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Summary 

SUMMARY 

In the past most of the works on structural optimisation have been based on either 

mathematical programming or optimality criteria methods and have mainly 

concentrated on static responses of structures. These optimisation methods are 

mathematically complex and have limited applications. A novel approach to structural 

optimisation is being developed for practical applications based on the concept of 

slowly removing the inefficient material or gradually shifting the material from the 

strongest part of the structure to the weakest part until the structure evolves towards the 

desired optimum. From the results of finite element analysis, the contribution of each 

element to the required structural response may be assessed. Based on this assessment, 

material is gradually shifted or removed in the design domain. In doing so optimum 

designs can be easily achieved without resorting to any complex mathematics. This 

optimisation procedure is called Evolutionary Structural Optimisation (ESO). Compared 

to other methods for structural optimisation, ESO is overwhelmingly attractive due to its 

simplicity and effectiveness. ESO has been demonstrated to be capable of solving many 

problems of size, shape and topology optimisation. 

This project examines the suitability of the ESO for the design of structures with 

buckling constraints. In recent years, more attention has been focused on stability and 

dynamic responses of structures. With the use of high strength materials and robust 

design methods, many structural elements are becoming thinner and more slender which 

makes them more susceptible to buckling. Structural optimisation for problems with 

buckling constraints is complicated because the calculation of buckling loads requires 

the solution of the prebuckling stress distribution (static analysis) and then the 

eigenvalue solution (buckling analysis) at each optimisation step. 

In this thesis, the ESO method has been successfully applied to sizing optimisation of 

structures to enhance buckling resistance. This method has shown to be capable of 

solving multimodal structures, multiple load case structures and with multiconstraints 

including stress, displacement and stiffness. Some difficulties have been encountered in 

applying ESO method to the layout design of plate structures and these are also 

discussed in this thesis. 
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Principal Notations and Abbreviations 

PRINCIPAL NOTATIONS AND ABBREVIATIONS 

Principal Notations 

A - cross-sectional area 

a - length of a rectangular plate 

[5]/ - strain-displacement relation matrix 

h - breadth of a rectangular cross-section or width of a rectangular plate 

C - mean compliance 

Call - allowable limit for the mean compliance 

Cv - coefficient of variation 

d - depth of the rectangular cross-section 

dj -j d.o.f displacement component 

dj - allowable limit for dj 

{d} - nodal displacement vector 

[di] - f element displacement vector associated with {d} 

{dij} - i element displacement vector associated with {dj} 

{dj} - displacement vector due to the virtual unit load vector {Fj} 

E - Young's modulus 

[E]i - element material property matrix 

FS - factor of safety against buckling 

{Fj} - virtual unit load vector aty d.o.f 

/ - moment of inertia 

[i^l - global stiffness matrix 

[Kg] - global geometric stiffness matrix 

[ki\ -1^ element stiffness matrix 
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Principal Notations and .Abbreviations 

[AAT] - change in the global stiffness matrix 

[AA^g] - change in the global geometric stiffness matrix 

[AA:,] - change in the z* element stiffness matrix 

L - member length 

[M] - global mass matrix 

[mi] - i element mass matrix 

nl - number of load cases 

NSE - normalised specific strain energy 

A'v - thickness distribution parameter 

OF - optimum factor 

{P} - nodal force vector 

r - radius of a circular cross-section 

Sb - uniform scaling factor for buckling constraint 

Sc ~ uniform scaling factor for stiffness constraint 

Sd - uniform scaling factor for displacement constraint 

SE - strain energy 

Si - size of the /* element (surface area or member length) 

SPE - specific strain energy 

Ss - uniform scaling factor for stress constraint 

t - plate thickness 

tmax - allowable maximum plate thickness 

tmin - al lowable min imum plate thickness 

tu - uniform plate thickness 

{wy} -f^ eigenvector associated with the /' element 
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Principal Sotations and Abbreviations 

{Uj} -j eigenvector 

V - total volume of a structure 

w - lateral deflection of the rectangular plate 

a, _ f element sensitivity number for removal 

a, _ /' element sensitivity number for size increment 

a," _ f' element sensitivity number for size reduction 

a/6, Oiib' and aib - sensitivity number for buckling constraint; removal, size 

increment and size reduction, respectively 

a,c, a,c^ and a,c" - sensitivity number for stiffness constraint; removal, size 

increment and size reduction, respectively 

ot/rf, a , / and a,/ - sensitivity number for displacement constraint; removal, size 

increment and size reduction, respectively 

a,y, a,/" and af - sensitivity number for frequency constraint; removal, size 

increment and size reduction, respectively 

a,-5, ais^ and a,̂ " - sensitivity number for stress constraint; removal, size increment 

and size reduction, respectively 

ttM - nodal sensitivity number 

a, - re- distributed modified sensitivity number 

s - eigenvalue multiplicity parameter 

00/ - J natural frequency 

Gi"" - maximum von Mises stress in the /* element 

o- vm _ maximum von Mises stress in the whole structure 
max 

(Jail - allowable stress 
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{a}/ - element stress matrix 

P - dimensionless minimum cross-sectional area 

Xcr - critical buckling load factor 

A ;̂' - critical buckling load factor of the uniform design 

?ij' - critical buckling load factor of the optimum design 

ŷ - j eigenvalue 

p - density 

a - normal stress 

v -Poisson's ratio 

T - shear stress 

Abbreviations 

ER - Evolutionary Rate 

ESO - Evolutionary Structural Optimisation 

FEA - Finite Element Analysis 

FSD - Fully Stressed Design 

MP - Mathematical Programming 

OC - Optimality Criteria 
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Chapter 1 - Introduction 

CHAPTER 1 - INTRODUCTION 

1.1 General 

The notion of an optimum solution of an engineering problem is intriguing and has been 

investigated for a long time. Earlier, engineering design was conceived as a kind of art 

that demanded great ingenuity and experience of the designer, and the development of 

the field was characterised by gradual evolution in terms of continual improvement of 

existing types of engineering designs. The design process generally was a sequential 

trial-and-error process where the designer's skills and experience were most important 

prerequisites for successful decisions for the trial phase. However, nowadays strong 

technological competition which requires reduction of design time and costs of products 

with high quality and functionality, and current emphasis on saving of energy, saving of 

material resources, consideration of environmental problems, etc., often involves 

creation of new products for which prior engineering experience is totally lacking. 

Development of such products must naturally resort to application of scientific methods. 

Hence, during recent decades, engineering design has changed from art and evolution to 

scientifically based methods of rational design and optimisation. 

Structural optimisation deals with the optimal design of structural elements and systems 

employed in several engineering fields. Much research has been carried out on 

structural optimisation methods during the past three decades. Structural optimisation 

combines mathematics and mechanics with engineering and has now become a multi-

disciplinary subject with applications in many fields. It was first applied in the aerospace 

industry, where reducing the structural weight is of utmost importance. Nowadays, use 
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Chapter I - Introduction 

of Structural optimisation is rapidly growing in automotive, aeronautical, mechanical, 

civil, nuclear, naval and off-shore engineering. As the result of the growing pace of 

applications, research into structural optimisation methods is increasingly driven by 

real-life problems. This significant development has been strongly boosted by the advent 

of reliable and efficient general structural analysis methods such as the finite element 

method, design sensitivity analysis and rapid improvements in optimisation methods, 

along with the exponentially increasing speed and capacity of digital computers at low 

cost. The high performance of digital computers makes large scale structural 

optimisation possible and profitable in a large number of applications where thousands 

of design variables and constraints may need to be handled. 

With the introduction of high speed computers, finite element analysis has become a 

very powerful tool in solving various complex structural engineering problems. After 

being able to determine the structural behaviour by means of finite element analysis, an 

important goal for engineers to achieve is to improve and optimise structural designs. In 

the past, the modification of a structure and the subsequent evaluation of the modified 

structure have been manually carried out. However, it is now possible to control 

repetitive modifications, re-analyses and re-evaluations automatically. Thus, a 

systematic improvement of structural systems may be achieved through computer 

simulation. In this context, structural optimisation based upon finite element method is 

becoming an advanced Computer Aided Design (CAD) tool. 

Although there has been considerable work done on structural optimisation, the 

application of optimisation into practice is comparatively modest and limited to special 
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Chapter I - Introduction 

problems solved by optimisation experts. There is an obvious gap between the progress 

of the optimisation theory and its application to practical design problems. The vast 

majority of published work deals with the mathematical aspects of structural 

optimisation. It has been suggested that one major reason for the gap between the theory 

and practice of structural optimisation is the excessive emphasis on mathematical 

aspects rather than structural aspects of optimisation. Often the latter are confined to 

rather trivial examples, intended only to illustrate the successful application of a 

particular structural optimisation method. 

Currently the research activity is directed towards making structural optimisation 

methods available to practising engineers and scientists in an easy, reliable, inexpensive 

and mathematically less complex form so that the optimisation techniques can be 

promoted as a viable tool in the design office. It is important to understand the basic 

concepts behind the structural optimisation methods for proper application of these 

methods to practical problems. The complex interactions of interdisciplinary constraints 

and the large number of design variables of the finite element models can severely test 

the limits of existing methods in this context. 

1.2 Structural Optimisation 

The general aim of structural optimisation is to find a better design with minimum cost 

or weight while satisfying the safety and performance requirement(s) of the structure. 

The scope for structural optimisation is very wide and a particular structural 

optimisation problem is formulated depending on the objectives of the problem, the 
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Chapter 1 - Introduction 

constraints involved and the nature of the design variables. In general, the aim of a 

structural optimisation problem is formally given as: 

• minimise (or maximise) objective functions subject to behavioural and geometrical 

constraints. 

The following criteria can be used either as the objective function or as the behavioural 

constraint. 

• Structural weight (volume), storage capacity 

• Cost (material, manufacturing, life cycle etc.) 

• Global measure of the structural performance such as stiffness, buckling load, 

plastic collapse load, natural vibration frequency, dynamic response etc. 

• Local structural responses such as stress, strain or displacement at prescribed points; 

maximum stress, strain or displacement in the whole structure; stress intensity factor 

etc. 

Single criterion optimisation is associated with only one objective function whilst multi-

criterion optimisation involves several objectives. The constraints may be given in the 

form of equality or inequality conditions. Since these objective functions and constraints 

are implicit functions of design variables, most structural optimisation problems are 

highly non-linear. 

There is another kind of constraints involved in structural optimisation called 

geometrical constraints or side constraints. These are restrictions imposed explicitly on 

the design variables due to design considerations such as manufacturing limitations. 
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Chapter 1 - Introduction 

availability of member sizes, fabrication, physical practicability, aesthetics etc. 

Constraints of this kind are typically inequality constraints that specify lower and/or 

upper bounds on the design variables. Geometrical constraints may prescribe the limit 

on cross-sectional dimensions, restriction on height or span of the structure etc. 

The design variables, i.e. the structural parameters which are at the choice of the 

designer, and are required to be determined during the solution process, may be cross-

sectional dimensions or member sizes, parameters controlling the geometry and layout 

of the structure, its material properties etc. Design variables may be continuous or 

discrete. 

Regardless of the optimisation method used, the structural optimisation task can be 

mathematically stated as follows: 

Find the set of design variables Jf= {x\,X2, ,Xn}, that will 

Optimise Wk{X) {k=\,l) 

Subject to gj{X) < 0 (;• = 1 ,w) 

x, < Xi < Xi {i = 1 ,n) 

where m(X) Objective functions 

gjW Constraint functions 

Xi^ and Xi^ - lower and upper limits for x/. 
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Chapter I - Introduction 

1.2.1 Classifications 

Depending on the design variables to be optimised, the structural optimisation 

encountered commonly in engineering practice can be classified into the following three 

broad categories: 

Cross-sectional or sizing optimisation - This is a significant class of structural 

optimisation in which the layout of the structure is fixed. Such problems involve one- or 

two- dimensional systems where the centroidal axis (or middle surface) of all members 

is prescribed and only element stiffness properties such as cross-sectional areas or 

moments of inertia of bars, beams, columns and arches or thickness of membranes, 

plates or shells are the design variables for optimisation. Design variables for sizing may 

be discrete or continuous. 

Shape optimisation - The term shape optimisation is often used in a narrow sense 

referring only to the optimum design of the shape of the boundary of two- and three-

dimensional structural components. Shape optimisation aims at the selection of the 

optimum shape of external boundaries and surfaces, interior interfaces of a structure, 

interface between different materials and middle surfaces. 

Layout optimisation - It aims at optimising topological design variables (such as 

spatial sequence, number and cormectivity of members and joints of skeletal structures, 

location and number of holes in continuous structures) and geometrical design variables 

(such as the co-ordinates of the joints of skeletal structures or the centre-line or mid-
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Chapter 1 - Introduction 

surface of continuous structures like curved beams, arches and shells) in addition to the 

above described shape and sizing design variables. 

Both the topological and the geometrical variables define the layout of the structure. 

While sizing variables may be optimised under either fixed or variable layout, the layout 

optimisation is usually accompanied or followed by sizing optimisation. Shape and 

layout optimisations are typically more difficult to tackle than sizing optimisation. Even 

for a simple two or three member skeletal structure, simultaneous optimisations of cross 

sectional dimensions, nodal locations and connectivity of members are very involved. 

Apart from these three broad classifications, support and loading design variables such 

as the number, position and types of supports and external load distribution and 

positions and material design variables may also be changed during the optimisation 

process. These design variables will make the optimisation problem more complicated. 

1.2.2 Major approaches 

Optimisation problems are highly non-linear in general. It is therefore necessary to 

employ iterative numerical solution schemes and determine the optimum design through 

a sequence of reanalyses and redesigns. The optimisation procedure generally consists 

of two major steps in each cycle of iteration. These are the analysis of the structure and 

the modification of design variables. In the past, most of the optimisation methods were 

based on either mathematical programming (MP) methods or optimality criteria (OC) 

methods. The basic concepts of MP and OC methods can be found in Morris (1982), 

Hafta et al.{1992) and Kamat (1993). 
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Many practical problem are so complex that their solutions caimot be found by closed 

form of mathematical methods, and systematic search techniques have been developed 

since 1960s for use in such cases. The study of these mathematical methods and search 

techniques is the concern of a branch of numerical analysis known as mathematical 

programming. The MP methods are also referred as direct optimisation methods. These 

methods require derivatives of objective functions and constraints with respect to all the 

design variables. At present, a number of MP methods compete with each other for 

finding the nearest local optimum in the least number of steps or in making the 

intervening calculations simpler by using suitable approximations. Such MP methods 

include feasible direction method, penalty function method, sequential linear 

programming, sequential convex programming, sequential quadratic programming, 

augmented Lagrangian multiplier method etc. (Vanderplaats 1993). 

The MP methods have been applied not only to structural optimisation problems but 

also to several other fields of engineering, management and science etc. However, all 

MP methods require derivatives, whose efficient calculation can be highly problem 

dependent. The main disadvantage of MP methods is their limited capability in terms of 

the number of design variables. Although MP methods are mathematically elegant, as 

the number of design variables and constraints increases, the cost of computing 

derivatives becomes expensive and convergence to the optimum solution become erratic 

and unreliable. These limitations have caused serious impediments to practical 

applications to large scale problems. To overcome some of these difficulties, optimality 

criteria methods emerged during the 1960s and 1970s. 
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Chapter I - Introduction 

Optimality criteria are necessary and sometimes sufficient conditions for minimising the 

objective function and these can be derived by using either variational methods or 

extremum principles of mechanics. Initial applications were based on the intuitive 

criteria such as fully stressed design and uniform strain energy density methods. OC 

methods consist of two complementary ingredients. The first is the stipulation of the 

optimality criteria, which can be rigorous mathematical statements such as the Kuhn-

Tucker conditions, or an intuitive one. The second ingredient is the algorithm used to re

size the structure for the purpose of satisfying the optimality criterion. Again, a rigorous 

mathematical method may be used or one may devise an ad hoc method which 

sometimes works and sometimes not. Different forms of the optimality criterion are 

required for different optimisation problems. A direct derivation of all potentially 

optimal solutions can be difficult if the number of optimality criteria is large and if they 

are highly non-linear. For most cases, the general optimality criteria are either not 

available or not tractable numerically. 

In recent years these two approaches have begun to converge. The efficiency of the 

mathematical programming methods are improved by employing constraint 

approximations and faster algorithms for sensitivity calculations. Optimality criteria 

methods have moved from partially intuitive and ad hoc algorithms to more formal 

methodology. The dual methods of mathematical programming were shown to yield 

some of the popular optimality criteria methods. 

During the last decade, stochastic search methods are also emerging as viable tool for 

structural optimisation. Genetic algorithms and simulated annealing are such methods 
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Chapter 1 - Introduction 

proposed in recent years (Jenkins 1991). These methods have their philosophical basis 

in processes found in nature, namely natural evolution. More recently the 

Homogenisation method (Bensoe and Kikuchi 1988) has proven to be successful in 

generating optimum topologies for continuum structures. In this method a material with 

microscale voids is introduced and the optimisation problem is defined by seeking the 

optimal porosity for the porous medium using one of the optimality criteria (Bendsoe 

1995). Many interesting results have been produced using this method, although the 

model of the homogenisation method is complicated. 

Realising the fact that alrnost all the existing structural optimisation methods usually 

involve complicated mathematical operations, Xie and Steven (1997) have recently 

presented an Evolutionary Structural Optimisation (ESO) method to avoid the use of 

any complicated mathematical operations. This novel approach to structural 

optimisation has been developed on the concept of slowly removing the unwanted 

material or gradually shifting the material from the strongest part of the structure to the 

weakest part until the structure evolves towards the desired optimum. In doing so 

optimum designs can be easily achieved without resorting to any complex mathematics. 

In the past four years the ESO methods have been demonstrated to be capable of solving 

the whole range of static and dynamic structural optimisation problems. The basic 

features of the ESO method will be described in Chapter 3. The rest of the thesis will 

explore the suitability of the ESO method and its application to the optimum design of 

structures with stability constraints. 
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Chapter 1 - Introduction 

1.3 Aims of the Project 

This project aims at investigating some simple, more general, computationally efficient 

approaches based on ESO method for the design of structures with stability constraints. 

Specific aims of this project are as follows: 

• To derive an efficient algorithm to determine the change in buckling eigenvalue 

when locally modifying an element in the finite element model of a structure under 

specified loading conditions. 

• To develop optimisation procedures based on the concept of systematically re-sizing 

the elements to increase the critical buckling load factor of a structure while keeping 

the structural weight constant. 

• To develop optimisation procedures for the minimum weight design of structures for 

prescribed values of buckling loads by systematic re-sizing and re-scaling of 

elements. 

• To develop optimisation procedures for the optimum design of frame structures to 

resist buckling under multiple load cases. 

• To develop optimisation procedures for the optimum design of frame structures 

subject to multiple constraints such as stress, displacement and stiffness along with 

stability constraints. 

• To investigate the influence of the parameters pertaining to the optimisation 

procedures. 

• And finally to develop sophisticated computer programs for the successfiil 

optimisation routines and to link these programs with the finite element analysis 

software STRAND6, developed by G+D Computing Pty Ltd, Australia and create 
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Chapter I - Introduction 

computer software which will carry out structural optimisation automatically so that 

it can be used as a design tool. 

1.4 Significance of the Project 

Since the 1960s considerable research has been carried out on structural optimisation. In 

the past, substantial efforts have been devoted to the associated mathematical and 

computational backgrounds, and the methods explored have been wide ranging and 

often mathematically complex. The development of commercial software for practical 

structural optimisation is held back by the lack of a really robust and efficient 

optimisation methods suitable for solving general engineering design problems. It is 

therefore important that simpler and computationally more efficient methods for 

structural optimisation should be developed. 

Two major difficulties are associated with the process of interfacing a structural analysis 

package with an optimisation program. The first is a programming difficulty. Stand

alone optimisation packages typically expect subroutines that evaluate the values and 

derivatives of the objective functions and constraints. When the structural analysis 

program is large, or if the analyst does not have access to the source of the program, it is 

difficult to transform the analysis package into a subroutine called by the optimisation 

program. The second serious problem is the high computational cost required for many 

applications. For many structural optimisation problems the evaluation of derivatives of 

objective functions and constraints with respect to all design variables requires the 

execution of costly finite element analyses several hundred times. These difficulties 

have been avoided by the proposed ESO method. Furthermore, ESO procedures can be 
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Chapter 1 - Introduction 

easily implemented with any of the commercially available finite element analysis 

software packages. Even without the access to the source codes of FEA software, ESO 

can be carried out in batch files running FEA software and the structural modifications 

subroutine repeatedly. 

In spite of extensive research in structural optimisation, only a small number of works 

have dealt with buckling optimisation. The majority of works on structural optimisation 

so far have concentrated on stress and displacement responses of structures. The 

stimulus for this project is that in recent years, more attention has been focused on 

stability and frequency responses of structures. With the use of high strength materials 

and robust design methods, many structural elements are becoming thinner and more 

slender which makes them more susceptible to buckling. Among a great deal of optimal 

structural design problems the stability factor has become one of the most important as a 

result of the very fast expansion of aerospace research, ship building, high-rise buildings 

etc. 

Historically, the earliest efforts in formal structural optimisation were made by Lagrange 

in 1770 and later by Clausen in 1849. Coincidentally, they concerned with the stability 

of an elastic column. Over two centuries later, the purview of structural optimisation has 

widened considerably, but optimisation to enhance elastic structural stability continues 

to be an active area of research. Optimum structural design with stability constraints is 

complicated because the solution of buckling load depends on the membrane forces 

arising from the applied loads. Difficulties have been encountered in applying buckling 

optimisation methods to statically indeterminate structures including plate, shell and 
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solid Structures. There has been some fruitful research carried out on frame structures, 

but the research on plate structures is very scarce. This project is expected to make a 

significant contribution to the optimum design of plate structures with stability 

constraints. 

1.5 Layout of the Thesis 

The following is a brief outline of the material presented in this thesis. Chapter 2 

presents a comprehensive review of previous research carried out on the optimum 

design of structures with stability constraints. In Chapter 3, basic concepts of ESO 

methods for problems with stress, displacement and frequency constraints are described. 

Chapter 4 presents the theoretical basis of the ESO method for structures with stability 

constraints. Sensitivity number for the buckling load with a single eigenvalue is derived 

and the optimisation procedure for maximising the critical buckling load for structures 

of specified weight is presented. The influence of various parameters pertaining to the 

optimisation procedure is also investigated. Chapter 5 is devoted to the application of 

the proposed method to structures with repeated eigenvalues. 

Chapter 6 describes the application of ESO method to the minimum weight design of 

frame structures for a prescribed value of buckling load. Chapter 7 outlines the ESO 

method for structures with multiple load cases. In Chapter 8, ESO method is extended to 

the optimum design of frame structures with stress, displacement and stiffness 

constraints in addition to the stability constraints. 
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As it was mentioned earlier, optimum design of plate structures with stability constraints 

is much more complicated than frame structures and very little research has been 

conducted with plate structures so far. In Chapter 9 optimum thickness distribution of 

plate structures with various support and loading conditions are obtained and the results 

are compared with previously reported designs. The validity of the uniform strain energy 

density optimality criteria and the buckling analysis of variable thickness plates using 

different approaches are discussed in detail. This chapter also investigates the problem 

of checkerboard patterns that is often encountered in finite element solution of 

distributed parameter optimisation problems, and a simple technique to effectively 

remove the checkerboard patterns is presented. 

Chapter 10 summarises the conclusions and gives suggesfions for further investigations. 

A list of references is given in alphabetical order of first authors. 
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CHAPTER 2 - LITERATURE REVIEW 

2.1 Introduction 

The literature on structural optimisation is vast and this review is therefore focused on 

the works on structural optimisation with stability constraints. Most of the literature on 

structural optimisation with stability constraints is concemed with sizing optimisation 

with fixed layout. This literature review is brief, however some recent useful 

developments will be discussed in detail then and there in the forthcoming chapters and 

will be compared with the proposed method. In the following sections, the literature 

review is organised according to the types of structures, i.e. columns, frames/trusses 

(skeletal structures) and plates. This classification is not unique, however it gives an 

outline in chronological order of how the optimisation methods for structures with 

stability constraints have been developed over the years. 

2.2 Optimum Design of Columns 

The simplest stability problem is the optimisation of Euler-buckling columns. Most of 

the early research was concemed with the development of optimum design of these 

columns with different loading and boundary conditions. Historically, one of the first 

optimal structural design problems addressed was treated by Lagrange in 1770 and later 

by Clausen in 1849. The first modem treatment of this problem, which sparked 

substantial interest in optimisation by the mechanics community, was presented in a 

paper by Keller (1960). Keller treated the problem of maximising the fiindamental 

buckling load for a pinned-pinned column of constant volume. Keller addressed both the 

question of optimum tapering of the column and selection of the optimum cross-
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sectional geometry. He employed a directional derivative approach to obtain necessary 

conditions of optimality and obtained closed form solutions. 

In a subsequent paper, Tadjbakhsh and Keller (1962) dealt with a variety of boundary 

conditions for column opdmisation, using the analytical method Keller had earlier 

presented. It is interesting to note that since no lower bound on cross-sectional area or 

upper bound on stress was specified, zero cross-sections (singularities) occurred in the 

designs obtained. Trahair and Booker (1970) later extended these analytical solufions 

with the introduction of minimum size constraints. 

More general findings, based on energy considerations, were reported in a sequence of 

papers by Taylor (1967) and Taylor and Prager (1968), who proposed originally that an 

optimum structure with respect to buckling should have the configuration for which the 

specific strain energy of the buckling mode is uniform. Taylor and Prager developed a 

variational formulation of the problem of column optimisation, employing stationary of 

the Rayleigh quotient to obtain optimality criteria for fixed volume and maximum 

buckUng loads, including lower bounds on cross-sectional areas. There was a subtle 

difference in the technical approach to developing necessary conditions of optimality by 

Keller and Tadjbakhsh, where a directional derivative of the buckling eigenvalue with 

respect to design variables was calculated, and by Taylor and Prager, where a first 

variation of the Rayleigh quotient was employed to calculate the derivative of the 

eigenvalue, which was then used with a Lagrange multiplier method to obtain necessary 

conditions of optimality. 
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The Study of Olhoff and Rasmussen (1977) on clamped columns was the earliest work 

on bimodal buckling optimisation. In studying the optimum design of clamped column 

under axial load for maximum fundamental buckling load, they discovered that there 

was a threshold value of minimum area constraint which separated the single and 

bimodal buckling modes and proved that the design obtained earlier by Tadjbakhsh and 

Keller (1962) using single mode formulation was not optimum. Olhoff and Rasmussen 

(1977) established the differential equafions for opfimisafion under the double 

eigenvalue formulation by using variational calculus and solved these equations by 

means of a numerical method. This landmark study was particularly important since it 

required a change in the previous mathematical formulations in order to take into 

account the possibility that the optimum fundamental buckling load corresponding to 

multiple buckling modes. This discovery led to many later publications on multiple 

eigenvalue buckling problems. 

Simitses et al. (1973) appear to be the first to report the use of finite element analysis 

and iterative procedure to optimise the shape of columns. They used the uniform strain 

energy density optimality criteria as the basis for their analysis. This was a major 

breakthrough in stability optimisation because previous methods were based on 

continuum theory whereas this method could be applicable to built-up structures such as 

frames and trusses. So far the optimum designs of columns were concemed with 

maximising the fundamental buckling load for columns with a specified volume. 

Murthy and Christiano (1973) appear to be the first to report on the minimum weight 

design of columns for a prescribed buckling load. They considered both linear and 
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quadratic size-stiffness relationships and used some iterative procedures to re-scale the 

optimum design to meet the specified buckling load. 

2.3 Optimum Design of Frames 

The first systematic approach to the derivation of optimality criteria for a variety of 

design conditions to minimise the weight of large structural systems using finite element 

method and numerical iterafive procedures was presented by Venkayya et al. (1973). 

However the assumption of linear size-stiffness relations in their method was a major 

restriction. Khot et al. (1976) extended this method to frame structures with stability 

constraints. Optimality criteria were derived using Lagrangian multiplier method and it 

was stated that for single load case structures, the structure would be optimum when the 

ratio of the strain energy density to the mass density, associated with the buckling mode 

was the same for all the elements. They derived the recurrence relations and scaling 

procedures for linear size-stiffness structures and applied to other structures with some 

additional modifications. However the theory proposed by Khot et al. (1976) is valid 

only for statically determinate single mode structures and under the assumption of the 

linear size-stiffness relationship. The recursion relation and scaling algorithm used in 

their paper will be discussed in detail in Chapters 4 and 6. 

Later, in a sequence of papers, Szyszkowski and co-workers developed a more general 

method based on finite element method for the optimisation of the buckling load of 

columns and frames. Unlike the previously discussed method, in this method the critical 

buckling load was maximised for a specified weight of structure. At first Szyszkowski 

and Watson (1988) developed the optimisation method for single modal structures. 
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Using the variational approach and Lagrangian multipliers, they proposed that the 

optimum shape of the structure with respect to buckling should have the configuration 

for which the specific bending energy due to the fundamental buckling mode was 

uniform. A structure was divided into a number of elements and the specific bending 

energy of each element due to the first buckling mode was calculated. An re-sizing 

algorithm was formulated using the specific energy of elements based on the constant 

weight condition and the rule of uniform specific energy. They also pointed out that the 

rule of uniform specific bending energy due to the fundamental buckling load was not 

applicable for multimodal problems. This method is more general than the previously 

discussed method because the former method was more suitable for structures with 

linear size-stiffness relationship. 

Szyszkowski et al. (1989) extended their method to bimodal structures. The iterative 

method presented here treated any frame structures from the bimodal optimisation 

viewpoint. The real number of modes participating in the final optimal design was 

determined by the numerical procedure. For a single mode optimal design the influence 

of the second mode was automatically eliminated by the iterative procedure. This 

generality was made possible because the method does not directly use the buckling 

load or the minimum weight of the structure as the objective function. Instead the 

bimodal optimality condition was used for this purpose. Szyszkowski (1992) later 

extended this method to general multimodal problems. Using variational calculus and 

Lagrangian multipliers the multimodal optimality condition was derived. The optimality 

condition for multimodal structures stated that a linear combination of the normalised 

specific energies due to the participating buckling modes must sum to unity at every 
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point of the structure. The whole approach was concemed only with a single load case. 

Resizing algorithms which use the specific energy of elements, require some arbitrary 

constants. The choice of these arbitrary constants sometimes hampers the convergence 

of optimum designs. The theory behind these methods will be discussed in detail in 

Chapters 4 and 5. 

Canfield (1993) obtained optimum designs of frames using non-linear mathematical 

programming method and Rayleigh quotient approximation (RQA). RQA approximates 

buckling eigenvalues by separately estimating the modal strain energy due to the linear 

and geometric stiffness of the structure. The derivation of geometric stiffness matrix 

was estimated using only a first-order approximation of the intemal forces. This method 

is suitable for small scale structures and the convergence of the optimum design is 

sensitive to move limits used in the process. 

Lin and Liu (1989) presented a multiple criteria optimisation method for the minimum 

weight design for truss and frame structures with size, stress, displacement and buckling 

constraints. Only the first buckling mode was considered with an assumption that the 

intemal forces acting in the structure prior to buckling are taken to be statically 

determinate. The optimality criterion derived for all the constraints imposed on the 

structure was equivalent to the Kuhn-Tucker conditions of non linear mathematical 

programming for a local optimum design. A general redesign equation was derived 

from the optimality criteria and combined with fully stressed design (FSD) formula to 

reduce the number of redesign iterations. They suggested that when the initial design 

was far away from the optimum design, the use of FSD could make the design variables 
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approach to the vicinity of optimum design rapidly and then applying the optimality 

criterion to optimise the design variables would give an economical approach. They 

adopted the uniform scaling of all the design variables after each iteration considering 

linear size-stiffness relationship. The scaling factor was obtained from the maximum of 

stress ratio, displacement ratio, size ratio and buckling load ratio. 

Liu and Lin (1992) later proposed a method to overcome the preclusive assumption of 

statical indeterminancy. The optimisation method was based on the advanced primal-

dual algorithm, the augmented Lagrange multipliers method (ALM). Statical 

indeterminacy of the structure was incorporated via an efficient gradient calculation of 

intemal forces as obtained from the derivatives of stresses. It was shown that the 

statically indeterminate approach resulted in a higher computer cost per iteration than 

the usual statically determinate approach, but with less number of iterations. However, 

the indeterminate approach converged to designs no better than the determinate 

approach. 

Barson (1994) presented another method for the optimisation of planer frames based 

mainly on the structural stability and dynamic behaviour of the structure. Iterative 

optimality criteria method was used and the strategy adopted here for searching the 

optimal solution had two stages. In first stage, the buckling load of the structure was 

taken as the objective function and the prescribed values of the fundamental frequency 

or the period of vibration was the only constraint, whereas in the second stage the stress, 

displacement and stability constraints were taken into account to verify the sizes of the 

cross-sections of the structural members from the first stage of analysis. If the 
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constraints were violated, uniform scaling procedure was applied to place the violated 

constraints inside the permissible domain. Barson indicated that by improving the 

overall elastic stability characteristics of the structure, the static, dynamic and post-

elastic performances of the structure were often improved. However, in general this 

assertion is found to be incorrect and it will be discussed in detail in Chapter 8. 

Karihaloo and Kanagasundaram published a series of papers on the minimum weight 

design of planar frames under multiple load systems with constraints on stress, stiffness, 

stability and geometry using various non-linear mathematical programming methods. 

The summary of all these approaches were given in Karihaloo and Kanagasundaram 

(1993). The solution of non-linear programming was attempted by several methods, 

namely Augmented Lagrangian Multiplier method (ALM), Sequential Convex 

Programming (SCP), Sequential Linear Programming (SLP), Sequential Quadratic 

Programming (SQP) and Sequential Unconstrained Minimisation Technique (SUMT) 

and it was concluded that both SCP and SLP were relatively more efficient methods for 

optimisation. 

Multilevel optimisation of frames with bucking constraints as well as stress, 

displacement and size constraints was studied by Ding (1989). The weight of the 

structure, the areas of cross-sections for the independent elements and overall 

displacement and overall buckling were taken at the system level as objective function, 

design variables and constraints respectively. At the component level, the objective was 

to minimise the weight of each independent element subject to local stress and local 

buckling constraints. The hybrid approximation technique in combination with the dual 
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solution from mathematical programming was simultaneously used in the so-called two 

level optimisation processes. 

Turner and Plant (1981) discussed the optimal design of elastic structures under 

multiple independent loads. The iterative optimisation procedure utilised the finite 

element and the optimality criterion. For a constant weight structure, the critical 

buckling load was maximised for a given ratio of loads. This procedure was applied to 

variety of load ratios, and the results were plotted in the loading space in terms of 

stability boundaries (interaction curves or surfaces) and a stability envelope. The 

objective was to enlarge the stability region as much as possible by an appropriate 

distribution of the material of the structure. However this method is cumbersome with 

regard to the solution for multiple load cases as it requires the optimum solution of 

structure with a variety of load ratios to obtain the stability boundary. 

Pezeshk and Hjelmstad (1991) suggested an optimisation based design methodology for 

improving the strength and stability of framed structures, the capacities of which were 

governed by inelastic limit-load behaviour. They also indicated that by improving the 

stability characteristics of the structure, the dynamic and static performance of the 

structure was often improved. In the companion paper by Hjelmstad and Pezeshk 

(1991), a novel approach to solving problems with multiple loading conditions was 

introduced where each eigenvalue in the objective was weighted in accordance with the 

degree of participation of the mode in the loading. 
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2.4 Optimum Design of Plate Structures 

Although there has been considerable amount of work carried out on optimisation of 

frame structiires, very few papers have appeared in the literature conceming the 

optimum design of plates against buckling. This is because, for frame structures, the 

axial stress resultant in the prebuckling state is not sensitive to changes in cross-

sectional areas along the length of the member. For statically determinate frame 

structures changes of cross-section do not have any effect on axial forces. However, this 

is not true for plates. The in-plane stress-resultants in the prebuckling state of plates are 

indeed functions of the thickness distribution. The problem of optimising plates for 

stability is, therefore, significantly more complicated than that for frame structures. 

Under the assumption of in-extensional pre-buckling deformations, which leads to 

thickness-independent in-plane stress-resultants in the pre-buckling state, a condition of 

uniform strain energy density has been established in the past as the optimality condition 

for plates by several researchers. However, optimisation of plates on the basis of such 

assumptions has led to unsatisfactory solutions. More discussion on this point will be 

presented in Chapter 9. 

Pandey and Sherboume (1992) carried out an extensive study on finding the optimum 

thickness distribution for a rectangular, isotropic plate of given volume that would 

maximise its uniaxial buckling load. Determination of optimum thickness distribution of 

uniaxially loaded rectangular plates has been an interesting and long-standing problem 

discussed widely in the literature. This is because the goveming non-linear fourth order 

partial differential equations used for the solution of buckling load for rectangular plates 

are widely known to the mechanics community. 
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Pandey and Sherboume (1992) pointed out the differences between the optimal profiles 

of rectangular plates previously reported. Early studies by Parsons (1955) and Mansfield 

(1973) reported that higher thickness near the edges than at the centre (concave profile) 

increased the buckling load whereas Spillers and Levy (1990) obtained convex profile 

for the optimum design. Pandey and Sherboume (1992) also reported that the optimal 

shapes discussed in the above literature were characterised by a severely 

disproportionate thickness distribution resulting in very thin sections in certain regions, 

which indicates the possibility of local buckling at a load far lower than that predicted 

by the analytical methods using a limited terms of displacement function. 

Pandey and Sherboume investigated most of the previously reported optimum shapes 

and intuitively proposed a thickness distribution for uniaxially loaded rectangular plates 

based on Parsons (1955). Optimum shapes were obtained for a square plate with three 

boundary conditions: all edges simply supported, all edges clamped, and loaded edges 

simply supported and unloaded edges clamped. Rayleigh-Ritz method was used for 

buckling analysis. Simply supported plates were analysed with Fourier sine series 

whereas Gram-Schmidt orthogonal polynomials were used for plates containing 

clamped edges. Two prebuckling stages characterised by constant stress and constant 

force were considered in the analysis. Details of this analysis will be discussed in 

Chapter 9. Pandey and Sherboume also highlighted that the selection of suitable 

displacement function, possibly with high number of terms, was cmcial in the use of 

series solution to accurately identify the critical modes and localised effects. 
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Spillers and Levy (1990), Levy and Ganz (1991), Levy and Sokolinsky (1995) and Levy 

(1996) have carried out a series of studies to find the optimum shape of simply 

supported rectangular plate that would maximise its uniaxial buckling load. Originally 

Spillers and Levy (1990) extended the Keller's (I960) classic solution for the optimal 

design of columns to the case of plates. They derived an optimality condition via 

variational calculus which states that the plate thickness should be proportional to the 

strain-energy density in an optimal design. Buckling solution was obtained using 

Rayleigh-Ritz method and a double sine Fourier series was used to represent the lateral 

plate displacement. 

Optimum profile for a square plate was initially obtained by Spillers and Levy (1990) 

with one term symmetric double sine displacement function. The buckling load of such 

plate was calculated to be 2.12 times that of an equivalent uniform plate. Levy and Ganz 

(1991) later re-analysed the above plate using a six term displacement function with a 

multiple of half sine waves in the direction of loading and only one half sine wave in the 

other direction and predicted a 44% increase in the buckling load. However, all these 

results were later invalidated by Pandey and Sherboume (1992) considering the 

localised buckling which Spillers and Levy (1990) and Levy and Ganz (1991) failed to 

capture by either one term or six term displacement functions. Pandey and Sherboume 

(1992) re-analysed this plate with a displacement function of half sine waves in both 

plate directions of total 289 terms and found a locally buckled mode. Recently Levy and 

Sokohnsky (1995) and Levy (1996) re-analysed the whole problem and proposed a new 

optimum shape which yields 32% increase in the buckling load. All these controversial 

optimum designs and their buckling solutions will be discussed in detail in Chapter 9. 
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An optimisation method for plate buckling using finite element method was recently 

proposed by Folgado et al. (1995). They extended the homogenisation method, a 

material based model for the layout design of plate reinforcement with a buckling load 

criterion. The model used a laminate theory and the optimum designs were obtained 

using a mathematical programming method. This method took account of repeated 

eigenvalues while the previously discussed techniques were solely based on the 

traditional energy methods and were unable to handle the multimodal behaviour. Detail 

analysis of optimum designs obtained by Folgado et al. (1995) will be discussed in 

Chapter 9 along with the solutions of the proposed method. 

2.5 Summary 

Most of the early works on buckling optimisation were concemed with columns and 

were based on the directional derivative approach. Later more general methods based on 

optimality criteria were established. For single modal stmctures the optimality criterion 

stated that the optimum shape of the stmcture should have the configuration for which 

the specific bending energy due to the fundamental buckling mode is uniform. With this 

uniform specific energy optimality criterion and the use of finite element method, 

iterative procedures were set-up for the design of built-up stmctures such as frames and 

tmsses. Later, multimodal optimisation methods were also established and applied to 

frame stmctures. Optimisation of frame stmctures with multiple constraints such as size, 

stress, displacement and buckling were analysed by various people using either 

optimality criteria methods or mathematical programming methods. 
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Extensive search by the candidate reveals that the literature on the optimum designs of 

plate buckling is very little and the available designs are mainly concemed with a 

particular class of problem: uniaxially loaded rectangular plates. Different controversial 

optimum profiles were reported for such plates by various researchers using distributed 

parameter optimisation methods. Buckling solutions of these plates were obtained using 

Rayleigh-Ritz method and assumed displacement functions. Few papers, e.g. Folgado et 

al. (1995) used the finite element method for optimisation of plate buckling. 
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CHAPTER 3 - EVOLUTIONARY STRUCTURAL OPTIMISATION (ESO) 

3.1 Introduction 

Recently a simple new approach to stmctural optimisation has been proposed by Xie 

and Steven (1993, 1994a) based on the concept of slowly removing the inefficient 

material from the stmcture and/or gradually shifting the material from the strongest part 

of the stmcture to the weakest part until the stmcture evolves to the desired optimum. 

This optimisation procedure is named as Evolutionary Stmctural Optimisation (ESO). 

The ESO method offers a simple way to obtain optimum designs using any of the 

standard finite element analysis codes. Compared to other stmctural optimisation 

methods, the ESO method is overwhelmingly attractive due to its simplicity and 

effectiveness. The original work on ESO involves obtaining optimum shapes and 

layouts of continuum stmctures of given loading and support conditions, by gradually 

removing the lowly stressed part of material from the stmcture (Xie and Steven 1993, 

1994a). Since then during the last four years ESO has been demonstrated to be capable 

of solving many problems of size, shape and topology optimum designs for static and 

dynamic problems. 

In this chapter, the basic theory behind the ESO methods for problems with stress, 

displacement, stiffness and frequency constraints is outlined. This chapter is kept brief 

and it gives only an introduction to ESO. Not all aspects of ESO methods are covered 

here. In the following sections, ESO method is described only for simple stmctural 

problems such as with single objective or constraint function and with single loading or 

single modal cases. For a wider range of applications of ESO methods, the reader is 
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referred to Xie and Steven (1997) and other published papers cited in the list of 

references. 

3.2 Basic Concept and General Steps in ESO 

Like most other stmctural optimisation methods, the evolutionary stmctural 

optimisation method is iterative because of the highly non-linear nature of the stmctural 

optimisation problems. ESO methods consist of two complementary ingredients. The 

first is the calculation of the contribution of each element to the required stmcmral 

behaviour. The second ingredient is the optimisation procedures used for resizing or 

gradually removing elements without violating certain requirements. 

To find out the optimum locations for stmctural modifications, gradients (sensitivity) of 

stmctural responses are often needed. Sensitivity analysis plays a central role in 

stmctural optimisation, since virtually all the optimisation methods require the 

computation of the derivatives of stmctural response quantities and objective functions 

with respect to design variables. In ESO, the sensitivity of stmctural behaviour is 

expressed at each element level. Since ESO is based on the concept of slowly removing 

or resizing the material in the stmcture, each element in the design domain should have 

an indication whether it can be removed or resized after each cycle of analysis. From the 

results of finite element analysis, for shape and layout optimisation (which involves 

element removal) the contribution of each element to the stmctural behaviour such as 

stress, displacement, frequency, buckling load etc. is assessed. For sizing optimisation, 

the effects on these stmctural responses due to the local modification of each element 

need to be estimated. This contribution indication of an element with respect to the 
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required stmctural responses is referred as the sensitivity number of that particular 

element and is denoted by a, for the /* element. 

Based on this element sensitivity assessment, material is gradually removed or resized in 

the design domain. An iterative procedure needs to be set-up so that the optimisation 

can be done automatically. The following sections illustrate the optimisation procedures 

and the determination of element sensitivity numbers for various design considerations. 

3.2.1 ESO for structures with stress criterion 

In the original application of ESO, the shape and layout of two- and three- dimensional 

continuum stmctures have been obtained by gradually removing lowly stress material 

(Xie and Steven 1993). Initially a design domain is chosen large enough to cover the 

final design and discretised into a fine mesh of elements. Static analysis is performed 

using a standard finite element software for the prescribed set of loading and boundary 

conditions. A reliable sign of potential structural failure is excessive stress or strain. 

Inversely a reliable sign of inefficient material use is low stress or strain. Since lowly 

stressed material is under-utilised it will be removed from the stmcture gradually and 

the stress level in the subsequent designs will become more and more uniform. Since the 

stmcture has been divided into many small elements, the removal of lowly stress 

material can be conveniently represented by deleting lowly stress elements from the 

stmcture. 

The stress level at each point in a stmcture can be measured by some means of average 

of the normal and shear stress components. For this purpose the von Mises stress has 
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been frequently used for isotropic materials. By comparing the von Mises stress of each 

element c,'"" (where the subscript / refers the element number) with the maximum von 

Mises stress in the whole stmcture a™^, a local normalised stress level ay"" / a^^ is 

calculated for each element. Hence the contribution of /* element for stress problem is 

defined as 

a / v = ^ - (3.1) 
max 

where the subscript, s in ais refers to stress problems. Only a small amount of lowly 

stress material should be removed from the stmcture at each iteration. Thus a rejection 

ratio RR is introduced. After the static analysis, an element will be removed if 

(J vm 

a.=^<RR (3.2) 
max 

The cycle of finite element analysis and element elimination is repeated for this same 

value ofRR until a steady state is reached, i.e., no more elements or only a few elements 

are deleted. At this stage the current rejection ratio RRoid is increased to a new rejection 

ratio RRnew by adding an evolutionary rate ER. 

RRnew=RRoid + ER (3.3) 

With this new rejection ratio, the cycle of finite element analysis and element 

elimination is repeated until a new steady state is reached. Such an evolutionary process 

is continued until a desired optimum is reached, for example, when all stress levels are 

within 25%) of the maximum stress. 

In this method two parameters, the initial rejection ratio RRo and the evolutionary rate 

ER need to be given. The typical values, RRo = 1% and ER = \%, are small enough to 
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give satisfactory results. For certain problems where stress levels do not vary much over 

the whole design domain, RRo as high as 10% and ER as large as 5% can also be used. 

This evolutionary optimisation procedure for stress problems can be easily extended to 

stmctiires with multiple load cases (Xie and Steven 1994a). After the static analysis, the 

stress distribution is obtained for each load case. The ratio of the element stress to 

maximum stress is calculated for each load case and an element is removed from the 

stmcture only if the ratio is less than RR for all the load cases present in the model. 

Thus, compromises are made at each iteration among these load cases. The final 

stmcture is the optimal design in the sense that every part of the remaining material has 

its own role to play for at least one load case and possibly for all load cases. 

Initially this method has been applied to two dimensional plane stress and plane strain 

problems. It has also been shown to give good results for three dimensional stmctures. 

This ESO concept can also be applied to sizing optimisation of stmctures with fixed 

layout. Here again the stress ratio of each element is calculated and the cross-sectional 

areas of lowly stressed elements are gradually decreased and the cross-sectional areas of 

highly stress elements are gradually increased until a more uniform stress design is 

obtained. Simultaneous size and topology optimisation of discrete stmctures is also 

possible by allowing the size of the lowly sfressed members to go to zero and 

subsequently remove them from the stmcture. 

This ESO method for improving the strength characteristics of the stmcture can be made 

analogous to the Fully Stressed Design (FSD). FSD is the earliest intuitive optimality 
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criteria method used for sizing optimisation of discrete stmctures to improve the 

strength characteristics of the stmcture. In this method the design variables are scaled by 

the ratio of the element stress to the allowable stress using the formula 

xr=x;"-^ (3.4) 

where Oaii is the allowable stress. An iterative process of analysis and resizing can result 

in a stmcture where all members, except those which are at the minimum or maximum 

sizes, are fully stressed, i.e. their stresses are at allowable limit. However this method 

can give satisfactory results only for statically determinate stmctures under single 

loading condition with equal allowable stresses on tension and compression. 

Both the ESO and FSD methods are based on element stress ratios and are aimed at 

creating lighter designs with more uniform stress distributions. The main advantage of 

ESO method over the FSD method is that the ESO method can be used for layout and 

shape optimisation. Furthermore, ESO method can be effectively used for the design of 

stmctures with multiple load cases. Since FSD is complemented by the resizing 

algorithm based on the assumption that the load distribution in the stmcture is 

independent of member sizes, this method may lead to non-optimum design for highly 

indeterminate stmctures. Whereas in ESO method for sizing optimisation, at each 

iteration only a few elements are subjected to small cross-sectional modifications. Thus 

the cross-sectional changes at each iteration do not cause significant changes in the 

element forces. This gradual evolution treats the statically indeterminate stmctures more 

effectively than the FSD method. 
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3.2.2 ESO for structures with displacement and stiffness constraints 

This section describes the evolutionary procedure for the optimum design of stmctures 

with displacement and stiffness constraints. The material presented in this section 

derives from the work by Chu et al. (1996, 1997a, 1997b). The stmctiiral stiffness and 

displacement are major considerations when designing stmctiires such as high-rise 

buildings and bridges. It is often required that the stmcture should be stiff enough so 

that the maximum deflection in the stmcture is within the prescribed limit satisfying 

serviceability requirements. 

In this method, the effect of element removal on the overall stiffness of the stmcture or 

on a prescribed deflection is calculated. The direct approach to obtaining changes in the 

displacement field or stmctural stiffness is based on differentiation of the finite element 

discretised equilibrium equations of the stmcture. 

3.2.2.1 The sensitivity number for problems with overall stiffness constraints 

The global equilibrium equation of a finite element discretised linearly elastic stmcture 

subjected to static loading is given by 

[K]{d}={P} (3.5) 

where [K] is the global stiffness matrix, {d} is the nodal displacement vector and {P} is 

the nodal force vector. If the applied load {P} is independent of design variables, the 

derivative of the displacement field with respect to any design variable x is given by 

S{d} d[K] 

i ^ = -[ l̂ & "" (3.6) 
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The inverse measure of the overall stiffness of a stmctiire is known as the mean 

compliance, C, and is defined as 

C = ^{P}nd} (3.7) 

The overall stiffness of the stmcture is maximised by minimising its mean compliance. 

If the applied load {P} is independent of design variables, the derivative of the mean 

compliance with respect to any design variable x is given by 

dC ,S{d} 
8x ^ ^ ^ ^ ^ ^ (3-8) 

From (3.6), it leads to 

dc , d[K] , a m 

The above equation is approximated to 

AC = -Ud}n^]{d} (3.10) 

Suppose that an element, /, is removed from the stmcture. Due to the removal of this 

element, the change in global stiffness matrix [AK\ = -[ki] where [A:,] is the stiffness 

• th 

matrix of the i element in the global co-ordinate system. It is assumed that the removal 

of the element has no effect on the load vector {P}. Hence the change in the mean 

compliance due to the removal of an element /, AC, is given by 

AC,=iK.}^[A:,]K.} (3.11) 

where {di} is the displacement vector associated with the element, /. AC, indicates the 

change in the strain energy due to the removal of f^ element. Both C and AC, are always 

positive values. The value of AQ can be calculated for each element in the stmcture. 

Hence the sensitivity number for element, i, for problems with stiffness constraint is 

defined as 
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a , , = A C , = i K . } ^ [ ^ , ] K } (3.12) 

where the subscript, c in a,c refers to compliance constraint. The objective is to find the 

lightest stmctiire while satisfying the stiffness constraint, typically in the form C < Cau, 

where Caii is the prescribed allowable limit for C. When an element is removed, the 

stiffness of the stmcture reduces and correspondingly the mean compliance increases. 

Thus it is obviously most effective to remove the element which has the lowest a,̂  so 

that the increase in C is minimum. 

3.2.2.2 The sensitivity number for problems with displacement constraints 

Displacement constraints may be imposed on certain degrees of freedoms (d.o.f) of the 

stmcture. The constraint imposed on they* d.o.f displacement component, dj is given in 

the form, \dj\<dj , where d/ is the allowable limit for dj. To determine the change in 

they' d.o.f displacement. At/,-, a unit virtual load vector {Fj} is introduced in which only 

the corresponding j component is equal to unity and all the other components are 

equal to zero. Multiplying equation (3.6) by {Fj} gives 

dd. d\K] d{K] 

where {dj} is the displacement vector due to the unit virtual load vector {Fj}. This 

equation is approximated to 

Adj=-{dj}^[AK]{d} (3.14) 

As above, if the i^ element is removed from the stmcture, the change in / d.o.f 

displacement component due to this element removal, Mtj is reduced to 

Ad.. = {d,j}T[k^{d,} (3.15) 
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where {di} and {dij} are the / element displacement vectors associated with {d} and 

{dj} respectively. It should be noted that unlike AC, in (3.11), Adij can be positive or 

negative. As the displacement may take positive or negative value, the aim is to reduce 

the absolute value of the constrained displacement. Thus it is best to remove the element 

which gives the lowest absolute change in displacement, I Mi) . Hence the sensitivity 

number for the z* element for problems with a displacement constraint is defined as 

H}^[^,]K} (3.16) a,-̂  Hj 

where the subscript, d in a,-̂  refers to displacement constraint. 

3.2.2.3 Evolutionary optimisation procedures for stiffness or displacement 

constraints 

As discussed earlier, an iterative procedure has to be adopted and a small number of 

elements should be removed from the stmcture after each iteration depending on the 

element sensitivity numbers. The procedure is given as follows: 

Step I: Discretise the stmcture using a fine mesh of elements. 

Step 2: Analyse the stmcture for the prescribed loading and support conditions. 

Step 3: Calculate sensitivity number for each element. 

Step 4: Remove a small number of elements which have the lowest sensitivity numbers. 

Step 5: Repeat Steps 2 to 4 until the constraint reaches its limit. 

For problems with displacement constraints, additional static analyses with virtiial unit 

loads corresponding to the constrained displacements need to be included in Step 2. The 
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number of elements to be removed at each iteration can be prescribed by its ratio to the 

total number of elements of the initial or the current stmcture. This ratio is called the 

element removal ratio. In Step 3 the sensitivity number for each element should be 

calculated depending on the type of constraint involved. In Step 5 the evolutionary 

procedure can also be terminated when a prescribed percentage of volume has been 

eliminated from the stmcture. The influence of the element removal ratio on the final 

optimum design has been investigated with several examples by Chu et al. (1997a). In 

general the accuracy of the solution will improve with a smaller removal ratio but at the 

expense of higher computational costs. 

The derivation of sensitivity numbers has been discussed here only for single constraint, 

single load case stmctures. This can be easily extended to multiple displacement 

constraints and multiple loading conditions by introducing weighting factors in the 

sensitivity number calculations to take account of the active participation of each 

constraint and load case appropriately. Details of this analysis can be found in Chu et al. 

(1996). This ESO method has been extended by Chu et al. (1997b) to the topology 

design of tmss stmctures. 

In this section sensitivity numbers have been derived for element removal and the 

optimisation procedures have been set-up for removing inefficient material which 

results in layout optimisation of sti-uctures. A new extension of this ESO method for 

resizing of frame stmctures has been accomplished by the candidate and this will be 

presented in Chapter 8. 
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3.2.3 ESO for problems with frequency constraints 

The response of a stmcture to dynamic excitation depends, to a large extent, on the first 

few natural frequencies of the stmctiire. Excessive vibration occurs when the frequency 

of the dynamic excitation is close to one of the natiiral frequency of the stmctiire. The 

optimum design with frequency constraints is of great importance, particularly in the 

aeronautical and automotive industries. The material presented in this section derives 

from the work by Xie and Steven (1994a, 1996). 

The dynamic behaviour of the stmcture is represented by the following general 

eigenvalue problem: 

{[K]-^j[M]){u.} = {()} (3.17) 

where [M\ is the global mass matrix, coy is the j natural frequency and {uj} is the 

corresponding eigenvector. The eigenvalues representing the natural frequencies can be 

arranged in order of magnitude as 

0<co,- <C02 < <co2 < <co2 

Multiplying (3.17) by the transpose of the eigenvector {uj} produces the following 

Rayleigh quotient for the squared natural frequency co,. 

{u^^[K]{U:} 
(o2= ' ' (3.18) 

' {u.Y\M\{u.} 

For single modal stmctures, the derivative of the eigenvalue with respect to any design 

variable x is given by 

{UjV dx ^ dx . d{<^j) 
dx " {Uj}'[M]{Uj} 

{Uj} 
(3.19) 
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Details of this eigenvalue derivation will be discussed in detail in Chapter 4. To 

determine the change in natural frequency, the above equation is approximated to 

{Uj}r{[^K]-(S,j[m]){Uj} 
^^^J ) ~ , > r r ; i ^ i f > (3-20) 

' {Uj}^[M]{Uj} ' 

To obtain the value of A(G)y ) from the previous eigenvalue solution, it is assumed that 

the eigenvector {uj} is approximately the same before and after the change in the 

stmcture. The assumption that the mode shape does not change significantly in between 

design cycles has been commonly used in frequency optimisation. As discussed earlier, 

suppose if an arbitrary element, /, is removed from the stmcture, the change in global 

mass matrix [AA/] = -[m,] and the change in global stiffness matrix [A^ = -\k^. Hence 

the change in the / natural frequency (squared) due to the removal of / element. 

A(co,/) is given by 

{uy^l\m^\-\k^{u.} 

{uyVM]{u^} A(co/)^' ' . / . . r i ^n . . ^ ~ (3-21) 

If only one particular frequency, say co,-, is considered for optimisation, the following 

sensitivity number need to be calculated for each element: 

^.}^((o/K]-[A:,]){^.^.} 

'̂  {u.YlM\{u.} 

where the subscript, / in a,/ refers to frequency constraint. This sensitivity number 

indicates which elements should be removed from the stmcture so that the concemed 

frequency will be shifted towards a desired direction. From the definition of eigenvalue 

problem in finite element method (equation 3.17), the summation of a,/ for all the 

elements in the stmctiire should be zero. Thus the values of a,/ range from minimum 

negative value to maximum positive value. Hence to increase the natural frequency coy. 
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elements with highest a,j values should be removed and to decrease coy, elements with 

lowest a,/ values should be removed. It is also possible to reduce the stmctiiral weight 

with least change in ooy by removing elements with a,/close to zero. 

The denominator in equation (3.22) can be omitted in sensitivity number calculations if 

only one frequency is considered since it is the same for all elements. However, when 

multiple frequencies are considered, this term cannot be omitted unless all the 

concemed eigenvectors have been normalised with respect to [M\. Sensitivity numbers 

are also needed to be redefined according to the requirement. For example in the case of 

optimising the gap between two frequencies, say (Hk^nd coy {k >j), a,/= A(co,vt̂  - w/ ) . 

The evolutionary procedure for frequency optimisation is summarised as follows: 

Step 1: Discretise the stmcture using a fine mesh of elements. 

Step 2: Perform dynamic analysis and solve the eigenvalue problem. 

Step 3: Calculate sensitivity number a,/for each element. 

Step 4: Remove a small number of elements to shift the concemed frequencies towards a 

desired direction. 

Step 5: Repeat Steps 2 to 4 until desired optimum design is obtained. 

This method has also been extended to problems with multiple frequency constraints 

(Xie and Steven 1996). This is very similar to the situation of optimisation with multiple 

static load cases. Recently Zhao et al. (1996c) extended this method to stmctures with 
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non-stmctural lumped masses. It should be noted here that the sensitivity number for 

frequency changes are obtained only for single modal cases. The extension of this to 

multimodal stmctures will be dealt with in detail in Chapter 5. 

3.3 Implementation of ESO Methods into Finite Element Codes 

A batch file needs to be set up to handle the iteration cycles automatically. In each 

iteration, after the static or dynamic analysis, a subprogram is used for the sensitivity 

number calculations and subsequent element removal. From the expressions of 

sensitivity numbers, ais, o-ic, aid and a,/, it is seen that the computational cost involved in 

calculating these values, all at element level, are nominal when compared with the cost 

of solving the static or dynamic problem. 

The element removal can be done by simply assigning the material property number of 

the rejected elements to zero and ignore these elements when the global stiffness matrix 

is assembled in the subsequent solutions. As more and more elements are eliminated, 

the solution time becomes less and less. When removing elements it is important to 

maintain the integrity of the stmcture. From the finite element formulation, violating the 

integrity of the stmcture may lead to a non-positive definite stiffness matrix or singular 

stiffness matrix. Chu et al. (1997b) and Zhao et al. (1996b) have proposed methods to 

overcome this problem. Symmetric nature of some stmctures should also be preserved 

during element removal and throughout the iteration cycles. 

One usefiil feature in any stmctural optimisation method is the incorporation of non-

design domain. For example, in stress problems some region in the stmcture may be at 

3-15 



Chapter 3 - Evolutionary Structural Optimisation (ESO) 

low stress level but are essential for attachment or any other purposes and should not be 

removed during the iterations. The elements in the non-design domain may have the 

same material properties as other elements, but are assigned to a special material 

property number. During the optimisation process, elements with this special material 

property number are simply ignored for element removal. 

At the end of each iteration, a picture of the remaining elements may be stored. Once the 

whole process is finished, the evolution history of the stmcture can be viewed from the 

stored pictures in a sequence. This option allows the designer to know every stage of the 

process and lets him to consider intermediate designs as well. Unlike many other FEA 

based stmctural optimisation methods, the ESO does not require re-generating new 

finite element meshes even when the final stmcture departs substantially from the initial 

stmcture. This makes the ESO methods very easy to be implemented into existing FEA 

codes. 

3.4 Discussion on Existing ESO Methods 

From the previous sections, it is noted that for stiffness, displacement and frequency 

problems, sensitivity numbers are obtained from the first derivative of the corresponding 

stmctural response and these sensitivity numbers indicate the change in stmctural 

response due the removal of a particular element. However for stress problems the 

element stress level is used as an indicator for element removal. (For the sake of 

consistency, the notation used to define the sensitivity number of an element, a, is used 

to indicate the element stress ratio as well.) This is because the derivative of element 
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stress matrix or element stress level is computationally very expensive. In finite element 

method, the element stress matrix, {a}, can be expressed by the following equation. 

{a},=[£],[5],{^}, (3.23) 

where [£],• is the element material property matrix, [B]i is the strain-displacement 

relation and {d}i is the element displacement vector. The derivative of {a}, with respect 

to any design variable x is given by 

^ = [ £ ] , [ 5 1 , ^ (3.24) 
OX dx 

where [£],• and [5], are independent of design variables. Substituting equation (3.6) for 

element displacement derivative, the above equation is reduced to 

^ = - [ £ ] , m m - ' M l , r f j (3.25) 
ox ox 

Hence to determine element stress gradient [K\'^ should be known. None of the FEA 

packages stores or calculates [K\'^. Simultaneous linear equations for static analysis are 

usually solved by Gaussian elimination of forward reduction and backward substitution. 

Even if the [AT]"' is available, gradient of element displacement matrix need to be 

established. This problem does not arise when obtaining gradient of a particular 

displacement component. In such case a virtual load is applied at that particular degree 

of freedom and the use of virtual load displacement eliminates the need of [K]' in the 

calculations. 

Since there is no explicit stress-nodal force relations for continuum finite element 

models, the cost of evaluating even the approximate stresses is quite high. Much 

attention has been paid to solve problems with stress constraints using approximate 
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techniques such as the use of intermediate variables, approximations of element forces 

(Vanderplaats and Salajegheh 1987) or approximate displacement models (Kirsch 

1992). However in all these methods either [K\'^ is known or decomposed matiices of 

[iTj'' are used. This high computational cost involved with stress constraints is one of 

the reason for the popularity of fully stressed design even it does have drawbacks. 

The ESO methods described in this chapter for stress and frequency problems do not 

contain any clear statements for objectives or constraints. In these methods either stress 

distribution of the stmcture is brought to uniform or the concemed frequencies are 

optimised while reducing the weight of the stmcture. These ESO methods are not 

formulated to give minimum weight designs for a prescribed frequency or for a 

prescribed allowable stress or reversibly these methods cannot be used to extremise the 

concemed frequency or the maximum stress for a specified weight of stmcture. Zhao et 

al. (1996a, 1996b) attempted to solve this issue for problems with frequency constraints 

by providing a design chart or an evolutionary path. This design chart describes the 

evolutionary process of the stmcture and can be generated using the information 

associated with removing the most inefficiently used material gradually from the initial 

design domain until the minimum weight is met for maintaining the integrity of the 

stmcture. However ESO methods described here for stiffness and displacements 

constraints, can be effectively used to obtain minimum weight designs for prescribed 

values of displacement and compliance. 
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3.5 Summary 

In the preceding sections, concepts of ESO methods for problems with stress, stiffness, 

displacement and frequency constraints have been discussed. These methods have been 

used to solve many complex problems and validated against various classical optimum 

solutions. Many shape and layout designs of the existing solutions obtained by using 

other complex methods such as homogenisation and mathematical programming 

methods have been reproduced by this simple evolutionary method (Xie and Steven 

1997). The rest of the thesis will be devoted to discussions on the candidate's findings 

in her attempt to extend the ESO method to optimum designs of stmctures against 

buckling. 

3-19 



Chapter 4 - ESO for Structures Aeainst Buckline 

CHAPTER 4 - ESO FOR STRUCTURES AGAINST BUCKLING 

4.1 Introduction 

In Chapter 3, evolutionary stmctural optimisation (ESO) methods for problems with 

stress, displacement, stiffness and frequency constraints have been discussed. This 

chapter describes the theoretical basis of the ESO method for stmctures with stability 

constraints. In general the instability is connected with several catastrophic failures such 

as buckling, overturning, sliding, collapse etc. In stmctiiral problems, the most common 

instability condition is buckling. Buckling occurs when the applied load reaches a 

critical value where a member in a stmcture or the whole stmcture converts its 

membrane strain energy into bending strain energy. 

Optimum design against buckling may be obtained by finding the minimum weight 

design of a stmcture that satisfies the prescribed buckling load constraint. Altematively 

it may be achieved by maximising the critical buckling load of the stmcture while 

keeping its weight, volume or mass constant. For the convenience of comparing the 

efficiency of different designs, the latter approach is generally used. In this chapter ESO 

method is proposed for maximising the critical buckling load of a stmcture of constant 

weight. The extension of ESO method to minimum weight design of frame stmcmres 

for a prescribed buckling load is presented in Chapter 6. 

In the following sections, the derivation of sensitivity number for buckling load, 

optimisation procedure and some criteria needed for the optimisation process are 

described. Two of the optimality criteria methods cited in the literature for the optimum 

design of frame stmctures against buckling are discussed and compared with the 
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proposed method. Illustrative examples are given to show the applicability of the ESO 

method for buckling optimisation. Chapters 4 to 8 focus on the optimum design of 

skeletal stmctiires such as frames and tmsses modelled with beam or bar elements. 

Optimum design of plate stmctiires is considered in Chapter 9. This chapter applies the 

proposed ESO method to the optimum design of single modal frame stmctiires only. 

The extension of ESO method to multimodal stmctiires is given in Chapter 5. 

4.2 Buckling Analysis of Structures 

Buckling of bars, frames, plate and shell stmctiires may occur as a stmctiiral response to 

membrane forces. Membrane forces act along member axes and tangent to plate and 

shell midsurfaces. The membrane force in a bar or a beam element is the axial force, P, 

and the membrane forces in a plate or a shell element are the in-plane forces, Â ,̂ Â^ and 

Nxy, as shown in Figure 4.1. 

Figure 4.1- Membrane forces in a plate element 

Small membrane deformations can store a large amount of strain energy, but 

comparatively large lateral deflections and rotations are needed to absorb this energy in 

bending deformations. Thin-walled stmctures and slender stmctures with low bending 

stiffness to membrane stiffness often fail as a result of buckling rather than material 
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yielding. There are two types of buckling that may occur in a stmcture. These are the 

local buckling of an isolated member and the overall buckling of the whole stmcture. 

Since the ESO method is based on the discrete finite element analysis, both local and 

global instabilities can be captured in the optimisation process. 

The buckling problem may be described as determining the buckling load associated 

with stmctural instability for a prescribed loading configuration. The effects of 

membrane forces in an element are accounted for by an element matrix [kg\ that 

augments the conventional element stiffness matrix [k] in discretised system equations. 

The element matrix {kg\ is the non-linear element stiffness, a function of the stress state 

and hence of the intemal element forces. Matrix [kg] has been given various names such 

as element stress stiffness matrix and element geometric stiffness matrix. Assuming that 

the membrane forces can be obtained from the linear equations involving linear stiffness 

matrix only and that they remain constant during the transition to the buckled state, the 

linear buckling behaviour of an elastic stmcture is govemed by the following eigenvalue 

problem: 

i[K] + Xj[K^]){u.} = {Q} (4.1) 

where [K] is the global stiffness matrix, [Kg] is the global geometric stiffness matrix or 

stress matrix, Xj is the 7* eigenvalue and {Uj} is the corresponding eigenvector. The 

eigenvalues from equation (4.1) are those which scale the applied load to give the 

buckling load. The eigenvalues are arranged in order of magnitude as 

0 < ?.i < ;i2 < ^ ŷ ^ ^ '^n (4-2) 
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The most critical buckling load is the lowest one, which is equal to the first eigenvalue 

Ix multiplied by the applied loading. Multiplying equation (4.1) by the transpose of the 

eigenvector {Uj} produces the following Rayleigh quotient for they* eigenvalue 

{Uj}r[K]{Uj} 

' {Ujy\.K^]{u.} (^-^^ 

where the numerator represents the strain energy of the y* buckling mode and the 

denominator represents the work done by the applied load during the transition from 

initial to buckled configurations. 

4.3 Sensitivity Number for Buckling Load - Simple Eigenvalue 

In ESO method, the contribution of each element to the concemed stmctural response 

needs to be assessed. For buckling optimisation, the aim is to raise the fundamental 

buckling load factor ^i. Hence the design sensitivity (or gradient) of the eigenvalue 

(buckling load factor) needs to be determined. In this section sensitivity number for 

buckling load of simple eigenvalue is derived. A simple (or distinct or single) 

eigenvalue Xj is associated with a unique eigenvector {uj} and is differentiable with 

respect to any design variables. The direct approach to obtaining the eigenvalue 

sensitivity is to differentiate equation (4.1) with respect to a design variable x and is 

given below. 

d{{K]^X.{KJ){u^} 

dx 
0 (4.4) 

di{K]-rX.\K\) d{u} 
\ ^ ' {Uj } + {[K] + X. [K^ ] ) - ^ = 0 (4.5) 

T Multiplying equation (4.5) by {wy} gives 

Kr^^t^^^<. . ! .K .K(m.M^, i )^=o (4.6) 
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Since [K]^=[K] and [Kg]^= [Kg], taking transpose of equation (4.1) leads to 

[i[K] + X.[K^]){Uj}]' = {u^}'i[K] + X.[K^]) = {0} (4.7) 

Thus the second term in equation (4.6) is reduced to zero. Therefore the eigenvector 

derivative is not involved in the simple eigenvalue derivative. By re-arranging equation 

(4.6), the eigenvalue derivative is reduced to 

dX, '">*^ 
+ A-

OX •' ox 
{Uj} 

(4.8) 
dx {Uj}nK^]{Uj} 

By normalising the eigenvectors such that {uj}\Kg] {uj} - I, equation (4.8) is reduced to 

dX, 

dx ' dx 
{u.} (4.9) 

Assuming that the eigenvector is approximately the same before and after a small 

stmctural modification, the change in / eigenvalue, AA.y due to this stmctural 

modification is approximated to 

AA., = -^ . }^ ( [A^] + A,,[A^J){u,} (4.10) 

4.3.1 Sensitivity number for element removal 

Consider that an element, /, is removed from the stmcture. As described in Chapter 3, 

the change in global stiffness matrix [AAT] = -[AA,] which can be easily calculated. 

However, since [K^ depends on the current stress distribution in the stmcture and the 

removal of the /* element affects the stress in its surrounding elements, it cannot be 

assumed that [AATJ is equal to the change in the element stress stiffness matrix of the t 

element only. Stress stiffness matrix of the old system (before element removal) does 

not provide enough information for [AATg] and a static analysis needs to be carried out 

after the element removal to determine the current stress distribution. If it is to be done 
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for each and every element it will be computationally very expensive. Therefore the 

change in buckling load due to element removal cannot be obtained from the finite 

element results of the old system unless a very computationally expensive method is 

employed. This difficulty does not arise in the eigenvalue optimisation of frequency 

problems which involve the mass matrix instead of the stress stiffness matrix. 

4.3.2 Sensitivity number for element resizing 

Now consider a small change in the cross-sectional area of an arbitrary element, /. This 

local cross-sectional modification of an element may be the change in plate thickness or 

the change in cross-sectional dimensions of bar or beam element such as width, breadth, 

radius etc. The change in the global stiffness matrix, [AK] is equal to the change in the 

i^ element stiffness matrix, [AA:,], which can be easily calculated. The change in global 

stress stiffness matrix, [AKg], is equal to zero if the axial or membrane stress resultant 

remains constant before and after the cross-sectional change in the elements. Such is the 

situation of all statically determinate stmctures. For a statically determinate frame, the 

cross sectional changes do not affect the axial forces in the members. For statically 

indeterminate stmctures, [AKg] is only neghgible if the cross-sectional modifications at 

each iteration are so small that they do not cause significant changes in the axial or 

membrane stress resultants. When [AATg] is ignored, from equation (4.10) the change in 

the/ buckling eigenvalue due to the cross-sectional change in the i element is reduced 

to 

A\=-K}^[M, ]{« ,} (4.11) 

where {M,y} is the 7* eigenvector associated with the /* element. The objective of 

buckling optimisation is to increase the fundamental eigenvalue A,i. Therefore from the 
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above equation, the sensitivity number for buckling load of single modal stmctures is 

defined as follows: 

a , * = - K } ' [ A A , ] K } (4.12) 

where the subscript b in a,-6 refers to buckling problem. Note that this sensitivity number 

is for resizing only and cannot be used for element removal. 

The critical buckling load is increased when the cross-sectional area of elements with 

highest a,̂  is increased. If the stmctural weight is to be kept constant, the elements with 

highest a,6 need to be strengthened and the elements with lowest a/̂  values may be 

weakened. In the case of an increase in the cross-sectional area A of the /* element by 

M. 

[Ak,]^[^k,Y =[k,iA + M)]-[k,iA)] (4.13a) 

and in the case of a reduction in the cross-sectional area by A4 

[I^,] = [Ak,]- =[k,iA-AA)]~[k,iA)] (4.13b) 

Hence to estimate the effect of cross-sectional changes on the fundamental buckling 

load factor, the following two sensitivity numbers need to be calculated for each 

element, one for area increase 

a, ,^=-K,}^[A^,]M^n} (4.14a) 

and the other for area reduction 

a, ,-=-K.,}qAA,]-{t/ ,} (4.14b) 

So far the influence of the cross-sectional change of an element on the buckling load 

factor has been stiidied. Further if the elements in the finite element mesh are of 

different sizes, the element sensitivities depend also on their sizes. Here the size of the 
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th 

element, say Si for / element, is not referred to the cross-sectional dimensions. In the 

case of skeletal stmctiires Si refers to the length of the /* element. In the case of plate or 

shell stmctiires Si refers to the surface area of the z* element. When comparing two 

elements with the same a,̂ ^ as defined in (4.14a), increasing the cross-sectional area of 

a smaller element will result in a lighter design. Similariy for elements with same a,z,' as 

defined in (4.14b), the cross-sectional area of a smaller element should be decreased. 

Consequently, the element sensitivity numbers for buckling load of single modal 

stmctures are redefined as follows: 
« / / =-Ki}^[AA:,]-{i^.,}/5, (4.15a) 

" / ^ =-ki}^[AA:,]-{i/,,}/5, (4.15b) 

The calculation of these sensitivity numbers only involves small matrices of individual 

elements. The computation cost for calculating these sensitivity numbers for all 

elements is nominal when compared with the cost of solving the eigenvalue problem 

(4.1). 

4.4 Evolutionary Procedure for Buckling Optimisation 

Unlike the other ESO procedures described in Chapter 3, the buckling optimisation is 

carried out by changing the cross-sectional areas of elements for stmctures of fixed 

layout. Optimum designs against buckling may be obtained either by finding the 

minimum weight design for a prescribed buckling load or by maximising the buckling 

load of the stmcture while keeping its weight constant. The former approach may start 

with an over-designed stmcture with excess weight followed by gradually removing 

material from the stmcture. The latter approach involves gradually shifting material 
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from the strongest locations to the weakest without adding or losing any weight. The 

optimisation procedure for the latter approach is described below. It is obvious that the 

optimum solution cannot be achieved in one step. An iterative procedure has to be 

adopted, i.e. only a small number of elements should be resized at each iteration. 

5/ep 1: Discretise the stmcture using a fine mesh of finite elements to adequately 

represent the prebuckling stress distribution and buckling modes. 

Step 2: Solve the eigenvalue problem (4.1). 

Step 3: Calculate the sensitivity numbers a/̂ "*" and a,̂ " for each element. 

Step 4: Increase the cross-sectional areas of elements which have the highest a , / values 

and decrease the cross-sectional areas of the same number of elements which 

have the highest a,̂ " values. Impose the sizing constraints, i.e. if the design 

variable (which represents the cross-sectional area) of an element x, is greater 

than the prescribed maximum x^ax, let x,- = Xmax and similarly if x, < x„,i„, let x, = 

Xmin-

Step 5: Calculate the total volume and if it is not equal to the original volume, scale the 

cross-sectional areas obtained after Step 4 to give the original volume. 

Step 6: Repeat Steps 2 to 5 until the buckling load factor cannot be increased any 

further. 

A batch file is set up to handle the iteration cycles automatically so that the optimisation 

process becomes as simple as repeated finite element analyses. In each cycle of iteration, 

after the static and buckling analyses using standard FEA packages, a subprogram is 

used to calculate sensitivity numbers and carry out subsequent element resizing. When 
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resizing, the cross-sectional area of elements is allowed to vary in small steps in a 

prescribed manner. The geometric properties of the cross-section (design variables) 

could be one or several from breadth or depth of a rectangular section, radius of the 

circular section, web or flange thickness of I or L section, thickness of plate and shell 

elements etc. For such simple variations [AA,]"̂  and [AA:,]' matrices can be easily 

calculated. All the other information required for the calculation of sensitivity number is 

readily available from the finite element solution obtained in Step 2. 

At each iteration only a small number of elements should be subjected to resizing. The 

percentage of elements subjected to resizing is called here as the resizing ratio. The 

resizing ratio and the step size of design variables used for the cross-sectional 

modification at each iteration have to be given in the above evolutionary procedure. The 

resizing ratio and the step size are usually kept constant throughout the optimisation 

process. However, different values of resizing ratio and step size can be prescribed at 

different stages of the optimisation process. At final stages of the optimisation process 

these parameters can be made smaller to obtain more accurate designs. The influence of 

these parameters on the optimum solutions will be discussed with the examples in later 

sections. 

When resizing the elements based on their sensitivity numbers, certain requirements of 

the problem need to be accommodated. They are described below. 

Non-design domain: In certain cases some part of the stmctiire has to be kept 

unchanged. In such cases it is possible to freeze this part of the stmctiire as the non-
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design domain. The elements within this non-design domain are assigned a special 

material property number even if they have the same material properties as other 

elements. During the optimisation process, elements with this special property number 

are not subjected to resizing. 

Sizing constraint: If the design variables of elements reach their prescribed upper or 

lower bounds, these elements are not considered for resizing. However these elements 

are not frozen as those in non-design domain. Because in subsequent iterations design 

variables of these elements might vary in opposite directions. At each iteration the 

number of elements reached their extreme values should be monitored to calculate the 

actual required number of elements to be resized. 

Structural symmetry: If the stmctural layout and the loadings are symmetric about any 

axis, the symmetric nature of the stmctural system should be preserved at each iteration 

through out the optimisation process. Unlike in static analysis, the full stmcture has to 

be considered for eigenvalue solutions even the stmcture has any symmetry. If the 

stmcture loses its symmetry during resizing it will lead to non-optimal design. Usually 

the number of elements subjected to resizing should be determined by considering the 

number of symmetric axes in the system. For example, if there are two symmetric axes 

in the system as shown in Figure 4.2a, the number of elements to be strengthened or 

weakened in an iteration should be equal to four or products of four so as to maintain 

the symmetric nature of the target stmcture. However if elements fall on the symmetric 

axes as shown in Figure 4.2b, the above mle cannot be adopted. The elements which are 

symmetric to each other should have the same value of sensitivity number. Hence by 
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using the limiting values of sensitivity numbers (which determines which element 

should be resized) instead of considering the number of elements directiy, stmctural 

symmetry can be preserved. When determining the limiting values of sensitivity 

numbers, the elements which have already reached their upper or lower bounds should 

not be considered. 

Figure 4.2 - Symmetric elements in stmctures 

Constant volume/weight: After resizing the elements, the volume of the stmcture has to 

be checked. If it is not equal to the original volume, design variables (cross-sectional 

dimensions) should be uniformly scaled to get the original volume. When uniformly 

scaling the design variables it is again necessary to impose the sizing constraints. 

Uniform scaling with sizing constraints need to be carried out in succession until the 

volume becomes equal (with tolerance) to the original volume. 

4-12 



Chapter 4 - ESQ for Structures Aeainst Buckline 

4.5 Examples 

The capabiUty of the proposed method for cross-sectional optimisation of stmcttires 

against buckling of single modal stmctiires is illustrated with several examples. In the 

following sections an optimum buckling load factor, OF, defined as the ratio of the 

critical buckling load factor of the optimum design, Â f to that of the equivalent 

uniform design, A,̂ "'' is used for comparing the efficiency of the optimum shape to that of 

the uniform shape {OF - ?Cf/A ;̂')- The total number of elements resized at each 

iteration is expressed as the resizing ratio iRR), a percentage of the total number of 

elements. Half the number of elements resized will be strengthened and the other half 

will be weakened. In all the following examples the initial design is of uniform cross-

section and the Young's modulus E = 200 GPa. 

4.5.1 Example of column optimisation 

A slender column of variable, but geometrically similar cross-sections where the area 

^(x) and the moment of inertia l{x) at section x are correlated by lix) - cAixf, with the 

constant c given by the cross-sectional geometry is considered for optimisation. Three 

cases, where/? = I, 2 and 3, are considered. The column is simply supported at both 

ends and is subjected to a compressive axial load. The column is divided into 100 linear 

elements of equal length. 

Case \:p= I 

The simplest cross-sectional shape which may satisfy the relationship I{x) = cA{x) is the 

rectangle with constant depth d and variable width bix) so that I{x) = bix)d l\2 = 

v4(x)//12. The dimensions of the column are as follows: length Z = 1 m, J = 50 mm. 
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initial value for b = 65 mm. During the optimisation, b is allowed to vary in steps of 5 

mm to the maximum of 125 mm and to the minimum of 5 mm. Hence 25 different 

cross-sectional areas are allowed in the design. 

Case 2:/? = 2 

For a circular cross-section, /(x) = Kr(xf I 4 = A{xf I 4n, where r(x) is the radius at 

section X. The dimensions of the column are as follows: length Z = 1 m, initial value for 

r̂  = 40 mm .̂ During the optimisation, r^ is allowed to vary in steps of 1 mm^ to the 

maximum of 60 mm and to the minimum of 10 mm . Hence 51 different cross-

sectional areas are allowed in the design. 

Case 3:p = 3 

For the rectangular cross-section with constant width b and variable depth d, the 

relationship /(x) = cA{x) is satisfied since /(x) = bd{x) /12 = A{x) l\2b . The 

dimensions of the column are the same as in Case 1 but in this case the depth d is 

allowed to change in the range of 5 mm to 125 mm in steps of 5 mm instead of the 

width b. Again 25 different cross-sectional areas are allowed in the design. 

The optimum shapes of the column for the above three cases are obtained after between 

12 and 20 iterations. For all three cases, a resizing ratio of RR = 40% is used. These 

shapes are given in Figure 4.3. Due to symmetry only a quarter of each column is 

shown. The evolutionary histories of the buckling load factors are shown in Figure 4.4. 

In Table 4.1 the final optimum buckling load factors obtained by the ESO method are 

compared with the exact solutions obtained from variational calculus method (see Hafta 
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and Gurdal, 1992). Excellent agreements between the results from two methods are 

observed. 

0.51 

r/ro A 

0.5Z, 

d/do A 

1 

0.5L 

p=\ 

p = 2 

p = 3 

Figure 4.3 - Optimum shapes of simply supported columns 
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Figure 4.4 - Optimisation histories of the simply supported columns 
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Table 4.1 - Optimum buckling load factors for simply supported columns 

p 

I 

2 

3 

OF=Xcr''"lXcr'"" 

Exact 

12/71^=1.215 

4 / 3 = 1.333 

125/71^=1.407 

ESO 

1.214 

1.328 

1.400 

% 

difference 

-0.1 

-0.4 

-0.5 

4.5.2 Examples of frame optimisation 

4.5.2.1 Optimum design of a three member portal frame 

A three member portal frame which was analysed by Szyszkowski and Watson (1988) is 

considered. The frame is pinned at the base and is statically indeterminate by one 

redundancy. The frame layout and the loading are shown in Figure 4.5. All the three 

members are of circular cross-sections and of equal length of Im. Each member is 

9 . 9 

divided into 10 elements of equal length. Initial uniform r is equal to 100 mm . A 

resizing ratio of 40%) is used. No maximum or minimum is specified for r . 

The final optimum shape of the frame is shown in Figure 4.5 and the final design values 

are tabulated in Table 4.2 for half of the symmetric frame. The critical buckling 

eigenvalues of initial design and optimum design are 2.86 and 4.00 respectively. 

Optimum designs are obtained independently with two step sizes, 5 mm and 2.5 mm . 

The evolutionary histories of the buckling load factors of these two step sizes are shown 

in Figure 4.6. The history of the second buckling eigenvalue is not shown since in this 

case it is far from the first eigenvalue. From the uniform to the optimum design the 

second eigenvalue has decreased from 20.26 to 15.28. 
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I m 

- ^ 1 
1 m 

Figure 4.5 - Optimum shape of the three member frame (without sizing constraints) 
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Figure 4.6 - Optimisation histories of the 3-member frame (without sizing constraints) 

Obviously the smaller step size requires a high number of iterations. However the 

optimum designs obtained with these two step sizes are not much different although the 

smaller step size gives slightly better design. Optimum buckling load factors for these 
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designs are very close and they equal to 1.401 and 1.400 for step sizes 2.5 mm^ and 5 

mm^ respectively. Szyszkowski and Watson (1988) also obtained OF = 1.401 with the 

same number of elements. 

Table 4.2 - Optimum design values of the three member portal frame 

Element 

number 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

Optimum design r^ (mm^) 

Without sizing 

constraints 

31.9 

60.4 

79.8 

94.8 

109.7 

119.4 

129.0 

136.2 

140.9 

145.8 

138.6 

116.9 

94.8 

67.5 

34.2 

With sizing constraints 

70.0 

70.0 

73.2 

88.5 

101.3 

114.0 

121.4 

130.0 

130.0 

130.0 

130.0 

111.4 

88.4 

70.0 

70.0 

For the optimum design with no sizing constraints, the design variable r range from 

maximum 145.8 mm^ at element 10 to minimum 31.9 mm^ at element 1. This portal 

frame is reanalysed with sizing constraints. In this case, r is allowed to vary to the 

maximum 130 mm^ and to the minimum 70 mml Again RR = 40% is used. The final 
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Optimum shape and the iteration histories are shown in Figure 4.7 and Figure 4.8 

respectively. Again two step sizes, 5 mm^ and 2.5 mm^, are used independentiy to 

obtain the optimum designs. No difference is observed in the final designs obtained with 

these two step sizes although the smaller step size obviously requires a high number of 

iterations. The critical buckling eigenvalue of the optimum design is equal to 3.705 (OF 

= 1.295). During optimisation the second eigenvalue has decreased from 20.26 at the 

uniform design to 17.33 at the optimum design. The final design values are also given in 

Table 4.2 (column 3). 

1 m 

O 1 
1 m 

Figure 4.7 - Optimum shape of the three member frame (with sizing constraints) 
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y / y uniform 

__ Step size -5% 
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Figure 4.8 - Optimisation histories for the 3-member frame (with sizing constraints) 

4.5.2.2 Optimum design of a 2-cell frame 

Optimum design of a pin based 2-cell frame as shown in Figure 4.9(a) is sought using 

the proposed ESO method. All the members are of circular cross-sections and of equal 

length of 1 m. Each member is divided into three elements of equal length. Initial 

uniform r^ is equal to 100 mm^ for all the members and r^ is allowed to vary to the 

maximum of 200 mm^ to the minimum of 10 mm^ in steps of 5 mm^. RR = 40%. 

The optimum to initial uniform area ratios (normalised areas) for half of the symmetric 

frame and the evolutionary histories of the first two eigenvalues are shown in Figures 

4.9(a) and 4.9(b), respectively. Critical buckling eigenvalues of the uniform and the 

optimum designs are 2.861 and 5.602 respectively {OF = 1.960). The maximisation of 

the first eigenvalue brings about some reduction of the second eigenvalue. The second 
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eigenvalue decreases from 9.475 at the uniform design to 6.842 at the optimum design. 

Szyszkowski and Watson (1988) also obtained the same optimum design for this frame. 

(a) 

1 kN 

A 11 xr^""" 
3.5 -

I m 

I m 

3.0 - X 

2.5 -

2.0 -

1.5 -

1.0 V-

Second eigenvalue 

B"-B-«-B-"-B 

i'*' First eigenvalue 

10 20 
Number of Iterations 

30 

(b) 

Figure 4.9 - Optimum design and iteration history of the 2-ceIl frame (18 design 
variables) 

In the above examples each member of the stmcture is divided into several elements. In 

most cases, it is not practical to have different cross-sections within a member. One 

might seek an optimum design by treating each member as a single segment having the 

same cross-sectional area. If each member in the stmcture is treated as a single element, 

finite element solutions may not be accurate enough and the final design may not be 

optimum. This problem can be overcome by using the finite element modelling, 

allowing a number of elements to model each member (as in the case of above 
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examples), but assigning a modified member sensitivity number for all the elements 

within a particular member. If all the elements in a member have the same sensitivity 

number, when resizing all the elements in that particular member will acquire a single 

design value. This modified member sensitivity number is obtained from the average of 

the element sensitivity numbers of all the elements of that particular member. 

The 2-cell frame is reanalysed allowing only one design variable for each member by 

using the modified member sensitivity number instead of element sensitivity numbers. 

The final design normalised areas and the iteration histories are shown in Figure 4.10. 

The critical buckling eigenvalue of the final design is equal to 4.425 {OF = 1.546) 

compared to the previous optimum eigenvalue 5.601. However, a more practical design 

is obtained with the latter approach. 

IkN 

(0.70) 

(1.26) 

IkN 

I m 

'\ / '\ uniform 

3.0 \ 

\ 

I m 

2.5 

2.0 

1.5 

1.0 

\ 

\ Second eigenvalue 

^ ^ i — i A — i — i — i 

Firet eigenvalue 

5 10 15 
Nurrber of Iterations 

20 

Figure 4.10 - Optimum design and iteration history of the 2-cell frame (6 design 
variables) 
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4.5.2.3 Optimum design of a three storey frame 

A 3-bay, 3-storey, pin based frame as shown in Figure 4.11 is considered for buckling 

optimisation. The frame layout, loadings and member numbering are shown in the 

figure. All the members are of rectangular cross-section with constant breadth, Z? = 10 

mm. Initial uniform depth d is equal to 20 mm for all members and d is allowed to 

change in steps of 1 mm. 20%) of the total elements are subjected to resizing at each 

iteration. Initially the frame is optimised with no sizing constraints i.e. the design 

variable d can vary to any value. 

0.1 kN 

® 

C2^-

CD 

0.2 kN 

dD 

CD 

4m 

& • 

dD 

4m 

0.2 kN 

6 a, 

jle, 

9a^ 

4m 

i 0.1 kN 

3£C 

-Cla^ 

4m 

4m 

4m 

Figure 4.11 - Stioictiiral layout of the 3-storey frame 
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The following three cases are considered for optimisation. 

Case I: Each member of the frame is divided into 4 elements of equal length and 

allowed to have different depth for each element (optimisation using element 

sensitivity numbers). 

Case 2: Each member of the frame is divided into 4 elements of equal length, but each 

member is allowed to have only one design variable (optimisation using 

modified member sensitivity numbers). 

Case 3: Each member of the frame is modelled with a single element. 

The evolutionary histories of the first two eigenvalues for all three cases are shown in 

Figure 4.12. The first two eigenvalues of initial and optimum designs of all three cases 

are tabulated in Table 4.3. 
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Figure 4.12 - Optimization histories of the 3-story frame 
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Table 4.3 - Buckling load factors of the 3-storey frame (without sizing constraints) 

Initial design 

Final design - Case I 

Final design - Case 2 

Final design - Case 3 

A.1 

1.084 

3.440 

2.872 

2.958 

X2 

3.111 

3.780 

3.032 

2.985 

OF 

1.000 

3.173 

2.649 

2.748 

Final design depths of all the members for Case 2 and Case 3 optimum designs are 

given in Table 4.4. However if the final design obtained in Case 3 is solved again using 

the finite element model of 4 elements per member, X\ is dropped to 2.574 compared to 

the value 2.958 obtained with the finite element model of one element per member. 

Table 4.4 - Optimum member depths for the 3-storey frame 

Element 

number 

1,1a 

2, 2a 

3,3a 

4,4a 

5, 5a 

6, 6a 

7,7a 

8 

9,9a 

10 

11,11a 

12 

X\ obtained with four 

elements per member 

Member depths in mm 

Without sizing constraints 

Case 2 

13.93 

19.81 

12.01 

37.49 

19.87 

25.65 

17.77 

35.56 

17.81 

21.82 

4.09 

25.75 

2.872 

Case 3 

11.41 

19.26 

11.64 

35.54 

19.30 

25.09 

21.17 

34.85 

19.26 

23.21 

5.68 

23.25 

2.574 

With sizing constraints 

Case 2 

23.29 

20.27 

10.18 

30.00 

16.23 

23.30 

30.00 

13.21 

20.27 

20.28 

10.00 

19.26 

2.472 

Case 3 

25.06 

21.09 

10.00 

30.00 

15.07 

23.09 

30.00 

10.00 

21.09 

18.11 

10.00 

22.09 

2.205 
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Optimum depths of Case 2, which is the most preferred case practically, range from 

minimum of 4.09 mm (elements 11 and 1 la) to maximum of 37.49 mm (elements 4 and 

4a). Optimisation of this 3-storey frame is again carried out with sizing constraints. 

Member depths are now allowed to vary to maximum of 30 mm and minimum of 10 

mm in steps of 1 mm. RR - 20%o is used. All three cases as mentioned above are 

considered. The first two eigenvalues of initial and optimum designs of all three cases 

are tabulated in Table 4.5. The final design depths of all the members for Case 2 and 

Case 3 are given in Table 4.4 (columns 4 and 5). However if the final design obtained in 

Case 3 is solved again using the finite element model of 4 elements per member, A-i is 

dropped to 2.205 compared to the value 2.582 obtained with the finite element model of 

one element per member. 

Table 4.5 - Buckling load factors of the 3-storey frame (with sizing constraints) 

Initial design 

Final design - Case 1 

Final design - Case 2 

Final design - Case 3 

^1 

1.084 

3.017 

2.472 

2.582 

X2 

3.111 

3.180 

2.565 

2.645 

OF 

1.000 

2.783 

2.280 

2.382 

4.6 Influence of ESO Parameters on Optimum Designs 

In this section the influence of the step size and the resizing ratio RR on final optimum 

designs is studied with the previous examples of 3-member portal frame and 3-storey 

frame (Case 1, without sizing constraints). Optimum buckling eigenvalues and the 

numbers of iterations required to reach the optimum design are tabulated for different 
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Step sizes and resizing ratios in Table 4.6 for the three member frame and in Table 4.7 

for the 3-storey frame (Case 1). 

Table 4.6 - The influence of step size and RR on the optimum design of the portal frame 

RR (%) 

10 

20 

40 

60 

10 

20 

40 

60 

10 

20 

40 

Step size r m mm 

2.5 

2.5 

2.5 

2.5 

5.0 

5.0 

5.0 

5.0 

10.0 

10.0 

10.0 

Number of Iterations 

65 

37 

26 

22 

39 

23 

14 

13 

24 

12 

9 

X "P' 
i^cr 

4.0089 

4.0089 

4.0086 

4.0081 

4.0059 

4.0048 

4.0044 

4.0044 

4.0000 

3.9975 

3.9846 

Table 4.7 - The influence of step size and RR on the optimum design of the 3-storey 
frame 

RR (%) 

10 

20 

40 

10 

20 

40 

10 

20 

40 

Step size d in mm 

0.5 

0.5 

0.5 

l.O 

1.0 

1.0 

2.0 

2.0 

2.0 

Number of Iterations 

103 

89 

78 

72 

62 

37 

54 

43 

27 

3.5870 

3.5381 

3.5167 

3.4557 

3.4363 

3.4407 

3.4661 

3.3890 

3.3071 
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From Table 4.6 for the 3 member portal frame, it is observed that the optimum designs 

are not much affected by the choice oiRR and step size. Even with the values as high as 

9 9 

40% for RR and step size 10 mm for r , a reasonably accurate optimum design is 

obtained with only 9 iterations. Since this portal frame is simple and consists of only 

three members, and the fundamental buckling mode is only a side sway mode, high RR 

values and step sizes are acceptable. However if the stmctural layout and the buckling 

mode are complex, as in the case of 3-storey frame, it is always better to use small 

resizing ratios and small step sizes. The optimum design also depends on the finite 

element mesh. If the stmctural members are divided into more elements, more accurate 

distribution of material can be obtained. 

4.7 Optimality Criteria Methods Based on Uniform Strain Energy Concept 

Based on energy considerations, optimality criteria were established in the past for 

buckling optimisation of stmctures. The derivation of optimality condition for single 

modal frame stmctures by Khot et al. (1976) and Szyszkowski and Watson (1988) are 

described in the following sections. 

4.7.1 Optimality criterion by Khot et al. (1976) 

Khot et al. (1976) established optimality conditions for frame stmctures with linear size-

stiffness relations and presented a minimum weight design method using finite element 

analysis. In the following the derivation of optimality criteria by Khot et al. (1976) is 

described. 

For linear size-stiffness stmctures, design variables can be represented by the cross-

sectional areas of elements. Thus the optimisation problem is posed as follows: Find the 
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T 

vector of design variables X - {x\, X2, x„} which minimise the total stmctural 

weight of n elements 

^ ( ^ = Z P , V / (4.16) 

( = 1 

where p„ x/ and /,• are the mass density, cross-sectional area and length of the /"" element 

respectively, subject to the constraint that the fundamental eigenvalue X\ should be 

greater than the desired buckling load factor X . 

Xx>X* (4.17) 

Hence the Lagrangian fimctional for the minimum weight design subject to a single 

constraint is formed as 

L{X,X, ^i) = E p,x,/, + M(X, - X*) (4.18) 
i=\ 

where |i is the undetermined Lagrangian multiplier. Kuhn-Tucker optimality conditions 

is obtained by differentiating the Lagrangian functional with respect to any design 

variable, x,. 

^ ^ ^ § ^ = P , / , . . | ^ = 0 (4,19) 
dx. dx. 

For linear size-stiffness relation 

d[K] [k,] 

dx.. X 
(4.20) 

Khot et al. (1976) assumed 

= 0 (4.21) ^[^J 
dxi 

Substitiiting (4.20) and (4.21) into equation (4.8) leads to 

^ ^^ _ k i } ^ [ ^ J k i } (422) 

dx. x.{uJ^[K ]{uj 
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Substituting (4.22) into (4.19), the optimality condition is obtained as 

{UnY{ki]{Un) 1 
= — = A constant (4.23) 

p.x,/,{M,,}^[7i:j{w.,} |i 

Since the {un} [Kg} {un} is the same for all the elements, the optimality criterion can be 

interpreted as follows: "The optimum stmcture for stability is the one in which the ratio 

of the strain energy density to the mass density, associated with the buckling mode is 

same for all elements". This optimality condition is valid for single modal, single load 

and statically determinate conditions. 

The optimality criterion derived above is valid only at the optimum and has to be 

converted into a recurrence relation so that it can be used in an optimisation algorithm. 

The following two recurrence relations are commonly used in optimality criteria 

methods (Morris 1982). Equation (4.23) is re-written as 

Qi 
M p.x./. 

= 1 (4.24) 

where Qi- {u,,}r[KA{u,,} 
(4.25) 

Exponential recurrence relation: A recurrence relation can be written by multiplying 

both sides of equation (4.24) by x,'' and taking the r^ root. This gives 

x.^+' = x.̂  
Qi 

\\/r 

p.x,./,. 
(4.26) 

Linear recurrence relation: A linear recurrence relation is given by the following 

equation. 

x^+' = xr i + - Qi , 

9iXili 

(4.27) 

4-31 



Chapter 4 - ESO for Structures Against Buckline 

In equation (4.27) the term i\iQi / PiXih - I) is the error in satisfying the optimality 

criterion. In equations (4.26) and (4.27), v and v+1 indicate the iteration numbers and 

the parameter r determines the step size. For most problems it has been found that r = 2 

is generally adequate, but it is required for some problems to increase it to reduce the 

step size. In addition the Lagrangian multiplier |a has also to be found by using some 

iterative procedure. Note that the above recurrence relations are only for single 

constraint problems. 

4.7.2 Optimality criterion by Szyszkowski and Watson (1988) 

Szyszkowski and Watson (1988) also obtained the optimality conditions using the 

variational approach in a slightly different way from Khot et al. (1976). They derived 

the optimality conditions and presented a resizing algorithm to maximise the critical 

buckling eigenvalue of stmctures of constant volume. In the following derivation of 

optimality criteria by Szyszkowski and Watson (1988) is described. 

The optimisation problem is stated as follows: Find the vector of design variables X = 

{x\, X2, .x„}^ which would maximise the first buckling eigenvalue, X\, for the 

stmcture of a given total volume VQ which is given by 

V, = t/i (4-28) 
/=i 

where F,- is the volume of the z* element. Hence the Lagrangian functional for the 

optimisation problem is given as 

'v,-tv^ (4.29) L{X,X, n) = A, + fi 
V ;=i y 
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where |i is the undetermined Lagrangian multiplier. Taking the derivative of the 

Lagrangian function with respect to a design variable x/ brings 

dL d\ dV. 
^ = ̂ - ' ' ' K : = ^ (4.30) 

The following relation between the element stiffness and the element volume was 

assumed instead of the linear-size stiffness relation. 

[ki] = [b,]V;- (4.31) 

where [bi] is the matrix containing all the information on the location and size of the 

element and the power /?, may vary from element to element. Thus the derivative of 

stiffness matrix with respect to a design variable is reduced to 

d[K]_d[k,]dV, _ [Jc^dV^ 

dx, dV. dx. ^' F. ax. ( ^ ^ 
i I I I I 

Szyszkowski and Watson (1988) also ignored the derivative of the stress stiffness 

matrix. Substituting (4.32) and (4.21) into equation (4.8) gives 

Thus from equation (4.30), the optimality condition is given by 

-v\ XTrr\ X = — = A constant (4.34) 
V,{u.,}T[K^]{u,,} p, 

The term {Ui\}\Kg} {ui\} is the same for all the elements. In finite element modelling, 

strain energy stored in the /"" element due to the fundamental buckling mode is given by 

SE,=y2{u,y[k,]{u,,} (4.35) 

The specific strain energy of i'^ element is obtained by dividing the strain energy by its 

volume. 

SPE,=y2{u,y[k,]{u,,}IV, (4.36) 
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Thus the optimality criterion given by (4.36) is stated as follows: "The optimum shape 

of the stmcture with respect to buckling should have a configuration for which the 

specific strain energy associated with the fiindamental buckling mode is uniform". This 

optimality condition is again valid only for single modal, single load stmcmres. The 

extension of this optimality criteria to multimodal stmctures will be given in Chapter 5. 

Both optimality criteria derived by KJiot et al. (1976) and Szyszkowski and Watson 

(1988) are similar except the way they were derived and interpreted. In both methods, 

the derivative of stress stiffness matrix is ignored and the geometric constraints are not 

included in the Lagrangian functional. Szyszkowski and Watson (1988) assumed a 

relationship [k,] = [bjY!'' instead of linear size-stiffness relation. However this is tme 

only if all the elements of [A:,] matrix are related to the volume by the same power,/),. 

Based on the specific strain energy of elements Szyszkowski and Watson (1988) 

proposed an algorithm for resizing the cross-sections of all the elements. For elements 

with SPEi > SPEave (where SPEave is the average of SPEt of all the elements), the cross-

sectional areas are increased and for elements with SPEi < SPEave, the cross-sectional 

areas are decreased. Assuming the usual relationship I{x) = cA{xf exists between /(x) 

and Aix), the following iterative algorithm was proposed. 

I^^^=.sit =sII^[\ + aiSE^ ISE^^J] (4.37) 

where s is the scaling factor to satisfy the constant volume requirement and it is given by 

llhiifY' lllhiity 
L/=1 /=1 

(4.38) 
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The parameter a in (4.37) is an arbitrary constant to control convergence in the 

optimisation process. For most of the examples, Szyszkowski and Watson (1988) used a 

= 1. However in certain cases they used a as low as 0.01 and as high as 100. The 

analysis, specific energy calculation and resizing are carried out in cycles until the 

critical bucking load factor cannot be increased any further. 

The ESO method and Szyszkowski and Watson (1988) method for buckling 

optimisation have some similarities. In ESO method at each iteration a number of 

elements are resized by a small cross-sectional change based on their sensitivity 

numbers. In Szyszkowski and Watson (1988) method all the elements are resized based 

on the specific energy stored in elements due to the fiindamental buckling mode. If the 

specific energy of elements range from very small value to vary large value, the cross-

sectional areas of elements also have to be changed by large values accordingly. If cross-

sectional areas of elements are changed by large values, the change in stress stiffness 

matrix cannot be ignored. However in ESO method, since the elements are resized 

gradually, the change in stress stiffness matrix can be ignored. Furthermore, the resizing 

procedure of the ESO method is much simpler than the resizing algorithm of 

Szyszkowski and Watson (1988) or the recurrence relations commonly used in 

optimality criteria methods. 

4.8 Conclusions 

In this chapter ESO method for the design of stmctiires against buckling has been 

described. The sensitivity number used in the optimisation process is a measure of the 

effect of changing the cross-sectional area on the buckling load factor and it is obtained 

by ignoring the change in the stiess stiffness matrix. If the stmcttire is statically 
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determinate and the cross-sectional change at each iteration is small, the sensitivity 

number gives a very accurate estimation of the change in the buckling load factor. Even 

for a statically indeterminate frame this sensitivity is reasonably accurate if the cross-

sectional variations at each iteration in the frame results in only slight changes in the 

axial stress resultants. If an element is removed from the stmcture, because of the 

significant changes in the membrane or axial stress resultants in its surrounding 

elements, the change in the stress stiffness matrix cannot be ignored or found from the 

finite element solution of the old model. 

The capability of the proposed ESO method has been illustrated with several examples 

of single modal, single load case frame stmctures and the results have been compared 

with the exact solutions and the other available results. Critical buckling load factors 

have been increased substantially by shifting the material from the strongest part of the 

stmcture to the weakest part. The resizing procedure used in the ESO method is much 

simpler than the other resizing algorithms used in optimality criteria methods. Optimum 

designs have been obtained with and without sizing constraints. For the design of frame 

stmctures, more practical optimum designs have been obtained by using modified 

member sensitivity numbers. 
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CHAPTER 5 - OPTIMUM DESIGN OF MULTIMODAL STRUCTURES 

5.1 Introduction 

Repeated (or multimodal) eigenvalues in the form of buckling loads and natural 

frequencies of vibration very often occur in complex stmctures that depend on many 

design parameters and have many degrees of freedom. For example, stiffener-reinforced 

thin-walled plate and shell stmctures have a dense spectmm of eigenvalues and repeated 

eigenvalues are found often. Also, symmetry of stmctural systems may lead to the 

occurrence of several linearly independent buckling modes and vibration modes with 

repeated eigenvalues. 

Optimisation for maximum stability becomes more difficult when the lowest buckling 

eigenvalue of the problem, representing the critical load, is either inherently multimodal 

or it becomes multimodal as a result of the optimisation process. During optimisation, it 

is often observed that while the first eigenvalue is increasing, the subsequent 

eigenvalues are decreasing and gradually the first two or more eigenvalues converge to 

each other, although the corresponding eigenvectors may remain totally different. Some 

symmetrical stmctures are intrinsically multimodal from the outset. 

One of the earliest work on multimodal buckling problem was by Olhoff and 

Rasmussen (1977). Olhoff and Rasmussen discovered that the optimum eigenvalue of a 

clamped-clamped column of given volume is bimodal. They first demonstrated that an 

analytical solution obtained by Tadjbaksh and Keller (1962) under the tacit assumption 

of a simple buckling load is not optimal and presented a bimodal formulation of the 

problem and obtained the correct optimum design. The discovery in 1977 of repeated 
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optimum eigenvalues in stmcmral optimisation problems, and the necessity of applying 

a bimodal or multimodal formulation in such cases, opened a new field for theoretical 

investigation and development of methods for buckling optimisation. 

One of the main problems related to repeated eigenvalues is that they are not 

continuously differentiable. This is due to the fact that the eigenvectors corresponding 

to the repeated eigenvalues are not unique. In fact, an infinite number of linear 

combinations of the eigenvectors of the repeated eigenvalues will satisfy the original 

eigenvalue problem (equation 4.1). The non-differentiability creates difficulties in 

finding sensitivities of repeated eigenvalues with respect to design changes and 

derivation of necessary optimality conditions in optimisation problems. The formulae 

derived in Chapter 4, for eigenvalue sensitivity and increment of simple eigenvalue are 

not applicable to multimodal problems. 

Extensive research on various aspects of the problem of multimodality has been carried 

out in the past decade. Various approaches to design sensitivity analysis and derivation 

of necessary optimality conditions for multiple eigenvalues have been published. A long 

Hterature list is available in Seyranian et el. (1994). Although repeated eigenvalues are 

not continuously differentiable, Haug and Rousselet (1980) proved the existence of 

directional derivatives of repeated eigenvalues and obtained formulae for these 

directional derivatives in the design space. Bratus and Seyranian (1983) and Seyranian 

(1987) presented directional sensitivity analysis of repeated eigenvalues based on a 

pertiirbation technique and derived necessary optimality conditions. The reader is 

referred to Seyranian et al. (1994) for the detailed analysis of the directional derivation 

and sensitivity analysis of the repeated eigenvalues. The sensitivity analysis of the 
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repeated eigenvalues leads to the result that the increments of the repeated eigenvalues 

are themselves eigenvalues of a sub-eigenvalue problem. The use of directional 

derivatives in finding the sensitivities of repeated eigenvalues and the derivation of the 

necessary optimality conditions for multimodal problems are mathematically complex 

and computationally costly. 

Szyszkowski (1992) derived optimality conditions for multimodal problems using 

Lagrangian functional and presented a simple approach based on the specific energy of 

elements due to all participating buckling modes. According to Szyszkowski (1992), the 

optimality criterion for multimodal stmctures states that a linear combination of the 

normalised specific energy due to the participating buckling modes must sum to unity at 

every point of the optimum stmcture. In this method Lagrangian multipliers which 

determine the linear combination of the participating modes need to be determined 

iteratively. This method is again mathematically complex and the application of this 

method to statically indeterminate stmctures may lead to non-optimum designs. In some 

cases convergence problems are observed. Details of this method will be discussed in 

Section 5.4. 

In the following sections, a very simple technique to take account of multimodality in 

the ESO method for buckling optimisation is proposed. The application of the ESO 

method to multimodal problem is illustrated with several examples and compared with 

the available results from the literature. 
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5.2 Sensitivity Number for Buckling Load of Repeated Eigenvalues 

Using a proper eigenvalue solver the solution to the problem given by equation (4.1) is 

obtained in the form of the set of eigenvalues A,i < X,2 < X.3 <... and the corresponding set 

of buckling eigenvectors {u\}, {ui}, {u^}.... The aim is to maximise the fiindamental 

eigenvalue, A.i. However, when increasing X\,\\. may become close to X2 and then to X,3 

and etc up to XN- Consequently, the optimisation procedure finally may need to 

monitor the first N buckling modes simultaneously. 

In the ESO method, the sensitivity number of each element is a cmcial factor. In 

equation (4.10) only the first eigenvector is considered. When the first eigenvalue 

becomes close to the subsequent eigenvalues, there will be interference between the first 

and the subsequent eigenvectors. Therefore the effect on the fundamental eigenvalue 

due to all participating eigenvectors needs to be included. An eigenvalue multiplicity 

parameter e is defined and the multimodality of the stmcture is determined by the 

number of eigenvalues within an s distance of the lowest eigenvalue. If, for example, 

the distance between A,i and X2, is within a certain limit, say e = 5%, and the distance 

between X\ and .̂3 is greater than 5% it may be assumed that the stmcture has now 

become bimodal. When Xx and X2 become close, the first two buckling modes may swap 

with each other as a result of stmctural modifications during the iterations. There is no 

point in trying to increase X\ only to see X2 drop its value in the next step below the 

previous A-i. To effectively increase the buckling load factor in these circumstances, 

both A,i and X.^. have to be increased. The simplest strategy for achieving this is to 

increase the average values of Xi and X^. Therefore we redefine the sensitivity number 

for the bimodal case as 
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a,* = ^ ( k - . } " [ A ^ J k i } + K2}"[A^,]k-2}) (5.1) 

Similarly for a multimodal case, when the TV"" eigenvalue A,/v and A,i are within e 

distance, the sensitivity number is defined as 

' ' '• ' '^A^^^"'-'^'^'^'-^^'' ' '^^ + k7v}^[M,]K^}) (5.2) 

For the calculation of these sensitivity numbers all the relevant eigenvectors have to be 

first ortho-normalised with respect to [Kg] such that {uj} \Kg] { uj} = 1. For each element 

two sensitivity numbers, a,-̂ "̂  and a/̂ ,", need to be calculated by substituting [Aki]'*' and 

[M,]" instead of [AA:,] in the above equations. 

It is not clear a priori whether repeated eigenvalues will occur in a specific problem. 

The multimodality of the optimal design of each particular problem is unknown and is 

rather difficult to predict. If, for example, that by steps of bimodal redesign the distance 

between the third eigenvalue Xi and the bimodal eigenvalues Xi and A.2 (?̂ ] = X2) may 

decrease, and if coalescence occurs, a trimodal scheme must be adopted for subsequent 

iterations, and so on. Thus, independent of the degree of multiplicity of the fiindamental 

eigenvalue at a given iteration stage, it is necessary to keep track of a few of the next 

(higher order) eigenvalues in order to capture possible coalescence of one or more of 

these eigenvalues with the fundamental one, and then use an updated scheme for the 

subsequent iterations. The optimisation procedure for multimodal problems is the same 

as described in Section 4.3 except that the sensitivity numbers now need to be 

calculated based on equation (5.1) or (5.2). 
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5.3 Examples 

5.3.1 Clamped - clamped column 

The optimum shape of the clamped-clamped column compressed at its ends was first 

deah with by Tadjbakhsh and Keller (1962). The goveming differential equations were 

obtained using variational calculus and were solved analytically for a column with 

geometrically similar cross-sections satisfying /(x) = cA{x)^. Their results stood 

unchallenged until 1977 when Olhoff and Rasmussen (1977) found that the optimum 

design should be bimodal. The study of Olhoff and Rasmussen (1977) on clamped-

clamped column was the earliest work on bimodal buckling optimisation. In their 

landmark study, they showed that the critical load is govemed by a repeated eigenvalue. 

They established the differential equations for optimisation under the double eigenvalue 

formulation by using variational calculus and solved these non-linear integro-

differential equations of the continuous system by means of finite difference method. 

Olhoff and Rasmussen (1977) also discovered that there was a threshold value of 

minimum area constraint which separated the single and bimodal buckling modes. The 

curve of optimum buckling load factor versus minimum area constraint p for the 

column cross-sectional area obtained by Olhoff and Rasmussen (1977) is reproduced in 

Figure 5.1, where minimum dimensionless cross-sectional area ^ = ALIV. They found 

that the optimum buckling load is single for any value of p in the range of 0.280 < p 

< I. For 0 < p < 0.280, the buckling mode is bimodal and the optimum occurs at p = 

0.226 and the corresponding optimum factor is 1.3262. The minimum cross sectional 

area of the column is found to be at x = 0.251 and 0.75Z. From the curve and the results 
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it is seen that the optimum design is very sensitive to the minimum area constraint and 

the number of buckling modes. The difference between the optimum designs obtained 

with single modal or bimodal optimisation is very small. 

•J /-L uniform 

1.4 

1.3 

1.2 

l.I 

1.0 T ^ is double 
k 

0.9 - inactive 6 
< — > ^ 

0.8 

-^^ 

• ESO results 
— Olhoff and Rasmussen 

A, is single 

active minimum area constraint 3 

0.2 

0.226 

0.4 0.6 0.8 

0.280 

Figure 5.1 - The curve of optimum eigenvalue vs minimum area constraint 

Recently Tada and Wang (1995) re-investigated the same problem and showed the 

convergence of the numerical calculation is highly sensitive to the precision of the 

numerical calculation. Tada and Wang (1995) obtained the optimum solution using 

double precision computations and 6400 discrete points for the finite difference 

modelling to solve the differential equations. According to Tada and Wang (1995) the 

optimum design under single modal formulation is at p = 0.2817 and the optimum 

factor is found to be 1.32454. The minimum area p = 0.2817 occurs at x = 0.25L and x 

= 0.75Z. With bimodal formulation the optimum eigenvalue increases as P decreases in 

the region of 0.2258 < p < 0.2817. When p < 0.2258 the optimum eigenvalue becomes 
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Stable with the optimum factor of 1.3262. The minimum area p = 0.2258 occurs at x = 

0.2471 and x = 0.7531. 

Both Olhoff and Rasmussen (1977) and Tada and Wang (1995) obtained the optimum 

designs for clamped-clamped column using distributed parameter optimisation methods. 

With continuous design variables, high sensitivity of optimum designs with regard to 

minimum area constraint and the number of participating buckling modes either single 

or bimodal could be captured. However this extremely small difference between the 

single modal and bimodal designs cannot be captured with the optimisation methods 

based on finite element analysis due to round-off errors . Seyranian et el. (1994) and 

Szyszkowski (1992) independentiy tried to obtain optimum designs for clamped-

clamped column using the optimality criteria method based on the finite element 

analysis and observed the same difficulties. 

This example is reanalysed using the proposed ESO method to check the precision of 

the method. A circular cross-sectional column is analysed. The dimensions are as 

follows: length I = 1 m ; uniform r^ = 20 mm^ and / is allowed to vary to the maximum 

/ = 40 mm^ and to the minimum r^ = 1 mm^ in steps of r̂  = 0.1 mml RR = 20% and 8 

= 2% are assumed. The column is divided into different numbers of elements and the 

optimum factors obtained are compared in Table 5.1. ft is interesting to note that these 

optimum factors are only marginally less than the bimodal optimum buckling load 

factor 1.3262 of the continuum column determined by Olhoff and Rasmussen (1977). 

The optimum shape and the cross-sectional areas are shown in Figure 5.2. However, as 

noted from Table 5.1, there is no difference observed between the single modal and 
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bimodal optimum solutions. The effect of minimum area constraint on optimum design 

is also checked for the column divided into 200 elements. The results are tabulated in 

Table 5.2 and compared with the numerical results available from Olhoff and 

Rasmussen (1977). The points obtained by the proposed ESO method lie on the curve of 

Olhoff and Rasmussen (1977) as shown in Figure 5.1. 

Table 5.1 - Clamped-clamped column optimum factors 

Number of 

elements 

50 

100 

200 

Optimum factors 

Single modal 

1.3200 

1.3233 

1.3242 

Bimodal 

1.3200 

1.3233 

1.3242 

r/ru. 

.2 _ p = 1.3299 

0.8 

0.4 p = 0.270 

P = 1.3299 

0.0 
0.1 0.2 0.3 0.4 0.5 

x/L 

Figure 5.2. Optimum shape of the clamped-clamped column 
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Table 5.2 - Optimum factors for different p values 

p 
0.3 

0.4 

0.6 

0.7 

0.8 

0.9 

Optimum factors 

Olhoff and Rasmussen 

-

1.3115 

-

1.2333 

-

-

ESO 

1.3225 

1.3111 

1.2684 

1.2332 

1.1846 

1.1156 

5.3.2 Three member portal frame - bimodal example 

A three member pin based frame which was analysed by Szyszkowski et al. (1989) for 

bimodal buckling is considered. The frame layout and the loading are shown in Figure 

5.3. All the members are of circular cross-sections and of equal length of 1 m. Initial 

9 9 2 

uniform r is 20 mm and is allowed to vary to the maximum 40 mm and to the 

9 9 

minimum 5 mm in steps of 1 mm . Each member is divided into 10 elements of equal 

length. RR = 20%) and s = 5%o are used. For the frame with a uniform cross-section, the 

first buckling mode is anti-symmetric with sway and the second buckling mode is 

symmetric without sway. High compressive loads are applied in the horizontal direction 

to make the problem bimodal from the outset. 

The optimum shape obtained with the bimodal method by using equation (5.1) for 

sensitivity number calculations is given in Figure 5.3. The corresponding buckling load 

is 1.247 times that of the uniform frame. This optimum design compares well with the 

optimum design obtained by Szyszkowski et al. (1989). If only the first buckling mode 
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is considered for optimisation and the single modal sensitivity number is used, the 

buckling load factor can only reach 1.125 times that of the uniform frame. The 

evolutionary histories of the first two eigenvalues using both single and bimodal 

methods are given in Figure 5.4. The above problem is analysed with different values of 

multiplicity parameter 8 = 1%), 2% and 5%o. No difference is observed in the final design 

although the iteration histories of eigenvalues vary slightly in intermediate designs. 

A r/r^. 
IkN 

Im 

Figure 5.3 - Optimum shape of the three member portal frame 
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A / 1 uniform 

Bimodal (A,2) 

/\/\/VV\/V\ 
- / \ / ^ ^ / • ^ . / ' ^ . - ^ ^ . - ^ " - . - ^ 

12 ^ / \ ^ • _ / * ^ * * Bimodal (?.,) 

1.0 

/ ^m(__^* • Single modal {Xj) 

/ • / -* ^•^•—Z=^'^~~' Single modal (?t,) 

0 5 10 15 20 25 

Number of Iterations 

Figure 5.4 - Optimisation histories of the eigenvalues for the three member frame 

5.3.3 Three member space frame - trimodal example 

A space frame with three beams pinned at the base and clamped at the apex is 

considered for the trimodal optimisation. The frame layout and the loading are shown in 

Figure 5.5. All the members are of circular cross-sections and of length 1 m. Initial 

9 9 9 

uniform r is 20 mm and it is allowed to vary to the maximum 40 mm and to the 

9 7 

minimum 5 mm in steps of 1 mm . Each member is divided into 10 elements of equal 

length. This is a triple symmetric stmctiire and the first three eigenvalues coincide for 

the uniform design and remain coincided throughout the optimisation process when the 

trimodal optimisation is carried out. The optimum shape obtained with the ESO method 

is given in Figure 5.5. The ratios of the final to initial uniform radius of the cross-

section are displayed in this figure for one member as it is identical for all members. 

The optimum buckling load is 1.273 times that of the uniform frame and it is achieved 

after 10 iterations. Optimum design is also obtained by considering only the first 

buckling mode. The optimum factor for this is 1.251 and it is obtained after 35 

iterations. Although the optimum factors obtained by trimodal and single modal 
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methods are differed by only 1.73%, a much higher number of iterations are required 

when using single modal optimisation. The iteration histories of the first three 

eigenvalues using both single modal and trimodal methods are given in Figure 5.6. 

(0,1,0) 

^> 

(1,1,1) 

(1,0,0) 

llX""'form 

1.3--

1.2 

Figure 5.5 - Optimum shape of the three member space frame 

- • — • — • — • 

/ / / ~*~ Trimodal 

1.1 

1.0 * - * - • = • • 

A ^ 6 - * 

~ * ~ Single modal {X\) 

~* Single modal (A,2) 

"~*~ Single modal (A.3) 

_, ^ 
10 20 

Number of Iterations 

30 

Figure 5.6 - Optimisation histories of the three member space frame 
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5.3.4 Box frame 

The box frame shown in Figure 5.7 was previously considered for buckling optimisation 

by Szyszkowski et al. (1989) using optimality criteria method. This frame was later 

reanalysed by Canfield (1993) using non-linear mathematical programming with 

Rayleigh Quotient Approximation method. Buckling optimisation of this frame was 

considered to be one of the most difficult examples in the literature. 

This box frame is optimised for buckling using ESO method and the results are 

compared with those from the literature. All the members are of rectangular cross-

sections with constant breadth Z? = 40 mm. Initial uniform depth d is equal to 40 mm for 

all the members. As shown in Figure 5.7, top and bottom horizontal members are 

divided into six elements of equal length and diagonal and vertical members are divided 

into three members of equal lengths. Since the diagonal members are under the tensile 

axial forces, the material of these members should probably be transferred to other 

members, presumably under compression. Consequently, the slender diagonal members 

in tension may, in the optimum design, become too thin to carry the tensile forces. 

Initially the design variable, depth d is allowed without upper limit and to the minimum 

depth of I mm in steps of 1 mm. RR = 20% is used. The optimum to the initial uniform 

depth ratio is shown for half of the symmetiic model in Figure 5.7 (the values on the left 

hand half of the frame). The evolutionary histories of the first two eigenvalues using 

both single and multimodal methods are given in Figure 5.8. Initially for the uniform 

design, the fiindamental eigenvalue is single. From the iteration histories of eigenvalues, 

it is seen, as the optimisation progresses, the first two eigenvalues converge to each 
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Other, then they drift apart from each other and the final optimum design is single 

modal. The final design buckling load factor is 3.886 times that of the uniform frame. If, 

however, only the first buckling mode is considered using the single modal sensitivity 

number throughout the optimisation process, the final design buckling load factor can 

reach only 2.522 times that of the uniform frame. Thus even if the final optimum design 

is single modal, bimodal optimisation needs to be carried out to get over the 

intermediate bimodal situations. 

1.371 

1.635 

1.745 

6m 
< 

1.2t08 

- 0.025 

0.859 

0.025^"""^ 

1.210 

.̂ .̂ ^^ 0,030 

(1.418) 

(0.025) 

(0.928) 

-"•"̂  (0.025) 

(1.936) 

' i ; 0 . 0 2 5 ) 
(1.528) 

(1.446) 

' (1.525) 

•M 

] 

A 

Im 

1.457 2.041 1.716 | (1.595) (1.915) (1,288) .-^ lOP 

Figure 5.7 - Optimum design of the box frame (allowable minimum depth = 1 mm) 

XI x""'f<"-'" 

2.0 1 

40 60 

Number of Iterations 

Bimodal (A,2) 

/vwv 
Bimodal (Xi) 

Single modal {X2) 

Single modal (A-i) 

Figure 5.8 - Optimisation histories of the eigenvalues for the box frame {dmi„ = 1 mm) 
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For this particular frame, high numbers of iterations are required to obtain optimum 

designs. As the optimisation progresses, the first few eigenvalues of the problem 

become negative, and at the final stages of the optimisation process the first eight 

eigenvalues are negative and the ninth and tenth eigenvalues are the first two positive 

eigenvalues. Hence through out the optimisation process, at least first 10 eigenvalues 

and eigenvectors need to be monitored to pick up the first two positive eigenvalues. The 

first few negative eigenvalues physically indicate that the loading direction needs to be 

reversed to cause the buckling in the stmctiire. Detailed histories of the first ten 

eigenvalues are given in Appendix 5.1. 

The optimum depth ratios obtained by Szyszkowski et al. (1989) are given in the 

parenthesis (the values on the right hand half of the frame). Optimum factor for this 

design reported by Szyszkowski et al. (1989) was only 3.018 and they claimed the final 

design was bimodal. Analysing this final design for buckling reproduces the same 

critical buckling load factor (3.018 times the load for the uniform design); however, the 

analysis reveals the volume of this design has increased by 5% and the design is not 

bimodal as claimed. ESO method produces the optimum design with much higher 

buckling load factor, while precisely maintaining the constant volume constraint. 

This box frame is reanalysed for the minimum allowable depth d-A mm. The optimum 

to initial uniform depth ratios are shown for half of the symmetric frame in Figure 5.9. 

The evolutionary histories of the first two eigenvalues using both single and multimodal 

methods are shown in Figure 5.10. The final optimum design is bimodal and the 

corresponding buckling load factor is 3.666 times that of the uniform design. Again at 
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final Stages of optimisation the first eight eigenvalues are negative and the ninth and 

tenth eigenvalues are the first two positive values. Detailed histories of these 

eigenvalues are given in Appendix 5.2. The optimum depth ratios obtained by 

Szyszkowski et al. (1989) are given in the parenthesis. Buckling load factor for this 

design is only 2.721 times that of the uniform design. 

<e 
6m 

^> 

1.193 0.836 1.193 (1.403) (0.933) (!.416) 

Figure 5.9 - Optimum design of the box frame (allowable minimum depth = 4 mm) 

y j \ uniform 

Bimodal {X2) 

Bimodal {X{) 

20 80 40 60 

Number of Iterations 

Figure 5.10 - Optimisation histories of the eigenvalues for the box frame {dmin = 4 mm) 

Szyszkowski et al. (1989) obtained final designs after between 25 to 30 iterations. To 

obtain the correct optimum designs ESO method requires between 80 to 85 iterations 

with RR = 20%) and step depth size = 1 mm. However, the static and buckling analyses 
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of this 24 element frame require only 6 seconds on a Pentium / 100 Mhz personnel 

computer. Hence total time requires for the whole optimisation process is only about 8 

to 10 minutes. In general, for frame stmctures the number of iterations required to 

obtain the optimum designs does not really matter. 

Canfield (1993) analysed this frame with a reduced ratio of horizontal to vertical load 

(4:1 instead of 10:1). With the allowable minimum depth d=\ mm, Canfield obtained a 

bimodal optimum design with the buckling load factor 3.051 times the uniform buckling 

load factor. ESO method also produces the same optimum buckling load factor. The 

optimum to initial uniform depth ratio are shown for half of the sjmimetric frame in 

Figure 5.11. The values given in parenthesis are by Canfield (1993). The evolutionary 

histories of the first two eigenvalues using both single and multimodal methods are 

shown in Figure 5.12. 

6m 
<e -> 

.533 0.980 .493 (1.485) (0.975) (1.505) 

T7 .566) (1.805) (1.239) 

Figure 5.11 - Optimum design of the box frame (allowable minimum depth = 1 mm) 
Horizontal to vertical load ratio 4:1 
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^ f \ uniform 

3.0 -

Bimodal {X2} 
/\A/vv^/\ 

20 40 60 80 

Number of Iterations 

100 120 

Figure 5.12 - Optimisation histories of the eigenvalues for the box frame {dmin = 1 mm) 
(Horizontal to vertical load ratio 4:1) 

5.4 Multimodal Optimality Criteria by Szyszkowski (1992) 

Initially Szyszkowski et al. (1989) extended the single modal optimality criteria 

outiined in Section 4.7.2 by Szyszkowski and Watson (1988) to bimodal problems. 

Later Szyszkowski (1992) extended the bimodal method to general multimodal 

problems. Full details of the derivation of the optimality criteria can be found in their 

papers, but a summary of the method is given below. 

In deriving the optimality criteria, Szyszkowski (1992) introduced a term NSEij which 

represents the normalised specific strain energy stored in the /* element due to the / 

buckling mode. NSEij is defined by the following equation: 

SPE^: 
NSE:, = • 

n 

YnJ^SPEy 
i=\ 

(5.3) 
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where SPEij is the specific strain energy of the /* element (as defined in equation (4.36)) 

and n is the total number of elements. For a multimodal problem of Â*̂  order, Xj = Xx (j 

= \,N), Szyszkowski (1992) derived the following optimality conditions, 

l-llyjmE,+ZyjNSE..=\ 
K /=2 J 

(5.4) 
j=2 

for all the elements, yy (/' =2, N) are undetermined Lagrangian multipliers and they 

should be within the range of 

0 < Yy < 1 and Eyy^i (5.5a,b) 
y=2 

These Lagrangian multipliers need to be determined iteratively during the optimisation 

process. The optimality condition (5.4) states that a linear combination of the 

normalised specific energy due to the participating buckling modes must sum to unity at 

every point of the stmcture. The actual modality of the stmcture is unknown in advance. 

If the optimum design is only TV/? - modal, that is if A,; = X\ forj = 1, NR, where NR < N, 

equation (5.4) needs to be supplemented with the following switching conditions. 

T; ^ - 1 
\ 

= 0 ; 7=1,iV (5.6) 

For NR <j < N, Xj i^X\ and all the yy must be equal to zero and equation (5.4) will 

involve only the first NR participating buckling modes. The goal of the optimisation 

procedure is to satisfy equations (5.4) to (5.6) iteratively. Initially the values for 

Lagrangian multipliers yy {j-2,N) are assumed satisfying equation (5.5). From equation 

(5.4), for each element a local error, ^„ is calculated as 

,̂- = 
r N ^ 

I - Z Y ; 
i=2 ; 

mE,,^%.NSE^.-\ (5.7) 

5-20 



Chapter 5 - Optimum Desien of Multimodal Structures 

If the design is optimum, ^, should have been zero for all the elements. Based on these 

local errors of elements, design variable of elements are lineariy updated using 

X,*-' =x,*(l + c^,.) (5.8) 

where c is an arbitrary positive constant. With these new design variables, NSEij of 

elements are found and using a complex analysis, the initially assumed Lagrangian 

multipliers are updated to minimise the local errors of elements, ^„ in subsequent 

iterations. Details of the procedure can be found in Szyszkowski (1992). 

5.5 Conclusions 

The capability of the ESO method for buckling optimisation of multimodal stmctures 

has been illustrated with several examples. The proposed results compare well with 

exact solutions and other available results. The sensitivity number calculations and the 

iterative process for multimodal cases are very simple and do not involve any complex 

mathematical formulations such as variational calculus or Lagrangian multipliers. In 

many cases, using multimodal formulation results in much higher buckling load factors 

than using single modal formulation, if the stmcture has been multimodal at any stage 

of the optimisation. The optimality criteria method by Szyszkowski (1992) does not 

give optimum designs for highly statically indeterminate frames. For the same example, 

ESO method gives much better results than Szyszkowski (1992). 
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APPENDIX 5.1 

The history of the first ten eigenvalues for the box frame (minimum depth 1 mm) 

u 
12.158 
12.963 
13.795 
14.656 
15.547 

16.493 
17.447 
16.943 
18.059 
18.532 
18.365 
18.989 
19.439 
19.693 
20.835 
21.189 
20.649 
21.645 
21782 
22.195 
23.131 
23.228 
23.366 
24.367 

24.543 
24.862 
25.665 
-25.233 
-24.150 

-21.747 
-20.862 

-18.757 
-16.776 

-16.136 
-14.178 

-11.896 
-9.736 
-7.875 

-6.255 
-4.910 

-3.888 

-3.069 
-2.456 

'Xi 

16.070 
16.988 
18.242 
19.462 

20.261 
19.554 
18.354 
18.447 
18.484 
19.847 
19.466 
19.883 
21.222 
20.399 
20.978 
22.254 

22.200 
22.292 
23.853 
22.813 
23.527 
25.081 
24.294 
24.899 
26.264 
25.662 

26.487 
25.404 
-25.452 

-22.847 
-21.810 
-19.525 
-17.364 

-16.370 
-14.242 

-11.911 
-9.824 

-7.961 
-6.348 
-4.995 

-3.953 
-3.125 
-2.496 

A-3 

27.666 
26.387 

24.889 
23.509 
22.647 

23.072 
24.427 
25.781 
25.333 
26.385 
27.844 
27.367 
28.136 
29.630 
30.716 
31.666 
33.293 
32.808 
33.317 
34.811 
35.624 
35.906 
34.377 
-35.326 
-32.103 
-30.689 
-28.013 
-26.671 

26.577 
26.614 

27.065 
-24.293 
-20.524 

-17.613 
-14.744 

-13.703 

-12.140 
-11.460 

-10.099 
-8.869 
-8.447 
-7.509 
-7.241 

A,4 

27.927 
29.133 

31.220 
33.371 

35.525 
37.179 
37.168 
34.792 
37.518 
37.817 
35.300 
38.035 
37.953 
35.355 
35.159 
36.148 
33.384 
36.240 
37.598 
34.968 
35.847 
37.158 
37.622 
35.662 

-34.208 
-32.634 
-29.698 
28.360 

26.909 
28.553 
27.828 
-25.364 

-21.470 
-18.812 

-15.996 

-14.836 

-13.001 

-12.293 

-10.756 
-9.389 

-8.970 
-7.931 
-7.667 

^ 5 

34.879 
36.645 

39.469 
42.461 
45.353 
42.564 
42.161 
43.859 
42.971 
43.949 
45.821 
45.072 
45.364 
47.376 
48.314 
48.933 
51.385 
-48.867 
-45.338 
-45.340 
-41.736 
-38.461 
-38.468 
37765 
36.660 
35.654 
37.040 
40.013 
-37.489 

-32.451 
-28.459 
27.755 
27.411 

28.677 
28.619 

29.991 
29.926 

30.728 

31.400 
31.067 

32.637 
32.683 
34.289 

^ 6 

58.296 

54.880 
51.559 
48.357 
45.610 
48.532 
51.954 

55.055 
53.258 
54.650 
57.926 
56.585 
56.840 
60.130 
-56.192 
-51.940 
-51.925 
50.348 
-49.436 
-49.267 
-45.047 
-41.378 
-41.257 
-37.769 
38.405 
40.270 

40.129 
40.212 

-38.955 
-33.693 
-29.694 

28.826 

30.936 
29.398 
31.263 

30.059 
32.036 

31.421 

32.702 

35.058 

33.723 
35.836 
34.507 

^ 7 

71.270 
75.276 

80.743 
-83.904 
-81.386 
-79.416 
76.299 
70.289 
-71.615 
-67.151 
-67.112 
-63.507 
-60.268 
-60.256 
61.366 
-57.137 
-56.915 
-53.470 
50.102 
52.550 
52.832 

52.289 
54.888 
54.200 
54.515 
-54.218 
-48.160 
-42.103 
38.977 
40.314 
39.254 
40.744 

43.741 
43.012 
44.604 

43.928 

45.741 
45.041 

46.733 

50.240 
49.794 

50.043 
49.361 

A.8 

84.196 
88.194 
-86.447 
86.483 
88.418 
81.993 
-76.985 
-75.129 
76.775 
-75.114 
71.314 

-70.669 
-67.321 
-67.045 
-62.270 
62.617 
64.875 
64.542 
64.664 
67.309 
68.957 
69.454 
70.171 

-66.983 
-59.696 
-56.342 
-49.980 
-43.639 
42.124 
42.028 
44.045 
44.347 
44.106 
45.792 
46.111 

48.529 

48.148 

50.677 

50.993 
50.493 

52.837 
53.612 
-50.027 

^ 9 

-90.627 
-89.006 
93.808 
-93.310 
-90.423 
-88.768 
-85.984 
-84.469 
-80.432 
77.308 
-74.786 
77.447 
77.788 
71.870 
72.322 
74.900 
70.448 
75.172 
78.606 
73.695 
76.327 
-74.362 
-74.352 
-69.636 
-61.965 
57.364 

56.471 
56.464 
59.372 
58.478 
61.508 

61.794 
60.740 
63.822 
64.122 
67.740 

66.922 
70.685 

70.987 
69.795 

-65.728 

-57.815 
-50.064 

^10 

-100.211 
-99.186 
-96.234 

93.659 
92.480 
98.338 
104.588 
106.498 
107.203 
109.888 
110.605 
113.346 
114.761 
113.452 
114.964 

-107.854 
-107.794 

-99.519 
-90.845 
-90.817 
-82.159 
-77.496 
76714 
72.065 
73.662 
74.030 

76.646 
78.505 
80.112 
82.077 
81.621 

84.769 
87.312 
88.545 
91.125 
90.961 

94.604 
93.363 

-85.341 
-75.012 

-65.790 

-57.863 
56.366 
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-1.958 

-1.731 
-1.390 

-1.188 
-0.973 

-0.814 

-0.643 
-0.529 

-0.386 
-0.317 
-0.203 

-0.174 

-0.090 
-0.092 
-0.031 
-0.050 
-0.050 
-0.009 
-0.031 
-0.005 
-0.034 
-0.005 
-0.034 
-0.005 
-0.034 

-0.005 
-0.034 
-0.009 
-0.034 
-0.009 
-0.033 
-0.009 

-0.030 
-0.009 
-0.025 
-0.004 

-0.018 
-0.005 

-0.018 
-0.005 
-0.018 

-1.989 

-1751 
-1.405 

-1.198 
-0.979 

-0.818 

-0.646 
-0.530 

-0.386 
-0.317 
-0.204 

-0.174 
-0.090 
-0.092 
-0.031 

-0.050 
-0.050 

-0.009 
-0.031 
-0.005 
-0.034 
-0.005 
-0.034 
-0.005 
-0.034 
-0.005 
-0.034 

-0.009 
-0.034 

-0.009 
-0.033 

-0.009 
-0.030 
-0.009 
-0.025 
-0.004 

-0.018 

-0.005 
-0.018 
-0.005 
-0.018 

-6.374 

-6.237 
-5.498 

-5.407 
-4.840 

-4.628 

-4.172 
-3.979 

-3.526 
-3.307 
-2.792 

-2.249 
-1.549 

-0.920 
-0.481 
-0.219 

-0.220 
-0.061 
-0.094 
-0.014 

-0.100 
-0.014 

-0.100 
-0.014 

-0.100 
-0.014 
-0.099 
-0.069 
-0.098 
-0.069 

-0.090 
-0.064 
-0.059 
-0.025 
-0.045 
-0.009 

-0.036 
-0.009 

-0.036 
-0.009 

-0.036 

-6.714 

-6.579 
-5.779 

-5.685 

-5.060 

-4.837 

-4.344 
-4.138 

-3.646 
-3.407 

-2.856 
-2.270 
-1.554 

-0.921 
-0.482 

-0.219 
-0.220 

-0.061 
-0.094 
-0.014 

-0.100 
-0.014 

-0.100 
-0.014 
-0.100 
-0.014 
-0.099 
-0.069 
-0.098 
-0.069 
-0.090 
-0.064 

-0.059 
-0.025 
-0.045 
-0.009 
-0.036 
-0.009 
-0.036 

-0.009 
-0.036 

33.971 

35.202 

-30.869 
-25.671 

-21.560 

-16.869 

-13.937 

-10.529 

-8.283 
-6.069 

-4.565 
-3.632 
-2.991 

-2.832 
-2.421 

-1.966 
-1.973 
-1.673 
-1.637 
-1.390 
-1.326 
-1.109 
-1.060 
-0.863 
-0.834 

-0.658 
-0.643 
-0.475 
-0.361 
-0.239 
-0.190 
-0.106 
-0.128 
-0.079 
-0.118 
-0.018 

-0.097 
-0.029 

-0.097 
-0.029 
-0.097 

37.102 

35.565 

-30.878 
-25.671 
-21.564 

-16.877 

-13.948 

-10.546 

-8.301 
-6.100 
-4.605 
-3.710 
-3.060 
-2.902 
-2,474 
-2.002 
-2.008 
-1.697 
-1.660 
-1.407 
-1.341 
-1.118 
-1.070 
-0.869 
-0.840 
-0.661 
-0.646 
-0.477 
-0.362 
-0.240 
-0.190 
-0.106 
-0.128 
-0.079 
-0.118 
-0.018 
-0.097 

-0.029 
-0.097 

-0.029 
-0.097 

-42.907 

-36.463 
35.166 
36.107 

36.443 

36.529 
37.097 
37.408 

38.019 
38.168 
39.194 
38736 
40.126 
39.587 
-36.561 
-29.514 
-29.618 
-25.474 
-24.564 

-21.175 
-19.768 
-16.849 
-15.693 
-13.095 
-12.229 
-9.959 
-9.289 
-7.101 
-4.953 
-3.500 
-2.218 
-1.369 
-0.749 
-0.348 
-0.369 
-0.130 
-0.175 
-0.079 
-0.175 
-0.079 
-0.175 

-42.935 
-36.479 

38.051 
36.794 

39.373 
37.822 
40.397 

38.573 

41.156 
39.456 
41.594 
40.537 
42.506 
41.477 
-37.018 
-29.842 
-29.936 
-25.703 
-24.781 
-21.331 
-19.915 
-16.948 
-15.790 
-13.158 
-12.288 
-9.996 
-9.324 
-7.122 
-4.963 
-3.505 
-2.220 
-1.370 
-0.750 
-0.348 
-0.369 
-0.130 
-0.175 

-0.079 
-0.175 
-0.079 
-0.175 

53.423 
50.391 
54.725 
51.640 
56.464 

52.326 
57.889 

53.529 
-57.705 
54.656 
-49.683 
-48.573 
-42.849 
-41.906 
41.227 
40.556 
42.146 
41.785 
42.498 
42.708 
42.466 
43.175 
42.534 
43.647 
42.649 
44.124 
42.697 
44.163 
43.398 
44.735 
43.930 
45.440 
44.728 
46.060 
45.134 
47.228 
45.214 
47.272 
45.219 
47.272 
45.219 

55.553 

58.281 
58.308 
61.121 
60.364 

62.443 
61.635 

63.958 
-58.764 

-56.158 
-50.503 
-49.369 
-43.458 
-42.498 
43.248 
44.740 
42.163 
46.350 
43.177 
47.168 
43.596 
47.347 
44.044 
47.403 
44.516 
47.495 
44.997 
46.613 
45.584 
47.395 
46.318 
48.000 
46.968 
48.942 
47.365 
50.328 
48.215 
49.954 
48.212 
49.954 
48.212 
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APPENDIX 5.2 

The history of the first ten eigenvalues for the box frame (minimum depth 4 mm) 

Xx 

12.158 

13.013 

13.955 

14.871 

15.815 

16.853 

17.808 

18.316 

17.821 

18.892 

19.309 

19.492 

19.973 

19.600 

20.214 

19.709 

20.757 

21.132 

21.291 

22.624 

22.869 

22.594 

23.205 

22.738 

23.502 

23.833 

24.429 

25.052 

25.072 

-24.917 

-22.170 

-20.703 

-18.044 

-15.503 

-13.866 

-11.606 

-9.523 

-7.620 

-6.042 

-4.667 

-3.481 

-2.552 

^2 

16.070 

17.211 

18.451 

19.523 

19.959 

19.163 

17.852 

19.246 

19.356 

19.400 

20.867 

20.498 

21.158 

21.073 

21.283 

21.319 

21.409 

22.931 

22.274 

22.739 

24.148 

24.077 

24.484 

24.399 

24.645 

26.062 

25.080 

26.206 

-26.244 

26.243 

-23.487 

-21.527 

-18,539 

-15.810 

-13.979 

-11.653 

-9.529 

-7.626 

-6.050 

-4.672 

-3.483 

-2.552 

^3 

27.666 

26.171 

24.658 

23.134 

22.363 

23.213 

24.471 

25.260 

26.659 

26.137 

27.038 

28.699 

28.121 

29.623 

28.692 

30.227 

29.596 

30.473 

32.055 

32.848 

33.416 

34.161 

34.541 

34.394 

35.360 

-33.178 

-32.453 

-29.322 

27.855 

26.394 

26.155 

26.604 

27.659 

-26.646 

-25.240 

-22.582 

-21.502 

-19.506 

-17.670 

-17.165 

-15.561 

-15.108 

A,4 

27.927 

29.641 

31.852 

33.922 

35.909 

37.459 

36.357 

36.740 

34.264 

37.078 

37.264 

34.962 

37.828 

35.170 

38.163 

35.406 

38.420 

38.463 

35.681 

35.591 

36.754 

35.371 

37.275 

36.266 

-36.362 

36.081 

35.963 

-32.298 

-28.510 

-26.627 

28.250 

27.521 

28.192 

27.648 

28.264 

-27.876 

-26.616 

-23.833 

-21.568 

-20.815 

-18.515 

-17.650 

^5 

34.879 

37.346 

40.206 

43.000 

44.335 

42.311 

42.662 

43.175 

45.137 

43.993 

44.390 

46.788 

45.489 

47.659 

46.624 

48.933 

47.437 

47.648 

-48.770 

-45.483 

-42.068 

-41.351 

-38.912 

-38.702 

37.542 

-37.076 

-36.087 

38.173 

38.148 

39.037 

-36.296 

-33.729 

-30.108 

29.981 

29.065 

28.657 

29.108 

29.910 

29.966 

31.545 

31.453 

-28.068 

X(, 

58.296 

54.458 

51.093 

47.553 

45.922 

49.217 

52.368 

52.957 

56.160 

54.267 

54.843 

58.518 

56.482 

-58.260 

-55.302 

-55.157 

-52.270 

-48.922 

50.021 

50.064 

-48.234 

-47.165 

-44.310 

-43.979 

-41.203 

38.658 

38.131 

38.912 

41.737 

40.273 

39.931 

39.593 

-36.197 

-32.335 

-30.985 

30.470 

30.149 

31.184 

33.022 

31.626 

-33.190 

-29.112 

h 
71.270 

76.393 

82.231 

-83.680 

-81.486 

-78.869 

74.238 

-72.594 

69.397 

-67.415 

-63.702 

-61.486 

-58.402 

59.752 

57.960 

61.239 

59.149 

-56.994 

-56.893 

-52.756 

50.235 

53.170 

52.065 

54.832 

53.636 

53.908 

-56.161 

-49.999 

-44.182 

-40.965 

42.318 

-40.554 

40.962 

42.363 

39.712 

43.149 

42.297 

45.739 

45.721 

-39.780 

33.739 

32.217 

^8 

84.196 

-88.560 

-85.857 

87.914 

86.219 

80.405 

-76.800 

75.236 

-70.719 

75.736 

-73.523 

71.228 

-67.930 

-68.006 

-64.562 

-64.570 

-61.198 

59.593 

62.899 

63.301 

64.547 

67.351 

66.611 

68.467 

-63.733 

-56.975 

57.030 

56.113 

-50.600 

-47.751 

-42.801 

42.160 

41.977 

42.448 

44.690 

43.927 

46.409 

46.322 

-46.645 

-40.480 

-33.893 

33.171 

^9 

-90.627 

89.982 

94.920 

92.365 

-92.137 

-89.890 

-88.206 

-83.436 

-81.899 

-78.107 

76.640 

-71.499 

77.620 

71.628 

78.051 

72.084 

78.452 

79.383 

73.425 

74.352 

-77.208 

73.294 

-70.135 

-69.297 

68.222 

-64.767 

-63.806 

-57.118 

55.685 

58.827 

57.147 

60.379 

60.110 

59.533 

62.938 

60.858 

-63.489 

-54.325 

-47.181 

43.365 

46.812 

44.404 

A.10 

-100.211 

-98.308 

-95.834 

-93.974 

93.826 

100.404 

106.302 

107.702 

108.140 

110.471 

112.046 

112.750 

115.805 

113.592 

-111.206 

-109.800 

-102.560 

-94.241 

-93.101 

-85.271 

77.489 

-75.974 

-78.214 

74.384 

-72.292 

69.541 

72.003 

73.219 

74.501 

77.529 

77.393 

79.738 

82.419 

82.966 

82.936 

-73.419 

-64.061 

-54.853 

47.198 

49.971 

49.140 

52.048 
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-1.808 
-1.256 
-0.974 

-0.832 

-0.708 

-0.601 
-0.520 

-0.446 

-0.386 
-0.324 

-0.258 
-0.257 

-0.256 
-0.258 
-0.256 
-0.258 
-0.257 
-0.258 
-0.256 
-0.255 
-0.256 
-0.255 
-0.257 
-0.254 
-0.255 
-0.252 
-0.252 
-0.247 
-0.244 
-0.243 
-0.237 
-0.236 
-0.225 
-0.209 
-0.183 
-0.157 
-0.130 
-0.118 
-0.119 
-0.119 
-0.119 

-0.118 
-0.119 

-0.118 
-0.119 

-0.118 
-0.119 

-1.810 

-1.258 
-0.975 
-0.832 

-0.708 
-0.601 

-0.520 

-0.446 
-0.386 
-0.324 
-0.258 
-0.257 

-0.256 
-0.258 
-0.256 
-0.258 
-0.257 
-0.258 
-0.256 
-0.255 
-0.256 
-0.255 
-0.257 
-0.254 

-0.255 
-0.252 
-0.252 
-0.247 
-0.244 
-0.244 
-0.237 
-0.236 
-0.225 
-0.209 
-0.183 
-0.157 
-0.130 
-0.118 
-0.119 

-0.119 
-0.119 

-0.118 
-0.119 

-0,118 
-0.119 

-0.118 
-0.119 

-13.480 
-12.654 
-10.668 

-8.726 
-6.931 
-5.136 
-3.723 

-2.540 

-1.678 
-1.080 

-0.769 
-0.765 
-0.763 
-0.767 
-0.762 
-0.766 
-0.760 
-0.764 
-0.755 
-0.751 
-0.752 
-0.746 
-0.746 
-0.732 
-0.725 
-0.701 
-0.678 
-0.631 
-0.573 
-0.573 
-0.503 
-0.502 
-0.430 
-0.375 
-0.330 
-0.302 
-0.265 

-0.240 
-0.240 

-0.242 
-0.241 

-0.240 
-0.241 

-0.240 
-0.241 
-0.240 
-0.241 

-15.468 
-13.889 
-11.294 

-9.033 
-7.043 

-5.183 
-3.741 
-2.548 

-1.681 
-1.081 
-0.770 
-0.766 
-0.764 

-0.768 
-0.763 
-0.767 
-0.761 
-0.764 
-0.756 
-0.751 
-0.752 
-0.747 
-0.747 
-0.733 
-0.726 
-0.702 
-0.679 
-0.632 
-0.575 
-0.574 
-0.504 

-0.503 
-0.431 
-0.375 
-0.330 
-0.302 

-0.265 
-0.240 
-0.240 
-0.242 
-0.241 

-0.240 
-0.241 

-0.240 

-0.241 
-0.240 
-0.241 

-23.277 

-20.073 
-16.948 
-14.737 
-14.154 

-12.681 
-12.621 

-11.313 
-10.322 
-10.384 

-9.434 
-9.444 

-8.447 
-7.682 
-6.794 
-6.111 
-5.345 
-4.749 
-4.122 
-3.577 
-3.572 
-3.077 
-2.667 
-2.265 
-1.945 
-1.636 
-1.411 
-1.214 
-1.087 
-1.086 
-1.004 
-1.001 

-0.946 
-0.915 
-0.872 
-0.825 
-0.694 

-0.605 
-0.607 

-0.610 
-0.608 

-0.606 
-0.607 

-0.606 

-0.607 
-0.606 

-0.607 

-24.497 

-21.986 
-18.905 

-16.717 
-16.264 

-14.440 
-14.359 
-12.812 

-11.538 
-11.564 

-10.447 
-10.415 

-9.261 
-8.316 
-7.295 
-6.492 
-5.627 
-4.958 
-4.284 
-3.702 
-3.692 
-3.161 
-2.724 
-2.306 
-1.972 
-1.653 
-1.421 
-1.220 
-1.090 
-1.089 
-1.005 
-1.002 
-0.946 
-0.915 
-0.872 
-0.825 
-0.694 

-0.605 
-0.607 

-0.610 
-0.609 

-0.606 
-0.607 

-0.606 

-0.607 

-0.606 
-0.607 

32.849 
33.075 
34.545 
33.714 

35.312 
34.953 
35.610 
36.190 

35.511 
37.185 
36.182 
37.606 
36.635 
38.284 
37.494 
38.691 
38.475 
38.419 
39.210 
38.023 
39.503 
38.542 

-36.826 
-30.478 
-25.270 
-20.233 
-16.282 
-12.616 

-9.714 
-9.713 
-7.304 
-7.304 

-5.299 
-3.771 
-2.557 
-1.739 
-1.241 

-1.133 
-1.136 
-1.142 

-1.138 
-1.134 

-1.137 

-1.134 

-1.137 
-1.134 

-1.137 

34.640 
34.593 
34.996 

37.537 
35.628 
37.654 
36.624 

37.765 
40.260 
38.338 
41.178 
38.814 

41.003 
38.856 
40.869 
39.141 
40.601 
40.152 
40.656 
43.211 
40.754 
43.081 

-37.319 
-30.846 
-25.523 
-20.405 
-16.393 
-12.686 

-9.757 
-9.755 
-7.328 
-7.328 
-5.311 
-3.777 
-2.560 
-1.739 
-1.242 

-1.133 
-1.137 
-1.142 
-1.138 
-1.134 

-1.137 

-1.134 

-1.137 
-1.134 

-1.137 

48.019 
45.585 
48.609 
52.454 

49.439 
52.687 
49.509 
52.817 
56.830 
53.699 
57.983 
54.267 

57761 
54.343 
57.586 
54.163 
57.296 
53.898 
57.392 

-51.453 
-51.325 
-43.419 
40.314 
39.273 
41.045 
40.340 
40.832 
41.390 
40.025 
41.652 
40.416 
42.053 
41.102 
43.038 
42.219 
43.631 
43.630 
42.552 
44.235 

42.819 
44.501 
42.902 
44.572 

42,902 

44.572 

42.902 

44.572 

53.066 
56.139 
55.142 
53.759 

56.438 
56.259 
59.173 

58.768 
57.260 
60.046 
58.768 
61.174 
59.168 
62.235 
62.250 
65.409 
63.453 
66.681 

-60.120 
-52.407 
-52.247 
-44.098 
40.879 
43.295 
41.067 

43.081 
42.177 
42.937 
45.879 
43.228 
46.072 
43.407 
45.884 
43.591 
45.910 
44.202 
45.443 
47.793 
45.130 
47.584 

44.869 
47.465 
44.766 

47.465 

44.766 

47.465 

44.766 

5-25 



Chapter 6 - Minimum height Design of Frame Structures 

CHAPTER 6 - MINIMUM WEIGHT DESIGN OF FRAME STRUCTURES 

6.1 Introduction 

In the preceding Chapters 4 and 5, optimum designs of frame stmctures to enhance 

buckling resistance have been obtained by increasing the critical buckling load factor 

while keeping the weight of the stmcture constant. This chapter illustrates the 

application of ESO method to find the minimum weight design of a frame stmcture that 

satisfies the prescribed buckling load constraint. The buckling load constraint of a 

stmcture may be given in the form 

Xcr>FS (6.1) 

The critical buckling load factor, Xcr is the first eigenvalue which scales the applied 

loading to give the buckling load. FS is the factor of safety against buckling. Typical 

values of FiS* for frames and tmsses may be between 2 and 3 and for plates and shells, it 

may be even higher. From an initial over-designed stmcture, the excess material can be 

gradually removed until the buckling load constraint (6.1) is no longer met. The ESO 

method described in Section 4.4 can be readily extended to such minimum weight 

designs as follows: 

Step 1: Discretise the stmcture using a fine mesh of finite elements. 

Step 2: Solve the eigenvalue problem (4.1). 

Step 3: Calculate the sensitivity number a,6" for each element. 

Step 4: Decrease the cross-sectional areas of a few number of elements which have the 

lowest values of a,f,". 

Step 5: Repeat Steps 2 to 4 until Xcr = FS. 
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However this approach is not very efficient. A large over-designed stmcture needs to be 

selected at the beginning to accommodate the largest section of the optimum design. 

And often how large the initial design need to be selected is unknown. To avoid this 

lengthy process, an efficient method is proposed herein with the use of uniform scaling 

coupled with resizing of elements for the minimum weight design of stmctures. In 

uniform scaling, all the design variables are scaled by a single factor in order to adjust 

the critical buckling load factor to the factor of safety specified by the constraint {Xcr = 

FS). Since the buckling load factors are, in general, complicated functions of the design 

variables, uniform scaling may pose a serious challenge, particularly, for space frames. 

In the following sections, uniform scaling and the ESO method for the minimum weight 

designs are illustrated with in-plane and space frame examples. It is assumed that the 

cross-sectional area at any section of these frames A{x) is related to its flexural stiffness 

/(x) by I{x) = cA{xY in which c and p are constants determined by the cross-sectional 

shape. 

6.2 Uniform Scaling Factor Sb 

In an optimisation algorithm, it is convenient to obtain a feasible design after each 

iteration and it can be obtained by scaling the design uniformly (all the design variables 

are scaled by a single factor) in order to satisfy the specified constraints. This helps keep 

track the reduction in the weight of the stmcture after each iteration and also helps to pick 

up the most active constraints. Uniform scaling to satisfy buckling load constraint is 

simple and straight forward for linear size-stiffness stmctures. The linear uniform scaling 

factor Sb is given below: 
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S),=T-- (6.2) 
\r 

The subscript b in Sb refers to buckling. In general, stmctural responses of frames 

primarily depend on the moment of inertia and for tmsses these depend on the cross-

sectional area. For tmsses, whether they are 2- or 3-dimensional, size-stiffness relation is 

always linear. For 2-dimensional frames, (or even for 3-dimensional frames which 

displacements are constrained to in-plane movements only), size-stiffness relation is 

linear when /(x) = cA{x). Khot et al. (1976), Morris (1982) and Berke and Khot (1988) 

proposed to use linear scaling factor St = FS / Xcr for nonlinear size-stiffness stmctures as 

well, and claimed with a few additional iterations, Xcr may be brought to equal to FS. 

However, this approach may not be efficient and for certain problems, acceptable scaling 

parameters cannot be obtained. In the following sections, an efficient scaling factor is 

proposed for nonlinear size-stiffness stmctures and for space frames. 

6.2.1 Uniform scaling factor for 2-dimensional frames 

The buckling load of 2-dimensional frames primarily depends on the flexural stiffness 

and it is proportional to the moment of inertia /(x). The influence of axial stiffness on the 

buckling load may be negligible. For the relation /(x) = cAixf, uniform scaling factor Sb 

may be taken as 

S, 
'FS^'" 

(6.3) 

Uniform scaling needs to be carried out iteratively with the following resizing algorithm 

until convergence is achieved. 
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x,^+' = xy 
^F_S}"' 

(6.4) 

where v+1 and v indicate the iteration numbers. 

For example, consider the 3-storey frame discussed in Section 4.5.2.3 (Figure 4.11). In 

this case, rectangular section member depths are the design variable, hence/> = 3. Initial 

design depths are arbitrarily chosen. The values assigned are: external columns, d = 20 

mm; intemal columns, d = 30 mm; first floor beam, d = 20 mm; and second and third 

floor beam d = 10 mm. Let FS = 3.0. No sizing constraints are imposed. The values of 

Xcr, Sb and volume of the stmcture at each iteration of the scaling process are given in 

Table 6.1. 

Table 6.1 - Uniform scaling of 3-storey frame with no sizing constraints 

Iteration Niunber 

0 

1 

Acr 

1.276 

3.000 

Sh^iFS/X,f' 

1.330 

1.000 

Volume (m^) 

0.0168 

0.0223 

Only one iteration is required to bring Xcr from 1.276 to 3.0. If linear scaling factor, S^ 

i l /3 FS I Xcr is used instead of Sb = {FS I Xcr) , Xcr will diverge and it cannot be brought to 

3.0. The values of A,cr, Sb and the volume of the stmcture for the first few iterations for 

this case are given in Table 6.2. 

If there are sizing constraints, they need to be imposed after uniform scaling and 

additional iterations may be required to make Xcr - FS. For the above example using the 

nonlinear scaling factor in equation (6.3), uniform scaling with sizing constraints, 10 
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mm <d<2>5 mm, is carried out. The values of Xcr, Sb and the volume of the stmcture at 

each iteration of the scaling process are given in Table 6.3. 

Table 6.2. - Uniform scaling of 3-storey frame with the linear scaling factor 

Iteration Number 

0 

1 

2 

3 

4 

^cr 

1.276 

6.589 

0.098 

2798.2 

1.36e-4 

Sl, = iFS/Kr) 

2.352 

0.181 

30.576 

0.0011 

22032.3 

Volume (m^) 

0.0168 

0.0395 

0.0071 

0,2184 

0.0008 

Table 6.3 - Uniform scaling of 3-storey frame with sizing constraints 

Iteration Number 

0 

1 

2 

3 

4 

•1 

1.276 

2.772 

2.949 

2.989 

3.000 

S, = iFS/Kf' 

1.330 

1.027 

1.006 

1.001 

1.000 

Volume (m^) 

0.0168 

0.0212 

0.0216 

0.0216 

0.0216 

6.2.2 Uniform scaling factor for space frames 

The relationship between buckling load factor and member cross-sectional properties 

cannot be established explicitiy for space frames, unlike for 2-dimensional frames. 

However the following relation can be used for uniform scaling and a few additional 

iterations may be required to obtain an acceptable scaling parameter. 

'FS^'' 

yK J 
(6.5) 

Note that the value for q in this expression may not be equal to p from the relation /(x) = 

cAixf. Besides the value for q is unknown and it may depend on the applied loads. The 

following examples illustrate the dependency of the value q on the convergence of 

uniform scaling process for different values of applied loads. 

6-5 



Chapter 6 - Minimum Weight Design of Frame Structures 

6.2.2.1 Example 1 

Consider the space frame with inclined members shown in Figure 6.1. All the members 

are of rectangular cross-section with constant depth, d = 40 mm. Initial uniform breadth, 

b = 40 mm and it is allowed to vary to any (no sizing constraints are imposed). Each 

member is divided into 2 elements. E = 200 GPa. G = 80 GPa. For P = 1 kN, Xcr = 

19.22. Let FS = 2.5. Uniform scaling is carried out separately with different values of ^ 

in order to bring Xcr = 2.5. Iteration histories of the uniform scaling with different values 

of ^ for P = 1 kN are given in Table 6.4. 

2 m 

8m 

4m 

Figure 6.1 - Layout of space frame - Example 1 
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Table 6.4 - Uniform scaling of space frame - Example 1, /* = 1 kN 

Iteration 

number 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

q=\ 

'Xcr 

19.218 

0.065 

100.727 

0.056 

111.315 

0.056 

111.848 

Sb 

0.130 

38.337 

0.025 

44.420 

0.022 

44.734 

0.022 

Not converged 

q^ 

Xcr 

19.218 

1.304 

3.275 

2.243 

2.613 

2.456 

2.518 

2.493 

2.503 

2.499 

2.500 

--2 

Sb 

0.361 

1.384 

0.874 

1.056 

0.978 

1.009 

0.996 

1.001 

0.999 

1.000 

1.000 

9 = 

Xcr 

19.218 

3.412 

2.555 

2.503 

2.500 

= 3 

Sh 

0.507 

0.902 

0.993 

1,000 

1.000 

1'-

Xcr 

19.218 

5.430 

3.192 

2.691 

2.556 

2.516 

2.505 

2.501 

2.500 

= 4 

Sb 

0.601 

0.824 

0.941 

0.982 

0.995 

0.998 

1.000 

1.000 

1.000 

Similar analyses (uniform scaling with different values of q) are carried out separately 

for P = 0.l kN, /* = 10 kN and P= 100 kN and the iteration histories of uniform scaling 

for these load cases are given in Tables 6.5, 6.6 and 6.7, respectively. 

Table 6.5 - Uniform scaling of space frame - Example 1, P = 0.1 kN 

Iteration 

number 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

q=l 

'Xcr 

192.18 

l.lE-03 

8247.4 

4.9E-04 

Sb 

0.013 

2379.8 

3.0E-04 

5137.4 

Not converged 

q = 2 

"Xcr 

192.18 

0,442 

5.712 

1.693 

3.010 

2.289 

2.607 

2,451 

2.523 

2.489 

2.505 

2.497 

2.501 

2.500 

Sb 

0.114 

2.379 

0.662 

1.215 

0.911 

1.045 

0.979 

1.010 

0.995 

1.002 

0.999 

1.000 

1.000 

1.000 

^ - 3 

Xcr 

192.18 

3.755 

2.519 

2.500 

Sb 

0.235 

0.873 

0.998 

1.000 

q = A 

Xcr 

192.18 

10.792 

3.713 

2.775 

2.570 

2.518 

2.505 

2.501 

2.500 

Sb 

0.338 

0.694 

0.906 

0.974 

0.993 

0.998 

1.000 

1.000 

1.000 
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Table 6,6 - Uniform scaling of space frame - Example 1, P = 10 kN 

Iteration 

number 

0 
1 

2 
3 
4 

5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

9 = 0.5 

Xcr 

1.922 
3.378 
1.656 
4.222 
0.944 

Sb 

1.692 
0.548 
2.279 
0.351 
7.017 

Not converged 

q=\ 

Xcr 

1.922 
2.592 

2.499 
2.500 

Sb 

1.301 
0.964 
1.000 
1.000 

9 = 2 

Xcr 

1.922 

2.271 
2.383 
2.441 
2.471 
2.485 
2.493 
2.496 
2.498 
2.499 
2.500 

Sb 

1.141 
1.049 
1.024 
1.012 
1.006 
1.003 
1.001 
1.001 
1.000 
1.000 
1.000 

9 = 3 

Xcr 

1.922 

2.173 
2.278 
2.350 
2.399 
2.433 
2.455 
2.470 
2.480 
2.487 
2.491 
2.494 
2.496 
2.497 
2.498 
2.500 

Sb 

1.092 

1.048 
1.032 
1.021 
1.014 
1.009 
1.006 
1.004 
1.003 
1.002 
1.001 
1.001 
1.001 
i.OOO 
1.000 
1.000 

Table 6.7 - Uniform scaling of space frame - Example 1, P = 100 kN 

Iteration 
number 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

15 
16 
17 
18 
19 

q = 0.75 

^cr 

0.192 
8.110 
1.296 
3.352 
2.164 
2.674 
2.421 
2.538 
2.482 
2.509 
2.496 
2.502 
2.499 
2.500 

Sb 

30.595 
0.208 
2.402 
0.676 
1.213 
0.914 
1.044 
0.980 
1.010 
0.995 

1.002 
0.999 
1.000 
1.000 

9 = 1 

Xcr 

0.192 
2.784 
2.470 
2.503 
2.500 

Sb 

13.009 
0.898 
1.012 
0.999 
1.000 

9 = 2 

Xcr 

0.192 
0.724 
1.365 
1.876 
2.189 
2.354 
2.433 
2.470 
2.486 
2.494 
2.497 
2.499 
2.499 
2.500 

Sb 

3.607 
1.858 
1.353 
1.154 
1.069 
1.031 
1.014 
1.006 
1.003 
1.001 
1.001 
1.000 
1.000 
1.000 

9 = 3 

^cr 

0.192 
0.471 
0.826 
1.205 
1.551 
1.835 
2.049 
2.201 
2.305 
2.375 
2.420 
2.449 
2.468 
2.479 
2.487 

2.492 
2.495 
2.497 

2.498 

2.500 

Sb 

2.352 
1.745 
1.447 

1.276 
1.172 
1.109 
1.069 
1.043 
1.027 
1.017 
1.011 
1.007 
1.004 
1.003 

1.002 
1.001 
1.001 

1.000 

1.000 
1.000 
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From the above tables, it is observed, for P = 0.1 kN and P = 1 kN, uniform scaling is 

done with less number of iterations when g = 3. For P = 10 kN and P = 100 kN, uniform 

scaling is done with less number of iterations when q=\. 

(».1.1.1 Example 2 

Consider the 3-storey, single-bay, pin-based frame shown in Figure 6.2. Torsional loads 

are applied at the top storey level in X- and Z-directions. All the members are of 

rectangular cross-section with constant depth, d - 20 mm. Initial uniform breadth, b = 

20 mm. No sizing constraints are imposed. For P = 1 kN, Xcr - 3.078. Let FS = 3.0. 

B32 

3 m 

V 0 

S22 

512 

z: 
S31 

7̂  
p 

521 

511 

ON 

Im 

C31 

C21 

CU 

C32 

C22 

C12 

0 

(D Im 

Figure 6.2 - Layout of space frame - Example 2 
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As described in the previous example, uniform scaling is carried out separately with 

different values ofq for loads P = 0.1 kN, 0.5 kN, 1 kN and 5 kN in order to bring Xcr = 

3.0. Iteration histories of the uniform scaling for these load cases are given in Tables 

6.8, 6.9, 6.10 and 6.11, respectively. 

Table 6.8 - Uniform scaling of space frame - Example 2, P = 0.1 kN 

Iteration 
number 

0 
1 
2 
3 
4 
5 
6 
7 

q'-
Xcr 

30.778 
0.069 
648.3 

6.0E-04 
12403.2 
l.lE-03 
8559.5 

= 1 

Sb 

0.097 
43.69 

4.6E-03 
4984.3 
2.4E-04 
2850.2 
3.5E-04 

q'-
Xcr 

30.778 
1.757 
3.517 
2.868 
3.039 
2.989 
3.003 
3.000 

--2 

Sb 

0.312 
1.307 
0.924 
1.023 
0.994 
1.002 
0.999 
1.000 

q'-
Kcr 

30.778 
4.772 
3.222 

3.031 
3.000 

= 3 

Sb 

0.460 
0.857 
0.976 
0.997 
1.000 

Table 6.9 - Uniform scaling of space frame - Example 2, P = 0.5 kN 

Iteration 
number 

0 
1 
2 
3 
4 
5 
6 

q'-
K^f 

6.156 
1.102 
11.83 
0.428 
45.25 
0.053 
232.62 

= 1 

Sb 

0.487 
2.723 
0.254 
7.016 
0.066 
56.301 
0.013 

q'-
1 
/\.cr 

6.156 
2.646 
3.072 
2.987 
3.002 
3.000 

= 2 

Sb 

0.698 
1.065 
0.988 
1.002 
1.000 
1.000 

q'-
"Xcr 

6.156 
3.514 
3.103 
3.021 
3.004 
3.001 
3.000 

= 3 

Sb 

0.1^1 
0.949 
0.989 
0.998 
1.000 
1.000 
1.000 

Table 6.10 - Uniform scaling of space frame - Example 2, P = 1 kN 

Iteration 
number 

0 
1 
2 

3 
4 

5 
6 

q'-
'Xcr 

3.078 
2.899 
3.140 
2.824 
3.250 
2.698 
3.452 

-- 1 

Sb 

0.975 
1.035 
0.956 
1.062 

0.923 
1.112 
0.869 

q'-
i\.cr 

3.078 
2.987 
3.002 

3.000 

= 2 

Sb 

0.987 
1.002 

1.000 
1.000 

q'-
Kcr 

3.078 
3.017 
3.004 

3.001 

= 3 

Sb 

0.992 

0.998 
1.000 

1.000 
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Table 6.11 - Uniform scaling of space frame - Example 2, P = 5 kN 

Iteration 

number 

0 

1 

2 

3 

4 

5 

6 

? = 

"Xcr 

0.616 

14.201 

0.658 

13.827 

0.642 

13.968 

= 1 

Sb 

4.874 

0.211 

4.558 

0.217 

4.677 

0.215 

q = 

^cr 

0.616 

3.869 

2.873 

3.022 

2.996 

3.001 

3.000 

--2 

Sb 

2.208 

0.881 

1.022 

0.996 

1.001 

1.000 

1.000 

q = 

'Xcr 

0.616 

2.089 

2.768 

2.947 

2.988 

2.997 

2.999 

= 3 

Sb 

1.695 

1.128 

1.027 

1.006 

1.001 

1.000 

1.000 

For P = 0.1 kN, uniform scaling is done with a less number of iterations when ^ = 3. For 

the other loads, g' = 2 or 3 is acceptable. From the results of these two examples, the 

following empirical mle is proposed to obtain the appropriate q to be used in equation 

(6.5) for uniform scaling algorithm. 

Consider the space frame example 1 with P = 1 kN. Initially Xcr = Xo= 19.22. Scale the 

design uniformly using the linear scaling factor Sb = FS / Xcr and obtain the critical load 

factor Xcr = X* for this design. In this case X* = 0.0652 (Refer Table 6.4, column 2). 

Using these parameters, a value for q* is obtained from the following relation. 

FS^ ^X* ^ 

\ \ J 
(6.6) 

2.5 f 0.0652 \ i /9 ' 

19.22 I 19.22 ) 

^* = 2.788 

This value is closer to 3.0. When q = q* = 2.788, the scaled design is achieved with 3 

iterations. Similarly when P = 100 kN, Xcr =XQ = 0.1922. For the scaled design obtained 

with Sb = FSI Xcr = 2.5 / 0.1922, X* = 2.784 (Refer Table 6.7, column 4). Substitiiting l̂o 

and X into equation (6.6), q = 1.042 is obtained. This value is closer to 1. When q = q 
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= 1.042, the scaled design is achieved with 3 iterations. Iteration histories of uniform 

scaling obtained with q = q for all the load cases are given in Table 6.12. Similar 

analysis is carried out for example 2 and the results are given in Table 6.13. 

Table 6.12 - Uniform scaling of space frame - Example 1 with q = q* 

Iteration 

number 

0 

1 

2 

3 

P = 0.1kN;9 =2.791 

^cr 

192.179 

2.727 

2.488 

2.500 

Sb 

0.211 

0.969 

1.002 

1.000 

P = IkN; 9* = 2.788 

^ t r 

19.218 

2.954 

2.498 

2.500 

Sb 

0.481 

0.942 

1.000 

1.000 

P=10kN;9*=1.137 

^cr 

1.922 

2.511 

2.501 

2.500 

Sb 

1.260 

0.996 

1.000 

1.000 

P = 100kN;9 =1.042 

Xcr 

0.192 

2.481 

2.501 

2.500 

Sb 

11.733 

1.007 

1.000 

1.000 

Table 6.13 - Uniform scaling of space frame - Example 2 with q = q 

Iteration 

number 

0 

1 

2 

3 

4 

5 

P=0.1 kN; 9* =2.622 

i\,cr 

30.778 

3.596 

3.013 

3.000 

Sb 

0.412 

0.933 

0.998 

1.000 

/ ' = 0.5kN;9*=2.394 

'Xcr 

6.156 

3.045 

3.000 

Sb 

0.741 

0.994 

1.000 

P= IkN; 9* = 2.338 
1 

3.078 

3.000 

"S"* 

0.989 

1.000 

P = 5 k N ; 9 * = 1.982 

Xcr 

0.616 

3.936 

2.857 

3.027 

2.995 

3.000 

Sb 

2.224 

0.872 

1.025 

0.996 

1.001 

1.000 

Lin and Liu (1989) proposed ^ = 2 in general for all the complex, nonlinear size-

stiffness stmctures. In the recurrence relations used with optimality criteria methods, 

described in Section 4.7.1, a step size parameter r is used (equations (4.26) and (4.27)). 

Again for these recurrence algorithms, r = 2 is a popular number assumed in most of the 

works (Morris, 1982). In general, g- = 2 is an acceptable parameter. The results from the 

above examples also support it. However, in certain situations, the number of iterations 

required for uniform scaling is greatly reduced when g = 9* is used. 
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6.3 Optimisation Procedure 

An iterative procedure is set up for uniform scaling and resizing of elements so that the 

weight of the stmcture is systematically reduced and the material is gradually shifted 

from the strongest to the weakest part of the stmcture. The optimisation process 

involves two steps. In the first step, the design variables are scaled uniformly to meet the 

buckling load constraint. In the second step, critical buckling load factor is increased 

while keeping the weight of the stmcture constant, as described in Section 4,4. These 

two steps are repeated in cycles until the weight of the stmcture cannot be reduced any 

further. The procedure is given as follows: 

Step 1: Select an initial design and discretise the stmcture using a fine mesh of finite 

elements. 

Step 2: Scale the design uniformly to bring Xcr equal to FS using the appropriate q while 

imposing the sizing constraints. 

Step 3: Increase the critical load factor while keeping the stmctural weight constant by 

using the evolutionary method described in Section 4.4. 

Step 4: Repeat Steps 2 and 3 in cycles until the buckling load factor in Step 3 cannot be 

increased any fiirther. 

A batch file is set up to handle the iteration cycles automatically. In the above 

procedure, the order of Steps 2 and 3 can be interchanged. The order given above is 

preferred when there are sizing constraints involved. Besides, initial uniform scaling 

determines whether the allowable design values given are large enough to satisfy the 

specified buckling load constraint. In Step 3, resizing ratio RR and step size need to be 
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specified for resizing the elements. The values for these parameters may be reduced for 

the final cycles of analyses in order to get accurate designs. When there are no sizing 

constraints, one cycle of analysis is usually sufficient to obtain minimum weight design 

for 2-dimensional frames and tmsses. For space frames, a few cycles of analyses may be 

required even if there are no sizing constraints imposed. 

6.4 Examples 

6.4.1 Space frame - Example 1 

Minimum weight design is sought for the space frame described in Section 6.2.2.1 when 

P = 10 kN. FS = 2.5. No sizing constraints are imposed. Initially Xcr = 1.922. Optimum 

design is obtained in three cycles of analyses. For the first two cycles of analyses, RR = 

25% and step size = 2 mm are assumed in Step 3. In the third cycle, RR = 12.5% and 

step size = 1 mm are taken for resizing. Design values of members, Xcr and the total 

volume of the stmcture obtained at the end of uniform scaling and resizing at each cycle 

are given in Table 6.14 (refer Figure 6.1 for member numbering). All four inclined 

members have the same design values at each level. Opposite horizontal members have 

the same design values at each level. Iteration histories of the critical load factor and the 

volume of the stmcture are shown in Figure 6.3. 
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Table 6.14 - Design values at the end of each phase of analysis for example 1 

Member 

71 

72 

73 

74 

511 

512 

521 

522 

531 

532 

541 

542 

Kcr 

Vol. (m )̂ 

Initial 

design 

40.00 

40.00 

40.00 

40.00 

40.00 

40.00 

40.00 

40.00 

40.00 

40.00 

40.00 

40.00 

1.922 

0.12239 

Cycle 1 

Scaling 

50.20 

50.20 

50.20 

50.20 

50.20 

50.20 

50.20 

50.20 

50.20 

50.20 

50.20 

50.20 

2.500 

0.15365 

Resizing 

85.93 

78.18 

49.90 

49.70 

83,96 

29.32 

35.46 

31.33 

41.71 

9.82 

47.76 

13.74 

4.080 

0.15365 

Cycle 2 

Scaling 

64.75 

58.91 

37.60 

37.45 

63.26 

22.10 

26.72 

23.61 

31.42 

7.40 

35.99 

10.35 

2.500 

0.11574 

Resizing 

72.29 

42.60 

35.37 

35.20 

62.88 

37.86 

14.64 

33.42 

21.31 

25.26 

17.87 

22.20 

3.002 

0.11574 

Cycle 3 

Scaling 

61.96 

44.06 

33.88 

31.94 

57.02 

30.74 

16.87 

28.50 

21.11 

13.89 

19.80 

18.35 

2.500 

0.10438 

Resizing 

60.35 

39.34 

34.10 

32.15 

53.37 

38.97 

15.97 

28.68 

22.25 

19.00 

16.91 

18.47 

2.599 

0.10438 

Cycle 4 

Scaling 

58.88 

38.38 

33.27 

31.37 

52.06 

38.02 

15.58 

27.98 

21.70 

18.54 

16.50 

18.02 

2.500 

0.10186 

4.50 T 

I 

4.00 T 

3.50 -

3.00 -

2.50 / 

2.00 

1.50 

1.00 

. . .-• • • • < 

10 

\ 'Xcr 
\ ^ . • . • - • • • - • • • • • • • • • - • - • 

Volume X 20 (m^) 

20 30 

Number of iterations 

40 50 60 

Figure 6.3 - Iteration histories of the volume and Xcr for the space frame, example 1 

6.4.2 Space frame - Example 2 

Minimum weight design is obtained for the 3-storey, space frame described in section 

6.2.2.2. The applied load P = 0.4 kN. FS = 3.0. Initially Xcr = 7.695. Since the optimum 
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design is controlled by the minimum allowable depth, the following two cases are 

considered. Case 1: minimum allowable depth dmir, - 5 mm and Case 2: minimum 

allowable depth dr,nn = 10 mm. RR = 25% and step size = 1 mm are assumed for 

resizing. The iteration histories of the critical load factor and the volume of the stmcture 

are shown in Figures 6.4 for Case 1 design. The volume of the stmcture and the critical 

buckling load factor at the end of each phase of the analysis for the two cases are given 

in Table 6.15. Final design depths obtained for these two cases are given in Table 6.16 

(refer Figure 6.2 for member numbering). At each level, opposite members, either 

column or beam, have the same design values. 

10.00 -

;.oo 

6.00 

4.00 

Volume X 1000 (mO 

Xrr 

2.00 

10 15 

Number of iterations 

20 25 

Figure 6.4 - Iteration histories of the volume and Xcr for Case 1 of example 2 

Table 6.15 - Buckling load factors at the end of each phase of analysis for example 2 

Cycle 

number 

0 

1 

2 

3 

Initial 

Scaling 

Resizing 

Scaling 

Resizing 

Scaling 

Case 1- dmin - 5 mm 

i\cr 

7.695 

3.000 

4.527 

3.000 

3.068 

3.000 

Vol X 1000 (m^) 

9.60 

6.34 

6.34 

5.35 

5.35 

5.30 

Case 2- d^in =10 mm 

Xcr 

7.695 

3.000 

3.974 

3.000 

Vol X 1000 (m^) 

9.60 

6.34 

6.34 

5.77 
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Table 6.16 - Final design depths for the two cases of example 2 

Member 

511 

512 

521 

522 

531 

532 

Cll 

C12 

C21 

C22 

C31 

C32 

Final depth in mm 

Case 1 

5.00 

23.45 

5.00 

16.53 

5.00 

11.21 

16.28 

10.84 

8.67 

14.03 

6.00 

10.46 

Case 2 

10.00 

20.29 

10.00 

14.11 

10,00 

10.00 

16.44 

10.00 

10.00 

13.29 

10.00 

10.00 

6.5 Conclusions 

The ESO method has been extended to the minimum weight design of frame stmctures 

with prescribed buckling constraints. Uniform scaling has been introduced to bring the 

critical buckling load factor Xcr close to the factor of safety. Minimum weight design of 

single load case stmctures has been obtained by repeating the steps of uniform scaling 

and maximising the critical load factor with constant volume in cycles until no further 

reduction in the stmctural volume. Uniform scaling of nonlinear size-stiffness stmctiires 

and space stmctures are compHcated. An empirical mle has been proposed for the 

uniform scaling of space frames and has been tested with the examples. This empirical 

rule greatly reduces the number of iterations required for uniform scaling and ensures 

convergence. 
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CHAPTER 7 - OPTIMUM DESIGN OF STRUCTURES WITH MULTIPLE 

LOAD CASES 

7.1 Introduction 

In the preceding Chapters 4, 5 and 6, optimum designs of frame stmctures with 

enhanced buckling resistance have been obtained for single load case conditions. Many 

stmctures in the real environment are subjected to a variety of load cases such as self 

weight, snow loads, wind loads and earthquake loads. A similar situation occurs when a 

stmcture is subjected to a traffic load, where the force is moving from one part of the 

stmcture to the other. Each independent load case may cause instability when acting 

alone. In this chapter, the ESO method is extended to the optimum design of stmctures 

against buckling with multiple load cases. 

In mathematical programming (MP) methods, multiple load cases are treated as 

additional objective and constraint functions. The derivatives of objective and constraint 

functions with respect to design variables need to be calculated separately for each load 

case. Thus the size of the problem (which is very cmcial in MP methods) increases 

multiple folds compared to the single load case problems. In optimality criteria (OC) 

methods, a multiple load case problem is treated as a multi constraint problem and the 

active participation of each load case is determined by the Lagrangian multipliers which 

are estimated by some iterative procedures. For example, Khot et al. (1976) extended 

the uniform strain energy density to the mass density optimality criterion which was 

derived for the single load case stmctures to the multiple load conditions as follows: 

nl p 

E — = 1 (7-1) 
A=l )^k 
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where nl is the number of loading conditions. The quantity e^ is the ratio of strain 

energy density to mass density associated with the critical buckling mode of the z* 

element in the k loading condition. The Lagrangian multipliers, \ik{k= 1, nl), have to 

be determined by some iterative procedure. 

There is not much literature available on the optimum design of stmctures to resist 

buckling under multiple load cases. Turner and Plant (1981) obtained the optimum 

design with multiple load cases by maximising the critical load factor for a given ratio 

of loads. This procedure was applied to a variety of load ratios, and the results were 

plotted in the loading space in terms of stability boundaries (interaction curves or 

surfaces) and a stability envelope. The objective was to enlarge the stability region as 

much as possible by an appropriate distribution of the material of the stmcture. A novel 

approach to solving problems with multiple loading conditions was introduced by 

Hjelmstad and Pezeshk (1991) where each eigenvalue in the objective was weighted in 

accordance with the degree of participation of the mode in the loading. 

7.2 Sensitivity Number 

For each load case, sensitivity numbers a/̂ "̂  and a,^' as defined in Section 4.3 can be 

calculated for each element. Let the sensitivity numbers for the A:* load case be renamed 

as dibk and a,M'. Therefore for nl number of load cases, a,M^ (A: = 1, «/) and aibk (^ = 1, 

nl) need to be calculated for each element. Ideally the cross-sectional area of the element 

of which all a,-^/ (A: = \,nl) are highest should be increased and the cross-sectional area 

of the element of which all aibk (k = 1, nl) are highest should be decreased. However 

this situation generally does not exist. To overcome this difficulty the element 
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sensitivity is evaluated by the sum of its relative sensitiveness with regard to each load 

case. Further it is necessary to treat each load case separately depending on how active it 

is in the current design. If the critical load factor of a particular load case is much higher 

than its limit {FS), this load case may not affect the optimum shape. Thus to measure the 

influence of each load case, uniform scaling factors of the load cases (as defined in 

Chapter 6, equation (6.2) or (6.3) or (6.5)) are used as weighting parameters. When 

obtaining these scaling factors, different values of factor of safety may be assumed for 

each load case. Let Stk be the A:* load case uniform scaling factor. Hence the following 

two new sensitivity numbers are defined for multiple load case stmctures. 

• ^ = 1 ^bk.av 

Oi^=ts,,^ (7.2b) 
nl 

'^''' a -
k=l ^bk.av 

where abkav^ is the average of the a,;,/ values of all elements of the A:' load case and 

(^bk.av is the average of the atbk values of all elements. 

7.3 Optimisation Procedure 

Optimum procedures are given for the design with constant volume constraint; and for 

the minimum weight design that satisfies the prescribed buckling load constraints. 

7.3.1 Constant weight design 

The objective is to raise the critical buckling load factors Xcr.k {k = \, nl) for all load 

cases as much as possible while satisfying the constant volume constraint and the sizing 

constraints. The scaling factor of each load case, Sbk will be minimised and roughly 

brought equal to a single value. The procedure is given as follows. 
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Step 1: Discretise the stmcture using a fine mesh of finite elements to represent the 

stress distribution and buckling modes adequately for all the load cases. 

Step 2: Carry out the static analysis and buckling analysis for each load case. 

Step 3: Calculate the uniform scaling factor, Sbk for each load case. 

Step 4: Calculate the sensitivity numbers aib" and a,̂ " for each element according to 

equation (7.2). 

Step 5: Increase the cross-sectional areas of elements with the highest values of a/̂ ^ and 

decrease the cross-sectional areas of the same number of elements with the 

highest values of a,7,". Impose the sizing constraints. 

Step 6: Calculate the total volume and if it is not equal to the original volume, scale 

down the cross-sectional areas obtained after Step 5 to give the original volume. 

Step 7: Repeat Steps 2 to 6 until the critical load factors of each load case cannot be 

increased any further. 

7.3.2 Minimum weight design 

The objective is to minimise the stmctural weight while satisfying the buckling 

constraint, Xcr,k ^ FSk {k = I, nl) for all load cases. In Chapter 6, ESO method for the 

minimum weight design has been described. For single load case stmctures, uniform 

scaling and maximising the Xcr with constant volume are repeated in cycles until no 

fiirther reduction in the stmctural volume. The flowchart for this method is given in 

Figure 7.1. 
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itial design 

i 
FEA & determination of 5"̂  

I 
Scale the design uniformly 

FEA & sensitivity number calculation 

I 
Resize a few elements 

Yes ^ ^ ^ ^ - - ^ No 
X^ converged? 

Figure 7.1 - ESO for the minimum weight design - Method 1 

The minimum weight design can also be obtained in a slightly different way as 

described by the flowchart given in Figure 7.2. Obviously in this method, additional 

uniform scaling needs to be done after each step of resizing unlike in the former 

approach. For multiple load cases, the influence of each load case on the current design 

needs to be considered simultaneously during the optimisation process. There is no 

point of optimising the stmcture for one load case and let the design violates the other 

loading conditions. Thus Method 2 for the minimum weight design is more suited for 

the multiple load case stmctures. This method allows for calculating the scaling factors 

after each step of resizing and these updated scaling factors can be used as weighting 

parameters in the subsequent sensitivity number calculations. 
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litial de s i ^ 

i 
FEA & determination of 5"̂  

I 

FEA & sensitivity number calculation 

i 
Resize a few number of elements 

Figure 7.2 - ESO for the minimum weight design - Method 2 

The iterative procedure for the multiple load cases design involves two steps. In the first 

step, the design variables are scaled uniformly in order to satisfy the most critical load 

case. In the second step, the elements are resized according to their sensitivity numbers. 

These two steps are repeated in cycles until the desired optimum design is obtained. A 

batch file is set up for uniform scaling and element resizing so that the weight of the 

stmcture is systematically reduced and the material is gradually shifted from the 

strongest to the weakest part of the stmcture. The detailed steps of the optimisation 

procedure is given below and it is also described by the flowchart given in Figure 7.3. 

7-6 



Chapter 7- Optimum Design of Structures with Multiple Load Cases 

Step I: Discretise the stmcture by using a fine mesh of finite elements to represent the 

stress distributions and buckling modes adequately. 

Step 2: Perform static and buckling analyses for each load case. 

Step 3: Determine the uniform scaling factors Sbk {k-\, nl). 

Step 4: Scale the design variables uniformly using the most critical scaling factor, i.e. 

maximum of Ŝ̂ :̂ {k= I, nl). Impose the sizing constraint. 

Step 5: Carry out static and buckling analyses for each load case. 

Step 6: Calculate the sensitivity numbers a/̂ ^ and a/̂ " for each element. 

Step 7: Increase the cross-sectional area of elements with the highest values of a/̂ "̂  and 

decrease the cross-sectional area of the same number of elements with the highest 

values of a,̂ " while imposing the sizing constraints. 

Step 8: Repeat Steps 2 to 7 until the weight of the stmcture cannot be reduced any 

fiirther. 

FEA for all the load cases. 
Determine S/,^ {k = \,nl) 

1 
Scale the design uniformly 
using maximum of 5*̂^ {k = \,nl) 

< -weight reduced 

Yes 
• • < | t o ^ 

FEA for all the load cases. 
Calculate sensitivity numbers 

i 
— Resize a few number of elements material shifted 

Figure 7.3 - ESO for the minimum weight design with multiple load cases 
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7.4 Examples 

7.4.1 Two-bay frame - Constant weight design 

Consider the single story, two-bay frame shown in Figure 7.4. All the members are of 

rectangular cross-section with constant breadth, b = 20 mm and the initial uniform 

depth, d=20 mm. The supports are pinned. Each member is divided into six elements 

of equal length. The frame is exposed to three possible loading conditions as shown in 

the figure. For each load case, FS is assumed to be 3.0. Optimum designs are obtained 

while keeping the stmctural volume constant. Member depths are the design variables {p 

= 3) and they are allowed to vary to the maximum 60 mm and to the minimum 5 mm in 

steps of 1 mm. 20% of the elements are resized at each iteration. The optimum shape of 

the frame obtained by considering all the load cases simultaneously (i.e, by using the 

multiple load case sensitivity numbers and the procedure described in section 7.3.1) is 

shown in Figure 7.5a. The evolution of the critical buckling load factor of each load case 

during the optimisation process is given in Figure 7.5b. 

lOkN 
/N >^kN 

© N1̂  

2m 

Load case 1 

RkN 

Load case 2 

30 kN 

Load case 3 

Figure 7.4 - Stmctural layout and load cases of the two-bay frame 
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i 
1 
fi 
U 

',i 

'vS^-^^^'.^!ZmMm WWff\ 

^̂  
z'A 

Figure 7.5a - Optimum shape with all three load cases 

7.5 y 

7.0 J-

6.5 -

6.0 -

. ^ ' 

<^' 

5 5 / / 

5.0 

4.5 

/ 

10 15 
Number of iterations 

—'— Load case 1 

— •—Loadcase 2 

—•~ Load case 3 

20 25 

Figure 7.5b - Iteration history with all three load cases. 

Optimum designs are also obtained for each load case separately by using the respective 

single load case sensitivity numbers and the single load case optimisation procedure. 

During the optimisation process, buckling load factors of the other load cases are also 

obtained. The optimum shapes and the iteration histories for load case 1, load case 2 and 

load case 3 are given in Figures 7.6, 7.7 and 7.8, respectively. The optimum shapes of 

each load case show a clear preference for the loading direction. For the load case 2 

optimum design, column dimensions are at their lower limit {d- 5 mm), indicating that 
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the columns contribute little to the stmctural stability under this loading condition. 

Similarly for the load case 3 optimum design, the right hand side beam and column 

dimensions are at their lower limit. The critical load factors of each load case for the 

initial design and the optimum designs are compared in Table 7.1. These results indicate 

that if a stmcture is optimised under any single loading condition, critical load factors of 

other load cases will be greatly reduced. When all the load cases are considered 

simultaneously during the optimisation, the buckling load factor of each load case is 

concurrently increased. 

Figure 7.6a - Optimum shape - load case 1 alone 

"--cr 

10.0 y —'—Load case 1 

—•—Load case 2 

—•—Loadcase 3 

8.0 -

6.0 - ^*' ̂

c:-—— • ••—"*• — « 
- \ / \ / \ 

• • 

4.0 

2.0 
10 15 
Number of iterations 

20 25 

Figure 7.6b - Iteration history - load case 1 alone 
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Figure 7.7a - Optimum shape - load case 2 alone 

40.0 

30.0 

—'— Load case 1 

— •— Load case 2 

—•— Load case 3 

20.0 -

10.0 

0.0 

• • • • ' • • • • • ' . 7 . 

•—-ir;:;-
_ _ ^ ' • * - ' -» -» -« -» -« -»%T.T .T ,T , , . . , , . „„ , , . , , . „ . „ , , . , . . . , . . . . . 

10 20 30 40 20 30 
Number of iterations 

Figure 7.7b - Iteration history - load case 2 alone 

Figure 7.8a - Optimum shape - load case 3 alone 
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• Load case 1 

• Load case 2 

• Load case 3 

5.0 :=• '*- . - . 

0.0 
20 30 

Number of iterations 
40 

Figure 7.8b - Iteration history - load case 3 alone 

Table 7.1 - Comparison of buckling load factors for each load case 

Initial design 

Optimum design with all load cases 

Optimum design with load case 1 

Optimum design with load case 2 

Optimum design with load case 3 

Critical buckling load factor {Xcr) 

Load case 1 

5.02 

6.83 

8.31 

0.10 

0.61 

Load case 2 

5.49 

7.12 

2.98 

39.70 

0.14 

Load case 3 

5.00 

7.14 

6.28 

0.10 

16.39 

7.4.2 Two-bay frame - Minimum weight design 

Minimum weight design is obtained for the two-bay frame in Section 7.4.1 by using the 

optimisation procedure described in Section 7.3.2 while satisfying the stability 

constraints Xcr.k > 'i.O {k = \, nl) and sizing constraints 5 mm < d < 60 mm. The 

optimisation history of scaling factors of each load case and the current design to initial 

design weight ratio w/wo is given in Figure 7.9. For the optimum design, Sbi = 1.0, Sb2 = 

1.0, Sb3 = 0.97 and w/wo = 0.76. 
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1.05 

1.00 o •^•^•-•-•-•-•-i7»;^t-i"*"*"*"''::^t''*~:~*~'~:rir;-»-»=-»='*~i-»*'^—-

Sbl 
-*-Sb2 
— Sb3 
—O—w/wo 

075 ^ 
0 10 20 30 

Number of iterations 

Figure 7.9 - Iteration history of the minimum weight design 

7.5 Conclusions 

The ESO method has been easily extended to enhancing the buckling resistance of 

multiple load case frame stmctures. Sensitivity numbers for resizing are calculated by 

considering the influence of all the load cases. Thus compromises are made at each 

iteration of the evolutionary process among these load cases. The uniform scaling 

factors which are used as weighting parameters to define the sensitivity numbers play a 

similar role as the Lagrangian multipliers in optimality criteria methods. These uniform 

scaling factors determine the active participation of each load case on the optimum 

design. When the buckling load factor of a particular load case is far more than the 

corresponding factor of safety of that load case, influence of that load case in the current 

design becomes less important. From the examples it has been shown that optimising a 

stmcture under any single load case may violate the other load case buckling constraints. 

When all the load cases are considered simultaneously, each load case buckling load 

factor is increased. 
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CHAPTER 8 - OPTIMUM DESIGN OF STRUCTURES WITH MULTIPLE 

CONSTRAINTS 

8.1 Introduction 

Although there has been considerable amount of work carried out on the optimum 

design of frame stmctures, most of these studies do not treat the stability constraint in 

parallel with other common constraints such as strength and displacement limits. The 

optimum design of stmctures including stability constraint is of great importance 

because with high strength materials many stmctural elements are becoming thinner and 

modem frame stmctures are more slender than their foremnners. Optimum design of 

frame stmctures including stability constraint along with stress and displacement 

constraints has been reported by Lin and Liu (1989), Pezeshk and Hjelmstad (1991) and 

Barson (1994) using optimality criteria methods and by Karihaloo and Kanagasundaram 

(1993) using non-linear mathematical programming method. This chapter extends the 

ESO method to the cross-sectional optimisation of frames and tmsses considering stress, 

stiffness, displacement and stability constraints simultaneously. 

8.2 Multiple Constraints Problem 

The optimisation problem here is to minimise the weight of a stmcture in such a way 

that the normal and shear stresses and the deflection at any point of the frame, the 

critical buckling load factor and the sizing parameters do not violate respective 

prescribed limits under any load system. The following constraints are considered in 

addition to the buckling constraint Xcr ^ PS. 
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Stiffness constraint: The inverse measure of the overall stiffness of a stmcmre, known as 

the mean compliance C, should not exceed the prescribed limit Can. 

C<Caii (8.1) 

Displacement constraint: Displacement constraints may be imposed on certain degrees 

of freedom (d.o.f) of the stmcture. Constraint imposed on the 7* d.o.f displacement 

component, dj is given in the form, 

\dj\<d* (8.2) 

where dj is the allowable limit for dj. 

Stress constraint: The equivalent stress at any point in a stmcture is expressed by some 

means of average of the normal and shear components of stress. For this purpose, the 

von Mises stress, Ovm has been frequently used for isotropic materials. Thus the stress 

constraint is given in the form that the von Mises stress at any point of the stmcture 

should not exceed the allowable stress Oau-

(5vm ^ CTa// (8 .3) 

In Chapter 3, ESO for shape and layout optimisation of stmctures separately with 

stiffness, displacement or stress constraints has been described. Element sensitivity 

numbers for these constraints, a/c (Eq. 3.12), a/̂  (Eq. 3.16) and â ^ (Eq. 3.1), indicate the 

change in corresponding stmctural response due to the removal of a particular element 

and they are used for shape and layout optimisation which involves gradual removal of 

elements. In the following sections, sensitivity numbers are derived for cross-sectional 

8-2 



Chapter 8 - Optimum Design of Structures with Multiple Constraints 

Optimisation for which the change on all these stmctural responses due to the local 

modification of each element needs to be estimated. 

8.2.1 Sizing optimisation with stiffness constraints 

From equation (3.10) (Chapter 3, Section 3.2.2.1), the change in mean compliance due 

to the cross-sectional change in the z* element, AC,, is given by 

A C , = - i K . } [ M , ] K . } (8.4) 

The aim is to minimise the mean compliance C, so that the overall stiffness of the 

stmcture can be maximised. Therefore the cross-sectional area of elements with lowest 

values of AC, (or highest values of -AC,) has to be increased to minimise C. Hence the 

following two sensitivity numbers are defined for each element for sizing optimisation. 

a . / = - A C , = K.}^[A^,M<} (8.5a) 

a,f=-^C, = {d,}T[^k,]-{d,} (8.5b) 

To be consistent with the buckling optimisation (in which the cross-sectional areas of 

elements with highest values of a/̂ "̂  and a//," are increased or decreased), -AC, value is 

taken to define the sensitivity numbers. As discussed in Section 4.3, when elements are 

of different lengths, the element sensitivities depend also on their lengths. When 

comparing two elements with the same a,c^, increasing the cross-sectional area of 

shorter element will result in a lighter design. Consequently, the element sensitivities for 

stiffness constraint are redefined below. 

a,; = {d,}T[Ak,Y{d,}ll, (8.6a) 

a , / = K.}^[A^,]-«.}/ / , (8.6b) 
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Thus to increase the overall stiffness of the stmcture, the cross-sectional areas of 

elements with the highest values of ai^ are increased and those with the highest values 

ofa,c'are reduced. 

8.2.2 Sizing optimisation with displacement constraints 

From equation (3.14) (Chapter 3, Section 3.2.2.2), the change in the /^ d.o.f 

displacement, dj due to the cross-sectional change in the z* element, Ac/y is given by 

Ac/, =-{^,}[A^,]K} (8.7) 

As the displacement may take positive or negative value, the aim is to reduce the 

absolute value of dj, \dj\. If dj > 0, the cross-sectional area of elements with highest 

value of {dij} [Aki] {di} needs to be increased to minimise \dj\. Similarly if dj < 0, the 

cross-sectional area of elements with lowest value of {dij} [Aki]{di} needs to be 

increased to minimise \dj\. Hence the following sensitivity numbers are defined for / 

d.o.f displacement constraint: 

« , / = —K/}"[A^,^K}//,- (8.8a) 
^j 

a , / = —H}^[AA:,]-K.}//, (8.8b) 
^v 

If there are several displacement constraints, sensitivity numbers need to be calculated 

for each displacement constraint. 

8-4 



Chapter 8 - Optimum Desien of Structures with Multiple Constraints 

8.2.3 Sizing optimisation with stress constraints 

The normal and shear stresses at any point in an element can be computed from element 

displacements (equation 3.23) or from element forces. The von Mises equivalent stress 

at a point can then be calculated from the following relationship. 

^.m = w t K - S ) ' + K -c^.-)' +(^.- - ^ . ) ^ +6( t^ +xl +T 2 )]i (8.9) 

The critical stress of an element in a frame or tmss can be determined by examining the 

stress levels at certain preselected extreme points at different section of the element. If 

the element is not subjected to distributed forces, evaluation of stresses at both ends of 

the element and at mid-section would be sufficient. For planar stmctures, the von Mises 

stress is reduced to avm=(cy +31: ) where CT and x are normal and shear stresses 

respectively. For example, von Mises stress at a point on a rectangular cross-section of a 

beam element of a planar stmcture (no bi-axial bending or torsional forces) as shown in 

Figure 8.1 is given by 

'vm 
\2My P r 108^2 frl2 

+ • 
hd^ bd) b^d^ 

2̂ 

-y' (8.10) 

The stress recovery points considered should be sufficient to identify the critical stress 

in the section under combined normal and shear stress conditions. 

d 

•'b 

tress recovery 
point 

Figure 8.1 - Rectangular cross-section of a beam element in a planar stmcture 
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An element library may be created in which the details of typical beam and bar cross-

sections can be provided. The necessary information such as relations between the 

geometrical properties and locations to calculate stress levels are given in the library. 

Some of the beam cross-sections and their stress recovery points are shown in Figure 

8.2. The number of stress recovery points and their locations are fixed for each section. 

The equations for calculating the von Mises stress from the forces and moments in the 

section such as equation (8.10) are also given in the library. 

I ' j ' 1 

I V7[ 

- \ 

sun 

Figure 8.2 - Typical beam cross-sections and stress recovery points 

As discussed in Chapter 3, the evaluation of change in stress due to stmctural 

modifications is computationally very expensive. However, if the cross-sectional 

modifications of elements at each iteration are kept small, they do not cause significant 

changes in the element forces. For frames and tmsses this assumption is reasonably 

accurate. Hence the new approximate stresses in an element after the cross-sectional 

changes can be directly calculated from the element forces and new cross-sectional 

dimensions. 

In practice, the strength criterion is satisfied by using the fiilly stressed design (FSD) 

concept which is one of the early optimality criteria. If the stress distribution of a 

stmcture is to be brought to uniform, highly stressed elements need to be strengthened 
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and lowly stressed elements need to be weakened. Hence the following element 

sensitivity numbers are defined for stress constraint. 

a , / = a , , / //, = a , , J ^ +A4)//,. (8.11a) 

^is' =-^i..~ Hi =-<yi,JA-AA)/l, (8.11b) 

where a,vm̂  is the maximum stress in the element /, when the area is increased by AA 

and CT,vm' is the maximum stress in the element i, when the area is reduced by AA. Thus 

to bring the stress distribution uniform, the cross-sectional areas of elements with 

highest values of a,̂ "̂  are increased and those with the highest values of a, '̂ are reduced. 

For the expression a,,s', a negative sign is introduced to be consistent with other 

sensitivity numbers a,c', a,/ and a,-̂ ". 

8.2.4 Uniform scaling and critical scale factors 

As discussed in Chapters 6 and 7, during the optimisation process, it is convenient to 

obtain a feasible design after each iteration by scaling the design uniformly in order to 

satisfy the most critical constraint. This helps keep track the reduction in the weight of 

the stmcture after each iteration and also helps to pick up the most active constraints. 

Determination of uniform scaling factor for stability constraint, Sb has been discussed in 

detail in Chapter 6. Similarly, uniform scaling factors for stiffness constraint, Sc and 

displacement constraint, Sj can be obtained. For the stmctures with linear size-stiffness 

relationship ip= I), Sc = C/Caii and Sd = 14 I ^dj*. For stmctures with other values of/), 

Sc« iC/Caii)^'^ and Sd ~ (I dj I fdj y^. When the von Mises stress at any point in a section 

is linearly related to the design variable of that section (for example in equation 8.10, a 
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OC \/b), uniform scaling factor for stress constraint, Ss - a^^^"" I'^aii- If the von Mises 

stress is not linearly related to the design variable, Ss ~ (a^^ ^^aii)^- ^^"^ ®̂ ^^®^ ^̂  

general and additional iterations are needed to resolve Ss. The scaled design should be 

critical to the most active constraint. Hence the critical scale factor is determined from 

the maximum of uniform scaling factors among Sb, Sc, Sd, and Ss. 

In the preceding chapters, sizing sensitivity numbers and uniform scaling factors are 

given separately for stiffness, displacement and stress constraints. Optimum designs 

separately with each constraint (either with constant volume constraint or minimum 

weight design) can be obtained by using the appropriate sensitivity numbers and 

uniform scaling factors in the optimisation procedures described for buckling 

optimisation in Chapters 4 to 7. In the following sections, sensitivity numbers and the 

optimisation procedure for the multiple constraints problem are proposed. 

8.3 Sensitivity Number 

Ideally the cross-sectional area of the element of which all a/c"̂ , a,fe"̂  , a , / and a,̂  are 

highest should be increased and the cross-sectional area of the element of which all a,/, 

aib , a,/ and a,/ are highest should be decreased to improve the design with all the 

constraints. However this situation generally does not exist. To overcome this difficulty 

the element sensitivity is evaluated by the sum of its relative sensitiveness with regard to 

each constraint. Further it is necessary to treat each constraint separately depending on 

how active it is in the current design. To measure the influence of each constraint, the 

uniform scaling factors Sb, Sc, Sd, and Ss are used as weighting parameters. Taking all 
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these into account, finally for each element the following two new sensitivity numbers 

are defined. 

a;=S,^^S^^^S,^^S,f^ (8.12a) 
^h.av ^ c.av ^ d,av ^ s,av 

o.r = S,^ + S,^ + S,^S,^^ (8.12b) 

where ab.av is the average of the a,̂ "̂  values of all elements and other average values are 

similarly defined. If any of these constraints is not considered in the optimum design, 

corresponding term can be simply omitted in the final sensitivity numbers. There can be 

several displacement constraints and for each displacement constraint the corresponding 

term needs to be added in the final sensitivity numbers. 

The above sensitivity numbers are defined for single load case stmctures. They can be 

easily extended to sensitivity numbers for multiple load cases as follows: 

< = i : 5 „ ; ^ + S , ; ^ + S , ; ^ + S,. ^ (8.13a) 
*=1 ^bk,av ^ck,av ^ dk.av ^ sk,av 

a,- =l.Sbk- - + Sck- ~ + ^dk- - + ^sk- (8.13b) 
< ^ = l ^hk.av ^ck,av ^ dk.av ^ sk.av 

8.4 Optimisation Procedure 

An iterative procedure is set up for uniform scaling and resizing the elements so that the 

weight of the stmcture is systematically reduced and the material is gradually shifted 

from the strongest to the weakest part of the stmcture. The procedure is given as 

follows: 
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Step 1: Select an initial design and discretise the stmcture using a finite number of 

elements. 

Step 2: Perform fully stressed design two or three times. 

Step 3: Solve static and buckling analyses and determine the uniform scaling factors Sb, 

Sc, Sd and Ss. 

Step 4: Scale the design variables uniformly by using the most critical scale factor, i.e. 

maximum of Sb, Sc, Sd and Ss. Impose the sizing constraint. 

Step 5: Solve the static and buckling analyses and calculate the sensitivity numbers a,"̂  

and a," for each element. 

Step 6: Increase the cross-sectional area of elements which have the highest values of 

a,"̂  and decrease the cross-sectional area of the same number of elements which 

have the highest values of a,'. 

Step 7: Repeat Steps 3 to 6 until the weight of the stmcture cannot be reduced any 

fiirther. 

For the problems with displacement constraints, additional static analyses for unit loads 

corresponding to the constrained displacements need to be included in Step 5. In some 

problems, with initial design, some part of the stmcture may be highly stressed. Thus the 

uniform scaling in Step 4 using Ss = o^"" /CT^„ may bring all the cross-sectional areas 

of elements to exceed the maximum limit and further optimisation cannot be done. To 

prevent this problem initially fiilly stress design is performed two or three times to bring 

the stress distribution roughly uniform. In some problems FSD also helps to bring the 

design closer to the optimum design since most of the problems are critical to stress 

constraint. 

-10 
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8.5 Examples 

The examples reported by Barson (1994), Lin and Liu (1992), Pezeshk and Hjelmstad 

(1991) and by Karihaloo and Kanagasundaram (1993) for multiple constraint 

optimisation were govemed by either stress or displacement or stability constraint at 

optimum designs. These examples did not show the effectiveness of the multi constraint 

optimisation method. The capability of the proposed method is illustrated with the 

following examples. Note that the loads and dimensions are intentionally chosen to be 

critical to all the constraints. 

8.5.1 50-Bar truss tower 

A minimum weight design for a 50-bar planar tmss tower as shown in Figure 8.3 is 

sought using the ESO method. The tmss tower is 40 m high and 2 m wide subjected to a 

vertical load of 200 kN at each comer of the top storey. A similar stmcture has been 

analysed previously by Lin and Liu (1992) and Khot et al. (1976) with different 

dimensions and loadings. However in both examples, the final optimum design was 

govemed by only buckling and minimum size constraints. 

The constraints taken into account are: Ovm ^ <^aii =150 MPa; C < Caii =10 kNm; and 

'kcr > FS = 2.0. Young's modulas E = 200 GPa. The initial cross-sectional areas of all 

members are uniform and equal to 15.625 cm . This initial area is chosen so that the 

uniform design just satisfies the most critical constraint. For this example it is the 

buckling constraint and for the initial design Xcr = 2.0 {Sb = 1). The cross-sectional areas 

are allowed to vary to maximum 20 cm and to minimum 1 cm . The step size used for 

resizing is equal to 0.5 cm and 20% of the elements are resized at each iteration. 
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200kN 

40m 

200kN 

CD 

(D 

(D 

(D 

(D 

CD 

CD 

CD 

CD - Panel number 

Figure 8.3 - The 50-bar truss tower 

The optimum design is obtained after 11 iterations and the final design areas are given 

in Table 8.1 (columns 2 and 3). The symmetry of stmctural layout and loadings results 

in a material distribution that is also symmetric, i.e. the two vertical members in each 

panel are equal and so are the diagonal members. The cross-sectional area of all the 

horizontal members are at the minimum value of 1.0 cm^ except for the panel 9 

horizontal member cross-sectional area being equal to 1.63 cm^. The optimisation 

history of scaling factors and the current design to initial design weight ratio, w/Wo are 

given in Figure 8.4. Initially FSD is carried out to bring the variables closer to the 

optimum design. The optimum design is govemed by all the constraints and at optimum. 
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Sb= Ss= Sc = 1. It indicates that all the constraints are equally active at the optimum 

design. The volume of the optimum design with all the constraints is reduced to 46.9% 

of the initial design volume. 

SO.6 

0.4 -

0.2 

Number of iterations 
12 

Figure 8.4 - Iteration history of the 50-bar tmss tower with all the constraints 

Optimum designs are also obtained considering each constraint separately. Optimisation 

histories of these designs are shown in Figures 8.5, 8.6 and 8.7 respectively for stability, 

stress and stiffness constraints. Cross-sectional areas obtained for these designs are 

given in Table 8.1 (columns 4-9). Cross-sectional area of all the horizontal members are 

at the minimum value of 1.0 cm^. The volume of the optimum design with stability 

constraint alone is reduced to 42.6% of the initial design volume and for stress 

constraint alone and stiffness constraint alone, it is reduced to 38.1% and 45.3% 

respectively. Optimum design volumes and scaling factors of all these designs are 

compared in Table 8.2. The scaling factors corresponding to the volume of optimum 
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design with all the constraints (0.139 m^) are also obtained from the single constraint 

design iteration histories and are compared in Table 8.2. 

5.0 

4.0 -

£ 3 . 0 
op 

0 ^ 
2.0 

o 
(/3 

1 . 0 C« 

0.0 

—O— w/wo 
— Ss 
-*-Sb 
-^—Sc . . - / \ , 

/ 

Number of iterations 
12 16 

Figure 8.5 - Iteration history of the 50-bar trass tower with stability constraint alone 

0.0 

4 6 
Number of iterations 

10 

Figure 8.6 - Iteration history of the 50-bar tmss tower with stress constraint alone 

8-14 



Chapter 8 - Optimum Desien of Structures with Multiple Constraints 

O^w / WO 

— Ss 
*-Sb 
— Sc 

5 10 
Number of iterations 

15 

Figure 8.7 - Iteration history of the 50-bar tmss tower with stiffness constraint alone 

Table 8.1 - Optimum design cross-sectional areas of the 50-bar tmss tower 

Panel 

number 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Cross-sectional areas in cm^ 

All constraints 

Vertical 

19.17 

18.43 

18.43 

17.63 

17.43 

15.31 

14.77 

13.20 

12.55 

11.31 

Diagonal 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.63 

1.51 

1.45 

Stability alone 

Vertical 

19.66 

19.66 

19.66 

18.61 

16.85 

14.40 

12.00 

9.30 

5.85 

2.16 

Diagonal 

1.00 

1.00 

1.00 

1.00 

1.10 

178 

1.58 

2.19 

2.18 

2.14 

Stress alone 

Vertical 

12.74 

12.73 

12.73 

12.73 

12.73 

12.73 

12.73 

12.73 

12.73 

12.73 

Diagonal 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

Stiffness alone 

Vertical 

15.39 

15.39 

15.39 

15.39 

15.39 

15.39 

15.39 

15.39 

15.39 

15.39 

Diagonal 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 
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Table 8.2 - Comparison of optimum design parameters for the 50-bar tmss tower 

Initial uniform design 

Optimum design with all 

constraints 

Optimum design with stability 

constraint alone 

Optimum design with stress 

constraint alone 

Optimum design with compliance 

constraint alone 

Volume 

(m^) 

0.296 

0.139 

0.126 

0.139** 

0.113 

0.139** 

0.134 

0.139** 

Sb 

1.00 

1.00 

1.00 

1.00 

1.35 

1.46 

1.14 

1.18 

Ss 

0.53 

1.00 

3.98 

3.36 

1.00 

1.00 

0.85 

0.86 

Sc 

0.63 

1.00 

1.49 

1.24 

1.20 

1.18 

1.00 

1.00 

** Scaling factors corresponding to the optimum design volume with all constraints are 

obtained from the iteration histories. 

These results indicate that if a stmcture is optimised with a single constraint, the other 

constraints will be adversely affected at the optimum design. For example if the 

stmcture is optimised with stability constraint alone, at optimum design (corresponding 

to the optimum volume with all constraints) the maximum stress will be 3.36 times the 

allowable limit and the mean compliance of the stmcture will be 1.24 times the 

allowable limit. This observation contradicts the notion suggested by Barson (1994) and 

Pezeshk and Hjelmstad (1991) which states that by improving the overall elastic 

stability characteristic of a stmcture, the static, dynamic and post elastic performance of 

the stmcture will be also improved. 
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8.5.2 5-Storey frame 

A 2-bay, 5-storey frame, as shown in Figure 8.8 is analysed. The loading on the 

stmcture consisted of dead loads of 40 kN/m for roof level and 80 kN/m for typical floor 

level and wind loads as shown in the figure. The following values are taken for the 

analysis: a /̂/ = 400 MPa; FS = 2.5; and E ~ 200 GPa. In this problem the horizontal 

displacement at the top storey is controlled. According to the design requirements the 

horizontal drift should not exceed 1/500 times the height of the building. Hence the 

horizontal displacement at top storey should not exceed 30 mm. All the members are of 

rectangular cross-section with constant depth d = 120 mm ip = \). Initial uniform 

breadth, b = 234 mm for all the members and b is allowed to vary to maximum 400 mm 

and to minimum 40 mm. This initial uniform design rightly satisfies the most critical 

displacement constraint {Sd =1). The step size used for resizing is equal to 5 mm and 

20% of the elements are resized at each iteration. 

Since the beams are subjected to uniformly distributed loads, each beam is divided into 

10 elements for the analysis. Each column is divided into 3 elements. However 

optimum designs are obtained by treating each member (either beam or column) as a 

single segment, thus avoiding stiffness jump within the member. The stress levels are 

evaluated at both ends of each element within the member and the maximum stress 

value of all the elements is taken to calculate the stress sensitivity number for that 

member. Other stiffness, displacement and stability constraints sensitivity numbers of 

the member are calculated from the average value of the respective sensitivity numbers 

of elements within that member. 
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Figure 8.8 - Layout of the 5-storey frame 

The iteration history of the design with all constraints is given in Figure 8.9. At 

optimum Sd = Ss= 1 and Sb - 0.95. The volume of the optimum design with all the 

constraints is reduced to 62.6% of the initial design volume. Optimum designs are also 

obtained considering each constraint separately and the optimisation histories are given 

in Figures 8.10, 8.11 and 8.12 respectively for stability, stress and displacement 

constraints. Optimum design values of members for all these designs are tabulated in 

Table 8.3. The optimum scaling factors and the volume for these designs are compared 

in Table 8.4. 
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Figure 8.9 - Iteration history of the 5-storey frame with all the constraints 
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Figure 8.10 - Iteration history of the 5-storey frame with the stability constraint alone 
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Figure 8.11 - Iteration history of the 5-storey frame with the stress constraint alone 
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Figure 8.12 - Iteration history of the 5-storey frame with displacement constraint alone 
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Table 8.3 - Optimum design values of the 5-Storey frame 

Element 

number 

Cll 

C12 

C13 

C21 

C22 

C23 

C31 

C32 

C33 

C41 

C42 

C43 

C51 

C52 

C53 

Bll 

B12 

B21 

B22 

B31 

B32 

B41 

B42 

B51 

B52 

Breadth of the member in mm 

All constraints 

56.7 

123.0 

130.0 

95.3 

99.4 

158.7 

73.5 

67.6 

142.6 

95.0 

70.6 

130.8 

44.4 

40.0 

129.7 

263.4 

206.8 

245.1 

202.7 

232.1 

202.2 

230.7 

211.4 

117.7 

114.5 

Stability 

93.2 

179.1 

88.5 

94.5 

183.5 

94.9 

68.2 

138.1 

63.1 

40.0 

71.5 

40.0 

40.0 

40.0 

40.0 

152.8 

148.0 

150.4 

141.0 

99.1 

94.1 

40.0 

40.0 

40.0 

40.0 

Stress 

40.0 

84.7 

78.2 

51.2 

63.4 

97.8 

43.4 

46.0 

82.8 

47.6 

40.0 

77.6 

42.1 

40.0 

56.9 

241.9 

190.0 

225.2 

186.2 

217.0 

189.5 

211.4 

194.2 

106.6 

100.0 

Displacement 

40.0 

104.8 

60.5 

40.0 

60.7 

98.5 

40.0 

84.7 

55.5 

40.0 

40.0 

87.2 

40.0 

40.0 

82.7 

130.4 

40.0 

130.2 

40.0 

130.1 

40.0 

106.8 

40.0 

51.1 

40.0 
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Table 8.4 - Comparison of optimum design parameters for the 5-storey frame 

Initial uniform design 

Optimum design with all 

constraints 

Optimum design with stability 

constraint alone 

Optimum design with stress 

constraint alone 

Optimum design with displacement 

constraint alone 

Volume 

(m^) 

2.391 

1.497 

0.912 

1.497** 

1.215 

1.497** 

0.698 

1.497** 

Sb 

0.56 

0.95 

1.00 

0.89 

1.35 

0.87 

1.87 

0.93 

Ss 

0.95 

1.00 

5.17 

1.52 

1.00 

1.00 

4.63 

1.30 

Sd 

1.00 

1.00 

2.53 

1.60 

1.49 

1.32 

1.00 

1.00 

** Scaling factors corresponding to the optimum design volume with all constraints are 

obtained from the iteration histories. 

8.6 Conclusions 

The proposed ESO method for multiple constraints problem systematically reduces the 

weight by uniform scaling and shifting the material from strongest part to the weakest 

part through the use of sensitivity numbers. The uniform scaling factor of each 

constraint determines the active participation of that constraint in the current design and 

serves as weighting parameter when defining the sensitivity numbers. Unlike in other 

optimisation methods, the number of design variables and the number of constraints are 

not a restriction in the proposed evolutionary method. Hence this method is suitable for 

designing practical stmctures with a large number of design variables. The optimum 

designs obtained for the 50-bar tmss and the 5-storey frame result in significant volume 
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reductions. At optimum designs all the constraints are equally active. It is also shown 

with the examples that the optimum designs obtained with a single constraint alone 

significantly violate the other constraints. 
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CHAPTER 9 - OPTIMUM DESIGN OF PLATE STRUCTURES 

9.1 Introduction 

Optimisation for plate buckling resistance is complicated, because the in-plane stress 

resultants in the prebuckled state of a plate are fimctions of thickness distribution. 

Although there has been a considerable amount of work done on optimisation of frame 

stmctures to enhance buckling resistance, very little research has been reported for plate 

stmctures. This is because the axial stress resultant in the prebuckling state of a frame 

stmcture is approximately independent of change to member cross-sections imposed by 

the optimisation process. However, such an approximation is not valid for plates and 

shells. For example, once the thickness distribution of a plate becomes variable, the 

distribution of the prebuckling stress resultants becomes non-uniform and statically 

indeterminate. The problem of optimising plates for stability is, therefore, significantiy 

more complicated than that for frame stmctures. 

The main part of this chapter discusses the problem of finding the optimum thickness 

distribution of isotropic plate stmctures, with a given volume and layout, that would 

maximise the buckling load. Thin plates of variable thickness are not commonly used, 

yet they exhibit properties that are worth considering especially in weight sensitive 

industries. Of particular interest are the variable thickness plates that are required to 

withstand compressive loads. When properly shaped, they possess much higher buckling 

loads for a given volume of material. Optimum thickness profiles of compression-

loaded rectangular plates with different boundary conditions and plate aspect ratios are 

obtained by using the ESO method. 
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Optimum designs from earlier studies and the methods for buckling analysis used to 

attain these results are discussed in detail in the following sections and compared with 

the designs from the ESO method. The reliability of the buckling solutions of variable-

thickness plates are analysed. It is also investigated the validity of the optimality 

criterion frequently used for plate buckling optimisation by other researchers, which is 

based on the uniform strain energy density. 

9.2 Sensitivity Number and Optimisation Procedure 

To increase the buckling resistance of a plate by redistributing its thickness, the change 

in the critical buckling load factor due to an increase or a decrease in the thickness of 

elements need to be calculated. The change in the stiffness matrix for an increase in 

thickness by Â  in the /* element is given by 

[Ak,] = [NkjY =[^,(r + AO]-[A:,(0] (9.1a) 

th 

Similarly, for a reduction in thickness by Â  in the i element, 

[^j] = [[sk,]-=[k,it-At)]-[k.ft)] (9.1b) 

As discussed in Chapter 4, the change in stress stiffness matrix [A^J can be neglected if 

the modification to the thickness distribution done at each optimisation step is kept 

sufficiently small. Thus the sensitivity numbers of elements, (Xib and a,̂ " are obtained 

by using the change of stiffness matrix only. An iterative procedure, as described in 

Section 4.4, is set up for resizing the plate thickness so that the material is gradually 

shifted from the strongest, oversized part of the stmcture to the weakest part while 

keeping the stmctural volume constant. In the evolutionary procedure, the plate element 

thickness is allowed to vary in small steps in a prescribed manner. The sizing constraint. 
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tmin ^ t < tmax is imposcd on plate thickness during element resizing, where t^ax and r̂ ,>, 

are the allowable maximum and minimum thicknesses, respectively. 

9.3 Examples 

Determination of optimum thickness distribution for uniaxial-compression-loaded 

rectangular plates (Figure 9.1) has been an interesting problem widely discussed in the 

literature. This is because the goveming non-linear fourth order partial differential 

equations used for the solution of buckling loads of rectangular plates are well known. 

Optimum thickness distribution of three such plates with different boundary conditions 

and plate aspect ratios have been obtained by the candidate using the ESO method. The 

plates are made of an isotropic material with a Young's modulus E = 200 GPa and a 

Poisson's ratio v = 0.3. The objective is to find the optimum thickness distribution that 

would maximise the critical value of the applied stress resultant Nxcr (Figure 9.1). For 

these plates, a uniaxial-compression distributed load of 1 kN/m is applied. Thus, the 

first eigenvalue, A,i is equal to the critical load per unit length, Nxcr- For these examples, 

an optimum load factor, OF, which is defined as the ratio of the buckling load of an 

optimised plate to that of an equivalent uniform thickness plate, is used to measure the 

efficiency of the optimised plate. 

Optimisation procedures that are based on discrete models often generate anomalies. In 

particular, the problem of getting patches of checkerboard-like patterns in optimum 

plate designs is encountered quite often. Jog and Haber (1995) have addressed the 

problem of checkerboard-like pattems that have appeared in finite-element solutions for 

distributed-parameter optimisation and variable-topology shape design problems and 
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have shown that the cause of the problem is numerical instability. Usually, but not 

always, with the higher order displacement elements this numerical instability can be 

eliminated, and stable and smoothly varying designs can be obtained. Therefore in the 

following examples eight-node isoparametric elements are used to model the plate 

stmctiires to minimise the formation of checkerboard-like pattems. The problem and 

remedy for numerical instability and the formation of checkerboard-like pattems will be 

fiirther discussed in Section 9.7. 

Nx 

^/yxxyy/y'yyy. 

b 

Figure 9.1 - Uniaxial-compression-loaded rectangular plate. 

9.3.1 Simply supported square plate 

The optimum thickness distribution is sought for a uniaxial-compression-loaded square 

plate that is simply supported on all sides. This example is considered as a benchmark 

problem because it has been analysed extensively in the past by using different 

optimisation methods. A series of studies were carried out independently by Parsons 

(1955), Capey (1956), Mansfield (1973), Spillers and Levy (1990), Levy and Ganz 

(1991), Pandey and Sherboume (1992), Levy and Sokolinsky (1995) and Levy (1996) to 

9-4 



Chapter 9 - Optimum Design of Plate Structures 

find the optimum thickness profile for a square plate. Some of these optimum shapes 

will be examined in the following sections. 

A square plate with a side-width a = 2m and an initial uniform thickness 4 = 1 5 mm is 

considered. The following two cases are examined: 

Case 1: tmax - 20 mm and tmin = 10 mm 

Case 2: tmax = 25 mm and tmin = 5 mm 

The plate is discretised into 20 x 20 square elements and 16% of the elements are 

resized at each iteration (i.e., the thicknesses of 32 elements increased and the 

thicknesses of 32 elements decreased at each iteration). Plate thicknesses are allowed to 

change in steps of I mm. The resizing ratio and the step size are kept constant 

throughout the optimisation process. 

The optimum element thicknesses for the two cases that are obtained with the 8-node 

isoparametric elements are given in Figure 9.2 for one quarter of the plate. The optimum 

thickness distributions for the whole plate are shown in Figure 9.3. The value of Nxcr for 

the uniform-thickness plate and the optimum designs for Cases 1 and 2 are 608,31 

kN/m, 826.08 kN/m (OF = 1.36), and 894.08 kN/m (OF = 1.47), respectively. The 

evolutionary histories of the first two eigenvalues for both cases are shown in Figure 9.4 

and the results indicate that there is not any modal interaction present. The results in 

Figure 9.3 indicate that optimum designs are obtained at between 30 and 35 iterations. 
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Figure 9.2 - Optimum element thicknesses of the simply supported square plate for one 

quarter of the plate 
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Figure 9.3 - Optimum designs of the simply supported square plate 
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Figure 9.4 - Iteration histories of the simply supported square plate 

For both Cases 1 and 2 optimum designs, the plate material is redistributed to thicken 

the center and the four comers. Similar designs were obtained for the thickness ratios 

tmax/tmin ~ 24/8, 24/6, and 24/4. Based on these results, a smooth optimum thickness 

distribution is proposed herein for this square plate with the following quadratic 

equations: 

t{r)-kt^^-ik-\)t^ 

t{r) = kt^^-{k-\)t^ 

^ r Y 

\a 12 J 

-J2 -2r I a 

V2-I 

^2 

when r < a/2, 

when r > a/2. 

(9.2a) 

(9.2b) 

where r is the radius measured from the center of the plate and k - tmaJtmin- Values of 

Nxcr were obtained for plates with this thickness distribution for values of A: = 3, 3.5, 4, 

4.5, and 5 from 40 x 40 finite element models (8-node isoparametric elements). These 

results are tabulated in Table 9.1. The results predict a small variation in the 

enhancement to buckling resistance for the values of k used, with the highest 
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enhancement to buckling resistance occuring for A: = 4. A 37% higher value of Nxcr is 

obtained for the plate with k - 4 than for the corresponding plate with the uniform 

thickness. An exaggerated plot of the thickness distribution of the plate with A: = 4 is 

shown in Figure 9.5. 

Table 9.1 - Buckling load factors for the plate as defined by equation (9.2) 

k 

OF = Nx^^ 1 Nx"f""" 

3.0 

1.355 

3.5 

1.369 

4.0 

1.370 

4.5 

1.358 

5.0 

1.331 

Figure 9.5 - Proposed smooth profile for the simply supported square plate (A: = 4). 

9.3.2 Clamped square plate 

Optimum thickness profile is sought for a uniaxial-compression loaded square plate that 

is clamped on all sides. Plate dimensions and design parameters are the same as those of 

simply supported plate in Section 9.3.1. Again, the two cases (Case 1 with tmax/tmin = 

20/10 and Case 2 with tmax/tmin = 25/5) are considered. The plate is discretised into 20 x 

20 square elements and 8% of the elements are resized at each iteration (i.e., thickness 
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of 16 elements increased and thickness of 16 elements decreased at each iteration). Plate 

thicknesses are allowed to change in steps of 1 mm at each iteration. 

Final designs that are obtained with 8-node isoparametric elements are shown in Figure 

9.6. The first and second eigenvalues of the uniform plate and the optimum designs for 

Case 1 and Case 2 are given in Table 9.2. For Case 1, the plate has become bimodal as a 

result of optimisation. For Case 2, although the intermediate designs exhibit bimodal 

behaviour, the final design is single mode. Optimum designs are also obtained by 

considering only the first buckling mode by using single mode sensitivity numbers. 

Buckling loads of these designs are lower than those of the optimum designs obtained 

by using the sensitivity numbers which consider modal interaction. The evolutionary 

histories of the first two eigenvalues for Cases 1 and 2 that are obtained by using both 

single and bimodal methods are given in Figures 9.7 and 9.8, respectively. 

Table 9.2 - The first two eigenvalues of the square clamped plate designs 

Uniform design 

Case 1 designs 

Case 2 designs 

Bimodal 

Unimodal 

Bimodal 

Unimodal 

Xi=/Vr^,(kN/m) 

1534.3 

2383.7 

2242.7 

2850.3 

2539.0 

'Xi 

1767.3 

2408.6 

2263.9 

3416.6 

2625.2 

OF 

1.00 

1.55 

1.46 

1.86 

1.65 
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Figure 9.6 - Optimum designs of square clamped plate 

y / y uniform 

1.7 T 

1.6 

1.5 

1.4 

1.3 --

AAC//wVYyy\ 
•v./ .^i^-^^ 

/ 

1.2 -

1.1 
•'-7 

• 

/ 
• 

/ •^_ / / \ . / •^_ / s, / • • • • 

—»—A,i - Bimodai formulation 

_ . — A,2 -Bimodal formulation 

—•—X\ - Singleraodal formulation 

—•—A.2 - Singlemodal formulation 

10 15 20 25 
Numberoflterations 

30 35 40 

Figure 9.7 - Iteration histories of the square clamped plate (Case 1) 
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uniform 

'• X] - Bimodal formulation 

""•~ X2 - Bimodal formulation A 

~ ^ ~ ^1 - Unimodal formulation / \ / 

~^^~ X2 - Unimodal formulation /*^«j,i—*—*-

15 20 25 30 35 
Number of Iterations 

Figure 9.8 - Iterations histories of the square clamped plate (Case 2) 

9.3.3 Simply supported rectangular plate 

A simply supported rectangular plate of dimensions 3.2 m by 2.4 m is analysed. 

Uniform uniaxial-compression load is applied on the shorter edge of the plate. The 

initial uniform thickness of the plate is 15 mm and the thickness is allowed to vary to 

the maximum of 20 mm and to the minimum of 10 mm in steps of 1 mm. The plate is 

discretised into 32 x 24 square elements. At each iteration, 64 elements are subjected to 

thickness resizing. The first and second eigenvalues of the uniform plate are 458.82 

kN/m and 496.19 kN/m, respectively. The final design (Figure 9.9) is bimodal and ft is 

obtained after 31 iterations. The first and second eigenvalues of this optimum design are 

very closely spaced and are equal to 573.96 kN/m {OF = 1.25) and 574.17 kN/m, 

respectively. The plate is also optimised with the single mode sensitivity numbers and 

the value of A/.̂ ^ for the final design is 530.86 kN/m {OF = 1.15). The evolutionary 

histories of the first two eigenvalues that are obtained by using both single and bimodal 

methods are given in Figure 9.10. 
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_^ Thickness 

Figure 9.9 - Optimum design of the rectangular plate (?„ = 15 mm) 
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Figure 9.10 - Optimisation histories of the rectangular plate (?j, - 15 mm) 
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9.4 Previously Reported Optimum Shapes 

9.4.1 Optimum shapes by Pandey and Sherboume 

Early studies by Parsons (1955), Capey (1956), and Mansfield (1973) reported that 

higher thickness near the edges versus center (concave profile) of a uniaxially loaded 

simply supported square plate increased its buckling resistance. Spillers and Levy 

(1990) proposed a convex thickness profile with very high material concentration in the 

center for the simply supported square plate. This paradox of thickness distributions 

motivated Pandey and Sherboume (1992) to re-investigate the whole problem. The 

optimum designs reported by Parsons (1955), Capey (1956), Mansfield (1973) and 

Spillers and Levy (1990) are characterised by a severely disproportionate thickness 

distribution resulting in very thin sections in certain regions. Pandey and Sherboume 

(1992) found that these plates actually buckled locally at a load far lower than what have 

predicted by those authors. Buckling solutions of these plates were obtained by using the 

Raleigh-Ritz method with assumed displacement functions. The number of terms used 

in the series to represent the plate lateral displacement was not big enough to capture the 

local buckling. 

Pandey and Sherboume (1992) proposed a thickness distribution for uniaxially loaded 

rectangular plates based on Parson's (1955) sinusoidal thickness variation and it is given 

by the following equation. 

?., ^ TOcY ny^ 

K V 
tix,y) = ij l + ( /V,- l )s in— ! + ( # , - l ) s i n - r - (9.3) 

where k^=\-\-2iN^-\)In, Ny is a variable called thickness distribution shape 

parameter, tu is the uniform plate thickness, and a and b are length and width of the 
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plate. Optimum shapes were obtained for a square plate with three sets of boundary 

conditions; that is, a) all edges simply supported, denoted by SSSS; b) all edges 

clamped, denoted by CCCC and c) loaded edges simply supported and unloaded edges 

clamped, denoted by SSCC. 

The Rayleigh-Ritz method was used for the buckling analyses. The following Fourier 

sine series of half sine waves in both plate directions was used to represent the lateral 

deflection, w{x,y) of the simply supported plate. 

N N 

w{x,y) = 2^ Z^A^^sm sm-— (9.4) 
m=l n=l CI b 

where Amn is a constant. The following Gram-Schmidt-type orthogonal polynomials 

were used for the plates with clamped edges. 

N N r 

m=\ n=\ 
" l " « b] (9.5) 

\a 

where ^m and v|/„ are orthogonal polynomial sequences that at least satisfy the 

geometrical boundary conditions in X- and Y- directions, respectively. The total number 

of terms used in the both displacement functions was 81 (A^= 9). 

Buckling loads were obtained for plates with various values of thickness distribution 

parameter, /V„. Poisson's ratio v = 0.3 was used in this analysis. For the simply 

supported square plate the maximum buckling was obtained when Ny = 2 (convex 

profile as shown in Figure 9.11) and the buckling load was 28.4% higher than that of the 

uniform plate load {OF - 1.284). The ratio of the plate thickness at the centre to comer 

for this convex plate is 4. For CCCC and SSCC plates, optimum buckling loads were 

obtained when N^ = 0.25 (concave profile as shown in Figure 9.12). Reported optimum 
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factors of these CCCC and SSCC plates are 2.046 and 2.359, respectively. However, the 

buckling solutions reported for these concave profiles appear to be in error, as shall be 

discussed later in Section 9.6. 

Figure 9.11 - Optimum Shape by Pandey & Sherboume for SSSS plate (Âv = 2.0) 

Figure 9.12 - Optimum shape by Pandey & Sherboume for CCCC and SSCC plates 

(A^v=0.25) 

9.4.2 Optimum shapes by Levy and his co-workers 

Originally, Spillers and Levy (1990) extended Keller's (1960) classic solution for the 

optimal design of columns to the case of plates and derived an optimality condition via 

variational calculus which states that the plate thickness distribution should be 

proportional to the strain-energy density distribution in an optimal design. They 
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proposed the following thickness profile for the uniaxially loaded simply supported 

rectangular plate. 

Kx,y) = t^ 1-0.586 cos-
2-KX 

\ a 
1-0.5 86 cos 

2'Ky 
(9.6) 

The optimum shape according to equation (9.6) for a square plate is shown in Figure 

9.13. Buckling solution was obtained by using the Rayleigh-Ritz method with the 

following one-term symmetric double sine series representation for the plate lateral 

displacement. 

roc ny 
w(x, y) = ^sin—sin—-

a b 
(9.7) 

The buckling load for this plate was calculated to be 2.12 times that of an equivalent 

uniform plate {OF = 2.12). Levy and Ganz (1991) later re-analysed this problem by 

using a six term displacement function with a multiple of half sine waves in the 

direction of loading and only one half sine wave in the other direction (equation. 9.8) 

and predicted a 44% increase in the buckling load {OF = 1.44). 

• ^ nitx ny 
w{x,y)= LA^m—sm-r 

n=l,3,5,... " ^ 

(9.8) 

Figure 9.13 - Optimum shape by Spillers & Levy (1990) 
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Pandey and Sherboume (1992) found that the displacement functions given by equations 

(9.7) and (9.8) could encapsulate a critical mode of global nature only and could not 

capture the complex localised buckling modes. They re-analysed Levy's plate with a 

displacement function of half sine waves in both plate directions of a total of 289 terms: 

N N 
X"̂  -^ mtix nny 

wix,y) = 2_j 2j^m«sin sin—— where TV = 17 (9.9) 
m=\ n=\ ^ b 

They reported, that Levy's plate locally buckles at comers for a load far lower than that 

predicted and also less than the buckling load of uniform thickness plate iOF = 0.44). 

Recently Levy and Sokolinsky (1995) and Levy (1996) re-analysed the whole problem 

and proposed the following two thickness distributions as optimum shapes, 

(a) Double cosine symmetric plate given by 

t{x,y) = t^ 
2TZX Y 2KV 

1-0.295COS 1-0.295COS—^ (9.10) 
a k b J 

(b) Hybrid double sine symmetric plate given by 

t{x,y) = c^ 
nx ^ ^ , , 1 

l-i-Cj s m — - . -^ -— 
V « A b J 

l + c,sm^ (9.11) 

where c\ and C2 depend on 4- For 4 = 0.05, c\ = 0.0135 and C2 = 1.452. Shapes of a 

square plate given by equations (9.10) and (9.11) are shown in Figures 9.14 and 9.15. 

Rayleigh-Ritz method was used with a sufficientiy accurate displacement function to 

obtain the buckling loads of these plates. For the Poisson's ratio v = 0.32, optimum 

buckling load factors reported for cosine and sine plates are 1.234 and 1.323, 

respectively. 
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example, the initial outer layers (reinforced layers) have an uniform material 

distribution with volume fraction \i = 0.4. The plate is discretised into 32 x 24 eight-

node isoparametric elements. 

2S A A A 
1.0 m 

• - l 

X, 

.::;:;::;:::::::: reinioraid layer •^j^^:-. 

^ ^ o r i p n a ] p l & t c ^ ^ ^ ^ 

-'•'••••'•'reinforced layer:.: 

H 
O 

• 

base material: E=210 GPa, v=0.3 

Figure 9.16 - Loads and geometry of the plate by Folgado et al. (1995) 

The final design obtained and the iteration history of the first three eigenvalues are 

given in Figure 9.17. The final design was bimodal and was obtained after 112 

iterations. The buckling loads reported by Folgado et al. were: a) for intemal solid layer 

of 5 mm thickness (without reinforced layers) - Nxcr= 183.0; b) for initial design with 

uniform reinforced layers (increase the plate thickness to 10 mm with 40% volume 

increment) - A'jCcr = 409.1; c) for the final design - Nxcr= 589.0. 

800-' 

600" 

Per 
400' 

200' 

20 *^ter att»n 
80 100 

Figure 9.17 - Optimum solution of the plate by Folgado et al. (1995) 

9-19 



Chapter 9 - Optimum Desien of Plate Structures 

This problem can be made analogous to the plate with solid material having variable 

thickness distiibution. If the initial design with uniform reinforced layers of p = 0.4 is 

made to a solid layer, the thickness of the initial plate would be 5 + 5 x 0.4 = 7 mm. 

Hence the buckling load of solid uniform plate would be 183.0 x (7/5)^ = 502.2. When 

comparing the buckling load of solid plate (502.2) and that of the plate with uniform 

reinforced layers (409.1), the buckling load of the latter plate appears to be incorrect. 

Because the plate with uniform reinforced layers (which has the material further away 

from the neutral axis than the solid plate) should be more efficient than the solid plate. 

Based on the buckling load of solid plate, the optimum load factor of final design would 

be 589.0/502.2 =1.173. 

This problem can be well compared with Example 9.3.3. The aspect ratio of the plate, 

the ratio of tmax/tmin and the Poisson's ratio are the same for both problems. However, in 

Example 9.3.3, the uniform plate thickness 4 was 15 mm. To match the exact conditions 

of Folgado's plate the uniform plate thickness should have been taken as 14 mm (40% 

volume increase of minimum thickness 10 mm). Example 9.3.3 is re-analysed using the 

ESO method with 4 = 14 mm. The final design (Figure 9.18) is obtained after 30 

iterations. Buckling loads of the uniform plate and the optimum plate are 373.12 and 

458.44 kN/m respectively. Optimum load factor of this design is 1.229. The iteration 

histories of first and second eigenvalues are shown in Figure 9.19. This plate also 

exhibits bimodal behaviour. 
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Figure 9.18 - Optimum design of the rectangular plate by ESO method (r„ = 14 mm) 
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1.00 
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Figure 9.19 - Iteration histories of the rectangular plate by ESO method (^ - 14 mm) 

9-21 



Chapter 9 - Optimum Desien of Plate Structures 

9.5 Strain Energy Distribution of Optimum Plates 

Under the assumption of in-extensional pre-buckling deformations, a condition of 

uniform strain energy density has been established as being the optimality condition for 

plates (Spillers and Levy (1990)). However, optimisation of plates on the basis of such 

assumptions have led to unsatisfactory solutions. Since the in-plane stress resultants in 

the prebuckled state of plates are fimctions of the thickness distribution, plate stmctures 

with variable thickness can never be considered as statically determinate stmctures. 

According to the uniform strain energy density optimality criterion, at optimum design 

the normalised specific energy of each element NSEi (defined in Chapter 5, equation 

(5.3)) is constant and equals unity. The distributions of normalised specific energy of 

uniform and optimum shapes of the simply supported square plate are compared in 

Figure 9.20. The horizontal axis of the Figure 9.20 gives the percentage of elements 

which have the normalised specific energy below the corresponding NSE value at the 

vertical axis. Uniformity of specific energy distribution is not observed in any of these 

designs. There is no particular difference noticed between the uniform plate and other 

optimum shapes. 
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Figure 9.20 - Comparison of normalised specific energy distribution of the optimum 

designs of the simply supported square plate 
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9.6 Buckling Solutions of Variable-thickness Plates 

Traditionally, special purpose energy-based methods such as the Raleigh-Ritz and the 

Bubnov-Galerkin methods have been preferred to general purpose finite-element 

methods because of the excessive cost, storage and data preparation that usually 

accompany finite-element analysis. However, with the advent of powerfiil computers 

and advances in finite-element methods, numerical techniques are becoming more 

popular for stmctural analysis, and they can be readily applied to any shapes, boundary 

and loading conditions. Moreover, the accuracy of results obtained from energy-based 

methods depends on the number of terms used to describe the displacement function. 

Since Rayleigh-Ritz method was used by Pandey and Sherboume (1992) and Levy 

(1996) for the buckling analysis of their optimum shapes, it is now important to check 

the rehability of their resufts. Buckling solutions of these optimum plates are obtained 

by using the finite element method. Eight-node isoparametric elements are used to 

model these variable thickness plates. Buckling loads of SSSS, CCCC and SSCC plates 

with thickness distribution according to equation (9.3) for various values of A'̂ , are 

obtained. Buckling loads of Levy's shapes are obtained for both v = 0.32 and v = 0.3. 

For all the other plates v = 0.3 is used. It is found that finite element solutions and the 

corresponding reported results by Rayleigh-Ritz method are compared in Table 9.3. 

Finite element solutions of simply supported plates are reasonably close to the reported 

results (Levy's results differed by 2% and Pandey's results differed by 4-5%). 
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Table 9.3 - Comparison of finite-element solutions with Levy and Pandey and 

Sherboume results. 

Plate type 

and reference 

SSSS plate 

Levy (1996) 

SSSS plate 

Pandey and 

Sherboume 

(1992) 

CCCC plate 

Pandey and 

Sherboume 

(1992) 

SSCC plate 

Pandey and 

Sherboume 

(1992) 

Rayleigh-Ritz method 

Parameter 

Sin (v = 0.32) 

Cosine (v= 0.32) 

Sin (v = 0.30) 

Cosine (v= 0.30) 

Âv = 0.5 

Ny = 2.0 

Âv = 3.0 

Âv = 4.0 

Âv = 5.0 

N. = 0.25 

Âv = 0.5 

A^v=1.5 

N^ = 2.0 

N, = 2.5 

A-v = 3.0 

Ny = 4.0 

Ny = 0.25 

Ny = 0.5 

A^v=1.5 

Ny = 2.0 

Ny = 2.5 

A/v = 3.0 

Ny = 4.0 

OF 

1.323 

1.234 

-

-

0.789 

1.284 

1.278 

-

0.700 

2.046 

1.451 

-

0.727 

-

-

0.600 

2.359 

1.438 

-

0.652 

-

-

0.448 

Finite Element Method 

Modelling 

8 0 x 8 0 8-node 

isoparametric 

elements 

8 0 x 8 0 8-node 

isoparametric 

elements 

4 0 x 4 0 8-node 

isoparametric 

elements 

4 0 x 4 0 8-node 

isoparametric 

elements 

OF 

1.296 

1.212 

1.286 

1.162 

0.851 

1.238 

1.230 

0.858 

0.569 

0.128 

0.501 

1.175 

1.216 

1.211 

1.190 

1.014 

0.162 

0.628 

1.067 

1.035 

0.954 

0.852 

0.601 

* The first two letters denote the loaded edge support conditions 

9-25 



Chapter 9 -Optimum Design of Plate Structures 

Buckling loads of uniform thickness plate with clamped edges reported by Pandey and 

Sherboume (99.43 D^/b^ for CCCC plate and 75.91 D^/b^ for SSCC plate, where Z)„ = 

Etui i\-v^)) are very close to the finite element solutions (99.29 DJb^ for CCCC plate 

and 75.83 DJb for SSCC plate). However, buckling loads of variable thickness plates 

with clamped edges reported by Pandey and Sherboume and finite element solutions are 

totally different. Pandey and Sherboume's results give higher buckling loads for 

concave profiles (Âv < I as shown in Figure 9.12) whereas FEM gives higher buckling 

loads for convex profiles {Ny > 1 as shown in Figure 9.11). Finite element solutions 

reveal that for the concave plate with Ny - 0.25, local buckling occurs at the middle of 

the plate for all boundary conditions. Apparently this local buckling has not been 

captured by Pandey and Sherboume even with 81 terms displacement fiinction. For the 

convex plate with Ny = 4.0, local buckling is found by FEM at comers of the plate. 

Critical buckling modes of plates for Ny = 0.25 and Ny = 4.0 obtained with FEM for the 

boundary conditions CCCC and SSCC are shown in Figures 9.21 and 9.22, respectively. 

Buckling modes of CCCC plates with Âv = 0.25 and Âv = 4.0 reported by Pandey and 

Sherboume are given in Figure 9.23. These buckling modes did not show local buckling 

around the comers or at the centre of the plate. 

^i^^^^M <^^^^fe||fi^^ ^^^^^^^^^^ 

(a)A v̂ = 0.25 (b)A^v=4.0. 

Figure 9.21 - Fundamental buckling mode of CCCC plates from FEA 

9-26 



Chapter ') -Optimum Desien of PlulcSinnturc-

(a)A^, = 0.25 (b)A^v=4.0 

Figure 9.22 - Fundamental buckling mode of SSCC plates from FEA 

//, = 0.25, (X, = 2.0463) N, = 4 (X,-0.5968) 

Figure 9.23 - Fundamental buckling mode of CCCC plates by Pandey and Sherboume 

The contradiction, regarding the buckling solutions of plates with clamped edges by 

FEA and by Pandey and Sherboume has motivated the candidate to check the reliability 

of the finite-element software when applied to the buckling analysis of variable-

thickness plates. Considerable amount of research has been carried out on the buckling 

analysis of variable thickness plates (such as exponential, linear tapered, sinusoidal, 

step variation etc.) with different boundary conditions, aspect ratios and various loading 

conditions using energy methods and numerical methods. Some of the noted studies are 

by Wittrick and Ellen (1962) and Ng and Araar (1989) using Galerkin method; 

Kobayashi and Sonoda (1990) using exact power series method; Harik and Andrade 
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(1989) using analytical strip method and Harik et al. (1991) using semi-analytical and 

semi-numerical method. Some results from each of the above references and the 

corresponding finite element solutions obtained in this study are compared in Table 9.4. 

The table numbers in Table 9.4 should be referred to the corresponding references. 

Loading conditions and thickness distribution parameters of each reference are referred 

from Figure 9.24. In the boundary conditions the first two characters denote the loaded-

edge conditions of the uniaxially loaded rectangular plate. 

Wittrick & Ellen (1962) and Kobayashi & Sonada (1990) 

Harik & Andrade (1989) 

Nv = Nx 

Ng& Araar (1989) 

Figure 9.24 - Thickness distribution parameters of the variable-thickness plates 
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Table 9.4 - Comparison of finfte-element buckling solutions with reported results for 

variable-thickness plates. 

Boundary 

* 
conditions 

SSSS 

SSCC 

SSSS 

SSCS 

SSCS 

SSCF 

SSCF 

SSCC 

SSCC 

SSCC 

CCCC 

CCCC 

CCCC 

CCCC 

CCCC 

Reference 

Wittrick 

Tables II & III 

Wittrick 

Tables IV & V 

Kobayashi 

Table 1 

Harik 

Table 1 & 2 

Ng & Araar 

Table 1 

Aspect 

ratio 

0.5 

2.0 

1.0 

1.5 

0.5 

3.0 

3.0 

1.5 

1.8 

2.0 

2.0 

2.0 

1.2 

1.8 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

Thickness variation and 

parameter 

Exponential - tji^ = 1.5 

Linear taper - t\/tQ - 2.0 

Exponential - V?o = 2.0 

Exponential - tf/tQ =1.5 

Linear taper - Vo = 2.0 

Linear taper - V ^ =1-5 

Linear taper - t\/tQ = 2.0 

Linear taper- t\/tQ =1.5 

Step variation - h/ho-1.5 

Step variation - h/ho=l.5 

Step variation - h/ho=\.5 

Step variation - h/ho=l.5 

Step variation - h/ho=l.5 

Step variation - h/ho-l-S 

Step variation - hlho=l.5 

Linear taper - c = 0.0 

Linear taper - c = 0.2 

Linear taper - c = 0.4 

Linear taper- c = 0.6 

Linear taper- c = 0.8 

Reported 

results 

6.049 

2.236 

16.58 

10.90 

33.64 

11.24 

1.922 

3.339 

8.295 

8.762 

2.348 

2.348 

10.705 

11.665 

10.542 

15.696 

15.891 

16.429 

17.238 

18.285 

FEM 

** 
mesh 

10x20 

20x10 

20x20 

30x20 

40x20 

30x10 

20x20 

30x20 

18x10 

20 X 10 

20x10 

20x10 

12x10 

18x10 

20x10 

40x20 

40x20 

40x20 

40x20 

40x20 

FEM 

results 

6.039 

2.242 

16.61 

10.93 

33.68 

11.29 

1.920 

3.341 

8.304 

8.547 

2.343 

2.357 

10.916 

11.844 

10.616 

15.773 

13.330 

9.325 

5.333 

1.069 

The first two letters denote the loaded edge support conditions. 

8-node isoparametric elements are used. 
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Comparison of the results indicates that the finite element solutions are in excellent 

agreement with the results reported by Wittrick and Ellen (1962), Kobayashi and 

Sonoda (1990) and Harik and Andrade (1989) and differ by only 0.3% maximum. Again 

the buckling solutions obtained by and Ng and Araar (1989) for the bi-axially loaded all 

edges clamped plates using Galerkin method with six term displacement function 

considerably differ from the finite element solutions. 

9.7 Elimination of Checkerboard Patterns from 4-node Element Optimum 

Solutions 

Numerical instability problems are often encountered in finite element solutions to 

distributed-parameter and variable-topology shape design problems. Although the 

physics of a given problem might imply a regular solution, optimisation procedures that 

are based on discrete models often generate irregularities in the design field at the length 

scale of the numerical grid. These anomalies can take the form of checkerboard pattems 

and rib like formations in the design of solid plates, intemal boundaries in shape 

optimisation of continua and cormgations in thin shells of constant thickness, wherein 

the finite element solution for the design field altemately overestimates and 

underestimates the expected continuum solution in adjacent elements. These instabilities 

are strictly a numerical artifact and do not have any physical significance. The origin of 

checkerboard pattems and other irregularities are related to features of the finite element 

approximations. When 4-node linear elements are used in ESO for plate buckling, 

checkerboard like pattems are often observed in the optimum designs. It is illustrated 

with the following examples. 
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9.7.1 Optimum designs of plates with 4-node elements 

The optimum designs of the simply supported square plate for the two cases ( Example 

9.3.1) that are obtained with the 4-node isoparametric elements are shown in Figure 

9.25. Values of Â ĉ ;. for the final designs for Cases 1 and 2 are 872.9 kN/m and 1257.8 

kN/m, respectively. Checkerboard-like pattems are observed in these final designs and 

most of the elements reach extreme thickness, either tmax or tmin in the final designs. 

Numerically the designs with checkerboard-like pattems represent stiffer stmcture. 

These final designs are re-analysed with 8-node isoparametric elements and the values 

of Nxcr obtained are only 790.0 kN/m for Case 1 design and 672.0 kN/m for Case 2 

design. Simply supported rectangular plate (Example 9.3.3) is re-analysed with the 4-

node isoparametric elements and the final design obtained is shown in Figure 9.26. 

Again checkerboard-like pattems exist in the final design and most of the elements 

reach extreme thicknesses. 

(a) Case 1 (b) Case 2 

Figure 9.25 - Final designs of SSSS square plate obtained with 4-node elements 
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Figure 9.26 - Final design of SSSS rectangular plate obtained with 4-node elements 

Usually, the higher the order of the displacement element, the greater the numerical 

stability. Thus in general 8-node elements are used for plate optimisation problems. 

Both the ESO method and the Folgado's method use 8-node isoparametric elements to 

model the plate stmctures. However the size of the finite element model and the 

computational time are significantly increased with higher order elements. For example, 

static and buckling analyses of 20 x 20 elements square plate modelled with 8-node 

isoparametric elements require 30 minutes on a Pentium / 120 MHz personnel 

computer, whereas the solution time required for the plate modelled with 4-node 

elements is only 6 minutes. Static and buckling analyses of the 32 x 24 elements 

rectangular plate modelled with 8-node elements require 75 minutes and the analyses 

with 4-node elements require only 20 minutes. Thus the time required for the buckling 

solution of a stmcture modelled with 8-node elements is four to five times higher than 

the time required by the same stmcture modelled with 4-node elements. The number of 

elements used in the above examples is small since the critical buckling mode of these 

plates are not complicated. In real problems, a fine mesh of elements is needed to 

9-32 



Chapter 9 -Optimum Desien of Plate Structures 

represent the prebuckling stress distribution and the buckling mode adequately. The use 

of higher order elements in large problems is computationally expensive. Therefore it is 

important to find alternative ways to improve the use of low order elements in the 

optimisation process. In the following section, an element sensitivity number 

redistribution method is proposed to suppress the formation of checkerboard-like 

pattems from optimum designs using 4-node elements. 

9.7.2 Element sensitivity number re-distribution method 

In this method element sensitivity numbers are re-calculated by considering the 

influence of elements in the neighbourhood. The modified sensitivity numbers are 

calculated for each element as follows: 

• Calculate the initial sensitivity numbers for each element as defined by the equations 

(4.15) or (5.2). 

• Compute the nodal sensitivity numbers, a ^^ at each node by taking the average of 

the sensitivity number of elements connected to that particular node. For example, 

nodal sensitivity numbers of nodes 1, 2, 3, 5 and 6 in the Figure 9.27 given below 

are calculated as follows: 

1 

4 

12 

© 
5 

O 

13 

® 

© 

© 
6 

14 

7 

^NX = « ! 

1 2 3 
Figure 9.27 

a/v2 = ( a , + a 2 ) / 2 

^ y v 3 —^2 

a^5 = (a , + a 2 + a 3 + a 4 ) / 4 

^N6 = ( a 2 + a 4 + a 5 ) / 3 
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• Re-calculate the modified sensitivity numbers, a / for each element by taking the 

average of the nodal sensitivity numbers of that particular element. For example the 

modified sensitivity numbers of elements 1 and 5 in the above figure are 

c t / = ( a M + a ^ 2 + a A f 4 + a ^ 5 ) / 4 and 

"5 = (a/^6 +^Ni +^Nxz +aA^i4)/4. 

The above two examples are re-analysed with the 4-node linear elements using the 

modified sensitivity numbers. Final designs obtained are shown in Figures 9.28 and 9.29 

for the square plate and the rectangular plate, respectively. Patches of checkerboards are 

eliminated from these designs to a large extent. This method works well when the ratio 

between the maximum and minimum allowable thicknesses is small. 

Thickness Thicioiess 

(a) Case 1 (b) Case 2 

Figure 9.28 - Optimum designs of the square plate obtained with the re-distributed 
sensitivity numbers for 4-node elements 
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^ Thickness 

Figure 9.29 - Optimum design of the rectangular plate obtained with the re-distributed 
sensitivity numbers for 4-node elements 

9.8 Layout Optimisation 

Buckling optimisation sensitivity numbers are calculated by ignoring the change in 

stress matrix and these sensitivity numbers are not applicable to optimisation involving 

element removal. For this reason ESO for stability constraints is restricted to sizing 

optimisation with fixed topology. However, a significant weight reduction can be 

achieved by optimising the layout of the stmcture where the topology of the stmcture is 

not fixed and intemal holes can be created during the optimisation process. In Chapter 3, 

ESO for shape and layout optimisation of stmctures with stiffness, displacement, stress 

and frequency constraints have been briefly described. ESO for layout designs with 

stability constraints can be achieved by gradually removing the inefficient elements 

from the design domain so that the decrease in critical buckling load factor is kept as 

small as possible. In the following section an example is presented to illustrate how the 
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ESO for layout design with a stability constraint can be performed if the chang( 

buckling load factor due to an element removal is known. 

e m 

1000 kN 1000 kN 

0.2 m d) 

Design domain 

Nondesign domain 2m 

77^. 

2 m 

Figure 9.30 - Initial stmcture of the 2-dimensional portal frame for layout optimisation 

Consider a portal frame, clamped at base as shown in Figure 9.30. It is required to find 

the optimum topology of material within the design domain. External columns and 

beam which are represented by nondesign domain are fixed. This is a two dimensional 

problem and the stmcture is modelled with 22 x 21 square 8-node isoparametric 

elements. The material is isotropic with Young's modulus E = 200 GPa and Poisson's 

ratio v = 0.3. Both the design and nondesign domain plate thickness is equal to 10 mm 

and it is kept constant. Since the change in buckling load factor due to the removal of an 

element cannot be obtained from the results of finite element analysis of the previous 

stmcture, a buckling analysis with the removal of the element has to be carried out to 

obtain the change in buckling load factor. This analysis is repeated for each and every 

element in the design domain to assess the influence of the removal of each element to 

the critical buckling load. This is done by assigning the plate property number zero to 
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the removed element. Once the buckling analysis is performed that particular element is 

re-assigned with the correct plate property number and the plate property number of the 

next element to be removed is assigned to zero and so on. 

When removing the elements, symmetry of the stmcture should be preserved. Therefore 

at each analysis 1 x 2 (since there is one symmetric axis) elements are removed. Once 

the buckling load factors of the stmcture with the removal of each set of symmetric 

elements are found, the most inefficient set of symmetric elements is removed. By 

repeating this whole procedure the inefficient elements are gradually removed (one 

symmetric set of elements at a time) from the design domain. The evolving shapes (after 

removing every 12 x 2 elements) are given in Figure 9.31. Buckling load factors of the 

original stmcture (with and without the design domain) and the evolving shapes are also 

given in Figure 9.31. Figure 9.32 shows the evolutionary history of the critical load 

factor after each set of symmetric elements is removed. Initially Xcr is almost unchanged 

with the removal of elements. Xcr is reduced by only 1.26% after 92 x 2 elements are 

removed, i.e, the design domain weight is reduced to 46.2%. Then Xcr is decreased 

gradually with the removal of elements. At intermediate stages, some irregular designs 

such as with checkerboard like pattems are observed. This may be due to the reason that 

the finite element mesh used in this problem is very coarse. Final designs show the 

potential locations of diagonal members for the portal frame. Layout optimisation of this 

stmctiire is also obtained with 4-node linear elements and the evolving shapes are 

shown in Figure 9.33. Very irregular checkerboard like pattems are observed even at 

early stages of the designs. 
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Figure 9.31 - Evolving layouts and corresponding buckling load factors of the portal 
frame (continued) 
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?Li = 5750.17 
72 X 2 elements removed 

Xx = 5727.45 
84 X 2 elements removed 

A.i= 5628.13 
96 X 2 elements removed 

911 = 5337.41 
108 X 2 elements removed 

Xx = 4329.04 
120 X 2 elements removed 

A.1 = 3640.02 
126 X 2 elements removed 

Figure 9.31 - Evolving layouts and corresponding buckling load factors of the portal 
frame (continued) 
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MM iH 'O 

—J— 

Xi =2982.08 
131x2 elements removed 

;^i= 2014.72 
138x2 elements removed 

^1 = 1138.22 
145 X 2 elements removed 

Xi= 274.38 
Without design domain 

Figure 9.31 - Evolving layouts and corresponding buckling load factors of the portal 
frame 
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Number of symmetric sets of elements removed. 

Figure 9.32 - Evolutionary history of the layout optimisation of the portal frame 
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Figure 9.33 - Evolving shapes of the portal frame obtained with 4 node elements 

9-41 



Chapter 9 -Optimum Desien of Plate Structures 

9.9 Conclusions 

The optimum designs obtained with the ESO method yield higher buckling loads than 

corresponding previously reported designs. For a simply supported square plate, an 

optimum design has been proposed which gives a buckling load 37% higher than that of 

a uniform equivalent thickness plate. This is higher than any published and correct 

results for the same problem. It is even higher for non-smooth profiles. The 

corresponding shape given by Levy (1996) has only a 29% increase in buckling 

resistance and that given by Pandey and Sherboume (1992) has only a 24% increase. For 

the simply supported plate with aspect ratio 1.333, Folgado et al. (1995) also obtained a 

similar design but with slightly lower buckling load. However, Folgado et al. (1995) 

achieved this design after 112 iterations whereas the proposed method required only 30 

iterations to attain the optimum design. This difference is important because the number 

of iterations is cmcial in analysing stmctures with higher order elements such as 8-node 

isoparametric plate elements. 

Buckling solutions given by Pandey and Sherboume (1992) and Ng and Araar (1989) 

for variable thickness plates with clamped edges obtained by using the Rayleigh-Ritz 

method appear to be in error. It is unclear where they made numerical mistakes in their 

analysis. 

The optimality criterion based on the uniform specific energy distribution does not 

appear to admit a general solution to shape optimisation of plate stmctiires against 

buckling. The uniform strain energy concept may hold tme for statically determinate 

stmctures, but not for variable-thickness plate stmctures. 

9-42 



Chapter 9 -Optimum Desien of Plate Structures 

Plate buckling optimum designs have been obtained with 8-node isoparametric elements. 

When 4-node linear elements are used, checkerboard-like pattems are observed in tiie 

optimum designs. The cause for this problem is numerical instability. A simple approach, 

element sensitivity number redistribution method, has been proposed to improve the use 

of 4-node elements in the plate optimisation process. This method works well for the 

problems with a small ratio between the maximum and minimum allowable thicknesses. 

This chapter has also tried to address the layout optimisation of stmctures against 

buckling. It has been shown with a two-dimensional example that a significant weight 

reduction can be achieved by optimising the layout of the stmcmre. However the 

approach used for the layout optimisation is not computationally efficient and further 

research needs to be done to find an efficient way to calculate the sensitivity numbers 

when an element is removed. 
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CHAPTER 10 - CONCLUSIONS AND FUTURE RESEARCH 

^ it i4-t^ joufute^ t ^ ttuxttena.. etc t^ e*td. 

- ^ucdeir ^c ^uitt 

10.1 Conclusions 

The objective of the research presented in this thesis was to investigate and develop 

simple, mathematically less complex and computationally efficient optimisation 

methods based on Evolutionary Stmctural Optimisation (ESO) concept to enhance the 

buckling resistance of stmctures. This chapter summarises what have been achieved in 

this study and discusses the further developments required in these and related areas. 

The capability of the ESO method for buckling optimisation was illustrated with various 

examples of single modal, multimodal, multiple load case and multiple constraint frame 

stmctures and plate stmctures. Critical buckling load factors were substantially 

increased and significant weight reductions were observed in these optimum designs. 

The results were compared with the exact solutions and with other published solutions. 

The optimum designs obtained with ESO methods for plate stmctures and for most 

frame stiiictiires yield higher, if not equal, buckling loads than corresponding previously 

reported results. 
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The change in critical buckling load factor due to stmcttiral modifications was derived 

from the discrete form of eigenvalue problem {[K] + Xj[Kg]){uj} = 0. Sensitivity 

numbers for element resizing were obtained by ignoring the change in stress stiffness 

matrix due to element cross-sectional modifications. Since the change in stress matrix 

due to element removal cannot be ignored because of the significant changes in the 

membrane or axial stress resultants in its surrounding elements, buckling optimisation in 

this study has been restricted only to sizing optimisation. For repeated eigenvalue 

problems or multimodal stmctures, the effect of modal interaction associated with 

repeated eigenvalues was taken into account in a simple but very effective way by taking 

the average values of the individual sensitivity numbers of all participating buckling 

modes. 

The resizing procedure used in the proposed method is much simpler than other resizing 

algorithms or the recurrence relations commonly used in optimality criteria methods. 

This resizing procedure does not require any arbitrary constants to control the 

convergence of the optimisation process as in other optimality criteria methods. 

Furthermore, in ESO method the elements are resized gradually by a small cross-

sectional modification at each iteration. This gradual evolution treats the statically 

indeterminate stmctiires more effectively than other optimality criteria methods. In 

addition, the sizing constraints can be easily included in the optimisation process and the 

non-design domain can also be specified. The influence of ESO parameters, the resizing 

ratio and the step size, was stiidied with several examples. In general the accuracy of the 

solution improves with a smaller resizing ratio and a smaller step size but at the expense 

of higher computational cost. These parameters need to be kept small for highly 
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statically indeterminate stmctiires, for stmctiires with complex buckling modes and for 

multimodal stmctures. 

Initially the ESO method for buckling optimisation was formulated to maximise the 

critical buckling load of the stmcture while keeping fts weight constant. Later this 

method was extended to the minimum weight design of frame stmctures with prescribed 

buckling load constraints. This was achieved with the introduction of uniform scaling 

which brings the critical buckling load factor equal to the factor of safety against 

buckling of the stmcture after each iteration. An empirical mle was proposed for the 

uniform scaling of nonlinear size-stiffness stmctures and space stmctures. This 

empirical mle greatly reduces the number of iterations required for uniform scaling and 

ensures convergence. 

For multiple load case stmctures, element sensitivity numbers were calculated by 

considering the influence of all the load cases. The uniform scaling factor of each load 

case served as weighting parameter (which played a similar role as the Lagrangian 

multipliers in optimality criteria methods) when defining the sensitivity numbers and it 

was also used to identify the most critical load case. It was shown with the examples 

that optimising a stmcture under a single loading condition would violate the buckling 

constraints of the other load cases. 

The ESO method for multiple constraints problem (including stiess, stiffness and 

displacement constraints in addition to the stability constraint) systematically reduces 

the weight by uniform scaling and shifting the material from the strongest part to the 
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weakest part through the use of sensitivity numbers. Here again the uniform scaling 

factor of each constraint was used as weighting parameter when defining the element 

sensitivity numbers. Furthermore, the most active constraint was determined from the 

maximum of uniform scaling factors of all constraints and it was used to scale the 

design uniformly after each iteration. It was also shown with the examples that 

optimising a stmcture with a single constraint alone would significantly violate the other 

constraints. 

Plate buckling optimum designs were obtained for uniaxial-compression-loaded 

rectangular plates with the use of 8-node isoparametric elements. The poor performance 

of low order finite elements such as 4-node linear elements in the optimisation process 

was clearly illustrated with examples. Since the computational time and the disk storage 

requirements were drastically increased with the use of higher order elements, a simple 

approach, element sensitivity number re-distribution method with 4-node elements was 

proposed. 

It was also shown with an example that a significant weight reduction could be achieved 

by optimising the layout of the plate stmcture. 

This section concludes emphasising the following positive points of ESO method for 

buckling optimisation. 

• The concept of this method is easy to understand by practising engineers and 

scientists and it does not involve any complex mathematics. 
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. This method is suitable for designing practical stmcttires with a large number of 

design variables. 

• This method can be easily implemented with any of the commercially available 

finite element analysis software. 

• This method allows the designer to know every stage of the optimisation process and 

lets him to consider intermediate designs as well. 

10.2 Further Recommendations 

In addition to the work carried out in this study, recommendations for further research 

closely related to the buckling optimisation include the following: 

1) Since a significant weight reduction can be achieved by optimising the layout of the 

stmcture by removing the inefficient elements from the design domain, it is 

important to find an efficient way to calculate the change in buckling load factor 

when an element is removed. Substmcturing or any other approximate methods need 

to be investigated to obtain the approximate change in stress stiffness matrix due to 

the element removal. 

2) The use of higher order elements in plate buckling optimisation process is very 

computationally expensive. Although the element sensitivity number re-distribution 

method with 4-node elements works well for the problems with a small ratio of 

maximum to minimum allowable thicknesses, it does not appear to work as well for 

problems with high thickness ratios. Furthermore, the plate problems often exhibit 

multimodal situations which require the solution of several buckling modes. For 
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example, uniaxially loaded CCCC square plate exhibfts bimodality and the first three 

eigenvalues coincide for uniaxially loaded CCSS square plate and for biaxially 

loaded SSSS square plate. In a buckling analysis, the computational time increases 

exponentially with the number of eigenvalues requested. And also the buckling 

solution of multimodal problems may require very high accuracy (the tolerance of the 

eigenvlues need to be kept very small) in the calculation of eigenmodes to accurately 

take account of the modal interaction. All these factors make the buckling 

optimisation of plate stmctiires very complicated. Therefore it is important to 

investigate and formulate numerically stable and computationally efficient finite 

element methods to be used in the plate buckling optimisation problems. 

3) For plate stmctures, other constraints such as stress, stiffness and displacement 

constraints also need to be included in the optimisation problems. 

4) Material and geometric nonlinearity may also need to be studied in the optimisation 

problems. The hypotheses behind the linearised buckling model limits it range of 

applicability. However, in spite of its limitations it should be noted that the results 

obtained with the linearised model give important information for optimisation 

purposes as an upper bound of the load capacity of the stmcture. Also if the nonlinear 

analysis model is solved iteratively by a set of linearised subproblems, the respective 

nonlinear model can be based on the developments presented for linear model. 

Optimisation with orthotropic and anisotropic material should also be investigated 

especially with plate problems. 
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