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Abstract 

This thesis studies parallel query optimization for object-oriented queries. Its main 

objective is to investigate how performance improvement of object-oriented query 

processing can be achieved through processor parallelism. 

The two major aspects of parallel query optimization are Parallel Query 

Optimization and Parallel Query Execution. Parallel query optimization includes access 

plan formulation and execution scheduling, whereas parallel query execution deals with 

parallel algorithms for basic operations. Complex queries are normally decomposed into 

multiple basic operations, and for each basic operation an appropriate parallel algorithm is 

applied. Therefore, query access plan formulation is influenced by the availability of basic 

parallelization models and parallel algorithms. Execution scheduling deals with managing 

execution plans among these parallelizable basic operations. 

Parallelization of single-class queries and inheritance queries is provided by inter-

object parallelization. The efficiency of parallelization of inheritance queries depends en its 

data structure. A linked-vertical division is developed, which has the advantages of 

horizontal and vertical divisions. 

Parallelization models for path expression queries are presented in two forms: 

inter-object parallelization which exploits the associativity of complex objects, and inter-

class parallelization which relies upon process independence. Inter-object parallelization 

will function well if a filtering mechanism in the form of selection operation exists. On the 

other hand, inter-class parallelization relies upon independence among classes, not the 

filtering feature. These two parallelization models form the basis for the parallelization of 

more complex object-oriented queries. 

Parallelization for join queries, particularly for collection join queries, is presented 

in two versions: sort-merge and hash. Depending on the types of collection join queries. 
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which includes R(elatioruil)-Join, I(ntersection)-Join, and S(ub-collection)-Join, data 

partitioning can be either disjoint or nen-disjoint. Disjoint partitionmg is based on the 

first/smallest element within each collection, depending on whether the collection is a 

list/array or a set/bag. An option for non-disjeint partitioning is to make use of a proposed 

Divide and Partial Broadcast. 

Query optimization is basically to transform initial queries, normally represented as 

a query graph, into Operation Trees, in which query access plans are specified. The 

transformation exploits inter-object parallelization and inter-class parallelization, and is 

achieved by transforming primitive operations into either inter-ebject or inter-class 

parallelization whenever appropriate. Two main execution scheduling strategies, serial and 

parallel scheduling, are analyzed. The serial scheduling is appropriate for non-skewed 

operations, whereas parallel scheduling with appropriate processor configuration is suitable 

for skewed operations. Through physical or logical data re-distribution, the negative effect 

of the skew problem can be minimized. 

Three levels of performance evaluation were carried out to demonstrate the 

efficiency of the proposed procedures. Analytical performance evaluation provides the cost 

models for each proposed algorithm or method which are corroborated by simulation. The 

experimental approach is able to strengthen both simulation and quantitative results. 

Through these evaluations, the quantitative models are demonstrated to be valuable in 

representing the behaviour of parallel OODB processing. 
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Chapter 1 

Introduction 

1.1 Objective 

The expressiveness of object-oriented data modeUing has been one of the stirengths of Object-

Oriented Database (OODB), which also gives rise to highly complex data stmctures and 

access patterns, with a consequent adverse impact on database performance (Carey and 

DeWitt, 1996; Hurson and Pakzad, 1993). Moreover, as databas^jizes grow to terabyte 

magnitude, there is a critical need to jivestigate methods for paraUel execution of object-

oriented database queries (S dinger, 1993; Valduriez, 1993). 

ParaUelism can be beneficial in the ̂ qntext of query optimization and execution for 

^^ious reasons, such as to increase system throughput, and to decrease response time 

(DeWitt and Gray, 1992; Ozkarahan, 1986). The system throughput may be increased by 

applying inter-query paraUelizatipn,^hereas query response time may improve by intra-query 

paraUelization focusing at inter-operation and intra-operation paraUelization^ Iiî  this thesis, 

we focus on intra-query paraUelization^ ParaUelism aUows a query to be split into sub-

queries. Each of these sub-queries is adlocated a number of processors on which to operate. 

Furthermore, multiple sub-queries may be processed simultaneously. 

JTiejiain objective of this research is to investigate how performance improvement 

of OODB query processing can be achieved through processor paraUelism. This research wiU 

integrate paraUelism techniques in the optimization and execution stages of a query. 
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Apart from the performance benefits of paraUelism, the research is also motivated by 

the foUowing three facts. The first fact is that objects are conceptuaUy concurrent (Booch, 

1994). An object has its ovm thread of control. It can execute in paraUel with other objects. 

This ability reveals potential applications of objects and object-orientation in paraUel 

processing. 

The second fact is that paraUel machines have become increasingly popular (Almasi 

and Gotdieb, 1994; Milne, 1996). High performance paraUel machines are no longer a 

monopoly of supercomputers. ParaUel architectures now cover a broad range of architectures, 

i.e., from fast Local Area Networks connecting paraUel servers and workstations (eg., quad-

processor Pentiums, Sun workstations, DEC Alpha servers), to massively paraUel processing 

systems MPP (eg., CM5). The integration of this technology with database systems has been 

explored over the last few years. However, most works mainly deal with relational databases. 

Far less attention has been given to paraUelism in OODB, partiy because most OODB 

designers have devoted their effort to modeUing and developing sophisticated applications 

rather than devising new techniques for optimizing object-oriented queries. 

The last fact is that conventional optimization techniques were not designed to cope 

with heterogeneous stmctures, and in particular they are not suitable for handling complex 

objects (Cluet and Delobel, 1992; Graefe and Maier, 1988). Besides, the connecting of 

processors in a high speed network does not automatically offer linear speed up^ and linear 

scale-up'^ which are the two main goals of paraUelism (DeWitt and Gray, 1993). There is no 

doubt that optimization plays an unportant role, without which the performance of paraUel 

database systems wUl not yield very significant improvement. 

1.2 Scope of Research 

A query in a database system is convenientiy expressed in a non-procedural language, eg., 

SQL, where the user does not specify the precise algoritlun on how to retrieve the 

TnforiiiatiDnrfJUl'MlyTIiel^quirements of the desired information. Therefore, it is possible to 

have many different access paths in executing a query. Optimization technique becomes 

significant as it formulates and chooses the most efficient way to deliver the query results to 

the user. 

' Linear speed-up refers to perfonnance improvement growing linearly with additional resources and is an 
indicator to show the efficiency of data processing on multiprocessors. 

^ Linear scale-up refers to maintaining the same level of performance when both resources and tasks are added 
to the system. This is more typical in transaction processing systems. 
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Query optimization in database systems is a classical problem, and has been 

recognized as one of the most difficult problems to solve (Jarke and Koch, 1984), since it has 

proven to be NP-complete; that is there is no polynomial time.algoridim to solve the problem. 

and therefore, more realistic ap£roachss,__siich._as-JieuiistiCj_cost-ba 

optimization, must be employed. The inain task of query optimization is to find the most 

efficient access so that the query response time can be reduced. 

A query, before it is executed, is usuaUy scanned and parsed into some internal 

representation (Selinger et aJ., 1979). A typical form used is some kind of query tree or query 

~decompositionrThis1tnfeiMlTepFesentation is then transformed into an optimized query tree. 

The rules which transform the initial tree to the final tree must preserve the equivalence. This 

JjnaLguery tree is sometimes known as a query access plan, which wiU be executed to obtain 

the query result. Figure 1.1 shows the steps of query processing and optimization. It also 

defines the scope of this research. 

Query 

V ' 
Scanning and 

Parsing 

Internal form 
of query 

Nk 
Optimizing 
the query 

Execution plan 

Nl/ 
Executing 
the query 

Result 

, _ - ^ - _ _ 
I Parallel Query l * Access Plan Formulation 
V Optimization ' * Scheduling Execution 

. _ _ ^ _ _ 
I Parallel Query 1 * Parallelization Models 
^ Execution ' * Parallel Algorithms 

<-

Notes: 

7 Conventional optimization 
\ Scope of the research 

Figure 1.1. Scope of the Research 
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^^The le tasks of paraUel que^ optimization can be highlighted into two majqr_areas^ 

namely Parallel Query Optimization and Parallel Query Execution. ParaUel query 

optimization^ includes access_plan formulation, and executioii^sdheduling. Access plan 

formulation is to develop the best sequential query access plan, whereas execution scheduling 

is to incorporate paraUelism scheduling in the query access plans. Since query access plan 

formulation is influenced by the avaUabUity of paraUelization models and paraUel algorithms, 

these two issues are discussed first in this thesis. ParaUelization models and paraUel 

algorithms contain the basic form of paraUelism for basic query operations. Complex queries 

are normaUy decomposed into multiple basic operations, and for each basic operation an 

appropriate paraUelism algorithm is appUed. Execution scheduling deals with managing 

execution plans among these paraUelizable basic operations. 

• Parallel Query Execution 

Parallelization Models 

yy^ ParaUelization models for basic selection queries are first identified. In object-

oriented databases, selection operators may appear in any classes in a relationship 

hierarchy. The complexity of parallelization of these queries depends on the types of the 

relationship involved. The simplest kind is where the selection operators are on single 

classes. A more complex model includes paraUelization of selection operations along 

inheritance and aggregation relationships. In the case where a number of different 

paraUelization models are avaUable to a basic query operation, a comparative analysis is 

given. The result of this analysis is then used as a guideline by die query optimizer in 

choosing an appropriate paraUelization model for a particular operation at the 

optimization stage. 

Parallel Algorithms x 

ParaUelization for more complex query operations, particularly join operation, is 

identified. Join operation in OODB is far more complex than Uiat in relational databases, 

since in OODB an attribute may be of a coUection type. ParaUel algorithms for coUection 

join queries are designed and evaluated. Although the basic elements of paraUel relational 

join algorithms, such as partitioning and local join, can be used, paraUelization of 

coUection join requires more sophisticated partitioning and local joining strategies, due to 

the non-atomic join attributes. 
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• Parallel Query Optimization 

Access Plan Formulation y 

Transformation procedures, which transform initial queries into more efficient query 

access plans, are formulated. Transformation procedures for object-oriented queries, to 

some extent, differ from those of relational queries, because the primitive query 

operations in object-oriented query processing which include different types of path 

traversals, as weU as join, are much richer than those in relational queries, which merely 

concentrate on joins. Identifying optimization procedure for these primitive operations is 

an important part of the optimization of more complex and general queries. 

Execution Scheduling 

Scheduling strategies for an execution of the query access plan need to be 

determined. Since load balancing and skew problem are part of paraUel query processing, 

the effect of skewness on execution scheduling wiU be examined. It is weU recognized 

that performance improvement can be gained through skew handling and resolution, but 

more importantiy, the impact of load balancing on execution scheduling wiU be studied. 

Due to many different varieties of paraUel architectures, in this thesis we focus on 

databases stored in main-memory. The reasons are three-fold. First, object-oriented query 

processing normaUy requires substantial pointer navigations which can be done efficientiy 

when all objects present in the main memory. As a consequence of this, no particular indexing 

method is considered since pointer navigations can be just done efficientiy. Second, as the 

main objective of this thesis is to investigate processor parallelism, performance analysis can 

be done more accurately by excluding the VO factor. Third, the size of main memory in 

paraUel systems has now reached a capacity where it is realistic to put multi-gigabyte 

databases entirely in main memory. 

1.3 Contributions 
The specific contributions of this thesis are Usted below, and the relationships between the 

contributions and the research scope are shown in Figure 1.2. 

• Query Taxonomy / 

New query types, such as inheritance queries, coUection join queries, semi-cyclic 

queries, are identified. These queries, in addition to the weU-known path expression 

queries, expand considerably the complexity of query optimization requirements. 

Predicate on coUection types for path expression and join queries are also studied. 
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Query Taxonomy 

ParaUelization 
Models 

Inheritance 
Structuies 

> - -< 
ParaUel CoUection 
Join Algorithms 

A. ParaUel Query Execution 

Optimization 
Algorithms 

>- -< 
Execution 
Scheduling 

B. Parallel Query Optimization 

Figure 1.2. Contributions 

Parallelization Models / 

Two paraUelization models: inter-object and intra-object paraUelization, are 

introduced. These two paraUelization models, especiaUy in path expression queries, 

complement each other and offer a useful combination for high performance paraUel 

query processing. 

Inheritance Structures^ 

A linked-vertical division for inheritance stinicture is proposed. This inheritance 

structure balances the two traditional inheritance structures: namely, horizontal and 

vertical divisions. Although the performance of the proposed structure is not always 

superior, it tends to outperform the others in most cases. 

Parallel Collection Join Algorithms / 

ParaUel algorithms for coUection join queries are developed. Due to the nature of 

coUections which may be overlapped, for some coUection join queries, it is not possible to 

produce disjoint partitions. A divide and partial broadcast method is presented. The join 

algorithms also accommodate the sort-merge and hash operations in the algorithms. 
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• Query Optimization Algorithms / 

Query optimization algorithms, which transform initial query graphs into operation 

trees, are established. A graphical notation for query access plans, caUed Operation 

Trees, is introduced. These operation trees are slighfly different from conventional query 

trees, as operation trees accommodate different types of primitive paraUel object-oriented 

query operations including inter-object and inter-class paraUelization, as weU as paraUel 

join operation. Optimization of these basic operations, by means of converting primitive 

operations from one form to anodier for more efficient execution, is also formulated. 

• Execution Scheduling 

Two execution scheduling sti-ategies for operation trees, namely serial and parallel 

scheduling, are formulated. An adaptive processor allocation algorithm based on these 

two execution scheduling strategies is developed. A thorough analysis is undertaken to 

demonstrate the superiority of the simple serial scheduling, provided that the load 

imbalance problem in each operation is carefuUy handled. 

1.4 Thesis Organization 

The thesis is organized into 11 chapters. The inter-relationships between the chapters are 

depicted in Figure 1.3. 

Chapter 2 describes a taxonomy for object-oriented queries. The major aim of the 

classification is to define a framework for query optimization. By the end of the chapter, it 

wiU highlight the query types to be dealt with in query optimization. 

Chapter 3 discusses existing work on paraUel query processing and optimization. It 

particularly concentrates on how queries defined in the previous chapter may be processed 

and optimized using weU-known methods. The aim of this chapter is to outiine the 

achievements of the conventional methods in paraUel query processing and optimization, and 

more importantiy to highlight the problems which remain outstanding. 

The main body of this thesis, which addresses the problems pointed out in chapter 3, 

is divided into three parts: (/) parallelization models and algorithms, (ii) access plans, and 

(///) performance evaluation. The first part is discussed in chapters 4 and 5. The second part 

is presented in chapters 6 and 7. And the final part is analyzed in three chapters (chapters 8-

10). 
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Ch.2 
Object-Oriented Queries: 

A Frameworic 

[ Parallelization Models 
1̂  and Algorithms I Access Plans ] 

N ' 

Ch.4 
Parallelization Models 
for Selection Queries 

L 

Ch.5 
Parallel Algorithms 
for CoUecticxi Join 
Queries 

Ch.6 

Access Plans 
Formulation 

Ch.7 

Execution 
Scheduling 

Performance Evaluation 
r 

Ch.8 
Analytical 
Performance Evaluation 

^ 

Ch.9 

Simulation 
Performance Evaluation 

Ch. 10 

Experimental 
Performance Evaluation 

Ch. 11 
Conclusions and 
Future Research 

Figure 1.3. Thesis Structure 

Chapter 4 introduces paraUelization models, particularly inter-object and inter-class 

paraUelization, for selection queries covering single-class queries, inheritance queries, and 

path expression queries. Since the performance of paraUel inheritance query processing is 

very much influenced by the data structure to represent inheritance, this chapter also focuses 

on inheritance data structures for efficient paraUel inheritance query processing. This chapter 

also performs a comparative analysis between the two paraUelization models for path 

expression queries. The results are used as a basis for query decomposition. 

Chapter 5 presents paraUel query algorithms especiaUy designed for coUection join 

queries. Depending on the partitioning strategy, these join algorithms can be divided into 

disjoint-based and non-disjoint-based paraUel algorithms. The latter exploits a divide and 

partial broadcast technique to create non-disjoint partitions. The join methods considered 

include sort-merge and hash. 

Chapter 6 demonstrates query decomposition procedures based on heuristic rules. 

The procedure can be summarized into transforming initial query represented in query graph 
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into operation trees. These operation trees show the relationship and the order of each 

operation, in which the operations are executed in paraUel. 

Chapter 7 examines two execution scheduling strategies to be appUed to operation 

tirees, namely serial and paraUel scheduling. Data disti-ibution to deal witii load imbalance 

problem is also investigated. 

Chapter 8 gives a quantitative analysis for the Uieoretical discussion on 

paraUelization models, algorithms, and query optimization. The aims of diis chapter are to 

describe the behaviour of each proposed model by means of cost equations, and to perform 

quantitative analysis between different models. 

Chapter 9 gives a validation of the quantitative analysis dirough simulation. 

Comparative and sensitivity analyses produced by simulation are also given. 

Chapter 10 provides a validation of die quantitative analysis and the simulation 

model through the performance measurement of an experimental system. The experimental 

performance evaluation differ from the simulation performance evaluation in the 

implementation platform. The experimental performance evaluation is done by implementing 

the proposed models on a real paraUel machine, whereas the simulation performance 

evaluation is implemented in a simulation program in which the values of several systems 

parameters are varied for sensitivity analysis. Varying systems parameters in the real machine 

is more difficult, due to the characteristics of the system structure. However, a further 

experimental model is valuable in demonstrating the reliabUity of the simulation model and 

the quantitative model. 

Chapter 11 gives a summary of the results achieved and an insight into future work. 



Chapter 2 

Object-Oriented Queries: 
A Framework for Query Optimization 

2.1 Introduction 
This chapter presents a taxonomy for Object-Oriented Queries (OOQ). A comprehensive 

study of object-oriented queries gives not only an understanding of the full capabilities of 

object query language, but also a direction for query processmg and optimization. The main 

aim of query classification is to define a framework for query optimization. It wUl be used 

to define the types of queries to be optimized. 

y-This chapter is organized as follows. Section 2.2 describes the object model which 

is used as a reference data model for object-oriented queries. Section 2.3 presents basic 

query types which become the basis for more general and complex queries. Section 2.4 

describes complex query types. Section 2.5 gives an uisight into and explanation of a query 

optimization framework. Fmally, section 2.6 gives the conclusions and sums up the 

contributions. 
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2.2 The Reference Object Model 

The object model adopted by most Object-Oriented Database (OODB) systems include 

class and object, inheritance, and complex object (CatteU, 1994; Kim, 1990, Bertino and 

Martino, 1993). 

2.2.1 Classes and Objects 

A class defines a set of possible objects (Coad and Yourdon, 1991; Meyer, 1988). Objects 

of the same class have common operations as well as uniform behaviour. A class has two 

aspects: 

• type: attributes and applicable methods, and 
^ • container of objects of same type. 

It is important to distinguish between classes and objects. A class is a description of 

a set of objects, whUst objects are instances of a class. 

An object is a data abstraction defmed by (Coad and Yourdon, 1991; Meyer, 1988): 

• a unique identifier (Object Identity OID), 
• valued attributes (mstance variables) which give a state to the object, 

^ and 

• methods (operations) which access the state of the object. 

An OID is an mvariant property of an object which distinguishes it logically and 

physically from all other objects. An OID is therefore unique. Two objects can be equal 

without being identical (Masunaga, 1990). The state of an object is actually a set of values 

of its attributes. Methods are specified as operations which are defined in the class that 

describe the object. The specified methods are the only operations that can be carried out on 

the attributes in the object. The client of the object cannot change the state (attributes) 

except by method invocation. Thus, an object encapsulates both state and operations. For 

example, Proceedings is a class name, and it consists of a list of attiributes, such as title, 

venue, dates, etc; and a list of methods, such as acceptance_rate, etc. Proceedings objects 

include VLDB97, ICDE97, OOPSLA97, etc (assume that diese are OIDs that uniquely 

identify each object). 

It is convenient to use a graphical notation to represent an object model. A class is 

often drawn as a rectangle having a class name and its properties (attributes and methods). 

With fewer detaUs, a class is often shown as a node with the class name and possibly a few 

important attributes. To differentiate an object from a class, quadrants are used to represent 

objects. The ODD is also included in the notation in order to distinguish one object from 

another. Figure 2.1 gives an illustration of a graphical notation for classes and objects. 
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Class: 

Object: 

(^ "^ 
Proceedings" 

title 
venue * - -
dates 

acceptance_rate < 
V J 

class name 

or 

~ ~ - attributes 

^ 

^ 
^^^roceedings"^ 

some attributes 
(optional) 

OID or something that can be used 
to identify the object. 

VLDB'9' 

Figure 2.1. Class and Object 

2.2.2 Inheritance y 

/inheritance is one of the most important concepts in object-oriented technology, as it 

provides a mechanism for reusing some parts of an existing system (Meyer, 1988). 

Inheritance is a relation between classes that allows for the definition and implementation 

of one class to be based on other existing classes. Inheritance can be of type extension or 

restriction^ (Meyer, 1988). An extension inheritance is where a sub-class has all properties 

(i.e., attributes and methods) of the super-class and may have additional properties as well. 

In other words, a sub-class is more specialized than the super-class. In contrast, a restriction 

inheritance is where a sub-class inherits some properties of a super-class. This can be done 

by selecting the properties of the super-class to be inherited by its sub-class. In either type, 

some methods of a super-class may be redefined in a sub-class to have a different 

implementation. ^ 

If several classes have considerable commonality, it can be forced out in an 

abstract class^ (Coad and Yourdon, 1991). The differences are provided in several sub­

classes of the abstract class. An abstract class provides only partial implementation of a 

class, or no implementation at all. The union of instances of its sub-classes gives a total 

representation of the abstract class. 

A sub-class may inherit from more dian one super-class; this is known as multiple 

inheritance (Meyer, 1988). Multiple inheritance sometimes causes meUiod/attribute naming 

' restriction inheritance is not yet supported by ODMG (CatteU, 1994). 

^ abstract class does not have any instances. 
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conflicts. Method conflicts are solved by either renaming or restricting one of the 

conflicted methods. 

In terms of notations, an inheritance hierarchy is represented as a dotted arc from a 

sub-class to its super-class. An abstract class is shown as a dotted node. Figure 2.2 shows 

some examples of inheritance hierarchies. 

a) Single Inheritance: 

Research 
Paper Conf^nce"" ' Cont^ni 

"• ^ Article 

CJournal ^ 
_ P a p e r ^ ^ 

b) Multiple Inheritance: 

CConference~N 
^ f aper '_^ 

Cl^^roceedingT]]) (^Journal ~~~^ 

^ - / 
N • 

Figure 2.2. Inheritance 

Inheritance raises the issue of polymorphism (Meyer, 1988). In general, 

polymorphism refers to the ability of an object to take more than one form. This means that 

an object declared to be of a class is able to become attached to an object of any descendant 

class. This kind of object is said to be polymorphic. For example, suppose class 

ResearchPaper inherits to class Journal_Paper. Objects of class Research_Paper are also 

objects of class Journal_Paper. 

2.2.3 Complex Objects 

Ĉ  ^Objects are said to be complex objects when they are built from complex data structures. 

The domain of an attribute/method can be of simple or complex data types. Simple data 

types are atomic types which include integer, real, string, etc; whereas, complex data types 

may include structures, objects, and collections. These complex data types give an object 

an abUity to include other objects to form a complex object. 

( Some structure types are buUt into the system, eg, Date{dd,mm,yy), Money{%, 

cents), etc. The abUity to construct new structures manifests the concept of encapsulation in 

an object-oriented paradigm. A notation for structure states the structure name and the 

fields within a bracket, e.g., Page{starting_page, ending_page).^ 
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A relationship between two classes Ci and Ci is established if one of the attributes 

of C\ has Ci as its domain. If the reverse is applied, the association is called an inverse 

relation (CatteU, 1994). For example, an association between class Book and class 

Publisher occurs when attribute publisher of class Book has class Publisher as die domain. 

An inverse relationship occurs when an attribute book of class Publisher has a domain of a 

setof5oo^as well. 

A relationship is denoted as a duected arc from a node to another node. Should an 

inverse relationship exists, die arc becomes a bi-directional arc. The attribute name which 

holds the relationship may be displayed as a label of the arc. Figure 2.3 shows an example 

of a Book-Publisher relationship. 

Relationship: 

publisher 
blisher 

Note: the relationship is denoted by attribute publisher of class Book 
having class Publisher as a domain. 

Figure 2.3. Relationship 

a. Collection Types 

The main characteristic of a collection type is that an attribute value contains a collection of 

objects that may be structured, such as a list or an array, or unstructured, such as a set or a 

bag (Rahayu et al., 1995). The proposed object database standard, ODMG, also includes the 

definitions as well as the operations to manipulate these collection types in an OODB 

environment (CatteU, 1994). The collection types considered here are: sets, lists, arrays, and 

bags. 

Sets are basically unordered collections that do not allow duplicates. Each object 

that belongs to a set is unique. Lists are ordered collections that aUow duplicates. The order 

of the elements in a list is based on the insertion order or the semantic of the elements. 

Arrays are one-dimensional arrays with variable length, and allow duplicates. The main 

difference between a list and an array is in the method used to store the pointers that assign 

the next element in the list/array. Because this difference is mainly from the implementation 

point of view, lists and arrays wUl have the same treatment in this thesis. A bag is similar to 

a set except for allowing duplicate values to exist. Thus, it is an unordered collection that 

allows duplicates. For example, an attribute author of class Book has a collection of Person 

as its domain. Because the order of persons in the attribute author is significant, the 
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collection must be of type list. In other words, the type of the attribute author is list of 

Person. This example shows that the domain can be a collection, not only a smgle value or 

a single object. 

b. Collection Operations 

Collections can be constructed by calling a constructor of each collection type accompanied 

by the elements of the collection. If the collection is a list or an array, the order of the 

elements in the construction determines the actual order of the elements in the collection. It 

is also allowed to create an empty collection by inserting a nil value as its only element. 

The following are some examples of collection constructions. 

s e t ( 1 , 2, 3) 
// creates a set of three elements: 1, 2, and 3. 

s e t ( n i l ) 
// creates an empty set. 

l i s t ( 1 , 2, 2, 3) 
// creates a list of four elements. 

a r r a y (3 , 4/ 2, 1, 1) 
// creates an array of five elements. 

bag ( 1 , 1, 2 , 3 , 3) 
// creates a bag of five elements. 

Collection types also provide a mechanism for conversion. Basically, there are 

three forms of conversion: converting from one form of collection to another, extracting an 

element of a collection, and flattening nested collections into one-level collections. The 

type conversion hierarchy is List, Bag, then Set. Conversion from a list to a bag is to loosen 

up the semantic ordering, whereas further conversion from a bag to a set is to remove 

duplicates. In other words, the conversion hierarchy represents the strictness level of 

collection types. Converting a set mto a bag does not add or change any semantic. It is 

sometimes conducted merely for programming convenience. 

Collection extraction can be done only if the collection contains one element only, 

otherwise an exception will be raised. As the elements of a collection can be those of other 

collections, flattening them mto a collection is sometimes required. The following are some 

examples of collection conversion operations. 

l i s t _ t o _ s e t ( l i s t ( l , 2, 3, 2)) 
// converts the list into a set containing 1, 2, and 3. 

element ( l i s t ( l ) ) 
// returns an atomic value of 1. 

f l a t t e n ( l i s t ( s e t ( 1 , 2 , 3 ) , s e t ( 3 , 4 , 5 , 6 ) ) 
// gives a set of 1, 2, 3, 4, 5, and 6. 
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Most collection operations are biruzry operations. The operations take two 

collections as the operand and produce another collection as a result. Basic sets/bags 

operations include union, except, and intersect. These are common collection operations 

widely known in set theory (Norris, 1985), which are dien well adopted by object-

orientation. To illustrate these operations, the following examples are given. 

set (4,5,3,6) union set (7,5) = set (4,5,3,6,7) 

set (4,5,3,6) except set (7,5) = set (4,3,6) 

set (4,5,3,6) intersect set (7,5) = set (5) 

Since sets do not allow duplicate values to exist, duplicate removal is incorporated 

in the union operator. 

Operations on lists/arrays are usually to extract elements based on a specific index 

or a range of indexes. Some examples are as follows. 

l i s t ( 5 , 4 , 5 , 3 ) [1] = 4 
// retrieve the second element of the list 

l i s t ( 5 , 4 , 5 , 3 ) [0:2] = (5 ,4 ,5 ) 
// retrieve a sub-collection of the list, which is ranging from the 

first to the third elements 

Collection expressions are to include standard boolean expressions, such as 

universal quantifiers (for a l l ) , existential quantifiers ( ex is t s ) , and memberships (in). 

The results of invoking these expressions are boolean values. Therefore, these expressions 

can be used as join predicates. The following shows some examples of collection 

expressions. 

for all X in Conference: x.AcceptanceRate < 0.5 
// true if all the objects in the Conference collection have an 

acceptance rate below 50% 

exists X in Paper: x.Author.Country = "Australia" 
// true if at least one paper is written by someone who had worked 

in Australia 

"PhD" in Qualification 
// true if PhD is an element in the qualification collection 
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2.2.4 Database and Query Schemas 

(5' Database schemas are represented as a complete relationship of classes. This network of 

classes shows all necessary information about classes, attributes, mediods, inheritance, and 

relationships7)\s a running example, a simplified version of "Research Reference Library" 

is used. Figure 2.4 shows this database schema. 

"RESEARCH REFERENCES" LIBRARY 
author: [Person] 

book.title - renamed 
COnferenCft titif! - rpnampri 

author - excluded 

ioumal.title - renamed 
conferenre.tille-rpnamcri 
ioumal.paper - excluded 

Figure 2.4. Database Schema 

Queries are normally expressed in a non-procedural language, e.g., SQL. An object-

oriented version of SQL, i.e., OQL (Alashqur et al., 1989; CatteU, 1994), is becoming a 

standard query language for object-oriented queries. A first step of query optimization is 

parsing and transforming queries written in a query language into its internal representation.") 

A graphical notation is convenientiy used. A query schema can be viewed as a sub-graph of 

a database schema. Additionally, a query schema contains some other information, such as 

o(selection), ^(projection), 3(existential quantifier), V(universal quantifier), etc. 

Furthermore, for join query on a simple attribute, a filled node is used to represent the join 

domain. Figure 2.5 gives an example of a query schema. 
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Path Expression: 

Join: n 
(attributes) 

A joins B on C 

(predicates) 

Figure 2.5 Query Schemas 

2.3 Object-Oriented Queries :^ 

bject-oriented queries are queries which exploit the basic concepts of object data model 

(i.e., classes, hiheritance, complex objects). Object-oriented queries can be classified into 

single-class queries, inheritance queries, path expression queries, and explicit join queries. 

These basic queries serve as the basic buUding block for more general and complex queries. 

2.3.1 Single-Class Queries 

As the name suggests, single-class queries involve single-classes only. The properties of 

single-class queries are similar to those of relational queries. They may contain selection, 

projection, and aggregation operations on single-classes. The only difference is that in 

OOQ, methods may be included. Metiiods returning a value is said to be materialized, and 

hence acts lUce attributes. The only difference is tiiat metiiods are capable of taking some 

input parameters (e.g., scalar, object) (Bertino et al., 1992). From a query point of view, 

however, methods are die same as attributes, since query predicates only concentrate on a 

comparison between the value of an attribute or the return value of a method and, possibly, 

a constant. LUce attiributes, methods may also appear in the projection. 

QUERY. Retrieve the title of proceedings of 1996 conference held in 

Melbourne or Sydney. Display the acceptance rate if known. 
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OQL. Select X.title, x.acceptance_rate 
From X in Proceedings 
Where (x.venue.city = "Melbourne" OR 

X.venue.city = "Sydney") AND 
x.dates.start.year = 1996 

QUERY GRAPH: 

^ (title, acceptance_rate) 
Proceedings 

° (venue.city="MeIboume" or "Sydney" AND 
dates.start.year = 1996) dates.start.year = 1996) 

Since a class is normally connected to other classes (especially m an inheritance 

hierarchy), a single-class query usually appears m the form of an inheritance query. 

2.3.2 Inheritance Queries 

Inheritance queries are queries on an inheritance hierarchy. They can be categorized into 

two types: super-class queries and sub-class queries. The classification is based on the 

target class^. A super-class query is defined as a query evaluating super-class objects, 

whereas a sub-class query is defined as a query evaluating sub-class objects. Since all sub­

class objects are also super-class objects, a super-class query must also evaluate all of its 

sub-classes. 

QUERY (SUPER-CLASS QUERY). Retrieve the titie of research papers (excluding any 

technical reports) in the area of "Object-Oriented". 

OQL. Select x.title 
From X in Research_Paper 
Where NOT ((Technical_Report) x) AND 

"Object-Oriented" in x.keywords 

QUERY GRAPH. 

^(title) 
^ l^sea rchPapeF^ ^ ("00 in keywords) 

Joumal_PapeF^ <:;;;;Conference_Arflcle> <:;;̂ ^Technical.̂ eport̂  

~ (exclude) 

The target class of the above query is Research_Paper and the scope is to include 

sub-classes JournalJPaper, Conference_Article, and Technical_Report. This query scope 

^ a target class is a central focus of a query. 
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expansion is a result of a type checking for class Technical Report. To distinguish a target 

class from other classes, a target class is denoted by a bold printed node. 

QUERY (SUB-CLASS QUERY). Retrieve the titie of technical reports released in 

1996. 

OQL. S e l e c t ((Research_Paper) x ) . t i t l e 
From x in Technical_Report 
Where x.number Like "96%" 

QUERY GRAPH. 

^(title) 
Research_Paper 

^|Technical_Report~^ 
«̂ (numberLike"96%") 

Technical_Report node is a target class, and the scope of the query is expanded to 

super-class ResearchJPaper by projecting an attribute title declared in Research_Paper. 

By usuig a type check operator, die distinction between sub-class and super-class 

queries becomes blurred, because a conversion from a sub-class query to a super-class 

query, and vice-versa, is possible. For example, the above sub-class query can be 

transformed into a super-class query by shifting the focus on the target class. The query 

graph becomes as follows. 

QUERY GRAPH. 

"(tide) 
^^esearch_Paper" 

<;;|]̂ ^^chnical_Report̂  

(̂number Like "96%") 

OQL. Select x. title 
From X in Research_Paper 
Where ((Technical_Report)x).number Like "96%" 

2.3.3 Path Expression Querieŝ ^^"^ 

Path expression queries are queries involving multiple classes along the association and 

aggregation hierarchies (Banerjee at al., 1988; Kim, 1989). This is one of tiie most common 

query forms in OODB. The properties of path expression queries are similar to those of 
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single-class queries, but with a broader scope; that is, to include pointer navigation from 

one class to another. These queries are usually processed through path traversal. 

Path expression queries normally involve selection operation along the path. Since 

the domain of an attribute for the relationship can be of type collection, the selection 

predicates become more complex. It is then essential to define collection selection 

predicates. Classification of path expression queries is based on these collection selection 

predicates. 

a. Collection Selection Predicates 

Collection selection predicates are boolean expressions which form selection conditions. 

Collection selection predicates can be categorized into three main parts: "at least one", "for 

all" and "at least some". These predicates are shown in Table 2.1. The symbols S, L and B 

are set, list and bag, respectively, whilst a and b are atomic values. 

1) A membership predicate is to evaluate whether an item is a member of a 

collection. The item a can also be a collection. If it is the case, collection 5 

must be a collection of coUections. 

The existential quantifier predicate is simUar to the membership predicate. 

It checks whether there is at least one member within a collection which 

satisfies a certain condition specified by an atomic value. This form is also 

similar to the universal quantifier, but with less restriction, as it requires only 

one member of the collection to satisfy the condition. 

2) Universal quantifier predicate type is a comparison between a collection and an 

atomic value. This predicate is to check whether all members within one 

coUection satisfy a certain condition specified by the atomic value. In the case 

where the atomic value is an OID, a universal quantifier refers to all members 

in a collection being identical objects. 

3) It is sometimes necessary to check whether an item is duplicated or not, as 

some collections permit duplicate values to exist. The duplicate checking 

predicate involves two steps: mtersect the item and the collection, and count the 

number of elements in the uitersection result. If it is more tiian one, the item is 

duplicated in the collection. The predicate looks like tiiis: count ( a t t r l 

i n t e r s e c t bag ( i tem)) > 1. Notice that a t t r l is of type ^ag. If it is a/i^?, 

it must then be converted to a bag. 
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The selection predicate may check for an item to be immediately succeeded 

by another item. This predicate can be done by makmg the two items a list and 

by checking whether this list is a sublist of a bigger list. The succeeded 

predicate is only interested in the sublists formed by two subsequent elements. 

Assume that the p a i r s expression is avaUable, in which it returns all possible 

pairs of a given list. For example: 

p a i r s ( l i s t ( l , 2, 3)) = l i s t ( l i s t ( l , 2 ) , l i s t ( 2 , 3 ) ) 

The succeeded predicate can be constructed by employing a p a i r s 

operator and an in operator. The result of the p a i r s operator is then 

evaluated to determine whether it contains a list of the two subsequent items. 

The join predicate may look like the following: l i s t ( i t e m l , item2) in 

p a i r s ( a t t r l ) . 

1 

2 
3 

Name'. 
at least one 

for all 
at least some 

Collection SelecHen Predicates 
a in 5 
exist <2 in 5 : <condition on a> 

for all a in S : <condition on a> 
count {B intersect bag(a)) > 1 
Y\st{a,b) in pairs (L) 

Deseription 
Membership 
Existential 
quantifier 
Universal quantifier 
Duplicate 
Succeeded 

Table 2.1. Collection Selection Predicates 

Based on the type of the selection predicates, path expression queries can be 

categorized into: 3-PE ("at least one" path expression), V-PE ("for all" path expression), 

and S-PE ("at least Some" path expression). 3-PE has been the most common forms of path 

expression queries in OODB, and provides the least restriction to the selection predicates. 

On the other hand, \/-PE contains the most restrictive predicates. Although, S-PE is 

somewhere between the two extremes, S-PE characteristics closely resemble V-PE and 

hence, in query processing, S-PE is often treated the same as V-PE'. 

b . 3-PE 

Existential quantifiers are to evaluate whether there is at least an object within a collection 

of objects to satisfy the selection predicate (Elmasri and Navathe, 1994). Path expression 

queries involving the "at least one" collection selection predicate fall into this category. 

QUERY (3-PE). Retrieve Kim's list of publications. 
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OQL. Select X 
From X in Papers, y in x.author, 
Where "Kim" in y.name 

QUERY GRAPH. 

[author] 
C^gjg^ch.PapCT^ ^ > c : ^ Person ^ ^ 

<'(name="Kim") 

Since most path expression queries are of type existential quantifier, the 3 sign in 

the query graph is often ignored in the 3-PE queries. 

c. V-FE 

Universal quantifiers require all objects within the collection to satisfy the selection 

predicate (Elmasri and Navathe, 1994). Path expression queries involving the "for all" 

collection selection predicate fall into this category. 

QUERY (V-PE). Retrieve papers written by multiple authors havmg surname "Kim". 

OQL. Se l ec t x 
From X in Research_Paper, y in x . au thor 
Where for a l l y i n x . au tho r : y.name = "Kim" 

QUERY GRAPH. 

<:;;;[Sesearch_Paper^ ^ > C;^^^ Person ~~^ 

^ (name="Kim") 

d. S-PE 

Some collection types allow duplicate values to exist. Therefore, it is essential to provide 

selection predicates to ascertain that some of the elements satisfy a certain condition. 

In other cases, it is necessary to check whether a collection contains certain 

multiple elements. If the collection is a set, this predicate is merely a conjunctive predicate, 

in a form of (e lement l in c o l l e c t i o n ) AND (element2 in c o l l e c t i o n ) AND 

(elements in c o l l e c t i o n ) . However, if the collection is a list, it is sometimes 

necessary to evaluate the order of the elements as well. A typical example is to check 

whether one element immediately succeeded another element in a collection. Based on 

these needs, an S-PE is defined. An S-PE contams an "at least some" predicate in the 

selection part of the query. 

QUERY (S-PE). Retrieve papers such that there is more than one author named 

"Kim". 
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OQL, Select x 
From x in Research_Paper, y in x.author 
Where count.(y.name intersect bag("Kim")) > 1 

QUERY GRAPH. 

[author] 
<;2^s^rch_Paper^j;;j — > Q ^ Person ^~^ 

count(name intenect bag("Kim"))>l 

2.3.4 Explicit Join Queries, 

Explicit joins are basically making a connection between two or more classes that do not 

have any explicit connection prior to the join (Mishra and Eich, 1992). Explicit join queries 

are similar to relational join queries but with differences such as, join can be on common 

objects and collections, not only on simple values. Based on the join attributes, explicit join 

in OODB can be categorized into two types: simple join and collection join. 

Simple join is typical in relational databases. Apart from joining based on simple 

attributes, simple join can also be based on OID. If an OLD is regarded as a simple value, 

simple join is totally the same as join in relational databases. 

QUERY. Retrieve a list of long papers longer than books. For each selected 

paper, list also aU the books which are thiimer than the paper. 

OQL. Select x, y 
From X in Research_Paper, y in Book 
Where x.num_papers > y.num_papers 

QUERY GRAPH. 

C l^ i t ^ ' ^ c^^ZI^Z^ 

join on num_papers 

Collection jom is a join based on collection attributes. Although some collection 

operators are boolean expressions (i.e., f o r a l l , e x i s t , in) which may be used as join 

predicates, most join predicates are in a form of ( c o l l e c t i o n ope ra to r c o l l e c t i o n ) , 

ui which the operator is a relational operator (ie. =, !=, >, <, >=, <=). These operators are 

overloaded operators. The set/bag operand will be sorted by the operator prior to further 
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processing. A problem faced by collection join queries is that basic collection operations 

are binary operations, not boolean operations. Consequently, join predicates must apply 

both basic binary collection operations and standard relational operators. For example, if 

the join predicate is to check whether there is an overlap between editor-in-chief and 

program-chair of a pair of Journal and Proceedings, the predicate may look like tiiis: 

(Journal.editor-in-chief intersect Proceedings.program-chair) 
!= set(r!il) 

Processing this join predicate can be done by intersecting the two sets which will 

produce another set, and then comparing it with an empty set. This is certainly not efficient, 

as an intermediate set has to be created before the not equality comparison is performed. 

Nevertheless, most collection predicates involve these two steps. Different types of join 

predicates involving collection expressions and boolean operators are identified. A 

classification of collection join queries will be based upon these join predicates. 

a. Collection Join Predicates 

Join predicates are boolean expressions which form join conditions (Mishra and Eich, 

1992). In this section, join predicates involving collections are identified. Three coUection 

predicate types, which combine binary collection expressions and comparison operators, are 

defined. They are shown in Table 2.2. 51 and 52 are of type set, LI and L2 are of type list, 

and a and b are atomic values. 

Nv'~o3 
1 

2 
3 

J.^j»Sl^??"«J.. ."S'>0»\v̂  

Relational 

Intersection 
Sub-Collection 

^c^mummihmmttr^ ̂ -.̂  -V. - ̂  ̂ :: 
51=52 
Z-1[0:2]=L2 
(51 mtersect 52) != set(nU) 
L2 in sublist(Ll), 
L2 m sublist(Ll) and L2 != LI 
(51 intersect 52) = 51, 
(51 mtersect 52) = 51 and 51 != 52 

; l ^ r l l | i i 0 i i i 
Set Equality'^ 
Partial List Equality 
Overlap 
SubUst 
Proper Sublist 
Subset 
Proper Subset 

Table 2.2. Collection Join Predicates 

1) The simplest form of join predicate is using relational operators in a form of 

( a t t r i b u t e o p e r a t o r a t t r i b u t e ) . The main difference between this 

predicate type and the common equi-join is that the two operands m this 

predicate are collections, not simple atomic values. 

• other relational operators may be used, eg. SI != S2 for non-equality 
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2) An intersect join predicate is to check whether there is an overlap between two 

collection attributes. The predicate is normally in the form of ( a t t r l 

i n t e r s e c t a t t r 2 ) != s e t ( n i l ) . The attributes a t t r l and a t t r 2 are of 

collection types. This predicate intersects the two collection attributes and 

checks whether or not the intersection result is empty. 

3) The join predicate checks for a sublist or a proper sublist. They differ only 

when both collections are identical, as the proper sublist wUl return a false. The 

sublist predicate is very complex in its original form. Suppose a sublist 

expression is available where it builds all possible sublists of a given list. For 

example, 

s u b l i s t ( l i s t ( l , 2, 3)) = l i s t ( l i s t ( l ) , l i s t ( 2 ) , l i s t ( 3 ) , 

l i s t ( l , 2 ) , l i s t ( l , 3 ) l i s t ( 2 , 3 ) , l i s t ( l , 2 , 3 ) ) 

By combining an in operator with the sublist operator, a predicate to check 

for a sublist can be constructed. The sublist join predicate may look like the 

following: ( a t t r 2 in s u b l i s t ( a t t r l ) ) , where a t t r l and a t t r 2 are of 

type list. To implement a proper sublist predicate, it must further check tiiat the 

two lists are not identical. 

Another join predicate is a subset predicate. The difference between the 

sublist and the subset predicates, is that the subset predicate does not take the 

order of the elements into account. The subset predicate can be written by 

applymg an intersection between the two sets and comparing the uitersection 

result with the smaller set. The join predicate may look like the following: 

( a t t r l i n t e r s e c t a t t r 2 ) = a t t r l . Attributes a t t r l and a t t r 2 are of 

type set. If one or both of them are of type bag, they must be converted to sets. 

The proper subset is similar to the proper sublist, where an additional non-

equality comparison between the two collections must be carried out. 

The characteristics of collection join predicates, to some extent, are similar to 

collection selection predicates. The relational join predicate, especially the equi-joui, is 

simUar to the "for all" selection predicate. Both require all elements of both operand to be 

equal. The intersection join predicate is siimlar to the "at least one" selection predicate, as 

they both require only one instance of the evaluation to be true. And fmally, the sub-

collection join predicate is similar to the "at least some" selection predicate since both deal 

with a collection being a sub-collection of the other. 

Join predicate defines the attributes and the operations involved in join queries. 

From this point of view, object-oriented join queries can be classified into three categories. 
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namely: R(elatioruil)-Join, I(ntersect)-Join and S(ub-collection)-Join. These joins are 

abbreviated to R-Join, I-Join and, S-Join, respectively. 

b. R-Join Queries 

R-Join queries contain join predicates in a form of standard comparison using relational 

operators, such as =, !=, <, >, <, and >. Unlike join queries in relational databases, operands 

of R-Join need not to be of simple attributes. The comparison can also be between 

collections, as relational operators work with non-primitive values. This is true even in 

relational databases. For example, a string which is implemented in an array of characters, 

can be compared with another string. The join predicate may look something like this: 

( s tuden t . Suburb < Lec tu r e r . Suburb). 

A typical R-Join query is to compare two collections for an equality. Suppose the 

attribute editor-in-chief of class Journal and the attribute program-chair of class 

Proceedings are of type arrays of person. To retrieve conference proceedings chaired by all 

editors-in-chief of a journal, the join predicate becomes ( e d i t o r - i n - c h i e f = 

program-chair) . Only parrs having an exact match between the join attributes will be 

retrieved. A sample data shown m Figure 2.6 will be used to illustrate collection join 

queries. 

x=Journal p=Person y=Proceedings 

xr 
OO Journal 

x2> 

yr 
Concurrency Conference 

Proceedings 

Parallel Journal P3 
[>Mz^ 

x3' 
^ G¥ 

OOP Conference 
Proceedings 

Network Journal 

y3^ 

pl=Adams 
p2=Richards 
p3=Smith 

OODB Conference 
Proceedings 

Figure 2.6. Sample data 

QUERY. Retrieve conferences chaired by all editors-in-chief of a journal. 

Retrieve the matched journal as well. 
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OQL. 

Select X, y 
From X in Journal, y in Proceedings 
Where x.editor-in-chief = y.program-chair 

QUERY GRAPH. 

^1^ Journal 

[editor-in-chief] 

jourruil.editor-in-chief= 
proceedings.program-chair 

SAMPLE RESTXTS. 

^ 2 yi 

Parallel Journal Concurrency Conference Proceedings 

Relational operators are overloaded functions. This feature is not new to object-

oriented join queries, because long before OODB existed, relational operators in relational 

joins have shown this capabUity. For example, it is possible to compare an mteger with a 

real number. One of the operands is automatically converted to the type of the other 

operand (in this case, integer to real). Castmg a collection, however, must be done explicitly 

in the join predicate. Using the previous example, if editor-in-chief is a list and program-

chair is a set, the equality predicate becomes ( L i s t _ t o _ S e t ( e d i t o r - i n - c h i e f ) = 

program-chair) , where the editor-in-chief is converted from a list to a set. Comparing 

two sets/bags can be done easily by sorting them prior to the actual comparison. 

One characteristic of R-Join is that the join result may be determined by the first 

element in the collections. For each pair of objects to compare, a negative answer is 

obtained if the first elements of the collections are not matched. The opposite is not applied 

as the comparison for subsequent elements is requu-ed. 

R-Join queries may contain a universal quantifier as a join predicate. A universal 

quantifier is used to check whether all members of a collection satisfy a certain condition. 

So, a universal quantifier needs a collection and a condition for its members. The condition 

is a reflection of the join predicate, in a form of ( i teml opera t ion item2). The first 

item is a member of a collection, whereas the second item is an item by itself. For example, 

to retrieve pairs of Journal and Proceedings, such that all editor-in-chief lives in a city 

where the conference is located. The query expressed in OQL is as follows. 

OQL. Select x, y 
From X in Journal, y in Proceedings 
Where for all z in x.editor-in-chief : 

z.city = y.city 
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The characteristic of universal quantifier R-Join is die same as full equality R-Join. 

Further comparison of elements within one collection is not necessary when a comparison 

faUs. This is the primary characteristic of R-join which distmguishes it from other 

collection join types. 

c. I-Join Queries 

I-Join queries contain intersection join predicates on collections. The join predicate checks 

for an overlap between the two collections. An I-Join query from the previous example is to 

check if there is at least one of the editor-in-chiefs of a journal who has become a program-

chair at conference proceedings. Six pairs of Journal-Proceedings objects are formed as a 

result of the above query. They are: xi-yi, xi-y2, xi-y3, x2-yi, x2-y3, x3-yL 

QUERY. Retrieve journal and proceedings, such that at least one of the 

editors-in-chief of a journal has become a program-chair of the 

conference. 

OQL. 

Select X, y 
From X in Journal, y in Proceedings 
Where (x.editor-in-chief intersect 

y.program-chair) 1= set(nil) 

QUERY GRAPH. 

(^C" Journal <;^^^Proceedings~^ 

[editor-in-chief] [program-chair] 

joumal.editor-in-chief overlap 
proceedings.program-chair 

SAMPLE RESULTS. 

0 0 Journal 

Parallel Journal 

Network Journal 

Concurrency Conference Proceedings 

OOP Conference Proceedings 

OODB Conference Proceedings 

I-Join is different from R-Join because die results of I-Join cannot be determined by 

the fixst elements of the collections. An uitersection between two collections is not obtained 

before evaluating all elements of both collections. 
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d. S-Join Queries 

S-Join queries employ sub-collection operations in their predicates. An example of S-Join is 

to retrieve paus of Journal and Proceedings, where the program-chairs of a conference is a 

proper subset of the editors-in-chief of a journal. Using the previous sample data, there are 

three pairs of objects produced by die query, namely: xi-y2, xi-ys, and x2-y3. The first pair 

XI-y2 is obtained because pi of y2 is a subset of {pi, p2} of xi. The second pair xi-y3 is as a 

result of p2 of y3 6 {pi, p2} of xi. And finaUy the last pair of x2-y3 is fi-om p2 of y3 e {pi, 

p2}of X2. 

QUERY. 

OQL. 

Retrieve journal and proceedings where the program-chairs of the 

conference is a proper subset of the editors-in-chief of a journal. 

Select X, y 
From X in Journal, y in Proceedings 
Where (x.editor-in-chief intersect 

y.program-chair) = y.program-chair 
AND X.editor-in-chief != y.program-chair 

QUERY GRAPH. 

^^ Journal <^^Proceedings~^ 

[editor-in-chief] [program-chair] 

C^^^ P e r s o n " " ^ 

joumal.editor-in-chief proper subset 
proceedings.program-chair 

SAMPLE RESULTS. 

0 0 Journal 

Parallel Journal 

OOP Conference Proceedings 

OODB Conference Proceedings 

In the same way as I-Jom, tiie results of S-Join cannot be determined just by 

evaluating the first element m die collections, because the subset predicate cannot give a 

negative answer before full merging between the two collections is completed. 
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2.4 Complex Queries 

Complex queries are made of the three basic components of OOQ, particularly: mheritance, 

path expression, and explicit join queries. These basic query types are die basic buUding 

block for more general and complex queries. Depending on how these basic components are 

mixed, complex queries can be divided into homogeneous and heterogeneous complex 

queries. Homogeneous complex queries are an extension of each basic query. There is no 

mixture of basic components. In contrast, heterogeneous complex queries are a combination 

of different basic components. 

2.4.1 Homogeneous Complex Queries 

Homogeneous complex queries can be classified into: complex inheritance queries, complex 

path expression queries, and multiple join queries. The relationship between homogeneous 

complex queries and basic queries is shown in Figure 2.7. 

The relationship forms an is_a hierarchy. All features of single-class queries are 

applicable to inheritance queries, path expression queries, and explicit join queries. 

Furthermore, features of simple inheritance queries are also available to more complex 

inheritance queries. The same concepts are applicable to the other two complex queries. 

Single-Class J 
IS a 

Inheritance 

A / \ 

iRllLTitailCC 

Path Expression 

/ 1 \ 

Coitt^tex Path 
Expression 

Explicit Join 

—T-
/ 1 s 

Basic Queries 

Muttip]6 
ExplkitJoirt 

Homogeneous 
Complex Queries 

Figure 2.7. Homogeneous Complex Queries 

a. Complex Inheritance Queries ^ 

UnlUce simple mheritance queries which involve only one level mheritance (i.e., super-class 

- sub-class), complex inheritance queries are queries based on general inheritance 
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hierarchies. This type of query is more common, as classes normally exist m a general 

inheritance hierarchy involving arbitrary level of mheritance, and an arbitrary number of 

sub-classes and super-classes. 

QUERY. 

OQL. 

QUERY GRAPH. 

Select die titie of "Object-Oriented" paper. If it is an industrial 

paper, display the product as well. 

Select X.title, x.product 
From x in Research_Paper 
Where "Object-Oriented" in x.keywords 

title 

'00" in keywords 

, ' ' Conference 
Article 

Notice that variable x is dynamically bound to an object of class Research_Paper 

and its descendant. When x is bound to an Industrial_Paper object, x.product is retrieved, 

otherwise x.product is not invoked. 

b. Complex Path Expression 

Complex path expression queries normally involve multiple classes (more than 2 classes) in 

a relationship. One of the classes is denoted as a root class. 

QUERY. Retrieve object-oriented papers presented at conferences in the last 

two years by someone who worked in Australia. The conference 

proceedings must have been published by Springer Verlag 

Publishing Company. 
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OQL. 

Select X 
From X in Conference_Paper, 

y in X.proceedings, 
z in y.publisher, 
a in X.authors 

Where x.title Like "%Object-oriented%" AND 
y.year >= 1995 AND 
z.name = "Springer Verlag" AND 
a.affiliation.country = "Australia" 

QUERY GRAPH. 

"%Object-oriented%") 

'(name="Springer Verlag") 

(affiliation.country=" Australia") 

c. Multiple Explicit Join^ 

Multiple join queries are queries involving multiple join operations, such as i?y 1X1 /?2 ^ — 

1X1 jR„. This is very typical in relational databases (Elmasri and Navathe, 1994). In OODB 

however, there tends to be only a small number of joins (< 1), because most of mformation 

can be tracked through a pointer among objects. For the sake of completeness, multiple join 

is included in the classification. 

QUERY. 

OQL. 

Retrieve combination of proceedings, books, and journals which 

are published in the same year. 

Select X, y, z 
From X in Proceedings, 

y in Book, 
z in Journal 

Where x.dates.start.year = y.year AND 
y.year = z.year 

QUERY GRAPH. 

Proceedings 
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Multiple join is often translated to multiple binary join. For example, Proceedmgs 

and Book are jomed first, then the results are joined with Journal. 

2.4.2 Heterogeneous Complex Queries 

By combining each basic component of basic queries (i.e., inheritance, path expression, and 

explicit join), heterogeneous complex queries can be classified into Cyclic queries, Semi-

Cyclic queries, and Acyclic queries. The relationship between these types of query is shown 

in Figure 2.8. 

Single-Class 

Inheritance 

Basic Queries 

Heterogeneous 
Complex Queries 

Figure 2.8. Heterogeneous Complex Queries 

a. Cyclic Queries, 

Cyclic queries (Kim, 1989; KimKC et al., 1989) feature a complete walk property (Norris, 

1985), where it is possible to traverse all nodes starting from a given node and endmg at the 

same node. This feature is actually a combmation of a path expression and an explicit join. 

Cyclic queries can be illustrated as joining the two ends of a patii expression. A cycle can 

also be completed within a class. Some single-class cyclic is recursive, that is, the loop wUl 

not stop untU certain conditions are satisfied. 

QUERY. Retrieve all authors who presented papers at conferences they chaired. 

OQL. 
S e l e c t x 
From X in Person, 

y in X.program-chair, 
z in y.content, 
w in z.author 

Where x in w 
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QUERY GRAPH. 

(^^[[Troceedings^"^^ 
{content} 

[program-chair] 

Research_Paper 
[author] .^C^^^ Person"~~^ 

-> ''Conference ArticlV-

C;|[Conference_Paper 

It must be noted that some cyclic graphs are not necessarily cyclic queries. This is 

because the joining nodes do not represent joming operations. Since die joinmg operation is 

missing from the queries, the queries are actually path expression queries. For clarification, 

consider the following example. 

QUERY. Retrieve authors who presented papers m the ACM SIGMOD conference 

and have chaired a conference. 

QUERY GRAPH. 

[program -chair] 

Proceedings 
{content} 

(tiae="ACM SIGMOD") 

<;;^]^esearch_PapS^>-

-^ ''Conference_Article 

Conference_PapeF^ 

[author] .^CCT Pe r son""^ 

The node Proceedings, served as a starting point for path traversal, is not 

necessarily die same as die node Proceedings pointed by the node Person. Hence, the query 

graph should look like this. 
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QUERY GRAPH. 

Research_Paper 
[author] Pp.r^.J2> [P''°g'-°^-<:'^'-) ^^„^,,Hinp~ 

K- ——._ {content} . , = - r 
Proceedings J ) > f̂  Conference_ArticjE 

(tiUe-"ACM SIGMOD") 

OQL 

<;[^nference_Paper~]];> 

Select 
From X 

y 
z 

in Proceedings, 
in X.content, 
in y.author, 

w in z.program-chair 
Where x.title = "ACM SIGMOD" AND 

w != set(nil) 

b. Semi-Cyclic Queries 

Semi-cyclic queries are similar to cyclic queries, with the exception that it will be possible 

to perform a complete walk only by ignoring the direction of the path. This property is 

widely known as semi-walk (Norris, 1985). There are actually two categories of semi-cyclic 

queries: double join semi-cyclic and single join semi-cyclic (Figure 2.9). Since the fust type 

is actually an explicit join query with 2 join predicates, only the second type is considered 

as semi-cyclic queries. 

Type 1: Double Join 
Semi-cycUc 

join node 

Type 2: Single Join 
Semi-cyclic 

• join node 

Figure 2.9. Semi-cyclic queries 

QUERY. Retrieve authors who presented papers and participated in panels at 

the same conferences. These persons are regarded as top persons in 

the area of research. 
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OQL. Select w 
From X in Proceedings, 

y in X.panel, 
z in X.paper, 
w in y.author, 
V in z.author 

Where (w intersect v) != set(nil) 

QUERY GRAPH. 

I 'Conferece_Articie ~ • 

Proceedings 

<;;]2^^^'^h_Paper 

1, Conference.ArticTe" •> 

Jt 

Person 

join on Person 

<;|Coriference_Paper 

If bi-directional paths are available, a semi-cyclic query can be transformed into a 

join query with double predicates. Furthermore, a cyclic query can be transformed into a 

semi-cyclic query or a join query with double predicates. The decision to make this 

transformation must be made at the optimization stage. Consider the example shown in 

Figure 2.10. 

cyclic 

transform to 

join node • ' 

join node 

*join node 

Figure 2.10. Cyclic to Semi-cyclic 
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c. Acyclic Queries 

Acyclic queries are basically joinmg two or more disthict path expressions tiirough an 

explicit join. To avoid confusion with single path expression queries which also form 

acyclic graphs, acyclic queries of multiple path expressions are often called "Acyclic 

Complex" queries. It becomes obvious that acyclic path expression queries have one root, 

whereas acyclic complex queries have multiple roots, each root representing a patii 

expression. A generic query graph for multiple roots acyclic query is presented in Figure 

2.11. 

QUERY. 

OQL. 

Figure 2.11. Acyclic Complex Query 

Retrieve the titie of conference papers in the area of object-

orientation presented at high quality conferences (i.e., acceptance 

rate below 50%) and written by someone who worked in a city 

having hosted an Object-Oriented conference in 1996. Papers 

written by 'Smith' are excluded. 

Select X.title 
From X in Conference_Paper, 

y in X.author, 
z in X.proceedings, 
q in Proceedings 

Where x.title = "%Object-Oriented%" 
and y.name != "Smith" 
and z.acceptance_rate < 0.5 
and q.name = "Object-oriented conference" 
and q.year = 1996 
and y.affiliation.city = q.hosts.city 

QUERY GRAPH. 

{title-"%object-oriented%") 

jam on 
(affiliation.city=proceedings.hosts.dtyi 

''(name-"Object-oriented conference") and 
(year-1996) 

(acceptance_rate < 0.5) 
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2.5 Discussions 

2.5.1 Summary of Query Classification >< 

Object-Oriented queries are those which use an object data model as the foundation. Object 

data model is made up of class/object, inheritance, and complex object (i.e., relationship). A 

classification of object-oriented queries is given as foUows. 

• Basic Queries: 

* Single-class queries 

* Inheritance queries 

* Path Expression queries 

* Explicit Join queries 

• Homogeneous Complex Queries: 

* Complex Inheritance queries 

* Complex Path Expression queries 

* Multiple Explicit Join queries 

• Heterogeneous Complex Queries: 

* Cyclic queries 

* Semi-cyclic queries 

* Acyclic complex queries 

2.5.2 Query Optimization Framework 

From a parallel processing point of view, query classification raises several important 

issues. 

(i) How can single-class queries be parallelized? What kind of data partitioning 

sti-ategies are available? And most importantly, are diere any significant 

differences between parallelization of single-class queries and parallelization of 

single-table queries as m parallel relational database systems? 

(ii) How can inheritance queries be parallelized? Since objects to be evaluated in an 

inheritance query are of a single class at a given time, what difference is there 

between paraUelization models for single-class queries and inheritance queries? 

Furthermore, as an object in an inheritance hierarchy is polymorphic, how wUl 

parallelization be affected? 
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(Hi) How can path expression queries be parallelized? How do parallelization 

techniques relate to common traversal techniques, like forward and reverse 

traversals? 

(iv) How can explicit join queries be parallelized? What difference is tiiere between 

the parallelization of join queries m relational databases and those in OODB? 

(v) Since complex queries are made up of basic queries and parallelization 

models/algorithms are provided for these basic queries, how can complex queries 

be decomposed into basic queries, if it is more appropriate? 

(vO How can a decomposition of a complex query be executed? What kind of 

execution scheduling is avaUable and which is the most appropriate execution 

scheduling method? What is the impact of skewness on these schedulmg methods? 

The first four issues are associated with parallelization models and parallel 

algorithms for the four basic queries, especially single-class queries, inheritance queries, 

path expressions queries, and explicit join queries. 

The last two issues focus on translating complex queries into a more efficient 

access plan by taking into account the efficiency and the avaUability of parallelization 

models for basic queries; and execution scheduling of the optimal sequential access plans. 

Hence, the tasks of a parallel query optimizer can be summarized as foUows. 

• Discovering parallelization models and parallel algorithms for basic queries 

(i.e., inheritance queries, path expression queries, and explicit jom queries). 

• Formulating translation procedures of complex queries (i.e., homogeneous and 

heterogeneous complex queries) into more efficient access plans, and stating 

the execution scheduling plans. 

2.6 Conclusions/ • 

Object-oriented queries are queries exploiting object-oriented concepts, particularly 

classes/objects, inheritance, and complex objects. Based on these concepts, basic object-

oriented queries can be classified into single-class queries, inheritance queries, path 

expression queries, and explicit join queries. Single-class queries are queries on single-

classes, inheritance queries are queries on inheritance hierarchies, path expression queries 

are queries on complex objects, and explicit join queries are queries used to connect 

unrelated classes based on some common properties. 
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By extending these basic query types, complex queries are developed. 

Homogeneous complex queries are extensions of each basic object-oriented query, whUst 

heterogeneous complex queries are a combination of the basic queries. The latter can be 

classified into cyclic, semi-cyclic, and acyclic complex queries. 

The major contributions of this chapter are outlined as follows. 

Obiect-oriented queries are formulated and classified. A classification is 

essential as it makes it possible to identify the types of queries to be optimized. 

A classification consequently serves as a scope of the domain of query 

optimization. 

Ouery predicates based on collection types are formulated. These predicates 

serve as a basis for selection predicates and collection join predicates. The 

latter has been a salient feature of object-oriented query which highlights the 

difference between join queries in rational databases (based on simple 

attributes) and those in OODB (can be based on collections as well). 

A framework for parallel query optimization is defined. Generally, a query 

optimizer is to provide parallelization models and parallel algorithms for 

inheritance queries, path expression queries, and explicit join queries; and to 

formulate a transformation procedure as well as to defme execution scheduling 

for complex queries. 

7 



Chapter 3 

Parallel Query Processing: 

Existing Work 

3.1 Introduction 
This chapter discusses existing work on parallelization of basic object-oriented queries 

OOQ (i.e., single-class queries, inheritance queries, path expression queries, and explicit 

join queries) and paraUel query optimization (i.e., access plans and execution scheduling for 

complex queries). The main aims of this chapter are to show the achievements of the 

existing research in parallel object-oriented query optimization and, more importantiy, to 

expose the problems which remain outstanding. These problems wUl subsequently be the 

central focus of this thesis. 

This chapter is organized as follows. Section 3.1 gives a preliminary overview of 

"parallelism in database processing which includes parallel database architectures and data 

partitioning. Section 3.2 reviews existing parallelization models and algorithms for basic 

object-oriented queries. Section 3.3 examines existing research on access plans formulation 

and execution scheduling. Section 3.4 describes parallel query processing in commercial 

paraUel database management systems and in research prototype database machines. 

Section 3.5 lists the achievements of existing work and outstanding problems. Finally, 

section 3.6 draws the conclusions. 
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3.2 Preliminaries 

There are two key factors in parallel query evaluation: distribution and processing 

strategies (DeWitt and Gray, 1992). Distribution deals with data partitioning in which 

particularly causing parallelism, whereas the processing strategy chooses the most efficient 

execution method that will be carried out by each processor. Since data distribution, being a 

key role of parallelism, is influenced by the parallel architecture, parallel database 

architectures are discussed first, then foUowed by data partitioning methods. 

3.2.1 Parallel Database Architectures 

There has been a number of taxonomies proposed for parallel architectures, e.g., Flynn's 

taxonomy (1966), Stonebraker's taxonomy (1986), Valduriez's taxonomy (1993). Each 

taxonomy views parallel architectures from a different angle. Rynn's taxonomy is based on 

instruction and data streams. This is particularly useful for general parallel processing. 

Stonebraker's and Valduriez's^ taxonomies are particular to parallel database processing. In 

this chapter, parallel architectures for database systems are especially considered. Hence, 

Valduriez's taxonomy is to be used. 

Parallel database architectures can be classified into four categories: shared-

memory, shared-disk, shared-nothing, and shared-something architectures (Bergsten et al., 

1993; Valduriez, 1993). These architecmres are shown m Figure 3.1. 

Shared-memory architecture is an architecture where all processors share a 

common main memory and secondary memory. Processor load balancing is relatively easy 

to achieve, because data is located in one place. However, this architecture suffers from 

memory and bus contention, since many processors may compete for an access to the 

shared data. 

In a shared-disk architecture, the disks are shared by all processors, each of which 

has its own local main memory. As a result, data sharing problems can be minimized, and 

load balancing can largely be maintained. On die other hand, this architecmre suffers from 

congestion in the interconnection network when many processors are trying to access the 

disks at the same time. 

1 Valduriez's taxonomy is a modified version of Stonebraker's taxonomy in which an additional parallel database 
architecture, named "shared-something", is included. 
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Shared-Memory: 
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Figure 3.1. Parallel Database Architectures 
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A shared-nothing architecture, also known as a distributed memory architecture, 

provides each processor with a local main memory and disks. The problem of competing for 

access to the shared data will not occur in this system, but load balancing is difficult to 

achieve even for simple queries, since data is placed locally in each processor, and each 

processor may have unequal load. Because each processor is independent of others, it can 

be easy to scale up the number of processors without adversely affecting performance. 

Finally, a shared-something architecture compromises the extensibility limitation of 

shared-memory and the load balancing problem of shared-nothing. There are a number of 

variations to this architecture, but basically each node is a shared-memory architecture 

connected to an interconnection network a la shared-nothing. Multiple disks (i.e., RAID) 

can also be attached to the network (or in each shared-memory node) to increase 170 

bandwidth. Obvious features of a shared-something architecture include flexibility in the 

configuration (i.e., number of nodes, size of nodes) and lower network communication 

traffic as the number of nodes is reduced. Intra-query parallelization can be isolated to a 

single multiprocessor shared-memory node, as it is far easier to parallelize a query in a 

shared-memory than in a distributed system, and moreover, the degree of parallelism on a 

single shared-memory node may be sufficient for most applications. On the other hand, 

inter-query parallelization is consequently achieved through parallel execution among 

nodes. 

3.2.2 Data Partitioning 

Data partitioning is used to distribute data over a number of processors. Each processor is 

then executed simultaneously with odier processors. Depending on the architecture, data 

partitioning can be done physically or logically. In a shared-nothing architecture, data is 

placed permanentiy over several disks, whereas in a shared-memory architecture, data is 

assigned logically to each processor. Regardless of die adopted architecture, data 

partitionmg plays an important role in parallel query processing since parallelism is 

achieved tiirough data partitioning. 

Two data partitioning models exist in parallel database systems: vertical and 

horizontal data partitioning (DeWitt and Gray, 1992, Thakore and Su, 1994). Vertical 

partitioning partitions die data verticaUy across all processors. Each processor has a full 

number of objects of a particular class, but with partial attiibutes. As a result, when a query 

that evaluates a particular attribute value is invoked, oiUy processors with that attribute wUl 

participate in the process. Therefore, processors that do not have that particular attribute 

become idle. This model is more common in distributed database systems, rather than in 
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parallel database systems. The rationale for using parallelization in database systems is to 

divide the processing tasks to all processors, so that the query elapsed time becomes 

minimum. Processor participation in the whole process is crucial. Even more important, the 

degree of participation must be as even as possible. 

Horizontal partitioning is a model whereby each processor holds a partial number 

of complete objects of a particular class. A query tiiat evaluates a particular attribute value 

will require all processors to participate. Hence, the degree of parallelization improves. This 

data partitioning method has been used by most existing parallel relational database 

systems. There is a number of well-known horizontal partitioning strategies, namely round-

robin, hash, and range data partitioning (DeWitt and Gray, 1992). Figure 3.2 gives an 

illustration of these data partitioning methods. 

The simplest technique is round-robin partitioning^, where each complex object in 

turn is allocated to a processor in a clock-wise manner. Although tiie division of the root 

object may be equal, objects within one partition are not grouped semantically. Moreover, 

due to the fluctuation of the fan-out degree of the root class, some root objects might have a 

lot associated objects, while others have only a few, resulting in a skewness^ problem 

occurring. 

To make a partition more meaningful (by grouping objects having the same 

semantics or features), partitioning can be based on an attribute of the root class. One type 

of attribute-based partitioning is hash partitioning, where a hash ftinction is applied. The 

result of this hash function determines the processor where the object will be placed. As a 

result, objects within one partition occupy the same hash value. This arrangement is best for 

exact match retrieval based on the partitioning attribute, where the processor containing the 

desired objects can be accessed directiy. The problem of hash partitioning includes 

processing objects of a certain range, where hash partitioning cannot directly detect object 

location. A range-based partitioning is tiien needed. 

Range partitioning spreads objects based on a given range of the partitioning 

attribute. Consequently, processing objects on a particular range of the partitioning attribute 

can be directed to a small subset of processors containing the desired range of objects. 

However, both hash and range partitioning risk root object skew^, in addition to association 

^ round-robin in object-orientation is slightly different from the original round-robin used in parallel relational 
systems, as the round-robin in object-orientation involves the association when partitioning the root objects. 

^ skew is when the variance of data distribution is greater than the mean. 

^ the skewness of the number of root objects in each partition. 
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skew as occurs in round-robin partitioning. Furthermore, retrieval processing based on a 

non-partitioning attribute cannot make use of the hash/range partitioning. 

Round-robin: 

Processors: Proc. 
1 

Proc. 
2 

Proc. 
n 

Data: 
n n+1 n+2 2n 

Hash: 

Processors: Proc. 
1 

Proc. 
2 

Proc. 
n 

Data: 

Range: 

Processors: 

Data: 

Proc. 
1 

Y 
a-c 

Proc. 
2 

\ i d-g 

Proc. 
n 

w-z 

\ 

Figure 3.2. Basic Data Partitioning 

A variation of range partitioning, hybrid-range partitioning, has been introduced 

(Ghandeharizadeh and DeWitt, 1990). This partitioning technique attempts to compromise 

the features of range partitioning with hash and round-robin partitioning, resulting in all 

small partitions being distributed in a round-robin fashion. 

The problem of data placement based on single attribute is that when a query 

mcludes any operations based on other than the partitioning attribute, the features of the 

used partitioning technique will not apply, since the query must be directed to all 
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processors. To overcome this problem, a multi-attribute partitioning, named MAGIC, has 

been introduced (Ghandeharizadeh and DeWitt, 1994). This technique uses a grid file 

structure to store partitions, where rows and columns of tiie grid file use hash and range 

partitioning techniques. This method is capable of supporting both range and exact match 

retrievals. 

3.3 Parallelization Models and Algorithms 

This section describes existing work on paraUelization of basic queries (i.e., single-class, 

inheritance, path expression, and explicit join queries). For each query type, well-known 

parallelization work is explained. Some parallelization strategies are straight-forward and 

directiy taken from published work. Others are deduced from related work which does not 

directiy focus on a particular parallelization strategy. 

3.3.1 Parallelization of Single-Class Queries 

From a database point of view, a class is often viewed as an unnormalized table. 

Parallelization of single-class queries is then very much similar to parallel processing of 

single tables, which is rather simple. Existing work on parallelization of single-class queries 

can be categorized broadly into two areas: one is node parallelism (KimKC, 1990), and the 

other is parallelization based on data partitioning. 

a. Node Parallelism 

A node in a query graph often denotes a class. Node parallelism in a query refers to 

paraUelism of a single class. According to the definition given in the paper by Kim KC 

(1990), node parallelism only deals with nodes having a simple predicate. For example, a 

query on class Vehicle such that only those "blue" vehicles are retrieved, parallel 

processing to class Vehicle is carried out. Each processor evaluates the same predicate 

(color="blue") for a different collection of vehicle objects. Since a class may have several 

attributes, upon which the query can also be based, die query predicates can become 

complex. It is tiien necessary to revise the definition for node parallelism to cater for 

complex predicates. 

Node parallelism is often related to non single-class queries. In a path expression 

involving a number of classes in an aggregation hierarchy, node parallelism is applied to 

each node (class) in tiie path expression query, and a further process is subsequently carried 

out. It is also the same for inheritance queries involving several nodes (classes) in an 
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inheritance hierarchy. Therefore, node parallelism is often regarded as an initial parallel 

processing of more complex queries. 

b. Data Partitioning-based Parallelism 

Most work on data partitioning has a direct or indirect impact on the parallel processing of 

single-class queries. Data partitioning basically involves the dividing of data into a number 

of disjoint partitions in which each partition can be processed in parallel with other 

partitions. A number of data partitioning methods, often called data placement, have been 

proposed (Ghandeharizadeh and DeWitt, 1990; Ghandeharizadeh and DeWitt, 1994; 

Ghandeharizadeh, 1992). 

When applying a data placement method to parallel database systems, two factors 

must be taken into account, particularly: low and high resource intensive. These factors, in 

fact, contradict each other. Low resource intensive refers to queries that will result in a very 

small number of tuples, such as in the range of 0.01% - 0.3%. For example, if there are 

100,000 tuples, only 10 to 300 tuples would satisfy the retrieval conditions. This kind of 

query requires a data placement method which restricts processors that wUl likely satisfy 

the query. Without this capability, the query would invoke many more processors many of 

which do not contain any relevant tuples, resulting in resource wasting. Fiuthermore, 

starting up a query in each processor wUl incur a cost. In contrast, high resource intensive 

processes involve queries with relatively huge results. It is expected that the retrieval 

process involves many, if not all, processors, so that the process can be divided equally 

among processors. If only a small subset of processors participates in the process, the 

performance will not improve and the main objective of the paraUel processing will not be 

fulfiUed. 

3.3.2 Parallelization of Inheritance Queries 

ParaUelization of queries on inheritance hierarchies is often overlooked. This is shown by 

most existing work on parallel object-oriented query processing which emphasises the 

parallelization of path expressions (Jenq et al., 1990). Queries on one class are often 

regarded as queries on one independent entity, although the class is connected through a 

specialization/generalization hierarchy. Therefore, parallelization is considered to be a 

"single node" parallelization; and furthermore this parallelization model is relatively easy to 

implement in relational systems. In this section, two works on parallel object-oriented query 

processing which include inheritance hierarchies are presented. Each of these works adopts 

a different underlying data structure, which greatly affects parallelization. 
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a. Class-Hierarchy Parallelism 

Class-Hierarchy parallelism exploits parallelism among nodes in a class hierarchy 

(inheritance hierarchy) (KimKC, 1990). Processing a super-class is done in parallel witii its 

sub-classes. In practice, class-hierarchy parallelism is combined with node parallelism. This 

refers to parallelism within a node, which is carried out in the context of parallelism among 

nodes. Figure 3.3 shows an example of class Vehicle and class Company used by KimKC 

(1990). 

name 

Vehicle 
Xompany 

-omputer 
Company 

Figure 3.3. Inheritance Hierarchies (KimKC, 1990) 

Although data organization is not mentioned, it can be deduced that a horizontal 

inheritance division is applied, where each class contains its own full data. Hence, 

processing "blue" vehicles can be done by evaluating class Vehicle, class Automobile, and 

class Truck. Likewise, evaluation of company name "Ford" also mvolves class 

VehicleCompany and class ComputerCompany. Each class is parallelized through a node 

parallelism. 

Queries on a sub-class (e.g., queries on class AutomobUe) are regarded as queries 

on that particular class alone. It has no connection to the super-classes, because class 

Automobile has its own autonomy to all AutomobUe objects. Data independence has been 

one of the main incentives for this model. 

It is clear that horizontal division is particularly suitable for sub-class queries, due 

to its data independency. For super-class queries, however, horizontal division will involve 

all sub-classes together with their unique properties which do not concern die super-class. 

b. Inheritance Parallelism based on Vertical Partitioning 

The model proposed by Thakore et al. (1994) adopts vertical data partitioning. This data 

partitioning scheme is used to represent not only inheritance, but also aggregation. Vertical 

partitioning in tiiis model refers to a separation not only between super-class and sub-class 

objects, but also between attribute value data and object-relationship. In tiie storage model, 

it does not distinguish tiie difference between inheritance relationships and aggregation 

relationships. Each relationship is maintained by two tables: two views of the same 



Ch. 3. Parallel Query Processing: Existing Work page 51 

relationship. To illustrate this model, consider a partial university example used by Thakore 

et al. (1994) in their paper (Figure 3.4). 

C__Student 
/ 1 \ 

is_a 

^ Gradual 
V. Student 

^ GPA 

Figure 3.4. Inheritance Hierarchy (Thakore, et al, 1994). 

In the example, all students have GPA (grade point average), and the values of GPA 

are stored in Student, not in Graduatestudent. Each class maintains several partitions, 

centralized on its OID. Furthermore, each partition is sorted based on the OID (they may be 

indexed). Sample partitions are given in Figure 3.5. 

student (Partition 1): student (Partition 2): 

Student OID 

si 

s2 

s3 

s5 

s7 

GPA 

3.6 

3.2 

2.8 

3.9 

3.3 

Student OID 

si 

s3 

s5 

s7 

GradStudent OID 

gl 

g2 

g3 

g4 

GradStudent (Partition 1): GradStudent (Partition 2): 

GradStudent OID 

gl 

g2 

g3 

g4 

other attribute GradStudent OID 

gl 

g2 

g3 

g4 

Student OID 

si 

s3 

s5 

s7 

Notes: s2 is not a graduate student, 
tables are sorted based on the primary OID, and 
Graduate Student has its own partitions based on its DID 

Figure 3.5. Vertical Partitioning of Inheritance Hierarchy in figure 3.4. 
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Parallel execution of a super-class (e.g., class Smdent) is isolated to die concerned 

table only; in this case, partition 1 of table Student. On the otiier hand, parallel execution of 

a sub-class (e.g., retrieve Graduates tudent with GPA>3.0) has to perform a join (i.e., 

parallel join) between Student partition 1 and Student partition 2 on then: Smdent OID. The 

join operation can be simplified by means of merging, since both Student OID fields are 

already sorted. Further joining is necessary if the query requires more partitions. For 

example, there is an operation to a sub-class attribute, such as, retrieve graduate student 

with GPA>3.0 and specialized in Al (assumed the attribute called specialized is declared 

locally in Graduates tudent). Joining the previous join results with GraduateStudent 

partition 1 is necessary. Partition 1 of the GraduateStudent maintains a list of 

GraduateStudent OID and the attribute specialized. 

3.3.3 Parallelization of Path Expression Queries 

Path expression has been one of the main strengths and subsequently a focus in object-

oriented databases. Parallelization of path expression queries exists in a number of forms. 

Path parallelism was proposed by KimKC (1990) and nested parallelism was mtroduced by 

Suciu (1996). A more "traditional" pointer-based join which was influenced by a relational 

joui was presented by several authors, such as Lieuwen et al. (1993). Parallel Sets, ParSets, 

was introduced for parallelizkig 0 0 7 path traversals (DeWitt et al., 1996). 

a. Path Parallelism 

Path parallelism is a situation where all different paths are processed in parallel (KimKC, 

1990). The results of each path are consolidated to obtam the final query result. If the paths 

are connected through an AND operator, an intersection operator needs to be applied. Path 

parallelism is implemented through a node parallelism, m which each node is by itself 

evaluated m parallel. Hence, path parallelism is merely concemed with parallelism between 

different paths. This method particularly deals with 1-1 relationship between two nodes. 

When predicate evaluation on the path is evaluated to be true, die path receives a TRUE 

value. The AND operation among die paths is implemented by checking whether each path 

consists of a TRUE value. Figure 3.6 gives an example of a path expression query. 

The first step is tiie path parallelism. For each blue vehicle, a paraUel evaluation of 

the two paths (i.e.. Company and Autobody) using node parallelism is carried out. The 

second step is the ANDing operation. 
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Vehicle ^ . / ' ^ ^ ^ AND 

^ color="blue 

page 53 

name='Tord" 

door=2 

Figure 3.6. Tree Path Expression 

b. Nested Parallelism 

Nested parallelism is naturally associated with nested collections (Suciu, 1996). Parallelism 

is achieved at two levels (possibly an arbitrary level). This parallelization model is 

influenced by collection types supported by ODMG, where an attribute of a class can be of 

a coUection type (i.e., set, bag, sequence (array/list)). To iUustrate nested parallelism, 

consider an example in figure 3.7. 

Ouerv Graph: 

(name) 

name=? 

sales: bag of sale 
(price, item) 

Sale 

OQL: Select f(x.name, x.sales) 
From X in stores 
Where p(x.name) 

Figure 3.7. Nested parallelism example 

Suppose class Store is associated with class Sale through an attribute sales (in class 

Store) of type bag. The query is to retrieve store name and its sales such that a selection 

condition on store name is satisfied. 

The first level of parallelism is to evaluate the store objects in paraUel. A shared-

nothing architecture was assumed, and the data distribution was a balanced distribution. For 

each selected store object, a TRUE flag is attached. Since tiie number of sales per store may 

vary, the next step of processing, that is the processing of the sales objects, may be 

unbalanced. For this reason tiie sales objects are re-distributed. 
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The second level of parallelism is to evaluate the sales of the selected stores m 

parallel. Since the sales have been re-distributed, the load of each processor is balanced. 

Because physical data movement is often done, communication cost can be expected to 

increase. 

Nested parallelism has a simUarity to path parallelism. Nested parallelism can be 

viewed as parallelism among object paths. Since a store object has several patiis to its sales, 

these object paths are evaluated in parallel. On the other hand, path parallelism views 

parallelism from a class relationship point of view, not from an internal object relationship. 

It is concluded that parallel processing of path expression queries using nested 

parallelism is divided into stages, according to the level of the aggregation hierarchy. 

Processing is done class by class. 

c. Parallel Pointer-based Join 

A number of parallel pointer based join algorithms (i.e., hash-loops, probe-children, hybrid 

hash) have been proposed (Liuewen et al., 1993). All of them are based on hash join. 

Pointer-based join algorithms were designed for an implicit join between two associated 

classes in which the association relationship is represented by an attribute of the first class 

having a domain of the second class. The type of the attribute is possibly a set-valued 

attribute. A pomter-based join is influenced by a conventional explicit jom, and hence it is a 

binary operation. Path expression queries involving multiple classes (more than 2 classes) 

are decomposed into multiple binary operations and each operation is a pointer-based jom. 

Generally, a pointer-based join can be categorized into two categories. Each jom 

category consists of several steps. The first jom category is where objects of the second 

class are scanned and hashed into a hash table. It is then followed by scanning and hashing 

objects of die first class. The second category is where the hashing starts from the first 

class. Each hash entry contains both an associated object identifier as well as a list of 

pointers to the root object. Once the hash table is built, the hash entries are processed by 

reading the corresponding associated object page into the buffer. Then each root object that 

has references to the page is joined with the relevant associated objects on that page. 

d. ParSets 

ParSet is used to exploit parallelization of die graph traversal portion of the 0 0 7 

benchmark (DeWitt et al., 1996). ParSet was originally proposed as a way of adopting the 

data parallel approach to C++. Essentially, it allows a program to invoke a method on every 
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object in a set in parallel. ParSets are basically paraUel sets. A ParSet is simply a set of 

objects of the same type or an appropriate sub-type. A ParSet is declustered over a number 

of processors. Parallelism is achieved by processing die fragments of tiie ParSet m parallel. 

Parallelization usmg parsets is basically similar to the declustering approach. ParSets, 

however, are rather an implementation of C++ for data parallelism. 

There are two forms of ParSets: primary and secondary. Primary ParSets are 

declustered using standard declustering methods, such as hash, range, random, etc. Hence, 

primary ParSets have a physical implication in tiiat primary ParSets are used for 

declustering. Secondary ParSets are just logical collection of objects. They do not imply 

anything about where the objects actually reside. 

ParSets support five basic operations: Add, Remove, Apply, Select, and Reduce. The 

Add operation adds an object to a ParSet, whilst the Remove operation removes an object 

from the ParSet. The Apply operation invokes a function on every member of a ParSet. The 

Selection operation collects the OIDs of all ParSet objects that satisfy a certain predicate. 

The Reduce operation calculates a single value from all objects in the set. The computing of 

a scalar aggregation is an example of a reduce operation. 

3.3.4 Parallelization of Explicit Join Queries 

Explicit join can be performed between two or more classes based on one or more common 

attributes. If an object is considered as a tuple or a nested/complex tuple, explicit join based 

on primitive attribute (i.e., integer, string) is the same as relational jom. Moreover, joining 

based on a common object can be considered sunilar to relational join, provided that the 

object identifier is represented by a simple value. Object join consequently is no different 

from any other simple join. 

The multiple k-way join, joining involving multiple classes (more than two classes), 

is often broken into a multiple binary join. This is usuaUy done m an optimization stage. 

Hence, parallelization of explicit join query only considers binary explicit join. 

Join based on a relationship, often called implicit join (Kim, 1989), is differentiated 

from explicit join. Implicit join is a kind of joining where a link is physicaUy established 

between tiie two classes to be joined. This is acmally a path expression. Explicit join, on the 

other hand, considers joining two unrelated entity based on a common property. 

Smce the domain of an attribute of a class can be of collection type, as well as 

simple type, explicit join in object-oriented databases can be categorized into: simple-join 

(like in relational databases) and collection join. Most existing work on simple join is found 



Ch. 3. Parallel Query Processing: Existing Work page 55 

in the context of relational databases. This is partly because explicit simple join is more 

relational than object-oriented. Nevertheless, simple jom is often needed in OODB 

especially when the desired information cannot be obtained through pointer navigation. 

Work on coUection join is hard to find. Classification on collection join has been 

one of the contiibutions in this thesis, which was discussed in die previous chapter. Due to 

the lack of a unique parallelization method especially designed for collection join, 

parallelization of collection join can be solved through uidirect usage of existing operators, 

such as relational division or relational intersection, which can be complicated and 

inefficient. 

a. Parallelization of Simple Join 

Many simple join algorithms have been developed (Mishra and Eich, 1992). Most of them 

concentrated on one or a combination of nested loop, sort-merge, and hash. 

Nested-Loop 

Nested loop join is the simplest form of join algorithm, where for each tuple of the first 

table, it goes through all tuples of the second table. This is repeated for all mples of the first 

table. It is called a nested-loop because it consists of two levels of loops: inner loop 

(looping for the second table) and outer loop (looping for the first table). 

A parallel version of the nested-loop join firstly applies a divide and broadcast 

partitioning, and secondly in each processor a sequential nested-loop construct is applied 

(Leung and Ghogomu, 1993). The divide and broadcast method consists of dividing one 

table into multiple disjoined partitions where each partition is allocated a processor; and 

broadcasting the other table to all avaUable processors. Broadcasting is actually replicating 

the content of the second table to all processors. Thus, it is better if the smaller table is 

broadcast and the larger one is divided. 

Sort-Merge 

Sort-Merge join is based on sorting and merging operations. The first step of joining is to 

sort the two tables based on the joining attribute in an ascending order. And the second step 

is merging the two sorted tables. If the value of the first joining attribute is smaller than the 

otiier, it skips to the next value of the first joining atd:ibute. It skips to the next value of the 

second joining attribute, if it is the opposite. When the two values match, the two 
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corresponding tuples are concatenated, and placed into the query result. This process 

continues until one of the tables runs out of tuples. 

The parallel version of sort-merge join may utilize die divide and broadcast 

partitionmg technique. Since tiiis is known to be more expensive tiian disjoint partitioning 

due to tiie replication cost, a disjoint partitioning method using a standard hash partitioning 

is often used, instead. The first step is to create disjoint partitions for die two tables, and for 

each partition created a processor is allocated. The second step is a local sorting operation 

on each processor. The sortmg is performed in parallel. Finally, a local merging of each 

processor is carried out. 

Hash 

A number of hash-based join algorithms such as hybrid-hash, Grace hash join, have been 

proposed (Mishra and Eich, 1992). A hash based join is basically made up two processes: 

hashing and probing. A hash table is created by hashing all tuples of the first table using a 

particular hash function. Tuples from the second table are also hashed using the same hash 

function and probed. If any match is found, the two tuples are concatenated and placed in 

the query result. 

A parallel version of hash-based join fu:stiy applies a disjoint partitioning method, 

which is based on a hash partitioning method. Each processor has a partition to work with. 

And secondly, each processor does the local hash join algorithm. 

Since disjoint partitioning strategy based on a hash function can create skew, due to 

the nature of non-uniform distribution of data m the joinmg attribute, load skew is likely to 

occur. A number of skew handling algorithms have been proposed. Their aim is basically to 

tune the partitions so that the load of each processor becomes equal or near equal. One of 

the methods is to create more disjoint partitions than the number of processors. On 

allocating these partitions, it can be managed so that each processor may receive multiple 

partitions and the total load of each processor is calculated to be equal or near equal. For 

example, if tiiere are 7 partitions having weights of 5, 1, 2, 5, 3, 7, and 4; and 3 processors. 

In allocating these partitions, processor 1 may get partitions 1 and 7 (weight 5+4=9), 

processor 2 receives partitions 2, 4 and 5 (load 1+5+3=9), and processor 3 receives 

partitions 3 and 6 (load 2+7=9). In this simple example, the loads of processors are 

balanced. 
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b. Parallelization of Collection Join Queries 

Several issues regarding collection join queries can be discussed. Firstly, some collection 

join predicates may require intermediate collection results before obtaining the predicate 

boolean result. Secondly, the way relational division and intersection operators are applied 

to solve collection join queries will be considered. Finally, it will be shown how some work 

on the so-called collection/set-valued join, in fact addresses different issues. 

As a running example, consider join queries on classes Journal and Proceedings 

based on class Person. The relationship between Journal and Person is editor-in-chief 

represented as a set, and the relationship between Proceedmgs and Person is program-chair 

which is also a set. The three queries written in OQL are as follows. 

R-JOIN OQL. 

I-JOIN OQL. 

S-JOIN OQL. 

S e l e c t X, y 
From X in Journal, y in Conference 
Where x.editor-in-chief = y.program-chair 

Select X, y 
From X in Journal, y in Conference 
Where (x.editor-in-chief intersect 

y.program-chair) != set(nil) 

Select X, y 
From X in Journal, y in Conference 
Where (x.editor-in-chief intersect 

y.program-chair) = y.program-chair 

Collection Join Predicate Issues 

Most collection join predicates, particularly I-Join and S-Join, involve die creation of 

mtermediate results tiurough an intersect operator. The result of tiie jom predicate cannot be 

determined without die presence of tiie mtermediate collection result. This predicate 

processing is certainly not efficient. 

In an I-Join query, if a member of one collection is equal to a member from another 

coUection, tiie join predicate should return a true value inunediately, witiiout the necessity 

for further checking. 

Like in an I-Join query, in an S-Join query, tiie origmal subset predicate has to 

produce an intermediate set, before it can be compared with a smaller subset. This process 

checks for the smaller set twice: one for an intersection, die otiier for an equality 

comparison. 



Ch. 3. Parallel Query Processing: Existing Work page 59 

Relational Division 

To process coUection join queries, a conventional partitioned joui algoridim (e.g., hybrid 

hash join) will have each class or table normalized prior to joming. Partitioning is then 

carried out based on the join attribute. For each partition, a hash joui is performed. For R-

Join and S-Join queries, this simple join metiiod will not produce correct results, unless a 

division operator is applied, because the joining operation must be on collection, not on 

individual elements. Therefore, collection join queries must be processed using other 

relational algebra operators, particularly a division operator and an intersection operator. 

A division operator in relational databases is often used to implement a universal 

quantifier which is similar to checking an equality of two sets. If the furst class of die join 

operand is regarded as a divisor table, and each collection of the second class is regarded as 

a dividend table, the division between tiiese tables will result in pairs of objects satisfying 

the join predicate. Figure 3.8 shows an example of a relational division. The divisor table is 

a union of all editors-in-chief, and the dividend table is a program-chair collection of the 

first proceedings object yi. The result of this division is the combination of x2 and yi. 

all editors-in-chief 

xl 
xl 
x2 
x2 
x3 

pl 
p2 

p2 
p3 
p3 

program-chairs of 
a conference 

dividedby 
p2 
p3 

yi 
yi 

division result 
giving x2 yi 

Figure 3.8. Relational Division 

It is clear from the example that the division operation must be repeated for each 

collection of objects from the second class (it is called a loop division). The algorithm can 

be written as follows. 

for each collection c in objects of the second class // sub-query 1 
all coUections of the first class dividedby c giving Temp 
Tl = Ti + Temp 

end 

Figure 3.9 shows the process of the first loop division (sub-query 1). The results Ti 

are x2-yi, xi-y2, xi-y3, and x2-y3. 
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all editors-in-chief 
program-chairs of 
each conference Tl 

xl 

xl 
x2 

x2 

x3 

pl 
p2 

p2 

p3 

p3 

dividedby 

p2 

P3 
yl 
yl 

X2 yl 

giving 

pl y2 xl y2 

p2 y3 xl 
x2 

y3 
y3 

Figure 3.9. Loop Division 

The division operator is a manifestation of a universal quantifier, which differs 

from the collection equality. The universal quantifier evaluates whetiier a divisor object 

contains all values of the dividend table. This requirement does not ensure that all values 

within a divisor object must contain all values in the dividend table. Therefore, another loop 

division must be carried out on the two classes, but with a reverse role (e.g., the division is 

the second table and the dividend is each collection of the fnst table). The followmg 

pseudo-code is for the second loop division operation. 

for each collection c in objects of the first class // sub-query 2 
all collections of the second class dividedby c giving Temp 
T2 = T2 + Temp 

end 

Figure 3.10 shows another loop division where the divisor is now class proceedings 

and the dividend is editors-in-chief collection. 

all program 

yl 
yl 
y2 
y3 

p2 
P3 

pl 
P2 

-chairs 

dividedby 

editors-in-chief of 
each journal 

pl 
p2 

xl 
xl 

p2 

p3 

x2 
x2 

P3 x3 

giving 

T2 

yl x2 

yl x3 

Figure 3.10. Reversed Loop Division 

The results from tiie first (Ti) and tiie second (T2) loop division are intersected to 

get the final result. 

R-Join = Tl intersect T2. 
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The intersection of Ti and T2 is given by x2-yi (Figure 3.11). 

Tl T2 R-join results 

x2 

xl 

xl 
x2 

yl 

y2 

y3 

y3 

intersects 
x2 yl 

x3 yl 
givmg 

x2 yl 

Figure 3.11. Intersection 

Similar to the R-Join, simple partitioned joins are of no used to S-Join (unless a 

more sophisticated division operator is applied), because S-Join predicates check for the 

relationships among individual elements within a collection (collective checking) of which 

simple partitioned join are not capable. Hence, a relational division must also be used to 

process the S-Join. Because the join predicate is to check whether one coUection is part of 

the other collection (not necessarUy the other way around), only a one-way loop division is 

necessary. Although it is simpler than the previous two-way loop division, a one-way loop 

division is still expensive, because the division operator is applied repeatedly, as many 

times as the number of objects of one class. Figure 3.12 iUustrates of the results of S-Join. 

all editors-in-chief 
program-chairs of 
each conference Subset-S-Join results 

xl 
xl 
x2 
x2 
x3 

Pl 
p2 

P2 

p3 
P3 

dividedby 

p2 

p3 
yl 
yl 

x2 yl 

giving 

pl y2 xl y2 

p2 y3 xl 
x2 

y3 
y3 

Figure 3.12. One-way Loop Division for S-join 

This example actually shows die process of a subset predicate. If, instead, a proper 

subset predicate is required, a further process is needed to eliminate die pair x2-yi, as they 

are equal. The second loop division is needed. The final result of a proper subset S-Join is 

the difference between Ti and T2. 

Proper-Subset-S-Join = Ti minus T2 

Figure 3.13 gives an illustration of the minus operation which is used to obtain the 

final query result. 
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Tl T2 Proper subset S-join results 

x2 
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yl 

y2 

y3 
y3 
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xl y2 
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y3 
y3 

Figure 3.13. Minus operation for a Proper-Subset S-Join 

Unlike R-Join and S-Join where a division operator must be used, I-Join does not 

require any complicated algorithm. A simple hash join can be applied. But firstiy, all 

classes must be normalized, so that each attribute wUl have atomic values. Then, a 

conventional parallel join can be used to obtain the query results. As the classes have been 

normalized, it is most likely that the join results will produce duplicates, which must then 

be removed. Figure 3.14 gives an Ulustration of how I-Join is processed using a 

conventional join. Notice that the redundant pair x2-yi is removed. 
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Figure 3.14. Conventional Join for I-Join 

Other Work on Set-Valued Attributes 

Most work on set-valued attributes relates to a kind of joining between a root object which 

has a set-valued attribute and die object set itself (Lieuwen et al, 1993, Suciu, 1996). This 

join is actually an implicit join, which forms a complex or nested object, as the link 

between die root object and die associated object set is physically established through a 

pointer connection. Consider the example in Figure 3.15 (taken from Lieuwen et al., 1993). 

name 
s^mplexPart, 

set of sub 

Figure 3.15. Set-valued attribute relationship 
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The schema shows a relationship between class ComplexPart with class SubPart 

through a sub relationship implemented as a set-valued attribute in the class ComplexPart. 

A possible query is to apply a selection operation against the relationship. The joining 

between ComplexPart and SubPart is not a collection join. It is acmaUy simUar to a 

PrimaryKey - ForeignKey (PK-FK) join a la relational databases or a path expression a la 

OODB. 

The collection join is an explicit join (which is differentiated from implicit join) 

involving collection attributes. None of die existing relational join algoritiims was designed 

for the collection join, since the relational concept prevents a table from including 

collection (non-atomic) values. Even m nested relational where the value of an attribute can 

be of non-simple type, such as sets, joining based on tiiese attributes has not been 

considered, partly due to the extensiveness of selection operations in nested relations and 

the simplicity of set-valued attributes. In OODB, however, set is just a kind of collection 

type. The complexity of collection type results in a unique complexity of the collection join, 

which requires special treatment. 

3.4 Parallel Query Optimization 

Parallel query optimization is often viewed as a two-phase optimization where in the furst 

phase an optimal sequential access plan is formed, and in the second phase, parallelization 

technique is applied to the best sequential query access plan (Hasan et al., 1996; Hong and 

Stonebraker, 1991). A query access plan is often represented in some kind of query trees, 

and parallelization of query access plan concerns with execution scheduling of the query 

access plan. Existing work on query access plans and parallel execution scheduling are 

given in the next sections. 

3.4.1 Query Trees 

Query access plans are often represented as trees (Elmasri and Navatiie, 1994). Query trees 

are common to relational query optimization. Some extensions of query trees in object-

oriented query optimization have also been explored. Some existing work on query trees, 

including relational query trees and query trees extension to object-oriented optimization is 

to be described. 
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a. Relational Query Trees 

A relational query tree is a tree structure that corresponds to a relational algebra expression 

by representing die relations as leaf nodes of the tree and tiie relational algebra operations 

as interruillnon-leaf nodes (Elmasri and Navathe, 1994). Execution of a query tree starts 

from tiie bottom and finishes when the root node is executed. Figure 3.16 shows an example 

of a relational query tree. The corresponding query written in SQL is as foUows. 

SQL. Select ENAME 
From J, G, E 
Where G.ENO = E.ENO 
And G.JNO = J.JNO 
And ENAME != "Fred" 
And J.NAME = "CS" 
And (Duration = 12 or Duration = 24) 

(Ename) 

O 

(Jno, Ename) 

• (Jno) (Eno, Ename) 

Q 
(Jname-"CS") 

o. 
(D 

(Duration-12or24) 
6 

© 
(Ename!-'Tred") 

© 

Figure 3.16. Relational Query Tree 

Optimization is achieved by applying heuristic rules to the query trees so that the 

initial query trees are transformed into more optimized final query trees. The transformation 

rules must preserve an equivalence between the original query tree (translated directly from 

the query written in a non-procedural language such as SQL), and the final query tree. 

The heuristic rules are normally in the form of algebraic optimization. The main 

heuristic is to first apply operations that reduce the size of intermediate temporary tables. 

This includes performing the selection operations as early as possible to reduce the number 



Ch. 3. Parallel Query Processing: Existing Work page 65 

of tuples for subsequent operations and performing the projection operation as early as 

possible to reduce the number of attributes in intermediate temporary files. 

b. Parallelization Trees 

Replacing joins with pointer links, explicit join operations are tumed into path expressions. 

The execution of a complex path expression query may be divided into a number of 

sequential stages. Within each stage, a number of operations are executed in parallel, and 

the results from one phase will be passed to the next for further processing. Depending on 

how the results need to be finally presented, a consolidation operator may be required to 

arrange the results in an appropriate final form. If necessary, the consolidation operator will 

re-distiribute the output objects for further processing. However, the final consolidation 

operation is not parallelizable so it involves bringmg parallel results for final presentation. 

The task of the consolidation operator can vary from collecting the result of two 

operators at a time to collecting the result of all operators at once. Thus, the degree of 

parallelization can be classified into four categories; left-deep tree parallelization, right-

deep tree parallelization, bushy tree parallelization, and flat-tree parallelization (Graefe, 

1993). Figure 3.17 Ulustrates these four types of trees, where a node represents a predicate 

evaluation of a class. Leaf nodes are a selection predicate evaluation. The result of each 

predicate is subsequentiy "joined". For example, AB indicates the result of joining process 

(implicitiy or explicitly) between the first and the second predicates. 

AB ^ 

C~E) 

AB r 

dZ) 

ABCD 

bushy-tree 

ABCD f 

A B C J C " ^ 

left-deep tree 

")a3 

C!^ 

d^) 

<::>> 

C3) 

ABCD 

C—^ < i^^ 
O O C£) 

flat-tree 

• V ABCD 

/ dZ)™ 
Co C_̂  CZE) 

right-deep tree 

Figure 3.17. Parallelization Trees 

The purpose of parallelization is to reduce die height of the tree. The height of a 

balanced bushy-tree is equal to log2 N, where N is die number of nodes. When each 

predicate evaluation is independent of the others, bushy-tree parallelization is the best. 
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since the reduction of the height of the tree is quite significant. However, in the case where 

each predicate evaluation is dependent on the previous ones (e.g., in path expressions), 

bushy-tree parallelization is inapplicable. 

Flat-tree parallelization is a tree of height one. Here, die consolidation operator can 

be very heavUy loaded, since the result of all predicate evaluations is collected at die same 

time. Hence, parallelization wUl not produce much improvement. However, tiiis technique 

works weU for queries with a single class and many predicates, because no join operation is 

needed. 

Left-deep tree and right-deep tree are simUar to sequential processing with a 

reduction of one phase only. These parallelization techniques are suitable for predicate 

evaluations that must follow sequential order; that is, the result of a predicate evaluation 

will become an input to the next predicate evaluation. In left-deep tree parallelization, 

predicate evaluation starts from the first class and then follows the link to cover the whole 

path. Consequently, reading the subsequent classes will narrow to those objects that are 

selected from the previous class only. This mechanism is like a pipeline-style 

parallelization. Left-deep trees are not much different from right-deep trees, except for the 

order of processing the predicates. When a query follows a particular direction to process 

the predicates for efficiency reasons, only one of these methods can be used. In contrast, 

when the query disregards the durection, the query optimizer must be able to decide which 

method wUl be used that will produce a minimum cost. 

Figure 3.18. Tree Path Expression Query 

To parallelize a query witii tree patii expression (Figure 3.18), either level 

parallelization or left-deep tree parallelization can be used. Level parallelization is in the 

form of bushy-tree parallelization where each level indicates one phase. Additionally, die 

consolidation operator combines the result of each branch of die tree to form the final 

result. Level parallelization is based on the query tree. Each level processes pairs of 

adjacent nodes. A query like in Figure 3.18 requires four phases. This is shown in Figure 

3.19(a), where each node in the level-ti-ee parallelization represents a node in the tree-path 

expression. Each node represents a local predicate evaluation of a particular class. At the 

end of phase 1, A and B are combined, and so are A and C. Because they are independent of 

each other, they can be done in parallel. Phase 2 processes AC, which is obtained from the 
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first phase, with D and E. Again, these two processes are executed in parallel. At die end of 

the second phase, we get ACD and ACE. Phase 3 combines the two results from the second 

phase to form ACDE. Finally, phase 4 joins task AB of phase 1 witii tiie result of phase 3, 

and the final result can be presented to the user. 

Phase 

a. bushy-tree b. left-deep tree 

Figure 3.19. Parallelizing tree path expression 

Using left-deep tree parallelization, a tree path expression must be converted into a 

linear path expression by using one of the avaUable traversal techniques. Using pre-order 

traversal, the above query can be transformed into A-B-C-D-E. Figure 3.19(b) shows how 

dree path expression can be done in left-deep tree style. It also shows that path expression 

itself does not improve parallelization at all. Therefore, we must rely on intra-operation 

parallelization, not inter-operation parallelization. 

c. Processing Trees 

An extension of query trees for object-oriented databases, caUed Processing Trees (PT), 

exploits explicit join and implicit join operations (Lanzelotte et al. 1991; Lanzelotte and 

Valduriez, 1991). Explicit join is relational join, whereas implicit join is a path expression. 

Implicit join in PT is a binary operation in which a draversal starting node is not specified. 

This has been a drawback in PT, as patii traversal, one of tiie major sd-engtiis of object-

oriented query processing, is not incorporated in die trees. 

Operations on PT include PT generation and PT modification. PT generation buUds 

a PT using a bottom up approach. It expands a PT node by node until the PT involves all the 

classes in the connection graph. PT modification processes PT by exchanging joins and 

coUapsing implicit joins. 

Processing trees do not change the type of operations; diey permutate and collapse 

operations only. Smce object-orientation has a wealth of operations, such as different kinds 
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of path traversals, it is possible to change an operation from one form to another. This has 

not been incorporated in PT. 

3.4.2 Execution Scheduling 

In a query execution, scheduling is tightiy related to load balancing. Scheduling is 

associated with task-ordering strategies, whereas load balancing deals widi performance 

improvement stirategies for executing each task. When each task is performed efficientiy 

(local efficiency), dependuig on the adopted scheduling method, it can be expected that 

overall query execution will be efficient too (global efficiency). 

a. Scheduling 

Scheduling of parallelizable tasks is a typical parallel processing problem. For databases, 

query execution scheduling can be categorized into: inter-operation and intra-operation 

(Hong, 1992). Inter-operation is parallel execution among operations, whereas intra-

operation is parallel execution within an operation. Inter-operation can be achieved only if 

no inter-dependency among the operations is to be performed. In a more global context, 

parallel execution of multiple queries is called inter-query parallelization. In this thesis, 

however, only parallelization within a single query is considered. 

Smce inter-operation refers to simultaneous processing among multiple operations, 

and furthermore since the resources avaUable to share by these operations are limited, it is 

critical to provide a mechanism to divide the resources. Two important aspects regarding 

query scheduling, particularly inter-operation versus intra-operation and parallel resource 

division, are discussed. 

Inter-operation vs. Intra-operation 

To achieve optimal performance, inter-operation parallelization is often mixed with intra-

operation parallelization. Two factors have been considered: lO-bound and CPU-bound 

(Hong, 1992). The main idea is to use inter-operation paraUelization to combine an 10-

bound task witii a CPU-bound task to increase system resource utilization. An lO-bound 

task will run out of disk bandwidth before it runs out of processors. On the other hand, the 

parallelization of a CPU-bound task is bounded only by the number of processors. By 

matchmg up lO-bound and CPU-bound tasks with appropriate degrees of inter-operation 

parallelization, both the processors and the disks wUl operate as closely to their full 

potential as possible, thus minimizing the query elapsed time. 
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A scheduling algoridim based on lO-bound and CPU-bound is explained as follows. 

An lO-Bound task and a CPU-bound task are paired up for inter-operation parallelization if 

it is better than running them separately with intra-operation parallelization. If either 10-

bound tasks or CPU-bound tasks run out, the remaining tasks are executed with intra-

operation parallelization only. 

Parallel Resource Division 

The main aims of resource division are to achieve an equal finishing time of the parallel 

tasks and to reduce the total execution time, which is determined by the latest finished task. 

To achieve these goals, a number of approaches have been taken. The first approach is to 

use an algorithm to calculate the load of each task and to do an adjustment afterwards 

(Brunie et al., 1995; Wolf et al., 1995). The algorithm usually receives the load of each task 

and determines the load distribution. The load distribution calculation is normally a 

polynomial-time algorithm. The estimation of the load of each task is acknowledged 

difficulty, and assumptions are often made to simplify the problem. 

The second approach is to use a time equalization method (Leung and Ghogomu, 

1993). Based on a target time taken to be efficient for a given query phase, each operation 

in that phase is given a number of processors that will enable it to complete the task within 

that time. 

b. Load Balancing 

Load balancing is often associated with join operation (Lakshmi and Yu, 1990; Wolf et al, 

1993). Parallel join algoritiinis are normally composed of two stages: partitioning and local 

join. Load balancing is usually carried out either between die partitioning stage and the 

local join stage, or during the joining stage. The first approach is caUed a partition tuning 

(Hua and Lee, 1991; Hua et al., 1995; Kitsuregawa and Ogawa, 1990), and the second 

approach is called a task stealing (Lu and Tan, 1992). 

Partition Tuning 

There have been a number of partition tuning metiiods for load balancing. In general, 

partition tuning is accomplished by producing more partitions than tfie avaUable processors. 

Processor allocation is done by distributing several partitions to each processor so that the 

load of each processor is equal. A number of tuning algorithms have been developed (Hua 

et al., 1995; Kitsuregawa and Ogawa, 1990). The simplest tuning algorithm is one where 



Ch. 3. Parallel Query Processing: Existing Work page 70 

each processor sorts its local partitions and retains a number of its largest partitions. The 

coordinator then receives a report from each processor regarding its load and reallocates die 

excess partitions from die overioaded processors to die underioaded processors. 

Partition tuning is a static load balancing, in which load balancing is achieved by 

pre-estimating diat die load wUl be balanced during die jom operation. 

Task Stealing 

Task stealing is a dynamic load balancing (Lu and Tan, 1992), where load balancing is 

achieved by tackling the skew problem when it occurs at die jommg phase. Based on the 

global information, an idle processor determines die donor (the overioaded processor) and 

the amount of load to be transferred. This process of stealing is repeated until some 

criterion, which indicates that the minimum completion time has been achieved, is satisfied. 

3.5 Parallel Query Processing in Parallel Database 
Systems 

A number of research prototypes and commercial products that mcorporate parallelization 

in database systems have been produced (DeWitt and Gray, 1992). Most of tiiese prototypes 

and products maiiUy deal with relational databases. The maturity of die relational tiieory has 

motivated researchers and vendors to integrate paraUel technology with relational database 

management systems. Parallel object-oriented database systems have since become a 

challenge, in which parallelism is incorporated with the expressiveness of object data 

modellmg to produce high performance database architectures. In die next sections, parallel 

query processing in commercial parallel DBMS and research prototype database machines 

is examined. 

3.5.1 Commercial Parallel DBMSs 

Most parallel DBMS have originated from uni-processor DBMS. Since parallel technology 

is getting popular and parallel machines are becoming avaUable, many vendors have 

extended their wings by implementing tiieir products on parallel machines. Because of the 

nature of competition among vendors, parallel query processing and parallel query 

optimization methods, which are the critical key to high performance systems, are 

considered secret. Query optimization is hardly discussed openly. Through their marketing 
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literature and brochures, the parallelization methods for query processmg can be examined. 

The products to be investigated include Informix, Sybase, Oracle, Tandem, and DB2. 

a. Informix - Online Dynamic Server, and Online Extended Parallel Server 

Informix Online Dynamic Server (Informix, 1996) is a high performance parallel database 

server implemented in a shared-memory architecture. It supports parallel data query, which 

includes paraUel scan, parallel join, parallel aggregation, parallel insert, and parallel index 

builds. Parallel scan enables scanning of multiple disks in parallel. This is often regarded as 

the core of query parallelism. 

Informix - Online Extended Parallel Server (Informix, 1995) is designed for 

loosely-coupled clusters and massively parallel processing architectures. It provides 

different data-partitioning methods, such as round-robin, hash, range. Join operation, which 

is known to be one of the most complex operations, is performed through a hash join 

algorithm. Optimization is cost-based, meaning that the optimizer generates multiple query 

plans, computes a cost for each plan, and chooses the lowest cost plan. 

Because Informix is a relational-based DBMS, path expression queries and 

collection join queries are not supported. Consequently, parallelization of these queries is 

not applicable. The optimization strategy, which is for relational databases, is widely 

known to be ineffective for object-oriented DBMS. 

b. Sybase Navigation Server 

Sybase Navigation Server (Sybase, 1995) is targeted to shared-nothmg architectures. The 

perfonnance of Sybase reaches a near-perfect scalabUity (i.e., 99%) on 128 processors in 

real world testing. The test involved 12 queries on a credit-card database processing. The 

queries can be categorized into table scan, join, and insert and delete. Sybase is also a 

relational DBMS, where typical object-oriented queries, such as patii expression queries 

and collection join, are not yet supported. 

c. Oracle Parallel Server 

Oracle Parallel Server (Oracle, 1995) is designed to enhance die functionality of the Oracle 

RDBMS witii increased performance and high avaUabUity characteristics. It runs in a 

symmetric multi-processing architecture. Although there has been an attempt to mcorporate 

complex objects in Oracle RDBMS, it does not yet include join queries on collections. 



Ch. 3. Parallel Query Processing: Existing Work page 72 

Parallelization methods used are very much based on those for parallel relational database 

systems. 

d. Tandem - Non Stop 

Tandem's Non-Stop SQL/MP (Tandem, 1995) is a parallel relational database management 

system designed for critical data warehouse and online transaction processing (OLTP) 

applications. The database engine takes full advantage of the parallel, distributed 

architecture of Tandem's Non-Stop servers to deliver superior performance in a data access 

environment supporting from 2 up to 4,000 processors. It uses hash joins for joining tables. 

Parallel scan is also supported. Object-oriented query processing is, however, not 

supported, because of the nature of the domain of this produce, which is purely relational. 

e. DB2 Parallel Edition 

DB2 ParaUel Edition (IBM DB2, 1995) is an extension of the DB2 RDBMS. DB2 Parallel 

Edition is implemented using a shared-nothing architecture. All access plans are 

automatically created for parallel execution, with standard SQL and no additional 

programming. Functions are performed in parallel including data scans, joins, sort, load 

balancing, data load, index creation, backup and restore. 

f. Summary 

Most commercial paraUel DBMS are an extension of uni-processor DBMS. They are 

particularly designed with a relational database model in mind. Two basic parallel 

constructs, including parallel scan and parallel join, are supported, as well as other 

primitive parallel operations (e.g., sort, exchange, etc). Special join queries involving 

collections, path expression queries, and inheritance queries, commonly found in object-

oriented query processmg, are not supported. 

3.5.2 Research Prototype Database Machines 

Unlike commercial products, research prototypes contain fewer secrets. Parallel processing 

methods are more explanatory. Likewise, most research prototypes are based on a relational 

data model. 



Ch. 3. Parallel Query Processing: Existing Work page 73 

a. Bubba 

The Bubba prototype (Haran et al., 1990) is implemented on a 40-node Rex/32 

multicomputer, which operates on the basis of shared-nothmg architecmre. One of die 

features of this highly parallel database system is that it is designed for data intensive 

applications with large and frequentiy accessed data. The data, instead of being transferred 

from one node to the other, is executed at the nodes which hold the data. It means proper 

data placement is very crucial. Another feature is the ability to detect parallelization 

automatically. The transaction programs are written in a centralized model, but the Bubba 

compiler automatically decomposes the transactions into parallel programs. 

There are several interesting points to note about Bubba. First, shared-nothing is a 

good idea, but it seems to have some limitations, especially regarding performance. But, 

because of its scalabUity feature, shared-nothing architecture seemed the only way at tiiat 

time. Second, data flow seems better than remote procedure call. Dataflow reduces the 

amount of data being transferred and allows more parallelism. To summarize, Bubba has 

shown that a database system can take advantage of parallelism by using a shared-nothing 

architecture. 

b. Gamma 

Gamma (DeWitt et al., 1990) is also based on a shared-nothing architecture. Gamma is 

implemented on an Intel iPSC/2 hypercube with 32 processors and 32 disk drives. Gamma 

employs the concept of horizontal partitioning that distributes records among multiple 

memories. This approach enables large tables to be processed concurrentiy by multiple 

processors. The partitioning technique is very crucial in this system, otherwise one 

processor might be overloaded whUe the others are idle. Query processing in Gamma is 

done by applying either selection operator, join operator, aggregate operator, or update 

operator. Because the data is declustered among multiple memories, the parallel selection 

operation is done simply by executing a selection operator on the set of relevant nodes. The 

result of the selection operation is then joined using a parallel join algorithm which will 

produce the desired result. 

c. Volcano 

The volcano project (Graefe et al., 1994) provides a data model-independent and 

architecture-independent tool for optimized parallel query processing over large data sets 

using multiple operators on data processing sets. There are 5 fundamentals embodied in the 

volcano optimizer. First, query optimization and execution are based on algebraic 
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techniques. Second, it is rule based m which die data model and its properties are specified. 

Third, all rules are specified as algebraic equivalence. Fourth, rules are translated into 

source code. And fifth, search algoridim is based on dynamic programming, which until 

now has been only for relational SPJ (select-project-join) optimization, augmented witii a 

very goal-oriented control strategy. 

Since object algebra is still in the process of attaining maturity, die application of 

volcano in object-oriented query optimization is still immature. Without a complete and 

sound object algebra, which is expected to cover path expression queries, inheritance 

queries, and collection join queries, query optimization based on algebraic equivalence will 

not be sufficient. Furthermore, it imposes problems of the integration of parallelism widi 

algebraic techniques. 

d. XPRS 

XPRS (extended Postgres on Raid and Sprite) is a database machine based on a shared-

memory architecture and a disk array (Hong and Stonebraker, 1993). The query 

optimization strategy adopted a two-phase optimization where in the first phase sequential 

query execution plans are formulated and in the second phase parallelization is applied to 

the best sequential plan chosen in the first phase. Using this approach, it reduces the plan 

search space because it explores only parallel versions of the best sequential plan. 

Two forms of parallelism are recognized: intra-operation parallelism and inter-

operation parallelism. Intra-operation parallelism is parallelization within one node 

operation. Since XPRS is based on relational model, intra-operation is often associated with 

parallel join operation. Inter-operation is a management of parallel execution among 

different operations. 

Parallelization of typical object-oriented queries, includmg path traversals and 

collection joins, are out of scope. Subsequentiy, optimal sequential access plans 

formulation has not mcorporated these operations. Optimization m XPRS, particularly a 

trade-off between intra-operation and inter-operation, can be applicable to an established 

object query optimization which formulates an optimal sequential access plan for object-

oriented queries. 

e. Multicomputer Texas 

Multicomputer Texas (Blackburn and Stanton, 1996) is an object store, rather than a 

database management system. It is based on Texas object store (Singhal, 1992) in which it 
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allows persistent objects to be created and redieved by C-H- programs. Multicomputer 

Texas is implemented in Fujitsu API000 distributed memory computers with 128 nodes. 32 

of them are equipped with a disk. Performance of Multicomputer Texas is measured using 

the 007 traversal benchmark. Since it is not a DBMS, typical database processing such as 

join, query optimization, etc, is not supported. The main concern is only with object storing 

and complex object assembling/traversal m a multicomputer envh-onment. 

f. PPOST - Persistent Parallel Object Store 

PPOST (Boszormenyi et al., 1994a, b) is a paraUel object store based on main-memory 

architecture. The prototype is implemented m 12 DEC Alpha workstations connected by a 

FDDI net. The dimension of parallelism is ind-oduced, including vertical parallelism and 

horizontal parallelism. Vertical parallelism deals with pipelining transaction processing so 

that user processors do not slow down. Basically, vertical parallelism involves several 

stages in storing objects permanently in disk. When an object is updated, the changes are 

stored in a log. The log is read at checkpoint and saved into a disk. Since the checkpoint 

and the log are involved in producing a disk image, user transactions can go on as soon as 

the information about the changes is transmitted to the log. At the last stage of vertical 

parallelism, the disk image is archived to a secondary storage. These activities are all done 

in the background without interruptmg die user transactions. 

Horizontal parallelism deals with query processmg where die objects are spread 

across several processors for speeding up query processing. The operation concemed is 

merely parallel selection operation. Typical object-oriented query processing, such as 

collection join, inheritance queries, and object-oriented query optimization, are not 

included. 

g. PRACTIC - PaRallel ACTIve Classes 

Practic (Bassiliades and Vlahavas, 1994, 1996) is based on concurrent active class 

management. It is implemented in a network of 5 transputer and written in CS-Prolog. 

Query processing includes single-class query execution usmg non-uniform declustering. 

Two types of parallelism are introduced, namely: inter-class parallelism and intra-class 

parallelism. Intra-class parallelism is further divided into inter-object parallelism and intra-

object parallelism. This parallelism is mairUy for complex object execution which is typical 

m selection queries. The applications of tiiese parallelisms to query optimization are not 

explored, and object-oriented join query processing is not considered. 
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3.6 Discussions 

Major achievements of existing work on parallel query processing and parallel query 

optimization are highlighted. The problems which remam outstanding are outiined. These 

problems define the scope of the research presented in this diesis. 

3.6.1 Achievements 

The achievements of existmg work on paraUel query processing and optimization are 

summarized as follows. 

a. Parallelization of Single-Class Queries 

(i) Node paraUelism has been introduced for parallelization among objects m a class. 

(ii) Data partitioning methods for relational database systems can be used for 

parallelization of single-class queries in OODB. 

b. Parallelization of Inheritance Queries 

(/) Parallelization of single-class queries is extended to inheritance queries. 

(//) Parallelization is based on horizontal division and vertical division. These 

inheritance data divisions contradict each other, however. Horizontal division is 

benefited by object independence within each class, which is suitable for sub-class 

queries. Vertical division, on the other hand, is based on class hierarchy in which 

super-class queries can benefit much from this division. 

c. Parallelization of Path Expression Queries 

(/) Path parallelism is presented for parallelization among class paths, and nested 

parallelism is presented for parallelization among object patiis. These 

parallelization methods essentially view parallelization at class level (node 

parallelism). Parallelization of path expression queries is achieved through multiple 

level depending on the complexity of die path expression query graph. 

(ii) The join techniques borrowed from relational systems are used in pointer-based 

join algoritiims. Pointer-based join technique relies on the well-established parallel 

relational hash based join. 
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(m) Declustering strategies for ParSets have also been exposed for implementation. The 

primary and secondary ParSets are influenced by die existence of primary and 

secondary indexes and declustering. 

d. Parallelization of Explicit Join Queries 

(0 Parallelization of simple explicit join is very much similar to relational join. Hence, 

the techniques applicable to relational join are also available to object-oriented 

joins. 

e. Query Access Plans 

(i) Query tirees representation is well adopted by relational databases. 

(ii) The extension of query trees in OODB has also been sought. 

f. Execution Scheduling 

(/) The exploitation of inter-operation and intra-operation has been made. The factors 

taken into consideration are lO-bound and CPU-bound tasks. 

(//) Algorithms for paraUel resource division have been attempted by many researchers. 

(/«")Load balancing algorithms based on partition tuning have been proposed. Although 

most of them are designed for parallel relational queries, they are stUl applicable for 

object-oriented queries. 

(iv) Dynamic load balancing based on task stealing has also been proposed. 

3.6.2 Outstanding Problems 

a. Parallelization of Single-Class Queries 

(0 None 

b. Parallelization of Inheritance Queries 

(i) Using the horizontal division, parallelization of super-class queries mvolves 

unnecessary information on sub-classes, whereas using the vertical division, 

parallelization of sub-class query requires a join operation between a sub-class and 

its super-class. 
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c. Parallelization of Path Expression Queries 

(0 Class-based paraUelization, like path and nested parallelism, requires the 

information on the associated object to be stored whUe processing a root object. 

After finishing the processuig of all root objects, dirough diis mformation, die 

associated objects of each selected root object can be retrieved and processed. Path 

traversal is achieved at class level, not at object level. 

(ii) Most work concentrates on 3 type of path expression query, where it requires only 

one of the associated objects of a particular root object to satisfy the predicate 

condition. No extensive work on other collection predicates in path expression 

queries has been reported. 

d. Parallelization of Explicit Join Queries 

(0 Simple Join: None 

(//) Collection Join: 

* No specific algorithms for collection join have been introduced. 

* Conventional data partitioning may not be suitable for collection join, since the 

join attribute is a collection, not a simple attribute. Most conventional data 

partitioning divides a class/table based on a simple join attribute. Hence, these 

methods are not adequate for collection join queries. 

* Most collection join predicates, expressed in OQL, involve the creation of an 

intermediate result which is not efficient. 

e. Query Access Plans 

(/) Most existing query trees do not distmguish between forward and reverse path 

traversals. 

(//) Existing query access plan formulation concentrates on manipulation of operations 

through permutating, collapsing, breaking and expanding operations. No attempt is 

made to convert one operation type to another for more efficient execution. 

f. Execution Scheduling 

(/) Lack of discussion on the effect of skewness to inter-operation and mtra-operation 

parallelization. 
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(ii) Most load balancing is based on join queries. Balancing of simpler operations, like 

path expression queries, has not been explored. 

{iii)No discussion on the impact of load balancing on execution schedulmg strategies. 

3.7 Conclusions 

Existing works on parallel query processing and parallel query optimization have been 

presented and discussed. The achievements of these works to date have also been 

highlighted. Some of the problems which remain outstanding are addressed in this research. 

In particular, a number of needs are evident: 

• a more efficient inheritance data structures; 

• an obiect-based parallelization (i.e., associative approach) which incorporates 

different types of path traversal and collection selection predicates; 

• performance comparison among different parallelization models for path 

expression queries; 

• parallel collection join algorithms, including special data partitioning for 

collection join; 

• a special query tree representation for object-oriented queries to mcorporate 

different path traversal, and query optimization algorithms which are able to 

d-ansform an operation to a more efficient operation, as well as operation 

permutations, collapse, and extension; 

• performance analysis of the impact of skew and load balancing on execution 

scheduling. 



Chapter 4 

Parallelization Models 

4.1 Introduction 
Single-class queries, inheritance queries, and path expression queries are similar to each 

other since they all involve selection operations. Single-class queries contain selection 

operations on single-classes. Inheritance queries and path expression queries incorporate 

selection operations on inheritance and aggregation hierarchies, respectively. These queries 

can then be called selection queries. This chapter concentrates on parallelization models for 

selection queries. 

Single-class selection queries are very simple and simUar to selection queries in 

relational databases. Parallelization of single-class queries is consequently similar to that of 

selection queries in relational databases. Parallelization of inheritance queries is also 

similar to that of single-class queries. However, due to the polymorphic feature, objects can 

be of a different class at a given run-time. The organization of objects in an inheritance 

hierarchy plays a significant role in parallel processing of inheritance queries. 

Parallelization of path expression queries comes in two forms: parallelization at object level 

and at class level. 

The main objectives of this chapter are: firstiy, to formulate paralellization models 

for selection queries; secondly, to propose an inheritance data structure to accommodate an 

efficient parallel inheritance query processing; and thirdly, to highlight the strengths and 
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weaknesses of each parallelization model. An ultimate query optimization model will then 

use these as guidelines in choosuig a right parallelization model for a particular query. 

The rest of this chapter is organized as follows. Section 4.2 briefly presents 

parallelization models available for selection queries. Section 4.3 discusses an inter-object 

parallelization model. Section 4.4 describes an inter-class parallelization model. Section 4.5 

presents discussions on the two parallelization models and their impacts on query 

optimization. Finally, section 4.6 gives the conclusions. 

4.2 Parallelization Models 

ParaUelization of selection queries can be achieved through simultaneous processing among 

objects (inter-object parallelization), or concurrent processing among classes (inter-class 

parallelization). These two parallelization models view parallel object-oriented query 

processing from two different angles, particularly from an object point of view and from a 

class point of view, respectively. 

Inter-object parallelization for single-class queries is often known as intra-class 

parallelization. Intra-class parallelization refers to parallelization among simple objects 

within one class. Hence, inter-object parallelization has a broader scope, since it reflects 

parallel processing at object level. The objects can be from one class or from multiple 

classes. Objects from multiple classes are often referred to as complex objects. 

Inter-class parallelization can be applied only to queries involving multiple classes 

(i.e., path expression queries). 

4.3 Inter-Object Parallelization 

Inter-object parallelization is a metiiod whereby an object is processed simultaneously with 

otiier objects. In the next sections, tiiis parallelization model for single-class queries, 

inheritance queries, and path expression queries wUl be discussed. 

4.3.1 Inter-Object Parallelization for Single-Class Queries 

When a single-class query has one selection predicate, objects of diat class are partitioned 

to all available processors. These processors perform the same predicate evaluation for 

different coUection of objects. As an Ulustration, consider the following query. 

OQL. 
S e l e c t X 
From X in Lecturer 
Where "PhD" in x.qualification 
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To answer the query, each processor is allocated a portion of data to work with, and 

is assigned the same predicate, that is checking whether one of die qualification is a "PhD". 

Likewise, when the query involves multiple predicates, each processor evaluates all 

predicates for different collection of objects. Consider the following query as an example. 

OQL. 
S e l e c t X 
From X in Lecturer 
Where x.surname = "Kim" 
and x.age < 30 
and "PhD" in x . q u a l i f i c a t i o n 

Each processor retrieves a different object at a time, and evaluates the values of all 

attributes associated with the query predicates. The degree of parallelism is determined by 

the number of processors involved in the query processing activities. 

It is important to reiterate the mechanism of inter-object parallelization. First, each 

processor holds a collection of objects. Processing in each processor is completely 

localized. Second, each processor processes each object one by one in a sequential manner. 

This involves several steps: load the object, evaluate the object, and write the object to the 

output buffer, if the object is selected. In the case where multiple predicates in a form of 

Conjunctive Normal Form (CNF)^ exist, evaluation is carried out in a short circuit'^. Hence, 

parallelism is not at a fine-grained level, but at an object (coarse-grained) level. Processing 

an object is totally independent of processing other objects, object independence being one 

of the features of inter-object parallelization. 

4.3.2 Inter-Object ParalleUzation for Inheritance Queries 

An object m an inheritance hierarchy is actually one object, although die declaration of the 

object is split into classes within the hierarchy. Consequentiy, paraUelization of inheritance 

queries is similar to that of single-class. However, it becomes more complex as inheritance 

queries involve super-classes and sub-classes. For example, a super-class query also 

includes all of its sub-classes. 

Because some attributes/methods are declared in super-classes (e.g., attributes 

surname and age are declared in class Person, not class Lecmrer (Figure 4.1)), 

parallelization is influenced by data structures or data organization. Traditionally, there are 

two data sdnctures avaUable to inheritance: Horizontal Division and Vertical Division 

(Elmasri and Navatiie, 1994, Delobel et al., 1995). hi addition to tiiese structures, a Linked-

' inaforaiof (p r ed l l OR . . . OR predln) AND . . . AND (predjnl OR . . . OR predmn) 

2 further predicate evaluation is sometimes unnecessary, depending on the previous predicates 
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Vertical Division is proposed. The main achievement of die proposed structure is to balance 

the strengths and weaknesses of the two traditional inheritance data structures. 

is 

Person 

_a 1 

Lecturer 

^ surname, 

^ subjects 

age 

Figure 4.L Inheritance Hierarchy 

a. Horizontal Division 

Horizontal division stores sub-class objects as complete units. The values of an inherited 

attribute from a super-class is stored in the sub-class. If a class is represented as an 

unnormalized table, a sample data of the above inheritance hierarchy is displayed in Figure 

4.2(a). It clearly shows that objects with ODDs 5, 6, 7 and 8 are Persons, whereas the last 

two objects (OIDs 7 and 8) are also Lecturers. 

Regardless of the scope of a sub-class query, parallelization can be accomplished 

by partitioning the sub-class into a number of participating processors to be processed 

simultaneously. This is possible because the contents of a sub-class are independent to its 

super-classes. On the other hand, processing a super-class query must include all its sub­

classes, because each instance of sub-class is also an instance of its super-class. Figure 

4.2(b) gives an Ulustration of inter-object parallelization of super-class and sub-class 

queries using horizontal division. An algorithm for inter-object parallelization of 

inheritance queries using horizontal division is presented in Figure 4.2(c). 

Upon receiving an inheritance query, the algorithm processes all classes associatmg 

with the query through its parameter. In die case where the query is a sub-class query (i.e., 

m = 1), only one class, that is the sub-class itself, wUl be passed to the algorithm. If it is a 

super-class query, the fu-st class Ri is the super-class and Ri to Rm are all of its sub-classes. 

The processors are numbered consecutively (1, 2,..., AO, as are the objects of each class (1, 

2, ...). Processing is done in a round-robin fashion. The i^ processor initially processes the 

/* object. The counter Ip (die object counter in processor P) is incremented by the number 

of processors P. Hence, with 2 processors (P=2) avaUable, all odd objects wUl be processed 

by the furst processor and all even objects by die second processor. These activities are 

repeated as many times as the number of classes involved in the query. 
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Figure 4.2(a). Horizontal Division 

(!) Parallelization of a Super-Class Query 
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(ii) Parallelization of a Sub-Class Query 
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Parallel 
Execution 

OID Name Subjects 

Parallel 
Execution 

OID Name Subjects 

Figure 4.2(b). Inter-Object Parallelization using Horizontal Division 

Procedure Inter-Object-Horizontal {R\, R2,..., Rm): 

Begin 

Let A'̂  be the number of processors available 
Let P be the processor number (id.) 
Fory= 1 torn 

Parallel For P - 1 to 7/ 
Set Ip to P 
While /?j[Ip] ^ NULL 

Get object /?j[Ip] 
Allocate it to P 
Process it in P 
AddA^toIp 

End 
End 

End 

End. 

// m = number of classes 
II R\= objects of class 1 
// Rl = objects of class 2 
// ^m = objects of class m 
// example: /?i [5] = the 5* object of class 1. 

// processor numbers are consecutive (1,. . . , AO 
// for each class 
// for each processor {Parallel execution) 
// Ip = counter for processor P 
II object Ip of/?j exists 
// process it 

// increment the counter 

Figure 4.2(c). Inter-Object Parallelization Algorithm using Horizontal Division 
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b. Vertical Division 

Vertical division partitions a class according to where the attribute is originally declared. A 

sub-class object is divided into a number of partitions, as part of die sub-class is declared in 

an inheritance hierarchy. Objects solely belonging to a super-class, togetiier witii some parts 

of sub-class objects are kept in the super-class. Since an object must have a unique OID, 

sub-class objects which are divided into a number of partitions employ tiie same OID. This 

OID refers to a logical object identifier (LOID). Figure 4.3(a) gives an Ulustration of 

vertical division. It shows that some parts of Lecturer with OIDs 7 and 8 are declared in 

class Person. 

Parallelization of sub-class queries (e.g., queries on Lecturer) can be accomplished 

by applying a parallel join algorithm to Lecturer and Person on LOID. The join operation is 

necessary only when the scope of the query is to cover super-classes, as well as the target 

class (i.e., sub-class). If the scope is localized to the target sub-class, there will be no need 

to involve its super-class in order to minimize die size of die object to be processed. 

Parallelization of super-class queries can be efficientiy performed by evaluating the 

content of the target super-class itself. Figure 4.3(b) shows an illustration of parallelization 

of super-class and sub-class queries using a vertical division. The algorithm is presented in 

Figure 4.3(c). 

For super-class queries (m = 1), there is only one class to be passed to the 

algorithm; that is the super-class itself (i.e., R\). ParaUel processing is based on round-robin 

partitioning. For sub-class queries {m> 1), the sub-class and all of its super-classes (in the 

case of the query involves in multiple super-classes) will be passed to die algorithm tiirough 

the parameters. Since parallel sub-query processing using a vertical division requu-es an 

explicit join to perform, a parallel join algorithm must be applied to these classes (i.e., 

RIM R2M ...M Rm). Conventional parallel join algoritiims (Graefe, 1993), such as hybrid 

hash, Grace join, may be employed. 
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Figure 4.3(a). Vertical Division 
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(ii) Parallelization of a super-class query 
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Person and Lecturer 
on LOID 

LOID| Subjects 

Figure 4.3(b). Inter-Object Parallelization using Vertical Division 

Procedure Inter-Object-Vertical {R\,R2,... 

Begin 

,Rm): 

Let Â  be the number of processors available 
Let P be the processor number (id.) 

If(m= l)Then 
Parallel For P = 1 to Â  

Set Ip to P 
While/?i[Ip]^ NULL 

Get object i?l[Ip] 
Allocate it to P 
Process it in P 
AddA^toIp 

End 
End 

Else 
Parallel-Join {R\,R2,..., Rm) using 

End if 

End. 

// m = number of classes 
II R\ = objects of class 1 (super-class) 
// /?2 = objects of class 2 (sub-class 1) 
// Rm = objects of class m (sub-class m-\) 
II example: ^l[5] = the 5* object of class 1. 

// super-class query 

// initialize the counter 

// only the super-class objects are processed 

// round-robin processing 

// sub-class query 
.V processors // need an explicit join operation 

Figure 4.3(c). Inter-Object Parallelization Algorithm using Vertical Division 
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c. Linked-Vertical Division 

Linked-vertical division is a vertical division with pointers/links. If an object is divided 

vertically into a number of classes, each partition wUl have a unique physical object 

identifier (POID) and a common LOID. To avoid a relational join operation when 

assembling an object, each POID within the same LOID is Imked through a pointer 

connection Link. Figure 4.4(a) shows an example of a Imked-vertical division in 

unnormalized tables. 

Parallelization of sub-class queries can be achieved through partitioning sub-class 

objects, and each object traces the link to its super-classes. For super-class queries, because 

the content of super-class is isolated as in vertical division, the processing model for super­

class queries for linked-vertical division is the same as that of vertical division. Figure 

4.4(b) shows how parallelization is simplified using the linked-vertical division. The 

algorithm is presented m Figure 4.4(c). 

The classes involved in the query are passed through the parameters. If it is a super­

class query (m=l), only R\ is passed to the procedure. However, if it is a sub-class query, 

the sub-class (Rm) and all of its super-classes (R\, ..., Rm-\) are processed. After processing 

a sub-class object, it traverses to its immediate super-class object through a pointer, and 

processes the object. This traversal is repeated untU the root object is reached and 

processed. These activities are repeated to other sub-class objects. Parallel processing is 

achieved in a round-robin fashion for the sub-class objects. 
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Figure 4.4<a). Linked-Vertical Division 

(i) Parallelization of a super-class query 
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Parallel 
Execution 

— > 

Lon pon Name LinJ 
Person 

Parallel 
Execution ^ 

—) 

LOII pon Name Linl 

traversal 

Lecturer 
Link LOniPOn: subjects 

Figure 4.4(b). Inter-Object ParaUelization using Linked-Vertical Division 

Procedure Inter-Object-Linked-Vertical {R\,R2,.... Rm): 
II m== number of classes 

Begin 
Let N be the number of processors 
Let P be the processor number 
ParaUel For P = 1 to Â  

Set Ip to P 
While object i?m[Ip] ̂  NULL 

II Rl = objects of class 1 (super-class) 
// Rl = objects of class 2 (sub-class 1) 
// Rm = objects of class m (sub-class m-1) 
// example: Rl[5] = the 5* object of class 1. 

// for each processor 

// m=l is super-class query 
// m>l is sub-class query. 

Get object /?m[Ip] 
Allocate it to P 
Process it in P 
I fm>lThen 

_/• = m - 1 
Repeat 

Traverse to its super-class 
Get the pointed super-class object 
AUocate it to P 
Process it in P 

Until 7 = 0 
End if 
Add Â  to Ip 

// sub-class query 
// going to traverse to its super-class 

// repeat for all of its super-class objects 

// round-robin partitioning 

End 
End 

End. 
Figure 4.4(c). Inter-Object Parallelization Algorithm using Linked-Vertical Division 
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4.3.3 Inter-Object Parallelization for Path Expression Queries 

Since path expression queries involve multiple classes along aggregation hierarchies, inter-

object parallelization exploits the associativity within complex objects. All associated 

objects connected to a root object assemble a complex object. This associative approach 

views a complex object as a cluster, and consequentiy processing tiiese objects can be done 

together. 

Figure 4.5 shows an example of a class schema together witii its instantiations. A 

typical query from this schema is to select objects which satisfy some predicates of botii 

class A and B (Bertino, et al, 1992; Kim, 1989). 

OQL. 
S e l e c t a 
From a in A, b in a.rell 
Where a.attrl = const AND 

b.attrl = const; 

In this thesis, class A is referred to as a root class, whereas class B is called an 

associated class. Further, objects of a root class are root objects, and objects of an 

associated class are associated objects. 

Inter-object parallelization is accomplished by partitioning all complex objects 

rooted of a particular class into a number of partitions, in which each partition is allocated 

to a different processor. As a result, each processor works independentiy witiiout a need for 

communicating with other processors. As in conventional parallel database systems, the 

partitioning method used can be either round-robin, range or hash partitioning (DeWitt and 

Gray, 1992; Graefe, 1993). Whatever partitioning method is used, it will not be that 

important to the associated objects, as the initial partitioning has lost its effect on them. 

Using this associative approach, objects along the association path that are not 

reachable from the root object wUl not be processed. This method is very attractive because 

of not only the filtering feature, but also it is low m overhead. It does not requh-e any 

checking, because processing root objects and their associated objects is done by pomter 

navigation from the root object to all of its associated objects. When there is no pomter left, 

it skips to die next root object. In tiiis case, objects tiiat do not form a complex object 

described in the query predicate are discarded naturally. 
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(a) Class Schema 

Graphical Notation: 

attrl 
attr2 

I 

attm 

\2J inverse B::rell(^^y 

attrl 
attr2 

attm 

Query Language: 

Class A 
{ 

attribute string attrl; 

attm 

relationship set<B> rell 
inverse B::rell; 

}; 

Class B 
{ 

attribute string attrl; 

attm 
relationship set<A> rell 

inverse A: :rell; 

(b) Class Instantiations/Objects 

Figure 4.5. Class Schema and Instantiations 

Complex Objects 

al 
^ 

fe ^ 

Inter-Obiect Parallelizatioi 

Processor 1 

^ ^ 

Processor 2 

Processor 3 

^ fe 
Sote: bold nodes are replicated 

Figure 4.6. Inter-Object Parallelization Model 
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Figure 4,6 shows an mter-object parallelization from die example in Figure 4.5. 

Lower case letters are used to indicate OIDs. The number of associated objects for a root 

object is known as the fan-out degree of that root object. In tiiis example, die fan-out degree 

of a\, a2 and a3 are equal to 2, 3 and 1, respectively. It clearly shows that using tiiis 

clustering approach, processing a root object (say 02) can be done togetiier witii all its 

associated objects (e.g., bi, b3 and b4). 

A problem of inter-object parallelization is tiiat when tiie cardinality of die 

association is many-many or many-one, object replication is unavoidable. Associated 

objects referred by more than one root object will need to be replicated. In the example, 

objects b2 and b4 are replicated as they accompany root objects a\,a2 and a3. 

An algorithm for inter-object parallelization is presented in Figure 4.7. If die root 

object is selected, depending on the type of the query (i.e., 3-PE, \/-PE or S-PE), an 

appropriate predicate ftinction is called. The ftinction for 3-PE and V-PE are ratiier 

straight-forward, that is to check for one TRUE and all TRUE, respectively. The need for 

an S-PE function is rather critical, since the original predicate function for duplicate and 

succeeded involve intermediate results which result in inefficiency. For example, to check 

whether an item is duplicated in a collection, the predicate has to intersect the collection 

with the item, obtain the intersection result, and check die length of the intersection result. 

The original succeeded predicate is even more complicated. It forms all possible pairs from 

a list and checks whether the desired pair exists or not. Therefore, it is important to provide 

collection selection predicate functions. 

Procedure Inter-Object-Parallelization 
Begin 

In each partition // Parallel For Suoicture 
For each root object // Sequential For Structure 

Read a root object 
Evaluate predicate of the root object 
If the root object is selected Then 

Case 3-PE: 
result = at_least_one (Collection C, Predicate P) 

Case V-PE: 
result = for_all (Collection C, Predicate P) 

Case S-PE: 
result = at_Ieast_some (Collection C, Predicate P) 

End Case 
If result = TRUE Then 

Put the root object into the result 
End If 

End If 
End For 

End Procedure. 

Figure 4.7. Inter-Object Parallelization Algorithm 
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a. Collection Selection Predicate Functions 

For each selection predicate type, a predicate function is constructed for an efficient path 

expression query execution. These functions become a central part of the inter-object 

parallel algorithm. Figure 4.8 shows tiie pseudo-code for each predicate function. 

1) Function at_least_one (C: collection of associated objects, P: predicate) Return Boolean 
Begin 

For each element einC 
Evaluate predicate P one 
If TRUE Then 

Retarn TRUE 
Break For 

End If 
End For 
Return FALSE 

End Function 

2) Function for_all (C: collection of associated objects, P: predicate) Return Boolean 
Var 

selected: boolean = TRUE 

Begin 
For each element e in C 

Evaluate predicate P one 
If TRUE Then 

Continue 
Else 

selected = FALSE 
Break For 

End If 
End For 
If selected Then 

Return TRUE 
Else 

Return FALSE 
End If 

End Function 

3) Function at_least_some (C: collection of associated objects, P: predicate) Remm Boolean 
// Predicate P is in a form of (predicatejype, {iteml, item2 itemn}) 

Begin 
Case P.predicate Jype = is_duplicate: 

Return is_duplicate (C, P.iteml) 
Case P.predicate_type = is_succeeded: 

Return is_succeeded {CJP.iteml,P.item2) 
End Case 

End Function 
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4) Function is_duplicate {Bl: bag, a: item) Return Boolean 
Begin 

pas = members (Bl, a) 
Iflength(poj)>lThen 

Retum TRUE 
Else 

Remm FALSE 
End Function 

5) Function is_succeeded (LI :list; a,b:item) Retum Boolean 
Begin 

pos_a = members (LI, a) 
pos_b = members (LI, b) 
If (pos_a - pos_b -1-1) Then 

Retum TRUE 
Else 

Retum FALSE 
End Function 

6) Function members (Bl ;collection, fl:item) Retum pos[] 
Begin 

Search item a in Bl 
Retum pos items a or an empty pos 

End Function 

Figure 4.8. Collection Selection Predicate Functions 

The atJeast_one function evaluates whether an item is a member of a collection. 

The function receives a collection of associated objects to be evaluated and a predicate in a 

form of boolean expression. The function iterates each element in the collection and 

evaluates the predicate against the element. If an element is evaluated to be true, the 

function terminates and returns a time value to tiie calling program. Otherwise, it will 

continue until the end of collection is reached and retum a false if none of the desired 

element is found. 

The for_all function is similar to tiie at_least_one function, in which they accept a 

collection of associated object and a predicate to work witii. However, the for_all function 

is in contrast to the previous function, where the forjill function requires all elements of 

tiie collection to be tiue. Hence, once an element is evaluated to be false, the function 

terminates and returns a false value to die caUing program. 

The at_least_some function performs one of tiie two predicates, namely duplicate 

and succeeded. The duplicate predicate is to check for a duplicate item, whereas the 

succeeded predicate checks for an item to be succeeded immediately by another item. The 

atjeastjome function receives a collection of associated objects and a predicate. The 

predicate is in a form of structure which consists of the predicate type and a list of items. 

For the duplicate predicate, die predicate type is isjduplicate and the list of items has only 
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one item, that is the item to be evaluated. For the succeeded predicate, the predicate type is 

is_succeeded and the list of items has two items: iteml and iteml. Depending on the 

predicate type, an appropriate function is called. The retum value of tiiis function call 

becomes the retum value of the at_least_some function. 

The is_duplicate function calls the members function to get the positions of the 

desired item. If there is more than one position, the item is a duplicate item. The last 

predicate function is the is_succeeded function. It calls the members function twice, one for 

the first item, and the other for the second item. If the position of the first item is less than 

the position of the second item, the first item comes before the second item. 

4.4 Inter-Class Parallelization 
Inter-class parallelization is a method whereby a query involving multiple classes and each 

class appearing in the query predicate is evaluated simultaneously. Inter-class 

parallelization considers each predicate as an independent task, and the objects of a 

particular class are attached to the predicate to be evaluated. As a result, the entire process 

is composed of many independent tasks, which may run concurrentiy. 

Basically, inter-class parallelization consists of two phases: selection phase and 

consolidation phase. The selection phase is a process where the predicate of each class is 

invoked independentiy regardless of the associative relationship. In the consolidation phase, 

die results from the selection phase are consolidated to obtain the fmal results. 

Inter-class parallelization does not filter unnecessary objects prior to processing. 

Non-associated objects wUl be processed, although these objects wUl not be part of the 

query results. The processing performance of a class wiU be down graded by (1-a) times 

100% percent, where a is a probabUity of an object of having an association with objects 

from a different class. This problem wUl not exist if botii classes have total participation in 

the association relationship (a=l). 

Inter-class paraUelization also determines access plans of patii expression queries. 

Figure 4.9 shows two examples of access plans. When tiiere is only one selection involved 

in the query, only the class involved in the selection operation is processed in the selection 

phase. 
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OQLs: 

Access Plans: 

(a) two selections 

Select a 
From a in A, b in a.rell 
Where a.attr = constant 
And b.attr = constant 

7C 

Query Graphs: ( T ) ^ C ^ ) 

Phase 1: Selection phase 
Phase 2: Consolidation phase 

consolidation 

Selection on A Selection on B 

(b) one selection 

Select a 
From a in A, b in a.rell 
Where b.attr = constant 

® >® 

consolidation 

Selection on B 

Figure 4.9. Access Plans for Inter-Class Parallelization 

4.4.1 Selection Phase 

There are two options for implementing a selection phase, especially when the two classes 

in a path expression query are involved in a selection. The options are sharing resources 

and queuing for resources. 

• Sharing resources is a manifest of concurrent processmg. The two classes share 

resources (ie. processors) at the same time. The resources must be divided into 

two groups: each group to serve one class. The division is not necessarily equal 

depending on the size of each class. Determining an appropriate number of 

processors for each class is critical. Otherwise, it will create load imbalance as 

one class might have finished processing while others have not. Figure 4.10 

shows a selection phase where the resources are divided into 2 groups. 

processors 

Class A 

a 

perform selection operations 

Class B 

where 1<-k<n 

Figure 4.10. Selection Phase (Resource Division) 
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Queuing for resources is typical in a pipeline processmg model. Once a class 

takes the control, all resources will be aUocated to it. There is no need to divide 

the resources. The usage of processors wiU be optimal, because when a class 

has finished, another class wUl occupy the idle processors. In this way, load 

balancing can always be maintained. Figure 4.11 shows class A and class B are 

queuing to use the resources. 

processors 

Class B Class A distribute*^ ' 

a 
queue 

perform selection operations 

Figure 4.11. Selection Phase (Queuing up for resources) 

The difference between "sharing resources" and "queuing for resources" can be 

Ulustrated by two queues for "sharing resources" and one queue for "queuing for 

resources". Because only the average work load of each processor is considered (not the 

response time of each item in the queue), one queue model is more efficient, because it 

guarantees that all processors (service providers) wiU be busy when die queue is not empty. 

4.4.2 Consolidation Phase 

Inter-class paraUeUzation is an "mdependence class processing" based parallelization 

model. The development of tiiis class-independence processing is influenced by the concept 

of object copying used in object-oriented query processing (Meyer, 1988). 

BasicaUy, the results of a query is a copy of objects satisfying the selection 

predicates. In the absence of the selection predicates, the query results are the same as die 

original objects. Figure 4.12(a) shows an example of a simple query to retrieve all student 

objects. The result of this query is pointed by variable a which is die same copy of all 

student objects. 

In die presence of selection predicates, filtering is carried out to die copied objects. 

Figure 4.12(b) shows tiiat variable a points to student objects which satisfy the selection 

predicate (i.e., ID LUce "94%"). 

Using die same principle, when tiie selection predicates span to classes in a path 

expression, object copying and filtering can be performed for each class independently. 
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Running tiirough each root object once again to check whetiier tiie root object not pointing 

to a NULL value is done thereafter. Figure 4.12(c) shows a patii expression query, die 

process to obtain the results, and the query results. 

A consolidation process is performed by means of a "NOT NULL" association 

evaluation of the root object. An algorithm for an inter-class parallelization of a patii 

expression query is presented in Figure 4.13. 

(a) Simple retrieval 

OQL: Select a 
From a in Student 

(b) Simple selection 

OQL: Select a 
Where a.id Like "94%" 
From a in Student 

(c) Path expression 

OQL: Select a 
From a in Student, 

b in a.enrol 
Where a. id Like "94%" 
And b.code Like "DB%" 

selection phase 

consolidation phase 

Student objects 
I I M I 

i copy 

all Student objects 

Student objects 

n 

Eh^i 

A copy and filter 

objects satisfying the predicate 

Student objects 

\± 
Subject objects 

Z M 1111 : 
]/(:opy 

^„.„ I I . all Student objects 

r̂  B-^mrrzzz: 
]/<:opy 

all Subject objects 

Z M J I I I H 

TTTT J \^ jitter 

A consolidate i 
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Figure 4.12. Object Copying in Query Retrieval Operations 
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Procedure Inter-Class-Parallelization 
Begin 

1. Selection phase 
Evaluate predicates on the root class and the associated class in parallel 

2. Consolidation phase 
For each selected root object 

Case 3-PE: If a NOT NULL value of an associated object exists Then 
Put the root object into the query result 

Else 
Discard the object 

End if 

Case V-PE: If a NULL value of an associated object exists Then 
Discard the object 

Else 
Put the root object into the query result 

End if 

Case S-PE: If two NOT NULL values of associated object exist Then 
If predicate_type = duplicate Then 

Put the object into the query result 
Else If predicate_type = succeeded Then 

If pos 1 = pos2-l Then 
Put the object into the query result 

Else 
Discard die object 

End If 
End If 

Else 
Discard the object 

End If 
End Case 

End For 
End Procedure. 

Figure 4.13. Inter-Class Parallelization Algorithm 

4.5 Discussions 

4.5.1 HorizontalA^ertical Division vs. Linked-Vertical Division 

The strengths and weaknesses of each inheritance data structures are outlined as foUows. 

a. Horizontal Division 

• Strengths 

ParaUelization of a sub-class query is isolated to the concemed class only. 
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Weaknesses 

Parallelization of a super-class query has to involve all sub-classes. 

Unnecessary information about the sub-classes has to be retrieved as a result of 

accessing the sub-classes. 

b. Vertical Division 

Strengths • 

Parallelization of a super-class query is localized to the super-class only. 

• Weaknesses 

Parallelization of a sub-class query needs to involve an explicit join 

between die sub-class and its super-class. 

c. Linked-Vertical Division 

• Strengths 

Like vertical division, parallelization of a super-class query is isolated to 

the super-class only. LUce horizontal division, parallelization of a sub-class 

query is isolated to the sub-class objects only. Since an object is split into parts, 

a traversal from the sub-class part object to its super-class part object is needed. 

• Weaknesses 

A link has to be maintained between classes in an inheritance hierarchy. 

d. Comparisons 

• Linked-verticallvertical division is suitable for super-class queries as 

processing these queries are isolated to the concemed super-class only. 

• Horizontal division is suitable for sub-class queries for die same reason as 

above. 

• It can be expected that the difference in performance of sub-class query 

processing using the horizontal division and the linked-vertical division wUl be 

insignificant due to the small overhead of die link traversal imposed by the 

linked-vertical division. Therefore, the linked-vertical division is suitable for 

parallel inheritance query processing. 
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4.5.2 Inter-Object vs. Inter-Class Parallelization 

Since there are two parallelization models available for path expression queries, it is 

essential to highlight the strengths and weaknesses of each model. 

a. Inter-Object Parallelization 

• Strengths 

(0 Complex objects are presented as clusters. Processing a complex object at a 

particular processor becomes localized and can be processed at once. 

(ii) Selection operation in a class along a linear chain of path serves as a filter 

to subsequent classes. Thus, not all associated objects need to be processed. 

• Weaknesses 

(/) If the relationship between a root class and an associated class is m-m or m-

1, some associated objects may need to be accessed more than once, as they 

are referred by multiple root objects. If a distributed architecture is 

adopted, these associated objects are replicated, to follow their root objects. 

(//) Due to the fluctuation of the fan-out degree of the root objects, a skew 

problem in processing the associated objects occurs. 

b. Inter-Class Parallelization 

• Strengths 

(/) Smce each class is processed mdependentiy, redundant accesses to an 

associated class are avoided. 

(ii) Association skew is also avoided m the selection phase, due to class 

independency. 

• Weaknesses 

(0 Complex objects, formed by multiple classes m a relationship, need to be 

broken into parts. In reconstmcting selected complex objects, a 

consolidation is needed. In a shared-memory system, consolidation is done 

by tagging tiie selected objects. In a distributed memory system, 

communication through message passing, which is known to be expensive, 

is needed. 
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(ii) As die selection phase is implemented in a parallel processing fashion, 

ratiier tiian in a sequential fashion, no pipeluie filtering is done. 

c. Comparisons 

Several points can be made based on the strengths and weaknesses of each parallelization 

model. 

• Inter-Object Parallelization is suitable for path expression queries involving a 

selection operation on the start of path traversal, as selection operation provides 

as a filtering mechanism. Redundant accesses to die associated objects may 

also be avoided indirectiy and the association skew problem may be reduced 

through the filtering mechanism. 

• Inter-Class Parallelization is suitable for path expression queries involving 

selection operation at the end of path traversal, since the problem of redundant 

accesses to the associated objects and the association skew may be avoided 

through class independent processing. Because filtering is not performed, the 

inter-object parallelization model is not a good choice for this particular query, 

and consequently, the inter-class parallelization model is die only option. 

4.5.3 Issues in Optimizing Path Expression Queries 

General path expression queries normally consist of more than 2 classes connected through 

relationships. As these queries can be built upon multiple 2-cIass path expressions, the 

strengths and weaknesses of the inter-object and inter-class parallelization can be used as 

guidelines for a selection on a parallelization model. It is also noted that optimization of 

complex path expression queries raises several issues. Parallel processing of complex path 

expression query is one of the main focuses of query optimization in which decomposition 

procedure is later developed. 

• The influence of a selection operator from the previous class. 

Since a selection operator in a class has a great impact on filtering, although 

there is no selection operator in a class, die filtering done in previous classes 

must be taken in account. For example, a linear path expression query involving 

three classes (i.e., A, B, and Q with two selections on the first and the last class 

only, an inter-object parallelization starting from the first class to all classes 

must be done. A combination of inter-object parallelization (i.e., A-B) and an 

inter-class parallelization (i.e., B-Q becomes less desirable. 
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inter-object Parallelization 

© KD ^ 7 ^ 
Inter-object Inter-class 

® ^ ® xs> 

Figure 4.14. Effect of the previous selection operator in filtering 

Starting node selection. 

In the presence of inverse relationships, it must be decided in which direction a 

path should go. One factor that can be used is the selection operator. For 

example, in a 2-class path expression from A to 5 where the relationship is bi­

directional, with a selection operation in class B only, it can be more efficient 

to do a path traversal for inter-object parallelization from B to A, instead of an 

inter-class parallelization of A-B. 

Inter-Class 

& •XD 
Inter-Object 

&• ® 

Figure 4.15. Starting Node Selection 

Resolving conflicts. 

Analysing a complex path expression query by splitting it into a number of 2-

class path expressions sometimes creates conflicts. Consider Figure 4.16 as an 

example. According to the previous guidelines, two separate inter-object 

parallelizations from A-JS and C-B will be efficient. However, an explicit join of 

the results from the two mter-object parallelization is now required. An 

expensive join operation can be avoided by changing one of the two inter-

object parallelization to an inter-class parallelization. 

Inter-Object 3ject\| i / II 

® 
Inter-Object Inter •-Object\| i/T Inter-Glass 

Join 

Figure 4.16. Resolving a conflict 
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• Although inter-object parallelization and inter-class parallelization can be used 

as basic parallelization models for more complex queries, it is critical to 

provide an optimization algorithm to transform original queries into more 

optimized access plans. 

4.6 Conclusions 

ParaUelization of single-class queries and inheritance queries is provided by inter-object 

parallelization. The efficiency of parallelization of inheritance queries depends on its data 

stmcture. A linked-vertical division is proposed, with the advantages provided by horizontal 

and vertical divisions. 

Parallelization models for path expression queries are avaUable in two forms: inter-

object parallelization which exploits the associativity of complex objects, and inter-class 

parallelization which produces process independency. Inter-object parallelization wUl 

function well if a filtering mechanism in the form of selection operation exists. On the other 

hand, inter-class parallelization relies upon independency among classes, not the filtering 

feature. These two parallelization models form the basis for parallelization of more 

complex object-oriented queries. 

The main contributions of this chapter are summarized as follows. 

• Inter-object parallelization is presented. It exploits the associativity of complex 

objects. Since complex objects are clustered and presented as single units, 

processing a complex object can be done at once. Furthermore, as evaluatmg 

the selection predicates is done in a short circuit, a selection predicate is served 

as a filter to the next selection predicates. Hence, not all associated objects are 

processed, especially when tiieir root objects are not selected. 

• A linked-vertical division for inheritance hierarchy is proposed. It combines the 

strengths of the two traditional inheritance stmctures: horizontal and vertical 

divisions. Vertical division is particularly suitable for super-class queries due to 

its locality, but is poor on sub-class queries because of the necessity for a join 

operation. On tiie otiier hand, horizontal division is poor on super-class queries 

as super-class queries must involve all sub-classes, but is well suited to sub­

class queries due to its locality. Linked-vertical, however, has die advantage of 

locality of super-class queries like in vertical division, and the advantage of 

'locality' of sub-class queries as in horizontal division. 
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Since there are different types of selection predicates due to die availability of 

collection types, collection selection predicate functions are provided. These 

functions become the basis for predicate processing in each processor, since 

data partitioning is similar to the common data partitioning in parallel relational 

database systems. These predicate functions are also different from die original 

selection predicates as some of the selection predicates mvolve unnecessary 

intermediate results (e.g., intersect, etc). 

A more detail description of inter-class parallelization is given. Although inter-

class parallelization is similar to "class-hierarchy" parallelism (KimKC, 1990), 

it is emphasized that inter-class parallelization consists of two phases: selection 

and consolidation phases. Furthermore, in the consolidation phase, the 

collection selection predicate functions are incorporated. Some of these 

functions are not mentioned in the "class-hierarchy" parallelism, since it 

concentrated only on 3-PE (existential quantifier path expression queries). 

The strength and weaknesses of inter-object and inter-class parallelization are 

highlighted. This is particularly important in the optimization of complex path 

expression queries, since many complex path expression queries produce 

conflict when using inter-object and inter-class parallelization. A mixture of 

these parallelizations or a transformation from one model to the other is 

necessary. By highlighting the strengths and weaknesses of each model, a query 

optimization algorithm or procedure can later be formulated. 



Chapter 5 

Parallel Collection Join Algorithms 

5.1 Introduction 
This chapter presents paraUel algorithms for object-oriented coUection join queries. The need 

for parallel join algorithms arises because relational join algorithms (Mishra and Eich, 1992; 

Graefe, 1993) were not designed to cope with coUection types. ParaUel join algorithms 

normaUy proceed in two steps. The first step is the partitioning step, and the second step is 

tiie joining step. The partitioning step creates paraUelization and the joining step is a set of 

sequential tasks to be performed locaUy in each processor. Data partitioning is usuaUy eitiier 

disjoint or non-disjoint partitioning. The local joining operation can be done in sort-merge, 

hash, nested loop, or any combination of these. Sort-merge and nested loop are simpler but in 

many cases less efficient. In contrast, hash-based join is much more difficult, but more 

attractive due to its linear complexity. 

The rest of tius chapter is organized as foUows. Section 5.2 describes die 

characteristics of coUection join queries. The characteristics detennine the data partitioning 

method for paraUel execution. Section 5.3 discusses disjoint and non-disjoint partitioning. 

Section 5.4 presents paraUel sort-merge coUection join algorithms. Section 5.5 presents 

paraUel hash coUection join algorithms. Section 5.6 gives a discussion on tiie proposed join 

algorithms. FinaUy, section 5.7 draws the conclusions. 
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5.2 Characteristics of Collection Join Queries 

The characteristics of tiiree coUection join query types (i.e., R-Join, I-Join, and S-Join) are 

outiined. These characteristics point out tiie need for different data partitioning and joining 

methods for each coUection join query type. 

5.2.1 R-Join Characteristics 

The main characteristic of R-Join is that the join result may be determined by tiie first element 

in a coUection. Suppose tiie join predicate is to check for an equality of two coUection 

attributes, such as J o u r n a l , e d i t o r - i n - c h i e f = P r o c e e d i n g s . p r o g r a m - c h a i r . For each 

pair compared, a negative result is obtained if die first elements of die coUections do not 

match. The opposite is not applied as furtiier comparison of elements is required. 

The data partitioning metiiod for paraUel R-Join is much influenced by common 

practices of arrays/sets comparison in programming. An array can be compared witii anotiier 

array by evaluating each pair of elements from tiie same position of the two arrays. A 

characteristic of artays comparison is that once an element is found to be different from its 

counterpart (i.e., element of tiie same position from tiie otiier artay), tiie comparison stops 

and returns a negative result. A typical arrays comparison pseudo-code is given in Figure 5.1. 

Array comparison: 

Let n 1 be the number of elements in Array 1 
Let n2 be the number of elements in Array2 
I f n l - n 2 T h e n 

F o r i = 1 T o n l 
If Array 1 [i] ! = AiTay2[i] Then // pair by pair comparison 

ReUim FALSE 
End if 

End 
Else 

Rehim FALSE 
End if 
Retum TRUE 

Array 1 Array2 

1 

2 

3 

nl 

compare 

<-

• > n2 

Figure 5.1. Array comparison 

Unlike artays comparison, sets comparison is not based on the position of each 

element in the coUection, since the order of the elements is not significant. For example, 

array(2,3,l) ^ array(3,2,l), but set{2,3,l) = 5^/(3,2,1). In comparing two sets, it wUl become 

easier if the two sets are alphabeticaUy/numericaUy pre-sorted. For instance, j'^/(2,3,l) is 

sorted to be set{l,2,3), and so is the second set. Comparison can tiien be carried out as per 

artay comparison. 
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It can be concluded that an artays comparison very much depends on die position of 

each element in an array. The first element will open the gate for further element 

comparisons, if tiie first pair is evaluated to be tine. In contrast, set comparison depends on 

the smaUest element in a set, which is tiie first element after sorting. This element acts like tiie 

first element in the artay. Based on tiiese characteristics, tiie first element of an array and tiie 

smaUest element of a set play an important role in data partitioning. 

5.2.2 I-Join Characteristics 

Unlike R-Join, tiie restUt of I-Join cannot be determined by die first element (or the smaUest 

element, for sets/bags) in a coUection. Suppose die join predicate is to check for any 

intersection of two coUection join attributes, such as Journal .edi tor- in-chief n 

Proceedings.program-chair, a negative acknowledgment caiinot be given before fuU 

merging of the two coUections is completed. Since the role of the first element is not as 

important as that in R-Join, it is not possible to produce non-overlap partitions, because an 

intersection between 2 coUections cannot be obtained merely by evaluating their first or 

smaUest elements. 

Another important characteristic of I-Join is that a positive acknowledgment can be 

given without a fuU merging of the two coUections. The coUection intersection process is 

stopped once an element belonging to tiie two coUections is foimd. 

5.2.3 S-Join Characteristics 

LUce I-Join, the result of S-Join cannot be determined by the first element in a coUection. For 

example, if the join predicate is ( Jou rna l , e d i t o r - i n - c h i e f c Proceedings.program-

chair) , a negative acknowledgment cannot be given before fuU merging of die two 

collections is completed. Hence, non-overlap partitions cannot be created. 

In cond-ast to I-Join, however, a positive acknowledgment cannot be given before a 

fuU merging. A sub-set cannot be obtained by an intersection. Therefore, S-Join requires a 

more restrictive condition than I-Join, in which I-Join requires one match only, whereas S-

Join requires some matches. 

5.3 Data Partitioning 

Horizontal data partitioning is commonly adopted by paraUel query processing (DeWitt and 

Gray, 1992). ParaUelization is achieved through paraUel processing of different parts of data. 

This coarse-grained paraUelization has been recognized as suitable for database processing. 
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Depending on tiie join query type, data partitioning can be disjoint or non-disjoint. R-Join 

queries aUow disjoint (non-overlap) partitions to be created, whereas I-Join and S-Join reqitire 

non-disjoint partitions to work with. 

5.3.1 Disjoint Partitioning 

Common horizontal data partitioning metiiods, such as range or hash, can be used to produce 

disjoint (non-overlap) partitions. In R-Join, because die partitioning attribute, also being the 

join attribute, is a coUection, only one of the elements wUl be used as the partitioning value. If 

the coUection is an artay or a list, partitioning is based solely on die first element of die 

list/artay, since list/artay comparison operates on the original elements composition of the 

coUection. If the partitioning attribute is a set or a bag, partitioning is based on the smaUest 

element of the coUection, because a set/bag comparison requires the coUections to be sorted. 

As a running example, consider the data shown in Figure 5.2. Suppose class A and 

class B are Journal and Proceedings, respectively. Botii classes contain a few objects shown 

by their OIDs (e.g., objects a-i are Journal objects and objects p-w are Proceedings objects). 

The join attributes are editor-in-chief of Joiunal and program-chair of Proceedings; and are 

of type coUection of Person. The OID of each person in these attributes are shown in the 

brackets. For example a(250,75) denotes a Journal object with OID a and the editors of this 

journal are Persons with OIDs 250 and 75. 

Class A 
(Journal) 

a(250, 75) 
b(2I0,123) 
c(125,181) 
d(4, 237) 
e(289, 290) 
1(150.50.250) 
g(270) 
h(190,189,170) 
i(80, 70) 

f \ Journal OIDs \ 
\ 

e<itor-in-chief OIDs 

Class B 
(Proceedings) 

p(123, 210) 
q(237) 
r(50, 40) 
s(125,180) 
t(50, 60) 
u(3,1. 2) 
v(100,102,104) 
w(80, 70) 

T \ 
Proceedings OIDs \ 

\ 
program-chair OIDs 

Figure 5.2. Sample Data 

Figure 5.3 shows an example of disjoint data partitioning of data fi-om Figure 5.2. 

Two cases are presented. Case 1 is where the two coUections are artays, and case 2 is where 

the coUections are sets. 
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CASE 1: ARRAYS 

* Collections 1 and 2 are arrays 
* 3 processors are used 
* Range partitioning is used 

(processor 1 - 0-99 
processor2 = 100-199 
processor 3 - 200-299) 

* Partitioning is based on the 
first element in each collection. 

CASE 2: SETS 

* CoUections 1 and 2 are sets 
* 3 processors are used 
* Range partitioning is used 

(processor 1 = 0-99 
processor 2= 100-199 
processor 3 - 200-299) 

* Partitioning is based on the 
smallest element in each collection 

DISJOINT PARTITIONING 

d(4,237) 
i(80,70) 

c(125, 181) 
f( 150 , 50, 250) 
h(190 , 189, 170) 

a( 250, 75) 
K210,123) 
e( 289, 290) 
g(270) 

r( 50 ,40) 
t( 50 ,60) 
u ( 3 , l , 2 ) 
w(80 ,70) 

p(123 ,210) 
s( 125.180) 
v( 100 , 102, 104) 

q(237) 

a(250, 75) 
d(4 ,237) 
f(150,50 ,250) 
i(80,70) 

K210, 123 ) 
c( 125 , 181) 
h(190, 189,170) 

e( 289 ,290) 
g(270 ) 

1(50,40 ) 
t(50 ,60) 
u(34 ,2) 
w(80,70) 

p(123 ,210) 
s( 125, 180) 
v( 100 , 102, 104) 

q(237 ) 

Processor 1 
(range 0-99) 

Processor 2 
(range 100-199) 

Processor 3 
(range 200-299) 

Processor 1 
(range 0-99) 

Processor 2 
(range 100-199) 

Processor 3 
(range 200-299) 

Figure 5.3. Disjoint Partitioning 

5.3.2 Non-Disjoint Partitioning 

For coUection join queries, especiaUy I-Join and S-Join, it is not possible to have non-overlap 

partitions, due to the nature of coUections which may be overlapped. Hence, some data needs 

to be replicated. Two non-disjoint partitioning methods are proposed. The first is a simple 

replication based on the value of the element in each coUection. The second is a variant of 

Divide and Broadcast (Leimg and Ghogomu, 1993), caUed "Divide and Partial Broadcast". 

a. Simple Replication 

Using a simple replication technique, each element in a coUection is tireated as a single unit, 

and is totaUy mdependent of other elements within the same coUection. Based on the value of 

an element in a coUection, the object is placed into a particiUar processor. Depending on the 
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number of elements in a coUection, the objects which ovra the coUections may be placed into 

different processors. When an object is akeady placed at a particular processor based on die 

placement of an element, if another element in the same coUection is also to be placed at the 

same place, no object repUcation is necessary. 

Figure 5.4 shows an example of a simple replication technique. The bold printed 

elements are tiie elements which are the basis for the placement of those objects. For example, 

object a(250, 75) in processor / refers to a placement for object a in processor 1 because of 

tiie value of element 75 in tiie coUection. And also, object a(250, 75) in processor 3 refers to 

a copy of object a m processor 3 based on the first element (i.e., element 250). It is clear that 

object a is replicated to processors 1 and J. On the otiier hand, object i{80, 70) is not 

replicated since both elements wUl place the object at the same place, that is processor 1. 

SIMPLE REPLICATION 

a(250,75 ) 
d(4 ,237) 
f(150, 50,250) 
i(80 .70) 

b(210, 123) 
c( 125 , 181) 
f( 150 , 50, 250) 
h( 190 , 189, 170) 

a( 250 ,75) 
b( 210 , 123) 
d(4,237) 
e(289,290) 
f(150,50, 250) 
g(270 ) 

r( 50 ,40) 
t( 50 ,60) 
u(3 ,1,2) 
w( 80 ,70) 

p(123 ,210) 
s( 125 , 180) 
v( 100 , 102, 104) 

p(123,210) 
q( 237 ) 

Processor 1 
(range 0-99) 

Processor 2 
(range 100-199) 

Processor 3 
(range 200-299) 

Figure 5.4. Simple Replication 

This non-disjoint partitioning method is simple. However, die applicabUity of die 

simple replication technique is limited to I-Join only, where tiie predicate checks for an 

intersection. For complex coUection predicates, involving fuU comparison of two coUections, 

a more sophisticated non-disjoint partitioning is needed. A 'Divide and Partial Broadcast" is 

then introduced. 

b. Divide and Partial Broadcast 

The Divide and Partial Broadcast algoritiim, shown in Figure 5.5, proceeds in two steps. The 

first step is a divide step, where objects from botii classes are divided into a number of 

partitions. Partitioning of tiie first class (say class A) is based on tiie first element of tiie 

coUection (if it is a list/array), or tiie smaUest element (if it is a set/bag). Partitioning tiie 
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second class (say class B) is exactiy the opposite of the first partitioning, since tiie 

partitioning is now based on the last element (Usts/arrays) or the largest element (sets/bags). 

Procedure DividePartialBroadcast 
Begin 

// step 1 (divide) 
1. Divide the objects of one class (class A) based on die first element Gists/arrays), or 

the smallest element (sets/bags) in each collection. 

2. Divide the other class (class 5) based on the last or maximum value in each collection. 

// step 2 (partial broadcast) 
3. For each partition of A (i = 1, 2,..., n) 

Broadcast partition Ai to Bi.. Bn 
Place these partitions into processor i 

End For 
End Procedure 

Figure 5.5. Divide and Partial Broadcast Algorithm 

The second step is the broadcast step. Partitions of class A are placed togetiier with 

partitions of class B only when there is a chance of getting results from tiiis placement. In 

otiier words, pairs of partitions not producing any residts wiU not be stored at die same place. 

Figure 5.6 shows an example of the Divide and Partial Broadcast technique. 

The example shows that coUections in partition 2 of class A wUl not produce an 

intersection of any coUections in partition 1 of class B. Partition 2 of class A contain 

coUections starting in tiie range of 100-199. They are in no way to have an intersection witii 

coUections ending at tiie value of less tiian 100 (e.g., partition 1 class B). Hence, tiiey are not 

placed at the same location. Likewise, coUection in partition 3 of class A are not coUocated 

with partitions 1 and 2 of class B. 

The Divide and Partial Broadcast technique is simUar to the weU known Divide and 

Broadcast technique (Leung and Ghogomu, 1993). They divide one class equaUy, and 

broadcast tiie otiier. The difference lies in die broadcasting technique. Limiting tiie number of 

partitions to be broadcast for the same processing results saves communication costs, even if 

it is implemented in a shared-memory architecture. Partial broadcast can be accomplished 

only if die partitioning metiiods used by botii classes are opposite to each otiier. 
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1. DIVIDE 

Partition Al 
(range 0-99) 

Partition A2 
(range 100-199) 

Partition A3 
(range 200-299) 

Class A 

a(250, 75) 
d(4,237) 
f(150, 50,250) 
i(80, 70) 

b(210. 
c (125 . 
h(190. 

123) 
181) 
189, 170) 

e( 289, 290) 
g(270) 

Partition Bl 
(range 0-99) 

Partition B2 
(range 100-199) 

Partition B3 
(range 200-299) 

Class B 

r( 50 ,40) 
t( 50, 60 ) 
u ( 3 , l , 2 ) 
w(80 ,70) 

s(125, 180) 
v(100,102, 104) 

p(123,210) 
q(237) 

Based on the smallest Based on the largest 

2. PARTIAL BROADCAST 

Partial Broadcast 

Processor 1: 

Processor 2: 

Oa-ss A 
Partition A1 
Objects a, d, f. 

Divide 

Partition B1 
Ohjecti r, !, u, H 

Qass A 
Partition , \1 
Objects a, d,f, i 

Class A 
ParUtion A 2 
Objects b, c, h 

Class B 
.Partition B 2 

• 

Object<: T V | • 

: 

Processor 3: 

^ 

i. 

: 

ft. 

Class A 
Partition Al 
Objects: a, d,f, i 

Class A 
ParUtion A 2 
Objects: b, c, h 

Qass A 
Partition A3 
Objects e, g 

Q a s s B 
Partition B3 
Objects: p, q 

: 

• 

Figure 5.6. Divide and Partial Broadcast Example 
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In regard to the load of each partition, tiie load of tiie last processor may be die 

heaviest, as it receives a fuU copy of A and a portion of 5. The load goes down as class A is 

divided into smaUer size (e.g., processor 1). Implementing in a heterogeneous paraUel 

architecture (i.e.. Scalable ParaUel Processors SPP, network of paraUel servers) where die 

power of each processing node varies depending on botii the CPU power and the number of 

processors per processing node, partition aUocation can be done according to the power of the 

processing node. 

If a homogeneous paraUel architecture (e.g., SMP, homogeneous MPP) is used 

instead, the load of each partition must then be balanced. This can be achieved by applying 

the same algorithm to each partition but with a reverse role of A and B; that is, divide B based 

on the first/smaUest value and partition A based on the last/largest value in the coUection. In 

this way, more balanced partitions wUl be created. 

1. DIVIDE 

From Processor 1 

Class A 

Divide (largest) 

ClassB 

Divide (smallest) 

i( 80,70) 

a(250,75) 
d( 4, 237) 
f(150.50. 250, 

r<50, 40) 
t( 50,60) 
u(3. I 2) 
w(80, 70) 

; F^rtifottBJl 

^ I"«ti««iBi2-

; P3i<re<»lli,^ 

From Processor 2 

WMSM^Wlm 

h(190, 189, 170) 

i( 80,70) 

s( 125, 180) 
v( 100, 102, 104) 

sESHisaffiasss a( 250 75) 
d( 4, 237) 
f(150, 50, 250) 
b( 210, 123) 

FMtiJi«flB21 

F4rfjtiOftR^23. 

From Processor 3 

ySii^m>^^/^f:!i:!iiff:i 

i( 80,70) 

0(125. 181 
h( 190, 189, 170) 

a(250,75) 
d( 4. 237) 
f(150, 50, 250) 
b(210, 123) 
e(289, 29Q 
g( 270) 

missm*m^m¥:MmsmiiSmMMMMiiM^ 

^ ^ ^ ^ 

p( 123. 210) 

q( 237) 

i FartiJfiflfiBai 

i aalifeoftBSZ. 

: arffefflftBSS 

Figure 5.7(a). 2-way Divide and Partial Broadcast (DIVIDE) 
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2. PARTIAL BROADCAST 

Class A 

Divide 

From Processor 1 

tit 
Partiuon All 

machstlZ 

BxishetW^Z. 
MMM^MMdAA^M^MMA^ 

'Aryyy&iA Partition A13 

From Processor 2 

!y^uAw.y4.u" 

Bac&eiU '-iiWMiivk 
Partition A21 

^Wk-M^Zt 
Partition A22 

Bmf(^iZ$ 

Partition A23 

From Processor 3 

Class B 

Partial Broadcast 

I Parti nop B11 

Partition Bll 

Partiuon B11 

PartiUon B22 

\ Buckets! 
; 

Suehet^ 

fiuehit. 

i 

Partition A31 

?2 

Partition A32 

fS 

Partition A33 

P^ 

;̂ _̂̂ K%Jvv.n,-J 

^ 

^ Fartiiion 1L ,̂2 

^ Part iuon B32 PaitiLion B33 

Figure 5.7(b). 2-way Divide and Partial Broadcast (PARTIAL BROADCAST) 

Figure 5.7(a and b) shows tiie results of reverse partitioning of the initial partitioning. 

Note tiiat from processor 1, class A and class B are divided into 3 partitions each (i.e., 

partitions 11, 12, and 13). Partition A12 of class A and partitions B12 and B13 of class B are 

empty. At tiie broadcasting phase, bucket 12 is "half empty" (contains coUections from one 

class only). This bucket can tiien be eliminated. In die same manner, buckets 21 and 31 are 

also discarded. Because tiie number of buckets is more tiian the number of processors (e.g., 6 

buckets: 11, 13, 22, 23, 32 and 33; and 3 processors), load balancing is achieved by 

spreading and combining partitions to create more equal loads. For example, buckets 11, 22 
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and 23 are placed at processor 1, buckets 13 and 32 are located at processor 2, and bucket 33 

is placed at processor 3. The result of this placement shovm in Figure 5.8 looks better than 

the initial placement. 

Processor 1: 

Processor 2: 

Processor 3: 

Processor Allocation 

Qass A 
Partition A13 
Objects' a, d,f 

Qass A 
Partition A32 
Objects c, h 

Bwshff; 

Qass A 
Partition A33 
Objects: a, d,f,b,e, g E; 

WMMfMMi' 

Af" : 

•iV'.,: 

Qass A 
Partition Al 1 
Objects I 

, 

Qass A 
Partition A22 
Objects: c, h 

Qass A 
Partition A23 
Objects: a, d,f, b 

Q a s s B 
Partition B l l 
Objects- r, t, u, w 

— — - - ' 

Q a s s B 
Partition B22 
Objects- s, V 

Q a s s B 
Partition B22 
Objects: .?, v 

: 

Q a s s B 
Partition B11 
Objects: t, r, u, w 

Q a s s B 
Partition B32 
Objects: p 

> 

Q a s s B 
Partition B32 
Objects: p 

Q a s s B 
Partition B33 
Objects: q 

• : 

: 

: 

Figure 5.8. Processor Allocation 
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5.4 Sort-Merge Parallel Collection Join Algorithms 

For each join query type, paraUel algoritiims are proposed. These algoritiims are composed of 

two major parts: data partitioning and local join. R-Join employs disjoint partitioning, 

whereas I-Join and S-Join use non-disjoint partitioning techniques. After data partitioning is 

completed, each processor has its own data. The join operation can then be done 

independentiy. In the local joining process, optimization is done by transforming the original 

join predicates into predicate functions designed especiaUy for coUection join predicates. The 

main objective of this transformation is to avoid intermediate coUections being created. The 

overaU query results are the imion of the restUts from each processor. 

5.4.1 Sort-Merge Join Predicate Fimctions 

Predicate functions are the kernel of join algorithms. The join predicate functions are boolean 

functions which perform the predicate checking of the two coUection attributes of a join 

query. The join algorithms, further, use these predicate functions to process aU coUections of 

die two classes to join. For each join predicate type (i.e., R-Join (relational), I-Join 

(intersection), and S-Join (sublist/subset)), a predicate function is constructed. Each of these 

functions applies a sort-merge techiuque. Figure 5.9 shows the pseudo-code for each 

predicate function. 

The is_equal fimction is a typical artay/set comparison. Both coUections (sets/bags) 

are sorted first. The sorting process is purposely done in the predicate function, since this 

predicate is to be executed locaUy in each processor. The sorting process can have been done 

before data partitioning, but in order to promote paraUelization, sorting is carried out after 

data partitioning. 

The isjoverlap function returns tine if the two operands are overlapped. The 

function utUized simple sort and merge techniques for both coUections. For lists/arrays, tiiey 

are normaUy converted to sets/bags prior to executing the function. 

The is_sublist function checks whether tiie first list is a sublist of tiie second list. 

Two identical lists are regarded as one list being a sublist of the other. For an 

is_proper_sublist predicate, identical lists are not aUowed. The isjublist function gets aU 

positions of tiie top element of tiie first list. For each position found, a comparison between 

die second list (starting from tiie position for as long as tiie lengtii of tiie first list) and tiie first 

list is performed. This procedure is necessary as lists may contain duplicate items. 
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1) Function is_equal (CI, C2: collection) Retum Boolean 
Begin 

If count(Ci) = count(C2) Then 
If CI and C2 are sets/bags and not sorted Then 

Sort CI and C2 
End If 
For /• = 1 to count(Ci) 

IfCi(0!=C2(/)Then 
Retum FALSE 

End If 
End For 

Else 
Retum FALSE 

End If 
Retum TRUE 

End Function 

2) Function is_overIap (Bl, B2 : bag) Retum Boolean 
Begin 

If Bi andB2 are not sorted Then 
SonBl and 52 

End If 
Merge Bl and B2 
If a match is found Then 

Retum TRUE 
Else 

Retum FALSE 
End If 

End Function 

3) Function is_sublist (LI, L2: list) Retum Boolean 
Begin 

If (LI = L2) Then //for is_proper_sublist only (use the is_equal function) 
Retum FALSE 

End If 
Search Li[0] in L2 giving ;705[] 
For each entry rnpos]] 

If Li =L2|>05:length(Li)] Then 
// use the is_equal function 

Retum TRUE 
End If 

End For 
Retum FALSE 

end function 

4) Function is_subset (Bl, B2: bag) Retum Boolean 
Begin 

If Bi andB2 are not sorted Then 
SortBi and 52 

End If 
Convert Bi and B2 to lists 
Retum isjsublist (Bl, B2) 
II call is_proper_sublist for is_proper_subset 

End Function 
Figure 5.9. Sort-Merge Collection Join Predicate Functions 
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The subset predicate is simpler tiian tiie subUst predicate. Like die is_sublist and die 

is_proper_sublist functions, the isjubset and the is_proper_subset fimctions are also 

provided. The only difference between tiie isjubset function and die isjublist function is 

determined by tiie coUection type of tiie operand. After sorting tiie sets/bags and converting 

them to lists, the is_subset function caUs tiie is_sublist fimction. The result of tiie is sublist 

function also becomes the final result of the is_subset function. 

5.4.2 Parallel Sort-Merge R-Join Algorithm 

The sort-merge version of paraUel join algoritiim for R-Join makes use of die sort-merge 

operation twice: one to tiie coUection attribute, the other to the objects of botii classes. 

The joining step is further decomposed into tiie sorting and the merging phases. The 

sorting operation is applied twice: to the coUections, and to the objects. Sorting each 

coUection is needed oiUy if the coUection is a set or a bag, and sorting the objects is based on 

the first element (if it is an array or a list) or on the smaUest element (if it is a set or a bag). 

The sorting phase is not carried out before data partitioning, as sorting done in paraUel in 

each processor after data partitioning wiU minimize the time. Figure 5.10 shows the result of 

the sorting phase of the two aforementioned cases. 

Like the sorting phase, the merging phase consists of two operations: object merging 

and coUection merging. Merging the objects of the two classes is based on the first element of 

each coUection. If they are matched, a subsequent elements comparison can proceed. Merging 

the two coUections of each pair of objects (steps Hi and iv) is, in fact, implemented by the 

isjsqual predicate fimction. Figure 5.11 gives the pseudo-code for the ParaUel Sort-Merge R-

Join algorithm. 



Ch. 5. Parallel Collection Join Algorithms page 119 

CASE 1: ARRAYS 

CASE 2: SETS 

Processor 1 
Results= (i, w) 

Processor 2 
Results= nil 

Processor 3 
Results= nil 

Processor 1 
Results= (i, w) 

Processor 2 
Results= (b, p) 

Processor 3 
Results= nil 

d( 4,237) 
i( 80,70)-^^^ 

c(125, 181) 
f( 150 , 50, 250) 
h(190, 189, 170) 

b( 210, 123) 
a( 250,75) 
g(270) 
e( 289,290) 

u(3,l,2) 
i( 50 ,40) 
t( 50,60) 

^w(80 ,70) 

v( 100, 102, 104) 
p( 123,210) 
s( 125, 180) 

q(237) 

Note: Sort the collections based on their first elements 

d( 4,237) 
f( 50 , 150, 250) 
i( 70, SO)-^^,^^^ 
a(75 ,250) ^ ~ ^ 

b(123,210)~~~-.__ 
0(125,181) 
h( 170 , 189, 190) 

§(270) 
e( 289,290) 

u( 1, 2, 3) 
r(40,50) 
t( 50,60) 

-~w(70 ,80) 

v( 100 , 102, 104) 

~~-p( 123,210) 
s( 125, 180) 

q(237) 

Note: Sort each collection first, and then sort all 
collections based on their first elements. 

Figure 5.10. Sorting phase (R-Join) 

Program Farallel-Sort-Merge-R-Join: 
Begin 

// step 1: partitioning step 
partition the objects of both classes based on their first elements (for lists/arrays), or 

their minimum elements (for sets/bags). 

// step 2: joining step (in each processor) 
// sort phase 

(i) sort die elements of each collection (for sets/bags only), 
(ii) sort die objects based on the first element of die collection. 

// merge phase (call is_equal function) 
(iii) merge the objects of boti: classes based on tiieir first element on 

the join attribute, 
(iv) if matched, merge the two collection attributes based on their 

individual elements (starting from the second element). 
End Program 

Figure 5.11. Parallel Sort-Merge R-Join Algorithm 
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5.4.3 Parallel Sort-Merge I-Join Algorithm 

ParaUel algorithms for I-Join proceeds in two steps: the first step is die caU the Divide and 

Partial Broadcast procedure, and the second step is the local joining step, in which a nested 

loop is used for aU objects from the two operation at a particular processor. In the 

comparison of a pair of objects, tiie is_overlap function is invoked. 

Processor 1 

Total Load = 16 
Results=(i,w), (c,s) 

Processor 2 

Total Load ~ 14 
Residts=(f,r), (f.t) 

Processor 3 

Total Load = 12 
Results=(d,q), (b.p) 

Note: elements within each coUection are sorted. 
(collections within a partition are not necessarily sorted) 

S M W * ? ?•» 

Partition All 
i(70,80) - - _ _ _ ^^^ -z?^ 

Partition All 
c(125, 181) - ~ 
h(170 189, 190) 

Partition Bll 
r(40, 50) 
t(50, 60) 
u ( l ,2 ,3 ) 

- -w(70, 80) 

^ _ _̂  <&Ji Tn^ 

Partition A2J 
a(75, 250) 
d(4, 237) 
f(l50, 50,250) 
b(123,210) 

SadcetTi 

< > 

Partition B22 

-s(125, 180) 
v(100, 102, 104) 

Partition Al ? 
a(75, 250) 
d(4, 237) 
f(150, 50, 250) - - = = 

Partition A32 
c(125, 181) 
h(170, 189, 190) 

Partition Bll 
- -it40, 50) 
- -t(50, 60) 

u ( l ,2 ,3 ) 
w(70, 80) 

Partition B32 

p(123,210) 

^ 

Partition A33 
a(75, 250) 
d(4, 237) ~ ^ ^ 

f(150, 50, 250)'~~ V - -
b(123,210) - ' ' 
e(289, 290) 
g(270) 

E < 
Partition B32 

. - p (123 ,210) 

Partiuon B33 
- ~q(237) 

Figure 5.12. An Example of Sort-Merge I-Join 

Using a 2-way Divide and Partial Broadcast technique presented earlier. Figure 5.12 

shows the process of the is_overlap function, in which elements of each coUection are sorted 

first, before obtaining the result through coUection merging. The load of each bucket is 

calculated by multiplying the number of objects fi-om the two partitions of the two classes. 
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since tiie merging process between the two classes is done tiirough a nested loop. For 

example, tiie load of bucket 11 is equal to 4 (load of partition Al 1 = 1, load of partition B11 

= 4, load of bucket 11 is 1x4=4). The total load of each processor is die sum of tiie load of 

each bucket in tiiat processor. Figure 5.12 also shows tiiat tiie load of each processor using a 

2-way Divide and Partial Broadcast is quite equal. Figure 5.13 presents die pseudo-code for 

paraUel sort-merge I-Join algorithm. 

Procedure Parallel-Sort-Merge-I-Join 
Begin 

// step 1 (data partitioning): 
Call DividePartialBroadcast 

II step 2 Gocal joining): 
In each processor 

// a) sort phase 
For each object of class A and B 

Sort the collection 
End For 

// h) merge phase 
For each object of class A 

For each object of class B 
call IsjOverlap 
If TRUE Then 

Concatenate the two objects 
End If 

End For 
End For 

End 

End Program 

Figure 5.13. Parallel Sort-Merge I-Join Algorithm 

5.4.4 Parallel Sort-Merge S-Join Algorithm 

Parallel join algorithm for S-Join is made of a simple sort-merge and a nested-loop structure. 

A sort operator is applied to each coUection, and then a nested-loop construct is used in 

joining the objects. The algorithm uses a nested-loop structure, because of not only its 

simplicity but also the need for aU-round comparisons among aU objects. As the predicate 

functions are implemented by a merge operator, it is necessary to sort the coUections. This is 

done prior to the nested-loop in order to avoid repeating the sorting operation. Depending on 

the predicate type (sublist or subset), an appropriate predicate function is caUed. 



Ch. 5. Parallel Collection Join Algorithms ^^^^ ^22 

The partitioning sti-ategy is also based on tiie Divide and Partial Broadcast technique. 

The use of the Divide and Partial Broadcast is attractive to coUection joins because of tiie 

nature of coUections where disjoint partitions witiiout replication are often not achievable. 

Using tiie same example shown earlier, tiie result of a subset S-Join is {d,q),{i,w), and {b,p). 

The last two pairs wUl not be included in tiie results, if die join predicate is an 

is_proper_subset, because die two coUections in each pair are equal. Figure 5.14 presents the 

pseudo-code for the algorithm. 

Program Parallel-Sort-Merge-S-Join 
Begin 

// step 1 (Divide and Partial Broadcast): 
Call DividePartialBroadcast 

II step 2 (sort-merge join): 
In each processor 

// a) sort phase (for issubset only) 
For each object of class A and B 

Sort the collection 
End For 

// b) merge phase 
For each object A 

For each object B 

Case sublist predicate: 
Call is_sublist 

Case proper sublist predicate: 
Call is_proper_sublist 

Case subset predicate: 
Call isjsubset 

Case proper subset predicate: 
Call isj)roper_subset 

End Case 

If TRUE Then 
Concatenate the two objects 

End If 
End For 

End For 
End 

End Program 
Figure 5.14. Parallel Sort-Merge S-Join Algorithm 
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5,5 Hash Collection Join Algorithms 

This section presents a hash-based version of paraUel coUection join algorithm. Like tiie sort-

merge version, the hash-based version of R-Join uses a disjoint partitioning, whereas tiie 

hash-based versions of I-Join and S-Join use non-disjoint partitioning. AdditionaUy, hash-

based I-Join may use simple repUcation technique, as weU as the proposed Divide and Partial 

Broadcast technique. Since tiie join atdributes are coUections, consisting of a number of 

atonuc elements, multiple hash tables are employed. 

5.5.1 Multiple Hash Tables and Probing Functions 

Each hash table contains aU elements of die same position of aU coUections. For example, 

entiries in hash table 1 contain aU first elements in tiie coUections. The number of hash tables 

is determined by tiie largest coUection among objects of tiie class to be hashed. If die 

coUection is a list/array, the position of tiie element is as tiie original element composition in 

each coUection. If the coUection is a sef bag, tiie smaUest element witiiin each coUection wUl 

be hashed into the first hash table, the second smaUest element is hashed to the second hash 

table, and so on. Set/bag hashing wUl be enhanced if the set/bag is preprocessed by means of 

sorting, so that the hashing process wUl not have to search for the order of the elements witiiin 

the set/bag. Figure 5.15 shows an example where three objects are hashed into multiple hash 

tables. Case 1 is where the objects are artays, and case 2 is where the objects are sets. 

Once the multiple hash tables are buUt, the probing process begins. The probing 

process is basicaUy the central part of coUection join processing. The first probing function is 

caUed function universal, which is used by the hash-based R-join algorithm. It recursively 

checks whether a coUection exists in the multiple hash table and the elements belong to the 

same coUection. The second probing function is caHtd function some, which is simUar to the 

fimction universal. The difference is that when an element of a coUection does not have any 

match in the current hash table, it continues searching in the next hash table. This function is 

used by the hash-based S-join algorithm. The last probing function is caUed procedure 

existential, which checks whether an element of a coUection exists in the hash tables. This is 

used by the hash version of I-join algoritiim. The need for multiple hash tables for tiie 

existential type of probing is not that critical, since solving an existential quantifier can also 

be done in a single hash table. Therefore, tiie mechanism of a multiple hash table is optional. 

A large single hash table can be used instead. Figure 5.16 shows die pseudocode for die tiiree 

probing functions for the hash versions of paraUel coUection join algorithms. 
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Case 1: ARRAYS 

a(250, 75) 
b(210,123) 
f(150, 50, 250) 

Case 2: SETS 

a(250, 75) 
b(210,123) 
f(150, 50. 250) 

Hash Table 1 Hash Table 2 Hash Table 3 

Sorted 

- > 

150(f) 

210(b) 

250(a) 

a(75, 250) 
b(123, 210) 
f(50,150, 250) 

Hash Table 1 

50(f) 

75(a) 

123(b) 

50(f) 

75(a) 

123(b) 250(f) 

Hash Table 2 Hash Table 3 

150(f) 

210(h) 

250(a) 
250(f) 

Figure 5.15. Multiple Hash Tables 
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1) Function universal (element i, hash table j) Retum Boolean 
Begin 

Hash and Probe element / to hash table7" 
If matched Then 

Increment iandj 
If end of collection is reached Then 

Remm TRUE 
End If 
If hash table j exists Then 

result = universal (i, f) 
Else 

Retum FALSE 
End If 

Else 
Retum FALSE 

End If 
Retum result 

End Function 

2) Function some (element /, hash table J) Retum Boolean 
Begin 

Hash and Probe element / to hash table ; 
If matched Then 

Increment/andJ 
If end of collection is reached Then 

Retum TRUE 
End If 
If hash table J exists Then 

result = universal (i, j) 
Else 

Retum FALSE 
End If 

Else 
increment y 
result = some (i, j) 

End If 
Retum result 

End Function 

// match the element and the object 

// check for end of collection of the 
// probing class, 

// check for die hash table 

// match the element and the object 

// check for end of collection of the 
// probing class. 

// check for the hash table 

// continue searching to the next 
// hash table. 

3) Procedure existential 
Variables: element i, hash table j 

Begin 
For each element / 

For each hash table j 
Hash element / into hash table j 
If TRUE Then 

Put the matching objects into the query result 
End If 

End For 
End For 

End Procedure 

Figure 5.16. Probing Functions 
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5.5.2 Parallel Hash R-Join Algorithm 

LUce the sort-merge version of paraUel R-Join algorithm, the data partitioning is a disjoint 

partitioning which makes use of tiie first elements (for Usts/arrays) or tiie smaUest elements 

(for sets/bags). 

The local joining process in each processor consists of several steps. The first step 

(step 2a) is the preprocessing and is only applicable to sets and bags. The second step (step 

2b) is to create multiple hash tables. The titird step (step 2c) is the probing process where the 

function universal is caUed. Since this function acts like a universal quantifier where it checks 

only whether aU elements in a coUection exist in another coUection, it does not guarantee that 

the two coUections are equal. In order to check for die equality of two coUections, it has to 

check whether coUection of class A (coUection in the miUtiple hash tables) has reached end of 

coUection. This can be done by checking whether the size of the two matched coUections is 

the same. Figiu-e 5.17 shows the pseudo-code for the hash version of paraUel R-Join 

algorithm. 

Program Parallel-Hash-R-Join 
Begin 

// step 1 (disjoint partitioning): 
partition the objects of both classes based on their first elements (for lists/arrays), or 

their minimum elements (for sets/bags). 

// step 2 Gocal joining): 
In each processor 

// a. preprocessing (sorting) // for sets/bags only 
For each collection of class A and class B 

Sort each collection 
End For 

// b. hash 
For each object of class A 

Hash the object into multiple hash table 
End For 

// c. hash and probe 
For each object of class B 

Call universal (1,1) // element 1, hash table 1 
If TRUE AND die coll. of class A has reached end of collection Then 

Put the matching pair into die result 
End If 

End For 

End 
End Program 

Figure 5.17. Parallel Hash R-Join Algorithm 
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5.5.3 Parallel Hash I-Join Algorithm 

Data partitioning for the hash version of I-Join is avaUable in two forms: Divide and Partial 

Broadcast and Simple Replication. The local joining process is done through an existential 

procedure caU. The pseudo-code for paraUel hash I-Join algorithm is shovm in Figure 5.18. 

Program Parallel-Hash-I-Join 
Begin 

// step 1 (data partitioning): 
Divide and Partial Broadcast version: 

Call DivideAndPartialBroadcast partitioning 
Simple Replication version: 

Call SimpleReplication partitioning 

// step 2 (local joining): 
In each processor 

// a. hash 
For each object of class A 

Hash the object into multiple hash table 
End For 

// b. hash and probe 
For each object of class B 

Call existential procedure 
End For 

End 

End Program ^ ^ ^ _ 

Figure 5.18. Parallel Hash I-Join Algorithm 

5.5.4 Parallel Hash S-Join Algorithm 

The paraUel hash S-Join algoritiim is very simUar to tiie paraUel hash R-Join algoritiim. The 

differences can be highlighted as foUows. One is about die data partitioning metiiod. ParaUel 

hash S-Join algorithm uses tiie Divide and Partial Broadcast, instead of a disjomt partitioning. 

The otiier dUference pertains to the joining process. S-join uses the function some, and die 

checking in step 2c can be more complicated tiian tiiat of R-join which checks for end of 

coUection only. If tiie join predicate is an is_proper predicate, it has to make sure tiiat tiie two 

matched coUections are not equal. This can be implemented in two checkings. First is to 

check whetiier tiie first matched element is not from die first hash table, and second is to 

check whetiier tiie coUection of tiie first class has not been reached. The second checking is 

applicable only if tiie first checking faUs. If eitiier condition is satisfied, die matched 

coUections are put into the query result. 
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If the join predicate is a normal subset/sublist, tiie checking is simpUfied to checking 

the retum value from tiie function some only. No other checking is necessary since function 

some is a manifestation of the subset^subUst predicate. Figure 5.19 gives die pseudo-code for 

paraUel hash S-Join algorithm. 

Program Parallel-Hash-S-Join 
Begin 

// step 1 (data partitioning): 
Call DivideAndPartialBroadcast partitioning 

// step 2 (local joining): 
In each processor 

// a. preprocessing (sorting) // for sets/bags only 
For each collection of class A and class B 

Sort each collection 
End For 

// b. hash 
For each object of class B 

Hash the object into multiple hash table 
End For 

// c. hash and probe 
For each object of class A 

Call some (1,1) // element 1, hash table 1 
Case is_proper predicate: 

If TRUE Then 
If first match is not from the first hash table Then 

Put the matching pairs into the query result 
Else 

If nor end of collection of the first class Then 
Put the matching pairs into the query result 

End If 
End If 

Default: 
If TRUE Then 

Put the matching pair into the result 
End If 

End Case 
End For 

End 

End Program ^ 

Figure 5.19. Parallel hash S-Join Algorithm 
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5.6 Discussions 

5.6.1 Data Partitioning 

Disjoint partitioning is where each partition has no overlap with otiier partitions. This method 

of partitioning is highly desirable for paraUel processing, since each paraUelizable partition is 

totaUy independent of the others and there is no repUcation. Due to tiie nature of coUections 

which is sometimes overlap, disjoint partitions may not be able to be produced. One exception 

is in the relational operations of two coUections (i.e., R-Join), where disjoint partitioning can 

be created based on their first elements (for lists/arrays) or their smaUest elements (for 

sets/bags). Although R-Join can use a non-disjoint partitioning like Divide and Partial 

Broadcast, it is not desirable for the above reason. I-Join and S-Join, however, have to utUize 

non-disjoint partitioning, as no disjoint partitioning is avaUable. 

Comparing 'Divide and Partial Broadcast" and "Simple Replication" techniques, 

simple replication is simpler. But the appUcabUity of this non-disjoint partitioning is linuted 

and can be used only in an intersection join predicate (i.e., I-join), since the intersection join 

predicate is element-based not coUection-based. Divide and Partial Broadcast is more general, 

and applicable to both I-Join and S-Join. 

5.6.2 Join 

Hash operation is knovm to have a linear 0(N) complexity, whereas sort operation is, at least, 

0{N logN) complexity. Therefore, it can be expected tiiat tiie hash version of parallel 

coUection join algorithms wUl perform better tiian that of tiie sort-merge version. 

The sort-merge version for paraUel I-join and paraUel S-join algoritiims employ a 

nested loop constiiict. Since nested loop is known to be very expensive due to its quadratic 

0(N^) complexity, tiie hash version of the two coUection joins is expected to offer a better 

performance. 

5.7 Conclusions 

ParaUel join algoritiims normaUy are comprised of two major components, namely data 

partitioning and local joining. Two data partitioning methods were inti-oduced, namely 

disjoint and non-disjoint partitioning. The avaUabUity of tiiese data partitioning mediods is 

important since different coUection join query type requires a different data partitioning 

metiiod. R-Join queries, which make use of the first element or die smaUest element 

(depending on whetiier tiie coUection is a list/array or a set/bag), employs disjoint 
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partitioning. In contrast, I-Join and S-Join, which cannot make use of the first element or the 

smaUest element as a tool to create disjoint partitions, have to rely on non-disjoint partitioning 

metiiod. 

Sort-merge and hash have been known as strong contenders for joining algorithms. 

For each coUection join query type, two versions of paraUel join are provided: one is based on 

sort-merge, the other is based on hash. 

The major contributions of this chapter are as foUows. 

• Disjoint partitioning which is based on the first elements (for Usts/arrays) and 

the smaUest elements (for sets/bags) are presented. The role of the first elements 

of lists/artays, and the smaUest elements of sets/bags are highlighted, especiaUy 

in conjunction with data partitioning. 

• Divide and Partial Broadcast partitioning is introduced. This non-disjoint 

partitioning method is a variant and an improvement on the traditional Divide 

and Broadcast technique. 

• Parallel Sort-Merse Collection Join Algorithms are proposed. The sort-merge 

operation is basicaUy applied twice: one to die coUections and die other to tiie 

objects. 

• Parallel Hash Collection Join Alsorithms are proposed. Multiple hash tables for 

paraUel R-Join and paraUel S-Join are also intiroduced. 

The need for join algoritiims especiaUy designed for coUection join queries is clear, 

since tiie conventional paraUel join algoritiims were not designed for coUection types. 



Chapter 6 

Query Optimization Algorithms 

6.1 Introduction 
This chapter presents query optimization algorithms which transform initial queries into 

their optimized access plans. The transformation exploits inter-object and inter-class 

parallelization based on path traversal. Path traversal has been recognized as one of the 

strengths of object-oriented query processing, and is widely accepted as being more 

efficient than explicit join operations, due to pointer referencing which is not available to 

explicit join operations. Optimization based on path traversals is not only simple, but also 

efficient in both optimization process and query execution. 

The rest of this chapter is organized as follows. Section 6.2 briefly discusses 

primitive query operations which include selections, path traversals, and explicit join 

operations. Section 6.3 presents a foundation for query optimization which contains 

semantic and processing rules. Optimization of primitive operations are also described. 

Section 6.4 presents query optimization algorithms. Section 6.5 shows some examples of 

how to apply the query optimization algoritiims. Section 6.6 presents a discussion. Finally, 

section 6.7 gives the conclusions. 

6.2 Preliminaries 
Query optimization algoritiims deal witii transformation and manipulation of primitive 

query operations. The following gives a brief overview of primitive operations and their 

parallelization. 
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6.2.1 Primitive Query Operations 

There are three primitive query operations, namely: selection, path traversal, and explicit 

join operations. In parallel object-oriented database systems, each of these primitive 

operations are implemented by means of parallel algoritiims. 

a. Selection Operations 

Selection operations in object-oriented databases are similar to those in relational databases. 

Selection operations are used to restrict objects of a class based on certain conditions. The 

simplest form of selection is selection on single classes. These queries are known as single-

class queries. When the class involves an inheritance hierarchy, the query is then called as 

an inheritance query. The parallelization model for single-class and inheritance queries is 

known as inter-object parallelization, in which each object is processed in parallel with 

other objects. 

b. Path Traversals 

Path traversals have been recognized as one of the strengths of object-oriented query 

processing, as information retrieval can be achieved through pointer navigations. For 2-

class path expression queries, there are two types of path traversals: forward and reverse 

d-aversal. A mixed traversal between forward and reverse traversals can be applied to 

complex path expression queries involving more than two classes. 

Forward Traversals 

Forward traversal is defined as traversmg from one class to another class tinrough pointer 

navigation by following tiie path direction. There are basically two different views of 

forward traversals. 

• Class-based forward traversals. 

Class-based forward traversal is where after processing a class, it traverses and 

processes another class. Processing a class refers to accessing all objects of that 

particular class. In otiier words, processing objects of subsequent classes along the 

patii cannot start before finishing processing objects of tiie current class. This kind 

of forward traversal is very much influenced by the appearance of die query 

schemas, often shown m a graphical notation, where tiie query is represented as an 

interconnection of classes (denoted as nodes). Hence, forward traversal of nodes 

can be done through a depth-first search technique. 
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Class-based forward traversal faces several limitations. First, whUe processing 

an object of a particular class, the information of the location of its associated 

objects must be kept, so that these objects can be tracked dovra when processing the 

associated class. Storing the information of the associated objects is not purely a 

traversal. It is somehow similar to index accesses, if die associated object 

identifiers are kept as an index. Second, class-based forward traversal is influenced 

by typical binary relational operations, e.g., join operations. Class-based forward 

traversal is often called an "implicit join", since no acmal joining operation is 

performed. Hence, processing multiple classes (more than 2 classes) in a linear 

chain path can be described as having multiple 2 class forward traversal operations 

(or implicit join operations). In other words, the processing mechanism can be 

described to as serial steps of "joining" a pair of classes, in which processing of 

subsequent classes is done by "joining" the result of the previous step with the 

current class. Like explicit join which regards the two operands of the operation as 

being equal, implicit join may be trapped by the same concept, unless the order of 

the operands is explicitly emphasized. Otherwise, forward traversal which 

emphasizes the order of classes will become meaningless. 

• Object-based forward traversals. 

Because of the limitations faced by the class-based forward traversals, an 

object-based forward traversal is adopted. Object-based forward traversal is where 

processing a complex object is carried out by traversing from a root object to its 

associated objects. In sequential processing, processing anotiier complex object 

cannot proceed before finishing the current complex object. 

A parallelization model for an object-based forward traversal is called as inter-

object parallelization. 

Reverse Traversals 

Reverse traversal is defined as traversing a class to another class by reversmg the path 

dUection. This operation is typical for queries involving selection operations on the "end 

classes" of a patii expression. Reverse traversal can also be viewed from a class pomt of 

view and an object point of view. The object-based reverse traversal is explained first. 

• Object-based reverse traversals. 

An object-based reverse tiraversal is a process whereby after retrieving an 

associated object, it searches for die matching root objects. The process is repeated 
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for all associated objects. This process is simUar to a nested loop operation, which 

is known to be inefficient. 

• Class-based reverse traversals. 

Due to die inefficiency of object-based reverse traversal, a class-based reverse 

traversal is adopted instead. A class-based reverse traversal is accomplished by 

processing all associated objects first. Upon completion of this process, all root 

objects are accessed and their matched associated objects are traced. 

The reverse traversal is reflected through the order of the classes to be 

processed. Using a parallel processing method, each of the classes is executed in 

parallel. Furthermore, if classes in the query require any prior selection operations, 

these classes may be executed in parallel as well. A parallelization model for a 

reverse traversal is known as inter-class parallelization. 

c. Explicit Join 

Explicit join operation is a typical relational query operation. In object-orientation, it is 

sometimes necessary to perform an explicit join operation, simply because not all 

information is linked through pointers, and hence path traversals are not always applicable. 

The term "explicit join" is used merely to distinguish explicit join from implicit join 

(KimW, 1989). The former performs an actual join operation, whilst the latter does not 

perform the join operation physically. 

Parallelization of an explicit join operation is provided by means of parallel join 

algorithms. For explicit jom based on simple attributes, like in relational databases, parallel 

join algorithms are provided by existing parallel join algorithms (Torbjomsen, 1993), such 

as parallel hash join, GRACE join, etc. For collection join, parallelization is provided by 

parallel collection join algorithms, which are to some extent different from the conventional 

parallel join algorithms, due to the complexity of collection operations. 

6.3 Foundation for Query Optimization 
The foundation for query optimization lies in basic heuristic rules and optimization of 

primitive operations. The heuristic rules are built upon tiie semantic knowledge of query 

and database schemas, and die processing costs of tiie primitive operations. The 

optimization of primitive operations is achieved through transforming primitive operations 

from one form to another for more efficient executions. 
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6.3.1 Basic Rules 

There are four basic heuristic rules. They can be classified into two categories: semantic 

and processing costs. The semantic knowledge is developed around the basic knowledge on 

inheritance hierarchies (i.e., super/sub-classes and polymorphism) and aggregation 

hierarchies (i.e., path draversals). The processing cost determines die processing cost 

hierarchy for primitive operations. 

a. Semantic Rules 

The semantic knowledge can be elaborated into two rules: inheritance rule and forward 

traversal rule. The inheritance mle deals with simplification of inheritance hierarchies in 

query processing, whereas the forward traversal mle concems path traversal in aggregation 

hierarchies. 

Inheritance Rules 

The inheritance rules consist of super-class and sub-class rules. These mles deal with 

super-class queries and sub-class queries, respectively. Super-class queries are queries 

targeting super-classes and normally involve a super-class node and all of its sub-class 

nodes, whereas sub-class queries are queries targeting sub-classes and basically concentrate 

on sub-class nodes. 

SUPER-CLASS RULE. All sub-class nodes in a super-class query are collapsed into 

their super-class nodes. 

PROOF. Due to die polymorphic feature of an objects, an object of type sub-class is 

also an object of type super-class. 

EXAMPLE. Queries on a super-class A must also mclude sub-classes B and C. The 

sub-classes are then simplified, and collapsed into dieir super-class A. 

e ^ 0 
0'"© 

A query example of die above schema is to red-ieve objects of class A 

which satisfy a certain condition. Since all sub-class objects are also super­

class objects, all sub-class objects are automatically accessed by the query. 

The sub-class simplification is naturaUy reflected in die OQL statement, in 

which the sub-classes are not mentioned in the query. 
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OQL. Select a 
From a in A 
Where a.attributel = constant 

SUB-CLASS RULE. Super-class nodes in a sub-class query are collapsed into their 

sub-class nodes. All properties of the super-class now belong to its sub­

class. 

PROOF, A sub-class object is an object that belongs to die sub-class, altiiough some 

properties are declared in its super-class. Consequentiy, all properties of the 

super-class actually belong to its sub-class. Accessing a property of a sub­

class which has been declared in its super-class, is the same as accessing a 

property of the sub-class which has been declared in the sub-class itself. 

EXAMPLE. Queries on sub-class B which has a reference to a class C through its 

super-class A can be done directiy without its super-class. 

© 
0 " G^© 

This transformation is also reflected by the query written in OQL in which 

the super-class is not mentioned directly in die query. The query is to 

retrieve objects of class B where the associated object of class C satisfies a 

certain condition. Although b . r e l is declared dirough its super-class A, 

this relationship stUl belongs to the sub-class B. 

OQL. Select b 
From b in B, c in b.rel 
Where c.attributel = constant 

Forward Traversal Rule 

FORWARD TRAVERSAL RULE. Traversing from node A to 5 can be performed if 

there is a directed arc from node AtoB. 

PROOF. A directed arc from node AtoB exists, if one of die properties in class A 

contains class B as its domain. Accessing any property of class B from class 

A can be done by specifying die A's property of domain class B and the 

property of class B itself (a dot notation is often used, e.g., A3). Accessing 

any properties of class A from class B is not possible if none of the 

properties in class B contains class A as the domain. 
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If an inverse relationship exists between two associated classes, it can be 

determined in which direction a traversal is more desirable. 

EXAMPLE. Suppose the foUowing schema exists, \£) > Q), where a property 

of A has B as its domain. The following query written in OQL is to retrieve 

objects of class A which satisfy a certain condition m its associated class B. 

The predicate evaluation is carried out by means of forward traversal from 

class A to class B. 

S e l e c t a 
From a in A, b i n a . r e l 
Where b . a t t r i b u t e l = cons tan t 

The clause b in a. r e l indicates a path traversal from an object of class 

A to its associated objects m class B. When an inverse relationship exists: 

\^lX v l / . it becomes possible to traverse from class B to class A 

(depending on where the selection predicate is located). The above query 

can be rewritten to as follows. 

S e l e c t a 
From b in B, a in b.rel_inverse 
Where b.attributel = constant 

b. Processing Rules 

The processing mles are concemed with the processing cost hierarchy of primitive 

operations. The processing cost hierarchy can be described by two mles: filtering rule and 

explicit join rule. 

In the query processing, path traversal is normally associated with selection 

operations, where filtering is done. The filtering mle is a manifestation of selection 

operation in aggregation hierarchies. 

Explicit join has been recognized as the most expensive operation in relational 

queries. Smce explicit join operation is sometunes required in OOQ, an explicit jom mle is 

adopted from a well-established knowledge of relational query optimization. 

Filtering Rule 

FUter is provided by means of a selection operation. The impact of filtering becomes greater 

along die aggregation hierarchy tiirough patii traversal. This filtering mle is applicable to 

both forward and reverse traversals. 
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FELTERING RULE. A traversal is more desirable when starting from a class where 

there is a selection operation, unless this class contains dangling objects 

(partial relationship). 

PROOF. Suppose a directed path from A to J5 exists. If there is a selection operation 

on class A, only objects of class B associated with the selected objects of 

class A wUl be accessed. FUtering is accomplished by the selection 

operation on class A. In the absence of a selection operation, all associated 

objects must be accessed. 

EXAMPLE 1. Given a query schema \ ^ ^ v L / , and there is no selection 

operation on class A, the query will require all objects of class A and all of 

the associated objects of class B to be accessed. 

Select a 
From a in A, b in a.rel 
Where <some condition on B or no condition> 

EXAMPLE 2. Given the same query schema as above, but with a selection operation 

on class A, K^ ^ \t), the query will requUe all objects of class A and 

only those associated objects of class B from the selected objects A need to 

be accessed. Depending on the selectivity factor, some of the associated 

objects need not to be processed. 

Select a 
From a in A, b in a.rel 
Where a.attributel = constant 

Explicit Join Rule 

It is well known tiiat explicit join operation is the most expensive operation, although 

sophisticated join algoritiims to reduce tiie processing cost have been developed. The 

explicit join rale in relational databases can be used to support object-oriented query 

optimization (Elmasri and Navathe, 1994) 

EXPLICIT JOIN RULE. Avoid explicit join operation whenever possible. If it is not 

possible, delay explicit join operation as late as possible in order to reduce 

die size of tiie operands done by the previous operations. 

PROOF. Suppose tiie join cost of A and 5 is given by X. If the join operand A and B 

can be reduced to A' and B', the join cost becomes X'. Since A'<A and B'<B, 

tiierefore X'<X. 
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EXAMPLE 1 (EXPLICIT JOIN AVOIDANCE). Suppose class Smdent joins class 

Lecturer on class Subject. 

StudenO C'Lectuier 

Subject 
Student joins Lecturer on Subject 

If one of the paths is an inverse relationship, the join operation can be 

tumed into a complete patii traversal, such as Student—>Subject-^Lecturer. 

EXAMPLE 2 (DELAYING EXPLICIT JOIN). Suppose there is a selection operator on 

both class Student and class Lecturer; and the paths are all uni-directional. 

By applying the selection first, only one student is to be joined with a few 

lecturers. 

(̂ID=95071>s. X (̂Rank=Prof.) 

Subject 
Student joins Lecturer on Subject 

6.3.2 Optimization of Primitive Operations 

Optimization of primitive operations can be achieved by exploiting path traversals in the 

forms of inter-object paraUelization and inter-class parallelization. Path traversal should 

always be used whenever possible. Two basic optimization procedures, namely INTER-

OBJECT-OPTIMIZATION and INTER-CLASS-OPTIMIZATION, are developed. They employ the 

basic mles as a foundation in the optimization. 

The aun of the INTER-OBJECT-OPTIMIZATION is to transform any primitive operation 

to a forward d-aversal operation for an inter-object paraUelization. This includes 

ttansformation from an inter-class parallelization to an inter-object parallelization (ICL^ 

lOB), from an explicit join to an inter-object parallelization (EXJ^IOB), and even from an 

inter-object parallelization to a different inter-object parallelization (IOB->IOB). The 

transformation also takes die selection predicate types (i.e., existential or universal 

quantifier) into account. 

LUcewise, tiie target of tiie INTER-CLASS-OPTIMIZATION is to transform any primitive 

operation into a reverse traversal operation for an inter-class parallelization. There are two 

types of transformation, particularly: from an inter-object parallelization to an inter-class 
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parallelization (lOB-^ICL), and from an explicit join to an inter-class paraUelization (EX]—> 

ICL). 

a. INTER-OBJECT-OPTIMIZATION 

INTER-OBJECT-OPTIMIZATION is particularly based on die forward traversal concept and die 

filtering mles. Three types of transformation: lOB—>IOB, ICL^IOB, and EXJ^IOB, are 

considered and explained in the next sections. 

The Inter-Object Parallelization to Inter-Object Parallelization Transformation 

(IOB->IOB) 

With respect to the filtering mle, forward path traversal is in an optimal form if it starts 

from a class having a selection operation. Should a forward traversal from a class having a 

selection operation be possible but not be done in the query, the query must be transformed 

to accommodate the desired forward traversal operation. The lOB^IOB transformation is 

targeted to 2-class path expression queries where there is a selection operation on the 

associated class (class B), but no selection operation on the root class (class A). The lOB-^ 

lOB transformation is accomplished by changing the path direction. Thus, the mam 

constraint of the lOB—>IOB transformation is that the path must be bi-directional (an inverse 

relationship exists). 

Figure 6.1 shows an example of IOB->IOB transformation. The original query 

contains a forward traversal with an existential quantifier selection predicate in the 

associated class (i.e., I0B(3)). Initially, tiie query starts from class A (shaded nodes indicate 

die starting nodes). After tiie transformation, the query starts from class B. Apart from the 

presence of an inverse relationship between class A and class B, this transformation 

becomes possible also because the selection predicate is an existential quantifier. Since 

existential quantifier is commutative, a change in direction preserves the equivalence of the 

query results. 

K JOB.^ 
dẐ  

o 

Transformed into 

X 

n 

CD 1^^^ 
a 

Figure 6.1. IOB-^IOB transformation 

Apart from requiring an mverse relationship to exist, die lOB-^IOB transformation 

imposes several constraints, such as: 
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If the path is uni-directional (an inverse relationship is not provided), the above query 

cannot be optimized using the lOB-^IOB transformation. 

K there are 2 selection operations: one class each, the inter-object parallelization is 

already optimal. 

If there is no selection on the two classes, indirect selection operations which are 

applied to classes connected to each side of these two classes wUl be taken into 

account. Indirect selection operations wUl provide the same filtering mechanism. 

Transforming an inter-object paraUelization universal quantifier lOB(V) is not possible 

merely by changing the path direction, since the universal quantifier (V) is not 

commutative. Hence, lOB(V) is not covered by the lOB-^IOB transformation. 

The Inter-Class Parallelization to Inter-Object Parallelization Transformation 

(ICL-^lQB) 

Some path expression queries are expressed in reverse traversal operations. If forward 

traversal operations are possible for these queries, the reverse traversal operations should be 

transformed to forward traversal operations. This transformation also uses the filtering mle 

as the basis. 

There are two types of path expression queries to which tiie ICL—>IOB 

transformation can be applied. The first type is where the query has a directed path from a 

class with a selection operation but the initial query employs a reverse traversal. The second 

type is where the selection operation is at the class pointed by the directed path. The first 

type can be optimized by transforming the reverse traversal operation into a forward 

tiraversal operation, whereas the second type is optmiized by changmg the padi direction 

and applying a forward traversal operation. Figure 6.2 shows the two cases of ICL->IOB 

transformation. 

Transformed into 

ICL (3 fe n I0B(3) ^ 

o 

Type 2: 

tl 
Transformed into 

Figure 6.2. ICL->IOB transformation 
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If the query is a universal quantifier, the resulting traversal must also be in the form 

of a universal quantifier in order to preserve the equivalence. However, since a universal 

quantifier (V) is not commutative, if a change in patii direction is required, die universal 

quantifier (V) query cannot be optimized using this transformation. Therefore, only die first 

query type, which does not require any change m path direction, can be optimized using the 

ICL-^IOB transformation. Figure 6.3 shows an ICL(V)->l0B(V) transformation. 

Type 1: 
Transformed into 

_ - _ JCUVJ . \ ^ I Jt lOB(V) 

Figure 6.3. ICL(V)->IOB(V) u^nsformation 

The Explicit-Join to Inter-Object Parallelization Transformation (Exj->IOB) 

For join queries on a class domain, an explicit join operation is formed by two forward 

traversals meeting at the joining class. A transformation from an explicit join operation to a 

forward traversal may be achieved by changing the dkection of one of the paths, so tiiat a 

complete forward path traversal can be formed. However, depending on the join query type, 

the performance of an EXJ—>IOB transformation may or may not be possible. Basically, 

there are three types of object-oriented explicit join queries: equi join (possibly collection 

equi join), intersection collection join, and sub-collection join. 

• Optimization of equi-join, by transforming it to a path traversal (EXJ(=)->l0B), is not 

possible, since an equi-join EXJ(=) consists of two universal quantifier inter-object 

parallelization lOB(V). Because V is not commutative, changing a path direction to 

form a complete forward traversal is not permitted. 

• Optimization of sub-collection join (Exj(c)-^IOB) is not possible either. A sub-

collection join predicate is to check whether a collection jom attribute of a class is a 

sub-collection (i.e., subset) of a collection join atdibute of another class. The join 

predicate requires all elements of both coUections to be present in order to evaluate the 

sub-collection predicate. This is then similar to a universal quantifier for both paths. 

Smce universal quantifier is not commutative, changing a path direction wUl not 

produce the same results, and the equivalence wUl be violated. 

• Optimization of an intersection join Exj(n)-^l0B can be done by changing die 

dfrection of one of tiie paths. An intersection join is used to check whetiier there is an 

intersection between tiie two collection join attributes. An intersection join EXJ(n) is 
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made up of two existential quantifier inter-object paraUeUzation I0B(3). Because 

existential quantifier 3 is commutative (as shown by lOB-̂ IOB and ICL—>IOB 

transformation), a complete path traversal of an ExJ(n) can be formed. Figure 6.4 

shows an example of the EXJ(n)-^l0B transformation. 

Transfonned into 

C O (^ \ Jl^ I0B3) ̂ _ ^ I0H[3i JL 
I0B[3)V yici^) ^ ^ ^K^ ^KSL^ 

A joins B 
(intersect join) 

Figure 6.4. Exj(n)->IoB transformation 

b. INTER-CLASS-OPTIMIZATION 

INTER-CLASS-OPTMIZATION is based on the filtering and the explicit join mles. Two types 

of transformation: lOB—>ICL, and EXJ-̂ ICL, are considered and explained in the next 

sections. 

The Inter-Object Parallelization to Inter-Class Parallelization Transformation 

(lOB-^ICL) 

Witii respect to the filtering mle, path traversal should start with a selection operation, since 

the selection operation serves as a filtering mechanism. In the absence of a forward 

tiraversal from the class having a selection operation, a reverse traversal should then be 

applied. A type of query to be optimized using the lOB^ICL is where the initial query is a 

forward traversal to a class having a selection operation. The IOB->ICL transformation is 

achieved merely by transforming lOB to ICL without any modification to the path direction. 

In die case where the initial fraversal is a universal quantifier lOB(V), the IOB->ICL 

dransformation stUl holds, because there is no change in path direction. Figure 6.5 shows an 

example of IOB-^ICL transformation for bodi existential and universal quantifiers. 

There are a number exceptions to die lOB^ICL transformation. 

• If the patii is a bi-directional path, an lOB^IOB transformation can be performed, 

instead of the lOB^ICL transformation. 
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If tiiere are two selection operations, one selection m each class, die original query 

schema is already optimal. No further ti-ansformation is necessary. 

Transformed into 

JLICIXB) 

Type 2: 
n 

Transformed into 

OB(V, 
^ 

J:LICL(V)^ ,̂  

Figure 6.5. loB—>ICL transformation 

The Explicit-Join to Inter-Class Parallelization Transformation (EXJ->ICL) 

An EXJ^ICL transformation may be applied to join queries where the two paths are uni­

directional. In the case where an inverse relationship exists, an EXJ^IOB transformation is 

preferable. An EXJ—>ICL transformation is based on the filtering mle and the explicit jom 

mle. Like in EXJ—>IOB transformation only intersection join queries are considered, because 

other join queries require all elements of both collection join attributes to be present at once 

so that they can be evaluated. Since the ICL operation is done class by class, it becomes 

impossible to gather two collections from the two objects to be joined at the same time. 

There are three cases considered, particularly a selection operation exists in the join class, 

selection operations exist in the root classes, and no selection operation is involved. 

• Case 1. 

Since the join class contains a selection operation, path traversal should start from 

this class. Because the patiis are uni-directional, bodi patiis are done in a reverse 

traversal. 

• Case 2. 

Since a root class contains a selection operation, that patii should perform a forward 

fraversal operation. Altiiough originally the join class does not contain a selection 

operation, due to die selection operation done by die forward traversal previously, the 

filtering has been carried out indirectiy to the join class. Therefore, the second path is 

performed in a reverse traversal operation. An EXJ->ICL transformation is actually an 
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EXJ->IOB/ICL transformation. Since a mixed traversal (MT) is employed, it is actually 

an EXJ->MT transformation. 

• Case 3. 

Like case 2, one of the paths is carried out in a forward Qraversal. The join class is 

now restricted by the forward traversal operation done to one of die paths. The otiier 

path is then carried out in a reverse traversal operation. 

Case 2 and case 3 have shown the effect of indirect filtering through selection 

operations on previous classes and through forward traversal operations. In these two cases 

as well, an optimization of Exj by transforming it to a mixed traversal is demonstrated. 

Transformed mto 

• > 

Transformed irno 

• > 

restricted by the 
selection operation 
on A 

Transformed into 

restricted by the 
inter-object paralklivition 
from A 

Figure 6.6. EXJ-»ICL transformation 

6.4 Query Optimization Algorithms 
Based on the optimization of primitive operations, general query optimization algorithms 

are developed. The query optimization algorithms comprise two algorithms, namely the 

transformation algorithm and tiie restructuring algoritiim. Figure 6.7 shows the scope of the 

query optimization algorithms. 
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Transformation 
Algorithm 

Restructuring 
Algorithm 

^ ^ Firuil Access \ 

Figure 6.7 Query Optimization Process 

The transformation algorithm transforms initial query represented in a query graph 

into its equivalent query access plan represented in an operation tree. The operation tree, 

when necessary, is further processed by the restructuring algorithm which restmctures the 

initial operation free to produce a final operation tree. 

The final operation tree shows an optimal query access plan. In most cases, 

however, the operation trees produced by the transformation algorithm are already optimal, 

and hence, the restructuring algorithm is not needed. 

Before discussing the two algorithms, a notation for query access plans called 

Operation Trees (OT) is described. 

6.4.1 Operation Trees 

Query access plans are represented by Operation Trees (OT), in which die hierarchy of the 

operations is determined. Processing is carried out in a phase-based fashion, where die 

lower nodes are processed first, and nodes at the same level can be processed 

simultaneously. 

Each node in an Operation Tree consists of two information: the type of the node 

and die operations to be carried out. There are du-ee different types of nodes, namely lOB-

Node (inter-object parallelization nodej, ICL-Node (inter-class parallelization node), and 

EXJ-Node (explicit join node). These types reflect the types of operations to be performed. 

The operation itself is represented as a graph, which is a subgraph of the query schema. The 

results of each node are represented as a labeUed directed arc from a node to a superior 

node. The results of each node are a combination of tiie values of the projected attributes 

and the mput values for the next stage of query processing. 

Altiiough similar to other query trees, operation drees are sunpler but richer. They 

are richer because tiie selection operation may appear not only m single classes (lUce in 

relational query trees), but also in path expressions. Since most object-oriented queries are 
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in the form of path expression, it wUl be common to have more forward traversal nodes in 

an operation tree. Since most query results may be obtained by forward traversal operations, 

the operation trees may be less in height and tiius become simple operation d-ees (possibly 

one-node OT or unary OT). 

Figure 6.8 shows three query graphs and their operations trees (the operation trees 

of the initial queries are lUcely to be unoptimal). For the sake of simplicity, a root class and 

an associated class are denoted as node A and node B, respectively. The path is represented 

as a directed arc. 

a. lOB-Nodes 

An lOB-Node consists of inter-object paraUelization. Selection operations are usually 

incorporated in the inter-object parallelization. The selection operations may appear in a 

single class or in a path expression. The query graph is included in the lOB nodes. If it is a 

path expression, the dfrection of the traversal and the starting node are also shown. Due to 

the nature of object-orientation, where some information can be tracked down through 

pointer navigation, it is possible to have one-node OT. One-node OT represents that the 

query access plan contains a single-operation orUy (possible a forward traversal operation). 

b. ICL-Nodes 

Since a reverse traversal and its paraUelization counterpart, inter-class parallelization, 

involves two phases (selection and consolidation phases), an ICL-Node (inter-class 

parallelization operation) is succeeded by lOB-Nodes. The lOB-Nodes contam selection 

operation on single classes. The OT is therefore a two-phase tree. The first phase (the leaf 

nodes) consists of lOB-Nodes, and die consolidation phase is the ICL-Node itself. If only one 

class is involved in the selection, the OT becomes a unary OT, and without a selection 

operation, the OT is a one-node OT which contams an Id-Node itself. It must be noted that 

die query graph in die ICL-Node is tiie same as m die lOB-Node . The only difference is the 

starting node, which is denoted by a shaded node. 

c. Exj-Nodes 

EXJ-Node (explicit join node) consists of a join operation between two classes. If there are 

selection predicates, processing die join query wUl consist of a selection phase and a join 

phase. The selection phase is represented by lOB-Nodes. Dependmg on the number of 
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classes involved in die selection process, the OT can be a one-node OT (witiiout selection), 

unary OT (one selection) or a binary OT (two selections). 

Query Graphs: 

a. Inter-Object Parallelization 
Single-Class Query: 

n 

cr> 

Path Expression Query: 
(Forward Traversal) 

cKy—KE:^ 

b. Inter-Class Parallelization 
Path Expression Query: 
(Reverse Traversal) 

CA>-Xir> 

c. Explicit Join 
Explicit Join Query: 

A joins B 

Operation Trees: 

lOB 
K 

lOB CE>—<L:> 

ICL C^^^^CE::) 

^N 

lOB 

/ts 

CED lOB C^^ 

EXJ ^^Xi<^ 
/ N 

lOB 

A^ 

CD> lOB C^ 

Figure 6.8. Query Graph and Operation Trees 

6.4.2 The TRANSFORMATION Algorithm 

The transformation algorithm accepts a query graph QG and produces an operation tree 

OT. The algorithm consists of two functions: ProcessGraph and ExpandTree functions. 

Upon invocation, the transformation algorithm activates the ProcessGraph function and 
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passes a QG to it. The retum value of the ProcessGraph function is an OT. The pseudocode 

for the transformation algorithm is shown in Figure 6.9. 

Program Transformation 
Variables: 

QG: Query Graph = input 
OT: Operation Tree = NULL 

Begin 
OT - ProcessGraph(QG) II call ProcessGraph 

End Program. 

Function ProcessGraph (QG) return OT 
Begin 

1. 

2. 

3. 

Apply INTER-OBJECT-OPTIMIZATION 

If step 1 fails Then 
Apply INTER-CLASS-OPTIMIZATION 

End If 

If inter-class parallelization or explicit join operation exists in QG Then 
OT = ExpandTree(QG) II call ExpandTree 

Else 
OT = InsertNodeQ II create a node in OT 

End If 

4. ReUim OT 
End Function 

Function ExpandTree (QG) retum OT 
Begin 

1. 

2. 

3. 

OT = InsertNodeO II create a node in OT 
Remove inter-class parallelization or explicit join operation from QG 
giving a setof QG'i 

For each QG'i 
Ti = ProcessGraph (QG'i) // recursive call to ProcessGraph 
OT = InsertChild (Ti) // insert node as a child node in OT 
Add a label to die path 

End For 

Retum OT 

End Function 

Figure 6.9. Transformation Algorithm 
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a. The PROCESSGRAPH Function 

The ProcessGraph function basically consists of four steps. Firstiy, it attempts to optimize 

the mput query graph by applying the INTER-OBJECT-OPTIMIZATION. Secondly, if step 1 

faUs, it attempts to apply tiie INTER-CLASS-OPTIMIZATION. Thfrdly, if an inter-class 

parallelization or an explicit join operation stUl exists in the query graph, the query graph 

needs a further process, in which the ExpandTree function is then executed. Otherwise, a 

node is created in the OT. The node is an lOB-NODE. Finally, an OT is returned to die 

calling program. 

b. The EXPANDTREE Function 

The ExpandTree function is activated by the ProcessTree function, after attempting to 

reduce or to eliminate inter-class parallelization/explicit join operations, but the query 

graph StUl contains these operations. 

The ExpandTree function comprises three steps. Firstly, a node is created. The type 

of node is either an ICL-Node or an Exj-Node, depending on which operation is to be 

removed from the query graph. An explicit join operation has a higher priority since the 

explicit join operation is the most expensive operation and hence, eliminating this operation 

as early as possible puts the operation the last in the OT. After removmg an operation from 

the query graph, a number of subgraphs (possibly one) is created. 

Secondly, for each subgraph, it recursively calls the ProcessGraph function and 

passes each subgraph to it. The retum value from the ProcessGraph is a subtree OT. This 

subtree becomes a chUd node of the ICLVEXJ-Node created previously. Depending on the 

number of subgraphs, a number of child nodes is created. 

Finally, the overall OT is then retumed to the calling ftinction, which is the 

ProcessGraph function. 

6.4.3 The RESTRUCTURING Algorithm 

The restructuring algoritiim accepts tiie OT produced by die transformation algorithm, 

restmctures it, and produces a final OT. The restructuring algorithm deals with complex 

OT. As most object-oriented queries are path expression queries emphasising the forward 

path traversal operation, the OTs produced by the transformation algorithm are often one-

node OTs. In these cases, the restructuring algorithm is of no use. The restructuring 

algorithm is particularly useful if the OT is quite long, which is more common to relational 

queries. Figure 6.10 presents the pseudocode for the restructuring algorithm. 
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Program Restructuring 
Begin 

1. Break n-ary Exj nodes (n>2) into multiple binary nodes, 
2. Delay non-restrictive ICL nodes, 
3. Discard non-restrictive lOB-Nodes, 
4. Promote non-restrictive lOB-Node to be the parent of the current parent node. 

End Program. 

Figure 6.10. Restructuring Algorithm 

The restructuring algorithm basically comprises four steps. Step 1 is regarding ExJ 

nodes. It is possible for the transformation algorithm to produce an OT having a non-leaf 

node with more than 2 leaf nodes. The non-leaf node is normally an explicit join operation 

node. This m-way explicit join is converted into multiple 2-way joins. This restmcturing is 

quite common in relational query optimization. Figure 6.11 shows an example of an m-way 

join query. 

Figure 6.11. Breaking n-ary EXJ nodes 

Step 2 deals with ICL nodes. Some ICL nodes are created because they contain 

selection operations. Other ICL nodes are created as an indirect selection operation 

(selection operation on otiier classes). Witii respect to the filtering mle, the restrictive ICL 

nodes should be processed first, followed by the non-restrictive ICL nodes. Figure 6.12 

gives an Ulustration of nodes permutation. 

ICL 

r-<\ 
ICL 

no 1 no 1 

LZJ Lo_J 
V ^ 

iVi 
L!J 

y 
"° 1 LiiJ 

ICL 

TV, 
ICL 

r"^ r —N 
° 1 0 1 

I °.) I ) 

Figure 6.12. ICL-Nodes Permutation 

Step 3 concems lOB nodes. Non-restrictive lOB nodes are eliminated from an OT, 

since these nodes do not perform any activity. These nodes, however, are created initially 

by die transformation algorithm as a result of a removal of an EXJ or an ICL operation from 

the initial query graph. Each subgraph created after this removal may be single classes 

without any selection operation. Figure 6.13 shows examples of lOB nodes elimination. 
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Figure 6.13. Eliminating Non-Restrictive lOB-Nodes 

Step 4 also deals with lOB-Nodes. lOB nodes are created because tiiere is a selection 

operation in the root class where the forward traversal starts. This selection operation may 

be a result of indfrect selection operation by other classes outside the scope of the forward 

traversal operation. This kind of lOB node is usually placed as a child of a node where the 

selection is carried out. Since these lOB nodes are not restrictive until the parent node is 

executed, these lOB nodes should be delayed until the restriction is performed by the parent 

node. The restriction is not merely carried out by a selection operation. Hence, this lOB 

node is replaced and put as a parent node of the current parent node. Figure 6.14 illustrates 

this. 

lOB -' ^m 
_ ^ ^ - - ' 

, •lOB 

r ' 

n 

Figure 6.14. Delaying lOB-Nodes 

6.5 Examples 

In this section, it will be demonsfrated how to apply die query optimization algorithms to 

basic and complex object-oriented queries (i.e., homogeneous complex queries and 

heterogeneous complex queries). There are tiu-ee types of OT produced by the query 

optimization algoritiims, particularly one-node trees, unary trees, and binary trees. One-

node trees are to demonstrate die INTER-OBJECT-OPTIMIZATION, whereas unary trees and 

binary frees are to demonsfrate die INTER-CLASS-OPTIMIZATION. 

6.5.1 Basic Queries 

Three examples are given to demonstrate how basic queries are optimized using the INTER-

OBJECT-OPTIMIZATION. Example 1 is a simple patii expression query. Examples 2 and 3 are 
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join queries (object join and simple value join). The results from die optimization of tiiese 

queries are one-node OT. 

EXAMPLE 1. "Retirieve persons who have chaired VLDB". 

Initial Query Graph: Final Operation Tree: 

lOB 

al 
lOB CI> 

lOB 

al 

A=Person 
B=ProceecUngs 
a l =(titU="VLDB") 

Figure 6.15. IOB->IOB transformation 

This is a simple path expression queries involving 2 classes. The transformation 

algorithm tiirough its ProcessGraph function calls die INTER-OBJECT-OPTIMIZATION. The 

IOB->IOB transformation is then applied, which is based on the semantic knowledge on die 

query schema that the path is a bi-directional path. 

The second step is passed, since step 1 is successfuUy conducted. The checking in 

the third step also fails as the query graph does not contain inter-class 

parallelization/explicit join operations. Consequentiy, a node in OT is created. The node is 

an lOB node with a forward traversal operation from Proceedmgs to Person. The result of 

the transformation algorithm is already optimal as it is a one-node OT, and there is no 

necessity to apply the restructuring algorithm. 

EXAMPLE 2. "Retrieve joiumals and conferences having the same editor-in-chief and 

program-chair, respectively". 

Initial Query Grapli: Final Operation Tree: 

lOB » ^ ^ \ S > ^ ^ 
A intersect Joins ConB 

A=Joumal 
B=Person 
C=Proceedings 

Figure 6.16. EXJ—>IOB transformation 

The query is an explicit join query and the predicate is an intersection join 

predicate. The ProcessGraph function transforms the explicit join operation to an inter-
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object parallelization operation tiirough tiie INTER-OBJECT-OPTIMTZATION. The checking 

conducted in the second step fails because the first step has been successfully completed. 

The checking conducted in the third step also fails, because the query graph is now free 

from the explicit join operation. Subsequentiy, an lOB node is created and a one-node OT is 

produced. 

EXAMPLE 3. "Retrieve pairs of publishers and conferences where they are located at 

tiie same city". 

Initial Query Grapli: 

CD CD 

• 
A intersect joins B 

on city 

A=PubUsher 
B=Proceedings 
join node = city 

Initial Operation Tree: Final Operation Tree: 

E X J C D X C D 
71 7t 

E ^ C D x C D 

lOB ( X ^ lOB (JB^ 

Figure 6.17. Explicit Join 

The query is an explicit join query on a simple attribute, which is typical of a 

relational join query. Since the explicit jom is not on a class, it becomes unpossible to 

transform the explicit join operation into a traversal operation. Thus, tiie INTER-OBJECT-

OPTIMIZATION and the INTER-CLASS-OPTIMIZATION in the first two steps in the 

ProcessGraph function are of no use. A further process becomes necessary, in which the 

ExpandTree function is then executed. 

The ExpandTree function first creates an EXJ node in die OT. After eliminating the 

explicit join operation from the initial query graph, two subgraphs are created. Each 

subgraph is a single node (A and B). Each of tiiese nodes is passed to tiie ProcessGraph 

function where an lOB node is created for each subgraph. These nodes are then attached as 

child nodes to die EXJ node created earlier. Hence die OT produced by the transformation 

algorithm is a binary tree witii 2 chUd nodes. 

The restructuring algoridim is applied to eliminate die two non-restrictive leaf 

nodes. The result becomes a one-node OT consistmg of an explicit join operation. 

The final OT is no different from tiie original query graph. In other words, no 

optimization has been done by the query optimization algorithms. Optimization is tiien 

carried out at the execution stage by a parallel join algorithm. 
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6.5.2 Homogeneous Complex Queries 

Three examples are presented to demonstrate an optimization process of homogeneous 

complex queries. Example 4 is a two-branch path expression query. Example 5 is a Imear 

path expression query. And example 6 is a typical tree path expression query. 

EXAMPLE 4. "Retrieve Object-oriented papers written by Australian autiiors which 

have been presented at conferences since 1996". 

Initial Query Graph: Final Operation Tree: 

7t 

ICL*X^C_^ 
a3 

lOB 
lOB 

a2 

A=Paper 
B=Person 
C=Proceedings 

a\ =(title="%00%") 
c2=(title="VLDB") 
a3 =(year=1996) 

Figure 6.18. ICL—>IOB transformation 

This is a tree path expression query which combines a forward traversal and a 

reverse traversal. The reverse traversal in the original query graph is necessary because 

there is no directed path from the target class Paper to the class Proceedings. 

The ProcessGraph function first applies the INTER-OBJECT-OPTIMIZATION 

procedure by carrymg out the ICL—>IOB transformation. Since the first step is successful, 

the second step, that is to apply the INTER-CLASS-OPTIMIZATION, is skipped. The checking in 

the third step is judged to be false, since the query graph is now free from inter-class 

parallelization operations. Hence, an lOB node is created and die OT produced by the 

transformation algorithm is a one-node OT and is akeady optimal. 

EXAMPLE 5. "Retrieve conferences having papers written by someone who worked 

in Africa". 

This is a linear path expression query. The transformation algorithm first attempts 

to optimize the forward fraversal by applying die INTER-OBJECT-OPTIMIZATION . Since this 

fails, it attempts to invoke tiie INTER-CLASS-OPTIMTZATION. The last inter-object 

parallelization operation is transformed into an inter-class parallelization operation. Two 

subgraphs are created: an lOB-Node from A to 5 and an lOB-Node for node C. This result is 

shown in Figure 6.19 (a). 
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Initial Query Graph: 

lOB, , .^lOB. 

al 

A=Proceedings 
B=Paper 
C=Person 
(Jl=(country= "Africa") 

Results from the TRANSFORMATION Algorithm: 

(a) . , (b) 

lOB 
n 

CD lOB CD 

Results from the RESTRUCTURING Algorithm: 

(d) 

Final Operation Tree 

Figure 6.19. lOB-̂ ICL transformation 

The first subgraph is then fetched into the ProcessGraph function again. Since 

class B is resfricted through tiie selection on class C, an ICL-Node is created with two lOB-

Nodes as chUd nodes. Figure 6.19 (b) is an OT produced by the transformation algorithm. 



Ch. 6. Query Optimization Algorithms page 157 

Since the OT is a complex OT witii multiple levels and multiple child nodes, tiiis 

OT is passed to die Restructuring algoritiim to be resdiictured. The restructuring algoritiim 

is applied to perform 2 tasks. Firstiy, it reschedules die non-leaf ICL-Nodes by delaying die 

non-restrictive ICL node (Figure 6.19 (c)). An secondly, it eliminates two non-restrictive 

leaf lOB-node. The result is a unary OT, shovm in Figure 6.19 (d). This is tiie final OT 

which is optimal. 

EXAMPLE 6. "Retrieve conference proceedings published by Springer-Verlag, 

chaired by someone from Australia, and contains object-oriented papers by 

American authors". 

A=Proceedings 
B=Publisher 
C=Person 
D=Paper 
E=Person 

a\=(name= "Springer-Verlag") 
02= (country=^'Australia ") 
a2i=(title="%00%") 
o4=(country="USA") 

(a) Result from the Transformation algorithm: 

(l>) Result from the Restructuring algorithm: 

IGB CO 

Figure 6.20. IOB->ICL transformation 

This is a typical complex path expression query consisting of several path traversal 

operations from the target class. The ProcessGraph function first applies the INTER-

OB J ECT-OPTIMIZATION. Since all the paths are in forward traversals, and none of them is 

suitable for die IOB->IOB transformation, tiie INTER-OBJECT-OPTIMIZATION faUs. The 

second step is the INTER-CLASS-OPTIMIZATION. The IOB->ICL transformation is applied to 

one of die lOB paths (i.e., A-^B path). Since now an ICL path exists in the query graph, the 
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ExpandTree function is invoked. The ExpandTree fimction creates an ICL node and two 

chUd nodes. The result of die Transformation algoridim is shown in Figure 6.20(a). 

The result of the Transformation algorithm is passed to die Restructuring 

algorithm. The Restructuring algoritiim restmctures tiie operation tree by shifting die non-

resdrictive lOB node (Proceedmgs-^Person, Proceedings-^Paper) to become a root node. 

The result is a unary OT (Figure 6.20(b)). 

6.5.3 Heterogeneous Complex Trees 

Three examples are presented to show an optimization process of heterogeneous complex 

queries. Example 7 is a cyclic query. Example 8 is a acyclic complex query, and example 9 

is a semi-cyclic query. 

EXAMPLE 7. "Retrieve all authors who presented papers at conference diey 

chaired". 

Initial Query Graph: Final Operation Tree: 

<I> 
A=Person 
B=Proceedings 
C=Paper 

EXJ 

join on Person 

"7s" 

lOB Gh^© 

Figure 6.21. Cyclic Query 

This query is a cyclic graph involving Person, Proceedings, and Paper. A cyclic 

query consists of several forward path fraversal and an ICL operation to "join" the two ends 

to form a cycle. The ProcessGraph function changes the path direction from A-^B to 5—>A, 

by applying the lOB-^IOB fransformation. The result of this step is an explicit join on node 

A. The ExpandTree function creates an EXJ node for the explicit join operation. The child 

node of this EXJ node is an lOB node of .S-^C. 

The explicit join operation, in this example, is a unary join, that is a join within a 

complex object. This unary join can be viewed as a selection operation within one complex 

object, since the "join" predicate is actually checking whether the value of one attribute is 

die same as the value of another attribute within the same object. 
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EXAMPLE 8. "Retrieve paper in Object-oriented areas presented at high quality 

conferences and written by a person who worked in a city having hosted an 

0 0 conference in 1996". 

Initial Query Graph: Final Operation Tree: 

explicit join 

Q .,-© © 
EXJ 0„® 

cxa 
join on city 

7\ 

ol IOB 

/ \ 

A=Paper 
B=Person 
C=Proceedings 
D=Proceedings a l =(lille="00'' and year=1996) 

^ ^ B ^ IOB ( D ) 

Figure 6.22. Acyclic Complex Query 

The query is a typical complex object-oriented queries consisting of forward path 

draversal and explicit join operations. The ProcessGraph function faUs to transform the 

explicit join operation to a path traversal, since the explicit join operation is a value-based 

explicit join, not an object-based explicit operation. The ExpandTree function then creates 

an EXJ-node. The child nodes are lOB-nodes; one is a path traversal, an the other is a single 

class. This query access plan is typical of complex object-oriented queries, involving path 

fraversals and explicit joins. 

EXAMPLE 9. "Retrieve Australian authors who wrote Object-Oriented papers for 

different conferences at the same year". 

This query is a semi-cyclic query (joining the two ends of two distinct path 

expressions). The formulation of an optimal OT proceeds witii several steps. First, an Exj 

node is created. The child node is similar to die initial query graph except that tiie Exj 

operation has been tmncated. 

Second, an ICL node is created and becomes the immediate chUd node of the EXJ 

node. Two subgraphs are created and become the leaf nodes. Third, for each subgraph in 

die leaf node, an ICL node is created and has 2 leaf nodes. The result of the third step is an 

OT produced by the transformation algorithm. 

The restructuring algorithm simplifies the leaf nodes which do not have any 

selection operation. 
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r 
Initial Query Graph: 

Sup 1: 

A =Person 
B~C=Paper 
D=-E-Procedings 

9 join on year 

ICL Qt<^r-<^ 
ol o3 o2 

Step 4 (FINAL OT): 

Figure 6.23. Semi-Cyclic Query 
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6.6 Discussions 

The application of patii fraversal in a form of inter-object parallelization and inter-class 

parallelization is exploited in object-oriented query optunization. The functionalities of 

path traversal are highlighted as foUows. 

• Inter-object parallelization is a manifestation of forward path traversal, whereas 

inter-class parallelization is a manifestation of reverse path traversal. Hence, 

forward traversal is object-based, and reverse traversal is class-based. An 

object-based forward traversal is where traversing from a root object to its 

associated objects is regarded as a unit or a cluster. This model is better than 

the class-based forward traversal because of its associativity approach. A class-

based reverse traversal has a foundation of class independence which is 

influenced by the join operation in relational databases. Class independence is 

enforced because of the absence of an inverse relationship. 

• Object-oriented query optintization is accomplished by changing the path 

direction whenever appropriate. The two basic optimization (i.e., INTER-

OBJECT-OPTIMIZATION and INTER-CLASS-OPTIMIZATION) have shown die 

importance of bi-directional paths in an optimization process. Hence, the 

efficiency of the query optimization algorithms very much depends on the 

avaUabUity of inverse relationships. 

6.7 Conclusions 

The query optimization model presented in this chapter employs semantic and processing 

cost knowledge of the query. This basic knowledge becomes a foundation for the 

optimization of basic operations. Two algorithms for object-oriented query optimization are 

presented. The transformation algorithm transforms the initial query graph mto operation 

trees in which the access plans are specified. The restructuring algorithm restmctures an 

input operation tree by collapsing, shifting nodes in the OT. This algorithm is applied to 

complex OT only. For OTs having one node, the restmcturing algoridim is not applicable, 

smce these OTs are in an optimal form already. 

The major contiributions of diis chapter can be categorized into four pomts. 

• Semantic knowledge and processing costs are defined in terms of heuristic mles 

which become the foundation for object-oriented query optimization. The 

semantic knowledge is based on the inheritance and path expression 
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hierarchies, whereas the processing costs exploit path traversals and avoid 

explicit join operations. 

• Transformation for primitive query optimization is formulated. It basically 

exploits inter-object parallelization and inter-class parallelization whenever 

appropriate by transforming other primitive operations to either inter-object 

paraUelization or inter-class parallelization operations. 

• A graphical notation to represent query access plan, called Operation Trees 

(OT) is infroduced. This notation accommodates different types of primitive 

object-oriented query operations. 

• The central focus of query optimization is query optimization alsorithms, 

which consolidates all query optimization components (i.e., semantic 

knowledge, processing costs, optimization of primitive operations). The results 

of these algorithms are query access plans in a form of operation trees. 

Each node in an OT is applied an appropriate parallel algorithm at the execution 

stage. Since the OT shows inter-dependency among nodes, the execution scheduling 

strategies of the nodes in an OT must be defined. The next step of parallel query 

optimization is to detennine the execution scheduling strategies for OT. 



Chapter 7 

Execution Scheduling 

7.1 Introduction 
The aims of this chapter are to present execution scheduling of complex object-oriented 

queries involving path expressions and explicit joins, and to discuss the impact of the skew 

problem on execution scheduling. Path expressions generally form the basis of complex 

queries. Each path expression can be treated as a sub-query. The results of these sub-queries 

are consolidated to obtain the final results. Apart from the avaUabUity of paraUel algorithms 

for each basic operation in the query, scheduling sub-queries execution plays an important 

role. 

There are two existing approaches to the sub-queries execution scheduling: serial 

and parallel sfrategies. The decision of which execution scheduling strategy is to be 

adopted is much influenced by the presence of load skew in each sub-query. Moreover, 

depending on the degree of skewness, load skew may severely degrade overall performance. 

One way to overcome the skewness problem is by employing data re-distribution. Two data 

re-distribution models, namely physical and logical data re-distribution, are described. 

Through data re-distribution, not only is performance improvement gained, but also the 

execution scheduling strategies are affected. 

The rest of tiiis chapter is organized as follows. Section 7.2 describes the skew 

problem and its impact on speed-up. Section 7.3 explains the two execution scheduling 
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Strategies in detail. Section 7.4 describes data re-disdribution techniques. Section 7.5 

presents a discussion. Finally, section 7.6 gives the conclusions. 

7.2 Skew Problem 

Skewness has been one of the major problems not only in parallel relational database 

systems (Liu et al., 1995), but also in paraUel object-oriented database systems. Load skew 

refers to the non-uniform distribution of workload over the processors. Load skew is a main 

obstacle to achieving load balancing and linear speed-up. In the presence of skew, query 

execution time depends on the most heavUy loaded processors, and those processors 

finishing early have to wait. 

Load skew in single-class queries is mainly caused by the non-uniform data 

partitionmg (e.g., hash or range partitioning). Using a non-uniform data partitioning, an 

exact match or a range query on the partitioning attribute can be localized to a small subset 

of processors containing the desfred data. This kind of query normally requfres minimal 

resources (depending on the range, in the case of range queries). Hence, activating all 

processors, most of which wUl not produce any result, is a waste. However, choosing a 

correct partitioning attribute is similar to an index selection problem, which is known to be 

a hard problem. Moreover, exact match or range queries on a non-partitioning attribute 

make the initial partitioning meaningless as the data partitioning does not offer any benefit 

to processing these queries. Since the partitioning is non-uniform, the processing of these 

queries will produce a skew problem. 

Load skew in path expression queries is mainly caused by the fluctuation of both 

fan-out degrees of association relationship and selection operation or query predicates. 

Consider the Proceedings^Paper relationship as an example. Suppose one proceedings 

which is processed by a processor (say processor 1), contains 75 papers, and another 

proceedings processed by another processor (say processor 2) has only 25 papers. In 

processing the papers, the load of each processor becomes imbalanced. Furthermore, if the 

second proceedings is not selected by the first stage of a predicate selection, load imbalance 

wUl be even worse. 

Load skew in explicit join queries is a result of partitioning on the join attribute. 

Parallel processing of join queries is normally made up of two stages: partitioning and local 

joining. In the partitioning stage, data from the two classes to be joined are partitioned 

based on the joining attribute. The results of this partitioning are disjoint partitions. 

Subsequently, these partitions are processed locally in each processor. The partitioning 

method used is a non-uniform data partitioning method (normally a hash partitioning is 
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used). Depending on die partitioning function and the actual data disdibution in die joining 

atdributes, load skew may vary from lightiy to heavily skewed. 

The biggest impact of load skew is performance degradation. If a linear speed-up is 

drawn as linear function f(x)=x, performance of a skewed operation is lower tiian tiie 

desired speed-up. Figure 7.1 shows a performance comparison between linear speed-up and 

skewed. 

Performance 

Efficiency 

Near Linear 

Slightly Skewed 

Figure 7.1. Linear Speed-up vs. Skewed Performance 

It is clearly shown that in the case of highly skewed, adding more resources will not 

improve the efficiency significantiy. This fact is known as a skew principle. 

DEFINITION (SKEW PRINCIPLE). A skew principle states that aUocating a large 

number of resources to a skewed operation wUl not improve performance 

significantiy, and may lead to degradation in performance under certain 

cfrcumstances. 

7.3 Sub-Queries Execution Scheduling Strategies 
This chapter focuses on complex object-oriented queries involving path expressions and 

explicit joins. A typical complex object-oriented query containing path expression and join 

is as follows. 

QUERY 1. "Red-ieve tiie titie of full paper (excluding posters) in the area of object-

orientation presented at high quality conferences (i.e., acceptance rate 

below 50%) and written by someone who worked in a city having hosted an 

Object-Oriented conference in 1996. Papers written by Smith' are 

excluded". 
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The above query can be decomposed into two sub-queries; each containing a path 

traversal. The path traversal starts from Proceedings to Paper and to Audior. Traversing 

from Paper to Proceedings will result in redundant accesses of Proceedings because many 

papers are published in die same proceedings. The results of the sub-queries are then joined 

based on primitive attributes to obtain the final results. 

The query graph for tiie above query is presented in Figure 7.2(a). Figure 7.2(b) 

shows an access plan for the above query. As each sub-query is independent of die others, 

they may be processed simultaneously. 

(a) Query Graph (b) Operation Tree 

jom on 
(affiliation.city=proceedings.hosu.cityf 

Author^ proceedings (Join J 
(name!- "Smith") (name-"Objea.onent«l conference") and > „ 

(year-1996) ^^-^^Vracw^/m^^. tou.c i fy 

sub-query I (IOB) sub.query 2 (IOB) 

' exiljide 

(jM^ .->'o«eO "(«c««E«>"«-'^'« < 0-5) 

°(title-"%object-oriented%") 

0̂ GH© 0 

A=Proceedings 
B^Paper 
C= Author 

Phase 2 
(consolidation 
phase) 

Phase 1 
(sub-query 
phase) 

Figure 7.2. Complex Object-Oriented Query Graph and Access Plan 

A typical execution method of complex object-oriented queries, as shown in Figure 

7.2(b), follows a phase-oriented paradigm whereby die operations of a query plan are 

performed by several execution phases. The first phase involves the operations that require 

only base classes and thus are ready to process. The next phase may then contain the 

operations that become ready to process after the completion of the previous phase. The last 

phase produces the result of the query. Within an execution phase, each of the operations is 

allocated to one or more processors such that all operations in the phase are processed in 

paraUel and are expected to complete at about the same time. 

A major difference between object-oriented query access plans and relational query 

access plans is that leaf-nodes in the object-oriented query trees may consist of selection 

operations on path expressions, as well as single classes. In relational databases, path 

expressions must be implemented in explicit join, resulting in taller and more complex 

query trees. In contrast, query trees in OODB are simpler but contain richer nodes. Phase 1 

of object-oriented query trees normally consist of path expressions, whereas phase 2 

contains an explicit jom. Although theoretically object-oriented query trees can be of 
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arbitrary height, it is more common to have 2-phase object-oriented query trees, as most 

information can be tracked dowoi through pointers among objects. 

As joining based on primitive attributes is similar to tiiat of tiie relational join, we 

concenfrate on execution scheduling of sub-queries witiiin one phase (e.g., phase 1). Thus, 

the objective can be rewritten as completing all sub-queries as early as possible since tiie 

operation of tiie next phase cannot start before the completion of all sub-queries. There are 

two ways of execution of the sub-queries. One way is to process each sub-query one-by-one 

{Serial scheduling). The other way is to process all sub-queries concurrentiy (Parallel 

scheduling). 

7.3.1 Serial Execution Among Sub-Queries 

In the serial scheduling, the operations in a given query access plan are carried out one after 

another, starting from the leaf operations (e.g., path expressions) to the root operation (e.g., 

join operations) that produces the query result. When a sub-query is being processed, all 

resources are allocated to it. For each operation, parallel processing is exploited by 

partitioning and distributing objects over all avaUable processors, followed by an execution 

of the operation in parallel. If multiple sub-queries exist in a phase, the order of the 

execution of these sub-queries does not matter, as they do not have any inter-dependency. 

One essential element is that these sub-queries must be completed before the next phase can 

start. 

When the objects operands of each operation are uniformly distributed to die 

processors, i.e., no load skew, the maximum speed-up of the operation is achieved since no 

processors are idle when others are busy working. However, if load skew occurs, some 

processors may have heavier loads than others and require more time to complete the 

portion of die assigned operation. The completion time of tiie whole operation tiierefore 

would be much higher than expected since it is determined by the time requfred for the 

heaviest loaded processor. Moreover, in the case of high load skew, it is common that the 

heaviest load over the processors reduces only marginally when the number of the 

processors is large, indicating that allocating a large number of processors will not help the 

reduction of execution time of the operation. 

7.3.2 Parallel Execution Among Sub-Queries 

In the parallel scheduling, multiple sub-queries within one phase are executed 

simultaneously. The execution of the phases is still carried out in sequence, as this is a 

manifest of a phased-oriented paradigm. When executing multiple sub-queries witiiin one 
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phase, the resources must be intelligently divided, so diat aU of tiiese sub-queries may finish 

at the same time and, most importantly, they are expected to complete the jobs as early as 

possible, so that the execution of tiie next phase can proceed as early as possible. 

Intuitively, one would allocate more resources to a larger sub-query. However, if tills sub-

query contains a high degree of skewness, allocating more resources may not improve 

performance significantiy. Hence, one might allocate fewer resources tiian initially planned 

and give away some of die resources to tiie otiier sub-query whenever possible. 

Given two sub-queries in a phase, where sub-query 1 is large but skewed, and sub-

query 2 is small but not skewed, a dilemma of the parallel approach can be explained as 

follows. One method is to allocate fewer resources to sub-query 1 (because it is skewed) 

which will result in the sub-query taking more time to finish die job, while sub-query 2 

finishes very early. Another method is to allocate more resources to sub-query 1, although 

sub-query 1 is expected to improve just slightiy; sub-query 2 with fewer resources will 

finish slower than with the previous method. Hence, it is necessary to find a cut-off between 

these two approaches. One major issue in parallel scheduling is processor configuration. 

This is known to be difficult as it does not depend only on the size of each sub-query, but 

also on the distribution of associated objects which causes a load skew problem. 

7.3.3 Adaptive Processor Allocation 

Processor allocation m parallel OODB is to assign resources (i.e., processors) to incoming 

queries with possible multiple sub-queries in such as way that the query execution times are 

minimized. Three propositions are developed around the two execution scheduling 

strategies. Two factors in particular are considered: skewness and the size of each sub-

query. An adaptive processor allocation algorithm, based on three propositions, is proposed. 

PROPOSITION 7.1. Given two sub-queries in a phase, if both sub-queries do not 

involve any skewness, serial execution of the sub-queries may be usefully 

adopted. 

Since the sub-queries are not skewed, linear speed-up may be attainable. In other 

words, the addition of resources to the operation will proportionally mcrease performance. 

Due to the potential of linear speed-up, the two sub-queries can be viewed as one large sub-

query consisting the two smaller sub-queries miming one after another. Should the two sub-

queries be mn concurrently instead, without a careful resource division, it will be likely that 

these sub-queries may not finish at the same time, causing some processors to be idle. 
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PROPOSITION 7.2. Given two sub-queries in a phase, if bodi sub-queries do involve 

a certain degree of skewness, the parallel execution of die sub-queries may 

be usefiiUy adopted. 

Using the skew principle, it is known that adding new processors to a skewed 

operation will not make a big impact on performance improvement. Since the resources are 

limited, it wUl be better to keep the number of processors minimal for a particular 

operation. Hence, the resources are divided into multiple operations (e.g., two sub-queries). 

Although the execution time of each operation is increased due to fewer resom-ces being 

allocated to it, the overall performance of the two sub-queries is improved because the 

operations are executed in parallel. 

PROPOSITION 7.3. Given two sub-queries in a phase, if one sub-query involves 

skewness and the other does not, die decision on the appropriate execution 

scheduling depends on the largest sub-query. If the largest sub-query is 

skewed, the parallel execution of the sub-queries is preferred. Otherwise, 

the serial execution of the sub-queries is preferable. In the case where the 

two sub-queries are quite equal in size, the skewed sub-query is more 

dominant, and hence, the parallel execution is more desirable. 

The largest sub-query makes the biggest impact on overall performance, since the 

average performance of the smallest sub-query is usually smaller than that of the largest 

sub-query. Incorporating the skew principle, the execution scheduling is also determined by 

the presence of skewness in the case when die two sub-queries are equal m size. 

An adaptive processor allocation algorithm is presented in Figure 7.3. Since most 

sub-queries involve some degrees of skewness, parallel execution scheduling becomes 

dominant and calculating an optimal processor configuration (function 

CalculateResourceDivision) becomes critical. The centre of the function is the estimation 

for sub-queries execution time. When skew presents, the execution time for a particular 

sub-query is determined by the heaviest processor. There has been much research work 

done in skew modelling. Researchers usually employ a number of assumptions (e.g., 

distribution) in calculating and estimating the size of die most overloaded processor. Even 

with the presence of these assumptions, it is difficult to completely obtain the correct 

answer before run-time. In other words, skew modelling is known to be a difficult problem 

of query execution estimation. On the other hand, query (sub-query) execution estimation is 

the major factor in parallel sub-query execution scheduling. The importance of calculating 

the correct processor configuration is given by the foUowing example. 
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Program AdaptiveProcessorAUocation (Si, 52: sub-queries; Â: number of processors): 

Begin 

If S\ and Si are not skewed Then // proposition 7.1 
Allocate AT to 51 //serial 
Allocate/V to 52 

Else If 5l and 52 are skewed Then // proposition 7.2 
A'̂ l - CalculateResourceDivision (5i ,S2,N) II parallel 
Allocate Â l to 5l 
AUocate {N-N\ ) to 52 

Else If max (5l , 52) is skewed Then // proposition 7.3 
Â l - CalculateResourceDivision (5l ,S2,N) I Iii S\ "Si; max(5l ,52 )=5l or 52 
Allocate Nl to 5l // parallel 
AUocate (N-Nl) to 52 

Else 
Allocate Â  to 5l // serial 
Allocate Â  to 52 

End If 

End Program. 

Function CalculateResourceDivision (5l , 52 : sub-queries; N: number of processors) 
remm processors_for_5l 

Begin 
Initialize: Total_Time = max number 
Fori = lTo(A^-l) 

Calculate max (5l/0 
Calculate max {S2liN-i)) 
If time (51) > time (52) Then 

Store time (5l) to Temp 
Else 

Store time (52) to Temp 
End If 
If Temp < Total_Time Then 

Store Temp to Total_Time 
Processor for 5l = / 

End If 
End For 
Retum processors_for_5l 

End Function 
Figure 7.3. Adaptive Processor Allocation 

Query 1 (shown in Figure 7.2) is used as a case study. Some experimentation has 

been carried out. The main aim of this is to compare performance of query 1 using a serial 

scheduling strategy and a parallel scheduling strategy. As only sub-queries schedulmg is 

concemed, only the elapsed time taken by phase 1 is considered. There is no need to 

measure the overall query elapsed time, smce only phase 1 wUl determine the difference 

between the two scheduling strategies. In die experimentations, up to 12 processors are 

used. Data parameters for die first and die second sub-queries are shown m Table 7.1. 
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WI^MK^^^^^^^^m^i 
Proceedings: 

r\ = 1,000 proceedings objects 
XI - 30 papers per proceedings 
a l = l 
a l - 50% 

Papers: 
Xl"! authors per papers 
a 2 = l 
a2 = 5% 
02=1 

Authors: 
o3 = 90% 
6 3 - 1 

'^m^m^w-
Proceedings: 

rl = 1,000 
ol - 5% 

Table 7.1. Data Parameters 

Using the serial scheduling method, the elapsed time for sub-query 1 and sub-query 

2 are 80 |is and 8 [is, respectively. Hence, the total elapsed time for phase 1 is 88 ^s. Using 

the parallel scheduling method, all possibUities of processor configuration are 

experimented. It starts from one extreme (i.e., 11 processors for sub-query 1 and 1 

processor for sub-query 2) and goes to another extreme (i.e., 1 processor for sub-query 1 

and 11 processors for sub-query 2). The results are shown in Figure 7.4. 

Parallel Scheduling Method 

I Sub.query 1 

I Sub-query 2 

300 T H 258 
Titne 

1+11 2+10 3+9 4+8 5+7 6+6 7+5 8+4 9+3 10+2 11+1 

Processors (subquer/ 1 + subquery 2) 

Figure 7.4. Performance of Query 1 using Parallel scheduling 

Several observations can be made based on the above results. Firstiy, regardless of 

how processors are divided, sub-query 1 will finish later than sub-query 2. Hence, sub-

query 1 sets the total elapsed time. Secondly, as the lowest completion time for sub-query 1 

is with 10 processors, the configuration 10-1-2 processors (i.e., 10 processors for sub-query 1 

and 2 processor for sub-query 2 is the most efficient configuration). Finally, compared to 

serial scheduling, parallel scheduling shows a better performance (i.e., 45 [is (parallel) 

versus 88 [is (serial)). Even when a less optimal processor configuration is used (such as 
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7+5 processors configuration which requires 69 \is), parallel scheduling performs better. 

However, with a careless resource division, such as 6+6 processor configuration, the 

parallel execution schedulmg is less efficient than that of the serial execution scheduling 

(92 us (parallel) versus 88 [is (serial)). The lesson is tiiat an accurate resource division 

calculation is a critical factor in paraUel execution scheduling. 

7.3.4 Summary 

Two important aspects emerged from the sub-queries execution scheduling, particularly 

regarding load skew and processor configuration. To gain acceptable performance 

improvement, these two issues must be carefuUy addressed. 

Load skew degrades performance. Load skew has been a part of most query 

executions, as imbalance is not separable from parallel query processing. In recent years, 

die problem of skew in parallel relational databases has been the subject of active research, 

and skew handling algorithms have been proposed (Liu et al., 1995; Bmnie et al., 1995; Lu 

and Tan, 1992). There is no doubt that die skew problem in parallel OODB is no less 

significant than that in parallel relational databases. In order to improve performance of 

object-oriented query processing, a careful and intelligent skew handling for load balancing 

must be established. As a matter of fact, many existing skew handling algorithms for 

parallel relational database systems may be of some use in paraUel OODB. 

Obtaining an optimal processor configuration for parallel sub-query execution is 

difficult. An optimal processor configuration is mostly determined by mn-time factors, such 

as tiie cardinality of classes, the degrees of skewness, the selectivity factors, etc. Because 

most of these factors are non-deterministic, finding an optimal processor configuration for 

parallel sub-query execution is a difficult task. Without a careful calculation, it is possible 

that parallel execution of sub-queries wUl tum into a very expensive operation, even more 

expensive than the less desired serial execution of the sub-queries. 

7.4 Data Re-Distribution 

One way to overcome the load skew problem is by data re-distribution, so that the load of 

each processor will always be balanced (or near balanced) at any stage of query processing. 

Two data re-distribution techniques are considered, namely: physical and logical data re­

distribution. 

Using the physical data re-distribution technique, data are acmally moved from one 

processor to another in the load balancing process. This happens when an idle processor 
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requests an object and one of the non-idle processors replies to die request by sendmg an 

object to the idle processor through an interconnected network. 

On die otiier hand, using logical data re-distribution, a particular data initially 

assigned to be processed by a processor is now changed to anodier processor. The data is 

not physicaUy moved; instead, tfie pointer/flag of the data, which keeps die information 

about the assigned processor, is updated. This technique can only be applied to shared-

memory/disfributed-cache architectmres and fully replicated systems. 

7.4.1 Physical Data Re-Distribution 

In a shared-nothing architecture, data is divided into a number of disjoint partitions, and 

each of these partitions is stored at one and only one processor. Each processor has its own 

autonomy to its data, and it works independently of others. Consequentiy, the need for 

communication among processors becomes minimal. Regardless of the topology adopted by 

the architecture, a router is commonly used to handle the delivery of information from one 

processor to another. The path can be d^ansparent to the users. 

In processing a sub-query containing a path expression, partitioning root objects 

can be done in a round-robin fashion (in order to distribute the root objects unifonnly 

across all processors). The weight of each complex object varies due to the number of 

associated objects being attached to each root object is non-uniform. Consequently, the time 

taken to process a complex object differs between one and another. When a processor 

finishes its work-load, it is desfrable that this idle processor takes the initiative to help other 

processors, which are stUl busy processing, by "stealing" objects from them. Subsequentiy, 

data re-distribution from a non-idle processor to an idle processor occurs. By tiiese 

movements, it can be expected that the processmg time of die overloaded processor 

decreases, and as a result, the overall processing time will also decrease. 

ParaUel processing is modelled by means of communicating sequential processes 

CSP (Hoare, 1985). Each processor consists of 2 processes: databank and worker 

processes. The data_bank process deals with the data storage, whereas the worker process is 

to process each data upon arrival from the data_bank process. Initially, a worker sends a 

request to die local data_bank for an object. Then, die data_bank replies the request to the 

worker by sending an object. This communication is internal witiiin one processor. Figure 

7.5(a) shows the processing model. 
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Figure 7.5. Physical Data Re-distribution Architecture 

When the data_bank of a processor is empty, the worker of that processor sends a 

request to a neighbouring data_bank, instead of to its own data_bank. The neighbouring 

data_bank driggers a request (either from its own worker or from other workers), and sends 

a reply to the worker which requested an object (shovra in Figure 7.5(b)). 

Using the same technique, if the second processor has also mn out of data, both 

processors 1 and 2 wUl send a request to anodier processor for an object. Figure 7.5(c) 

shows this configuration. The above procedure is repeated until all processors finish the 

job. An algoritiim for tiie data_bank and worker processes is presented in Figure 7.6. 
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Process Data_Bank [i] {1 = 0 to num_processors) 
Begin 

For k-Qio no_objects 
tik" no_objects Then 

object - 0 // end of partition 
Else 

Get an object 
End If 
Altj = 0 to num_processors 

Guard: Receive a request from worker through channel [i]\j\ ? // waiting for a request 
Reply with an object 

End Alt 
End For 

End Process 

Process Worker [i] {i = 0 to num_processors) 
Begin 

j = i 
While tme 

Send a request to data_bank through channel [j][i] 
Receive an object from data_bank through channel [)][i] 
If obj = 0 Then // end of partition 

// find a donor 
If y = num_processors - 1 

;-=.0 
Else 

End If 
If y = i Then // a full circle is done, and the request is not 

Stop // answered by any other processor. 
End If 

Else 
Evaluate the object 

End If 
End While 

End Process 

Figure 7.6. Data_Bank and Worker Processes for Physical Data Re-Disttibution 

7.4.2 Logical Data Re-Distribution 

Logical data re-disfribution can be implemented in two ways, namely: shared-

memory/distributed-cache architectures usmg parallel pipes, and fully replicated "shared-

nothing" architectures. In shared-memory/distributed-cache architectures, all processors 

have an equal access to the central data bank. Processing is done by sending objects from 

die data bank through pipes to the worker processors. Load balancmg is achieved through 

dynamic processor scheduling. Whenever a worker processor becomes idle, the central data 

bank immediately fetches an object. The object may have been initially planned to be 

allocated to a different processor. 

In fully replicated "shared-nothing" architectures, processing is done similarly to 

disjoint-partitioned shared-nothing architectures, except that load balancing is achieved by 
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dynamic message/control passing, not by physical object dransfer. The details of tiiese two 

methods are presented as follows. 

a. Shared-Memory/Distributed-Cache with Parallel Pipes 

Parallel processing in shared-memory/distributed-cache architecture is accomplished by 

distributing the work load equaUy to all avaUable processors. The processmg mode adopts a 

pipeline style. Once a processor receives a piece of complex object, it can start processing it 

without waiting for other pieces of data to arrive. Since data transfer of an object from one 

processor to anotiier is normally slower than the processor execution time of the same 

object, it is desirable that several data be transferred in parallel using parallel pipes. The 

aim is to equalize the data transfer time with the local processing time. In this way, the local 

processing time can completely cover tiie data transfer time. 

The pipeline models are based on the equal partitioning where the number of data 

units are divided equally into all participating slaves. As each data unit weights differentiy, 

there might be cases of load skewness. To overcome this problem, a scheduler process is 

implemented. The task of the scheduler is to manage the object queue. It has to make sure 

diat the work load among processmg elements is closed to equal, although the number of 

data units is different. An architecture of this model is presented in Figure 7.7. 

Global 
Data_Bank 
(Master) 

Scheduler 

Sender 

Processing 
Elements Buffer.m[0] 

(Slave) 
Worker[0] 

Buffer.out[0] 

Parallel Pipes!Channels from Sender[n 

to Receiver[n-1] 

Figure 7.7. Logical Data Re-distribution using a Scheduler 
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The process is initiated by the sender process. A sender process sends a request to 

the scheduler to obtain an OID. Upon receiving the request, the scheduler process replies to 

the sender process with an OID. The sender process then transfers this object to a 

processing element. Several senders may transfer to the same processing element through 

different pipes/channels. Each processing element is equipped with a number of input and 

output buffers. The object ttansferred from the sender is received by the worker through an 

input buffer. If the object is selected, the object is transferred back to die master (i.e., 

receiver process) through the output buffer. An algorithm which implements a scheduler for 

managing the object queue is presented in Figure 7.8. 

Process Master: 
Begin 

Process Sender[/][A:1 {i = 0 To P; ;fc = 0 To B): II P=slaves; B=buffers 
Begin 

While Trae 
Send a request to the scheduler 
Get an object number from the scheduler 
Read a complex object 
SendittoSlave[/][A;] 

End While 
End Process 

Process Scheduler: 
Begin 

For 7 = 0 To total number of root objects 
Pri Alt I = 0 To P; yt = 0 To 5 

Guard: Get a request from Sender[/][fc] 
Send an object number to Sender[/][^] to send the object out 

End Pri Alt 
End For 

End Process 

Process Receiver[/][A:] (/ = 0 To P; /t = 0 To 5): 
Begin 

While Tme 
Get an object from Buffer_Out[i][fc] 

End While 
End Process 

End Process 

Process Slave[i] (/ = 0 To P): 
Begin 

Process Buffer_In[i][*] (A; = 0 To B): 
Begin 

WhUe Tme 
Get an object from Sender[z][^] 
Send it to the worker 

End WhUe 
End Process 

Process Worker[i]: 
Begin 
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While Tme 
AltForjk = OTofl 

Guard: Get an object from Buffer_In[z][yt]? 
Process the object 

End Alt 
If Not Selected 

Send a negative ack to Buffer_Out[f] 
Else 

Send the object to Buffer_Out[/] 
End If 

End WhUe 
End Process 

Process Buffer_Out[i][*:l (yt - 0 To 5-1): 
Begin 

While Tme 
Get an object from Worker[i] 
If Buffer.out is busy sending an object to receiver 

Pass the object to the next buffer 
Else 

Send the object to the receiver 
End If 

End While 
End Process 

End Process 

Figure 7.8. Master-Slave Processes 

Figure 7.9 shows an example of the simulation result which proves tiiat even 

though the number of data units (complex objects) processed by each slave is different, the 

work load is quite even. It can be seen that object number 6 does not go to slave [0] as it is 

StUl busy processing object number 3. It then goes to slave[2] because slave[2] has just 

finished processing object number 5, which is very short. 

Sample Ordering Result: OID 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

Slave 
0 
1 
2 
0 
1 
2 
2 
0 
2 
1 
0 
2 
2 
0 

<««======== 

Slave 0: 

Slave I: 

Slave 2: 

10 13 

12 

Figure 7.9. The Result of the Scheduler 
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b. Fully Replicated Systems 

In fully replicated systems, all data are replicated to all processors. The architectures are the 

same as those of shared-nothing architectures, but each processor has the same data as other 

processors. Load balancing can be achieved in either of two ways. One way is to use the 

physical data re-distribution technique, but the ones that move from one processor to 

another are not the actual objects, but the controls. When one processor has finished its 

portion of the work-load, it sends a request to a neighbouring processor. After receiving a 

request, the neighbouring processor sends an object ID (OID), not the actual object, as a 

reply. The idle processor retrieves the designated object pointed by the OID. 

Communication among processors is still necessary. However, the communication costs 

will be minimum as the size of each message is far smaUer than the size of a complex 

object. 

Another way is to use the parallel pipes architectures which simulate a single queue 

model. In this model, a processor is chosen as a master which handles the object 

distribution. Since each slave now has a full copy of data, the master only needs to send a 

control to the slave, in order to activate the slave to start processing each object. The 

scheduler manages the control distribution dynamically. Since this approach is similar to 

that of shared-memory architectures, it is then more desfrable than the first one. However, it 

imposes upon a constraint that a processor in the intercoimection network must be chosen 

as a master and a scheduler must be implemented. 

7.5 Discussions 

Two major important lessons, which are drawn from die two issues highlighted earlier, are 

as follows. 

• Data re-distribution is presented as a tool for handling the load skew problem. With 

data re-disdibution, load balancing can be achieved. Major performance improvement 

can be expected especially in shared-memory systems and fully replicated systems, 

since data re-distribution is performed logicaUy tiurough dynamic processor scheduling. 

• Since the negative effect of load skew is minimized through data re-disdribution, serial 

scheduling becomes more feasible. Data re-distribution has provided an indirect 

solution to die difficulty of resource division calculation, in which it is now not needed. 

Exploiting serial scheduling through die availability of data re-distribution is sometimes 

considered as "going back to the basics". It is however not a drawback, but in fact, an 

advancement since performance improvement is gained not only by linear/near linear 

speed-up, but also through the efficiency of serial scheduling when appropriately used. 
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Allocating full resources to a sub-query now seems to be better than dividing resources 

among multiple sub-queries. 

7.6 Conclusions 

Most complex queries involve path expressions and explicit joins, m which the path 

expressions form the sub-queries. Therefore, it is important to define strategies for sub-

queries execution. Two execution scheduling strategies for sub-queries have been 

considered, particularly serial and parallel scheduling. The serial scheduling is appropriate 

for non-skewed sub-queries, whereas the parallel scheduling with a correct processor 

configuration, is suitable for skewed sub-queries. Non-skew sub-queries are typical for 

single class involving selection operation and using a round-robin data partitioning. In 

contrast, skew sub-queries are a manifest of most path expressions queries. This is due to 

the fluctuation of the fan-out degrees and the selectivity factors. 

Further performance improvements can be gained through load balancing, which is 

implemented in data re-distribution. Two data re-distribution methods are defined: physical 

and logical data re-distribution. The physical data re-distribution is suitable for a shared-

nothing architecture, where each processor has its own autonomy to its data. When load 

imbalance occurs, some processors wUl need to transmit then data to others. The logical 

data re-distribution does not involve any data movement from one processor to another. 

This method is applicable to full data replication systems or shared-memory systems. In a 

shared-memory system the data is centralized, whereas with full data replication, although 

the data is distributed, each processor has a copy of the same data. Thus, there is no 

necessity for physical data movement, and load balancing is achieved through dynamic 

processor assignment. 

The main contributions of tiiis chapter are summarized as foUows. 

• Execution scheduling strategies incorporating skewness are developed. 

Skewness has been one major problem in parallel query processing in which the 

desire linear speed-up is prevented. The effect of skew in sub-query execution 

scheduling has been studied and presented. 

• An adaptive processor allocation algorithm is presented. The algorithm is built 

upon the three propositions on die basic schedulmg sd-ategies. Two factors are 

considered, namely: skewness and size of sub-queries. A need for a precise 

skew model for parallel sub-query execution scheduling is also highlighted. 
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Physical arui Logical data re-distribution for load balancing are described. 

Through data re-distribution, linear or near linear speed up is expected to be 

attainable. Hence, the aim of parallel processing in databases; that is 

proportional performance improvement, can be accomplished. 

The potential of serial execution scheduling in object-oriented query access 

plans has been identified. Serial scheduling not only makes complex query 

execution scheduling simpler, but also more efficient. The focus of parallel 

query processing may be shifted to parallel processing within each sub-query, 

in which full resources are allocated to each sub-query. 



Chapter 8 

Analytical Performance Evaluation 

8.1 Introduction 
In order to measure the effectiveness of paraUeUsm of object-oriented query processing, it is 

necessary to provide cost models that can describe the behaviour of each paraUelization 

model. Although the cost models may be used to estimate the performance of a query, it is the 

primary mtention to use them for comparison purposes. The cost models also serve as tools to 

examine every cost factor in more detaU, so that right decisions can be made to adjust the 

entire cost components to increase overaU performance. The cost is primarUy expressed in 

terms of the elapsed time taken to answer a query. It is the aim of this chapter to present cost 

equations for each paraUelization model and algorithm, and to perform quantitative analysis. 

This chapter is organized as foUows. Section 8.2 describes the foundation for 

analytical performance evaluation which covers the basic system structure and cost equation 

notations. Section 8.3 presents an analytical analysis for the inheritance data sdiictures for 

paraUel processing. Section 8.4 gives an analytical analysis for inter-object paraUelization 

and inter-class paraUelization. Section 8.5 examines quantitatively the optimization of 

primitive operations. Section 8.6 analyses the execution scheduling strategies. Section 8.7 

presents a discussion. And finaUy, section 8.8 draws the conclusions. 
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8.2 Foundation 

8.2.1 System Structure 

A disfributed-memory architecture, as shown in Figure 8.1, witii one master processor and a 

number of slave processors, is adopted as a basic system stiiicture. The master and tiie host 

are tightiy coupled and may refer to die same physical processor. Each slave processor is 

equipped with its ovra local main memory. The system topology is a star network. When diere 

is a need to disfribute objects from one slave processor to the other, tiie system configuration 

can be altered to a fuUy-connected network topology. This system stmcture not only reflects a 

typical fransputer system, but also a symmetrical multiprocessor where each "slave" 

processor is equipped with a cache and aU slaves share a global memory. Hence, tiiis 

stiructure is a generic system structure for distributed-memory and shared-memory systems. 

The programming paradigm is processor farming, where the master distributes the 

work to tiie slaves (Green and Paddon, 1988). It wUl be ideal if aU slaves are busy at any 

given time; that is when the work load has been divided equaUy among aU slaves. It is 

assumed that the data is already retrieved from the disk. Main memory based structure for 

high performance databases is becoming increasingly common, especiaUy in OODB, because 

query processing in OODB requires substantial pointer navigations, which can be easUy 

accomplished when aU objects present in the main memory (Litwin and Risch, 1992; Moss, 

1992). 

User Slave-1 

Host 
Computer ^ 

yfZ 

•^ 

Master Slave-2 

Disk 

Slave-3 

Figure 8.1. Basic System Structure 

The user initiates the process by mvoking a query through the host. To answer die 

query, the master processor disfributes the data from the host to die slave processors, and 

then sends the resiUt back to the host, which subsequentiy wiU be presented to the user. 
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a. Major Cost Components 

Total elapsed time for an operation usuaUy comprises data distiibution time, reading time, 

predicate evaluation time, and writing time. 

Data Distribution Time 

There are two main components in calculating tiie elapsed data disfribution time: variable and 

fixed processor overhead costs. The variable processor overhead cost depends on die number 

of objects tiiat are disfributed to die slave processors, whUe die fixed processor overhead cost 

depends on die number of slave processors used for tiiat particular operation. The fixed cost 

is related to the cost of opening the channels between the master and die participating slave 

processors. 

Reading Time 

The elapsed reading time of an operation is equal to the number of objects to be read divided 

by the number of participating slave processors. When skewness is present, the maximum 

number of objects in one processor wiU determine the reading time. 

Predicate Evaluation Time 

Predicate evaluation time is very simUar to the reading time, since aU objects read must be 

evaluated against local predicate. AdditionaUy, the cost for predicate evaluation also includes 

the predicate length, which determines the complexity of a selection operation. 

Writing Time 

The writing time is the time taken to write selected objects to the output buffer. The writing 

time can also be denoted as a fransfer time of those objects to the master processor. 

b. Fully Partitioned vs. Pipeline 

Fully Partitioned Model for Join Operations 

Data disfribution time, reading time, predicate evaluation time, and v^iting time represent a 

sequence of phases in which aU data are distributed first, foUowed by local processing 

(reading and predicate evaluation), and finaUy the result is transferred back (writing). This 

model is actuaUy a fuUy partitioned model where local processing does not start before the 

data is fuUy partitioned (or disfributed). This model is tiierefore suitable for join operation. 
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because join operation typicaUy consists of two phases: partitioning (data distribution) and 

local join phases. Therefore, the sirni of data disfribution time, reading time, predicate 

evaluation time (in tiiis case it is a joining time), and writing time is tiie total cost for a join 

operation. The reading time, predicate evaluation time, and writing time are often abbreviated 

as the local processing time. 

Pipeline Model for Selection Operations 

In a selection operation, local processing can start witiiout tiie need to wait for aU data to be 

completely partitioned (disfributed). Furthermore, local processing can be done 

simultaneously with subsequent data disfribution. This process is caHed pipelining. 

A paraUelization model for selection queries based on pipelining is presented in 

Figure 8.2(a). Each block is a process, and several processes can be located at the same 

processor. Processes can also be nested. When several processes request a CPU access at die 

same time, only one of them can go into an execution state, whUst the rest must wait. On the 

contrary, communications can be done simultaneously as each commimication uses a 

different chaimel. 

An equal partitioning sfrategy, a more general version of the round-robin 

partitioning, is used. AU objects in the class are divided equaUy among aU participating 

slaves. The order of the objects itself is not like that of round-robin. After it has been 

calculated how many objects each slave wiU receive, the slaves can start getting an object. 

They wUl stop once they reach the quota. Therefore, a class with 10 objects and 2 slaves, 

with roimd-robin, slave 1 wUl get aU odd objects and slave 2 wiU have aU even objects. Using 

tiie equal partitioning, slave 1 wUl get 5 objects and so wiU slave 2, regardless of which 

objects. 

As the communication uses a synchronization protocol, both the sender and the 

receiver must be ready when disfributing data. This inciu's waiting time for the sender, as it 

must wait imtU the receiver is ready to accept data. Data distribution from the sender to the 

slave of the second object caimot be initiated imtU the first object has been processed and sent 

to die receiver. It is noted that for the same size of data the communication between tiie slave 

and die master normaUy takes longer than tiie CPU processing time. However, the cost for a 

message is very smaU. The processing cost for each processor is tiie sum of the distribution 

cost, the local processing cost, and die writing cost. The overaU processing cost is set by the 

highest processing cost. 

The initial model can be improved by using an input buffer in each slave, so that data 

disfribution does not have to wait for the worker to finish its job. The size of tiie buffer must 
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be large enough to handle a single object. An architecture tiiat uses an input buffer scheme is 

presented in Figure 8.2(b). After tiie CPU finishes processing an object, it does not have to 

fransfer it back to die receiver, but to tiie output buffer. The output buffer is placed at die 

same processor where the CPU is located. As tiie internal communication is much faster tiian 

tiie external, tiie CPU vi'iU be ready for processing die next object after Q-ansferting tiie 

current object to the output buffer. 

As tiie input data disfributions run simultaneously witii data processing, tiie overaU 

cost is determjned by die cost for data distribution. Only for die last piece of data, does die 

cost have to be added to the CPU processing cost, as there is no more data to be distributed. 

Using this model, processing data in a slave can be done simultaneously witii input data 

fransfer of the next piece of data from the master to the buffer part of the slave. As a result, 

the processing cost for each processor wUl not include the local processing cost and the 

writing cost, as they are already covered by the disfribution cost. However, this model wUl 

generate a buffering overhead. 

One way to unprove the previous models is by implementing multiple single buffers 

per slave (Figure 8.2(c)), and each buffer has its own channel from and to the master. In this 

way, data disfribution among buffers can be done in paraUel. Using this model, the emphasis 

has been shifted from the disfribution to the processing. Consequentiy, CPU usage can be 

increased. The sender is implemented as a two-dimensional array with one subscript 

represents number of buffers and the other represents the nrnnber of workers. 

The output buffers, uiUike the input buffers, are implemented as chains within each 

slave. Entering into an output buffer is done by a single channel, but going out to die receiver 

can be done simiUtaneously by each buffer within a buffer chain. If a buffer is busy sending 

out an object to tiie receiver, the mcoming object to tiie buffer chain wUl be passed to die next 

avaUable buffer. The reason for this is efficiency. It wUl be costiy if tiie workers were 

connected to each buffer in a free topology like in that of input buffers, because tiie worker 

has to check which buffer is idle. Using a chain, die worker simply sends die object to die 

output buffer and the buffer wUl manage it. 

The number of buffers must be large enough, so tiiat the disfribution cost is totaUy 

covered by the processing cost. However, when tiie number of buffers is very large (far larger 

tiian needed), tiiis architecture wUl be simUar to tiie disjoint partitioning shared-notiting 

architectures. There wUl be a need for physical data re-disfribution at a later stage when tiie 

finishing time of each processor is dUferent. This is certainly not desirable and tiierefore it is 

necessary to keep the number of buffers as low as possible, just enough to cover tiie 

disfribution cost. 
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Figure 8.2(a). A simple master-slave architecture 

Master 
Sender Keceivei 

101 m m 

u 

m m m 
'7\ 

r . y 

,ti-i] 

Slave 
Buffer, in 

Worker[Cfij 

Buffer.out[0 

l l i - l j 

[n-1] 

Buffer.in[n-1] 

Worker[n-l] 

Buffer.out[n-ll 

Figure 8.2(b). Master-Slave Architecture with Single Input-Output Buffers 
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Since tiie local processuig time can completely cover tiie data distribution time, only 

tiie local processing time is considered in die selection operations. Hence, tiie number of 

objects processed and the processing unit time are the two important cost components. 

8.2.2 Cost Notations 

Cost equations are composed of a number of components, such as number of objects, number 

of processing elements, processing unit costs, selectivity factors, etc. Each of tiiese 

components is represented by a variable, to which a value is assigned at run-time. The 

notations used are shown in Table 8.1. 

Variatjfes 
r or s 
n 
X 
a 
k 
td 
tr 
tv 
tw 
tp 

f 

Deserifrfiooi ;ss| 
number of objects m a class 
number of processors 
average fan-out degree of a class 
selectivity degree 
skewness ratio 
distribution unit time 
reading unit time 
predicate evaluation unit time 
writing unit time 
local processing unit time 
frequency of a query 

Table 8.1. Basic cost notations 

The more detaUed descriptions of each cost component are explained as foUows. 

a. Number of Objects (r or s) 

The number of objects is represented as an r or s. If die classes in a query are associated ui an 

inheritance or aggregation hierarchy, the number of objects of these classes are represented as 

n , n, ..., rm, where m is the number of classes in die hierarchy. Figure 8.3 shows an 

iUusfration of notations for number of objects. 

In an inheritance hierarchy, n denotes die number of super-class objects not 

specializing at any sub-classes. These objects are referted to as "pure" super-class objects. 

Depending on the number of super-classes involved in the query, n wiU be the number of 

sub-class objects, if there is oiUy one super-class. 

In a path expression, n is die number of root objects; and r2, r s , ... are tiie number 

of associated objects. Since some associated objects are accessed more tiian once, and some 

of tiiem are not accessed at aU, the number of accesses to die associated objects are 

represented as r'l, r'3 ,... 
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In an explicit join query where two classes do not have any connections apart from 

tiie joining atfribute, tiie number of objects of the two classes are denoted as r and s. 

Inheritance: 

Path Expressions: 

Join: 

1 ""v 

©-^©-^ 

V 

Q 9 
1 ^ ^ \ 

Q) 

Figure 8.3. Notations for number of objects 

b. Number of Processors (n) 

In a path expression, where a number of classes along an aggregation hierarchy are involved 

in the query, the number of processors avaUable to process the query is represented as m. For 

the subsequent classes, the number of processors are represented as ni, ns, ... . In the case 

where these values are the same, or there is only one phase of query processing, n is used 

instead. 

c. Other Data Parameters (k, a, k) 

Otiier important data parameters include fan-out degree X, selectivity degree a, and skewness 

ratio k. Like the number of objects (i.e., r, s) and die number of processors (i.e., n), a 

subscript is attached to a cost variable which determines die class to which tiie cost variable 

refers. For example, the fan-out degree of a root class in a patii expression is denoted as >.i. 

To distinguish/an-oM/i from fan-in^, the average fan-in degree of a class is denoted as X\ For 

example, tiie average fan-in degree of an associated class of a two-class path expression 

query is represented as XX which refers to the average nmnber of root objects per one 

associated object. 

^ number of directed arc coming out firom an object 

number of directed arc coming into an object 
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The selectivity degree o gives the probabiUty (or proportion) that a given object of a 

class is selected. Incorporating a subscript, ai of a path expression query refers to a 

selectivity degree of the root class. 

The skewness ratio k refers to the ratio between the load of the busiest processor and 

that of tiie average processor. Hence fo of a two-class path expression query refers to the 

skewness ratio of the associated class. 

d. Processing Unit Costs (td, tr, tv, tw, and tp) 

Like other cost variables, a subscript is also used to determine the class to which a particular 

cost variable is applied. Processing imit costs include distribution unit time td, reading imit 

time tr, evaluation unit time tv, writing unit time tw, and local processing unit time tp. 

Disfribution unit time td refers to the elapsed time taken to fransfer an object from 

one processor to another (e.g., from master to a slave). Reading unit time tr is the time to 

retrieve an object from buffer. Evaluation unit time tv is the time taken to evaluate a predicate 

involving a single atfribute. Writing unit time tw is the time taken to form the result and write 

it to output buffer. The sum of the reading, evaluation and writing time is represented by the 

local processing time tp. Local processing imit time tp is subject to the length of the selection 

predicates, and the v^iting time tw is influenced by die selectivity factor a. Therefore, tp = tr 

+ l.tv -t- o.tw, where I is the length of the selection predicate. 

e. Frequency (/) 

The effectiveness of an inheritance data stiructure depends on die frequency of different types 

of inheritance queries. The notations/i andy2 are used to denote the frequency of super-class 

and sub-class queries, respectively. 

8.3 Analytical Models for Parallel Processing of 
Inheritance Queries 

8.3.1 Super-Class Query Processing Costs 

As die processing of a super-class involves aU its sub-classes, the number of objects 

processed is the sum of super-class objects and sub-class objects (n and n). The processing 

unit cost for a super-class object is tp\, whUst the processing unit cost for a sub-class is the 

sum of tp\ and tpi. 
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If a roimd-robin partitioning is used, die cost for paraUelization of super-class queries 

using a horizontal division can be v^itten as: 

_ TL tp\ + riitpi + tpi) 
risaper — fsuper • 

n 
(8.1) 

Suppose an inheritance schema Person-Lecturer is used as an example, where class 

Lecturer inherits from class Person (for simplicity assume that class Person has one atd-ibute 

caUed name, and class Lecturer has one additional atfribute caUed subjects). In processing 

class Lecturer, tpi is the processing time for Name (and other atttibutes of class Lecturer 

declared in class Person), and tp2 is the processing time for atfribute Subjects (and other local 

atfributes); whereas n is the nimiber of lecturer objects. The sum of tpi and tpi is the total 

cost of processing a lecturer object. It is purposely divided into several cost components, 

smce processing a super-class (e.g., class Person) wUl not involve aU die cost components. 

For example, class Person wUl uivolve tpi only. Suppose there are 100 persons non-

specialized in any sub-classes, and 500 lecturers; and 10 processors. The processing cost is 

calculated as: (lOO.tpi + 500{tpi + tpi))! 10 = {6QQ.tpi + 5Q)0.tpi)llQ). 

MeanwhUe, the cost model for paraUelization of super-class queries using a 

verticaVlinked-vertical division^ is simplified to: 

LyV super — 

n 

(8.2) 

as it involves only one class; that is the super-class. For example, if tiiere are 100 persons 

non-specialized to otiier class, and 500 lectiurers, the cost for processuig class person is: 

{(\00+500)tpi)ln = eOO.tpiln. 

LEMMA 8.1 (SUPER-CLASS QUERIES). For super-class queries, paraUelization using 

a linked-vertical division outperforms that of using a horizontal division. 

PROOF. We shaU show tiiat 

Hsuper > LVsuper. 

(8.3) 

Using equations (8.1) and (8.2) for horizontal and linked-vertical 

(vertical), respectively, condition (8.3) is equivalent to 

rutpi + r2{tp\-¥tp2) (n -H r2)tp\ 

n n 

^ The presence of link in the linked-vertical division is insignificant to the reading time. Hence, the costs of 
super-class queries using the linked-vertical division and the vertical division are undifferentiated. 
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<=» n.tpi > 0 

As r2.tp2 is positive, condition (8.3) is therefore due. 3 

8.3.2 Sub-Class Query Processing Costs 

The cost model for paraUel execution of sub-class (horizontal division) queries using a round-

robin partitioning is given as foUows. 

_r2{tpi + tp2) 
tlsub — 

n 
(8.4) 

It is evident that Hsub < Hsuper, as Hsub covers processing costs for a sub-class only, 

whereas Hsuper adds processing costs for the super-class as weU. 

Using a vertical division, a paraUel join must be performed in processing a sub-class 

query. ParaUel hash join algorithm has been widely recognized as the most efficient algorithm 

for join queries in an paraUel environment (Graefe, 1993). ParaUel hash join can be 

summarized as foUows. Firstiy, it partitions the two classes using a hash function. Secondly, 

for each partition, a hash table is buUt by applying a hash function to the first class and the 

second class. Matched pairs become the results of die joining. The hashing procedure is 

known to be linear (i.e. 0{N)) (Knuth, 1973). Therefore, the joining cost in each partition is 

proportionaUy to the number of objects of tiie two classes in that partition. Hence, the average 
(ri-f r2\rm + r2.to2 

hash join cost is -̂= , where the first term: {ri+n).tpi, refers to the cost for 

n 

hashing the super-class, and the second term: n.tpi, is die cost for hashing tiie sub-class. The 

number of super-class objects is now n-i-r2, as it includes not oiUy die "pure" super-class 

object, but also aU sub-class objects. 

The main problem in paraUel hash join is tiiat the size of each partition may not be 

equal to the otiiers, due to the hashing function used in die partitioning. Using ^ as a join 

skewness degree, the processing cost for the heaviest processor becomes: 
(ri-\-r2).tpi-{-r2.tp2 

V sub ^ k 

n { k > l ) 
(8.5) 

where k = 1 means the load for each processor is equal. 

Using a linked-vertical division, a join operation is avoided in processing a sub-class 

query. It, however, ind-oduces a fraversal cost from sub-class to its super-class. Processing a 

sub-class query using a linked-vertical division comprises of 3 components: local processing 
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to tiie sub-class, fraversal to its super-class, and local processing to die super-class. The cost 

model is as foUows. 

, . , r2.fp2-f-r2.rr1-f-r2.rp] 
LVsub = — ^ - — — 

n 

(8.6) 

where tt\ is the object fraversal unit cost from a sub-class object to its super-class. Since tti 

depends on the size of super-class si, tti can be defined as, tti = .si .//a;where rra is a pointer 

navigation unit cost. For example, witii 500 lecturers, tiie cost for processing class lecturers 

is SOQ.tpiln, the fraversal cost is SQO.ttiln, and the cost for processing each object lecturer 

declared in the class person is SOO.tpiln. 

Performance of sub-class query processing using the linked-vertical division is 

demonsfrably better than usmg the traditional vertical division. The reason is that using the 

linked-vertical division, processing a sub-class query is accomplished by reading a sub-class 

object, ttaversing to a super-class, and reading a super-class object. This is purely a selection 

process by incorporating a pointer fraversal between the two separated parts of a sub-class 

object. In contrast, using the vertical division, an explicit join operation must be employed. 

Furthermore, it was highlighted earlier that selection operations can be performed using a 

pipeline model where the total processing cost is made up of the local processing cost. On the 

other hand, join operations must have the data fuUy partitioned in which the distribution cost 

is taken into accoimt, in addition to the local processing cost. By taking just the local 

processing cost, the comparison between sub-class query processing using the linked-vertical 

division and the vertical division is given as foUows. 

Using equations (8.5) and (8.6), we shaU show that when the skew is large, the cost 

of linked-vertical division is less than the cost of the vertical division, i.e., 

LVsub < Vsub 

r i tp2 + r2. tpi -\- r2. tti r2. tp2 -\- (n -l- r2)rpi 
<=^ < A: 

n n 
<=^ n.tti < r2.tp2{k-l) + r2.tpi{k-\) + n.tpi.k 

tpi 
If A: = -^—, signifying that the d-aversal time tt is x time faster tiien the processing 

rri 
time tp, we have 

rzrri r2.p2{k-l) r2.tpi{k-\) n.tpi.k 

X X X X 

rxtti r2.tp2{k-\) ,, ,. ^̂  , 
< —^-^ -h r2. tti(k -1) -f n. rri. k 

X X 

rxtti '' r2.tp2{k-l) ., ,, 
— ^ ^ + r2. tti(k -1) < n. rri. k 

http://r2.fp2-f-r2.rr1-f-r2.rp
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tp2 
Likewise, if y =-^-—, then we have 

rri 
rzrri 'r2.y.tti(k-l) 

-\-r2.tti{k-l) 

( ^ - D ^ + l y_ 

<ri.tti.k 

<ri.k 

If k is large, tiien this is clearly due since tiie left hand side wUl be negative, whUe tiie right 

hand side is positive. A lower bound for k may be obtained from flie left-hand side as foUows. 

or 

or 

l<(^- l ) (y-^;c) 

1 
k>l-\-

i.e., k>l-\-
rri 

rpi -I- rp2 

This shows that the cost for paraUelization using linked-vertical is lower than tiiat of 

vertical division, when the jom skew k is greater than l-\-
tti 

V 
. As this is usuaUy 

rpi-f-rp2 

smaU (the traversal time tt is far smaUer than the local processing cost tp), the lower bound 

for the skew becomes very low too, resulting that the linked-vertical division is advantageous. 

AdditionaUy, the cost of data distribution in a join operation is normally excessive, and 

consequentiy increases the join cost. Since the linked-vertical division is better than the 

vertical division, the vertical division is therefore excluded from further analysis. 

It is demonsfrated that horizontal division is best for sub-class queries, because of 

object independence. On the other hand, linked-vertical division is more suitable to super­

class queries, because otherwise horizontal division has to involve an inherited attributes of 

the sub-class which increases the processing overhead. 

LEMMA 8.2 (SUB-CLASS QUERIES). For sub-class queries, paraUelization using die 

horizontal division is better tiian using the linked-vertical division. 

PROOF. We shaU show tiiat 

Hsub < LVsub. 

(8.7) 
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Using equations (8.4) and (8.6) for horizontal and Unked-vertical. 

respectively, condition (8.7) is equivalent to 

r2(rpi -f- tp2) r 2. rp2 -I- r 2. rpi -I- r 2. rri 

n n 
<^ 0 < r2.rri. 

As r2.rri is positive, hence, condition (8.7) is ttiviaUy satisfied. 

8.3.3 Super-class queries vs. Sub-class queries 

n 

As performance depends on the data structures and the query types, a further evaluation 

based on the frequency of each query type has to be made, in order to determine an efficient 

data structure for most queries. 

LEMMA 8.3 (INHERITANCE QUERY FREQUENCIES). ParaUelization using linked-

vertical division is preferted, even when the frequency of super-class 

queries is very low. 

PROOF. Using / i and p. as die frequencies of super-class and sub-class queries 

respectively'*, the lower bound for/i can be calctUated as foUows. 

f1.r2.tp2 f2.r2.tt1 

72 = ( 1 - / 1 ) 

n n 

II = J!L 
/ 2 rp2 

/ i rri 

( 1 - / 0 tp2 

/-f(i-/0 
tp2 

ttl^ 
-\-

tp2) 

tti 

rp2 

/ l = -
rri 

/ i = 

rp2 + rri 

^ tti J 
(8.8) 

'^ linked-vertical division, which is suitable for super-class queries, prefers/I to be as large as possible, whilst 
horizontal division, which is suitable for sub-class queries, prefers/2 to be as large as possible. 

http://f1.r2.tp2
http://f2.r2.tt1
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(8.9) 

For tpi = y.tti, equation (8.8) becomes 

If y = 1, the lower bound is/i = 0.5, 

If y > 1, tiien/i < 0.5. 

The comparison shows that the more tpi > tti , the less the lower bound for 

/ i . The faster tiie fraversal time n, the linked-vertical division is preferable even when 

/ i is very smaU. Figure 8.4 shows that when the ratio of the processing and the 

fraversal time is more than 10, the lower boimd for/i becomes very smaU. It can be 

concluded that linked-vertical division is an efficient data structure for inheritance 

queries. 

Frequency fl 

1 

0.8 

0.6 

0.4 

0.2 

Ratio 
10 20 30 40 50 

Figure 8.4. Frequency (fl) vs. Ratio (y) 
U 

8.3.4 General Inheritance 

a. Multiple Sub-Classes 

Equation (8.1) shows tiiat tiie cost model for processing a super-class query using a 
(ri-f r2).rpi^ (r2.tp2^ 

horizontal division is equal to 
n 

+ 
n ; 

. Given an inheritance hierarchy of 

m classes, with one super-class and m-1 sub-classes, die cost of super-query paraUelization 

using a horizontal division becomes: 

n.rpi r2.rp1-l-r2.rp2 r3.rp1-l-r3.rp3 rm.tpi + rm.tpm 
Hmsupet = 1 i 1 1 

n n n n 
ri.tpi + r2.tpi-\ \-rm.tpi r2. rp2 -f rs. tp3-\ l-rm. tpm 

n n 

http://r2.rp1-l-r2.rp2
http://r3.rp1-l-r3.rp3
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_yri.tpi ^ y , n.rpi Y" ^'-tP' 

i=i n t i n 

(8.10) 

On the other hand, the cost model for paraUelization of a super-class query using a 
,. , J . , J. . . . (ri-fr2)rpi ri.rpi r2.rpi 
linked-vertical division is: ^—= — ^ - i ^—. With m classes mvolved, the 

n n n 
processing cost becomes: 

r 1. rpi -f- r2. rpi -f rs. rpiH—l-rm. rpi 
Lvmsuper = 

= 1 
n 

n.tpi 

,=1 n 

(8.11) 

Using lemma 8.1, it can be seen that paraUelization of super-class queries having 

multiple sub-classes using a linked-vertical division outperforms that using a horizontal 

division. From equations (8.10) and (8.11), Hmsuper > LVmsuper is true if 

"A n.rpi ^ n.tpi -A n.rpi 

2̂  + 2 - — > 2̂  or 
i=i n t i n t^ n 
•A n.tpi 

ti n 
Since the sum of {ri.tp\)ln is always positive, the paraUelization method for super­

class queries using a linked-vertical division is better than that using a horizontal division. 

The efficiency grows proportionaUy with the increase of sub-classes by the amount of 

Y ri.tpi 

b. Multiple Inheritance 

Equation (8.4) is a cost model for paraUelization of a sub-class query using a horizontal 

division. Given an m-class inheritance hierarchy, with one sub-class inheriting from m-1 

super-classes, the paraUelization cost of sub-class queries becomes: 

rm.rpi rm.rp2 rm.tpm 

Hmsub = —-\- ^ - f - - - f —̂ 

-X 
n n n 

rm.tpi 

,=1 n 

(8.12) 

where the mth class is the sub-class inheriting from other classes (1,2,..., m-1). 
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Using the linked-vertical division method, a variation to equation (8.6) is given as 

foUows. 

rm.tpm rm,tpi-\-rm.ttl rm.tp2-\-rm.tt2 rm,tP(m-l)-^ rm.tt(m -1) 
LVmsah = 1 1 I--H 

n n n n 

Z rm.tt}i v~^ rm.tti 

,=1 n ti n 
(8.13) 

Note that the cost for a linked-vertical division is the sum of the traversing cost from 

a sub-class to aU its super-classes. 

Using lemma 8.2, it can be determined that paraUelization of sub-class queries in a 

miUtiple inheritance using a horizontal division is more efficient than using a linked-vertical 

division. This can be seen to be true since 

Hmsub < LVmsub 

rm.tpi 'A rm.tpi Y^ rm.tti ^—( I m. LUl V--1 I m. lUi T—i , 

tf n t^ n ti 
^-\ rm.tti 

t! n 
which is evidentiy true. However, if tiie fraversal time tt is very smaU, the difference between 

tiiese two division methods wUl not be significant (lemma 8.3). 

c. Abstract Classes 

An absfract class provides only a partial implementation of a class, or no implementation at 

aU. From tiie design point of view, an absfract class provides die global view of a class, 

altiiough the detaUs are not implemented yet. An absfract class does not have any instances. 

This is often referted to as union inheritance (Kung, 1990), which implies that tiie union of 

aU instances of sub-classes represent the whole set of tiie absfract super-class. 

From a paraUel processing point of view, processing super-class and sub-class 

queries is not affected by whether a super-class is absfract or not. If tiie super-class is an 

absfract class, tiie value of ri wUl be equal to 0 (zero). Substituting tius value to tiie cost 

equations wUl not change the resiUts of relative comparison between different inheritance data 

structtu-es. Hence, aU lemmas explained earlier are valid. 
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d. Overlap Inheritance 

In confrast to the tinion inheritance, a non-union inheritance is where a super-class has its 

own instances, apart from tiie instances of its super-classes. In tiiis case ri 9̂  0. Whetiier it is 

union or non-union, the sub-classes can be Disjoint or Overlap (Kung, 1990). Disjoint 

inheritance is when sub-classes of tiie same super-class do not have instances belonging to 

both sub-classes, whereas overlap does. 

Most overlap inheritance is implemented in a multiple inheritance. If tiiis is tiie case, 

paraUel processing to an overlap inheritance is acmaUy the same as paraUel processing to a 

multiple inheritance. However, if a multiple inheritance is not implemented, horizontal 

division has to repeat the detaUs of objects replicated in sub-classes. For example, tf a person 

is a lecturer as weU as a student, the detaUs of persons (e.g., name, address) are stored 

redundantiy in class lecturer and class student. In contrast, using a linked-vertical division, 

this problem wUl not exist, since each class stores its portion of data. The linkage between 

different part of the same object stored in different places is provided by a set of link from die 

super-class to the sub-classes. 

e. Redefinition 

Some methods of the super-class may be redefined to have different implementation. An 

example is that class Lecturer has method tax where the amoimt tax paid is calculated based 

on the salary. Class Tutor inheriting from class Lecturer redefines the method tax with 

different calciUation and condition. An appropriate method tax wUl be invoked depending on 

whether an object is a lecturer or a tutor. In regard to the data structure, the attribute is not 

redefined. Hence, the value of the atfribute is not affected whether or not the method that 

invokes the atfribute is redefined in a sub-class. 

8.3.5 Summary 

Three lemmas relating to inheritance data structures for paraUel inheritance query processing 

have been developed. 

• Lemma 8.1 states that the proposed linked-vertical division is more suitable for 

super-class queries. 

• Lemma 8.2 states that the horizontal division is more suitable for sub-class 

queries. However, tiie difference between the horizontal division and the liiUced-

vertical division is very smaU due to the insignificance of the fraversal cost 

imposed by the linked-vertical division. 
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• Lemma 8.3 states that the proposed linked-vertical division is often preferable to 

other data structures. 

These lemmas support the use of the proposed linked-vertical division for paraUel 

processing of inheritance queries. 

8.4 Analytical Models for Parallel Processing of Path 
Expression Queries 

8.4.1 Cost Models for Inter-Object Parallelization 

The cost for inter-object paraUelization is die sum of the root class cost and the associated 

class cost. 

a. Root Class Cost 

Using a round-robin partitioning where tiie root class is equaUy partitioned to aU avaUable 

processors, the cost to process a root class is as foUows. 

n 
—.rpi 
m 

(8.14) 

b. Associated Class Cost 

Access to Associated Class 

Processing associated objects can be accomplished by d-aversing each selected root object to 

aU of its associated objects. The number of accesses to die associated objects is determined 

by r'2, which is given by r'2 = ruXi. The symbol r'2 is differentiated from n (tiie original 

number of objects), since some associated objects are processed/visited more tiian once (i.e., 

in the case of m-m or m-1 relationships). 

Using tiie clustering approach, it is guaranteed tiiat non-connected associated objects, 

and associated objects connected to non-selected root objects wUl not be processed at aU. This 

fUtering characteristic has been one of tiie incentives of using an inter-object paraUelization 

model based on clustering and association. 
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Skewness 

As tiie fan-out degree Xi may not be uniform, processing the associated class wUl promote 

load imbalance. If ^ is used to show the ratio between die heaviest load and die average load, 

the load of die heaviest processor is given by: 

r'2.^1 

n2 

The value of k is non-determirustic, as the disfribution of the associated objects, 

which is very much influenced by the fluctuation of the fan-out degree and the selection 

operation, is unknovra untU run-time. A number of attempts to model skewness in paraUel 

databases have been reported (Liu et al., 1995). Most of them use the Z/p/distribution model 

(Zipf, 1949). 

The main purpose of modeUing skew is to show die ratio between the highest load 

and the average load. This ratio represents the degree of skewness. The higher the ratio, the 

worse the skew problem. It is not the aim of this research to model load skew in OODB, but 

to use the skew ratio in a comparison with the non-skew condition. Skew ratio = 1 refers to 

non-skew and skew ratio > 1 refers to skew. The Zipf disfribution model is only a tool to 

describe load skew. 

Load skew is measured in terms of different sizes of fragments that are aUocated to 

the processors for the paraUel processing of the operation. Given die total number of accesses 

to a class r, the number of processors n, and a factor 9; the size of the ith fragment r can be 

represented by: 

r. = ^- for (6 > 0) 

(8.15) 

Clearly, when 0 = 0, the fragment sizes foUow a discrete uniform disfribution shown 

in A;. = —. This is an ideal disfribution, where tiiere is no skew. In condrast, when 0 = 1 
n 

indicating a high degree of skewness, die fragment sizes foUow a pure Zipf disfribution. 

Therefore, equation (8.15) becomes 

r r r 
r = . v^ 1 ixH„ /x(7-l-lnn) 

(8.16) 
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where 7 = 0.57721 (Euler's Constant) and H„ is tiie Harmonic number (Knutii, 1973) which 

may be approximated by (y -f- hi n). In the case of 0 > 0, die first fragment r^ is always the 

largest in size whereas the last one r„ is always tiie smaUest. (Note tiiat fragment / is not 

necessarUy aUocated at processor /). Thus, the load skew can be given by: 

r = 
max 

" 1 

;=1 J 

(8.17) 

Figiu-e 8.5 shows the effect of skewness on the maximum processor load which is 

measured by the number of objects aUocated. The cardinality of the class is assumed to be 

10,000. It is clear that the maximum processor load in the presence of skew is much higher 

than that without skew. For example, when the number of processors is 10, the maximum 

loads for the two cases are 3500 and 1000, respectively. Another interesting point is that load 

reduction appears to be significant when the processors increase from 2 to 10, but becomes 

marginal with further increase in the number of processors. Hence, adding extra processors to 

a single operation may not be beneficial, when skew is involved. The skew principle is then 

proven. 

Skew vs. No Skew 

Skew (0=1) 
No Skew (0=0) 

8 10 12 14 16 18 20 22 24 26 28 30 

No. of Processors (n) 

Figure 8.5. Influence of skew on maximum processor load 

Total Accesses to Associated Class 

For / > 2, r'i is distinguished from ri, because some of die objects do not have any association 

with the objects of tiie previous class, and moreover, some of the objects are accessed more 

than once, particiUarly where those objects are associated with non-unique objects of the 
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previous class. Furtiiermore, r'i is not likely to be aUocated equaUy to aU processors n. Using 

tiie Zip/disfribution model, the maximum load of the subsequent stages of die evaluation of a 

path expression is calculated by 

/ 

r2 ra r 
+ — +...-f-1 2 1 ni -1 rtm 1 

M J j=i J j=i J 

in 

=1 r I 

•=2 V _ 
j=\ J 

(8.18) 

The number of processors of the subsequent predicate evaluations of query 

processing is non-deterministic, since tiie disfribution scheme is not known untU run-time. 

However, it is possible to obtain the average number of busy processors using the foUowing 

formula (Kolchin et al., 1978). 

/ 

1-
v 

1 

na-

\ 

1)1 

\0{i - i j r i 

«! = n ( i - i ) — n ( i - i ) ; 

(8.19) 

From our study, most of the time ni is equal to n(i-i) meaning that aU processors were 

active participants in processing the associated objects. 

Redundant Accesses 

Redimdant accesses to the associated objects occur only m m-m and m-1 relationships. The 

original degree of redimdancy is determined by the degree of coupling between the root class 

and the associated class, which is partiy shown by the fan-out degree of die root class Xi. For 

example, if ri=100, r2=200, and X.i=5, the number of accesses to the associated objects (r'2) 

is equal to 500. It shows that the redundancy factor is more than double. Moreover, if the 

fluctuation of Xi is high, the redundancy factor wUl even be higher, because the skew factor k 

also increases. With n=4 and ^=1.8, the maximum partition wUl require (100x5x1.8)74 = 225 

accesses to the associated objects. The redundancy factor has increased by 450%, as r2 is 

divided equaUy to 4 partitions, each partition wUl only have 50 associated objects. However, 

due to the fUtering feature caused by die selection operation in the root class, not aU 

associated objects wUl need to be accessed. Consequentiy, the redimdancy factor is decreased 

by the selectivity factor a i . In this case, we consider the maximum ai of a particular 

partition. Suppose, the selectivity factor of the skewed partition is 30%, r'2 becomes 68 

accesses, resulting in a great reduction of the redundancy factor. 
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ModeUing Object Conflicts 

Smce several root objects may refer to die same associated objects, especiaUy in m-1 and m-

m relationships, a conflict among the root objects may occur. One way to model object 

conflict is to use a queuing model. When n root objects wanting an access to die same 

associated object, n-1 objects wUl be placed in a queue. This model can be viewed as die 

objects in the queue waiting for a service. Figure 8.6 gives an Ulusfration. In this example, bl 

is a service provider, which is referted by objects al, a2, and a3. Suppose objects al and a2 

are located at processor 1 and object a3 is located at processor 2. If object a2 requests object 

bl at the same time as object a3, object a2 may have an access first, and object oi waits in a 

queue. 

root objects a l a2 a3 

associated objects 

Nl/ 

b2 

Figure 8.6. Object Conflicts 

Assume that the probabUity of the service provider of having zero and one request is 

abbreviated top^, andp^, respectively. The probabUity of conflict can be estimated by: 

prob. of conflict = I - PQ- Pi 

PQ can be estimated by comparing total number of accesses with the average fan-in 

degree of the associated class (X'l). Fan-in refers to number of service requests to a particular 

associated object which provides the service. Total number of accesses represent a universal 

set of popiUation. Therefore p̂ , can be approximated by 

Po = 
ri- •V2 

r2 

For example, if there are 10,000 accesses to the associated class (r'i = 10,000), and 

each associated object has only 10 root objects attached to it (A,'2 = 10), then PQ becomes 

0.999. It means that most of the time, an associated object is not invoked by any root object. 

Service utUization p is exactiy the opposite of p^, tiiat is 1 - p^. The foUowing 

formiUa can be used to estitmatep; (Leung, 1988). 

Pi = (l -P)p=(l - 0.999) 0.999 = 0.0009 

The probabUity of conflict can then be calculated by: 
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probability of conflict = 1 - 0.999 - 0.0009 = 0.0001 (very smaU) 

As the probabUity of conflict is very smaU, die processing time wUl not be 

significantiy affected. Figure 8.7 shows tiie growtii of die conflict based on tiie increase of 

fan-in degree. It can be seen that generaUy tiie probabUity of conflict is very smaU, even for 

smaU number of accesses and high fan-in degrees. 

Probability of Conflict 

— • — total access = 50000 

~ » — total access = 10000 

—A— total access = 5000 

X total access = 1000 

Figure 8.7. The growth of conflict 

c. Total Cost for Inter-Object Parallelization 

Because the total processing cost in paraUel systems is determined by the most expensive cost 

of tiie processing elements, only the maximum cost is considered. If die root class includes a 

selection operation, not aU associated objects wUl need to be accessed. The selection factor is 

shovra by a\, which is the probabUity of a root object to be selected by the selection 

operation. 

The sum of equations (8.14) and (8.18) is the number of objects accessed in an m-

class path expression. Based on the number of objects processed, the total processing cost can 

be determined. There are two main components in the local processing costs: reading/loading 

time and predicate evaluation time. The reading/loading time is influenced by the size of 

object, whereas the evaluation time is determined by the length of selection predicates in each 

class. Incorporating the reading/loading time and the evaluation time for each object, tiie total 

processing cost for a path expression sub-query is as foUows. 

lOBcost = 
^^ "' 1 

2^ ;< 
J=lJ 

e 

.tp 

(8.20) 
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In terms of the skew factor, the cost for paraUel processing for a path expression 

query may be written as: 

lOBcost = 
ri • A <7( ( - i ) . r ' i .^ ( i - i ) 

^ni ^2 ^' 
tp 

(8.21) 

8.4.2 Cost Models for Inter-Class Parallelization 

The cost for inter-class paraUelization is determined by die selection cost and the 

consolidation cost. 

a. Selection Cost 

The processing cost for the selection phase depends on whetiier there is one or two-class 

selection in the query. If both classes contain a selection operation, the selection cost is: 

ri-l-r2 
-tp 

m 
(8.22) 

Classes ri and n wUl have to share the same processors (regardless of whether they 

share it at the same time or they take tum to use the resoiu"ces). 

b. Consolidation Cost 

The consolidation cost varies depending on whether the query involves a selection on the root 

class and where die target class is. When the root class does not include a selection operation, 

the consolidation cost is the cost for going tiirough aU root objects which is given by: 

n 
—.tp 
ni 

(8.23) 

However, when tiiere is a selection operation in the root class presents, the 

consolidation cost wiU be influenced by the selectivity factor GI and the skewness degree ki. 

Hence, the consolidation cost becomes: 

Gi.ri.ki 
•.tp 

ni 

(8.24) 
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If tile associated class becomes the target class (i.e., projection operation on tiie 

associated class), the consolidation cost must be added to further red-ieval cost of the 

associated objects for projection which is given by: 

Oi.r'2.^1 
.tp 

n2 

(8.25) 

c. Total Cost for Inter-Class Parallelization 

Because the selection phase and the consolidation phase shows an interdependency, in which 

the consolidation phase cannot start before the selection phase finishes, the total cost for 

inter-class paraUelization is the sum of the selection cost and the consolidation cost. 

8.4.3 Inter-Object vs. Inter-Class Parallelization 

Inter-object parallelization is simple but atfractive, because complex objects are clustered 

and presented as complete units, with the resiUt that the processing of each complex object is 

independent of die others. Independency is one of tiie key requirements in paraUel systems. 

Inter-object paraUelization model is particularly good when there are no redundant accesses to 

the associated classes. Data independence is achieved naturaUy and there is no data 

replication. 

Inter-class paraUelization, in contrast, is based on paraUel processing of each class 

participating in die query. This method views independency from a class point of view, not 

from an object point of view. Moreover, inter-class paraUelization does not impose redundant 

accesses to tiie associated objects. Intuitively, it is especiaUy suitable for highly coupled 

association relationships. Since each class is processed independentiy, the selection process is 

free from any associativity independency. Using a round-robin data partitioning, tiie selection 

process wiU ataiost be free from a skew problem. 

It becomes essential to compare performance of inter-object paraUelization and inter-

class paraUelization. In a two-class path expression query, basicaUy there are tiiree different 

cases: 2 selections (selections on die root class and die associated class), 1 selection (a 

selection on the associated class), and 1 selection on tiie root class. 

a. Case 1: ( A ) > ( [ B ) OQL: select a 
^-^ ^-^ From a in A, b in a.rell 

'^ ^ Where a.attr = constant 
And b.attr = constant 
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We shaE determine the condition under which the cost of inter-object paraUelization 

is lower than that of inter-class paraUelization, i.e.. 

Inter-object cost < Inter-class cost 

(8.26) 

From equations (8.21), (8.22) and (8.24), condition (8.26) is equivalent to 

ri Oi.r'2.^1 n r2 Oi.ri.^i 
_ + < _ + _ + _ 

m n2 m m n2 

(8.27) 

The processing cost tp has been factored out. And for r'2 = ri.Xi, (8.27) becomes 
Oi.ri.Xi.ki r2 Oi.ruki 

< 1 . 
n2 m n2 

Now as for ai.n.Xi.ki = x.n; where x represents die replication factor, tiie above 

becomes 
jc.r2 r2 oi.n.ki 

< — + 
n2 m n2 

jc.r2 r2 x.r2 
=±. < — + -n2 ni n2.Ai m n2.Xi 

Since from equation (8.19) n2 = ni , we have 

Xl 

(8.28) 

In tiie case where tiie relationship between tiie root class and die associated class is 1-

1, die values of A; and Xi are equal to 1. Therefore, condition (8.28) is d-iviaUy satisfied. If die 

relationship is 1-m, where x=l and >.i=m, condition (8.28) is also satisfied since die left hand 

side is equal to 1 whUe die right hand side is greater dian 1. If tiie relationship is m-1 where 

x=m and Xi=\, condition (8.28) is tme since tiie right hand side is always 1 more tiian tiie left 

hand side. 

In die case of m-m relationship, tiie validity of condition (8.28) wffl be determined by 

tiie values of botii x and Xi. The replication factor x is very much influenced by tiie selectivity 

degree oi which serves as a fUter to tiie whole process. Hence, tiie value of x is expected to be 

smaU (can be even less tiian 1, if tiie total accesses to tiie associated objects are smaUer tiian 

tiie original number of objects in tiie associated class). If tiie participation of tiie associated 
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class to the relationship is partial, the repUcation factor x can be greatiy reduced. In tiiese 

cases, condition (8.28) can be expected to be satisfied. 

b. Case 2: 
© >CD OQL: S e l e c t b 

From a in A, b in a.rell 
Where a.attr = constant 

We shaU determine that tiie cost of inter-object paraUeUzation is lower tiian tiiat of 

inter-class paraUelization, by showing that 

Inter-object cost Inter-class cost 

(8.29) 

From equations (8.21), (8.22), (8.24) and (8.25), condition (8.29) is equivalent to 

n Oi.r'2.ki ''ri\ (Oi.ri.ki Oi.r'2.ki^ 

ni n2 \nij 
+ V n2 

+ • 
n2 J 

Note that phase 1 consists of selection operation on the root class only. Now, it can 

be derived to 

^C7i.ri./:P 
0 < . 

\ n2 ) 

ks the right hand side is positive, condition (8.29) is friviaUy satisfied. 

c. Case 3: 
G) >CD OQL: S e l e c t a 

From a in A, b in a.rell 
Where b.attr = constant 

The cost of inter-class paraUelization is normally lower than that of inter-object 

paraUelization, i.e.. 

Inter-object cost > Inter-class cost 

(8.30) 

From equations (8.21), (8.22) and (8.23), condition (8.30) is equivalent to 

fr2^ {n^ 

\nij 
n r'2.^1 
— + 
m ni 

+ 
v^i. 

Note that here, there is no selection operation on die root class. Hence, the variable a 

1 in the inter-object paraUelization cost is eliminated, and the number of processors used in 
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the processing is ni, not n2. Also, the selection cost in tilie inter-class paraUelization consists 

of the selection cost for the associated class oiUy, whereas the consoUdation cost is the cost to 

go through aU root objects. Thus, the above becomes 

\nij 
rh.ki 

ni 

And for r'i = ri.A.i, we have 

riXi.ki 

m .nij 

for X\>\, and ^i>l, this implies 

Xx.ki > r2 

n 

(8.31) 

If n < n , condition (8.31) is satisfied, since ki = 1 (i.e., no load skew) is very 

unlikely to happen. 

If r2 > n , and if as in case 1 A.i.̂ i = x.r2 
Oi.ri 

, we have 

^1.^1 

x.r2 

Oi.n 

> 

> 

r2 

n 

r2 

n 

=> x > ai 

Since oi = 1, tiie condition becomes 

X > 1 

If tiie number of accesses to tiie associated class is larger tiian tiie original number of 

associated objects, the above condition is satisfied. 

8.4.4 Summary 

Based on die three cases discussed above, two lemmas about tiie inter-object paraUelization 

and die inter-class paraUelization are given as foUows. 

LEMMA 8.4 (INTER-OBJECT PARALLELIZATION). 

Inter-object parallelization, in a form of forward patii fraversal, is 

particiUarly good when tiiere is a selection operation on tiie root class. 
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LEMMA 8.5 (INTER-CLASS PARALLELIZATION). 

Inter-class parallelizjation is suitable for patii expression queries especiaUy 

when filtering is not possible and the number of accesses to the associated 

class tiirough patii fraversal from tiie root class is greater tiian tiie original 

number of associated objects. 

The first one is concemed witii cases 1 and 2, whUe die second one relates to case 3 

above. 

8.5 Analysis of the Basic Query Optimization 

Basic query optimization, which serves as a foundation for query optimization algorithms, is 

divided into two parts: INTER-OBJECT-OPTIMIZATION and INTER-CLASS-OPTIMIZATION. An 

analytical analysis and evaluation is given for the two basic optimization techniques. The 

objective is basicaUy to prove that the cost for operation before optimization is more 

expensive than that after optimization. Since optimization is an NP-complete problem where 

a heuristic approach must be adopted, in a few special cases, the above objective is hardly 

proven. This does not, however, undermine the proposed heiu-istic nUes, because not only is 

finding aU possible access paths expensive, and determining short cuts is desirable, but also 

the heuristic nUes can be altered to accommodate these few special cases. 

8.5.1 Quantitative Evaluation of the INTER-OBIECT OPTIMIZATION 

a. Analysis of the IOB->IOB Transformation 
Transformed intc 

a o 

The IOB->IOB fransformation is only applicable to a two-class path expression where the 

forward fraversal is initiaUy performed from a class witiiout a selection operation to a class 

with a selection operation; and is accomplished by changing the path direction, so that the 

forward fraversal operation starts from the class having a selection operation. 

Using equation (8.21), we wish to show that 

n r'2.^1 r2 02.r'i.^2 
— + > — + , 
n n n n 

(8.32) 

which for r'2 = ri.A,i, becomes 
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n ri.A,i.^i r2 02.r'i.A:2 
_ + > _ + 
n n n n 

For ri.Xi.^1 = x.n, where J: is a repUcation factor, (8.32) becomes 

ri x.r2 r2 02.r'i.k2 
— + > —-h 
n n n n 

x.ri x.r2 r2 02.r\.k2 <^ —^—-+ > — + 
n.^i.^i n n 

And for r'i = n.Xi, we have 

n 

r2[ X 
— I + X n v^i.^i 

r2 02.r2.X2.k2 
> —+ 

n n 

Xi.ki 
.+ ;C > 1 + 02.^2.^:2 

< ; = ^ Xi.k 
+ 1 l-l-a2.A,2.A:2 

1 J 

(8.33) 

The validity of (8.33) depends upon the product of a2.X2.fe. If the selectivity factor o 

2 is smaU, the result of the product wiU be smaU too. Thus, condition (8.33) is satisfied. 

However, if the relationship is 1-1 or 1-m, where there are no redtmdant accesses to the 

associated class {x=\), and if the relationship of the associated class is partial {x<\), 

condition (8.33) may not be satisfied since the left hand side equation can be smaUer than that 

of die right hand side. 

b. Analysis of the ICL—>IOB Transformation 

The ICL^IOB d-ansformation is applicable to two-class path expression in which a forward 

fraversal from a class having a selection operation is possible but not carried out. Two types 

of such a query are identified. The analytical proofs are given as foUows. 

IOB(3) 
Transformed intc 

Case 1: 
« ^ ^ ^ ^ ^ > c i ^ 2 ^ 

Using equations (8.22), (8.23), and (8.21), we shaU show tiiat 

r2 n 
— + — 
n n 

r2 02.r\.k2 

n n 

(8.34) 

For r'l = r2.X2 , (8.34) becomes 

http://02.r2.X2.k2
http://a2.X2.fe
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ri 02.r\.k2 
— > 
n n 
ri 02.r2.X2.k2 

=? — > 
n n 

For n.Xi.kz = y.ri, where y is a replication factor, the above becomes, 

ri 02.y.ri 
— > — 
n n 

=> 1 > a2.y (a2<l) 

(8.35) 

If y<l, the condition (8.35) is true. This is applicable when the relationship A:5 is 1-

1 or m-1 in which there are no redundant accesses to class A from class B. 

If y>l, where the relationship of class A and B is m-m or 1-m, then it depends on the 

balance given by 01. The smaUer the selectivity degree 01, the higher the upper boimd 

aUowed for y, resiUting the condition (8.35) to be true even when the value of y seems to be 

high. The upper boimd for y is y <-^. 

Transformed intc 

Case 2: MM^T—C B > 

Using equations (8.22), (8.23), and (8.21), we shaU show tiiat 

n r2 ri oi.r\.ki 
—-h— > — + . 
n n n n 

(8.36) 

For r'2.iti = x.n, where xisa. replication factor, condition (8.36) becomes 

r2 Oi.x.r2 
— > 

n n 

=> 1 > oix 

(8.37) 

The condition for case 2 (condition 8.37) is simUar to tiiat for case 1 (condition 

8.35). It very much depends on the selectivity factor and die duplication factor. The lower tiie 

selectivity factor, tiie larger tiie impact of fUtering in the forward traversal operation tiirough 

inter-object paraUelization. 

http://02.r2.X2.k2
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c. Analysis of the EXJ-^IOB Transformation 

The EXJ^IOB transformation is appUcable only to I-Join involving a class as a join domain 

and at least one of the paths is bi-directional; and the optimization is accomplished by 

changing the direction of the bi-directional path so that a linear path expression is formed. 

Join operations require a fuUy partitioned data, whereas the fraversal operations work in a 

pipeline fashion. As a result, a join operation includes the distribution cost, as weU as the 

local processing cost. Forward traversal operation, on the other hand, includes the local 

processing cost oiUy, provided that the disfribution cost is completely covered during the 

pipelining of data from the master to the slaves. Intuitively, the join operation is much more 

expensive than the forward fraversal operation. This can be seen as foUows. 

"^ ^ Transformed into 

IOB[3)^ CS5—<D—K£> 

A joins B 
(intersect join) 

We shaU show that 

Distribution cost +join cost > Traversal cost 

(8.38) 

Tn-i-
1 D ^ 

TD + 

ri.r'2 

n 

ri , 
— . r 2 

k r3 
1 

Ar-f — 

.r" 
n 

k 

l.k 

r"2 

Using equation (8.5) for join operation, and equation (8.21) for tiie traversal 

operation, condition (8.38) can be derived to 

ri r\.k r\k 
> — + + 

n n n 
n r'2.^ r\k 

> — + + 
n n n n n 

(8.39) 

where TD is tiie total disfribution cost. Note also tiiat r'2 is tiie number of accesses of tiie 

associated class B from die root class A, where r"2 is tiie number of accesses of tiie 

associated class B from the root class C. 

Since — is normaUy large and so is r"2; — .r'2.^> —-f and 
n J ^ n n n 

I i i , . " 2 > H L - . Witiiout needing to consider die disfribution cost TD, which is normaUy 
n n 

large, condition (8.39) is friviaUy satisfied. Hence, condition (8.38) is also tine. 
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8.5.2 Quantitative Evaluation of the INTER-CLASS OPTIMIZATION 

a. Analysis of the IOB->ICL Transformation 

The lOB-^ICL transformation is applicable only to two-class patii expressions where tiie 

forward fraversal is from a class without a selection operation and to a class with a selection 

operation; and the path is uni-directional. 
Transformed intc 

a a 

Since a change in path direction is not permitted, a change in operation is endorsed. 

Forward fraversal operation is a manifestation of the inter-object paraUelization and reverse 

traversal is an inter-class paraUelization. The case for the IOB-^ICL optimization is seen from 

the derivation for case 3 inter-object vs. inter-class paraUelization, where it states that if r2<n 

the fransformation is preferable, and if r2>n, the efficiency of the transformation depends on 

the replication factor imposed upon the associated class. If the number of accesses to the 

associated class is greater than the original number of associated objects, the transformation 

is more efficient. OiUy in a few cases, where the relationship of class A and class 5 is 1-1 or 

1-m; and the association relationship is partial, the fransformation is not endorsed. 

b. Analysis of the EXJ->ICL Transformation 

The main aim of tius fransformation is to avoid die expensive explicit join operation. In tiie 

case where aU of the paths are uni-directional, it becomes impossible to ti-ansform an explicit 

join operation to a forward fraversal operation. Anotiier alternative, tiiat is to fransform to 

reverse fraversal operation, is sought. 
Transformed inic 

— > 

We shaU show that 

Distribution cost + join cost > Traversal cost. 

(8.40) 

Using tiie equation (8.5) for tiie join operation, and equations (8.22) and (8.23), die 

above condition becomes. 
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r2 n ra _ . ri.r'2.^ , r3.r"2.k ,z ,i ,, 
To-f- -1- > — + _ + _ 

n n n n n 
^ , ri rs r2 n ra 

=* TD-\—.r2.k+ — .r"2.A: > —-I- —H 
n n n n n 

(8.41) 

Since r'2.^ is normaUy large and r"2.Jt is also positive, —.r'2.k>—I— and 
n n n 

rj rs 
—,r"2.^ > —. Without considering the distribution cost TD, the joining cost is demonstrated 
n n 

to be greater than the fraversal cost. Hence, tiie condition (8.40) is friviaUy satisfied. 

8.5.3 Summary 

Basic query optimization which is formed by INTER-OBJECT-OPTIMIIATION and INTER-

CLASS-OPTIMIZATION is based on the two lemmas for path expression queries (i.e., lemma 8.4 

for inter-object paraUelization and lemma 8.5 for inter-class paraUelization). The comparative 

analyses show the applicabUity of these lemmas to both optimization methods. INTER-

OBJECT-OPTIMIZATION basicaUy exploits inter-object paraUelization, whereas INTER-CLASS-

OPTIMIZATION promotes inter-class paraUeUzation. Explicit join operations, which are known 

to be one of the most expensive operations in relational databases, are stUl shown to be 

expensive in object-oriented query processing. Hence, avoiding tiiese operations are 

prescribed, and ttansforming them into more efficient operations such as inter-object 

paraUelization and inter-class paraUelization are preferable. 

8.6 Analysis of the Execution Scheduling Strategies 

Execution scheduling for sub-queries in a query is influenced particularly by two factors: 

skewness and the size of the sub-queries. Three cases are considered. They are: (/) botii sub-

queries are not skewed, (ii) both sub-queries are skewed, and (///) one of them is skewed. 

8.6.1 Non-Skewed Sub-Queries 

Consider the foUowing query as an example. The query access plan for this query is shovra in 

Figure 8.8. 

QUERY. "Refrieve pairs of conference proceedings and journals having the same 

publishers. The conference must have been held in Ausfralia, and the journal 

is published 4 times a year". 
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Proceedmgs.publisher= 
Joumaipublisher 

(location= "Australia") (issues=4) 

Phase 2 

Phase I 

Figure 8.8. Access Plan 

The two sub-queries involve selection operations on single classes. If a round-robin 

partitioning is used, neither sub-queries wUl produce load skew. 

The first sub-query can be represented as a function f{x) = —, where n is the 
X 

number of objects, and x is the number of processors used to process the sub-query. If n 

processors are avaUable, then l<x<n. Figure 8.9(a) shows a curve of f(x). Likewise, the 
r2 

second sub-query can be represented as: g{x) = —. The shape of curve g{x) is the same as 
X 

that of f{x) although their magiutudes differ, since r2 is used instead of n. Figure 8.9(b) 

shows the graph for function g{x). 

When a serial execution of sub-queries is used, the total elapsed time for phase 1 is 

calculated by die sum of f{n) and g{n). If & parallel execution method is used, it is essential to 

locate the intersection between/(.x) and g{x) to find die most efficient processor configuration, 

since tiie intersection represents equal finishing times for botii sub-queries witiiout any 

idleness. This is found by equating 

f(x) = g(n-x) 
n _ r2 

X 

x = 

n-x 
n 

ri-\-r2 
n 

(8.42) 

A graphical solution is also useful as this wUl be necessary in the next section. 

Suppose the second sub-query time is reflected, g(x) becomes: g(n - x) 
r2 

n-x 
, where g{n-

x) is a reflection along x=2/n. The new curve shows that the number of processors used in die 

second sub-query is n-x processors, where x is the number of processors for the first sub-
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query. Figure 8.9(c) shows tiie curve for g(n-x). Figure 8.9(d) shows an intersection between 

f{x) and g(n-x), which can be calculated by equation (8.42). 

(a) Sub-query 1 Function 

f(x)=r1/x 

time 

Processors for f(x) 

(b) Sub^query 2 Function 

g(x)'r2/x 

time 

Processors forg(x) 

(c) Mirror Function for Sub-query 2 

g(n-x)=r2/(n-x) 

time 

n-1 n 

Processors for 

(d) Intersecting t(x) and g(n-x) 

f(x)=i-Vx g(n-x)=r2/(n-x) 

1 n-1 n 

Processas for f (x) 

Figure 8.9. Performance Graphs Non-Skewed Sub-Queries 

8.6.2 Skevî ed Sub-Queries 

Using the same query of the previous section, if each sub-query is partitioned using a hash or 

a range data partitioning, load skew may occur as the result of an imbalance in data 

partitioning. Load skew is frequentiy modeUed by means of Zipf distribution (Liu et al., 

1995). Incorporating equations (8.16) and (8.17), the function each sub-query becomes: 

(8.43) 

These two functions represent tiie most overloaded processors, as they set die total 

execution times. If n processors are avaUable, functions f{x) and g{x) are die total execution 

times of the first and the second sub-queries using x processors, where l<x<n. The graph for 

f(x) and g{x) is shown in Figure 8.10(a). The difference between/(x) and g{x) is shown by die 

constant ri and r2 to be used in each respective sub-query. 
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Compared witii non-skewed sub-queries, tiie shape of tiie functions for skewed sub-

queries is different. The shape of tiie function for a skewed sub-query does not go down 

steeply as in tiiat of non-skewed sub-query. The comparison between a non-skew and a skew 

function was shown previously in Figure 8.5. 

Skewed sub-queries are typical for sub-queries involving path expressions, as the 

fan-out degree from one class to anotiier tiirough an association relationship varies, and 

furthermore, the selection operation filters out unnecessary objects from the subsequent 

classes resulting in load imbalance for processing tiiose subsequent classes. 

(a) Functions for Sub-queries 1 and 2 

f(x)=r1/Hx or g(x)=r2/Hx 

time 

Processors for f(x) or g(x) 

(b) Intefsecting t(x) and g(n-x) 

f(x)=r1/Hi( g(n-x)=r2/(H(n-x) 

n-1 

Prcx»ssofsfof f(x) 

Figure 8.10. Performance Graphs of Skewed Sub-Queries 

Likewise for the non-skewed sub-queries, an intersection between the two functions 

f{x) and g{x) can be determined by making a mirror for one of the two sub-queries. If g{x) is 

mirrored and shifted as far as n-1, g{n-x) becomes: g{n-x) = 

analytical solution since 

r2 

H. 
. This does not admit 

n r2 

H, H, 

n r2 

y + \n.x 7 + bi(n-jc) 

n . / - r2.7 = hix''^ - lii(n - x)'"' 
r2 

rl.y-r2.y _ 

(n-xr 

Solving for x in closed form in this is generaUy not possible. Hence, only a graphical 

solution is possible. Figure 8.10(b) shows an intersection between/(x) and g{n-x). The 
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intersection determines tiie most efficient processor configuration for botii sub-queries where 

these sub-queries do not overlap in occupying the resources. 

8.6.3 Skewed and Non-Skewed Sub-Queries 

If one of die sub-queries is not skewed and the otiier one is skewed, the sizes of die sub-

queries play an important role in deciding die execution scheduling strategy. Three cases are 

considered. Case 1 is where the two sub-queries are quite equal in size. Case 2 is where the 

skewed sub-query is larger, and case 3 is where the non-skewed sub-query is larger. The 

intersection of the three cases are iUusfrated in Figure 8.11. 

Time 

(a) Non-Skewed and SIcewed Sub-Queries 
(same sizes) 

Sub-query 2 
(Skewed) 

H 1 

1 n-1 

Processors for sub-query 1 

(b) Non-Skewed and Skewed sub-queries 
(Non-Skewed > Skewed) 

'. / 
/ 

/ 

j i p ^ .. —-^'' Sub-query 2 (Skewed) 

_^__^ Sub-query 1 (Non-Skewed) 

1 n-1 n 
Processors for sutx^uery 1 

Time 

(c) Non-Skewed and Skewed Sub-Queries 
(Skewed < Non-Skewed) 

\ Sub-query 1 (Non-Skewed) 

v̂^̂  
Sub-query 2 (Skewed) _ - — 

1 n-1 n 

Processors for sub-query 1 

Figure 8.11. Intersection of non-skewed sub-query and skewed sub-query 

Assume that tiie first sub-query is not skewed and die second sub-query is skewed. 

Using tiie functions/(A:) and g(x) to represent tiie sub-queries, tiie functions for tiie first and 

the second sub-queries are: 
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f(x) = - and8(x) = ^ 
X H, 

The intersection between tiie two sub-query functions is shown by equating 

r2 n 

(8.44) 

n 
X 

n 

X 

r2.x = 

r2 

n—X 

r2 

7-t-bi(n-

ri.7-t-hi(n 

X) 

-xr 
or 

H^ n-x 

r2 n 

y + lnx n-x 

r2.n-r2.x = ri.y-i-]nx rl 

Analytical solution is difficult to obtain, and hence, a graphical solution is preferred. 

8.6.4 Summary 

The efficiency of paraUel execution scheduling relies upon delicate resource division 

calculation, without which processor idleness wUl not be avoidable, and consequentiy, 

expected performance cannot easUy be obtained. The quantitative analysis has shovra that 

finding the intersection between the two sub-query functions is difficult. Other alternatives, 

such as promoting serial sub-queries execution where no resource division is needed, are 

more potential. 

8.7 Discussions 

We have seen tiiat the pipeline model is suitable for selection operation where data fetching is 

done simultaneously witii predicate evaluation. Witii tiie increase of network and bus 

bandwidtii, it becomes possible tiiat tiie local predicate evaluation time wUl cover die 

disfribution time. On tiie otiier hand, the fully partitioned model is die only option for join 

operation because the join operation particularly requires aU data to be fuUy partitioned prior 

to the local joining process. This provides a motivation for using path d-aversal based on 

selection operation for query optimization, and avoiding join operation whenever possible. 

Performance evaluation based on quantitative analysis is a dUficult task, even just to 

fiad tiie upper and tiie lower bound. This is mainly because most cost factors are non-

determimstic, and a number of assumptions have to be used. Therefore, die vaUdity of 

analytical models very much depends on tiiese assumptions. In some cases, relative 

performance comparison can be done by considering die cost elements which are key to each 

model. 
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8.8 Conclusions 

The purposes of quantitative analysis are twofold: one is to model die behaviour of each 

algorithm or process, and the other is to perform comparative performance analysis and 

sensitivity analysis. Once a quantitative model has shown to be correct, it can be used as a 

foundation to evaluate and examine a particular process. Quantitative analysis is certainly a 

preferable way to evaluate a process since it is tiie most economical as weU as tiie most 

efficient way of carrying out performance analysis. However, U is also tiie most difficult task 

and other techniques such as simulation and experimental performance measurements are 

desirable. 

The contributions of this chapter can be summarized as foUows. 

• Analytical models for paraUel processing of basic queries are formulated. 

• Three lemmas on inheritance data structures for efficient paraUel processing 

have been developed. They generaUy support the use of the linked-vertical 

division as a base inheritance structure. 

• Two lemmas on parallelization of path expression queries provide a basic 

guideline for the optimization of general path expression queries. The 

development of these lemmas is based on the fUtering feature of path traversal 

operation which is proven to be efficient. Although the efficiency of each 

paraUelization model depends on other factors, such as replication factor, 

skewness, and partial relationship; selectivity plays a critical role which provides 

significant fUtering benefits. 

Basic query optimization has been analyticaUy analyzed and has shovra tiiat the 

prescribed transformation, in general, is able to achieve performance 

improvement. 



Chapter 9 

Simulation Performance Evaluation 

9.1 Introduction 
The prediction of timing performance is a difficult exercise in aU fields of computing, but 

particularly so m paraUel processing. Performance prediction by calculation is the simplest 

way, but it can be very difficult even to obtain an upper or lower bound on performance or to 

determine its asymptotic behaviour. Once a cost model is validated, it can be an invaluable 

tool for performance prediction and comparison. It is the objective of this chapter to validate 

the quantitative analysis presented in the previous chapter, by using simulation. An 

investigation using simulation is also used to obtain a series of directions rather than for 

numerical quantities, such as whether a paraUelization method is always better than the other. 

The rest of this chapter is organized as foUows. Section 9.2 describes the simulation 

model. Sections 9.3 to 9.5 present some performance resiUts of paraUelizing inheritance 

queries, path expression queries, and coUection join queries, respectively. Sections 9.6 and 

9.7 give the performance results of paraUel query optimization including execution 

scheduling. Section 9.8 discusses the achievements of the experimentations. And finaUy, 

section 9.9 gives the conclusions. 
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9.2 Simulation Model 

A simulation program caUed Transim, a ttansputer-based simulator (Hart, 1993), was used in 

die experiments. The programs were written in an occam-Uke language supported by 

Transim. 

Using Transim, tiie number of processors and the architecture topology can be 

configured. Communication is done tiirough channels which are able to connect any pair of 

processors. Through this feature, tiie simulation model adopts a star network Master-Slave 

topology, where processing is done by disfributing die work from die master to aU slave 

processors. This configuration is identical to tiiat of tiie analytical model (see Figure 8.1, and 

Figure 8.2(c)). By using die same kind of architecture in die simulation as the analytical 

models, validation of the latter by the former can be done. 

9.2.1 Default Hardware 

The default processor is the IMS T800 d-ansputer, clock speed 20MHz, nominal link speed 

10 Mbit/sec, internal memory assumed sufficientiy large that external memory is never 

required. Table 9.1 shows the default hardware configuration. 

1 l̂ eCSê l̂Si' 
spd{Ti) 
ls(n) 
ics{n) 
ecs{n) 
icd{n) 
ecd{n) 
tsl{n) 
em 

Tafoe 
20 
10 
2 * spd{n) 
ls(n) 111.25 
64 / spd{n) 
82 / spd(n) 
20480 
5 

BesQ f̂ê da ' ' 
clock speed of processor n 
nominal link speed 
internal communication speed 
external communication speed 
internal communication delay 
external communication delay 
time slice period 
the e-factor 

Table 9.1. Default hardware parameters 

External communication is the communication between processes which are located 

at different processors, whereas internal communication is the communication between 

processes located at the same processor. External channel speed is the data rate over a link 

tiiat is carrying fraffic in one direction only, not tiie nominal link speed Is, which is higher. 

Internal channel delay is tiie overhead involved in setting up and terminating an internal 

channel communication, and external channel delay is an overhead involving the setting up 

and terminating of a communication over a link. The e-factor is the number of additional 

processor cycles required per cycle of external memory. This value characterizes tiie relative 

speeds of internal/external memory. It must be sttessed that the values of these parameters are 

adjustable. In the experimentations, up to 12 processors were used. 
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9.2.2 Timing Constructs 

A smaU subset of an occam language is supported by Transim. A program written in this 

language contains two different components: an occam matrix, and an embedded coUection of 

timing constructs. The function of the mad-ix is the control, whereas tiie function of tiie 

timing constructs is to step forward simulated time. The mafrix, unUke a normal 

programming language, does not contribute to die passage of time, except through its control 

over the timing constructs. Therefore, in the absence of timing constructs, the simulated time 

remains zero even though the program is executed step by step correctiy. 

There are three forms of timing constructs including time delays introduced by 

communication, sequential execution time, and timer waits. 

Communications. Commimication is represented by the contents of the message 

transferred and the timing function by the time delay involved in transferring it. The 

independence between these two components wotUd lead to a rather unexpected property that 

the time delay can be arbifrary without reference to the contents of the message. 

Sequential Blocks. The program control function is represented by blocks of codes 

which is part of the occam mafrix, and the timing function by embedded timing constructs. 

Adding an arbifrary volume of codes wUl not affect the simulated performance unless a 

timing construct is altered. The timing construct is normaUy the estimated time to execute the 

codes in the conttol function. 

Timer Waits. The function of waiting for the timer is represented in two different 

ways: by the occam delayed input, and by die waiting construct. The former is the waiting 

time associated with inputs, whereas the latter is an arbifrary waiting period. 

9.2.3 Timing Equations 

Two types of timing data are required: for communication, and for sequential blocks. In the 

former case, it should not normaUy be difficult to obtain good figures as they are derived 

internally from the number of bytes fransferred, which is usuaUy weU-known. For sequential 

blocks, however, an estimation must then be employed. 

The foUowing as the timing equations using the given system parameters. 

• For periods spent processing on die CPU A^xEO where tiie quantity of 

processing wklen is given by the timing construct in a sequential block: 
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. _{^ + F{p,n)yvklen 
^EXEC — ~ ~ 7~~ 

spd{n) 

where tiie term F{p,n) is intended to approximate die effect of external memory, 

4 

and mr(p) is memory ratio of processor p, which is the proportion of tiie memory 

requirement residing in the external memory (zero value represents a process 

running entirely in internal memory). 

For period of internal communication Ajo.jj<u with process p', where the message 

length iolen is the parameter to the corresponding communication construct. 

. ,, , , {l-\-F{p,n)-i-F{p\n))iolen 
A =icd(n) + -

'o-iNT ics{n) 

For period of external communication AJQ-EXT where the ports of each end of tiie 

link must have matching parameters: 

^ ^ ldf{n,q)iolen 
A ,o_Exr = ecd{n) + — 

ecs{n) 

where ldf(n,q) is link degradation factor of link q from processor n. 

For period spent waiting for the timer employing the occam delayed input 

constiiiction, where the waking time wktim is tiie parameter to the constinict, 

^s-TiM - wktim-current_time 

When an arbifrary waiting constiiict is used, witii tiie minimum delay time wtlen, 

_ wtlen 
^s-TiM — T7~r spd{n) 

For the time sliced period, 

tsl{n) 
^TSL — spd(n) 
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9.3 Simulation Results on Parallel Processing of 
Inheritance Queries 

9.3.1 Super-Class and Sub-Class Queries 

A number of queries was generated witii dUferent object sizes and number of objects. Some 

of the results are presented as foUows. 

Sifjer-Ciass Queries 

1000 

Sub-Class Queries 

700 800 

Siixd ass size 

1000 

Figure 9.1. Performance of Super-Qass Queries Figure 9.2. Performance of Sub-Class Queries 

Figure 9.1 shows performance of super-class queries using die three inheritance 

structures. The size of the sub-class was varied. The performance of horizontal division is 

poor, compared with the others. This is due to both super-class and sub-class being accessed 

in the horizontal division. In confrast, using the vertical/linked-vertical division, the access is 

localized to the super-class oiUy. It is also noted that the performance of vertical and linked-

vertical for super-class queries are simUar. Another interesting thing is that performance 

degradation of the horizontal division is quite significant when the sub-class size increases, 

since a large amount of unnecessary information about the sub-class is also accessed. 

Figure 9.2 shows performance of sub-class queries. Due to a need for an explicit 

join, vertical division does not perform weU. The performance of the horizontal and die 

linked-vertical division is quite simUar, indicating tiiat the overhead incurted by pointer 

fraversal is insignificant. 

Based on these two figures, it can be deduced tiiat horizontal and linked-vertical are 

best for super-class queries, whereas vertical and linked-vertical are suitable for sub-class 

queries. This indicates that die proposed Unked-vertical is an appropriate inheritance data 
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Structure for both super-class and sub-class query processing. A further experimentation was 

cartied out by incorporating the frequencies of super-class and sub-class queries. Figure 9.3 

shows performance of the three inheritance data structures (i.e., horizontal, vertical, and 

linked-vertical). The A -̂axis is the frequency of the super-class query. The frequencies of the 

sub-class query are exactiy the opposite of those of super-class query. In other words, if the 

super-class query frequency is low, the sub-class query frequency is high. 

Frequencies 

25000 T 

20000 

16000--

Time 
10000--

5000 

-A— Horizontal (Super-Class) 

-£r— Horizontal (Sub-Class) 

->— Vertical (Super-Class) 

-D—Vertical (Sub-Class) 

-O— Linked-Vertical (Super-Class) 

- •— Linked-Vertical (Sub-Class) 

minimum of horizontal minimum of vertical 

Super-Class Query Frequencies 

Figure 9.3. Performance of Super-Qass and Sub-Qass Queries 

Based on Figure 9.3 is can be seen tiiat tiie cost of super-class queries using 

horizontal division is increased when tiie super-class query frequency is increased. 

Conversely, tiie cost of sub-class queries using horizontal division decreases when die super­

class query frequency is increased. Depending on die size of tiie sub-classes, tiie best 

performance of horizontal division is when tiie frequencies between super-class and sub-class 

queries are quite equal. If one of die query types occurs more frequentiy tiian tiie otiier, tiie 

performance degrades. 

Figure 9.3 also shows tiiat vertical division becomes more costiy as tiie frequency of 

sub-class query increases. The intersection for vertical division shows die applicabUity of 

vertical division is exttemely limited to super-class queries only. 
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The best performance is offered by tiie proposed linked-vertical division. Altiiough 

the cost for sub-class queries is expensive when the frequency of sub-class query is high, it is 

stUl cheaper than that of vertical division and quite comparable with that of horizontal 

division. In the same way, although the cost for super-class queries is expensive when the 

frequency of super-class query is high, it is stiU better than the others. By analyzing the 

minimum points of each inheritance division, die linked-vertical offers the best option. Figure 

9.4 gives the summary of the performance based on query frequency. The Une for the linked-

vertical goes down with that of horizontal division. But at some point, the line of horizontal 

division is up whUe the line of linked-vertical is consistentiy going down. At die minimum 

point, the line for the linked-vertical is also climbing. Starting at the lowest point of the 

vertical division, both linked-vertical and vertical division lines are going up at a lower cost 

than that for horizontal division. 

Frequencies 
25000 

20000 P-..^ Vertical (Sub-Class) 

15000 Horizontal (Super-Class) 

Time 

5000 

10000 i Linked-Vertical (Sub-Class) 

Horizontal (Sub-Class) 

Vertical (Suoer-Class) 

Linked-Vertical (Super-Class) 

minimum of horizontal minimum of vertical 

Super-Class Query Frequencies 

Figure 9.4. Performance Summary based on the Frequencies 

The difference between performance of horizontal division and linked-vertical 

division for sub-class queries is tiiat tiie Unked-vertical imposes overhead for die pointer 

fraversal cost. Since d-aversal is done purely in main-memory tiirough direct memory address, 

die traversal unit time can be very smaU and insignificant. Figure 9.5 shows a performance 

comparison between die two inheritance data divisions according to tiie speed of die traversal 

unit time. It shows that even when tiie d-aversal uiut time is four times higher tiian tiie original 

fraversal unit time, tiie difference is reaUy insignificant Oess tiian 0.3%). This is why tiie 
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difference between horizontal and linked-vertical division for sub-class queries shown 

previously in Figure 9.1 and 9.3 (9.4) is imimportant. 

Horizontal vs. Linked-Vertical 
1100 T (Sub-Class) 

1000 -

Time 

900--

800 

— » • r 

- Horizontal 

Linked-Vertical 

- I - - I 

2 3 

Traversal Unit Time 

Figure 9.5. Perfonnance Comparison between Horizontal and Linked-Vertical 

9.3.2 General Inheritance Queries 

In general cases, inheritance hierarchies can be of the foUowing three cases: (/) multiple sub­

classes, (ii) multiple inheritance (multiple super-classes), and (///) long inheritance 

hierarchies. 

Super-class queries in a miUtiple sub-class inheritance hierarchy involve the super­

class and all of its sub-classes, whereas sub-class queries are not affected by the complexity 

of multiple sub-classes hierarchies since sub-class queries involve only the sub-class 

concemed by the query. 

Conversely, sub-class queries in a multiple inheritance hierarchy involve the sub­

class and all of its super-classes, whereas super-class queries involve only the super-class 

which the queries concern and aU of its sub-classes which happens to be only one. Thus, 

miUtiple inheritance does not increase the complexity of super-class query processing. 

Figure 9.6 shows performance of super-class queries in a multiple sub-class 

hierarchy. The performance graph shows a simUar pattern as in Figure 9.1. Both graphs 

demonstrated that the performance of super-class queries is the worst, and a better 

performance is offered by the vertical and linked-vertical division. As the number of sub­

classes increases, the processing cost also increases. However, the grovi^ of processing costs 

for vertical and linked-vertical is not as drastic as that of horizontal division. 
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Figure 9.7 shows performance of sub-class queries in a multiple inheritance 

hierarchy involving a number of super-classes. As tiie number of super-classes increases, tiie 

processing cost for tiie vertical division is also raised, due to die cost for expUcit join between 

tfie sub-class and aU of its super-classes. In contrast, tiie performance of horizontal and 

linked-vertical grows steadUy at a much lower rate. The isolation of tiie sub-class in 

horizontal division and tiie smaU overhead of the d-aversal cost in linked-vertical division 

offer a much better performance compared with an expensive join operation employed by die 

vertical division. 

Time 

6000-

5000-

400G-

3000-

2000-

1001 

0 

Multiple Sub-Classes 
(Super-Class Query) 

- Horizontal 

-Vertical 

-Unked-Vertical 

3 , 4 5 

Number of Sub-Classes 

Figure 9.6. Performance of Super-Class Queries 
Multiple Sub-Qasses 
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Figure 9.7. Performance of Sub-Qass Queries 
Multiple Inheritance 

In a long inheritance hierarchy, query on a class can be regarded as a super-class 

query as weU as a sub-class query, depending on where the class is situated. For example, if 

the query is on the second class, from tiie top view, the query is a sub-class, but from a 

bottom view, the query is a super-class. Since performance of super-class and sub-class 

queries using different inheritance structure is often confradictory (for example, horizontal 

division is good for sub-class queries, but not so good for super-class queries), an analysis of 

queries on long inheritance hierarchies is critical. 

Using horizontal division, query processing on die i* class (suppose /=1 is a query on 

die root/super class) must include aU classes at die (i+f)^ level (where ;>1). Consequentiy, 

the processing cost can be expected to go down as the number of classes decreases. 

Vertical division is exactiy tiie opposite. Query processing on the /* class is a join 

witii aU classes at tiie (i-f)^ level (where ;>1). The exception is tiiat when /=1, no join 

operation is necessary as tiiere is only one class, tiiat is tiie root/super-class. As a result, tiie 
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lower the position of the class on which the query is based, die more expensive the processing 

cost, due to tiie usage of tiie join operation. 

Linked-vertical division, to some extent, is simUar to both horizontal and vertical 

divisions in a positive way. Processing the top class is simUar to that of vertical division, 

whereas processing the lowest class is simUar to that of horizontal division with an addition 

of pointer traversal. Processing a middle class requires a pointer traversal to aU of its super­

classes. Performance using die linked-vertical division is expected to be quite constant, 

depending on the size of the classes (number of objects and number of attributes). For 

example, processing the top class involves aU objects but with limited number of attributes. In 

confrast, processing the lowest class involves a smaU number of objects but with aU 

atfributes. Figure 9.8 shows a performance comparison of inheritance queries using 5-level 

inheritance hierarchy. OveraU, it is demonstrated that the proposed linked-vertical division 

offers the best performance. 
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Figure 9.8. Performance Comparison between the three inheritance divisions 

9.4 Simulation Results on Parallelization of Path 
Expression Queries 

In tiie experimentations, a two-class path expression query was consdiicted. The objects were 

generated by a random number generator, in which die degree of fan-out and selectivity were 

also created. 
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9.4.1 Inter-Object Parallelization 

Inter-object paraUelization is weU-recognized mainly due to its fUtering feature. The effect of 

selectivity degree on fUtering wUl be investigated. The cost of inter-object paraUelization 

includes the processing costs for the root class and die associated class. The proportion of the 

root class processing cost and the associated class processing cost, especiaUy in the presence 

of association skew, and the effect of skewness to speed up, wiU be examined. 

Inter-Object Parallelization 

Time 

Selectivity 

Figure 9.9. Performance of Inter-Object Parallelization 

Figure 9.9 shows die performance of inter-object paraUelization by varymg tiie 

selectivity factor. When the selectivity degree is low, the elapsed time taken to answer the 

query is also low, regardless of the fan-out degree. This is because most of die associated 

objects are not accessed and subsequentiy tiie fan-out degree gives only littie impact. As tiie 

selectivity degree grows, the processing cost also increases, especiaUy for those medium to 

high fan-out degrees. 

The impact of low fan-out, when die selectivity degree is high, is not as big as tiiose 

witii higher fan-out degree. This demonsfrates tiiat when tiie selectivity is high, tiie processing 

cost is determined by tiie number of accesses to die associated class which is partiy indicated 

by the fan-out degree. 
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Inter-Object Parallelization 
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Figure 9.10. Processing costs for the root class and the associated class. 

Figure 9.10 shows a comparison between the processing cost for the root class and 

die associated class, particularly in regard to die association skewness. When the association 

skew is low, which refers to the associated objects being disfributed quite evenly (note tiiat 

using a round-robin partitioning, the root class is divided equaUy to aU processors), the 

processing cost for the associated class is also low. However, when the association skew is 

getting worse, the processing cost for the associated class is becoming higher too, especiaUy 

when the degree of skewness is reaUy high. In contrast, die processing cost for the root class 

is quite steady, despite the association skewness degree. This is because the root class has 

been divided quite equaUy. Depending on the fan-out degree which determines the number of 

accesses to the associated class, and the degree of association skew, the processing cost for 

the associated class can become dominant, especially when die aforementioned two factors 

are indicated to be quite high. 

Speedup 

Inter-Object Parallelization 
(Effect of Skew) 

Figure 9.11. Performance of inter-object parallelizadon in the presence of skew. 
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Figure 9.11 shows the effect of skew on the performance of tiie inter-object 

paraUelization. The result shows tiiat tiie skewness affected tiie improvement greatiy. Only 

when tiie skewness is low, is near-linear speed-up attainable. This indicates that witiiout a 

careful treatment of the skew problem, performance improvement is barely achieved. 

9.4.2 Inter-Class Parallelization 

As inter-class paraUelization is divided into two phases, selection phase and consolidation 

phase, tiiese two elements wUl be investigated in die overaU cost for inter-class 

paraUelization. 
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Figure 9.12. Performance of Inter-Qass Parallelization 

Figure 9.12(a) shows tiie comparison between tiie processing costs for tiie selection 

and the consolidation, particularly when the query involves two selection operations: one 

selection operation on each class. The selection cost is shown to be dominant, and quite 

constant regardless of the selectivity factor. It is because aU objects from the two classes in 

the query need to be accessed. The consolidation cost is shown to be minor and increases 

when tiie selectivity factor is high. This indicates tiiat, using a shared-memory/disd-ibuted 

cache main-memory architecture, the consolidation cost for tins particular query type is low. 

Figure 9.12(b) presents a performance of inter-class paraUelization for queries 

having selection operations on the root class and no selection operations on tiie associated 

class. The selection path is shown to be quite constant and smaUer tiian tiie one having two 

selection operations. In this query type, the selection operation is the cost for going through 

aU root objects orUy. The consolidation cost is shown to be non-trivial. With the increase of 

the selectivity degree, the consolidation cost also increases. This cost includes the cost for 

accessing the associated objects for each selected root object. 
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Figure 9.13. Performance of inter-class parallelization of a variety of query types. 

Figure 9.13 shows a comparison between queries having two selections (one on each 

class), one selection on the root class, and one selection on the associated class. When the 

selectivity degree is low, perfonnance of the query having a selection on the root class is 

demonsfrated to be the'best. This is because the selection cost is lower than tiiat of tiie queries 

with two selections, and the consolidation cost seems to be lower than that of the queries with 

one selection on the associated class. As the selectivity degree increases, the filtering feature 

provided by the selection operation on die root class becomes ineffective. Hence, performance 

of the query having a selection on the associated class becomes die best. This is because the 

selection part of this query is lower than that of queries having two selections, and the 

consolidation part of this query seems to be not as high as that of queries with a selection on 

the root class. 

9.4.3 Inter-Object vs. Inter-Class Parallelization 

A comparison between inter-object paraUelization and inter-class paraUelization is shown in 

three different cases. Case 1 is where the query involves two selections (one on each class). 

Case 2 involves queries with one selection on the root class. Case 3 is where the queries have 

a selection on the associated class only. The results are presented as foUows. 
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Figure 9.14. Case 1: Inter-Object vs. Inter-Qass 

Figure 9.14(a) shows a comparison between inter-object and inter-class for query 

type 1 (i.e., 2 selections). Performance of inter-object paraUelization is demonstrated to be 

better than that of inter-class paraUelization. As the selectivity factor increases, the cost for 

inter-object paraUelization also increases. This is due to the reduction of the filtering 

mechaiusm in the inter-object paraUelization. On the other hand, performance of die inter-

class seems to be not much affected by the degree of the selectivity, since the major 

component of the processing is the cost for evaluating aU root and associated objects. 

Figure 9.14(b) shows that the inter-object paraUelization cost almost remains steady, 

untU die fan-out degree is closing to a high degree. This shows that the filtering mechanism is 

not much affected by the fan-out of die root class, because tiie selection operator of the root 

class eliminates most of the associated objects. The frend of die inter-class is also simUar to 

tiiat of inter-object. This is particularly because tiie cost is influenced by the size of die two 

classes. It is interesting to notice that the difference in performance between 10% replication 

and 20% replication of the inter-class paraUelization is insignificant. This is due to die 

consolidation cost which focuses on the root class. The dUference is reflected only by die 

selection cost of the associated class. 

OveraU, the results show a support for Lemma 8.4, where tiie influence of tiie 

selection operation in the root class plays an important role in bringing tiie inter-object 

paraUelization cost down. 
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Figure 9.15. Case 2: Inter-Object vs. Inter-Qass 

Figure 9.15(a) presents a comparative result for query type 2 (1 selection on the root 

class). Inter-object paraUelization stiU shows its superiority over the inter-class 

paraUelization. As the selectivity factor of the root class increases, the costs for both 

paraUelization models also escalate. Moreover, performance of the inter-class paraUelization 

becomes worse when the selectivity factor is more than 50%. This is because, the purpose of 

the consolidation process for query type 2 is to evaluate aU selected root objects and their 

associated objects. The latter is needed, as die selected associated objects are to be projected 

and presented to users. This process is much influenced by the selectivity factor. 

Figure 9.15(b) shows that the dUference between the two paraUelization models is 

almost steady, regardless the fan-out degree of the root class. Performance of the two models 

relies heavUy on the number of associated objects, which is partiy shown by the fan-out 

degree of the root class. 

It can also be concluded that for query type 2, performance of die inter-object 

paraUelization is better tiian tiiat of inter-class paraUelization, due to die filtering mechanism 

provided by the selection operator in the root class. 
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Figure 9.16. Case 3: Inter-Object vs. Inter-Qass 

Figure 9.16(a) gives the results for query type 3 (1 selection on the associated class). 

As the selection operation is absent from the root class, the inter-class paraUelization shows 

its superiority over the inter-object paraUelization, even when the size of the associated class 

is larger than titie size of the root class. The number of accesses to the associated class 

significantiy determines the performance of the inter-object paraUelization. Even more, the 

skewness problem nught occur when processing the associated class. In contrast, inter-class 

paraUelization purely concenfrate on the original size of tiie associated class. Using the round-

robin partitioning for both classes, the skew problem can be eliminated. 

Figure 9.16(b) shows a comparison between the inter-object paraUelization and the 

inter-class paraUelization according to die ratio between the size of tiie root class and the size 

of the associated class. The lower the size of the associated class, the better the performance 

of the inter-class paraUelization. Performance of tiie inter-class paraUelization degrades oiUy 

when a lot of objects from the second class do not have any association with any root objects. 

This is when the associated class has a partial participation to the relationship between the 

root class and the associated class. 

Both experimentation results shown in Figure 9.16 support Lemma 8.5, where it is 

stated that in the absence of the fUtering mechanism, forward path fraversal in the inter-object 

paraUelization wiU not enhance the performance. Therefore, the inter-class paraUelization 

model is much more feasible for query type 3. 
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9.5 Simulation Results on Parallel Processing of 
Collection Join Queries 

Sort-merge based and hash based versions of paraUel coUection join algorithms for each 

coUection join query type are examined. A comparison with conventional methods, such as 

relational division is also presented. 

9.5.1 Simulation Results of Parallel R-Join Algorithms 

Three algorithms were compared in the experimentations. They are ParaUel Sort-Merge R-

Join algorithm, ParaUel Hash R-Join algorithm, and the loop division. Factors considered 

were the size of coUections, the size of classes, and the join selectivity degree. The results are 

presented as foUows. 
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Figure 9.17. Performance of Parallel R-Join Algorithms 

Performance graphs in Figure 9.17 show tiiat tiie proposed algoritiims (sort-merge 

version and hash version) are always better tiian tiie conventional relational loop division 

algoritiim for paraUel processing of R-Join queries. The efficiency of tiie proposed algoritiims 

can be more tiian 100% compared to tiie relational loop division. The cost for die relational 
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loop division increases sharply especiaUy for large operands. This is due to die expensive 

loop division cost. 

Figure 9.17(a) shows a comparative performance between the proposed algorithms 

witii the relational division, by varying die coUection size. When the coUection size is smaU, 

the sorting cost for the coUection is cheap, resulting in the overaU performance of tiie sort-

merge version to improve. As the coUection size grows, tiie sorting cost for tiie coUections 

also increases. However, the overaU performance of the sort-merge version is quite steady 

altiiough tiie coUection size is increased. This is because sorting each coUection is relatively 

smaU compared to the other cost components, such as for the sorting of the objects. In the 

experiments, the size of the coUection varies from 2 to over 50 elements. For the same 

number of objects per class, the difference between sorting 50 elements and sorting 4 element 

is relatively insignificant, unless tiie number of objects is increased dramaticaUy. Performance 

of the hash version is slightiy better than (in general) that of the sort-merge version, especiaUy 

when the coUection size is large. The processing cost for tiie hash version is quite comparable 

with that of the sort-merge version because the hash version, in some cases (especiaUy for 

sets/bags), incurs a coUection sorting cost. Furthermore, the hashing and the probing 

processes have to be repeated. The hash version is however saved from the objects coUection 

sorting cost imposed by the sort-merge version. 

Figure 9.17(b) shows another comparative performance against the size of the 

operand. Performance of the hash version is shown to be better than that of the sort-merge 

version. Processing cost for the sort-merge version increases as the size of the operand 

expands. This is due to the objects sorting cost. Processing cost for the hash version is not 

affected by the size of the operand more than the sort-merge version. The hashing and the 

probing processes are linear in complexity, which is much more simple than the NlogN 

complexity for the objects sorting. 

Figure 9.17(c) incorporates the selectivity degree for each algorithm. It shows that 

the join selectivity factor does not affect the degradation of performance significantiy. For tiie 

sort-merge version, it appears that the merging cost for the matched coUections is only a 

smaU component of the overaU cost. For the hash version, the increase is due to the repetition 

of the hashing and the probing processes, which can be expensive when die selectivity degree 

is high. And for the relational division metiiod, intersection cost component seems to be smaU, 

compared witii the loop division. Hence, tiie join selectivity factor does not play a significant 

role in the overaU performance. 
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9.5.2 Simulation Results of Parallel I-Join Algorithms 

Four algorithms were examined and analyzed. They are the sort-merge version of paraUel I-

Join algorithm, the hash version of paraUel I-Join algorithm using the simple repUcation 

technique, the hash version using the divide and partial broadcast technique, and the original 

join predicate version where intermediate coUection results are created during the predicate 

processing. 
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Figure 9.18. Performance of Parallel I-Join Algorithms 

Performance graphs in Figure 9.18 indicates tiiat tiie hash versions perform better 

dian tiie other two. This is due to die expensive nested loop constiiict employed by die sort-

merge version. The hash versions, on die other hand, are linear in complexity. It is noted tiiat 

performance of tiie two versions (i.e., simple replication, and divide and partial broadcast) of 

die hash version are quite comparable. The difference is mainly provided by die data 

disfribution cost, not by tiie join cost, since botii of them apply tiie same join techruque. The 
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original join predicate technique, which is predicated to be inefficient, is demonsfrated to 

show the poorest performance. The creation of intermediate join result whUe processing die 

join predicate is proven to be inefficient. 

Figure 9.18(a) shows tiiat tiie coUection size does not give much impact to die hash 

versions. In confrast, performance degradation of die sort-merge version is exhibited. This is 

due to the increase of tiie sorting cost which is totaUy for tiie coUections. The dUference 

between tiie original predicate version witii tiie sort-merge version of paraUel I-Join is shown 

to be quite constant, referting tiiat tiie overhead for tiie creation of tiie intermediate results is 

invariable. 

Figure 9.18(b) also shows tiie same ti-end. The costs for die sort-merge version and 

the original predicate version are expanded rapidly, as the class sizes grow. This is mainly 

caused by the nested loop construct which is knovwi to employ a quadratic complexity. 

Figure 9.18(c) demonstrates tiiat tiie selectivity degree plays a minor role in 

performance of paraUel processing of I-Join queries, except that the original predicate version 

is shown to increase its processing cost when the selectivity is very high. The sort-merge 

version reveals that the major cost component is not the is_overlap function which manifests 

the selection process, but the nested loop construct overhead. Likewise, the hash versions 

major cost components are the hashing and the probing costs, as aU objects must be hashed 

and probed. The selection degree does not impact on the number of objects being processed, 

and consequentiy it does not have much impact on the overaU performance. 

9.5.3 Simulation Results of Parallel S-Join Algorithms 

Four algorithms are analyzed. They include the proposed sort-merge version and hash version 

of coUection S-Join, the original coUection S-Join predicate, and the conventional relational 

division. The results are presented in Figure 9.19. 

Figure 9.19(a) shows that die hash versions perform better tiian tiie otiiers. The 

processing cost for the sort-merge is as expensive as the conventional methods due to the 

expensive nested loop construct. As the coUection size increases, the sort-merge cost also 

increases. The original predicate version which utUizes a sort-merge is demonstrated to be 

more expensive than the proposed sort-merge algorithm, because of the intermediate result 

creation overhead. The relational division is also in tiie upper level accompanying the sort-

merge version and the original predicate version. 

Figure 9.19(b) proves tiiat the nested loop constiiict severely hurts die sort-merge 

version especiaUy when the size of the operand is huge. The effect of the class size in the hash 
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versions is not as enormous as that in the sort-merge version. This verifies the efficiency of 

programs with a linear complexity like hash, compared with programs having a quadratic 

complexity imposed by a nested loop like in the sort-merge version. 

Figure 9.19(c) shows the impact of the selectivity factor on the performance of each 

algorithm. For the hash versions, the selectivity factor influences the degree of repetition for 

the hashing and the probing processes. UiUike the hash versions, the sort-merge version is 

basicaUy unaffected by the selectivity factor, as processing cost is monopolized by the nested 

loop construct. The original predicate version shows a uniform difference with the proposed 

sort-merge version, as they mainly use the same partitioning and processing techniques but 

differ in processing the join predicates. The additional cost imposed by the original predicate 

version comes from the intermediate coUection results overhead. The relational loop division 

shows to very inefficient due to the excessive cost for the loop division. 
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Figure 9.19. Performance of Parallel S-Join Algorithms 
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9.6 Simulation Results on Query Optimization 

Two basic query optimizations: INTER-OBJECT-OPTIMIZATION and INTER-CLASS-

OPTIMIZATION were examined. This involved implementing and analyzing the ti-ansformation 

procedures among basic paraUelization models, such as inter-object paraUelization, inter-

class paraUelization, and explicit join paraUelization. The results are presented in tiie next 

sections. 

9.6.1 Simulation Results on INTER-OBJECT-OPTIMIZATION 

There are three types of fransformation for the INTER-OBJECT-OPTIMIZATION. They are IOB 

->IOB fransformation, ICL->IOB fransformation, and EXJ->IOB ti-ansformation. The objective 

is to fransform any other primitive operation to an inter-object paraUelization. In the 

experimentations, factors such as selectivity degree, replication, and skewness, were 

considered. When the fransformation requires a bi-directional relationship, an inverse relation 

was created. 

a. lOB^IOB Transformation 

IOB->IOB fransformation is applied to two-class path expression queries, and the 

fransformation is done by changing the forward path traversal direction. 

Time 

25(>r 

200-

150--

100- ' -

5 0 -

0 

low 

(a) Inter-Object to Inter-Object 
Optimization 

Inter-Object (original) 

Inter-Object (Optimized) 

higti 

(b) Inter-Object to Inter-Object 
Optimization 

IOB (Original) 
IOB (Optimized - High selectivity) 
IOB (Optimized - medium selectivity) 
IOB (Optimized - low selectivity) 

Selectivity 

partial no high 
relationship replication replication 

Replication Factor of the Associated Class 



Ch. 9. Simulation Performance Evaluation page 246 
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Figure 9.20. Performance of IGB-^IOB Transformation 

Figure 9.20(a) presents a performance resiUt of the IOB->IOB ti-ansformation against 

the selectivity degree. The performance of the original inter-object paraUelization is quite 

steady, because there is no fUtering done to the query, as the selection operation is applied 

only to the associated class. By changing the ti-aversal direction, the selection operation serves 

as a fUtering tool. As a result, when the selectivity degree goes down, the performance 

improves. This shows that the transformation produced a better result, except when the 

selectivity degree was high, when the benefit from the fUtering was limited. 

Figure 9.20(b) shows the impact of replication or redundant accesses to the 

associated objects to the transformation. The original inter-object paraUelization performs 

weU when the ratio between total accesses to the associated objects and the original number 

of associated objects is low, which is shovra by the partial relationship of the associated class. 

As the replication factor increased, the processing cost for tiie original inter-object 

paraUelization also increases. On the otiier hand, performance of the transformed inter-object 

paraUelization is shovra to get better as the relationship of the associated class is not partial. 

This means that there is less dangling associated objects which do not have any connection to 

the root objects with a lower selectivity degree, the performance is shown to be the best. 

Figure 9.20(c) shows tiie impact of skewness on tiie dransformation. The skewness is 

a result of the fluctuation of tiie fan-out degree. The root class where the ti-aversal starts does 

not suffer from skewness. The result shows tiiat tiie impact of skewTiess on the original inter-

object paraUelization is so great that it resiUts in a poor performance. On tiie other hand, the 

impact of skewness on the fransformed inter-object paraUelization is not so great, as most of 

the objects are filtered out by the selectivity. Hence, die skewness is applied only to a small 

number of objects. Even with a higher degree of skewness, the impact is shown not to be 

great, compared with the original inter-object paraUelization where the skewness affected all 



Ch. 9. Simulation Performance Evaluation page 247 

associated objects. The main lesson is tiiat tiie skewness can be tolerated when tiiere is a 

lower selectivity degree which performs a filtering of objects of subsequent classes. 

The IOB->IOB fransformation is shown to be efficient, except in special cases where 

the selectivity degree of tiie associated class is high (i.e., >95%) and die relationship of tiie 

associated class is only partial. However, tiie latter can be tolerated if die selectivity degree is 

exfremely smaU (i.e., <0.001%). 

b. ICL->IOB Transformation 

ICL->IOB fransformation is applicable to two-class path expression queries and U is achieved 

by starting a fraversal from the class having a selection operation. There are two cases. Case 

1 is where it is possible to start a forward traversal from a class having a selection but not 

being done. The optimization is accomplished by performing a forward fraversal through an 

inter-object paraUelization from the class having a selection operation. 

Case 2 is simUar to case 1, but the optimization requires a change in path direction so 

that a forward fraversal through an mter-object paraUelization can be carried out. 
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Figure 9.21. Performance of ICL-̂ IOB Transformation (Case 1). 
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Figure 9.21(a) shows a performance comparison between die original inter-class 

paraUelization and the optinuzed inter-object paraUelization by taking the selectivity degree 

into account. When the selectivity is low, both operations perform weU. This proves tiie 

positive impact of filtering tiirough tiie selection operation. However, as tiie selectivity degree 

increases, the gjtov/th in processing cost for tiie inter-class paraUelization is more rapid tiian 

that for the inter-object paraUelization. This is due to tiie large overhead imposed by die 

consolidation operation in the inter-class paraUelization. 

Figiure 9.21(b) shows the impact of partial or compulsory relationship and redundant 

accesses on the performance of the inter-class paraUelization and inter-object paraUelization. 

The dotted lines in the graph represent the performance of the fransformed inter-object 

paraUelization. Using the same degree of selectivity, performance of the inter-object 

paraUelization is relatively better tiian performance of the inter-class paraleUization. The 

result also shows titiat the effect of the degree of replication is not so large to both inter-class 

paraUelization and inter-object paraUelization when the selectivity is lower or medium. As in 

die previous figure, performance of the inter-class paraUelization is prone to the high 

selectivity in which performance degradation is expected. 

OveraU, it has been shown tiiat the ICL->IOB transformation is generaUy desirable. 
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Figure 9.22. Performance of ICL—>IOB Transformation (Case 2). 
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Figure 9.22(a) shows tiiat the selectivity factor in the inter-object paraUeUzation 

plays an unportant role in bringing tiie processing cost down. The performance of die original 

inter-class paraUelization remains quite constant regardless of the selection operation, 

because aU objects of both classes have to be accessed. In contrast, accesses to die associated 

class in tiie inter-object paraUelization depends on die selection performed by die root class. 

Only in special cases where the selectivity degree is high (>95%), is performance of die inter-

object paraUelization shovra to be poorer tiian tiie counter part inter-class paraUelization. In 

this case, the fransformation is not desirable. 

Figure 9.22(b) demonsfrates that in general the performance of the inter-object 

paraUelization is better than that of die inter-class paraUelization. Because aU objects of both 

classes must be accessed by the inter-class paraUelization, the more dangling associated 

objects, the more expensive the processing cost for the inter-class paraUelization. In contrast, 

the relationship of the associated class does not give much impact to performance of the inter-

object paraUelization, since naturaUy non-associated objects (or dangling associated objects) 

are discarded through the association and the selectivity. Hence, performance of inter-object 

paraUelization is shown to be quite constant. The selection operation which performs the 

fUtering is shown to be a major key factor in the inter-object paraUelization. 

c. Exj->IOB Transformation 

The EXJ->IOB transformation is applicable to object join queries and is done by changing one 

of the paths so that complete path expressions are formed. 
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Figure 9.23 shows that at aU times explicit join operation is much more expensive 

than path expression operation through an inter-object paraUeUzation. As the join selectivity 

degree increases, processing costs for both operations also increase. The increase in 

processing cost of the explicit join operation is caused by the additional comparison of the 

elements of the coUection join atfributes. LUcewise, the increase in processing cost of the 

inter-object paraUelization is due to the fraversal cost imposed by the inverse relationship 

where more objects need to be accessed. With a lower selectivity degree, most path fraversal 

do not form a complete path fraversal. 

9.6.2 Simulation Results on INTER-CLASS-OPTIMIZATION 

There are two types of fransformation avaUable from die INTER-CLASS-OPTIMIZATION. They 

include IOB-»ICL transformation, and Exj^ICL ti-ansformation. The main objective is to 

fransform any other primitive operation to an inter-class paraUelization. 

a. IOB->ICL Transformation 

The lOB^ICL transformation is basicaUy transforming an inter-object paraUelization to an 

inter-class paraUelization. The fransformation is optimized oiUy when there is a selection on 

the associated class. Experimentation from this fransformation is used to compare 

performance of the original inter-object paraUelization and the fransformed inter-class 

paraUelization. This has been done in the section of 'Inter-object vs. Inter-class 

paraUelization", especiaUy in case 3 (Figure 9.16). The resiUts show that a transformation 

from an inter-object paraUelization to an inter-class paraleUization is more desirable most of 

the time. 

b. Exj-^ICL Transformation 

The EXJ->ICL fransformation is applicable when U is impossible to do an EXJ^IOB 

fransformation due to the absence of an inverse relation. The objective remains tiie same; that 

is to avoid explicit join operation whenever possible. There are two cases of the EXJ^ICL 

fransformation. Case 1 is where there is a selection operation on the joined class, and case 2 

is where there is a selection operation on one of the root classes. 
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Figure 9.24. Performance of ExJ—>ICL Transformation. 

Figure 9.24 shows that the selectivity degree does not affect performance of the inter-

class since aU objects from the three classes need to be accessed. Performance of the explicit 

join operation, however, is affected by the increase of die selectivity degree which incurs 

additional cost for comparison of the elements of the coUection join atfributes. 
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Figure 9.25 shows tiiat when tiie selectivity degree is low, performance of die expUcit 

join is quite good. This reflects tiiat tiie join cost is affected by die size of classes to be joined. 

If one of die classes is very tiny, tiie join cost wUl not be tiiat expensive. As tiie size of tiie 

class having tiie selection grows (due to tiie increase of tiie selectivity degree), die join cost 

expands. The selectivity degree also plays an important role after die ti-ansformation. The 

fransferted model is actuaUy a nUxed fraversal where first an inter-object paraUeUzation from 

tiie class having a selection to tiie joined class is applied, and second an inter-class is 

performed. The degree of selectivity of the inter-object paraUeUzation brings tiie total 

processing cost down. 

9.7 Simulation Results on Execution Scheduling and 
Load Balancing 

9.7.1 Without Data Re-Distribution 

A number of experiments were carried out to compare the serial schediUing and the paraUel 

schediUing methods for non-skewed and skewed sub-queries. A number of queries consisting 

of 2 sub-queries were created. In the simiUation, the sub-queries are varied from non-skewed 

to highly skewed, and from single class to multiple classes connected through a path 

expression. 

a. Non-Skewed Sub-queries 

(a) Non-Skewed Sub-Queries 
(equal size sub-queries) 

(b) Non-Skewed Sub-queries 
(Subquery 1 Large, Sutx:|uery 2 Small) 

Time 

Figure 9.26. Performance of Non-Skewed Sub-queries. 
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Figure 9.26(a) shows that for non-skewed sub-queries, the serial scheduling method is slightiy 

more efficient than tiie paraUel schedulmg method, especiaUy when the nmnber of processors 

used is less than 5. The smaUer the number of processors, the more difficiUt it is to divide die 

processors accurately to the sub-queries participated in a query. In these experimentations, an 

optimal processor configuration for paraUel execution is used. 

Figure 9.26(b) shows that the size of the sub-queries do not have much impact on 

execution schediUing, as the result is simUar to Figure 9.26(a). The resiUt shows that in the 

absence of a skew problem, the serial scheduling is slightiy better than the paraUel execution. 

In the experimentations, the most efficient paraUel configiu-ation was used. The difference 

between the serial and the paraUel execution performance, when the number of processors 

used is more than sk, is aroimd 10% in which the serial execution is superior. 

b. Skewed Sub-queries 

(a) Skewed Sub-Queries 
(equal size sub-queries) 

(b) Skewed Subqueries 

(Subquery 1 Large, Subquery 2 Small) 

Figure 9.27. Performance of Sicewed Sub-queries. 

Figure 9.27(a) presents tiie results for skewed sub-queries. It shows tiiat die performance 

using the paraUel scheduling metiiod is better tiian tiiat of die serial schediUing metiiod. The 

dUference between die two metiiods seems to be quite steady, regardless of die number of 

processors used. 

Figure 9.27(b) shows tiie comparison in perfonnance between serial and paraUel sub-

queries execution when tiie first sub-query is large and tiie second sub-query is smaU. Botii 

sub-queries involve a certain degree of skevimess. The performance result in Figure 9.27(b) 

shows a simUarity to tiie perfonnance result in Figure 9.27(a) meaning tiiat tiie size of tiie 

sub-queries do not affect tiie comparison too much. In tiie presence of skew in botii sub-

queries, tiie paraUel execution is preferable. The dUference can be up to 50%. 
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Figure 9.28. Performance Comparison between Serial and Parallel Execution. 

Figure 9.28 shows performance comparison by varying the degree of skevraess. The 

serial scheduling method produces the lowest cost when no load skew is involved. However, 

when the load skew occurs, even U is smaU, the optimal paraUel configuration shows a better 

performance. In paraUel scheduling, it is essential to employ an optimal processor 

configuration. Otherwise, the performance wiU be degraded. 

c. Non-Skewed and Skewed Sub-queries 

Figure 9.29(a) shows tiie results when the large sub-query is skewed, but die smaU sub-query 

is not-skewed. The elapsed time for tiie serial scheduling metiiod is 82 ps. For die paraUel 

scheduling metiiod, the most efficient processor configuration is 11+1 processors (i.e., 11 

processors for tiie large sub-query and only 1 processor for the smaU sub-query) which takes 

47 ps only. This result also proves tiiat it is natural to aUocate a large number of resources to 

a large sub-query. 
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Figure 9.29. Perfonnance of Non-Sicewed and Slcewed Sub-queries 
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Figure 9.29(b) gives tiie comparison results between a large non-skewed sub-query 

with a smaU skewed sub-query. The performance using a serial scheduling takes 28 ps, 

whereas a paraUel scheduUng requires 30 ps witii 9+3 processors configuration. This result 

shows that tiie decision on what scheduUng method to use depends upon die large sub-query. 

When die large sub-query does not involve any skevraess, die serial scheduling metiiod is 

likely to be used in order to achieve high performance. On die otiier hand, if die large sub-

query is skewed, die paraUel scheduling produces a better performance as demonsd-ated in 

Figure 9.29(a). 

Figure 9.29(c) displays die results for sub-queries of equal size: one witii skew and 

the other without skew. The result shows that die paraUel scheduling method (8+4 

configuration) produces tiie best performance. This result supports tiie fact shown previously 

in Figure 9.28, in which in the presence of skew, the paraUel scheduling method is more 

efficient. The skewed sub-query also needs more resources than the one without skew. 

A number of observations can be made based on the results of the experimentations. 

• Serial scheduling outperforms paraUel scheduling when the two sub-queries are 

uniformly disfributed. 

• ParaUel scheduling outperforms serial schediUing when skew is involved in the 

sub-queries AND when an optimal processor configuration is used. 

• Since most sub-queries involve some degrees of skewness, paraUel scheduling 

becomes dominant and die determination of an optimal processor configuration 

becomes critical. An optimal processor configuration is mostiy determined by 

run-time factors, such as die cardinality of classes, the skewoiess degrees, die 

selectivity factors, etc. Because most of these factors are non-deterministic, 

finding an optimal processor configuration for paraUel sub-queries execution is 

difficult. A rough estimation must then be used. 

• Skevmess degrades performance. If the skewness problem can be minimized (U 

not totaUy eliminated), die serial scheduling wUl be more realistic. Consequentiy, 

the difficulty in choosing an optimal processor configuration for paraUel sub-

queries execution is eliminated, since paraUel scheduling becomes less desirable. 
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9.7.2 With Data Re-Distribution 

In tins section, we compare performance Vitii' data re-distribution witii perfonnance "witiiout' 

data re-disttibution, and analyze die impact of data re-disfribution in tiie serial and paraUel 

schediUing methods. 

a. Physical Data Re-Distribution 

(a) With vs. Without Re-Distribution 

Physical Data Re-Distributor} 

Time 

-Without 
Re-Distribution 

-With 
Re-Distribution 

(b) Skewness 

n m e 

2 5 0 T 

200 

150--

100-

50-

no skew 

Physical Data R&-Distrit>u1ion 

Without Re-Distribution, 

With Re-Distribufion 

SKewness 
high skew 

Figure 9.30. Physical Data Re-Distribution 

Figure 9.30(a) shows the performance of physical data re-disfribution. It has demonstrated 

performance improvement, although tiie gap between tiie Vitii' and "witiiout' data re-

disfribution is closing as the number of processors used. This is due to the communication 

cost incurted in the physical data movement from one processor to another. The more 

processors used, the more the commimication cost. 

Figure 9.30(b) shows performance improvement of the physical data re-distribution 

method as the skewness increases. This proves that data re-disfribution is a good device for 

resolving the load imbalance problem. 

b. Logical Data Re-Distribution 

LUce physical data re-disfribution, logical data re-disttibution also shows performance 

improvement. Figure 9.31(a) presents a performance comparison between the \vith' and 

Vitiiout' logical data re-disfribution. In tills experiment, tiie skewness degree is simulated by 

means of varying the size of complex objects tiirough a random number generator. The 

file:///vith'
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disfribution of the numbers does not foUow a Zipf disfribution, and hence, the difference in 

performance between the \vith' and Vithout' logical data re-disttibution is not as large as that 

of the physical data re-disttibution experimentations where the Zipf disttibution was used. 

Although the improvement gained through logical data re-disfribution is not as drastic as tiiat 

in physical data re-disfribution, nevertheless, logical data re-disttibution is better tiian without 

data re-disttibution. 

Figure 9.31(b) explains that witii tiie increase of tiie skewness degree, performance 

using the logical data re-disttibution method is more efficient that without data re-

disttibution. This is to sttess the importance of data re-disttibution for load balancing. 

(a) With vs. Without Data Re-Distribution 

Logical Data Re-DistritxJtion 

Time 

Processors 

(b) Skewness 
Logical Data Re-Distribuion 

no skew 

With Data Re-Distribufion 

high skew 

Skewness 

Figure 9.31. Logical Data Re-Distribution 

c. Serial vs. Parallel 

The most important tiung to gain from tiie experimentations is to discover die impact of data 

re-disfribution to tiie serial and paraUel scheduUng metiiods. As data re-disfribution reduces 

die negative effect of tiie load skew problem, it can be anticipated tiiat tiie serial scheduling 

metiiod wUl most lUcely be used more often in order to achieve high performance. 

file:///vith'
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(a) Physical Data Re-Dislrlbution 

Time 

Serial 

Parallel (optimal) 

Parallel (near optimaJ) 

Parallel (not optimaJ) 

(b) Logical Data Re-Distribution 

—•—Serial 
-•-Parallel (optimal) 

-A-Parallel (near opt) 

- ) ^ Parallel (not opt) 

Processors 
„ 8 10 
Processors 

12 

Figure 9.32. Serial vs. Parallel when data re-distribution is used 

Figure 9.32(a) shows a comparison between the serial and paraUel scheduling 

methods and physical data re-disfribution. The optimal configuration of the paraUel 

scheduling method seems to be as efficient as the serial scheduling method. However, if a 

non-optimal processor configuration is used, the performance wiU be dovmgraded. As a 

result, for simplicity and to achieve an optimal result, die serial scheduling method is 

preferable. 

Using logical data re-disfribution. Figure 9.32(b) shows a simUar result to that of 

physical data re-disfribution. The optimal paraUel processor configuration produces a simUar 

result as the serial scheduling method. However, to avoid any risk of not employing an 

optimal configuration, the serial schediUing method is more desirable. This decision is also 

based on tiie promising results produced by tiie serial scheduling metiiod. 

Three major important lessons learned from the experimentations. 

• Data re-disfribution is demonsttably capable of handling the load skew problem. 

Major performance improvement can be expected especiaUy in the shared-

memory and fuUy replicated systems, as the data re-disttibution is done logicaUy 

through dynamic processor scheduling. 

• Since the effect of load skew can be minimized through data re-disttibution, 

serial scheduling becomes more feasible. This "go back to the basic" is not a 

drawback. It is in fact an advancement, as performance improvement is gained. 

AUocating fiUl resources to a sub-query seems to be better than dividing 

resources to multiple sub-queries. 



Ch. 9. Simulation Performance Evaluation page 260 

• ParaUel scheduling for sub-queries is now less desirable. Hence, the 

concenttation is shifted to paraUelization within a sub-query, in which fuU 

resources are aUocated to it. 

9.8 Discussions 

The chaUenges highlighted at the end of the previous chapter have been addressed in this 

chapter. They include: 

• The lemmas on inheritance data structures are shovm to be vaUd. In most cases, 

the performance of inter-object paraUelization using the proposed linked-vertical 

division is shovm to be better than that of the ttaditional inheritance data 

structures. OiUy in a few exceptional cases, the linked-vertical division performs 

sUghtiy poorer than the horizontal or the vertical division. 

• The lemmas on paraUelization models for path expression queries are shovm to 

be valid. These lemmas lay a firm foundation for the basic query optimization 

sttategies. 

• Performance of the hash versions of paraUel coUection join algorithms are 

demonsttated to be superior than the sort-merge versions and the ttaditional 

paraUel join algorithms. 

• Path ttaversal in the form of inter-object paraUelization and inter-class 

paraUelization is shown to be an appropriate basis for paraUel query 

optimization. ParaUel query optimization based on these two basic paraUelization 

models demonsttates not only tiieir simplicity, but also their efficiency. 

• The tiiree propositions for execution scheduling have been implemented using a 

simulation program and are found to be valid. 

9.9 Conclusions 
The results from tiie simulation conoborate the quantitative analysis. This has been tiie major 

confribution of tiUs chapter, which is to demonsfrate tiie vaUdity of tiie quantitative analysis 

model. 

The next chapter wUl demonsfrate the validity of die simulation model and die 

analytical models, using experimental performance measurements. 



Chapter 10 

Experimental Performance Evaluation 

10.1 Introduction 
The final stage of performance evaluation mvolves conducting performance measurements of 

different models presented in this diesis using a real paraUel machine. The main objective of 

performance measurements of an experimental system is to validate the analytical models and 

the simulations models. In the analytical performance evaluation, cost equations for each 

model were given, and relative performance comparisons between these models were 

presented. In the simulation performance evaluation, performance comparisons were canied 

out in a simulation program. The simulation results have shown to match with the 

conclusions, in a form of lemmas and propositions, of the analytical performance evaluation. 

Experimental performance evaluation presented in this chapter is to validate the basic cost 

equations which include: a) cost equations for inter-object paraUelization, b) cost equations 

for inter-class paraUelization, and c) the simulation results of paraUel coUection join queries. 

Once these basic cost equations are validated, analytical relative performance comparisons 

based on the basic cost equations, and the simulation results are also validated. 

The environment for experimental performance evaluation was a shared-memory 

system which is conceptuaUy different from that of simulation/analytical performance 

evaluation, as the latter used a disfributed-memory system. However, in a shared-memory 

system, it is common that each CPU is equipped with a sufficient amount of cache. This is 

comparable with slave processors in the disfributed-memory system where each slave is 

equipped with a local memory. 
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Futhermore, in a star topology disttibuted-memory system, the connectivity between 

tiie master and each slave is 1-1. LUcewise, in a shared-memory system, by nominating one of 

tiie CPUs as a master, tiie connectivity between die master and otiier CPUs is also 1-1, since 

the communication is done through a common bus. 

The difference in platform for the experimental performance evaluation was 

purposely chosen in order to show tiiat tiie analytical/simulation models are appUcable to die 

shared-memory systems. 

This chapter is organized as foUows. Section 10.2 describes the experimental system. 

Section 10.3 presents the results from performance measurements. Section 10.4 presents 

some discussions. And finaUy, Section 10.5 draws die conclusions. 

10.2 Experimental System 

10.2.1 Platform 

The experimental environment was a DEC Alpha 2100 model witii 4 CPUs running at 

190MHz. The total performance of the system is around SOOOMips and SGflops. The size of 

main memory was 2Gb, and each CPU was equipped with 4Mb cache. The processors are aU 

based on the same 64-bit RISC technology. The 64-bit technology breaks the 2-gigabytes 

limitations imposed by conventional 32-bit systems. Subsequentiy, the usage of very large 

memory is common to Digital Alpha servers. Very large memory systems significantiy 

enhance the performance of very large database applications by caching key data into 

memory. This kind of architecture supports the assumption adopted m this thesis where the 

processing is main-memory based. Main-memory access based is widely knovm to be a 

100,000 fold improvement compared to magnetic disk access. The foUowing are the 

characteristics of the Alpha system: 

• Symmetric. AU CPUs are identical, and any CPU can execute both user code and 

kernel code. 

• Shared-memory system. AU CPUs share a single pool of memory, to enhance 

resource sharing and commimication among different processes. An application 

can consist of multiple instructions, aU accessing shared data structures in 

memory. To prevent simultaneous accesses to tiie same shared data, a hardware-

based mutual exclusion is provided. 

• Shared-bus. AU CPUs, memory models, and I/O plug into a single high-speed 

bus. The bus bandwidtii is 132 MB/sec. 
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• Dynamic Load Balancing. CPUs automaticaUy schedule tiiemselves to ensure 

tiiat aU CPUs are kept busy as long as tiiere are executable processes avaUable. 

The Alpha system stiructure is shown in Figure 10.1. Four CPUs, each is equipped 

with a sufficient cache, are connected to a shared memory dirough a high-speed bus system. 

Processing 
Elements 

CPU-0 

Cache 

CPU-1 

Cache 

CPU-3 

Cache 

. . . . . I f . . . . . . . . . | . . . . . , . . . . r... . User 

Shared Memory 

Figure 10.1. Tlie Alphia System Structure 

The underlying operating system was Digital UNIX, and the algorithms were 

implemented in C. The main program basicaUy consists of two sub tasks. The first sub task is 

to generate chUd processes and the second sub task is to aUocate each chUd process to 

different processors. ChUd process generation is done by invoking the weU known fork () 

function, whereas chUd process aUocation is implemented by caUing the bind_to_cpu() 

fimction caU provided by Digital UNIX. The main program stops when aU chUd processes 

fiiush their jobs. 

Each chUd process caUs a generic process fimction with three parameters; processor 

number, starting range index, and ending range index. In this way, the data is logicaUy 

partitioned into the number of processors. The program wUl also be simpler, because the 

main process fimction is generic for aU processors. This is common model in an SIMD 

(Single Instruction Multiple Data) architecture. 

10.2.2 Algorithms Implementation 

It is not tiie intention to buUd a fuU featured ParaUel Object-Oriented Database Management 

System, but rather to implement basic paraUelization algoritiims for performance evaluation 

purposes. A number of points are worth noting in the course of implementing tiiose 

algorithms. 

• Inter-Object Parallelization and Inter-Class Parallelization. Round-robin partitioning is 

achieved by identifying die chUd process identifier, assigning a dUferent object to a chUd 

process, and incrementing die counter by tiie number of chUd processes after they have 

finished processing each object. Dynamic load balancing is accomplished by employing a 

global counter and each process has to obtain a permission to increment the global counter 

before accessing an object. The global counter also serves as a pointer to the object. 
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Data Partitioning: 

• Information on data distribution is kept in a distribution table. The disttibution table is a 

two-dimensional anay of 4 row x NUMJTEM column. The row represents tiie number of 

chUd processes (each chUd process is aUocated a processor, the parent process is the 

coordinator), and the column is the maximum number of objects that can be aUocated to 

one process (or processor). The disttibution table could have been implemented in a single 

dimensional artay, and each element in the anay is a linked-Ust. The difference is just a 

matter of dynamic versus static data structure. For simplicity, a two-dimensional array is 

used. 

Data disttibution is done by assigning the OID to an appropriate row in the 

disttibution table. A counter for each row in the disttibution table is needed to keep ttack 

of the number of objects aUocated to a particiUar process. For example, an object with 

OID 175 is to be disttibuted to processor 0. If the counter for processor 0 is shovm to be 

equal to 16; meaning that there are 16 objects aUocated to processor 0 so far, OID 175 

wiU be aUocated to row 0 column 16 (row and column start from 0) and the counter for 

this row is incremented by one. 

The checking.of each object is done in paraUel using a round-robin scheduling. 

Figure 10.2 gives an iUusfration of data disfribution using a disfribution table. Suppose 

that object 0 is disfributed to process 2 and so is OID 1; OID 3 is disttibuted to process 3. 

Objects to be 
distributed Child processes Distribution Table 

NUM_nEM- 1 

0 0 
1 
2 
3 

H 

Figure 10.2. Distribution Table. 

Apart having a counter for each row in die disttibution table, a lock must be used 

every time the counter is updated. 
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Divide and Partial Broadcast employs a decision table. The algoritiim for the divide and 

partial broadcast is simplified by using a decision table. The usage of a decision table in 

die algorithm is explained as foUows. Suppose die domain of tiie join atttibute is an 

integer from 0-29, and tiiere are tiiree processors. Assume tiie disttibution is divided into 

tiiree ranges: 0-9, 10-19, and 20-29. The result of one-way divide and partial broadcast is 

given in Figure 10.3(a). Figure 10.3(b) shows tiie result of a two-way divide and partial 

broadcast. Range 0-9 refers to a coUection having elements in tiie range of 0-9. 

Bucket 1 

Bucket 2 

Bucket 3 

0 
1 
2 
3 
4 
5 
6 
7 
8 

Class A Class B 
Range: 

0-9 
0-19 
0-29 

Range: 
0-9 
0-19, 10-19 
0-29, 10-29 

Range: 
0-9 
0-19, 10-19 
0-29, 10-29, 20-29 

Range: 
0-9 

Range: 
10-19 

Range: 
20-29 

Figure 10.3(a) "one-wa/' Divide and Partial Broadcast. 

Class A 
0-9 
0-19 
0-29 
0-9 
0-19, 10-19 
0-29, 10-29 
0-9 
0-19, 10-19 
0-29, 10-29, 20-29 

Class B 
0-9 
0-9 
0-9 
0-19 
0-19, 10-19 
0-19, 10-19 
0-29 
0-29, 10-29 
0-29, 10-29, 20-29 

Figure 10.3(b) "two-way" Divide and Partial Broadcast. 

Based on the result shown in Figure 10.3(b), a decision table can be constructed for 

each class. Figure 10.4(a) and 10.4(b) show the decision tables for class A and B. 

Class A 
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Range 
Smallest 

0-9 
0-9 
0-9 

10-19 

10-19 
20-29 

Largest 
0-9 

10-19 
20-29 
10-19 

20-29 
20-29 

Buckets 
0 

V 
1 

V 

2 

V 

3 
V 

4 

V 

V 

5 

V 

V 

6 
V 

7 

V 

V 

8 

V 

V 
V 

Figure 10.4(a). Decision Table for class A. 

Class B 

Range 
Smallest 

0-9 

0-9 
0-9 

10-19 
10-19 
20-29 

Largest 
0-9 

10-19 
20-29 
10-19 
20-29 
20-29 

Buckets 
0 
V 

1 
V 

2 
V 

3 

V 

4 

V 

V 

5 

V 

V 

6 

V 

7 

V 

V 

8 

V 

V 
V 

Figure 10.4(b). Decision Table for class B. 

Based on the decision tables, implementing two-way divide and partial broadcast 

algorithm can be done using multiple checking. Once the buckets are created, aUocation 

is done tiirough dynamic scheduling. Hence, load balancing can more or less be 

maintained. 

Distribution for hash join is disjoint, not non-disjoint. Since a shared-memory 

architecture is used, data disttibution for hash join can be disjoint, instead of non-disjoint. 

Objects are passed to each chUd process in a round-robin fashion, and subsequentiy a 

disttibution table is created. Each row of die disttibution table wUl be processed (i.e., 

hashing and probing) by a particular chUd process. The hashing and probing operations 

are performed to a shared hash table. By sharing die hash table, tiiere is no necessity for 

each chUd process (or processor) to have a non-disjoint partitioning. Figure 10.5 shows 

the mechaiusm for disjoint disttibution of hash join. 
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Objects 
Child 

Processes 
Distiibution 

Table 
Child 

Processes 
Hash Table 

Figure 10.5. Disjoint distribution for bash join. 

Join Processing: 

Merging in parallel sort-merge R-join is tricky. Merging in paraUel sort-merge R-join is 

done in two levels: object level and coUection level. Object level merging is based on the 

firsf smaUest element on each coUection. If the result is positive, coUection merging is 

pursued, CoUection merging is simply performed as is done in simple arrays merging. 

The problem of two-level merging can be explained as foUows. If the first/smaUest 

elements of two objects are the same, coUection merging is canied out. Regardless of die 

result of the merging, complexity occurs regarding whether or not the counter is to be 

incremented. If the counter is to be incremented, it is also not clear whether the two 

counters are incremented, or just one of them. An example is used to clarify this matter 

(Figure 10.6). 

Class A 
Al (2, 10, 15) 
A2 (2, 13) 
A3 (2, 105) 
A4 (3, 10) 

Class 5 
Bl (2, 10) 
52 (2, 13) 
53(4,12) 

Figure 10.6. Sample data for two-level merging. 

The conect anangement for the merging is Ai-Bi, A2-B1 As-Bi, AA-BI, A1-B2, Ai-

53, A2-52, A2-53, A3-52, A3-53, A4-52, A4-53 It is clear that aU objects starting 

with the same element have to be merged all round with their counterparts from the otiier 
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class. Hence, merging is not simply incrementing the counter of one class or anotiier, if 

the cunent pair of elements is not equal. 

The problem of two-level merging is simUar to (but more compUcated than) the 

problem of simple merging of two anays where dupUcates are aUowed. To overcome this 

problem, a simple nested loop is applied. Since a nested loop is used for merging at an 

object level, class sorting becomes unnecessary. CoUection sorting is stUl needed, as 

merging at coUection level is canied out as per a normal merging operation. A more 

sophisticated solution to this problem is reserved for ftiture work. 

Hash tables are shared. For the hash-based version of paraUel coUection join, each 

partition does not employ a separate hash table. The consequence of having shared hash 

tables is that the disfribution for hash join is disjoint using a round-robin partitioning. A 

hash table is implemented in a two-dimensional anay. The row indicates the hash index, 

whereas the column is to accommodate coUisions. The decision to use an anay 

representation is merely for programming convenient. A list based representation may 

have been used instead. 

Linked multiple hash tables are used for R-join. Multiple hash tables for R-join are 

implemented in a cube anay, where the additional dimension to the normal two-

dimensional anay is to accommodate aU elements of a coUection in which its first element 

has been hashed. Figure 10.7 gives an Ulusfration of a cube anay. 

Figure 10.7. Cube array. 

Each row contains OIDs belonging to the same hash values (i.e., coUision). For each 

coUection in a row, aU elements of the coUection are attached to it. Hence, once the first 

element is probed to a particular row, probing for further elements of the same coUection 

is simple done by merging aU elements attached to the root ceU. Using this mechanism, R-
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join operation is simplified, as probing is done once; that is to the first/smaUest element 

only. 

• Linked multiple hash table is not applicable to S-join. The advantage offered by lioked-

multiple hash tables is not appUcable to S-join, since subsequent elements that are 

attached to the root ceU have lost their semantic to the hash index. For example, a 

coUection of (3, 6, 8) is hashed to a linked-multiple hash table. The first element (i.e., 

element 3) is hashed to row 3 in the hash table. Using a linked multiple hash table, the 

second and the third elements are hashed and attached to where die first element has been 

hashed to. This means that the location of the second and the third elements do not have 

any semantics to the values of the elements itself. 

Since the probing process in S-join is not bound by the level of the hash table, if an 

element is not matched in the cunent hash table, it goes to the next level of hash table. 

Since the second hash table (consisting aU elements in the second position of each 

coUection) has lost its semantic, probing will not give a conect result. Hence, independent 

multiple hash tables as proposed in chapter 5 have to be used instead. 

10.3 Performance Measurements 

10.3.1 Validating Inter-Object Parallelization Models 

a. Inter-Object Parallelization for Inheritance Super-Class Queries 

In die experimentations, the number of super-class objects (n) is 50,000 objects. The 

processing cost for a super-class object (tpi) is equal to 3.2 \isec and for a sub-class object 

(tpi) is equal to 1.1 \xsec. The size of the super-class is larger than die size of tiie sub-class, 

as most atfributes are declared in die super-class. The number of sub-class objects varies 

from 50,000 objects to 950,000 objects. For each inheritance data division (i.e., horizontal, 

vertical, and linked-vertical), tiie predicted and tiie actual elapsed times are given. The 

predicted elapsed time is calculated using an analytical model, whereas die actual elapsed 

time is measured using the experimental system. Based on tiiese values, the enor percentage 

(enor rate) is calculated. Table 10.1 shows a comparative performance for inheritance super­

class queries using tiie three inheritance data division. In die experiments, a two-class 

inheritance hierarchy was used. 

file:///isec
file:///xsec
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Table 10.1. Comparative Performance for Inheritance Super-Qass Queries 

A number of observations can be made based on the experimental results. First, 

performance modeling through analytical models has proven to be a difficiUt task. It is often 

impossible to achieve a zero percent enor rate, due to unseen overheads which deal with 

lower level architecture. To show whether an analytical model is reliable, a 10% tolerance is 

often set. 

Second, in most cases the enor percentage shovm in Table 10.1 is less than 10%. As 

a matter of fact, tihe majority faUs into die range between 0% to 5%. This proves tiie 

reliabUity of the analytical model in the performance evaluation. 

Third, the performance of die vertical and die linked-vertical division is quUe 

comparable, and is slightiy in favour of the vertical division due to die link pointer overhead 

imposed by die linked-vertical division. Nevertheless, the dUference is insignificant. 

Fourth, tiie performance of the horizontal division is shown to be the worst. This 

verifies Lemma 8.1 which states that for super-class queries, inter-object paraUelization using 

vertical/linked-vertical division offers a better performance tiian tiiat of horizontal division. 

FinaUy, since the basic analytical models for super-class queries are confirmed to be 

reliable, advanced performance evaluations tiiat have been presented in chapters 8 and 9 are 

also conoborated. 
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b. Inter-Object Parallelization for Inheritance Sub-Class Queries 

In the experimentations for sub-class queries, only horizontal and linked-vertical division 

were examined. Sub-class queries using vertical division are excluded since die query 

operations are actuaUy paraUel join operations. In tius section, only inter-object 

paraUelization is considered. In tiie case of tiie linked-vertical division, a two-class inheritance 

hierarchy was employed. For both horizontal and linked-vertical division, die number of 

super-class objects is not onutted, since the query processing ignores tiie super-class objects. 

The same system parameters, as in that of super-class queries, were used {tpi=?>.2\isec, 

tp2=\.\)isec). An additional parameter tiiat is a draversal time tti (=0.01p.sec) for tiie linked-

vertical division is used. The number of sub-class objects is varied from 100,000 to 1 million 

objects. Table 10.2 shows tiie comparative performance of inter-object paraUelization for 

inheritance sub-class queries. 

A number of observations are made. First, die enor rate is shown to be under 10%. 

Half of them is below 5%. Second, die dUference on die actual times between tiie horizontal 

and the liiUced-vertical division is shovra to be insignificant. As a matter of fact, in some 

cases, the difference is nil. This demonsfrates that tiie fraversal time imposed by tiie linked-

vertical division is minor. 
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Table 10.2. Comparative Perfonnance for Inheritance Sub-Qass Queries 

c. Inter-Object Parallelization for Path Expression Queries 

Two-class patii expression is used in die experimentations. The numbers of objects for each 

class vary from 100,000 to 1 mUlion objects. The fan-out degree of die root class varies from 

1-10. A random number generator is used to generate the fan-out degree. The skewness 

degree is approximated to be 1.1 (near uniform), as the program uses a dynamic scheduling 

that reduces die effect of skew. The selectivity degree is 1%, 5%, 10%, and 20%. The values 
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of the selection atttibutes are between 1-100. They are disfributed randomly to aU objects. 

Selectivity of 1% refers to an exact match of any one value of the selection atttibute. 

Selectivity of 5% nominates any value within a range of 5 (e.g., selection atttibute<=5). 

Using this principle, it can be approximated an arbittary selection degree. The results of using 

each of tills selectivity degree are presented in Table 10.3. 

The uiut processing cost for an object is 5.9 \isec. This includes the cost for handling 

the relationship represented by a coUection atttibute. 
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Table 10.3. Comparative Performance for Path Expression Queries 

A number of observations are made. First, die enor rate is witiun tiie tolerance of 

10% for aU cases. For tiie selectivity of 20%, tiie average enor rate is below 5%. Second, 

filtering is not as good as predicted. This is most probably caused by a fixed overhead which 

is not influenced by tiie degree of selectivity. Nevertheless, tiie overaU performance is stUl at 

an acceptable level as shown by the minimum enor rate. 

file:///isec
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The results from the experimentations validate inter-object paraUelization models as 

shovra by the minimum enor rate. In the experimentations, only the basic queries were 

examined (the inheritance queries involved 2-class inheritance hierarchy, and the patii 

expression queries are in a form of 2-class path expression). Since the basic inter-object 

paraUelization models are justified, the basic analytical models can be used to perform 

complex queries which employ inter-object paraUelization as tiie basic buUding block. 

10.3.2 Validating Inter-Class Parallelization Models 

Two-class path expression queries are used in the experimentations. The number of root 

objects varies from 100,000 to 1 miUion objects. For the associated class, it is either 50,000 

objects or 100,000 objects. The selectivity degrees are 1%, 5%, and 10%. The fan-out degree 

of the root class is between 1-10, and is disttibuted randomly to aU root objects. On average, 

the fan-out degree is around 4. 

TheoreticaUy, inter-class paraUelization models do not suffer from a skew problem, 

since each class is processed independentiy and moreover, aU objects of the class being 

processed are disfributed eveiUy to aU processors. In practice, however, a skew problem may 

StiU occur due to the non-uniform object size and the v^iting cost influenced by the selectivity 

factor. In the experimentations, the skevmess degree is approximated to 1.1 (small), because 

not oiUy the object size is invariable but also a dynanUc scheduling is used in the programs. 

The processing imit cost is equal to 7.6 \isec. It is higher than the processing unit cost for the 

inter-object paraUelization, since in tiie inter-class paraUelization, the writing cost for the 

temporary results from the selection phase is incorporated. Table 10.4 shows the 

experimental results. 

A number of observations can be made. First, in a very few cases, the enor rate is 

above tiie limit of 10%. In the majority, tiie ertor rate is weU below 10%. The analytical 

models for the inter-class paraUelization are shovm to be quite reasonable. Second, processing 

cost increases quite proportionaUy as the number of objects (n and n) increases. FinaUy, die 

impact of tiie degree of selection on the elapsed time is not drastic, meaning tiiat the 

processing cost is mainly for accessing aU objects. 
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Table 10.4. Comparative Performance of Inter-Qass Parallelization 
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10.3.3 Measuring Parallel Collection Join Performance 

In the experimentations, for each coUection join query type, performance of the sort-merge 

version is compared with the hash version. The class size varies from 100 to 500 objects. The 

average coUection size is 3 objects. The results of the experimentations are shovvTi in Figures 

10.8, 10.9, and 10.10. Based on these performance graphs, they are comparable with the 

simulation results for paraUel coUection join queries shown in Chapter 9. In some cases, the 

results are slightiy different, the reasons for which are to be explained. 

Figure 10.8 shows the performance result for paraUel R-Join. A number of 

observations are made. First, performance of the sort-merge version is quite comparable with 

the hash-version. This has also been revealed by the simulation results presented in Chapter 

9. Second, when the size of the operand is getting larger, the hash-version shows its 

superiority to the sort-merge version. This indicates the reliabUity of the hash version of 

paraUel R-Join algorithm. FinaUy, the fixed cost for paraUel processing is shown to be large, 

since the increase in the elapsed time is far from linear, which is caused by the major 

proportion (in the case of smaU operand) is dominated by the processor setup overheads. 

Parallel R-Join 

100x100 200x200 300x300 400x400 500x500 

Operand Size 

Figure 10.8. Performance Measurement of Parallel R-Join 

Figure 10.9 shows performance measurement of paraUel I-join algoritiims. The sort-

merge version is worse tiian predicted by tiie simulation results, although tiie Divide and 

Partial Broadcast has shown its conttibution to load balancing. Performance degradation of 

the sort-merge version is atttibuted to die nested loop complexity, and to die need for a 

complete comparison among all elements in each coUection. The simulation results presented 
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in Chapter 9 to some extent is vaUd, especiaUy in regard to the superiority of die hash version 

of paraUel I-Join. The actual difference between performance of tiie sort-merge version and 

the hash version is larger tiian predicted by the simulation results. 

Parallel I-Join 
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Figure 10.9. Performance Measurement of Parallel I-Join 

Figure 10.10 shows the experimental performance result of paraUel S-Join queries. 

The result shows a simUar pattern as that of paraUel I-Join, but the sort-merge version for S-

join is not as bad as the sort-merge version for I-join. The main reason is that the sort-merge 

version of S-join employs less number of comparison, since coUection merging is 

implemented in a short circuit. The simulation results for paraUel S-join presented earlier in 

Chapter 9 is closely resemble the empirical result shown in Figure 10.10. This proves the 

superiority of the hash version of paraUel S-join. 

Parallel S-Join 
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Figure 10.10. Performance Measurement of Parallel S-Join 
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Performance of tiie hash version of paraUel I-join and paraUel S-join is demonsttated 

to be better tiian predicted by the simulation results, since in the experimental system, the 

hash versions employ a disjoint partitioning, whereas the simulation programs use a non-

disjoint partitioning. Disjoint partitioiung in hash version is possible as the experimental 

system is based on a shared-memory architecture. 

In general, performance of the hash versions for aU coUection join query types is 

demonsttated to be superior to that of die sort-merge versions. Therefore, it can be expected 

tiiat tiie hash versions of paraUel coUection join algorithms wUl become tiie basis for 

processing object-oriented coUection join queries. These algorithms may also be used in other 

non-relational systems (such as nested relational systems) where coUection types are 

supported. 

10.3.4 Performance Measurement of Query Optimization Examples 

Final experimentations are canied out on the examples of query optimization in Chapter 6. 

They consist of 9 queries which are divided into three categories: basic queries, homogeneous 

complex queries, and heterogeneous complex queries. In this section, these queries (original 

and optimized versions) are unplemented and their performances are measured. The main aim 

is to prove that query optimization algorithms, which are basicaUy a decomposUion 

procedure, offer better performance. The experimentation results are presented as foUows. 
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Figure 10.11. Performance Measurement of Basic Queries 

Figure 10.11 shows a comparison between performance of die original queries and 

tiieir optimized forms. Query 1 is a simple 2-class path expression query. It is optimized by 

changing the patii direction. Query 2 is an object join query and is optimized by ttansforming 

it to a complete path expression. Query 3, which is not included in the experimentation, is a 

simple value join query ala relational system. Optimization is not done at an access plan level, 

but at an execution level. 
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A number of observations on the results of basic query experimentations can be 

made. First, the results show that performance of the optimized query versions is much better 

than the original query versions. Second, pointer ttaversal in main-memory is very fast. 

Subsequentiy, inter-object paraUelization is preferable whenever possible. Third, FUtering 

tiirough inter-object paraUelization is proven to be atttactive. The experimentation results 

show tiiat performance improvement can be gained up to 3 folds. FinaUy, lUce in relational 

systems, join operations in object-orientation are very expensive. It is very much desirable to 

convert a join operation to a path ttaversal, lUce in query 2, whenever possible. 

Homogeneous Complex 

nme 

Query 4 Query 5 Query 6 

Figure 10.12. Performance Measurement of Homogeneous Complex Queries 

Figure 10.12 shows the performance of homogeneous complex queries. Query 4 is a 

simple ttee path expression involving an incomplete walk (it is not possible to ttaverse aU 

chUd nodes from the target node). Optimization is canied out by converting it to a linear patii 

expression, where a complete walk becomes possible. Query 5 is a linear path expression 

with a selection operation at the leaf node. Optimization is done by performing a reverse 

fraversal. Query 6 is a complex ttee path expression involving multiple chUd nodes and 

selection operations on the chUd nodes. Optimization is basicaUy simUar to that for query 5; 

that is by performing reverse ttaversals. 

The performance results raise several issues. First, the optimized versions produce 

better results, although performance improvement is not as great as in basic queries. The 

improvement is less than 100% (compared to >100% in basic queries). Second, performance 

of inter-object and inter-class paraUelization is quite simUar. Hence, good performance relies 

on tiie query optinuzed that determines which one is to be used. The experimentation results 

have shovm that the proposed query optimization algorithms have done a good job in 

delivering better performance. 
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Heterogeneous Complex Queries 
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Figure 10.13. Performance Measurement of Heterogeneous Complex Queries 

Figure 10.13 gives the performance results on heterogeneous complex queries. Query 

7 is a cyclic query. Query 8 is an acyclic complex query involving a path expression and an 

expUcit join. Query 9 is a semi-cyclic query. 

The result shown in query 7 reveals that in main-memory the cost for accessing extta 

classes is not very expensive. Hence, the optimized version saves orUy littie time. Unary jom 

in the optimized version is also proven to be not that expensive as it is regarded as a selection 

operation which compares two atttibutes of the same object. 

For query 8, tiie join operation dominates most of the processing time. As a result, 

the effect of the query optimization, which does the inter-object ttansformation, is not that 

significant. Like the acyclic query, join operation in query 9 dominates the processing time. 

Hence, tiie performance of the optimized version is not as great as expected. 

In general, perfonnance improvement for heterogeneous complex queries is not much 

achieved through access plans. Performance improvement then relies upon optimization at an 

execution level; that is by providing fast and efficient paraUel algorithm for each basic 

operation, especiaUy join operation. 

10.4 Discussions 

A number of aspects emerged from the experimentations. 

• Quantitative analysis is a difficult task even for predicting the performance of 

simple operations. This highlights the need for other venues for performance 

analysis, such as empirical analysis. 

• The results gathered from performance measurement and their comparison with 

the predicted results show that the analytical models are quite acceptable, based 

on the 10% enor rate tolerance. Since the basic paraUelization models (i.e., inter-
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object and inter-class paraUelization) have been validated through an empirical 

analysis, in the absence of an experimental system, these basic models may be 

relied upon to perform advanced analytical performance evaluations. 

• Performance of the hash versions of paraUel coUection join is shown to be better 

than that of the sort-merge versions. However, the degree of improvement may 

vary from one system to another, depending on the system architecture. In 

general, the hash versions are adopted as the primary choice for paraUel 

coUection join operations. 

• Query optimization algorithms are demonsfrated to produce better access plans 

than the original query forms. When the benefits obtained from this 

ttansformation are linuted, further performance improvement wUl depend on the 

efficiency of the paraUel algorithms for the basic operations. 

10.5 Conclusions 

The main objective of experimental performance evaluation - that is to validate the basic 

paraUelization model - has been achieved. Basic models validation has been the major 

conttibution of this chapter. The results in the last two chapters, which include the basic 

lemmas for inter-object paraUelization and inter-class paraUelization, and the impact of basic 

paraUelization models on query optunization and execution have been successfuUy validated. 

The simulation models on paraUel coUection join queries have also been validated using the 

experimental system. The validation also shows that both analytical model and the simulation 

model, which are based on a disttibuted-memory architecture may be usefuUy applied to 

actual shared-memory architectures. 

The main conttibutions of this chapter are summarized as foUows. 

• An experimental system has been buUt. A number of implementation issues have 

been presented and discussed. Some of the experimentation results are surprising, 

and the reasons behind these results are explained. 

• Ouantitative and simulation models have been validated using an empirical 

analysis. Further performance evaluation can rely upon tiie quantitative models 

and/or the simulation models. 



Chapter 11 

Conclusions 

11.1 Introduction 
This thesis investigated paraUelism in object-oriented query processing and optimization. The 

main aim of this research was to study performance unprovement of query processing 

through paraUelism. Attention is focused on two major areas of paraUel query optimization, 

parallelization models I algorithms and access plans I execution scheduling. In addition, the 

performance evaluation of the results has been canied out in three stages: analytical, 

simulation, and experimental. 

11.2 Summary of the Research Results^^ >r' 

The main research result of this thesis is to demonsttate how processor paraUelism can 

improve performance of object-oriented query processing. This is achieved by formulating 

paraUel algorithms for a number of object-oriented queries, particularly, inheritance queries, 

path expression queries, and explicit join queries. For more complex queries involving 

multiple basic operations, performance improvement can be accomplished by the 

decomposition of query access plans, and the scheduling of the basic operations. ̂  

The research presented in this thesis has addressed and solved the outstanding 

problems of paraUel query optimization highlighted at the end of chapter 3. The achievements 

of this research are summarized as foUows. 
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Parallelization of Inheritance Queries using the Linked-Vertical Division 

Inheritance Data Structure 

The proposed linked-vertical division takes advantage of object independence offered 

by tiie conventional horizontal division, and die benefit of super-type clustering offered 

by the ttaditional vertical division. It also balances the weaknesses of the horizontal 

division, where it increases the overheads of accessing unnecessary specialized 

information of the sub-class not required by the operation on the super-class; and vertical 

division, where it requires an expUcit join to assemble objects that have been spUt into 

parts. Inter-object paraUelization based on the linked-vertical division, in most cases, is 

demonsttated to be more efficient than tiiat of the two ttaditional inheritance data 

structures. 

Parallelization of Path Expression Queries through Inter-Object and Inter-

Class ParaUelization Models 

Two different paraUelization models for path expression queries, inter-object and 

inter-class paraUelization, have been presented. Inter-object paraUelization offers the 

benefit of object independence through associativity and clustering of complex objects, 

whereas inter-class paraUelization offers the benefit of class indeperuience through 

simultaneous access of classes involved in a query. The main achievements in the 

paraUelization for path expression queries are: (i) different selection predicates involving 

coUections which are typical to object-oriented queries have been incorporated in both 

paraUelization models, and (ii) the comparative analysis between the two paraUelization 

models has laid a foundation for the optimization of complex queries. 

Parallelization of Collection Join Queries 

Three coUection join query types have been characterized. The characteristics of each 

type require different tteatment in both data partitioning and local join processing. A 

disjoint partitioning for coUection join queries, has been presented. A non-disjoint 

partitioning, caUed Divide and Partial Broadcast, has also been presented. 

The sort-merge and the hash algoritiims especiaUy designed for coUection join queries 

were presented. These algorithms prevent a creation of intermediate results prompted by 

typical coUection join predicates. The sort-merge algorithms were applied at two levels: 

object level and coUection level. Using the same concept, the hash version utUizes 

multiple hash tables which indicate different elements within a coUection. The need for 
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special algorithms for coUection join queries is undeniable, since existing join algoritiims 

were not designed for coUection atttibute. 

Query Access Plans and Query Optimization Algorithms 

A new query ttee caUed Operation Tree to represent object-oriented query access 

plans was presented. This representation is able to accommodate dUferent types of 

object-oriented query operations, such as forward ttaversal in a form of inter-object 

paraUelization and reverse ttaversal in a form of inter-class paraUelization, as weU as 

ttaditional join operations. Mixed fraversals are represented by die presence of forward 

and reverse fraversals in an operation ttee. 

The uniqueness of the proposed query optimization algoritiims is tiie ability to 

convert one operation type to anotiier for more efficient execution. The algoritiims also 

provide capabUities such as nodes permutation, coUapse, break and expand, which are 

typical of conventional query optimization algorithms. 

The metiiod adopted by the query optimization algoritiims is to exploit patii fraversals 

(both inter-object paraUelization and inter-class paraUelization), since tiiey are widely 

recognized to be more efficient than explicit join operation. Two basic query optimization 

procedures: Inter-Object-Optimization and Inter-Class-Optimization, have been 

inttoduced as a foundation for query optimization algorithms. 

Serial and ParaUel Execution Scheduling 

Two execution scheduling sttategies, serial and parallel, have been identified. 

Although they are simUar to inter-operation and intra-operation paraUelism, an 

achievement of this research is the formulation of 3 propositions on execution scheduling, 

based on the two critical factors in query processing of skewness and sizes. An adaptive 

processor aUocation algorithm based on these propositions was presented. 

Two types of data re-disttibution for load balancing, physical and logical data re-

disttibution, have been studied. The result is that when load balancing is achieved, the 

serial execution scheduling sttategy is preferable to the paraUel execution scheduling 

sttategy. Hence, skewness may be solved through data re-disttibution, and the resource 

division problem is avoided. The focus of paraUel query processing is now shifted to 

paraUelization within nodes, not among nodes. 
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• Performance Evaluation 

Three levels of performance evaluation were carried out to demonsttate die efficiency 

of the proposed procedures. The analytical performance evaluation provides the cost 

models for each proposed algorithm or method which are conoborated by simulation. 

The experimental approach is able to sttengthen both simulation and quantitative results. 

Through these evaluations, tiie quantitative models are demonsttated to be highly 

valuable in representing tiie behaviour of paraUel OODB processing. 

11.3 Limitations 

There is no research work witiiout limitations. A number of limitations of this research 

include: (0 performance evaluation was purely based on a main memory architecture, (/'/) the 

query optitnization method adopted was heuristic-based which considers processing costs, 

rules, and basic object-oriented semantics oiUy, (///) the execution scheduling did not consider 

factors other than skewness and sizes; and was based on a phase-based execution, and (iv) the 

object model adopted did not distinguish between association and aggregation. 

Main memory based architecture is becoming popular due to the rapid technological 

development of main inemory. Research work on I/O paraUelism, which include multiple 

disks on single or multi computers wiU supplement this work. 

The query optimization algorithms presented in this thesis were based on path 

ttaversal. The algorithms were developed to exploit inter-object paraUelization and inter-class 

paraUelization. Despite the proven efficiency of the path ttaversal operation, query 

optimization was based primarUy on the processing costs. The evaluation of 

algebra/semantics should enhance this work. 

Although skewness and query (sub-query) size determine the efficiency of execution 

scheduling sttategies, other factors such as CPU-bound and I/0-bound tasks wiU be useful in 

determining efficient execution scheduling sttategies. Initial study on CPU-bound and UO-

bound factors have been presented in Hong (1992). Combinmg tiiese factors witii skewness 

and size wUl clearly be useful. 

Given a query ttee witii arbittary height and width, a number of execution scheduling 

sttategies can be defined, such as non-phase-based, or a nUxture of serial and parallel 

scheduling. A non phase-based execution scheduling is basicaUy splitting a phase into 

multiple execution phases and combining operations from different phases for paraUel 

execution (provided that they do not form any immediate interdependency). A combination of 
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serial and paraUel scheduling, for example, may involve splitting a serial execution, foUowed 

by a paraUel execution some time later. 

The aggregation concept in object-orientation refers to a composition ("part-of') 

relationship, in which a composite object ("whole") consists of otiier component objects 

("parts"). In conttast, association refers to a "connection" between object instances. Due to 

the natural differences between these two concepts, paraUel processing methods for each 

concept may differ. An initial study of aggregation and association is presented in Rahayu et 

al. (1996). An extension of this work to paraUel processing should prove useful. 

11.4 Future Research 

Many avenues of further research, both theoretical and practical, are possible and some are 

indicated in the foUowing paragraphs. 

110 Parallelism. HistoricaUy databases are closely linked to secondary storage, and 

I/O accesses have been recognized as one of the most expensive components in database 

processing. I/O paraUelism is to increase I/O accesses (both speed and throughput) tiirough 

device paraUelism. This can be achieved through an implementation of multiple disks on 

single or multi computers. Efficient data placement on a paraUel I/O system for supporting 

OODB queries wUl be an important research issue. 

Skew Modelling. Research on skew has been an active research area. Skew problem 

in object-oriented query processing, particularly in path expression queries, is caused by a 

fluctuation of fan-out degree and selectivity factor of classes along a path expression. Most 

skew modeUing uses the Zipf disttibution as a foundation (Zipf, 1949). A comprehensive 

work on examining an appropriate model to represent skewness in object-orientation is 

essential in order to fuUy model paraUel object-oriented query processing analyticaUy. 

Parallel Iruiex. Index is used to speed up data search. Without the presence of index, 

die data have to be scaimed sequentiaUy, which is not as efficient as an mdex scan, although 

the sequential data scan can be performed in paraUel by multiple processors. Index for 

paraUel processing raises two important issues: (/) in a centtal data bank architecture (e.g., 

shared memory/disk), how the index is accessed concunentiy by multiple processors; (//) in 

physicaUy disttibuted data architecture (e.g., shared-nothing), how the index may be 

partitioned. 

Parallel Object Algebra. Algebraic optimization provides a formal foundation for 

query optimization based on the equivalence of operators. Algebraic query optimization has 

been widely used in relational systems. Object-oriented versions of algebraic query rewriting 
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have also been explored. Inserting paraUelism to object algebra requires special tteatment on 

the rules of equivalence. Further investigations of rules to expUcitiy generate paraUel 

operators are lUcely to bring significant benefits. 

Parallel Architectures. The shared-memory architecture (including the master-slave 

architecture) can be saturated at some point due to its limited scalabUity. In order to enhance 

the generality and applicabUity of the proposed algorithms, it would be useful to smdy how 

the architectures of a paraUel machine can impact the performance of die algoritiims. It is no 

doubt beneficial also to investigate the effciency of other database operations not considered 

in this thesis. 

Performance related issues have been recognized as the key to successful object-

oriented database management systems in many applications where speed is critical. This 

thesis has demonsttated that performance improvement by object-oriented query processing 

can be gained through paraUelism. The desirable performance level is, however, attainable 

otUy through careful paraUel query optimization, without which the extent of performance 

improvement wiU be severely limited. 



Bibliography 

Alashqur, A.M., Su, S.Y.W. and Lam, H., "OQL: A Query Language for Manipulating 

Object-Oriented Databases", Proceedings of the 15th International Conference on 

VLDB, Amsterdam, pp. 433-442, 1989. 

Alhajj, R. and Arkun, M.E., "Queries in Object-Oriented Database Systems", Proceedings of 

the First International Conference on Information and Knowledge Management 

CIKM'92, pp. 36-52, November 1992. 

Alhajj, R. and Arkun, M.E., "A Query Model for Object-Oriented Databases", Proceedings 

of the 9th International Conference on Data Engineering, Vieima, pp. 163-172, 

AprU 1993. 

Almasi G., and Gottiieb, A., Highly Parallel Computing, Second edition. The 

Benjamin/Cummings Publishing Company Inc., 1994. 

Antoshenkov, G., 'Dynamic Query Optimization in Rdb/VMS", Proceedings of the 

International Conference on Data Engineering, pp. 538-547, 1993. 

Banerjee, J., Kim, W. and Kim, K-C, "Queries in Object-Oriented Databases", Proceedings 

of the 4th International Conference on Data Engineering, pp. 31-38, February 

1988. 

Barlos, F.N., et al., "Query Optimization for Multiprocessor/Disttibuted Databases: A 

Statistical Approach", Parallel Computing: Paradigms and Applications, 

A.Y.Zomaya (ed.). International Thomson Computer Press, pp. 514-552, 1996. 



Bibliography page 288 

BassUiades, N. and Vlahavas, I., "PRACTIC: A Concunent Object Data Model for a 

ParaUel Object-Oriented Database System", Information Sciences 86(1-3), Elsevier, 

pp. 149-178, 1995. 

BassUiades, N. and Vlahavas, I., "Hierarchical Query Execution in a ParaUel Object-

Oriented Database System", Parallel Computing 22(7), Elsevier, pp. 1017-1048, 

1996. 

BeU, D., 'DUficult Data Placement Problems", The Computer Journal, Vol. 27, No. 4, pp. 

315-320, 1984. 

Bergsten, B., Couprie, M., and Valduriez, P., "Overview of ParaUel Architecture for 

Databases", The Computer Journal, vol. 36, no. 8, pp. 734-740, 1993. 

Bertino, E. and Martino, L., "Object-Oriented Database Management Systems: Concepts and 

Issues", IEEE Computer, AprU 1991. 

Bertino, E, et al., "Object-Oriented Query Languages: The Notion and The Issues", IEEE 

Transactions on Knowledge and Data Engineering, vol. 4, no. 3, pp. 223-237, June 

1992. 

Bertino, E. and Martino, L., Object-Oriented Database Systems: Concepts and 

Architectures, Addison-Wesley, 1993. 

Bhuyan, L.N, Yang, Q. and Agrawal, D.P., 'Performance of Multiprocessor Interconnection 

Networks", IEEE Computer, pp. 25-37, February 1989. 

Blackburn, S.M. and Stanton, R.B., "Multicomputer object stores: the Multicomputer Texas 

experiment". Proceedings of the 7th International Workshop on Persistent Object 

Systems, Cape May, N.J., 1996. 

Blakeley, J.A., McKenna, W.J. and Graefe, G., "Experiences BuUding the Open OODB 

Optimizer", Proceedings of the ACM SIGMOD Conference, pp. 287-296, 1993. 

Booch, Grady, Object-Oriented Analysis and Design with Applications, second edition. The 

Benjamin/Cummings Publishing Company, Inc., 1994. 

Boszormenyi, L., Eder, J., and Welch, C , "PPOST: A ParaUel Database in Main Memory", 

Proceedings of the 5th International Conference on Database and Expert System 

Applications DEXA'94, 1994. 

Boszormenyi, L., Eder, J., and Welch, C , "PPOST - A Persistent ParaUel Object Store", 

Proceedings of the International Conference on Massively Parallel Processing -

Applications and Development MPP'94, 1994. 



Bibliography page 289 

Brunie, L., Kosch, H., and Flory, A., "New Static Scheduling and Elastic Load Balancing 

Methods for ParaUel Query Processing", Proceedings of the BIWir95 Workshop, 

IEEE Computer Society Press, 1995. 

Bultzingsloewen, G.v., "Optimizing SQL Queries for ParaUel Execution", SIGMOD Record, 

vol 18, no. 4, pp. 17-22, December 1989. 

Bussche, J.V.D. and Vossen, G., "An Extension of Path Expressions to SimplUy Navigation 

in Object-Oriented Queries", Proceedings of the 3rd International Conference on 

Deductive and Object-Oriented Databases DOOD'93, Phoenix, pp. 267-282, 1993. 

Carey, M.J., DeWitt, D.J. and Vandenberg, S.L., "A Data Model and Query Language for 

EXODUS", Proceedings of the ACM SIGMOD Conference, pp. 413-423, 1988. 

Carey, M.J. and DeWitt, D.J., "Of Objects and Databases: A Decade of TummoU", 

Proceedings of the 22nd VLDB Conference, Bombay, India, 1996. 

CatteU, R.G.G., Object Data Management: Object-Oriented and Extended Relational 

Database Systems, Addison Wesley, 1991. 

CatteU, R.G.G. (ed.), The Object Database Standard: ODMG-93, Release 1.1, Morgan 

Kauftnann, 1994. 

Chan, D.K.C., Harper, D.J., and Trinder, P.W., "A Case Study of Object-Oriented Query 

Languages", Proceedings of the International Conference on Information Systems 

and Management of Data, pp. 63-86, 1993. 

Chan, D.K.C. and Trinder, P.W., "Object Comprehensions: A Query Notation for Object-

Oriented Databases", Proceedings of the British National Conference on Databases 

BNCOD'94, pp. 55-72, July 1994. 

Chan, D.K.C, Object-Oriented Query Language Design and Processing, PhD Thesis, 

UiUversity of Glasgow, September 1994. 

Chan, D.K.C, Trinder, P.W. and WeUand, R.C., "Evaluating Object-Oriented Query 

Languages", Computer Journal, vol. 38, no. 2, February 1995. 

Christophides, V., Cluet, S., and Moerkotte, G., "Evaluating Queries with Generalized Path 

Expressions", Proceedings of the ACM SIGMOD Conference, pp. 413-422, 

Monfreal, 1996. 

Cluet, S., et al., "Reloop, an Algebra Based Query Language for an Object-Oriented 

Database System", Deductive and Object-Oriented Databases DOOD Conference, 

W.Kim, et al. (eds.), Elsevier Science Publishers, pp. 313-332, 1990. 



Bibliography page 290 

Cluet, S. and Delobel, C , "A General Framework for die Optimization of Object-Oriented 

Queries", Proceedings of the ACM SIGMOD Conference, pp. 383-392, 1992. 

Cluet, S. and Delobel, C , 'Towards a Unification of Rewrite-Based Optimization Techniques 

for Object-Oriented Queries", Query Processing for Advanced Database Systems, 

J.C.Freytag, et al. (eds.), Morgan Kaufmann, 245-272, 1994. 

Coad, P. and Yourdon, E., Object-Oriented Analysis, second edition. Prentice HaU, 1991. 

Copeland, G., et. al., 'Data Placement in Bubba, Proceedings of the ACM SIGMOD 

International Conference on Management of Data, pp. 99-108, 1988. 

Davis, K.C. and Delcambre, L.M.L., "Foundations for object-oriented query processing", 

Computer Standards & Interfaces 13, pp. 207-212, 1991. 

DeGroot, D., Meyer, E. and WeUs, D., 'Issues in ParaUelizing Object-Oriented Database 

Systems", Parallel Processing arui Data Management, P. Valduriez (ed.). Chapman 

and HaU, pp. 195-206, 1992. 

Delobel, C, Lecluse, C, and Richard, P, Databases: From Relational to Object-Oriented 

Systems, International Thomson Publishing, London, 1995. 

DeWitt, D., et al., 'The Gamma Database Machine Project", IEEE Transaction on 

Knowledge arui Data Engineering, vol. 2, no. 1, pp. 44-62, March 1990. 

DeWitt, D.J., Naugthon, J.F., and Schneider, D.A., "An Evaluation of Non-Equijoui 

Algorithms", Proceedings of the 17th International Conference on Very Large Data 

Bases VLDB, pp. 443-452, Barcelona, September 1991. 

DeWitt, D.J. and Gray, J., "ParaUel Database Systems: The Future of High Performance 

Database Systems", Communication of the ACM, vol. 35, no. 6, pp. 85-98, 1992. 

DeWitt, D.J., et al., "Nested Loops Revisited", Proceedings of Parallel and Distributed 

Information Systems PDIS'93, pp. 230-242, January 1993. 

DeWitt, D.J., et al., 'ParaUelizing OODBMS Traversals: a Performance Evaluation", The 

VLDB Journal, vol 5, pp. 3-18, 1996. 

DUlon, T. S. and Tan, P.L., Object-Oriented Conceptual Model, Prentice HaU, 1993. 

Duncan, R., "A Survey of ParaUel Computer Architectures", IEEE Computer, pp. 5-16, 

February 1990. 

Elmasri, R. and Navatiie, S.B., Fundamental of Database Systems, Second Edition, The 

Benjamin/CumnUngs Publishing Company, 1994. 



Bibliography page 291 

Flynn, M.J., 'Very High Speed Computing Systems", Proceedings of IEEE, vol. 54, pp. 

1901-1909, 1966. 

Frieder, O., "Multiprocessor Algorithms for Relational Database Operators on Hypercube 

Systems", IEEE Computer, pp. 13-28, November 1990. 

Ganguly, S., et al., "Query Optimization for ParaUel Execution", Proceedings of the ACM 

SIGMOD Conference, pp. 9-18, 1992. 

Gardarin, G. and Lanzelotte, R.S.G., "Optimizing Object-Oriented Database Queries using 

Cost-ConfroUed Rewriting", Proceedings of the International Conference on 

Extending Database Technology EDBT92, pp. 534-549, 1992. 

Gesmann, M.., "Mapping a ParaUel Complex-Object DBMS to Operating System 

Processes", EURO-PAR Parallel and Distributed Database Workshop, 1996. 

Ghandeharizadeh, S., and DeWitt, D., "Hybrid-Range Partitioning Sfrategy: A New 

Declustering Sfrategy for Multiprocessor Database Machines", Proceedings of the 

16^^ VLDB Conference, Brisbane, pp. 481-492, 1990. 

Ghandeharizadeh, S., et. al., "A Performance Analysis of Alternative Multi-Atttibute 

Declustering .Sttategies, Proceedings of the ACM SIGMOD International 

Conference on Management of Data, pp. 29-38, 1992. 

Ghandeharizadeh, S., et al., "Object Placement in ParaUel Object-Oriented Database 

Systems", Proceedings of the 10th International Conference on Data Engineering, 

Houston, pp. 253-262, February 1994. 

Ghandeharizadeh, S. and DeWitt, D.J., "MAGIC: A Multiatttibute Declustering Mechanism 

for Multiprocessor Database Machines", IEEE Transactions on Parallel and 

Distributed Systems, vol. 5, no. 5, pp. 509-524, May 1994. 

Graefe, G. and Maier, D., "Query Optimization in Object-Oriented Database Systems: A 

Prospectus", Proceedings of the 2nd International Workshop on OODB Systems, 

pp. 358-363, 1988. 

Graefe, G., "Query Evaluation Techniques for Large Databases", ACM Computing Surveys, 

vol. 25, no. 2, pp. 73-170, June 1993. 

Graefe, G., et al., "Extensible Query Optimization and ParaUel Execution in Volcano", Query 

Processing For Advanced Database Systems, J.C.Freytag et al. (eds.), Morgan 

Kaufmann, pp. 305-335, 1994. 



Bibliography page 292 

Graefe, G. and Cole, R.L., "Fast Algorithms for Universal Quantification in Large 

Databases", ACM Transactions on Database Systems, vol. 20, no. 2, pp. 187-236, 

June 1995. 

Gray, J.P., et al. Disttibuted Memory ParaUel Architecture for Object-Oriented Database 

Application, Proceedings of the Third Australian Database Conference, pages 168-

181, Melbourne, 1992. 

Green, S.A. and Paddon, D.J., "An Extension of the Processor Farm Using a Tree 

Architecture", Occam and the Transputer Research and Applications, C.Askew 

(ed.), lOS Publishing Company, pp. 53-69, 1988. 

Gruber, O. and Valduriez, P., "Object management in paraUel database servers". Parallel 

Processing and Data Management, P.Valduriez (ed.). Chapman & HaU, pp. 275-

293, 1992. 

Guo, M., Su, S.Y.W. and Lam, H., "An Association Algebra for Processing Object-Oriented 

Databases", Proceedings of the 7th International Conference on Data Engineering, 

Kobe, Japan, pp. 23-32, Apr. 1991. 

Haran, B., et al., 'Prototyping Bubba, A Highly ParaUel Database System", IEEE 

Transaction on Knowledge and Data Engineering, vol. 2, no. 1, pp. 4-24, March 

1990. 

Hanis, E.P. and Ramamohanarao, K., "Join Algoritiun Costs Revisited", The VLDB Journal, 

vol. 5, pp. 64-84, 1996. 

Hart, E., Transim: Prototyping Parallel Algorithms, User Guide and Reference Manual, 

Transim version 3.5, University of Westminster, August 1993. 

Hasan, W., Florescu, D., and Valduriez, P., "Open Issues in ParaUel Query Optimization", 

SIGMOD Record, vol. 25, no. 3, pp. 28-33, September 1996. 

HeUnan, P., The Science of Database Management, Irwin Publisher, 1994. 

Hoare, C.A.R., Communicating Sequential Processes, Prentice HaU, 1985. 

Hong, W. and Stonebraker, M., "Optimization of ParaUel Execution Plans in XPRS", 

Proceedings of the First International Conference on Parallel and Distributed 

Information Systems PDIS'91, Florida, pp. 218-225, December 1991. 

Hong, W., "Exploiting Inter-Operation ParaUelism in XPRS", Proceedings of the ACM 

SIGMOD Conference, pp. 19-28, 1992. 



Bibliography page 293 

Hong, W. and Stonebraker, M., "Optintization of ParaUel Query Execution Plans in XPRS", 

Distributed and Parallel Databases 1, pp. 9-32, 1993. 

Hua, K.A. and Lee, C, "Handling Data Skew in Multiprocessor Database Computers Using 

Partition Tuning", Proceedings of the I7th International Conference on Very Large 

Data Bases VLDB, Barcelona, pp. 525-535, 1991. 

Hua, K.A and Lee, C, "Interconnecting Shared-EverytiUng Systems for Efficient ParaUel 

Query Processing", Proceedings of the 1st International Conference on Parallel and 

Distributed Information Systems PDIS'91, Miami Beach, pp. 262-270, December 

1991. 

Hua, K.A., Lee, C. and Hua, CM., 'Dynamic Load Balancing in Multicomputer Database 

Systems Using Partition Tuning", IEEE Transactions on Knowledge and Data 

Engineering, vol. 7, no. 6, pp. 968-983, December 1995. 

Hurson, A.R. and Pakzad, S.H., "Object-Oriented Database Management Systems: Evolution 

and Performance Issues", IEEE Computer, Feb 1993. 

IBM DB2, 'IBM DB2 ParaUel Edition", http://www.ibm.com, 1995. 

Informix, 'Informix Online Extended ParaUel Server for Loosely Coupled Cluster and 

Massively ParaUel Processing Architectures", http://v^ww.inforniix.com, July 1995. 

Informix, "Informix Online Dynamic Server", http://www.informix.com, 1996. 

Jarke, M. and Koch, J., "Query Optimization in Database Systems", ACM Computing 

Surveys, vol. 16, no. 2, pp. 111-152, June 1984. 

Jarke, M., et al., "Inttoduction to Query Processing", Query Processing in Database 

Systems, W.Kim et al. (eds.), Springer-Verlag, pp. 3-28, 1985. 

Jenq, B.P., et al., "Query Processing in Disttibuted ORION", Proceedings of the 

International Conference on Extending Database Technology EDBT'90, Venice, pp. 

169-187, March 1990. 

KeUer, A.M. and Roy, S., "Adaptive ParaUel Hash Join in Main-Memory Databases", 

Proceedings of the First Internatiortal Conference on Parallel and Distributed 

Information Systems, 1991. 

KeUer, T., Graefe, G. and Maier, D., "Efficient Assembly of Complex Objects", Proceedings 

of the ACM SIGMOD Conference, pp. 148-157, May 1991. 

http://www.ibm.com
http://v%5eww.inforniix.com
http://www.informix.com


Bibliography page 294 

Kemper, A. and Moerkotte, G., "Advanced Query Processing in Object Bases Using Access 

Support Relations", Proceedings of the 16th VLDB Conference, Brisbane, AusttaUa, 

pp. 290-301, 1990. 

Kemper, A. and Moerkotte, G., "Query Optimization in Object-Bases: Exploiting Relational 

Techniques", Query Processing For Advanced Database Systems, J.C.Freytag et al. 

(eds.), Morgan Kaufmann, pp. 61-98, 1994. 

Khoshafian, S., Valduriez, P. and Copeland, G., 'ParaUel Query Processing for Complex 

Objects", Proceedings of the 4th International Conference on Data Engineering, 

pp. 202-209, 1988. 

Khoshafian, S. and Frank, D., 'Implementation Techniques for Object-Oriented Databases", 

Advances in OODB Systems, K.R.Ditttich (ed.), Springer-Verlag, pp. 60-79, 1988. 

Kifer, M., Kim, W. and Sagiv, Y., "Querying Object-Oriented Databases", Proceedings of 

the ACM SIGMOD Conference, pp. 393-402, 1992. 

Kim, K-C, Kim, W. and Dale, A., "Cyclic Query Processing in Object-Oriented Databases", 

Proceedings of the 5th International Conference on Data Engineering, pp. 564-

571, February 1989. 

Kim, K-C, 'ParaUelism in Object-Oriented Query Processing", Proceedings of the Sixth 

Interruitional Conference on Data Engineering, pp. 209-217, 1990. 

Kim, W., "On Optimizing an SQL-Like Nested Query", ACM Transactions on Database 

Systems, vol. 7, no. 3, pp. 443-469, September 1982. 

Kim, W., "A Model of Queries for Object-Oriented Databases", Proceedings of the 15th 

Interruitional Conference on Very Large Data Bases VLDB, Amsterdam, pp. 423-

432, 1989. 

Kim, W., Introduction to Object-Oriented Databases, The MIT Press, 1990. 

Kitsuregawa, M. and Ogawa, Y., "Bucket Spreading ParaUel Hash: a New, Robust, ParaUel 

Hash Join Method for Data Skew in the Super Database Computer (SDC)", 

Proceedings of the 16th VLDB Conference, Brisbane, pp. 210-221, 1990. 

Knuth, D.E., The Art of Computer Programming: Sorting and Searching, vol. 3, Addison-

Wesley, 1973. 

Kolchin, V.P. et al.. Random Allocation, WUey, 1978. 



Bibliography page 295 

Korth, H. and Rotii, M.A., "Query Languages for Nested Relational Databases", Nested 

Relations and Complex Objects in Databases, S.Abiteboul et al. (eds.), Springer-

Verlag, LNCS 361, pp. 190-204, 1989. 

Kung, C , "Object Subclass Hierarchy in SQL: A Simple Approach", Communications of the 

ACM, vol. 33, no. 7, pp. 117-125, July 1990. 

Lakshmi, M.S. and Yu, P.S., "Effectiveness of ParaUel Joins", IEEE Transactions of 

Knowledge and Data Engineering, vol. 2, no. 4, pp. 410-424, December 1990. 

Lanzelotte, R.S.G. and Valduriez, P., "Extending die Search Sttategy in a Query Optimizer", 

Proceedings of the 17th International Conference on Very Large Data Bases 

VLDB, Barcelona, pp. 363-373, 1991. 

Lanzelotte, R.S.G., et al., "Optimization of Nonrecursive Queries in OODBs", Proceedings 

of the Second International Confereru:e on Deductive and Object-Oriented 

Databases D00D'91, Munich, pp. 1-21, December 1991. 

Lanzelotte, R.S.G. et al., "Optimization of Object-Oriented Recursive Queries using Cost-

ConfroUed Sttategies", Proceedings of the ACM SIGMOD Conference, pp. 256-265, 

1992. 

Leung, C.H.C, Quantitative Analysis of Computer Systems, John WUey & Sons, 1988. 

Leung, C.H.C. and Ghogomu, H.T., "A High-Performance ParaUel Database Architecture", 

Proceedings of the Seventh ACM Interrmtional Conference on Super computing, 

Tokyo, pp. 377-386, 1993. 

Leung, C.H.C, 'ParaUel Paradigms for Query Evaluation and Processing", Proceedings of 

the First Australasian Workshop on Parallel and Real-Time Systems PART'94, 

Melbourne, pp. 1-10, July 1994. 

Lieuwen, D.F., DeWitt, D.J. and Mehta, M., 'ParaUel Pointer-based Join Techniques for 

Object-Oriented Databases", AT&T Technical Report, 1993. 

Ling, T.W. and Teo, P.K., 'Inheritance Conflicts in Object-Oriented Systems", Proceedings 

of the 4th International Conference on DEXA'93, Prague, pp. 189-200, September 

1993. 

Linnemaim, V., "Nested Relations and Recursive Queries", Nested Relations arui Complex 

Objects in Databases, S.Abiteboul et al. (eds.), Springer-Verlag, LNCS 361, pp. 

205-216, 1989. 



Bibliography page 296 

Litwm, W. and Risch, T., "Main Memory Oriented Optimization of 0 0 Queries Using Typed 

Datalog witii Foreign Predicates", IEEE Transactions on Knowledge and Data 

Engineering, vol. 4, no. 6, pp. 517-528, December 1992. 

Liu, K.H., Leung, C.H.C, and Jiang, Y., "Analysis and Taxonomy of Skew in ParaUel 

Databases", Proceedings of High Performance Computing Symposium HPDC'95, 

Montteal, Canada, pp. 304-315, 1995. 

Liu, K.H., Y. Jiang, and C.H.C. Leung, "Query Execution in tiie Presence of Data Skew in 

ParaUel Databases", Australian Computer Science Communications, vol 18, no 2, 

pp.157-166, 1996. 

Lu, H-J., et al., "Optimization of Multi-Way Join Queries for ParaUel Execution", 

Proceedings of the 17th International Conference on VLDB, Barcelona, pp. 549-

560, September 1991. 

Lu, H.J. and Tan, K.L., 'Dynamic and Load-balanced Task-Oriented Database Query 

Processing in ParaUel Systems", Advances in Database Technology EDBT'92, pp. 

357-372, 1992. 

Masunaga, Y., "Object Identity, Equality and Relational Concept", Deductive and Object-

Oriented Databases, W. Kim etal., (eds.), pp. 185-202, 1990. 

Meyer, B., Object-Oriented Software Construction, Prentice-HaU, 1988 

MUne, J., 'Power serve!". Computer Week, pp. 25-27, January 26, 1996. 

Mishra, P. and Eich, M.H., "Join Processing in Relational Databases", ACM Computing 

Surveys, vol. 24, no. 1, pp. 63-113, March 1992. 

Moss, J.E.B., "Working witii Persistent Objects: To Swizzle or Not to Swizzle", IEEE 

Transactions on Software Engineering, vol. 18, no. 8, pp. 657-673, August 1992. 

Norman, M.G., Zurek, T., and Thanisch, P., "Much Ado About Shared-NotiUng", SIGMOD 

Record, vol. 25, no. 3, pp. 16-21, September 1996. 

Nonis, F.R., Discrete Structures: An Introduction to Mathematics for Computer Science, 

Prentice HaU, 1985. 

Oracle, "Oracle ParaUel Server", http://vyww.oracle.com, 1995. 

Orenstein, J, et al., "Query Processing in tiie ObjectStore Database System", Proceedings of 

the ACM SIGMOD Conference, pp. 403-412, 1992. 

Osbom, S.L., 'Identity, Equality and Query Optimization", Proceedings of the 2nd 

International Workshop on OODB Systems, pp. 346-351, 1988. 

http://vyww.oracle.com


Bibliography page 297 

Ozkarahan, E., Database Machines and Database Management, Prentice-HaU, 1986. 

Ozsu, M.T. and Blakeley, J.A., "Query Processing in Object-Oriented Database Systems", 

Modern Database Systems: The Object Model, Interoperability, arui Beyond, 

W.Kim (ed.), Addison-Wesley, pp. 146-174, 1995. 

Pang, H-H., Lu, H-J. and Ooi, B-C, "Query Processing in OODB", Proceedings of the 

Second International Symposium on Database Systems for Advanced Application 

DASFAA'91, Tokyo, pp. 1-10, AprU 1991. 

Patterson, D.A., and Hennessy, J.L., Computer Organization & Design: The 

HardwarelSoJhvareInterface, MorganK^ufmaim, 1994. 

Pirahesh, H., et al., 'ParaUelism in Relational Data Base Systems: Architectural Issues and 

Design Approaches", Proceedings of the 2nd IEEE International Symposium on 

Databases in Parallel arui Distributed Systems, pp. 4-29, 1990. 

Poola, T.R., et al., 'Performance Analysis of an Object-Oriented Approach to ParaUel Query 

Evaluation", Proceedings of the 18th Annual International Computer Software and 

Applications Conference COMPSAC'94, Taipei, pp. 264-269, 1994. 

Qadah, G.Z. and Irani, K.B., 'The Join Algorithms on a Shared-Memory Multiprocessor 

Database Machine", IEEE Transactions on Software Engineering, vol. 14, no. 11, 

pp. 1668-1683, November 1988. 

Rahayu, W., Chang, E. and DUlon, T.S., "A Metiiodology for die Design of Relational 

Databases from Object-Oriented Conceptual Models Incorporating CoUection 

Types", Proceedings of the 18th International Conference on Technology of Object-

Oriented Languages and Systems TOOLS Pacific, Melbourne, pp. 13-23, 1995. 

Rahayu, W., et al., "Aggregation versus Association in Object ModeUing and Databases", 

Proceedings of the Australasian Conference on Information Systems ACIS'96, 

Hobart, 1996. 

Rahm, E., 'ParaUel Query Processing in Shared Disk Database Systems", SIGMOD Record, 

vol. 22, no. 4, pp. 32-37, December 1993. 

Rumbaugh, J., et al., Object-Oriented Modeling and Design, Prentice-HaU, 1991. 

Saratiiy, V..M., et al., "Algebraic Foundation and Optimization for Object Based Query 

Languages", Proceedings of the International Conference on Data Engineering, pp. 

81-90, 1993. 



Bibliography page 298 

Schneider, D. and DeWitt, D.J., "A Performance Evaluation of Four ParaUel Join Algoritiims 

in a Shared-NotiUng Multiprocessor Environment", Proceedings of the ACM 

SIGMOD Conference, pp. 110-121, 1989. 

Schneider, D.A. and DeWitt, D.J., 'Tradeoffs in Processing Complex Join Queries via 

Hashing in Multiprocessor Database Machines", Proceedings of the 16th VLDB 

Conference, pp. 469-480, Brisbane, AusttaUa, 1990. 

SeUnger, P. G., et. al., "Access Patii Selection in a Relational Database Management 

System", Proceedings of the ACM SIGMOD International Conference on 

Management of Data, Boston, pp. 23-34, May 1979. 

Selinger, P.G., 'Predictions and ChaUenges for Database Systems in die Year 2000", 

Proceedings of the 19th VLDB Conference, pp. 667-675, Dublin, Ireland, 1993. 

Shaw, M.G. and ZdonUc, S.B., "A Query Algebra for Object-Oriented Databases", 

Proceedings of the 8th International Conference on Data Engineering, Tempe, 

Arizona, pp. 154-162, Feb. 1992. 

Stensttom, P., "Shared-memory multiprocessors - a cost-effective approach to high-

performance computing". Parallel Computing: Paradigms and Applications, 

A.Y.Zomaya (ed.). International Thomson Computer Press, pp. 25-77, 1996. 

Stone, H.S., 'ParaUel Querying of Large Databases: A Case Study", IEEE Computer, pp. 

11-21, October 1987. 

Stonebraker, M., "The C3ist for shared-nothing", IEEE Data Engineering, 9(1), 1986. 

Sttaube, D.D. and Ozsu, M.T., "Queries and Query Processing in Object-Oriented Database 

Systems", ACM Transactions on Information Systems, vol. 8, no. 4, pp. 387-430, 

October 1990. 

Sttaube, D.D. and Ozsu, M.T., "Execution Plan Generation for an Object-Oriented Data 

Model", Proceedings of the 2nd International Conference on Deductive arui Object-

Oriented Databases D00D'91, Munich, pp. 43-67, December 1991. 

Su, S.Y.W., Guo, M. and Lam, H., "Association Algebra: A Matiiematical Foundation for 

Object-Oriented Databases", IEEE Transactions on Knowledge and Data 

Engineering, vol. 5, no. 5, pp. 775-798, October 1993. 

Suciu, D., "Implementation and Analysis of a ParaUel CoUection Query Language", 

Proceedings of the 22nd VLDB Conference, Bombay, India, 1996. 

Sybase, "Sybase Navigation Server: ParaUel high Performance for Real World Workload", 

http://www.sybase.com, 1995. 

http://www.sybase.com


Bibliography page 299 

Tandem, "Query Processing using Non-Stop SQL/MP", http://www.tandem.com, 1995. 

Thakore, A.K. and Su, S.Y.W., 'Performance Analysis of ParaUel Object-Oriented Query 

Processing Algorithms", Distributed and Parallel Databases 2, pp. 59-100, 1994. 

Torbjomsen, O., 'ParaUel Relational Database Algoritiims", Parallel Computing on 

Distributed Memory Multiprocessors, Fusun, O., et al., (eds.). Springer Verlag, pp. 

263-281, 1993. 

Tseng, E. and Reiner, D., 'ParaUel Database Processing on the KSRl Computer", 

Proceedings of the ACM SIGMOD Conference, pp. 453-455, 1993. 

Valduriez, P., 'ParaUel Database Systems: The Case for Shared-Something", Proceedings of 

the International Conference on Data Engineering, pp. 460-465, 1993. 

Valduriez, P., 'ParaUel Database Systems: Open Problems and New Issues", Distributed and 

Parallel Databases I, pp. 137-165, 1993. 

Wade, A.E., "Object Query Standards", SIGMOD Record, vol. 25, no. 1, pp. 87-92, March 

1996. 

Walton, C.B., et al., "A Taxonomy and Performance Model of Data Skew Effects in ParaUel 

Joins", Proceedings of the 17th International Conference on Very Large Data Bases 

VLDB, pp. 537-548, Barcelona, September 1991. 

Weikum, G., 'Tutorial on ParaUel Database Systems", Proceedings of the Fifth 

International Conference on Database Theory ICDT'95, Praque, pp. 33-37, January 

1995. 

Wolf, J.L, et al., "A ParaUel Hash Join Algoritiim for Managing Data Skew", IEEE 

Transactions on Parallel and Distributed Systems, vol. 4, no. 12, pp. 1355-1371, 

December 1993. 

Wolf, J.L., Dias, D.M and Yu, P.S., "A ParaUel Sort Merge Join Algoritiim for Managing 

Data Skew", IEEE Transactions on Parallel and Distributed Systems, vol. 4, no. 1, 

pp. 70-86, January 1993. 

Wolf, J.L., et al., "A Hierarchical Approach to ParaUel Multiquery Scheduling", IEEE 

Transactions on Parallel and Distributed Systems, vol. 6, no. 6, pp. 578-589, June 

1995. 

Zipf, G.K., Human Behaviour and the Principle of Least Ejfort, Addison Wesley, 1949. 

http://www.tandem.com


Appendix A 

Simulation Models 

A.1 Pipeline Model 

- Pipeline Model with a scheduler (implemented as a "tree"), and 
- multiple buffer.in and buffer.out 

INTC N, P, B 
N 
P 
B 

= 4 
= N 
= 3 

- 1 
total processors 
number of workers 
number of buffers 

VAL no.objects IS 42: 
VAL obj.size.lower IS 100: 
VAL obj.size.middle IS 80 0: 
VAL obj.size.upper IS 1000: 
VAL ack IS 1: 

- object size 100-1000 
- full obj size is selected 

[P][B] CHAN OF ANY out, in: -- 3 buffers per processor 
[P][B] CHAN OF ANY schedule.out, schedule.in: 
[P][B] CHAN OF ANY buff.req, buff.out: 
[P][B] CHAN OF ANY work.req, work.rep: 
[P][B] CHAN OF ANY route.req, route.rep: 

PLACED PAR 
- - master 
INT message: 
SEQ I scheduler 
SEQ j = 0 FOR no.objects 

SEQ 
ALT 

schedule.in[0][0] ? message 
schedule.out[0][0] 1 j | ack 

schedule.in[1][0] ? message 
schedule.out[1][0] ! j | ack 

change to ALT rep, if avail 
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schedule.in[2][0 
schedule.out[2 

schedule.in[0][1 
schedule.out[0 

schedule.in[1][1 
schedule.out[1 

schedule.in[2] [1 
schedule.out[2 

schedule.in[0][2 
schedule.out[0 

schedule.in[1][2 
schedule.out[1 

schedule.in[2][2 
schedule.out[2 

? message 
[0] ! j I ack 

? message 
[1] ! j I ack 
? message 
[1] ! j I ack 
? message 
[1] ! j I ack 

? message 
[2] i j I ack 
? message 
[2] ! j I ack 
? message 
[2] ! j I ack 

- - no. 
-- no. 

ack I ack 
? obj.number 

PLACED PAR i = 0 FOR P 
PLACED PAR k = 0 FOR B 

INT obj, obj.number: 
SEQ I sender 
WHILE TRUE 

SEQ 
schedule.in[i][k] 
schedule.out[i][k] 
obj := RAND (obj.size.lower, obj 
out[i][k] ! obj I obj 
ODTSTRM ! obj.number, obj, i, k 

PLACED PAR i =,0 FOR P 
PLACED PAR k = 0 FOR B 

INT obj: 
SEQ I receiver 
WHILE TRUE 

SEQ 
in[i][k] ? obj 
OUTSTRM ! obj, i, k 

of workers 
of buffers per worker 

size.upper) 

-- old,size,proc,buff 

oid, proc, buff 

-- slave 
PLACED PAR i = 0 FOR P 
PLACED PAR k = 0 FOR B 

INT obj: 
SEQ I buffer.in 
WHILE TRUE 

SEQ 
out[i][k] ? obj 
buff.req[i][k] ! obj | obj 

PLACED PAR i = 0 FOR P 
INT obj: 
SEQ I worker 
WHILE TRUE 

SEQ 
ALT 

buff.req[i][0] 
SERV(obj) 

buff.req[i][1] 
SERV(obj) 

buff.req[i][2] 
SERV(obj) 

IF 

ALT replication here 
? obj 

? obj 

? obj 
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obj < obj.size.middle 
buff.out[i][0] ! ack | ack 

TRUE 
buff.out[i][0] ! obj I obj 

PLACED PAR i = 0 FOR P 
PLACED PAR k = 0 FOR B - 1 

SEQ I buffer.out 
PAR 

INT obj, message: 
SEQ I holding.buffer.out 
WHILE TRUE 

SEQ 
buff.out[i][k] ? obj 
PRI ALT 
work.req[i][k] ? message 

work.rep[i][k] ! obj | obj 
route.req[i][k] ? message 

route.rep[i][k] ! obj | obj 
INT obj: 
SEQ I passing.buffer.out 
WHILE TRUE 

SEQ 
route.req[i][k] ! ack | ack 
route.rep[i][k] ? obj 
buff.out[i][k+1] ! obj | obj 

INT obj: 
SEQ I output.buffer.out 
WHILE TRUE 

SEQ 
work.req[i][k] ! ack | ack 
work.rep[i][k] ? obj 
in[i][k] ! obj | obj 

PLACED PAR i = 0 FOR P 
INT obj: 
SEQ I buffer.out.end 
WHILE TRUE 

SEQ 
buff.out[i][B-1] ? obj 
in[i][B-1] ! obj I obj 

- - processor allocation 
NODE i = 0 FOR N 

NODE nn 
-- master 
MAP nn[0] : scheduler 
MAP i = 0 FOR P 
MAP k = 0 FOR B 
MAP 
MAP nn[0] : sender[i][k] 
MAP nnfO] : receiver[i][k] 

-- slave 
MAP i = 0 FOR P 

MAP k = 0 FOR B 
MAP nn[i+l] : buffer.in[i][k] 

MAP i = 0 FOR P 
MAP k = 0 FOR B - 1 

MAP nn[i+l] : buffer.out[i][k] 
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MAP i = 0 FOR P 
MAP 

MAP nn[i+l] 
MAP nn[i+l] 

worker[i] 
buffer.out.end[i] 

A.2 Fully Partitioned Model 

-- Fully Partitioned Model for parallel 
-- Parallel Sort-Merge R-Join Algorithm 
-- ("one-obj-size" buffer.in and buffer.out) 

INTC N, P, number.objects.a, number.objects.b ; 
INTC no.blocks.a, no.blocks.b, no.blocks: 
N 
P 

:= 5 
;= N 

- total processors 
• - number of workers 

number.objects.a := 1200 
number.objects.b := 600 
no.blocks.a := number.objects.a / P 
no.blocks.b := number.objects.b / P 
no.blocks := no.blocks.a + no.blocks.b 

VAL obj.size.lower IS 1: 
VAL obj.size.middle IS 40: 
VAL obj.size.upper IS 40: 
VAL basic.cost IS 1: 
VAL ack IS 1: 
VAL max.proc IS 12: 

[max.proc] CHAN OF ANY out, in: 

- assumed to be equal 
- vary each object 

- object size 100-4000 

PLACED PAR 
PLACED PAR i = 0 FOR P 

INT obj: 
SEQ I sender 

SEQ j = 0 FOR no.blocks 
SEQ 

obj := RAND (obj.size.lower, obj.size.upper) 
out[i] ! obj I obj 

PLACED PAR i = 0 FOR P 
INT obj: 
SEQ I receiver 

SEQ j = 0 FOR no.blocks 
SEQ 

in[i] ? obj 

PLACED PAR i = 0 FOR P 
CHAN OF ANY buff.req, buff.out: 
SEQ I slave 

PAR 

INT obj: 
SEQ I buffer.in 

-- WHILE TRUE 
SEQ j = 0 FOR no.blocks 

SEQ 
out[i] ? obj 



Appendix A - Simulation Models page 304 

buff.req ! obj | obj 

INT obj: 
SEQ I worker 

SEQ j = 0 FOR no.blocks 
SEQ 
buff.req ? obj 
SERV(basic.cost) 

IF 
MERGING COST, simulation only 

obj < obj.size.middle 
SEQ 

SERV(basic.cost) 
buff.out ! ack | ack 

TRUE 
SEQ 
SERV(IO) 
buff.out ! obj I obj 

-- SORTING PHASE, after obtaining all objects 
SEQ j = 0 FOR no.blocks.a 

SEQ 
SERV(5) 

NOTE(sorting.A) 
SERV(no.blocks.a*6 ) 

SEQ j = 0 FOR no.blocks.b 
SEQ , 

SERV(5) 
NOTE(sorting.B) 
SERV(no.blocks.b* 3) 

INT obj: 
SEQ I buffer.out 

SEQ j = 0 FOR no.blocks 
-- WHILE TRUE 
SEQ 
buff.out ? obj 
in[i] ! obj I obj 

sorting each collection 

sorting class a 

-- sorting each collection 

-- sorting class b 

NODE i = 0 FOR N 
NODE nn 

MAP i = 0 FOR P 
MAP 
MAP nn[0] : sender[i] 
MAP nn[0] : receiver[i] 

MAP i = 0 FOR P 
MAP nn[i+l] : slave[i] 
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Sample Experimental Programs 

B.l Inter-Object Parallelization 

/* FILENAME: iob-pe.c 
** Function: Inter-Object Parallelization - Path Expressions 
** / 

/* INCLUDES */ 
#include <stdlib.h> 
# include <sys/resource.h> 
^include <sys/sysinfo.h> 
# include <sys/s ignal.h> 
#include <sys/types.h> 
#include <time.h> 

/* CPU DEFINITION */ 
tdefine CPU_0 0x1 /* Bit 0 set */ 
tdefine CPU_1 0x2 /* Bit 1 set */ 
ttdefine CPU_2 0x4 /* Bit 2 set */ 
#define CPU_3 0x8 /* Bit 3 set */ 
tdefine CPU_4 0x10 /* Bit 4 set */ 
tdefine CPU_5 0x20 /* Bit 5 set */ 
ttdefine CPU_6 0x4 0 /* Bit 6 set */ 
#define CPU_7 0x80 /* Bit 7 set */ 
#define CPU_8 0x100 /* Bit 8 set */ 
#define CPU_9 0x200 /* Bit 9 set */ 
ftdefine MAX_CPU 10 

/* DATA DEFINITION */ 
#define NUM_ITEM 10 0 0000 
#define FANOUT 10 
struct relationship 
{ 

int num_elements; 
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long iod_assoc [FANOUT] ,• 
}; 
struct root_class 
{ 

/* four attributes in the root class */ 
int attrl; 
char attr2[10], attr3[10], attr4[10]; 
/* relationship */ 
struct relationship rell; 

}; 
struct root_class root_objects[NUM_ITEM]; 
struct assoc_class 
{ 

/* four attributes in the assoc. class */ 
int attrl; 
char attr2[10], attr3[10], attr4[10]; 

}; 
struct assoc_class assoc_objects[NUM_ITEM]; 

/* PID SET UP */ 
pid_t pid[MAX_CPU]={l,1,1,1,1,1,1,1,1,1); 
int cpu[MAX_CPU] = [CPU_0, CPU_1, CPU_2, CPU_3, CPU_4, 

CPU_5, CPU_6, CPU_7, CPU_8, C P U _ 9 ] ; 

main() 
{ 

/* VARIABLES */ 
long no_cpu, cpu_num, num_obj_root, num_obj_assoc; 
int i, exitstat, ret, select_root, select_assoc; 

/* PROTOTYPES*/ 
void generate_input(long, long); 
void set_up(long); 
void child_process(int, int, long, int, int); 

/* MAIN PROGRAM */ 

/* INPUTS */ 
printf("Number of root objects (Max:%d) ? ", NUM_ITEM); 
scanf("%ld", &num_obj_root); 
printf("Number of assoc. objects (Max:%d) ? ", NUM_ITEM); 
scanf("%ld", &num_obj_assoc); 
printf("Selectivity of the root class in percentage (0-100) ? " ) ; 
scanf("%d", &select_root); 
printf("Selectivity of the assoc. class in percentage (0-100)?"); 
scanf("%d", &select_assoc); 

generate_input(num_obj_root, num_obj_assoc); 

getsysinfo(GSI_CPUS_IN_BOX, &no_cpu, OL, OL, OL) ; 
printf("No CPU : %d, ", no_cpu); 

set_up(no_cpu); 

/* CHILD */ 
if(pid[0]==0 II pid[l]==0 II pid[2]==0 || pid[3]==0 || 

pid[4]==0 I I pid[5]==0 | | pid[6]==0 | | pid[7]==0 | | 
pid[8]==0 I I pid[9]==0) 

{ 
sleep(1); 
getsysinfo(GSI_CURRENT_CPU, &cpu_num, OL, OL, OL) ; 
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/* printf("Processor %d\n", cpu_num); */ 

if (pid[cpu_num]==0) { 
child_process(cpu_num, no_cpu, num_obj_root, 

select__root, select_assoc) ; 
} 

} 

/* PARENT */ 
if ((pid[0]>0) && (pid[l]>0) && (pid[2]>0) && (pid[3]>0) && 

(pid[4]>0) && (pid[5]>0) && (pid[6]>0) && (pid[7]>0) && 
(pid[8]>0) && (pid[8]>0) && (pid[9]>0)) 

{ 
for (i=0;i<no_cpu;i++) [ 

ret = wait(&exitstat); 
} 

ret == -1 ? -1 : exitstat; 
} 

} 

void generate_input(long num_objects_root, long num_objects_assoc) 
{ 

int k, fanout; 
long i; 

srand(time(NULL)); 
/* ROOT CLASS */ 
for(i=0;i<num_objects_root;i++) { 

root_objects[i].attrl = rand() % 100 + 1; 
for(k=0;k<8;k++) root_objects[i].attr2[k] = rand() %26 + 65; 
root_objects[i].attr2[k] = '\0'; 

for(k=0;k<8;k++) root_objects[i].attr3[k] = rand() %26 + 65; 
root_objects[i].attr3[k] = '\0'; 

for(k=0;k<8;k++) root_objects[i].attr4[k] = rand() %26 + 65; 
root_objects[i].attr4[k] = '\0'; 

/* FANOUT */ 
fanout = randO % FANOUT + 1; 
root_objects[i].rell.num_elements = fanout; 
for(k=0;k<fanout;k++) 

root_objects[i].rell.iod_assoc[k] = 
rand() % num_objects_assoc + 1; 

} 

/* ASSOCIATED CLASS */ 
for(i=0;i<num_objects_assoc;i++) { 

assoc_objects[i].attrl = rand() % 100 + 1; 
for(k=0;k<8;k++) assoc_objects[i].attr2[k] = rand() %26 + 65; 
assoc_objects[i].attr2[k] = '\0'; 

for(k=0;k<8;k++) assoc_objects[i].attr3[k] = rand() %26 + 65; 
assoc_objects[i].attr3[k] = '\0'; 

for(k=0;k<8;k++) assoc_objects[i].attr4[k] = rand() %26 + 65; 
assoc_objects[i].attr4[k] = '\0'; 

} 
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} 

void set_up(long num_cpu) 
{ 

int i; 
f or (i=0; i<num_cpu; i-i-i-) { 

if(i==0 I I pid[i-l] > 1) { 
pid[i] = forkO ; 

if (pid[i] < 0) { /* ERROR V 
printf("Error in child %d\n", i); 

} 
else { 

if (pid[i] > 0) { /* PARENT */ 
if (bind_to_cpu(pid[i], cpu[i], BIND_NO_INHERIT)) { 

kill (pid[i], SIGKILL); 
exit(1); 

} 
} 

} 

) 

void child_process(int i, int num_cpu, long num_objects_root, 
int selectivity_root, int selectivity_assoc) 

{ 
long j; 
int k; 
struct root_class root_result; 
struct assoc_class assoc_result; 

j = i; 
printf("CPU %d starts at %d\n", i, clock()); 

while (j < num_objects_root) { 
/* attrl is the selection attribute for the root */ 
if(root_objects[j].attrl <= selectivity_root) 
{ 

f or (k=0;k<root_objects[j] .rell.num_elements;k++) 
£ 

i f ( a s s o c _ o b j e c t s [ r o o t _ o b j e c t s [ j ] . r e l l . i o d _ a s s o c [ k ] ] . a t t r l <= 
s e l e c t i v i t y _ a s s o c ) 

{ 
root_result = root_objects[j] ; 
assoc_result = 

assoc_objects[root_objects[j] .rell.iod_assoc[k]]; 
/* break; */ 

} 
} 

} 

/* ROUND-ROBIN */ 
j += num_cpu; 

} 
printf("\n"); 
printf("CPU %d ends at %d\n", i, clock()); 
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B.2 Inter-Class Parallelization 

/* FILENAME: icl-l.c 
** Function: Inter-Class Parallelization - Case 1 (2 selections) 

/* deleted */ 

void child_process(int i, int num_cpu, long num_objects_root, 
long num_objects_assoc, int selectivity_root, 
int selectivity_assoc) 

[ 
long j; 
int k; 
struct root_class final_result; 

j = i; 
printf("CPU %d starts at %d\n", i, clock()); 

/* SELECTION PHASE A */ 
while (j < num_objects_root) { 

/* attrl is the selection attribute for the root */ 
if(root_objects[j].attrl <= selectivity_root) 

root_results[j] = j; /* sparsed */ 

/* ROUND-ROBIN */ 
j += num_cpu; 

} 

/* SELECTION PHASE B */ 
j = i; 
while (j < num_objects_assoc) { 

/* attrl is the selection attribute for the assoc. class */ 
if(assoc_objects[j].attrl <= selectivity_assoc) 

assoc_results[j] = j; /* sparsed */ 

/* ROUND-ROBIN */ 
j += num_cpu; 

} 

/* CONSOLIDATION */ 
j = i; 
while (j < num_objects_root) { 

if (root_results[j] != -1) 
{ 

for(k=0;k<root_objacts[root_results[j]].rell.num_elements;k++) 
[ 

if(assoc_results[root_objects[root_results[j]].rell.iod_assoc[k]] 
!=-l) 

{ 
final_result = root_objects[root_results[j]]; 
break; 

} 
} 

} 
j += num_cpu; 

} 
printf("\n"); 
printf("CPU %d ends at %d\n", i, clock()); 

} 








