

Query Optimization for Parallel
Object-Oriented Database Systems

David Randy TANIAR

This thesis is presented in fulfilment of

the requirements of the degree of

Doctor of Philosophy

Department of Computer and Mathematical Sciences

Faculty of Engineering and Science

Victoria University of Technology

March 1997

FTS THESIS
nnl 757 TAN ^

Tamar. ^ lor
Query op^^n^^^allonented
parallel Ot>J*-̂ ^ ̂ '

?̂ --lt,3se systems

Abstract

This thesis studies parallel query optimization for object-oriented queries. Its main

objective is to investigate how performance improvement of object-oriented query

processing can be achieved through processor parallelism.

The two major aspects of parallel query optimization are Parallel Query

Optimization and Parallel Query Execution. Parallel query optimization includes access

plan formulation and execution scheduling, whereas parallel query execution deals with

parallel algorithms for basic operations. Complex queries are normally decomposed into

multiple basic operations, and for each basic operation an appropriate parallel algorithm is

applied. Therefore, query access plan formulation is influenced by the availability of basic

parallelization models and parallel algorithms. Execution scheduling deals with managing

execution plans among these parallelizable basic operations.

Parallelization of single-class queries and inheritance queries is provided by inter-

object parallelization. The efficiency of parallelization of inheritance queries depends en its

data structure. A linked-vertical division is developed, which has the advantages of

horizontal and vertical divisions.

Parallelization models for path expression queries are presented in two forms:

inter-object parallelization which exploits the associativity of complex objects, and inter-

class parallelization which relies upon process independence. Inter-object parallelization

will function well if a filtering mechanism in the form of selection operation exists. On the

other hand, inter-class parallelization relies upon independence among classes, not the

filtering feature. These two parallelization models form the basis for the parallelization of

more complex object-oriented queries.

Parallelization for join queries, particularly for collection join queries, is presented

in two versions: sort-merge and hash. Depending on the types of collection join queries.

Abstract

which includes R(elatioruil)-Join, I(ntersection)-Join, and S(ub-collection)-Join, data

partitioning can be either disjoint or nen-disjoint. Disjoint partitionmg is based on the

first/smallest element within each collection, depending on whether the collection is a

list/array or a set/bag. An option for non-disjeint partitioning is to make use of a proposed

Divide and Partial Broadcast.

Query optimization is basically to transform initial queries, normally represented as

a query graph, into Operation Trees, in which query access plans are specified. The

transformation exploits inter-object parallelization and inter-class parallelization, and is

achieved by transforming primitive operations into either inter-ebject or inter-class

parallelization whenever appropriate. Two main execution scheduling strategies, serial and

parallel scheduling, are analyzed. The serial scheduling is appropriate for non-skewed

operations, whereas parallel scheduling with appropriate processor configuration is suitable

for skewed operations. Through physical or logical data re-distribution, the negative effect

of the skew problem can be minimized.

Three levels of performance evaluation were carried out to demonstrate the

efficiency of the proposed procedures. Analytical performance evaluation provides the cost

models for each proposed algorithm or method which are corroborated by simulation. The

experimental approach is able to strengthen both simulation and quantitative results.

Through these evaluations, the quantitative models are demonstrated to be valuable in

representing the behaviour of parallel OODB processing.

Declaration

This thesis contains no material which has been accepted for the award of any other degree

or diploma in any university. The material presented in this thesis is the product of the

author's own independent research under the supervision of Professor Clement Leung.

A fair amount of the materials presented in this thesis has been published in various

refereed conference proceedings. The thesis is less than 100,000 words in length.

David Taniar

March 1997

III

List of External Refereed Publications

1. Taniar, D. and Rahayu, W., 'Parallel Double Sort-Merge Algoridun for Object-

Oriented Collection Join Queries", to appear. Proceedings of the High Performance

Computing HPC'97 Asia, Seoul, Korea, 1997.

2. Taniar, D. and Rahayu, W., "Object-Oriented Collection Join Queries", Proceedings of

the International Conference on Technology Object-Oriented Languages and Systems

rOOL5Pac//ic'9<5, Melbourne, pp. 115-125, 1996.

3. Taniar, D. and Rahayu, W., 'Parallel Collection Join Algorithms in Object-Oriented

Database Systems", Proceedings of the lASTED International Conference on Parallel

and Distributed Computing and Systems PDCS'96, Chicago, pp. 337-340, 1996.

4. Taniar, D. and Rahayu, W., 'Data Placement Methods for Parallel Object-Oriented

Databases", poster paper. Proceedings of the Hungarian-Austrian Workshop on

Distributed and Parallel Systems DAPSYS'96, KFKI Report, 1996-09/M,N, Miskolc,

Hungary, pp. 205-206, 1996.

5. Rahayu, W. and Taniar, D., 'Parallel Collection Join for Object-Oriented Queries",

Proceedings of the Third Australasian on Parallel and Real Systems PART'96,

Brisbane, pp. 164-171, 1996.

6. Liu, K. and Taniar, D., "Efficient Processor Allocation for Parallel Object-Oriented

Database Systems", Proceedings of the Third Australasian Conference on Parallel and

Real Systems PART'96, Brishant, pp. 178-185, 1996.

IV

List of External Refereed Publications

1. Rahayu, W., Chang, E., Dillon, T.S., and Taniar, D., "Aggregation versus Association

in Object Modelling and Databases", Proceedings of the Seventh Australasian

Conference on Information Systems ACIS'96, Hobart, 1996.

8. Leung, C.H.C. and Taniar, D., 'Parallel Query Processing in Object-Oriented Database

Systems", Australian Computer Science Communications, vol. 17, no. 2, pp. 119-131,

1995.

Acknowledgment

I am deeply indebted to my supervisor. Professor Clement Leung, for many years of

encouragement and advice, and for providing constant direction and focus to my research. I

am a much better researcher because of his excellent guidance.

I gratefully acknowledge the generous financial assistance provided by a

departmental scholarship from the Department of Computer and Mathematical Sciences.

To my friends Kevin Liu, Simon So, Ivan Jutrisa and Philip Tse, I owe special

round of thanks for many hours of pleasant conversations, research discussions, and

perspective on life. I also thank Peng Lundberg and Bruna Pomella for commenting

ambiguous sentences and correcting grammatical mistakes.

I thank my family for their encouragement and prayers. I owe my success in life to

my parents' hard work and sacrifices, whose love knows no boundaries. To my wife,

Wenny, I thank her for her tremendous support especially during difficult times.

Finally, I thank GOD for giving me the knowledge and for letting my dream to

come tme.

VI

Contents

Abstract

Declaration

List of External Refereed Publications iv

Acknowledgment vi

Contents vii

List of Figures xiii

List of Tables xix

1 Introduction 1

1.1 Objective 1

1.2 Scope of Research 2

1.3 Contributions 5

1.4 Thesis Organization 7

2 Object-Oriented Queries: A Framework for Query Optimization . . . 10

2.1 Introduction 10

2.2 The Reference Object Model 11

2.2.1 Classes and Objects 11

2.2.2 Inheritance 12

2.2.3 Complex Objects 13

2.2.4 Database and Query Schemas 17

2.3 Object-Oriented Queries 18

2.3.1 Single-Class Queries 18

2.3.2 Inheritance Queries 19

2.3.3 Padi Expression Queries 20

VII

Contents VIII

2.3.4 ExpUcit Join Queries

2.4 Complex Queries

2.4.1 Homogeneous Complex Queries

2.4.2 Heterogeneous Complex Queries

2.5 Discussions

2.5.1 Summary of Query Classification

2.5.2 Query Optimization Framework .

2.6 Conclusions

24

31

31

34

39

39

39

40

Parallel Query Processing: Existing Work 42

3.1 Introduction 42

3.2 Preliminaries 43

3.2.1 Parallel Database Architectures 43

3.2.2 Data Partitioning 45

3.3 Parallelization Models and Algorithms 48

3.3.1 Parallelization of Single-Class Queries 48

3.3.2 Parallelization of Inheritance Queries 49

3.3.3 Parallelization of Path Expression Queries 52

3.3.4 Parallelization of ExpUcit Join Queries 55

3.4 Parallel Query Optimization 63

3.4.1 Query Trees . 6 3

3.4.2 Execution Scheduling . 6 8

3.5 Parallel Query Processing in Parallel Database Systems 70

3.5.1 Commercial ParaUel DBMS s 70

3.5.2 Research Prototype Database Machines 72

3.6 Discussions 76

3.6.1 Achievements 76

3.6.2 Outstanding Problems 77

3.7 Conclusions 79

Parallelization Models 80

4.1 Introduction . 80

4.2 Parallelization Models 81

4.3 Inter-Object Parallelization 81

4.3.1 Inter-Object ParaUelization for Single-Class Queries 81

4.3.2 Inter-Object Parallelization for Inheritance Queries 82

4.3.3 Inter-Object Parallelization for Path Expression Queries 89

Contents ix

A.A Inter-Class Parallelization 94

4.4.1 Selection Phase 95

4.4.2 ConsoUdation Phase 96

4.5 Discussions 98

4.5.1 Horizontal/Vertical Division vs. Linked-Vertical Division . . . 98

4.5.2 Inter-Object vs. Inter-Class Parallelization 100

4.5.3 Issues in Optimizing Path Expression Queries 101

4.6 Conclusions 103

5 Parallel Collection Join Algorithms 105

5.1 Introduction 105

5.2 Characteristics of Collection Join Queries 106

5.2.1 R-Join Characteristics 106

5.2.2 I-Join Characteristics 107

5.2.3 S-Join Characteristics 107

5.3 Data Partitioning 107

5.3.1 Disjoint Partitioning 108

5.3.2 Non-Disjoint Partitioning 109

5.4 Sort-Merge Parallel Collection Join Algorithms 116

5.4.1 Sort-Merge Join Predicate Fimctions 116

5.4.2 Parallel Sort-Merge R-Join Algoridim 118

5.4.3 Parallel Sort-Merge I-Join Algorithm 120

5.4.4 Parallel Sort-Merge S-Join Algorithm 121

5.5 Hash Collection Join Algorithms 123

5.5.1 Multiple Hash Tables and Probing Functions 123

5.5.2 Parallel Hash R-Join Algorithm 126

5.5.3 Parallel Hash I-Join Algorithm 127

5.5.4 Parallel Hash S-Join Algorithm 127

5.6 Discussions 129

5.6.1 Data Partitioning 129

5.6.2 Join 129

5.7 Conclusions 129

6 Query Optimization Algorithms 131

6.1 Inti-oduction 131

6.2 Preliminaries 131

6.2.1 Primitive Query Operations 132

Contents

6.3 Foundation for Query Optimization 134

6.3.1 Basic Rules 135

6.3.2 Optimization of Primitive Operations 139

6.4 Query Optimization Algorithms 145

6.4.1 Operation Trees 146

6.4.2 The TRANSFORMATION Algorithm 148

6.4.3 The RESTRUCTURING Algorithm 150

6.5 Examples 152

6.5.1 Basic Queries 152

6.5.2 Homogeneous Complex Queries 155

6.5.3 Heterogeneous Complex Queries 158

6.6 Discussions 161

6.7 Conclusions 161

7 Execution Scheduling 163

7.1 Introduction 163

7.2 Skew Problem 164

7.3 Sub-Queries Execution Scheduling Strategies 165

7.3.1 Serial Execution Among Sub-Queries 167

7.3.2 Parallel Execution Among Sub-Queries 167

7.3.3 Adaptive Processor Allocation 168

7.3.4 Summary 172

7.4 Data Re-Disti:ibution 172

7.4.1 Physical Data Re-Disti-ibution 173

7.4.2 Logical Data Re-Disti-ibution 175

7.5 Discussions 179

7.6 Conclusions 180

8 Analytical Performance Evaluation 182

8.1 Introduction 182

8.2 Foundation 183

8.2.1 System Stiiicture 183

8.2.2 Cost Notations 188

8.3 Analytical Models for Parallel Processing of Inheritance Queries . 190

8.3.1 Super-Class Query Processing Costs 190

8.3.2 Sub-Class Query Processing Costs 192

8.3.3 Superclass queries vs. Subclass queries 195

Contents xi

8.3.4 General Inheritance 196

8.3.5 Summary 199

8.4 Analytical Models for Parallel Processing of Path Expression Queries 200

8.4.1 Cost Models for Inter-Object Parallelization 200

8.4.2 Cost Models for Inter-Class Parallelization 206

8.4.3 Inter-Object vs. Inter-Class Parallelization 207

8.4.4 Summary 210

8.5 Analysis of the Basic Query Optimization 211

8.5.1 Quantitative Evaluation of die INTER-OBJECT-OPTIMIZATIQN . . 2 1 1

8.5.2 Quantitative Evaluation of the INTER-CLASS-OPTIMIZATION . . 2 1 5

8.5.3 Summary 216

8.6 Analysis of the Execution Scheduling Strategies 216

8.6.1 Non-Skewed Sub-Queries 216

8.6.2 Skewed Sub-Queries 218

8.6.3 Skewed and Non-Skewed Sub-Queries 220

8.6.4 Summary 221

8.7 Discussions 221

8.8 Conclusions 222

Simulation Performance Evaluation 223

9.1 Introduction 223

9.2 Simulation Models 224

9.2.1 Default Hardware 224

9.2.2 Timing Constiiicts 225

9.2.3 Timing Equations 225

9.3 Simulation Results on Parallel Processing of Inheritance Queries . 227

9.3.1 Super-Class and Sub-Class Queries 227

9.3.2 General Inheritance Queries 230

9.4 Simulation Results on Parallelization of Path Expression Queries . 232

9.4.1 Inter-Object Parallelization 233

9.4.2 Inter-Class Parallelization 235

9.4.3 Inter-Object vs. Inter-Class Parallelization 236

9.5 Simulation Results on ParaUel Processing of CoUection Join Queries . . 240

9.5.1 Simulation Results of ParaUel R-Join Algorithms 240

9.5.2 Simulation Results of ParaUel I-Join Algorithms 242

9.5.3 Simulation Results of ParaUel S-Join Algoridims 243

9.6 SimiUation Results on Query Optimization 245

Contents xii

9.6.1 Simulation Results on INTER-OBJECT-OPTIMIZATION 245

9.6.2 Simulation Results on INTER-CLASS-OPTIMIZATION 250

9.7 SimiUation Results on Execution SchediUing and Load Balancing 252

9.7.1 Widiout Data Re-Disttibution 252

9.7.2 Witii Data Re-Distribution 257

9.8 Discussions 260

9.9 Conclusions 260

10 Experimental Performance Evaluation 261

10.1 Introduction 261

10.2 Experimental System 262

10.2.1 Platform 262

10.2.2 Algorithms Implementation 263

10.3 Performance Measiu-ements 269

10.3.1 Validating Inter-Object ParaUelization Models 269

10.3.2 Validating Inter-Class ParaUelization Models 273

10.3.3 Measuring ParaUel CoUection Join Performance 275

10.3.4 Performance Measiu'ement of Query Optimization Examples 277

10.4 Discussions 279

10.5 Conclusions 280

11 Conclusions 281

11.1 Introduction . 281

11.2 Summary of the Research ResiUts 281

11.3 Limitations 284

11.4 Future Research 285

Bibliography 287

Appendix A Sample Simulation Models 300

A.1 PipelineModel 300

A.2 FuUy Partitioned Model 303

Appendix B Sample Experimental Programs 305

B.l Inter-Object ParaUelization 305

B.2 Inter-Class ParaUelization 309

List of Figures

1.1 Scope of the Research 3

1.2 Contiributions 6

1.3 Thesis Stiiicture 8

2.1 Class and Object 12

2.2 Inheritance 13

2.3 Relationships 14

2.4 Database Schema 17

2.5 Query Schemas 18

2.6 Sample Data 27

2.7 Homogeneous Complex Queries 31

2.8 Heterogeneous Complex Queries 34

2.9 Semi-cyclic queries 36

2.10 Cyclic to Semi-cyclic 37

2.11 Acyclic Complex Query 38

3.1 ParaUel Database Architectures 44

3.2 Basic Data Partitioning 47

3.3 Inheritance Hierarchies (KimKC, 1990) 50

3.4 InheritanceHierarchy (Thakoreetal., 1994) 51

3.5 VerticalPartitioningof InheritanceHierarchy in figure 3.4 51

3.6 Tree Path Expression 53

3.7 Nested paraUelism example 53

3.8 Relational Division 59

3.9 Loop Division 60

XIII

List of Figures xiv

3.10 Reversed Loop Division 60

3.11 Intersection 61

3.12 One-way Loop Division for S-Join 61

3.13 Minus operation for a Proper-Subset S-Join 62

3.14 Conventional Join for I-Join 62

3.15 Set-valued attribute relationship 62

3.16 Relational Query Tree 64

3.17 ParaUelization Trees 65

3.18 Tree Path Expression Query 66

3.19 ParaUelizing tree path expression 67

4.1 InheritanceHierarchy 83

4.2 (a) Horizontal Division 84

(b) Inter-Object Parallelization using Horizontal Division 84

(c) Inter-Object ParaUelization Algorithm using Horizontal Division . . . 84

4.3 (a) Vertical Division 86

(b) Inter-Object Parallelization using Vertical Division 86

(c) Inter-Object ParaUelization Algorithm using Vertical Division . . . 86

4.4 (a) Linked-Vertical Division 88

(b) Inter-Object ParaUelization using Linked-Vertical Division 88

(c) Inter-Object Parallelization Algorithm using Linked-Vertical Division . 88

4.5 Class Schema and Instantiations 90

4.6 Inter-Object ParaUelization Model 90

4.7 Inter-Object ParaUelization Algorithm 91

4.8 CoUection Selection Predicate Fimctions 93

4.9 Access Plans for Inter-Class ParaUelization 95

4.10 Selection Phase (Resource Division) 95

4.11 Selection Phase (Queuing up for resources) 96

4.12 Object Copying in Query Retrieval Operations 97

4.13 Inter-Class ParaUelization Algorithm 98

4.14 Effect of the previous selection operator in filtering 102

4.15 Starting Node Selection 102

4.16 Resolving a conflict 102

5.1 Array comparison 106

5.2 Sample Data 108

5.3 Disjoint Partitioning 109

List of Figures xv

5.4 Simple RepUcation 110

5.5 Divide and Partial Broadcast Algorithm HI

5.6 Divide and Partial Broadcast Example 112

5.7 (a) 2-way Divide and Partial Broadcast (DIVIDE) 113

(b) 2-way Divide and Partial Broadcast (PARTIAL BROADCAST) . . . 1 1 4

5.8 Processor AUocation 115

5.9 Sort-Merge CoUection Join Predicate Functions 117

5.10 Sorting phase (R-Join) 119

5.11 ParaUel Sort-Merge R-Join Algoridim 119

5.12 An Example of Sort-Merge I-Join 120

5.13 Parallel Sort-Merge I-Join Algoridim 121

5.14 ParaUel Sort-Merge S-Join Algoridim 122

5.15 Multiple Hash Tables 124

5.16 Probing Functions 125

5.17 ParaUel Hash R-Join Algoridim 126

5.18 ParaUel Hash I-Join Algoridim 127

5.19 ParaUel Hash S-Join Algoridim 128

6.1 IOB->IOB transformation 140

6.2 ICL->IOB transformation 141

6.3 ICL(V)->IOB(V) transformation 142

6.4 Exj(n)->IOB ti-ansformation . 1 4 3

6.5 IOB->ICL transformation 144

6.6 EXJ^ICL transformation 145

6.7 Query Optimization Process 146

6.8 Query Graph and Operation Trees 148

6.9 Transformation Algorithm 149

6.10 Restmcturing Algorithm 151

6.11 Breaking n-ary EXJ nodes 151

6.12 ICL-Nodes Permutations 151

6.13 Eliminating Non-Restrictive lOB Nodes . . . 152

6.14 Delaying lOB-Nodes 152

6.15 IOB->IOB transformation 153

6.16 EXJ^IOB tiransformation 153

6.17 Explicit Join 154

6.18 ICL->IOB ti-ansformation 155

6.19 lOB-̂ ICL transformation 156

List of Figures xvi

6.20 IOB->ICL tiransformation 157

6.21 Cyclic Query 158

6.22 Acyclic Complex Query 159

6.23 Semi-Cyclic Query 160

7.1 Linear Speed-up vs. Skewed Performance 165

7.2 Complex Object-Oriented Query Graph and Access Plan 166

7.3 Adaptive Processor AUocation 170

7.4 Performance of Query 1 using Para/M scheduling 171

7.5 Physical Data-Re-disti-ibution Architecture 174

7.6 Data_Bank and Worker Processes for Physical Data Re-Distribution . . 1 7 5

7.7 Logical Data Re-distribution using a 5c/2fJ«/̂ r 176

7.8 Master-Slave Processes 178

7.9 The Result of the Scheduler 178

8.1 Basic System Stiiicture 183

8.2 (a) A simple master-slave architecture 187

(b) Master-Slave Architecture with 5mg/e Input-Output Buffers . . . 1 8 7

(c) Master-Slave Architecture with M«///p/^ Input-Output Buffers . . . 1 8 7

8.3 Notations for number of objects 189

8.4 Frequency (/i) vs. Ratio (y) 196

8.5 Influence of skew on maximum processor load . , , 202

8.6 Object Conflicts 204

8.7 The grov^ of conflict 205

8.8 Access Plan 217

8.9 Performance Graphs Non-Skewed Sub-Queries 218

8.10 Performance Graphs of Skewed Sub-Queries 219

8.11 Intersection of non-skewed sub-query and skewed sub-query 220

9.1 Performance of Super-Class Queries 227

9.2 Performance of Sub-Class Queries 227

9.3 Performance of Super-Class and Sub-Class Queries 228

9.4 Performance Summary based on the Frequencies 229

9.5 Performance Comparison between Horizontal and Linked-Vertical . . . 230

9.6 Performance of Super-Class Queries Multiple Sub-Classes 231

9.7 Performance of Sub-Class Queries Multiple Inheritance 231

9.8 Performance Comparison between the three inheritance divisions 232

List of Figures xvii

9.9 Performance of Inter-Object ParaUelization 233

9.10 Processing costs for the root class and the associated class 234

9.11 Performance of Inter-Object ParaUelization in the presence of skew 234

9.12 Performance of Inter-Class ParaUelization 235

9.13 Performance of Inter-Class ParaUelization of a variety of query types . 236

9.14 Case 1: Inter-Object vs. Inter-Class 237

9.15 Case 2: Inter-Object vs. Inter-Class 238

9.16 Case 3: Inter-Object vs. Inter-Class 239

9.17 Performance of ParaUel R-Join Algoritiims 240

9.18 Performance of ParaUel I-Join Algorithms 242

9.19 Performance of ParaUel S-Join Algorithms 244

9.20 Performance of IOB->IOB Transformation 246

9.21 Performance of ICL->IOB Transformation (Case 1) 247

9.22 Performance of ICL->IOB Transformation (Case 2) 248

9.23 Performance of EXJ-̂ IOB Transformation 249

9.24 Performance of EXJ->ICL Transformation 251

9.25 Performance of EXJ->ICL Transformation 251

9.26 Performance of Non-Skewed Sub-queries 252

9.27 Performance of Skewed Sub-queries . 2 5 3

9.28 Performance Comparison between Serial and ParaUel Execution 254

9.29 Performance of Non-Skewed and Skewed Sub-queries 255

9.30 Physical Data Re-Distribution 257

9.31 Logical Data Re-Disti-ibution . 2 5 8

9.32 Serial vs. ParaUel when data re-distribution is used 259

10.1 The Alpha System Stiiicture 263

10.2 Distiribution Table 264

10.3 (a) "one-way" Divide and Partial Broadcast 265

(b) "two-way" Divide and Partial Broadcast 265

10.4 (a) Decision Table for class A 266

(b) Decision Table for class B 266

10.5 Disjoint distribution for hash join 267

10.6 Sample data for two-level merging 267

10.7 Cube array 268

10.8 Performance Measurement of ParaUel R-Join 275

10.9 Performance Measurement of ParaUel I-Join 276

10.10 Performance Measurement of ParaUel S-Join 276

List of Figures xviii

10.11 Performance Measurement of Basic Queries 277

10.12 Performance Measurement of Homogeneous Complex Queries . 278

10.13 Performance Measurement of Heterogeneous Complex Queries 279

List of Tables

2.1 CoUection Selection Predicates 22

2.2 CoUection Join Predicates 25

7.1 Data Parameters 171

8.1 Basic cost notations 188

9.1 Default hardware parameters 224

10.1 Comparative Performance for Inheritance Super-Class Queries 270

10.2 Comparative Performance for Inheritance Sub-Class Queries 271

10.3 Comparative Performance for Path Expression Queries 272

10.3 Comparative Performance for Inter-Class ParaUelization 274

XIX

Chapter 1

Introduction

1.1 Objective

The expressiveness of object-oriented data modeUing has been one of the stirengths of Object-

Oriented Database (OODB), which also gives rise to highly complex data stmctures and

access patterns, with a consequent adverse impact on database performance (Carey and

DeWitt, 1996; Hurson and Pakzad, 1993). Moreover, as databas^jizes grow to terabyte

magnitude, there is a critical need to jivestigate methods for paraUel execution of object-

oriented database queries (S dinger, 1993; Valduriez, 1993).

ParaUelism can be beneficial in the ̂ qntext of query optimization and execution for

^^ious reasons, such as to increase system throughput, and to decrease response time

(DeWitt and Gray, 1992; Ozkarahan, 1986). The system throughput may be increased by

applying inter-query paraUelizatipn,^hereas query response time may improve by intra-query

paraUelization focusing at inter-operation and intra-operation paraUelization^ Iiî this thesis,

we focus on intra-query paraUelization^ ParaUelism aUows a query to be split into sub-

queries. Each of these sub-queries is adlocated a number of processors on which to operate.

Furthermore, multiple sub-queries may be processed simultaneously.

JTiejiain objective of this research is to investigate how performance improvement

of OODB query processing can be achieved through processor paraUelism. This research wiU

integrate paraUelism techniques in the optimization and execution stages of a query.

Ch. 1. Introduction page 2

Apart from the performance benefits of paraUelism, the research is also motivated by

the foUowing three facts. The first fact is that objects are conceptuaUy concurrent (Booch,

1994). An object has its ovm thread of control. It can execute in paraUel with other objects.

This ability reveals potential applications of objects and object-orientation in paraUel

processing.

The second fact is that paraUel machines have become increasingly popular (Almasi

and Gotdieb, 1994; Milne, 1996). High performance paraUel machines are no longer a

monopoly of supercomputers. ParaUel architectures now cover a broad range of architectures,

i.e., from fast Local Area Networks connecting paraUel servers and workstations (eg., quad-

processor Pentiums, Sun workstations, DEC Alpha servers), to massively paraUel processing

systems MPP (eg., CM5). The integration of this technology with database systems has been

explored over the last few years. However, most works mainly deal with relational databases.

Far less attention has been given to paraUelism in OODB, partiy because most OODB

designers have devoted their effort to modeUing and developing sophisticated applications

rather than devising new techniques for optimizing object-oriented queries.

The last fact is that conventional optimization techniques were not designed to cope

with heterogeneous stmctures, and in particular they are not suitable for handling complex

objects (Cluet and Delobel, 1992; Graefe and Maier, 1988). Besides, the connecting of

processors in a high speed network does not automatically offer linear speed up^ and linear

scale-up'^ which are the two main goals of paraUelism (DeWitt and Gray, 1993). There is no

doubt that optimization plays an unportant role, without which the performance of paraUel

database systems wUl not yield very significant improvement.

1.2 Scope of Research

A query in a database system is convenientiy expressed in a non-procedural language, eg.,

SQL, where the user does not specify the precise algoritlun on how to retrieve the

TnforiiiatiDnrfJUl'MlyTIiel^quirements of the desired information. Therefore, it is possible to

have many different access paths in executing a query. Optimization technique becomes

significant as it formulates and chooses the most efficient way to deliver the query results to

the user.

' Linear speed-up refers to perfonnance improvement growing linearly with additional resources and is an
indicator to show the efficiency of data processing on multiprocessors.

^ Linear scale-up refers to maintaining the same level of performance when both resources and tasks are added
to the system. This is more typical in transaction processing systems.

Ch. 1. Introduction page 3

Query optimization in database systems is a classical problem, and has been

recognized as one of the most difficult problems to solve (Jarke and Koch, 1984), since it has

proven to be NP-complete; that is there is no polynomial time.algoridim to solve the problem.

and therefore, more realistic ap£roachss,__siich._as-JieuiistiCj_cost-ba

optimization, must be employed. The inain task of query optimization is to find the most

efficient access so that the query response time can be reduced.

A query, before it is executed, is usuaUy scanned and parsed into some internal

representation (Selinger et aJ., 1979). A typical form used is some kind of query tree or query

~decompositionrThis1tnfeiMlTepFesentation is then transformed into an optimized query tree.

The rules which transform the initial tree to the final tree must preserve the equivalence. This

JjnaLguery tree is sometimes known as a query access plan, which wiU be executed to obtain

the query result. Figure 1.1 shows the steps of query processing and optimization. It also

defines the scope of this research.

Query

V '
Scanning and

Parsing

Internal form
of query

Nk
Optimizing
the query

Execution plan

Nl/
Executing
the query

Result

, _ - ^ - _ _
I Parallel Query l * Access Plan Formulation
V Optimization ' * Scheduling Execution

. _ _ ^ _ _
I Parallel Query 1 * Parallelization Models
^ Execution ' * Parallel Algorithms

<-

Notes:

7 Conventional optimization
\ Scope of the research

Figure 1.1. Scope of the Research

Ch. 1. Introduction page 4

^^The le tasks of paraUel que^ optimization can be highlighted into two majqr_areas^

namely Parallel Query Optimization and Parallel Query Execution. ParaUel query

optimization^ includes access_plan formulation, and executioii^sdheduling. Access plan

formulation is to develop the best sequential query access plan, whereas execution scheduling

is to incorporate paraUelism scheduling in the query access plans. Since query access plan

formulation is influenced by the avaUabUity of paraUelization models and paraUel algorithms,

these two issues are discussed first in this thesis. ParaUelization models and paraUel

algorithms contain the basic form of paraUelism for basic query operations. Complex queries

are normaUy decomposed into multiple basic operations, and for each basic operation an

appropriate paraUelism algorithm is appUed. Execution scheduling deals with managing

execution plans among these paraUelizable basic operations.

• Parallel Query Execution

Parallelization Models

yy^ ParaUelization models for basic selection queries are first identified. In object-

oriented databases, selection operators may appear in any classes in a relationship

hierarchy. The complexity of parallelization of these queries depends on the types of the

relationship involved. The simplest kind is where the selection operators are on single

classes. A more complex model includes paraUelization of selection operations along

inheritance and aggregation relationships. In the case where a number of different

paraUelization models are avaUable to a basic query operation, a comparative analysis is

given. The result of this analysis is then used as a guideline by die query optimizer in

choosing an appropriate paraUelization model for a particular operation at the

optimization stage.

Parallel Algorithms x

ParaUelization for more complex query operations, particularly join operation, is

identified. Join operation in OODB is far more complex than Uiat in relational databases,

since in OODB an attribute may be of a coUection type. ParaUel algorithms for coUection

join queries are designed and evaluated. Although the basic elements of paraUel relational

join algorithms, such as partitioning and local join, can be used, paraUelization of

coUection join requires more sophisticated partitioning and local joining strategies, due to

the non-atomic join attributes.

Ch. L Introduction page 5

• Parallel Query Optimization

Access Plan Formulation y

Transformation procedures, which transform initial queries into more efficient query

access plans, are formulated. Transformation procedures for object-oriented queries, to

some extent, differ from those of relational queries, because the primitive query

operations in object-oriented query processing which include different types of path

traversals, as weU as join, are much richer than those in relational queries, which merely

concentrate on joins. Identifying optimization procedure for these primitive operations is

an important part of the optimization of more complex and general queries.

Execution Scheduling

Scheduling strategies for an execution of the query access plan need to be

determined. Since load balancing and skew problem are part of paraUel query processing,

the effect of skewness on execution scheduling wiU be examined. It is weU recognized

that performance improvement can be gained through skew handling and resolution, but

more importantiy, the impact of load balancing on execution scheduling wiU be studied.

Due to many different varieties of paraUel architectures, in this thesis we focus on

databases stored in main-memory. The reasons are three-fold. First, object-oriented query

processing normaUy requires substantial pointer navigations which can be done efficientiy

when all objects present in the main memory. As a consequence of this, no particular indexing

method is considered since pointer navigations can be just done efficientiy. Second, as the

main objective of this thesis is to investigate processor parallelism, performance analysis can

be done more accurately by excluding the VO factor. Third, the size of main memory in

paraUel systems has now reached a capacity where it is realistic to put multi-gigabyte

databases entirely in main memory.

1.3 Contributions
The specific contributions of this thesis are Usted below, and the relationships between the

contributions and the research scope are shown in Figure 1.2.

• Query Taxonomy /

New query types, such as inheritance queries, coUection join queries, semi-cyclic

queries, are identified. These queries, in addition to the weU-known path expression

queries, expand considerably the complexity of query optimization requirements.

Predicate on coUection types for path expression and join queries are also studied.

Ch. 1. Introduction page

Query Taxonomy

ParaUelization
Models

Inheritance
Structuies

> - -<
ParaUel CoUection
Join Algorithms

A. ParaUel Query Execution

Optimization
Algorithms

>- -<
Execution
Scheduling

B. Parallel Query Optimization

Figure 1.2. Contributions

Parallelization Models /

Two paraUelization models: inter-object and intra-object paraUelization, are

introduced. These two paraUelization models, especiaUy in path expression queries,

complement each other and offer a useful combination for high performance paraUel

query processing.

Inheritance Structures^

A linked-vertical division for inheritance stinicture is proposed. This inheritance

structure balances the two traditional inheritance structures: namely, horizontal and

vertical divisions. Although the performance of the proposed structure is not always

superior, it tends to outperform the others in most cases.

Parallel Collection Join Algorithms /

ParaUel algorithms for coUection join queries are developed. Due to the nature of

coUections which may be overlapped, for some coUection join queries, it is not possible to

produce disjoint partitions. A divide and partial broadcast method is presented. The join

algorithms also accommodate the sort-merge and hash operations in the algorithms.

Ch. 1. Introduction page 7

• Query Optimization Algorithms /

Query optimization algorithms, which transform initial query graphs into operation

trees, are established. A graphical notation for query access plans, caUed Operation

Trees, is introduced. These operation trees are slighfly different from conventional query

trees, as operation trees accommodate different types of primitive paraUel object-oriented

query operations including inter-object and inter-class paraUelization, as weU as paraUel

join operation. Optimization of these basic operations, by means of converting primitive

operations from one form to anodier for more efficient execution, is also formulated.

• Execution Scheduling

Two execution scheduling sti-ategies for operation trees, namely serial and parallel

scheduling, are formulated. An adaptive processor allocation algorithm based on these

two execution scheduling strategies is developed. A thorough analysis is undertaken to

demonstrate the superiority of the simple serial scheduling, provided that the load

imbalance problem in each operation is carefuUy handled.

1.4 Thesis Organization

The thesis is organized into 11 chapters. The inter-relationships between the chapters are

depicted in Figure 1.3.

Chapter 2 describes a taxonomy for object-oriented queries. The major aim of the

classification is to define a framework for query optimization. By the end of the chapter, it

wiU highlight the query types to be dealt with in query optimization.

Chapter 3 discusses existing work on paraUel query processing and optimization. It

particularly concentrates on how queries defined in the previous chapter may be processed

and optimized using weU-known methods. The aim of this chapter is to outiine the

achievements of the conventional methods in paraUel query processing and optimization, and

more importantiy to highlight the problems which remain outstanding.

The main body of this thesis, which addresses the problems pointed out in chapter 3,

is divided into three parts: (/) parallelization models and algorithms, (ii) access plans, and

(///) performance evaluation. The first part is discussed in chapters 4 and 5. The second part

is presented in chapters 6 and 7. And the final part is analyzed in three chapters (chapters 8-

10).

Ch. I. Introduction page 8

Ch.2
Object-Oriented Queries:

A Frameworic

[Parallelization Models
1̂ and Algorithms I Access Plans]

N '

Ch.4
Parallelization Models
for Selection Queries

L

Ch.5
Parallel Algorithms
for CoUecticxi Join
Queries

Ch.6

Access Plans
Formulation

Ch.7

Execution
Scheduling

Performance Evaluation
r

Ch.8
Analytical
Performance Evaluation

^

Ch.9

Simulation
Performance Evaluation

Ch. 10

Experimental
Performance Evaluation

Ch. 11
Conclusions and
Future Research

Figure 1.3. Thesis Structure

Chapter 4 introduces paraUelization models, particularly inter-object and inter-class

paraUelization, for selection queries covering single-class queries, inheritance queries, and

path expression queries. Since the performance of paraUel inheritance query processing is

very much influenced by the data structure to represent inheritance, this chapter also focuses

on inheritance data structures for efficient paraUel inheritance query processing. This chapter

also performs a comparative analysis between the two paraUelization models for path

expression queries. The results are used as a basis for query decomposition.

Chapter 5 presents paraUel query algorithms especiaUy designed for coUection join

queries. Depending on the partitioning strategy, these join algorithms can be divided into

disjoint-based and non-disjoint-based paraUel algorithms. The latter exploits a divide and

partial broadcast technique to create non-disjoint partitions. The join methods considered

include sort-merge and hash.

Chapter 6 demonstrates query decomposition procedures based on heuristic rules.

The procedure can be summarized into transforming initial query represented in query graph

Ch. 1. Introduction page 9

into operation trees. These operation trees show the relationship and the order of each

operation, in which the operations are executed in paraUel.

Chapter 7 examines two execution scheduling strategies to be appUed to operation

tirees, namely serial and paraUel scheduling. Data disti-ibution to deal witii load imbalance

problem is also investigated.

Chapter 8 gives a quantitative analysis for the Uieoretical discussion on

paraUelization models, algorithms, and query optimization. The aims of diis chapter are to

describe the behaviour of each proposed model by means of cost equations, and to perform

quantitative analysis between different models.

Chapter 9 gives a validation of the quantitative analysis dirough simulation.

Comparative and sensitivity analyses produced by simulation are also given.

Chapter 10 provides a validation of die quantitative analysis and the simulation

model through the performance measurement of an experimental system. The experimental

performance evaluation differ from the simulation performance evaluation in the

implementation platform. The experimental performance evaluation is done by implementing

the proposed models on a real paraUel machine, whereas the simulation performance

evaluation is implemented in a simulation program in which the values of several systems

parameters are varied for sensitivity analysis. Varying systems parameters in the real machine

is more difficult, due to the characteristics of the system structure. However, a further

experimental model is valuable in demonstrating the reliabUity of the simulation model and

the quantitative model.

Chapter 11 gives a summary of the results achieved and an insight into future work.

Chapter 2

Object-Oriented Queries:
A Framework for Query Optimization

2.1 Introduction
This chapter presents a taxonomy for Object-Oriented Queries (OOQ). A comprehensive

study of object-oriented queries gives not only an understanding of the full capabilities of

object query language, but also a direction for query processmg and optimization. The main

aim of query classification is to define a framework for query optimization. It wUl be used

to define the types of queries to be optimized.

y-This chapter is organized as follows. Section 2.2 describes the object model which

is used as a reference data model for object-oriented queries. Section 2.3 presents basic

query types which become the basis for more general and complex queries. Section 2.4

describes complex query types. Section 2.5 gives an uisight into and explanation of a query

optimization framework. Fmally, section 2.6 gives the conclusions and sums up the

contributions.

Ch.2. Object-Oriented Queries page 11

2.2 The Reference Object Model

The object model adopted by most Object-Oriented Database (OODB) systems include

class and object, inheritance, and complex object (CatteU, 1994; Kim, 1990, Bertino and

Martino, 1993).

2.2.1 Classes and Objects

A class defines a set of possible objects (Coad and Yourdon, 1991; Meyer, 1988). Objects

of the same class have common operations as well as uniform behaviour. A class has two

aspects:

• type: attributes and applicable methods, and
^ • container of objects of same type.

It is important to distinguish between classes and objects. A class is a description of

a set of objects, whUst objects are instances of a class.

An object is a data abstraction defmed by (Coad and Yourdon, 1991; Meyer, 1988):

• a unique identifier (Object Identity OID),
• valued attributes (mstance variables) which give a state to the object,

^ and

• methods (operations) which access the state of the object.

An OID is an mvariant property of an object which distinguishes it logically and

physically from all other objects. An OID is therefore unique. Two objects can be equal

without being identical (Masunaga, 1990). The state of an object is actually a set of values

of its attributes. Methods are specified as operations which are defined in the class that

describe the object. The specified methods are the only operations that can be carried out on

the attributes in the object. The client of the object cannot change the state (attributes)

except by method invocation. Thus, an object encapsulates both state and operations. For

example, Proceedings is a class name, and it consists of a list of attiributes, such as title,

venue, dates, etc; and a list of methods, such as acceptance_rate, etc. Proceedings objects

include VLDB97, ICDE97, OOPSLA97, etc (assume that diese are OIDs that uniquely

identify each object).

It is convenient to use a graphical notation to represent an object model. A class is

often drawn as a rectangle having a class name and its properties (attributes and methods).

With fewer detaUs, a class is often shown as a node with the class name and possibly a few

important attributes. To differentiate an object from a class, quadrants are used to represent

objects. The ODD is also included in the notation in order to distinguish one object from

another. Figure 2.1 gives an illustration of a graphical notation for classes and objects.

Ch. 2. Object-Oriented Queries page 12

Class:

Object:

(^ "^
Proceedings"

title
venue * - -
dates

acceptance_rate <
V J

class name

or

~ ~ - attributes

^

^
^^^roceedings"^

some attributes
(optional)

OID or something that can be used
to identify the object.

VLDB'9'

Figure 2.1. Class and Object

2.2.2 Inheritance y

/inheritance is one of the most important concepts in object-oriented technology, as it

provides a mechanism for reusing some parts of an existing system (Meyer, 1988).

Inheritance is a relation between classes that allows for the definition and implementation

of one class to be based on other existing classes. Inheritance can be of type extension or

restriction^ (Meyer, 1988). An extension inheritance is where a sub-class has all properties

(i.e., attributes and methods) of the super-class and may have additional properties as well.

In other words, a sub-class is more specialized than the super-class. In contrast, a restriction

inheritance is where a sub-class inherits some properties of a super-class. This can be done

by selecting the properties of the super-class to be inherited by its sub-class. In either type,

some methods of a super-class may be redefined in a sub-class to have a different

implementation. ^

If several classes have considerable commonality, it can be forced out in an

abstract class^ (Coad and Yourdon, 1991). The differences are provided in several sub­

classes of the abstract class. An abstract class provides only partial implementation of a

class, or no implementation at all. The union of instances of its sub-classes gives a total

representation of the abstract class.

A sub-class may inherit from more dian one super-class; this is known as multiple

inheritance (Meyer, 1988). Multiple inheritance sometimes causes meUiod/attribute naming

' restriction inheritance is not yet supported by ODMG (CatteU, 1994).

^ abstract class does not have any instances.

Ch. 2. Object-Oriented Queries page 13

conflicts. Method conflicts are solved by either renaming or restricting one of the

conflicted methods.

In terms of notations, an inheritance hierarchy is represented as a dotted arc from a

sub-class to its super-class. An abstract class is shown as a dotted node. Figure 2.2 shows

some examples of inheritance hierarchies.

a) Single Inheritance:

Research
Paper Conf^nce"" ' Cont^ni

"• ^ Article

CJournal ^
_ P a p e r ^ ^

b) Multiple Inheritance:

CConference~N
^ f aper '_^

Cl^^roceedingT]]) (^Journal ~~~^

^ - /
N •

Figure 2.2. Inheritance

Inheritance raises the issue of polymorphism (Meyer, 1988). In general,

polymorphism refers to the ability of an object to take more than one form. This means that

an object declared to be of a class is able to become attached to an object of any descendant

class. This kind of object is said to be polymorphic. For example, suppose class

ResearchPaper inherits to class Journal_Paper. Objects of class Research_Paper are also

objects of class Journal_Paper.

2.2.3 Complex Objects

Ĉ ^Objects are said to be complex objects when they are built from complex data structures.

The domain of an attribute/method can be of simple or complex data types. Simple data

types are atomic types which include integer, real, string, etc; whereas, complex data types

may include structures, objects, and collections. These complex data types give an object

an abUity to include other objects to form a complex object.

(Some structure types are buUt into the system, eg, Date{dd,mm,yy), Money{%,

cents), etc. The abUity to construct new structures manifests the concept of encapsulation in

an object-oriented paradigm. A notation for structure states the structure name and the

fields within a bracket, e.g., Page{starting_page, ending_page).^

Ch. 2. Object-Oriented Queries page 14

A relationship between two classes Ci and Ci is established if one of the attributes

of C\ has Ci as its domain. If the reverse is applied, the association is called an inverse

relation (CatteU, 1994). For example, an association between class Book and class

Publisher occurs when attribute publisher of class Book has class Publisher as die domain.

An inverse relationship occurs when an attribute book of class Publisher has a domain of a

setof5oo^as well.

A relationship is denoted as a duected arc from a node to another node. Should an

inverse relationship exists, die arc becomes a bi-directional arc. The attribute name which

holds the relationship may be displayed as a label of the arc. Figure 2.3 shows an example

of a Book-Publisher relationship.

Relationship:

publisher
blisher

Note: the relationship is denoted by attribute publisher of class Book
having class Publisher as a domain.

Figure 2.3. Relationship

a. Collection Types

The main characteristic of a collection type is that an attribute value contains a collection of

objects that may be structured, such as a list or an array, or unstructured, such as a set or a

bag (Rahayu et al., 1995). The proposed object database standard, ODMG, also includes the

definitions as well as the operations to manipulate these collection types in an OODB

environment (CatteU, 1994). The collection types considered here are: sets, lists, arrays, and

bags.

Sets are basically unordered collections that do not allow duplicates. Each object

that belongs to a set is unique. Lists are ordered collections that aUow duplicates. The order

of the elements in a list is based on the insertion order or the semantic of the elements.

Arrays are one-dimensional arrays with variable length, and allow duplicates. The main

difference between a list and an array is in the method used to store the pointers that assign

the next element in the list/array. Because this difference is mainly from the implementation

point of view, lists and arrays wUl have the same treatment in this thesis. A bag is similar to

a set except for allowing duplicate values to exist. Thus, it is an unordered collection that

allows duplicates. For example, an attribute author of class Book has a collection of Person

as its domain. Because the order of persons in the attribute author is significant, the

Ch. 2. Object-Oriented Queries page 15

collection must be of type list. In other words, the type of the attribute author is list of

Person. This example shows that the domain can be a collection, not only a smgle value or

a single object.

b. Collection Operations

Collections can be constructed by calling a constructor of each collection type accompanied

by the elements of the collection. If the collection is a list or an array, the order of the

elements in the construction determines the actual order of the elements in the collection. It

is also allowed to create an empty collection by inserting a nil value as its only element.

The following are some examples of collection constructions.

s e t (1 , 2, 3)
// creates a set of three elements: 1, 2, and 3.

s e t (n i l)
// creates an empty set.

l i s t (1 , 2, 2, 3)
// creates a list of four elements.

a r r a y (3 , 4/ 2, 1, 1)
// creates an array of five elements.

bag (1 , 1, 2 , 3 , 3)
// creates a bag of five elements.

Collection types also provide a mechanism for conversion. Basically, there are

three forms of conversion: converting from one form of collection to another, extracting an

element of a collection, and flattening nested collections into one-level collections. The

type conversion hierarchy is List, Bag, then Set. Conversion from a list to a bag is to loosen

up the semantic ordering, whereas further conversion from a bag to a set is to remove

duplicates. In other words, the conversion hierarchy represents the strictness level of

collection types. Converting a set mto a bag does not add or change any semantic. It is

sometimes conducted merely for programming convenience.

Collection extraction can be done only if the collection contains one element only,

otherwise an exception will be raised. As the elements of a collection can be those of other

collections, flattening them mto a collection is sometimes required. The following are some

examples of collection conversion operations.

l i s t _ t o _ s e t (l i s t (l , 2, 3, 2))
// converts the list into a set containing 1, 2, and 3.

element (l i s t (l))
// returns an atomic value of 1.

f l a t t e n (l i s t (s e t (1 , 2 , 3) , s e t (3 , 4 , 5 , 6))
// gives a set of 1, 2, 3, 4, 5, and 6.

Ch.2. Object-Oriented Queries page 16

Most collection operations are biruzry operations. The operations take two

collections as the operand and produce another collection as a result. Basic sets/bags

operations include union, except, and intersect. These are common collection operations

widely known in set theory (Norris, 1985), which are dien well adopted by object-

orientation. To illustrate these operations, the following examples are given.

set (4,5,3,6) union set (7,5) = set (4,5,3,6,7)

set (4,5,3,6) except set (7,5) = set (4,3,6)

set (4,5,3,6) intersect set (7,5) = set (5)

Since sets do not allow duplicate values to exist, duplicate removal is incorporated

in the union operator.

Operations on lists/arrays are usually to extract elements based on a specific index

or a range of indexes. Some examples are as follows.

l i s t (5 , 4 , 5 , 3) [1] = 4
// retrieve the second element of the list

l i s t (5 , 4 , 5 , 3) [0:2] = (5 ,4 ,5)
// retrieve a sub-collection of the list, which is ranging from the

first to the third elements

Collection expressions are to include standard boolean expressions, such as

universal quantifiers (for a l l) , existential quantifiers (ex is t s) , and memberships (in).

The results of invoking these expressions are boolean values. Therefore, these expressions

can be used as join predicates. The following shows some examples of collection

expressions.

for all X in Conference: x.AcceptanceRate < 0.5
// true if all the objects in the Conference collection have an

acceptance rate below 50%

exists X in Paper: x.Author.Country = "Australia"
// true if at least one paper is written by someone who had worked

in Australia

"PhD" in Qualification
// true if PhD is an element in the qualification collection

Ch. 2. Object-Oriented Queries page 17

2.2.4 Database and Query Schemas

(5' Database schemas are represented as a complete relationship of classes. This network of

classes shows all necessary information about classes, attributes, mediods, inheritance, and

relationships7)\s a running example, a simplified version of "Research Reference Library"

is used. Figure 2.4 shows this database schema.

"RESEARCH REFERENCES" LIBRARY
author: [Person]

book.title - renamed
COnferenCft titif! - rpnampri

author - excluded

ioumal.title - renamed
conferenre.tille-rpnamcri
ioumal.paper - excluded

Figure 2.4. Database Schema

Queries are normally expressed in a non-procedural language, e.g., SQL. An object-

oriented version of SQL, i.e., OQL (Alashqur et al., 1989; CatteU, 1994), is becoming a

standard query language for object-oriented queries. A first step of query optimization is

parsing and transforming queries written in a query language into its internal representation.")

A graphical notation is convenientiy used. A query schema can be viewed as a sub-graph of

a database schema. Additionally, a query schema contains some other information, such as

o(selection), ^(projection), 3(existential quantifier), V(universal quantifier), etc.

Furthermore, for join query on a simple attribute, a filled node is used to represent the join

domain. Figure 2.5 gives an example of a query schema.

Ch. 2. Object-Oriented Queries page 18

Path Expression:

Join: n
(attributes)

A joins B on C

(predicates)

Figure 2.5 Query Schemas

2.3 Object-Oriented Queries :^

bject-oriented queries are queries which exploit the basic concepts of object data model

(i.e., classes, hiheritance, complex objects). Object-oriented queries can be classified into

single-class queries, inheritance queries, path expression queries, and explicit join queries.

These basic queries serve as the basic buUding block for more general and complex queries.

2.3.1 Single-Class Queries

As the name suggests, single-class queries involve single-classes only. The properties of

single-class queries are similar to those of relational queries. They may contain selection,

projection, and aggregation operations on single-classes. The only difference is that in

OOQ, methods may be included. Metiiods returning a value is said to be materialized, and

hence acts lUce attributes. The only difference is tiiat metiiods are capable of taking some

input parameters (e.g., scalar, object) (Bertino et al., 1992). From a query point of view,

however, methods are die same as attributes, since query predicates only concentrate on a

comparison between the value of an attribute or the return value of a method and, possibly,

a constant. LUce attiributes, methods may also appear in the projection.

QUERY. Retrieve the title of proceedings of 1996 conference held in

Melbourne or Sydney. Display the acceptance rate if known.

Ch.2. Object-Oriented Queries page 19

OQL. Select X.title, x.acceptance_rate
From X in Proceedings
Where (x.venue.city = "Melbourne" OR

X.venue.city = "Sydney") AND
x.dates.start.year = 1996

QUERY GRAPH:

^ (title, acceptance_rate)
Proceedings

° (venue.city="MeIboume" or "Sydney" AND
dates.start.year = 1996) dates.start.year = 1996)

Since a class is normally connected to other classes (especially m an inheritance

hierarchy), a single-class query usually appears m the form of an inheritance query.

2.3.2 Inheritance Queries

Inheritance queries are queries on an inheritance hierarchy. They can be categorized into

two types: super-class queries and sub-class queries. The classification is based on the

target class^. A super-class query is defined as a query evaluating super-class objects,

whereas a sub-class query is defined as a query evaluating sub-class objects. Since all sub­

class objects are also super-class objects, a super-class query must also evaluate all of its

sub-classes.

QUERY (SUPER-CLASS QUERY). Retrieve the titie of research papers (excluding any

technical reports) in the area of "Object-Oriented".

OQL. Select x.title
From X in Research_Paper
Where NOT ((Technical_Report) x) AND

"Object-Oriented" in x.keywords

QUERY GRAPH.

^(title)
^ l^sea rchPapeF^ ^ ("00 in keywords)

Joumal_PapeF^ <:;;;;Conference_Arflcle> <:;;̂ ^Technical.̂ eport̂

~ (exclude)

The target class of the above query is Research_Paper and the scope is to include

sub-classes JournalJPaper, Conference_Article, and Technical_Report. This query scope

^ a target class is a central focus of a query.

Ch. 2. Object-Oriented Queries page 20

expansion is a result of a type checking for class Technical Report. To distinguish a target

class from other classes, a target class is denoted by a bold printed node.

QUERY (SUB-CLASS QUERY). Retrieve the titie of technical reports released in

1996.

OQL. S e l e c t ((Research_Paper) x) . t i t l e
From x in Technical_Report
Where x.number Like "96%"

QUERY GRAPH.

^(title)
Research_Paper

^|Technical_Report~^
«̂ (numberLike"96%")

Technical_Report node is a target class, and the scope of the query is expanded to

super-class ResearchJPaper by projecting an attribute title declared in Research_Paper.

By usuig a type check operator, die distinction between sub-class and super-class

queries becomes blurred, because a conversion from a sub-class query to a super-class

query, and vice-versa, is possible. For example, the above sub-class query can be

transformed into a super-class query by shifting the focus on the target class. The query

graph becomes as follows.

QUERY GRAPH.

"(tide)
^^esearch_Paper"

<;;|]̂ ^^chnical_Report̂

(̂number Like "96%")

OQL. Select x. title
From X in Research_Paper
Where ((Technical_Report)x).number Like "96%"

2.3.3 Path Expression Querieŝ ^^"^

Path expression queries are queries involving multiple classes along the association and

aggregation hierarchies (Banerjee at al., 1988; Kim, 1989). This is one of tiie most common

query forms in OODB. The properties of path expression queries are similar to those of

Ch. 2. Object-Oriented Queries page 21

single-class queries, but with a broader scope; that is, to include pointer navigation from

one class to another. These queries are usually processed through path traversal.

Path expression queries normally involve selection operation along the path. Since

the domain of an attribute for the relationship can be of type collection, the selection

predicates become more complex. It is then essential to define collection selection

predicates. Classification of path expression queries is based on these collection selection

predicates.

a. Collection Selection Predicates

Collection selection predicates are boolean expressions which form selection conditions.

Collection selection predicates can be categorized into three main parts: "at least one", "for

all" and "at least some". These predicates are shown in Table 2.1. The symbols S, L and B

are set, list and bag, respectively, whilst a and b are atomic values.

1) A membership predicate is to evaluate whether an item is a member of a

collection. The item a can also be a collection. If it is the case, collection 5

must be a collection of coUections.

The existential quantifier predicate is simUar to the membership predicate.

It checks whether there is at least one member within a collection which

satisfies a certain condition specified by an atomic value. This form is also

similar to the universal quantifier, but with less restriction, as it requires only

one member of the collection to satisfy the condition.

2) Universal quantifier predicate type is a comparison between a collection and an

atomic value. This predicate is to check whether all members within one

coUection satisfy a certain condition specified by the atomic value. In the case

where the atomic value is an OID, a universal quantifier refers to all members

in a collection being identical objects.

3) It is sometimes necessary to check whether an item is duplicated or not, as

some collections permit duplicate values to exist. The duplicate checking

predicate involves two steps: mtersect the item and the collection, and count the

number of elements in the uitersection result. If it is more tiian one, the item is

duplicated in the collection. The predicate looks like tiiis: count (a t t r l

i n t e r s e c t bag (i tem)) > 1. Notice that a t t r l is of type ^ag. If it is a/i^?,

it must then be converted to a bag.

Ch. 2. Object-Oriented Queries page 22

The selection predicate may check for an item to be immediately succeeded

by another item. This predicate can be done by makmg the two items a list and

by checking whether this list is a sublist of a bigger list. The succeeded

predicate is only interested in the sublists formed by two subsequent elements.

Assume that the p a i r s expression is avaUable, in which it returns all possible

pairs of a given list. For example:

p a i r s (l i s t (l , 2, 3)) = l i s t (l i s t (l , 2) , l i s t (2 , 3))

The succeeded predicate can be constructed by employing a p a i r s

operator and an in operator. The result of the p a i r s operator is then

evaluated to determine whether it contains a list of the two subsequent items.

The join predicate may look like the following: l i s t (i t e m l , item2) in

p a i r s (a t t r l) .

1

2
3

Name'.
at least one

for all
at least some

Collection SelecHen Predicates
a in 5
exist <2 in 5 : <condition on a>

for all a in S : <condition on a>
count {B intersect bag(a)) > 1
Y\st{a,b) in pairs (L)

Deseription
Membership
Existential
quantifier
Universal quantifier
Duplicate
Succeeded

Table 2.1. Collection Selection Predicates

Based on the type of the selection predicates, path expression queries can be

categorized into: 3-PE ("at least one" path expression), V-PE ("for all" path expression),

and S-PE ("at least Some" path expression). 3-PE has been the most common forms of path

expression queries in OODB, and provides the least restriction to the selection predicates.

On the other hand, \/-PE contains the most restrictive predicates. Although, S-PE is

somewhere between the two extremes, S-PE characteristics closely resemble V-PE and

hence, in query processing, S-PE is often treated the same as V-PE'.

b . 3-PE

Existential quantifiers are to evaluate whether there is at least an object within a collection

of objects to satisfy the selection predicate (Elmasri and Navathe, 1994). Path expression

queries involving the "at least one" collection selection predicate fall into this category.

QUERY (3-PE). Retrieve Kim's list of publications.

Ch. 2. Object-Oriented Queries page 23

OQL. Select X
From X in Papers, y in x.author,
Where "Kim" in y.name

QUERY GRAPH.

[author]
C^gjg^ch.PapCT^ ^ > c : ^ Person ^ ^

<'(name="Kim")

Since most path expression queries are of type existential quantifier, the 3 sign in

the query graph is often ignored in the 3-PE queries.

c. V-FE

Universal quantifiers require all objects within the collection to satisfy the selection

predicate (Elmasri and Navathe, 1994). Path expression queries involving the "for all"

collection selection predicate fall into this category.

QUERY (V-PE). Retrieve papers written by multiple authors havmg surname "Kim".

OQL. Se l ec t x
From X in Research_Paper, y in x . au thor
Where for a l l y i n x . au tho r : y.name = "Kim"

QUERY GRAPH.

<:;;;[Sesearch_Paper^ ^ > C;^^^ Person ~~^

^ (name="Kim")

d. S-PE

Some collection types allow duplicate values to exist. Therefore, it is essential to provide

selection predicates to ascertain that some of the elements satisfy a certain condition.

In other cases, it is necessary to check whether a collection contains certain

multiple elements. If the collection is a set, this predicate is merely a conjunctive predicate,

in a form of (e lement l in c o l l e c t i o n) AND (element2 in c o l l e c t i o n) AND

(elements in c o l l e c t i o n) . However, if the collection is a list, it is sometimes

necessary to evaluate the order of the elements as well. A typical example is to check

whether one element immediately succeeded another element in a collection. Based on

these needs, an S-PE is defined. An S-PE contams an "at least some" predicate in the

selection part of the query.

QUERY (S-PE). Retrieve papers such that there is more than one author named

"Kim".

Ch. 2. Object-Oriented Queries page 24

OQL, Select x
From x in Research_Paper, y in x.author
Where count.(y.name intersect bag("Kim")) > 1

QUERY GRAPH.

[author]
<;2^s^rch_Paper^j;;j — > Q ^ Person ^~^

count(name intenect bag("Kim"))>l

2.3.4 Explicit Join Queries,

Explicit joins are basically making a connection between two or more classes that do not

have any explicit connection prior to the join (Mishra and Eich, 1992). Explicit join queries

are similar to relational join queries but with differences such as, join can be on common

objects and collections, not only on simple values. Based on the join attributes, explicit join

in OODB can be categorized into two types: simple join and collection join.

Simple join is typical in relational databases. Apart from joining based on simple

attributes, simple join can also be based on OID. If an OLD is regarded as a simple value,

simple join is totally the same as join in relational databases.

QUERY. Retrieve a list of long papers longer than books. For each selected

paper, list also aU the books which are thiimer than the paper.

OQL. Select x, y
From X in Research_Paper, y in Book
Where x.num_papers > y.num_papers

QUERY GRAPH.

C l^ i t ^ ' ^ c^^ZI^Z^

join on num_papers

Collection jom is a join based on collection attributes. Although some collection

operators are boolean expressions (i.e., f o r a l l , e x i s t , in) which may be used as join

predicates, most join predicates are in a form of (c o l l e c t i o n ope ra to r c o l l e c t i o n) ,

ui which the operator is a relational operator (ie. =, !=, >, <, >=, <=). These operators are

overloaded operators. The set/bag operand will be sorted by the operator prior to further

Ch. 2. Object-Oriented Queries page 25

processing. A problem faced by collection join queries is that basic collection operations

are binary operations, not boolean operations. Consequently, join predicates must apply

both basic binary collection operations and standard relational operators. For example, if

the join predicate is to check whether there is an overlap between editor-in-chief and

program-chair of a pair of Journal and Proceedings, the predicate may look like tiiis:

(Journal.editor-in-chief intersect Proceedings.program-chair)
!= set(r!il)

Processing this join predicate can be done by intersecting the two sets which will

produce another set, and then comparing it with an empty set. This is certainly not efficient,

as an intermediate set has to be created before the not equality comparison is performed.

Nevertheless, most collection predicates involve these two steps. Different types of join

predicates involving collection expressions and boolean operators are identified. A

classification of collection join queries will be based upon these join predicates.

a. Collection Join Predicates

Join predicates are boolean expressions which form join conditions (Mishra and Eich,

1992). In this section, join predicates involving collections are identified. Three coUection

predicate types, which combine binary collection expressions and comparison operators, are

defined. They are shown in Table 2.2. 51 and 52 are of type set, LI and L2 are of type list,

and a and b are atomic values.

Nv'~o3
1

2
3

J.^j»Sl^??"«J.. ."S'>0»\v̂

Relational

Intersection
Sub-Collection

^c^mummihmmttr^ ̂ -.̂ -V. - ̂ ̂ ::
51=52
Z-1[0:2]=L2
(51 mtersect 52) != set(nU)
L2 in sublist(Ll),
L2 m sublist(Ll) and L2 != LI
(51 intersect 52) = 51,
(51 mtersect 52) = 51 and 51 != 52

; l ^ r l l | i i 0 i i i
Set Equality'^
Partial List Equality
Overlap
SubUst
Proper Sublist
Subset
Proper Subset

Table 2.2. Collection Join Predicates

1) The simplest form of join predicate is using relational operators in a form of

(a t t r i b u t e o p e r a t o r a t t r i b u t e) . The main difference between this

predicate type and the common equi-join is that the two operands m this

predicate are collections, not simple atomic values.

• other relational operators may be used, eg. SI != S2 for non-equality

Ch. 2. Object-Oriented Queries page 26

2) An intersect join predicate is to check whether there is an overlap between two

collection attributes. The predicate is normally in the form of (a t t r l

i n t e r s e c t a t t r 2) != s e t (n i l) . The attributes a t t r l and a t t r 2 are of

collection types. This predicate intersects the two collection attributes and

checks whether or not the intersection result is empty.

3) The join predicate checks for a sublist or a proper sublist. They differ only

when both collections are identical, as the proper sublist wUl return a false. The

sublist predicate is very complex in its original form. Suppose a sublist

expression is available where it builds all possible sublists of a given list. For

example,

s u b l i s t (l i s t (l , 2, 3)) = l i s t (l i s t (l) , l i s t (2) , l i s t (3) ,

l i s t (l , 2) , l i s t (l , 3) l i s t (2 , 3) , l i s t (l , 2 , 3))

By combining an in operator with the sublist operator, a predicate to check

for a sublist can be constructed. The sublist join predicate may look like the

following: (a t t r 2 in s u b l i s t (a t t r l)) , where a t t r l and a t t r 2 are of

type list. To implement a proper sublist predicate, it must further check tiiat the

two lists are not identical.

Another join predicate is a subset predicate. The difference between the

sublist and the subset predicates, is that the subset predicate does not take the

order of the elements into account. The subset predicate can be written by

applymg an intersection between the two sets and comparing the uitersection

result with the smaller set. The join predicate may look like the following:

(a t t r l i n t e r s e c t a t t r 2) = a t t r l . Attributes a t t r l and a t t r 2 are of

type set. If one or both of them are of type bag, they must be converted to sets.

The proper subset is similar to the proper sublist, where an additional non-

equality comparison between the two collections must be carried out.

The characteristics of collection join predicates, to some extent, are similar to

collection selection predicates. The relational join predicate, especially the equi-joui, is

simUar to the "for all" selection predicate. Both require all elements of both operand to be

equal. The intersection join predicate is siimlar to the "at least one" selection predicate, as

they both require only one instance of the evaluation to be true. And fmally, the sub-

collection join predicate is similar to the "at least some" selection predicate since both deal

with a collection being a sub-collection of the other.

Join predicate defines the attributes and the operations involved in join queries.

From this point of view, object-oriented join queries can be classified into three categories.

Ch. 2. Object-Oriented Queries page 27

namely: R(elatioruil)-Join, I(ntersect)-Join and S(ub-collection)-Join. These joins are

abbreviated to R-Join, I-Join and, S-Join, respectively.

b. R-Join Queries

R-Join queries contain join predicates in a form of standard comparison using relational

operators, such as =, !=, <, >, <, and >. Unlike join queries in relational databases, operands

of R-Join need not to be of simple attributes. The comparison can also be between

collections, as relational operators work with non-primitive values. This is true even in

relational databases. For example, a string which is implemented in an array of characters,

can be compared with another string. The join predicate may look something like this:

(s tuden t . Suburb < Lec tu r e r . Suburb).

A typical R-Join query is to compare two collections for an equality. Suppose the

attribute editor-in-chief of class Journal and the attribute program-chair of class

Proceedings are of type arrays of person. To retrieve conference proceedings chaired by all

editors-in-chief of a journal, the join predicate becomes (e d i t o r - i n - c h i e f =

program-chair) . Only parrs having an exact match between the join attributes will be

retrieved. A sample data shown m Figure 2.6 will be used to illustrate collection join

queries.

x=Journal p=Person y=Proceedings

xr
OO Journal

x2>

yr
Concurrency Conference

Proceedings

Parallel Journal P3
[>Mz^

x3'
^ G¥

OOP Conference
Proceedings

Network Journal

y3^

pl=Adams
p2=Richards
p3=Smith

OODB Conference
Proceedings

Figure 2.6. Sample data

QUERY. Retrieve conferences chaired by all editors-in-chief of a journal.

Retrieve the matched journal as well.

Ch. 2. Object-Oriented Queries page 28

OQL.

Select X, y
From X in Journal, y in Proceedings
Where x.editor-in-chief = y.program-chair

QUERY GRAPH.

^1^ Journal

[editor-in-chief]

jourruil.editor-in-chief=
proceedings.program-chair

SAMPLE RESTXTS.

^ 2 yi

Parallel Journal Concurrency Conference Proceedings

Relational operators are overloaded functions. This feature is not new to object-

oriented join queries, because long before OODB existed, relational operators in relational

joins have shown this capabUity. For example, it is possible to compare an mteger with a

real number. One of the operands is automatically converted to the type of the other

operand (in this case, integer to real). Castmg a collection, however, must be done explicitly

in the join predicate. Using the previous example, if editor-in-chief is a list and program-

chair is a set, the equality predicate becomes (L i s t _ t o _ S e t (e d i t o r - i n - c h i e f) =

program-chair) , where the editor-in-chief is converted from a list to a set. Comparing

two sets/bags can be done easily by sorting them prior to the actual comparison.

One characteristic of R-Join is that the join result may be determined by the first

element in the collections. For each pair of objects to compare, a negative answer is

obtained if the first elements of the collections are not matched. The opposite is not applied

as the comparison for subsequent elements is requu-ed.

R-Join queries may contain a universal quantifier as a join predicate. A universal

quantifier is used to check whether all members of a collection satisfy a certain condition.

So, a universal quantifier needs a collection and a condition for its members. The condition

is a reflection of the join predicate, in a form of (i teml opera t ion item2). The first

item is a member of a collection, whereas the second item is an item by itself. For example,

to retrieve pairs of Journal and Proceedings, such that all editor-in-chief lives in a city

where the conference is located. The query expressed in OQL is as follows.

OQL. Select x, y
From X in Journal, y in Proceedings
Where for all z in x.editor-in-chief :

z.city = y.city

Ch. 2. Object-Oriented Queries page 29

The characteristic of universal quantifier R-Join is die same as full equality R-Join.

Further comparison of elements within one collection is not necessary when a comparison

faUs. This is the primary characteristic of R-join which distmguishes it from other

collection join types.

c. I-Join Queries

I-Join queries contain intersection join predicates on collections. The join predicate checks

for an overlap between the two collections. An I-Join query from the previous example is to

check if there is at least one of the editor-in-chiefs of a journal who has become a program-

chair at conference proceedings. Six pairs of Journal-Proceedings objects are formed as a

result of the above query. They are: xi-yi, xi-y2, xi-y3, x2-yi, x2-y3, x3-yL

QUERY. Retrieve journal and proceedings, such that at least one of the

editors-in-chief of a journal has become a program-chair of the

conference.

OQL.

Select X, y
From X in Journal, y in Proceedings
Where (x.editor-in-chief intersect

y.program-chair) 1= set(nil)

QUERY GRAPH.

(^C" Journal <;^^^Proceedings~^

[editor-in-chief] [program-chair]

joumal.editor-in-chief overlap
proceedings.program-chair

SAMPLE RESULTS.

0 0 Journal

Parallel Journal

Network Journal

Concurrency Conference Proceedings

OOP Conference Proceedings

OODB Conference Proceedings

I-Join is different from R-Join because die results of I-Join cannot be determined by

the fixst elements of the collections. An uitersection between two collections is not obtained

before evaluating all elements of both collections.

Ch. 2. Object-Oriented Queries page 30

d. S-Join Queries

S-Join queries employ sub-collection operations in their predicates. An example of S-Join is

to retrieve paus of Journal and Proceedings, where the program-chairs of a conference is a

proper subset of the editors-in-chief of a journal. Using the previous sample data, there are

three pairs of objects produced by die query, namely: xi-y2, xi-ys, and x2-y3. The first pair

XI-y2 is obtained because pi of y2 is a subset of {pi, p2} of xi. The second pair xi-y3 is as a

result of p2 of y3 6 {pi, p2} of xi. And finaUy the last pair of x2-y3 is fi-om p2 of y3 e {pi,

p2}of X2.

QUERY.

OQL.

Retrieve journal and proceedings where the program-chairs of the

conference is a proper subset of the editors-in-chief of a journal.

Select X, y
From X in Journal, y in Proceedings
Where (x.editor-in-chief intersect

y.program-chair) = y.program-chair
AND X.editor-in-chief != y.program-chair

QUERY GRAPH.

^^ Journal <^^Proceedings~^

[editor-in-chief] [program-chair]

C^^^ P e r s o n " " ^

joumal.editor-in-chief proper subset
proceedings.program-chair

SAMPLE RESULTS.

0 0 Journal

Parallel Journal

OOP Conference Proceedings

OODB Conference Proceedings

In the same way as I-Jom, tiie results of S-Join cannot be determined just by

evaluating the first element m die collections, because the subset predicate cannot give a

negative answer before full merging between the two collections is completed.

Ch. 2. Object-Oriented Queries page 31

2.4 Complex Queries

Complex queries are made of the three basic components of OOQ, particularly: mheritance,

path expression, and explicit join queries. These basic query types are die basic buUding

block for more general and complex queries. Depending on how these basic components are

mixed, complex queries can be divided into homogeneous and heterogeneous complex

queries. Homogeneous complex queries are an extension of each basic query. There is no

mixture of basic components. In contrast, heterogeneous complex queries are a combination

of different basic components.

2.4.1 Homogeneous Complex Queries

Homogeneous complex queries can be classified into: complex inheritance queries, complex

path expression queries, and multiple join queries. The relationship between homogeneous

complex queries and basic queries is shown in Figure 2.7.

The relationship forms an is_a hierarchy. All features of single-class queries are

applicable to inheritance queries, path expression queries, and explicit join queries.

Furthermore, features of simple inheritance queries are also available to more complex

inheritance queries. The same concepts are applicable to the other two complex queries.

Single-Class J
IS a

Inheritance

A / \

iRllLTitailCC

Path Expression

/ 1 \

Coitt^tex Path
Expression

Explicit Join

—T-
/ 1 s

Basic Queries

Muttip]6
ExplkitJoirt

Homogeneous
Complex Queries

Figure 2.7. Homogeneous Complex Queries

a. Complex Inheritance Queries ^

UnlUce simple mheritance queries which involve only one level mheritance (i.e., super-class

- sub-class), complex inheritance queries are queries based on general inheritance

Ch. 2. Object-Oriented Queries page 32

hierarchies. This type of query is more common, as classes normally exist m a general

inheritance hierarchy involving arbitrary level of mheritance, and an arbitrary number of

sub-classes and super-classes.

QUERY.

OQL.

QUERY GRAPH.

Select die titie of "Object-Oriented" paper. If it is an industrial

paper, display the product as well.

Select X.title, x.product
From x in Research_Paper
Where "Object-Oriented" in x.keywords

title

'00" in keywords

, ' ' Conference
Article

Notice that variable x is dynamically bound to an object of class Research_Paper

and its descendant. When x is bound to an Industrial_Paper object, x.product is retrieved,

otherwise x.product is not invoked.

b. Complex Path Expression

Complex path expression queries normally involve multiple classes (more than 2 classes) in

a relationship. One of the classes is denoted as a root class.

QUERY. Retrieve object-oriented papers presented at conferences in the last

two years by someone who worked in Australia. The conference

proceedings must have been published by Springer Verlag

Publishing Company.

Ch. 2. Object-Oriented Queries page 33

OQL.

Select X
From X in Conference_Paper,

y in X.proceedings,
z in y.publisher,
a in X.authors

Where x.title Like "%Object-oriented%" AND
y.year >= 1995 AND
z.name = "Springer Verlag" AND
a.affiliation.country = "Australia"

QUERY GRAPH.

"%Object-oriented%")

'(name="Springer Verlag")

(affiliation.country=" Australia")

c. Multiple Explicit Join^

Multiple join queries are queries involving multiple join operations, such as i?y 1X1 /?2 ^ —

1X1 jR„. This is very typical in relational databases (Elmasri and Navathe, 1994). In OODB

however, there tends to be only a small number of joins (< 1), because most of mformation

can be tracked through a pointer among objects. For the sake of completeness, multiple join

is included in the classification.

QUERY.

OQL.

Retrieve combination of proceedings, books, and journals which

are published in the same year.

Select X, y, z
From X in Proceedings,

y in Book,
z in Journal

Where x.dates.start.year = y.year AND
y.year = z.year

QUERY GRAPH.

Proceedings

Ch. 2. Object-Oriented Queries page 34

Multiple join is often translated to multiple binary join. For example, Proceedmgs

and Book are jomed first, then the results are joined with Journal.

2.4.2 Heterogeneous Complex Queries

By combining each basic component of basic queries (i.e., inheritance, path expression, and

explicit join), heterogeneous complex queries can be classified into Cyclic queries, Semi-

Cyclic queries, and Acyclic queries. The relationship between these types of query is shown

in Figure 2.8.

Single-Class

Inheritance

Basic Queries

Heterogeneous
Complex Queries

Figure 2.8. Heterogeneous Complex Queries

a. Cyclic Queries,

Cyclic queries (Kim, 1989; KimKC et al., 1989) feature a complete walk property (Norris,

1985), where it is possible to traverse all nodes starting from a given node and endmg at the

same node. This feature is actually a combmation of a path expression and an explicit join.

Cyclic queries can be illustrated as joining the two ends of a patii expression. A cycle can

also be completed within a class. Some single-class cyclic is recursive, that is, the loop wUl

not stop untU certain conditions are satisfied.

QUERY. Retrieve all authors who presented papers at conferences they chaired.

OQL.
S e l e c t x
From X in Person,

y in X.program-chair,
z in y.content,
w in z.author

Where x in w

Ch. 2. Object-Oriented Queries page 35

QUERY GRAPH.

(^^[[Troceedings^"^^
{content}

[program-chair]

Research_Paper
[author] .^C^^^ Person"~~^

-> ''Conference ArticlV-

C;|[Conference_Paper

It must be noted that some cyclic graphs are not necessarily cyclic queries. This is

because the joining nodes do not represent joming operations. Since die joinmg operation is

missing from the queries, the queries are actually path expression queries. For clarification,

consider the following example.

QUERY. Retrieve authors who presented papers m the ACM SIGMOD conference

and have chaired a conference.

QUERY GRAPH.

[program -chair]

Proceedings
{content}

(tiae="ACM SIGMOD")

<;;^]^esearch_PapS^>-

-^ ''Conference_Article

Conference_PapeF^

[author] .^CCT Pe r son""^

The node Proceedings, served as a starting point for path traversal, is not

necessarily die same as die node Proceedings pointed by the node Person. Hence, the query

graph should look like this.

Ch. 2. Object-Oriented Queries page 36

QUERY GRAPH.

Research_Paper
[author] Pp.r^.J2> [P''°g'-°^-<:'^'-) ^^„^,,Hinp~

K- ——._ {content} . , = - r
Proceedings J) > f̂ Conference_ArticjE

(tiUe-"ACM SIGMOD")

OQL

<;[^nference_Paper~]];>

Select
From X

y
z

in Proceedings,
in X.content,
in y.author,

w in z.program-chair
Where x.title = "ACM SIGMOD" AND

w != set(nil)

b. Semi-Cyclic Queries

Semi-cyclic queries are similar to cyclic queries, with the exception that it will be possible

to perform a complete walk only by ignoring the direction of the path. This property is

widely known as semi-walk (Norris, 1985). There are actually two categories of semi-cyclic

queries: double join semi-cyclic and single join semi-cyclic (Figure 2.9). Since the fust type

is actually an explicit join query with 2 join predicates, only the second type is considered

as semi-cyclic queries.

Type 1: Double Join
Semi-cycUc

join node

Type 2: Single Join
Semi-cyclic

• join node

Figure 2.9. Semi-cyclic queries

QUERY. Retrieve authors who presented papers and participated in panels at

the same conferences. These persons are regarded as top persons in

the area of research.

Ch. 2. Object-Oriented Queries page 37

OQL. Select w
From X in Proceedings,

y in X.panel,
z in X.paper,
w in y.author,
V in z.author

Where (w intersect v) != set(nil)

QUERY GRAPH.

I 'Conferece_Articie ~ •

Proceedings

<;;]2^^^'^h_Paper

1, Conference.ArticTe" •>

Jt

Person

join on Person

<;|Coriference_Paper

If bi-directional paths are available, a semi-cyclic query can be transformed into a

join query with double predicates. Furthermore, a cyclic query can be transformed into a

semi-cyclic query or a join query with double predicates. The decision to make this

transformation must be made at the optimization stage. Consider the example shown in

Figure 2.10.

cyclic

transform to

join node • '

join node

*join node

Figure 2.10. Cyclic to Semi-cyclic

Ch. 2. Object-Oriented Queries page 38

c. Acyclic Queries

Acyclic queries are basically joinmg two or more disthict path expressions tiirough an

explicit join. To avoid confusion with single path expression queries which also form

acyclic graphs, acyclic queries of multiple path expressions are often called "Acyclic

Complex" queries. It becomes obvious that acyclic path expression queries have one root,

whereas acyclic complex queries have multiple roots, each root representing a patii

expression. A generic query graph for multiple roots acyclic query is presented in Figure

2.11.

QUERY.

OQL.

Figure 2.11. Acyclic Complex Query

Retrieve the titie of conference papers in the area of object-

orientation presented at high quality conferences (i.e., acceptance

rate below 50%) and written by someone who worked in a city

having hosted an Object-Oriented conference in 1996. Papers

written by 'Smith' are excluded.

Select X.title
From X in Conference_Paper,

y in X.author,
z in X.proceedings,
q in Proceedings

Where x.title = "%Object-Oriented%"
and y.name != "Smith"
and z.acceptance_rate < 0.5
and q.name = "Object-oriented conference"
and q.year = 1996
and y.affiliation.city = q.hosts.city

QUERY GRAPH.

{title-"%object-oriented%")

jam on
(affiliation.city=proceedings.hosts.dtyi

''(name-"Object-oriented conference") and
(year-1996)

(acceptance_rate < 0.5)

Ch. 2. Object-Oriented Queries page 39

2.5 Discussions

2.5.1 Summary of Query Classification ><

Object-Oriented queries are those which use an object data model as the foundation. Object

data model is made up of class/object, inheritance, and complex object (i.e., relationship). A

classification of object-oriented queries is given as foUows.

• Basic Queries:

* Single-class queries

* Inheritance queries

* Path Expression queries

* Explicit Join queries

• Homogeneous Complex Queries:

* Complex Inheritance queries

* Complex Path Expression queries

* Multiple Explicit Join queries

• Heterogeneous Complex Queries:

* Cyclic queries

* Semi-cyclic queries

* Acyclic complex queries

2.5.2 Query Optimization Framework

From a parallel processing point of view, query classification raises several important

issues.

(i) How can single-class queries be parallelized? What kind of data partitioning

sti-ategies are available? And most importantly, are diere any significant

differences between parallelization of single-class queries and parallelization of

single-table queries as m parallel relational database systems?

(ii) How can inheritance queries be parallelized? Since objects to be evaluated in an

inheritance query are of a single class at a given time, what difference is there

between paraUelization models for single-class queries and inheritance queries?

Furthermore, as an object in an inheritance hierarchy is polymorphic, how wUl

parallelization be affected?

Ch. 2. Object-Oriented Queries page 40

(Hi) How can path expression queries be parallelized? How do parallelization

techniques relate to common traversal techniques, like forward and reverse

traversals?

(iv) How can explicit join queries be parallelized? What difference is tiiere between

the parallelization of join queries m relational databases and those in OODB?

(v) Since complex queries are made up of basic queries and parallelization

models/algorithms are provided for these basic queries, how can complex queries

be decomposed into basic queries, if it is more appropriate?

(vO How can a decomposition of a complex query be executed? What kind of

execution scheduling is avaUable and which is the most appropriate execution

scheduling method? What is the impact of skewness on these schedulmg methods?

The first four issues are associated with parallelization models and parallel

algorithms for the four basic queries, especially single-class queries, inheritance queries,

path expressions queries, and explicit join queries.

The last two issues focus on translating complex queries into a more efficient

access plan by taking into account the efficiency and the avaUability of parallelization

models for basic queries; and execution scheduling of the optimal sequential access plans.

Hence, the tasks of a parallel query optimizer can be summarized as foUows.

• Discovering parallelization models and parallel algorithms for basic queries

(i.e., inheritance queries, path expression queries, and explicit jom queries).

• Formulating translation procedures of complex queries (i.e., homogeneous and

heterogeneous complex queries) into more efficient access plans, and stating

the execution scheduling plans.

2.6 Conclusions/ •

Object-oriented queries are queries exploiting object-oriented concepts, particularly

classes/objects, inheritance, and complex objects. Based on these concepts, basic object-

oriented queries can be classified into single-class queries, inheritance queries, path

expression queries, and explicit join queries. Single-class queries are queries on single-

classes, inheritance queries are queries on inheritance hierarchies, path expression queries

are queries on complex objects, and explicit join queries are queries used to connect

unrelated classes based on some common properties.

Ch. 2. Object-Oriented Queries page 41

By extending these basic query types, complex queries are developed.

Homogeneous complex queries are extensions of each basic object-oriented query, whUst

heterogeneous complex queries are a combination of the basic queries. The latter can be

classified into cyclic, semi-cyclic, and acyclic complex queries.

The major contributions of this chapter are outlined as follows.

Obiect-oriented queries are formulated and classified. A classification is

essential as it makes it possible to identify the types of queries to be optimized.

A classification consequently serves as a scope of the domain of query

optimization.

Ouery predicates based on collection types are formulated. These predicates

serve as a basis for selection predicates and collection join predicates. The

latter has been a salient feature of object-oriented query which highlights the

difference between join queries in rational databases (based on simple

attributes) and those in OODB (can be based on collections as well).

A framework for parallel query optimization is defined. Generally, a query

optimizer is to provide parallelization models and parallel algorithms for

inheritance queries, path expression queries, and explicit join queries; and to

formulate a transformation procedure as well as to defme execution scheduling

for complex queries.

7

Chapter 3

Parallel Query Processing:

Existing Work

3.1 Introduction
This chapter discusses existing work on parallelization of basic object-oriented queries

OOQ (i.e., single-class queries, inheritance queries, path expression queries, and explicit

join queries) and paraUel query optimization (i.e., access plans and execution scheduling for

complex queries). The main aims of this chapter are to show the achievements of the

existing research in parallel object-oriented query optimization and, more importantiy, to

expose the problems which remain outstanding. These problems wUl subsequently be the

central focus of this thesis.

This chapter is organized as follows. Section 3.1 gives a preliminary overview of

"parallelism in database processing which includes parallel database architectures and data

partitioning. Section 3.2 reviews existing parallelization models and algorithms for basic

object-oriented queries. Section 3.3 examines existing research on access plans formulation

and execution scheduling. Section 3.4 describes parallel query processing in commercial

paraUel database management systems and in research prototype database machines.

Section 3.5 lists the achievements of existing work and outstanding problems. Finally,

section 3.6 draws the conclusions.

Ch. 3. Parallel Query Processing: Existing Work page 43

3.2 Preliminaries

There are two key factors in parallel query evaluation: distribution and processing

strategies (DeWitt and Gray, 1992). Distribution deals with data partitioning in which

particularly causing parallelism, whereas the processing strategy chooses the most efficient

execution method that will be carried out by each processor. Since data distribution, being a

key role of parallelism, is influenced by the parallel architecture, parallel database

architectures are discussed first, then foUowed by data partitioning methods.

3.2.1 Parallel Database Architectures

There has been a number of taxonomies proposed for parallel architectures, e.g., Flynn's

taxonomy (1966), Stonebraker's taxonomy (1986), Valduriez's taxonomy (1993). Each

taxonomy views parallel architectures from a different angle. Rynn's taxonomy is based on

instruction and data streams. This is particularly useful for general parallel processing.

Stonebraker's and Valduriez's^ taxonomies are particular to parallel database processing. In

this chapter, parallel architectures for database systems are especially considered. Hence,

Valduriez's taxonomy is to be used.

Parallel database architectures can be classified into four categories: shared-

memory, shared-disk, shared-nothing, and shared-something architectures (Bergsten et al.,

1993; Valduriez, 1993). These architecmres are shown m Figure 3.1.

Shared-memory architecture is an architecture where all processors share a

common main memory and secondary memory. Processor load balancing is relatively easy

to achieve, because data is located in one place. However, this architecture suffers from

memory and bus contention, since many processors may compete for an access to the

shared data.

In a shared-disk architecture, the disks are shared by all processors, each of which

has its own local main memory. As a result, data sharing problems can be minimized, and

load balancing can largely be maintained. On die other hand, this architecmre suffers from

congestion in the interconnection network when many processors are trying to access the

disks at the same time.

1 Valduriez's taxonomy is a modified version of Stonebraker's taxonomy in which an additional parallel database
architecture, named "shared-something", is included.

Ch. 3. Parallel Query Processing: Existing Work page 44

Shared-Memory:

Proc. Proc. Proc.

I
X I

• »

Mem. Disk

Shared-Disk:

z_

Proc.

/

Mem. Proc. Mem.

1
T^

I
Disks

Proc. Mem.

I \
/

Shared-Nothing:

Proc. Mem. Disk Proc. Mem. Disk Proc. Mem. Disk

t I I

Shared-Something:

SM Node SM Node SM Node

t
I

• »

Disks

Figure 3.1. Parallel Database Architectures

Ch. 3. Parallel Query Processing: Existing Work page 45

A shared-nothing architecture, also known as a distributed memory architecture,

provides each processor with a local main memory and disks. The problem of competing for

access to the shared data will not occur in this system, but load balancing is difficult to

achieve even for simple queries, since data is placed locally in each processor, and each

processor may have unequal load. Because each processor is independent of others, it can

be easy to scale up the number of processors without adversely affecting performance.

Finally, a shared-something architecture compromises the extensibility limitation of

shared-memory and the load balancing problem of shared-nothing. There are a number of

variations to this architecture, but basically each node is a shared-memory architecture

connected to an interconnection network a la shared-nothing. Multiple disks (i.e., RAID)

can also be attached to the network (or in each shared-memory node) to increase 170

bandwidth. Obvious features of a shared-something architecture include flexibility in the

configuration (i.e., number of nodes, size of nodes) and lower network communication

traffic as the number of nodes is reduced. Intra-query parallelization can be isolated to a

single multiprocessor shared-memory node, as it is far easier to parallelize a query in a

shared-memory than in a distributed system, and moreover, the degree of parallelism on a

single shared-memory node may be sufficient for most applications. On the other hand,

inter-query parallelization is consequently achieved through parallel execution among

nodes.

3.2.2 Data Partitioning

Data partitioning is used to distribute data over a number of processors. Each processor is

then executed simultaneously with odier processors. Depending on the architecture, data

partitioning can be done physically or logically. In a shared-nothing architecture, data is

placed permanentiy over several disks, whereas in a shared-memory architecture, data is

assigned logically to each processor. Regardless of die adopted architecture, data

partitionmg plays an important role in parallel query processing since parallelism is

achieved tiirough data partitioning.

Two data partitioning models exist in parallel database systems: vertical and

horizontal data partitioning (DeWitt and Gray, 1992, Thakore and Su, 1994). Vertical

partitioning partitions die data verticaUy across all processors. Each processor has a full

number of objects of a particular class, but with partial attiibutes. As a result, when a query

that evaluates a particular attribute value is invoked, oiUy processors with that attribute wUl

participate in the process. Therefore, processors that do not have that particular attribute

become idle. This model is more common in distributed database systems, rather than in

Ch. 3. Parallel Query Processing: Existing Work page 46

parallel database systems. The rationale for using parallelization in database systems is to

divide the processing tasks to all processors, so that the query elapsed time becomes

minimum. Processor participation in the whole process is crucial. Even more important, the

degree of participation must be as even as possible.

Horizontal partitioning is a model whereby each processor holds a partial number

of complete objects of a particular class. A query tiiat evaluates a particular attribute value

will require all processors to participate. Hence, the degree of parallelization improves. This

data partitioning method has been used by most existing parallel relational database

systems. There is a number of well-known horizontal partitioning strategies, namely round-

robin, hash, and range data partitioning (DeWitt and Gray, 1992). Figure 3.2 gives an

illustration of these data partitioning methods.

The simplest technique is round-robin partitioning^, where each complex object in

turn is allocated to a processor in a clock-wise manner. Although tiie division of the root

object may be equal, objects within one partition are not grouped semantically. Moreover,

due to the fluctuation of the fan-out degree of the root class, some root objects might have a

lot associated objects, while others have only a few, resulting in a skewness^ problem

occurring.

To make a partition more meaningful (by grouping objects having the same

semantics or features), partitioning can be based on an attribute of the root class. One type

of attribute-based partitioning is hash partitioning, where a hash ftinction is applied. The

result of this hash function determines the processor where the object will be placed. As a

result, objects within one partition occupy the same hash value. This arrangement is best for

exact match retrieval based on the partitioning attribute, where the processor containing the

desired objects can be accessed directiy. The problem of hash partitioning includes

processing objects of a certain range, where hash partitioning cannot directly detect object

location. A range-based partitioning is tiien needed.

Range partitioning spreads objects based on a given range of the partitioning

attribute. Consequently, processing objects on a particular range of the partitioning attribute

can be directed to a small subset of processors containing the desired range of objects.

However, both hash and range partitioning risk root object skew^, in addition to association

^ round-robin in object-orientation is slightly different from the original round-robin used in parallel relational
systems, as the round-robin in object-orientation involves the association when partitioning the root objects.

^ skew is when the variance of data distribution is greater than the mean.

^ the skewness of the number of root objects in each partition.

Ch. 3. Parallel Query Processing: Existing Work page 47

skew as occurs in round-robin partitioning. Furthermore, retrieval processing based on a

non-partitioning attribute cannot make use of the hash/range partitioning.

Round-robin:

Processors: Proc.
1

Proc.
2

Proc.
n

Data:
n n+1 n+2 2n

Hash:

Processors: Proc.
1

Proc.
2

Proc.
n

Data:

Range:

Processors:

Data:

Proc.
1

Y
a-c

Proc.
2

\ i d-g

Proc.
n

w-z

\

Figure 3.2. Basic Data Partitioning

A variation of range partitioning, hybrid-range partitioning, has been introduced

(Ghandeharizadeh and DeWitt, 1990). This partitioning technique attempts to compromise

the features of range partitioning with hash and round-robin partitioning, resulting in all

small partitions being distributed in a round-robin fashion.

The problem of data placement based on single attribute is that when a query

mcludes any operations based on other than the partitioning attribute, the features of the

used partitioning technique will not apply, since the query must be directed to all

Ch. 3. Parallel Query Processing: Existing Work page 48

processors. To overcome this problem, a multi-attribute partitioning, named MAGIC, has

been introduced (Ghandeharizadeh and DeWitt, 1994). This technique uses a grid file

structure to store partitions, where rows and columns of tiie grid file use hash and range

partitioning techniques. This method is capable of supporting both range and exact match

retrievals.

3.3 Parallelization Models and Algorithms

This section describes existing work on paraUelization of basic queries (i.e., single-class,

inheritance, path expression, and explicit join queries). For each query type, well-known

parallelization work is explained. Some parallelization strategies are straight-forward and

directiy taken from published work. Others are deduced from related work which does not

directiy focus on a particular parallelization strategy.

3.3.1 Parallelization of Single-Class Queries

From a database point of view, a class is often viewed as an unnormalized table.

Parallelization of single-class queries is then very much similar to parallel processing of

single tables, which is rather simple. Existing work on parallelization of single-class queries

can be categorized broadly into two areas: one is node parallelism (KimKC, 1990), and the

other is parallelization based on data partitioning.

a. Node Parallelism

A node in a query graph often denotes a class. Node parallelism in a query refers to

paraUelism of a single class. According to the definition given in the paper by Kim KC

(1990), node parallelism only deals with nodes having a simple predicate. For example, a

query on class Vehicle such that only those "blue" vehicles are retrieved, parallel

processing to class Vehicle is carried out. Each processor evaluates the same predicate

(color="blue") for a different collection of vehicle objects. Since a class may have several

attributes, upon which the query can also be based, die query predicates can become

complex. It is tiien necessary to revise the definition for node parallelism to cater for

complex predicates.

Node parallelism is often related to non single-class queries. In a path expression

involving a number of classes in an aggregation hierarchy, node parallelism is applied to

each node (class) in tiie path expression query, and a further process is subsequently carried

out. It is also the same for inheritance queries involving several nodes (classes) in an

Ch. 3. Parallel Query Processing: Existing Work page 49

inheritance hierarchy. Therefore, node parallelism is often regarded as an initial parallel

processing of more complex queries.

b. Data Partitioning-based Parallelism

Most work on data partitioning has a direct or indirect impact on the parallel processing of

single-class queries. Data partitioning basically involves the dividing of data into a number

of disjoint partitions in which each partition can be processed in parallel with other

partitions. A number of data partitioning methods, often called data placement, have been

proposed (Ghandeharizadeh and DeWitt, 1990; Ghandeharizadeh and DeWitt, 1994;

Ghandeharizadeh, 1992).

When applying a data placement method to parallel database systems, two factors

must be taken into account, particularly: low and high resource intensive. These factors, in

fact, contradict each other. Low resource intensive refers to queries that will result in a very

small number of tuples, such as in the range of 0.01% - 0.3%. For example, if there are

100,000 tuples, only 10 to 300 tuples would satisfy the retrieval conditions. This kind of

query requires a data placement method which restricts processors that wUl likely satisfy

the query. Without this capability, the query would invoke many more processors many of

which do not contain any relevant tuples, resulting in resource wasting. Fiuthermore,

starting up a query in each processor wUl incur a cost. In contrast, high resource intensive

processes involve queries with relatively huge results. It is expected that the retrieval

process involves many, if not all, processors, so that the process can be divided equally

among processors. If only a small subset of processors participates in the process, the

performance will not improve and the main objective of the paraUel processing will not be

fulfiUed.

3.3.2 Parallelization of Inheritance Queries

ParaUelization of queries on inheritance hierarchies is often overlooked. This is shown by

most existing work on parallel object-oriented query processing which emphasises the

parallelization of path expressions (Jenq et al., 1990). Queries on one class are often

regarded as queries on one independent entity, although the class is connected through a

specialization/generalization hierarchy. Therefore, parallelization is considered to be a

"single node" parallelization; and furthermore this parallelization model is relatively easy to

implement in relational systems. In this section, two works on parallel object-oriented query

processing which include inheritance hierarchies are presented. Each of these works adopts

a different underlying data structure, which greatly affects parallelization.

Ch. 3. Parallel Query Processing: Existing Work page 50

a. Class-Hierarchy Parallelism

Class-Hierarchy parallelism exploits parallelism among nodes in a class hierarchy

(inheritance hierarchy) (KimKC, 1990). Processing a super-class is done in parallel witii its

sub-classes. In practice, class-hierarchy parallelism is combined with node parallelism. This

refers to parallelism within a node, which is carried out in the context of parallelism among

nodes. Figure 3.3 shows an example of class Vehicle and class Company used by KimKC

(1990).

name

Vehicle
Xompany

-omputer
Company

Figure 3.3. Inheritance Hierarchies (KimKC, 1990)

Although data organization is not mentioned, it can be deduced that a horizontal

inheritance division is applied, where each class contains its own full data. Hence,

processing "blue" vehicles can be done by evaluating class Vehicle, class Automobile, and

class Truck. Likewise, evaluation of company name "Ford" also mvolves class

VehicleCompany and class ComputerCompany. Each class is parallelized through a node

parallelism.

Queries on a sub-class (e.g., queries on class AutomobUe) are regarded as queries

on that particular class alone. It has no connection to the super-classes, because class

Automobile has its own autonomy to all AutomobUe objects. Data independence has been

one of the main incentives for this model.

It is clear that horizontal division is particularly suitable for sub-class queries, due

to its data independency. For super-class queries, however, horizontal division will involve

all sub-classes together with their unique properties which do not concern die super-class.

b. Inheritance Parallelism based on Vertical Partitioning

The model proposed by Thakore et al. (1994) adopts vertical data partitioning. This data

partitioning scheme is used to represent not only inheritance, but also aggregation. Vertical

partitioning in tiiis model refers to a separation not only between super-class and sub-class

objects, but also between attribute value data and object-relationship. In tiie storage model,

it does not distinguish tiie difference between inheritance relationships and aggregation

relationships. Each relationship is maintained by two tables: two views of the same

Ch. 3. Parallel Query Processing: Existing Work page 51

relationship. To illustrate this model, consider a partial university example used by Thakore

et al. (1994) in their paper (Figure 3.4).

C__Student
/ 1 \

is_a

^ Gradual
V. Student

^ GPA

Figure 3.4. Inheritance Hierarchy (Thakore, et al, 1994).

In the example, all students have GPA (grade point average), and the values of GPA

are stored in Student, not in Graduatestudent. Each class maintains several partitions,

centralized on its OID. Furthermore, each partition is sorted based on the OID (they may be

indexed). Sample partitions are given in Figure 3.5.

student (Partition 1): student (Partition 2):

Student OID

si

s2

s3

s5

s7

GPA

3.6

3.2

2.8

3.9

3.3

Student OID

si

s3

s5

s7

GradStudent OID

gl

g2

g3

g4

GradStudent (Partition 1): GradStudent (Partition 2):

GradStudent OID

gl

g2

g3

g4

other attribute GradStudent OID

gl

g2

g3

g4

Student OID

si

s3

s5

s7

Notes: s2 is not a graduate student,
tables are sorted based on the primary OID, and
Graduate Student has its own partitions based on its DID

Figure 3.5. Vertical Partitioning of Inheritance Hierarchy in figure 3.4.

Ch. 3. Parallel Query Processing: Existing Work page 52

Parallel execution of a super-class (e.g., class Smdent) is isolated to die concerned

table only; in this case, partition 1 of table Student. On the otiier hand, parallel execution of

a sub-class (e.g., retrieve Graduates tudent with GPA>3.0) has to perform a join (i.e.,

parallel join) between Student partition 1 and Student partition 2 on then: Smdent OID. The

join operation can be simplified by means of merging, since both Student OID fields are

already sorted. Further joining is necessary if the query requires more partitions. For

example, there is an operation to a sub-class attribute, such as, retrieve graduate student

with GPA>3.0 and specialized in Al (assumed the attribute called specialized is declared

locally in Graduates tudent). Joining the previous join results with GraduateStudent

partition 1 is necessary. Partition 1 of the GraduateStudent maintains a list of

GraduateStudent OID and the attribute specialized.

3.3.3 Parallelization of Path Expression Queries

Path expression has been one of the main strengths and subsequently a focus in object-

oriented databases. Parallelization of path expression queries exists in a number of forms.

Path parallelism was proposed by KimKC (1990) and nested parallelism was mtroduced by

Suciu (1996). A more "traditional" pointer-based join which was influenced by a relational

joui was presented by several authors, such as Lieuwen et al. (1993). Parallel Sets, ParSets,

was introduced for parallelizkig 0 0 7 path traversals (DeWitt et al., 1996).

a. Path Parallelism

Path parallelism is a situation where all different paths are processed in parallel (KimKC,

1990). The results of each path are consolidated to obtam the final query result. If the paths

are connected through an AND operator, an intersection operator needs to be applied. Path

parallelism is implemented through a node parallelism, m which each node is by itself

evaluated m parallel. Hence, path parallelism is merely concemed with parallelism between

different paths. This method particularly deals with 1-1 relationship between two nodes.

When predicate evaluation on the path is evaluated to be true, die path receives a TRUE

value. The AND operation among die paths is implemented by checking whether each path

consists of a TRUE value. Figure 3.6 gives an example of a path expression query.

The first step is tiie path parallelism. For each blue vehicle, a paraUel evaluation of

the two paths (i.e.. Company and Autobody) using node parallelism is carried out. The

second step is the ANDing operation.

Ch. 3. Parallel Query Processing: Existing Work

Vehicle ^ . / ' ^ ^ ^ AND

^ color="blue

page 53

name='Tord"

door=2

Figure 3.6. Tree Path Expression

b. Nested Parallelism

Nested parallelism is naturally associated with nested collections (Suciu, 1996). Parallelism

is achieved at two levels (possibly an arbitrary level). This parallelization model is

influenced by collection types supported by ODMG, where an attribute of a class can be of

a coUection type (i.e., set, bag, sequence (array/list)). To iUustrate nested parallelism,

consider an example in figure 3.7.

Ouerv Graph:

(name)

name=?

sales: bag of sale
(price, item)

Sale

OQL: Select f(x.name, x.sales)
From X in stores
Where p(x.name)

Figure 3.7. Nested parallelism example

Suppose class Store is associated with class Sale through an attribute sales (in class

Store) of type bag. The query is to retrieve store name and its sales such that a selection

condition on store name is satisfied.

The first level of parallelism is to evaluate the store objects in paraUel. A shared-

nothing architecture was assumed, and the data distribution was a balanced distribution. For

each selected store object, a TRUE flag is attached. Since tiie number of sales per store may

vary, the next step of processing, that is the processing of the sales objects, may be

unbalanced. For this reason tiie sales objects are re-distributed.

Ch. 3. Parallel Query Processing: Existing Work page 54

The second level of parallelism is to evaluate the sales of the selected stores m

parallel. Since the sales have been re-distributed, the load of each processor is balanced.

Because physical data movement is often done, communication cost can be expected to

increase.

Nested parallelism has a simUarity to path parallelism. Nested parallelism can be

viewed as parallelism among object paths. Since a store object has several patiis to its sales,

these object paths are evaluated in parallel. On the other hand, path parallelism views

parallelism from a class relationship point of view, not from an internal object relationship.

It is concluded that parallel processing of path expression queries using nested

parallelism is divided into stages, according to the level of the aggregation hierarchy.

Processing is done class by class.

c. Parallel Pointer-based Join

A number of parallel pointer based join algorithms (i.e., hash-loops, probe-children, hybrid

hash) have been proposed (Liuewen et al., 1993). All of them are based on hash join.

Pointer-based join algorithms were designed for an implicit join between two associated

classes in which the association relationship is represented by an attribute of the first class

having a domain of the second class. The type of the attribute is possibly a set-valued

attribute. A pomter-based join is influenced by a conventional explicit jom, and hence it is a

binary operation. Path expression queries involving multiple classes (more than 2 classes)

are decomposed into multiple binary operations and each operation is a pointer-based jom.

Generally, a pointer-based join can be categorized into two categories. Each jom

category consists of several steps. The first jom category is where objects of the second

class are scanned and hashed into a hash table. It is then followed by scanning and hashing

objects of die first class. The second category is where the hashing starts from the first

class. Each hash entry contains both an associated object identifier as well as a list of

pointers to the root object. Once the hash table is built, the hash entries are processed by

reading the corresponding associated object page into the buffer. Then each root object that

has references to the page is joined with the relevant associated objects on that page.

d. ParSets

ParSet is used to exploit parallelization of die graph traversal portion of the 0 0 7

benchmark (DeWitt et al., 1996). ParSet was originally proposed as a way of adopting the

data parallel approach to C++. Essentially, it allows a program to invoke a method on every

Ch. 3. Parallel Query Processing: Existing Work page 55

object in a set in parallel. ParSets are basically paraUel sets. A ParSet is simply a set of

objects of the same type or an appropriate sub-type. A ParSet is declustered over a number

of processors. Parallelism is achieved by processing die fragments of tiie ParSet m parallel.

Parallelization usmg parsets is basically similar to the declustering approach. ParSets,

however, are rather an implementation of C++ for data parallelism.

There are two forms of ParSets: primary and secondary. Primary ParSets are

declustered using standard declustering methods, such as hash, range, random, etc. Hence,

primary ParSets have a physical implication in tiiat primary ParSets are used for

declustering. Secondary ParSets are just logical collection of objects. They do not imply

anything about where the objects actually reside.

ParSets support five basic operations: Add, Remove, Apply, Select, and Reduce. The

Add operation adds an object to a ParSet, whilst the Remove operation removes an object

from the ParSet. The Apply operation invokes a function on every member of a ParSet. The

Selection operation collects the OIDs of all ParSet objects that satisfy a certain predicate.

The Reduce operation calculates a single value from all objects in the set. The computing of

a scalar aggregation is an example of a reduce operation.

3.3.4 Parallelization of Explicit Join Queries

Explicit join can be performed between two or more classes based on one or more common

attributes. If an object is considered as a tuple or a nested/complex tuple, explicit join based

on primitive attribute (i.e., integer, string) is the same as relational jom. Moreover, joining

based on a common object can be considered sunilar to relational join, provided that the

object identifier is represented by a simple value. Object join consequently is no different

from any other simple join.

The multiple k-way join, joining involving multiple classes (more than two classes),

is often broken into a multiple binary join. This is usuaUy done m an optimization stage.

Hence, parallelization of explicit join query only considers binary explicit join.

Join based on a relationship, often called implicit join (Kim, 1989), is differentiated

from explicit join. Implicit join is a kind of joining where a link is physicaUy established

between tiie two classes to be joined. This is acmally a path expression. Explicit join, on the

other hand, considers joining two unrelated entity based on a common property.

Smce the domain of an attribute of a class can be of collection type, as well as

simple type, explicit join in object-oriented databases can be categorized into: simple-join

(like in relational databases) and collection join. Most existing work on simple join is found

Ch. 3. Parallel Query Processing: Existing Work page 55

in the context of relational databases. This is partly because explicit simple join is more

relational than object-oriented. Nevertheless, simple jom is often needed in OODB

especially when the desired information cannot be obtained through pointer navigation.

Work on coUection join is hard to find. Classification on collection join has been

one of the contiibutions in this thesis, which was discussed in die previous chapter. Due to

the lack of a unique parallelization method especially designed for collection join,

parallelization of collection join can be solved through uidirect usage of existing operators,

such as relational division or relational intersection, which can be complicated and

inefficient.

a. Parallelization of Simple Join

Many simple join algorithms have been developed (Mishra and Eich, 1992). Most of them

concentrated on one or a combination of nested loop, sort-merge, and hash.

Nested-Loop

Nested loop join is the simplest form of join algorithm, where for each tuple of the first

table, it goes through all tuples of the second table. This is repeated for all mples of the first

table. It is called a nested-loop because it consists of two levels of loops: inner loop

(looping for the second table) and outer loop (looping for the first table).

A parallel version of the nested-loop join firstly applies a divide and broadcast

partitioning, and secondly in each processor a sequential nested-loop construct is applied

(Leung and Ghogomu, 1993). The divide and broadcast method consists of dividing one

table into multiple disjoined partitions where each partition is allocated a processor; and

broadcasting the other table to all avaUable processors. Broadcasting is actually replicating

the content of the second table to all processors. Thus, it is better if the smaller table is

broadcast and the larger one is divided.

Sort-Merge

Sort-Merge join is based on sorting and merging operations. The first step of joining is to

sort the two tables based on the joining attribute in an ascending order. And the second step

is merging the two sorted tables. If the value of the first joining attribute is smaller than the

otiier, it skips to the next value of the first joining atd:ibute. It skips to the next value of the

second joining attribute, if it is the opposite. When the two values match, the two

Ch. 3. Parallel Query Processing: Existing Work page 57

corresponding tuples are concatenated, and placed into the query result. This process

continues until one of the tables runs out of tuples.

The parallel version of sort-merge join may utilize die divide and broadcast

partitionmg technique. Since tiiis is known to be more expensive tiian disjoint partitioning

due to tiie replication cost, a disjoint partitioning method using a standard hash partitioning

is often used, instead. The first step is to create disjoint partitions for die two tables, and for

each partition created a processor is allocated. The second step is a local sorting operation

on each processor. The sortmg is performed in parallel. Finally, a local merging of each

processor is carried out.

Hash

A number of hash-based join algorithms such as hybrid-hash, Grace hash join, have been

proposed (Mishra and Eich, 1992). A hash based join is basically made up two processes:

hashing and probing. A hash table is created by hashing all tuples of the first table using a

particular hash function. Tuples from the second table are also hashed using the same hash

function and probed. If any match is found, the two tuples are concatenated and placed in

the query result.

A parallel version of hash-based join fu:stiy applies a disjoint partitioning method,

which is based on a hash partitioning method. Each processor has a partition to work with.

And secondly, each processor does the local hash join algorithm.

Since disjoint partitioning strategy based on a hash function can create skew, due to

the nature of non-uniform distribution of data m the joinmg attribute, load skew is likely to

occur. A number of skew handling algorithms have been proposed. Their aim is basically to

tune the partitions so that the load of each processor becomes equal or near equal. One of

the methods is to create more disjoint partitions than the number of processors. On

allocating these partitions, it can be managed so that each processor may receive multiple

partitions and the total load of each processor is calculated to be equal or near equal. For

example, if tiiere are 7 partitions having weights of 5, 1, 2, 5, 3, 7, and 4; and 3 processors.

In allocating these partitions, processor 1 may get partitions 1 and 7 (weight 5+4=9),

processor 2 receives partitions 2, 4 and 5 (load 1+5+3=9), and processor 3 receives

partitions 3 and 6 (load 2+7=9). In this simple example, the loads of processors are

balanced.

Ch. 3. Parallel Query Processing: Existing Work page 58

b. Parallelization of Collection Join Queries

Several issues regarding collection join queries can be discussed. Firstly, some collection

join predicates may require intermediate collection results before obtaining the predicate

boolean result. Secondly, the way relational division and intersection operators are applied

to solve collection join queries will be considered. Finally, it will be shown how some work

on the so-called collection/set-valued join, in fact addresses different issues.

As a running example, consider join queries on classes Journal and Proceedings

based on class Person. The relationship between Journal and Person is editor-in-chief

represented as a set, and the relationship between Proceedmgs and Person is program-chair

which is also a set. The three queries written in OQL are as follows.

R-JOIN OQL.

I-JOIN OQL.

S-JOIN OQL.

S e l e c t X, y
From X in Journal, y in Conference
Where x.editor-in-chief = y.program-chair

Select X, y
From X in Journal, y in Conference
Where (x.editor-in-chief intersect

y.program-chair) != set(nil)

Select X, y
From X in Journal, y in Conference
Where (x.editor-in-chief intersect

y.program-chair) = y.program-chair

Collection Join Predicate Issues

Most collection join predicates, particularly I-Join and S-Join, involve die creation of

mtermediate results tiurough an intersect operator. The result of tiie jom predicate cannot be

determined without die presence of tiie mtermediate collection result. This predicate

processing is certainly not efficient.

In an I-Join query, if a member of one collection is equal to a member from another

coUection, tiie join predicate should return a true value inunediately, witiiout the necessity

for further checking.

Like in an I-Join query, in an S-Join query, tiie origmal subset predicate has to

produce an intermediate set, before it can be compared with a smaller subset. This process

checks for the smaller set twice: one for an intersection, die otiier for an equality

comparison.

Ch. 3. Parallel Query Processing: Existing Work page 59

Relational Division

To process coUection join queries, a conventional partitioned joui algoridim (e.g., hybrid

hash join) will have each class or table normalized prior to joming. Partitioning is then

carried out based on the join attribute. For each partition, a hash joui is performed. For R-

Join and S-Join queries, this simple join metiiod will not produce correct results, unless a

division operator is applied, because the joining operation must be on collection, not on

individual elements. Therefore, collection join queries must be processed using other

relational algebra operators, particularly a division operator and an intersection operator.

A division operator in relational databases is often used to implement a universal

quantifier which is similar to checking an equality of two sets. If the furst class of die join

operand is regarded as a divisor table, and each collection of the second class is regarded as

a dividend table, the division between tiiese tables will result in pairs of objects satisfying

the join predicate. Figure 3.8 shows an example of a relational division. The divisor table is

a union of all editors-in-chief, and the dividend table is a program-chair collection of the

first proceedings object yi. The result of this division is the combination of x2 and yi.

all editors-in-chief

xl
xl
x2
x2
x3

pl
p2

p2
p3
p3

program-chairs of
a conference

dividedby
p2
p3

yi
yi

division result
giving x2 yi

Figure 3.8. Relational Division

It is clear from the example that the division operation must be repeated for each

collection of objects from the second class (it is called a loop division). The algorithm can

be written as follows.

for each collection c in objects of the second class // sub-query 1
all coUections of the first class dividedby c giving Temp
Tl = Ti + Temp

end

Figure 3.9 shows the process of the first loop division (sub-query 1). The results Ti

are x2-yi, xi-y2, xi-y3, and x2-y3.

Ch. 3. Parallel Query Processing: Existing Work page 60

all editors-in-chief
program-chairs of
each conference Tl

xl

xl
x2

x2

x3

pl
p2

p2

p3

p3

dividedby

p2

P3
yl
yl

X2 yl

giving

pl y2 xl y2

p2 y3 xl
x2

y3
y3

Figure 3.9. Loop Division

The division operator is a manifestation of a universal quantifier, which differs

from the collection equality. The universal quantifier evaluates whetiier a divisor object

contains all values of the dividend table. This requirement does not ensure that all values

within a divisor object must contain all values in the dividend table. Therefore, another loop

division must be carried out on the two classes, but with a reverse role (e.g., the division is

the second table and the dividend is each collection of the fnst table). The followmg

pseudo-code is for the second loop division operation.

for each collection c in objects of the first class // sub-query 2
all collections of the second class dividedby c giving Temp
T2 = T2 + Temp

end

Figure 3.10 shows another loop division where the divisor is now class proceedings

and the dividend is editors-in-chief collection.

all program

yl
yl
y2
y3

p2
P3

pl
P2

-chairs

dividedby

editors-in-chief of
each journal

pl
p2

xl
xl

p2

p3

x2
x2

P3 x3

giving

T2

yl x2

yl x3

Figure 3.10. Reversed Loop Division

The results from tiie first (Ti) and tiie second (T2) loop division are intersected to

get the final result.

R-Join = Tl intersect T2.

Ch. 3. Parallel Query Processing: Existing Work page 61

The intersection of Ti and T2 is given by x2-yi (Figure 3.11).

Tl T2 R-join results

x2

xl

xl
x2

yl

y2

y3

y3

intersects
x2 yl

x3 yl
givmg

x2 yl

Figure 3.11. Intersection

Similar to the R-Join, simple partitioned joins are of no used to S-Join (unless a

more sophisticated division operator is applied), because S-Join predicates check for the

relationships among individual elements within a collection (collective checking) of which

simple partitioned join are not capable. Hence, a relational division must also be used to

process the S-Join. Because the join predicate is to check whether one coUection is part of

the other collection (not necessarUy the other way around), only a one-way loop division is

necessary. Although it is simpler than the previous two-way loop division, a one-way loop

division is still expensive, because the division operator is applied repeatedly, as many

times as the number of objects of one class. Figure 3.12 iUustrates of the results of S-Join.

all editors-in-chief
program-chairs of
each conference Subset-S-Join results

xl
xl
x2
x2
x3

Pl
p2

P2

p3
P3

dividedby

p2

p3
yl
yl

x2 yl

giving

pl y2 xl y2

p2 y3 xl
x2

y3
y3

Figure 3.12. One-way Loop Division for S-join

This example actually shows die process of a subset predicate. If, instead, a proper

subset predicate is required, a further process is needed to eliminate die pair x2-yi, as they

are equal. The second loop division is needed. The final result of a proper subset S-Join is

the difference between Ti and T2.

Proper-Subset-S-Join = Ti minus T2

Figure 3.13 gives an illustration of the minus operation which is used to obtain the

final query result.

Ch. 3. Parallel Query Processing: Existing Work page 62

Tl T2 Proper subset S-join results

x2

xl

xl
x2

yl

y2

y3
y3

minus
x2 yl

x3 yl
giving

xl y2

xl
x2

y3
y3

Figure 3.13. Minus operation for a Proper-Subset S-Join

Unlike R-Join and S-Join where a division operator must be used, I-Join does not

require any complicated algorithm. A simple hash join can be applied. But firstiy, all

classes must be normalized, so that each attribute wUl have atomic values. Then, a

conventional parallel join can be used to obtain the query results. As the classes have been

normalized, it is most likely that the join results will produce duplicates, which must then

be removed. Figure 3.14 gives an Ulustration of how I-Join is processed using a

conventional join. Notice that the redundant pair x2-yi is removed.

I-Join results

xl
xl
x2
x2

x3

pl
p2
p2

p3
p3

join on p

p2
P3

pl
p2

yl
yl
y2
y3

giving

xl
xl
xl
x2

x2
x2
x3

y2

yl
y3

yl
y3

yl

yl

xl
xl
xl
x2
x2
x3

y2

yl
y3

yl
y3

yl

Figure 3.14. Conventional Join for I-Join

Other Work on Set-Valued Attributes

Most work on set-valued attributes relates to a kind of joining between a root object which

has a set-valued attribute and die object set itself (Lieuwen et al, 1993, Suciu, 1996). This

join is actually an implicit join, which forms a complex or nested object, as the link

between die root object and die associated object set is physically established through a

pointer connection. Consider the example in Figure 3.15 (taken from Lieuwen et al., 1993).

name
s^mplexPart,

set of sub

Figure 3.15. Set-valued attribute relationship

Ch. 3. Parallel Query Processing: Existing Work page 63

The schema shows a relationship between class ComplexPart with class SubPart

through a sub relationship implemented as a set-valued attribute in the class ComplexPart.

A possible query is to apply a selection operation against the relationship. The joining

between ComplexPart and SubPart is not a collection join. It is acmaUy simUar to a

PrimaryKey - ForeignKey (PK-FK) join a la relational databases or a path expression a la

OODB.

The collection join is an explicit join (which is differentiated from implicit join)

involving collection attributes. None of die existing relational join algoritiims was designed

for the collection join, since the relational concept prevents a table from including

collection (non-atomic) values. Even m nested relational where the value of an attribute can

be of non-simple type, such as sets, joining based on tiiese attributes has not been

considered, partly due to the extensiveness of selection operations in nested relations and

the simplicity of set-valued attributes. In OODB, however, set is just a kind of collection

type. The complexity of collection type results in a unique complexity of the collection join,

which requires special treatment.

3.4 Parallel Query Optimization

Parallel query optimization is often viewed as a two-phase optimization where in the furst

phase an optimal sequential access plan is formed, and in the second phase, parallelization

technique is applied to the best sequential query access plan (Hasan et al., 1996; Hong and

Stonebraker, 1991). A query access plan is often represented in some kind of query trees,

and parallelization of query access plan concerns with execution scheduling of the query

access plan. Existing work on query access plans and parallel execution scheduling are

given in the next sections.

3.4.1 Query Trees

Query access plans are often represented as trees (Elmasri and Navatiie, 1994). Query trees

are common to relational query optimization. Some extensions of query trees in object-

oriented query optimization have also been explored. Some existing work on query trees,

including relational query trees and query trees extension to object-oriented optimization is

to be described.

Ch. 3. Parallel Query Processing: Existing Work page 64

a. Relational Query Trees

A relational query tree is a tree structure that corresponds to a relational algebra expression

by representing die relations as leaf nodes of the tree and tiie relational algebra operations

as interruillnon-leaf nodes (Elmasri and Navathe, 1994). Execution of a query tree starts

from tiie bottom and finishes when the root node is executed. Figure 3.16 shows an example

of a relational query tree. The corresponding query written in SQL is as foUows.

SQL. Select ENAME
From J, G, E
Where G.ENO = E.ENO
And G.JNO = J.JNO
And ENAME != "Fred"
And J.NAME = "CS"
And (Duration = 12 or Duration = 24)

(Ename)

O

(Jno, Ename)

• (Jno) (Eno, Ename)

Q
(Jname-"CS")

o.
(D

(Duration-12or24)
6

©
(Ename!-'Tred")

©

Figure 3.16. Relational Query Tree

Optimization is achieved by applying heuristic rules to the query trees so that the

initial query trees are transformed into more optimized final query trees. The transformation

rules must preserve an equivalence between the original query tree (translated directly from

the query written in a non-procedural language such as SQL), and the final query tree.

The heuristic rules are normally in the form of algebraic optimization. The main

heuristic is to first apply operations that reduce the size of intermediate temporary tables.

This includes performing the selection operations as early as possible to reduce the number

Ch. 3. Parallel Query Processing: Existing Work page 65

of tuples for subsequent operations and performing the projection operation as early as

possible to reduce the number of attributes in intermediate temporary files.

b. Parallelization Trees

Replacing joins with pointer links, explicit join operations are tumed into path expressions.

The execution of a complex path expression query may be divided into a number of

sequential stages. Within each stage, a number of operations are executed in parallel, and

the results from one phase will be passed to the next for further processing. Depending on

how the results need to be finally presented, a consolidation operator may be required to

arrange the results in an appropriate final form. If necessary, the consolidation operator will

re-distiribute the output objects for further processing. However, the final consolidation

operation is not parallelizable so it involves bringmg parallel results for final presentation.

The task of the consolidation operator can vary from collecting the result of two

operators at a time to collecting the result of all operators at once. Thus, the degree of

parallelization can be classified into four categories; left-deep tree parallelization, right-

deep tree parallelization, bushy tree parallelization, and flat-tree parallelization (Graefe,

1993). Figure 3.17 Ulustrates these four types of trees, where a node represents a predicate

evaluation of a class. Leaf nodes are a selection predicate evaluation. The result of each

predicate is subsequentiy "joined". For example, AB indicates the result of joining process

(implicitiy or explicitly) between the first and the second predicates.

AB ^

C~E)

AB r

dZ)

ABCD

bushy-tree

ABCD f

A B C J C " ^

left-deep tree

")a3

C!^

d^)

<::>>

C3)

ABCD

C—^ < i^^
O O C£)

flat-tree

• V ABCD

/ dZ)™
Co C_̂ CZE)

right-deep tree

Figure 3.17. Parallelization Trees

The purpose of parallelization is to reduce die height of the tree. The height of a

balanced bushy-tree is equal to log2 N, where N is die number of nodes. When each

predicate evaluation is independent of the others, bushy-tree parallelization is the best.

Ch. 3. Parallel Query Processing: Existing Work page 66

since the reduction of the height of the tree is quite significant. However, in the case where

each predicate evaluation is dependent on the previous ones (e.g., in path expressions),

bushy-tree parallelization is inapplicable.

Flat-tree parallelization is a tree of height one. Here, die consolidation operator can

be very heavUy loaded, since the result of all predicate evaluations is collected at die same

time. Hence, parallelization wUl not produce much improvement. However, tiiis technique

works weU for queries with a single class and many predicates, because no join operation is

needed.

Left-deep tree and right-deep tree are simUar to sequential processing with a

reduction of one phase only. These parallelization techniques are suitable for predicate

evaluations that must follow sequential order; that is, the result of a predicate evaluation

will become an input to the next predicate evaluation. In left-deep tree parallelization,

predicate evaluation starts from the first class and then follows the link to cover the whole

path. Consequently, reading the subsequent classes will narrow to those objects that are

selected from the previous class only. This mechanism is like a pipeline-style

parallelization. Left-deep trees are not much different from right-deep trees, except for the

order of processing the predicates. When a query follows a particular direction to process

the predicates for efficiency reasons, only one of these methods can be used. In contrast,

when the query disregards the durection, the query optimizer must be able to decide which

method wUl be used that will produce a minimum cost.

Figure 3.18. Tree Path Expression Query

To parallelize a query witii tree patii expression (Figure 3.18), either level

parallelization or left-deep tree parallelization can be used. Level parallelization is in the

form of bushy-tree parallelization where each level indicates one phase. Additionally, die

consolidation operator combines the result of each branch of die tree to form the final

result. Level parallelization is based on the query tree. Each level processes pairs of

adjacent nodes. A query like in Figure 3.18 requires four phases. This is shown in Figure

3.19(a), where each node in the level-ti-ee parallelization represents a node in the tree-path

expression. Each node represents a local predicate evaluation of a particular class. At the

end of phase 1, A and B are combined, and so are A and C. Because they are independent of

each other, they can be done in parallel. Phase 2 processes AC, which is obtained from the

Ch. 3. Parallel Query Processing: Existing Work page 67

first phase, with D and E. Again, these two processes are executed in parallel. At die end of

the second phase, we get ACD and ACE. Phase 3 combines the two results from the second

phase to form ACDE. Finally, phase 4 joins task AB of phase 1 witii tiie result of phase 3,

and the final result can be presented to the user.

Phase

a. bushy-tree b. left-deep tree

Figure 3.19. Parallelizing tree path expression

Using left-deep tree parallelization, a tree path expression must be converted into a

linear path expression by using one of the avaUable traversal techniques. Using pre-order

traversal, the above query can be transformed into A-B-C-D-E. Figure 3.19(b) shows how

dree path expression can be done in left-deep tree style. It also shows that path expression

itself does not improve parallelization at all. Therefore, we must rely on intra-operation

parallelization, not inter-operation parallelization.

c. Processing Trees

An extension of query trees for object-oriented databases, caUed Processing Trees (PT),

exploits explicit join and implicit join operations (Lanzelotte et al. 1991; Lanzelotte and

Valduriez, 1991). Explicit join is relational join, whereas implicit join is a path expression.

Implicit join in PT is a binary operation in which a draversal starting node is not specified.

This has been a drawback in PT, as patii traversal, one of tiie major sd-engtiis of object-

oriented query processing, is not incorporated in die trees.

Operations on PT include PT generation and PT modification. PT generation buUds

a PT using a bottom up approach. It expands a PT node by node until the PT involves all the

classes in the connection graph. PT modification processes PT by exchanging joins and

coUapsing implicit joins.

Processing trees do not change the type of operations; diey permutate and collapse

operations only. Smce object-orientation has a wealth of operations, such as different kinds

Ch. 3. Parallel Query Processing: Existing Work page 68

of path traversals, it is possible to change an operation from one form to another. This has

not been incorporated in PT.

3.4.2 Execution Scheduling

In a query execution, scheduling is tightiy related to load balancing. Scheduling is

associated with task-ordering strategies, whereas load balancing deals widi performance

improvement stirategies for executing each task. When each task is performed efficientiy

(local efficiency), dependuig on the adopted scheduling method, it can be expected that

overall query execution will be efficient too (global efficiency).

a. Scheduling

Scheduling of parallelizable tasks is a typical parallel processing problem. For databases,

query execution scheduling can be categorized into: inter-operation and intra-operation

(Hong, 1992). Inter-operation is parallel execution among operations, whereas intra-

operation is parallel execution within an operation. Inter-operation can be achieved only if

no inter-dependency among the operations is to be performed. In a more global context,

parallel execution of multiple queries is called inter-query parallelization. In this thesis,

however, only parallelization within a single query is considered.

Smce inter-operation refers to simultaneous processing among multiple operations,

and furthermore since the resources avaUable to share by these operations are limited, it is

critical to provide a mechanism to divide the resources. Two important aspects regarding

query scheduling, particularly inter-operation versus intra-operation and parallel resource

division, are discussed.

Inter-operation vs. Intra-operation

To achieve optimal performance, inter-operation parallelization is often mixed with intra-

operation parallelization. Two factors have been considered: lO-bound and CPU-bound

(Hong, 1992). The main idea is to use inter-operation paraUelization to combine an 10-

bound task witii a CPU-bound task to increase system resource utilization. An lO-bound

task will run out of disk bandwidth before it runs out of processors. On the other hand, the

parallelization of a CPU-bound task is bounded only by the number of processors. By

matchmg up lO-bound and CPU-bound tasks with appropriate degrees of inter-operation

parallelization, both the processors and the disks wUl operate as closely to their full

potential as possible, thus minimizing the query elapsed time.

Ch. 3. Parallel Query Processing: Existing Work page 69

A scheduling algoridim based on lO-bound and CPU-bound is explained as follows.

An lO-Bound task and a CPU-bound task are paired up for inter-operation parallelization if

it is better than running them separately with intra-operation parallelization. If either 10-

bound tasks or CPU-bound tasks run out, the remaining tasks are executed with intra-

operation parallelization only.

Parallel Resource Division

The main aims of resource division are to achieve an equal finishing time of the parallel

tasks and to reduce the total execution time, which is determined by the latest finished task.

To achieve these goals, a number of approaches have been taken. The first approach is to

use an algorithm to calculate the load of each task and to do an adjustment afterwards

(Brunie et al., 1995; Wolf et al., 1995). The algorithm usually receives the load of each task

and determines the load distribution. The load distribution calculation is normally a

polynomial-time algorithm. The estimation of the load of each task is acknowledged

difficulty, and assumptions are often made to simplify the problem.

The second approach is to use a time equalization method (Leung and Ghogomu,

1993). Based on a target time taken to be efficient for a given query phase, each operation

in that phase is given a number of processors that will enable it to complete the task within

that time.

b. Load Balancing

Load balancing is often associated with join operation (Lakshmi and Yu, 1990; Wolf et al,

1993). Parallel join algoritiinis are normally composed of two stages: partitioning and local

join. Load balancing is usually carried out either between die partitioning stage and the

local join stage, or during the joining stage. The first approach is caUed a partition tuning

(Hua and Lee, 1991; Hua et al., 1995; Kitsuregawa and Ogawa, 1990), and the second

approach is called a task stealing (Lu and Tan, 1992).

Partition Tuning

There have been a number of partition tuning metiiods for load balancing. In general,

partition tuning is accomplished by producing more partitions than tfie avaUable processors.

Processor allocation is done by distributing several partitions to each processor so that the

load of each processor is equal. A number of tuning algorithms have been developed (Hua

et al., 1995; Kitsuregawa and Ogawa, 1990). The simplest tuning algorithm is one where

Ch. 3. Parallel Query Processing: Existing Work page 70

each processor sorts its local partitions and retains a number of its largest partitions. The

coordinator then receives a report from each processor regarding its load and reallocates die

excess partitions from die overioaded processors to die underioaded processors.

Partition tuning is a static load balancing, in which load balancing is achieved by

pre-estimating diat die load wUl be balanced during die jom operation.

Task Stealing

Task stealing is a dynamic load balancing (Lu and Tan, 1992), where load balancing is

achieved by tackling the skew problem when it occurs at die jommg phase. Based on the

global information, an idle processor determines die donor (the overioaded processor) and

the amount of load to be transferred. This process of stealing is repeated until some

criterion, which indicates that the minimum completion time has been achieved, is satisfied.

3.5 Parallel Query Processing in Parallel Database
Systems

A number of research prototypes and commercial products that mcorporate parallelization

in database systems have been produced (DeWitt and Gray, 1992). Most of tiiese prototypes

and products maiiUy deal with relational databases. The maturity of die relational tiieory has

motivated researchers and vendors to integrate paraUel technology with relational database

management systems. Parallel object-oriented database systems have since become a

challenge, in which parallelism is incorporated with the expressiveness of object data

modellmg to produce high performance database architectures. In die next sections, parallel

query processing in commercial parallel DBMS and research prototype database machines

is examined.

3.5.1 Commercial Parallel DBMSs

Most parallel DBMS have originated from uni-processor DBMS. Since parallel technology

is getting popular and parallel machines are becoming avaUable, many vendors have

extended their wings by implementing tiieir products on parallel machines. Because of the

nature of competition among vendors, parallel query processing and parallel query

optimization methods, which are the critical key to high performance systems, are

considered secret. Query optimization is hardly discussed openly. Through their marketing

Ch. 3. Parallel Query Processing: Existing Work page 71

literature and brochures, the parallelization methods for query processmg can be examined.

The products to be investigated include Informix, Sybase, Oracle, Tandem, and DB2.

a. Informix - Online Dynamic Server, and Online Extended Parallel Server

Informix Online Dynamic Server (Informix, 1996) is a high performance parallel database

server implemented in a shared-memory architecture. It supports parallel data query, which

includes paraUel scan, parallel join, parallel aggregation, parallel insert, and parallel index

builds. Parallel scan enables scanning of multiple disks in parallel. This is often regarded as

the core of query parallelism.

Informix - Online Extended Parallel Server (Informix, 1995) is designed for

loosely-coupled clusters and massively parallel processing architectures. It provides

different data-partitioning methods, such as round-robin, hash, range. Join operation, which

is known to be one of the most complex operations, is performed through a hash join

algorithm. Optimization is cost-based, meaning that the optimizer generates multiple query

plans, computes a cost for each plan, and chooses the lowest cost plan.

Because Informix is a relational-based DBMS, path expression queries and

collection join queries are not supported. Consequently, parallelization of these queries is

not applicable. The optimization strategy, which is for relational databases, is widely

known to be ineffective for object-oriented DBMS.

b. Sybase Navigation Server

Sybase Navigation Server (Sybase, 1995) is targeted to shared-nothmg architectures. The

perfonnance of Sybase reaches a near-perfect scalabUity (i.e., 99%) on 128 processors in

real world testing. The test involved 12 queries on a credit-card database processing. The

queries can be categorized into table scan, join, and insert and delete. Sybase is also a

relational DBMS, where typical object-oriented queries, such as patii expression queries

and collection join, are not yet supported.

c. Oracle Parallel Server

Oracle Parallel Server (Oracle, 1995) is designed to enhance die functionality of the Oracle

RDBMS witii increased performance and high avaUabUity characteristics. It runs in a

symmetric multi-processing architecture. Although there has been an attempt to mcorporate

complex objects in Oracle RDBMS, it does not yet include join queries on collections.

Ch. 3. Parallel Query Processing: Existing Work page 72

Parallelization methods used are very much based on those for parallel relational database

systems.

d. Tandem - Non Stop

Tandem's Non-Stop SQL/MP (Tandem, 1995) is a parallel relational database management

system designed for critical data warehouse and online transaction processing (OLTP)

applications. The database engine takes full advantage of the parallel, distributed

architecture of Tandem's Non-Stop servers to deliver superior performance in a data access

environment supporting from 2 up to 4,000 processors. It uses hash joins for joining tables.

Parallel scan is also supported. Object-oriented query processing is, however, not

supported, because of the nature of the domain of this produce, which is purely relational.

e. DB2 Parallel Edition

DB2 ParaUel Edition (IBM DB2, 1995) is an extension of the DB2 RDBMS. DB2 Parallel

Edition is implemented using a shared-nothing architecture. All access plans are

automatically created for parallel execution, with standard SQL and no additional

programming. Functions are performed in parallel including data scans, joins, sort, load

balancing, data load, index creation, backup and restore.

f. Summary

Most commercial paraUel DBMS are an extension of uni-processor DBMS. They are

particularly designed with a relational database model in mind. Two basic parallel

constructs, including parallel scan and parallel join, are supported, as well as other

primitive parallel operations (e.g., sort, exchange, etc). Special join queries involving

collections, path expression queries, and inheritance queries, commonly found in object-

oriented query processmg, are not supported.

3.5.2 Research Prototype Database Machines

Unlike commercial products, research prototypes contain fewer secrets. Parallel processing

methods are more explanatory. Likewise, most research prototypes are based on a relational

data model.

Ch. 3. Parallel Query Processing: Existing Work page 73

a. Bubba

The Bubba prototype (Haran et al., 1990) is implemented on a 40-node Rex/32

multicomputer, which operates on the basis of shared-nothmg architecmre. One of die

features of this highly parallel database system is that it is designed for data intensive

applications with large and frequentiy accessed data. The data, instead of being transferred

from one node to the other, is executed at the nodes which hold the data. It means proper

data placement is very crucial. Another feature is the ability to detect parallelization

automatically. The transaction programs are written in a centralized model, but the Bubba

compiler automatically decomposes the transactions into parallel programs.

There are several interesting points to note about Bubba. First, shared-nothing is a

good idea, but it seems to have some limitations, especially regarding performance. But,

because of its scalabUity feature, shared-nothing architecture seemed the only way at tiiat

time. Second, data flow seems better than remote procedure call. Dataflow reduces the

amount of data being transferred and allows more parallelism. To summarize, Bubba has

shown that a database system can take advantage of parallelism by using a shared-nothing

architecture.

b. Gamma

Gamma (DeWitt et al., 1990) is also based on a shared-nothing architecture. Gamma is

implemented on an Intel iPSC/2 hypercube with 32 processors and 32 disk drives. Gamma

employs the concept of horizontal partitioning that distributes records among multiple

memories. This approach enables large tables to be processed concurrentiy by multiple

processors. The partitioning technique is very crucial in this system, otherwise one

processor might be overloaded whUe the others are idle. Query processing in Gamma is

done by applying either selection operator, join operator, aggregate operator, or update

operator. Because the data is declustered among multiple memories, the parallel selection

operation is done simply by executing a selection operator on the set of relevant nodes. The

result of the selection operation is then joined using a parallel join algorithm which will

produce the desired result.

c. Volcano

The volcano project (Graefe et al., 1994) provides a data model-independent and

architecture-independent tool for optimized parallel query processing over large data sets

using multiple operators on data processing sets. There are 5 fundamentals embodied in the

volcano optimizer. First, query optimization and execution are based on algebraic

Ch. 3. Parallel Query Processing: Existing Work page 74

techniques. Second, it is rule based m which die data model and its properties are specified.

Third, all rules are specified as algebraic equivalence. Fourth, rules are translated into

source code. And fifth, search algoridim is based on dynamic programming, which until

now has been only for relational SPJ (select-project-join) optimization, augmented witii a

very goal-oriented control strategy.

Since object algebra is still in the process of attaining maturity, die application of

volcano in object-oriented query optimization is still immature. Without a complete and

sound object algebra, which is expected to cover path expression queries, inheritance

queries, and collection join queries, query optimization based on algebraic equivalence will

not be sufficient. Furthermore, it imposes problems of the integration of parallelism widi

algebraic techniques.

d. XPRS

XPRS (extended Postgres on Raid and Sprite) is a database machine based on a shared-

memory architecture and a disk array (Hong and Stonebraker, 1993). The query

optimization strategy adopted a two-phase optimization where in the first phase sequential

query execution plans are formulated and in the second phase parallelization is applied to

the best sequential plan chosen in the first phase. Using this approach, it reduces the plan

search space because it explores only parallel versions of the best sequential plan.

Two forms of parallelism are recognized: intra-operation parallelism and inter-

operation parallelism. Intra-operation parallelism is parallelization within one node

operation. Since XPRS is based on relational model, intra-operation is often associated with

parallel join operation. Inter-operation is a management of parallel execution among

different operations.

Parallelization of typical object-oriented queries, includmg path traversals and

collection joins, are out of scope. Subsequentiy, optimal sequential access plans

formulation has not mcorporated these operations. Optimization m XPRS, particularly a

trade-off between intra-operation and inter-operation, can be applicable to an established

object query optimization which formulates an optimal sequential access plan for object-

oriented queries.

e. Multicomputer Texas

Multicomputer Texas (Blackburn and Stanton, 1996) is an object store, rather than a

database management system. It is based on Texas object store (Singhal, 1992) in which it

Ch. 3. Parallel Query Processing: Existing Work page 75

allows persistent objects to be created and redieved by C-H- programs. Multicomputer

Texas is implemented in Fujitsu API000 distributed memory computers with 128 nodes. 32

of them are equipped with a disk. Performance of Multicomputer Texas is measured using

the 007 traversal benchmark. Since it is not a DBMS, typical database processing such as

join, query optimization, etc, is not supported. The main concern is only with object storing

and complex object assembling/traversal m a multicomputer envh-onment.

f. PPOST - Persistent Parallel Object Store

PPOST (Boszormenyi et al., 1994a, b) is a paraUel object store based on main-memory

architecture. The prototype is implemented m 12 DEC Alpha workstations connected by a

FDDI net. The dimension of parallelism is ind-oduced, including vertical parallelism and

horizontal parallelism. Vertical parallelism deals with pipelining transaction processing so

that user processors do not slow down. Basically, vertical parallelism involves several

stages in storing objects permanently in disk. When an object is updated, the changes are

stored in a log. The log is read at checkpoint and saved into a disk. Since the checkpoint

and the log are involved in producing a disk image, user transactions can go on as soon as

the information about the changes is transmitted to the log. At the last stage of vertical

parallelism, the disk image is archived to a secondary storage. These activities are all done

in the background without interruptmg die user transactions.

Horizontal parallelism deals with query processmg where die objects are spread

across several processors for speeding up query processing. The operation concemed is

merely parallel selection operation. Typical object-oriented query processing, such as

collection join, inheritance queries, and object-oriented query optimization, are not

included.

g. PRACTIC - PaRallel ACTIve Classes

Practic (Bassiliades and Vlahavas, 1994, 1996) is based on concurrent active class

management. It is implemented in a network of 5 transputer and written in CS-Prolog.

Query processing includes single-class query execution usmg non-uniform declustering.

Two types of parallelism are introduced, namely: inter-class parallelism and intra-class

parallelism. Intra-class parallelism is further divided into inter-object parallelism and intra-

object parallelism. This parallelism is mairUy for complex object execution which is typical

m selection queries. The applications of tiiese parallelisms to query optimization are not

explored, and object-oriented join query processing is not considered.

Ch. 3. Parallel Query Processing: Existing Work page 76

3.6 Discussions

Major achievements of existing work on parallel query processing and parallel query

optimization are highlighted. The problems which remam outstanding are outiined. These

problems define the scope of the research presented in this diesis.

3.6.1 Achievements

The achievements of existmg work on paraUel query processing and optimization are

summarized as follows.

a. Parallelization of Single-Class Queries

(i) Node paraUelism has been introduced for parallelization among objects m a class.

(ii) Data partitioning methods for relational database systems can be used for

parallelization of single-class queries in OODB.

b. Parallelization of Inheritance Queries

(/) Parallelization of single-class queries is extended to inheritance queries.

(//) Parallelization is based on horizontal division and vertical division. These

inheritance data divisions contradict each other, however. Horizontal division is

benefited by object independence within each class, which is suitable for sub-class

queries. Vertical division, on the other hand, is based on class hierarchy in which

super-class queries can benefit much from this division.

c. Parallelization of Path Expression Queries

(/) Path parallelism is presented for parallelization among class paths, and nested

parallelism is presented for parallelization among object patiis. These

parallelization methods essentially view parallelization at class level (node

parallelism). Parallelization of path expression queries is achieved through multiple

level depending on the complexity of die path expression query graph.

(ii) The join techniques borrowed from relational systems are used in pointer-based

join algoritiims. Pointer-based join technique relies on the well-established parallel

relational hash based join.

Ch. 3. Parallel Query Processing: Existing Work page 77

(m) Declustering strategies for ParSets have also been exposed for implementation. The

primary and secondary ParSets are influenced by die existence of primary and

secondary indexes and declustering.

d. Parallelization of Explicit Join Queries

(0 Parallelization of simple explicit join is very much similar to relational join. Hence,

the techniques applicable to relational join are also available to object-oriented

joins.

e. Query Access Plans

(i) Query tirees representation is well adopted by relational databases.

(ii) The extension of query trees in OODB has also been sought.

f. Execution Scheduling

(/) The exploitation of inter-operation and intra-operation has been made. The factors

taken into consideration are lO-bound and CPU-bound tasks.

(//) Algorithms for paraUel resource division have been attempted by many researchers.

(/«")Load balancing algorithms based on partition tuning have been proposed. Although

most of them are designed for parallel relational queries, they are stUl applicable for

object-oriented queries.

(iv) Dynamic load balancing based on task stealing has also been proposed.

3.6.2 Outstanding Problems

a. Parallelization of Single-Class Queries

(0 None

b. Parallelization of Inheritance Queries

(i) Using the horizontal division, parallelization of super-class queries mvolves

unnecessary information on sub-classes, whereas using the vertical division,

parallelization of sub-class query requires a join operation between a sub-class and

its super-class.

Ch. 3. Parallel Query Processing: Existing Work page 78

c. Parallelization of Path Expression Queries

(0 Class-based paraUelization, like path and nested parallelism, requires the

information on the associated object to be stored whUe processing a root object.

After finishing the processuig of all root objects, dirough diis mformation, die

associated objects of each selected root object can be retrieved and processed. Path

traversal is achieved at class level, not at object level.

(ii) Most work concentrates on 3 type of path expression query, where it requires only

one of the associated objects of a particular root object to satisfy the predicate

condition. No extensive work on other collection predicates in path expression

queries has been reported.

d. Parallelization of Explicit Join Queries

(0 Simple Join: None

(//) Collection Join:

* No specific algorithms for collection join have been introduced.

* Conventional data partitioning may not be suitable for collection join, since the

join attribute is a collection, not a simple attribute. Most conventional data

partitioning divides a class/table based on a simple join attribute. Hence, these

methods are not adequate for collection join queries.

* Most collection join predicates, expressed in OQL, involve the creation of an

intermediate result which is not efficient.

e. Query Access Plans

(/) Most existing query trees do not distmguish between forward and reverse path

traversals.

(//) Existing query access plan formulation concentrates on manipulation of operations

through permutating, collapsing, breaking and expanding operations. No attempt is

made to convert one operation type to another for more efficient execution.

f. Execution Scheduling

(/) Lack of discussion on the effect of skewness to inter-operation and mtra-operation

parallelization.

Ch. 3. Parallel Query Processing: Existing Work page 79

(ii) Most load balancing is based on join queries. Balancing of simpler operations, like

path expression queries, has not been explored.

{iii)No discussion on the impact of load balancing on execution schedulmg strategies.

3.7 Conclusions

Existing works on parallel query processing and parallel query optimization have been

presented and discussed. The achievements of these works to date have also been

highlighted. Some of the problems which remain outstanding are addressed in this research.

In particular, a number of needs are evident:

• a more efficient inheritance data structures;

• an obiect-based parallelization (i.e., associative approach) which incorporates

different types of path traversal and collection selection predicates;

• performance comparison among different parallelization models for path

expression queries;

• parallel collection join algorithms, including special data partitioning for

collection join;

• a special query tree representation for object-oriented queries to mcorporate

different path traversal, and query optimization algorithms which are able to

d-ansform an operation to a more efficient operation, as well as operation

permutations, collapse, and extension;

• performance analysis of the impact of skew and load balancing on execution

scheduling.

Chapter 4

Parallelization Models

4.1 Introduction
Single-class queries, inheritance queries, and path expression queries are similar to each

other since they all involve selection operations. Single-class queries contain selection

operations on single-classes. Inheritance queries and path expression queries incorporate

selection operations on inheritance and aggregation hierarchies, respectively. These queries

can then be called selection queries. This chapter concentrates on parallelization models for

selection queries.

Single-class selection queries are very simple and simUar to selection queries in

relational databases. Parallelization of single-class queries is consequently similar to that of

selection queries in relational databases. Parallelization of inheritance queries is also

similar to that of single-class queries. However, due to the polymorphic feature, objects can

be of a different class at a given run-time. The organization of objects in an inheritance

hierarchy plays a significant role in parallel processing of inheritance queries.

Parallelization of path expression queries comes in two forms: parallelization at object level

and at class level.

The main objectives of this chapter are: firstiy, to formulate paralellization models

for selection queries; secondly, to propose an inheritance data structure to accommodate an

efficient parallel inheritance query processing; and thirdly, to highlight the strengths and

Ch. 4. Parallelization Models page 81

weaknesses of each parallelization model. An ultimate query optimization model will then

use these as guidelines in choosuig a right parallelization model for a particular query.

The rest of this chapter is organized as follows. Section 4.2 briefly presents

parallelization models available for selection queries. Section 4.3 discusses an inter-object

parallelization model. Section 4.4 describes an inter-class parallelization model. Section 4.5

presents discussions on the two parallelization models and their impacts on query

optimization. Finally, section 4.6 gives the conclusions.

4.2 Parallelization Models

ParaUelization of selection queries can be achieved through simultaneous processing among

objects (inter-object parallelization), or concurrent processing among classes (inter-class

parallelization). These two parallelization models view parallel object-oriented query

processing from two different angles, particularly from an object point of view and from a

class point of view, respectively.

Inter-object parallelization for single-class queries is often known as intra-class

parallelization. Intra-class parallelization refers to parallelization among simple objects

within one class. Hence, inter-object parallelization has a broader scope, since it reflects

parallel processing at object level. The objects can be from one class or from multiple

classes. Objects from multiple classes are often referred to as complex objects.

Inter-class parallelization can be applied only to queries involving multiple classes

(i.e., path expression queries).

4.3 Inter-Object Parallelization

Inter-object parallelization is a metiiod whereby an object is processed simultaneously with

otiier objects. In the next sections, tiiis parallelization model for single-class queries,

inheritance queries, and path expression queries wUl be discussed.

4.3.1 Inter-Object Parallelization for Single-Class Queries

When a single-class query has one selection predicate, objects of diat class are partitioned

to all available processors. These processors perform the same predicate evaluation for

different coUection of objects. As an Ulustration, consider the following query.

OQL.
S e l e c t X
From X in Lecturer
Where "PhD" in x.qualification

Ch. 4. Parallelization Models page 82

To answer the query, each processor is allocated a portion of data to work with, and

is assigned the same predicate, that is checking whether one of die qualification is a "PhD".

Likewise, when the query involves multiple predicates, each processor evaluates all

predicates for different collection of objects. Consider the following query as an example.

OQL.
S e l e c t X
From X in Lecturer
Where x.surname = "Kim"
and x.age < 30
and "PhD" in x . q u a l i f i c a t i o n

Each processor retrieves a different object at a time, and evaluates the values of all

attributes associated with the query predicates. The degree of parallelism is determined by

the number of processors involved in the query processing activities.

It is important to reiterate the mechanism of inter-object parallelization. First, each

processor holds a collection of objects. Processing in each processor is completely

localized. Second, each processor processes each object one by one in a sequential manner.

This involves several steps: load the object, evaluate the object, and write the object to the

output buffer, if the object is selected. In the case where multiple predicates in a form of

Conjunctive Normal Form (CNF)^ exist, evaluation is carried out in a short circuit'^. Hence,

parallelism is not at a fine-grained level, but at an object (coarse-grained) level. Processing

an object is totally independent of processing other objects, object independence being one

of the features of inter-object parallelization.

4.3.2 Inter-Object ParalleUzation for Inheritance Queries

An object m an inheritance hierarchy is actually one object, although die declaration of the

object is split into classes within the hierarchy. Consequentiy, paraUelization of inheritance

queries is similar to that of single-class. However, it becomes more complex as inheritance

queries involve super-classes and sub-classes. For example, a super-class query also

includes all of its sub-classes.

Because some attributes/methods are declared in super-classes (e.g., attributes

surname and age are declared in class Person, not class Lecmrer (Figure 4.1)),

parallelization is influenced by data structures or data organization. Traditionally, there are

two data sdnctures avaUable to inheritance: Horizontal Division and Vertical Division

(Elmasri and Navatiie, 1994, Delobel et al., 1995). hi addition to tiiese structures, a Linked-

' inaforaiof (p r ed l l OR . . . OR predln) AND . . . AND (predjnl OR . . . OR predmn)

2 further predicate evaluation is sometimes unnecessary, depending on the previous predicates

Ch. 4. Parallelizjation Models page 83

Vertical Division is proposed. The main achievement of die proposed structure is to balance

the strengths and weaknesses of the two traditional inheritance data structures.

is

Person

_a 1

Lecturer

^ surname,

^ subjects

age

Figure 4.L Inheritance Hierarchy

a. Horizontal Division

Horizontal division stores sub-class objects as complete units. The values of an inherited

attribute from a super-class is stored in the sub-class. If a class is represented as an

unnormalized table, a sample data of the above inheritance hierarchy is displayed in Figure

4.2(a). It clearly shows that objects with ODDs 5, 6, 7 and 8 are Persons, whereas the last

two objects (OIDs 7 and 8) are also Lecturers.

Regardless of the scope of a sub-class query, parallelization can be accomplished

by partitioning the sub-class into a number of participating processors to be processed

simultaneously. This is possible because the contents of a sub-class are independent to its

super-classes. On the other hand, processing a super-class query must include all its sub­

classes, because each instance of sub-class is also an instance of its super-class. Figure

4.2(b) gives an Ulustration of inter-object parallelization of super-class and sub-class

queries using horizontal division. An algorithm for inter-object parallelization of

inheritance queries using horizontal division is presented in Figure 4.2(c).

Upon receiving an inheritance query, the algorithm processes all classes associatmg

with the query through its parameter. In die case where the query is a sub-class query (i.e.,

m = 1), only one class, that is the sub-class itself, wUl be passed to the algorithm. If it is a

super-class query, the fu-st class Ri is the super-class and Ri to Rm are all of its sub-classes.

The processors are numbered consecutively (1, 2,..., AO, as are the objects of each class (1,

2, ...). Processing is done in a round-robin fashion. The i^ processor initially processes the

/* object. The counter Ip (die object counter in processor P) is incremented by the number

of processors P. Hence, with 2 processors (P=2) avaUable, all odd objects wUl be processed

by the furst processor and all even objects by die second processor. These activities are

repeated as many times as the number of classes involved in the query.

Ch. 4. Parallelizjation Models page 84

Person

Lecturer

OID

5

6

Name

Adams

BiU

OID

7

8

Name

EHen

Fred

Subjects

Network, Al

Database, OOP

Figure 4.2(a). Horizontal Division

(!) Parallelization of a Super-Class Query

Person

(ii) Parallelization of a Sub-Class Query

Parallel
Execution

OID Name

Lectiu-er Lecturer

Parallel
Execution

OID Name Subjects

Parallel
Execution

OID Name Subjects

Figure 4.2(b). Inter-Object Parallelization using Horizontal Division

Procedure Inter-Object-Horizontal {R\, R2,..., Rm):

Begin

Let A'̂ be the number of processors available
Let P be the processor number (id.)
Fory= 1 torn

Parallel For P - 1 to 7/
Set Ip to P
While /?j[Ip] ^ NULL

Get object /?j[Ip]
Allocate it to P
Process it in P
AddA^toIp

End
End

End

End.

// m = number of classes
II R\= objects of class 1
// Rl = objects of class 2
// ^m = objects of class m
// example: /?i [5] = the 5* object of class 1.

// processor numbers are consecutive (1,. . . , AO
// for each class
// for each processor {Parallel execution)
// Ip = counter for processor P
II object Ip of/?j exists
// process it

// increment the counter

Figure 4.2(c). Inter-Object Parallelization Algorithm using Horizontal Division

Ch. 4. Parallelizjation Models page 85

b. Vertical Division

Vertical division partitions a class according to where the attribute is originally declared. A

sub-class object is divided into a number of partitions, as part of die sub-class is declared in

an inheritance hierarchy. Objects solely belonging to a super-class, togetiier witii some parts

of sub-class objects are kept in the super-class. Since an object must have a unique OID,

sub-class objects which are divided into a number of partitions employ tiie same OID. This

OID refers to a logical object identifier (LOID). Figure 4.3(a) gives an Ulustration of

vertical division. It shows that some parts of Lecturer with OIDs 7 and 8 are declared in

class Person.

Parallelization of sub-class queries (e.g., queries on Lecturer) can be accomplished

by applying a parallel join algorithm to Lecturer and Person on LOID. The join operation is

necessary only when the scope of the query is to cover super-classes, as well as the target

class (i.e., sub-class). If the scope is localized to the target sub-class, there will be no need

to involve its super-class in order to minimize die size of die object to be processed.

Parallelization of super-class queries can be efficientiy performed by evaluating the

content of the target super-class itself. Figure 4.3(b) shows an illustration of parallelization

of super-class and sub-class queries using a vertical division. The algorithm is presented in

Figure 4.3(c).

For super-class queries (m = 1), there is only one class to be passed to the

algorithm; that is the super-class itself (i.e., R\). ParaUel processing is based on round-robin

partitioning. For sub-class queries {m> 1), the sub-class and all of its super-classes (in the

case of the query involves in multiple super-classes) will be passed to die algorithm tiirough

the parameters. Since parallel sub-query processing using a vertical division requu-es an

explicit join to perform, a parallel join algorithm must be applied to these classes (i.e.,

RIM R2M ...M Rm). Conventional parallel join algoritiims (Graefe, 1993), such as hybrid

hash, Grace join, may be employed.

Ch. 4. Parallelizjation Models page 86

Person LOID

5

6

7

8

Name

Adams

Bill

Ellen

Fred

Lecturer

Figure 4.3(a). Vertical Division

LOID

7

8

Subjects

Network, Al

Database, OOP

(i) Parallelization of a sub-class query
Person

Parallel
Selection

(ii) Parallelization of a super-class query
Person

LOID Name LOID Name

Lecturer

Parallel Join
Person and Lecturer
on LOID

LOID| Subjects

Figure 4.3(b). Inter-Object Parallelization using Vertical Division

Procedure Inter-Object-Vertical {R\,R2,...

Begin

,Rm):

Let Â be the number of processors available
Let P be the processor number (id.)

If(m= l)Then
Parallel For P = 1 to Â

Set Ip to P
While/?i[Ip]^ NULL

Get object i?l[Ip]
Allocate it to P
Process it in P
AddA^toIp

End
End

Else
Parallel-Join {R\,R2,..., Rm) using

End if

End.

// m = number of classes
II R\ = objects of class 1 (super-class)
// /?2 = objects of class 2 (sub-class 1)
// Rm = objects of class m (sub-class m-\)
II example: ^l[5] = the 5* object of class 1.

// super-class query

// initialize the counter

// only the super-class objects are processed

// round-robin processing

// sub-class query
.V processors // need an explicit join operation

Figure 4.3(c). Inter-Object Parallelization Algorithm using Vertical Division

Ch. 4. Parallelizjation Models page 87

c. Linked-Vertical Division

Linked-vertical division is a vertical division with pointers/links. If an object is divided

vertically into a number of classes, each partition wUl have a unique physical object

identifier (POID) and a common LOID. To avoid a relational join operation when

assembling an object, each POID within the same LOID is Imked through a pointer

connection Link. Figure 4.4(a) shows an example of a Imked-vertical division in

unnormalized tables.

Parallelization of sub-class queries can be achieved through partitioning sub-class

objects, and each object traces the link to its super-classes. For super-class queries, because

the content of super-class is isolated as in vertical division, the processing model for super­

class queries for linked-vertical division is the same as that of vertical division. Figure

4.4(b) shows how parallelization is simplified using the linked-vertical division. The

algorithm is presented m Figure 4.4(c).

The classes involved in the query are passed through the parameters. If it is a super­

class query (m=l), only R\ is passed to the procedure. However, if it is a sub-class query,

the sub-class (Rm) and all of its super-classes (R\, ..., Rm-\) are processed. After processing

a sub-class object, it traverses to its immediate super-class object through a pointer, and

processes the object. This traversal is repeated untU the root object is reached and

processed. These activities are repeated to other sub-class objects. Parallel processing is

achieved in a round-robin fashion for the sub-class objects.

Ch. 4. Parallelization Models page 88

Person

LOID

5
6
7
8

POID

50
60
70
80

Name

Adams

Bill

EUen

Fred

Link

Lecturer

l ink LOID

7
8

POID

71
81

Subjects

Network, Al

Database, OOP

Figure 4.4<a). Linked-Vertical Division

(i) Parallelization of a super-class query

Person

(ii) Parallelization of a sub-class query

Parallel
Execution

— >

Lon pon Name LinJ
Person

Parallel
Execution ^

—)

LOII pon Name Linl

traversal

Lecturer
Link LOniPOn: subjects

Figure 4.4(b). Inter-Object ParaUelization using Linked-Vertical Division

Procedure Inter-Object-Linked-Vertical {R\,R2,.... Rm):
II m== number of classes

Begin
Let N be the number of processors
Let P be the processor number
ParaUel For P = 1 to Â

Set Ip to P
While object i?m[Ip] ̂ NULL

II Rl = objects of class 1 (super-class)
// Rl = objects of class 2 (sub-class 1)
// Rm = objects of class m (sub-class m-1)
// example: Rl[5] = the 5* object of class 1.

// for each processor

// m=l is super-class query
// m>l is sub-class query.

Get object /?m[Ip]
Allocate it to P
Process it in P
I fm>lThen

_/• = m - 1
Repeat

Traverse to its super-class
Get the pointed super-class object
AUocate it to P
Process it in P

Until 7 = 0
End if
Add Â to Ip

// sub-class query
// going to traverse to its super-class

// repeat for all of its super-class objects

// round-robin partitioning

End
End

End.
Figure 4.4(c). Inter-Object Parallelization Algorithm using Linked-Vertical Division

Ch. 4. Parallelizjation Models page 89

4.3.3 Inter-Object Parallelization for Path Expression Queries

Since path expression queries involve multiple classes along aggregation hierarchies, inter-

object parallelization exploits the associativity within complex objects. All associated

objects connected to a root object assemble a complex object. This associative approach

views a complex object as a cluster, and consequentiy processing tiiese objects can be done

together.

Figure 4.5 shows an example of a class schema together witii its instantiations. A

typical query from this schema is to select objects which satisfy some predicates of botii

class A and B (Bertino, et al, 1992; Kim, 1989).

OQL.
S e l e c t a
From a in A, b in a.rell
Where a.attrl = const AND

b.attrl = const;

In this thesis, class A is referred to as a root class, whereas class B is called an

associated class. Further, objects of a root class are root objects, and objects of an

associated class are associated objects.

Inter-object parallelization is accomplished by partitioning all complex objects

rooted of a particular class into a number of partitions, in which each partition is allocated

to a different processor. As a result, each processor works independentiy witiiout a need for

communicating with other processors. As in conventional parallel database systems, the

partitioning method used can be either round-robin, range or hash partitioning (DeWitt and

Gray, 1992; Graefe, 1993). Whatever partitioning method is used, it will not be that

important to the associated objects, as the initial partitioning has lost its effect on them.

Using this associative approach, objects along the association path that are not

reachable from the root object wUl not be processed. This method is very attractive because

of not only the filtering feature, but also it is low m overhead. It does not requh-e any

checking, because processing root objects and their associated objects is done by pomter

navigation from the root object to all of its associated objects. When there is no pomter left,

it skips to die next root object. In tiiis case, objects tiiat do not form a complex object

described in the query predicate are discarded naturally.

Ch. 4. Parallelizjation Models page 90

(a) Class Schema

Graphical Notation:

attrl
attr2

I

attm

\2J inverse B::rell(^^y

attrl
attr2

attm

Query Language:

Class A
{

attribute string attrl;

attm

relationship set rell
inverse B::rell;

};

Class B
{

attribute string attrl;

attm
relationship set<A> rell

inverse A: :rell;

(b) Class Instantiations/Objects

Figure 4.5. Class Schema and Instantiations

Complex Objects

al
^

fe ^

Inter-Obiect Parallelizatioi

Processor 1

^ ^

Processor 2

Processor 3

^ fe
Sote: bold nodes are replicated

Figure 4.6. Inter-Object Parallelization Model

Ch. 4. Parallelization Models page 9;

Figure 4,6 shows an mter-object parallelization from die example in Figure 4.5.

Lower case letters are used to indicate OIDs. The number of associated objects for a root

object is known as the fan-out degree of that root object. In tiiis example, die fan-out degree

of a\, a2 and a3 are equal to 2, 3 and 1, respectively. It clearly shows that using tiiis

clustering approach, processing a root object (say 02) can be done togetiier witii all its

associated objects (e.g., bi, b3 and b4).

A problem of inter-object parallelization is tiiat when tiie cardinality of die

association is many-many or many-one, object replication is unavoidable. Associated

objects referred by more than one root object will need to be replicated. In the example,

objects b2 and b4 are replicated as they accompany root objects a\,a2 and a3.

An algorithm for inter-object parallelization is presented in Figure 4.7. If die root

object is selected, depending on the type of the query (i.e., 3-PE, \/-PE or S-PE), an

appropriate predicate ftinction is called. The ftinction for 3-PE and V-PE are ratiier

straight-forward, that is to check for one TRUE and all TRUE, respectively. The need for

an S-PE function is rather critical, since the original predicate function for duplicate and

succeeded involve intermediate results which result in inefficiency. For example, to check

whether an item is duplicated in a collection, the predicate has to intersect the collection

with the item, obtain the intersection result, and check die length of the intersection result.

The original succeeded predicate is even more complicated. It forms all possible pairs from

a list and checks whether the desired pair exists or not. Therefore, it is important to provide

collection selection predicate functions.

Procedure Inter-Object-Parallelization
Begin

In each partition // Parallel For Suoicture
For each root object // Sequential For Structure

Read a root object
Evaluate predicate of the root object
If the root object is selected Then

Case 3-PE:
result = at_least_one (Collection C, Predicate P)

Case V-PE:
result = for_all (Collection C, Predicate P)

Case S-PE:
result = at_Ieast_some (Collection C, Predicate P)

End Case
If result = TRUE Then

Put the root object into the result
End If

End If
End For

End Procedure.

Figure 4.7. Inter-Object Parallelization Algorithm

Ch. 4. Parallelizjation Models page 92

a. Collection Selection Predicate Functions

For each selection predicate type, a predicate function is constructed for an efficient path

expression query execution. These functions become a central part of the inter-object

parallel algorithm. Figure 4.8 shows tiie pseudo-code for each predicate function.

1) Function at_least_one (C: collection of associated objects, P: predicate) Return Boolean
Begin

For each element einC
Evaluate predicate P one
If TRUE Then

Retarn TRUE
Break For

End If
End For
Return FALSE

End Function

2) Function for_all (C: collection of associated objects, P: predicate) Return Boolean
Var

selected: boolean = TRUE

Begin
For each element e in C

Evaluate predicate P one
If TRUE Then

Continue
Else

selected = FALSE
Break For

End If
End For
If selected Then

Return TRUE
Else

Return FALSE
End If

End Function

3) Function at_least_some (C: collection of associated objects, P: predicate) Remm Boolean
// Predicate P is in a form of (predicatejype, {iteml, item2 itemn})

Begin
Case P.predicate Jype = is_duplicate:

Return is_duplicate (C, P.iteml)
Case P.predicate_type = is_succeeded:

Return is_succeeded {CJP.iteml,P.item2)
End Case

End Function

Ch. 4. Parallelizjation Models page 93

4) Function is_duplicate {Bl: bag, a: item) Return Boolean
Begin

pas = members (Bl, a)
Iflength(poj)>lThen

Retum TRUE
Else

Remm FALSE
End Function

5) Function is_succeeded (LI :list; a,b:item) Retum Boolean
Begin

pos_a = members (LI, a)
pos_b = members (LI, b)
If (pos_a - pos_b -1-1) Then

Retum TRUE
Else

Retum FALSE
End Function

6) Function members (Bl ;collection, fl:item) Retum pos[]
Begin

Search item a in Bl
Retum pos items a or an empty pos

End Function

Figure 4.8. Collection Selection Predicate Functions

The atJeast_one function evaluates whether an item is a member of a collection.

The function receives a collection of associated objects to be evaluated and a predicate in a

form of boolean expression. The function iterates each element in the collection and

evaluates the predicate against the element. If an element is evaluated to be true, the

function terminates and returns a time value to tiie calling program. Otherwise, it will

continue until the end of collection is reached and retum a false if none of the desired

element is found.

The for_all function is similar to tiie at_least_one function, in which they accept a

collection of associated object and a predicate to work witii. However, the for_all function

is in contrast to the previous function, where the forjill function requires all elements of

tiie collection to be tiue. Hence, once an element is evaluated to be false, the function

terminates and returns a false value to die caUing program.

The at_least_some function performs one of tiie two predicates, namely duplicate

and succeeded. The duplicate predicate is to check for a duplicate item, whereas the

succeeded predicate checks for an item to be succeeded immediately by another item. The

atjeastjome function receives a collection of associated objects and a predicate. The

predicate is in a form of structure which consists of the predicate type and a list of items.

For the duplicate predicate, die predicate type is isjduplicate and the list of items has only

Ch. 4. Parallelization Models page 94

one item, that is the item to be evaluated. For the succeeded predicate, the predicate type is

is_succeeded and the list of items has two items: iteml and iteml. Depending on the

predicate type, an appropriate function is called. The retum value of tiiis function call

becomes the retum value of the at_least_some function.

The is_duplicate function calls the members function to get the positions of the

desired item. If there is more than one position, the item is a duplicate item. The last

predicate function is the is_succeeded function. It calls the members function twice, one for

the first item, and the other for the second item. If the position of the first item is less than

the position of the second item, the first item comes before the second item.

4.4 Inter-Class Parallelization
Inter-class parallelization is a method whereby a query involving multiple classes and each

class appearing in the query predicate is evaluated simultaneously. Inter-class

parallelization considers each predicate as an independent task, and the objects of a

particular class are attached to the predicate to be evaluated. As a result, the entire process

is composed of many independent tasks, which may run concurrentiy.

Basically, inter-class parallelization consists of two phases: selection phase and

consolidation phase. The selection phase is a process where the predicate of each class is

invoked independentiy regardless of the associative relationship. In the consolidation phase,

die results from the selection phase are consolidated to obtain the fmal results.

Inter-class parallelization does not filter unnecessary objects prior to processing.

Non-associated objects wUl be processed, although these objects wUl not be part of the

query results. The processing performance of a class wiU be down graded by (1-a) times

100% percent, where a is a probabUity of an object of having an association with objects

from a different class. This problem wUl not exist if botii classes have total participation in

the association relationship (a=l).

Inter-class paraUelization also determines access plans of patii expression queries.

Figure 4.9 shows two examples of access plans. When tiiere is only one selection involved

in the query, only the class involved in the selection operation is processed in the selection

phase.

Ch. 4. Parallelization Models page 95

OQLs:

Access Plans:

(a) two selections

Select a
From a in A, b in a.rell
Where a.attr = constant
And b.attr = constant

7C

Query Graphs: (T) ^ C ^)

Phase 1: Selection phase
Phase 2: Consolidation phase

consolidation

Selection on A Selection on B

(b) one selection

Select a
From a in A, b in a.rell
Where b.attr = constant

® >®

consolidation

Selection on B

Figure 4.9. Access Plans for Inter-Class Parallelization

4.4.1 Selection Phase

There are two options for implementing a selection phase, especially when the two classes

in a path expression query are involved in a selection. The options are sharing resources

and queuing for resources.

• Sharing resources is a manifest of concurrent processmg. The two classes share

resources (ie. processors) at the same time. The resources must be divided into

two groups: each group to serve one class. The division is not necessarily equal

depending on the size of each class. Determining an appropriate number of

processors for each class is critical. Otherwise, it will create load imbalance as

one class might have finished processing while others have not. Figure 4.10

shows a selection phase where the resources are divided into 2 groups.

processors

Class A

a

perform selection operations

Class B

where 1<-k<n

Figure 4.10. Selection Phase (Resource Division)

Ch. 4. Parallelization Models page 96

Queuing for resources is typical in a pipeline processmg model. Once a class

takes the control, all resources will be aUocated to it. There is no need to divide

the resources. The usage of processors wiU be optimal, because when a class

has finished, another class wUl occupy the idle processors. In this way, load

balancing can always be maintained. Figure 4.11 shows class A and class B are

queuing to use the resources.

processors

Class B Class A distribute*^ '

a
queue

perform selection operations

Figure 4.11. Selection Phase (Queuing up for resources)

The difference between "sharing resources" and "queuing for resources" can be

Ulustrated by two queues for "sharing resources" and one queue for "queuing for

resources". Because only the average work load of each processor is considered (not the

response time of each item in the queue), one queue model is more efficient, because it

guarantees that all processors (service providers) wiU be busy when die queue is not empty.

4.4.2 Consolidation Phase

Inter-class paraUeUzation is an "mdependence class processing" based parallelization

model. The development of tiiis class-independence processing is influenced by the concept

of object copying used in object-oriented query processing (Meyer, 1988).

BasicaUy, the results of a query is a copy of objects satisfying the selection

predicates. In the absence of the selection predicates, the query results are the same as die

original objects. Figure 4.12(a) shows an example of a simple query to retrieve all student

objects. The result of this query is pointed by variable a which is die same copy of all

student objects.

In die presence of selection predicates, filtering is carried out to die copied objects.

Figure 4.12(b) shows tiiat variable a points to student objects which satisfy the selection

predicate (i.e., ID LUce "94%").

Using die same principle, when tiie selection predicates span to classes in a path

expression, object copying and filtering can be performed for each class independently.

Ch. 4. Parallelization Models page 97

Running tiirough each root object once again to check whetiier tiie root object not pointing

to a NULL value is done thereafter. Figure 4.12(c) shows a patii expression query, die

process to obtain the results, and the query results.

A consolidation process is performed by means of a "NOT NULL" association

evaluation of the root object. An algorithm for an inter-class parallelization of a patii

expression query is presented in Figure 4.13.

(a) Simple retrieval

OQL: Select a
From a in Student

(b) Simple selection

OQL: Select a
Where a.id Like "94%"
From a in Student

(c) Path expression

OQL: Select a
From a in Student,

b in a.enrol
Where a. id Like "94%"
And b.code Like "DB%"

selection phase

consolidation phase

Student objects
I I M I

i copy

all Student objects

Student objects

n

Eh^i

A copy and filter

objects satisfying the predicate

Student objects

\±
Subject objects

Z M 1111 :
]/(:opy

^„.„ I I . all Student objects

r̂ B-^mrrzzz:
]/<:opy

all Subject objects

Z M J I I I H

TTTT J \^ jitter

A consolidate i
-cn

7 ^

Tl

I]

Figure 4.12. Object Copying in Query Retrieval Operations

Ch. 4. Parallelizfltion Models page 98

Procedure Inter-Class-Parallelization
Begin

1. Selection phase
Evaluate predicates on the root class and the associated class in parallel

2. Consolidation phase
For each selected root object

Case 3-PE: If a NOT NULL value of an associated object exists Then
Put the root object into the query result

Else
Discard the object

End if

Case V-PE: If a NULL value of an associated object exists Then
Discard the object

Else
Put the root object into the query result

End if

Case S-PE: If two NOT NULL values of associated object exist Then
If predicate_type = duplicate Then

Put the object into the query result
Else If predicate_type = succeeded Then

If pos 1 = pos2-l Then
Put the object into the query result

Else
Discard die object

End If
End If

Else
Discard the object

End If
End Case

End For
End Procedure.

Figure 4.13. Inter-Class Parallelization Algorithm

4.5 Discussions

4.5.1 HorizontalA^ertical Division vs. Linked-Vertical Division

The strengths and weaknesses of each inheritance data structures are outlined as foUows.

a. Horizontal Division

• Strengths

ParaUelization of a sub-class query is isolated to the concemed class only.

Ch. 4. Parallelization Models page 99

Weaknesses

Parallelization of a super-class query has to involve all sub-classes.

Unnecessary information about the sub-classes has to be retrieved as a result of

accessing the sub-classes.

b. Vertical Division

Strengths •

Parallelization of a super-class query is localized to the super-class only.

• Weaknesses

Parallelization of a sub-class query needs to involve an explicit join

between die sub-class and its super-class.

c. Linked-Vertical Division

• Strengths

Like vertical division, parallelization of a super-class query is isolated to

the super-class only. LUce horizontal division, parallelization of a sub-class

query is isolated to the sub-class objects only. Since an object is split into parts,

a traversal from the sub-class part object to its super-class part object is needed.

• Weaknesses

A link has to be maintained between classes in an inheritance hierarchy.

d. Comparisons

• Linked-verticallvertical division is suitable for super-class queries as

processing these queries are isolated to the concemed super-class only.

• Horizontal division is suitable for sub-class queries for die same reason as

above.

• It can be expected that the difference in performance of sub-class query

processing using the horizontal division and the linked-vertical division wUl be

insignificant due to the small overhead of die link traversal imposed by the

linked-vertical division. Therefore, the linked-vertical division is suitable for

parallel inheritance query processing.

Ch. 4. Parallelizjation Models page 100

4.5.2 Inter-Object vs. Inter-Class Parallelization

Since there are two parallelization models available for path expression queries, it is

essential to highlight the strengths and weaknesses of each model.

a. Inter-Object Parallelization

• Strengths

(0 Complex objects are presented as clusters. Processing a complex object at a

particular processor becomes localized and can be processed at once.

(ii) Selection operation in a class along a linear chain of path serves as a filter

to subsequent classes. Thus, not all associated objects need to be processed.

• Weaknesses

(/) If the relationship between a root class and an associated class is m-m or m-

1, some associated objects may need to be accessed more than once, as they

are referred by multiple root objects. If a distributed architecture is

adopted, these associated objects are replicated, to follow their root objects.

(//) Due to the fluctuation of the fan-out degree of the root objects, a skew

problem in processing the associated objects occurs.

b. Inter-Class Parallelization

• Strengths

(/) Smce each class is processed mdependentiy, redundant accesses to an

associated class are avoided.

(ii) Association skew is also avoided m the selection phase, due to class

independency.

• Weaknesses

(0 Complex objects, formed by multiple classes m a relationship, need to be

broken into parts. In reconstmcting selected complex objects, a

consolidation is needed. In a shared-memory system, consolidation is done

by tagging tiie selected objects. In a distributed memory system,

communication through message passing, which is known to be expensive,

is needed.

Ch. 4. Parallelizjation Models page]01

(ii) As die selection phase is implemented in a parallel processing fashion,

ratiier tiian in a sequential fashion, no pipeluie filtering is done.

c. Comparisons

Several points can be made based on the strengths and weaknesses of each parallelization

model.

• Inter-Object Parallelization is suitable for path expression queries involving a

selection operation on the start of path traversal, as selection operation provides

as a filtering mechanism. Redundant accesses to die associated objects may

also be avoided indirectiy and the association skew problem may be reduced

through the filtering mechanism.

• Inter-Class Parallelization is suitable for path expression queries involving

selection operation at the end of path traversal, since the problem of redundant

accesses to the associated objects and the association skew may be avoided

through class independent processing. Because filtering is not performed, the

inter-object parallelization model is not a good choice for this particular query,

and consequently, the inter-class parallelization model is die only option.

4.5.3 Issues in Optimizing Path Expression Queries

General path expression queries normally consist of more than 2 classes connected through

relationships. As these queries can be built upon multiple 2-cIass path expressions, the

strengths and weaknesses of the inter-object and inter-class parallelization can be used as

guidelines for a selection on a parallelization model. It is also noted that optimization of

complex path expression queries raises several issues. Parallel processing of complex path

expression query is one of the main focuses of query optimization in which decomposition

procedure is later developed.

• The influence of a selection operator from the previous class.

Since a selection operator in a class has a great impact on filtering, although

there is no selection operator in a class, die filtering done in previous classes

must be taken in account. For example, a linear path expression query involving

three classes (i.e., A, B, and Q with two selections on the first and the last class

only, an inter-object parallelization starting from the first class to all classes

must be done. A combination of inter-object parallelization (i.e., A-B) and an

inter-class parallelization (i.e., B-Q becomes less desirable.

Ch. 4. Parallelizjation Models page 102

inter-object Parallelization

© KD ^ 7 ^
Inter-object Inter-class

® ^ ® xs>

Figure 4.14. Effect of the previous selection operator in filtering

Starting node selection.

In the presence of inverse relationships, it must be decided in which direction a

path should go. One factor that can be used is the selection operator. For

example, in a 2-class path expression from A to 5 where the relationship is bi­

directional, with a selection operation in class B only, it can be more efficient

to do a path traversal for inter-object parallelization from B to A, instead of an

inter-class parallelization of A-B.

Inter-Class

& •XD
Inter-Object

&• ®

Figure 4.15. Starting Node Selection

Resolving conflicts.

Analysing a complex path expression query by splitting it into a number of 2-

class path expressions sometimes creates conflicts. Consider Figure 4.16 as an

example. According to the previous guidelines, two separate inter-object

parallelizations from A-JS and C-B will be efficient. However, an explicit join of

the results from the two mter-object parallelization is now required. An

expensive join operation can be avoided by changing one of the two inter-

object parallelization to an inter-class parallelization.

Inter-Object 3ject\| i / II

®
Inter-Object Inter •-Object\| i/T Inter-Glass

Join

Figure 4.16. Resolving a conflict

Ch. 4. Parallelization Models page 103

• Although inter-object parallelization and inter-class parallelization can be used

as basic parallelization models for more complex queries, it is critical to

provide an optimization algorithm to transform original queries into more

optimized access plans.

4.6 Conclusions

ParaUelization of single-class queries and inheritance queries is provided by inter-object

parallelization. The efficiency of parallelization of inheritance queries depends on its data

stmcture. A linked-vertical division is proposed, with the advantages provided by horizontal

and vertical divisions.

Parallelization models for path expression queries are avaUable in two forms: inter-

object parallelization which exploits the associativity of complex objects, and inter-class

parallelization which produces process independency. Inter-object parallelization wUl

function well if a filtering mechanism in the form of selection operation exists. On the other

hand, inter-class parallelization relies upon independency among classes, not the filtering

feature. These two parallelization models form the basis for parallelization of more

complex object-oriented queries.

The main contributions of this chapter are summarized as follows.

• Inter-object parallelization is presented. It exploits the associativity of complex

objects. Since complex objects are clustered and presented as single units,

processing a complex object can be done at once. Furthermore, as evaluatmg

the selection predicates is done in a short circuit, a selection predicate is served

as a filter to the next selection predicates. Hence, not all associated objects are

processed, especially when tiieir root objects are not selected.

• A linked-vertical division for inheritance hierarchy is proposed. It combines the

strengths of the two traditional inheritance stmctures: horizontal and vertical

divisions. Vertical division is particularly suitable for super-class queries due to

its locality, but is poor on sub-class queries because of the necessity for a join

operation. On tiie otiier hand, horizontal division is poor on super-class queries

as super-class queries must involve all sub-classes, but is well suited to sub­

class queries due to its locality. Linked-vertical, however, has die advantage of

locality of super-class queries like in vertical division, and the advantage of

'locality' of sub-class queries as in horizontal division.

Ch. 4. Parallelization Models page 104

Since there are different types of selection predicates due to die availability of

collection types, collection selection predicate functions are provided. These

functions become the basis for predicate processing in each processor, since

data partitioning is similar to the common data partitioning in parallel relational

database systems. These predicate functions are also different from die original

selection predicates as some of the selection predicates mvolve unnecessary

intermediate results (e.g., intersect, etc).

A more detail description of inter-class parallelization is given. Although inter-

class parallelization is similar to "class-hierarchy" parallelism (KimKC, 1990),

it is emphasized that inter-class parallelization consists of two phases: selection

and consolidation phases. Furthermore, in the consolidation phase, the

collection selection predicate functions are incorporated. Some of these

functions are not mentioned in the "class-hierarchy" parallelism, since it

concentrated only on 3-PE (existential quantifier path expression queries).

The strength and weaknesses of inter-object and inter-class parallelization are

highlighted. This is particularly important in the optimization of complex path

expression queries, since many complex path expression queries produce

conflict when using inter-object and inter-class parallelization. A mixture of

these parallelizations or a transformation from one model to the other is

necessary. By highlighting the strengths and weaknesses of each model, a query

optimization algorithm or procedure can later be formulated.

Chapter 5

Parallel Collection Join Algorithms

5.1 Introduction
This chapter presents paraUel algorithms for object-oriented coUection join queries. The need

for parallel join algorithms arises because relational join algorithms (Mishra and Eich, 1992;

Graefe, 1993) were not designed to cope with coUection types. ParaUel join algorithms

normaUy proceed in two steps. The first step is the partitioning step, and the second step is

tiie joining step. The partitioning step creates paraUelization and the joining step is a set of

sequential tasks to be performed locaUy in each processor. Data partitioning is usuaUy eitiier

disjoint or non-disjoint partitioning. The local joining operation can be done in sort-merge,

hash, nested loop, or any combination of these. Sort-merge and nested loop are simpler but in

many cases less efficient. In contrast, hash-based join is much more difficult, but more

attractive due to its linear complexity.

The rest of tius chapter is organized as foUows. Section 5.2 describes die

characteristics of coUection join queries. The characteristics detennine the data partitioning

method for paraUel execution. Section 5.3 discusses disjoint and non-disjoint partitioning.

Section 5.4 presents paraUel sort-merge coUection join algorithms. Section 5.5 presents

paraUel hash coUection join algorithms. Section 5.6 gives a discussion on tiie proposed join

algorithms. FinaUy, section 5.7 draws the conclusions.

Ch. 5. Parallel Collection Join Algorithms page 106

5.2 Characteristics of Collection Join Queries

The characteristics of tiiree coUection join query types (i.e., R-Join, I-Join, and S-Join) are

outiined. These characteristics point out tiie need for different data partitioning and joining

methods for each coUection join query type.

5.2.1 R-Join Characteristics

The main characteristic of R-Join is that the join result may be determined by tiie first element

in a coUection. Suppose tiie join predicate is to check for an equality of two coUection

attributes, such as J o u r n a l , e d i t o r - i n - c h i e f = P r o c e e d i n g s . p r o g r a m - c h a i r . For each

pair compared, a negative result is obtained if die first elements of die coUections do not

match. The opposite is not applied as furtiier comparison of elements is required.

The data partitioning metiiod for paraUel R-Join is much influenced by common

practices of arrays/sets comparison in programming. An array can be compared witii anotiier

array by evaluating each pair of elements from tiie same position of the two arrays. A

characteristic of artays comparison is that once an element is found to be different from its

counterpart (i.e., element of tiie same position from tiie otiier artay), tiie comparison stops

and returns a negative result. A typical arrays comparison pseudo-code is given in Figure 5.1.

Array comparison:

Let n 1 be the number of elements in Array 1
Let n2 be the number of elements in Array2
I f n l - n 2 T h e n

F o r i = 1 T o n l
If Array 1 [i] ! = AiTay2[i] Then // pair by pair comparison

ReUim FALSE
End if

End
Else

Rehim FALSE
End if
Retum TRUE

Array 1 Array2

1

2

3

nl

compare

<-

• > n2

Figure 5.1. Array comparison

Unlike artays comparison, sets comparison is not based on the position of each

element in the coUection, since the order of the elements is not significant. For example,

array(2,3,l) ^ array(3,2,l), but set{2,3,l) = 5^/(3,2,1). In comparing two sets, it wUl become

easier if the two sets are alphabeticaUy/numericaUy pre-sorted. For instance, j'^/(2,3,l) is

sorted to be set{l,2,3), and so is the second set. Comparison can tiien be carried out as per

artay comparison.

Ch. 5. Parallel Collection Join Algorithms page 107

It can be concluded that an artays comparison very much depends on die position of

each element in an array. The first element will open the gate for further element

comparisons, if tiie first pair is evaluated to be tine. In contrast, set comparison depends on

the smaUest element in a set, which is tiie first element after sorting. This element acts like tiie

first element in the artay. Based on tiiese characteristics, tiie first element of an array and tiie

smaUest element of a set play an important role in data partitioning.

5.2.2 I-Join Characteristics

Unlike R-Join, tiie restUt of I-Join cannot be determined by die first element (or the smaUest

element, for sets/bags) in a coUection. Suppose die join predicate is to check for any

intersection of two coUection join attributes, such as Journal .edi tor- in-chief n

Proceedings.program-chair, a negative acknowledgment caiinot be given before fuU

merging of the two coUections is completed. Since the role of the first element is not as

important as that in R-Join, it is not possible to produce non-overlap partitions, because an

intersection between 2 coUections cannot be obtained merely by evaluating their first or

smaUest elements.

Another important characteristic of I-Join is that a positive acknowledgment can be

given without a fuU merging of the two coUections. The coUection intersection process is

stopped once an element belonging to tiie two coUections is foimd.

5.2.3 S-Join Characteristics

LUce I-Join, the result of S-Join cannot be determined by the first element in a coUection. For

example, if the join predicate is (Jou rna l , e d i t o r - i n - c h i e f c Proceedings.program-

chair) , a negative acknowledgment cannot be given before fuU merging of die two

collections is completed. Hence, non-overlap partitions cannot be created.

In cond-ast to I-Join, however, a positive acknowledgment cannot be given before a

fuU merging. A sub-set cannot be obtained by an intersection. Therefore, S-Join requires a

more restrictive condition than I-Join, in which I-Join requires one match only, whereas S-

Join requires some matches.

5.3 Data Partitioning

Horizontal data partitioning is commonly adopted by paraUel query processing (DeWitt and

Gray, 1992). ParaUelization is achieved through paraUel processing of different parts of data.

This coarse-grained paraUelization has been recognized as suitable for database processing.

Ch. 5. Parallel Collection Join Algorithms page 108

Depending on tiie join query type, data partitioning can be disjoint or non-disjoint. R-Join

queries aUow disjoint (non-overlap) partitions to be created, whereas I-Join and S-Join reqitire

non-disjoint partitions to work with.

5.3.1 Disjoint Partitioning

Common horizontal data partitioning metiiods, such as range or hash, can be used to produce

disjoint (non-overlap) partitions. In R-Join, because die partitioning attribute, also being the

join attribute, is a coUection, only one of the elements wUl be used as the partitioning value. If

the coUection is an artay or a list, partitioning is based solely on die first element of die

list/artay, since list/artay comparison operates on the original elements composition of the

coUection. If the partitioning attribute is a set or a bag, partitioning is based on the smaUest

element of the coUection, because a set/bag comparison requires the coUections to be sorted.

As a running example, consider the data shown in Figure 5.2. Suppose class A and

class B are Journal and Proceedings, respectively. Botii classes contain a few objects shown

by their OIDs (e.g., objects a-i are Journal objects and objects p-w are Proceedings objects).

The join attributes are editor-in-chief of Joiunal and program-chair of Proceedings; and are

of type coUection of Person. The OID of each person in these attributes are shown in the

brackets. For example a(250,75) denotes a Journal object with OID a and the editors of this

journal are Persons with OIDs 250 and 75.

Class A
(Journal)

a(250, 75)
b(2I0,123)
c(125,181)
d(4, 237)
e(289, 290)
1(150.50.250)
g(270)
h(190,189,170)
i(80, 70)

f \ Journal OIDs \
\

e<itor-in-chief OIDs

Class B
(Proceedings)

p(123, 210)
q(237)
r(50, 40)
s(125,180)
t(50, 60)
u(3,1. 2)
v(100,102,104)
w(80, 70)

T \
Proceedings OIDs \

\
program-chair OIDs

Figure 5.2. Sample Data

Figure 5.3 shows an example of disjoint data partitioning of data fi-om Figure 5.2.

Two cases are presented. Case 1 is where the two coUections are artays, and case 2 is where

the coUections are sets.

Ch. 5. Parallel Collection Join Algorithms page 109

CASE 1: ARRAYS

* Collections 1 and 2 are arrays
* 3 processors are used
* Range partitioning is used

(processor 1 - 0-99
processor2 = 100-199
processor 3 - 200-299)

* Partitioning is based on the
first element in each collection.

CASE 2: SETS

* CoUections 1 and 2 are sets
* 3 processors are used
* Range partitioning is used

(processor 1 = 0-99
processor 2= 100-199
processor 3 - 200-299)

* Partitioning is based on the
smallest element in each collection

DISJOINT PARTITIONING

d(4,237)
i(80,70)

c(125, 181)
f(150 , 50, 250)
h(190 , 189, 170)

a(250, 75)
K210,123)
e(289, 290)
g(270)

r(50 ,40)
t(50 ,60)
u (3 , l , 2)
w(80 ,70)

p(123 ,210)
s(125.180)
v(100 , 102, 104)

q(237)

a(250, 75)
d(4 ,237)
f(150,50 ,250)
i(80,70)

K210, 123)
c(125 , 181)
h(190, 189,170)

e(289 ,290)
g(270)

1(50,40)
t(50 ,60)
u(34 ,2)
w(80,70)

p(123 ,210)
s(125, 180)
v(100 , 102, 104)

q(237)

Processor 1
(range 0-99)

Processor 2
(range 100-199)

Processor 3
(range 200-299)

Processor 1
(range 0-99)

Processor 2
(range 100-199)

Processor 3
(range 200-299)

Figure 5.3. Disjoint Partitioning

5.3.2 Non-Disjoint Partitioning

For coUection join queries, especiaUy I-Join and S-Join, it is not possible to have non-overlap

partitions, due to the nature of coUections which may be overlapped. Hence, some data needs

to be replicated. Two non-disjoint partitioning methods are proposed. The first is a simple

replication based on the value of the element in each coUection. The second is a variant of

Divide and Broadcast (Leimg and Ghogomu, 1993), caUed "Divide and Partial Broadcast".

a. Simple Replication

Using a simple replication technique, each element in a coUection is tireated as a single unit,

and is totaUy mdependent of other elements within the same coUection. Based on the value of

an element in a coUection, the object is placed into a particiUar processor. Depending on the

Ch. 5. Parallel Collection Join Algorithms page 110

number of elements in a coUection, the objects which ovra the coUections may be placed into

different processors. When an object is akeady placed at a particular processor based on die

placement of an element, if another element in the same coUection is also to be placed at the

same place, no object repUcation is necessary.

Figure 5.4 shows an example of a simple replication technique. The bold printed

elements are tiie elements which are the basis for the placement of those objects. For example,

object a(250, 75) in processor / refers to a placement for object a in processor 1 because of

tiie value of element 75 in tiie coUection. And also, object a(250, 75) in processor 3 refers to

a copy of object a m processor 3 based on the first element (i.e., element 250). It is clear that

object a is replicated to processors 1 and J. On the otiier hand, object i{80, 70) is not

replicated since both elements wUl place the object at the same place, that is processor 1.

SIMPLE REPLICATION

a(250,75)
d(4 ,237)
f(150, 50,250)
i(80 .70)

b(210, 123)
c(125 , 181)
f(150 , 50, 250)
h(190 , 189, 170)

a(250 ,75)
b(210 , 123)
d(4,237)
e(289,290)
f(150,50, 250)
g(270)

r(50 ,40)
t(50 ,60)
u(3 ,1,2)
w(80 ,70)

p(123 ,210)
s(125 , 180)
v(100 , 102, 104)

p(123,210)
q(237)

Processor 1
(range 0-99)

Processor 2
(range 100-199)

Processor 3
(range 200-299)

Figure 5.4. Simple Replication

This non-disjoint partitioning method is simple. However, die applicabUity of die

simple replication technique is limited to I-Join only, where tiie predicate checks for an

intersection. For complex coUection predicates, involving fuU comparison of two coUections,

a more sophisticated non-disjoint partitioning is needed. A 'Divide and Partial Broadcast" is

then introduced.

b. Divide and Partial Broadcast

The Divide and Partial Broadcast algoritiim, shown in Figure 5.5, proceeds in two steps. The

first step is a divide step, where objects from botii classes are divided into a number of

partitions. Partitioning of tiie first class (say class A) is based on tiie first element of tiie

coUection (if it is a list/array), or tiie smaUest element (if it is a set/bag). Partitioning tiie

Ch. 5. Parallel Collection Join Algorithms page 111

second class (say class B) is exactiy the opposite of the first partitioning, since tiie

partitioning is now based on the last element (Usts/arrays) or the largest element (sets/bags).

Procedure DividePartialBroadcast
Begin

// step 1 (divide)
1. Divide the objects of one class (class A) based on die first element Gists/arrays), or

the smallest element (sets/bags) in each collection.

2. Divide the other class (class 5) based on the last or maximum value in each collection.

// step 2 (partial broadcast)
3. For each partition of A (i = 1, 2,..., n)

Broadcast partition Ai to Bi.. Bn
Place these partitions into processor i

End For
End Procedure

Figure 5.5. Divide and Partial Broadcast Algorithm

The second step is the broadcast step. Partitions of class A are placed togetiier with

partitions of class B only when there is a chance of getting results from tiiis placement. In

otiier words, pairs of partitions not producing any residts wiU not be stored at die same place.

Figure 5.6 shows an example of the Divide and Partial Broadcast technique.

The example shows that coUections in partition 2 of class A wUl not produce an

intersection of any coUections in partition 1 of class B. Partition 2 of class A contain

coUections starting in tiie range of 100-199. They are in no way to have an intersection witii

coUections ending at tiie value of less tiian 100 (e.g., partition 1 class B). Hence, tiiey are not

placed at the same location. Likewise, coUection in partition 3 of class A are not coUocated

with partitions 1 and 2 of class B.

The Divide and Partial Broadcast technique is simUar to the weU known Divide and

Broadcast technique (Leung and Ghogomu, 1993). They divide one class equaUy, and

broadcast tiie otiier. The difference lies in die broadcasting technique. Limiting tiie number of

partitions to be broadcast for the same processing results saves communication costs, even if

it is implemented in a shared-memory architecture. Partial broadcast can be accomplished

only if die partitioning metiiods used by botii classes are opposite to each otiier.

Ch. 5. Parallel Collection Join Algorithms page 112

1. DIVIDE

Partition Al
(range 0-99)

Partition A2
(range 100-199)

Partition A3
(range 200-299)

Class A

a(250, 75)
d(4,237)
f(150, 50,250)
i(80, 70)

b(210.
c (125 .
h(190.

123)
181)
189, 170)

e(289, 290)
g(270)

Partition Bl
(range 0-99)

Partition B2
(range 100-199)

Partition B3
(range 200-299)

Class B

r(50 ,40)
t(50, 60)
u (3 , l , 2)
w(80 ,70)

s(125, 180)
v(100,102, 104)

p(123,210)
q(237)

Based on the smallest Based on the largest

2. PARTIAL BROADCAST

Partial Broadcast

Processor 1:

Processor 2:

Oa-ss A
Partition A1
Objects a, d, f.

Divide

Partition B1
Ohjecti r, !, u, H

Qass A
Partition , \1
Objects a, d,f, i

Class A
ParUtion A 2
Objects b, c, h

Class B
.Partition B 2

•

Object<: T V | •

:

Processor 3:

^

i.

:

ft.

Class A
Partition Al
Objects: a, d,f, i

Class A
ParUtion A 2
Objects: b, c, h

Qass A
Partition A3
Objects e, g

Q a s s B
Partition B3
Objects: p, q

:

•

Figure 5.6. Divide and Partial Broadcast Example

Ch. 5. Parallel Collection Join Algorithms page 113

In regard to the load of each partition, tiie load of tiie last processor may be die

heaviest, as it receives a fuU copy of A and a portion of 5. The load goes down as class A is

divided into smaUer size (e.g., processor 1). Implementing in a heterogeneous paraUel

architecture (i.e.. Scalable ParaUel Processors SPP, network of paraUel servers) where die

power of each processing node varies depending on botii the CPU power and the number of

processors per processing node, partition aUocation can be done according to the power of the

processing node.

If a homogeneous paraUel architecture (e.g., SMP, homogeneous MPP) is used

instead, the load of each partition must then be balanced. This can be achieved by applying

the same algorithm to each partition but with a reverse role of A and B; that is, divide B based

on the first/smaUest value and partition A based on the last/largest value in the coUection. In

this way, more balanced partitions wUl be created.

1. DIVIDE

From Processor 1

Class A

Divide (largest)

ClassB

Divide (smallest)

i(80,70)

a(250,75)
d(4, 237)
f(150.50. 250,

r<50, 40)
t(50,60)
u(3. I 2)
w(80, 70)

; F^rtifottBJl

^ I"«ti««iBi2-

; P3i<re<»lli,^

From Processor 2

WMSM^Wlm

h(190, 189, 170)

i(80,70)

s(125, 180)
v(100, 102, 104)

sESHisaffiasss a(250 75)
d(4, 237)
f(150, 50, 250)
b(210, 123)

FMtiJi«flB21

F4rfjtiOftR^23.

From Processor 3

ySii^m>^^/^f:!i:!iiff:i

i(80,70)

0(125. 181
h(190, 189, 170)

a(250,75)
d(4. 237)
f(150, 50, 250)
b(210, 123)
e(289, 29Q
g(270)

missm*m^m¥:MmsmiiSmMMMMiiM^

^ ^ ^ ^

p(123. 210)

q(237)

i FartiJfiflfiBai

i aalifeoftBSZ.

: arffefflftBSS

Figure 5.7(a). 2-way Divide and Partial Broadcast (DIVIDE)

Ch. 5. Parallel Collection Join Algorithms page 114

2. PARTIAL BROADCAST

Class A

Divide

From Processor 1

tit
Partiuon All

machstlZ

BxishetW^Z.
MMM^MMdAA^M^MMA^

'Aryyy&iA Partition A13

From Processor 2

!y^uAw.y4.u"

Bac&eiU '-iiWMiivk
Partition A21

^Wk-M^Zt
Partition A22

Bmf(^iZ$

Partition A23

From Processor 3

Class B

Partial Broadcast

I Parti nop B11

Partition Bll

Partiuon B11

PartiUon B22

\ Buckets!
;

Suehet^

fiuehit.

i

Partition A31

?2

Partition A32

fS

Partition A33

P^

;̂ _̂̂ K%Jvv.n,-J

^

^ Fartiiion 1L ,̂2

^ Part iuon B32 PaitiLion B33

Figure 5.7(b). 2-way Divide and Partial Broadcast (PARTIAL BROADCAST)

Figure 5.7(a and b) shows tiie results of reverse partitioning of the initial partitioning.

Note tiiat from processor 1, class A and class B are divided into 3 partitions each (i.e.,

partitions 11, 12, and 13). Partition A12 of class A and partitions B12 and B13 of class B are

empty. At tiie broadcasting phase, bucket 12 is "half empty" (contains coUections from one

class only). This bucket can tiien be eliminated. In die same manner, buckets 21 and 31 are

also discarded. Because tiie number of buckets is more tiian the number of processors (e.g., 6

buckets: 11, 13, 22, 23, 32 and 33; and 3 processors), load balancing is achieved by

spreading and combining partitions to create more equal loads. For example, buckets 11, 22

Ch. 5. Parallel Collection Join Algorithms page 115

and 23 are placed at processor 1, buckets 13 and 32 are located at processor 2, and bucket 33

is placed at processor 3. The result of this placement shovm in Figure 5.8 looks better than

the initial placement.

Processor 1:

Processor 2:

Processor 3:

Processor Allocation

Qass A
Partition A13
Objects' a, d,f

Qass A
Partition A32
Objects c, h

Bwshff;

Qass A
Partition A33
Objects: a, d,f,b,e, g E;

WMMfMMi'

Af" :

•iV'.,:

Qass A
Partition Al 1
Objects I

,

Qass A
Partition A22
Objects: c, h

Qass A
Partition A23
Objects: a, d,f, b

Q a s s B
Partition B l l
Objects- r, t, u, w

— — - - '

Q a s s B
Partition B22
Objects- s, V

Q a s s B
Partition B22
Objects: .?, v

:

Q a s s B
Partition B11
Objects: t, r, u, w

Q a s s B
Partition B32
Objects: p

>

Q a s s B
Partition B32
Objects: p

Q a s s B
Partition B33
Objects: q

• :

:

:

Figure 5.8. Processor Allocation

Ch. 5. Parallel Collection Join Algorithms page U6

5.4 Sort-Merge Parallel Collection Join Algorithms

For each join query type, paraUel algoritiims are proposed. These algoritiims are composed of

two major parts: data partitioning and local join. R-Join employs disjoint partitioning,

whereas I-Join and S-Join use non-disjoint partitioning techniques. After data partitioning is

completed, each processor has its own data. The join operation can then be done

independentiy. In the local joining process, optimization is done by transforming the original

join predicates into predicate functions designed especiaUy for coUection join predicates. The

main objective of this transformation is to avoid intermediate coUections being created. The

overaU query results are the imion of the restUts from each processor.

5.4.1 Sort-Merge Join Predicate Fimctions

Predicate functions are the kernel of join algorithms. The join predicate functions are boolean

functions which perform the predicate checking of the two coUection attributes of a join

query. The join algorithms, further, use these predicate functions to process aU coUections of

die two classes to join. For each join predicate type (i.e., R-Join (relational), I-Join

(intersection), and S-Join (sublist/subset)), a predicate function is constructed. Each of these

functions applies a sort-merge techiuque. Figure 5.9 shows the pseudo-code for each

predicate function.

The is_equal fimction is a typical artay/set comparison. Both coUections (sets/bags)

are sorted first. The sorting process is purposely done in the predicate function, since this

predicate is to be executed locaUy in each processor. The sorting process can have been done

before data partitioning, but in order to promote paraUelization, sorting is carried out after

data partitioning.

The isjoverlap function returns tine if the two operands are overlapped. The

function utUized simple sort and merge techniques for both coUections. For lists/arrays, tiiey

are normaUy converted to sets/bags prior to executing the function.

The is_sublist function checks whether tiie first list is a sublist of tiie second list.

Two identical lists are regarded as one list being a sublist of the other. For an

is_proper_sublist predicate, identical lists are not aUowed. The isjublist function gets aU

positions of tiie top element of tiie first list. For each position found, a comparison between

die second list (starting from tiie position for as long as tiie lengtii of tiie first list) and tiie first

list is performed. This procedure is necessary as lists may contain duplicate items.

Ch. 5. Parallel Collection Join Algorithms jjy

1) Function is_equal (CI, C2: collection) Retum Boolean
Begin

If count(Ci) = count(C2) Then
If CI and C2 are sets/bags and not sorted Then

Sort CI and C2
End If
For /• = 1 to count(Ci)

IfCi(0!=C2(/)Then
Retum FALSE

End If
End For

Else
Retum FALSE

End If
Retum TRUE

End Function

2) Function is_overIap (Bl, B2 : bag) Retum Boolean
Begin

If Bi andB2 are not sorted Then
SonBl and 52

End If
Merge Bl and B2
If a match is found Then

Retum TRUE
Else

Retum FALSE
End If

End Function

3) Function is_sublist (LI, L2: list) Retum Boolean
Begin

If (LI = L2) Then //for is_proper_sublist only (use the is_equal function)
Retum FALSE

End If
Search Li[0] in L2 giving ;705[]
For each entry rnpos]]

If Li =L2|>05:length(Li)] Then
// use the is_equal function

Retum TRUE
End If

End For
Retum FALSE

end function

4) Function is_subset (Bl, B2: bag) Retum Boolean
Begin

If Bi andB2 are not sorted Then
SortBi and 52

End If
Convert Bi and B2 to lists
Retum isjsublist (Bl, B2)
II call is_proper_sublist for is_proper_subset

End Function
Figure 5.9. Sort-Merge Collection Join Predicate Functions

Ch. 5. Parallel Collection Join Algorithms page US

The subset predicate is simpler tiian tiie subUst predicate. Like die is_sublist and die

is_proper_sublist functions, the isjubset and the is_proper_subset fimctions are also

provided. The only difference between tiie isjubset function and die isjublist function is

determined by tiie coUection type of tiie operand. After sorting tiie sets/bags and converting

them to lists, the is_subset function caUs tiie is_sublist fimction. The result of tiie is sublist

function also becomes the final result of the is_subset function.

5.4.2 Parallel Sort-Merge R-Join Algorithm

The sort-merge version of paraUel join algoritiim for R-Join makes use of die sort-merge

operation twice: one to tiie coUection attribute, the other to the objects of botii classes.

The joining step is further decomposed into tiie sorting and the merging phases. The

sorting operation is applied twice: to the coUections, and to the objects. Sorting each

coUection is needed oiUy if the coUection is a set or a bag, and sorting the objects is based on

the first element (if it is an array or a list) or on the smaUest element (if it is a set or a bag).

The sorting phase is not carried out before data partitioning, as sorting done in paraUel in

each processor after data partitioning wiU minimize the time. Figure 5.10 shows the result of

the sorting phase of the two aforementioned cases.

Like the sorting phase, the merging phase consists of two operations: object merging

and coUection merging. Merging the objects of the two classes is based on the first element of

each coUection. If they are matched, a subsequent elements comparison can proceed. Merging

the two coUections of each pair of objects (steps Hi and iv) is, in fact, implemented by the

isjsqual predicate fimction. Figure 5.11 gives the pseudo-code for the ParaUel Sort-Merge R-

Join algorithm.

Ch. 5. Parallel Collection Join Algorithms page 119

CASE 1: ARRAYS

CASE 2: SETS

Processor 1
Results= (i, w)

Processor 2
Results= nil

Processor 3
Results= nil

Processor 1
Results= (i, w)

Processor 2
Results= (b, p)

Processor 3
Results= nil

d(4,237)
i(80,70)-^^^

c(125, 181)
f(150 , 50, 250)
h(190, 189, 170)

b(210, 123)
a(250,75)
g(270)
e(289,290)

u(3,l,2)
i(50 ,40)
t(50,60)

^w(80 ,70)

v(100, 102, 104)
p(123,210)
s(125, 180)

q(237)

Note: Sort the collections based on their first elements

d(4,237)
f(50 , 150, 250)
i(70, SO)-^^,^^^
a(75 ,250) ^ ~ ^

b(123,210)~~~-.__
0(125,181)
h(170 , 189, 190)

§(270)
e(289,290)

u(1, 2, 3)
r(40,50)
t(50,60)

-~w(70 ,80)

v(100 , 102, 104)

~~-p(123,210)
s(125, 180)

q(237)

Note: Sort each collection first, and then sort all
collections based on their first elements.

Figure 5.10. Sorting phase (R-Join)

Program Farallel-Sort-Merge-R-Join:
Begin

// step 1: partitioning step
partition the objects of both classes based on their first elements (for lists/arrays), or

their minimum elements (for sets/bags).

// step 2: joining step (in each processor)
// sort phase

(i) sort die elements of each collection (for sets/bags only),
(ii) sort die objects based on the first element of die collection.

// merge phase (call is_equal function)
(iii) merge the objects of boti: classes based on tiieir first element on

the join attribute,
(iv) if matched, merge the two collection attributes based on their

individual elements (starting from the second element).
End Program

Figure 5.11. Parallel Sort-Merge R-Join Algorithm

Ch. 5. Parallel Collection Join Algorithms page 120

5.4.3 Parallel Sort-Merge I-Join Algorithm

ParaUel algorithms for I-Join proceeds in two steps: the first step is die caU the Divide and

Partial Broadcast procedure, and the second step is the local joining step, in which a nested

loop is used for aU objects from the two operation at a particular processor. In the

comparison of a pair of objects, tiie is_overlap function is invoked.

Processor 1

Total Load = 16
Results=(i,w), (c,s)

Processor 2

Total Load ~ 14
Residts=(f,r), (f.t)

Processor 3

Total Load = 12
Results=(d,q), (b.p)

Note: elements within each coUection are sorted.
(collections within a partition are not necessarily sorted)

S M W * ? ?•»

Partition All
i(70,80) - - _ _ _ ^^^ -z?^

Partition All
c(125, 181) - ~
h(170 189, 190)

Partition Bll
r(40, 50)
t(50, 60)
u (l ,2 ,3)

- -w(70, 80)

^ _ _̂ <&Ji Tn^

Partition A2J
a(75, 250)
d(4, 237)
f(l50, 50,250)
b(123,210)

SadcetTi

< >

Partition B22

-s(125, 180)
v(100, 102, 104)

Partition Al ?
a(75, 250)
d(4, 237)
f(150, 50, 250) - - = =

Partition A32
c(125, 181)
h(170, 189, 190)

Partition Bll
- -it40, 50)
- -t(50, 60)

u (l ,2 ,3)
w(70, 80)

Partition B32

p(123,210)

^

Partition A33
a(75, 250)
d(4, 237) ~ ^ ^

f(150, 50, 250)'~~ V - -
b(123,210) - ' '
e(289, 290)
g(270)

E <
Partition B32

. - p (123 ,210)

Partiuon B33
- ~q(237)

Figure 5.12. An Example of Sort-Merge I-Join

Using a 2-way Divide and Partial Broadcast technique presented earlier. Figure 5.12

shows the process of the is_overlap function, in which elements of each coUection are sorted

first, before obtaining the result through coUection merging. The load of each bucket is

calculated by multiplying the number of objects fi-om the two partitions of the two classes.

Ch. 5. Parallel Collection Join Algorithms ^ J2j

since tiie merging process between the two classes is done tiirough a nested loop. For

example, tiie load of bucket 11 is equal to 4 (load of partition Al 1 = 1, load of partition B11

= 4, load of bucket 11 is 1x4=4). The total load of each processor is die sum of tiie load of

each bucket in tiiat processor. Figure 5.12 also shows tiiat tiie load of each processor using a

2-way Divide and Partial Broadcast is quite equal. Figure 5.13 presents die pseudo-code for

paraUel sort-merge I-Join algorithm.

Procedure Parallel-Sort-Merge-I-Join
Begin

// step 1 (data partitioning):
Call DividePartialBroadcast

II step 2 Gocal joining):
In each processor

// a) sort phase
For each object of class A and B

Sort the collection
End For

// h) merge phase
For each object of class A

For each object of class B
call IsjOverlap
If TRUE Then

Concatenate the two objects
End If

End For
End For

End

End Program

Figure 5.13. Parallel Sort-Merge I-Join Algorithm

5.4.4 Parallel Sort-Merge S-Join Algorithm

Parallel join algorithm for S-Join is made of a simple sort-merge and a nested-loop structure.

A sort operator is applied to each coUection, and then a nested-loop construct is used in

joining the objects. The algorithm uses a nested-loop structure, because of not only its

simplicity but also the need for aU-round comparisons among aU objects. As the predicate

functions are implemented by a merge operator, it is necessary to sort the coUections. This is

done prior to the nested-loop in order to avoid repeating the sorting operation. Depending on

the predicate type (sublist or subset), an appropriate predicate function is caUed.

Ch. 5. Parallel Collection Join Algorithms ^^^^ ^22

The partitioning sti-ategy is also based on tiie Divide and Partial Broadcast technique.

The use of the Divide and Partial Broadcast is attractive to coUection joins because of tiie

nature of coUections where disjoint partitions witiiout replication are often not achievable.

Using tiie same example shown earlier, tiie result of a subset S-Join is {d,q),{i,w), and {b,p).

The last two pairs wUl not be included in tiie results, if die join predicate is an

is_proper_subset, because die two coUections in each pair are equal. Figure 5.14 presents the

pseudo-code for the algorithm.

Program Parallel-Sort-Merge-S-Join
Begin

// step 1 (Divide and Partial Broadcast):
Call DividePartialBroadcast

II step 2 (sort-merge join):
In each processor

// a) sort phase (for issubset only)
For each object of class A and B

Sort the collection
End For

// b) merge phase
For each object A

For each object B

Case sublist predicate:
Call is_sublist

Case proper sublist predicate:
Call is_proper_sublist

Case subset predicate:
Call isjsubset

Case proper subset predicate:
Call isj)roper_subset

End Case

If TRUE Then
Concatenate the two objects

End If
End For

End For
End

End Program
Figure 5.14. Parallel Sort-Merge S-Join Algorithm

Ch. 5. Parallel Collection Join Algorithms page J23

5,5 Hash Collection Join Algorithms

This section presents a hash-based version of paraUel coUection join algorithm. Like tiie sort-

merge version, the hash-based version of R-Join uses a disjoint partitioning, whereas tiie

hash-based versions of I-Join and S-Join use non-disjoint partitioning. AdditionaUy, hash-

based I-Join may use simple repUcation technique, as weU as the proposed Divide and Partial

Broadcast technique. Since tiie join atdributes are coUections, consisting of a number of

atonuc elements, multiple hash tables are employed.

5.5.1 Multiple Hash Tables and Probing Functions

Each hash table contains aU elements of die same position of aU coUections. For example,

entiries in hash table 1 contain aU first elements in tiie coUections. The number of hash tables

is determined by tiie largest coUection among objects of tiie class to be hashed. If die

coUection is a list/array, the position of tiie element is as tiie original element composition in

each coUection. If the coUection is a sef bag, tiie smaUest element witiiin each coUection wUl

be hashed into the first hash table, the second smaUest element is hashed to the second hash

table, and so on. Set/bag hashing wUl be enhanced if the set/bag is preprocessed by means of

sorting, so that the hashing process wUl not have to search for the order of the elements witiiin

the set/bag. Figure 5.15 shows an example where three objects are hashed into multiple hash

tables. Case 1 is where the objects are artays, and case 2 is where the objects are sets.

Once the multiple hash tables are buUt, the probing process begins. The probing

process is basicaUy the central part of coUection join processing. The first probing function is

caUed function universal, which is used by the hash-based R-join algorithm. It recursively

checks whether a coUection exists in the multiple hash table and the elements belong to the

same coUection. The second probing function is caHtd function some, which is simUar to the

fimction universal. The difference is that when an element of a coUection does not have any

match in the current hash table, it continues searching in the next hash table. This function is

used by the hash-based S-join algorithm. The last probing function is caUed procedure

existential, which checks whether an element of a coUection exists in the hash tables. This is

used by the hash version of I-join algoritiim. The need for multiple hash tables for tiie

existential type of probing is not that critical, since solving an existential quantifier can also

be done in a single hash table. Therefore, tiie mechanism of a multiple hash table is optional.

A large single hash table can be used instead. Figure 5.16 shows die pseudocode for die tiiree

probing functions for the hash versions of paraUel coUection join algorithms.

Ch. 5. Parallel Collection Join Algorithms page 124

Case 1: ARRAYS

a(250, 75)
b(210,123)
f(150, 50, 250)

Case 2: SETS

a(250, 75)
b(210,123)
f(150, 50. 250)

Hash Table 1 Hash Table 2 Hash Table 3

Sorted

- >

150(f)

210(b)

250(a)

a(75, 250)
b(123, 210)
f(50,150, 250)

Hash Table 1

50(f)

75(a)

123(b)

50(f)

75(a)

123(b) 250(f)

Hash Table 2 Hash Table 3

150(f)

210(h)

250(a)
250(f)

Figure 5.15. Multiple Hash Tables

Ch. 5. Parallel Collection Join Algorithms
page 125

1) Function universal (element i, hash table j) Retum Boolean
Begin

Hash and Probe element / to hash table7"
If matched Then

Increment iandj
If end of collection is reached Then

Remm TRUE
End If
If hash table j exists Then

result = universal (i, f)
Else

Retum FALSE
End If

Else
Retum FALSE

End If
Retum result

End Function

2) Function some (element /, hash table J) Retum Boolean
Begin

Hash and Probe element / to hash table ;
If matched Then

Increment/andJ
If end of collection is reached Then

Retum TRUE
End If
If hash table J exists Then

result = universal (i, j)
Else

Retum FALSE
End If

Else
increment y
result = some (i, j)

End If
Retum result

End Function

// match the element and the object

// check for end of collection of the
// probing class,

// check for die hash table

// match the element and the object

// check for end of collection of the
// probing class.

// check for the hash table

// continue searching to the next
// hash table.

3) Procedure existential
Variables: element i, hash table j

Begin
For each element /

For each hash table j
Hash element / into hash table j
If TRUE Then

Put the matching objects into the query result
End If

End For
End For

End Procedure

Figure 5.16. Probing Functions

Ch. 5. Parallel Collection Join Algorithms page 126

5.5.2 Parallel Hash R-Join Algorithm

LUce the sort-merge version of paraUel R-Join algorithm, the data partitioning is a disjoint

partitioning which makes use of tiie first elements (for Usts/arrays) or tiie smaUest elements

(for sets/bags).

The local joining process in each processor consists of several steps. The first step

(step 2a) is the preprocessing and is only applicable to sets and bags. The second step (step

2b) is to create multiple hash tables. The titird step (step 2c) is the probing process where the

function universal is caUed. Since this function acts like a universal quantifier where it checks

only whether aU elements in a coUection exist in another coUection, it does not guarantee that

the two coUections are equal. In order to check for die equality of two coUections, it has to

check whether coUection of class A (coUection in the miUtiple hash tables) has reached end of

coUection. This can be done by checking whether the size of the two matched coUections is

the same. Figiu-e 5.17 shows the pseudo-code for the hash version of paraUel R-Join

algorithm.

Program Parallel-Hash-R-Join
Begin

// step 1 (disjoint partitioning):
partition the objects of both classes based on their first elements (for lists/arrays), or

their minimum elements (for sets/bags).

// step 2 Gocal joining):
In each processor

// a. preprocessing (sorting) // for sets/bags only
For each collection of class A and class B

Sort each collection
End For

// b. hash
For each object of class A

Hash the object into multiple hash table
End For

// c. hash and probe
For each object of class B

Call universal (1,1) // element 1, hash table 1
If TRUE AND die coll. of class A has reached end of collection Then

Put the matching pair into die result
End If

End For

End
End Program

Figure 5.17. Parallel Hash R-Join Algorithm

Ch. 5. Parallel Collection Join Algorithms page i27

5.5.3 Parallel Hash I-Join Algorithm

Data partitioning for the hash version of I-Join is avaUable in two forms: Divide and Partial

Broadcast and Simple Replication. The local joining process is done through an existential

procedure caU. The pseudo-code for paraUel hash I-Join algorithm is shovm in Figure 5.18.

Program Parallel-Hash-I-Join
Begin

// step 1 (data partitioning):
Divide and Partial Broadcast version:

Call DivideAndPartialBroadcast partitioning
Simple Replication version:

Call SimpleReplication partitioning

// step 2 (local joining):
In each processor

// a. hash
For each object of class A

Hash the object into multiple hash table
End For

// b. hash and probe
For each object of class B

Call existential procedure
End For

End

End Program ^ ^ ^ _

Figure 5.18. Parallel Hash I-Join Algorithm

5.5.4 Parallel Hash S-Join Algorithm

The paraUel hash S-Join algoritiim is very simUar to tiie paraUel hash R-Join algoritiim. The

differences can be highlighted as foUows. One is about die data partitioning metiiod. ParaUel

hash S-Join algorithm uses tiie Divide and Partial Broadcast, instead of a disjomt partitioning.

The otiier dUference pertains to the joining process. S-join uses the function some, and die

checking in step 2c can be more complicated tiian tiiat of R-join which checks for end of

coUection only. If tiie join predicate is an is_proper predicate, it has to make sure tiiat tiie two

matched coUections are not equal. This can be implemented in two checkings. First is to

check whetiier tiie first matched element is not from die first hash table, and second is to

check whetiier tiie coUection of tiie first class has not been reached. The second checking is

applicable only if tiie first checking faUs. If eitiier condition is satisfied, die matched

coUections are put into the query result.

Ch. 5. Parallel Collection Join Algorithms page 128

If the join predicate is a normal subset/sublist, tiie checking is simpUfied to checking

the retum value from tiie function some only. No other checking is necessary since function

some is a manifestation of the subset^subUst predicate. Figure 5.19 gives die pseudo-code for

paraUel hash S-Join algorithm.

Program Parallel-Hash-S-Join
Begin

// step 1 (data partitioning):
Call DivideAndPartialBroadcast partitioning

// step 2 (local joining):
In each processor

// a. preprocessing (sorting) // for sets/bags only
For each collection of class A and class B

Sort each collection
End For

// b. hash
For each object of class B

Hash the object into multiple hash table
End For

// c. hash and probe
For each object of class A

Call some (1,1) // element 1, hash table 1
Case is_proper predicate:

If TRUE Then
If first match is not from the first hash table Then

Put the matching pairs into the query result
Else

If nor end of collection of the first class Then
Put the matching pairs into the query result

End If
End If

Default:
If TRUE Then

Put the matching pair into the result
End If

End Case
End For

End

End Program ^

Figure 5.19. Parallel hash S-Join Algorithm

Ch. 5. Parallel Collection Join Algorithms page 229

5.6 Discussions

5.6.1 Data Partitioning

Disjoint partitioning is where each partition has no overlap with otiier partitions. This method

of partitioning is highly desirable for paraUel processing, since each paraUelizable partition is

totaUy independent of the others and there is no repUcation. Due to tiie nature of coUections

which is sometimes overlap, disjoint partitions may not be able to be produced. One exception

is in the relational operations of two coUections (i.e., R-Join), where disjoint partitioning can

be created based on their first elements (for lists/arrays) or their smaUest elements (for

sets/bags). Although R-Join can use a non-disjoint partitioning like Divide and Partial

Broadcast, it is not desirable for the above reason. I-Join and S-Join, however, have to utUize

non-disjoint partitioning, as no disjoint partitioning is avaUable.

Comparing 'Divide and Partial Broadcast" and "Simple Replication" techniques,

simple replication is simpler. But the appUcabUity of this non-disjoint partitioning is linuted

and can be used only in an intersection join predicate (i.e., I-join), since the intersection join

predicate is element-based not coUection-based. Divide and Partial Broadcast is more general,

and applicable to both I-Join and S-Join.

5.6.2 Join

Hash operation is knovm to have a linear 0(N) complexity, whereas sort operation is, at least,

0{N logN) complexity. Therefore, it can be expected tiiat tiie hash version of parallel

coUection join algorithms wUl perform better tiian that of tiie sort-merge version.

The sort-merge version for paraUel I-join and paraUel S-join algoritiims employ a

nested loop constiiict. Since nested loop is known to be very expensive due to its quadratic

0(N^) complexity, tiie hash version of the two coUection joins is expected to offer a better

performance.

5.7 Conclusions

ParaUel join algoritiims normaUy are comprised of two major components, namely data

partitioning and local joining. Two data partitioning methods were inti-oduced, namely

disjoint and non-disjoint partitioning. The avaUabUity of tiiese data partitioning mediods is

important since different coUection join query type requires a different data partitioning

metiiod. R-Join queries, which make use of the first element or die smaUest element

(depending on whetiier tiie coUection is a list/array or a set/bag), employs disjoint

Ch. 5. Parallel Collection Join Algorithms page 130

partitioning. In contrast, I-Join and S-Join, which cannot make use of the first element or the

smaUest element as a tool to create disjoint partitions, have to rely on non-disjoint partitioning

metiiod.

Sort-merge and hash have been known as strong contenders for joining algorithms.

For each coUection join query type, two versions of paraUel join are provided: one is based on

sort-merge, the other is based on hash.

The major contributions of this chapter are as foUows.

• Disjoint partitioning which is based on the first elements (for Usts/arrays) and

the smaUest elements (for sets/bags) are presented. The role of the first elements

of lists/artays, and the smaUest elements of sets/bags are highlighted, especiaUy

in conjunction with data partitioning.

• Divide and Partial Broadcast partitioning is introduced. This non-disjoint

partitioning method is a variant and an improvement on the traditional Divide

and Broadcast technique.

• Parallel Sort-Merse Collection Join Algorithms are proposed. The sort-merge

operation is basicaUy applied twice: one to die coUections and die other to tiie

objects.

• Parallel Hash Collection Join Alsorithms are proposed. Multiple hash tables for

paraUel R-Join and paraUel S-Join are also intiroduced.

The need for join algoritiims especiaUy designed for coUection join queries is clear,

since tiie conventional paraUel join algoritiims were not designed for coUection types.

Chapter 6

Query Optimization Algorithms

6.1 Introduction
This chapter presents query optimization algorithms which transform initial queries into

their optimized access plans. The transformation exploits inter-object and inter-class

parallelization based on path traversal. Path traversal has been recognized as one of the

strengths of object-oriented query processing, and is widely accepted as being more

efficient than explicit join operations, due to pointer referencing which is not available to

explicit join operations. Optimization based on path traversals is not only simple, but also

efficient in both optimization process and query execution.

The rest of this chapter is organized as follows. Section 6.2 briefly discusses

primitive query operations which include selections, path traversals, and explicit join

operations. Section 6.3 presents a foundation for query optimization which contains

semantic and processing rules. Optimization of primitive operations are also described.

Section 6.4 presents query optimization algorithms. Section 6.5 shows some examples of

how to apply the query optimization algoritiims. Section 6.6 presents a discussion. Finally,

section 6.7 gives the conclusions.

6.2 Preliminaries
Query optimization algoritiims deal witii transformation and manipulation of primitive

query operations. The following gives a brief overview of primitive operations and their

parallelization.

Ch. 6. Query Optimization Algorithms page 132

6.2.1 Primitive Query Operations

There are three primitive query operations, namely: selection, path traversal, and explicit

join operations. In parallel object-oriented database systems, each of these primitive

operations are implemented by means of parallel algoritiims.

a. Selection Operations

Selection operations in object-oriented databases are similar to those in relational databases.

Selection operations are used to restrict objects of a class based on certain conditions. The

simplest form of selection is selection on single classes. These queries are known as single-

class queries. When the class involves an inheritance hierarchy, the query is then called as

an inheritance query. The parallelization model for single-class and inheritance queries is

known as inter-object parallelization, in which each object is processed in parallel with

other objects.

b. Path Traversals

Path traversals have been recognized as one of the strengths of object-oriented query

processing, as information retrieval can be achieved through pointer navigations. For 2-

class path expression queries, there are two types of path traversals: forward and reverse

d-aversal. A mixed traversal between forward and reverse traversals can be applied to

complex path expression queries involving more than two classes.

Forward Traversals

Forward traversal is defined as traversmg from one class to another class tinrough pointer

navigation by following tiie path direction. There are basically two different views of

forward traversals.

• Class-based forward traversals.

Class-based forward traversal is where after processing a class, it traverses and

processes another class. Processing a class refers to accessing all objects of that

particular class. In otiier words, processing objects of subsequent classes along the

patii cannot start before finishing processing objects of tiie current class. This kind

of forward traversal is very much influenced by the appearance of die query

schemas, often shown m a graphical notation, where tiie query is represented as an

interconnection of classes (denoted as nodes). Hence, forward traversal of nodes

can be done through a depth-first search technique.

Ch. 6. Query Optimization Algorithms page 133

Class-based forward traversal faces several limitations. First, whUe processing

an object of a particular class, the information of the location of its associated

objects must be kept, so that these objects can be tracked dovra when processing the

associated class. Storing the information of the associated objects is not purely a

traversal. It is somehow similar to index accesses, if die associated object

identifiers are kept as an index. Second, class-based forward traversal is influenced

by typical binary relational operations, e.g., join operations. Class-based forward

traversal is often called an "implicit join", since no acmal joining operation is

performed. Hence, processing multiple classes (more than 2 classes) in a linear

chain path can be described as having multiple 2 class forward traversal operations

(or implicit join operations). In other words, the processing mechanism can be

described to as serial steps of "joining" a pair of classes, in which processing of

subsequent classes is done by "joining" the result of the previous step with the

current class. Like explicit join which regards the two operands of the operation as

being equal, implicit join may be trapped by the same concept, unless the order of

the operands is explicitly emphasized. Otherwise, forward traversal which

emphasizes the order of classes will become meaningless.

• Object-based forward traversals.

Because of the limitations faced by the class-based forward traversals, an

object-based forward traversal is adopted. Object-based forward traversal is where

processing a complex object is carried out by traversing from a root object to its

associated objects. In sequential processing, processing anotiier complex object

cannot proceed before finishing the current complex object.

A parallelization model for an object-based forward traversal is called as inter-

object parallelization.

Reverse Traversals

Reverse traversal is defined as traversing a class to another class by reversmg the path

dUection. This operation is typical for queries involving selection operations on the "end

classes" of a patii expression. Reverse traversal can also be viewed from a class pomt of

view and an object point of view. The object-based reverse traversal is explained first.

• Object-based reverse traversals.

An object-based reverse tiraversal is a process whereby after retrieving an

associated object, it searches for die matching root objects. The process is repeated

Ch. 6. Query Optimization Algorithms page 134

for all associated objects. This process is simUar to a nested loop operation, which

is known to be inefficient.

• Class-based reverse traversals.

Due to die inefficiency of object-based reverse traversal, a class-based reverse

traversal is adopted instead. A class-based reverse traversal is accomplished by

processing all associated objects first. Upon completion of this process, all root

objects are accessed and their matched associated objects are traced.

The reverse traversal is reflected through the order of the classes to be

processed. Using a parallel processing method, each of the classes is executed in

parallel. Furthermore, if classes in the query require any prior selection operations,

these classes may be executed in parallel as well. A parallelization model for a

reverse traversal is known as inter-class parallelization.

c. Explicit Join

Explicit join operation is a typical relational query operation. In object-orientation, it is

sometimes necessary to perform an explicit join operation, simply because not all

information is linked through pointers, and hence path traversals are not always applicable.

The term "explicit join" is used merely to distinguish explicit join from implicit join

(KimW, 1989). The former performs an actual join operation, whilst the latter does not

perform the join operation physically.

Parallelization of an explicit join operation is provided by means of parallel join

algorithms. For explicit jom based on simple attributes, like in relational databases, parallel

join algorithms are provided by existing parallel join algorithms (Torbjomsen, 1993), such

as parallel hash join, GRACE join, etc. For collection join, parallelization is provided by

parallel collection join algorithms, which are to some extent different from the conventional

parallel join algorithms, due to the complexity of collection operations.

6.3 Foundation for Query Optimization
The foundation for query optimization lies in basic heuristic rules and optimization of

primitive operations. The heuristic rules are built upon tiie semantic knowledge of query

and database schemas, and die processing costs of tiie primitive operations. The

optimization of primitive operations is achieved through transforming primitive operations

from one form to another for more efficient executions.

Ch. 6. Query Optimization Algorithms page 135

6.3.1 Basic Rules

There are four basic heuristic rules. They can be classified into two categories: semantic

and processing costs. The semantic knowledge is developed around the basic knowledge on

inheritance hierarchies (i.e., super/sub-classes and polymorphism) and aggregation

hierarchies (i.e., path draversals). The processing cost determines die processing cost

hierarchy for primitive operations.

a. Semantic Rules

The semantic knowledge can be elaborated into two rules: inheritance rule and forward

traversal rule. The inheritance mle deals with simplification of inheritance hierarchies in

query processing, whereas the forward traversal mle concems path traversal in aggregation

hierarchies.

Inheritance Rules

The inheritance rules consist of super-class and sub-class rules. These mles deal with

super-class queries and sub-class queries, respectively. Super-class queries are queries

targeting super-classes and normally involve a super-class node and all of its sub-class

nodes, whereas sub-class queries are queries targeting sub-classes and basically concentrate

on sub-class nodes.

SUPER-CLASS RULE. All sub-class nodes in a super-class query are collapsed into

their super-class nodes.

PROOF. Due to die polymorphic feature of an objects, an object of type sub-class is

also an object of type super-class.

EXAMPLE. Queries on a super-class A must also mclude sub-classes B and C. The

sub-classes are then simplified, and collapsed into dieir super-class A.

e ^ 0
0'"©

A query example of die above schema is to red-ieve objects of class A

which satisfy a certain condition. Since all sub-class objects are also super­

class objects, all sub-class objects are automatically accessed by the query.

The sub-class simplification is naturaUy reflected in die OQL statement, in

which the sub-classes are not mentioned in the query.

Ch. 6. Query Optimization Algorithms page 136

OQL. Select a
From a in A
Where a.attributel = constant

SUB-CLASS RULE. Super-class nodes in a sub-class query are collapsed into their

sub-class nodes. All properties of the super-class now belong to its sub­

class.

PROOF, A sub-class object is an object that belongs to die sub-class, altiiough some

properties are declared in its super-class. Consequentiy, all properties of the

super-class actually belong to its sub-class. Accessing a property of a sub­

class which has been declared in its super-class, is the same as accessing a

property of the sub-class which has been declared in the sub-class itself.

EXAMPLE. Queries on sub-class B which has a reference to a class C through its

super-class A can be done directiy without its super-class.

©
0 " G^©

This transformation is also reflected by the query written in OQL in which

the super-class is not mentioned directly in die query. The query is to

retrieve objects of class B where the associated object of class C satisfies a

certain condition. Although b . r e l is declared dirough its super-class A,

this relationship stUl belongs to the sub-class B.

OQL. Select b
From b in B, c in b.rel
Where c.attributel = constant

Forward Traversal Rule

FORWARD TRAVERSAL RULE. Traversing from node A to 5 can be performed if

there is a directed arc from node AtoB.

PROOF. A directed arc from node AtoB exists, if one of die properties in class A

contains class B as its domain. Accessing any property of class B from class

A can be done by specifying die A's property of domain class B and the

property of class B itself (a dot notation is often used, e.g., A3). Accessing

any properties of class A from class B is not possible if none of the

properties in class B contains class A as the domain.

Ch. 6. Query Optimization Algorithms page 137

If an inverse relationship exists between two associated classes, it can be

determined in which direction a traversal is more desirable.

EXAMPLE. Suppose the foUowing schema exists, \£) > Q), where a property

of A has B as its domain. The following query written in OQL is to retrieve

objects of class A which satisfy a certain condition m its associated class B.

The predicate evaluation is carried out by means of forward traversal from

class A to class B.

S e l e c t a
From a in A, b i n a . r e l
Where b . a t t r i b u t e l = cons tan t

The clause b in a. r e l indicates a path traversal from an object of class

A to its associated objects m class B. When an inverse relationship exists:

\^lX v l / . it becomes possible to traverse from class B to class A

(depending on where the selection predicate is located). The above query

can be rewritten to as follows.

S e l e c t a
From b in B, a in b.rel_inverse
Where b.attributel = constant

b. Processing Rules

The processing mles are concemed with the processing cost hierarchy of primitive

operations. The processing cost hierarchy can be described by two mles: filtering rule and

explicit join rule.

In the query processing, path traversal is normally associated with selection

operations, where filtering is done. The filtering mle is a manifestation of selection

operation in aggregation hierarchies.

Explicit join has been recognized as the most expensive operation in relational

queries. Smce explicit join operation is sometunes required in OOQ, an explicit jom mle is

adopted from a well-established knowledge of relational query optimization.

Filtering Rule

FUter is provided by means of a selection operation. The impact of filtering becomes greater

along die aggregation hierarchy tiirough patii traversal. This filtering mle is applicable to

both forward and reverse traversals.

Ch. 6. Query Optimization Algorithms page 138

FELTERING RULE. A traversal is more desirable when starting from a class where

there is a selection operation, unless this class contains dangling objects

(partial relationship).

PROOF. Suppose a directed path from A to J5 exists. If there is a selection operation

on class A, only objects of class B associated with the selected objects of

class A wUl be accessed. FUtering is accomplished by the selection

operation on class A. In the absence of a selection operation, all associated

objects must be accessed.

EXAMPLE 1. Given a query schema \ ^ ^ v L / , and there is no selection

operation on class A, the query will require all objects of class A and all of

the associated objects of class B to be accessed.

Select a
From a in A, b in a.rel
Where <some condition on B or no condition>

EXAMPLE 2. Given the same query schema as above, but with a selection operation

on class A, K^ ^ \t), the query will requUe all objects of class A and

only those associated objects of class B from the selected objects A need to

be accessed. Depending on the selectivity factor, some of the associated

objects need not to be processed.

Select a
From a in A, b in a.rel
Where a.attributel = constant

Explicit Join Rule

It is well known tiiat explicit join operation is the most expensive operation, although

sophisticated join algoritiims to reduce tiie processing cost have been developed. The

explicit join rale in relational databases can be used to support object-oriented query

optimization (Elmasri and Navathe, 1994)

EXPLICIT JOIN RULE. Avoid explicit join operation whenever possible. If it is not

possible, delay explicit join operation as late as possible in order to reduce

die size of tiie operands done by the previous operations.

PROOF. Suppose tiie join cost of A and 5 is given by X. If the join operand A and B

can be reduced to A' and B', the join cost becomes X'. Since A'<A and B'<B,

tiierefore X'<X.

Ch. 6. Query Optimization Algorithms page 139

EXAMPLE 1 (EXPLICIT JOIN AVOIDANCE). Suppose class Smdent joins class

Lecturer on class Subject.

StudenO C'Lectuier

Subject
Student joins Lecturer on Subject

If one of the paths is an inverse relationship, the join operation can be

tumed into a complete patii traversal, such as Student—>Subject-^Lecturer.

EXAMPLE 2 (DELAYING EXPLICIT JOIN). Suppose there is a selection operator on

both class Student and class Lecturer; and the paths are all uni-directional.

By applying the selection first, only one student is to be joined with a few

lecturers.

(̂ID=95071>s. X (̂Rank=Prof.)

Subject
Student joins Lecturer on Subject

6.3.2 Optimization of Primitive Operations

Optimization of primitive operations can be achieved by exploiting path traversals in the

forms of inter-object paraUelization and inter-class parallelization. Path traversal should

always be used whenever possible. Two basic optimization procedures, namely INTER-

OBJECT-OPTIMIZATION and INTER-CLASS-OPTIMIZATION, are developed. They employ the

basic mles as a foundation in the optimization.

The aun of the INTER-OBJECT-OPTIMIZATION is to transform any primitive operation

to a forward d-aversal operation for an inter-object paraUelization. This includes

ttansformation from an inter-class parallelization to an inter-object parallelization (ICL^

lOB), from an explicit join to an inter-object parallelization (EXJ^IOB), and even from an

inter-object parallelization to a different inter-object parallelization (IOB->IOB). The

transformation also takes die selection predicate types (i.e., existential or universal

quantifier) into account.

LUcewise, tiie target of tiie INTER-CLASS-OPTIMIZATION is to transform any primitive

operation into a reverse traversal operation for an inter-class parallelization. There are two

types of transformation, particularly: from an inter-object parallelization to an inter-class

Ch. 6. Query Optimization Algorithms page 140

parallelization (lOB-^ICL), and from an explicit join to an inter-class paraUelization (EX]—>

ICL).

a. INTER-OBJECT-OPTIMIZATION

INTER-OBJECT-OPTIMIZATION is particularly based on die forward traversal concept and die

filtering mles. Three types of transformation: lOB—>IOB, ICL^IOB, and EXJ^IOB, are

considered and explained in the next sections.

The Inter-Object Parallelization to Inter-Object Parallelization Transformation

(IOB->IOB)

With respect to the filtering mle, forward path traversal is in an optimal form if it starts

from a class having a selection operation. Should a forward traversal from a class having a

selection operation be possible but not be done in the query, the query must be transformed

to accommodate the desired forward traversal operation. The lOB^IOB transformation is

targeted to 2-class path expression queries where there is a selection operation on the

associated class (class B), but no selection operation on the root class (class A). The lOB-^

lOB transformation is accomplished by changing the path direction. Thus, the mam

constraint of the lOB—>IOB transformation is that the path must be bi-directional (an inverse

relationship exists).

Figure 6.1 shows an example of IOB->IOB transformation. The original query

contains a forward traversal with an existential quantifier selection predicate in the

associated class (i.e., I0B(3)). Initially, tiie query starts from class A (shaded nodes indicate

die starting nodes). After tiie transformation, the query starts from class B. Apart from the

presence of an inverse relationship between class A and class B, this transformation

becomes possible also because the selection predicate is an existential quantifier. Since

existential quantifier is commutative, a change in direction preserves the equivalence of the

query results.

K JOB.^
dẐ

o

Transformed into

X

n

CD 1^^^
a

Figure 6.1. IOB-^IOB transformation

Apart from requiring an mverse relationship to exist, die lOB-^IOB transformation

imposes several constraints, such as:

Ch. 6. Query Optimization Algorithms page 141

If the path is uni-directional (an inverse relationship is not provided), the above query

cannot be optimized using the lOB-^IOB transformation.

K there are 2 selection operations: one class each, the inter-object parallelization is

already optimal.

If there is no selection on the two classes, indirect selection operations which are

applied to classes connected to each side of these two classes wUl be taken into

account. Indirect selection operations wUl provide the same filtering mechanism.

Transforming an inter-object paraUelization universal quantifier lOB(V) is not possible

merely by changing the path direction, since the universal quantifier (V) is not

commutative. Hence, lOB(V) is not covered by the lOB-^IOB transformation.

The Inter-Class Parallelization to Inter-Object Parallelization Transformation

(ICL-^lQB)

Some path expression queries are expressed in reverse traversal operations. If forward

traversal operations are possible for these queries, the reverse traversal operations should be

transformed to forward traversal operations. This transformation also uses the filtering mle

as the basis.

There are two types of path expression queries to which tiie ICL—>IOB

transformation can be applied. The first type is where the query has a directed path from a

class with a selection operation but the initial query employs a reverse traversal. The second

type is where the selection operation is at the class pointed by the directed path. The first

type can be optimized by transforming the reverse traversal operation into a forward

tiraversal operation, whereas the second type is optmiized by changmg the padi direction

and applying a forward traversal operation. Figure 6.2 shows the two cases of ICL->IOB

transformation.

Transformed into

ICL (3 fe n I0B(3) ^

o

Type 2:

tl
Transformed into

Figure 6.2. ICL->IOB transformation

Ch. 6. Query Optimization Algorithms page 142

If the query is a universal quantifier, the resulting traversal must also be in the form

of a universal quantifier in order to preserve the equivalence. However, since a universal

quantifier (V) is not commutative, if a change in patii direction is required, die universal

quantifier (V) query cannot be optimized using this transformation. Therefore, only die first

query type, which does not require any change m path direction, can be optimized using the

ICL-^IOB transformation. Figure 6.3 shows an ICL(V)->l0B(V) transformation.

Type 1:
Transformed into

_ - _ JCUVJ . \ ^ I Jt lOB(V)

Figure 6.3. ICL(V)->IOB(V) u^nsformation

The Explicit-Join to Inter-Object Parallelization Transformation (Exj->IOB)

For join queries on a class domain, an explicit join operation is formed by two forward

traversals meeting at the joining class. A transformation from an explicit join operation to a

forward traversal may be achieved by changing the dkection of one of the paths, so tiiat a

complete forward path traversal can be formed. However, depending on the join query type,

the performance of an EXJ—>IOB transformation may or may not be possible. Basically,

there are three types of object-oriented explicit join queries: equi join (possibly collection

equi join), intersection collection join, and sub-collection join.

• Optimization of equi-join, by transforming it to a path traversal (EXJ(=)->l0B), is not

possible, since an equi-join EXJ(=) consists of two universal quantifier inter-object

parallelization lOB(V). Because V is not commutative, changing a path direction to

form a complete forward traversal is not permitted.

• Optimization of sub-collection join (Exj(c)-^IOB) is not possible either. A sub-

collection join predicate is to check whether a collection jom attribute of a class is a

sub-collection (i.e., subset) of a collection join atdibute of another class. The join

predicate requires all elements of both coUections to be present in order to evaluate the

sub-collection predicate. This is then similar to a universal quantifier for both paths.

Smce universal quantifier is not commutative, changing a path direction wUl not

produce the same results, and the equivalence wUl be violated.

• Optimization of an intersection join Exj(n)-^l0B can be done by changing die

dfrection of one of tiie paths. An intersection join is used to check whetiier there is an

intersection between tiie two collection join attributes. An intersection join EXJ(n) is

Ch. 6. Query Optimization Algorithms page 143

made up of two existential quantifier inter-object paraUeUzation I0B(3). Because

existential quantifier 3 is commutative (as shown by lOB-̂ IOB and ICL—>IOB

transformation), a complete path traversal of an ExJ(n) can be formed. Figure 6.4

shows an example of the EXJ(n)-^l0B transformation.

Transfonned into

C O (^ \ Jl^ I0B3) ̂ _ ^ I0H[3i JL
I0B[3)V yici^) ^ ^ ^K^ ^KSL^

A joins B
(intersect join)

Figure 6.4. Exj(n)->IoB transformation

b. INTER-CLASS-OPTIMIZATION

INTER-CLASS-OPTMIZATION is based on the filtering and the explicit join mles. Two types

of transformation: lOB—>ICL, and EXJ-̂ ICL, are considered and explained in the next

sections.

The Inter-Object Parallelization to Inter-Class Parallelization Transformation

(lOB-^ICL)

Witii respect to the filtering mle, path traversal should start with a selection operation, since

the selection operation serves as a filtering mechanism. In the absence of a forward

tiraversal from the class having a selection operation, a reverse traversal should then be

applied. A type of query to be optimized using the lOB^ICL is where the initial query is a

forward traversal to a class having a selection operation. The IOB->ICL transformation is

achieved merely by transforming lOB to ICL without any modification to the path direction.

In die case where the initial fraversal is a universal quantifier lOB(V), the IOB->ICL

dransformation stUl holds, because there is no change in path direction. Figure 6.5 shows an

example of IOB-^ICL transformation for bodi existential and universal quantifiers.

There are a number exceptions to die lOB^ICL transformation.

• If the patii is a bi-directional path, an lOB^IOB transformation can be performed,

instead of the lOB^ICL transformation.

Ch. 6. Query Optimization Algorithms page 144

If tiiere are two selection operations, one selection m each class, die original query

schema is already optimal. No further ti-ansformation is necessary.

Transformed into

JLICIXB)

Type 2:
n

Transformed into

OB(V,
^

J:LICL(V)^ ,̂

Figure 6.5. loB—>ICL transformation

The Explicit-Join to Inter-Class Parallelization Transformation (EXJ->ICL)

An EXJ^ICL transformation may be applied to join queries where the two paths are uni­

directional. In the case where an inverse relationship exists, an EXJ^IOB transformation is

preferable. An EXJ—>ICL transformation is based on the filtering mle and the explicit jom

mle. Like in EXJ—>IOB transformation only intersection join queries are considered, because

other join queries require all elements of both collection join attributes to be present at once

so that they can be evaluated. Since the ICL operation is done class by class, it becomes

impossible to gather two collections from the two objects to be joined at the same time.

There are three cases considered, particularly a selection operation exists in the join class,

selection operations exist in the root classes, and no selection operation is involved.

• Case 1.

Since the join class contains a selection operation, path traversal should start from

this class. Because the patiis are uni-directional, bodi patiis are done in a reverse

traversal.

• Case 2.

Since a root class contains a selection operation, that patii should perform a forward

fraversal operation. Altiiough originally the join class does not contain a selection

operation, due to die selection operation done by die forward traversal previously, the

filtering has been carried out indirectiy to the join class. Therefore, the second path is

performed in a reverse traversal operation. An EXJ->ICL transformation is actually an

Ch. 6. Query Optimization Algorithms page 145

EXJ->IOB/ICL transformation. Since a mixed traversal (MT) is employed, it is actually

an EXJ->MT transformation.

• Case 3.

Like case 2, one of the paths is carried out in a forward Qraversal. The join class is

now restricted by the forward traversal operation done to one of die paths. The otiier

path is then carried out in a reverse traversal operation.

Case 2 and case 3 have shown the effect of indirect filtering through selection

operations on previous classes and through forward traversal operations. In these two cases

as well, an optimization of Exj by transforming it to a mixed traversal is demonstrated.

Transformed mto

• >

Transformed irno

• >

restricted by the
selection operation
on A

Transformed into

restricted by the
inter-object paralklivition
from A

Figure 6.6. EXJ-»ICL transformation

6.4 Query Optimization Algorithms
Based on the optimization of primitive operations, general query optimization algorithms

are developed. The query optimization algorithms comprise two algorithms, namely the

transformation algorithm and tiie restructuring algoritiim. Figure 6.7 shows the scope of the

query optimization algorithms.

Ch. 6. Query Optimization Algorithms page 146

Transformation
Algorithm

Restructuring
Algorithm

^ ^ Firuil Access \

Figure 6.7 Query Optimization Process

The transformation algorithm transforms initial query represented in a query graph

into its equivalent query access plan represented in an operation tree. The operation tree,

when necessary, is further processed by the restructuring algorithm which restmctures the

initial operation free to produce a final operation tree.

The final operation tree shows an optimal query access plan. In most cases,

however, the operation trees produced by the transformation algorithm are already optimal,

and hence, the restructuring algorithm is not needed.

Before discussing the two algorithms, a notation for query access plans called

Operation Trees (OT) is described.

6.4.1 Operation Trees

Query access plans are represented by Operation Trees (OT), in which die hierarchy of the

operations is determined. Processing is carried out in a phase-based fashion, where die

lower nodes are processed first, and nodes at the same level can be processed

simultaneously.

Each node in an Operation Tree consists of two information: the type of the node

and die operations to be carried out. There are du-ee different types of nodes, namely lOB-

Node (inter-object parallelization nodej, ICL-Node (inter-class parallelization node), and

EXJ-Node (explicit join node). These types reflect the types of operations to be performed.

The operation itself is represented as a graph, which is a subgraph of the query schema. The

results of each node are represented as a labeUed directed arc from a node to a superior

node. The results of each node are a combination of tiie values of the projected attributes

and the mput values for the next stage of query processing.

Altiiough similar to other query trees, operation drees are sunpler but richer. They

are richer because tiie selection operation may appear not only m single classes (lUce in

relational query trees), but also in path expressions. Since most object-oriented queries are

Ch. 6. Query Optimization Algorithms page 147

in the form of path expression, it wUl be common to have more forward traversal nodes in

an operation tree. Since most query results may be obtained by forward traversal operations,

the operation trees may be less in height and tiius become simple operation d-ees (possibly

one-node OT or unary OT).

Figure 6.8 shows three query graphs and their operations trees (the operation trees

of the initial queries are lUcely to be unoptimal). For the sake of simplicity, a root class and

an associated class are denoted as node A and node B, respectively. The path is represented

as a directed arc.

a. lOB-Nodes

An lOB-Node consists of inter-object paraUelization. Selection operations are usually

incorporated in the inter-object parallelization. The selection operations may appear in a

single class or in a path expression. The query graph is included in the lOB nodes. If it is a

path expression, the dfrection of the traversal and the starting node are also shown. Due to

the nature of object-orientation, where some information can be tracked down through

pointer navigation, it is possible to have one-node OT. One-node OT represents that the

query access plan contains a single-operation orUy (possible a forward traversal operation).

b. ICL-Nodes

Since a reverse traversal and its paraUelization counterpart, inter-class parallelization,

involves two phases (selection and consolidation phases), an ICL-Node (inter-class

parallelization operation) is succeeded by lOB-Nodes. The lOB-Nodes contam selection

operation on single classes. The OT is therefore a two-phase tree. The first phase (the leaf

nodes) consists of lOB-Nodes, and die consolidation phase is the ICL-Node itself. If only one

class is involved in the selection, the OT becomes a unary OT, and without a selection

operation, the OT is a one-node OT which contams an Id-Node itself. It must be noted that

die query graph in die ICL-Node is tiie same as m die lOB-Node . The only difference is the

starting node, which is denoted by a shaded node.

c. Exj-Nodes

EXJ-Node (explicit join node) consists of a join operation between two classes. If there are

selection predicates, processing die join query wUl consist of a selection phase and a join

phase. The selection phase is represented by lOB-Nodes. Dependmg on the number of

Ch. 6. Query Optimization Algorithms page 148

classes involved in die selection process, the OT can be a one-node OT (witiiout selection),

unary OT (one selection) or a binary OT (two selections).

Query Graphs:

a. Inter-Object Parallelization
Single-Class Query:

n

cr>

Path Expression Query:
(Forward Traversal)

cKy—KE:^

b. Inter-Class Parallelization
Path Expression Query:
(Reverse Traversal)

CA>-Xir>

c. Explicit Join
Explicit Join Query:

A joins B

Operation Trees:

lOB
K

lOB CE>—<L:>

ICL C^^^^CE::)

^N

lOB

/ts

CED lOB C^^

EXJ ^^Xi<^
/ N

lOB

A^

CD> lOB C^

Figure 6.8. Query Graph and Operation Trees

6.4.2 The TRANSFORMATION Algorithm

The transformation algorithm accepts a query graph QG and produces an operation tree

OT. The algorithm consists of two functions: ProcessGraph and ExpandTree functions.

Upon invocation, the transformation algorithm activates the ProcessGraph function and

Ch. 6. Query Optimization Algorithms page 149

passes a QG to it. The retum value of the ProcessGraph function is an OT. The pseudocode

for the transformation algorithm is shown in Figure 6.9.

Program Transformation
Variables:

QG: Query Graph = input
OT: Operation Tree = NULL

Begin
OT - ProcessGraph(QG) II call ProcessGraph

End Program.

Function ProcessGraph (QG) return OT
Begin

1.

2.

3.

Apply INTER-OBJECT-OPTIMIZATION

If step 1 fails Then
Apply INTER-CLASS-OPTIMIZATION

End If

If inter-class parallelization or explicit join operation exists in QG Then
OT = ExpandTree(QG) II call ExpandTree

Else
OT = InsertNodeQ II create a node in OT

End If

4. ReUim OT
End Function

Function ExpandTree (QG) retum OT
Begin

1.

2.

3.

OT = InsertNodeO II create a node in OT
Remove inter-class parallelization or explicit join operation from QG
giving a setof QG'i

For each QG'i
Ti = ProcessGraph (QG'i) // recursive call to ProcessGraph
OT = InsertChild (Ti) // insert node as a child node in OT
Add a label to die path

End For

Retum OT

End Function

Figure 6.9. Transformation Algorithm

Ch. 6. Query Optimization Algorithms page 150

a. The PROCESSGRAPH Function

The ProcessGraph function basically consists of four steps. Firstiy, it attempts to optimize

the mput query graph by applying the INTER-OBJECT-OPTIMIZATION. Secondly, if step 1

faUs, it attempts to apply tiie INTER-CLASS-OPTIMIZATION. Thfrdly, if an inter-class

parallelization or an explicit join operation stUl exists in the query graph, the query graph

needs a further process, in which the ExpandTree function is then executed. Otherwise, a

node is created in the OT. The node is an lOB-NODE. Finally, an OT is returned to die

calling program.

b. The EXPANDTREE Function

The ExpandTree function is activated by the ProcessTree function, after attempting to

reduce or to eliminate inter-class parallelization/explicit join operations, but the query

graph StUl contains these operations.

The ExpandTree function comprises three steps. Firstly, a node is created. The type

of node is either an ICL-Node or an Exj-Node, depending on which operation is to be

removed from the query graph. An explicit join operation has a higher priority since the

explicit join operation is the most expensive operation and hence, eliminating this operation

as early as possible puts the operation the last in the OT. After removmg an operation from

the query graph, a number of subgraphs (possibly one) is created.

Secondly, for each subgraph, it recursively calls the ProcessGraph function and

passes each subgraph to it. The retum value from the ProcessGraph is a subtree OT. This

subtree becomes a chUd node of the ICLVEXJ-Node created previously. Depending on the

number of subgraphs, a number of child nodes is created.

Finally, the overall OT is then retumed to the calling ftinction, which is the

ProcessGraph function.

6.4.3 The RESTRUCTURING Algorithm

The restructuring algoritiim accepts tiie OT produced by die transformation algorithm,

restmctures it, and produces a final OT. The restructuring algorithm deals with complex

OT. As most object-oriented queries are path expression queries emphasising the forward

path traversal operation, the OTs produced by the transformation algorithm are often one-

node OTs. In these cases, the restructuring algorithm is of no use. The restructuring

algorithm is particularly useful if the OT is quite long, which is more common to relational

queries. Figure 6.10 presents the pseudocode for the restructuring algorithm.

Ch. 6. Query Optimization Algorithms page 151

Program Restructuring
Begin

1. Break n-ary Exj nodes (n>2) into multiple binary nodes,
2. Delay non-restrictive ICL nodes,
3. Discard non-restrictive lOB-Nodes,
4. Promote non-restrictive lOB-Node to be the parent of the current parent node.

End Program.

Figure 6.10. Restructuring Algorithm

The restructuring algorithm basically comprises four steps. Step 1 is regarding ExJ

nodes. It is possible for the transformation algorithm to produce an OT having a non-leaf

node with more than 2 leaf nodes. The non-leaf node is normally an explicit join operation

node. This m-way explicit join is converted into multiple 2-way joins. This restmcturing is

quite common in relational query optimization. Figure 6.11 shows an example of an m-way

join query.

Figure 6.11. Breaking n-ary EXJ nodes

Step 2 deals with ICL nodes. Some ICL nodes are created because they contain

selection operations. Other ICL nodes are created as an indirect selection operation

(selection operation on otiier classes). Witii respect to the filtering mle, the restrictive ICL

nodes should be processed first, followed by the non-restrictive ICL nodes. Figure 6.12

gives an Ulustration of nodes permutation.

ICL

r-<\
ICL

no 1 no 1

LZJ Lo_J
V ^

iVi
L!J

y
"° 1 LiiJ

ICL

TV,
ICL

r"^ r —N
° 1 0 1

I °.) I)

Figure 6.12. ICL-Nodes Permutation

Step 3 concems lOB nodes. Non-restrictive lOB nodes are eliminated from an OT,

since these nodes do not perform any activity. These nodes, however, are created initially

by die transformation algorithm as a result of a removal of an EXJ or an ICL operation from

the initial query graph. Each subgraph created after this removal may be single classes

without any selection operation. Figure 6.13 shows examples of lOB nodes elimination.

Ch. 6. Query Optimization Algorithms page 152

Figure 6.13. Eliminating Non-Restrictive lOB-Nodes

Step 4 also deals with lOB-Nodes. lOB nodes are created because tiiere is a selection

operation in the root class where the forward traversal starts. This selection operation may

be a result of indfrect selection operation by other classes outside the scope of the forward

traversal operation. This kind of lOB node is usually placed as a child of a node where the

selection is carried out. Since these lOB nodes are not restrictive until the parent node is

executed, these lOB nodes should be delayed until the restriction is performed by the parent

node. The restriction is not merely carried out by a selection operation. Hence, this lOB

node is replaced and put as a parent node of the current parent node. Figure 6.14 illustrates

this.

lOB -' ^m
_ ^ ^ - - '

, •lOB

r '

n

Figure 6.14. Delaying lOB-Nodes

6.5 Examples

In this section, it will be demonsfrated how to apply die query optimization algorithms to

basic and complex object-oriented queries (i.e., homogeneous complex queries and

heterogeneous complex queries). There are tiu-ee types of OT produced by the query

optimization algoritiims, particularly one-node trees, unary trees, and binary trees. One-

node trees are to demonstrate die INTER-OBJECT-OPTIMIZATION, whereas unary trees and

binary frees are to demonsfrate die INTER-CLASS-OPTIMIZATION.

6.5.1 Basic Queries

Three examples are given to demonstrate how basic queries are optimized using the INTER-

OBJECT-OPTIMIZATION. Example 1 is a simple patii expression query. Examples 2 and 3 are

Ch. 6. Query Optimization Algorithms page 153

join queries (object join and simple value join). The results from die optimization of tiiese

queries are one-node OT.

EXAMPLE 1. "Retirieve persons who have chaired VLDB".

Initial Query Graph: Final Operation Tree:

lOB

al
lOB CI>

lOB

al

A=Person
B=ProceecUngs
a l =(titU="VLDB")

Figure 6.15. IOB->IOB transformation

This is a simple path expression queries involving 2 classes. The transformation

algorithm tiirough its ProcessGraph function calls die INTER-OBJECT-OPTIMIZATION. The

IOB->IOB transformation is then applied, which is based on the semantic knowledge on die

query schema that the path is a bi-directional path.

The second step is passed, since step 1 is successfuUy conducted. The checking in

the third step also fails as the query graph does not contain inter-class

parallelization/explicit join operations. Consequentiy, a node in OT is created. The node is

an lOB node with a forward traversal operation from Proceedmgs to Person. The result of

the transformation algorithm is already optimal as it is a one-node OT, and there is no

necessity to apply the restructuring algorithm.

EXAMPLE 2. "Retrieve joiumals and conferences having the same editor-in-chief and

program-chair, respectively".

Initial Query Grapli: Final Operation Tree:

lOB » ^ ^ \ S > ^ ^
A intersect Joins ConB

A=Joumal
B=Person
C=Proceedings

Figure 6.16. EXJ—>IOB transformation

The query is an explicit join query and the predicate is an intersection join

predicate. The ProcessGraph function transforms the explicit join operation to an inter-

Ch. 6. Query Optimization Algorithms page 154

object parallelization operation tiirough tiie INTER-OBJECT-OPTIMTZATION. The checking

conducted in the second step fails because the first step has been successfully completed.

The checking conducted in the third step also fails, because the query graph is now free

from the explicit join operation. Subsequentiy, an lOB node is created and a one-node OT is

produced.

EXAMPLE 3. "Retrieve pairs of publishers and conferences where they are located at

tiie same city".

Initial Query Grapli:

CD CD

•
A intersect joins B

on city

A=PubUsher
B=Proceedings
join node = city

Initial Operation Tree: Final Operation Tree:

E X J C D X C D
71 7t

E ^ C D x C D

lOB (X ^ lOB (JB^

Figure 6.17. Explicit Join

The query is an explicit join query on a simple attribute, which is typical of a

relational join query. Since the explicit jom is not on a class, it becomes unpossible to

transform the explicit join operation into a traversal operation. Thus, tiie INTER-OBJECT-

OPTIMIZATION and the INTER-CLASS-OPTIMIZATION in the first two steps in the

ProcessGraph function are of no use. A further process becomes necessary, in which the

ExpandTree function is then executed.

The ExpandTree function first creates an EXJ node in die OT. After eliminating the

explicit join operation from the initial query graph, two subgraphs are created. Each

subgraph is a single node (A and B). Each of tiiese nodes is passed to tiie ProcessGraph

function where an lOB node is created for each subgraph. These nodes are then attached as

child nodes to die EXJ node created earlier. Hence die OT produced by the transformation

algorithm is a binary tree witii 2 chUd nodes.

The restructuring algoridim is applied to eliminate die two non-restrictive leaf

nodes. The result becomes a one-node OT consistmg of an explicit join operation.

The final OT is no different from tiie original query graph. In other words, no

optimization has been done by the query optimization algorithms. Optimization is tiien

carried out at the execution stage by a parallel join algorithm.

Ch. 6. Query Optimization Algorithms page 155

6.5.2 Homogeneous Complex Queries

Three examples are presented to demonstrate an optimization process of homogeneous

complex queries. Example 4 is a two-branch path expression query. Example 5 is a Imear

path expression query. And example 6 is a typical tree path expression query.

EXAMPLE 4. "Retrieve Object-oriented papers written by Australian autiiors which

have been presented at conferences since 1996".

Initial Query Graph: Final Operation Tree:

7t

ICL*X^C_^
a3

lOB
lOB

a2

A=Paper
B=Person
C=Proceedings

a\ =(title="%00%")
c2=(title="VLDB")
a3 =(year=1996)

Figure 6.18. ICL—>IOB transformation

This is a tree path expression query which combines a forward traversal and a

reverse traversal. The reverse traversal in the original query graph is necessary because

there is no directed path from the target class Paper to the class Proceedings.

The ProcessGraph function first applies the INTER-OBJECT-OPTIMIZATION

procedure by carrymg out the ICL—>IOB transformation. Since the first step is successful,

the second step, that is to apply the INTER-CLASS-OPTIMIZATION, is skipped. The checking in

the third step is judged to be false, since the query graph is now free from inter-class

parallelization operations. Hence, an lOB node is created and die OT produced by the

transformation algorithm is a one-node OT and is akeady optimal.

EXAMPLE 5. "Retrieve conferences having papers written by someone who worked

in Africa".

This is a linear path expression query. The transformation algorithm first attempts

to optimize the forward fraversal by applying die INTER-OBJECT-OPTIMIZATION . Since this

fails, it attempts to invoke tiie INTER-CLASS-OPTIMTZATION. The last inter-object

parallelization operation is transformed into an inter-class parallelization operation. Two

subgraphs are created: an lOB-Node from A to 5 and an lOB-Node for node C. This result is

shown in Figure 6.19 (a).

Ch. 6. Query Optimization Algorithms page 156

Initial Query Graph:

lOB, , .^lOB.

al

A=Proceedings
B=Paper
C=Person
(Jl=(country= "Africa")

Results from the TRANSFORMATION Algorithm:

(a) . , (b)

lOB
n

CD lOB CD

Results from the RESTRUCTURING Algorithm:

(d)

Final Operation Tree

Figure 6.19. lOB-̂ ICL transformation

The first subgraph is then fetched into the ProcessGraph function again. Since

class B is resfricted through tiie selection on class C, an ICL-Node is created with two lOB-

Nodes as chUd nodes. Figure 6.19 (b) is an OT produced by the transformation algorithm.

Ch. 6. Query Optimization Algorithms page 157

Since the OT is a complex OT witii multiple levels and multiple child nodes, tiiis

OT is passed to die Restructuring algoritiim to be resdiictured. The restructuring algoritiim

is applied to perform 2 tasks. Firstiy, it reschedules die non-leaf ICL-Nodes by delaying die

non-restrictive ICL node (Figure 6.19 (c)). An secondly, it eliminates two non-restrictive

leaf lOB-node. The result is a unary OT, shovm in Figure 6.19 (d). This is tiie final OT

which is optimal.

EXAMPLE 6. "Retrieve conference proceedings published by Springer-Verlag,

chaired by someone from Australia, and contains object-oriented papers by

American authors".

A=Proceedings
B=Publisher
C=Person
D=Paper
E=Person

a\=(name= "Springer-Verlag")
02= (country=^'Australia ")
a2i=(title="%00%")
o4=(country="USA")

(a) Result from the Transformation algorithm:

(l>) Result from the Restructuring algorithm:

IGB CO

Figure 6.20. IOB->ICL transformation

This is a typical complex path expression query consisting of several path traversal

operations from the target class. The ProcessGraph function first applies the INTER-

OB J ECT-OPTIMIZATION. Since all the paths are in forward traversals, and none of them is

suitable for die IOB->IOB transformation, tiie INTER-OBJECT-OPTIMIZATION faUs. The

second step is the INTER-CLASS-OPTIMIZATION. The IOB->ICL transformation is applied to

one of die lOB paths (i.e., A-^B path). Since now an ICL path exists in the query graph, the

Ch. 6. Query Optimization Algorithms page 158

ExpandTree function is invoked. The ExpandTree fimction creates an ICL node and two

chUd nodes. The result of die Transformation algoridim is shown in Figure 6.20(a).

The result of the Transformation algorithm is passed to die Restructuring

algorithm. The Restructuring algoritiim restmctures tiie operation tree by shifting die non-

resdrictive lOB node (Proceedmgs-^Person, Proceedings-^Paper) to become a root node.

The result is a unary OT (Figure 6.20(b)).

6.5.3 Heterogeneous Complex Trees

Three examples are presented to show an optimization process of heterogeneous complex

queries. Example 7 is a cyclic query. Example 8 is a acyclic complex query, and example 9

is a semi-cyclic query.

EXAMPLE 7. "Retrieve all authors who presented papers at conference diey

chaired".

Initial Query Graph: Final Operation Tree:

<I>
A=Person
B=Proceedings
C=Paper

EXJ

join on Person

"7s"

lOB Gh^©

Figure 6.21. Cyclic Query

This query is a cyclic graph involving Person, Proceedings, and Paper. A cyclic

query consists of several forward path fraversal and an ICL operation to "join" the two ends

to form a cycle. The ProcessGraph function changes the path direction from A-^B to 5—>A,

by applying the lOB-^IOB fransformation. The result of this step is an explicit join on node

A. The ExpandTree function creates an EXJ node for the explicit join operation. The child

node of this EXJ node is an lOB node of .S-^C.

The explicit join operation, in this example, is a unary join, that is a join within a

complex object. This unary join can be viewed as a selection operation within one complex

object, since the "join" predicate is actually checking whether the value of one attribute is

die same as the value of another attribute within the same object.

Ch. 6. Query Optimization Algorithms page 159

EXAMPLE 8. "Retrieve paper in Object-oriented areas presented at high quality

conferences and written by a person who worked in a city having hosted an

0 0 conference in 1996".

Initial Query Graph: Final Operation Tree:

explicit join

Q .,-© ©
EXJ 0„®

cxa
join on city

7\

ol IOB

/ \

A=Paper
B=Person
C=Proceedings
D=Proceedings a l =(lille="00'' and year=1996)

^ ^ B ^ IOB (D)

Figure 6.22. Acyclic Complex Query

The query is a typical complex object-oriented queries consisting of forward path

draversal and explicit join operations. The ProcessGraph function faUs to transform the

explicit join operation to a path traversal, since the explicit join operation is a value-based

explicit join, not an object-based explicit operation. The ExpandTree function then creates

an EXJ-node. The child nodes are lOB-nodes; one is a path traversal, an the other is a single

class. This query access plan is typical of complex object-oriented queries, involving path

fraversals and explicit joins.

EXAMPLE 9. "Retrieve Australian authors who wrote Object-Oriented papers for

different conferences at the same year".

This query is a semi-cyclic query (joining the two ends of two distinct path

expressions). The formulation of an optimal OT proceeds witii several steps. First, an Exj

node is created. The child node is similar to die initial query graph except that tiie Exj

operation has been tmncated.

Second, an ICL node is created and becomes the immediate chUd node of the EXJ

node. Two subgraphs are created and become the leaf nodes. Third, for each subgraph in

die leaf node, an ICL node is created and has 2 leaf nodes. The result of the third step is an

OT produced by the transformation algorithm.

The restructuring algorithm simplifies the leaf nodes which do not have any

selection operation.

Ch. 6. Query Optimization Algorithms page 160

r
Initial Query Graph:

Sup 1:

A =Person
B~C=Paper
D=-E-Procedings

9 join on year

ICL Qt<^r-<^
ol o3 o2

Step 4 (FINAL OT):

Figure 6.23. Semi-Cyclic Query

Ch. 6. Query Optimization Algorithms page 161

6.6 Discussions

The application of patii fraversal in a form of inter-object parallelization and inter-class

parallelization is exploited in object-oriented query optunization. The functionalities of

path traversal are highlighted as foUows.

• Inter-object parallelization is a manifestation of forward path traversal, whereas

inter-class parallelization is a manifestation of reverse path traversal. Hence,

forward traversal is object-based, and reverse traversal is class-based. An

object-based forward traversal is where traversing from a root object to its

associated objects is regarded as a unit or a cluster. This model is better than

the class-based forward traversal because of its associativity approach. A class-

based reverse traversal has a foundation of class independence which is

influenced by the join operation in relational databases. Class independence is

enforced because of the absence of an inverse relationship.

• Object-oriented query optintization is accomplished by changing the path

direction whenever appropriate. The two basic optimization (i.e., INTER-

OBJECT-OPTIMIZATION and INTER-CLASS-OPTIMIZATION) have shown die

importance of bi-directional paths in an optimization process. Hence, the

efficiency of the query optimization algorithms very much depends on the

avaUabUity of inverse relationships.

6.7 Conclusions

The query optimization model presented in this chapter employs semantic and processing

cost knowledge of the query. This basic knowledge becomes a foundation for the

optimization of basic operations. Two algorithms for object-oriented query optimization are

presented. The transformation algorithm transforms the initial query graph mto operation

trees in which the access plans are specified. The restructuring algorithm restmctures an

input operation tree by collapsing, shifting nodes in the OT. This algorithm is applied to

complex OT only. For OTs having one node, the restmcturing algoridim is not applicable,

smce these OTs are in an optimal form already.

The major contiributions of diis chapter can be categorized into four pomts.

• Semantic knowledge and processing costs are defined in terms of heuristic mles

which become the foundation for object-oriented query optimization. The

semantic knowledge is based on the inheritance and path expression

Ch. 6. Query Optimization Algorithms page 162

hierarchies, whereas the processing costs exploit path traversals and avoid

explicit join operations.

• Transformation for primitive query optimization is formulated. It basically

exploits inter-object parallelization and inter-class parallelization whenever

appropriate by transforming other primitive operations to either inter-object

paraUelization or inter-class parallelization operations.

• A graphical notation to represent query access plan, called Operation Trees

(OT) is infroduced. This notation accommodates different types of primitive

object-oriented query operations.

• The central focus of query optimization is query optimization alsorithms,

which consolidates all query optimization components (i.e., semantic

knowledge, processing costs, optimization of primitive operations). The results

of these algorithms are query access plans in a form of operation trees.

Each node in an OT is applied an appropriate parallel algorithm at the execution

stage. Since the OT shows inter-dependency among nodes, the execution scheduling

strategies of the nodes in an OT must be defined. The next step of parallel query

optimization is to detennine the execution scheduling strategies for OT.

Chapter 7

Execution Scheduling

7.1 Introduction
The aims of this chapter are to present execution scheduling of complex object-oriented

queries involving path expressions and explicit joins, and to discuss the impact of the skew

problem on execution scheduling. Path expressions generally form the basis of complex

queries. Each path expression can be treated as a sub-query. The results of these sub-queries

are consolidated to obtain the final results. Apart from the avaUabUity of paraUel algorithms

for each basic operation in the query, scheduling sub-queries execution plays an important

role.

There are two existing approaches to the sub-queries execution scheduling: serial

and parallel sfrategies. The decision of which execution scheduling strategy is to be

adopted is much influenced by the presence of load skew in each sub-query. Moreover,

depending on the degree of skewness, load skew may severely degrade overall performance.

One way to overcome the skewness problem is by employing data re-distribution. Two data

re-distribution models, namely physical and logical data re-distribution, are described.

Through data re-distribution, not only is performance improvement gained, but also the

execution scheduling strategies are affected.

The rest of tiiis chapter is organized as follows. Section 7.2 describes the skew

problem and its impact on speed-up. Section 7.3 explains the two execution scheduling

Ch.7. Execution Scheduling page 164

Strategies in detail. Section 7.4 describes data re-disdribution techniques. Section 7.5

presents a discussion. Finally, section 7.6 gives the conclusions.

7.2 Skew Problem

Skewness has been one of the major problems not only in parallel relational database

systems (Liu et al., 1995), but also in paraUel object-oriented database systems. Load skew

refers to the non-uniform distribution of workload over the processors. Load skew is a main

obstacle to achieving load balancing and linear speed-up. In the presence of skew, query

execution time depends on the most heavUy loaded processors, and those processors

finishing early have to wait.

Load skew in single-class queries is mainly caused by the non-uniform data

partitionmg (e.g., hash or range partitioning). Using a non-uniform data partitioning, an

exact match or a range query on the partitioning attribute can be localized to a small subset

of processors containing the desfred data. This kind of query normally requfres minimal

resources (depending on the range, in the case of range queries). Hence, activating all

processors, most of which wUl not produce any result, is a waste. However, choosing a

correct partitioning attribute is similar to an index selection problem, which is known to be

a hard problem. Moreover, exact match or range queries on a non-partitioning attribute

make the initial partitioning meaningless as the data partitioning does not offer any benefit

to processing these queries. Since the partitioning is non-uniform, the processing of these

queries will produce a skew problem.

Load skew in path expression queries is mainly caused by the fluctuation of both

fan-out degrees of association relationship and selection operation or query predicates.

Consider the Proceedings^Paper relationship as an example. Suppose one proceedings

which is processed by a processor (say processor 1), contains 75 papers, and another

proceedings processed by another processor (say processor 2) has only 25 papers. In

processing the papers, the load of each processor becomes imbalanced. Furthermore, if the

second proceedings is not selected by the first stage of a predicate selection, load imbalance

wUl be even worse.

Load skew in explicit join queries is a result of partitioning on the join attribute.

Parallel processing of join queries is normally made up of two stages: partitioning and local

joining. In the partitioning stage, data from the two classes to be joined are partitioned

based on the joining attribute. The results of this partitioning are disjoint partitions.

Subsequently, these partitions are processed locally in each processor. The partitioning

method used is a non-uniform data partitioning method (normally a hash partitioning is

Ch. 7. Execution Scheduling page 165

used). Depending on die partitioning function and the actual data disdibution in die joining

atdributes, load skew may vary from lightiy to heavily skewed.

The biggest impact of load skew is performance degradation. If a linear speed-up is

drawn as linear function f(x)=x, performance of a skewed operation is lower tiian tiie

desired speed-up. Figure 7.1 shows a performance comparison between linear speed-up and

skewed.

Performance

Efficiency

Near Linear

Slightly Skewed

Figure 7.1. Linear Speed-up vs. Skewed Performance

It is clearly shown that in the case of highly skewed, adding more resources will not

improve the efficiency significantiy. This fact is known as a skew principle.

DEFINITION (SKEW PRINCIPLE). A skew principle states that aUocating a large

number of resources to a skewed operation wUl not improve performance

significantiy, and may lead to degradation in performance under certain

cfrcumstances.

7.3 Sub-Queries Execution Scheduling Strategies
This chapter focuses on complex object-oriented queries involving path expressions and

explicit joins. A typical complex object-oriented query containing path expression and join

is as follows.

QUERY 1. "Red-ieve tiie titie of full paper (excluding posters) in the area of object-

orientation presented at high quality conferences (i.e., acceptance rate

below 50%) and written by someone who worked in a city having hosted an

Object-Oriented conference in 1996. Papers written by Smith' are

excluded".

Ch. 7. Execution Scheduling page 166

The above query can be decomposed into two sub-queries; each containing a path

traversal. The path traversal starts from Proceedings to Paper and to Audior. Traversing

from Paper to Proceedings will result in redundant accesses of Proceedings because many

papers are published in die same proceedings. The results of the sub-queries are then joined

based on primitive attributes to obtain the final results.

The query graph for tiie above query is presented in Figure 7.2(a). Figure 7.2(b)

shows an access plan for the above query. As each sub-query is independent of die others,

they may be processed simultaneously.

(a) Query Graph (b) Operation Tree

jom on
(affiliation.city=proceedings.hosu.cityf

Author^ proceedings (Join J
(name!- "Smith") (name-"Objea.onent«l conference") and > „

(year-1996) ^^-^^Vracw^/m^^. tou.c i fy

sub-query I (IOB) sub.query 2 (IOB)

' exiljide

(jM^ .->'o«eO "(«c««E«>"«-'^'« < 0-5)

°(title-"%object-oriented%")

0̂ GH© 0

A=Proceedings
B^Paper
C= Author

Phase 2
(consolidation
phase)

Phase 1
(sub-query
phase)

Figure 7.2. Complex Object-Oriented Query Graph and Access Plan

A typical execution method of complex object-oriented queries, as shown in Figure

7.2(b), follows a phase-oriented paradigm whereby die operations of a query plan are

performed by several execution phases. The first phase involves the operations that require

only base classes and thus are ready to process. The next phase may then contain the

operations that become ready to process after the completion of the previous phase. The last

phase produces the result of the query. Within an execution phase, each of the operations is

allocated to one or more processors such that all operations in the phase are processed in

paraUel and are expected to complete at about the same time.

A major difference between object-oriented query access plans and relational query

access plans is that leaf-nodes in the object-oriented query trees may consist of selection

operations on path expressions, as well as single classes. In relational databases, path

expressions must be implemented in explicit join, resulting in taller and more complex

query trees. In contrast, query trees in OODB are simpler but contain richer nodes. Phase 1

of object-oriented query trees normally consist of path expressions, whereas phase 2

contains an explicit jom. Although theoretically object-oriented query trees can be of

Ch. 7. Execution Scheduling page 167

arbitrary height, it is more common to have 2-phase object-oriented query trees, as most

information can be tracked dowoi through pointers among objects.

As joining based on primitive attributes is similar to tiiat of tiie relational join, we

concenfrate on execution scheduling of sub-queries witiiin one phase (e.g., phase 1). Thus,

the objective can be rewritten as completing all sub-queries as early as possible since tiie

operation of tiie next phase cannot start before the completion of all sub-queries. There are

two ways of execution of the sub-queries. One way is to process each sub-query one-by-one

{Serial scheduling). The other way is to process all sub-queries concurrentiy (Parallel

scheduling).

7.3.1 Serial Execution Among Sub-Queries

In the serial scheduling, the operations in a given query access plan are carried out one after

another, starting from the leaf operations (e.g., path expressions) to the root operation (e.g.,

join operations) that produces the query result. When a sub-query is being processed, all

resources are allocated to it. For each operation, parallel processing is exploited by

partitioning and distributing objects over all avaUable processors, followed by an execution

of the operation in parallel. If multiple sub-queries exist in a phase, the order of the

execution of these sub-queries does not matter, as they do not have any inter-dependency.

One essential element is that these sub-queries must be completed before the next phase can

start.

When the objects operands of each operation are uniformly distributed to die

processors, i.e., no load skew, the maximum speed-up of the operation is achieved since no

processors are idle when others are busy working. However, if load skew occurs, some

processors may have heavier loads than others and require more time to complete the

portion of die assigned operation. The completion time of tiie whole operation tiierefore

would be much higher than expected since it is determined by the time requfred for the

heaviest loaded processor. Moreover, in the case of high load skew, it is common that the

heaviest load over the processors reduces only marginally when the number of the

processors is large, indicating that allocating a large number of processors will not help the

reduction of execution time of the operation.

7.3.2 Parallel Execution Among Sub-Queries

In the parallel scheduling, multiple sub-queries within one phase are executed

simultaneously. The execution of the phases is still carried out in sequence, as this is a

manifest of a phased-oriented paradigm. When executing multiple sub-queries witiiin one

Ch. 7. Execution Scheduling page 168

phase, the resources must be intelligently divided, so diat aU of tiiese sub-queries may finish

at the same time and, most importantly, they are expected to complete the jobs as early as

possible, so that the execution of tiie next phase can proceed as early as possible.

Intuitively, one would allocate more resources to a larger sub-query. However, if tills sub-

query contains a high degree of skewness, allocating more resources may not improve

performance significantiy. Hence, one might allocate fewer resources tiian initially planned

and give away some of die resources to tiie otiier sub-query whenever possible.

Given two sub-queries in a phase, where sub-query 1 is large but skewed, and sub-

query 2 is small but not skewed, a dilemma of the parallel approach can be explained as

follows. One method is to allocate fewer resources to sub-query 1 (because it is skewed)

which will result in the sub-query taking more time to finish die job, while sub-query 2

finishes very early. Another method is to allocate more resources to sub-query 1, although

sub-query 1 is expected to improve just slightiy; sub-query 2 with fewer resources will

finish slower than with the previous method. Hence, it is necessary to find a cut-off between

these two approaches. One major issue in parallel scheduling is processor configuration.

This is known to be difficult as it does not depend only on the size of each sub-query, but

also on the distribution of associated objects which causes a load skew problem.

7.3.3 Adaptive Processor Allocation

Processor allocation m parallel OODB is to assign resources (i.e., processors) to incoming

queries with possible multiple sub-queries in such as way that the query execution times are

minimized. Three propositions are developed around the two execution scheduling

strategies. Two factors in particular are considered: skewness and the size of each sub-

query. An adaptive processor allocation algorithm, based on three propositions, is proposed.

PROPOSITION 7.1. Given two sub-queries in a phase, if both sub-queries do not

involve any skewness, serial execution of the sub-queries may be usefully

adopted.

Since the sub-queries are not skewed, linear speed-up may be attainable. In other

words, the addition of resources to the operation will proportionally mcrease performance.

Due to the potential of linear speed-up, the two sub-queries can be viewed as one large sub-

query consisting the two smaller sub-queries miming one after another. Should the two sub-

queries be mn concurrently instead, without a careful resource division, it will be likely that

these sub-queries may not finish at the same time, causing some processors to be idle.

Ch. 7. Execution Scheduling page 169

PROPOSITION 7.2. Given two sub-queries in a phase, if bodi sub-queries do involve

a certain degree of skewness, the parallel execution of die sub-queries may

be usefiiUy adopted.

Using the skew principle, it is known that adding new processors to a skewed

operation will not make a big impact on performance improvement. Since the resources are

limited, it wUl be better to keep the number of processors minimal for a particular

operation. Hence, the resources are divided into multiple operations (e.g., two sub-queries).

Although the execution time of each operation is increased due to fewer resom-ces being

allocated to it, the overall performance of the two sub-queries is improved because the

operations are executed in parallel.

PROPOSITION 7.3. Given two sub-queries in a phase, if one sub-query involves

skewness and the other does not, die decision on the appropriate execution

scheduling depends on the largest sub-query. If the largest sub-query is

skewed, the parallel execution of the sub-queries is preferred. Otherwise,

the serial execution of the sub-queries is preferable. In the case where the

two sub-queries are quite equal in size, the skewed sub-query is more

dominant, and hence, the parallel execution is more desirable.

The largest sub-query makes the biggest impact on overall performance, since the

average performance of the smallest sub-query is usually smaller than that of the largest

sub-query. Incorporating the skew principle, the execution scheduling is also determined by

the presence of skewness in the case when die two sub-queries are equal m size.

An adaptive processor allocation algorithm is presented in Figure 7.3. Since most

sub-queries involve some degrees of skewness, parallel execution scheduling becomes

dominant and calculating an optimal processor configuration (function

CalculateResourceDivision) becomes critical. The centre of the function is the estimation

for sub-queries execution time. When skew presents, the execution time for a particular

sub-query is determined by the heaviest processor. There has been much research work

done in skew modelling. Researchers usually employ a number of assumptions (e.g.,

distribution) in calculating and estimating the size of die most overloaded processor. Even

with the presence of these assumptions, it is difficult to completely obtain the correct

answer before run-time. In other words, skew modelling is known to be a difficult problem

of query execution estimation. On the other hand, query (sub-query) execution estimation is

the major factor in parallel sub-query execution scheduling. The importance of calculating

the correct processor configuration is given by the foUowing example.

Ch. 7. Execution Scheduling page 170

Program AdaptiveProcessorAUocation (Si, 52: sub-queries; Â: number of processors):

Begin

If S\ and Si are not skewed Then // proposition 7.1
Allocate AT to 51 //serial
Allocate/V to 52

Else If 5l and 52 are skewed Then // proposition 7.2
A'̂ l - CalculateResourceDivision (5i ,S2,N) II parallel
Allocate Â l to 5l
AUocate {N-N\) to 52

Else If max (5l , 52) is skewed Then // proposition 7.3
Â l - CalculateResourceDivision (5l ,S2,N) I Iii S\ "Si; max(5l ,52)=5l or 52
Allocate Nl to 5l // parallel
AUocate (N-Nl) to 52

Else
Allocate Â to 5l // serial
Allocate Â to 52

End If

End Program.

Function CalculateResourceDivision (5l , 52 : sub-queries; N: number of processors)
remm processors_for_5l

Begin
Initialize: Total_Time = max number
Fori = lTo(A^-l)

Calculate max (5l/0
Calculate max {S2liN-i))
If time (51) > time (52) Then

Store time (5l) to Temp
Else

Store time (52) to Temp
End If
If Temp < Total_Time Then

Store Temp to Total_Time
Processor for 5l = /

End If
End For
Retum processors_for_5l

End Function
Figure 7.3. Adaptive Processor Allocation

Query 1 (shown in Figure 7.2) is used as a case study. Some experimentation has

been carried out. The main aim of this is to compare performance of query 1 using a serial

scheduling strategy and a parallel scheduling strategy. As only sub-queries schedulmg is

concemed, only the elapsed time taken by phase 1 is considered. There is no need to

measure the overall query elapsed time, smce only phase 1 wUl determine the difference

between the two scheduling strategies. In die experimentations, up to 12 processors are

used. Data parameters for die first and die second sub-queries are shown m Table 7.1.

Ch. 7. Execution Scheduling page 171

WI^MK^^^^^^^^m^i
Proceedings:

r\ = 1,000 proceedings objects
XI - 30 papers per proceedings
a l = l
a l - 50%

Papers:
Xl"! authors per papers
a 2 = l
a2 = 5%
02=1

Authors:
o3 = 90%
6 3 - 1

'^m^m^w-
Proceedings:

rl = 1,000
ol - 5%

Table 7.1. Data Parameters

Using the serial scheduling method, the elapsed time for sub-query 1 and sub-query

2 are 80 |is and 8 [is, respectively. Hence, the total elapsed time for phase 1 is 88 ^s. Using

the parallel scheduling method, all possibUities of processor configuration are

experimented. It starts from one extreme (i.e., 11 processors for sub-query 1 and 1

processor for sub-query 2) and goes to another extreme (i.e., 1 processor for sub-query 1

and 11 processors for sub-query 2). The results are shown in Figure 7.4.

Parallel Scheduling Method

I Sub.query 1

I Sub-query 2

300 T H 258
Titne

1+11 2+10 3+9 4+8 5+7 6+6 7+5 8+4 9+3 10+2 11+1

Processors (subquer/ 1 + subquery 2)

Figure 7.4. Performance of Query 1 using Parallel scheduling

Several observations can be made based on the above results. Firstiy, regardless of

how processors are divided, sub-query 1 will finish later than sub-query 2. Hence, sub-

query 1 sets the total elapsed time. Secondly, as the lowest completion time for sub-query 1

is with 10 processors, the configuration 10-1-2 processors (i.e., 10 processors for sub-query 1

and 2 processor for sub-query 2 is the most efficient configuration). Finally, compared to

serial scheduling, parallel scheduling shows a better performance (i.e., 45 [is (parallel)

versus 88 [is (serial)). Even when a less optimal processor configuration is used (such as

Ch.7. Execution Scheduling page 172

7+5 processors configuration which requires 69 \is), parallel scheduling performs better.

However, with a careless resource division, such as 6+6 processor configuration, the

parallel execution schedulmg is less efficient than that of the serial execution scheduling

(92 us (parallel) versus 88 [is (serial)). The lesson is tiiat an accurate resource division

calculation is a critical factor in paraUel execution scheduling.

7.3.4 Summary

Two important aspects emerged from the sub-queries execution scheduling, particularly

regarding load skew and processor configuration. To gain acceptable performance

improvement, these two issues must be carefuUy addressed.

Load skew degrades performance. Load skew has been a part of most query

executions, as imbalance is not separable from parallel query processing. In recent years,

die problem of skew in parallel relational databases has been the subject of active research,

and skew handling algorithms have been proposed (Liu et al., 1995; Bmnie et al., 1995; Lu

and Tan, 1992). There is no doubt that die skew problem in parallel OODB is no less

significant than that in parallel relational databases. In order to improve performance of

object-oriented query processing, a careful and intelligent skew handling for load balancing

must be established. As a matter of fact, many existing skew handling algorithms for

parallel relational database systems may be of some use in paraUel OODB.

Obtaining an optimal processor configuration for parallel sub-query execution is

difficult. An optimal processor configuration is mostly determined by mn-time factors, such

as tiie cardinality of classes, the degrees of skewness, the selectivity factors, etc. Because

most of these factors are non-deterministic, finding an optimal processor configuration for

parallel sub-query execution is a difficult task. Without a careful calculation, it is possible

that parallel execution of sub-queries wUl tum into a very expensive operation, even more

expensive than the less desired serial execution of the sub-queries.

7.4 Data Re-Distribution

One way to overcome the load skew problem is by data re-distribution, so that the load of

each processor will always be balanced (or near balanced) at any stage of query processing.

Two data re-distribution techniques are considered, namely: physical and logical data re­

distribution.

Using the physical data re-distribution technique, data are acmally moved from one

processor to another in the load balancing process. This happens when an idle processor

Ch. 7. Execution Scheduling page 173

requests an object and one of the non-idle processors replies to die request by sendmg an

object to the idle processor through an interconnected network.

On die otiier hand, using logical data re-distribution, a particular data initially

assigned to be processed by a processor is now changed to anodier processor. The data is

not physicaUy moved; instead, tfie pointer/flag of the data, which keeps die information

about the assigned processor, is updated. This technique can only be applied to shared-

memory/disfributed-cache architectmres and fully replicated systems.

7.4.1 Physical Data Re-Distribution

In a shared-nothing architecture, data is divided into a number of disjoint partitions, and

each of these partitions is stored at one and only one processor. Each processor has its own

autonomy to its data, and it works independently of others. Consequentiy, the need for

communication among processors becomes minimal. Regardless of the topology adopted by

the architecture, a router is commonly used to handle the delivery of information from one

processor to another. The path can be d^ansparent to the users.

In processing a sub-query containing a path expression, partitioning root objects

can be done in a round-robin fashion (in order to distribute the root objects unifonnly

across all processors). The weight of each complex object varies due to the number of

associated objects being attached to each root object is non-uniform. Consequently, the time

taken to process a complex object differs between one and another. When a processor

finishes its work-load, it is desfrable that this idle processor takes the initiative to help other

processors, which are stUl busy processing, by "stealing" objects from them. Subsequentiy,

data re-distribution from a non-idle processor to an idle processor occurs. By tiiese

movements, it can be expected that the processmg time of die overloaded processor

decreases, and as a result, the overall processing time will also decrease.

ParaUel processing is modelled by means of communicating sequential processes

CSP (Hoare, 1985). Each processor consists of 2 processes: databank and worker

processes. The data_bank process deals with the data storage, whereas the worker process is

to process each data upon arrival from the data_bank process. Initially, a worker sends a

request to die local data_bank for an object. Then, die data_bank replies the request to the

worker by sending an object. This communication is internal witiiin one processor. Figure

7.5(a) shows the processing model.

Ch. 7. Execution Scheduling page 174

(a) Independent Processing

Prcxiessor 1

Data &ank{I}

request
reply

Processor 2

m^f:::w/
pbatanBanklZl

request
reply

oi*«rr2|

Processor n

request
reply

VFoFker{a|

(b) Data Re-distribution

Processor 1

EMPTY

request

reply

Workerfll

Processor 2

DB{«_B«nk[2]

request
reply

WorkerPi

(c) Further Data Re-distribution

Processor 1

EMPTY

request

^ Woi^i^jf

Processor 2

EMPTY

VVorkerfa]

Processor 3

D a t u B a n k P)

—%

request
reply

WorkerfJ]

Figure 7.5. Physical Data Re-distribution Architecture

When the data_bank of a processor is empty, the worker of that processor sends a

request to a neighbouring data_bank, instead of to its own data_bank. The neighbouring

data_bank driggers a request (either from its own worker or from other workers), and sends

a reply to the worker which requested an object (shovra in Figure 7.5(b)).

Using the same technique, if the second processor has also mn out of data, both

processors 1 and 2 wUl send a request to anodier processor for an object. Figure 7.5(c)

shows this configuration. The above procedure is repeated until all processors finish the

job. An algoritiim for tiie data_bank and worker processes is presented in Figure 7.6.

Ch.7. Execution Scheduling page 175

Process Data_Bank [i] {1 = 0 to num_processors)
Begin

For k-Qio no_objects
tik" no_objects Then

object - 0 // end of partition
Else

Get an object
End If
Altj = 0 to num_processors

Guard: Receive a request from worker through channel [i]\j\ ? // waiting for a request
Reply with an object

End Alt
End For

End Process

Process Worker [i] {i = 0 to num_processors)
Begin

j = i
While tme

Send a request to data_bank through channel [j][i]
Receive an object from data_bank through channel [)][i]
If obj = 0 Then // end of partition

// find a donor
If y = num_processors - 1

;-=.0
Else

End If
If y = i Then // a full circle is done, and the request is not

Stop // answered by any other processor.
End If

Else
Evaluate the object

End If
End While

End Process

Figure 7.6. Data_Bank and Worker Processes for Physical Data Re-Disttibution

7.4.2 Logical Data Re-Distribution

Logical data re-disfribution can be implemented in two ways, namely: shared-

memory/distributed-cache architectures usmg parallel pipes, and fully replicated "shared-

nothing" architectures. In shared-memory/distributed-cache architectures, all processors

have an equal access to the central data bank. Processing is done by sending objects from

die data bank through pipes to the worker processors. Load balancmg is achieved through

dynamic processor scheduling. Whenever a worker processor becomes idle, the central data

bank immediately fetches an object. The object may have been initially planned to be

allocated to a different processor.

In fully replicated "shared-nothing" architectures, processing is done similarly to

disjoint-partitioned shared-nothing architectures, except that load balancing is achieved by

Ch. 7. Execution Scheduling page 176

dynamic message/control passing, not by physical object dransfer. The details of tiiese two

methods are presented as follows.

a. Shared-Memory/Distributed-Cache with Parallel Pipes

Parallel processing in shared-memory/distributed-cache architecture is accomplished by

distributing the work load equaUy to all avaUable processors. The processmg mode adopts a

pipeline style. Once a processor receives a piece of complex object, it can start processing it

without waiting for other pieces of data to arrive. Since data transfer of an object from one

processor to anotiier is normally slower than the processor execution time of the same

object, it is desirable that several data be transferred in parallel using parallel pipes. The

aim is to equalize the data transfer time with the local processing time. In this way, the local

processing time can completely cover tiie data transfer time.

The pipeline models are based on the equal partitioning where the number of data

units are divided equally into all participating slaves. As each data unit weights differentiy,

there might be cases of load skewness. To overcome this problem, a scheduler process is

implemented. The task of the scheduler is to manage the object queue. It has to make sure

diat the work load among processmg elements is closed to equal, although the number of

data units is different. An architecture of this model is presented in Figure 7.7.

Global
Data_Bank
(Master)

Scheduler

Sender

Processing
Elements Buffer.m[0]

(Slave)
Worker[0]

Buffer.out[0]

Parallel Pipes!Channels from Sender[n

to Receiver[n-1]

Figure 7.7. Logical Data Re-distribution using a Scheduler

Ch.7. Execution Scheduling page 177

The process is initiated by the sender process. A sender process sends a request to

the scheduler to obtain an OID. Upon receiving the request, the scheduler process replies to

the sender process with an OID. The sender process then transfers this object to a

processing element. Several senders may transfer to the same processing element through

different pipes/channels. Each processing element is equipped with a number of input and

output buffers. The object ttansferred from the sender is received by the worker through an

input buffer. If the object is selected, the object is transferred back to die master (i.e.,

receiver process) through the output buffer. An algorithm which implements a scheduler for

managing the object queue is presented in Figure 7.8.

Process Master:
Begin

Process Sender[/][A:1 {i = 0 To P; ;fc = 0 To B): II P=slaves; B=buffers
Begin

While Trae
Send a request to the scheduler
Get an object number from the scheduler
Read a complex object
SendittoSlave[/][A;]

End While
End Process

Process Scheduler:
Begin

For 7 = 0 To total number of root objects
Pri Alt I = 0 To P; yt = 0 To 5

Guard: Get a request from Sender[/][fc]
Send an object number to Sender[/][^] to send the object out

End Pri Alt
End For

End Process

Process Receiver[/][A:] (/ = 0 To P; /t = 0 To 5):
Begin

While Tme
Get an object from Buffer_Out[i][fc]

End While
End Process

End Process

Process Slave[i] (/ = 0 To P):
Begin

Process Buffer_In[i][*] (A; = 0 To B):
Begin

WhUe Tme
Get an object from Sender[z][^]
Send it to the worker

End WhUe
End Process

Process Worker[i]:
Begin

Ch. 7. Execution Scheduling page 178

While Tme
AltForjk = OTofl

Guard: Get an object from Buffer_In[z][yt]?
Process the object

End Alt
If Not Selected

Send a negative ack to Buffer_Out[f]
Else

Send the object to Buffer_Out[/]
End If

End WhUe
End Process

Process Buffer_Out[i][*:l (yt - 0 To 5-1):
Begin

While Tme
Get an object from Worker[i]
If Buffer.out is busy sending an object to receiver

Pass the object to the next buffer
Else

Send the object to the receiver
End If

End While
End Process

End Process

Figure 7.8. Master-Slave Processes

Figure 7.9 shows an example of the simulation result which proves tiiat even

though the number of data units (complex objects) processed by each slave is different, the

work load is quite even. It can be seen that object number 6 does not go to slave [0] as it is

StUl busy processing object number 3. It then goes to slave[2] because slave[2] has just

finished processing object number 5, which is very short.

Sample Ordering Result: OID
0
1
2
3
4
5
6
7
8
9
10
11
12
13

Slave
0
1
2
0
1
2
2
0
2
1
0
2
2
0

<««========

Slave 0:

Slave I:

Slave 2:

10 13

12

Figure 7.9. The Result of the Scheduler

Ch. 7. Execution Scheduling page 179

b. Fully Replicated Systems

In fully replicated systems, all data are replicated to all processors. The architectures are the

same as those of shared-nothing architectures, but each processor has the same data as other

processors. Load balancing can be achieved in either of two ways. One way is to use the

physical data re-distribution technique, but the ones that move from one processor to

another are not the actual objects, but the controls. When one processor has finished its

portion of the work-load, it sends a request to a neighbouring processor. After receiving a

request, the neighbouring processor sends an object ID (OID), not the actual object, as a

reply. The idle processor retrieves the designated object pointed by the OID.

Communication among processors is still necessary. However, the communication costs

will be minimum as the size of each message is far smaUer than the size of a complex

object.

Another way is to use the parallel pipes architectures which simulate a single queue

model. In this model, a processor is chosen as a master which handles the object

distribution. Since each slave now has a full copy of data, the master only needs to send a

control to the slave, in order to activate the slave to start processing each object. The

scheduler manages the control distribution dynamically. Since this approach is similar to

that of shared-memory architectures, it is then more desfrable than the first one. However, it

imposes upon a constraint that a processor in the intercoimection network must be chosen

as a master and a scheduler must be implemented.

7.5 Discussions

Two major important lessons, which are drawn from die two issues highlighted earlier, are

as follows.

• Data re-distribution is presented as a tool for handling the load skew problem. With

data re-disdibution, load balancing can be achieved. Major performance improvement

can be expected especially in shared-memory systems and fully replicated systems,

since data re-distribution is performed logicaUy tiurough dynamic processor scheduling.

• Since the negative effect of load skew is minimized through data re-disdribution, serial

scheduling becomes more feasible. Data re-distribution has provided an indirect

solution to die difficulty of resource division calculation, in which it is now not needed.

Exploiting serial scheduling through die availability of data re-distribution is sometimes

considered as "going back to the basics". It is however not a drawback, but in fact, an

advancement since performance improvement is gained not only by linear/near linear

speed-up, but also through the efficiency of serial scheduling when appropriately used.

Ch. 7. Execution Scheduling page 180

Allocating full resources to a sub-query now seems to be better than dividing resources

among multiple sub-queries.

7.6 Conclusions

Most complex queries involve path expressions and explicit joins, m which the path

expressions form the sub-queries. Therefore, it is important to define strategies for sub-

queries execution. Two execution scheduling strategies for sub-queries have been

considered, particularly serial and parallel scheduling. The serial scheduling is appropriate

for non-skewed sub-queries, whereas the parallel scheduling with a correct processor

configuration, is suitable for skewed sub-queries. Non-skew sub-queries are typical for

single class involving selection operation and using a round-robin data partitioning. In

contrast, skew sub-queries are a manifest of most path expressions queries. This is due to

the fluctuation of the fan-out degrees and the selectivity factors.

Further performance improvements can be gained through load balancing, which is

implemented in data re-distribution. Two data re-distribution methods are defined: physical

and logical data re-distribution. The physical data re-distribution is suitable for a shared-

nothing architecture, where each processor has its own autonomy to its data. When load

imbalance occurs, some processors wUl need to transmit then data to others. The logical

data re-distribution does not involve any data movement from one processor to another.

This method is applicable to full data replication systems or shared-memory systems. In a

shared-memory system the data is centralized, whereas with full data replication, although

the data is distributed, each processor has a copy of the same data. Thus, there is no

necessity for physical data movement, and load balancing is achieved through dynamic

processor assignment.

The main contributions of tiiis chapter are summarized as foUows.

• Execution scheduling strategies incorporating skewness are developed.

Skewness has been one major problem in parallel query processing in which the

desire linear speed-up is prevented. The effect of skew in sub-query execution

scheduling has been studied and presented.

• An adaptive processor allocation algorithm is presented. The algorithm is built

upon the three propositions on die basic schedulmg sd-ategies. Two factors are

considered, namely: skewness and size of sub-queries. A need for a precise

skew model for parallel sub-query execution scheduling is also highlighted.

Ch. 7. Execution Scheduling page 181

Physical arui Logical data re-distribution for load balancing are described.

Through data re-distribution, linear or near linear speed up is expected to be

attainable. Hence, the aim of parallel processing in databases; that is

proportional performance improvement, can be accomplished.

The potential of serial execution scheduling in object-oriented query access

plans has been identified. Serial scheduling not only makes complex query

execution scheduling simpler, but also more efficient. The focus of parallel

query processing may be shifted to parallel processing within each sub-query,

in which full resources are allocated to each sub-query.

Chapter 8

Analytical Performance Evaluation

8.1 Introduction
In order to measure the effectiveness of paraUeUsm of object-oriented query processing, it is

necessary to provide cost models that can describe the behaviour of each paraUelization

model. Although the cost models may be used to estimate the performance of a query, it is the

primary mtention to use them for comparison purposes. The cost models also serve as tools to

examine every cost factor in more detaU, so that right decisions can be made to adjust the

entire cost components to increase overaU performance. The cost is primarUy expressed in

terms of the elapsed time taken to answer a query. It is the aim of this chapter to present cost

equations for each paraUelization model and algorithm, and to perform quantitative analysis.

This chapter is organized as foUows. Section 8.2 describes the foundation for

analytical performance evaluation which covers the basic system structure and cost equation

notations. Section 8.3 presents an analytical analysis for the inheritance data sdiictures for

paraUel processing. Section 8.4 gives an analytical analysis for inter-object paraUelization

and inter-class paraUelization. Section 8.5 examines quantitatively the optimization of

primitive operations. Section 8.6 analyses the execution scheduling strategies. Section 8.7

presents a discussion. And finaUy, section 8.8 draws the conclusions.

Ch. 8. Analytical Performance Evaluation page 183

8.2 Foundation

8.2.1 System Structure

A disfributed-memory architecture, as shown in Figure 8.1, witii one master processor and a

number of slave processors, is adopted as a basic system stiiicture. The master and tiie host

are tightiy coupled and may refer to die same physical processor. Each slave processor is

equipped with its ovra local main memory. The system topology is a star network. When diere

is a need to disfribute objects from one slave processor to the other, tiie system configuration

can be altered to a fuUy-connected network topology. This system stmcture not only reflects a

typical fransputer system, but also a symmetrical multiprocessor where each "slave"

processor is equipped with a cache and aU slaves share a global memory. Hence, tiiis

stiructure is a generic system structure for distributed-memory and shared-memory systems.

The programming paradigm is processor farming, where the master distributes the

work to tiie slaves (Green and Paddon, 1988). It wUl be ideal if aU slaves are busy at any

given time; that is when the work load has been divided equaUy among aU slaves. It is

assumed that the data is already retrieved from the disk. Main memory based structure for

high performance databases is becoming increasingly common, especiaUy in OODB, because

query processing in OODB requires substantial pointer navigations, which can be easUy

accomplished when aU objects present in the main memory (Litwin and Risch, 1992; Moss,

1992).

User Slave-1

Host
Computer ^

yfZ

•^

Master Slave-2

Disk

Slave-3

Figure 8.1. Basic System Structure

The user initiates the process by mvoking a query through the host. To answer die

query, the master processor disfributes the data from the host to die slave processors, and

then sends the resiUt back to the host, which subsequentiy wiU be presented to the user.

Ch. 8. Analytical Performance Evaluation page 184

a. Major Cost Components

Total elapsed time for an operation usuaUy comprises data distiibution time, reading time,

predicate evaluation time, and writing time.

Data Distribution Time

There are two main components in calculating tiie elapsed data disfribution time: variable and

fixed processor overhead costs. The variable processor overhead cost depends on die number

of objects tiiat are disfributed to die slave processors, whUe die fixed processor overhead cost

depends on die number of slave processors used for tiiat particular operation. The fixed cost

is related to the cost of opening the channels between the master and die participating slave

processors.

Reading Time

The elapsed reading time of an operation is equal to the number of objects to be read divided

by the number of participating slave processors. When skewness is present, the maximum

number of objects in one processor wiU determine the reading time.

Predicate Evaluation Time

Predicate evaluation time is very simUar to the reading time, since aU objects read must be

evaluated against local predicate. AdditionaUy, the cost for predicate evaluation also includes

the predicate length, which determines the complexity of a selection operation.

Writing Time

The writing time is the time taken to write selected objects to the output buffer. The writing

time can also be denoted as a fransfer time of those objects to the master processor.

b. Fully Partitioned vs. Pipeline

Fully Partitioned Model for Join Operations

Data disfribution time, reading time, predicate evaluation time, and v^iting time represent a

sequence of phases in which aU data are distributed first, foUowed by local processing

(reading and predicate evaluation), and finaUy the result is transferred back (writing). This

model is actuaUy a fuUy partitioned model where local processing does not start before the

data is fuUy partitioned (or disfributed). This model is tiierefore suitable for join operation.

Ch. 8. Analytical Performance Evaluation pagg J85

because join operation typicaUy consists of two phases: partitioning (data distribution) and

local join phases. Therefore, the sirni of data disfribution time, reading time, predicate

evaluation time (in tiiis case it is a joining time), and writing time is tiie total cost for a join

operation. The reading time, predicate evaluation time, and writing time are often abbreviated

as the local processing time.

Pipeline Model for Selection Operations

In a selection operation, local processing can start witiiout tiie need to wait for aU data to be

completely partitioned (disfributed). Furthermore, local processing can be done

simultaneously with subsequent data disfribution. This process is caHed pipelining.

A paraUelization model for selection queries based on pipelining is presented in

Figure 8.2(a). Each block is a process, and several processes can be located at the same

processor. Processes can also be nested. When several processes request a CPU access at die

same time, only one of them can go into an execution state, whUst the rest must wait. On the

contrary, communications can be done simultaneously as each commimication uses a

different chaimel.

An equal partitioning sfrategy, a more general version of the round-robin

partitioning, is used. AU objects in the class are divided equaUy among aU participating

slaves. The order of the objects itself is not like that of round-robin. After it has been

calculated how many objects each slave wiU receive, the slaves can start getting an object.

They wUl stop once they reach the quota. Therefore, a class with 10 objects and 2 slaves,

with roimd-robin, slave 1 wUl get aU odd objects and slave 2 wiU have aU even objects. Using

tiie equal partitioning, slave 1 wUl get 5 objects and so wiU slave 2, regardless of which

objects.

As the communication uses a synchronization protocol, both the sender and the

receiver must be ready when disfributing data. This inciu's waiting time for the sender, as it

must wait imtU the receiver is ready to accept data. Data distribution from the sender to the

slave of the second object caimot be initiated imtU the first object has been processed and sent

to die receiver. It is noted that for the same size of data the communication between tiie slave

and die master normaUy takes longer than tiie CPU processing time. However, the cost for a

message is very smaU. The processing cost for each processor is tiie sum of the distribution

cost, the local processing cost, and die writing cost. The overaU processing cost is set by the

highest processing cost.

The initial model can be improved by using an input buffer in each slave, so that data

disfribution does not have to wait for the worker to finish its job. The size of tiie buffer must

Ch. 8. Analytical Performance Evaluation page i86

be large enough to handle a single object. An architecture tiiat uses an input buffer scheme is

presented in Figure 8.2(b). After tiie CPU finishes processing an object, it does not have to

fransfer it back to die receiver, but to tiie output buffer. The output buffer is placed at die

same processor where the CPU is located. As tiie internal communication is much faster tiian

tiie external, tiie CPU vi'iU be ready for processing die next object after Q-ansferting tiie

current object to the output buffer.

As tiie input data disfributions run simultaneously witii data processing, tiie overaU

cost is determjned by die cost for data distribution. Only for die last piece of data, does die

cost have to be added to the CPU processing cost, as there is no more data to be distributed.

Using this model, processing data in a slave can be done simultaneously witii input data

fransfer of the next piece of data from the master to the buffer part of the slave. As a result,

the processing cost for each processor wUl not include the local processing cost and the

writing cost, as they are already covered by the disfribution cost. However, this model wUl

generate a buffering overhead.

One way to unprove the previous models is by implementing multiple single buffers

per slave (Figure 8.2(c)), and each buffer has its own channel from and to the master. In this

way, data disfribution among buffers can be done in paraUel. Using this model, the emphasis

has been shifted from the disfribution to the processing. Consequentiy, CPU usage can be

increased. The sender is implemented as a two-dimensional array with one subscript

represents number of buffers and the other represents the nrnnber of workers.

The output buffers, uiUike the input buffers, are implemented as chains within each

slave. Entering into an output buffer is done by a single channel, but going out to die receiver

can be done simiUtaneously by each buffer within a buffer chain. If a buffer is busy sending

out an object to tiie receiver, the mcoming object to tiie buffer chain wUl be passed to die next

avaUable buffer. The reason for this is efficiency. It wUl be costiy if tiie workers were

connected to each buffer in a free topology like in that of input buffers, because tiie worker

has to check which buffer is idle. Using a chain, die worker simply sends die object to die

output buffer and the buffer wUl manage it.

The number of buffers must be large enough, so tiiat the disfribution cost is totaUy

covered by the processing cost. However, when tiie number of buffers is very large (far larger

tiian needed), tiiis architecture wUl be simUar to tiie disjoint partitioning shared-notiting

architectures. There wUl be a need for physical data re-disfribution at a later stage when tiie

finishing time of each processor is dUferent. This is certainly not desirable and tiierefore it is

necessary to keep the number of buffers as low as possible, just enough to cover tiie

disfribution cost.

Ch. 8. Analytical Performance Evaluation page 187

Master
Sender Receiver

M HI m

\

Ia4J \m m m

Slave

^ ... 71

Figure 8.2(a). A simple master-slave architecture

Master
Sender Keceivei

101 m m

u

m m m
'7\

r . y

,ti-i]

Slave
Buffer, in

Worker[Cfij

Buffer.out[0

l l i - l j

[n-1]

Buffer.in[n-1]

Worker[n-l]

Buffer.out[n-ll

Figure 8.2(b). Master-Slave Architecture with Single Input-Output Buffers

Master

Slave

Sender

;;t .1

1
. - M ~ T ^

m . 1 . 1
n

Buffer.m[0]

Worker[0]

Buffer.out[0]

N

Receiver

iB-il

m
p: m

^-ifr j t E

I '• t~-

from Sender[n-1]

• : - : - : - : • ; - : - : - : . ^ - -

•^ R ^ H ^

/ i •^

Buffer.in[n-1]

Worker[n-l]

Buffer.out[n-l]

vj^ si^ Sj^
to Receiver[n-1]

Figure 8.2(c). Master-Slave Architecture with Multiple Input-Output Buffers

Ch. 8. Analytical Performance Evaluation page 188

Since tiie local processuig time can completely cover tiie data distribution time, only

tiie local processing time is considered in die selection operations. Hence, tiie number of

objects processed and the processing unit time are the two important cost components.

8.2.2 Cost Notations

Cost equations are composed of a number of components, such as number of objects, number

of processing elements, processing unit costs, selectivity factors, etc. Each of tiiese

components is represented by a variable, to which a value is assigned at run-time. The

notations used are shown in Table 8.1.

Variatjfes
r or s
n
X
a
k
td
tr
tv
tw
tp

f

Deserifrfiooi ;ss|
number of objects m a class
number of processors
average fan-out degree of a class
selectivity degree
skewness ratio
distribution unit time
reading unit time
predicate evaluation unit time
writing unit time
local processing unit time
frequency of a query

Table 8.1. Basic cost notations

The more detaUed descriptions of each cost component are explained as foUows.

a. Number of Objects (r or s)

The number of objects is represented as an r or s. If die classes in a query are associated ui an

inheritance or aggregation hierarchy, the number of objects of these classes are represented as

n , n, ..., rm, where m is the number of classes in die hierarchy. Figure 8.3 shows an

iUusfration of notations for number of objects.

In an inheritance hierarchy, n denotes die number of super-class objects not

specializing at any sub-classes. These objects are referted to as "pure" super-class objects.

Depending on the number of super-classes involved in the query, n wiU be the number of

sub-class objects, if there is oiUy one super-class.

In a path expression, n is die number of root objects; and r2, r s , ... are tiie number

of associated objects. Since some associated objects are accessed more tiian once, and some

of tiiem are not accessed at aU, the number of accesses to die associated objects are

represented as r'l, r'3 ,...

Ch. 8. Aruilytical Performance Evaluation page 189

In an explicit join query where two classes do not have any connections apart from

tiie joining atfribute, tiie number of objects of the two classes are denoted as r and s.

Inheritance:

Path Expressions:

Join:

1 ""v

©-^©-^

V

Q 9
1 ^ ^ \

Q)

Figure 8.3. Notations for number of objects

b. Number of Processors (n)

In a path expression, where a number of classes along an aggregation hierarchy are involved

in the query, the number of processors avaUable to process the query is represented as m. For

the subsequent classes, the number of processors are represented as ni, ns, In the case

where these values are the same, or there is only one phase of query processing, n is used

instead.

c. Other Data Parameters (k, a, k)

Otiier important data parameters include fan-out degree X, selectivity degree a, and skewness

ratio k. Like the number of objects (i.e., r, s) and die number of processors (i.e., n), a

subscript is attached to a cost variable which determines die class to which tiie cost variable

refers. For example, the fan-out degree of a root class in a patii expression is denoted as >.i.

To distinguish/an-oM/i from fan-in^, the average fan-in degree of a class is denoted as X\ For

example, tiie average fan-in degree of an associated class of a two-class path expression

query is represented as XX which refers to the average nmnber of root objects per one

associated object.

^ number of directed arc coming out firom an object

number of directed arc coming into an object

Ch. 8. Analytical Performance Evaluation page 190

The selectivity degree o gives the probabiUty (or proportion) that a given object of a

class is selected. Incorporating a subscript, ai of a path expression query refers to a

selectivity degree of the root class.

The skewness ratio k refers to the ratio between the load of the busiest processor and

that of tiie average processor. Hence fo of a two-class path expression query refers to the

skewness ratio of the associated class.

d. Processing Unit Costs (td, tr, tv, tw, and tp)

Like other cost variables, a subscript is also used to determine the class to which a particular

cost variable is applied. Processing imit costs include distribution unit time td, reading imit

time tr, evaluation unit time tv, writing unit time tw, and local processing unit time tp.

Disfribution unit time td refers to the elapsed time taken to fransfer an object from

one processor to another (e.g., from master to a slave). Reading unit time tr is the time to

retrieve an object from buffer. Evaluation unit time tv is the time taken to evaluate a predicate

involving a single atfribute. Writing unit time tw is the time taken to form the result and write

it to output buffer. The sum of the reading, evaluation and writing time is represented by the

local processing time tp. Local processing imit time tp is subject to the length of the selection

predicates, and the v^iting time tw is influenced by die selectivity factor a. Therefore, tp = tr

+ l.tv -t- o.tw, where I is the length of the selection predicate.

e. Frequency (/)

The effectiveness of an inheritance data stiructure depends on die frequency of different types

of inheritance queries. The notations/i andy2 are used to denote the frequency of super-class

and sub-class queries, respectively.

8.3 Analytical Models for Parallel Processing of
Inheritance Queries

8.3.1 Super-Class Query Processing Costs

As die processing of a super-class involves aU its sub-classes, the number of objects

processed is the sum of super-class objects and sub-class objects (n and n). The processing

unit cost for a super-class object is tp\, whUst the processing unit cost for a sub-class is the

sum of tp\ and tpi.

Ch. 8. Analytical Performance Evaluation page 191

If a roimd-robin partitioning is used, die cost for paraUelization of super-class queries

using a horizontal division can be v^itten as:

_ TL tp\ + riitpi + tpi)
risaper — fsuper •

n
(8.1)

Suppose an inheritance schema Person-Lecturer is used as an example, where class

Lecturer inherits from class Person (for simplicity assume that class Person has one atd-ibute

caUed name, and class Lecturer has one additional atfribute caUed subjects). In processing

class Lecturer, tpi is the processing time for Name (and other atttibutes of class Lecturer

declared in class Person), and tp2 is the processing time for atfribute Subjects (and other local

atfributes); whereas n is the nimiber of lecturer objects. The sum of tpi and tpi is the total

cost of processing a lecturer object. It is purposely divided into several cost components,

smce processing a super-class (e.g., class Person) wUl not involve aU die cost components.

For example, class Person wUl uivolve tpi only. Suppose there are 100 persons non-

specialized in any sub-classes, and 500 lecturers; and 10 processors. The processing cost is

calculated as: (lOO.tpi + 500{tpi + tpi))! 10 = {6QQ.tpi + 5Q)0.tpi)llQ).

MeanwhUe, the cost model for paraUelization of super-class queries using a

verticaVlinked-vertical division^ is simplified to:

LyV super —

n

(8.2)

as it involves only one class; that is the super-class. For example, if tiiere are 100 persons

non-specialized to otiier class, and 500 lectiurers, the cost for processuig class person is:

{(\00+500)tpi)ln = eOO.tpiln.

LEMMA 8.1 (SUPER-CLASS QUERIES). For super-class queries, paraUelization using

a linked-vertical division outperforms that of using a horizontal division.

PROOF. We shaU show tiiat

Hsuper > LVsuper.

(8.3)

Using equations (8.1) and (8.2) for horizontal and linked-vertical

(vertical), respectively, condition (8.3) is equivalent to

rutpi + r2{tp\-¥tp2) (n -H r2)tp\

n n

^ The presence of link in the linked-vertical division is insignificant to the reading time. Hence, the costs of
super-class queries using the linked-vertical division and the vertical division are undifferentiated.

Ch. 8. Aruilytical Performance Evaluation page 192

<=» n.tpi > 0

As r2.tp2 is positive, condition (8.3) is therefore due. 3

8.3.2 Sub-Class Query Processing Costs

The cost model for paraUel execution of sub-class (horizontal division) queries using a round-

robin partitioning is given as foUows.

_r2{tpi + tp2)
tlsub —

n
(8.4)

It is evident that Hsub < Hsuper, as Hsub covers processing costs for a sub-class only,

whereas Hsuper adds processing costs for the super-class as weU.

Using a vertical division, a paraUel join must be performed in processing a sub-class

query. ParaUel hash join algorithm has been widely recognized as the most efficient algorithm

for join queries in an paraUel environment (Graefe, 1993). ParaUel hash join can be

summarized as foUows. Firstiy, it partitions the two classes using a hash function. Secondly,

for each partition, a hash table is buUt by applying a hash function to the first class and the

second class. Matched pairs become the results of die joining. The hashing procedure is

known to be linear (i.e. 0{N)) (Knuth, 1973). Therefore, the joining cost in each partition is

proportionaUy to the number of objects of tiie two classes in that partition. Hence, the average
(ri-f r2\rm + r2.to2

hash join cost is -̂= , where the first term: {ri+n).tpi, refers to the cost for

n

hashing the super-class, and the second term: n.tpi, is die cost for hashing tiie sub-class. The

number of super-class objects is now n-i-r2, as it includes not oiUy die "pure" super-class

object, but also aU sub-class objects.

The main problem in paraUel hash join is tiiat the size of each partition may not be

equal to the otiiers, due to the hashing function used in die partitioning. Using ^ as a join

skewness degree, the processing cost for the heaviest processor becomes:
(ri-\-r2).tpi-{-r2.tp2

V sub ^ k

n { k > l)
(8.5)

where k = 1 means the load for each processor is equal.

Using a linked-vertical division, a join operation is avoided in processing a sub-class

query. It, however, ind-oduces a fraversal cost from sub-class to its super-class. Processing a

sub-class query using a linked-vertical division comprises of 3 components: local processing

Ch. 8. Aruilytical Performance Evaluation page 193

to tiie sub-class, fraversal to its super-class, and local processing to die super-class. The cost

model is as foUows.

, . , r2.fp2-f-r2.rr1-f-r2.rp]
LVsub = — ^ - — —

n

(8.6)

where tt\ is the object fraversal unit cost from a sub-class object to its super-class. Since tti

depends on the size of super-class si, tti can be defined as, tti = .si .//a;where rra is a pointer

navigation unit cost. For example, witii 500 lecturers, tiie cost for processing class lecturers

is SOQ.tpiln, the fraversal cost is SQO.ttiln, and the cost for processing each object lecturer

declared in the class person is SOO.tpiln.

Performance of sub-class query processing using the linked-vertical division is

demonsfrably better than usmg the traditional vertical division. The reason is that using the

linked-vertical division, processing a sub-class query is accomplished by reading a sub-class

object, ttaversing to a super-class, and reading a super-class object. This is purely a selection

process by incorporating a pointer fraversal between the two separated parts of a sub-class

object. In contrast, using the vertical division, an explicit join operation must be employed.

Furthermore, it was highlighted earlier that selection operations can be performed using a

pipeline model where the total processing cost is made up of the local processing cost. On the

other hand, join operations must have the data fuUy partitioned in which the distribution cost

is taken into accoimt, in addition to the local processing cost. By taking just the local

processing cost, the comparison between sub-class query processing using the linked-vertical

division and the vertical division is given as foUows.

Using equations (8.5) and (8.6), we shaU show that when the skew is large, the cost

of linked-vertical division is less than the cost of the vertical division, i.e.,

LVsub < Vsub

r i tp2 + r2. tpi -\- r2. tti r2. tp2 -\- (n -l- r2)rpi
<=^ < A:

n n
<=^ n.tti < r2.tp2{k-l) + r2.tpi{k-\) + n.tpi.k

tpi
If A: = -^—, signifying that the d-aversal time tt is x time faster tiien the processing

rri
time tp, we have

rzrri r2.p2{k-l) r2.tpi{k-\) n.tpi.k

X X X X

rxtti r2.tp2{k-\) ,, ,. ^̂ ,
< —^-^ -h r2. tti(k -1) -f n. rri. k

X X

rxtti '' r2.tp2{k-l) ., ,,
— ^ ^ + r2. tti(k -1) < n. rri. k

http://r2.fp2-f-r2.rr1-f-r2.rp

Ch. 8. Analytical Performance Evaluation page 194

tp2
Likewise, if y =-^-—, then we have

rri
rzrri 'r2.y.tti(k-l)

-\-r2.tti{k-l)

(^ - D ^ + l y_

<ri.tti.k

<ri.k

If k is large, tiien this is clearly due since tiie left hand side wUl be negative, whUe tiie right

hand side is positive. A lower bound for k may be obtained from flie left-hand side as foUows.

or

or

l<(^- l) (y-^;c)

1
k>l-\-

i.e., k>l-\-
rri

rpi -I- rp2

This shows that the cost for paraUelization using linked-vertical is lower than tiiat of

vertical division, when the jom skew k is greater than l-\-
tti

V
. As this is usuaUy

rpi-f-rp2

smaU (the traversal time tt is far smaUer than the local processing cost tp), the lower bound

for the skew becomes very low too, resulting that the linked-vertical division is advantageous.

AdditionaUy, the cost of data distribution in a join operation is normally excessive, and

consequentiy increases the join cost. Since the linked-vertical division is better than the

vertical division, the vertical division is therefore excluded from further analysis.

It is demonsfrated that horizontal division is best for sub-class queries, because of

object independence. On the other hand, linked-vertical division is more suitable to super­

class queries, because otherwise horizontal division has to involve an inherited attributes of

the sub-class which increases the processing overhead.

LEMMA 8.2 (SUB-CLASS QUERIES). For sub-class queries, paraUelization using die

horizontal division is better tiian using the linked-vertical division.

PROOF. We shaU show tiiat

Hsub < LVsub.

(8.7)

Ch. 8. Analytical Performance Evaluation page 195

Using equations (8.4) and (8.6) for horizontal and Unked-vertical.

respectively, condition (8.7) is equivalent to

r2(rpi -f- tp2) r 2. rp2 -I- r 2. rpi -I- r 2. rri

n n
<^ 0 < r2.rri.

As r2.rri is positive, hence, condition (8.7) is ttiviaUy satisfied.

8.3.3 Super-class queries vs. Sub-class queries

n

As performance depends on the data structures and the query types, a further evaluation

based on the frequency of each query type has to be made, in order to determine an efficient

data structure for most queries.

LEMMA 8.3 (INHERITANCE QUERY FREQUENCIES). ParaUelization using linked-

vertical division is preferted, even when the frequency of super-class

queries is very low.

PROOF. Using / i and p. as die frequencies of super-class and sub-class queries

respectively'*, the lower bound for/i can be calctUated as foUows.

f1.r2.tp2 f2.r2.tt1

72 = (1 - / 1)

n n

II = J!L
/ 2 rp2

/ i rri

(1 - / 0 tp2

/-f(i-/0
tp2

ttl^
-\-

tp2)

tti

rp2

/ l = -
rri

/ i =

rp2 + rri

^ tti J
(8.8)

'^ linked-vertical division, which is suitable for super-class queries, prefers/I to be as large as possible, whilst
horizontal division, which is suitable for sub-class queries, prefers/2 to be as large as possible.

http://f1.r2.tp2
http://f2.r2.tt1

Ch. 8. Analytical Performance Evaluation page 196

(8.9)

For tpi = y.tti, equation (8.8) becomes

If y = 1, the lower bound is/i = 0.5,

If y > 1, tiien/i < 0.5.

The comparison shows that the more tpi > tti , the less the lower bound for

/ i . The faster tiie fraversal time n, the linked-vertical division is preferable even when

/ i is very smaU. Figure 8.4 shows that when the ratio of the processing and the

fraversal time is more than 10, the lower boimd for/i becomes very smaU. It can be

concluded that linked-vertical division is an efficient data structure for inheritance

queries.

Frequency fl

1

0.8

0.6

0.4

0.2

Ratio
10 20 30 40 50

Figure 8.4. Frequency (fl) vs. Ratio (y)
U

8.3.4 General Inheritance

a. Multiple Sub-Classes

Equation (8.1) shows tiiat tiie cost model for processing a super-class query using a
(ri-f r2).rpi^ (r2.tp2^

horizontal division is equal to
n

+
n ;

. Given an inheritance hierarchy of

m classes, with one super-class and m-1 sub-classes, die cost of super-query paraUelization

using a horizontal division becomes:

n.rpi r2.rp1-l-r2.rp2 r3.rp1-l-r3.rp3 rm.tpi + rm.tpm
Hmsupet = 1 i 1 1

n n n n
ri.tpi + r2.tpi-\ \-rm.tpi r2. rp2 -f rs. tp3-\ l-rm. tpm

n n

http://r2.rp1-l-r2.rp2
http://r3.rp1-l-r3.rp3

Ch. 8. Analytical Performance Evaluation page 197

_yri.tpi ^ y , n.rpi Y" ^'-tP'

i=i n t i n

(8.10)

On the other hand, the cost model for paraUelization of a super-class query using a
,. , J . , J. . . . (ri-fr2)rpi ri.rpi r2.rpi
linked-vertical division is: ^—= — ^ - i ^—. With m classes mvolved, the

n n n
processing cost becomes:

r 1. rpi -f- r2. rpi -f rs. rpiH—l-rm. rpi
Lvmsuper =

= 1
n

n.tpi

,=1 n

(8.11)

Using lemma 8.1, it can be seen that paraUelization of super-class queries having

multiple sub-classes using a linked-vertical division outperforms that using a horizontal

division. From equations (8.10) and (8.11), Hmsuper > LVmsuper is true if

"A n.rpi ^ n.tpi -A n.rpi

2̂ + 2 - — > 2̂ or
i=i n t i n t^ n
•A n.tpi

ti n
Since the sum of {ri.tp\)ln is always positive, the paraUelization method for super­

class queries using a linked-vertical division is better than that using a horizontal division.

The efficiency grows proportionaUy with the increase of sub-classes by the amount of

Y ri.tpi

b. Multiple Inheritance

Equation (8.4) is a cost model for paraUelization of a sub-class query using a horizontal

division. Given an m-class inheritance hierarchy, with one sub-class inheriting from m-1

super-classes, the paraUelization cost of sub-class queries becomes:

rm.rpi rm.rp2 rm.tpm

Hmsub = —-\- ^ - f - - - f —̂

-X
n n n

rm.tpi

,=1 n

(8.12)

where the mth class is the sub-class inheriting from other classes (1,2,..., m-1).

Ch. 8. Analytical Performance Evaluation page 198

Using the linked-vertical division method, a variation to equation (8.6) is given as

foUows.

rm.tpm rm,tpi-\-rm.ttl rm.tp2-\-rm.tt2 rm,tP(m-l)-^ rm.tt(m -1)
LVmsah = 1 1 I--H

n n n n

Z rm.tt}i v~^ rm.tti

,=1 n ti n
(8.13)

Note that the cost for a linked-vertical division is the sum of the traversing cost from

a sub-class to aU its super-classes.

Using lemma 8.2, it can be determined that paraUelization of sub-class queries in a

miUtiple inheritance using a horizontal division is more efficient than using a linked-vertical

division. This can be seen to be true since

Hmsub < LVmsub

rm.tpi 'A rm.tpi Y^ rm.tti ^—(I m. LUl V--1 I m. lUi T—i ,

tf n t^ n ti
^-\ rm.tti

t! n
which is evidentiy true. However, if tiie fraversal time tt is very smaU, the difference between

tiiese two division methods wUl not be significant (lemma 8.3).

c. Abstract Classes

An absfract class provides only a partial implementation of a class, or no implementation at

aU. From tiie design point of view, an absfract class provides die global view of a class,

altiiough the detaUs are not implemented yet. An absfract class does not have any instances.

This is often referted to as union inheritance (Kung, 1990), which implies that tiie union of

aU instances of sub-classes represent the whole set of tiie absfract super-class.

From a paraUel processing point of view, processing super-class and sub-class

queries is not affected by whether a super-class is absfract or not. If tiie super-class is an

absfract class, tiie value of ri wUl be equal to 0 (zero). Substituting tius value to tiie cost

equations wUl not change the resiUts of relative comparison between different inheritance data

structtu-es. Hence, aU lemmas explained earlier are valid.

Ch. 8. Analytical Performance Evaluation page 199

d. Overlap Inheritance

In confrast to the tinion inheritance, a non-union inheritance is where a super-class has its

own instances, apart from tiie instances of its super-classes. In tiiis case ri 9̂ 0. Whetiier it is

union or non-union, the sub-classes can be Disjoint or Overlap (Kung, 1990). Disjoint

inheritance is when sub-classes of tiie same super-class do not have instances belonging to

both sub-classes, whereas overlap does.

Most overlap inheritance is implemented in a multiple inheritance. If tiiis is tiie case,

paraUel processing to an overlap inheritance is acmaUy the same as paraUel processing to a

multiple inheritance. However, if a multiple inheritance is not implemented, horizontal

division has to repeat the detaUs of objects replicated in sub-classes. For example, tf a person

is a lecturer as weU as a student, the detaUs of persons (e.g., name, address) are stored

redundantiy in class lecturer and class student. In contrast, using a linked-vertical division,

this problem wUl not exist, since each class stores its portion of data. The linkage between

different part of the same object stored in different places is provided by a set of link from die

super-class to the sub-classes.

e. Redefinition

Some methods of the super-class may be redefined to have different implementation. An

example is that class Lecturer has method tax where the amoimt tax paid is calculated based

on the salary. Class Tutor inheriting from class Lecturer redefines the method tax with

different calciUation and condition. An appropriate method tax wUl be invoked depending on

whether an object is a lecturer or a tutor. In regard to the data structure, the attribute is not

redefined. Hence, the value of the atfribute is not affected whether or not the method that

invokes the atfribute is redefined in a sub-class.

8.3.5 Summary

Three lemmas relating to inheritance data structures for paraUel inheritance query processing

have been developed.

• Lemma 8.1 states that the proposed linked-vertical division is more suitable for

super-class queries.

• Lemma 8.2 states that the horizontal division is more suitable for sub-class

queries. However, tiie difference between the horizontal division and the liiUced-

vertical division is very smaU due to the insignificance of the fraversal cost

imposed by the linked-vertical division.

Ch. 8. Analytical Performance Evaluation page 200

• Lemma 8.3 states that the proposed linked-vertical division is often preferable to

other data structures.

These lemmas support the use of the proposed linked-vertical division for paraUel

processing of inheritance queries.

8.4 Analytical Models for Parallel Processing of Path
Expression Queries

8.4.1 Cost Models for Inter-Object Parallelization

The cost for inter-object paraUelization is die sum of the root class cost and the associated

class cost.

a. Root Class Cost

Using a round-robin partitioning where tiie root class is equaUy partitioned to aU avaUable

processors, the cost to process a root class is as foUows.

n
—.rpi
m

(8.14)

b. Associated Class Cost

Access to Associated Class

Processing associated objects can be accomplished by d-aversing each selected root object to

aU of its associated objects. The number of accesses to die associated objects is determined

by r'2, which is given by r'2 = ruXi. The symbol r'2 is differentiated from n (tiie original

number of objects), since some associated objects are processed/visited more tiian once (i.e.,

in the case of m-m or m-1 relationships).

Using tiie clustering approach, it is guaranteed tiiat non-connected associated objects,

and associated objects connected to non-selected root objects wUl not be processed at aU. This

fUtering characteristic has been one of tiie incentives of using an inter-object paraUelization

model based on clustering and association.

Ch. 8. Aruilytical Performance Evaluation page 201

Skewness

As tiie fan-out degree Xi may not be uniform, processing the associated class wUl promote

load imbalance. If ^ is used to show the ratio between die heaviest load and die average load,

the load of die heaviest processor is given by:

r'2.^1

n2

The value of k is non-determirustic, as the disfribution of the associated objects,

which is very much influenced by the fluctuation of the fan-out degree and the selection

operation, is unknovra untU run-time. A number of attempts to model skewness in paraUel

databases have been reported (Liu et al., 1995). Most of them use the Z/p/distribution model

(Zipf, 1949).

The main purpose of modeUing skew is to show die ratio between the highest load

and the average load. This ratio represents the degree of skewness. The higher the ratio, the

worse the skew problem. It is not the aim of this research to model load skew in OODB, but

to use the skew ratio in a comparison with the non-skew condition. Skew ratio = 1 refers to

non-skew and skew ratio > 1 refers to skew. The Zipf disfribution model is only a tool to

describe load skew.

Load skew is measured in terms of different sizes of fragments that are aUocated to

the processors for the paraUel processing of the operation. Given die total number of accesses

to a class r, the number of processors n, and a factor 9; the size of the ith fragment r can be

represented by:

r. = ^- for (6 > 0)

(8.15)

Clearly, when 0 = 0, the fragment sizes foUow a discrete uniform disfribution shown

in A;. = —. This is an ideal disfribution, where tiiere is no skew. In condrast, when 0 = 1
n

indicating a high degree of skewness, die fragment sizes foUow a pure Zipf disfribution.

Therefore, equation (8.15) becomes

r r r
r = . v^ 1 ixH„ /x(7-l-lnn)

(8.16)

Ch. 8. Analytical Performance Evaluation page 202

where 7 = 0.57721 (Euler's Constant) and H„ is tiie Harmonic number (Knutii, 1973) which

may be approximated by (y -f- hi n). In the case of 0 > 0, die first fragment r^ is always the

largest in size whereas the last one r„ is always tiie smaUest. (Note tiiat fragment / is not

necessarUy aUocated at processor /). Thus, the load skew can be given by:

r =
max

" 1

;=1 J

(8.17)

Figiu-e 8.5 shows the effect of skewness on the maximum processor load which is

measured by the number of objects aUocated. The cardinality of the class is assumed to be

10,000. It is clear that the maximum processor load in the presence of skew is much higher

than that without skew. For example, when the number of processors is 10, the maximum

loads for the two cases are 3500 and 1000, respectively. Another interesting point is that load

reduction appears to be significant when the processors increase from 2 to 10, but becomes

marginal with further increase in the number of processors. Hence, adding extra processors to

a single operation may not be beneficial, when skew is involved. The skew principle is then

proven.

Skew vs. No Skew

Skew (0=1)
No Skew (0=0)

8 10 12 14 16 18 20 22 24 26 28 30

No. of Processors (n)

Figure 8.5. Influence of skew on maximum processor load

Total Accesses to Associated Class

For / > 2, r'i is distinguished from ri, because some of die objects do not have any association

with the objects of tiie previous class, and moreover, some of the objects are accessed more

than once, particiUarly where those objects are associated with non-unique objects of the

Ch. 8. Analytical Performance Evaluation page 203

previous class. Furtiiermore, r'i is not likely to be aUocated equaUy to aU processors n. Using

tiie Zip/disfribution model, the maximum load of the subsequent stages of die evaluation of a

path expression is calculated by

/

r2 ra r
+ — +...-f-1 2 1 ni -1 rtm 1

M J j=i J j=i J

in

=1 r I

•=2 V _
j=\ J

(8.18)

The number of processors of the subsequent predicate evaluations of query

processing is non-deterministic, since tiie disfribution scheme is not known untU run-time.

However, it is possible to obtain the average number of busy processors using the foUowing

formula (Kolchin et al., 1978).

/

1-
v

1

na-

\

1)1

\0{i - i j r i

«! = n (i - i) — n (i - i) ;

(8.19)

From our study, most of the time ni is equal to n(i-i) meaning that aU processors were

active participants in processing the associated objects.

Redundant Accesses

Redimdant accesses to the associated objects occur only m m-m and m-1 relationships. The

original degree of redimdancy is determined by the degree of coupling between the root class

and the associated class, which is partiy shown by the fan-out degree of die root class Xi. For

example, if ri=100, r2=200, and X.i=5, the number of accesses to the associated objects (r'2)

is equal to 500. It shows that the redundancy factor is more than double. Moreover, if the

fluctuation of Xi is high, the redundancy factor wUl even be higher, because the skew factor k

also increases. With n=4 and ^=1.8, the maximum partition wUl require (100x5x1.8)74 = 225

accesses to the associated objects. The redundancy factor has increased by 450%, as r2 is

divided equaUy to 4 partitions, each partition wUl only have 50 associated objects. However,

due to the fUtering feature caused by die selection operation in the root class, not aU

associated objects wUl need to be accessed. Consequentiy, the redimdancy factor is decreased

by the selectivity factor a i . In this case, we consider the maximum ai of a particular

partition. Suppose, the selectivity factor of the skewed partition is 30%, r'2 becomes 68

accesses, resulting in a great reduction of the redundancy factor.

Ch. 8. Analytical Performance Evaluation page 204

ModeUing Object Conflicts

Smce several root objects may refer to die same associated objects, especiaUy in m-1 and m-

m relationships, a conflict among the root objects may occur. One way to model object

conflict is to use a queuing model. When n root objects wanting an access to die same

associated object, n-1 objects wUl be placed in a queue. This model can be viewed as die

objects in the queue waiting for a service. Figure 8.6 gives an Ulusfration. In this example, bl

is a service provider, which is referted by objects al, a2, and a3. Suppose objects al and a2

are located at processor 1 and object a3 is located at processor 2. If object a2 requests object

bl at the same time as object a3, object a2 may have an access first, and object oi waits in a

queue.

root objects a l a2 a3

associated objects

Nl/

b2

Figure 8.6. Object Conflicts

Assume that the probabUity of the service provider of having zero and one request is

abbreviated top^, andp^, respectively. The probabUity of conflict can be estimated by:

prob. of conflict = I - PQ- Pi

PQ can be estimated by comparing total number of accesses with the average fan-in

degree of the associated class (X'l). Fan-in refers to number of service requests to a particular

associated object which provides the service. Total number of accesses represent a universal

set of popiUation. Therefore p̂ , can be approximated by

Po =
ri- •V2

r2

For example, if there are 10,000 accesses to the associated class (r'i = 10,000), and

each associated object has only 10 root objects attached to it (A,'2 = 10), then PQ becomes

0.999. It means that most of the time, an associated object is not invoked by any root object.

Service utUization p is exactiy the opposite of p^, tiiat is 1 - p^. The foUowing

formiUa can be used to estitmatep; (Leung, 1988).

Pi = (l -P)p=(l - 0.999) 0.999 = 0.0009

The probabUity of conflict can then be calculated by:

Ch. 8. Analytical Performance Evaluation page 205

probability of conflict = 1 - 0.999 - 0.0009 = 0.0001 (very smaU)

As the probabUity of conflict is very smaU, die processing time wUl not be

significantiy affected. Figure 8.7 shows tiie growtii of die conflict based on tiie increase of

fan-in degree. It can be seen that generaUy tiie probabUity of conflict is very smaU, even for

smaU number of accesses and high fan-in degrees.

Probability of Conflict

— • — total access = 50000

~ » — total access = 10000

—A— total access = 5000

X total access = 1000

Figure 8.7. The growth of conflict

c. Total Cost for Inter-Object Parallelization

Because the total processing cost in paraUel systems is determined by the most expensive cost

of tiie processing elements, only the maximum cost is considered. If die root class includes a

selection operation, not aU associated objects wUl need to be accessed. The selection factor is

shovra by a\, which is the probabUity of a root object to be selected by the selection

operation.

The sum of equations (8.14) and (8.18) is the number of objects accessed in an m-

class path expression. Based on the number of objects processed, the total processing cost can

be determined. There are two main components in the local processing costs: reading/loading

time and predicate evaluation time. The reading/loading time is influenced by the size of

object, whereas the evaluation time is determined by the length of selection predicates in each

class. Incorporating the reading/loading time and the evaluation time for each object, tiie total

processing cost for a path expression sub-query is as foUows.

lOBcost =
^^ "' 1

2^ ;<
J=lJ

e

.tp

(8.20)

Ch. 8. Aruilytical Performance Evaluation page 206

In terms of the skew factor, the cost for paraUel processing for a path expression

query may be written as:

lOBcost =
ri • A <7((- i) . r ' i .^ (i - i)

^ni ^2 ^'
tp

(8.21)

8.4.2 Cost Models for Inter-Class Parallelization

The cost for inter-class paraUelization is determined by die selection cost and the

consolidation cost.

a. Selection Cost

The processing cost for the selection phase depends on whetiier there is one or two-class

selection in the query. If both classes contain a selection operation, the selection cost is:

ri-l-r2
-tp

m
(8.22)

Classes ri and n wUl have to share the same processors (regardless of whether they

share it at the same time or they take tum to use the resoiu"ces).

b. Consolidation Cost

The consolidation cost varies depending on whether the query involves a selection on the root

class and where die target class is. When the root class does not include a selection operation,

the consolidation cost is the cost for going tiirough aU root objects which is given by:

n
—.tp
ni

(8.23)

However, when tiiere is a selection operation in the root class presents, the

consolidation cost wiU be influenced by the selectivity factor GI and the skewness degree ki.

Hence, the consolidation cost becomes:

Gi.ri.ki
•.tp

ni

(8.24)

Ch. 8. Analytical Performance Evaluation page 207

If tile associated class becomes the target class (i.e., projection operation on tiie

associated class), the consolidation cost must be added to further red-ieval cost of the

associated objects for projection which is given by:

Oi.r'2.^1
.tp

n2

(8.25)

c. Total Cost for Inter-Class Parallelization

Because the selection phase and the consolidation phase shows an interdependency, in which

the consolidation phase cannot start before the selection phase finishes, the total cost for

inter-class paraUelization is the sum of the selection cost and the consolidation cost.

8.4.3 Inter-Object vs. Inter-Class Parallelization

Inter-object parallelization is simple but atfractive, because complex objects are clustered

and presented as complete units, with the resiUt that the processing of each complex object is

independent of die others. Independency is one of tiie key requirements in paraUel systems.

Inter-object paraUelization model is particularly good when there are no redundant accesses to

the associated classes. Data independence is achieved naturaUy and there is no data

replication.

Inter-class paraUelization, in contrast, is based on paraUel processing of each class

participating in die query. This method views independency from a class point of view, not

from an object point of view. Moreover, inter-class paraUelization does not impose redundant

accesses to tiie associated objects. Intuitively, it is especiaUy suitable for highly coupled

association relationships. Since each class is processed independentiy, the selection process is

free from any associativity independency. Using a round-robin data partitioning, tiie selection

process wiU ataiost be free from a skew problem.

It becomes essential to compare performance of inter-object paraUelization and inter-

class paraUelization. In a two-class path expression query, basicaUy there are tiiree different

cases: 2 selections (selections on die root class and die associated class), 1 selection (a

selection on the associated class), and 1 selection on tiie root class.

a. Case 1: (A) > ([B) OQL: select a
^-^ ^-^ From a in A, b in a.rell

'^ ^ Where a.attr = constant
And b.attr = constant

Ch. 8. Analytical Performance Evaluation page 208

We shaE determine the condition under which the cost of inter-object paraUelization

is lower than that of inter-class paraUelization, i.e..

Inter-object cost < Inter-class cost

(8.26)

From equations (8.21), (8.22) and (8.24), condition (8.26) is equivalent to

ri Oi.r'2.^1 n r2 Oi.ri.^i
_ + < _ + _ + _

m n2 m m n2

(8.27)

The processing cost tp has been factored out. And for r'2 = ri.Xi, (8.27) becomes
Oi.ri.Xi.ki r2 Oi.ruki

< 1 .
n2 m n2

Now as for ai.n.Xi.ki = x.n; where x represents die replication factor, tiie above

becomes
jc.r2 r2 oi.n.ki

< — +
n2 m n2

jc.r2 r2 x.r2
=±. < — + -n2 ni n2.Ai m n2.Xi

Since from equation (8.19) n2 = ni , we have

Xl

(8.28)

In tiie case where tiie relationship between tiie root class and die associated class is 1-

1, die values of A; and Xi are equal to 1. Therefore, condition (8.28) is d-iviaUy satisfied. If die

relationship is 1-m, where x=l and >.i=m, condition (8.28) is also satisfied since die left hand

side is equal to 1 whUe die right hand side is greater dian 1. If tiie relationship is m-1 where

x=m and Xi=\, condition (8.28) is tme since tiie right hand side is always 1 more tiian tiie left

hand side.

In die case of m-m relationship, tiie validity of condition (8.28) wffl be determined by

tiie values of botii x and Xi. The replication factor x is very much influenced by tiie selectivity

degree oi which serves as a fUter to tiie whole process. Hence, tiie value of x is expected to be

smaU (can be even less tiian 1, if tiie total accesses to tiie associated objects are smaUer tiian

tiie original number of objects in tiie associated class). If tiie participation of tiie associated

Ch. 8. Aruilytical Performance Evaluation page 209

class to the relationship is partial, the repUcation factor x can be greatiy reduced. In tiiese

cases, condition (8.28) can be expected to be satisfied.

b. Case 2:
© >CD OQL: S e l e c t b

From a in A, b in a.rell
Where a.attr = constant

We shaU determine that tiie cost of inter-object paraUeUzation is lower tiian tiiat of

inter-class paraUelization, by showing that

Inter-object cost Inter-class cost

(8.29)

From equations (8.21), (8.22), (8.24) and (8.25), condition (8.29) is equivalent to

n Oi.r'2.ki ''ri\ (Oi.ri.ki Oi.r'2.ki^

ni n2 \nij
+ V n2

+ •
n2 J

Note that phase 1 consists of selection operation on the root class only. Now, it can

be derived to

^C7i.ri./:P
0 < .

\ n2)

ks the right hand side is positive, condition (8.29) is friviaUy satisfied.

c. Case 3:
G) >CD OQL: S e l e c t a

From a in A, b in a.rell
Where b.attr = constant

The cost of inter-class paraUelization is normally lower than that of inter-object

paraUelization, i.e..

Inter-object cost > Inter-class cost

(8.30)

From equations (8.21), (8.22) and (8.23), condition (8.30) is equivalent to

fr2^ {n^

\nij
n r'2.^1
— +
m ni

+
v^i.

Note that here, there is no selection operation on die root class. Hence, the variable a

1 in the inter-object paraUelization cost is eliminated, and the number of processors used in

Ch. 8. Analytical Performance Evaluation page 210

the processing is ni, not n2. Also, the selection cost in tilie inter-class paraUelization consists

of the selection cost for the associated class oiUy, whereas the consoUdation cost is the cost to

go through aU root objects. Thus, the above becomes

\nij
rh.ki

ni

And for r'i = ri.A.i, we have

riXi.ki

m .nij

for X\>\, and ^i>l, this implies

Xx.ki > r2

n

(8.31)

If n < n , condition (8.31) is satisfied, since ki = 1 (i.e., no load skew) is very

unlikely to happen.

If r2 > n , and if as in case 1 A.i.̂ i = x.r2
Oi.ri

, we have

^1.^1

x.r2

Oi.n

>

>

r2

n

r2

n

=> x > ai

Since oi = 1, tiie condition becomes

X > 1

If tiie number of accesses to tiie associated class is larger tiian tiie original number of

associated objects, the above condition is satisfied.

8.4.4 Summary

Based on die three cases discussed above, two lemmas about tiie inter-object paraUelization

and die inter-class paraUelization are given as foUows.

LEMMA 8.4 (INTER-OBJECT PARALLELIZATION).

Inter-object parallelization, in a form of forward patii fraversal, is

particiUarly good when tiiere is a selection operation on tiie root class.

Ch. 8. Analytical Performance Evaluation page 211

LEMMA 8.5 (INTER-CLASS PARALLELIZATION).

Inter-class parallelizjation is suitable for patii expression queries especiaUy

when filtering is not possible and the number of accesses to the associated

class tiirough patii fraversal from tiie root class is greater tiian tiie original

number of associated objects.

The first one is concemed witii cases 1 and 2, whUe die second one relates to case 3

above.

8.5 Analysis of the Basic Query Optimization

Basic query optimization, which serves as a foundation for query optimization algorithms, is

divided into two parts: INTER-OBJECT-OPTIMIZATION and INTER-CLASS-OPTIMIZATION. An

analytical analysis and evaluation is given for the two basic optimization techniques. The

objective is basicaUy to prove that the cost for operation before optimization is more

expensive than that after optimization. Since optimization is an NP-complete problem where

a heuristic approach must be adopted, in a few special cases, the above objective is hardly

proven. This does not, however, undermine the proposed heiu-istic nUes, because not only is

finding aU possible access paths expensive, and determining short cuts is desirable, but also

the heuristic nUes can be altered to accommodate these few special cases.

8.5.1 Quantitative Evaluation of the INTER-OBIECT OPTIMIZATION

a. Analysis of the IOB->IOB Transformation
Transformed intc

a o

The IOB->IOB fransformation is only applicable to a two-class path expression where the

forward fraversal is initiaUy performed from a class witiiout a selection operation to a class

with a selection operation; and is accomplished by changing the path direction, so that the

forward fraversal operation starts from the class having a selection operation.

Using equation (8.21), we wish to show that

n r'2.^1 r2 02.r'i.^2
— + > — + ,
n n n n

(8.32)

which for r'2 = ri.A,i, becomes

Ch. 8. Aruilytical Performance Evaluation page 212

n ri.A,i.^i r2 02.r'i.A:2
_ + > _ +
n n n n

For ri.Xi.^1 = x.n, where J: is a repUcation factor, (8.32) becomes

ri x.r2 r2 02.r'i.k2
— + > —-h
n n n n

x.ri x.r2 r2 02.r\.k2 <^ —^—-+ > — +
n.^i.^i n n

And for r'i = n.Xi, we have

n

r2[X
— I + X n v^i.^i

r2 02.r2.X2.k2
> —+

n n

Xi.ki
.+ ;C > 1 + 02.^2.^:2

< ; = ^ Xi.k
+ 1 l-l-a2.A,2.A:2

1 J

(8.33)

The validity of (8.33) depends upon the product of a2.X2.fe. If the selectivity factor o

2 is smaU, the result of the product wiU be smaU too. Thus, condition (8.33) is satisfied.

However, if the relationship is 1-1 or 1-m, where there are no redtmdant accesses to the

associated class {x=\), and if the relationship of the associated class is partial {x<\),

condition (8.33) may not be satisfied since the left hand side equation can be smaUer than that

of die right hand side.

b. Analysis of the ICL—>IOB Transformation

The ICL^IOB d-ansformation is applicable to two-class path expression in which a forward

fraversal from a class having a selection operation is possible but not carried out. Two types

of such a query are identified. The analytical proofs are given as foUows.

IOB(3)
Transformed intc

Case 1:
« ^ ^ ^ ^ ^ > c i ^ 2 ^

Using equations (8.22), (8.23), and (8.21), we shaU show tiiat

r2 n
— + —
n n

r2 02.r\.k2

n n

(8.34)

For r'l = r2.X2 , (8.34) becomes

http://02.r2.X2.k2
http://a2.X2.fe

Ch. 8. Aruilytical Performance Evaluation page 213

ri 02.r\.k2
— >
n n
ri 02.r2.X2.k2

=? — >
n n

For n.Xi.kz = y.ri, where y is a replication factor, the above becomes,

ri 02.y.ri
— > —
n n

=> 1 > a2.y (a2<l)

(8.35)

If y<l, the condition (8.35) is true. This is applicable when the relationship A:5 is 1-

1 or m-1 in which there are no redundant accesses to class A from class B.

If y>l, where the relationship of class A and B is m-m or 1-m, then it depends on the

balance given by 01. The smaUer the selectivity degree 01, the higher the upper boimd

aUowed for y, resiUting the condition (8.35) to be true even when the value of y seems to be

high. The upper boimd for y is y <-^.

Transformed intc

Case 2: MM^T—C B >

Using equations (8.22), (8.23), and (8.21), we shaU show tiiat

n r2 ri oi.r\.ki
—-h— > — + .
n n n n

(8.36)

For r'2.iti = x.n, where xisa. replication factor, condition (8.36) becomes

r2 Oi.x.r2
— >

n n

=> 1 > oix

(8.37)

The condition for case 2 (condition 8.37) is simUar to tiiat for case 1 (condition

8.35). It very much depends on the selectivity factor and die duplication factor. The lower tiie

selectivity factor, tiie larger tiie impact of fUtering in the forward traversal operation tiirough

inter-object paraUelization.

http://02.r2.X2.k2

Ch. 8. Aruilytical Performance Evaluation page 214

c. Analysis of the EXJ-^IOB Transformation

The EXJ^IOB transformation is appUcable only to I-Join involving a class as a join domain

and at least one of the paths is bi-directional; and the optimization is accomplished by

changing the direction of the bi-directional path so that a linear path expression is formed.

Join operations require a fuUy partitioned data, whereas the fraversal operations work in a

pipeline fashion. As a result, a join operation includes the distribution cost, as weU as the

local processing cost. Forward traversal operation, on the other hand, includes the local

processing cost oiUy, provided that the disfribution cost is completely covered during the

pipelining of data from the master to the slaves. Intuitively, the join operation is much more

expensive than the forward fraversal operation. This can be seen as foUows.

"^ ^ Transformed into

IOB[3)^ CS5—<D—K£>

A joins B
(intersect join)

We shaU show that

Distribution cost +join cost > Traversal cost

(8.38)

Tn-i-
1 D ^

TD +

ri.r'2

n

ri ,
— . r 2

k r3
1

Ar-f —

.r"
n

k

l.k

r"2

Using equation (8.5) for join operation, and equation (8.21) for tiie traversal

operation, condition (8.38) can be derived to

ri r\.k r\k
> — + +

n n n
n r'2.^ r\k

> — + +
n n n n n

(8.39)

where TD is tiie total disfribution cost. Note also tiiat r'2 is tiie number of accesses of tiie

associated class B from die root class A, where r"2 is tiie number of accesses of tiie

associated class B from the root class C.

Since — is normaUy large and so is r"2; — .r'2.^> —-f and
n J ^ n n n

I i i , . " 2 > H L - . Witiiout needing to consider die disfribution cost TD, which is normaUy
n n

large, condition (8.39) is friviaUy satisfied. Hence, condition (8.38) is also tine.

Ch. 8. Aruilytical Performance Evaluation page 215

8.5.2 Quantitative Evaluation of the INTER-CLASS OPTIMIZATION

a. Analysis of the IOB->ICL Transformation

The lOB-^ICL transformation is applicable only to two-class patii expressions where tiie

forward fraversal is from a class without a selection operation and to a class with a selection

operation; and the path is uni-directional.
Transformed intc

a a

Since a change in path direction is not permitted, a change in operation is endorsed.

Forward fraversal operation is a manifestation of the inter-object paraUelization and reverse

traversal is an inter-class paraUelization. The case for the IOB-^ICL optimization is seen from

the derivation for case 3 inter-object vs. inter-class paraUelization, where it states that if r2<n

the fransformation is preferable, and if r2>n, the efficiency of the transformation depends on

the replication factor imposed upon the associated class. If the number of accesses to the

associated class is greater than the original number of associated objects, the transformation

is more efficient. OiUy in a few cases, where the relationship of class A and class 5 is 1-1 or

1-m; and the association relationship is partial, the fransformation is not endorsed.

b. Analysis of the EXJ->ICL Transformation

The main aim of tius fransformation is to avoid die expensive explicit join operation. In tiie

case where aU of the paths are uni-directional, it becomes impossible to ti-ansform an explicit

join operation to a forward fraversal operation. Anotiier alternative, tiiat is to fransform to

reverse fraversal operation, is sought.
Transformed inic

— >

We shaU show that

Distribution cost + join cost > Traversal cost.

(8.40)

Using tiie equation (8.5) for tiie join operation, and equations (8.22) and (8.23), die

above condition becomes.

Ch. 8. Analytical Performance Evaluation page 216

r2 n ra _ . ri.r'2.^ , r3.r"2.k ,z ,i ,,
To-f- -1- > — + _ + _

n n n n n
^ , ri rs r2 n ra

=* TD-\—.r2.k+ — .r"2.A: > —-I- —H
n n n n n

(8.41)

Since r'2.^ is normaUy large and r"2.Jt is also positive, —.r'2.k>—I— and
n n n

rj rs
—,r"2.^ > —. Without considering the distribution cost TD, the joining cost is demonstrated
n n

to be greater than the fraversal cost. Hence, tiie condition (8.40) is friviaUy satisfied.

8.5.3 Summary

Basic query optimization which is formed by INTER-OBJECT-OPTIMIIATION and INTER-

CLASS-OPTIMIZATION is based on the two lemmas for path expression queries (i.e., lemma 8.4

for inter-object paraUelization and lemma 8.5 for inter-class paraUelization). The comparative

analyses show the applicabUity of these lemmas to both optimization methods. INTER-

OBJECT-OPTIMIZATION basicaUy exploits inter-object paraUelization, whereas INTER-CLASS-

OPTIMIZATION promotes inter-class paraUeUzation. Explicit join operations, which are known

to be one of the most expensive operations in relational databases, are stUl shown to be

expensive in object-oriented query processing. Hence, avoiding tiiese operations are

prescribed, and ttansforming them into more efficient operations such as inter-object

paraUelization and inter-class paraUelization are preferable.

8.6 Analysis of the Execution Scheduling Strategies

Execution scheduling for sub-queries in a query is influenced particularly by two factors:

skewness and the size of the sub-queries. Three cases are considered. They are: (/) botii sub-

queries are not skewed, (ii) both sub-queries are skewed, and (///) one of them is skewed.

8.6.1 Non-Skewed Sub-Queries

Consider the foUowing query as an example. The query access plan for this query is shovra in

Figure 8.8.

QUERY. "Refrieve pairs of conference proceedings and journals having the same

publishers. The conference must have been held in Ausfralia, and the journal

is published 4 times a year".

Ch. 8. Analytical Performance Evaluation page 217

Proceedmgs.publisher=
Joumaipublisher

(location= "Australia") (issues=4)

Phase 2

Phase I

Figure 8.8. Access Plan

The two sub-queries involve selection operations on single classes. If a round-robin

partitioning is used, neither sub-queries wUl produce load skew.

The first sub-query can be represented as a function f{x) = —, where n is the
X

number of objects, and x is the number of processors used to process the sub-query. If n

processors are avaUable, then l<x<n. Figure 8.9(a) shows a curve of f(x). Likewise, the
r2

second sub-query can be represented as: g{x) = —. The shape of curve g{x) is the same as
X

that of f{x) although their magiutudes differ, since r2 is used instead of n. Figure 8.9(b)

shows the graph for function g{x).

When a serial execution of sub-queries is used, the total elapsed time for phase 1 is

calculated by die sum of f{n) and g{n). If & parallel execution method is used, it is essential to

locate the intersection between/(.x) and g{x) to find die most efficient processor configuration,

since tiie intersection represents equal finishing times for botii sub-queries witiiout any

idleness. This is found by equating

f(x) = g(n-x)
n _ r2

X

x =

n-x
n

ri-\-r2
n

(8.42)

A graphical solution is also useful as this wUl be necessary in the next section.

Suppose the second sub-query time is reflected, g(x) becomes: g(n - x)
r2

n-x
, where g{n-

x) is a reflection along x=2/n. The new curve shows that the number of processors used in die

second sub-query is n-x processors, where x is the number of processors for the first sub-

Ch. 8. Analytical Performance Evaluation page 218

query. Figure 8.9(c) shows tiie curve for g(n-x). Figure 8.9(d) shows an intersection between

f{x) and g(n-x), which can be calculated by equation (8.42).

(a) Sub-query 1 Function

f(x)=r1/x

time

Processors for f(x)

(b) Sub^query 2 Function

g(x)'r2/x

time

Processors forg(x)

(c) Mirror Function for Sub-query 2

g(n-x)=r2/(n-x)

time

n-1 n

Processors for

(d) Intersecting t(x) and g(n-x)

f(x)=i-Vx g(n-x)=r2/(n-x)

1 n-1 n

Processas for f (x)

Figure 8.9. Performance Graphs Non-Skewed Sub-Queries

8.6.2 Skevî ed Sub-Queries

Using the same query of the previous section, if each sub-query is partitioned using a hash or

a range data partitioning, load skew may occur as the result of an imbalance in data

partitioning. Load skew is frequentiy modeUed by means of Zipf distribution (Liu et al.,

1995). Incorporating equations (8.16) and (8.17), the function each sub-query becomes:

(8.43)

These two functions represent tiie most overloaded processors, as they set die total

execution times. If n processors are avaUable, functions f{x) and g{x) are die total execution

times of the first and the second sub-queries using x processors, where l<x<n. The graph for

f(x) and g{x) is shown in Figure 8.10(a). The difference between/(x) and g{x) is shown by die

constant ri and r2 to be used in each respective sub-query.

Ch. 8. Aruilytical Performance Evaluation page 219

Compared witii non-skewed sub-queries, tiie shape of tiie functions for skewed sub-

queries is different. The shape of tiie function for a skewed sub-query does not go down

steeply as in tiiat of non-skewed sub-query. The comparison between a non-skew and a skew

function was shown previously in Figure 8.5.

Skewed sub-queries are typical for sub-queries involving path expressions, as the

fan-out degree from one class to anotiier tiirough an association relationship varies, and

furthermore, the selection operation filters out unnecessary objects from the subsequent

classes resulting in load imbalance for processing tiiose subsequent classes.

(a) Functions for Sub-queries 1 and 2

f(x)=r1/Hx or g(x)=r2/Hx

time

Processors for f(x) or g(x)

(b) Intefsecting t(x) and g(n-x)

f(x)=r1/Hi(g(n-x)=r2/(H(n-x)

n-1

Prcx»ssofsfof f(x)

Figure 8.10. Performance Graphs of Skewed Sub-Queries

Likewise for the non-skewed sub-queries, an intersection between the two functions

f{x) and g{x) can be determined by making a mirror for one of the two sub-queries. If g{x) is

mirrored and shifted as far as n-1, g{n-x) becomes: g{n-x) =

analytical solution since

r2

H.
. This does not admit

n r2

H, H,

n r2

y + \n.x 7 + bi(n-jc)

n . / - r2.7 = hix''^ - lii(n - x)'"'
r2

rl.y-r2.y _

(n-xr

Solving for x in closed form in this is generaUy not possible. Hence, only a graphical

solution is possible. Figure 8.10(b) shows an intersection between/(x) and g{n-x). The

Ch. 8. Analytical Performance Evaluation page 220

intersection determines tiie most efficient processor configuration for botii sub-queries where

these sub-queries do not overlap in occupying the resources.

8.6.3 Skewed and Non-Skewed Sub-Queries

If one of die sub-queries is not skewed and the otiier one is skewed, the sizes of die sub-

queries play an important role in deciding die execution scheduling strategy. Three cases are

considered. Case 1 is where the two sub-queries are quite equal in size. Case 2 is where the

skewed sub-query is larger, and case 3 is where the non-skewed sub-query is larger. The

intersection of the three cases are iUusfrated in Figure 8.11.

Time

(a) Non-Skewed and SIcewed Sub-Queries
(same sizes)

Sub-query 2
(Skewed)

H 1

1 n-1

Processors for sub-query 1

(b) Non-Skewed and Skewed sub-queries
(Non-Skewed > Skewed)

'. /
/

/

j i p ^ .. —-^'' Sub-query 2 (Skewed)

_^__^ Sub-query 1 (Non-Skewed)

1 n-1 n
Processors for sutx^uery 1

Time

(c) Non-Skewed and Skewed Sub-Queries
(Skewed < Non-Skewed)

\ Sub-query 1 (Non-Skewed)

v̂^̂
Sub-query 2 (Skewed) _ - —

1 n-1 n

Processors for sub-query 1

Figure 8.11. Intersection of non-skewed sub-query and skewed sub-query

Assume that tiie first sub-query is not skewed and die second sub-query is skewed.

Using tiie functions/(A:) and g(x) to represent tiie sub-queries, tiie functions for tiie first and

the second sub-queries are:

Ch. 8. Aruilytical Performance Evaluation page 221

f(x) = - and8(x) = ^
X H,

The intersection between tiie two sub-query functions is shown by equating

r2 n

(8.44)

n
X

n

X

r2.x =

r2

n—X

r2

7-t-bi(n-

ri.7-t-hi(n

X)

-xr
or

H^ n-x

r2 n

y + lnx n-x

r2.n-r2.x = ri.y-i-]nx rl

Analytical solution is difficult to obtain, and hence, a graphical solution is preferred.

8.6.4 Summary

The efficiency of paraUel execution scheduling relies upon delicate resource division

calculation, without which processor idleness wUl not be avoidable, and consequentiy,

expected performance cannot easUy be obtained. The quantitative analysis has shovra that

finding the intersection between the two sub-query functions is difficult. Other alternatives,

such as promoting serial sub-queries execution where no resource division is needed, are

more potential.

8.7 Discussions

We have seen tiiat the pipeline model is suitable for selection operation where data fetching is

done simultaneously witii predicate evaluation. Witii tiie increase of network and bus

bandwidtii, it becomes possible tiiat tiie local predicate evaluation time wUl cover die

disfribution time. On tiie otiier hand, the fully partitioned model is die only option for join

operation because the join operation particularly requires aU data to be fuUy partitioned prior

to the local joining process. This provides a motivation for using path d-aversal based on

selection operation for query optimization, and avoiding join operation whenever possible.

Performance evaluation based on quantitative analysis is a dUficult task, even just to

fiad tiie upper and tiie lower bound. This is mainly because most cost factors are non-

determimstic, and a number of assumptions have to be used. Therefore, die vaUdity of

analytical models very much depends on tiiese assumptions. In some cases, relative

performance comparison can be done by considering die cost elements which are key to each

model.

Ch. 8. Aruilytical Performance Evaluation page 222

8.8 Conclusions

The purposes of quantitative analysis are twofold: one is to model die behaviour of each

algorithm or process, and the other is to perform comparative performance analysis and

sensitivity analysis. Once a quantitative model has shown to be correct, it can be used as a

foundation to evaluate and examine a particular process. Quantitative analysis is certainly a

preferable way to evaluate a process since it is tiie most economical as weU as tiie most

efficient way of carrying out performance analysis. However, U is also tiie most difficult task

and other techniques such as simulation and experimental performance measurements are

desirable.

The contributions of this chapter can be summarized as foUows.

• Analytical models for paraUel processing of basic queries are formulated.

• Three lemmas on inheritance data structures for efficient paraUel processing

have been developed. They generaUy support the use of the linked-vertical

division as a base inheritance structure.

• Two lemmas on parallelization of path expression queries provide a basic

guideline for the optimization of general path expression queries. The

development of these lemmas is based on the fUtering feature of path traversal

operation which is proven to be efficient. Although the efficiency of each

paraUelization model depends on other factors, such as replication factor,

skewness, and partial relationship; selectivity plays a critical role which provides

significant fUtering benefits.

Basic query optimization has been analyticaUy analyzed and has shovra tiiat the

prescribed transformation, in general, is able to achieve performance

improvement.

Chapter 9

Simulation Performance Evaluation

9.1 Introduction
The prediction of timing performance is a difficult exercise in aU fields of computing, but

particularly so m paraUel processing. Performance prediction by calculation is the simplest

way, but it can be very difficult even to obtain an upper or lower bound on performance or to

determine its asymptotic behaviour. Once a cost model is validated, it can be an invaluable

tool for performance prediction and comparison. It is the objective of this chapter to validate

the quantitative analysis presented in the previous chapter, by using simulation. An

investigation using simulation is also used to obtain a series of directions rather than for

numerical quantities, such as whether a paraUelization method is always better than the other.

The rest of this chapter is organized as foUows. Section 9.2 describes the simulation

model. Sections 9.3 to 9.5 present some performance resiUts of paraUelizing inheritance

queries, path expression queries, and coUection join queries, respectively. Sections 9.6 and

9.7 give the performance results of paraUel query optimization including execution

scheduling. Section 9.8 discusses the achievements of the experimentations. And finaUy,

section 9.9 gives the conclusions.

Ch. 9. Simulation Performance Evaluation page 224

9.2 Simulation Model

A simulation program caUed Transim, a ttansputer-based simulator (Hart, 1993), was used in

die experiments. The programs were written in an occam-Uke language supported by

Transim.

Using Transim, tiie number of processors and the architecture topology can be

configured. Communication is done tiirough channels which are able to connect any pair of

processors. Through this feature, tiie simulation model adopts a star network Master-Slave

topology, where processing is done by disfributing die work from die master to aU slave

processors. This configuration is identical to tiiat of tiie analytical model (see Figure 8.1, and

Figure 8.2(c)). By using die same kind of architecture in die simulation as the analytical

models, validation of the latter by the former can be done.

9.2.1 Default Hardware

The default processor is the IMS T800 d-ansputer, clock speed 20MHz, nominal link speed

10 Mbit/sec, internal memory assumed sufficientiy large that external memory is never

required. Table 9.1 shows the default hardware configuration.

1 l̂ eCSê l̂Si'
spd{Ti)
ls(n)
ics{n)
ecs{n)
icd{n)
ecd{n)
tsl{n)
em

Tafoe
20
10
2 * spd{n)
ls(n) 111.25
64 / spd{n)
82 / spd(n)
20480
5

BesQ f̂ê da ' '
clock speed of processor n
nominal link speed
internal communication speed
external communication speed
internal communication delay
external communication delay
time slice period
the e-factor

Table 9.1. Default hardware parameters

External communication is the communication between processes which are located

at different processors, whereas internal communication is the communication between

processes located at the same processor. External channel speed is the data rate over a link

tiiat is carrying fraffic in one direction only, not tiie nominal link speed Is, which is higher.

Internal channel delay is tiie overhead involved in setting up and terminating an internal

channel communication, and external channel delay is an overhead involving the setting up

and terminating of a communication over a link. The e-factor is the number of additional

processor cycles required per cycle of external memory. This value characterizes tiie relative

speeds of internal/external memory. It must be sttessed that the values of these parameters are

adjustable. In the experimentations, up to 12 processors were used.

Ch. 9. Simulation Performance Evaluation page 225

9.2.2 Timing Constructs

A smaU subset of an occam language is supported by Transim. A program written in this

language contains two different components: an occam matrix, and an embedded coUection of

timing constructs. The function of the mad-ix is the control, whereas tiie function of tiie

timing constructs is to step forward simulated time. The mafrix, unUke a normal

programming language, does not contribute to die passage of time, except through its control

over the timing constructs. Therefore, in the absence of timing constructs, the simulated time

remains zero even though the program is executed step by step correctiy.

There are three forms of timing constructs including time delays introduced by

communication, sequential execution time, and timer waits.

Communications. Commimication is represented by the contents of the message

transferred and the timing function by the time delay involved in transferring it. The

independence between these two components wotUd lead to a rather unexpected property that

the time delay can be arbifrary without reference to the contents of the message.

Sequential Blocks. The program control function is represented by blocks of codes

which is part of the occam mafrix, and the timing function by embedded timing constructs.

Adding an arbifrary volume of codes wUl not affect the simulated performance unless a

timing construct is altered. The timing construct is normaUy the estimated time to execute the

codes in the conttol function.

Timer Waits. The function of waiting for the timer is represented in two different

ways: by the occam delayed input, and by die waiting construct. The former is the waiting

time associated with inputs, whereas the latter is an arbifrary waiting period.

9.2.3 Timing Equations

Two types of timing data are required: for communication, and for sequential blocks. In the

former case, it should not normaUy be difficult to obtain good figures as they are derived

internally from the number of bytes fransferred, which is usuaUy weU-known. For sequential

blocks, however, an estimation must then be employed.

The foUowing as the timing equations using the given system parameters.

• For periods spent processing on die CPU A^xEO where tiie quantity of

processing wklen is given by the timing construct in a sequential block:

Ch. 9. Simulation Performance Evaluation page 226

. _{^ + F{p,n)yvklen
^EXEC — ~ ~ 7~~

spd{n)

where tiie term F{p,n) is intended to approximate die effect of external memory,

4

and mr(p) is memory ratio of processor p, which is the proportion of tiie memory

requirement residing in the external memory (zero value represents a process

running entirely in internal memory).

For period of internal communication Ajo.jj<u with process p', where the message

length iolen is the parameter to the corresponding communication construct.

. ,, , , {l-\-F{p,n)-i-F{p\n))iolen
A =icd(n) + -

'o-iNT ics{n)

For period of external communication AJQ-EXT where the ports of each end of tiie

link must have matching parameters:

^ ^ ldf{n,q)iolen
A ,o_Exr = ecd{n) + —

ecs{n)

where ldf(n,q) is link degradation factor of link q from processor n.

For period spent waiting for the timer employing the occam delayed input

constiiiction, where the waking time wktim is tiie parameter to the constinict,

^s-TiM - wktim-current_time

When an arbifrary waiting constiiict is used, witii tiie minimum delay time wtlen,

_ wtlen
^s-TiM — T7~r spd{n)

For the time sliced period,

tsl{n)
^TSL — spd(n)

Ch. 9. Simulation Performance Evaluation page 227

9.3 Simulation Results on Parallel Processing of
Inheritance Queries

9.3.1 Super-Class and Sub-Class Queries

A number of queries was generated witii dUferent object sizes and number of objects. Some

of the results are presented as foUows.

Sifjer-Ciass Queries

1000

Sub-Class Queries

700 800

Siixd ass size

1000

Figure 9.1. Performance of Super-Qass Queries Figure 9.2. Performance of Sub-Class Queries

Figure 9.1 shows performance of super-class queries using die three inheritance

structures. The size of the sub-class was varied. The performance of horizontal division is

poor, compared with the others. This is due to both super-class and sub-class being accessed

in the horizontal division. In confrast, using the vertical/linked-vertical division, the access is

localized to the super-class oiUy. It is also noted that the performance of vertical and linked-

vertical for super-class queries are simUar. Another interesting thing is that performance

degradation of the horizontal division is quite significant when the sub-class size increases,

since a large amount of unnecessary information about the sub-class is also accessed.

Figure 9.2 shows performance of sub-class queries. Due to a need for an explicit

join, vertical division does not perform weU. The performance of the horizontal and die

linked-vertical division is quite simUar, indicating tiiat the overhead incurted by pointer

fraversal is insignificant.

Based on these two figures, it can be deduced tiiat horizontal and linked-vertical are

best for super-class queries, whereas vertical and linked-vertical are suitable for sub-class

queries. This indicates that die proposed Unked-vertical is an appropriate inheritance data

Ch. 9. Simulation Performance Evaluation page 228

Structure for both super-class and sub-class query processing. A further experimentation was

cartied out by incorporating the frequencies of super-class and sub-class queries. Figure 9.3

shows performance of the three inheritance data structures (i.e., horizontal, vertical, and

linked-vertical). The A -̂axis is the frequency of the super-class query. The frequencies of the

sub-class query are exactiy the opposite of those of super-class query. In other words, if the

super-class query frequency is low, the sub-class query frequency is high.

Frequencies

25000 T

20000

16000--

Time
10000--

5000

-A— Horizontal (Super-Class)

-£r— Horizontal (Sub-Class)

->— Vertical (Super-Class)

-D—Vertical (Sub-Class)

-O— Linked-Vertical (Super-Class)

- •— Linked-Vertical (Sub-Class)

minimum of horizontal minimum of vertical

Super-Class Query Frequencies

Figure 9.3. Performance of Super-Qass and Sub-Qass Queries

Based on Figure 9.3 is can be seen tiiat tiie cost of super-class queries using

horizontal division is increased when tiie super-class query frequency is increased.

Conversely, tiie cost of sub-class queries using horizontal division decreases when die super­

class query frequency is increased. Depending on die size of tiie sub-classes, tiie best

performance of horizontal division is when tiie frequencies between super-class and sub-class

queries are quite equal. If one of die query types occurs more frequentiy tiian tiie otiier, tiie

performance degrades.

Figure 9.3 also shows tiiat vertical division becomes more costiy as tiie frequency of

sub-class query increases. The intersection for vertical division shows die applicabUity of

vertical division is exttemely limited to super-class queries only.

Ch. 9. Simulation Performance Evaluation page 229

The best performance is offered by tiie proposed linked-vertical division. Altiiough

the cost for sub-class queries is expensive when the frequency of sub-class query is high, it is

stUl cheaper than that of vertical division and quite comparable with that of horizontal

division. In the same way, although the cost for super-class queries is expensive when the

frequency of super-class query is high, it is stiU better than the others. By analyzing the

minimum points of each inheritance division, die linked-vertical offers the best option. Figure

9.4 gives the summary of the performance based on query frequency. The Une for the linked-

vertical goes down with that of horizontal division. But at some point, the line of horizontal

division is up whUe the line of linked-vertical is consistentiy going down. At die minimum

point, the line for the linked-vertical is also climbing. Starting at the lowest point of the

vertical division, both linked-vertical and vertical division lines are going up at a lower cost

than that for horizontal division.

Frequencies
25000

20000 P-..^ Vertical (Sub-Class)

15000 Horizontal (Super-Class)

Time

5000

10000 i Linked-Vertical (Sub-Class)

Horizontal (Sub-Class)

Vertical (Suoer-Class)

Linked-Vertical (Super-Class)

minimum of horizontal minimum of vertical

Super-Class Query Frequencies

Figure 9.4. Performance Summary based on the Frequencies

The difference between performance of horizontal division and linked-vertical

division for sub-class queries is tiiat tiie Unked-vertical imposes overhead for die pointer

fraversal cost. Since d-aversal is done purely in main-memory tiirough direct memory address,

die traversal unit time can be very smaU and insignificant. Figure 9.5 shows a performance

comparison between die two inheritance data divisions according to tiie speed of die traversal

unit time. It shows that even when tiie d-aversal uiut time is four times higher tiian tiie original

fraversal unit time, tiie difference is reaUy insignificant Oess tiian 0.3%). This is why tiie

Ch. 9. Simulation Perfonnance Evaluation page 230

difference between horizontal and linked-vertical division for sub-class queries shown

previously in Figure 9.1 and 9.3 (9.4) is imimportant.

Horizontal vs. Linked-Vertical
1100 T (Sub-Class)

1000 -

Time

900--

800

— » • r

- Horizontal

Linked-Vertical

- I - - I

2 3

Traversal Unit Time

Figure 9.5. Perfonnance Comparison between Horizontal and Linked-Vertical

9.3.2 General Inheritance Queries

In general cases, inheritance hierarchies can be of the foUowing three cases: (/) multiple sub­

classes, (ii) multiple inheritance (multiple super-classes), and (///) long inheritance

hierarchies.

Super-class queries in a miUtiple sub-class inheritance hierarchy involve the super­

class and all of its sub-classes, whereas sub-class queries are not affected by the complexity

of multiple sub-classes hierarchies since sub-class queries involve only the sub-class

concemed by the query.

Conversely, sub-class queries in a multiple inheritance hierarchy involve the sub­

class and all of its super-classes, whereas super-class queries involve only the super-class

which the queries concern and aU of its sub-classes which happens to be only one. Thus,

miUtiple inheritance does not increase the complexity of super-class query processing.

Figure 9.6 shows performance of super-class queries in a multiple sub-class

hierarchy. The performance graph shows a simUar pattern as in Figure 9.1. Both graphs

demonstrated that the performance of super-class queries is the worst, and a better

performance is offered by the vertical and linked-vertical division. As the number of sub­

classes increases, the processing cost also increases. However, the grovi^ of processing costs

for vertical and linked-vertical is not as drastic as that of horizontal division.

Ch. 9. Simulation Performance Evaluation page 231

Figure 9.7 shows performance of sub-class queries in a multiple inheritance

hierarchy involving a number of super-classes. As tiie number of super-classes increases, tiie

processing cost for tiie vertical division is also raised, due to die cost for expUcit join between

tfie sub-class and aU of its super-classes. In contrast, tiie performance of horizontal and

linked-vertical grows steadUy at a much lower rate. The isolation of tiie sub-class in

horizontal division and tiie smaU overhead of the d-aversal cost in linked-vertical division

offer a much better performance compared with an expensive join operation employed by die

vertical division.

Time

6000-

5000-

400G-

3000-

2000-

1001

0

Multiple Sub-Classes
(Super-Class Query)

- Horizontal

-Vertical

-Unked-Vertical

3 , 4 5

Number of Sub-Classes

Figure 9.6. Performance of Super-Class Queries
Multiple Sub-Qasses

4500-

4000-

3500-

3000-

Time 2500

Multiple inheritance
(Sub-Ciass Query)

- Horizontal

-Vertical

-Unl<ad-Verticai

3 4

Number of Super-Classes

Figure 9.7. Performance of Sub-Qass Queries
Multiple Inheritance

In a long inheritance hierarchy, query on a class can be regarded as a super-class

query as weU as a sub-class query, depending on where the class is situated. For example, if

the query is on the second class, from tiie top view, the query is a sub-class, but from a

bottom view, the query is a super-class. Since performance of super-class and sub-class

queries using different inheritance structure is often confradictory (for example, horizontal

division is good for sub-class queries, but not so good for super-class queries), an analysis of

queries on long inheritance hierarchies is critical.

Using horizontal division, query processing on die i* class (suppose /=1 is a query on

die root/super class) must include aU classes at die (i+f)^ level (where ;>1). Consequentiy,

the processing cost can be expected to go down as the number of classes decreases.

Vertical division is exactiy tiie opposite. Query processing on the /* class is a join

witii aU classes at tiie (i-f)^ level (where ;>1). The exception is tiiat when /=1, no join

operation is necessary as tiiere is only one class, tiiat is tiie root/super-class. As a result, tiie

Ch. 9. Simulation Performance Evaluation page 232

lower the position of the class on which the query is based, die more expensive the processing

cost, due to tiie usage of tiie join operation.

Linked-vertical division, to some extent, is simUar to both horizontal and vertical

divisions in a positive way. Processing the top class is simUar to that of vertical division,

whereas processing the lowest class is simUar to that of horizontal division with an addition

of pointer traversal. Processing a middle class requires a pointer traversal to aU of its super­

classes. Performance using die linked-vertical division is expected to be quite constant,

depending on the size of the classes (number of objects and number of attributes). For

example, processing the top class involves aU objects but with limited number of attributes. In

confrast, processing the lowest class involves a smaU number of objects but with aU

atfributes. Figure 9.8 shows a performance comparison of inheritance queries using 5-level

inheritance hierarchy. OveraU, it is demonstrated that the proposed linked-vertical division

offers the best performance.

Long Inheritance

Time

7000

6000

5000--

4000 \- Horizontal

3000

2000--

1000

0
1

Linked-Vertical

H 1 1-
2 3 4

Query on Class ithi

Figure 9.8. Performance Comparison between the three inheritance divisions

9.4 Simulation Results on Parallelization of Path
Expression Queries

In tiie experimentations, a two-class path expression query was consdiicted. The objects were

generated by a random number generator, in which die degree of fan-out and selectivity were

also created.

Ch. 9. Simulation Performance Evaluation page 233

9.4.1 Inter-Object Parallelization

Inter-object paraUelization is weU-recognized mainly due to its fUtering feature. The effect of

selectivity degree on fUtering wUl be investigated. The cost of inter-object paraUelization

includes the processing costs for the root class and die associated class. The proportion of the

root class processing cost and the associated class processing cost, especiaUy in the presence

of association skew, and the effect of skewness to speed up, wiU be examined.

Inter-Object Parallelization

Time

Selectivity

Figure 9.9. Performance of Inter-Object Parallelization

Figure 9.9 shows die performance of inter-object paraUelization by varymg tiie

selectivity factor. When the selectivity degree is low, the elapsed time taken to answer the

query is also low, regardless of the fan-out degree. This is because most of die associated

objects are not accessed and subsequentiy tiie fan-out degree gives only littie impact. As tiie

selectivity degree grows, the processing cost also increases, especiaUy for those medium to

high fan-out degrees.

The impact of low fan-out, when die selectivity degree is high, is not as big as tiiose

witii higher fan-out degree. This demonsfrates tiiat when tiie selectivity is high, tiie processing

cost is determined by tiie number of accesses to die associated class which is partiy indicated

by the fan-out degree.

Ch. 9. Simulation Performance Evaluation page 234

Inter-Object Parallelization
(root cost and association cost)

Time

1400 T
1200
1000
800
600
400 l^
200 I

0
Root cost

_t f̂ ^ ^ -f 1-
low liigli

Association Si<ewness

Figure 9.10. Processing costs for the root class and the associated class.

Figure 9.10 shows a comparison between the processing cost for the root class and

die associated class, particularly in regard to die association skewness. When the association

skew is low, which refers to the associated objects being disfributed quite evenly (note tiiat

using a round-robin partitioning, the root class is divided equaUy to aU processors), the

processing cost for the associated class is also low. However, when the association skew is

getting worse, the processing cost for the associated class is becoming higher too, especiaUy

when the degree of skewness is reaUy high. In contrast, die processing cost for the root class

is quite steady, despite the association skewness degree. This is because the root class has

been divided quite equaUy. Depending on the fan-out degree which determines the number of

accesses to the associated class, and the degree of association skew, the processing cost for

the associated class can become dominant, especially when die aforementioned two factors

are indicated to be quite high.

Speedup

Inter-Object Parallelization
(Effect of Skew)

Figure 9.11. Performance of inter-object parallelizadon in the presence of skew.

Ch. 9. Simulation Performance Evaluation page 235

Figure 9.11 shows the effect of skew on the performance of tiie inter-object

paraUelization. The result shows tiiat tiie skewness affected tiie improvement greatiy. Only

when tiie skewness is low, is near-linear speed-up attainable. This indicates that witiiout a

careful treatment of the skew problem, performance improvement is barely achieved.

9.4.2 Inter-Class Parallelization

As inter-class paraUelization is divided into two phases, selection phase and consolidation

phase, tiiese two elements wUl be investigated in die overaU cost for inter-class

paraUelization.

Time

180T

160-
140-;
120-^
10&
80

(a) inter-Ciass Parallelization
(2 selections: on root and assoc. classes)

low

60-:;.
40-:;: :
20--;;:;

0 f--.-^.•..:......t—

Selectivity

high

Time

(b) inter-Object Parallelization
(1 selection on the root class)

Selectivity

Figure 9.12. Performance of Inter-Qass Parallelization

Figure 9.12(a) shows tiie comparison between tiie processing costs for tiie selection

and the consolidation, particularly when the query involves two selection operations: one

selection operation on each class. The selection cost is shown to be dominant, and quite

constant regardless of the selectivity factor. It is because aU objects from the two classes in

the query need to be accessed. The consolidation cost is shown to be minor and increases

when tiie selectivity factor is high. This indicates tiiat, using a shared-memory/disd-ibuted

cache main-memory architecture, the consolidation cost for tins particular query type is low.

Figure 9.12(b) presents a performance of inter-class paraUelization for queries

having selection operations on the root class and no selection operations on tiie associated

class. The selection path is shown to be quite constant and smaUer tiian tiie one having two

selection operations. In this query type, the selection operation is the cost for going through

aU root objects orUy. The consolidation cost is shown to be non-trivial. With the increase of

the selectivity degree, the consolidation cost also increases. This cost includes the cost for

accessing the associated objects for each selected root object.

Ch. 9. Simulation Performance Evaluation page 236

Time

250 J

200--

150::

100

50

low

Inter-Class Parallelization

-•—Select(A,B)
-»—Select(A)
-A—Select(B)

Selectivity high

Figure 9.13. Performance of inter-class parallelization of a variety of query types.

Figure 9.13 shows a comparison between queries having two selections (one on each

class), one selection on the root class, and one selection on the associated class. When the

selectivity degree is low, perfonnance of the query having a selection on the root class is

demonsfrated to be the'best. This is because the selection cost is lower than tiiat of tiie queries

with two selections, and the consolidation cost seems to be lower than that of the queries with

one selection on the associated class. As the selectivity degree increases, the filtering feature

provided by the selection operation on die root class becomes ineffective. Hence, performance

of the query having a selection on the associated class becomes die best. This is because the

selection part of this query is lower than that of queries having two selections, and the

consolidation part of this query seems to be not as high as that of queries with a selection on

the root class.

9.4.3 Inter-Object vs. Inter-Class Parallelization

A comparison between inter-object paraUelization and inter-class paraUelization is shown in

three different cases. Case 1 is where the query involves two selections (one on each class).

Case 2 involves queries with one selection on the root class. Case 3 is where the queries have

a selection on the associated class only. The results are presented as foUows.

Ch. 9. Simulation Performance Evaluation

a. Casel: (A)) (B)

page 237

a

Time

(a) Case 1:
Inter-Object vs. Inter-Class

1% 10% 20% 50%

Selectivity Factor

80%

Time

(b) Case 1:
Inter-Object vs. Inter-Class

Inter-Class (10% replic^on)

"Inter-Class (20%)

Fan-out Degree

Figure 9.14. Case 1: Inter-Object vs. Inter-Qass

Figure 9.14(a) shows a comparison between inter-object and inter-class for query

type 1 (i.e., 2 selections). Performance of inter-object paraUelization is demonstrated to be

better than that of inter-class paraUelization. As the selectivity factor increases, the cost for

inter-object paraUelization also increases. This is due to the reduction of the filtering

mechaiusm in the inter-object paraUelization. On the other hand, performance of die inter-

class seems to be not much affected by the degree of the selectivity, since the major

component of the processing is the cost for evaluating aU root and associated objects.

Figure 9.14(b) shows that the inter-object paraUelization cost almost remains steady,

untU die fan-out degree is closing to a high degree. This shows that the filtering mechanism is

not much affected by the fan-out of die root class, because tiie selection operator of the root

class eliminates most of the associated objects. The frend of die inter-class is also simUar to

tiiat of inter-object. This is particularly because tiie cost is influenced by the size of die two

classes. It is interesting to notice that the difference in performance between 10% replication

and 20% replication of the inter-class paraUelization is insignificant. This is due to die

consolidation cost which focuses on the root class. The dUference is reflected only by die

selection cost of the associated class.

OveraU, the results show a support for Lemma 8.4, where tiie influence of tiie

selection operation in the root class plays an important role in bringing tiie inter-object

paraUelization cost down.

Ch. 9. Simulation Performance Evaluation

b. Case 2: 0) 0

page 238

Time

(a) Case 2:
Inter-Object vs. Inter-Class

10% 20% 50%

Selectivity Factor

80%

Time

(b) Case 2:
Inter-Object vs. Inter-Class

medium

Fan-out Degree

high

Figure 9.15. Case 2: Inter-Object vs. Inter-Qass

Figure 9.15(a) presents a comparative result for query type 2 (1 selection on the root

class). Inter-object paraUelization stiU shows its superiority over the inter-class

paraUelization. As the selectivity factor of the root class increases, the costs for both

paraUelization models also escalate. Moreover, performance of the inter-class paraUelization

becomes worse when the selectivity factor is more than 50%. This is because, the purpose of

the consolidation process for query type 2 is to evaluate aU selected root objects and their

associated objects. The latter is needed, as die selected associated objects are to be projected

and presented to users. This process is much influenced by the selectivity factor.

Figure 9.15(b) shows that the dUference between the two paraUelization models is

almost steady, regardless the fan-out degree of the root class. Performance of the two models

relies heavUy on the number of associated objects, which is partiy shown by the fan-out

degree of the root class.

It can also be concluded that for query type 2, performance of die inter-object

paraUelization is better tiian tiiat of inter-class paraUelization, due to die filtering mechanism

provided by the selection operator in the root class.

Ch. 9. Simulation Performance Evaluation page 239

Case 3: 0)(B)

(a) Case 3:
Inter-Object vs. Inter-Class

Timrf

Fan-out Degree

(b) Case 3:
Inter-Object vs. Inter-Class

(r2=r1) r2 = r" 2 partial
(r2>f1) participation

(r2»r1)

Ratio r2:r1

Figure 9.16. Case 3: Inter-Object vs. Inter-Qass

Figure 9.16(a) gives the results for query type 3 (1 selection on the associated class).

As the selection operation is absent from the root class, the inter-class paraUelization shows

its superiority over the inter-object paraUelization, even when the size of the associated class

is larger than titie size of the root class. The number of accesses to the associated class

significantiy determines the performance of the inter-object paraUelization. Even more, the

skewness problem nught occur when processing the associated class. In contrast, inter-class

paraUelization purely concenfrate on the original size of tiie associated class. Using the round-

robin partitioning for both classes, the skew problem can be eliminated.

Figure 9.16(b) shows a comparison between the inter-object paraUelization and the

inter-class paraUelization according to die ratio between the size of tiie root class and the size

of the associated class. The lower the size of the associated class, the better the performance

of the inter-class paraUelization. Performance of tiie inter-class paraUelization degrades oiUy

when a lot of objects from the second class do not have any association with any root objects.

This is when the associated class has a partial participation to the relationship between the

root class and the associated class.

Both experimentation results shown in Figure 9.16 support Lemma 8.5, where it is

stated that in the absence of the fUtering mechanism, forward path fraversal in the inter-object

paraUelization wiU not enhance the performance. Therefore, the inter-class paraUelization

model is much more feasible for query type 3.

Ch. 9. Simulation Performance Evaluation page 240

9.5 Simulation Results on Parallel Processing of
Collection Join Queries

Sort-merge based and hash based versions of paraUel coUection join algorithms for each

coUection join query type are examined. A comparison with conventional methods, such as

relational division is also presented.

9.5.1 Simulation Results of Parallel R-Join Algorithms

Three algorithms were compared in the experimentations. They are ParaUel Sort-Merge R-

Join algorithm, ParaUel Hash R-Join algorithm, and the loop division. Factors considered

were the size of coUections, the size of classes, and the join selectivity degree. The results are

presented as foUows.

Time

400

350

300

250

200

1500'

100

50

0

(a) Parallel R-Join

-X— Sort-merge vei
-0— Hash ver.
-A—Rel. Division

1-2 Collection Size

Time

(b) Parallel R-Joln

>50
1800 2400 2800 3300

Class Size (r+s)
3800

(c) Parallel R-Joln

—X— Sort-merge ver.
Hash ver.
Rel. Division

Selectivity

Figure 9.17. Performance of Parallel R-Join Algorithms

Performance graphs in Figure 9.17 show tiiat tiie proposed algoritiims (sort-merge

version and hash version) are always better tiian tiie conventional relational loop division

algoritiim for paraUel processing of R-Join queries. The efficiency of tiie proposed algoritiims

can be more tiian 100% compared to tiie relational loop division. The cost for die relational

Ch. 9. Simulation Performance Evaluation p^ge 241

loop division increases sharply especiaUy for large operands. This is due to die expensive

loop division cost.

Figure 9.17(a) shows a comparative performance between the proposed algorithms

witii the relational division, by varying die coUection size. When the coUection size is smaU,

the sorting cost for the coUection is cheap, resulting in the overaU performance of tiie sort-

merge version to improve. As the coUection size grows, tiie sorting cost for tiie coUections

also increases. However, the overaU performance of the sort-merge version is quite steady

altiiough tiie coUection size is increased. This is because sorting each coUection is relatively

smaU compared to the other cost components, such as for the sorting of the objects. In the

experiments, the size of the coUection varies from 2 to over 50 elements. For the same

number of objects per class, the difference between sorting 50 elements and sorting 4 element

is relatively insignificant, unless tiie number of objects is increased dramaticaUy. Performance

of the hash version is slightiy better than (in general) that of the sort-merge version, especiaUy

when the coUection size is large. The processing cost for tiie hash version is quite comparable

with that of the sort-merge version because the hash version, in some cases (especiaUy for

sets/bags), incurs a coUection sorting cost. Furthermore, the hashing and the probing

processes have to be repeated. The hash version is however saved from the objects coUection

sorting cost imposed by the sort-merge version.

Figure 9.17(b) shows another comparative performance against the size of the

operand. Performance of the hash version is shown to be better than that of the sort-merge

version. Processing cost for the sort-merge version increases as the size of the operand

expands. This is due to the objects sorting cost. Processing cost for the hash version is not

affected by the size of the operand more than the sort-merge version. The hashing and the

probing processes are linear in complexity, which is much more simple than the NlogN

complexity for the objects sorting.

Figure 9.17(c) incorporates the selectivity degree for each algorithm. It shows that

the join selectivity factor does not affect the degradation of performance significantiy. For tiie

sort-merge version, it appears that the merging cost for the matched coUections is only a

smaU component of the overaU cost. For the hash version, the increase is due to the repetition

of the hashing and the probing processes, which can be expensive when die selectivity degree

is high. And for the relational division metiiod, intersection cost component seems to be smaU,

compared witii the loop division. Hence, tiie join selectivity factor does not play a significant

role in the overaU performance.

Ch. 9. Simulation Performance Evaluation page 242

9.5.2 Simulation Results of Parallel I-Join Algorithms

Four algorithms were examined and analyzed. They are the sort-merge version of paraUel I-

Join algorithm, the hash version of paraUel I-Join algorithm using the simple repUcation

technique, the hash version using the divide and partial broadcast technique, and the original

join predicate version where intermediate coUection results are created during the predicate

processing.

Time

450

400+

350

300i

250

200

150|

loa

50

0

(a) Parallel l-Joln

— • — Sort-merge ver.
—O— Hash (SR) ver.
— a — Hash (DPB) ver.
•--X- —Original Coll. Pred

1-2 Collection Size >50

nme

(b) Parallel I-Join

- Sort-merge ver.
- Hash (SR) ver.
•Hash (DPB) ver.

3800

450
400 i ,
350
300

Time 250
200
1506.
100
50 -
0

low

(c) Parallel I-Join
—•— Sort-merge ver.
- O — Hash (SR) ver.
- G — Hash (DPB) ver.
-•X----Original Coll. Pred

Selectivity Degree high

Figure 9.18. Performance of Parallel I-Join Algorithms

Performance graphs in Figure 9.18 indicates tiiat tiie hash versions perform better

dian tiie other two. This is due to die expensive nested loop constiiict employed by die sort-

merge version. The hash versions, on die other hand, are linear in complexity. It is noted tiiat

performance of tiie two versions (i.e., simple replication, and divide and partial broadcast) of

die hash version are quite comparable. The difference is mainly provided by die data

disfribution cost, not by tiie join cost, since botii of them apply tiie same join techruque. The

Ch. 9. Simulation Performance Evaluation page 243

original join predicate technique, which is predicated to be inefficient, is demonsfrated to

show the poorest performance. The creation of intermediate join result whUe processing die

join predicate is proven to be inefficient.

Figure 9.18(a) shows tiiat tiie coUection size does not give much impact to die hash

versions. In confrast, performance degradation of die sort-merge version is exhibited. This is

due to the increase of tiie sorting cost which is totaUy for tiie coUections. The dUference

between tiie original predicate version witii tiie sort-merge version of paraUel I-Join is shown

to be quite constant, referting tiiat tiie overhead for tiie creation of tiie intermediate results is

invariable.

Figure 9.18(b) also shows tiie same ti-end. The costs for die sort-merge version and

the original predicate version are expanded rapidly, as the class sizes grow. This is mainly

caused by the nested loop construct which is knovwi to employ a quadratic complexity.

Figure 9.18(c) demonstrates tiiat tiie selectivity degree plays a minor role in

performance of paraUel processing of I-Join queries, except that the original predicate version

is shown to increase its processing cost when the selectivity is very high. The sort-merge

version reveals that the major cost component is not the is_overlap function which manifests

the selection process, but the nested loop construct overhead. Likewise, the hash versions

major cost components are the hashing and the probing costs, as aU objects must be hashed

and probed. The selection degree does not impact on the number of objects being processed,

and consequentiy it does not have much impact on the overaU performance.

9.5.3 Simulation Results of Parallel S-Join Algorithms

Four algorithms are analyzed. They include the proposed sort-merge version and hash version

of coUection S-Join, the original coUection S-Join predicate, and the conventional relational

division. The results are presented in Figure 9.19.

Figure 9.19(a) shows that die hash versions perform better tiian tiie otiiers. The

processing cost for the sort-merge is as expensive as the conventional methods due to the

expensive nested loop construct. As the coUection size increases, the sort-merge cost also

increases. The original predicate version which utUizes a sort-merge is demonstrated to be

more expensive than the proposed sort-merge algorithm, because of the intermediate result

creation overhead. The relational division is also in tiie upper level accompanying the sort-

merge version and the original predicate version.

Figure 9.19(b) proves tiiat the nested loop constiiict severely hurts die sort-merge

version especiaUy when the size of the operand is huge. The effect of the class size in the hash

Ch. 9. Simulation Performance Evaluation page 244

versions is not as enormous as that in the sort-merge version. This verifies the efficiency of

programs with a linear complexity like hash, compared with programs having a quadratic

complexity imposed by a nested loop like in the sort-merge version.

Figure 9.19(c) shows the impact of the selectivity factor on the performance of each

algorithm. For the hash versions, the selectivity factor influences the degree of repetition for

the hashing and the probing processes. UiUike the hash versions, the sort-merge version is

basicaUy unaffected by the selectivity factor, as processing cost is monopolized by the nested

loop construct. The original predicate version shows a uniform difference with the proposed

sort-merge version, as they mainly use the same partitioning and processing techniques but

differ in processing the join predicates. The additional cost imposed by the original predicate

version comes from the intermediate coUection results overhead. The relational loop division

shows to very inefficient due to the excessive cost for the loop division.

(a) Parallel S-Join

450T

400
350
300

•nme 250
200
150 f-
100
50 +
0

1-2

-•—Sort-merge ver.

- a—Hash ([)PB) ver.

•X—-Qignal Coll. Pred.

- A — R e l Division

;«0

-•—ScrtTTErgsver.

-B—Hash (DP^ ver.
••X--QignBlCbfl.Pted

(b)Rarallei
SJdn

Coitectionaze

380O

(c) Parallel S-Join — • Sort-merge ver.

—B Hash (DPB) ver.

-X--•-Original Cdi. Pred.
— A — Rel. Division

Selectity Degree

Figure 9.19. Performance of Parallel S-Join Algorithms

Ch. 9. Simulation Performance Evaluation page 245

9.6 Simulation Results on Query Optimization

Two basic query optimizations: INTER-OBJECT-OPTIMIZATION and INTER-CLASS-

OPTIMIZATION were examined. This involved implementing and analyzing the ti-ansformation

procedures among basic paraUelization models, such as inter-object paraUelization, inter-

class paraUelization, and explicit join paraUelization. The results are presented in tiie next

sections.

9.6.1 Simulation Results on INTER-OBJECT-OPTIMIZATION

There are three types of fransformation for the INTER-OBJECT-OPTIMIZATION. They are IOB

->IOB fransformation, ICL->IOB fransformation, and EXJ->IOB ti-ansformation. The objective

is to fransform any other primitive operation to an inter-object paraUelization. In the

experimentations, factors such as selectivity degree, replication, and skewness, were

considered. When the fransformation requires a bi-directional relationship, an inverse relation

was created.

a. lOB^IOB Transformation

IOB->IOB fransformation is applied to two-class path expression queries, and the

fransformation is done by changing the forward path traversal direction.

Time

25(>r

200-

150--

100- ' -

5 0 -

0

low

(a) Inter-Object to Inter-Object
Optimization

Inter-Object (original)

Inter-Object (Optimized)

higti

(b) Inter-Object to Inter-Object
Optimization

IOB (Original)
IOB (Optimized - High selectivity)
IOB (Optimized - medium selectivity)
IOB (Optimized - low selectivity)

Selectivity

partial no high
relationship replication replication

Replication Factor of the Associated Class

Ch. 9. Simulation Performance Evaluation page 246

(c) Inter-Object to Inter-Object

400 n

350-

300-1

250-

Time 200 -

150-

100-

50-

0-

Optimization

inter-Object (Originaft,^^^

^—-'''^ Inter-Object (Optimized)

1 ! ' 1

low Skewness iiigh

Figure 9.20. Performance of IGB-^IOB Transformation

Figure 9.20(a) presents a performance resiUt of the IOB->IOB ti-ansformation against

the selectivity degree. The performance of the original inter-object paraUelization is quite

steady, because there is no fUtering done to the query, as the selection operation is applied

only to the associated class. By changing the ti-aversal direction, the selection operation serves

as a fUtering tool. As a result, when the selectivity degree goes down, the performance

improves. This shows that the transformation produced a better result, except when the

selectivity degree was high, when the benefit from the fUtering was limited.

Figure 9.20(b) shows the impact of replication or redundant accesses to the

associated objects to the transformation. The original inter-object paraUelization performs

weU when the ratio between total accesses to the associated objects and the original number

of associated objects is low, which is shovra by the partial relationship of the associated class.

As the replication factor increased, the processing cost for tiie original inter-object

paraUelization also increases. On the otiier hand, performance of the transformed inter-object

paraUelization is shovra to get better as the relationship of the associated class is not partial.

This means that there is less dangling associated objects which do not have any connection to

the root objects with a lower selectivity degree, the performance is shown to be the best.

Figure 9.20(c) shows tiie impact of skewness on tiie dransformation. The skewness is

a result of the fluctuation of tiie fan-out degree. The root class where the ti-aversal starts does

not suffer from skewness. The result shows tiiat tiie impact of skewTiess on the original inter-

object paraUelization is so great that it resiUts in a poor performance. On tiie other hand, the

impact of skewness on the fransformed inter-object paraUelization is not so great, as most of

the objects are filtered out by the selectivity. Hence, die skewness is applied only to a small

number of objects. Even with a higher degree of skewness, the impact is shown not to be

great, compared with the original inter-object paraUelization where the skewness affected all

Ch. 9. Simulation Performance Evaluation page 247

associated objects. The main lesson is tiiat tiie skewness can be tolerated when tiiere is a

lower selectivity degree which performs a filtering of objects of subsequent classes.

The IOB->IOB fransformation is shown to be efficient, except in special cases where

the selectivity degree of tiie associated class is high (i.e., >95%) and die relationship of tiie

associated class is only partial. However, tiie latter can be tolerated if die selectivity degree is

exfremely smaU (i.e., <0.001%).

b. ICL->IOB Transformation

ICL->IOB fransformation is applicable to two-class path expression queries and U is achieved

by starting a fraversal from the class having a selection operation. There are two cases. Case

1 is where it is possible to start a forward traversal from a class having a selection but not

being done. The optimization is accomplished by performing a forward fraversal through an

inter-object paraUelization from the class having a selection operation.

Case 2 is simUar to case 1, but the optimization requires a change in path direction so

that a forward fraversal through an mter-object paraUelization can be carried out.

Case 1:

^^^ifV^
Transfonned into

Time'

(a) Inter-Class to Inter-Object
Optimization

(b) inter-Class to Inter-Object
Optimization

—O—Original (ICL - low selectivity)
—D—Original (ICL - medium)
—A—Orig inal (ICL - high)

• - M - • Optimized (IOB - low)

• - a t - -Optimized (IOB-medium)
• - + • -Optimized (IOB-high)

Partial
relationship

no
replication

Replication Factor In the Associated Class

high
replication

Figure 9.21. Performance of ICL-̂ IOB Transformation (Case 1).

Ch. 9. Simulation Performance Evaluation page 248

Figure 9.21(a) shows a performance comparison between die original inter-class

paraUelization and the optinuzed inter-object paraUelization by taking the selectivity degree

into account. When the selectivity is low, both operations perform weU. This proves tiie

positive impact of filtering tiirough tiie selection operation. However, as tiie selectivity degree

increases, the gjtov/th in processing cost for tiie inter-class paraUelization is more rapid tiian

that for the inter-object paraUelization. This is due to tiie large overhead imposed by die

consolidation operation in the inter-class paraUelization.

Figiure 9.21(b) shows the impact of partial or compulsory relationship and redundant

accesses on the performance of the inter-class paraUelization and inter-object paraUelization.

The dotted lines in the graph represent the performance of the fransformed inter-object

paraUelization. Using the same degree of selectivity, performance of the inter-object

paraUelization is relatively better tiian performance of the inter-class paraleUization. The

result also shows titiat the effect of the degree of replication is not so large to both inter-class

paraUelization and inter-object paraUelization when the selectivity is lower or medium. As in

die previous figure, performance of the inter-class paraUelization is prone to the high

selectivity in which performance degradation is expected.

OveraU, it has been shown tiiat the ICL->IOB transformation is generaUy desirable.

Case 2:

(a) Inter-Class to Inter-Object
Optimization

(b) Inter-Class to Inter-Object
Optimization

Time

250 J

200-

150-'

100-

50-'

0 -

—I—Original (ICL)
- -X - -Optimized (IOB - high)
- - + • -Optimized (IOB -medium)

•Optimized (IOB - low selectivit>|)

Inter-Class Parallelization

Time

Inter-Object Parallelization

low
Selectivity

high Partial
Relationship

No replication High
replication

Replication Factor of the Associated Class

Figure 9.22. Performance of ICL—>IOB Transformation (Case 2).

Ch. 9. Simulation Performance Evaluation page 249

Figure 9.22(a) shows tiiat the selectivity factor in the inter-object paraUeUzation

plays an unportant role in bringing tiie processing cost down. The performance of die original

inter-class paraUelization remains quite constant regardless of the selection operation,

because aU objects of both classes have to be accessed. In contrast, accesses to die associated

class in tiie inter-object paraUelization depends on die selection performed by die root class.

Only in special cases where the selectivity degree is high (>95%), is performance of die inter-

object paraUelization shovra to be poorer tiian tiie counter part inter-class paraUelization. In

this case, the fransformation is not desirable.

Figure 9.22(b) demonsfrates that in general the performance of the inter-object

paraUelization is better than that of die inter-class paraUelization. Because aU objects of both

classes must be accessed by the inter-class paraUelization, the more dangling associated

objects, the more expensive the processing cost for the inter-class paraUelization. In contrast,

the relationship of the associated class does not give much impact to performance of the inter-

object paraUelization, since naturaUy non-associated objects (or dangling associated objects)

are discarded through the association and the selectivity. Hence, performance of inter-object

paraUelization is shown to be quite constant. The selection operation which performs the

fUtering is shown to be a major key factor in the inter-object paraUelization.

c. Exj->IOB Transformation

The EXJ->IOB transformation is applicable to object join queries and is done by changing one

of the paths so that complete path expressions are formed.

Truufomed laio

> ^^^^iJ^CE^^^^^CO

Explicit-Join to Inter-Object
Optimization

Time

700

600 f

500

400 +

300

200

100

0

Explicit Join

Inter-Object Parallelization

low Join Selectivity Degree "̂'9*̂

Figure 9.23. Performance of EXJ^IOB Transformation

Ch. 9. Simulation Performance Evaluation page 250

Figure 9.23 shows that at aU times explicit join operation is much more expensive

than path expression operation through an inter-object paraUeUzation. As the join selectivity

degree increases, processing costs for both operations also increase. The increase in

processing cost of the explicit join operation is caused by the additional comparison of the

elements of the coUection join atfributes. LUcewise, the increase in processing cost of the

inter-object paraUelization is due to the fraversal cost imposed by the inverse relationship

where more objects need to be accessed. With a lower selectivity degree, most path fraversal

do not form a complete path fraversal.

9.6.2 Simulation Results on INTER-CLASS-OPTIMIZATION

There are two types of fransformation avaUable from die INTER-CLASS-OPTIMIZATION. They

include IOB-»ICL transformation, and Exj^ICL ti-ansformation. The main objective is to

fransform any other primitive operation to an inter-class paraUelization.

a. IOB->ICL Transformation

The lOB^ICL transformation is basicaUy transforming an inter-object paraUelization to an

inter-class paraUelization. The fransformation is optimized oiUy when there is a selection on

the associated class. Experimentation from this fransformation is used to compare

performance of the original inter-object paraUelization and the fransformed inter-class

paraUelization. This has been done in the section of 'Inter-object vs. Inter-class

paraUelization", especiaUy in case 3 (Figure 9.16). The resiUts show that a transformation

from an inter-object paraUelization to an inter-class paraleUization is more desirable most of

the time.

b. Exj-^ICL Transformation

The EXJ->ICL fransformation is applicable when U is impossible to do an EXJ^IOB

fransformation due to the absence of an inverse relation. The objective remains tiie same; that

is to avoid explicit join operation whenever possible. There are two cases of the EXJ^ICL

fransformation. Case 1 is where there is a selection operation on the joined class, and case 2

is where there is a selection operation on one of the root classes.

Case 1:

IOBN

a

It

yiOB

Tranifonned into

> y C!ff£~Z.
ICL^ / i C L

Ch. 9. Simulation Performance Evaluation page 251

Explicit-Join to Inter-Class
Optimization

Time

680 J

660--

640--

620

600--

580 --

560 --

540-

520--

500--

Explicit Join

Inter-Class Parallelization

low/ _ , high
Selectivity degree on the joined class

Figure 9.24. Performance of ExJ—>ICL Transformation.

Figure 9.24 shows that the selectivity degree does not affect performance of the inter-

class since aU objects from the three classes need to be accessed. Performance of the explicit

join operation, however, is affected by the increase of die selectivity degree which incurs

additional cost for comparison of the elements of the coUection join atfributes.

Case 2:

Transfomied into
71 . n

• >

restricted by the
selection operation
on A

900

800

700

600

500--

400-

T™S00 -

200

100

0

Explicit-Join to Inter-Class
Optimization

Explicit Join

Inter-Class Parallelization

low high
Selectivity Degree on one root class

Figure 9.25. Perfonnance of Exj-^ICL Transformation

Ch. 9. Simulation Performance Evaluation page 252

Figure 9.25 shows tiiat when tiie selectivity degree is low, performance of die expUcit

join is quite good. This reflects tiiat tiie join cost is affected by die size of classes to be joined.

If one of die classes is very tiny, tiie join cost wUl not be tiiat expensive. As tiie size of tiie

class having tiie selection grows (due to tiie increase of tiie selectivity degree), die join cost

expands. The selectivity degree also plays an important role after die ti-ansformation. The

fransferted model is actuaUy a nUxed fraversal where first an inter-object paraUeUzation from

tiie class having a selection to tiie joined class is applied, and second an inter-class is

performed. The degree of selectivity of the inter-object paraUeUzation brings tiie total

processing cost down.

9.7 Simulation Results on Execution Scheduling and
Load Balancing

9.7.1 Without Data Re-Distribution

A number of experiments were carried out to compare the serial schediUing and the paraUel

schediUing methods for non-skewed and skewed sub-queries. A number of queries consisting

of 2 sub-queries were created. In the simiUation, the sub-queries are varied from non-skewed

to highly skewed, and from single class to multiple classes connected through a path

expression.

a. Non-Skewed Sub-queries

(a) Non-Skewed Sub-Queries
(equal size sub-queries)

(b) Non-Skewed Sub-queries
(Subquery 1 Large, Sutx:|uery 2 Small)

Time

Figure 9.26. Performance of Non-Skewed Sub-queries.

Ch. 9. Simulation Performance Evaluation page 253

Figure 9.26(a) shows that for non-skewed sub-queries, the serial scheduling method is slightiy

more efficient than tiie paraUel schedulmg method, especiaUy when the nmnber of processors

used is less than 5. The smaUer the number of processors, the more difficiUt it is to divide die

processors accurately to the sub-queries participated in a query. In these experimentations, an

optimal processor configuration for paraUel execution is used.

Figure 9.26(b) shows that the size of the sub-queries do not have much impact on

execution schediUing, as the result is simUar to Figure 9.26(a). The resiUt shows that in the

absence of a skew problem, the serial scheduling is slightiy better than the paraUel execution.

In the experimentations, the most efficient paraUel configiu-ation was used. The difference

between the serial and the paraUel execution performance, when the number of processors

used is more than sk, is aroimd 10% in which the serial execution is superior.

b. Skewed Sub-queries

(a) Skewed Sub-Queries
(equal size sub-queries)

(b) Skewed Subqueries

(Subquery 1 Large, Subquery 2 Small)

Figure 9.27. Performance of Sicewed Sub-queries.

Figure 9.27(a) presents tiie results for skewed sub-queries. It shows tiiat die performance

using the paraUel scheduling metiiod is better tiian tiiat of die serial schediUing metiiod. The

dUference between die two metiiods seems to be quite steady, regardless of die number of

processors used.

Figure 9.27(b) shows tiie comparison in perfonnance between serial and paraUel sub-

queries execution when tiie first sub-query is large and tiie second sub-query is smaU. Botii

sub-queries involve a certain degree of skevimess. The performance result in Figure 9.27(b)

shows a simUarity to tiie perfonnance result in Figure 9.27(a) meaning tiiat tiie size of tiie

sub-queries do not affect tiie comparison too much. In tiie presence of skew in botii sub-

queries, tiie paraUel execution is preferable. The dUference can be up to 50%.

Ch. 9. Simulation Performance Evaluation page 254

Serial vs. Parallel

no skew

Serial

higt) ^ew

Skewness

Figure 9.28. Performance Comparison between Serial and Parallel Execution.

Figure 9.28 shows performance comparison by varying the degree of skevraess. The

serial scheduling method produces the lowest cost when no load skew is involved. However,

when the load skew occurs, even U is smaU, the optimal paraUel configuration shows a better

performance. In paraUel scheduling, it is essential to employ an optimal processor

configuration. Otherwise, the performance wiU be degraded.

c. Non-Skewed and Skewed Sub-queries

Figure 9.29(a) shows tiie results when the large sub-query is skewed, but die smaU sub-query

is not-skewed. The elapsed time for tiie serial scheduling metiiod is 82 ps. For die paraUel

scheduling metiiod, the most efficient processor configuration is 11+1 processors (i.e., 11

processors for tiie large sub-query and only 1 processor for the smaU sub-query) which takes

47 ps only. This result also proves tiiat it is natural to aUocate a large number of resources to

a large sub-query.

Ch. 9. Simulation Performance Evaluation page 255

(a) Large (Skewed) vs. Small (Non-Skewed)

600

500

400 -
Time

300 -

200

100

511 I Sub-query 1

I Sub-query 2

258

173

Total: 82

1+11 2+10 3+9 4+8 5+7 6+6 7+5 8+4 9+3 10+2 11+1 Serial

Processors

(b) Large (Non-Skewed) vs. Small (Skewed)

Time

I Sub-query 1

I Sut)-query 2

1 + 11 2+10 3+9 4+8 5+7 6+6 7+5 8+4 9+3 10+2 11 + 1 Serial

Processors

(c) Skew VS. Non-Skew (Same Sizes)

Time

i Sub-query 1

I Sub-query 2

66 B Total:57

1 + 11 2+10 3+9 4+8 5+7 6+6 7+5 8+4 9+3 10+2 11 + 1 Serial

Processors

Figure 9.29. Perfonnance of Non-Sicewed and Slcewed Sub-queries

Ch. 9. Simulation Performance Evaluation p^gg 256

Figure 9.29(b) gives tiie comparison results between a large non-skewed sub-query

with a smaU skewed sub-query. The performance using a serial scheduling takes 28 ps,

whereas a paraUel scheduUng requires 30 ps witii 9+3 processors configuration. This result

shows that tiie decision on what scheduUng method to use depends upon die large sub-query.

When die large sub-query does not involve any skevraess, die serial scheduling metiiod is

likely to be used in order to achieve high performance. On die otiier hand, if die large sub-

query is skewed, die paraUel scheduling produces a better performance as demonsd-ated in

Figure 9.29(a).

Figure 9.29(c) displays die results for sub-queries of equal size: one witii skew and

the other without skew. The result shows that die paraUel scheduling method (8+4

configuration) produces tiie best performance. This result supports tiie fact shown previously

in Figure 9.28, in which in the presence of skew, the paraUel scheduling method is more

efficient. The skewed sub-query also needs more resources than the one without skew.

A number of observations can be made based on the results of the experimentations.

• Serial scheduling outperforms paraUel scheduling when the two sub-queries are

uniformly disfributed.

• ParaUel scheduling outperforms serial schediUing when skew is involved in the

sub-queries AND when an optimal processor configuration is used.

• Since most sub-queries involve some degrees of skewness, paraUel scheduling

becomes dominant and die determination of an optimal processor configuration

becomes critical. An optimal processor configuration is mostiy determined by

run-time factors, such as die cardinality of classes, the skewoiess degrees, die

selectivity factors, etc. Because most of these factors are non-deterministic,

finding an optimal processor configuration for paraUel sub-queries execution is

difficult. A rough estimation must then be used.

• Skevmess degrades performance. If the skewness problem can be minimized (U

not totaUy eliminated), die serial scheduling wUl be more realistic. Consequentiy,

the difficulty in choosing an optimal processor configuration for paraUel sub-

queries execution is eliminated, since paraUel scheduling becomes less desirable.

Ch. 9. Simulation Performance Evaluation page 257

9.7.2 With Data Re-Distribution

In tins section, we compare performance Vitii' data re-distribution witii perfonnance "witiiout'

data re-disttibution, and analyze die impact of data re-disfribution in tiie serial and paraUel

schediUing methods.

a. Physical Data Re-Distribution

(a) With vs. Without Re-Distribution

Physical Data Re-Distributor}

Time

-Without
Re-Distribution

-With
Re-Distribution

(b) Skewness

n m e

2 5 0 T

200

150--

100-

50-

no skew

Physical Data R&-Distrit>u1ion

Without Re-Distribution,

With Re-Distribufion

SKewness
high skew

Figure 9.30. Physical Data Re-Distribution

Figure 9.30(a) shows the performance of physical data re-disfribution. It has demonstrated

performance improvement, although tiie gap between tiie Vitii' and "witiiout' data re-

disfribution is closing as the number of processors used. This is due to the communication

cost incurted in the physical data movement from one processor to another. The more

processors used, the more the commimication cost.

Figure 9.30(b) shows performance improvement of the physical data re-distribution

method as the skewness increases. This proves that data re-disfribution is a good device for

resolving the load imbalance problem.

b. Logical Data Re-Distribution

LUce physical data re-disfribution, logical data re-disttibution also shows performance

improvement. Figure 9.31(a) presents a performance comparison between the \vith' and

Vitiiout' logical data re-disfribution. In tills experiment, tiie skewness degree is simulated by

means of varying the size of complex objects tiirough a random number generator. The

file:///vith'

Ch. 9. Simulation Performance Evaluation page 258

disfribution of the numbers does not foUow a Zipf disfribution, and hence, the difference in

performance between the \vith' and Vithout' logical data re-disttibution is not as large as that

of the physical data re-disttibution experimentations where the Zipf disttibution was used.

Although the improvement gained through logical data re-disfribution is not as drastic as tiiat

in physical data re-disfribution, nevertheless, logical data re-disttibution is better tiian without

data re-disttibution.

Figure 9.31(b) explains that witii tiie increase of tiie skewness degree, performance

using the logical data re-disttibution method is more efficient that without data re-

disttibution. This is to sttess the importance of data re-disttibution for load balancing.

(a) With vs. Without Data Re-Distribution

Logical Data Re-DistritxJtion

Time

Processors

(b) Skewness
Logical Data Re-Distribuion

no skew

With Data Re-Distribufion

high skew

Skewness

Figure 9.31. Logical Data Re-Distribution

c. Serial vs. Parallel

The most important tiung to gain from tiie experimentations is to discover die impact of data

re-disfribution to tiie serial and paraUel scheduUng metiiods. As data re-disfribution reduces

die negative effect of tiie load skew problem, it can be anticipated tiiat tiie serial scheduling

metiiod wUl most lUcely be used more often in order to achieve high performance.

file:///vith'

Ch. 9. Simulation Performance Evaluation page 259

(a) Physical Data Re-Dislrlbution

Time

Serial

Parallel (optimal)

Parallel (near optimaJ)

Parallel (not optimaJ)

(b) Logical Data Re-Distribution

—•—Serial
-•-Parallel (optimal)

-A-Parallel (near opt)

-) ^ Parallel (not opt)

Processors
„ 8 10
Processors

12

Figure 9.32. Serial vs. Parallel when data re-distribution is used

Figure 9.32(a) shows a comparison between the serial and paraUel scheduling

methods and physical data re-disfribution. The optimal configuration of the paraUel

scheduling method seems to be as efficient as the serial scheduling method. However, if a

non-optimal processor configuration is used, the performance wiU be dovmgraded. As a

result, for simplicity and to achieve an optimal result, die serial scheduling method is

preferable.

Using logical data re-disfribution. Figure 9.32(b) shows a simUar result to that of

physical data re-disfribution. The optimal paraUel processor configuration produces a simUar

result as the serial scheduling method. However, to avoid any risk of not employing an

optimal configuration, the serial schediUing method is more desirable. This decision is also

based on tiie promising results produced by tiie serial scheduling metiiod.

Three major important lessons learned from the experimentations.

• Data re-disfribution is demonsttably capable of handling the load skew problem.

Major performance improvement can be expected especiaUy in the shared-

memory and fuUy replicated systems, as the data re-disttibution is done logicaUy

through dynamic processor scheduling.

• Since the effect of load skew can be minimized through data re-disttibution,

serial scheduling becomes more feasible. This "go back to the basic" is not a

drawback. It is in fact an advancement, as performance improvement is gained.

AUocating fiUl resources to a sub-query seems to be better than dividing

resources to multiple sub-queries.

Ch. 9. Simulation Performance Evaluation page 260

• ParaUel scheduling for sub-queries is now less desirable. Hence, the

concenttation is shifted to paraUelization within a sub-query, in which fuU

resources are aUocated to it.

9.8 Discussions

The chaUenges highlighted at the end of the previous chapter have been addressed in this

chapter. They include:

• The lemmas on inheritance data structures are shovm to be vaUd. In most cases,

the performance of inter-object paraUelization using the proposed linked-vertical

division is shovm to be better than that of the ttaditional inheritance data

structures. OiUy in a few exceptional cases, the linked-vertical division performs

sUghtiy poorer than the horizontal or the vertical division.

• The lemmas on paraUelization models for path expression queries are shovm to

be valid. These lemmas lay a firm foundation for the basic query optimization

sttategies.

• Performance of the hash versions of paraUel coUection join algorithms are

demonsttated to be superior than the sort-merge versions and the ttaditional

paraUel join algorithms.

• Path ttaversal in the form of inter-object paraUelization and inter-class

paraUelization is shown to be an appropriate basis for paraUel query

optimization. ParaUel query optimization based on these two basic paraUelization

models demonsttates not only tiieir simplicity, but also their efficiency.

• The tiiree propositions for execution scheduling have been implemented using a

simulation program and are found to be valid.

9.9 Conclusions
The results from tiie simulation conoborate the quantitative analysis. This has been tiie major

confribution of tiUs chapter, which is to demonsfrate tiie vaUdity of tiie quantitative analysis

model.

The next chapter wUl demonsfrate the validity of die simulation model and die

analytical models, using experimental performance measurements.

Chapter 10

Experimental Performance Evaluation

10.1 Introduction
The final stage of performance evaluation mvolves conducting performance measurements of

different models presented in this diesis using a real paraUel machine. The main objective of

performance measurements of an experimental system is to validate the analytical models and

the simulations models. In the analytical performance evaluation, cost equations for each

model were given, and relative performance comparisons between these models were

presented. In the simulation performance evaluation, performance comparisons were canied

out in a simulation program. The simulation results have shown to match with the

conclusions, in a form of lemmas and propositions, of the analytical performance evaluation.

Experimental performance evaluation presented in this chapter is to validate the basic cost

equations which include: a) cost equations for inter-object paraUelization, b) cost equations

for inter-class paraUelization, and c) the simulation results of paraUel coUection join queries.

Once these basic cost equations are validated, analytical relative performance comparisons

based on the basic cost equations, and the simulation results are also validated.

The environment for experimental performance evaluation was a shared-memory

system which is conceptuaUy different from that of simulation/analytical performance

evaluation, as the latter used a disfributed-memory system. However, in a shared-memory

system, it is common that each CPU is equipped with a sufficient amount of cache. This is

comparable with slave processors in the disfributed-memory system where each slave is

equipped with a local memory.

Ch. 10. Experimental Performance Evaluation page 262

Futhermore, in a star topology disttibuted-memory system, the connectivity between

tiie master and each slave is 1-1. LUcewise, in a shared-memory system, by nominating one of

tiie CPUs as a master, tiie connectivity between die master and otiier CPUs is also 1-1, since

the communication is done through a common bus.

The difference in platform for the experimental performance evaluation was

purposely chosen in order to show tiiat tiie analytical/simulation models are appUcable to die

shared-memory systems.

This chapter is organized as foUows. Section 10.2 describes the experimental system.

Section 10.3 presents the results from performance measurements. Section 10.4 presents

some discussions. And finaUy, Section 10.5 draws die conclusions.

10.2 Experimental System

10.2.1 Platform

The experimental environment was a DEC Alpha 2100 model witii 4 CPUs running at

190MHz. The total performance of the system is around SOOOMips and SGflops. The size of

main memory was 2Gb, and each CPU was equipped with 4Mb cache. The processors are aU

based on the same 64-bit RISC technology. The 64-bit technology breaks the 2-gigabytes

limitations imposed by conventional 32-bit systems. Subsequentiy, the usage of very large

memory is common to Digital Alpha servers. Very large memory systems significantiy

enhance the performance of very large database applications by caching key data into

memory. This kind of architecture supports the assumption adopted m this thesis where the

processing is main-memory based. Main-memory access based is widely knovm to be a

100,000 fold improvement compared to magnetic disk access. The foUowing are the

characteristics of the Alpha system:

• Symmetric. AU CPUs are identical, and any CPU can execute both user code and

kernel code.

• Shared-memory system. AU CPUs share a single pool of memory, to enhance

resource sharing and commimication among different processes. An application

can consist of multiple instructions, aU accessing shared data structures in

memory. To prevent simultaneous accesses to tiie same shared data, a hardware-

based mutual exclusion is provided.

• Shared-bus. AU CPUs, memory models, and I/O plug into a single high-speed

bus. The bus bandwidtii is 132 MB/sec.

Ch. 10. Experimental Perfomwnce Evaluation page 263

• Dynamic Load Balancing. CPUs automaticaUy schedule tiiemselves to ensure

tiiat aU CPUs are kept busy as long as tiiere are executable processes avaUable.

The Alpha system stiructure is shown in Figure 10.1. Four CPUs, each is equipped

with a sufficient cache, are connected to a shared memory dirough a high-speed bus system.

Processing
Elements

CPU-0

Cache

CPU-1

Cache

CPU-3

Cache

. I f | , r... . User

Shared Memory

Figure 10.1. Tlie Alphia System Structure

The underlying operating system was Digital UNIX, and the algorithms were

implemented in C. The main program basicaUy consists of two sub tasks. The first sub task is

to generate chUd processes and the second sub task is to aUocate each chUd process to

different processors. ChUd process generation is done by invoking the weU known fork ()

function, whereas chUd process aUocation is implemented by caUing the bind_to_cpu()

fimction caU provided by Digital UNIX. The main program stops when aU chUd processes

fiiush their jobs.

Each chUd process caUs a generic process fimction with three parameters; processor

number, starting range index, and ending range index. In this way, the data is logicaUy

partitioned into the number of processors. The program wUl also be simpler, because the

main process fimction is generic for aU processors. This is common model in an SIMD

(Single Instruction Multiple Data) architecture.

10.2.2 Algorithms Implementation

It is not tiie intention to buUd a fuU featured ParaUel Object-Oriented Database Management

System, but rather to implement basic paraUelization algoritiims for performance evaluation

purposes. A number of points are worth noting in the course of implementing tiiose

algorithms.

• Inter-Object Parallelization and Inter-Class Parallelization. Round-robin partitioning is

achieved by identifying die chUd process identifier, assigning a dUferent object to a chUd

process, and incrementing die counter by tiie number of chUd processes after they have

finished processing each object. Dynamic load balancing is accomplished by employing a

global counter and each process has to obtain a permission to increment the global counter

before accessing an object. The global counter also serves as a pointer to the object.

Ch. 10. Experimental Performance Evaluation page 264

Data Partitioning:

• Information on data distribution is kept in a distribution table. The disttibution table is a

two-dimensional anay of 4 row x NUMJTEM column. The row represents tiie number of

chUd processes (each chUd process is aUocated a processor, the parent process is the

coordinator), and the column is the maximum number of objects that can be aUocated to

one process (or processor). The disttibution table could have been implemented in a single

dimensional artay, and each element in the anay is a linked-Ust. The difference is just a

matter of dynamic versus static data structure. For simplicity, a two-dimensional array is

used.

Data disttibution is done by assigning the OID to an appropriate row in the

disttibution table. A counter for each row in the disttibution table is needed to keep ttack

of the number of objects aUocated to a particiUar process. For example, an object with

OID 175 is to be disttibuted to processor 0. If the counter for processor 0 is shovm to be

equal to 16; meaning that there are 16 objects aUocated to processor 0 so far, OID 175

wiU be aUocated to row 0 column 16 (row and column start from 0) and the counter for

this row is incremented by one.

The checking.of each object is done in paraUel using a round-robin scheduling.

Figure 10.2 gives an iUusfration of data disfribution using a disfribution table. Suppose

that object 0 is disfributed to process 2 and so is OID 1; OID 3 is disttibuted to process 3.

Objects to be
distributed Child processes Distribution Table

NUM_nEM- 1

0 0
1
2
3

H

Figure 10.2. Distribution Table.

Apart having a counter for each row in die disttibution table, a lock must be used

every time the counter is updated.

Ch. 10. Experimental Performance Evaluation page 265

Divide and Partial Broadcast employs a decision table. The algoritiim for the divide and

partial broadcast is simplified by using a decision table. The usage of a decision table in

die algorithm is explained as foUows. Suppose die domain of tiie join atttibute is an

integer from 0-29, and tiiere are tiiree processors. Assume tiie disttibution is divided into

tiiree ranges: 0-9, 10-19, and 20-29. The result of one-way divide and partial broadcast is

given in Figure 10.3(a). Figure 10.3(b) shows tiie result of a two-way divide and partial

broadcast. Range 0-9 refers to a coUection having elements in tiie range of 0-9.

Bucket 1

Bucket 2

Bucket 3

0
1
2
3
4
5
6
7
8

Class A Class B
Range:

0-9
0-19
0-29

Range:
0-9
0-19, 10-19
0-29, 10-29

Range:
0-9
0-19, 10-19
0-29, 10-29, 20-29

Range:
0-9

Range:
10-19

Range:
20-29

Figure 10.3(a) "one-wa/' Divide and Partial Broadcast.

Class A
0-9
0-19
0-29
0-9
0-19, 10-19
0-29, 10-29
0-9
0-19, 10-19
0-29, 10-29, 20-29

Class B
0-9
0-9
0-9
0-19
0-19, 10-19
0-19, 10-19
0-29
0-29, 10-29
0-29, 10-29, 20-29

Figure 10.3(b) "two-way" Divide and Partial Broadcast.

Based on the result shown in Figure 10.3(b), a decision table can be constructed for

each class. Figure 10.4(a) and 10.4(b) show the decision tables for class A and B.

Class A

Ch. 10. Experimental Performance Evaluation page 266

Range
Smallest

0-9
0-9
0-9

10-19

10-19
20-29

Largest
0-9

10-19
20-29
10-19

20-29
20-29

Buckets
0

V
1

V

2

V

3
V

4

V

V

5

V

V

6
V

7

V

V

8

V

V
V

Figure 10.4(a). Decision Table for class A.

Class B

Range
Smallest

0-9

0-9
0-9

10-19
10-19
20-29

Largest
0-9

10-19
20-29
10-19
20-29
20-29

Buckets
0
V

1
V

2
V

3

V

4

V

V

5

V

V

6

V

7

V

V

8

V

V
V

Figure 10.4(b). Decision Table for class B.

Based on the decision tables, implementing two-way divide and partial broadcast

algorithm can be done using multiple checking. Once the buckets are created, aUocation

is done tiirough dynamic scheduling. Hence, load balancing can more or less be

maintained.

Distribution for hash join is disjoint, not non-disjoint. Since a shared-memory

architecture is used, data disttibution for hash join can be disjoint, instead of non-disjoint.

Objects are passed to each chUd process in a round-robin fashion, and subsequentiy a

disttibution table is created. Each row of die disttibution table wUl be processed (i.e.,

hashing and probing) by a particular chUd process. The hashing and probing operations

are performed to a shared hash table. By sharing die hash table, tiiere is no necessity for

each chUd process (or processor) to have a non-disjoint partitioning. Figure 10.5 shows

the mechaiusm for disjoint disttibution of hash join.

Ch. 10. Experimental Performance Evaluation page 267

Objects
Child

Processes
Distiibution

Table
Child

Processes
Hash Table

Figure 10.5. Disjoint distribution for bash join.

Join Processing:

Merging in parallel sort-merge R-join is tricky. Merging in paraUel sort-merge R-join is

done in two levels: object level and coUection level. Object level merging is based on the

firsf smaUest element on each coUection. If the result is positive, coUection merging is

pursued, CoUection merging is simply performed as is done in simple arrays merging.

The problem of two-level merging can be explained as foUows. If the first/smaUest

elements of two objects are the same, coUection merging is canied out. Regardless of die

result of the merging, complexity occurs regarding whether or not the counter is to be

incremented. If the counter is to be incremented, it is also not clear whether the two

counters are incremented, or just one of them. An example is used to clarify this matter

(Figure 10.6).

Class A
Al (2, 10, 15)
A2 (2, 13)
A3 (2, 105)
A4 (3, 10)

Class 5
Bl (2, 10)
52 (2, 13)
53(4,12)

Figure 10.6. Sample data for two-level merging.

The conect anangement for the merging is Ai-Bi, A2-B1 As-Bi, AA-BI, A1-B2, Ai-

53, A2-52, A2-53, A3-52, A3-53, A4-52, A4-53 It is clear that aU objects starting

with the same element have to be merged all round with their counterparts from the otiier

Ch. 10. Experimental Performance Evaluation page 268

class. Hence, merging is not simply incrementing the counter of one class or anotiier, if

the cunent pair of elements is not equal.

The problem of two-level merging is simUar to (but more compUcated than) the

problem of simple merging of two anays where dupUcates are aUowed. To overcome this

problem, a simple nested loop is applied. Since a nested loop is used for merging at an

object level, class sorting becomes unnecessary. CoUection sorting is stUl needed, as

merging at coUection level is canied out as per a normal merging operation. A more

sophisticated solution to this problem is reserved for ftiture work.

Hash tables are shared. For the hash-based version of paraUel coUection join, each

partition does not employ a separate hash table. The consequence of having shared hash

tables is that the disfribution for hash join is disjoint using a round-robin partitioning. A

hash table is implemented in a two-dimensional anay. The row indicates the hash index,

whereas the column is to accommodate coUisions. The decision to use an anay

representation is merely for programming convenient. A list based representation may

have been used instead.

Linked multiple hash tables are used for R-join. Multiple hash tables for R-join are

implemented in a cube anay, where the additional dimension to the normal two-

dimensional anay is to accommodate aU elements of a coUection in which its first element

has been hashed. Figure 10.7 gives an Ulusfration of a cube anay.

Figure 10.7. Cube array.

Each row contains OIDs belonging to the same hash values (i.e., coUision). For each

coUection in a row, aU elements of the coUection are attached to it. Hence, once the first

element is probed to a particular row, probing for further elements of the same coUection

is simple done by merging aU elements attached to the root ceU. Using this mechanism, R-

Ch. 10. Experimental Performance Evaluation page 269

join operation is simplified, as probing is done once; that is to the first/smaUest element

only.

• Linked multiple hash table is not applicable to S-join. The advantage offered by lioked-

multiple hash tables is not appUcable to S-join, since subsequent elements that are

attached to the root ceU have lost their semantic to the hash index. For example, a

coUection of (3, 6, 8) is hashed to a linked-multiple hash table. The first element (i.e.,

element 3) is hashed to row 3 in the hash table. Using a linked multiple hash table, the

second and the third elements are hashed and attached to where die first element has been

hashed to. This means that the location of the second and the third elements do not have

any semantics to the values of the elements itself.

Since the probing process in S-join is not bound by the level of the hash table, if an

element is not matched in the cunent hash table, it goes to the next level of hash table.

Since the second hash table (consisting aU elements in the second position of each

coUection) has lost its semantic, probing will not give a conect result. Hence, independent

multiple hash tables as proposed in chapter 5 have to be used instead.

10.3 Performance Measurements

10.3.1 Validating Inter-Object Parallelization Models

a. Inter-Object Parallelization for Inheritance Super-Class Queries

In die experimentations, the number of super-class objects (n) is 50,000 objects. The

processing cost for a super-class object (tpi) is equal to 3.2 \isec and for a sub-class object

(tpi) is equal to 1.1 \xsec. The size of the super-class is larger than die size of tiie sub-class,

as most atfributes are declared in die super-class. The number of sub-class objects varies

from 50,000 objects to 950,000 objects. For each inheritance data division (i.e., horizontal,

vertical, and linked-vertical), tiie predicted and tiie actual elapsed times are given. The

predicted elapsed time is calculated using an analytical model, whereas die actual elapsed

time is measured using the experimental system. Based on tiiese values, the enor percentage

(enor rate) is calculated. Table 10.1 shows a comparative performance for inheritance super­

class queries using tiie three inheritance data division. In die experiments, a two-class

inheritance hierarchy was used.

file:///isec
file:///xsec

Ch. 10. Experimental Performarue Evaluation page 270

h
50000

150000

250000

350000

450000

550000

650000

750000

850000

950000

HORIZONTAL DIV.

predicted

93750

201250

308750

416250

523750

631250

738750

846250

953750

1061250

actual

99996

199992

316654

433316

549978

633308

749970

899964

983294

1099956

%^r.
e.2%
0,6%

Z.Wh
S,9%
4.8%

0,3%

1,5%

; e.D%
%.m>
3,6%

VERTICAL DIV.

predicted

80000

160000

240000

320000

400000

480000

560000

640000

720000

800000

actual

83330

166660

249990

316654

399984

483314

566644

633308

716638

783302

%^r.
4,0%

4.m6

4.Cî

1,1%

0>0%

OJ^

-%:m
1,1%
0>5%
±J%

LINKED-VERTICAL DIV.

predicted

80000

160000

240000

320000

400000

480000

560000

640000

720000

800000

actual

83330

166660

249990

349986

449982

516646

599976

683306

766636

866632

:%err.
i 4 0 %
; 4D%

^ AJPh
: 6,6%

:11J%
7J%

$,7%
6v3%

ai%
7.7%

Table 10.1. Comparative Performance for Inheritance Super-Qass Queries

A number of observations can be made based on the experimental results. First,

performance modeling through analytical models has proven to be a difficiUt task. It is often

impossible to achieve a zero percent enor rate, due to unseen overheads which deal with

lower level architecture. To show whether an analytical model is reliable, a 10% tolerance is

often set.

Second, in most cases the enor percentage shovm in Table 10.1 is less than 10%. As

a matter of fact, tihe majority faUs into die range between 0% to 5%. This proves tiie

reliabUity of the analytical model in the performance evaluation.

Third, the performance of die vertical and die linked-vertical division is quUe

comparable, and is slightiy in favour of the vertical division due to die link pointer overhead

imposed by die linked-vertical division. Nevertheless, the dUference is insignificant.

Fourth, tiie performance of the horizontal division is shown to be the worst. This

verifies Lemma 8.1 which states that for super-class queries, inter-object paraUelization using

vertical/linked-vertical division offers a better performance tiian tiiat of horizontal division.

FinaUy, since the basic analytical models for super-class queries are confirmed to be

reliable, advanced performance evaluations tiiat have been presented in chapters 8 and 9 are

also conoborated.

Ch. 10. Experimental Performance Evaluation page 271

b. Inter-Object Parallelization for Inheritance Sub-Class Queries

In the experimentations for sub-class queries, only horizontal and linked-vertical division

were examined. Sub-class queries using vertical division are excluded since die query

operations are actuaUy paraUel join operations. In tius section, only inter-object

paraUelization is considered. In tiie case of tiie linked-vertical division, a two-class inheritance

hierarchy was employed. For both horizontal and linked-vertical division, die number of

super-class objects is not onutted, since the query processing ignores tiie super-class objects.

The same system parameters, as in that of super-class queries, were used {tpi=?>.2\isec,

tp2=\.\)isec). An additional parameter tiiat is a draversal time tti (=0.01p.sec) for tiie linked-

vertical division is used. The number of sub-class objects is varied from 100,000 to 1 million

objects. Table 10.2 shows tiie comparative performance of inter-object paraUelization for

inheritance sub-class queries.

A number of observations are made. First, die enor rate is shown to be under 10%.

Half of them is below 5%. Second, die dUference on die actual times between tiie horizontal

and the liiUced-vertical division is shovra to be insignificant. As a matter of fact, in some

cases, the difference is nil. This demonsfrates that tiie fraversal time imposed by tiie linked-

vertical division is minor.

"•2
100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

HORIZONTAL DIVISION

predicted

107500

215000

322500

430000

537500

645000

752500

860000

967500

1075000

actual

99996

216658

333320

449982

549978

666640

799968

933296

1016626

1133288

% error

7.m<i
(i.S%

3.2^

; 4,4%

; 2.3%

3-2%

5.9%
7,̂ /̂

48%
6J%

LINKED-VERTICAL DIVISION
predicted

107750

215500

323250

431000

538750

646500

754250

862000

969750

1077500

actual

99996

216658

333320

449982

566644

683306

799968

933296

1033292

1183286

% error

7.8%
O.S%

3.0%

4.2%

49%
5.4%

&J%
7,6%
^.1%

a,s%
Table 10.2. Comparative Perfonnance for Inheritance Sub-Qass Queries

c. Inter-Object Parallelization for Path Expression Queries

Two-class patii expression is used in die experimentations. The numbers of objects for each

class vary from 100,000 to 1 mUlion objects. The fan-out degree of die root class varies from

1-10. A random number generator is used to generate the fan-out degree. The skewness

degree is approximated to be 1.1 (near uniform), as the program uses a dynamic scheduling

that reduces die effect of skew. The selectivity degree is 1%, 5%, 10%, and 20%. The values

Ch. 10. Experimental Performance Evaluation page 272

of the selection atttibutes are between 1-100. They are disfributed randomly to aU objects.

Selectivity of 1% refers to an exact match of any one value of the selection atttibute.

Selectivity of 5% nominates any value within a range of 5 (e.g., selection atttibute<=5).

Using this principle, it can be approximated an arbittary selection degree. The results of using

each of tills selectivity degree are presented in Table 10.3.

The uiut processing cost for an object is 5.9 \isec. This includes the cost for handling

the relationship represented by a coUection atttibute.

••l

100000
200000

300000
400000

500000

600000
700000

800000

900000

1000000

selectivity = 1%
predicted

153990
307980

461970
615960

769950
923940

1077930
1231920

1385910
1539900

actual
163326

339986
503312

666638
849964

963290

1149950

1349942
1533268
1699928

%i^<Jf

5.7%

9.4%
€.2%
7>6%
9A%

4.1%

^Mi
^J%
^3%

9.4%

selectivity = 5%
predicted

179950
359900
539850
719800

899750
1079700
1259650

1439600
1619550
1799500

actual
196658
383318
566644
749970

933296
1133288
1299948
1499940
1699932
1883258

%«ffOr
8.5%

6 .1%
4.7%

4.0%
3.6%

4>7%
3.1%

4.0%
4,7%

4 4 %

r^

100000
200000

300000

400000

500000
600000

700000

800000

900000
1000000

selectivity = 10°/

predicted
212400
424800

637200

849600

1062000
1274400

1486800

1699200

1911600

2124000

actual
233324
433316

616642

81663^'

1016626
1183286

1399944

1599936

184992e

2149914

3

%effor
9,t>%

zxm
3.S%

4.0%
' 5%

6:2%

6 J %
3,^0
1>2%

selectivity = 20°/

predicted
277300

554600
831900

1109200
1386500

1663800

1941100

2218400

2495700
2773000

actual
266656

533312
799968

1066624

1333280

1599936

1899924
2099916
2383238

2683226

3

% error
4.0%

4.0%
4,0%

4.0%
4.0%

4.0%

2.2%

5,6%
4.7%

3.3%

Table 10.3. Comparative Performance for Path Expression Queries

A number of observations are made. First, die enor rate is witiun tiie tolerance of

10% for aU cases. For tiie selectivity of 20%, tiie average enor rate is below 5%. Second,

filtering is not as good as predicted. This is most probably caused by a fixed overhead which

is not influenced by tiie degree of selectivity. Nevertheless, tiie overaU performance is stUl at

an acceptable level as shown by the minimum enor rate.

file:///isec

Ch. 10. Experimental Performance Evaluation page 273

The results from the experimentations validate inter-object paraUelization models as

shovra by the minimum enor rate. In the experimentations, only the basic queries were

examined (the inheritance queries involved 2-class inheritance hierarchy, and the patii

expression queries are in a form of 2-class path expression). Since the basic inter-object

paraUelization models are justified, the basic analytical models can be used to perform

complex queries which employ inter-object paraUelization as tiie basic buUding block.

10.3.2 Validating Inter-Class Parallelization Models

Two-class path expression queries are used in the experimentations. The number of root

objects varies from 100,000 to 1 miUion objects. For the associated class, it is either 50,000

objects or 100,000 objects. The selectivity degrees are 1%, 5%, and 10%. The fan-out degree

of the root class is between 1-10, and is disttibuted randomly to aU root objects. On average,

the fan-out degree is around 4.

TheoreticaUy, inter-class paraUelization models do not suffer from a skew problem,

since each class is processed independentiy and moreover, aU objects of the class being

processed are disfributed eveiUy to aU processors. In practice, however, a skew problem may

StiU occur due to the non-uniform object size and the v^iting cost influenced by the selectivity

factor. In the experimentations, the skevmess degree is approximated to 1.1 (small), because

not oiUy the object size is invariable but also a dynanUc scheduling is used in the programs.

The processing imit cost is equal to 7.6 \isec. It is higher than the processing unit cost for the

inter-object paraUelization, since in tiie inter-class paraUelization, the writing cost for the

temporary results from the selection phase is incorporated. Table 10.4 shows the

experimental results.

A number of observations can be made. First, in a very few cases, the enor rate is

above tiie limit of 10%. In the majority, tiie ertor rate is weU below 10%. The analytical

models for the inter-class paraUelization are shovm to be quite reasonable. Second, processing

cost increases quite proportionaUy as the number of objects (n and n) increases. FinaUy, die

impact of tiie degree of selection on the elapsed time is not drastic, meaning tiiat the

processing cost is mainly for accessing aU objects.

file:///isec

Ch. 10. Experimental Performance Evaluation page 274

selectivity
(1%)

n
100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

rg = 50000

predicted
287090

479180

671270

863360

1055450

1247540

1439630

1631720

1823810

2015900

actual
249990

466648

683306

949962

1183286

1316614

1533272

1733264

1733264

2149914

^ ^ f s r
148%
2,7%

•:
•:

•:
•:

•;
•

/
5

19.8%

&,2%

ej%
S.9%

5.2%

6,2%

r2 = 100000

predicted
382090

574180

766270

958360

1150450

1342540

1534630

1726720

1918810

2110900

actual
349986

549978

749970

1016626

1183286

1383278

1566604

1799928

1999920

2183246

%««>r
' 9.2%

"4.4%

2.2%
5,7%

:.8%
2.9%
2.6%
4,1%
41 %
S.3%

selectivity
(5%)

U
100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

rg = 50000

predicted
295450

495900

696350

896800

1097250

1297700

1498150

1698600

1899050

2099500

actual
299988

483314

699972

983294

1149954

1433276

1583270

1783262

1999920

2216578

%«»or
1.5%
2.6%
0,6%
8,3%
40 %

as%
5,4%

47%
6.0%

5.8%

r2= 100000

predicted
390450

590900

791350

991800

1192250

1392700

1593150

1793600

1994050

2194500

actual
416650

649974

749970

1066624

1299948

1416610

1616602

1833260

2049918

2233244

% error
6,3%
9J%
6.5%
7.0%

a,3%
^J%
1.5%
2.2%
2,7%

1J%

selectivity
(10%)

U
100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

r2 = 50000

predicted
305900

516800

727700

938600

1149500

1360400

1571300

1782200

1993100

2204000

actual
299988

499980

716638

1049958

1283282

1449942

1633268

1833260

2049918

2266576

%ierri5f

2.0%

3.4%
>

10.6%

'}.4%

52%

zjm
2sm
2.S%

2.e%

rg = 100000

predicted
400900

611800

822700

1033600

1244500

1455400

1666300

1877200

2088100

2299000

actual
366652

599976

766636

1099956

1316614

1449942

1683266

1883258

2099916

2316574

%«**or
9.3%

2>0%
7.3%

6.0%
5.5%
0.4%
1.0%

9.a%
0,6%

ae%

Table 10.4. Comparative Performance of Inter-Qass Parallelization

Ch. 10. Experimental Performance Evaluation page 275

10.3.3 Measuring Parallel Collection Join Performance

In the experimentations, for each coUection join query type, performance of the sort-merge

version is compared with the hash version. The class size varies from 100 to 500 objects. The

average coUection size is 3 objects. The results of the experimentations are shovvTi in Figures

10.8, 10.9, and 10.10. Based on these performance graphs, they are comparable with the

simulation results for paraUel coUection join queries shown in Chapter 9. In some cases, the

results are slightiy different, the reasons for which are to be explained.

Figure 10.8 shows the performance result for paraUel R-Join. A number of

observations are made. First, performance of the sort-merge version is quite comparable with

the hash-version. This has also been revealed by the simulation results presented in Chapter

9. Second, when the size of the operand is getting larger, the hash-version shows its

superiority to the sort-merge version. This indicates the reliabUity of the hash version of

paraUel R-Join algorithm. FinaUy, the fixed cost for paraUel processing is shown to be large,

since the increase in the elapsed time is far from linear, which is caused by the major

proportion (in the case of smaU operand) is dominated by the processor setup overheads.

Parallel R-Join

100x100 200x200 300x300 400x400 500x500

Operand Size

Figure 10.8. Performance Measurement of Parallel R-Join

Figure 10.9 shows performance measurement of paraUel I-join algoritiims. The sort-

merge version is worse tiian predicted by tiie simulation results, although tiie Divide and

Partial Broadcast has shown its conttibution to load balancing. Performance degradation of

the sort-merge version is atttibuted to die nested loop complexity, and to die need for a

complete comparison among all elements in each coUection. The simulation results presented

Ch. 10. Ejqjerimental Performance Evaluation page 276

in Chapter 9 to some extent is vaUd, especiaUy in regard to the superiority of die hash version

of paraUel I-Join. The actual difference between performance of tiie sort-merge version and

the hash version is larger tiian predicted by the simulation results.

Parallel I-Join

I 25000--
p 20000--

100x100 200x200 300x300 400x400 500x500

Operand Size

Figure 10.9. Performance Measurement of Parallel I-Join

Figure 10.10 shows the experimental performance result of paraUel S-Join queries.

The result shows a simUar pattern as that of paraUel I-Join, but the sort-merge version for S-

join is not as bad as the sort-merge version for I-join. The main reason is that the sort-merge

version of S-join employs less number of comparison, since coUection merging is

implemented in a short circuit. The simulation results for paraUel S-join presented earlier in

Chapter 9 is closely resemble the empirical result shown in Figure 10.10. This proves the

superiority of the hash version of paraUel S-join.

Parallel S-Join

0)
E
F

100x100 200x200 300x300 400x400 500x500

Operand Size

Figure 10.10. Performance Measurement of Parallel S-Join

Ch. 10. Experimental Performance Evaluation page 277

Performance of tiie hash version of paraUel I-join and paraUel S-join is demonsttated

to be better tiian predicted by the simulation results, since in the experimental system, the

hash versions employ a disjoint partitioning, whereas the simulation programs use a non-

disjoint partitioning. Disjoint partitioiung in hash version is possible as the experimental

system is based on a shared-memory architecture.

In general, performance of the hash versions for aU coUection join query types is

demonsttated to be superior to that of die sort-merge versions. Therefore, it can be expected

tiiat tiie hash versions of paraUel coUection join algorithms wUl become tiie basis for

processing object-oriented coUection join queries. These algorithms may also be used in other

non-relational systems (such as nested relational systems) where coUection types are

supported.

10.3.4 Performance Measurement of Query Optimization Examples

Final experimentations are canied out on the examples of query optimization in Chapter 6.

They consist of 9 queries which are divided into three categories: basic queries, homogeneous

complex queries, and heterogeneous complex queries. In this section, these queries (original

and optimized versions) are unplemented and their performances are measured. The main aim

is to prove that query optimization algorithms, which are basicaUy a decomposUion

procedure, offer better performance. The experimentation results are presented as foUows.

1200

1000

800 -

600

400

200

0

Basic Queries

•ilj •

Q Original
• Optimized

Query 1 Query 2

Figure 10.11. Performance Measurement of Basic Queries

Figure 10.11 shows a comparison between performance of die original queries and

tiieir optimized forms. Query 1 is a simple 2-class path expression query. It is optimized by

changing the patii direction. Query 2 is an object join query and is optimized by ttansforming

it to a complete path expression. Query 3, which is not included in the experimentation, is a

simple value join query ala relational system. Optimization is not done at an access plan level,

but at an execution level.

Ch. 10. Experimental Performance Evaluation page 278

A number of observations on the results of basic query experimentations can be

made. First, the results show that performance of the optimized query versions is much better

than the original query versions. Second, pointer ttaversal in main-memory is very fast.

Subsequentiy, inter-object paraUelization is preferable whenever possible. Third, FUtering

tiirough inter-object paraUelization is proven to be atttactive. The experimentation results

show tiiat performance improvement can be gained up to 3 folds. FinaUy, lUce in relational

systems, join operations in object-orientation are very expensive. It is very much desirable to

convert a join operation to a path ttaversal, lUce in query 2, whenever possible.

Homogeneous Complex

nme

Query 4 Query 5 Query 6

Figure 10.12. Performance Measurement of Homogeneous Complex Queries

Figure 10.12 shows the performance of homogeneous complex queries. Query 4 is a

simple ttee path expression involving an incomplete walk (it is not possible to ttaverse aU

chUd nodes from the target node). Optimization is canied out by converting it to a linear patii

expression, where a complete walk becomes possible. Query 5 is a linear path expression

with a selection operation at the leaf node. Optimization is done by performing a reverse

fraversal. Query 6 is a complex ttee path expression involving multiple chUd nodes and

selection operations on the chUd nodes. Optimization is basicaUy simUar to that for query 5;

that is by performing reverse ttaversals.

The performance results raise several issues. First, the optimized versions produce

better results, although performance improvement is not as great as in basic queries. The

improvement is less than 100% (compared to >100% in basic queries). Second, performance

of inter-object and inter-class paraUelization is quite simUar. Hence, good performance relies

on tiie query optinuzed that determines which one is to be used. The experimentation results

have shovm that the proposed query optimization algorithms have done a good job in

delivering better performance.

Ch. 10. Experimental Performance Evaluation page 279

Heterogeneous Complex Queries

Time

2500

2000

1500

1000

500

0

B Original

• Optimized

Query 7 Query 8 Query 9

Figure 10.13. Performance Measurement of Heterogeneous Complex Queries

Figure 10.13 gives the performance results on heterogeneous complex queries. Query

7 is a cyclic query. Query 8 is an acyclic complex query involving a path expression and an

expUcit join. Query 9 is a semi-cyclic query.

The result shown in query 7 reveals that in main-memory the cost for accessing extta

classes is not very expensive. Hence, the optimized version saves orUy littie time. Unary jom

in the optimized version is also proven to be not that expensive as it is regarded as a selection

operation which compares two atttibutes of the same object.

For query 8, tiie join operation dominates most of the processing time. As a result,

the effect of the query optimization, which does the inter-object ttansformation, is not that

significant. Like the acyclic query, join operation in query 9 dominates the processing time.

Hence, tiie performance of the optimized version is not as great as expected.

In general, perfonnance improvement for heterogeneous complex queries is not much

achieved through access plans. Performance improvement then relies upon optimization at an

execution level; that is by providing fast and efficient paraUel algorithm for each basic

operation, especiaUy join operation.

10.4 Discussions

A number of aspects emerged from the experimentations.

• Quantitative analysis is a difficult task even for predicting the performance of

simple operations. This highlights the need for other venues for performance

analysis, such as empirical analysis.

• The results gathered from performance measurement and their comparison with

the predicted results show that the analytical models are quite acceptable, based

on the 10% enor rate tolerance. Since the basic paraUelization models (i.e., inter-

Ch. 10. Experimental Performance Evaluation page 280

object and inter-class paraUelization) have been validated through an empirical

analysis, in the absence of an experimental system, these basic models may be

relied upon to perform advanced analytical performance evaluations.

• Performance of the hash versions of paraUel coUection join is shown to be better

than that of the sort-merge versions. However, the degree of improvement may

vary from one system to another, depending on the system architecture. In

general, the hash versions are adopted as the primary choice for paraUel

coUection join operations.

• Query optimization algorithms are demonsfrated to produce better access plans

than the original query forms. When the benefits obtained from this

ttansformation are linuted, further performance improvement wUl depend on the

efficiency of the paraUel algorithms for the basic operations.

10.5 Conclusions

The main objective of experimental performance evaluation - that is to validate the basic

paraUelization model - has been achieved. Basic models validation has been the major

conttibution of this chapter. The results in the last two chapters, which include the basic

lemmas for inter-object paraUelization and inter-class paraUelization, and the impact of basic

paraUelization models on query optunization and execution have been successfuUy validated.

The simulation models on paraUel coUection join queries have also been validated using the

experimental system. The validation also shows that both analytical model and the simulation

model, which are based on a disttibuted-memory architecture may be usefuUy applied to

actual shared-memory architectures.

The main conttibutions of this chapter are summarized as foUows.

• An experimental system has been buUt. A number of implementation issues have

been presented and discussed. Some of the experimentation results are surprising,

and the reasons behind these results are explained.

• Ouantitative and simulation models have been validated using an empirical

analysis. Further performance evaluation can rely upon tiie quantitative models

and/or the simulation models.

Chapter 11

Conclusions

11.1 Introduction
This thesis investigated paraUelism in object-oriented query processing and optimization. The

main aim of this research was to study performance unprovement of query processing

through paraUelism. Attention is focused on two major areas of paraUel query optimization,

parallelization models I algorithms and access plans I execution scheduling. In addition, the

performance evaluation of the results has been canied out in three stages: analytical,

simulation, and experimental.

11.2 Summary of the Research Results^^ >r'

The main research result of this thesis is to demonsttate how processor paraUelism can

improve performance of object-oriented query processing. This is achieved by formulating

paraUel algorithms for a number of object-oriented queries, particularly, inheritance queries,

path expression queries, and explicit join queries. For more complex queries involving

multiple basic operations, performance improvement can be accomplished by the

decomposition of query access plans, and the scheduling of the basic operations. ̂

The research presented in this thesis has addressed and solved the outstanding

problems of paraUel query optimization highlighted at the end of chapter 3. The achievements

of this research are summarized as foUows.

Ch. 11. Conclusions page 282

Parallelization of Inheritance Queries using the Linked-Vertical Division

Inheritance Data Structure

The proposed linked-vertical division takes advantage of object independence offered

by tiie conventional horizontal division, and die benefit of super-type clustering offered

by the ttaditional vertical division. It also balances the weaknesses of the horizontal

division, where it increases the overheads of accessing unnecessary specialized

information of the sub-class not required by the operation on the super-class; and vertical

division, where it requires an expUcit join to assemble objects that have been spUt into

parts. Inter-object paraUelization based on the linked-vertical division, in most cases, is

demonsttated to be more efficient than tiiat of the two ttaditional inheritance data

structures.

Parallelization of Path Expression Queries through Inter-Object and Inter-

Class ParaUelization Models

Two different paraUelization models for path expression queries, inter-object and

inter-class paraUelization, have been presented. Inter-object paraUelization offers the

benefit of object independence through associativity and clustering of complex objects,

whereas inter-class paraUelization offers the benefit of class indeperuience through

simultaneous access of classes involved in a query. The main achievements in the

paraUelization for path expression queries are: (i) different selection predicates involving

coUections which are typical to object-oriented queries have been incorporated in both

paraUelization models, and (ii) the comparative analysis between the two paraUelization

models has laid a foundation for the optimization of complex queries.

Parallelization of Collection Join Queries

Three coUection join query types have been characterized. The characteristics of each

type require different tteatment in both data partitioning and local join processing. A

disjoint partitioning for coUection join queries, has been presented. A non-disjoint

partitioning, caUed Divide and Partial Broadcast, has also been presented.

The sort-merge and the hash algoritiims especiaUy designed for coUection join queries

were presented. These algorithms prevent a creation of intermediate results prompted by

typical coUection join predicates. The sort-merge algorithms were applied at two levels:

object level and coUection level. Using the same concept, the hash version utUizes

multiple hash tables which indicate different elements within a coUection. The need for

Ch. 11. Conclusions page 283

special algorithms for coUection join queries is undeniable, since existing join algoritiims

were not designed for coUection atttibute.

Query Access Plans and Query Optimization Algorithms

A new query ttee caUed Operation Tree to represent object-oriented query access

plans was presented. This representation is able to accommodate dUferent types of

object-oriented query operations, such as forward ttaversal in a form of inter-object

paraUelization and reverse ttaversal in a form of inter-class paraUelization, as weU as

ttaditional join operations. Mixed fraversals are represented by die presence of forward

and reverse fraversals in an operation ttee.

The uniqueness of the proposed query optimization algoritiims is tiie ability to

convert one operation type to anotiier for more efficient execution. The algoritiims also

provide capabUities such as nodes permutation, coUapse, break and expand, which are

typical of conventional query optimization algorithms.

The metiiod adopted by the query optimization algoritiims is to exploit patii fraversals

(both inter-object paraUelization and inter-class paraUelization), since tiiey are widely

recognized to be more efficient than explicit join operation. Two basic query optimization

procedures: Inter-Object-Optimization and Inter-Class-Optimization, have been

inttoduced as a foundation for query optimization algorithms.

Serial and ParaUel Execution Scheduling

Two execution scheduling sttategies, serial and parallel, have been identified.

Although they are simUar to inter-operation and intra-operation paraUelism, an

achievement of this research is the formulation of 3 propositions on execution scheduling,

based on the two critical factors in query processing of skewness and sizes. An adaptive

processor aUocation algorithm based on these propositions was presented.

Two types of data re-disttibution for load balancing, physical and logical data re-

disttibution, have been studied. The result is that when load balancing is achieved, the

serial execution scheduling sttategy is preferable to the paraUel execution scheduling

sttategy. Hence, skewness may be solved through data re-disttibution, and the resource

division problem is avoided. The focus of paraUel query processing is now shifted to

paraUelization within nodes, not among nodes.

Ch. 11. Conclusions page 284

• Performance Evaluation

Three levels of performance evaluation were carried out to demonsttate die efficiency

of the proposed procedures. The analytical performance evaluation provides the cost

models for each proposed algorithm or method which are conoborated by simulation.

The experimental approach is able to sttengthen both simulation and quantitative results.

Through these evaluations, tiie quantitative models are demonsttated to be highly

valuable in representing tiie behaviour of paraUel OODB processing.

11.3 Limitations

There is no research work witiiout limitations. A number of limitations of this research

include: (0 performance evaluation was purely based on a main memory architecture, (/'/) the

query optitnization method adopted was heuristic-based which considers processing costs,

rules, and basic object-oriented semantics oiUy, (///) the execution scheduling did not consider

factors other than skewness and sizes; and was based on a phase-based execution, and (iv) the

object model adopted did not distinguish between association and aggregation.

Main memory based architecture is becoming popular due to the rapid technological

development of main inemory. Research work on I/O paraUelism, which include multiple

disks on single or multi computers wiU supplement this work.

The query optimization algorithms presented in this thesis were based on path

ttaversal. The algorithms were developed to exploit inter-object paraUelization and inter-class

paraUelization. Despite the proven efficiency of the path ttaversal operation, query

optimization was based primarUy on the processing costs. The evaluation of

algebra/semantics should enhance this work.

Although skewness and query (sub-query) size determine the efficiency of execution

scheduling sttategies, other factors such as CPU-bound and I/0-bound tasks wiU be useful in

determining efficient execution scheduling sttategies. Initial study on CPU-bound and UO-

bound factors have been presented in Hong (1992). Combinmg tiiese factors witii skewness

and size wUl clearly be useful.

Given a query ttee witii arbittary height and width, a number of execution scheduling

sttategies can be defined, such as non-phase-based, or a nUxture of serial and parallel

scheduling. A non phase-based execution scheduling is basicaUy splitting a phase into

multiple execution phases and combining operations from different phases for paraUel

execution (provided that they do not form any immediate interdependency). A combination of

Ch. 11. Conclusions page 285

serial and paraUel scheduling, for example, may involve splitting a serial execution, foUowed

by a paraUel execution some time later.

The aggregation concept in object-orientation refers to a composition ("part-of')

relationship, in which a composite object ("whole") consists of otiier component objects

("parts"). In conttast, association refers to a "connection" between object instances. Due to

the natural differences between these two concepts, paraUel processing methods for each

concept may differ. An initial study of aggregation and association is presented in Rahayu et

al. (1996). An extension of this work to paraUel processing should prove useful.

11.4 Future Research

Many avenues of further research, both theoretical and practical, are possible and some are

indicated in the foUowing paragraphs.

110 Parallelism. HistoricaUy databases are closely linked to secondary storage, and

I/O accesses have been recognized as one of the most expensive components in database

processing. I/O paraUelism is to increase I/O accesses (both speed and throughput) tiirough

device paraUelism. This can be achieved through an implementation of multiple disks on

single or multi computers. Efficient data placement on a paraUel I/O system for supporting

OODB queries wUl be an important research issue.

Skew Modelling. Research on skew has been an active research area. Skew problem

in object-oriented query processing, particularly in path expression queries, is caused by a

fluctuation of fan-out degree and selectivity factor of classes along a path expression. Most

skew modeUing uses the Zipf disttibution as a foundation (Zipf, 1949). A comprehensive

work on examining an appropriate model to represent skewness in object-orientation is

essential in order to fuUy model paraUel object-oriented query processing analyticaUy.

Parallel Iruiex. Index is used to speed up data search. Without the presence of index,

die data have to be scaimed sequentiaUy, which is not as efficient as an mdex scan, although

the sequential data scan can be performed in paraUel by multiple processors. Index for

paraUel processing raises two important issues: (/) in a centtal data bank architecture (e.g.,

shared memory/disk), how the index is accessed concunentiy by multiple processors; (//) in

physicaUy disttibuted data architecture (e.g., shared-nothing), how the index may be

partitioned.

Parallel Object Algebra. Algebraic optimization provides a formal foundation for

query optimization based on the equivalence of operators. Algebraic query optimization has

been widely used in relational systems. Object-oriented versions of algebraic query rewriting

Ch.ll. Conclusions page 286

have also been explored. Inserting paraUelism to object algebra requires special tteatment on

the rules of equivalence. Further investigations of rules to expUcitiy generate paraUel

operators are lUcely to bring significant benefits.

Parallel Architectures. The shared-memory architecture (including the master-slave

architecture) can be saturated at some point due to its limited scalabUity. In order to enhance

the generality and applicabUity of the proposed algorithms, it would be useful to smdy how

the architectures of a paraUel machine can impact the performance of die algoritiims. It is no

doubt beneficial also to investigate the effciency of other database operations not considered

in this thesis.

Performance related issues have been recognized as the key to successful object-

oriented database management systems in many applications where speed is critical. This

thesis has demonsttated that performance improvement by object-oriented query processing

can be gained through paraUelism. The desirable performance level is, however, attainable

otUy through careful paraUel query optimization, without which the extent of performance

improvement wiU be severely limited.

Bibliography

Alashqur, A.M., Su, S.Y.W. and Lam, H., "OQL: A Query Language for Manipulating

Object-Oriented Databases", Proceedings of the 15th International Conference on

VLDB, Amsterdam, pp. 433-442, 1989.

Alhajj, R. and Arkun, M.E., "Queries in Object-Oriented Database Systems", Proceedings of

the First International Conference on Information and Knowledge Management

CIKM'92, pp. 36-52, November 1992.

Alhajj, R. and Arkun, M.E., "A Query Model for Object-Oriented Databases", Proceedings

of the 9th International Conference on Data Engineering, Vieima, pp. 163-172,

AprU 1993.

Almasi G., and Gottiieb, A., Highly Parallel Computing, Second edition. The

Benjamin/Cummings Publishing Company Inc., 1994.

Antoshenkov, G., 'Dynamic Query Optimization in Rdb/VMS", Proceedings of the

International Conference on Data Engineering, pp. 538-547, 1993.

Banerjee, J., Kim, W. and Kim, K-C, "Queries in Object-Oriented Databases", Proceedings

of the 4th International Conference on Data Engineering, pp. 31-38, February

1988.

Barlos, F.N., et al., "Query Optimization for Multiprocessor/Disttibuted Databases: A

Statistical Approach", Parallel Computing: Paradigms and Applications,

A.Y.Zomaya (ed.). International Thomson Computer Press, pp. 514-552, 1996.

Bibliography page 288

BassUiades, N. and Vlahavas, I., "PRACTIC: A Concunent Object Data Model for a

ParaUel Object-Oriented Database System", Information Sciences 86(1-3), Elsevier,

pp. 149-178, 1995.

BassUiades, N. and Vlahavas, I., "Hierarchical Query Execution in a ParaUel Object-

Oriented Database System", Parallel Computing 22(7), Elsevier, pp. 1017-1048,

1996.

BeU, D., 'DUficult Data Placement Problems", The Computer Journal, Vol. 27, No. 4, pp.

315-320, 1984.

Bergsten, B., Couprie, M., and Valduriez, P., "Overview of ParaUel Architecture for

Databases", The Computer Journal, vol. 36, no. 8, pp. 734-740, 1993.

Bertino, E. and Martino, L., "Object-Oriented Database Management Systems: Concepts and

Issues", IEEE Computer, AprU 1991.

Bertino, E, et al., "Object-Oriented Query Languages: The Notion and The Issues", IEEE

Transactions on Knowledge and Data Engineering, vol. 4, no. 3, pp. 223-237, June

1992.

Bertino, E. and Martino, L., Object-Oriented Database Systems: Concepts and

Architectures, Addison-Wesley, 1993.

Bhuyan, L.N, Yang, Q. and Agrawal, D.P., 'Performance of Multiprocessor Interconnection

Networks", IEEE Computer, pp. 25-37, February 1989.

Blackburn, S.M. and Stanton, R.B., "Multicomputer object stores: the Multicomputer Texas

experiment". Proceedings of the 7th International Workshop on Persistent Object

Systems, Cape May, N.J., 1996.

Blakeley, J.A., McKenna, W.J. and Graefe, G., "Experiences BuUding the Open OODB

Optimizer", Proceedings of the ACM SIGMOD Conference, pp. 287-296, 1993.

Booch, Grady, Object-Oriented Analysis and Design with Applications, second edition. The

Benjamin/Cummings Publishing Company, Inc., 1994.

Boszormenyi, L., Eder, J., and Welch, C , "PPOST: A ParaUel Database in Main Memory",

Proceedings of the 5th International Conference on Database and Expert System

Applications DEXA'94, 1994.

Boszormenyi, L., Eder, J., and Welch, C , "PPOST - A Persistent ParaUel Object Store",

Proceedings of the International Conference on Massively Parallel Processing -

Applications and Development MPP'94, 1994.

Bibliography page 289

Brunie, L., Kosch, H., and Flory, A., "New Static Scheduling and Elastic Load Balancing

Methods for ParaUel Query Processing", Proceedings of the BIWir95 Workshop,

IEEE Computer Society Press, 1995.

Bultzingsloewen, G.v., "Optimizing SQL Queries for ParaUel Execution", SIGMOD Record,

vol 18, no. 4, pp. 17-22, December 1989.

Bussche, J.V.D. and Vossen, G., "An Extension of Path Expressions to SimplUy Navigation

in Object-Oriented Queries", Proceedings of the 3rd International Conference on

Deductive and Object-Oriented Databases DOOD'93, Phoenix, pp. 267-282, 1993.

Carey, M.J., DeWitt, D.J. and Vandenberg, S.L., "A Data Model and Query Language for

EXODUS", Proceedings of the ACM SIGMOD Conference, pp. 413-423, 1988.

Carey, M.J. and DeWitt, D.J., "Of Objects and Databases: A Decade of TummoU",

Proceedings of the 22nd VLDB Conference, Bombay, India, 1996.

CatteU, R.G.G., Object Data Management: Object-Oriented and Extended Relational

Database Systems, Addison Wesley, 1991.

CatteU, R.G.G. (ed.), The Object Database Standard: ODMG-93, Release 1.1, Morgan

Kauftnann, 1994.

Chan, D.K.C., Harper, D.J., and Trinder, P.W., "A Case Study of Object-Oriented Query

Languages", Proceedings of the International Conference on Information Systems

and Management of Data, pp. 63-86, 1993.

Chan, D.K.C. and Trinder, P.W., "Object Comprehensions: A Query Notation for Object-

Oriented Databases", Proceedings of the British National Conference on Databases

BNCOD'94, pp. 55-72, July 1994.

Chan, D.K.C, Object-Oriented Query Language Design and Processing, PhD Thesis,

UiUversity of Glasgow, September 1994.

Chan, D.K.C, Trinder, P.W. and WeUand, R.C., "Evaluating Object-Oriented Query

Languages", Computer Journal, vol. 38, no. 2, February 1995.

Christophides, V., Cluet, S., and Moerkotte, G., "Evaluating Queries with Generalized Path

Expressions", Proceedings of the ACM SIGMOD Conference, pp. 413-422,

Monfreal, 1996.

Cluet, S., et al., "Reloop, an Algebra Based Query Language for an Object-Oriented

Database System", Deductive and Object-Oriented Databases DOOD Conference,

W.Kim, et al. (eds.), Elsevier Science Publishers, pp. 313-332, 1990.

Bibliography page 290

Cluet, S. and Delobel, C , "A General Framework for die Optimization of Object-Oriented

Queries", Proceedings of the ACM SIGMOD Conference, pp. 383-392, 1992.

Cluet, S. and Delobel, C , 'Towards a Unification of Rewrite-Based Optimization Techniques

for Object-Oriented Queries", Query Processing for Advanced Database Systems,

J.C.Freytag, et al. (eds.), Morgan Kaufmann, 245-272, 1994.

Coad, P. and Yourdon, E., Object-Oriented Analysis, second edition. Prentice HaU, 1991.

Copeland, G., et. al., 'Data Placement in Bubba, Proceedings of the ACM SIGMOD

International Conference on Management of Data, pp. 99-108, 1988.

Davis, K.C. and Delcambre, L.M.L., "Foundations for object-oriented query processing",

Computer Standards & Interfaces 13, pp. 207-212, 1991.

DeGroot, D., Meyer, E. and WeUs, D., 'Issues in ParaUelizing Object-Oriented Database

Systems", Parallel Processing arui Data Management, P. Valduriez (ed.). Chapman

and HaU, pp. 195-206, 1992.

Delobel, C, Lecluse, C, and Richard, P, Databases: From Relational to Object-Oriented

Systems, International Thomson Publishing, London, 1995.

DeWitt, D., et al., 'The Gamma Database Machine Project", IEEE Transaction on

Knowledge arui Data Engineering, vol. 2, no. 1, pp. 44-62, March 1990.

DeWitt, D.J., Naugthon, J.F., and Schneider, D.A., "An Evaluation of Non-Equijoui

Algorithms", Proceedings of the 17th International Conference on Very Large Data

Bases VLDB, pp. 443-452, Barcelona, September 1991.

DeWitt, D.J. and Gray, J., "ParaUel Database Systems: The Future of High Performance

Database Systems", Communication of the ACM, vol. 35, no. 6, pp. 85-98, 1992.

DeWitt, D.J., et al., "Nested Loops Revisited", Proceedings of Parallel and Distributed

Information Systems PDIS'93, pp. 230-242, January 1993.

DeWitt, D.J., et al., 'ParaUelizing OODBMS Traversals: a Performance Evaluation", The

VLDB Journal, vol 5, pp. 3-18, 1996.

DUlon, T. S. and Tan, P.L., Object-Oriented Conceptual Model, Prentice HaU, 1993.

Duncan, R., "A Survey of ParaUel Computer Architectures", IEEE Computer, pp. 5-16,

February 1990.

Elmasri, R. and Navatiie, S.B., Fundamental of Database Systems, Second Edition, The

Benjamin/CumnUngs Publishing Company, 1994.

Bibliography page 291

Flynn, M.J., 'Very High Speed Computing Systems", Proceedings of IEEE, vol. 54, pp.

1901-1909, 1966.

Frieder, O., "Multiprocessor Algorithms for Relational Database Operators on Hypercube

Systems", IEEE Computer, pp. 13-28, November 1990.

Ganguly, S., et al., "Query Optimization for ParaUel Execution", Proceedings of the ACM

SIGMOD Conference, pp. 9-18, 1992.

Gardarin, G. and Lanzelotte, R.S.G., "Optimizing Object-Oriented Database Queries using

Cost-ConfroUed Rewriting", Proceedings of the International Conference on

Extending Database Technology EDBT92, pp. 534-549, 1992.

Gesmann, M.., "Mapping a ParaUel Complex-Object DBMS to Operating System

Processes", EURO-PAR Parallel and Distributed Database Workshop, 1996.

Ghandeharizadeh, S., and DeWitt, D., "Hybrid-Range Partitioning Sfrategy: A New

Declustering Sfrategy for Multiprocessor Database Machines", Proceedings of the

16^^ VLDB Conference, Brisbane, pp. 481-492, 1990.

Ghandeharizadeh, S., et. al., "A Performance Analysis of Alternative Multi-Atttibute

Declustering .Sttategies, Proceedings of the ACM SIGMOD International

Conference on Management of Data, pp. 29-38, 1992.

Ghandeharizadeh, S., et al., "Object Placement in ParaUel Object-Oriented Database

Systems", Proceedings of the 10th International Conference on Data Engineering,

Houston, pp. 253-262, February 1994.

Ghandeharizadeh, S. and DeWitt, D.J., "MAGIC: A Multiatttibute Declustering Mechanism

for Multiprocessor Database Machines", IEEE Transactions on Parallel and

Distributed Systems, vol. 5, no. 5, pp. 509-524, May 1994.

Graefe, G. and Maier, D., "Query Optimization in Object-Oriented Database Systems: A

Prospectus", Proceedings of the 2nd International Workshop on OODB Systems,

pp. 358-363, 1988.

Graefe, G., "Query Evaluation Techniques for Large Databases", ACM Computing Surveys,

vol. 25, no. 2, pp. 73-170, June 1993.

Graefe, G., et al., "Extensible Query Optimization and ParaUel Execution in Volcano", Query

Processing For Advanced Database Systems, J.C.Freytag et al. (eds.), Morgan

Kaufmann, pp. 305-335, 1994.

Bibliography page 292

Graefe, G. and Cole, R.L., "Fast Algorithms for Universal Quantification in Large

Databases", ACM Transactions on Database Systems, vol. 20, no. 2, pp. 187-236,

June 1995.

Gray, J.P., et al. Disttibuted Memory ParaUel Architecture for Object-Oriented Database

Application, Proceedings of the Third Australian Database Conference, pages 168-

181, Melbourne, 1992.

Green, S.A. and Paddon, D.J., "An Extension of the Processor Farm Using a Tree

Architecture", Occam and the Transputer Research and Applications, C.Askew

(ed.), lOS Publishing Company, pp. 53-69, 1988.

Gruber, O. and Valduriez, P., "Object management in paraUel database servers". Parallel

Processing and Data Management, P.Valduriez (ed.). Chapman & HaU, pp. 275-

293, 1992.

Guo, M., Su, S.Y.W. and Lam, H., "An Association Algebra for Processing Object-Oriented

Databases", Proceedings of the 7th International Conference on Data Engineering,

Kobe, Japan, pp. 23-32, Apr. 1991.

Haran, B., et al., 'Prototyping Bubba, A Highly ParaUel Database System", IEEE

Transaction on Knowledge and Data Engineering, vol. 2, no. 1, pp. 4-24, March

1990.

Hanis, E.P. and Ramamohanarao, K., "Join Algoritiun Costs Revisited", The VLDB Journal,

vol. 5, pp. 64-84, 1996.

Hart, E., Transim: Prototyping Parallel Algorithms, User Guide and Reference Manual,

Transim version 3.5, University of Westminster, August 1993.

Hasan, W., Florescu, D., and Valduriez, P., "Open Issues in ParaUel Query Optimization",

SIGMOD Record, vol. 25, no. 3, pp. 28-33, September 1996.

HeUnan, P., The Science of Database Management, Irwin Publisher, 1994.

Hoare, C.A.R., Communicating Sequential Processes, Prentice HaU, 1985.

Hong, W. and Stonebraker, M., "Optimization of ParaUel Execution Plans in XPRS",

Proceedings of the First International Conference on Parallel and Distributed

Information Systems PDIS'91, Florida, pp. 218-225, December 1991.

Hong, W., "Exploiting Inter-Operation ParaUelism in XPRS", Proceedings of the ACM

SIGMOD Conference, pp. 19-28, 1992.

Bibliography page 293

Hong, W. and Stonebraker, M., "Optintization of ParaUel Query Execution Plans in XPRS",

Distributed and Parallel Databases 1, pp. 9-32, 1993.

Hua, K.A. and Lee, C, "Handling Data Skew in Multiprocessor Database Computers Using

Partition Tuning", Proceedings of the I7th International Conference on Very Large

Data Bases VLDB, Barcelona, pp. 525-535, 1991.

Hua, K.A and Lee, C, "Interconnecting Shared-EverytiUng Systems for Efficient ParaUel

Query Processing", Proceedings of the 1st International Conference on Parallel and

Distributed Information Systems PDIS'91, Miami Beach, pp. 262-270, December

1991.

Hua, K.A., Lee, C. and Hua, CM., 'Dynamic Load Balancing in Multicomputer Database

Systems Using Partition Tuning", IEEE Transactions on Knowledge and Data

Engineering, vol. 7, no. 6, pp. 968-983, December 1995.

Hurson, A.R. and Pakzad, S.H., "Object-Oriented Database Management Systems: Evolution

and Performance Issues", IEEE Computer, Feb 1993.

IBM DB2, 'IBM DB2 ParaUel Edition", http://www.ibm.com, 1995.

Informix, 'Informix Online Extended ParaUel Server for Loosely Coupled Cluster and

Massively ParaUel Processing Architectures", http://v^ww.inforniix.com, July 1995.

Informix, "Informix Online Dynamic Server", http://www.informix.com, 1996.

Jarke, M. and Koch, J., "Query Optimization in Database Systems", ACM Computing

Surveys, vol. 16, no. 2, pp. 111-152, June 1984.

Jarke, M., et al., "Inttoduction to Query Processing", Query Processing in Database

Systems, W.Kim et al. (eds.), Springer-Verlag, pp. 3-28, 1985.

Jenq, B.P., et al., "Query Processing in Disttibuted ORION", Proceedings of the

International Conference on Extending Database Technology EDBT'90, Venice, pp.

169-187, March 1990.

KeUer, A.M. and Roy, S., "Adaptive ParaUel Hash Join in Main-Memory Databases",

Proceedings of the First Internatiortal Conference on Parallel and Distributed

Information Systems, 1991.

KeUer, T., Graefe, G. and Maier, D., "Efficient Assembly of Complex Objects", Proceedings

of the ACM SIGMOD Conference, pp. 148-157, May 1991.

http://www.ibm.com
http://v%5eww.inforniix.com
http://www.informix.com

Bibliography page 294

Kemper, A. and Moerkotte, G., "Advanced Query Processing in Object Bases Using Access

Support Relations", Proceedings of the 16th VLDB Conference, Brisbane, AusttaUa,

pp. 290-301, 1990.

Kemper, A. and Moerkotte, G., "Query Optimization in Object-Bases: Exploiting Relational

Techniques", Query Processing For Advanced Database Systems, J.C.Freytag et al.

(eds.), Morgan Kaufmann, pp. 61-98, 1994.

Khoshafian, S., Valduriez, P. and Copeland, G., 'ParaUel Query Processing for Complex

Objects", Proceedings of the 4th International Conference on Data Engineering,

pp. 202-209, 1988.

Khoshafian, S. and Frank, D., 'Implementation Techniques for Object-Oriented Databases",

Advances in OODB Systems, K.R.Ditttich (ed.), Springer-Verlag, pp. 60-79, 1988.

Kifer, M., Kim, W. and Sagiv, Y., "Querying Object-Oriented Databases", Proceedings of

the ACM SIGMOD Conference, pp. 393-402, 1992.

Kim, K-C, Kim, W. and Dale, A., "Cyclic Query Processing in Object-Oriented Databases",

Proceedings of the 5th International Conference on Data Engineering, pp. 564-

571, February 1989.

Kim, K-C, 'ParaUelism in Object-Oriented Query Processing", Proceedings of the Sixth

Interruitional Conference on Data Engineering, pp. 209-217, 1990.

Kim, W., "On Optimizing an SQL-Like Nested Query", ACM Transactions on Database

Systems, vol. 7, no. 3, pp. 443-469, September 1982.

Kim, W., "A Model of Queries for Object-Oriented Databases", Proceedings of the 15th

Interruitional Conference on Very Large Data Bases VLDB, Amsterdam, pp. 423-

432, 1989.

Kim, W., Introduction to Object-Oriented Databases, The MIT Press, 1990.

Kitsuregawa, M. and Ogawa, Y., "Bucket Spreading ParaUel Hash: a New, Robust, ParaUel

Hash Join Method for Data Skew in the Super Database Computer (SDC)",

Proceedings of the 16th VLDB Conference, Brisbane, pp. 210-221, 1990.

Knuth, D.E., The Art of Computer Programming: Sorting and Searching, vol. 3, Addison-

Wesley, 1973.

Kolchin, V.P. et al.. Random Allocation, WUey, 1978.

Bibliography page 295

Korth, H. and Rotii, M.A., "Query Languages for Nested Relational Databases", Nested

Relations and Complex Objects in Databases, S.Abiteboul et al. (eds.), Springer-

Verlag, LNCS 361, pp. 190-204, 1989.

Kung, C , "Object Subclass Hierarchy in SQL: A Simple Approach", Communications of the

ACM, vol. 33, no. 7, pp. 117-125, July 1990.

Lakshmi, M.S. and Yu, P.S., "Effectiveness of ParaUel Joins", IEEE Transactions of

Knowledge and Data Engineering, vol. 2, no. 4, pp. 410-424, December 1990.

Lanzelotte, R.S.G. and Valduriez, P., "Extending die Search Sttategy in a Query Optimizer",

Proceedings of the 17th International Conference on Very Large Data Bases

VLDB, Barcelona, pp. 363-373, 1991.

Lanzelotte, R.S.G., et al., "Optimization of Nonrecursive Queries in OODBs", Proceedings

of the Second International Confereru:e on Deductive and Object-Oriented

Databases D00D'91, Munich, pp. 1-21, December 1991.

Lanzelotte, R.S.G. et al., "Optimization of Object-Oriented Recursive Queries using Cost-

ConfroUed Sttategies", Proceedings of the ACM SIGMOD Conference, pp. 256-265,

1992.

Leung, C.H.C, Quantitative Analysis of Computer Systems, John WUey & Sons, 1988.

Leung, C.H.C. and Ghogomu, H.T., "A High-Performance ParaUel Database Architecture",

Proceedings of the Seventh ACM Interrmtional Conference on Super computing,

Tokyo, pp. 377-386, 1993.

Leung, C.H.C, 'ParaUel Paradigms for Query Evaluation and Processing", Proceedings of

the First Australasian Workshop on Parallel and Real-Time Systems PART'94,

Melbourne, pp. 1-10, July 1994.

Lieuwen, D.F., DeWitt, D.J. and Mehta, M., 'ParaUel Pointer-based Join Techniques for

Object-Oriented Databases", AT&T Technical Report, 1993.

Ling, T.W. and Teo, P.K., 'Inheritance Conflicts in Object-Oriented Systems", Proceedings

of the 4th International Conference on DEXA'93, Prague, pp. 189-200, September

1993.

Linnemaim, V., "Nested Relations and Recursive Queries", Nested Relations arui Complex

Objects in Databases, S.Abiteboul et al. (eds.), Springer-Verlag, LNCS 361, pp.

205-216, 1989.

Bibliography page 296

Litwm, W. and Risch, T., "Main Memory Oriented Optimization of 0 0 Queries Using Typed

Datalog witii Foreign Predicates", IEEE Transactions on Knowledge and Data

Engineering, vol. 4, no. 6, pp. 517-528, December 1992.

Liu, K.H., Leung, C.H.C, and Jiang, Y., "Analysis and Taxonomy of Skew in ParaUel

Databases", Proceedings of High Performance Computing Symposium HPDC'95,

Montteal, Canada, pp. 304-315, 1995.

Liu, K.H., Y. Jiang, and C.H.C. Leung, "Query Execution in tiie Presence of Data Skew in

ParaUel Databases", Australian Computer Science Communications, vol 18, no 2,

pp.157-166, 1996.

Lu, H-J., et al., "Optimization of Multi-Way Join Queries for ParaUel Execution",

Proceedings of the 17th International Conference on VLDB, Barcelona, pp. 549-

560, September 1991.

Lu, H.J. and Tan, K.L., 'Dynamic and Load-balanced Task-Oriented Database Query

Processing in ParaUel Systems", Advances in Database Technology EDBT'92, pp.

357-372, 1992.

Masunaga, Y., "Object Identity, Equality and Relational Concept", Deductive and Object-

Oriented Databases, W. Kim etal., (eds.), pp. 185-202, 1990.

Meyer, B., Object-Oriented Software Construction, Prentice-HaU, 1988

MUne, J., 'Power serve!". Computer Week, pp. 25-27, January 26, 1996.

Mishra, P. and Eich, M.H., "Join Processing in Relational Databases", ACM Computing

Surveys, vol. 24, no. 1, pp. 63-113, March 1992.

Moss, J.E.B., "Working witii Persistent Objects: To Swizzle or Not to Swizzle", IEEE

Transactions on Software Engineering, vol. 18, no. 8, pp. 657-673, August 1992.

Norman, M.G., Zurek, T., and Thanisch, P., "Much Ado About Shared-NotiUng", SIGMOD

Record, vol. 25, no. 3, pp. 16-21, September 1996.

Nonis, F.R., Discrete Structures: An Introduction to Mathematics for Computer Science,

Prentice HaU, 1985.

Oracle, "Oracle ParaUel Server", http://vyww.oracle.com, 1995.

Orenstein, J, et al., "Query Processing in tiie ObjectStore Database System", Proceedings of

the ACM SIGMOD Conference, pp. 403-412, 1992.

Osbom, S.L., 'Identity, Equality and Query Optimization", Proceedings of the 2nd

International Workshop on OODB Systems, pp. 346-351, 1988.

http://vyww.oracle.com

Bibliography page 297

Ozkarahan, E., Database Machines and Database Management, Prentice-HaU, 1986.

Ozsu, M.T. and Blakeley, J.A., "Query Processing in Object-Oriented Database Systems",

Modern Database Systems: The Object Model, Interoperability, arui Beyond,

W.Kim (ed.), Addison-Wesley, pp. 146-174, 1995.

Pang, H-H., Lu, H-J. and Ooi, B-C, "Query Processing in OODB", Proceedings of the

Second International Symposium on Database Systems for Advanced Application

DASFAA'91, Tokyo, pp. 1-10, AprU 1991.

Patterson, D.A., and Hennessy, J.L., Computer Organization & Design: The

HardwarelSoJhvareInterface, MorganK^ufmaim, 1994.

Pirahesh, H., et al., 'ParaUelism in Relational Data Base Systems: Architectural Issues and

Design Approaches", Proceedings of the 2nd IEEE International Symposium on

Databases in Parallel arui Distributed Systems, pp. 4-29, 1990.

Poola, T.R., et al., 'Performance Analysis of an Object-Oriented Approach to ParaUel Query

Evaluation", Proceedings of the 18th Annual International Computer Software and

Applications Conference COMPSAC'94, Taipei, pp. 264-269, 1994.

Qadah, G.Z. and Irani, K.B., 'The Join Algorithms on a Shared-Memory Multiprocessor

Database Machine", IEEE Transactions on Software Engineering, vol. 14, no. 11,

pp. 1668-1683, November 1988.

Rahayu, W., Chang, E. and DUlon, T.S., "A Metiiodology for die Design of Relational

Databases from Object-Oriented Conceptual Models Incorporating CoUection

Types", Proceedings of the 18th International Conference on Technology of Object-

Oriented Languages and Systems TOOLS Pacific, Melbourne, pp. 13-23, 1995.

Rahayu, W., et al., "Aggregation versus Association in Object ModeUing and Databases",

Proceedings of the Australasian Conference on Information Systems ACIS'96,

Hobart, 1996.

Rahm, E., 'ParaUel Query Processing in Shared Disk Database Systems", SIGMOD Record,

vol. 22, no. 4, pp. 32-37, December 1993.

Rumbaugh, J., et al., Object-Oriented Modeling and Design, Prentice-HaU, 1991.

Saratiiy, V..M., et al., "Algebraic Foundation and Optimization for Object Based Query

Languages", Proceedings of the International Conference on Data Engineering, pp.

81-90, 1993.

Bibliography page 298

Schneider, D. and DeWitt, D.J., "A Performance Evaluation of Four ParaUel Join Algoritiims

in a Shared-NotiUng Multiprocessor Environment", Proceedings of the ACM

SIGMOD Conference, pp. 110-121, 1989.

Schneider, D.A. and DeWitt, D.J., 'Tradeoffs in Processing Complex Join Queries via

Hashing in Multiprocessor Database Machines", Proceedings of the 16th VLDB

Conference, pp. 469-480, Brisbane, AusttaUa, 1990.

SeUnger, P. G., et. al., "Access Patii Selection in a Relational Database Management

System", Proceedings of the ACM SIGMOD International Conference on

Management of Data, Boston, pp. 23-34, May 1979.

Selinger, P.G., 'Predictions and ChaUenges for Database Systems in die Year 2000",

Proceedings of the 19th VLDB Conference, pp. 667-675, Dublin, Ireland, 1993.

Shaw, M.G. and ZdonUc, S.B., "A Query Algebra for Object-Oriented Databases",

Proceedings of the 8th International Conference on Data Engineering, Tempe,

Arizona, pp. 154-162, Feb. 1992.

Stensttom, P., "Shared-memory multiprocessors - a cost-effective approach to high-

performance computing". Parallel Computing: Paradigms and Applications,

A.Y.Zomaya (ed.). International Thomson Computer Press, pp. 25-77, 1996.

Stone, H.S., 'ParaUel Querying of Large Databases: A Case Study", IEEE Computer, pp.

11-21, October 1987.

Stonebraker, M., "The C3ist for shared-nothing", IEEE Data Engineering, 9(1), 1986.

Sttaube, D.D. and Ozsu, M.T., "Queries and Query Processing in Object-Oriented Database

Systems", ACM Transactions on Information Systems, vol. 8, no. 4, pp. 387-430,

October 1990.

Sttaube, D.D. and Ozsu, M.T., "Execution Plan Generation for an Object-Oriented Data

Model", Proceedings of the 2nd International Conference on Deductive arui Object-

Oriented Databases D00D'91, Munich, pp. 43-67, December 1991.

Su, S.Y.W., Guo, M. and Lam, H., "Association Algebra: A Matiiematical Foundation for

Object-Oriented Databases", IEEE Transactions on Knowledge and Data

Engineering, vol. 5, no. 5, pp. 775-798, October 1993.

Suciu, D., "Implementation and Analysis of a ParaUel CoUection Query Language",

Proceedings of the 22nd VLDB Conference, Bombay, India, 1996.

Sybase, "Sybase Navigation Server: ParaUel high Performance for Real World Workload",

http://www.sybase.com, 1995.

http://www.sybase.com

Bibliography page 299

Tandem, "Query Processing using Non-Stop SQL/MP", http://www.tandem.com, 1995.

Thakore, A.K. and Su, S.Y.W., 'Performance Analysis of ParaUel Object-Oriented Query

Processing Algorithms", Distributed and Parallel Databases 2, pp. 59-100, 1994.

Torbjomsen, O., 'ParaUel Relational Database Algoritiims", Parallel Computing on

Distributed Memory Multiprocessors, Fusun, O., et al., (eds.). Springer Verlag, pp.

263-281, 1993.

Tseng, E. and Reiner, D., 'ParaUel Database Processing on the KSRl Computer",

Proceedings of the ACM SIGMOD Conference, pp. 453-455, 1993.

Valduriez, P., 'ParaUel Database Systems: The Case for Shared-Something", Proceedings of

the International Conference on Data Engineering, pp. 460-465, 1993.

Valduriez, P., 'ParaUel Database Systems: Open Problems and New Issues", Distributed and

Parallel Databases I, pp. 137-165, 1993.

Wade, A.E., "Object Query Standards", SIGMOD Record, vol. 25, no. 1, pp. 87-92, March

1996.

Walton, C.B., et al., "A Taxonomy and Performance Model of Data Skew Effects in ParaUel

Joins", Proceedings of the 17th International Conference on Very Large Data Bases

VLDB, pp. 537-548, Barcelona, September 1991.

Weikum, G., 'Tutorial on ParaUel Database Systems", Proceedings of the Fifth

International Conference on Database Theory ICDT'95, Praque, pp. 33-37, January

1995.

Wolf, J.L, et al., "A ParaUel Hash Join Algoritiim for Managing Data Skew", IEEE

Transactions on Parallel and Distributed Systems, vol. 4, no. 12, pp. 1355-1371,

December 1993.

Wolf, J.L., Dias, D.M and Yu, P.S., "A ParaUel Sort Merge Join Algoritiim for Managing

Data Skew", IEEE Transactions on Parallel and Distributed Systems, vol. 4, no. 1,

pp. 70-86, January 1993.

Wolf, J.L., et al., "A Hierarchical Approach to ParaUel Multiquery Scheduling", IEEE

Transactions on Parallel and Distributed Systems, vol. 6, no. 6, pp. 578-589, June

1995.

Zipf, G.K., Human Behaviour and the Principle of Least Ejfort, Addison Wesley, 1949.

http://www.tandem.com

Appendix A

Simulation Models

A.1 Pipeline Model

- Pipeline Model with a scheduler (implemented as a "tree"), and
- multiple buffer.in and buffer.out

INTC N, P, B
N
P
B

= 4
= N
= 3

- 1
total processors
number of workers
number of buffers

VAL no.objects IS 42:
VAL obj.size.lower IS 100:
VAL obj.size.middle IS 80 0:
VAL obj.size.upper IS 1000:
VAL ack IS 1:

- object size 100-1000
- full obj size is selected

[P][B] CHAN OF ANY out, in: -- 3 buffers per processor
[P][B] CHAN OF ANY schedule.out, schedule.in:
[P][B] CHAN OF ANY buff.req, buff.out:
[P][B] CHAN OF ANY work.req, work.rep:
[P][B] CHAN OF ANY route.req, route.rep:

PLACED PAR
- - master
INT message:
SEQ I scheduler
SEQ j = 0 FOR no.objects

SEQ
ALT

schedule.in[0][0] ? message
schedule.out[0][0] 1 j | ack

schedule.in[1][0] ? message
schedule.out[1][0] ! j | ack

change to ALT rep, if avail

Apperuiix A - Simulation Models page 301

schedule.in[2][0
schedule.out[2

schedule.in[0][1
schedule.out[0

schedule.in[1][1
schedule.out[1

schedule.in[2] [1
schedule.out[2

schedule.in[0][2
schedule.out[0

schedule.in[1][2
schedule.out[1

schedule.in[2][2
schedule.out[2

? message
[0] ! j I ack

? message
[1] ! j I ack
? message
[1] ! j I ack
? message
[1] ! j I ack

? message
[2] i j I ack
? message
[2] ! j I ack
? message
[2] ! j I ack

- - no.
-- no.

ack I ack
? obj.number

PLACED PAR i = 0 FOR P
PLACED PAR k = 0 FOR B

INT obj, obj.number:
SEQ I sender
WHILE TRUE

SEQ
schedule.in[i][k]
schedule.out[i][k]
obj := RAND (obj.size.lower, obj
out[i][k] ! obj I obj
ODTSTRM ! obj.number, obj, i, k

PLACED PAR i =,0 FOR P
PLACED PAR k = 0 FOR B

INT obj:
SEQ I receiver
WHILE TRUE

SEQ
in[i][k] ? obj
OUTSTRM ! obj, i, k

of workers
of buffers per worker

size.upper)

-- old,size,proc,buff

oid, proc, buff

-- slave
PLACED PAR i = 0 FOR P
PLACED PAR k = 0 FOR B

INT obj:
SEQ I buffer.in
WHILE TRUE

SEQ
out[i][k] ? obj
buff.req[i][k] ! obj | obj

PLACED PAR i = 0 FOR P
INT obj:
SEQ I worker
WHILE TRUE

SEQ
ALT

buff.req[i][0]
SERV(obj)

buff.req[i][1]
SERV(obj)

buff.req[i][2]
SERV(obj)

IF

ALT replication here
? obj

? obj

? obj

Apperuiix A - Simulation Models p^p^ j ^ 2

obj < obj.size.middle
buff.out[i][0] ! ack | ack

TRUE
buff.out[i][0] ! obj I obj

PLACED PAR i = 0 FOR P
PLACED PAR k = 0 FOR B - 1

SEQ I buffer.out
PAR

INT obj, message:
SEQ I holding.buffer.out
WHILE TRUE

SEQ
buff.out[i][k] ? obj
PRI ALT
work.req[i][k] ? message

work.rep[i][k] ! obj | obj
route.req[i][k] ? message

route.rep[i][k] ! obj | obj
INT obj:
SEQ I passing.buffer.out
WHILE TRUE

SEQ
route.req[i][k] ! ack | ack
route.rep[i][k] ? obj
buff.out[i][k+1] ! obj | obj

INT obj:
SEQ I output.buffer.out
WHILE TRUE

SEQ
work.req[i][k] ! ack | ack
work.rep[i][k] ? obj
in[i][k] ! obj | obj

PLACED PAR i = 0 FOR P
INT obj:
SEQ I buffer.out.end
WHILE TRUE

SEQ
buff.out[i][B-1] ? obj
in[i][B-1] ! obj I obj

- - processor allocation
NODE i = 0 FOR N

NODE nn
-- master
MAP nn[0] : scheduler
MAP i = 0 FOR P
MAP k = 0 FOR B
MAP
MAP nn[0] : sender[i][k]
MAP nnfO] : receiver[i][k]

-- slave
MAP i = 0 FOR P

MAP k = 0 FOR B
MAP nn[i+l] : buffer.in[i][k]

MAP i = 0 FOR P
MAP k = 0 FOR B - 1

MAP nn[i+l] : buffer.out[i][k]

Appendix A - Simulation Models page 303

MAP i = 0 FOR P
MAP

MAP nn[i+l]
MAP nn[i+l]

worker[i]
buffer.out.end[i]

A.2 Fully Partitioned Model

-- Fully Partitioned Model for parallel
-- Parallel Sort-Merge R-Join Algorithm
-- ("one-obj-size" buffer.in and buffer.out)

INTC N, P, number.objects.a, number.objects.b ;
INTC no.blocks.a, no.blocks.b, no.blocks:
N
P

:= 5
;= N

- total processors
• - number of workers

number.objects.a := 1200
number.objects.b := 600
no.blocks.a := number.objects.a / P
no.blocks.b := number.objects.b / P
no.blocks := no.blocks.a + no.blocks.b

VAL obj.size.lower IS 1:
VAL obj.size.middle IS 40:
VAL obj.size.upper IS 40:
VAL basic.cost IS 1:
VAL ack IS 1:
VAL max.proc IS 12:

[max.proc] CHAN OF ANY out, in:

- assumed to be equal
- vary each object

- object size 100-4000

PLACED PAR
PLACED PAR i = 0 FOR P

INT obj:
SEQ I sender

SEQ j = 0 FOR no.blocks
SEQ

obj := RAND (obj.size.lower, obj.size.upper)
out[i] ! obj I obj

PLACED PAR i = 0 FOR P
INT obj:
SEQ I receiver

SEQ j = 0 FOR no.blocks
SEQ

in[i] ? obj

PLACED PAR i = 0 FOR P
CHAN OF ANY buff.req, buff.out:
SEQ I slave

PAR

INT obj:
SEQ I buffer.in

-- WHILE TRUE
SEQ j = 0 FOR no.blocks

SEQ
out[i] ? obj

Appendix A - Simulation Models page 304

buff.req ! obj | obj

INT obj:
SEQ I worker

SEQ j = 0 FOR no.blocks
SEQ
buff.req ? obj
SERV(basic.cost)

IF
MERGING COST, simulation only

obj < obj.size.middle
SEQ

SERV(basic.cost)
buff.out ! ack | ack

TRUE
SEQ
SERV(IO)
buff.out ! obj I obj

-- SORTING PHASE, after obtaining all objects
SEQ j = 0 FOR no.blocks.a

SEQ
SERV(5)

NOTE(sorting.A)
SERV(no.blocks.a*6)

SEQ j = 0 FOR no.blocks.b
SEQ ,

SERV(5)
NOTE(sorting.B)
SERV(no.blocks.b* 3)

INT obj:
SEQ I buffer.out

SEQ j = 0 FOR no.blocks
-- WHILE TRUE
SEQ
buff.out ? obj
in[i] ! obj I obj

sorting each collection

sorting class a

-- sorting each collection

-- sorting class b

NODE i = 0 FOR N
NODE nn

MAP i = 0 FOR P
MAP
MAP nn[0] : sender[i]
MAP nn[0] : receiver[i]

MAP i = 0 FOR P
MAP nn[i+l] : slave[i]

Appendix B

Sample Experimental Programs

B.l Inter-Object Parallelization

/* FILENAME: iob-pe.c
** Function: Inter-Object Parallelization - Path Expressions
** /

/* INCLUDES */
#include <stdlib.h>
include <sys/resource.h>
^include <sys/sysinfo.h>
include <sys/s ignal.h>
#include <sys/types.h>
#include <time.h>

/* CPU DEFINITION */
tdefine CPU_0 0x1 /* Bit 0 set */
tdefine CPU_1 0x2 /* Bit 1 set */
ttdefine CPU_2 0x4 /* Bit 2 set */
#define CPU_3 0x8 /* Bit 3 set */
tdefine CPU_4 0x10 /* Bit 4 set */
tdefine CPU_5 0x20 /* Bit 5 set */
ttdefine CPU_6 0x4 0 /* Bit 6 set */
#define CPU_7 0x80 /* Bit 7 set */
#define CPU_8 0x100 /* Bit 8 set */
#define CPU_9 0x200 /* Bit 9 set */
ftdefine MAX_CPU 10

/* DATA DEFINITION */
#define NUM_ITEM 10 0 0000
#define FANOUT 10
struct relationship
{

int num_elements;

Appendix B - Sample Experimental Programs page 306

long iod_assoc [FANOUT] ,•
};
struct root_class
{

/* four attributes in the root class */
int attrl;
char attr2[10], attr3[10], attr4[10];
/* relationship */
struct relationship rell;

};
struct root_class root_objects[NUM_ITEM];
struct assoc_class
{

/* four attributes in the assoc. class */
int attrl;
char attr2[10], attr3[10], attr4[10];

};
struct assoc_class assoc_objects[NUM_ITEM];

/* PID SET UP */
pid_t pid[MAX_CPU]={l,1,1,1,1,1,1,1,1,1);
int cpu[MAX_CPU] = [CPU_0, CPU_1, CPU_2, CPU_3, CPU_4,

CPU_5, CPU_6, CPU_7, CPU_8, C P U _ 9] ;

main()
{

/* VARIABLES */
long no_cpu, cpu_num, num_obj_root, num_obj_assoc;
int i, exitstat, ret, select_root, select_assoc;

/* PROTOTYPES*/
void generate_input(long, long);
void set_up(long);
void child_process(int, int, long, int, int);

/* MAIN PROGRAM */

/* INPUTS */
printf("Number of root objects (Max:%d) ? ", NUM_ITEM);
scanf("%ld", &num_obj_root);
printf("Number of assoc. objects (Max:%d) ? ", NUM_ITEM);
scanf("%ld", &num_obj_assoc);
printf("Selectivity of the root class in percentage (0-100) ? ") ;
scanf("%d", &select_root);
printf("Selectivity of the assoc. class in percentage (0-100)?");
scanf("%d", &select_assoc);

generate_input(num_obj_root, num_obj_assoc);

getsysinfo(GSI_CPUS_IN_BOX, &no_cpu, OL, OL, OL) ;
printf("No CPU : %d, ", no_cpu);

set_up(no_cpu);

/* CHILD */
if(pid[0]==0 II pid[l]==0 II pid[2]==0 || pid[3]==0 ||

pid[4]==0 I I pid[5]==0 | | pid[6]==0 | | pid[7]==0 | |
pid[8]==0 I I pid[9]==0)

{
sleep(1);
getsysinfo(GSI_CURRENT_CPU, &cpu_num, OL, OL, OL) ;

Apperuiix B - Sample Experimental Programs page 307

/* printf("Processor %d\n", cpu_num); */

if (pid[cpu_num]==0) {
child_process(cpu_num, no_cpu, num_obj_root,

select__root, select_assoc) ;
}

}

/* PARENT */
if ((pid[0]>0) && (pid[l]>0) && (pid[2]>0) && (pid[3]>0) &&

(pid[4]>0) && (pid[5]>0) && (pid[6]>0) && (pid[7]>0) &&
(pid[8]>0) && (pid[8]>0) && (pid[9]>0))

{
for (i=0;i<no_cpu;i++) [

ret = wait(&exitstat);
}

ret == -1 ? -1 : exitstat;
}

}

void generate_input(long num_objects_root, long num_objects_assoc)
{

int k, fanout;
long i;

srand(time(NULL));
/* ROOT CLASS */
for(i=0;i<num_objects_root;i++) {

root_objects[i].attrl = rand() % 100 + 1;
for(k=0;k<8;k++) root_objects[i].attr2[k] = rand() %26 + 65;
root_objects[i].attr2[k] = '\0';

for(k=0;k<8;k++) root_objects[i].attr3[k] = rand() %26 + 65;
root_objects[i].attr3[k] = '\0';

for(k=0;k<8;k++) root_objects[i].attr4[k] = rand() %26 + 65;
root_objects[i].attr4[k] = '\0';

/* FANOUT */
fanout = randO % FANOUT + 1;
root_objects[i].rell.num_elements = fanout;
for(k=0;k<fanout;k++)

root_objects[i].rell.iod_assoc[k] =
rand() % num_objects_assoc + 1;

}

/* ASSOCIATED CLASS */
for(i=0;i<num_objects_assoc;i++) {

assoc_objects[i].attrl = rand() % 100 + 1;
for(k=0;k<8;k++) assoc_objects[i].attr2[k] = rand() %26 + 65;
assoc_objects[i].attr2[k] = '\0';

for(k=0;k<8;k++) assoc_objects[i].attr3[k] = rand() %26 + 65;
assoc_objects[i].attr3[k] = '\0';

for(k=0;k<8;k++) assoc_objects[i].attr4[k] = rand() %26 + 65;
assoc_objects[i].attr4[k] = '\0';

}

Appendix B - Sample Experimental Programs page 308

}

void set_up(long num_cpu)
{

int i;
f or (i=0; i<num_cpu; i-i-i-) {

if(i==0 I I pid[i-l] > 1) {
pid[i] = forkO ;

if (pid[i] < 0) { /* ERROR V
printf("Error in child %d\n", i);

}
else {

if (pid[i] > 0) { /* PARENT */
if (bind_to_cpu(pid[i], cpu[i], BIND_NO_INHERIT)) {

kill (pid[i], SIGKILL);
exit(1);

}
}

}

)

void child_process(int i, int num_cpu, long num_objects_root,
int selectivity_root, int selectivity_assoc)

{
long j;
int k;
struct root_class root_result;
struct assoc_class assoc_result;

j = i;
printf("CPU %d starts at %d\n", i, clock());

while (j < num_objects_root) {
/* attrl is the selection attribute for the root */
if(root_objects[j].attrl <= selectivity_root)
{

f or (k=0;k<root_objects[j] .rell.num_elements;k++)
£

i f (a s s o c _ o b j e c t s [r o o t _ o b j e c t s [j] . r e l l . i o d _ a s s o c [k]] . a t t r l <=
s e l e c t i v i t y _ a s s o c)

{
root_result = root_objects[j] ;
assoc_result =

assoc_objects[root_objects[j] .rell.iod_assoc[k]];
/* break; */

}
}

}

/* ROUND-ROBIN */
j += num_cpu;

}
printf("\n");
printf("CPU %d ends at %d\n", i, clock());

Appendix B - Sample Experimental Programs page 309

B.2 Inter-Class Parallelization

/* FILENAME: icl-l.c
** Function: Inter-Class Parallelization - Case 1 (2 selections)

/* deleted */

void child_process(int i, int num_cpu, long num_objects_root,
long num_objects_assoc, int selectivity_root,
int selectivity_assoc)

[
long j;
int k;
struct root_class final_result;

j = i;
printf("CPU %d starts at %d\n", i, clock());

/* SELECTION PHASE A */
while (j < num_objects_root) {

/* attrl is the selection attribute for the root */
if(root_objects[j].attrl <= selectivity_root)

root_results[j] = j; /* sparsed */

/* ROUND-ROBIN */
j += num_cpu;

}

/* SELECTION PHASE B */
j = i;
while (j < num_objects_assoc) {

/* attrl is the selection attribute for the assoc. class */
if(assoc_objects[j].attrl <= selectivity_assoc)

assoc_results[j] = j; /* sparsed */

/* ROUND-ROBIN */
j += num_cpu;

}

/* CONSOLIDATION */
j = i;
while (j < num_objects_root) {

if (root_results[j] != -1)
{

for(k=0;k<root_objacts[root_results[j]].rell.num_elements;k++)
[

if(assoc_results[root_objects[root_results[j]].rell.iod_assoc[k]]
!=-l)

{
final_result = root_objects[root_results[j]];
break;

}
}

}
j += num_cpu;

}
printf("\n");
printf("CPU %d ends at %d\n", i, clock());

}

