the undetermined Lagrangian multiplier. Taking the derivative of the

Lagrangian function with respect to a design variable x; brings

oL o, o
ox  or Mo

! H !

=0 (4.30)

The following relation between the element stiffness and the element volume was
assumed instead of the linear-size stiffness relation.

k1=16,1" (431)
where [b;] is the matrix containing all the information on the location and size of the
element and the power p; may vary from element to element. Thus the derivative of

stiffness matrix with respect to a design variable is reduced to

o1K] 0[k]oY, [k,

o, oV, ax, PV ax

I3

(4.32)

Szyszkowski and Watson (1988) also ignored the derivative of the stress stiffness

matrix. Substituting (4.32) and (4.21) into equation (4.8) gives

0 Nk M, } oV,
_}“:_p. {w, } 7Lk N} OV, (4.33)
Ox, Vi lu K Hug b O,
Thus from equation (4.30), the optimality condition is given by
AT V4w,
_ a7k T — 2 = A constant (4.34)
4 {uil}T[Kg]{uil} P;

The term {u,-l}T[Kg} {un} is the same for all the elements. In finite element modelling,
strain energy stored in the i element due to the fundamental buckling mode is given by

SE, = Y {uy } 7Tk, 1u, ) (4.35)
The specific strain energy of i* element is obtained by dividing the strain energy by its
volume.

SPE, = J3 {u, } 71k, Hu, } 1V, (4.36)
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Thus the optimality criterion given by (4.36) is stated as follows: “The optimum shape
of the structure with respect to buckling should have a configuration for which the
specific strain energy associated with the fundamental buckling mode is uniform”. This
optimality condition is again valid only for single modal, single load structures. The

extension of this optimality criteria to multimodal structures will be given in Chapter 5.

Both optimality criteria derived by Khot et al. (1976) and Szyszkowski and Watson
(1988) are similar except the way they were derived and interpreted. In both methods,
the derivative of stress stiffness matrix is ignored and the geometric constraints are not
included in the Lagrangian functional. Szyszkowski and Watson (1988) assumed a
relationship [k,]=[b,V,” instead of linear size-stiffness relation. However this is true

only if all the elements of [£;] matrix are related to the volume by the same power, p;.

Based on the specific strain energy of elements Szyszkowski and Watson (1988)
proposed an algorithm for resizing the cross-sections of all the elements. For elements
with SPE; > SPE,,. (where SPE,,. is the average of SPE; of all the elements), the cross-
sectional areas are increased and for elements with SPE; < SPE,,., the cross-sectional
areas are decreased. Assuming the usual relationship /(x) = cA(x) exists between I(x)
and A(x), the following iterative algorithm was proposed.

[ = sk = sI¥[1+a(SEF | SE,)] (4.37)

where s is the scaling factor to satisfy the constant volume requirement and it is given by

P

s -—-{iaupw /il,-(f,-“)””} (4.38)
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The parameter a in (4.37) is an arbitrary constant to control convergence in the
optimisation process. For most of the examples, Szyszkowski and Watson (1988) used a
= 1. However in certain cases they used a as low as 0.01 and as high as 100. The
analysis, specific energy calculation and resizing are carried out in cycles until the

critical bucking load factor cannot be increased any further.

The ESO method and Szyszkowski and Watson (1988) method for buckling
optimisation have some similarities. In ESO method at each iteration a number of
elements are resized by a small cross-sectional change based on their sensitivity
numbers. In Szyszkowski and Watson (1988) method all the elements are resized based
on the specific energy stored in elements due to the fundamental buckling mode. If the
specific energy of elements range from very small value to vary large value, the cross-
sectional areas of elements also have to be changed by large values accordingly. If cross-
sectional areas of elements are changed by large values, the change in stress stiffness
matrix cannot be ignored. However in ESO method, since the elements are resized
gradually, the change in stress stiffness matrix can be ignored. Furthermore, the resizing
procedure of the ESO method is much simpler than the resizing algorithm of
Szyszkowski and Watson (1988) or the recurrence relations commonly used in

optimality criteria methods.

4.8 Conclusions

In this chapter ESO method for the design of structures against buckling has been
described. The sensitivity number used in the optimisation process is a measure of the
effect of changing the cross-sectional area on the buckling load factor and it is obtained

by ignoring the change in the stress stiffness matrix. If the structure is statically
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determinate and the cross-sectional change at each iteration is small, the sensitivity
number gives a very accurate estimation of the change in the buckling load factor. Even
for a statically indeterminate frame this sensitivity is reasonably accurate if the cross-
sectional variations at each iteration in the frame results in only slight changes in the
axial stress resultants. If an element is removed from the structure, because of the
significant changes in the membrane or axial stress resultants in its surrounding
elements, the change in the stress stiffness matrix cannot be ignored or found from the

finite element solution of the old model.

The capability of the proposed ESO method has been illustrated with several examples
of single modal, single load case frame structures and the results have been compared
with the exact solutions and the other available results. Critical buckling load factors
have been increased substantially by shifting the material from the strongest part of the
structure to the weakest part. The resizing procedure used in the ESO method 1s much
simpler than the other resizing algorithms used in optimality criteria methods. Optimum
designs have been obtained with and without sizing constraints. For the design of frame
structures, more practical optimum designs have been obtained by using modified

member sensitivity numbers.
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CHAPTER 5 - OPTIMUM DESIGN OF MULTIMODAL STRUCTURES

5.1 Introduction

Repeated (or multimodal) eigenvalues in the form of buckling loads and natural
frequencies of vibration very often occur in complex structures that depend on many
design parameters and have many degrees of freedom. For example, stiffener-reinforced
thin-walled plate and shell structures have a dense spectrum of eigenvalues and repeated
eigenvalues are found often. Also, symmetry of structural systems may lead to the
occurrence of several linearly independent buckling modes and vibration modes with

repeated eigenvalues.

Optimisation for maximum stability becomes more difficult when the lowest buckling
eigenvalue of the problem, representing the critical load, is either inherently multimodal
or it becomes multimodal as a result of the optimisation process. During optimisation, it
1s often observed that while the first eigenvalue is increasing, the subsequent
eigenvalues are decreasing and gradually the first two or more eigenvalues converge to
each other, although the corresponding eigenvectors may remain totally different. Some

symmetrical structures are intrinsically multimodal from the outset.

One of the earliest work on multimodal buckling problem was by Olhoff and
Rasmussen (1977). Olhoff and Rasmussen discovered that the optimum eigenvalue of a
clamped-clamped column of given volume is bimodal. They first demonstrated that an
analytical solution obtained by Tadjbaksh and Keller (1962) under the tacit assumption
of a simple buckling load is not optimal and presented a bimodal formulation of the

problem and obtained the correct optimum design. The discovery in 1977 of repeated
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optimum eigenvalues in structural optimisation problems, and the necessity of applying
a bimodal or multimodal formulation in such cases, opened a new field for theoretical

investigation and development of methods for buckling optimisation.

One of the main problems related to repeated eigenvalues is that they are not
continuously differentiable. This is due to the fact that the eigenvectors corresponding
to the repeated eigenvalues are not unique. In fact, an infinite number of linear
combinations of the eigenvectors of the repeated eigenvalues will satisfy the original
eigenvalue problem (equation 4.1). The non-differentiability creates difficulties in
finding sensitivities of repeated eigenvalues with respect to design changes and
derivation of necessary optimality conditions in optimisation problems. The formulae
derived in Chapter 4, for eigenvalue sensitivity and increment of simple eigenvalue are

not applicable to multimodal problems.

Extensive research on various aspects of the problem of multimodality has been carried
out in the past decade. Various approaches to design sensitivity analysis and derivation
of necessary optimality conditions for multiple eigenvalues have been published. A long
literature list is available in Seyranian et el. (1994). Although repeated eigenvalues are
not continuously differentiable, Haug and Rousselet (1980) proved the existence of
directional derivatives of repeated eigenvalues and obtained formulae for these
directional derivatives in the design space. Bratus and Seyranian (1983) and Seyranian
(1987) presented directional sensitivity analysis of repeated eigenvalues based on a
perturbation technique and derived necessary optimality conditions. The reader is
referred to Seyranian er al. (1994) for the detailed analysis of the directional derivation

and sensitivity analysis of the repeated eigenvalues. The sensitivity analysis of the
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repeated eigenvalues leads to the result that the increments of the repeated eigenvalues
are themselves eigenvalues of a sub-eigenvalue problem. The use of directional
derivatives in finding the sensitivities of repeated eigenvalues and the derivation of the
necessary optimality conditions for multimodal problems are mathematically complex

and computationally costly.

Szyszkowski (1992) derived optimality conditions for multimodal problems using
Lagrangian functional and presented a simple approach based on the specific energy of
elements due to all participating buckling modes. According to Szyszkowski (1992), the
optimality criterion for multimodal structures states that a linear combination of the
normalised specific energy due to the participating buckling modes must sum to unity at
every point of the optimum structure. In this method Lagrangian multipliers which
determine the linear combination of the participating modes need to be determined
iteratively. This method is again mathematically complex and the application of this
method to statically indeterminate structures may lead to non-optimum designs. In some
cases convergence problems are observed. Details of this method will be discussed 1n

Section 5.4.

In the following sections, a very simple technique to take account of multimodality in
the ESO method for buckling optimisation is proposed. The application of the ESO
method to multimodal problem is illustrated with several examples and compared with

the available results from the literature.
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5.2 Sensitivity Number for Buckling Load of Repeated Eigenvalues

Using a proper eigenvalue solver the solution to the problem given by equation (4.1) is
obtained in the form of the set of eigenvalues A} < X, < i3 <... and the corresponding set
of buckling eigenvectors {u}, {u2}, {us}.... The aim is to maximise the fundamental
eigenvalue, 2. However, when increasing A, it may become close to A, and then to A3
and etc..... up to Ay. Consequently, the optimisation procedure finally may need to

monitor the first N buckling modes simultaneously.

In the ESO method, the sensitivity number of each element is a crucial factor. In
equation (4.10) only the first eigenvector is considered. When the first eigenvalue
becomes close to the subsequent eigenvalues, there will be interference between the first
and the subsequent eigenvectors. Therefore the effect on the fundamental eigenvalue
due to all participating eigenvectors needs to be included. An eigenvalue multiplicity
parameter ¢ is defined and the multimodality of the structure is determined by the
number of eigenvalues within an ¢ distance of the lowest eigenvalue. If, for example,
the distance between A, and A,, is within a certain limit, say ¢ = 5%, and the distance
between A, and A5 is greater than 5% it may be assumed that the structure has now
become bimodal. When A| and A, become close, the first two buckling modes may swap
with each other as a result of structural modifications during the iterations. There is no
point in trying to increase A, only to see A, drop its value in the next step below the
previous A;. To effectively increase the buckling load factor in these circumstances,
both X; and X, have to be increased. The simplest strategy for achieving this 1s to

increase the average values of A, and X,. Therefore we redefine the sensitivity number

for the bimodal case as
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l
Qi = o (a3 TTAK Mty + {7 AR 0t ) CRY)

Similarly for a multimodal case, when the N " eigenvalue Ay and X, are within ¢

distance, the sensitivity number is defined as
1
&y :N—S({uil}T[Aki]{uil}+ ----- g $T[AK Hu }) (5.2)

For the calculation of these sensitivity numbers all the relevant eigenvectors have to be
first ortho-normalised with respect to [K,] such that {u;} T[Kg]{ u;} = 1. For each element
two sensitivity numbers, a5 and o, need to be calculated by substituting [Ak,]" and

[Ak;] instead of [A4;] in the above equations.

It is not clear a priori whether repeated eigenvalues will occur in a specific problem.
The multimodality of the optimal design of each particular problem is unknown and is
rather difficult to predict. If, for example, that by steps of bimodal redesign the distance
between the third eigenvalue A; and the bimodal eigenvalues A, and A, (A; = A,) may
decrease, and if coalescence occurs, a trimodal scheme must be adopted for subsequent
iterations, and so on. Thus, independent of the degree of multiplicity of the fundamental
eigenvalue at a given iteration stage, it is necessary to keep track of a few of the next
(higher order) eigenvalues in order to capture possible coalescence of one or more of
these eigenvalues with the fundamental one, and then use an updated scheme for the
subsequent iterations. The optimisation procedure for multimodal problems is the same
as described in Section 4.3 except that the sensitivity numbers now need to be

calculated based on equation (5.1) or (5.2).
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5.3 Examples

5.3.1 Clamped - clamped column

The optimum shape of the clamped-clamped column compressed at its ends was first
dealt with by Tadjbakhsh and Keller (1962). The governing differential equations were
obtained using variational calculus and were solved analytically for a column with
geometrically similar cross-sections satisfying I(x) = cA(x)’. Their results stood
unchallenged until 1977 when Olhoff and Rasmussen (1977) found that the optimum
design should be bimodal. The study of Olhoff and Rasmussen (1977) on clamped-
clamped column was the earliest work on bimodal buckling optimisation. In their
landmark study, they showed that the critical load is governed by a repeated eigenvalue.
They established the differential equations for optimisation under the double eigenvalue
formulation by using varational calculus and solved these non-linear integro-

differential equations of the continuous system by means of finite difference method.

Olhoff and Rasmussen (1977) also discovered that there was a threshold value of

minimum area constraint which separated the single and bimodal buckling modes. The
curve of optimum buckling load factor versus minimum area constraint B for the

column cross-sectional area obtained by Olhoff and Rasmussen (1977) is reproduced in
Figure 5.1, where minimum dimensionless cross-sectional area = 4 L/ V. They found
that the optimum buckling load is single for any value of B in the range of 0.280 < B

<1.For0< B < 0.280, the buckling mode is bimodal and the optimum occurs at B =

0.226 and the corresponding optimum factor is 1.3262. The minimum cross sectional

area of the column is found to be at x = 0.25L and 0.75L. From the curve and the results
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it is seen that the optimum design is very sensitive to the minimum area constraint and

the number of buckling modes. The difference between the optimum designs obtained

with single modal or bimodal optimisation is very small.

A /kluni/brm
1.4 — - o - =
e ESO results
oo —

13 - Lo .\0\. — Olhoff and Rasmussen
1.2 - . . .\o
L P ’\\
1.0 l‘ Aisdouble : M is single

\ . .
0.9 -~ inactive} active minimum area constraint
08— == 0 pa. = - = Bt = 53

0 0.2 ‘ 1 0.4 0.6 0.8 8 |

0.226 0.280

Figure 5.1 - The curve of optimum eigenvalue vs minimum area constraint

Recently Tada and Wang (1995) re-investigated the same problem and showed the

convergence

of the numerical calculation is highly sensitive to the precision of the

numerical calculation. Tada and Wang (1995) obtained the optimum solution using

double precision computations and 6400 discrete points for the finite difference

modelling to solve the differential equations. According to Tada and Wang (1995) the

optimum design under single modal formulation is at B = 0.2817 and the optimum

factor is found to be 1.32454. The minimum area E =0.2817 occurs at x = 0.25L and x

=0.75L. With bimodal formulation the optimum eigenvalue increases as B decreases in

the region of 0.2258 < E <0.2817. When B < 0.2258 the optimum eigenvalue becomes
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stable with the optimum factor of 1.3262. The minimum area B = 0.2258 occurs at x =

0.247L and x = 0.753L.

Both Olhoff and Rasmussen (1977) and Tada and Wang (1995) obtained the optimum
designs for clamped-clamped column using distributed parameter optimisation methods.
With continuous design variables, high sensitivity of optimum designs with regard to
minimum area constraint and the number of participating buckling modes either single
or bimodal could be captured. However this extremely small difference between the
single modal and bimodal designs cannot be captured with the optimisation methods
based on finite element analysis due to round-off errors . Seyranian et el. (1994) and
Szyszkowski (1992) independently tried to obtain optimum designs for clamped-
clamped column using the optimality criteria method based on the finite element

analysis and observed the same difficulties.

This example is reanalysed using the proposed ESO method to check the precision of
the method. A circular cross-sectional column is analysed. The dimensions are as
follows: length L = 1 m ; uniform #* =20 mm? and #* is allowed to vary to the maximum
7= 40 mm’ and to the minimum »>= 1 mm”’ in steps of ¥*=0.1 mm’. RR =20% and ¢
= 2% are assumed. The column is divided into different numbers of elements and the
optimum factors obtained are compared in Table S.1. It is interesting to note that these
optimum factors are only marginally less than the bimodal optimum buckling load
factor 1.3262 of the continuum column determined by Olhoff and Rasmussen (1977).
The optimum shape and the cross-sectional areas are shown in Figure 5.2. However, as

noted from Table 5.1, there is no difference observed between the single modal and
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bimodal optimum solutions. The effect of minimum area constraint on optimum design
is also checked for the column divided into 200 elements. The results are tabulated in
Table 5.2 and compared with the numerical results available from Olhoff and
Rasmussen (1977). The points obtained by the proposed ESO method lie on the curve of

Olhoff and Rasmussen (1977) as shown in Figure 5.1.

Table 5.1 - Clamped-clamped column optimum factors

Number of Optimum factors
elements Single modal Bimodal
50 1.3200 1.3200
100 1.3233 1.3233
200 1.3242 1.3242
¥/ Vuni

|2 _B=1.3299

0.8 -

04 - B =0.270

00 —— g -

0 0.1 0.2 0.4

x/L

Figure 5.2. Optimum shape of the clamped-clamped column
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Table 5.2 - Optimum factors for different p values

Optimum factors

B Olhoff and Rasmussen ESO

0.3 - 1.3225
0.4 1.3115 1.3111
0.6 - 1.2684
0.7 1.2333 1.2332
0.8 - 1.1846
0.9 - 1.1156

5.3.2 Three member portal frame - bimodal example

A three member pin based frame which was analysed by Szyszkowski ez al. (1989) for
bimodal buckling 1s considered. The frame layout and the loading are shown in Figure
5.3. All the members are of circular cross-sections and of equal length of 1 m. Initial

uniform #° is 20 mm® and is allowed to vary to the maximum 40 mm” and to the

minimum 5 mm® in steps of 1 mm’. Each member is divided into 10 elements of equal
length. RR = 20% and € = 5% are used. For the frame with a uniform cross-section, the
first buckling mode is anti-symmetric with sway and the second buckling mode 1s
symmetric without sway. High compressive loads are applied in the horizontal direction

to make the problem bimodal from the outset.

The optimum shape obtained with the bimodal method by using equation (5.1) for
sensitivity number calculations is given in Figure 5.3. The corresponding buckling load
is 1.247 times that of the uniform frame. This optimum design compares well with the

optimum design obtained by Szyszkowski et al. (1989). If only the first buckling mode
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is considered for optimisation and the single modal sensitivity number is used, the
buckling load factor can only reach 1.125 times that of the uniform frame. The
evolutionary histories of the first two eigenvalues using both single and bimodal
methods are given in Figure 5.4. The above problem is analysed with different values of
multiplicity parameter € = 1%, 2% and 5%. No difference is observed in the final design

although the iteration histories of eigenvalues vary slightly in intermediate designs.

/s r/runi

11.3m‘,7” Z//// 7 §, 113

o

1 m

Figure 5.3 - Optimum shape of the three member portal frame



Chapter S - Optimum Design of Multimodal Structures

}\’/}\’luniform
Bimodal (A;)
1.3 . B ] l\ /l [ ] ]
] AN / \_/ \_/ . \_/ \_/ \_
. . ~ NN
T . .
12 - / .\-/ \f{.\,/'\'/ - Bimodal ()
/) =
SN s Single modal (1,)
] * e O o0
- om // P N
/;:/’ ./';:737!_‘ Single modal (A,)
o——-’——'A/‘
] o——.;r/
* .__.7._A/‘
S
0 5 10 15 20 25

Number of Iterations

Figure 5.4 - Optimisation histories of the eigenvalues for the three member frame

5.3.3 Three member space frame - trimodal example

A space frame with three beams pinned at the base and clamped at the apex is
considered for the trimodal optimisation. The frame layout and the loading are shown in
Figure 5.5. All the members are of circular cross-sections and of length 1 m. Initial

uniform 7* is 20 mm’ and it is allowed to vary to the maximum 40 mm? and to the

minimum 5 mm” in steps of 1 mm®. Each member is divided into 10 elements of equal
length. This is a triple symmetric structure and the first three eigenvalues coincide for
the uniform design and remain coincided throughout the optimisation process when the
trimodal optimisation is carried out. The optimum shape obtained with the ESO method
is given in Figure 5.5. The ratios of the final to initial uniform radius of the cross-
section are displayed in this figure for one member as it is identical for all members.
The optimum buckling load is 1.273 times that of the uniform frame and it is achieved
after 10 iterations. Optimum design is also obtained by considering only the first
buckling mode. The optimum factor for this is 1.251 and it is obtained after 35

iterations. Although the optimum factors obtained by trimodal and single modal
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methods are differed by only 1.73%, a much higher number of iterations are required
when using single modal optimisation. The iteration histories of the first three

eigenvalues using both single modal and trimodal methods are given in Figure 5.6.
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Figure 5.5 - Optimum shape of the three member space frame
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Figure 5.6 - Optimisation histories of the three member space frame

5-13



Chapter 5 - Optimum Design of Multimodal Structures

5.3.4 Box frame

The box frame shown in Figure 5.7 was previously considered for buckling optimisation
by Szyszkowski et al. (1989) using optimality criteria method. This frame was later
reanalysed by Canfield (1993) using non-linear mathematical programming with
Rayleigh Quotient Approximation method. Buckling optimisation of this frame was

considered to be one of the most difficult examples in the literature.

This box frame is optimised for buckling using ESO method and the results are
compared with those from the literature. All the members are of rectangular cross-
sections with constant breadth » =40 mm. Initial uniform depth 4 is equal to 40 mm for
all the members. As shown in Figure 5.7, top and bottom horizontal members are
divided into six elements of equal length and diagonal and vertical members are divided
into three members of equal lengths. Since the diagonal members are under the tensile
axial forces, the material of these members should probably be transferred to other
members, presumably under compression. Consequently, the slender diagonal members

in tension may, in the optimum design, become too thin to carry the tensile forces.

Initially the design variable, depth d is allowed without upper limit and to the minimum
depth of 1 mm in steps of 1 mm. RR = 20% is used. The optimum to the initial uniform
depth ratio is shown for half of the symmetric model in Figure 5.7 (the values on the left
hand half of the frame). The evolutionary histories of the first two eigenvalues using
both single and multimodal methods are given in Figure 5.8. Initially for the uniform
design, the fundamental eigenvalue is single. From the iteration histories of eigenvalues,

it is seen, as the optimisation progresses, the first two eigenvalues converge to each
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other, then they drift apart from each other and the final optimum design is single
modal. The final design buckling load factor is 3.886 times that of the uniform frame. If,
however, only the first buckling mode is considered using the single modal sensitivity
number throughout the optimisation process, the final design buckling load factor can
reach only 2.522 times that of the uniform frame. Thus even if the final optimum design
is single modal, bimodal optimisation needs to be carried out to get over the

intermediate bimodal situations.

) 6 m
12108 0.859 1210 (1.418) (0.928) (1.936)

1371 | (1528)

T o025 (0.025)
1.635 (1.446)

| 0.025 _ 0.030 (0.025) | I'm
1.745 ' ‘ (0.025 (1.525)

: ‘ - v
L, 1457 2.041 1.716 ¢ (1.595) (1.915) (1288) . 10P
P

Figure 5.7 - Optimum design of the box frame (allowable minimum depth = 1 mm)
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Figure 5.8 - Optimisation histories of the eigenvalues for the box frame (dpnin = 1 mm)
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For this particular frame, high numbers of iterations are required to obtain optimum
designs. As the optimisation progresses, the first few eigenvalues of the problem
become negative, and at the final stages of the optimisation process the first eight
eigenvalues are negative and the ninth and tenth eigenvalues are the first two positive
eigenvalues. Hence through out the optimisation process, at least first 10 eigenvalues
and eigenvectors need to be monitored to pick up the first two positive eigenvalues. The
first few negative eigenvalues physically indicate that the loading direction needs to be
reversed to cause the buckling in the structure. Detailed histories of the first ten

eigenvalues are given in Appendix 5.1.

The optimum depth ratios obtained by Szyszkowski es al. (1989) are given in the
parenthesis (the values on the right hand half of the frame). Optimum factor for this
design reported by Szyszkowski et al. (1989) was only 3.018 and they claimed the final
design was bimodal. Analysing this final design for buckling reproduces the same
critical buckling load factor (3.018 times the load for the uniform design); however, the
analysis reveals the volume of this design has increased by 5% and the design is not
bimodal as claimed. ESO method produces the optimum design with much higher

buckling load factor, while precisely maintaining the constant volume constraint.

This box frame is reanalysed for the minimum allowable depth d = 4 mm. The optimum
to initial uniform depth ratios are shown for half of the symmetric frame in Figure 5.9.
The evolutionary histories of the first two eigenvalues using both single and multimodal
methods are shown in Figure 5.10. The final optimum design is bimodal and the

corresponding buckling load factor is 3.666 times that of the uniform design. Again at
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final stages of optimisation the first eight eigenvalues are negative and the ninth and
tenth eigenvalues are the first two positive values. Detailed histories of these
eigenvalues are given in Appendix 5.2. The optimum depth ratios obtained by
Szyszkowski et al. (1989) are given in the parenthesis. Buckling load factor for this

design is only 2.721 times that of the uniform design.

6 m
1.193 0.836 1.193 (1.403) (0.933) (1.416)
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Lo 0.100 ©100) T} 4og)
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P

Figure 5.9 - Optimum design of the box frame (allowable minimum depth = 4 mm)
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Figure 5.10 - Optimisation histories of the eigenvalues for the box frame (dnin = 4 mm)

Szyszkowski et al. (1989) obtained final designs after between 25 to 30 iterations. To
obtain the correct optimum designs ESO method requires between 80 to 85 iterations

with RR = 20% and step depth size = 1 mm. However, the static and buckling analyses
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of this 24 element frame require only 6 seconds on a Pentium / 100 Mhz personnel
computer. Hence total time requires for the whole optimisation process is only about 8
to 10 minutes. In general, for frame structures the number of iterations required to

obtain the optimum designs does not really matter.

Canfield (1993) analysed this frame with a reduced ratio of horizontal to vertical load
(4:1 instead of 10:1). With the allowable minimum depth d = 1 mm, Canfield obtained a
bimodal optimum design with the buckling load factor 3.051 times the uniform buckling
load factor. ESO method also produces the same optimum buckling load factor. The
optimum to initial uniform depth ratio are shown for half of the symmetric frame in
Figure 5.11. The values given in parenthesis are by Canfield (1993). The evolutionary
histories of the first two eigenvalues using both single and multimodal methods are

shown in Figure 5.12.

6m
1.533 0.980 1.493 (1.485) (0.975) (1.505)
1.610 ‘ (1.580)
Lass | 0025 \ ‘ (0.025) [ (1.455) |
1 0.025 0.025 (0.025) (0.025) | m
1.458 ' ‘ (1.482)
: ‘ - v
L, 1227 1.818 1.527 ¢ (1.566) (1.805) (1239) 4o 4P
P

Figure 5.11 - Optimum design of the box frame (allowable minimum depth = 1 mm)
Horizontal to vertical load ratio 4:1

5-18



Chapter 5 - Optimum Design of Multimodal Structures

A/ A, orm
Bimodal (A,)
30 - PN
Bimodal (A,)
25 -

20 -

Single modal (1))
0 20 40 60 80 100 120
Number of Iterations

Figure 5.12 - Optimisation histories of the eigenvalues for the box frame (d,;, = 1 mm)
(Horizontal to vertical load ratio 4:1)

5.4 Multimodal Optimality Criteria by Szyszkowski (1992)

Initially Szyszkowski et al. (1989) extended the single modal optimality criteria
outlined in Section 4.7.2 by Szyszkowski and Watson (1988) to bimodal problems.
Later Szyszkowski (1992) extended the bimodal method to general multimodal
problems. Full details of the derivation of the optimality criteria can be found in their

papers, but a summary of the method is given below.

In deriving the optimality criteria, Szyszkowski (1992) introduced a term NSE; which
represents the normalised specific strain energy stored in the i element due to the S
buckling mode. NSE; is defined by the following equation:

SPE,

NSE, = ——— (5.3)
% ;SPE,,
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where SPE;; is the specific strain energy of the i element (as defined in equation (4.36))
and 7 is the total number of elements. For a multimodal problem of M order, AN=a(

=1, N), Szyszkowski (1992) derived the following optimality conditions,
N N
1= 2y, INSE, + )y ,NSE, =1 (5.4)
j=2 j=2

for all the elements. y; (j =2, N) are undetermined Lagrangian multipliers and they

should be within the range of

N
0<y <1 and Dy, <1 (5.5a,b)

J=2

These Lagrangian multipliers need to be determined iteratively during the optimisation
process. The optimality condition (5.4) states that a linear combination of the
normalised specific energy due to the participating buckling modes must sum to unity at
every point of the structure. The actual modality of the structure is unknown in advance.
If the optimum design is only Ng - modal, that is if A; = A, for j = 1, Ng, where Nz <N,

equation (5.4) needs to be supplemented with the following switching conditions.
A
Y, 7 =1[=0; j=1,N (5.6)

For N <j < N, &; # A and all the y; must be equal to zero and equation (5.4) will
involve only the first N participating buckling modes. The goal of the optimisation
procedure is to satisfy equations (5.4) to (5.6) iteratively. Initially the values for
Lagrangian multipliers y; (j = 2, N) are assumed satisfying equation (5.5). From equation

(5.4), for each element a local error, §;, is calculated as

N N
E, :[I—Zyj]NSE” +2 .y NSE, -1 (5.7)
j=2 j=2
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If the design 1s optimum, &; should have been zero for all the elements. Based on these

local errors of elements, design variable of elements are linearly updated using
xirh = xt(1+cg,) (5.8)

where ¢ is an arbitrary positive constant. With these new design variables, NSEj; of
elements are found and using a complex analysis, the initially assumed Lagrangian
multipliers are updated to minimise the local errors of elements, &, in subsequent

iterations. Details of the procedure can be found in Szyszkowski (1992).

5.5 Conclusions

The capability of the ESO method for buckling optimisation of multimodal structures
has been illustrated with several examples. The proposed results compare well with
exact solutions and other available results. The sensitivity number calculations and the
iterative process for multimodal cases are very simple and do not involve any complex
mathematical formulations such as variational calculus or Lagrangian multipliers. In
many cases, using multimodal formulation results in much higher buckling load factors
than using single modal formulation, if the structure has been multimodal at any stage
of the optimisation. The optimality criteria method by Szyszkowski (1992) does not
give optimum designs for highly statically indeterminate frames. For the same example,

ESO method gives much better results than Szyszkowski (1992).
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APPENDIX 5.1

The history of the first ten eigenvalues for the box frame (minimum depth 1 mm)

A A> % X4 As Ae % Ag Ao Ao

12.158 | 16.070 | 27.666 | 27.927 | 34.879 | 58.296 | 71.270 | 84.196 | -90.627 [-100.211
12963 | 16.988 | 26.387 | 29.133 | 36.645 | 54.880 | 75.276 | 88.194 | -89.006 | -99.186
13.795 | 18.242 | 24.889 | 31.220 | 39.469 | 51.559 | 80.743 | -86.447 | 93.808 | -96.234
14.656 | 19.462 | 23.509 | 33.371 | 42.461 | 48.357 | -83.904 | 86.483 | -93.310 | 93.659
15.547 | 20.261 | 22.647 | 35.525 | 45.353 | 45.610 | -81.386 | 88.418 | -90.423 | 92.480
16493 | 19.554 | 23.072 | 37.179 | 42.564 | 48.532 | -79.416 | 81.993 | -88.768 | 98.338
17.447 | 18.354 | 24.427 | 37.168 | 42.161 | 51.954 | 76.299 | -76.985 | -85.984 | 104.588
16.943 | 18.447 | 25.781 | 34.792 | 43.859 | 55.055 | 70.289 | -75.129 | -84.469 | 106.498
18.059 | 18.484 | 25.333 | 37.518 | 42.971 | 53.258 | -71.615 | 76.775 | -80.432 | 107.203
18.532 | 19.847 | 26.385 | 37.817 | 43.949 | 54.650 | -67.151 | -75.114 | 77.308 | 109.888
18.365 | 19.466 | 27.844 | 35300 | 45.821 | 57.926 | -67.112 | 71.314 | -74.786 | 110.605
18.989 | 19.883 | 27.367 | 38.035 | 45.072 | 56.585 | -63.507 | -70.669 | 77.447 | 113.346
19.439 | 21.222 | 28.136 | 37.953 | 45.364 | 56.840 | -60.268 | -67.321 | 77.788 | 114.761
19.693 | 20.399 | 29.630 | 35.355 | 47.376 | 60.130 | -60.256 | -67.045 | 71.870 | 113.452
20.835 | 20.978 | 30.716 | 35.159 | 48.314 [ -56.192 | 61.366 | -62.270 | 72.322 | 114.964
21.189 | 22.254 | 31.666 | 36.148 | 48.933 [ -51.940 | -57.137 | 62.617 | 74.900 |-107.854
20.649 | 22.200 | 33.293 | 33.384 | 51.385 [ -51.925 | -56.915 | 64.875 | 70.448 |-107.794
21.645 | 22.292 | 32.808 | 36.240 | -48.867 | 50.348 | -53.470 | 64.542 | 75.172 | -99.519
21.782 | 23.853 | 33.317 | 37.598 | -45.338 | -49.436 | 50.102 | 64.664 | 78.606 | -90.845
22.195 | 22.813 | 34.811 | 34.968 | -45.340 | -49.267 | 52.550 | 67.309 | 73.695 | -90.817
23.131 | 23.527 | 35.624 | 35.847 | -41.736 | -45.047 | 52.832 | 68.957 | 76.327 | -82.159
23228 | 25.081 | 35.906 | 37.158 | -38.461 | -41.378 | 52.289 | 69.454 | -74.362 | -77.496
23366 | 24.294 | 34.377 | 37.622 | -38.468 | -41.257 | 54.888 | 70.171 | -74.352 | 76.714
24367 | 24.899 | -35.326 | 35.662 | 37.765 | -37.769 | 54.200 | -66.983 | -69.636 | 72.065
24.543 | 26.264 | -32.103 | -34.208 | 36.660 | 38.405 | 54.515 | -59.696 | -61.965 | 73.662
24.862 | 25.662 | -30.689 | -32.634 | 35.654 | 40.270 | -54.218 | -56.342 | 57.364 | 74.030
25.665 | 26.487 | -28.013 | -29.698 | 37.040 | 40.129 | -48.160 | -49.980 | 56.471 | 76.646
25233 | 25.404 | -26.671 | 28.360 | 40.013 | 40.212 | -42.103 | -43.639 | 56.464 | 78.505
-24.150 | -25.452 | 26.577 | 26.909 | -37.489 | -38.955 | 38.977 | 42.124 | 59.372 | 80.112
21.747 | -22.847 | 26.614 | 28.553 | -32.451 | -33.693 | 40.314 | 42.028 | 58.478 | 82.077
-20.862 | -21.810 | 27.065 | 27.828 | -28.459 | -29.694 | 39.254 | 44.045 | 61.508 | 81.621
-18.757 | -19.525 | -24.293 | -25.364 | 27.755 | 28.826 | 40.744 | 44347 | 61.794 | 84.769
-16.776 | -17.364 | -20.524 | -21.470 | 27.411 | 30.936 | 43.741 | 44.106 | 60.740 | 87.312
-16.136 | -16.370 | -17.613 | -18.812 | 28.677 | 29.398 | 43.012 | 45.792 | 63.822 | 88.545
-14.178 | -14.242 | -14.744 | -15.996 | 28.619 | 31.263 | 44.604 | 46.111 | 64.122 | 91.125
-11.896 | -11.911 | -13.703 | -14.836 | 29.991 | 30.059 | 43.928 | 48.529 | 67.740 | 90.961
-9.736 | -9.824 |-12.140 | -13.001 | 29.926 | 32.036 | 45.741 | 48.148 | 66.922 | 94.604
-7.875 | -7.961 | -11.460 | -12.293 | 30.728 | 31.421 | 45.041 | 50.677 | 70.685 | 93.363
-6.255 | -6.348 | -10.099 | -10.756 | 31.400 | 32.702 | 46.733 | 50.993 | 70.987 | -85.341
4910 | -4.995 | -8.869 | -9.389 | 31.067 | 35.058 | 50.240 | 50.493 | 69.795 | -75.012
-3.888 | -3.953 | -8.447 | -8.970 | 32.637 | 33.723 | 49.794 | 52.837 | -65.728 | -65.790
-3.069 | -3.125 | -7.509 | -7.931 | 32.683 | 35.836 | 50.043 | 53.612 | -57.815 | -57.863
2456 | -2.496 | -7.241 | -7.667 | 34.289 | 34.507 | 49.361 | -50.027 | -50.064 | 56.366
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(1,958 | -1.989 [ 6374 | -6.714 | 33.971 | 37.102 | -42.907 | -42.935 | 53423 | 55.553
731 | <1751 | -6.237 | -6.579 | 35202 | 35.565 | -36.463 | -36.479 | 50391 | 58281
1390 | -1.405 | -5.498 | -5.779 [-30.869 | -30.878 | 35.166 | 38.051 | 54.725 | 58.308
1188 | -1.198 | -5.407 | -5.685 | -25.671 | -25.671 | 36.107 | 36.794 | 51.640 | 61.121

-0.973 | -0.979 | -4.840 | -5.060 | -21.560 | -21.564 | 36.443 | 39.373 | 56.464 | 60.364

-0.814 | -0.818 | -4.628 | -4.837 | -16.869 | -16.877 | 36.529 | 37.822 | 52.326 | 62.443

-0.643 | -0.646 | -4.172 | -4.344 | -13.937 | -13.948 | 37.097 | 40.397 | 57.889 | 61.635

-0.529 | -0.530 | -3.979 | -4.138 | -10.529 | -10.546 | 37.408 | 38.573 | 53.529 | 63.958

-0.386 | -0.386 | -3.526 | -3.646 | -8.283 | -8.301 | 38.019 | 41.156 | -57.705 | -58.764

-0.317 | -0.317 | -3.307 | -3.407 | -6.069 | -6.100 | 38.168 | 39.456 | 54.656 | -56.158

-0.203 | -0.204 | -2.792 | -2.856 | -4.565 | -4.605 { 39.194 | 41.594 | -49.683 | -50.503

-0.174 | -0.174 | -2.249 | -2.270 | -3.632 | -3.710 | 38.736 | 40.537 | -48.573 | -49.369

-0.090 | -0.090 | -1.549 | -1.554 | -2.991 | -3.060 | 40.126 | 42.506 | -42.849 | -43.458

-0.092 | -0.092 | -0.920 | -0.921 | -2.832 | -2.902 | 39.587 | 41.477 | -41.906 | -42.498

-0.031 | -0.031 | -0.481 | -0.482 | -2.421 | -2.474 | -36.561 | -37.018 | 41.227 | 43.248

-0.050 | -0.050 | -0.219 | -0.219 | -1.966 | -2.002 | -29.514 | -29.842 | 40.556 | 44.740

-0.050 | -0.050 | -0.220 | -0.220 | -1.973 | -2.008 | -29.618 | -29.936 | 42.146 | 42.163

-0.009 | -0.009 | -0.061 | -0.061 | -1.673 | -1.697 | -25.474 | -25.703 | 41.785 | 46.350

-0.031 | -0.031 | -0.094 | -0.094 | -1.637 | -1.660 | -24.564 | -24.781 | 42.498 | 43.177

-0.005 | -0.005 | -0.014 | -0.014 | -1.390 | -1.407 | -21.175 | -21.331 | 42.708 | 47.168

-0.034 | -0.034 | -0.100 | -0.100 | -1.326 | -1.341 | -19.768 | -19.915 | 42.466 | 43.596

-0.005 | -0.005 | -0.014 | -0.014 | -1.109 | -1.118 | -16.849 | -16.948 | 43.175 | 47.347

-0.034 | -0.034 | -0.100 | -0.100 | -1.060 | -1.070 | -15.693 | -15.790 | 42.534 | 44.044

-0.005 | -0.005 | -0.014 | -0.014 | -0.863 | -0.869 | -13.095 | -13.158 | 43.647 | 47.403

-0.034 | -0.034 | -0.100 | -0.100 | -0.834 | -0.840 | -12.229 | -12.288 | 42.649 | 44.516

-0.005 | -0.005 | -0.014 | -0.014 | -0.658 | -0.661 | -9.959 | -9.996 | 44.124 | 47.495

-0.034 | -0.034 | -0.099 | -0.099 | -0.643 | -0.646 | -9.289 | -9.324 | 42.697 | 44.997

-0.009 | -0.009 | -0.069 | -0.069 | -0.475 | -0.477 | -7.101 | -7.122 | 44,163 | 46.613

-0.034 | -0.034 | -0.098 | -0.098 | -0.361 | -0.362 | -4.953 | -4.963 | 43.398 | 45.584

-0.009 | -0.009 | -0.069 | -0.069 | -0.239 | -0.240 | -3.500 | -3.505 | 44.735 | 47.395

-0.033 | -0.033 | -0.090 | -0.090 { -0.190 | -0.190 | -2.218 | -2.220 | 43.930 | 46.318

-0.009 | -0.009 | -0.064 | -0.064 | -0.106 | -0.106 | -1.369 | -1.370 | 45.440 | 48.000

-0.030 | -0.030 | -0.059 | -0.059 | -0.128 | -0.128 | -0.749 | -0.750 | 44.728 | 46.968

-0.009 | -0.009 | -0.025 | -0.025 | -0.079 | -0.079 | -0.348 | -0.348 | 46.060 | 48.942

-0.025 | -0.025 | -0.045 | -0.045 | -0.118 | -0.118 | -0.369 | -0.369 | 45.134 | 47.365

-0.004 | -0.004 | -0.009 | -0.009 | -0.018 | -0.018 | -0.130 | -0.130 | 47.228 | 50.328

-0.018 | -0.018 | -0.036 | -0.036 | -0.097 | -0.097 | -0.175 | -0.175 | 45.214 | 48.215

-0.005 | -0.005 | -0.009 | -0.009 | -0.029 | -0.029 | -0.079 | -0.079 | 47.272 | 49.954

-0.018 | -0.018 | -0.036 | -0.036 | -0.097 | -0.097 | -0.175 | -0.175 | 45.219 | 48.212

-0.005 | -0.005 | -0.009 | -0.009 | -0.029 | -0.029 | -0.079 | -0.079 | 47.272 | 49.954

-0.018 | -0.018 | -0.036 | -0.036 | -0.097 | -0.097 | -0.175 | -0.175 | 45219 | 48.212
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APPENDIX 5.2

The history of the first ten eigenvalues for the box frame (minimum depth 4 mm)

ll lz l} l4 l5 16 l7 lg lg xlO

12.158] 16.070] 27.666] 27.927] 34.879] 58.296] 71270 84.196] -90.627|-100.211
13.013] 17211 26.171] 29.641] 37.346] 54.458] 76.393| -88.560] 89.982| -98.308
13.955] 18.451| 24.658] 31.852] 40206 51.093] 82231 -85.857| 94.920| -95.834
14.871] 19.523] 23.134] 33.922] 43.000] 47.553] -83.680] 87.914] 92.365| -93.974
15.815] 19.959] 22363 35.909| 44.335] 45.922| -81.486] 86.219] -92.137| 93.826
16.853] 19.163] 23.213[ 37.459] 42311 49.217| -78.869] 80.405| -89.890] 100.404
17.808] 17.852| 24471 36357| 42.662| 52.368] 74.238] -76.800| -88.206] 106.302
18316 19.246] 25.260] 36.740| 43.175] 52.957| -72.594] 75.236| -83.436] 107.702
17.821] 19356 26.659] 34.264] 45.137| 56.160] 69.397| -70.719| -81.899] 108.140
18.892| 19.400] 26.137| 37.078| 43.993] 54.267| -67.415| 75.736] -78.107| 110471
19.309] 20.867| 27.038] 37.264] 44.390| 54.843| -63.702| -73.523| 76.640| 112.046
19.492[ 20498 28.699] 34.962| 46.788] 58.518| -61.486] 71.228] -71.499 112.750
19973 21.158] 28.121| 37.828] 45.489| 56.482| -58.402| -67.930] 77.620] 115.805
19.600] 21.073] 29.623] 35.170] 47.659] -58.260] 59.752] -68.006] 71.628 113.592
20214 21.283] 28.692] 38.163| 46.624] -55.302] 57.960| -64.562] 78.051|-111.206
19.709] 21319] 30.227] 35.406| 48.933] -55.157] 61.239] -64.570] 72.084]-109.800
20.757] 21.409] 29.596] 38.420] 47.437| -52.270| 59.149] -61.198] 78.452[-102.560
21.132] 22.931| 30473 38.463| 47.648] -48.922| -56.994] 59.593] 79.383| -94.241
21291 22.274] 32.055| 35.681| -48.770] 50.021| -56.893] 62.899| 73.425| -93.101
22.624] 22.739] 32.848] 35.591| -45.483[ 50.064| -52.756] 63.301| 74.352| -85.271
22.869| 24.148| 33.416] 36.754| -42.068| -48.234] 50235 64.547| -77.208] 77.489
22.594] 24.077| 34.161] 35.371| -41.351| -47.165| 53.170] 67.351| 73.294| -75.974
23205 24.484] 34541] 37275 -38.912] -44.310] 52.065] 66.611] -70.135] -78.214
22738 24399 34.394] 36.266| -38.702| -43.979] 54.832] 68.467| -69.297| 74.384
23502] 24.645| 35360] -36.362| 37.542| -41.203| 53.636] -63.733| 68.222[ -72.292
23.833| 26.062| -33.178] 36.081| -37.076] 38.658] 53.908| -56.975| -64.767| 69.541
24.429| 25.080| -32.453] 35.963| -36.087| 38.131] -56.161] 57.030| -63.806] 72.003
25.052| 26206| -29.322| -32.298| 38.173| 38.912| -49.999 56.113] -57.118] 73.219
25072] 26.244] 27.855| -28.510| 38.148| 41.737| -44.182] -50.600] 55.685] 74.501
24917| 26.243] 26394 -26.627| 39.037] 40.273| -40.965| -47.751] 58.827] 77.529
22170 -23.487] 26.155| 28.250| -36.296] 39.931| 42318 -42.801| 57.147] 77.393
20.703| 21.527] 26.604| 27521 -33.729| 39.593] -40.554] 42.160 60.379] 79.738
18.044] -18.539] 27.659] 28.192| -30.108| -36.197| 40.962] 41.977| 60.110] 82.419
15.503[ -15.810] -26.646] 27.648] 29981 -32.335] 42363 42448 59.533] 82.966
13.866| -13.979] -25.240] 28.264] 29.065| -30.985] 39.712| 44.690] 62.938] 82.936
11.606] -11.653| -22.582| -27.876] 28.657| 30.470] 43.149] 43.927] 60.858] -73.419
0523|9529 21.502] 26.616] 29.108] 30.149] 42.297| 46.409] -63.489| -64.061
76200 -7.626| -19.506] -23.833] 29.910| 31.184] 45739 46.322| -54.325] -54.853
6.042]  -6.050] -17.670] -21.568] 29.966] 33.022[ 45.721| -46.645] -47.181] 47.198
4667 4.672] -17.165| -20.815| 31.545 31.626| -39.780] -40.480 43365 49.971
3.481] -3.483| -15.561] -18.515| 31.453] -33.190] 33.739| -33.893| 46.812] 49.140
2552] -2.552] -15.108] -17.650] -28.068] -29.112] 32.217| 33.171| 44.404] 52.048
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-1.808| -1.810| -13.480| -15.468| -23.277| -24.497| 32.849| 34.640| 48.019| 53.066
-1.256]  -1.258| -12.654| -13.889| -20.073| -21.986| 33.075| 34.593| 45.585| 56.139

-0.974| -0.975| -10.668| -11.294| -16.948| -18.905| 34.545| 34.996| 48.609| 55.142

-0.832| -0.832| -8.726| -9.033| -14.737| -16.717| 33.714| 37.537| 52.454| 53.759

-0.708) -0.708| -6.931| -7.043| -14.154| -16.264| 35.312| 35.628| 49.439| 56.438

-0.601| -0.601| -5.136 -5.183| -12.681| -14.440| 34953 37.654| 52.687| 56.259

-0.520{ -0.520| -3.723| -3.741| -12.621| -14.359| 35.610| 36.624| 49.509| 59.173

-0.446| -0.446| -2.540| -2.548| -11.313| -12.812| 36.190| 37.765| 52.817| 58.768

-0.386| -0.386| -1.678| -1.681| -10.322| -11.538| 35.511| 40.260] 56.830| 57.260

-0.324| -0.324| -1.080) -1.081| -10.384| -11.564| 37.185| 38.338| 53.699| 60.046

-0.258| -0.258| -0.769| -0.770| -9.434] -10.447| 36.182| 41.178| 57.983| 58.768

-0.257)  -0.257| -0.765] -0.766| -9.444| -10.415| 37.606| 38.814| 54.267| 61.174

-0.256| -0.256| -0.763| -0.764| -8.447| -9.261| 36.635| 41.003| 57.761| 59.168

-0.258| -0.258| -0.767| -0.768| -7.682| -8.316| 38.284| 38.856| 54.343| 62.235

-0.256| -0.256| -0.762| -0.763| -6.794| -7.295| 37.494| 40.869| 57.586| 62.250

-0.258| -0.258| -0.766| -0.767| -6.111] -6.492| 38.691| 39.141| 54.163} 65.409

-0.257)  -0.257| -0.760| -0.761| -5.345| -5.627| 38.475| 40.601| 57.296| 63.453

-0.258| -0.258| -0.764| -0.764| -4.749| -4.958| 38.419| 40.152| 53.898| 66.681

-0.256] -0.256| -0.755| -0.756| -4.122| -4.284| 39.210| 40.656| 57.392] -60.120

-0.255(  -0.255] -0.751| -0.751| -3.577| -3.702| 38.023| 43.211| -51.453| -52.407

-0.256| -0.256| -0.752| -0.752| -3.572| -3.692 39.503] 40.754| -51.325| -52.247

-0.255| -0.255| -0.746| -0.747| -3.077| -3.161| 38.542| 43.081| -43.419| -44.098

-0.257|  -0.257| -0.746| -0.747| -2.667| -2.724| -36.826| -37.319| 40.314| 40.879

-0.254(  -0.254] -0.732| -0.733] -2.265| -2.306] -30.478| -30.846| 39.273| 43.295

-0.255]  -0.255| -0.725| -0.726| -1.945| -1.972] -25.270| -25.523| 41.045| 41.067

-0.252( -0.2521 -0.701) -0.702| -1.636| -1.653| -20.233| -20.405| 40.340| 43.081

-0.252| -0.252| -0.678| -0.679| -1.411| -1.421| -16.282| -16.393| 40.832| 42.177

-0.247) -0.247] -0.631| -0.632| -1.214| -1.220| -12.616| -12.686| 41.3950( 42.937

-0.244| -0.244| -0.573| -0.575) -1.087| -1.090| -5.714| -9.757| 40.025| 45.879

-0.243)  -0.244| -0.573| -0.574| -1.086| ~-1.089| -9.713| -9.755| 41.652| 43.228

-0.237(  -0.237| -0.503| -0.504] -1.004| -1.005| -7.304] -7.328| 40.416| 46.072

-0.236| -0.236] -0.502| -0.503| -1.001| ~-1.002| -7.304| -7.328| 42.053| 43.407

-0.225] -0.225| -0.430] -0.431| -0.946| -0.946) -5299| -5.311| 41.102] 45.884

-0.209| -0.209| -0.375| -0.375| -0.915| -0.915| -3.771| -3.777| 43.038| 43.591

-0.183| -0.183| -0.330[ -0.330] -0.872| -0.872| -2.557| -2.560{ 42.219[ 45910

-0.157)  -0.157| -0.302| -0.302| -0.825| -0.825| -1.739| -1.739| 43.631| 44.202

-0.130[  -0.130[ -0.265| -0.265| -0.694| -0.694| -1.241| -1.242| 43.630| 45.443

-0.118] -0.118| -0.240{ -0.240| -0.605| -0.605| -1.133| -1.133| 42.552| 47.793

-0.119)  -0.119( -0.240| -0.240| -0.607| -0.607| -1.136| -1.137| 44.235| 45.130

-0.119|  -0.119| -0.242| -0.242| -0.610| -0.610f -1.142| -1.142| 42.819| 47.584

-0.119]  -0.119| -0.241| -0.241| -0.608| -0.609| -1.138| -1.138| 44.501| 44.869

-0.118|  -0.118| -0.240| -0.240| -0.606| -0.606| -1.134| -1.134| 42902, 47.465

-0.119]  -0.119] -0.241| -0.241| -0.607| -0.607| -1.137| -1.137| 44.572| 44.766

-0.118  -0.118| -0.240[ -0.240| -0.606| -0.606| -1.134| -1.134| 42902| 47.465

-0.119|  -0.119] -0.241| -0.241| -0.607| -0.607| -1.137| -1.137| 44.572| 44.766

-0.118[ -0.118| -0.240[ -0.240| -0.606| -0.606| -1.134| -1.134| 42.902| 47.465

-0.119| -0.119| -0.241| -0.241| -0.607| -0.607| -1.137| -1.137| 44.572| 44.766
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CHAPTER 6 - MINIMUM WEIGHT DESIGN OF FRAME STRUCTURES

6.1 Introduction

In the preceding Chapters 4 and 5, optimum designs of frame structures to enhance
buckling resistance have been obtained by increasing the critical buckling load factor
while keeping the weight of the structure constant. This chapter illustrates the
application of ESO method to find the minimum weight design of a frame structure that
satisfies the prescribed buckling load constraint. The buckling load constraint of a
structure may be given in the form

Aer 2 FS (6.1)

The critical buckling load factor, A, is the first eigenvalue which scales the applied
loading to give the buckling load. FS is the factor of safety against buckling. Typical
values of FS for frames and trusses may be between 2 and 3 and for plates and shells, it
may be even higher. From an initial over-designed structure, the excess material can be
gradually removed until the buckling load constraint (6.1) is no longer met. The ESO
method described in Section 4.4 can be readily extended to such minimum weight

designs as follows:

Step 1: Discretise the structure using a fine mesh of finite elements.

Step 2: Solve the eigenvalue problem (4.1).

Step 3: Calculate the sensitivity number a; for each element.

Step 4: Decrease the cross-sectional areas of a few number of elements which have the
lowest values of o .

Step 5: Repeat Steps 2 to 4 until A, = FS.

6-1
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However this approach is not very efficient. A large over-designed structure needs to be
selected at the beginning to accommodate the largest section of the optimum design.
And often how large the initial design need to be selected is unknown. To avoid this
lengthy process, an efficient method is proposed herein with the use of uniform scaling
coupled with resizing of elements for the minimum weight design of structures. In
uniform scaling, all the design variables are scaled by a single factor in order to adjust
the critical buckling load factor to the factor of safety specified by the constraint (A, =
FS). Since the buckling load factors are, in general, complicated functions of the design

variables, uniform scaling may pose a serious challenge, particularly, for space frames.

In the following sections, uniform scaling and the ESO method for the minimum weight
designs are illustrated with in-plane and space frame examples. It is assumed that the
cross-sectional area at any section of these frames A(x) is related to its flexural stiffness
I(x) by I(x) = cA(x)’ in which ¢ and p are constants determined by the cross-sectional

shape.

6.2 Uniform Scaling Factor S}
In an optimisation algorithm, it is convenient to obtain a feasible design after each
iteration and it can be obtained by scaling the design uniformly (all the design variables
are scaled by a single factor) in order to satisfy the specified constraints. This helps keep
track the reduction in the weight of the structure after each iteration and also helps to pick
up the most active constraints. Uniform scaling to satisfy buckling load constraint is
simple and straight forward for linear size-stiffness structures. The linear uniform scaling

factor S, is given below:
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S, = (6.2)

The subscript b in S, refers to buckling. In general, structural responses of frames
primarily depend on the moment of inertia and for trusses these depend on the cross-
sectional area. For trusses, whether they are 2- or 3-dimensional, size-stiffness relation is
always linear. For 2-dimensional frames, (or even for 3-dimensional frames which
displacements are constrained to in-plane movements only), size-stiffness relation is
linear when /(x) = cA(x). Khot et al. (1976), Morris (1982) and Berke and Khot (1988)
proposed to use linear scaling factor S, = FiS/ A, for nonlinear size-stiffness structures as
well, and claimed with a few additional iterations, A., may be brought to equal to FS.
However, this approach may not be efficient and for certain problems, acceptable scaling
parameters cannot be obtained. In the following sections, an efficient scaling factor is

proposed for nonlinear size-stiffness structures and for space frames.

6.2.1 Uniform scaling factor for 2-dimensional frames

The buckling load of 2-dimensional frames primarily depends on the flexural stiffness
and it is proportional to the moment of inertia /(x). The influence of axial stiffness on the
buckling load may be negligible. For the relation /(x) = cA(xy’, uniform scaling factor S,

may be taken as

£\
S, :{x_] (6.3)

Uniform scaling needs to be carried out iteratively with the following resizing algorithm

until convergence is achieved.
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1/p
xy+l = xv 5 (6.4)
i — i }\‘ )

cr

where v+1 and v indicate the iteration numbers.

For example, consider the 3-storey frame discussed in Section 4.5.2.3 (Figure 4.11). In
this case, rectangular section member depths are the design variable, hence p = 3. Initial
design depths are arbitrarily chosen. The values assigned are: external columns, d = 20
mm; internal columns, d = 30 mm,; first floor beam, d = 20 mm; and second and third
floor beam d = 10 mm. Let F'S = 3.0. No sizing constraints are imposed. The values of
Aer, Sy and volume of the structure at each iteration of the scaling process are given in

Table 6.1.

Table 6.1 - Uniform scaling of 3-storey frame with no sizing constraints

Iteration Number Aer Sy=(FS/hep)” Volume (m?)
0 1.276 1.330 0.0168
1 3.000 1.000 0.0223

Only one iteration is required to bring A, from 1.276 to 3.0. If linear scaling factor, S, =
FS /A is used instead of Sy = (FS/ Aer)'”, Aer will diverge and it cannot be brought to
3.0. The values of A.,, Sy and the volume of the structure for the first few iterations for

this case are given in Table 6.2.

If there are sizing constraints, they need to be imposed after uniform scaling and
additional iterations may be required to make A, = FS. For the above example using the

nonlinear scaling factor in equation (6.3), uniform scaling with sizing constraints, 10



mm < d <35 mm, is carried out. The values of A.,, S, and the volume of the structure at
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each iteration of the scaling process are given in Table 6.3.

Table 6.2. - Uniform scaling of 3-storey frame with the linear scaling factor

Iteration Number Aer Sy =(FS/A,) Volume (m?)
0 1.276 2.352 0.0168
1 6.589 0.181 0.0395
2 0.098 30.576 0.0071
3 2798.2 0.0011 0.2184
4 1.36e-4 22032.3 0.0008

Table 6.3 - Uniform scaling of 3-storey frame with sizing constraints

Iteration Number Aer Sy = (FS/A)'"? Volume (m*)
0 1.276 1.330 0.0168
I 2.772 1.027 0.0212
2 2.949 1.006 0.0216
3 2.989 1.001 0.0216
4 3.000 1.000 0.0216

6.2.2 Uniform scaling factor for space frames

The relationship between buckling load factor and member cross-sectional properties
cannot be established explicitly for space frames, unlike for 2-dimensional frames.
However the following relation can be used for uniform scaling and a few additional

iterations may be required to obtain an acceptable scaling parameter.

Fs "
()

cr

Note that the value for ¢ in this expression may not be equal to p from the relation I(x) =
cA(xY’. Besides the value for g is unknown and it may depend on the applied loads. The
following examples illustrate the dependency of the value g on the convergence of

uniform scaling process for different values of applied loads.
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6.2.2.1 Example 1

Consider the space frame with inclined members shown in Figure 6.1. All the members
are of rectangular cross-section with constant depth, d = 40 mm. Initial uniform breadth,
b =40 mm and it is allowed to vary to any (no sizing constraints are imposed). Each
member is divided into 2 elements. £ = 200 GPa. G = 80 GPa. For P = 1 kN, A, =
19.22. Let FS = 2.5. Uniform scaling is carried out separately with different values of g

in order to bring A, = 2.5. Iteration histories of the uniform scaling with different values

of g for P =1 kN are given in Table 6.4.

2m
! P
B31 B32 B
8 m B21 B2\~
/1
Bl1 B12

Figure 6.1 - Layout of space frame - Example 1
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Table 6.4 - Uniform scaling of space frame - Example 1, P =1 kN

Iteration g=1 q=2 g=3 g=4

number Aer Sh Aer Sh Aer Sp Aer Sp
0 19.218 0.130 19.218 0.361 19.218 0.507 19.218 0.601
1 0.065 38.337 1.304 1.384 3412 0.902 5.430 0.824
2 100.727 0.025 3.275 0.874 2.555 0.993 3.192 0.941
3 0.056 44.420 2.243 1.056 2.503 1.000 2.691 0.982
4 111.315 0.022 2.613 0.978 2.500 1.000 2.556 0.995
5 0.056 44.734 2.456 1.009 2.516 0.998
6 111.848 0.022 2.518 0.996 2.505 1.000
7 Not converged 2493 1.001 2.501 1.000
8 2.503 0.999 2.500 1.000
9 2.499 1.000
10 2.500 1.000

Similar analyses (uniform scaling with different values of g) are carried out separately

for P=0.1 kN, =10 kN and P = 100 kN and the iteration histories of uniform scaling

for these load cases are given in Tables 6.5, 6.6 and 6.7, respectively.

Table 6.5 - Uniform scaling of space frame - Example 1, #=0.1 kN

Iteration g=1 q=2 qg=73 g=4
number Aer Sy Aer Sy Aer Sy Aer S,
0 192.18 0.013 192.18 0.114 192.18 0.235 192.18 0.338
1 1.1E-03 2379.8 0.442 2.379 3.755 0.873 10.792 0.694
2 8247.4 3.0E-04 5712 0.662 2.519 0.998 3.713 0.906
3 4.9E-04 5137.4 1.693 1.215 2.500 1.000 2.775 0.974
4 Not converged 3.010 0911 2.570 0.993
5 2.289 1.045 2518 0.998
6 2.607 0.979 2.505 1.000
7 2.451 1.010 2.501 1.000
8 2.523 0.995 2.500 1.000
9 2.489 1.002
10 2.505 0.999
11 2.497 1.000
12 2.501 1.000
13 2.500 1.000




Table 6.6 - Uniform scaling of space frame - Example 1, P = 10 kN
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Iteration qg=05 g=1

number Aer Sh Aer S Aer Sh Aer Sh
0 1.922 1.692 1.922 1.301 1.922 1.141 1.922 1.092
| 3.378 0.548 2.592 0.964 2.271 1.049 2.173 1.048
2 1.656 2.279 2.499 1.000 2.383 1.024 2.278 1.032
3 4.222 0.351 2.500 1.000 2441 1.012 2.350 1.021
4 0.944 7.017 2471 1.006 2.399 1.014
5 Not converged 2.485 1.003 2433 1.009
6 2.493 1.001 2.455 1.006
7 2.496 1.001 2470 1.004
8 2.498 1.000 2.480 1.003
9 2.499 1.000 2.487 1.002
10 2.500 1.000 2.491] 1.001
11 2.494 1.001
12 2.496 1.001
13 2.497 1.000
14 2.498 1.000
15 2.500 1.000

Table 6.7 - Uniform scaling of space frame - Example 1, P =100 kN

Iteration qg=0.75 g=1

number Acr Sp Aer Y Acr Sy Aer Sh
0 0.192 30.595 0.192 13.009 0.192 3.607 0.192 2.352
1 8.110 0.208 2.784 0.898 0.724 1.858 0.471 1.745
2 1.296 2.402 2.470 1.012 1.365 1.353 0.826 1.447
3 3.352 0.676 2.503 0.999 1.876 1.154 1.205 1.276
4 2.164 1.213 2.500 1.000 2.189 1.069 1.551 1.172
5 2.674 0.914 2.354 1.031 1.835 1.109
6 2421 1.044 2.433 1.014 2.049 1.069
7 2.538 0.980 2.470 1.006 2.201 1.043
8 2.482 1.010 2.486 1.003 2.305 1.027
9 2.509 0.995 2.494 1.001 2.375 1.017
10 2.496 1.002 2.497 1.001 2.420 1.011
11 2.502 0.999 2.499 1.000 2.449 1.007
12 2.499 1.000 2.499 1.000 2.468 1.004
13 2.500 1.000 2.500 1.000 2.479 1.003
14 2.487 1.002
15 2.492 1.001
16 2.495 1.001
17 2.497 1.000
18 2.498 1.000
19 2.500 1.000
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From the above tables, it is observed, for P = 0.1 kN and P = | kN, uniform scaling is
done with less number of iterations when g = 3. For P = 10 kN and P = 100 kN, uniform

scaling is done with less number of iterations when g = 1.

6.2.2.2 Example 2

Consider the 3-storey, single-bay, pin-based frame shown in Figure 6.2. Torsional loads
are applied at the top storey level in X- and Z-directions. All the members are of
rectangular cross-section with constant depth, d = 20 mm. Initial uniform breadth, b =

20 mm. No sizing constraints are imposed. For P =1 kN, A, = 3.078. Let F§ = 3.0.

P
P P
B32 h
p - B3l
c32
P
C31
B22
B2l
22
3m 2]
BI2
811
Cl2
Cll
b &
v & A

Figure 6.2 - Layout of space frame - Example 2
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As described in the previous example, uniform scaling is carried out separately with
different values of g for loads P =10.1 kN, 0.5 kN, 1 kN and 5 kN in order to bring A, =
3.0. Iteration histories of the uniform scaling for these load cases are given in Tables

6.8,6.9,6.10 and 6.11, respectively.

Table 6.8 - Uniform scaling of space frame - Example 2, P = 0.1 kN

[teration g=1 qg=2 g=3
number Aer S Acr S Acr Sy
0 30.778 0.097 30.778 0312 30.778 0.460
1 0.069 43.69 1.757 1.307 4.772 0.857
2 648.3 4.6E-03 3.517 0.924 3.222 0.976
3 6.0E-04 49843 2.868 1.023 3.031 0.997
4 12403.2 | 2.4E-04 3.039 0.994 3.000 1.000
5 1.1E-03 2850.2 2.989 1.002
6 8559.5 3.5E-04 3.003 0.999
7 3.000 1.000

[teration qg=1 g=2 qg=3

number Aer Sy Aer Sy Aer S
0 6.156 0.487 6.156 0.698 6.156 0.787
1 1.102 2.723 2.646 1.065 3.514 0.949
2 11.83 0.254 3.072 0.988 3.103 0.989
3 0.428 7.016 2.987 1.002 3.021 0.998
4 45.25 0.066 3.002 1.000 3.004 1.000
5 0.053 56.301 3.000 1.000 3.001 1.000
6 232.62 0.013 3.000 1.000

Iteration g=1 g=2 qg=3
number Acr Sp Acr Se Aer Sp
0 3.078 0.975 3.078 0.987 3.078 0.992
1 2.899 1.035 2.987 1.002 3.017 0.998
2 3.140 0.956 3.002 1.000 3.004 1.000
3 2.824 1.062 3.000 1.000 3.001 1.000
4 3.250 0.923
5 2.698 1.112
6 3.452 0.869
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Table 6.11 - Uniform scaling of space frame - Example 2, P = 5 kN

Iteration g=1 g=2 g=3

number Aer Sp Aer Sp Aer Sh
0 0.616 4.874 0.616 2.208 0.616 1.695
1 14.201 0.211 3.869 0.881 2.089 1.128
2 0.658 4.558 2.873 1.022 2.768 1.027
3 13.827 0.217 3.022 0.996 2.947 1.006
4 0.642 4.677 2.996 1.001 2.988 1.001
5 13.968 0.215 3.001 1.000 2.997 1.000
6 3.000 1.000 2.999 1.000

For P = 0.1 kN, uniform scaling is done with a less number of iterations when g = 3. For
the other loads, g = 2 or 3 is acceptable. From the results of these two examples, the
following empirical rule is proposed to obtain the appropriate g to be used in equation

(6.5) for uniform scaling algorithm.

Consider the space frame example 1 with P = 1 kN. Initially A., = Ao = 19.22. Scale the
design uniformly using the linear scaling factor Sy = 'S/ A and obtain the critical load
factor A, = A" for this design. In this case A~ = 0.0652 (Refer Table 6.4, column 2).

Using these parameters, a value for g is obtained from the following relation.

Fs ()Y
ES_[M 6.6
-] 6

25 [0.0652 ]""*
1922 (1922

g =2.788
This value is closer to 3.0. When ¢ = ¢ = 2.788, the scaled design is achieved with 3
iterations. Similarly when P = 100 kN, A, = Ao = 0.1922. For the scaled design obtained
with S, = FS/ A, =2.5/0.1922, A =2.784 (Refer Table 6.7, column 4). Substituting Ao

and 1" into equation (6.6), q* = 1.042 is obtained. This value is closer to 1. When g = q*
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= 1.042, the scaled design is achieved with 3 iterations. Iteration histories of uniform

scaling obtained with g = q* for all the load cases are given in Table 6.12. Similar

analysis 1s carried out for example 2 and the results are given in Table 6.13.

Table 6.12 - Uniform scaling of space frame - Example 1 withg =g

Tteration |P= 0.1 KN; ¢ =2.791| P=1kN; ¢ =2.788 | P=10kN; ¢ =1.137 | P= 100kN; g =1.042
number Aer Sy Aer Sy Aer Sp Aer S,
0 192.179 | 0211 | 19218 | 0481 1.922 1260 | 0.192 | 11.733
1 2727 | 0969 | 2.954 0942 | 2511 0.996 | 2481 1.007
2 2.488 1.002 2.498 1.000 | 2.501 1.000 | 2501 1.000
2.500 1.000 | 2.500 1.000 | 2.500 1.000 | 2.500 1.000
Table 6.13 - Uniform scaling of space frame - Example 2 with g = ¢~
Iteration | P= 0.1 kN; ¢ =2.622 | P=0.5kN; g =2.394| P=1kN;q =2.338 | P=5kN; ¢ = 1.982
number Acr A\ Acr Sy Acr Sy Acr Sy
0 30778 | 0412 | 6156 | 0.74] 3.078 | 0989 | 0616 | 2224
1 3596 | 0.933 3.045 0.994 | 3.000 1000 | 3936 | 0872
2 3013 | 0998 | 3.000 1.000 2.857 1.025
3 3.000 1.000 3.027 | 0996
4 2.995 1.001
5 3.000 1.000

Lin and Liu (1989) proposed ¢ = 2 in general for all the complex, nonlinear size-

stiffness structures. In the recurrence relations used with optimality criteria methods,

described in Section 4.7.1, a step size parameter 7 is used (equations (4.26) and (4.27)).

Again for these recurrence algorithms, » = 2 is a popular number assumed in most of the

works (Morris, 1982). In general, ¢ = 2 is an acceptable parameter. The results from the

above examples also support it. However, in certain situations, the number of iterations

required for uniform scaling is greatly reduced when ¢ = ¢ is used.

6-12



Chapter 6 - Minimum Weight Design of Frame Structures

6.3 Optimisation Procedure

An iterative procedure is set up for uniform scaling and resizing of elements so that the
weight of the structure is systematically reduced and the material is gradually shifted
from the strongest to the weakest part of the structure. The optimisation process
involves two steps. In the first step, the design variables are scaled uniformly to meet the
buckling load constraint. In the second step, critical buckling load factor is increased
while keeping the weight of the structure constant, as described in Section 4.4. These
two steps are repeated in cycles until the weight of the structure cannot be reduced any

further. The procedure is given as follows:

Step 1: Select an 1nitial design and discretise the structure using a fine mesh of finite
elements.

Step 2: Scale the design uniformly to bring A, equal to FS using the appropriate g while
imposing the sizing constraints.

Step 3: Increase the critical load factor while keeping the structural weight constant by
using the evolutionary method described in Section 4.4.

Step 4: Repeat Steps 2 and 3 in cycles until the buckling load factor in Step 3 cannot be

increased any further.

A batch file is set up to handle the iteration cycles automatically. In the above
procedure, the order of Steps 2 and 3 can be interchanged. The order given above is
preferred when there are sizing constraints involved. Besides, initial uniform scaling
determines whether the allowable design values given are large enough to satisfy the

specified buckling load constraint. In Step 3, resizing ratio RR and step size need to be
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specified for resizing the elements. The values for these parameters may be reduced for
the final cycles of analyses in order to get accurate designs. When there are no sizing
constraints, one cycle of analysis is usually sufficient to obtain minimum weight design
for 2-dimensional frames and trusses. For space frames, a few cycles of analyses may be

required even if there are no sizing constraints imposed.

6.4 Examples

6.4.1 Space frame - Example 1

Minimum weight design is sought for the space frame described in Section 6.2.2.1 when
P =10 kN. F§ = 2.5. No sizing constraints are imposed. Initially A., = 1.922. Optimum
design is obtained in three cycles of analyses. For the first two cycles of analyses, RR =
25% and step size = 2 mm are assumed 1n Step 3. In the third cycle, RR = 12.5% and
step size = 1 mm are taken for resizing. Design values of members, A, and the total
volume of the structure obtained at the end of uniform scaling and resizing at each cycle
are given in Table 6.14 (refer Figure 6.1 for member numbering). All four inclined
members have the same design valués at each level. Opposite horizontal members have
the same design values at each level. Iteration histories of the critical load factor and the

volume of the structure are shown in Figure 6.3.
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Table 6.14 - Design values at the end of each phase of analysis for example 1

Member | Initial Cycle 1 Cycle 2 Cycle 3 Cycle 4
design Scaling | Resizing | Scaling | Resizing | Scaling | Resizing | Scaling

/1 40.00 50.20 85.93 64.75 72.29 61.96 60.35 58.88

2 40.00 50.20 78.18 58.91 42.60 44.06 39.34 38.38

TB 40.00 50.20 49.90 37.60 35.37 33.88 34.10 3327
r14 40.00 50.20 49.70 37.45 35.20 31.94 32.15 31.37
B1l 40.00 50.20 83.96 63.26 62.88 57.02 53.37 52.06
B12 40.00 50.20 29.32 22.10 37.86 30.74 38.97 38.02

B21 40.00 50.20 35.46 26.72 14.64 16.87 15.97 15.58
n22 40.00 50.20 31.33 23.61 33.42 28.50 28.68 27.98
B31 40.00 50.20 41.71 31.42 21.31 21.11 22.25 21.70
B32 40.00 50.20 9.82 7.40 25.26 13.89 15.00 18.54
B4l 40.00 50.20 47.76 35.99 17.87 19.80 16.91 16.50
B42 40.00 50.20 13.74 10.35 22.20 18.35 18.47 18.02

Aer 1.922 2.500 4.080 2.500 3.002 2.500 2.599 2.500
Vol. (m*)| 0.12239 | 0.15365 | 0.15365 | 0.11574 | 0.11574 | 0.10438 | 0.10438 | 0.10186
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Volume x 20 (m”)
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1.00 - i ; o _ . -
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Number of iterations

Figure 6.3 - Iteration histories of the volume and A, for the space frame, example |

6.4.2 Space frame - Example 2
Minimum weight design is obtained for the 3-storey, space frame described in section

6.2.2.2. The applied load P = 0.4 kN. FS = 3.0. Initially A, = 7.695. Since the optimum
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design is controlled by the minimum allowable depth, the following two cases are
considered. Case l: minimum allowable depth d,;,, = 5 mm and Case 2: minimum
allowable depth dpi, = 10 mm. RR = 25% and step size = | mm are assumed for
resizing. The iteration histories of the critical load factor and the volume of the structure
are shown in Figures 6.4 for Case 1 design. The volume of the structure and the critical
buckling load factor at the end of each phase of the analysis for the two cases are given
in Table 6.15. Final design depths obtained for these two cases are given in Table 6.16
(refer Figure 6.2 for member numbering). At each level, opposite members, either

column or beam, have the same design values.

10.00 -

8.00 -

*

Volume x 1000 (m?)

6.00 - \

—o—0—o0—0—,
i e —0
4001 /././,/0—0/0 .
. e
0/0/0/"""/. Aer
S g ——
2.00 — TS e s . e
0 5 10 15 20 25

Number of iterations

Figure 6.4 - Iteration histories of the volume and A, for Case 1 of example 2

Table 6.15 - Buckling load factors at the end of each phase of analysis for example 2

Cycle Case 1-d,y, =5 mm Case 2- d,;;, = 10 mm
number Aer Vol x 1000 (m*) Aer Vol x 1000 (m*)
0 Initial 7.695 9.60 7.695 9.60
1 Scaling 3.000 6.34 3.000 6.34
Resizing 4.527 6.34 3.974 6.34
2 Scaling 3.000 5.35 3.000 5.77
Resizing 3.068 5.35
3 Scaling 3.000 5.30
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Table 6.16 - Final design depths for the two cases of example 2

Member Final depth in mm

Case | Case 2
Bl1 5.00 10.00
B12 23.45 20.29
B21 5.00 10.00
B22 16.53 14.11
B31 5.00 10.00
B32 11.21 10.00
Cll 16.28 16.44
Cl2 10.84 10.00
C21 8.67 10.00
22 14.03 13.29
C31 6.00 10.00
C32 10.46 10.00

6.5 Conclusions

The ESO method has been extended to the minimum weight design of frame structures
with prescribed buckling constraints. Uniform scaling has been introduced to bring the
critical buckling load factor A, close to the factor of safety. Minimum weight design of
single load case structures has been obtained by repeating the steps of uniform scaling
and maximising the critical load factor with constant volume in cycles until no further
reduction in the structural volume. Uniform scaling of nonlinear size-stiffness structures
and space structures are complicated. An empirical rule has been proposed. for the
uniform scaling of space frames and has been tested with the examples. This empirical
rule greatly reduces the number of iterations required for uniform scaling and ensures

convergence.
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CHAPTER 7 - OPTIMUM DESIGN OF STRUCTURES WITH MULTIPLE

LOAD CASES

7.1 Introduction

In the preceding Chapters 4, 5 and 6, optimum designs of frame structures with
enhanced buckling resistance have been obtained for single load case conditions. Many
structures in the real environment are subjected to a variety of load cases such as self
weight, snow loads, wind loads and earthquake loads. A similar situation occurs when a
structure 1s subjected to a traffic load, where the force is moving from one part of the
structure to the other. Each independent load case may cause instability when acting
alone. In this chapter, the ESO method is extended to the optimum design of structures

against buckling with multiple load cases.

In mathematical programming (MP) methods, multiple load cases are treated as
additional objective and constraint functions. The derivatives of objective and constraint
functions with respect to design variables need to be calculated separately for each load
case. Thus the size of the problem (which is very crucial in MP methods) increases
multiple folds compared to the single load case problems. In optimality criteria (OC)
methods, a multiple load case problem is treated as a multi constraint problem and the
active participation of each load case is determined by the Lagrangian multipliers which
are estimated by some iterative procedures. For example, Khot et al. (1976) extended
the uniform strain energy density to the mass density optimality criterion which was

derived for the single load case structures to the multiple load conditions as follows:

My (7.1)
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where n/ is the number of loading conditions. The quantity e; is the ratio of strain
energy density to mass density associated with the critical buckling mode of the i
element in the X" loading condition. The Lagrangian multipliers, p (k = 1, nl), have to

be determined by some iterative procedure.

There is not much literature available on the optimum design of structures to resist
buckling under multiple load cases. Turner and Plaut (1981) obtained the optimum
design with multiple load cases by maximising the critical load factor for a given ratio
of loads. This procedure was applied to a variety of load ratios, and the results were
plotted in the loading space in terms of stability boundaries (interaction curves or
surfaces) and a stability envelope. The objective was to enlarge the stability region as
much as possible by an appropriate distribution of the material of the structure. A novel
approach to solving problems with multiple loading conditions was introduced by
Hjelmstad and Pezeshk (1991) where each eigenvalue in the objective was weighted in

accordance with the degree of participation of the mode 1n the loading.

7.2 Sensitivity Number

For each load case, sensitivity numbers a;° and oy as defined in Section 4.3 can be
calculated for each element. Let the sensitivity numbers for the K™ load case be renamed
as 0 and oy . Therefore for #/ number of load cases, opx (k= 1, nl) and o (k= 1,
nl) need to be calculated for each element. Ideally the cross-sectional area of the element
of which all a,” (k = 1, nl) are highest should be increased and the cross-sectional area
of the element of which all a; (k = 1, nl) are highest should be decreased. However

this situation generally does not exist. To overcome this difficulty the element
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sensitivity 1s evaluated by the sum of its relative sensitiveness with regard to each load
case. Further it 1s necessary to treat each load case separately depending on how active it
is in the current design. If the critical load factor of a particular load case is much higher
than its limit (FS), this load case may not affect the optimum shape. Thus to measure the
influence of each load case, uniform scaling factors of the load cases (as defined in
Chapter 6, equation (6.2) or (6.3) or (6.5)) are used as weighting parameters. When
obtaining these scaling factors, different values of factor of safety may be assumed for
each load case. Let Sy be the ™ load case uniform scaling factor. Hence the following

two new sensitivity numbers are defined for multiple load case structures.

nl +
S O i 72
Qp = bk + (7.2a)
k=1 abk,av
nl —
o
- ibk
a; =28, — (7.2b)
k=1 abk,av

where Opxa’ is the average of the auy’™ values of all elements of the A" load case and

Qskav 1S the average of the o, values of all elements.

7.3 Optimisation Procedure
Optimum procedures are given for the design with constant volume constraint; and for

the minimum weight design that satisfies the prescribed buckling load constraints.

7.3.1 Constant weight design

The objective is to raise the critical buckling load factors A..x (k = 1, nl) for all load
cases as much as possible while satisfying the constant volume constraint and the sizing
constraints. The scaling factor of each load case, Sy will be minimised and roughly

brought equal to a single value. The procedure is given as follows.
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Step 1: Discretise the structure using a fine mesh of finite elements to represent the
stress distribution and buckling modes adequately for all the load cases.

Step 2: Carry out the static analysis and buckling analysis for each load case.

Step 3: Calculate the uniform scaling factor, Sy for each load case.

Step 4: Calculate the sensitivity numbers o and oy for each element according to
equation (7.2).

Step S: Increase the cross-sectional areas of elements with the highest values of a;;" and
decrease the cross-sectional areas of the same number of elements with the
highest values of a;;. Impose the sizing constraints.

Step 6: Calculate the total volume and if it is not equal to the original volume, scale
down the cross-sectional areas obtained after Step S to give the original volume.

Step 7: Repeat Steps 2 to 6 until the critical load factors of each load case cannot be

increased any further.

7.3.2 Minimum weight design

The objective is to minimise the structural weight while satisfying the buckling
constraint, A, = F'Sy (k = 1, nl) for all load cases. In Chapter 6, ESO method for the
minimum weight design has been described. For single load case structures, uniform
scaling and maximising the A, with constant volume are repeated in cycles until no

further reduction in the structural volume. The flowchart for this method is given in

Figure 7.1.
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— | FEA & determination of S,

Y

Scale the design uniformly

No

FEA & sensitivity number calculation

Y A

Resize a few elements

Yes

Figure 7.1 - ESO for the minimum weight design - Method |

The minimum weight design can also be obtained in a slightly different way as
described by the flowchart given in Figure 7.2. Obviously in this method, additional
uniform scaling needs to be done after each step of resizing unlike in the former
approach. For multiple load cases, the influence of each load case on the current design
needs to be considered simultaneously during the optimisation process. There is no
point of optimising the structure for one load case and let the design violates the other
loading conditions. Thus Method 2 for the minimum weight design is more suited for
the multiple load case structures. This method allows for calculating the scaling factors
after each step of resizing and these updated scaling factors can be used as weighting

parameters in the subsequent sensitivity number calculations.
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f" FEA & determunation of S,

v

Scale the design uniformly

No

FEA & sensitivity number calculation

Y

Resize a few number of elements

Figure 7.2 - ESO for the minimum weight design - Method 2

The iterative procedure for the multiple load cases design involves two steps. In the first
step, the design variables are scaled uniformly in order to satisfy the most critical load
case. In the second step, the elements are resized according to their sensitivity numbers.
These two steps are repeated in cycles until the desired optimum design is obtained. A
batch file is set up for uniform scaling and element resizing so that the weight of the
structure is systematically reduced and the material is gradually shifted from the
strongest to the weakest part of the structure. The detailed steps of the optimisation

procedure is given below and it is also described by the flowchart given in Figure 7.3.
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Step 1: Discretise the structure by using a fine mesh of finite elements to represent the
stress distributions and buckling modes adequately.

Step 2: Perform static and buckling analyses for each load case.

Step 3: Determine the uniform scaling factors Sy (k= 1, nl).

Step 4: Scale the design variables uniformly using the most critical scaling factor, i.e.
maximum of Sy (k= 1, n/). Impose the sizing constraint.

Step 5: Carry out static and buckling analyses for each load case.

Step 6: Calculate the sensitivity numbers o, and o~ for each element.

Step 7: Increase the cross-sectional area of elements with the highest values of a;;" and
decrease the cross-sectional area of the same number of elements with the highest
values of a;;° while imposing the sizing constraints.

Step 8: Repeat Steps 2 to 7 until the weight of the structure cannot be reduced any
further.

FEA for all the load cases.
P> Determine Sy (k= 1,nl)

Y

Scale the design uniformly
using maximum of S,, (k= 1,nl)

weight reduced

FEA for all the load cases.
Calculate sensitivity numbers

Y

|_{Resize a few number of elements < material shifted

Figure 7.3 - ESO for the minimum weight design with multiple load cases
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7.4 Examples

7.4.1 Two-bay frame - Constant weight design

Consider the single story, two-bay frame shown in Figure 7.4. All the members are of
rectangular cross-section with constant breadth, & = 20 mm and the initial uniform
depth, d = 20 mm. The supports are pinned. Each member is divided into six elements
of equal length. The frame is exposed to three possible loading conditions as shown Iin
the figure. For each load case, FS is assumed to be 3.0. Optimum designs are obtained
while keeping the structural volume constant. Member depths are the design variables (p
= 3) and they are allowed to vary to the maximum 60 mm and to the minimum 5 mm in
steps of 1 mm. 20% of the elements are resized at each iteration. The optimum shape of
the frame obtained by considering all the load cases simultaneously (i.e, by using the
multiple load case sensitivity numbers and the procedure described in section 7.3.1) 1s
shown in Figure 7.5a. The evolution of the critical buckling load factor of each load case

during the optimisation process is given in Figure 7.5b.

IOkNJ' 10 kN 10 kN 30kN
r R kKN & kN N
2m
O O b
4m
Load case 1 Load case 2 Load case 3

Figure 7.4 - Structural layout and load cases of the two-bay frame
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Figure 7.5b - Iteration history with all three load cases.

Optimum designs are also obtained for each load case separately by using the respective
single load case sensitivity numbers and the single load case optimisation procedure.
During the optimisation process, buckling load factors of the other load cases are also
obtained. The optimum shapes and the iteration histories for load case 1, load case 2 and
load case 3 are given in Figures 7.6, 7.7 and 7.8, respectively. The optimum shapes of
each load case show a clear preference for the loading direction. For the load case 2

optimum design, column dimensions are at their lower limit (d = 5 mm), indicating that
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the columns contribute little to the structural stability under this loading condition.
Similarly for the load case 3 optimum design, the right hand side beam and column
dimensions are at their lower limit. The critical load factors of each load case for the
initial design and the optimum designs are compared in Table 7.1. These results indicate
that if a structure 1s optimised under any single loading condition, critical load factors of
other load cases will be greatly reduced. When all the load cases are considered

simultaneously during the optimisation, the buckling load factor of each load case is

concurrently increased.
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Figure 7.6a - Optimum shape - load case 1 alone
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Figure 7.6b - Iteration history - load case 1 alone
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Figure 7.7a - Optimum shape - load case 2 alone
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Figure 7.7b - Iteration history - load case 2 alone
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Figure 7.8b - Iteration history - load case 3 alone

Table 7.1 - Comparison of buckling load factors for each load case

Critical buckling load factor (A.,)
Load case 1 | Load case 2 | Load case 3
Initial design 5.02 5.49 5.00
Optimum design with all load cases 6.83 7.12 7.14
Optimum design with load case 1 831 2.98 6.28
Optimum design with load case 2 0.10 39.70 0.10
Optimum design with load case 3 0.61 0.14 16.39

7.4.2 Two-bay frame - Minimum weight design

Minimum weight design is obtained for the two-bay frame in Section 7.4.1 by using the
optimisation procedure described in Section 7.3.2 while satisfying the stability
constraints Ao, = 3.0 (k = 1, nl) and sizing constraints S mm < d < 60 mm. The
optimisation history of scaling factors of each load case and the current design to initial
design weight ratio w/w, is given in Figure 7.9. For the optimum design, Sp; = 1.0, Sp; =

1.0, Sp3 = 0.97 and w/w, = 0.76.
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Figure 7.9 - Iteration history of the minimum weight design

7.5 Conclusions

The ESO method has been easily extended to enhancing the buckling resistance of
multiple load case frame structures. Sensitivity numbers for resizing are calculated by
considering the influence of all the load cases. Thus compromises are made at each
iteration of the evolutionary process among these load cases. The uniform scaling
factors which are used as weighting parameters to define the sensitivity numbers play a
similar role as the Lagrangian multipliers in optimality criteria methods. These uniform
scaling factors determine the active participation of each load case on the optimum
design. When the buckling load factor of a particular load case is far more than the
corresponding factor of safety of that load case, influence of that load case in the current
design becomes less important. From the examples it has been shown that optimising a
structure under any single load case may violate the other load case buckling constraints.
When all the load cases are considered simultaneously, each load case buckling load

factor is increased.
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CHAPTER 8 - OPTIMUM DESIGN OF STRUCTURES WITH MULTIPLE

CONSTRAINTS

8.1 Introduction

Although there has been considerable amount of work carried out on the optimum
design of frame structures, most of these studies do not treat the stability constraint in
parallel with other common constraints such as strength and displacement limits. The
optimum design of structures including stability constraint is of great importance
because with high strength materials many structural elements are becoming thinner and
modern frame structures are more slender than their forerunners. Optimum design of
frame structures including stability constraint along with stress and displacement
constraints has been reported by Lin and Liu (1989), Pezeshk and Hjelmstad (1991) and
Barson (1994) using optimality criteria methods and by Karihaloo and Kanagasundaram
(1993) using non-linear mathematical programming method. This chapter extends the
ESO method to the cross-sectional optimisation of frames and trusses considering stress,

stiffness, displacement and stability constraints simultaneously.

8.2 Multiple Constraints Problem

The optimisation problem here is to minimise the weight of a structure in such a way
that the normal and shear stresses and the deflection at any point of the frame, the
critical buckling load factor and the sizing parameters do not violate respective
prescribed limits under any load system. The following constraints are considered in

addition to the buckling constraint A, > FS.
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Stiffness constraint: The inverse measure of the overall stiffness of a structure, known as

the mean compliance C, should not exceed the prescribed limit C,y.

C<Cy (8.1)

Displacement constraint: Displacement constraints may be imposed on certain degrees
of freedom (d.o.f) of the structure. Constraint imposed on the /™ d.o.f displacement
component, d; is given in the form,

dl<d’ (8.2)

where d; is the allowable limit for d.

Stress constraint: The equivalent stress at any point in a structure is expressed by some
means of average of the normal and shear components of stress. For this purpose, the
von Mises stress, o,, has been frequently used for isotropic materials. Thus the stress
constraint is given in the form that the von Mises stress at any point of the structure

should not exceed the allowable stress oy

Gvm < Call (83)

In Chapter 3, ESO for shape and layout optimisation of structures separately with
stiffness, displacement or stress constraints has been described. Element sensitivity
numbers for these constraints, o, (Eq. 3.12), a2 (Eq. 3.16) and a5 (Eq. 3.1), indicate the
change in corresponding structural response due to the removal of a particular element
and they are used for shape and layout optimisation which involves gradual removal of

elements. In the following sections, sensitivity numbers are derived for cross-sectional
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optimisation for which the change on all these structural responses due to the local

modification of each element needs to be estimated.

8.2.1 Sizing optimisation with stiffness constraints
From equation (3.10) (Chapter 3, Section 3.2.2.1), the change in mean compliance due
to the cross-sectional change in the i element, AC;, is given by
AC, = -7 {d,}[Ak,]{d}} (8.4)
The aim is to minimise the mean compliance C, so that the overall stiffness of the
structure can be maximised. Therefore the cross-sectional area of elements with lowest
values of AC; (or highest values of -AC)) has to be increased to minimise C. Hence the
following two sensitivity numbers are defined for each element for sizing optimisation.
a, =-AC ={d,}T[Ak, ]+ {d,} (8.5a)

o, =-AC ={d }T[Ak]{d;} (8.5b)

To be consistent with the buckling optimisation (in which the cross-sectional areas of
elements with highest values of o and o are increased or decreased), -AC; value is
taken to define the sensitivity numbers. As discussed in Section 4.3, when elements are
of different lengths, the element sensitivities depend also on their lengths. When
comparing two elements with the same o, increasing the cross-sectional area of
shorter element will result in a lighter design. Consequently, the element sensitivities for
stiffness constraint are redefined below.

a, ={d}T[Ak]{d,} ] (8.6a)

o, ={d,}T[Ak ] {d,} ], (8.6b)
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Thus to increase the overall stiffness of the structure, the cross-sectional areas of

elements with the highest values of o, are increased and those with the highest values

of a;. are reduced.

8.2.2 Sizing optimisation with displacement constraints
From equation (3.14) (Chapter 3, Section 3.2.2.2), the change in the j’h d.o.f
displacement, d; due to the cross-sectional change in the i element, Adj; is given by

Adij = _{du}[Ak;]{d,} (8.7)

As the displacement may take positive or negative value, the aim is to reduce the
absolute value of dj, |d;|. If d; > 0, the cross-sectional area of elements with highest
value of {d;} "TAK]{d;} needs to be increased to minimise |a§| Similarly if d; < 0, the
cross-sectional area of elements with lowest value of {d,-j}T[Ak,-]{di} needs to be
increased to minimise 'dj| Hence the following sensitivity numbers are defined for I

d.o.f displacement constraint:

d
o, = ;’—{dU}T[Ak,.P {dy/l (8.82)

]

J

d,
a, :d—j{dU}T[Ak,.]'{dl.}/l,. (8.8b)

J

If there are several displacement constraints, sensitivity numbers need to be calculated

for each displacement constraint.
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8.2.3 Sizing optimisation with stress constraints

The normal and shear stresses at any point in an element can be computed from element
displacements (equation 3.23) or from element forces. The von Mises equivalent stress
at a point can then be calculated from the following relationship.

6, =750, -6,)2 +(0, -6.)2 +(0,. =0, )2 +6(t 2 +T12 +12)]: (8.9)

The critical stress of an element in a frame or truss can be determined by examining the
stress levels at certain preselected extreme points at different section of the element. If
the element is not subjected to distributed forces, evaluation of stresses at both ends of
the element and at mid-section would be sufficient. For planar structures, the von Mises

1/
2 where o and t are normal and shear stresses

stress is reduced to G,,=(c>+37%)
respectively. For example, von Mises stress at a point on a rectangular cross-section of a

beam element of a planar structure (no bi-axial bending or torsional forces) as shown in

Figure 8.1 is given by

2
12My P 2 l08s2( a2 5
Cym = —bd3 +a +b2d6 T—y (8.10)

The stress recovery points considered should be sufficient to identify the critical stress

in the section under combined normal and shear stress conditions.

~ 48 i
{ E/ | stress recovery

. o1int

/’ _dj___y_T_;_-_?_
. P¢ i
_________ 7 ] . \ i
- {

o < —
. b
M |

Figure 8.1 - Rectangular cross-section of a beam element in a planar structure
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An element library may be created in which the details of typical beam and bar cross-
sections can be provided. The necessary information such as relations between the
geometrical properties and locations to calculate stress levels are given in the library.
Some of the beam cross-sections and their stress recovery points are shown in Figure
8.2. The number of stress recovery points and their locations are fixed for each section.
The equations for calculating the von Mises stress from the forces and moments in the

section such as equation (8.10) are also given in the library.

o

!

- - ¢——

' ‘

Figure 8.2 - Typical beam cross-sections and stress recovery points

As discussed in Chapter 3, the evaluation of change in stress due to structural
modifications is computationally very expensive. However, if the cross-sectional
modifications of elements at each iteration are kept small, they do not cause significant
changes in the element forces. For frames and trusses this assumption is reasonably
accurate. Hence the new approximate stresses in an element after the cross-sectional
changes can be directly calculated from the element forces and new cross-sectional

dimensions.

In practice, the strength criterion is satisfied by using the fully stressed design (F SD)
concept which is one of the early optimality criteria. If the stress distribution of a

structure is to be brought to uniform, highly stressed elements need to be strengthened
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and lowly stressed elements need to be weakened. Hence the following element

sensitivity numbers are defined for stress constraint.

o, =0,/ =0, (4+Ad)/ ], (8.11a)

is ivm
a, =—-,, /'l=—0,.(4A-04)/] (8.11b)
where Gim' 1s the maximum stress in the element i, when the area is increased by A4
and Giym 1s the maximum stress in the element i, when the area is reduced by A4. Thus
to bring the stress distribution uniform, the cross-sectional areas of elements with
highest values of o are increased and those with the highest values of o are reduced.
For the expression o, a negative sign is introduced to be consistent with other

sensitivity numbers o, ot;y and o .

8.2.4 Uniform scaling and critical scale factors

As discussed in Chapters 6 and 7, during the optimisation process, it is convenient to
obtain a feasible design after each iteration by scaling the design uniformly in order to
satisfy the most critical constraint. This helps keep track the reduction in the weight of
the structure after each iteration and also helps to pick up the most active constraints.
Determination of uniform scaling factor for stability constraint, S, has been discussed in
detail in Chapter 6. Similarly, uniform scaling factors for stiffness constraint, S. and
displacement constraint, S, can be obtained. For the structures with linear size-stiffness
relationship (p = 1), S, = C/Cuy and Sy = l d; | /a’j*. For structures with other values of p,
Sex (C/Can)™ and Sy~ (1 d;1/d")""P. When the von Mises stress at any point in a section

is linearly related to the design variable of that section (for example in equation 8.10, ¢
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« 1/b), uniform scaling factor for stress constraint, S; = om= /o, . If the von Mises

vm

stress is not linearly related to the design variable, S, ~ (o m /cu,,)% can be used In
general and additional iterations are needed to resolve S;. The scaled design should be

critical to the most active constraint. Hence the critical scale factor is determined from

the maximum of uniform scaling factors among Sy, S., Ss, and S;.

In the preceding chapters, sizing sensitivity numbers and uniform scaling factors are
given separately for stiffness, displacement and stress constraints. Optimum designs
separately with each constraint (either with constant volume constraint or minimum
weight design) can be obtained by using the appropriate sensitivity numbers and
uniform scaling factors in the optimisation procedures described for buckling
optimisation in Chapters 4 to 7. In the following sections, sensitivity numbers and the

optimisation procedure for the multiple constraints problem are proposed.

8.3 Sensitivity Number

Ideally the cross-sectional area of the element of which all Qi) Oy, g and oy~ are
highest should be increased and the cross-sectional area of the element of which all o,
o5 , g and ay are highest should be decreased to improve the design with all the
constraints. However this situation generally does not exist. To overcome this difficulty
the element sensitivity is evaluated by the sum of its relative sensitiveness with regard to
each constraint. Further it is necessary to treat each constraint separately depending on
how active it is in the current design. To measure the influence of each constraint, the

uniform scaling factors Sy, S¢, Sg, and S are used as weighting parameters. Taking all
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these into account, finally for each element the following two new sensitivity numbers

are defined.

+ + o + o +
h id 1
a =8, ——+S ——F+S5,——+85,—— (8.12a)
b,av a c,av a d.av a s,av
B a,, o,
- b d
a =8, —t—+S§ —oy§, —L 5 i (8.12b)
b,av c,av a d.av a s.av

where o0, is the average of the o,” values of all elements and other average values are
similarly defined. If any of these constraints is not considered in the optimum design,
corresponding term can be simply omitted in the final sensitivity numbers. There can be
several displacement constraints and for each displacement constraint the corresponding

term needs to be added in the final sensitivity numbers.

The above sensitivity numbers are defined for single load case structures. They can be

easily extended to sensitivity numbers for multiple load cases as follows:

ni +
(08 o, . o,
k k dk k
at=).8, —B—45 —H 45 —H g B (8.13a)
k=1 abl\',av ack,av a’dk,av a’sk,av
S a'bl\ a'/\ a'dl\ a'/\_
(X.[-_ - Sbk ’ - +Sck = - +Sdk l - +S5k - - (813b)
k=1 abk,av ack,av adk,av ask,av

8.4 Optimisation Procedure

An iterative procedure is set up for uniform scaling and resizing the elements so that the
weight of the structure is systematically reduced and the material is gradually shifted
from the strongest to the weakest part of the structure. The procedure is given as

follows:
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Step 1. Select an initial design and discretise the structure using a finite number of

elements.

Step 2: Perform fully stressed design two or three times.

Step 3: Solve static and buckling analyses and determine the uniform scaling factors Sp,
Se, Sq and Ss.

Step 4: Scale the design variables uniformly by using the most critical scale factor, i.e.
maximum of Sy, S;, Sz and Ss. Impose the sizing constraint.

Step 5: Solve the static and buckling analyses and calculate the sensitivity numbers o
and a; for each element.

Step 6: Increase the cross-sectional area of elements which have the highest values of
o, and decrease the cross-sectional area of the same number of elements which
have the highest values of ;.

Step 7: Repeat Steps 3 to 6 until the weight of the structure cannot be reduced any

further.

For the problems with displacement constraints, additional static analyses for unit loads
corresponding to the constrained displacements need to be included in Step 5. In some
problems, with initial design, some part of the structure may be highly stressed. Thus the
uniform scaling in Step 4 using S; = o™ /c,, may bring all the cross-sectional areas
of elements to exceed the maximum limit and further optimisation cannot be done. To
prevent this problem initially fully stress design is performed two or three times to bring
the stress distribution roughly uniform. In some problems FSD also helps to bring the
design closer to the optimum design since most of the problems are critical to stress

constraint.
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8.5 Examples

The examples reported by Barson (1994), Lin and Liu (1992), Pezeshk and Hjelmstad
(1991) and by Karihaloo and Kanagasundaram (1993) for multiple constraint
optimisation were governed by either stress or displacement or stability constraint at
optimum designs. These examples did not show the effectiveness of the multi constraint
optimisation method. The capability of the proposed method is illustrated with the
following examples. Note that the loads and dimensions are intentionally chosen to be

critical to all the constraints.

8.5.1 50-Bar truss tower

A minimum weight design for a 50-bar planar truss tower as shown in Figure 8.3 is
sought using the ESO method. The truss tower is 40 m high and 2 m wide subjected to a
vertical load of 200 kN at each corner of the top storey. A similar structure has been
analysed previously by Lin and Liu (1992) and Khot er al. (1976) with different
dimensions and loadings. However in both examples, the final optimum design was

governed by only buckling and minimum size constraints.

The constraints taken into account are: G, < cu = 150 MPa; C < C,; = 10 kNm; and
Ao 2 FS = 2.0. Young’s modulas £ = 200 GPa. The initial cross-sectional areas of all
members are uniform and equal to 15.625 cm®. This initial area is chosen so that the
uniform design just satisfies the most critical constraint. For this example it is the
buckling constraint and for the initial design A, = 2.0 (S, = 1). The cross-sectional areas
are allowed to vary to maximum 20 ¢cm? and to minimum 1 cm” The step size used for

resizing is equal to 0.5 cm” and 20% of the elements are resized at each iteration.
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Figure 8.3 - The 50-bar truss tower

The optimum design is obtained after 11 iterations and the final design areas are given
in Table 8.1 (columns 2 and 3). The symmetry of structural layout and loadings results
in a material distribution that is also symmetric, i.e. the two vertical members in each
panel are equal and so are the diagonal members. The cross-sectional area of all the
horizontal members are at the minimum value of 1.0 cm? except for the panel 9
horizontal member cross-sectional area being equal to 1.63 cm”. The optimisation
history of scaling factors and the current design to initial design weight ratio, w/w, are
given in Figure 8.4. Initially FSD is carried out to bring the variables closer to the

optimum design. The optimum design is governed by all the constraints and at optimum,
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Sy = Ss=Sc = 1. It indicates that all the constraints are equally active at the optimum
design. The volume of the optimum design with all the constraints is reduced to 46.9%

of the initial design volume.

1.4 — ‘ —O—w/wo
—eo—3Ss
12/ T Sh
——Sc
1.0 & . . . . .

Scales & weight ratio
o
[0 0]

<
(o)
Ly

04

0 4 8 12
Number of iterations

Figure 8.4 - Iteration history of the 50-bar truss tower with all the constraints

Optimum designs are also obtained considering each constraint separately. Optimisation
histories of these designs are shown in Figures 8.5, 8.6 and 8.7 respectively for stability,
stress and stiffness constraints. Cross-sectional areas obtained for these designs are
given in Table 8.1 (columns 4-9). Cross-sectional area of all the horizontal members are
at the minimum value of 1.0 cm® The volume of the optimum design with stability
constraint alone is reduced to 42.6% of the initial design volume and for stress
constraint alone and stiffness constraint alone, it is reduced to 38.1% and 45.3%
respectively. Optimum design volumes and scaling factors of all these designs are

compared in Table 8.2. The scaling factors corresponding to the volume of optimum
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design with all the constraints (0.139 m®) are also obtained from the single constraint

design iteration histories and are compared in Table 8.2.
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Figure 8.5 - Iteration history of the 50-bar truss tower with stability constraint alone
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Figure 8.6 - Iteration history of the 50-bar truss tower with stress constraint alone
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Figure 8.7 - Iteration history of the 50-bar truss tower with stiffness constraint alone

Table 8.1 - Optimum design cross-sectional areas of the 50-bar truss tower

Cross-sectional areas in cm’
Panel All constraints Stability alone Stress alone Stiffness alone
number | Vertical | Diagonal | Vertical | Diagonal | Vertical | Diagonal | Vertical | Diagonal
| 19.17 1.00 19.66 1.00 12.74 1.00 15.39 1.00
2 18.43 1.00 19.66 1.00 12.73 1.00 15.39 1.00
3 18.43 1.00 19.66 1.00 12.73 1.00 15.39 1.00
4 17.63 1.00 18.61 1.00 12.73 1.00 15.39 1.00
5 17.43 1.00 16.85 1.10 12.73 1.00 15.39 1.00
6 15.31 1.00 14.40 1.78 12.73 1.00 15.39 1.00
7 14.77 1.00 12.00 1.58 12.73 1.00 15.39 1.00
8 13.20 1.63 9.30 2.19 12.73 1.00 15.39 1.00
9 12.55 1.51 5.85 2.18 12.73 1.00 15.39 1.00
10 11.31 1.45 2.16 2.14 12.73 1.00 15.39 1.00
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Table 8.2 - Comparison of optimum design parameters for the 50-bar truss tower

Volume AYS S, S,
(m’)

Initial uniform design 0.296 1.00 0.53 0.63
Optimum design with all 0.139 1.00 1.00 1.00
constraints

Optimum design with stability 0.126 1.00 3.98 1.49
constraint alone 0.139%* 1.00 3.36 1.24
Optimum design with stress 0.113 1.35 1.00 1.20
constraint alone 0.139** 1.46 1.00 1.18
Optimum design with compliance 0.134 1.14 0.85 1.00
constraint alone 0.139%* 1.18 0.86 1.00

** Sealing factors corresponding to the optimum design volume with all constraints are
g p g p gn

obtained from the iteration histories.

These results indicate that if a structure is optimised with a single constraint, the other
constraints will be adversely affected at the optimum design. For example if the
structure is optimised with stability constraint alone, at optimum design (corresponding
to the optimum volume with all constraints) the maximum stress will be 3.36 times the
allowable limit and the mean compliance of the structure will be 1.24 times the
allowable limit. This observation contradicts the notion suggested by Barson (1994) and
Pezeshk and Hjelmstad (1991) which states that by improving the overall elastic
stability characteristic of a structure, the static, dynamic and post elastic performance of

the structure will be also improved.
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8.5.2 5-Storey frame

A 2-bay, S-storey frame, as shown in Figure 8.8 is analysed. The loading on the
structure consisted of dead loads of 40 kN/m for roof level and 80 kN/m for typical floor
level and wind loads as shown in the figure. The following values are taken for the
analysis: oq = 400 MPa; F'S = 2.5; and £ = 200 GPa. In this problem the horizontal
displacement at the top storey is controlled. According to the design requirements the
horizontal drift should not exceed 1/500 times the height of the building. Hence the
horizontal displacement at top storey should not exceed 30 mm. All the members are of
rectangular cross-section with constant depth ¢ = 120 mm (p = 1). Initial uniform
breadth, b = 234 mm for all the members and b is allowed to vary to maximum 400 mm
and to minimum 40 mm. This initial uniform design rightly satisfies the most critical
displacement constraint (S; = 1). The step size used for resizing is equal to 5 mm and

20% of the elements are resized at each iteration.

Since the beams are subjected to uniformly distributed loads, each beam is divided into
10 elements for the analysis. Each column is divided into 3 elements. However
optimum designs are obtained by treating each member (either beam or column) as a
single segment, thus avoiding stiffness jump within the member. The stress levels are
evaluated at both ends of each element within the member and the maximum stress
value of all the elements is taken to calculate the stress sensitivity number for that
member. Other stiffness, displacement and stability constraints sensitivity numbers of
the member are calculated from the average value of the respective sensitivity numbers

of elements within that member.
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Figure 8.8 - Layout of the 5-storey frame

The iteration history of the design with all constraints is given in Figure 8.9. At
optimum S; = Ss= 1 and S, = 0.95. The volume of the optimum design with all the
constraints is reduced to 62.6% of the initial design volume. Optimum designs are also
obtained considering each constraint separately and the optimisation histories are given
in Figures 8.10, 8.11 and 8.12 respectively for stability, stress and displacement
constraints. Optimum design values of members for all these designs are tabulated in
Table 8.3. The optimum scaling factors and the volume for these designs are compared

in Table 8.4.
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Figure 8.9 - [teration history of the 5-storey frame with all the constraints
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Figure 8.10 - Iteration history of the 5-storey frame with the stability constraint alone
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Figure 8.11 - Iteration history of the 5-storey frame with the stress constraint alone
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Figure 8.12 - Iteration history of the 5-storey frame with displacement constraint alone
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Table 8.3 - Optimum design values of the 5-Storey frame

Element Breadth of the member in mm
number All constraints Stability Stress Displacement
Cl1 56.7 93.2 40.0 40.0
Cl12 123.0 179.1 84.7 104.8
C13 130.0 88.5 78.2 60.5
C21 95.3 94.5 51.2 40.0
C22 99.4 183.5 63.4 60.7
C23 158.7 94.9 97.8 98.5
C31 73.5 68.2 43.4 40.0
C32 67.6 138.1 46.0 84.7
C33 142.6 63.1 82.8 55.5
C41 95.0 40.0 47.6 40.0
C42 70.6 71.5 40.0 40.0
C43 130.8 40.0 77.6 87.2
Cs1 44 .4 40.0 42.1 40.0
C52 40.0 40.0 40.0 40.0
C53 129.7 40.0 56.9 82.7
B1l 263.4 152.8 241.9 130.4
B12 206.8 148.0 190.0 40.0
B21 245.1 150.4 225.2 130.2
B22 202.7 141.0 186.2 40.0
B31 232.1 99.1 217.0 130.1
B32 202.2 94.1 189.5 40.0
B41 230.7 40.0 211.4 106.8
B42 211.4 40.0 194.2 40.0
B51 117.7 40.0 106.6 51.1
B52 114.5 40.0 100.0 40.0
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Table 8.4 - Comparison of optimum design parameters for the 5-storey frame

Volume Sh Ss S
(m’)

Initial uniform design 2.391 0.56 0.95 1.00
Optimum design with all 1.497 0.95 1.00 1.00
constraints

Optimum design with stability 0.912 1.00 5.17 2.53
constraint alone 1.497%* 0.89 1.52 1.60
Optimum design with stress 1.215 1.35 1.00 1.49
constraint alone 1.497** 0.87 1.00 1.32
Optimum design with displacement 0.698 1.87 4.63 1.00
constraint alone 1.497** 0.93 1.30 1.00

** Scaling factors corresponding to the optimum design volume with all constraints are
g Y g P g

obtained from the iteration histories.

8.6 Conclusions

The proposed ESO method for multiple constraints problem systematically reduces the
weight by uniform scaling and shifting the material from strongest part to the weakest
part through the use of sensitivity numbers. The uniform scaling factor of each
constraint determines the active participation of that constraint in the current design and
serves as weighting parameter when defining the sensitivity numbers. Unlike in other
optimisation methods, the number of design variables and the number of constraints are
not a restriction in the proposed evolutionary method. Hence this method is suitable for
designing practical structures with a large number of design variables. The optimum

designs obtained for the 50-bar truss and the 5-storey frame result in significant volume
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reductions. At optimum designs all the constraints are equally active. It is also shown

with the examples that the optimum designs obtained with a single constraint alone

significantly violate the other constraints.

8-23



Chapter 9 - Optimum Design of Plate Structures

CHAPTER 9 - OPTIMUM DESIGN OF PLATE STRUCTURES

9.1 Introduction

Optimisation for plate buckling resistance is complicated, because the in-plane stress
resultants in the prebuckled state of a plate are functions of thickness distribution.
Although there has been a considerable amount of work done on optimisation of frame
structures to enhance buckling resistance, very little research has been reported for plate
structures. This is because the axial stress resultant in the prebuckling state of a frame
structure is approximately independent of change to member cross-sections imposed by
the optimisation process. However, such an approximation is not valid for plates and
shells. For example, once the thickness distribution of a plate becomes variable, the
distribution of the prebuckling stress resultants becomes non-uniform and statically
indeterminate. The problem of optimising plates for stability is, therefore, significantly

more complicated than that for frame structures.

The main part of this chapter discusses the problem of finding the optimum thickness
distribution of isotropic plate structures, with a given volume and layout, that would
maximise the buckling load. Thin plates of variable thickness are not commonly used,
yet they exhibit properties that are worth considering especially in weight sensitive
industries. Of particular interest are the variable thickness plates that are required to
withstand compressive loads. When properly shaped, they possess much higher buckling
loads for a given volume of material. Optimum thickness profiles of compression-
loaded rectangular plates with different boundary conditions and plate aspect ratios are

obtained by using the ESO method.
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Optimum designs from earlier studies and the methods for buckling analysis used to
attain these results are discussed in detail in the following sections and compared with
the designs from the ESO method. The reliability of the buckling solutions of variable-
thickness plates are analysed. It is also investigated the validity of the optimality
criterion frequently used for plate buckling optimisation by other researchers, which is

based on the uniform strain energy density.

9.2 Sensitivity Number and Optimisation Procedure
To increase the buckling resistance of a plate by redistributing its thickness, the change
in the critical buckling load factor due to an increase or a decrease in the thickness of
elements need to be calculated. The change in the stiffness matrix for an increase in
thickness by At in the i element is given by

[AK,]=[AK,T* = [k, (¢ + AD] = [k, (0)] (9.1a)
Similarly, for a reduction in thickness by At in the i element,

[Ak, 1= [AK,T- = [k, (¢ = A= [k,(1)] (9.1b)
As discussed in Chapter 4, the change in stress stiffness matrix [AK,] can be neglected if
the modification to the thickness distribution done at each optimisation step is kept
sufficiently small. Thus the sensitivity numbers of elements, a;’ and oy are obtained
by using the change of stiffness matrix only. An iterative procedure, as described in
Section 4.4, is set up for resizing the plate thickness so that the material is gradually
shifted from the strongest, oversized part of the structure to the weakest part while

keeping the structural volume constant. In the evolutionary procedure, the plate element

thickness is allowed to vary in small steps in a prescribed manner. The sizing constraint,
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tmin S ¢ S I;ax 1S Imposed on plate thickness during element resizing, where Z,,, and fy

are the allowable maximum and minimum thicknesses, respectively.

9.3 Examples

Determination of optimum thickness distribution for uniaxial-compression-loaded
rectangular plates (Figure 9.1) has been an interesting problem widely discussed in the
literature. This is because the governing non-linear fourth order partial differential
equations used for the solution of buckling loads of rectangular plates are well known.
Optimum thickness distribution of three such plates with different boundary conditions
and plate aspect ratios have been obtained by the candidate using the ESO method. The
plates are made of an isotropic material with a Young's modulus £ = 200 GPa and a
Poisson's ratio v = 0.3. The objective is to find the optimum thickness distribution that
would maximise the critical value of the applied stress resultant Nx,, (Figure 9.1). For
these plates, a uniaxial-compression distributed load of 1 kN/m is applied. Thus, the
first eigenvalue, A is equal to the critical load per unit length, Nx.,. For these examples,
an optimum load factor, OF, which is defined as the ratio of the buckling load of an
optimised plate to that of an equivalent uniform thickness plate, is used to measure the

efficiency of the optimised plate.

Optimisation procedures that are based on discrete models often generate anomalies. In
particular, the problem of getting patches of checkerboard-like patterns in optimum
plate designs is encountered quite often. Jog and Haber (1995) have addressed the
problem of checkerboard-like patterns that have appeared in finite-element solutions for

distributed-parameter optimisation and variable-topology shape design problems and
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have shown that the cause of the problem is numerical instability. Usually, but not
always, with the higher order displacement elements this numerical instability can be
eliminated, and stable and smoothly varying designs can be obtained. Therefore in the
following examples eight-node isoparametric elements are used to model the plate
structures to minimise the formation of checkerboard-like patterns. The problem and
remedy for numerical instability and the formation of checkerboard-like patterns will be

further discussed in Section 9.7.

Nx

(IS S SIS SIS

b

Figure 9.1 - Uniaxial-compression-loaded rectangular plate.

9.3.1 Simply supported square plate

The optimum thickness distribution is sought for a uniaxial-compression-loaded square
plate that is simply supported on all sides. This example is considered as a benchmark
problem because it has been analysed extensively in the past by using different
optimisation methods. A series of studies were carried out independently by Parsons
(1955), Capey (1956), Mansfield (1973), Spillers and Levy (1990), Levy and Ganz

(1991), Pandey and Sherbourne (1992), Levy and Sokolinsky (1995) and Levy (1996) to
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find the optimum thickness profile for a square plate. Some of these optimum shapes

will be examined in the following sections.

A square plate with a side-width @ = 2 m and an initial uniform thickness ¢, = 15 mm is

considered. The following two cases are examined:

Case l: tur =20 mm and ¢,,;,= 10 mm

Case 2: tyuxe =25 mm and 7,,;,, = S mm

The plate is discretised into 20 x 20 square elements and 16% of the elements are
resized at each iteration (i.e., the thicknesses of 32 elements increased and the
thicknesses of 32 elements decreased at each iteration). Plate thicknesses are allowed to
change in steps of 1 mm. The resizing ratio and the step size are kept constant

throughout the optimisation process.

The optimum element thicknesses for the two cases that are obtained with the 8-node
isoparametric elements are given in Figure 9.2 for one quarter of the plate. The optimum
thickness distributions for the whole plate are shown in Figure 9.3. The value of Nx,, for
the uniform-thickness plate and the optimum designs for Cases 1 and 2 are 608.31
kN/m, 826.08 kN/m (OF = 1.36), and 894.08 kN/m (OF = 1.47), respectively. The
evolutionary histories of the first two eigenvalues for both cases are shown in Figure 9.4
and the results indicate that there is not any modal interaction present. The results in

Figure 9.3 indicate that optimum designs are obtained at between 30 and 35 iterations.
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Figure 9.2 - Optimum element thicknesses of the simply supported square plate for one
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Figure 9.3 - Optimum designs of the simply supported square plate
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Figure 9.4 - Iteration histories of the simply supported square plate

For both Cases 1 and 2 optimum designs, the plate material is redistributed to thicken
the center and the four corners. Similar designs were obtained for the thickness ratios
bmax/tmin = 24/8, 24/6, and 24/4. Based on these results, a smooth optimum thickness

distribution is proposed herein for this square plate with the following quadratic

equations:
r 2
t(ry=*kt . —(k-Dt_, ] when r < a/2, (9.2a)
min n a /2
J2-2r/a i
tN=kt_._ —(k-Dt_ |—F—— when r>a/2, 9.2b
(r) min ( ) min _\/5_1 ( )

where r is the radius measured from the center of the plate and & = tyq/tmin. Values of
Nx,, were obtained for plates with this thickness distribution for values of k =3, 3.5, 4,
4.5, and 5 from 40 x 40 finite element models (8-node isoparametric elements). These
results are tabulated in Table 9.1. The results predict a small variation in the

enhancement to buckling resistance for the values of k used, with the highest
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enhancement to buckling resistance occuring for k = 4. A 37% higher value of Nx,, is
obtained for the plate with k = 4 than for the corresponding plate with the uniform
thickness. An exaggerated plot of the thickness distribution of the plate with £ = 4 is

shown in Figure 9.5.

Table 9.1 - Buckling load factors for the plate as defined by equation (9.2)

k 3.0 3.5 4.0 45 5.0
OF = Nx_ / Nx"“"™ 1355 | 1369 | 1370 | 1358 | 1.331

N
\

Sl A A0 W
\\‘\\\'\\\,\\ N
N S
\ W7
i A
\ & s

Figure 9.5 - Proposed smooth profile for the simply supported square plate (k = 4).

9.3.2 Clamped square plate

Optimum thickness profile is sought for a uniaxial-compression loaded square plate that
is clamped on all sides. Plate dimensions and design parameters are the same as those of
simply supported plate in Section 9.3.1. Again, the two cases (Case 1 With fya/tmin =

20/10 and Case 2 With tmax/tmin = 25/5) are considered. The plate is discretised into 20 x

20 square elements and 8% of the elements are resized at each iteration (i.e., thickness
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of 16 elements increased and thickness of 16 elements decreased at each iteration). Plate

thicknesses are allowed to change in steps of 1 mm at each iteration.

Final designs that are obtained with 8-node isoparametric elements are shown in Figure
9.6. The first and second eigenvalues of the uniform plate and the optimum designs for
Case 1 and Case 2 are given in Table 9.2. For Case 1, the plate has become bimodal as a
result of optimisation. For Case 2, although the intermediate designs exhibit bimodal
behaviour, the final design is single mode. Optimum designs are also obtained by
considering only the first buckling mode by using single mode sensitivity numbers.
Buckling loads of these designs are lower than those of the optimum designs obtained
by using the sensitivity numbers which consider modal interaction. The evolutionary
histories of the first two eigenvalues for Cases | and 2 that are obtained by using both

single and bimodal methods are given in Figures 9.7 and 9.8, respectively.

Table 9.2 - The first two eigenvalues of the square clamped plate designs

A1 = Nx, (kN/m) A2 OF

Uniform design 1534.3 1767.3 1.00

Case 1 designs Bimodal 2383.7 2408.6 1.55
Unimodal 2242.7 2263.9 1.46

Case 2 designs Bimodal 2850.3 3416.6 1.86
Unimodal 2539.0 2625.2 1.65
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Figure 9.6 - Optimum designs of square clamped plate
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Figure 9.7 - Iteration histories of the square clamped plate (Case 1)
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Figure 9.8 - Iterations histories of the square clamped plate (Case 2)

9.3.3 Simply supported rectangular plate

A simply supported rectangular plate of dimensions 3.2 m by 2.4 m is analysed.
Uniform uniaxial-compression load is applied on the shorter edge of the plate. The
initial uniform thickness of the plate is 15 mm and the thickness is allowed to vary to
the maximum of 20 mm and to the minimum of 10 mm in steps of I mm. The plate is
discretised into 32 x 24 square elements. At each iteration, 64 elements are subjected to
thickness resizing. The first and second eigenvalues of the uniform plate are 458.82
kN/m and 496.19 kN/m, respectively. The final design (Figure 9.9) is bimodal and it is
obtained after 31 iterations. The first and second eigenvalues of this optimum design are
very closely spaced and are equal to 573.96 kN/m (OF = 1.25) and 574.17 kN/m,
respectively. The plate is also optimised with the single mode sensitivity numbers and
the value of N, for the final design is 530.86 kN/m (OF = 1.15). The evolutionary
histories of the first two eigenvalues that are obtained by using both single and bimodal

methods are given in Figure 9.10.
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Figure 9.9 - Optimum design of the rectangular plate (z, = 15 mm)
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Figure 9.10 - Optimisation histories of the rectangular plate (z, = 15 mm)
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9.4 Previously Reported Optimum Shapes

9.4.1 Optimum shapes by Pandey and Sherbourne

Early studies by Parsons (1955), Capey (1956), and Mansfield (1973) reported that
higher thickness near the edges versus center (concave profile) of a uniaxially loaded
simply supported square plate increased its buckling resistance. Spillers and Levy
(1990) proposed a convex thickness profile with very high material concentration in the
center for the simply supported square plate. This paradox of thickness distributions
motivated Pandey and Sherbourne (1992) to re-investigate the whole problem. The
optimum designs reported by Parsons (1955), Capey (1956), Mansfield (1973) and
Spillers and Levy (1990) are characterised by a severely disproportionate thickness
distribution resulting in very thin sections in certain regions. Pandey and Sherbourne
(1992) found that these plates actually buckled locally at a load far lower than what have
predicted by those authors. Buckling solutions of these plates were obtained by using the
Raleigh-Ritz method with assumed displacement functions. The number of terms used
in the series to represent the plate lateral displacement was not big enough to capture the

local buckling.

Pandey and Sherbourne (1992) proposed a thickness distribution for uniaxially loaded
rectangular plates based on Parson’s (1955) sinusoidal thickness variation and it is given

by the following equation.

t
1(x,y) = k—z[l +(N, - l)sin%Il +(N, - l)sin%] (9.3)
1

where &k, =1+2(N,-1)/mn, N, is a variable called thickness distribution shape

parameter, ¢, is the uniform plate thickness, and a and b are length and width of the
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plate. Optimum shapes were obtained for a square plate with three sets of boundary
conditions; that is, a) all edges simply supported, denoted by SSSS; b) all edges
clamped, denoted by CCCC and c) loaded edges simply supported and unloaded edges

clamped, denoted by SSCC.

The Rayleigh-Ritz method was used for the buckling analyses. The following Fourier
sine serles of half sine waves in both plate directions was used to represent the lateral

deflection, w(x,y) of the simply supported plate.

w(x,y) = Z ZAW, sm——sin% (9.4)
m=1  n=]

where A4,, is a constant. The following Gram-Schmidt-type orthogonal polynomials

were used for the plates with clamped edges.

W)=Y Yae, [ }u( ] (9.5)

m=1 n=I

where ¢, and vy, are orthogonal polynomial sequences that at least satisfy the
geometrical boundary conditions in X- and Y- directions, respectively. The total number

of terms used in the both displacement functions was 81 (N =9).

Buckling loads were obtained for plates with various values of thickness distribution
parameter, N,. Poisson’s ratio v = 0.3 was used in this analysis. For the simply
supported square plate the maximum buckling was obtained when N, = 2 (convex
profile as shown in Figure 9.11) and the buckling load was 28.4% higher than that of the
uniform plate load (OF = 1.284). The ratio of the plate thickness at the centre to corner
for this convex plate is 4. For CCCC and SSCC plates, optimum buckling loads were

obtained when N, = 0.25 (concave profile as shown in Figure 9.12). Reported optimum

9-14



Chapter 9 - Optimum Design of Plate Structures

factors of these CCCC and SSCC plates are 2.046 and 2.359, respectively. However, the

buckling solutions reported for these concave profiles appear to be in error, as shall be

discussed later in Section 9.6.

Figure 9.12 - Optimum shape by Pandey & Sherbourne for CCCC and SSCC plates

(N, = 0.25)

9.4.2 Optimum shapes by Levy and his co-workers

Originally, Spillers and Levy (1990) extended Keller’s (1960) classic solution for the
optimal design of columns to the case of plates and derived an optimality condition via
variational calculus which states that the plate thickness distribution should be

proportional to the strain-energy density distribution in an optimal design. They
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proposed the following thickness profile for the uniaxially loaded simply supported

rectangular plate.
27X 2
t(x,y) = tu[l - 0.586005711 _ 0.586005%] (9.6)

The optimum shape according to equation (9.6) for a square plate is shown in Figure
9.13. Buckling solution was obtained by using the Rayleigh-Ritz method with the
following one-term symmetric double sine series representation for the plate lateral
displacement.

. Tx | Ty
w(x,y) = Asm;sm? 9.7)

The buckling load for this plate was calculated to be 2.12 times that of an equivalent
uniform plate (OF = 2.12). Levy and Ganz (1991) later re-analysed this problem by
using a six term displacement function with a multiple of half sine waves in the
direction of loading and only one half sine wave in the other direction (equation. 9.8)
and predicted a 44% increase in the buckling load (OF = 1.44).

11
wix, )= DA sin—sin-2 9.8)
a

n=135,. b
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Figure 9.13 - Optimum shape by Spillers & Levy (1990)
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Pandey and Sherbourne (1992) found that the displacement functions given by equations
(9.7) and (9.8) could encapsulate a critical mode of global nature only and could not
capture the complex localised buckling modes. They re-analysed Levy’s plate with a

displacement function of half sine waves in both plate directions of a total of 289 terms:

SIS . mnx . Am
w(x,y) = Z ZA,M sin— smnTy where N =17 (9.9)
m=l n=I

They reported, that Levy’s plate locally buckles at comers for a load far lower than that

predicted and also less than the buckling load of uniform thickness plate (OF = 0.44).

Recently Levy and Sokolinsky (1995) and Levy (1996) re-analysed the whole problem
and proposed the following two thickness distributions as optimum shapes.

(a) Double cosine symmetric plate given by

2 2my
t(x, y) = tu[] - 0.295cosﬂll _ 0.295003% : (9.10)
a /
(b) Hybrid double sine symmetric plate given by
. T oy
t(x,yy=c¢|1+c,sin— |[l1+¢, sin—— (9.11)
a b )

where ¢, and ¢; depend on ¢,. For ¢, = 0.05, ¢, = 0.0135 and ¢; = 1.452. Shapes of a
square plate given by equations (9.10) and (9.11) are shown in Figures 9.14 and 9.15.
Rayleigh-Ritz method was used with a sufficiently accurate displacement function to
obtain the buckling loads of these plates. For the Poisson’s ratio v = 0.32, optimum
buckling load factors reported for cosine and sine plates are 1.234 and 1.323,

respectively.
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example, the initial outer layers (reinforced layers) have an uniform material
distribution with volume fraction p = 0.4. The plate is discretised into 32 x 24 eight-

node isoparametric elements.

Ty Y i
_ g HE
w| 7
pay A yaNg 5T A
5 1.0m
ﬁ 7/ base material: E=210 GPa, v=0.3

Figure 9.16 - Loads and geometry of the plate by Folgado et al. (1995)

The final design obtained and the iteration history of the first three eigenvalues are
given in Figure 9.17. The final design was bimodal and was obtained after 112
iterations. The buckling loads reported by Folgado et al. were: a) for internal solid layer
of 5 mm thickness (without reinforced layers) - Nx., = 183.0; b) for initial design with
uniform reinforced layers (increase the plate thickness to 10 mm with 40% volume

increment) - Nx., = 409.1; c¢) for the ﬁnal_ design - Nx.,= 589.0.

800 W_//"_"WWW
6007 fwm
o :

e 20 4qterat§gn 8o lo0

Figure 9.17 - Optimum solution of the plate by Folgado et al. (1995)
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This problem can be made analogous to the plate with solid material having variable
thickness distribution. If the initial design with uniform reinforced layers of p = 0.4 is
made to a solid layer, the thickness of the initial plate would be 5 + 5 x 0.4 = 7 mm.
Hence the buckling load of solid uniform plate would be 183.0 x (7/5)’ = 502.2. When
comparing the buckling load of solid plate (502.2) and that of the plate with uniform
reinforced layers (409.1), the buckling load of the latter plate appears to be incorrect.
Because the plate with uniform reinforced layers (which has the material further away
from the neutral axis than the solid plate) should be more efficient than the solid plate.
Based on the buckling load of solid plate, the optimum load factor of final design would

be 589.0/502.2 = 1.173.

This problem can be well compared with Example 9.3.3. The aspect ratio of the plate,
the ratio of #,../tmin and the Poisson’s ratio are the same for both problems. However, in
Example 9.3.3, the uniform plate thickness ¢, was 15 mm. To match the exact conditions
of Folgado’s plate the uniform plate thickness should have been taken as 14 mm (40%
volume increase of minimum thickness 10 mm). Example 9.3.3 is re-analysed using the
ESO method with ¢, = 14 mm. The final design (Figure 9.18) is obtained after 30
iterations. Buckling loads of the uniform plate and the optimum plate are 373.12 and
458.44 kN/m respectively. Optimum load factor of this design is 1.229. The iteration
histories of first and second eigenvalues are shown in Figure 9.19. This plate also

exhibits bimodal behaviour.
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Figure 9.18 - Optimum design of the rectangular plate by ESO method (¢, = 14 mm)
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Figure 9.19 - Iteration histories of the rectangular plate by ESO method (z, = 14 mm)
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9.5 Strain Energy Distribution of Optimum Plates

Under the assumption of in-extensional pre-buckling deformations, a condition of
uniform strain energy density has been established as being the optimality condition for
plates (Spillers and Levy (1990)). However, optimisation of plates on the basis of such
assumptions have led to unsatisfactory solutions. Since the in-plane stress resultants in
the prebuckled state of plates are functions of the thickness distribution, plate structures

with variable thickness can never be considered as statically determinate structures.

According to the uniform strain energy density optimality criterion, at optimum design
the normalised specific energy of each element NSE; (defined in Chapter 5, equation
(5.3)) is constant and equals unity. The distributions of normalised specific energy of
uniform and optimum shapes of the simply supported square plate are compared in
Figure 9.20. The horizontal axis of the Figure 9.20 gives the percentage of elements
which have the normalised specific energy below the corresponding NSE value at the
vertical axis. Uniformity of specific energy distribution is not observed in any of these
designs. There is no particular difference noticed between the uniform plate and other

optimum shapes.
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Figure 9.20 - Comparison of normalised specific energy distribution of the optimum

designs of the simply supported square plate
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9.6 Buckling Solutions of Variable-thickness Plates

Traditionally, special purpose energy-based methods such as the Raleigh-Ritz and the
Bubnov-Galerkin methods have been preferred to general purpose finite-element
methods because of the excessive cost, storage and data preparation that usually
accompany finite-element analysis. However, with the advent of powerful computers
and advances in finite-element methods, numerical techniques are becoming more
popular for structural analysis, and they can be readily applied to any shapes, boundary
and loading conditions. Moreover, the accuracy of results obtained from energy-based

methods depends on the number of terms used to describe the displacement function.

Since Rayleigh-Ritz method was used by Pandey and Sherboume (1992) and Levy
(1996) for the buckling analysis of their optimum shapes, it is now important to check
the reliability of their results. Buckling solutions of these optimum plates are obtained
by using the finite element method. Eight-node isoparametric elements are used to
model these variable thickness plates. Buckling loads of SSSS, CCCC and SSCC plates
with thickness distribution according to equation (9.3) for various values of N, are
obtained. Buckling loads of Levy’s shapes are obtained for both v = 0.32 and v = 0.3.
For all the other plates v = 0.3 is used. It is found that finite element solutions and the
corresponding reported results by Rayleigh-Ritz method are compared in Table 9.3.
Finite element solutions of simply supported plates are reasonably close to the reported

results (Levy’s results differed by 2% and Pandey’s results differed by 4-5%).
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Table 9.3 - Comparison of finite-element solutions with Levy and Pandey and

Sherbourne results.

Plate type* Rayleigh-Ritz method Finite Element Method

and reference Parameter OF Modelling OF
SSSS plate Sin (v = 0.32) 1.323 80 x 80 8-node 1.296
Levy (1996) | Cosine (v=0.32) 1.234 isoparametric 1.212
Sin (v =0.30) - elements 1.286
Cosine (v=0.30) - 1.162

SSSS plate N,=0.5 0.789 80 x 80 8-node 0.851
Pandey and N,=2.0 1.284 isoparametric 1.238
Sherbourne N,=3.0 1.278 elements 1.230
(1992) N,=4.0 - 0.858
N,=5.0 0.700 0.569
CCCC plate N,=0.25 2.046 40 x 40 8-node 0.128
Pandey and N,=0.5 1.451 isoparametric 0.501
Sherbourne N,=15 - elements 1.175
(1992) N,=2.0 0.727 1.216
N,=25 - 1.211
N,=3.0 - 1.190
N,=4.0 0.600 1.014
SSCC plate N,=0.25 2.359 40 x 40 8-node 0.162
Pandey and N, =0.5 1.438 isoparametric 0.628
Sherbourne N,=15 - elements 1.067
(1992) N,=2.0 0.652 1.035
N,=25 - 0.954
N,=3.0 - 0.852
N,=4.0 0.448 0.601

" The first two letters denote the loaded edge support conditions
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Buckling loads of uniform thickness plate with clamped edges reported by Pandey and
Sherbourne (99.43 D,/b° for CCCC plate and 75.91 D,/b’° for SSCC plate, where D, =
Et,/ (l-vz) ) are very close to the finite element solutions (99.29 Du/b2 for CCCC plate
and 75.83 D,/b° for SSCC plate). However, buckling loads of variable thickness plates
with clamped edges reported by Pandey and Sherbourne and finite element solutions are
totally different. Pandey and Sherbourne’s results give higher buckling loads for
concave profiles (N, < 1 as shown in Figure 9.12) whereas FEM gives higher buckling
loads for convex profiles (N, > 1 as shown in Figure 9.11). Finite element solutions
reveal that for the concave plate with N, = 0.25, local buckling occurs at the middle of
the plate for all boundary conditions. Apparently this local buckling has not been
captured by Pandey and Sherbourne even with 81 terms displacement function. For the
convex plate with N, = 4.0, local buckling is found by FEM at comers of the plate.
Critical buckling modes of plates for N, = 0.25 and N, = 4.0 obtained with FEM for the
boundary conditions CCCC and SSCC are shown in Figures 9.21 and 9.22, respectively.
Buckling modes of CCCC plates with N, = 0.25 and N, = 4.0 reported by Pandey and
Sherbourne are given in Figure 9.23. These buckling modes did not show local buckling

around the comers or at the centre of the plate.

=

~

(a) N, = 0.25 (b) N, = 4.0.

Figure 9.21 - Fundamental buckling mode of CCCC plates from FEA
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(a) N, = 0.25 (b) N,=4.0

Figure 9.22 - Fundamental buckling mode of SSCC plates from FEA
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Figure 9.23 - Fundamental buckling mode of CCCC plates by Pandey and Sherbourne

The contradiction, regarding the buckling solutions of plates with clamped edges by
FEA and by Pandey and Sherbourne has motivated the candidate to check the reliability
of the finite-element software when applied to the buckling analysis of variable-
thickness plates. Considerable amount of research has been carried out on the buckling
analysis of variable thickness plates (such as exponential, linear tapered, sinusoidal,
step varigtion etc.) with different boundary conditions, aspect ratios and various loading
conditions using energy methods and numerical methods. Some of the noted studies are
by Wittrick and Ellen (1962) and Ng and Araar (1989) using Galerkin method;

Kobayashi and Sonoda (1990) using exact power series method; Harik and Andrade
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(1989) using analytical strip method and Harik et al. (1991) using semi-analytical and
semi-numerical method. Some results from each of the above references and the
corresponding finite element solutions obtained in this study are compared in Table 9.4.
The table numbers in Table 9.4 should be referred to the corresponding references.
Loading conditions and thickness distribution parameters of each reference are referred
from Figure 9.24. In the boundary conditions the first two characters denote the loaded-

edge conditions of the uniaxially loaded rectangular plate.

B+
L

Ng & Araar (1989)

Figure 9.24 - Thickness distribution parameters of the variable-thickness plates
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Table 9.4 - Comparison of finite-element buckling solutions with reported results for

variable-thickness plates.

Boundary Reference Aspect | Thickness variation and | Reported | FEM FEM
conditions” ratio parameter results mesh | results
SSSS Wittrick 0.5 Exponential - #,/t, = 1.5 6.049 10 x 20 6.039
Tables II & III 2.0 Linear taper - £,/ = 2.0 2.236 20x 10 2.242

SSCC Wittrick 1.0 Exponential - /2, = 2.0 16.58 20x 20 16.61
Tables IV & V 1.5 Exponential - t,/1, = 1.5 10.90 30x 20 10.93

0.5 Linear taper - 1/t = 2.0 33.64 40x 20 33.68

3.0 Linear taper - ty/1p = 1.5 11.24 30x 10 11.29

SSSS Kobayashi 3.0 Linear taper - ¢/t =2.0 1.922 20x 20 1.920
Table 1 1.5 Linear taper - 1/t = 1.5 3.339 30x 20 3.341

SSCS Harik 1.8 Step vanation - A/h,=1.5 8.295 18x 10 8.304
SSCS Table 1 & 2 2.0 Step variation - h/h,=1.5 8.762 20x 10 8.547
SSCF 2.0 Step variation - h/h,=1.5 2.348 20x 10 2.343
SSCF 2.0 Step variation - h/hy=1.5 2.348 20x 10 2.357
SSCC 1.2 Step variation - h/hy=1.5 10.705 12x 10 | 10916
SSCC 1.8 Step variation - A/h,=1.5 11.665 18x 10 | 11.844
SSCC 2.0 Step variation - h/h,=1.5 10.542 | 20x10 | 10.616
CCCC Ng & Araar 2.0 Linear taper - ¢ = 0.0 15.696 | 40x20 | 15.773
CCCC Table 1 2.0 Linear taper - ¢ = 0.2 15891 | 40x20 | 13.330
CCCC 2.0 Linear taper - ¢ = 0.4 16.429 | 40x20 9.325
CCcCcC 2.0 Linear taper - ¢ = 0.6 17.238 | 40x20 | 5.333
CCcC 2.0 Linear taper - ¢ = 0.8 18.285 | 40x20 1.069

" The first two letters denote the loaded edge support conditions.

L . .
~ 8-node isoparametric elements are used.
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Comparison of the results indicates that the finite element solutions are in excellent
agreement with the results reported by Wittrick and Ellen (1962), Kobayashi and
Sonoda (1990) and Harik and Andrade (1989) and differ by only 0.3% maximum. Again
the buckling solutions obtained by and Ng and Araar (1989) for the bi-axially loaded all

edges clamped plates using Galerkin method with six term displacement function

considerably differ from the finite element solutions.

9.7 Elimination of Checkerboard Patterns from 4-node Element Optimum
Solutions

Numerical instability problems are often encountered in finite element solutions to
distributed-parameter and variable-topology shape design problems. Although the
physics of a given problem might imply a regular solution, optimisation procedures that
are based on discrete models often generate irregularities in the design field at the length
scale of the numerical grid. These anomalies can take the form of checkerboard patterns
and rib like formations in the design of solid plates, internal boundaries in shape
optimisation of continua and corrugations in thin shells of constant thickness, wherein
the finite element solution for the design field alternately overestimates and
underestimates the expected continuum solution in adjacent elements. These instabilities
are strictly a numerical artifact and do not have any physical significance. The origin of
checkerboard patterns and other irregularities are related to features of the finite element
approximations. When 4-node linear elements are used in ESO for plate buckling,
checkerboard like patterns are often observed in the optimum designs. It is illustrated

with the following examples.
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9.7.1 Optimum designs of plates with 4-node elements

The optimum designs of the simply supported square plate for the two cases ( Example
9.3.1) that are obtained with the 4-node isoparametric elements are shown in Figure
9.25. Values of Nx,, for the final designs for Cases 1 and 2 are 872.9 kN/m and 1257.8
kN/m, respectively. Checkerboard-like patterns are observed in these final designs and
most of the elements reach extreme thickness, either fyq Or Zu;, in the final designs.
Numerically the designs with checkerboard-like patterns represent stiffer structure.
These final designs are re-analysed with 8-node isoparametric elements and the values
of Nx. obtained are only 790.0 kN/m for Case 1 design and 672.0 kN/m for Case 2
design. Simply supported rectangular plate (Example 9.3.3) is re-analysed with the 4-
node isoparametric elements and the final design obtained is shown in Figure 9.26.
Again checkerboard-like patterns exist in the final design and most of the elements

reach extreme thicknesses.

] 1 FIET PR
— = Thickness
z -~ -
[T ; [ [
(a) Case 1 (b) Case 2

Figure 9.25 - Final designs of SSSS square plate obtained with 4-node elements
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Figure 9.26 - Final design of SSSS rectangular plate obtained with 4-node elements

Usually, the higher the order of the displacement element, the greater the numerical
stability. Thus in general 8-node elements are used for plate optimisation problems.
Both the ESO method and the Folgado’s method use 8-node isoparametric elements to
model the plate structures. However the size of the finite element model and the
computational time are significantly increased with higher order elements. For example,
static and buckling analyses of 20 x 20 elements square plate modelled with 8-node
isoparametric elements require 30 minutes on a Pentium / 120 MHz personnel
computer, whereas the solution time required for the plate modelled with 4-node
elements is only 6 minutes. Static and buckling analyses of the 32 x 24 elements
rectangular plate modelled with 8-node elements require 75 minutes and the analyses
with 4-node elements require only 20 minutes. Thus the time required for the buckling
solution of a structure modelled with 8-node elements is four to five times higher than
the time required by the same structure modelled with 4-node elements. The number of
elements used in the above examples is small since the critical buckling mode of these

plates are not complicated. In real problems, a fine mesh of elements is needed to
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represent the prebuckling stress distribution and the buckling mode adequately. The use
of higher order elements in large problems is computationally expensive. Therefore it is
important to find alternative ways to improve the use of low order elements in the
optimisation process. In the following section, an element sensitivity number

redistribution method is proposed to suppress the formation of checkerboard-like

patterns from optimum designs using 4-node elements.

9.7.2 Element sensitivity number re-distribution method
In this method element sensitivity numbers are re-calculated by considering the
influence of elements in the neighbourhood. The modified sensitivity numbers are

calculated for each element as follows:

e Calculate the initial sensitivity numbers for each element as defined by the equations
(4.15)or (5.2).

o Compute the nodal sensitivity numbers, a ,, at each node by taking the average of
the sensitivity number of elements connected to that particular node. For example,
nodal sensitivity numbers of nodes 1, 2, 3, 5 and 6 in the Figure 9.27 given below

are calculated as follows:

Ay =&y

11 12 13 14

oy, =(a, +a,)/2

@ @ @ Ay; =,

@ © s =0, +o, +oy+a,)/4

| 5 3 oy = (0, +o, +05)/3

Figure 9.27
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e Re-calculate the modified sensitivity numbers, o/ for each element by taking the
average of the nodal sensitivity numbers of that particular element. For example the
modified sensitivity numbers of elements 1 and 5 in the above figure are

O = (0 +0ly, +0 g, +0 ys) /4 and

/I _
Qs = (0 yg +0 7 +0y ;3 +0yy,) /4.

The above two examples are re-analysed with the 4-node linear elements using the
modified sensitivity numbers. Final designs obtained are shown in Figures 9.28 and 9.29
for the square plate and the rectangular plate, respectively. Patches of checkerboards are
eliminated from these designs to a large extent. This method works well when the ratio

between the maximum and minimum allowable thicknesses is small.

| & Thickness

i il £
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[T 1 N |
(a) Case 1 (b) Case 2

Figure 9.28 - Optimum designs of the square plate obtained with the re-distributed
sensitivity numbers for 4-node elements
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Figure 9.29 - Optimum design of the rectangular plate obtained with the re-distributed
sensitivity numbers for 4-node elements

9.8 Layout Optimisation

Buckling optimisation sensitivity numbers are calculated by ignoring the change in
stress matrix and these sensitivity numbers are not applicable to optimisation involving
element removal. For this reason ESO for stability constraints is restricted to sizing
optimisation with fixed topology. However, a significant weight reduction can be
achieved by optimising the layout of the structure where the topology of the structure 1s
not fixed and internal holes can be created during the optimisation process. In Chapter 3,
ESO for shape and layout optimisation of structures with stiffness, displacement, stress
and frequency constraints have been briefly described. ESO for layout designs with
stability constraints can be achieved by gradually removing the inefficient elements
from the design domain so that the decrease in critical buckling load factor is kept as

small as possible. In the following section an example is presented to illustrate how the
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ESO for layout design with a stability constraint can be performed if the change in

buckling load factor due to an element removal is known.

1000 kN 1000 kN

0.2m

Design domain

Nondesign domain

Figure 9.30 - Initial structure of the 2-dimensional portal frame for layout optimisation

Consider a portal frame, clamped at base as shown in Figure 9.30. It is required to find
the optimum topology of material within the design domain. External columns and
beam which are represented by nondesign domain are fixed. This is a two dimensional
problem and the structure is modelled with 22 x 21 square 8-node isoparametric
elements. The material is isotropic with Young’s modulus £ = 200 GPa and Poisson’s
ratio v = 0.3. Both the design and nondesign domain plate thickness is equal to 10 mm
and it is kept constant. Since the change in buckling load factor due to the removal of an
element cannot be obtained from the results of finite element analysis of the previous
structure, a buckling analysis with the removal of the element has to be carried out to
obtain the change in buckling load factor. This analysis is repeated for each and every
element in the design domain to assess the influence of the removal of each element to

the critical buckling load. This is done by assigning the plate property number zero to

9-36



Chapter 9 -Optimum Design of Plate Structures

the removed element. Once the buckling analysis is performed that particular element is

re-assigned with the correct plate property number and the plate property number of the

next element to be removed is assigned to zero and so on.

When removing the elements, symmetry of the structure should be preserved. Therefore
at each analysis 1 x 2 (since there is one symmetric axis) elements are removed. Once
the buckling load factors of the structure with the removal of each set of symmetric
elements are found, the most inefficient set of symmetric elements is removed. By
repeating this whole procedure the inefficient elements are gradually removed (one
symmetric set of elements at a time) from the design domain. The evolving shapes (after
removing every 12 x 2 elements) are given in Figure 9.31. Buckling load factors of the
original structure (with and without the design domain) and the evolving shapes are also
given in Figure 9.31. Figure 9.32 shows the evolutionary history of the critical load
factor after each set of symmetric elements is removed. Initially A, is almost unchanged
with the removal of elements. A, is reduced by only 1.26% after 92 x 2 elements are
removed, i.e, the design domain weight is reduced to 46.2%. Then A, 1s decreased
gradually with the removal of elements. At intermediate stages, some irregular designs
such as with checkerboard like patterns are observed. This may be due to the reason that
the finite element mesh used in this problem is very coarse. Final designs show the
potential locations of diagonal members for the portal frame. Layout optimisation of this
structure is also obtained with 4-node linear elements and the evolving shapes are
shown in Figure 9.33. Very irregular checkerboard like patterns are observed even at

early stages of the designs.
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A1 =5769.99
Initial design

A =5768.65 A =5767.07
24 x 2 elements removed 36 x 2 elements removed

AL =5764.48 A1 =5760.57
48 x 2 elements removed 60 x 2 elements removed

Figure 9.31 - Evolving layouts and corresponding buckling load factors of the portal
frame (continued)
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A = 5750.17 A =5727.45
72 x 2 elements removed 84 x 2 elements removed

A =5628.13 A = 5337.41
96 x 2 elements removed 108 x 2 elements removed

Ay = 4329.04 A, =3640.02
120 x 2 elements removed 126 x 2 elements removed

Figure 9.31 - Evolving layouts and corresponding buckling load factors of the portal
frame (continued)
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A =2982.08 A =2014.72
131 x 2 elements removed 138 x 2 elements removed

A =1138.22 Ay =274.38
145 x 2 elements removed Without design domain

Figure 9.31 - Evolving layouts and corresponding buckling load factors of the portal

frame
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Figure 9.32 - Evolutionary history of the layout optimisation of the portal frame
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Figure 9.33 - Evolving shapes of the portal frame obtained with 4 node elements
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9.9 Conclusions

The optimum designs obtained with the ESO method yield higher buckling loads than
corresponding previously reported designs. For a simply supported square plate, an
optimum design has been proposed which gives a buckling load 37% higher than that of
a uniform equivalent thickness plate. This is higher than any published and correct
results for the same problem. It is even higher for non-smooth profiles. The
corresponding shape given by Levy (1996) has only a 29% increase in buckling
resistance and that given by Pandey and Sherbourne (1992) has only a 24% increase. For
the simply supported plate with aspect ratio 1.333, Folgado ez a/. (1995) also obtained a
similar design but with slightly lower buckling load. However, Folgado er al. (1995)
achieved this design after 112 iterations whereas the proposed method required only 30
iterations to attain the optimum design. This difference is important because the number
of iterations is crucial in analysing structures with higher order elements such as 8-node

isoparametric plate elements.

Buckling solutions given by Pandey and Sherbourne (1992) and Ng and Araar (1989)
for variable thickness plates with clamped edges obtained by using the Rayleigh-Ritz
method appear to be in error. It is unclear where they made numerical mistakes in their

analysis.

The optimality criterion based on the uniform specific energy distribution does not
appear to admit a general solution to shape optimisation of plate structures against
buckling. The uniform strain energy concept may hold true for statically determinate

structures, but not for variable-thickness plate structures.
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Plate buckling optimum designs have been obtained with 8-node isoparametric elements.
When 4-node linear elements are used, checkerboard-like patterns are observed in the
optimum designs. The cause for this problem is numerical instability. A simple approach,
element sensitivity number redistribution method, has been proposed to improve the use
of 4-node elements in the plate optimisation process. This method works well for the

problems with a small ratio between the maximum and minimum allowable thicknesses.

This chapter has also tried to address the layout optimisation of structures against
buckling. It has been shown with a two-dimensional example that a significant weight
reduction can be achieved by optimising the layout of the structure. However the
approach used for the layout optimisation is not computationally efficient and further
research needs to be done to find an efficient way to calculate the sensitivity numbers

when an element is removed.
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CHAPTER 10 - CONCLUSIONS AND FUTURE RESEARCH

T2 és good to liave an ead journey towande,
bat it co the jowrmey that mattens, iu the end,

- Uneala Le Guin

10.1 Conclusions

The objective of the research presented in this thesis was to investigate and develop
simple, mathematically less complex and computationally efficient optimisation
methods based on Evolutionary Structural Optimisation (ESO) concept to enhance the
buckling resistance of structures. This chapter summarises what have been achieved in

this study and discusses the further developments required in these and related areas.

The capability of the ESO method for buckling optimisation was illustrated with various
examples of single modal, multimodal, multiple load case and multiple constraint frame
structures and plate structures. Critical buckling load factors were substantially
increased and significant weight reductions were observed in these optimum designs.
The results were compared with the exact solutions and with other published solutions.
The optimum designs obtained with ESO methods for plate structures and for most
frame structures yield higher, if not equal, buckling loads than corresponding previously

reported results.
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The change in critical buckling load factor due to structural modifications was derived
from the discrete form of eigenvalue problem ([K] + MK {u;; = 0. Sensitivity
numbers for element resizing were obtained by ignoring the change in stress stiffness
matrix due to element cross-sectional modifications. Since the change in stress matrix
due to element removal cannot be ignored because of the significant changes in the
membrane or axial stress resultants in its surrounding elements, buckling optimisation in
this study has been restricted only to sizing optimisation. For repeated eigenvalue
problems or multimodal structures, the effect of modal interaction associated with
repeated eigenvalues was taken into account in a simple but very effective way by taking

the average values of the individual sensitivity numbers of all participating buckling

modes.

The resizing procedure used in the proposed method is much simpler than other resizing
algorithms or the recurrence relations commonly used in optimality criteria methods.
This resizing procedure does not require any arbitrary constants to control the
convergence of the optimisation process as in other optimality criteria methods.
Furthermore, in ESO method the elements are resized gradually by a small cross-
sectional modification at each iteration. This gradual evolution treats the statically
indeterminate structures more effectively than other optimality criteria methods. In
addition, the sizing constraints can be easily included in the optimisation process and the
non-design domain can also be specified. The influence of ESO parameters, the resizing
ratio and the step size, was studied with several examples. In general the accuracy of the
solution improves with a smaller resizing ratio and a smaller step size but at the expense

of higher computational cost. These parameters need to be kept small for highly
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statically indeterminate structures, for structures with complex buckling modes and for

multimodal structures.

Initially the ESO method for buckling optimisation was formulated to maximise the
critical buckling load of the structure while keeping its weight constant. Later this
method was extended to the minimum weight design of frame structures with prescribed
buckling load constraints. This was achieved with the introduction of uniform scaling
which brings the critical buckling load factor equal to the factor of safety against
buckling of the structure after each iteration. An empirical rule was proposed for the
uniform scaling of nonlinear size-stiffness structures and space structures. This
empirical rule greatly reduces the number of iterations required for uniform scaling and

ensures convergence.

For multiple load case structures, element sensitivity numbers were calculated by
considering the influence of all the load cases. The uniform scaling factor of each load
case served as weighting parameter (which played a similar role as the Lagrangian
multipliers in optimality criteria methods) when defining the sensitivity numbers and it
was also used to identify the most critical load case. It was shown with the examples
that optimising a structure under a single loading condition would violate the buckling

constraints of the other load cases.

The ESO method for multiple constraints problem (including stress, stiffness and
displacement constraints in addition to the stability constraint) systematically reduces

the weight by uniform scaling and shifting the material from the strongest part to the
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weakest part through the use of sensitivity numbers. Here again the uniform scaling
factor of each constraint was used as weighting parameter when defining the element
sensitivity numbers. Furthermore, the most active constraint was determined from the
maximum of uniform scaling factors of all constraints and it was used to scale the
design uniformly after each iteration. It was also shown with the examples that

optimising a structure with a single constraint alone would significantly violate the other

constraints.

Plate buckling optimum designs were obtained for uniaxial-compression-loaded
rectangular plates with the use of 8-node isoparametric elements. The poor performance
of low order finite elements such as 4-node linear elements in the optimisation process
was clearly illustrated with examples. Since the computational time and the disk storage
requirements were drastically increased with the use of higher order elements, a simple
approach, element sensitivity number re-distribution method with 4-node elements was

proposed.

It was also shown with an example that a significant weight reduction could be achieved

by optimising the layout of the plate structure.

This section concludes emphasising the following positive points of ESO method for
buckling optimisation.
o The concept of this method is easy to understand by practising engineers and

scientists and it does not involve any complex mathematics.
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This method is suitable for designing practical structures with a large number of

design variables.

This method can be easily implemented with any of the commercially available

finite element analysis software.

e This method allows the designer to know every stage of the optimisation process and

lets him to consider intermediate designs as well.

10.2 Further Recommendations

In addition to the work carried out in this study, recommendations for further research

closely related to the buckling optimisation include the following:

1) Since a significant weight reduction can be achieved by optimising the layout of the
structure by removing the inefficient elements from the design domain, it is
important to find an efficient way to calculate the change in buckling load factor
when an element is removed. Substructuring or any other approximate methods need
to be investigated to obtain the approximate change in stress stiffness matrix due to

the element removal.

2) The use of higher order elements in plate buckling optimisation process is very
computationally expensive. Although the element sensitivity number re-distribution
method with 4-node elements works well for the problems with a small ratio of
maximum to minimum allowable thicknesses, it does not appear to work as well for
problems with high thickness ratios. Furthermore, the plate problems often exhibit

multimodal situations which require the solution of several buckling modes. For
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example, uniaxially loaded CCCC square plate exhibits bimodality and the first three
eigenvalues coincide for uniaxially loaded CCSS square plate and for biaxially
loaded SSSS square plate. In a buckling analysis, the computational time increases
exponentially with the number of eigenvalues requested. And also the buckling
solution of multimodal problems may require very high accuracy (the tolerance of the
eigenvlues need to be kept very small) in the calculation of eigenmodes to accurately
take account of the modal interaction. All these factors make the buckling
optimisation of plate structures very complicated. Therefore it is important to
investigate and formulate numerically stable and computationally efficient finite

element methods to be used in the plate buckling optimisation problems.

3) For plate structures, other constraints such as stress, stiffness and displacement

constraints also need to be included in the optimisation problems.

4) Material and geometric nonlinearity may also need to be studied in the optimisation
problems. The hypotheses behind the linearised buckling model limits it range of
applicability. However, in spite of its limitations it should be noted that the results
obtained with the linearised model give important information for optimisation
purposes as an upper bound of the load capacity of the structure. Also if the nonlinear
analysis model is solved iteratively by a set of linearised subproblems, the respective
nonlinear model can be based on the developments presented for linear model.
Optimisation with orthotropic and anisotropic material should also be investigated

especially with plate problems.
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