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Abstract 

The dominance of visual data in recent times has made a fimdamental change 

to our everyday life. Less than five to ten years ago, Intemet and World Wide Web 

were not the daily vocabulary for the general public. But now, even a yotmg child can 

use the Intemet to search for information. This, however, does not mean that we have 

a mature technology to perform visual information search. On the contrary, visual 

information retrieval is still in its infancy. The problem lies on the semantic richness 

and complexity of visual information in comparison to alphanumeric information. 

In this thesis, we present new paradigms for content-based image indexing 

and retrieval for Visual Information Systems. The concept of Image Hashing and the 

developments of Composite Bitplane Signatures with Inverted Image Indexing and 

Compression are the main contributions to this dissertation. These paradigms are 

analogous to the signature-based indexing and inversion-based postings for text 

information retrieval. We formulate the problem of image retrieval as a two-

dimensional hashing as oppose to a one-dimensional hash vector used in conventional 

hashing techniques. Wavelets are used to generate the bitplane signatures. The natural 

consequence to our bitplane signature scheme is the superimposed bitplane signatures 

for efficient retrieval. Composite bitplanes can then be used as the low-level feature 

information together with high-level semantic indexing to form a uiufied and 

integrated fi^amework in our inverted model for content-based image retrieval. 
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Chapter 1 

Introduction 

1.1 Objective 

The main objective of this thesis is to investigate indexing and retrieval 

paradigms for the management of visual information. The focus will be on the 

development of new indexing and retrieval strategies for image data by making use of 

techniques in information retrieval. 

Two well-known text processing approaches in information retrieval are 

signature-based indexing and inversion-based postings. They have been the most 

popular retrieval techniques for textual data. However, while we witness the success 

of these paradigms to retrieve documents, these concepts have never been seriously 

explored for the retrieval of image data. In this thesis, we would like to develop these 

paradigms to efficiently index and retrieve images based on their visual contents. Our 
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aim is to exploit these concepts and defme new directions in content-based image 

indexing and retrieval. 

Image retrieval applications are often categorized into domain-specific and 

general purpose. In this research, we shall focus on the latter. It is true that domain-

specific applications are easier to handle and can have a higher precision on retrieval. 

However, the lack of generality w l̂l prevent us to recover or discover images fi-om 

large collections. This is particularly relevant to data sources such as those on the 

Intemet. Therefore, we concentrate on the general purpose indexing and retrieval 

techniques and do not assume a priori knowledge on the image data. 

Many retrieval techniques interact with low-level syntactic information such 

as color, texture and object shape, with high-level semantic information largely 

ignored. Another important objective of this thesis is to integrate high-level concepts 

with low-level features in our indexing techniques and present them in a unified 

framework. This also implies that our indexing schemes should operate on the level of 

regions in images rather than on the entire images. 

In this thesis, we view Visual Information Systems as a natural extension of 

traditional Information Systems which include visual data. All aspects of applications 

(e.g. ESS, DSS and MIS) and databases will need to be improved and extended to 

cater for enriched media types as the fimdamental elements. 
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1.2 Summary of Contributions 

The contributions of this thesis in content-based image indexing and retrieval 

for visual information systems are summarized as follows: 

• We present a model for Visual Information Management. Our framework 

for Visual Information Management is not only concemed vvdth 

fragmented aspects of visual information retrieval but a complete 

paradigm for the management of visual information. Our treatment to 

Visual Information Systems is parallel to the traditional field of 

Information System. 

• We exploit the principal indexing methods in information retrieval for text 

data and develop them for content-based image indexing and retrieval. 

• We study the concept of image hashing, and we establish the data type for 

image hashing in the form of two-dimensional bit matrix. 

• We develop Bitplane Signature as a form of image hashing. Bitplane 

Signature is a signature accessing strategy for content-based image 

retrieval. It takes on characteristics analogous to signature-based text 

retrieval methods using two-dimensional bitplanes. We use wavelet 

decomposition as one of the possible hashing fimctions to generate 

bitplanes. 

• We establish Composite Bitplane Signature as the superimposed code for 

fast image retrieval. Furthermore, the framework of Hierarchical 
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Composite Bitplane Signature allows us to rapidly produce a partial 

ranking of images without the need to perform similarity predicates on 

every image in the collection. 

• We develop the concept of Inverted Image Indexing to provide an 

integrated indexing framework for accessing image contents both 

semantically and syntactically. 

• We develop an integrated query model for our inverted paradigm which 

allows us to pose Boolean or ranked queries with the possibility of 

intermixing high-level semantic information and low-level syntactic 

features. 

1.3 Thesis Organization 

This thesis is organized into 8 chapters. Figure 1.1 maps out the 

organizational structure and the research work addressed by this thesis. The 

relationships between chapters are depicted by the corresponding arrows. 

Rather than to btmdle the experimental results in each chapter, we present our 

research findings first and postponed the experimental results to the end of the thesis. 

Also, since we cover a number of indexing and retrieval paradigms in this thesis, we 

will not provide collective backgroimd analysis at the beginning of the thesis but 

instead most of the backgroimd materials and supporting concepts are presented at the 

start of each chapter. In particular, Section 3.2 deals with the background materials of 

image compression techniques; Section 4.2 introduces the traditional hashing 
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techniques; Section 5.2 outlines the paradigm of text retrieval using signatures; and 

Section 6.2 presents the inverted model for text retrieval. 

Chapter 4 
Image Hashing 

Chapter 2 
Visual Information Management 

T 
Image Indexing and 

Retrieval (IIR) 

Signature-based 
Indexing 

Chapter 3 
A Framework for IIR 

Using Compressed Data 

Inversion-based 
Posting 

Chapter 5 
Composite Bitplane 

Signature 

Chapter 6 
Inverted Image Indexing 

and Compression 

Chapter 7 
Experimental Results 

Figure 1.1 Thesis Organization 

In Chapter 2, we analyze the many facets of Visual Information Systems and 

conclude that Visual Information Systems should be defined over the traditional field 

of Information System as an emerging field of study on its own right. 

In Chapter 3, we identify that content-based image indexing and retrieval is 

an important element for the success of any visual information system. We specialize 

our investigation on the compressed domains for the purpose of indexing and 

retrieval. Representative techniques are analyzed from which we evaluate the common 
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approach and extract the desirable characteristics. We identify the problems related to 

this approach and suggest solutions in some aspects of the key areas. 

In Chapter 4, we develop the concept of Image Hashing. This direction is 

motivated by the success of the hashing techniques in many areas of computing. We 

analyze fraditional hashing methods and apply them to Image Hashing. 

In Chapter 5, we present Composite Bitplane Signature as a signature-based 

image retrieval technique. We use wavelet decomposition as an example to generate 

the required bitplane signatures and superimpose bitplane signatures to form the 

composite bitplanes for fast image retrieval. We provide our unique ranking and 

searching algorithm which can significantly improve search efficiency. Furthermore, 

we infroduce Hierarchical Composite Bitplane Signature as a mechanism to rapidly 

produce a partial ranking of images without the need to perform similarity predicates 

on every image in the collection. 

In Chapter 6, We formulate a data and query model for accessing image 

contents using the concept of inversion-based postings. Our data model is capable of 

supporting high-level semantic indexing and low-level feature retrieval in a unified 

framework. Our inverted paradigm is a region-based data model with ability of 

indexing different visual contents within an image. Salient characteristics and 

meaningful visual contents of different areas within images are captured and 

organized using an inverted list. Our query model allows us to pose Boolean or ranked 

queries in an integrated environment for high-level contents and low-level features 

intermixed together in a query expression. 



Chapter I. Introduction page 7 

In Chapter 7, we provide experiments to reinforce different aspects of our 

research presented in previous chapters, and we conclude the thesis in Chapter 8. 



Chapter 2 

Visual Information Management 

2.1 Introduction 

The tremendous progress in computer hardware and software in recent times, 

particularly in multimedia, have pushed the dominance of visual information to an all 

time high. With the widespread use of digital images, videos and audios in various 

non-textual applications fotmd in library, art galleries, museums, national defense, 

medicine, manufacture, security, scientific visualization and geographic applications, 

the need to efficiently manage, store, manipulate and retrieve visual contents is 

increasingly critical. The demand for flexible visual information access from the 

consumer side is compelling. This drives the research commtinity to look beyond the 

fraditional databases and information systems which are limited by the fact that they 

work well with only alphanumeric information. The fundamental problem is that 
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visual data are vastly different from alphanumeric data and require totally different 

approach and techniques of indexing and retrieval. 

Future information system will be required to have the capability to process 

and retrieve visual information by content just as human beings routinely do. Next 

generation information systems will have a rich visual content, and there will be a 

shift in emphasis from a paradigm of pre-dominantly alphanumeric data processing to 

one of visual information processing. The traditional Information System (IS) will 

mutate to a new kind of information system: Visual Information System (VIS) 

[LEUN97a, LEUN97b, LEUN99, S096b]. It is expected that VIS will maintain all the 

sfrengths and fulfilUng all the fimctions of the former as well as open up a new 

horizon of enriched information processing. Not only can we correlate more 

meaningfully different kinds of information, the availability of previously imtapped 

information sources will greatly enhance the effectiveness of an organization. 

Although there has always been a demand for visual information, the 

technology for such systems was either immature or unavailable in the past. VIS is 

now becoming increasingly feasible because of a number of factors. 

1. Advances in multimedia hardware for the efficient capture, storage, 

processing and delivery of visual information, which now pervades all 

categories of computer usage and is not just confined to certain specialized 

applications. 

2. Ongoing improvement in software methodology for the effective handling 

of visual data and facilitated by the development of standards. 
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3. Advances in consumer demands such as the Intemet and in digital 

communication such as FDDI, ATM and other high speed networking 

equipment, which by providing a significantly higher bandwidth, will 

enable the efficient fransmission and delivery of visual information. 

4. Widespread adoption of multimedia chips and general-purpose chips wdth 

multimedia functions. 

There are many important issues in Visual Information Management that 

need to be addressed and, in this chapter, we will provide a unified perspective of 

these issues. This chapter is organized as follows. Section 2.2 briefly outline the 

characteristics of a conventional information system. The definition of Visual 

Information System is then provided in Section 2.3. Different aspects of Visual 

Information Systems are examined in Section 2.4. Section 2.5 describes different 

visual information contents and highlights the importance of inter- and intra-

relationships of visual contents. The main features of a visual information system is 

then illustrated by an example. Section 2.6 examines the building block of a visual 

information management system. Finally, we conclude this chapter with a summary in 

Section 2.7. 

2.2 Conventional Information Systems 

The chief function of an information system is to provide information that 

can be easily tmderstood and used. Such information needs to be provided not only in 

a timely fashion, but it must be presented in a form that is intelligible and natural so 
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that the information can be readily applied to solving management and decision 

problems. The efficient operation of an organization depends on people at various 

levels making correct or good decisions. While the decision making process requires a 

certain amount of judgmental input, a good decision always necessitate the availability 

of relevant information. Therefore, an Information System may be defined as an 

integrated, user-machine system for providing information to support the operations, 

management and decision-making fiinctions in an organization [DAV185]. At the 

stmctural level, it is made up of a set of components or subsystems that captures, 

processes, stores, analyzes, condenses, and disseminates information in various forms. 

c^> Processing 
Procedures 

Text Inputs 

Tapes Disks 

Figure 2.1 The Characteristics of A Conventional Information System 
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The typical characteristics of a conventional information system is shown in 

Figure 2.1. A conventional information system [ALTE96, SENN90, STAI96] is 

mainly based on alphanumeric input and alphanumeric output, which may be 

structured data fields or free text, and the \y^e of processing involved is usually 

symbolic fransformation or simple computation. A distinction is often made between 

data and information, where the former consist of unprocessed facts which may be 

useful, but most often are not readily useable. Useable information means that the 

associated data are organized and presented in such a way that the semantic richness 

of the information is clearly brought out. In addition, information that is useable at a 

particular level may not be readily useable at a different level. An example is data 

warehouse applications, where the availability of operational information used for 

online fransaction (OLTP) typically do not permit data warehouse, time-related 

summary queries to be efficiently answered. 

2.3 Definition of Visual Information Systems 

Visual information systems are not just about the incorporation of new data 

types into existing information systems; rather, they require completely new ways of 

managing, using and interacting with information. It is tme that the syntactics of the 

visual data are important. But more importantly, the semantic associations to the data 

are the most useable and naturally accessible information to users. 

We must emphasize that visual information systems are not all about visual 

information retrieval. Other aspects not related to retrieval are equally important. It is 
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true that the retrieval aspects are fundamental and very important to the success of 

visual information systems. However, we beUeve the usability of the visual 

information within the context of man-machine interaction is far more important. The 

analogy to this is that the conventional information system is not solely concemed 

with the retrieval of data records. The proper retrieval of data records should be dealt 

with by databases. Information systems have a much broader scope than data retrieval 

as outlined in the previous section. Therefore, we must emphasize the usability of the 

visual information. Figure 2.2 shows the three levels of visual information retrieval. 

Information to Users 

Figure 2.2 Three Levels ofVisual Information Retrieval 

It is interesting to note that the syntactic and semantic information is rather 

passive information. The usable information is the active information derived from the 
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inter-relationship of the visual information and supported by a framework that benefits 

the user. This filtered visual information enriches the information retrieval processes. 

Therefore, we stress the usability of the visual information and define Visual 

Information Systems as the following, 

A Visual Information System is an integrated, user-machine system 

which is able to perform a number of functions on visual, 

multimedia and conventional information to support the 

operational, management and decision-making processes in an 

organization. 

This definition treats Visual Information System as an absfract field of study. 

This is parallel to the freatment of the fraditional IS field. It emphasizes the 

applicability of usable visual information for the benefit of an organization. Also, we 

do not foresee an abrupt change from the fraditional Information System to the Visual 

Information System defined above; it is a continuing and evolving process which 

depends on the maturity of a number of factors such as the indexing and retrieval 

techniques of visual information contents. 

2.4 Aspects of Visual Information Systems 

Similar to traditional information systems, the aspects and issues involved in 

visual information systems are very diverse and multifaceted [CHAN92, BERR93, 

DELB98]. In this section, we will provide views on various levels of visual 

information systems. These include (1) the high-level view of VIS which outUne its 
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different components, (2) the system view of VIS in relation to the multimedia 

platform, (3) the computing platforms, and (4) the storage required to support VIS. 

Some of the major components in VIS such as the visual information contents, the 

multimedia database management system, the supporting tools and the applications 

will be further described in subsequent sections. 

2.4.1 High-level View of Visual Information Systems 

The high-level conceptual model of Visual Information Systems consists of 

five components: visual and meta-data, processing and supporting tools, a multimedia 

database management system, computer-based applications, and users. Figiue 2.3 

shows the high-level view of visual information systems from the prospective of an 

enterprise [LEUN98]. It is also a full system model of visual information systems 

involving visual data at all levels. The separation of visual information from the 

alphanumeric information is not necessary in our model. They are used by all types of 

users such as strategic management executives, operation managers and non-

management employees in the hierarchy of an organization. 

Figure 2.3 forms the skeleton of Visual Information Systems. It outlines the 

focal points for fiirther discussion at various sections in this chapter. The 

characteristics and ftmctionalities of each major component wdll be dissected and 

examined in detail. 
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Figure 2.3 High-level View of a Visual Information System 
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2.4.2 System View of Visual Information Systems 

The system view of Visual Information Systems comprises three layers as 

shown in Figure 2.4. They are the application layer plus the multimedia layers. The 

multimedia layers include a multimedia operating system (MMOS) interfaced with the 

multimedia hardware and resources; VIS is an application layer sitting on top of the 

multimedia layers. It is primarily concemed with the semantics, and possibly 

pragmatics, of multimedia information which occurs at a higher level much closer to 

the user. This sets it apart from the conventional wisdom and definition of Multimedia 

Information Systems. The latter has less clear separation between the low level 

multimedia aspects and the high level semantic information than our VIS definition. 

Application 
Layer 

Multimedia 
Layers 

VB 

iVJMO£l 

MM 
iJa-rUv'/ii-ry 

* MMServer & Networking 
* Real-time Support 
* Synchronization 
* MM Device Drivers 
* MM Development Support 

* Random Access Storage Devices 
- Hard disk, CD-ROM, LV Disk 

* Sequential Access Storage Devices 
- AV tape, DAT, 8MM tape 

* Capturing Devices 
- Scanner, Digital Camera, Sound & Video Cards 

* Playback Devices 
- VCR, LV Player, Audio & Video Players 

* Networking Devices 
- Ethernet, FDDI, ATM 

Figure 2.4 System View ofVisual Information Systems 
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A multimedia operating system (MMOS) takes on the role similar to 

conventional operating system but with added facilities to support the sharing of 

multimedia resources. The multimedia operating system encompasses a large variety 

of multimedia devices with strict real-time consfraints. The synchronization and real­

time support of multimedia data streams are the prime supporting functions of 

MMOS. Multimedia server with networking capabilities [ANGE97] are needed to 

support multiple clients and data sources across a distributed computing envfronment. 

Sharing multimedia content in a distributed environment poses a unique challenge to 

the conventional servers [FURH94, FURH95]. Another important aspect of a 

multimedia operating system is the provision of a highly visual and standardized user 

interface so that the user is familiar across different applications within the visual 

information system as outlined in Figure 2.3. 

The hardware devices requfred to support a VIS application is far more 

complex than a conventional IS application. We can roughly divide them into five 

categories: 

1. Random access storage devices. These devices are characterized by the 

ability of organizing multimedia data on the storage medium to be read 

and/or written without a sequential search. Most of the random access 

storage devices such as CD-ROM and other laser video disks employed in 

multimedia appUcations are read-only. This is because cost considerations 

prohibit using conventional R/W devices such as hard disks to store a 

large amoimt of multimedia data for any practical use. 
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2. Sequential access storage devices. These devices are characterized by the 

sequential arrangement of multimedia data on the storage medium. They 

include any analog storage device such as VHS tapes and any digital 

storage device such as DAT. Because of the lower cost, they are best 

suited for back up as well as storing cold multimedia data. 

3. Capturing Devices. These devices are used to take-in different extemal 

multimedia sources. They include scanners, cameras, soimd and video 

capturing cards etc. A nmnber of standard formats may be needed for 

various sources. 

4. Playback Devices. These devices are used to playback any segment of the 

multimedia sources. Not all devices that can playback are appropriate. For 

example, household VCRs are not appropriate for large-scale production 

systems as they are usually lack of precise control and synchronization. 

5. Networking Devices. These devices are important if a distributed 

environment is necessary. Because of the high bandwidth required by 

multimedia data, FDDI and high speed commimication equipment such 

ATM are usually employed. 

There are many other specialized devices needed for some VIS applications. For 

example, a geographical information system may employ high speed plotters and 

large size digitizers. Some of tiie aspects discussed in tins section will be fiirther re­

visited at different contexts in the next sections. 
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2.4.3 High Performance Computing Platforms 

In order to effectively process visual and multimedia information, powerful 

processing capacities are essential to realistically match user expectations and real­

time constraints. Platforms based on multimedia chips or general-purpose high 

performance chips with rich multimedia instmctions are typically deployed. This is 

often coupled with the use of high bandwidth networks, distributed or parallel servers, 

and operating systems geared to multimedia functions (see Figure 2.4). 
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Figure 2.5 I/O and Storage Components of a Visual Information System 
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A wide range of I/O and storage devices is necessary to support a more 

natural and visual interaction with human users. Figure 2.5 outlines the different 

components vital to any visual information system. We can classify these components 

into three major categories: 

1. Input components. These include conventional keyboard input, scanned 

input, voice or audio input, video input, MIDI input, pen-based input, 

gesture-based input and any extemal input. 

2. Output components. These include screen output, printed output, high 

resolution display output, audio output, MIDI output and any extemal 

output. 

3. Storage components. These include hard disks, compact disks (CD), laser 

video disks (LVD), video compact disks (VCD), digital video disks 

(DVD), jukeboxes and many other tertiary storages such as AV tapes, 

DAT and 8mm tapes. 

Although we have listed a v̂ dde range of I/O and storage devices, it is not 

necessary to have all of these devices present in a particular system, and the relative 

importance ultimately depends on the given application. For example, audio input and 

output devices may not be necessary for a visual information system dealing with 

images only. Although not shown explicitly, a high performance processing 

component is necessary to underpin such systems. 
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2.4.4 Storage Consideration 

As visual data objects are orders of magnitude larger than conventional 

stmctured records, large capacity storage systems are required to hold the data ui a 

visual information system. To highlight the storage requirement, we provide a 

comparison of different common media types in Table 2.1 [BHAS97, HOFF97, 

RA095]. To reinforce this point, let us consider an example using CD-ROM to store a 

video clip with broadcast quality. From Table 2.1, 720 x 480 resolution with 30 

frames per second requires 31.1 Mbytes for a second of video clip if the data are not 

compressed. For a 650 Mbytes CD-ROM, only 21 seconds of video can be stored. 

Even with compression such as MPEG-1, only 74 minutes of VCR quality video can 

be stored in a single CD-ROM. 

Besides the large capacity of storage requirement in visual information 

systems, we need to have sufficient bandwidth to deUver visual information in an 

efficient and timely manner. The use of extensive secondary and tertiary storage will 

be unavoidable in large visual information systems. In the long term, hierarchically 

organized storage systems covering a range of retrieval speeds, costs, and capacities 

will need to be managed [GEMM95]. Algorithms goveming the staging and migration 

of multimedia data will need to be incorporated. 
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1 Media Types 

1 Text: 

ASCII (a page) 

Image: 

Binary Resolution 
- Fax CCITT G3 

Medium Resolution 
-VGA 

Detailed Resolution 
-SVGA 

Audio: 

Voice 
-Telephone 
- Audio conference 

Digital Audio 
- CD quality 
- AC-3 as in HDTV 

Video: 

Low Resolution 
-VHS SMPEG-1 
- GIF as in H.261 

Broadcast Video 
- CCIR601 NTSC 
- CCIR601 PAL 

HDTV (GA) 
- High Level 

Uncompressed data c 

Resolution 

~ 2000 chars 

A4 - 1728 X 2444 

640x480 

1024x768 

8 Ksamples / s 
8 Ksamples / s 

44.1 Ksamples/s 
48 Ksamples / s 

352 X 240 
352x288 

720 X 480 
720 X 576 

1920x1080 

mlv. Different comp 

Bits per Unit 

8 bits / chars 

1 bits / pixel 

8 bits / pixel 

24 bits / pixel 

8 bits / sample 
16 bits/sample 

2 x 16 bits/sample 
6x 18 bits/sample 

12 bits / pixel, 30 fps 
12 bits/pixel, 30 fps 

24 bits / pixel, 30 fjps 
24 bits / pixel, 25 fi)s 

24 bits / pixel, 30 f^s 

ression schemes are usee 

Storage Capacity' 

2 Kbytes / page 

0.5 Mbytes / page 

307 Kbytes / image 

2.36 Mbytes / image 

64 Kbits / s 
128 Kbits/s 

1.41Mbits/s 
5.18Mbits/s 

3.80 Mbytes/s 
4.56 Mbytes / s 

31.1 Mbytes/s 
31.1 Mbytes/s 

186.6 Mbytes/s 

to reduce the storage 
and transmission requirement. 

Table 2.1 Comparison of Different Media Types 
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2.5 Visual Information Contents 

Data are raw facts that may or may not be meaningful to the users. 

Information is processed data that is meaningful for a particular use. In visual 

information systems, the basic data types and information contents are far more 

complex than in traditional information systems. We are no longer working with 

alphanumeric texts. The data modeling techniques using records, structured data and 

tables are hardly sufficient to capture the vastly different forms of visual contents. 

Content-based information retrieval techniques must be employed to address the 

central needs of visual information retrieval. Meta-data generated from the media 

types are used to provide the indexing and retrieval information. However, the 

accurate retrieval of visual information contents is a major problem today. Hence, 

content-based visual information retrieval will be an on-going research focus. 
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• Multimedia 
objects etc. 

Figure 2.6 Transformation from Raw Data to Visual Information 
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In our view, there are five basic types of data in visual information systems. 

These include texts, audio, images, graphics and video. Each data type can be filtered, 

processed and transformed into its meaningful information content as shovm in Figure 

2.6. The processing of data can be performed automatically, semi-automatically, or 

manually. Generally, syntactic information can be processed automatically. For 

example, color histograms as a form of feature vectors in images can be computed 

automatically. On the other hand, semantic information is often extracted manually. 

For example, the emotion of an actor in a video clip is annotated manually. Figure 2.7 

shows the general scenario of information processing which depends on the level of 

absfraction for the information content. 

Syntactic 
Information 

Automatic 
Processing 

Semantic 
Information 

Manual 
Processing 

Figure 2.7 General Scenario of Information Processing 

In this section, we will provide an overview of visual information contents. 

The importance of inter- and infra- media relationships is emphasized in Section 2.5.1. 

The main features of a visual information system in relation to different visual 

contents are illusfrated by a specific example of a law enforcement application in 

Section 2.5.2. The rich data contents and the diverse media relationships for this type 
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of application reveals and demands the needs for an efficient and effective visual 

information system. 

Text-based Content 

Text-based content is the most widely used in traditional IS and comes in a 

variety of forms. It can be represented using keywords, free-text, stmctured records 

etc. Keywords and stmcmred text can be indexed using established automatic 

indexing algorithms [SALT89]. Relational and object-oriented databases are the basic 

models for representing stmctured records. Although object-oriented databases offer 

greater scope for accommodating multimedia objects, they do not in general provide 

tools for their manipulation and identification. Free-text such as the annotation of 

images and videos can be indexed using free-text oriented databases. The ambiguity 

inherent in English can be minimized by using a thesaums and classification methods. 

Audio-based Content 

Audio-based content [SCHA97] is the least researched area in content-based 

retrieval. It can be stand-alone content or tied to video-based content. Parsing of audio 

content can be done by signal processing and spectrum analysis. Although it is 

unlikely that automatic extraction is possible due to the multiplexing of different 

sources of sound in real-life scenario, some simple soimd patterns such as door bells, 

hand clapping or engine vibration can be detected using model-based approaches if 

the background noise can be minimized. Voice analysis can be done to locate the 
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"signature" of any individual voice, and speech recognition programs may be 

employed to exfract input semantics. Audio content may be used in conjunction with 

visual-based content to identify target image sets or video clips. 

Graphics-based Content 

Line arts, synthetic images and computer animation may be described by 

their geometrical properties. The line, polygon, siurface patches and many 

mathematical entities can be indexed numerically, and this form of content can be 

easily manipulated and computed. The motion of objects in computer animation can 

be traced and the sequences of events can be indexed. In some simations, it may be 

more efficient to index the characteristics of the underlying graphics generation 

algorithms, since fast searching and identification may be done using text-based 

pattern matching procedures. 

Image-based Content 

Image-based content is the most researched area in content-based retrieval. 

Image content such as color, texture, object shape, sketch-based feature can be 

indexed [NIBL93]. Proximity among objects can also be represented. Color 

histogram, moment/cenfroid, segmentation, and other primitive features can be used 

to form the feature vectors, keys or signatures of the images. The information can then 

be indexed for similarity retrieval. Image compression techniques are useful not only 

for transmission and size reduction, but can also be used for indexing, identification. 
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and signature constmction. Visual queries, sketches and fuzzy matches are some of 

the techniques that can be used for query formulation. Due to the imprecise nature of 

queries, browsing through miniature icons, compressed images or picture keys would 

seem to be indispensable operations in image retrieval systems [S096a]. 

Image-based contents can be categorized into complex contents and primitive 

contents with different methods for their extraction. Primitive contents [LEUN95, 

ZHEN95] are low-level contents which can usually be extracted automatically by 

computers (eg. textures, colors, botmdaries, and shapes). Complex contents [HIBL92, 

HIBL92, LEUN95] are extracted manually or human-assisted using computers, and 

corresponds to patterns within a picture which are considered as meaningful by human 

users and may be applications dependent or applications-independent. They cannot 

normally be automatically identified by the computer and are often qualitative in 

character (eg. a class room, a bride, a sports car). 

Video-based Content 

Video-based content retrieval has been atfracting substantial research 

interests recently, possibly due to the demands arising from consumer elecfrorucs. In-

house shopping, elecfronic kiosk, and video-on-demand are some of the commercial 

driving forces. Motion vectors, salient video stills, annotations and video partitioiung 

are some of the methods employed for indexing and retrieval. The spatio-temporal 

aspect of objects between frames is an important property that needs to be indexed. A 

sufficiently fast index to support real-time retrieval and playback would appear to 

pose a considerable challenge. 
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2.5.1 Inter- and Intra- relationships ofVisual Contents 

The relational data model infroduced by E.F. Codd in 1970 has been 

extremely successful among different classes of databases. This is largely due to the 

highly stmctured data organization and proven theories in such model. Although the 

relational paradigm works very well for text-based information, it is hardly sufficient 

for visual contents. Laying everything into table stmctures and using relationships to 

associate entries scantily met the needs to model the rich data contents and diverse 

media relationships. 

Holding different categories of information will require storing the 

relationships between the different media. Intra-media data relationship will need to 

be stored, which signifies the relationship between data of the same media type. For 

example, the relationship between different entities in a conventional database are 

represented variously by joins, foreign keys, and aggregation hierarchies. Inter-media 

data relationship signifies the relationship between data belonging to different media 

types. Examples include the synchronization between video and soimd, a still image 

and associated textual descriptions, and an individual's voice print and fingerprint. 

Without better frameworks and data models for visual data, we would like to 

emphasize the importance of infra- and inter- media relationships using the notations 

from the popular ER modeling. This is shown in Figure 2.8. It is an abstract view of 

different media types in relationships with each others. For simplicity and without lost 

of generaUty, the inter-media relationships are represented in the degree of four. They 

are in many-to-many-to-many-to-many relationships involving text-based contents, 
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image-based contents, audio-based contents and video-based contents. It is, however, 

somewhat incorrect. Techiucally, they should be binary, temary and/or 4-nary 

relationships among all the different media types depending on the specific 

requirement. For example, if only text-based and image-based contents are involved, 

only binary relationships are involved. The cardinality ratio should be M:N. 

Furthermore, the infra-media relationships represented in Figure 2.8 for each media 

type signifies the importance of relationships among the same media type. They are 

not the recursive relationships as in the fraditional ER concepts. 

Image-basec 
content 

Text-based 
content 

Audio-based 
content 

Video-based 
content 

Inter-media Relationship 

Intra-media Relationship 

Figure 2.8 Inter-media and Infra-media Relationships 

One of the major difficulties in representing infra- and inter- media data 

relationships is the imprecise specification of retrieval information. Hence, unique 
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keys or consfraints are not always achievable. It is the reason that altemative data 

models beyond the classic relational data model are needed. Also, since the retrieval 

or query formation is mostly imprecise, techniques in classification, clustering, or 

relevant feedback are often used to facilitate the searching process [S096c, S097a]. 

2.5.2 An Example: VIS for Law Enforcement 

For concreteness, we shall illustrate the main features of a visual information 

system by making use of a law enforcement application where a collection of visual 

and textual data for criminals must be managed. This provides a particularly 

appropriate example to highUght the effectiveness of VIS because of the integrated 

Psychiatric History [ Criminal Profile 

"d & -^ 

Figure 2.9 Components of Criminal Profile 
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nature of different data sources. Without the management by an integrated visual 

information system, the inter-relationship between different types of information will 

be difficult to exfract from the fragmented and sometimes isolated documents or 

materials. 

Relevant Data 

Personal Details 

Fingerprints 

Mug shots 

Photofits 

Voice Samples 

Photo / Video Clips 

Permanently 
Identifiable 
Features 

Personal / 
Family History 

Psychiatric 
History 

Criminal 
History 

Media Type 

Structured 
Information 

Image or 
Graphics 

Images 

Graphics 

Audio 

Images / 
Video 

Text or 
Images 

Text 

Text 

Text 

Examples 

Age, sex, race etc. 

From crime sites, from previous 
offences etc. 

From previous offences, from family 
albums etc. 

Composed by witness using 
Identikits 

From telephone taps, blackmail 
conversation etc. 

From robbery, from banks' cameras, 
from tailing by police etc. 

Tattoos (images), finger chopped off 
(text or images) etc. 

Description of childhood, parent 
profiles, habits etc. 

Classification of the criminal, 
patterns of behavior etc. 

Types and styles of previous 
offences, weapon used etc. 

Table 2.2 The Media Types and Examples of Criminal Profile 
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There are many sources of information that needs to be managed in a visual 

information system for criminals. Personal details, criminal history, finger prints, for 

examples, are just some of the essential components. Figure 2.9 shows some of the 

components of a criminal profile to be used in building the visual information system, 

with the media of each component given in Table 2.2. 

To use the system effectively, a number of paradigms may be adopted: 

• Personal details can be retrieved using the conventional database and 

conventional query language such as SQL. 

• Personal, psychiatric, and criminal historical information can be indexed 

using free-text indexing together with standard information retrieval 

techniques. 

• Techniques from content-based image retrieval and content-based video 

retrieval will need to be employed for the indexing and retrieval of mug 

shots and video clips of criminals. 

• Graphics contents can be scaled and modified numerically for similarity 

search. 

• Automatic exfraction of primitive contents such as mustaches, spectacles, 

contours of faces, voice features and other features of criminals. 

• Voice characteristics may be matched and edited graphically. 

• Complex contents from photos can be exfracted and indexed with human 

assistance. 
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Fingerprint information may be matched and retrieved using a 

combination of signature and classification schemes. Four typical groups -

Arch, Loop, Whorl and Composite - are shown in Figure 2.10. Natural 

fingerprints may be composed of complex noise and disconnected virtual 

lines, and it is necessary to use some preprocessing techniques for image 

enhancements to improve their quality. 
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(a) Arch (b) Loop (c) Whorl (d) Composite 

Figure 2.10 Fingerprint Classification 

The effectiveness of this system is evident when an integrated query is 

performed. For example, a police detective may query the Criminal Profile System for 

"a male criminal who classified as exfremely dangerous, has a tattoo of an eagle on 

his back and his left-thumb fingerprint is whorl". This query explores the inter-media 

relationship among personal details (eg. male), psychiatric history (eg. extremely 

dangerous) and permanently identifiable features (eg. tattoo and finger prints), which 

are represented as stmcmred information, free-text and images respectively. The intra-

media relationship of similarity search in tattoos (eg. eagle) and fingerprint (eg. 

whorl) wall also be requfred. 
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2.6 Building Blocks of Visual Information 
Management Systems 

The key components of visual information management systems consist of a 

complete and fully fimctional multimedia database management system supported by 

a number of processing tools catered specifically for the indexing and retrieval of 

visual information. In Section 2.6.1, we will present our view on the essential 

composition of a multimedia DBMS. It is largely consistent with the dfrection of 

many leading researchers in the areas of Multimedia DBMS and Visual Information 

Management. Since the handling of visual information requires exceptionally large 

numbers of supporting and processing tools, a list of the tools is provided in Section 

2.6.2. Also, a number of applications in relation to the visual information management 

are discussed in Section 2.6.3. 

2.6.1 Multimedia Database Management Systems 

The rapidly growing research and development in multimedia computing has 

been quite significant in recent time. The demand of Multimedia DBMS is becoming 

critical for many applications. Although the history of multimedia or pictorial 

databases can be fraced back to two decades ago [CHAN80, GROS92], they were 

mostly domain-specific using fraditional database technologies such as the relational 

database as the backbone for their implementation. Due to the complexity of visual 

data, the short-coming of using relational databases for multimedia DBMS are 

evident. Hence, the adoption of hierarchical data models [GUPT91], object-oriented 
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databases [CARD93], object-relational databases [OGLE95] are proposed. 

Unforttmately, they are far from adequate. This is the key factor luniting the number 

of commercial multimedia database management systems available today. Therefore, 

research in Multimedia DBMS is actively pursued [ADIE97, GROS97a, GROS97b, 

MARC96, NARA96, NWOS96, NWOS97, PRAB97, SUBR96]. 

The difference between traditional databases and multimedia databases can 

be characterized by the following features: 

1. Large storage sizes: The storage requirements for audio, image and video 

together with the meta-data such as feamre vectors, signatures and motion 

vectors are extremely high in comparison to traditional texmal databases. 

Large memories and tertiary storages are required to hierarchically 

manage the data at different levels. This leads to issues on performance 

and data placement to support the media requests. 

2. Spatial and Temporal nature: The visual contents, for example, audio and 

video are time-dependent and continuous in nature. Image- and graphics-

based contents are spatial in character. This is very different from standard 

alphanumeric records and tables in traditional databases where well-

defined mathematical data models are used. 

3. Coexistence of raw and semantic information: Raw media data are 

difficult to handle. They are awkward to retrieve, update and store. Meta­

data which can capture the semantic information are generally used to 

retrieve them. Such retrieval are imprecise in natore and often resolve to 
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similarity matching. Hence, the browsing operation is a typical operation 

in multimedia databases. 

To build a multimedia database system, some of the main properties and 

techniques used in traditional databases are desirable [ELMA94, GROS97b, SILB97]. 

For examples, the ACID properties (Atomicity, Consistency preservation. Isolation, 

Durability or Permanency) on fransaction management are highly desirable. 

Concurrency control techniques, recovery techniques, security techniques and version 

control techniques are particularly useful for advanced multimedia database systems. 

Although some of the functions found in a multimedia database system resemble 

those in a traditional database, the complexity and characteristics in different visual 

contents demand new functionalities and techniques. For examples, it will be almost 

impossible to roll back a transaction that updates a large video object. Defining the 

right granularity for conctuxency is difficult for continuous media objects. Scheduling 

and synchronization of different media streams under intense user interaction during 

playout is an added challenge. 

The major components of Multimedia DBMS include 1) Playout 

Management, 2) Query Management, 3) Transaction Management, 4) Meta-data / 

Content-based Management, and 5) Data Placement and Storage Management as 

shown in Figure 2.3. Although there is no consensus on what components should be 

included in the Multimedia DBMS, the illustrated components are generic enough that 

any Multimedia DBMS should at least include them. It is tme that not all features in 

each component are requfred, and may be eliminated for certain domain-specific 
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muhimedia databases. For example, if video data are not involved, disk striping for 

data placement is not required. 

Playout Management 

The functionality of Playout Management [THIM95] is to orchestrate the 

multimedia presentation upon user's request and interaction. This is for lower level 

data stream handling and mainly interacts with the data placement and storage 

management component. The fundamental tasks for playout management include: 1) 

Device Management, 2) Data Stream Management, 3) Synchrortization Enforcement, 

and 4) Support of Interactivity. Presenting multimedia data under real-time constraints 

in a distributed environment is not a trivial matter particularly with large objects such 

as video. 

Query Management 

Query Management is concemed with servicing the user's request. Unlike the 

fraditional databases, query processing can involve a number of different contents and 

media types. Visual queries can be formulated using the following paradigms: 

• text 

• color 

• texture 

• shape 

• volume 

• spatial constraints 

• temporal consfraints 
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• objective attributes 

• semantic similarity 

• browsing 

• domain concepts 

It mainly interacts with the meta-data / content-based management 

component. Generally, the specification and interpretation of visual queries are 

imprecise and subjective. Ranking of target objects coupled with relevance feedback 

to refine queries are usually required. Also, an integrated visual language or interface 

is also needed [CARD93, CHAN90, CHAN96a, JOSE88]. 

Transaction Management 

The functionality of Transaction Management is to ensure the proper 

execution of any fransaction so that the integrity of data in the database is maintained. 

Transactions in multimedia database systems tend to be long and computational 

expensive. Updating visual objects or meta-data can place a heavy demand on system 

resources. Therefore, the execution plan has more stringent constraints than that for 

fraditional databases. This is further complicated for a distributed and concurrent 

envfronment. 

Meta-data / Content-based Management 

Meta-data is derived data describing the contents, stmcture and possible the 

semantic of tiie data [PRAB97]. In Multimedia DBMS, meta-data for visual contents 

goes beyond titles, captions, authors, etc. of media objects. Useable information 

obtained from multimedia processing tools provides the semantic association to the 
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raw visual data. The exfraction and organization of meta-data through the support 

tools are the functions of Meta-data Management. Indexing can be performed on the 

meta-data to speed up searching. 

Data Placement and Storage Management 

As visual objects are orders of magnimdes larger than conventional 

stmctured records, hierarchical storage organization involving large secondary and 

tertiary devices are required. Data migration from slower devices to faster devices can 

be a problem if the real-time requirement of some objects such as video are not 

satisfied. The problem is further compounded by the requfrement of multiple data 

streams with multiple requests. Data placement such as multiple disks with striping, 

redundancy and interleaving are some of the techniques to provide simultaneous 

access of different data streams. Data compression schemes should also be used to 

reduce the storage and bandwidth requfrement [S096a]. 

2.6.2 Processing and Supporting Tools 

One of the major differences between traditional databases and multimedia 

databases is that the latter requires a large number of processing and supporting tools 

in order to exfract the requfred meta-data and supporting information. The purposes of 

these tools are to provide processing, manipulation and specification of visual data. 
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The collection of different tools should include at least the following items 

[GUPT97a]: 

• An image-processing tool. This supporting tool includes techniques for 

image analysis and modification. Segmentation, texture extraction and 

shape recognition are some of the common techniques in image analysis. 

The techniques in color equalization and filtering are often needed for 

image modification. This tool would also be used interactively in the 

image querying and insertion processes. 

• A feature-space manipulation tool. This supporting tool provides a better 

manipulation on the features and allows the specification of nearby images 

using such features. Users can explore the feamre space by clustering, 

classification and projection. If the feamres are represented in n-

dimensional vectors, some sorts of measures in distances are used to 

support the neighborhood search. 

• An object specification tool. This supporting tool compliments the low-

level shape recognition tool fotmd in the image-processing tool. It allows 

the specification of objects using a high-level perspective. For example, 

the shapes of a kangaroo in various images may be quite different (eg. 

hopping, sleeping or boxing) but may be referred as the same object. 

• A measurement specification tool. This supporting tool allows the 

measurement of objects or regions in size if such information is important. 
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For example, in geo-information systems, the area of a certain pattern will 

be used to determine the object's type. 

• A classification tool. This supporting tool allows the grouping of different 

visual contents and objects using certain conditions and criterions. 

Classification can be general purposes or domain-specific. It can also be a 

high-level semantic classification or a low-level grouping of syntactic 

features. 

• A spatial arrangement tool. This supporting tool allows the specification 

of spatial information related to objects in images or video. It is 

particularly useful in moving objects in which the interaction among 

objects are relevant. Very often, the locations of objects are normalized so 

that comparison can be performed relatively or absolutely. 

• A temporal arrangement tool. This supporting tool allows the 

specification of temporal information related to the events in video. It 

captures the temporal information such as the transitions of objects, scene 

changes and camera cuts. Users can query the database using some 

specific temporal events and retrieve sections of video based on those 

properties. 

• An annotation tool. This supporting tool allows the users to annotate the 

visual contents at different levels of absfraction. The annotation should be 

searchable using conventional database technologies. Thesauri are helpfiil 

to support ambiguous queries. Classification of terms can also be used for 
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search space reduction [S096c, S097a]. Annotation can be performed on: 

1) the regions within an image, 2) a whole image, or 3) a group of images. 

Stmctured data model [LEUN95] for the annotation of visual contents are 

better than the use of keywords or captions in an unconfrolled searching 

environment. 

• A data definition tool. This supporting tool allows the users to model the 

properties of the visual contents. Users can define the contents similar to a 

database schema which may contain domain-specific attributes or generic 

attributes. Besides the relational model, other forms of data modeling can 

also be used. 

• An indexing tool. This supporting tool provides the facilities to organize 

meta-data, features and other searchable information into some forms of 

fast searching strucmres. Tree-based accessing stmcmres are the most 

commonly used data stmctures for visual information and contents. This 

tool is important from the consideration of performance. Users will not 

tolerate a long response time for any given query. 

Depending on the appUcation, new tools may be required to assist the DBMS 

to acquire the appropriate information. In the object-relational multimedia database 

such as Illustra, the implementation of these tools can be done using the concept of 

Data Blade. 
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2.6.3 Applications of Visual Information Management 
Systems 

The use of visual information is not just confined to standard OLTP 

applications, but pervades all application categories, which include DSS (Decision 

Support System), ESS (Executive Support System), MIS (Management Information 

System), TPS (Transaction Processing System), Groupware System, Commuiucation 

System, Data Warehouse and Data Mining. In this section, we will present our view 

on the impact of visual information to these applications. 

Decision Support System 

DSS helps operational and senior managers to make decisions relating to 

unstmctured and semi-stmctured problems arising from various business situations. 

DSS supports analytical work by providing flexible tools and models for analyzing 

data, identifying and evaluating alternatives, selecting best solution and implementing 

the solution. Visual data can enhance the tmderstanding of a problem's dynamics and 

helps to pinpoint the cause of the problem and identify possible solutions. For 

example, in investigating the cause of an aircraft crash, video clips, images, soimd 

clips and flight-recording data together with a number of hypothesis and mathematical 

models may be used to decide what is the likely cause of the crash. In turn, a solution 

may be selected for fiirther simulation so that the problem can be rectified for existing 

operation and future aircraft designs. 
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Executive Support System 

ESS provides information for executives and are mainly used by senior 

management for strategic planning and charting future company dfrection, which 

typically includes information both from internal and extemal sources. The use of 

visual content will provide a better understanding of problems and business frends, 

and is particularly essential where the business deals with commodities inherently 

visual in character. For example, a fashion company may need to obtain the latest 

trends in the industry from various sources and to predict sales of certain styles of 

outfits in different regions of the world. It can also provide links to the information 

soiurces of related industries such as shoes, cosmetics which may also be highly visual 

in character. In ESS, the visual content must be easy to use and highly interactive, 

since it is unreasonable to require executives to tmderstand the specification and 

constmction of meta-data and the formats of the visual contents. 

Management Information System 

MIS provides information for the day to day management of an organization, 

with regular reports generated for operational and seiuor managers. Multimedia 

management reports can replace the traditional reports, where visual contents can be 

incorporated to enhance the expressiveness and presentation of the associated 

management information. For example, the operation of a turbine in a processing 

plant can be monitored not only by the associated niunerical data, but also by a video 

camera which continuously record the operation. Here, alphantuneric summaries 

together with snap shots of the operation can be provided for daily management. 
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Transaction Processing System 

TPS collects, processes and store data into stmctured information. Specific 

processing steps of the transaction are pre-determined and repetitive operations. 

Normally, a large amount of computational efforts are required. This is particularly 

tme where visual data are involved. The assunilation of raw visual data is usually 

domain-specific using different types of processing tools. For example, satellite 

images for the Bureau of Meteorology are continuously collected and processed using 

various image processing tools. Intervals of images together with analytical data are 

stored. 

Groupware System 

Groupware System provides the appropriate software to allow groups to 

work together on common data. It enables team members to collaborate on a task. 

ConfrolUng workflows and sharing information are two major components of the 

groupware system. The richness of visual data has a significant impact on groupware 

and workflow systems. We are no longer deaUng with alphanumeric data. Many 

issues such as secmity, authorship and bandwidth for visual data are becoming 

important issues. New paradigms are required to deal with them. 

Communication System 

Commimication System in the context of Visual Information System is no 

longer restricted to conventional E-mail systems. Voice-mails, video-mails, video-
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conferencing will become the norm of communication in the future. Communication 

Systems with multimedia capability will make the sending and receiving of visual 

data more transparent. Virtual whiteboards can pull people at remote locations to 

participate in an virtual environment. Intemet is becoming the loosely-coupled 

channel for communication and the major information source. 

Data Warehouse 

Data warehouses typically contain the integration of relevant data obtained 

from diverse operational database systems, which are summarized at various levels of 

granularity over certain time periods. Firstly, in the case of conventional data, 

effective data visualization techniques can help with the clear presentation of trends 

and the identification of problem areas over a given time horizon, which will facilitate 

the making of sound management decisions. Secondly, in certain businesses, the use 

of visual information for operational and decision making purposes is inevitable. In 

such situations, the data warehouse must be able to incorporate visual information for 

meaningful decision making. For example, one might wish to visualize the evolution 

of a given product's size and shape over time, and determine to what extent these have 

impacted sales and market share. 

Data Mining 

Data milting problems are ones relate to the discovery of associations and 

classifications of entities and data items. Very often, one makes use of certaui 
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available data to classify an entity and to estimate its likelihood of falUng udthin a 

certain category with prescribed characteristics. For example, if a criminal is seen to 

inflict injury on his victims in a particular characteristic manner, then a certain profile 

of that criminal may be postulated. Another example will be the correlation of 

graphical trends in different stocks: if stock A is found to behave in a particular way, 

then stock B will likely to follow a characteristic pattern within a month. 

2.7 Summary 

Visual information is being collected and used in a wide variety of 

application domains. With the widespread use of visual information, there is a 

pressing requirement to efficiently manage, store, manipulate and retrieve visual 

information. The demand for flexible visual information management will be critical. 

In summary, some of the main characteristics of visual information management are 

the following. 

1. The use of high performance computing platforms equipped with audio 

and video facilities, large disk storage and fast I/O for the effective 

handling of multimedia data, possibly based on multimedia chips or 

general-purpose chips with rich multimedia instmctions, coupled with the 

use of high bandwidth networks together v^th high performance parrallel 

servers. 

2. New storage and retrieval techniques are needed to be developed to cater 

the storage and real-time consfraints of visual data. Disk stripping. 
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staging, migration, and hierarchically orgaitized storage architectures are 

necessary and often needed to satisfy the consfraints. 

3. Visual information contents are derived from the raw data. Retrieval is 

mostly through the visual information contents. Inter- and intra-

relationships of visual contents are important to characterize the very 

nature of different media contents. 

4. Multimedia Database Management System is an essential element in 

Visual Information Management. It is quite different from the traditional 

database management because of the complexity to handle different visual 

data. A number of new issues, which cannot be found in the traditional 

databases, surface in multimedia databases and requfre new approaches to 

be addressed. 

5. Flexible image, audio and video analysis and specification tools will be 

routinely available to the users. This will assist the users in formulating 

and refining visual queries for processing and information matching by the 

system. 

6. The presentation and delivery of information is highly graphical. This in 

itself do not guarantee a system to be a VIS, as some conventional systems 

are also able to do this. Such presentation will involve the extensive use of 

visualization techniques, and will significantly enhance the value of 

usabiUty of the underlying information. 
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7. A flexible query model mvolving different modes of inputs which 

supports both visual information recovery and visual information 

discovery will also be used. In additional to the common relational 

operators, a new set of spatial, temporal, and dynamic operators supported 

by visual languages are needed in composing queries. 

8. The use of automatic and semi-automatic content-based indexing, 

retrieval, and feature exfraction techniques will form an integral part of the 

multimedia database. 

9. Visual information systems will incorporate the strengths of traditional 

information systems. Visual information can enhance the traditional IS 

applications such as Decision Support System, Executive Support System, 

Management Information System, Transaction Processing System, 

Groupware System, Communication System, Data Warehouse and Data 

Mining. 

The increasingly widespread adoption of multimedia platforms has made 

visual information more available. This also highlights the limitations of current 

information systems, which are primarily based on a GUI-assisted alphanumeric 

paradigm. Although certain forms of visual information processing systems afready 

exist, they tend to be restricted to highly speciaUzed applications such as medical 

imaging and engineering design. As human end users form an important part of an 

information system, and as they often prefer non-alphanumeric multimedia 

interaction, traditional information systems are expected to be evolved into visual 

information systems. VIS will not only allow more natural interaction between human 
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and machine, but will pervade all applications areas and substantially increase the 

fimctionality and effectiveness of information systems, operung up a new horizon of 

previously untapped information sources. 



Chapter 3 

Evaluation and Framework for Image 

Retrieval Using Compressed Data 

3.1 Introduction 

Among different visual contents, image contents constitute a major 

component in Visual Information Systems. Uninterpreted visual data such as raw 

images take up considerable storage and difficult to retrieve. The ability to efficiently 

index, store and retrieve images based on thefr contents is cmcial to the success of any 

visual information system. Over the years, many retrieval methods have been 

proposed and implemented ranging from color histogram, texture mapping, shape 

exfraction, to frizzy and neural implementations [NIBL93, OGLE95, PENT94 etc.]. 

Most of these techniques follow the general frend in image retrieval as shovm in 

Figure 3.1. Images are analyzed by the pre-determined method. Meta-data are 

52 



Chapter 3. Evaluation and Framework for Image Retrieval Using Compressed Data page 53 

produced either automatically, semi-automatically, or manually. These meta-data can 

be a set of feature vectors, keys or signatures extracted from the images. Textual 

information together with attributes may also be included into the meta-data to form 

the retrieval information. Relational, object-oriented, object-relational databases, tree-

based or custom-made data stmctures are generally used to house all these data. 

Compression can then be used to reduce the storage occupied by the original images. 

To facilitate browsing, thumbnail images are often generated. Although only a single 

retrieval method depicted in Figure 3.1 is illustrated, in practice, it is possible to have 

a combination of methods to form the retrieval scheme. 

V 

fp 

Retrieval 
Method X 

Image Database j c:> 

Meta-data: 

^ ••• 4^ 

Thumbnail & 
original images: 

# • • • 
# • 

Figure 3.1 General Approach to Image Retrieval 

Conceptually, the objective in image retrieval is to provide some sort of 

indices which can represent the details in a more organized fashion. The information 

used in the representation should be reasonably compact so that indexing can be 

performed. Figure 3.2 illustrates the general approach to the indexing and retrieval 
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problem. In most cases, the user does not usually have to know the intermediate 

representations as they are mainly performed by machines. However, the semantics of 

the query model and also the underlying data model will need to be understood by the 

users in order to effectively retrieve images based on thefr contents [GUDI95]. The 

intermediate representations generated from user query may not always precisely 

match with the intermediate representations generated from the image data. Similarity 

measure or approximation matching is often needed. 

Index :Ko 

Intermediate 
Representatioa 

Intermediate Intermediate 

Intermediate 
Representatioi 

Figure 3.2 Image Indexing and Retrieval 

Image indexing and retrieval techniques can be classified into two main 

categories; 1) spatial domain techniques, and 2) compressed domain techniques. 

Traditionally, the main stream approach to image indexing and retrieval is in spatial 

domain. They exfract and produce indexing and retrieval information directly from the 

images. Color histogram, texture classification, and shape exfraction are some of the 

examples in spatial domain. Recently, compressed domain techniques are emerging as 
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promising altemative to the indexing and retrieval problem. Instead of producing 

indexing and retrieval information directly from the images, such information is 

extracted from the compressed data. The obvious advantage to this approach is that 

many images are afready stored in compressed formats. It eliminates the needs to 

decompress images for indexing purposes. One disadvantage to this approach is that 

the characteristics of the indexing information are mainly governed or restricted by 

the compression techniques themselves. For example, some invariant properties are 

not always achievable since the formation of compressed coefficients may hinder the 

translational, rotational, scaling, or color invariant properties. Other advantages and 

disadvantages of using compressed data for image retrieval will be thoroughly 

evaluated in subsequent sections. 

In this chapter, a framework for image indexing and retrieval using 

compressed data is provided [S098]. In order to analyze some of the indexing and 

retrieval methods in compressed domain, it is necessary to provide a thorough 

treatment of the most popular techniques in data and image compression. Therefore, 

the taxonomy of image compression techniques is outlined in Section 3.2. It was 

followed by the algorithms of various compression schemes. The descriptions are 

sufficiently comprehensive so as to provide a better understanding of different 

approaches in image compression. Three representative examples of using compressed 

data based on DCT, VQ and wavelets for the purpose of image indexing and retrieval 

are provided in Section 3.3. A comparative evaluation is provided in Section 3.4. The 

common approach is identified and the desirable characteristics are expatiated. 

Problems associated with this approach are also discussed. 



Chapter 3. Evaluation and Frameworkfor Image Retrieval Using Compressed Data page 5 6 

3.2 A Taxonomy of Image Compression Techniques 

The root of data compression can be fraced back to the late 1940s when 

Claude Shannon at Bell Labs made a significant advance in the field of Information 

Theory. Practical compression techniques have been around for over half a century. 

The classic paper, which initiated the whole new avenues of data compression, was 

published by D.A. Huffinan in 1952 and the associated technique has since come to be 

known as Huffinan Coding. Originally, the advances of data compression were made 

for the coding of symbols such as texts. They were not specifically designed for image 

data. Since image data tends to exhibit a high degree of correlation, specialized 

methods have been developed over the years. Among all the image compression 

techniques, they can be categorized into two groups [DASA95]: 

• Distortionless, or error-free, data compaction 

• Error-prone, or lossy, data compression 

Error-free data compaction permits a reconstruction resulting in an exact 

reproduction of the original image. These techniques are referred to as lossless, 

information-preserving or reversible methods of data compression. The existing 

techniques for the coding of symbols are often used for lossless image compression. 

However, a number of lossless techniques are reported in recent years which exploit 

the correlated nature of image data and specialize the compression schemes solely for 

images. 

Under the category of error-prone data compression, the cost of the 

compression achieved includes not only the cost of the processes of compression and 
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decompression, but also a cost in terms of some distortion of the original image. 

These classes of compression schemes are referred to as lossy, non-information-

preserving, or irreversible methods. Lossy compression with high compression ratio is 

acceptable in this instance as long as the compression images are legible. But, in some 

image databases (e.g. medical imaging applications), the undistorted ftill images must 

be kept for the final retrieval. 

Still Image Compression 

Lossless Lossy 

Run-length Huffman Arithmetic Dictionary Predictive Subsample Subband Transform Vector 
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Figure 3.3 A Taxonomy of Image Compression Methods 

There are many techniques existed for lossless and lossy compressions. 

Huffinan Coding, Arithmetic Coding, Predictive Coding and Ziv-Lempel Coding are 

some of the lossless techniques. DCT (JPEG), Fractals, Wavelets, Vector 

Quantization (VQ) and Block Truncation Coding (BTC) are the major schemes in 
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lossy image compression today. Figure 3.3 illustrates the taxonomy of image 

compression methods. 

By virtue of the complexities of all these compression methods and thefr 

variations, we intend to describe the fundamentals of the algorithms oitiy. The 

implementation details are largely ignored. This approach is to provide a better 

understanding and insight of the algorithms and will be adopted for aU the coding 

schemes described in this chapter. 

3.2.1 Distortionless Data Compaction 

Run-length Coding 

Run-length coding is a simple and reversible technique for data compression. 

A run-length coder replaces a sequence of repeating symbols by the length of the run; 

once the sequence of identical symbols reaches a pre-defined level and such the 

replacement is advantageous to the overall compression. The idea is particularly 

suitable for black and white pixels such as Facsimile. 

To illusfrate run-length coding, we will consider two cases; 1) text 

compression used by IBM SNA™ (System Network Architecture) called the HDC 

(Hardware Data Compression) algorithm [HOFF97], and 2) facsimile compression 

standard specified by CCITT (now known as ITU-T) Group 3 and Group 4 -

Recommendations T.4 and T.6 [GONZ92, JAIN89, SAY096]. 
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HDC (Hardware Data Compression) 

The mles for the HDC algorithm are defmed as follows: 

• A sequence of consecutive blanks between 2 and 63 bytes long are 

substituted by a single control byte signifying the number of blanks. 

• A sequence of consecutive characters other than blanks between 3 

and 63 bytes long are substimted by 2 bytes with the ffrst byte being 

the confrol bytes signifying the number of characters and the second 

byte containing the copy of the character. 

• A sequence of non-repeating characters between 1 and 63 bytes long 

are prefixed by a single control byte signifying the number of non­

repeating characters. 

An example of the HDC algorithm is shown in Figure 3.4. Iiutially, the first 

eight blanks(b) are compressed into a single control byte, Cj, signaling the number of 

blanks is eight. Then the confrol bj^e, C2, designates a string of 12 uncompressed 

characters, HAIbCOMPRESS, to be followed. Next in the compressed sequence is a 

single control byte, C3, signaling the number of blanks is two. Then the control byte, 

C4, designates a string of 2 uncompressed characters, MM, to be followed. Finally, 

eight consecutive E's are replaced by a control byte, Cj, and the letter, E. Cj signifies 

the number of Es is eight. 
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bbbbbbbbHAIbCOMPRESSbbMMEEEEEEEE 

(a) A sequence of 32 characters to be compressed 

C7C2HA!bCOMPRESSC5C^MMC5E 

(b) The compressed sequence of 20 characters 

Figure 3.4 Example of the HDC Run-length Coding 

Facsimile Coding Standards - CCITT Group 3 and 4 

The CCITT has issued four recommendations to the Facsimile Coding 

Standards. Group 1 (T.2) and Group 2 (T.3) are using analog schemes to transmit 

documents over the phone lines. Group 3 (T.4) and Group 4 (T.6) are using digital 

schemes together with data compression to losslessly transmit a bitonal image over 

the phone lines. The recommendation for Group 3 has two coding schemes; a one-

dimensional scheme and a two-dimensional scheme. One-dimensional scheme is to 

freat the image as a sequence of scan-lines and the coding of each line is performed 

independently. The two-dimensional scheme makes use of the pixel values in the 

previous line as the predictors for the current line. Group 4 drops the one-dimensional 

scheme and simplifies the two-dimensional schemes for more efficient transmission. 

The characteristics of CCITT Group 3 and Group 4 facsimile schemes are outlined in 

Table 3.1. To illusfrate the basic concept of the run-length coding in facsimile 

fransmission, we will describe the one-dimensional scheme oitiy. 
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Algorithms 

Modified Huffman 
Coding (MH) 
[ one-dimensional ] 

Modified READ 
Coding (MR) 
[ two-dimensional ] 

Modified-modified 
READ Coding 
(MMR) 
[ two-dimensional ] 

ITU-T Rec. 

ITU-T T.4 
(CCITT G3) 

ITU-T T.4 
(CCITT G3) 

ITU-T T.6 
(CCITT G4) 

Brief Description 

A run-length description is first 
obtained and then followed by 
Huffman coding (separate codes for 
black and white runs). 

The pixels in the previous line are 
used as the predictors of the current 
line. MH coding is periodically 
inserted to MR coding to prevent 
error propagation. 

Error-protection mechanisms are 
eliminated from MR coding to 
maximize the overall compression 
efficiency. Error-free transmission is 
to be guaranteed by the channel. 

Table 3.1 CCITT Group 3 and Group 4 Facsimile Schemes 

For each scan-line in the one-dimensional coding scheme in Group 3, a series 

of alternating white and black runs are generated. Figure 3.5(a) illustrates an example 

of a line in an A4-size document which should have 1728 pixels per scan-line. The 

lengths for the alternating white and black runs are shown in Figure 3.5(b). Note that 

the first mn is always assumed to be a white run. If the first pixel is black, then the 

length of the first white run is zero. A variable-length coding scheme is then used to 

represent the run-lengths just to take advantage of different probabilities of various 

lengths. Since the probabilities of white and black lengths are also different, CCITT 

uses separate Huffinan codes for them (Huffinan coding will be described in the next 

section). However, the numbers of possible lengths can be very large (between 0 and 

1728 for a A4-size document). It is not easy to build a table of Huffinan codes witii so 
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many entries. Therefore, rather than using a Huffinan code for each run-length, it is 

expressed by a terminating code if the run length is less than 63. If the run-length is 

greater than 63, a make-up code and a terminating code are used. The make-up codes 

are in multiple of 64 not exceeding the mn-length. For example, a run-length of 129 is 

represented by the make-up code for 128 and the terminating code for 1. The Huffinan 

codes for the example are shown in Figure 3.5(c). Note that the terminating codes for 

black and white runs (e.g. 4) are different. Also, a unique end-of-line (EOL) code 

word is inserted to signal the termination of the current line. 

BBBBBWWWW...BBBBWWWWW~WWWWW 

(a) An example: each Une in A4-size document has 1728 pixels. 

0,5, 4,..., 4, 65 

(b) The alternating white and black mns for (a) 

00110101 0011 1011 ... Oil lion oooiii oooooooooooi 
W(0) B(5) W(4) ... B(4) W(64, I) EOL 

(c) The sequence of the Huffinan codes 

Figure 3.5 Example of the MH Coding (CCITT G3) 

Huffman Coding 

Huffman coding is one of the oldest methods in code constmction with 

minimum redundancy. It was originaUy developed by David Huffman in 1952 as part 

http://WWW...BBBBWWWWW~WWWWW
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of a class assignment in the area of information theory; the first ever class taught by R. 

M. Fano at MIT [SAY096]. Fano was also the inventor of the first well-knovm 

coding method commonly referred to as Shannon-Fano coding [NELS92]. Huffinan 

coding belongs to the category of statistical coding. By knowing the probability of 

each symbol in a message, we can, ideally, construct a table of codes with the 

following properties: 

1. Variable-length codes: different codes have different number of bits, but 

must be uniquely decoded. This is also referred to as the prefix codes. A 

code is called a prefix code or an instantaneous code if no codeword is a 

prefix of any other codeword [C0VE91]. 

2. Symbols that occur more frequently should be represented by codewords 

with fewer bits than the symbols that occur less frequently. This is 

obvious if we want to compact the data. 

Before we go on to describe the basic concept of Huffinan coding, we need to 

iterate some of the basic definitions in information theory. Let consider a source A that 

generates random symbols aj, a2, •••, a^. The probability of the occurrence for 

symbol a/ is P(ai), and such that, 

fp(a,) = l (3.1) 
( = 1 

The self-information for symbol a/ is then defined as 
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The average self-information or entropy of the source A is given by 

H[A) = ±P{a)l{a) = ±P{a)log^ (3.3) 

Note that the log is to the base 2 and entropy is measured in bits. Also, if n(ai) is the 

number of bits to code the symbol a/, then the average codeword length is defined as 

N 

.̂v. = E^(«,X«<) (3.4) 
(=1 

Symbol 

at 

E 

D 

S 

C 

0 

M 

P 

" 

Count 

3 

2 

2 

P(ai) 

1/4 

1/6 

1/6 

1/12 

1/12 

1/12 

1/12 

1/12 

I(ai) 

2 

2.585 

2.585 

3.585 

3.585 

3.585 

3.585 

3.585 

Code 

10 

001 

010 

Oil 

110 

111 

0000 

0001 

n(ai) 

2 

3 

3 

3 

3 

3 

4 

4 

Total bits 

6 

6 

6 

3 

3 

3 

4 

4 

Table 3.2 friformation Contents and Codes for "DECOMPRESSED" 

To illusfrate the concept, let us consider the following sequence of symbols 

DECOMPRESSED 

We have a source with 8 distinct symbols { E, D, S, C, O, M, P, R }. Let assume we 

have only these symbols and the probability of each symbol corresponds to the 
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occurrence in the sequence. Table 3.2 summarizes the information contents and 

suggests a code table for the symbols. The enfropy and the average codeword length 

are given in Eqs 3.5 and 3.6 respectively. The codes given in the table are in fact one 

of the Huffman codes which we will describe next. 

The average self-information or entropy is 

Hi A) = - X 2 -̂  - X 2.585 x 2 + — x 3.585 x 5 = 2.855 (3.5) 
^ ^ 4 6 12 

The average codeword length is 

Z = i x 2 - F - x 3 x 2 + — x 3 x 3 + — x 4 x 2 = 2.917 (3.6) 
""^ 4 6 12 12 

Note that the average codeword length is very close to the theoretical bound for this 

example. If we use a fixed-length coding scheme to represent the sequence such as the 

standard ASCII characters, we need 96 bits in comparison to 35 bits using the 

variable-length Huffinan coding scheme. 

Huffinan is one of the best knovm method to construct the optimal prefix 

code if the probability of each symbol in the source is given. Now let us look at the 

algorithm to constmct the Huffinan code: 

1. Arrange the symbols in decreasing order according to thefr probabilities. 

2. Merge the two symbols with the smallest probability to form a new 

symbol having the sum of two probabilities. 

3. Repeat Step 1 and 2 until there is only one member. 

To see how it is done, we refer to our example and generate the steps in Figure 3.6. 

For each step, we merge the two symbols v^th the smallest probability to form a new 
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probability for the merged symbol. We arbifrarily assign 0 and 1 to each pafr. In this 

way, the codewords corresponding to these two symbols will differ by this bit. The Ust 

of the symbols with one less than the previous step is fiirther sorted and the process is 

repeated. The code of each symbol can be fraced from the root node to the individual 

symbol. For example, the code for 'E' will be 1 - 0 (i.e. the code '10')-

Therefore, the sequence of "DECOMPRESSED" will be encoded as 

"00110011110111000000011001001010001" using our derived Huffinan codes. 

E 3 

D 2 

S 2 

C 

O 

M 

P 

R 

•3 

•2 

•2 

,2 

/ - 2 ^ . . ^ " 3 / 

./5. 
./ 

• 2 ^ .• / ^ 2 / 

.•/2 I 
•/ / 

/ - 1 - / ^ \ ' 

•4 

•3' 

/ "̂  / 
/ 

,./7 
/ y 

y 

• 5 ^ 

12 

' 2 ' 

Bit = 0 

B i t = l 

N/A 

Figure 3.6 Generating Huffinan Codes for "DECOMPRESSED" 

Given a table of Huffinan codes, there are two popular ways to decode any 

arbifrary length of encoded messages: 

Implemented by a binary tree - Since the Huffman codes are prefix codes, 

we can constmct a binary free with the leaf nodes corresponding to the 
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symbols. The encoded message can be parsed one bit at a time. The 

traversal of the tree is dictated by the arrival of bits until the leaf node is 

reached. The symbol is then output and the process is repeated until the 

message is exhausted. Note that this implementation is not very efficient 

as each bit required the traversal of one link in the tree. 

• Implemented by a table - A table can be constmcted with 2 ^ entries where 

A'' is the number of bits in the longest Huffinan code. For example, the 

longest code is 4 for our previous codes (i.e. 'P' and 'R'). All the entries 

in the table will be filled and dupUcated by the symbols having the prefix 

code (i.e. all the entries with 'lOxx' will be filled with 'E'). The decoding 

process is then by reading A'' bits at a time. Since any combination of the 

acmal code will point to the same symbol, the symbol can be quickly 

located. If the retrieved symbol has only L bits, the last N-L bits of the 

current Â  bits are retained to form the next A'" bits for next round. Readers 

may already realize that it is advantageous to generate Huffinan codes 

with minimum variance. Otherwise, the number of entries will increase 

significantly. The way to generate minimum variance Huffinan codes is to 

put the combined probability as high as possible in the list. Figure 3.6 is 

an example of this. 

Since the probability of each symbol affects its length, it is sometime 

impractical to generate a table with large entries. Consfrained or modified Huffinan 

coding such as the CCITT G3 described previously are commoitiy used. Also, the 

algorithm of Huffinan coding depends on the probabilities of the symbols to be knovm 
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a priori. Two passes (collection of statistics and the actual encoding) are required. To 

combine the two passes into one. Adaptive Huffinan coding schemes are developed to 

generate an encoded message based on the statistics of the symbols afready 

encountered [NELS92, SAY096]. 

Arithmetic Coding 

The major problem of Huffman coding is that symbols must be coded by 

integral number of bits. Hence, the theoretical optimal can not be achieved unless the 

probabilities of all symbols are in the integral powers of 1/2. Arithmetic coding is a 

better statistical coder by avoiding the need to translate symbols into specified codes. 

It treats the entire input stream of symbols as one unit and replaces the symbols with a 

single floating-point number. More digits (or bits) are generally needed to extend the 

precision of the floating-point number as the stream is getting longer. This floating­

point number is in the interval between 0 and 1 which can uniquely represent the 

entire message. 

The main idea behind arithmetic coding is fafrly simple and we will illusfrate 

the algorithm through an example. Let assume A= {ai, a2, a^, a4 } is the alphabet 

for a discrete source with P(ai) = 0.5, P(a2) = 0.2, P(a3) = 0.1, and P(a4) - 0.2. At 

the start of the encoding process, each symbol is assigned a portion of the interval 

between 0 and I according to its probability. The cumulative probabilities are used so 

that the sub-intervals are disjointed. Table 3.3 shows one such arrangement. The half-

open sub-interval represents the lower and upper limits of the symbol. For non-

adaptive arithmetic coding, these proportions are fixed through out the coding process. 
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Symbol ^. 

aj 

a2 

as 

a4 

P(ai) 

0.5 

0.2 

0.1 

0.2 

Range 

[0.0, 0.5) 

[0.5, 0.7) 

[0.7, 0.8) 

[0.8,1.0) 

Table 3.3 Example of Static Model for { aj, a2, as, a4 } 

Now, imagine we have a sequence beginning with a2 as a4 aj as . We would encode 

the sequence using non-adaptive arithmetic as shovm in Figure 3.7. 

After seeing the first symbol a2 in the sequence, any floating number in [0.5, 

0.7) will uniquely decode the symbol. Once this range is determined, the subsequent 

symbols will fiirther restrict the range using the same proportions of the original 

subdivision. Figure 3.7 illustrates the narrowing process ofour example. To uniquely 

represent the first five symbols, any floating point number in [0.6564, 0.6576) will 

suffice. The mid-value or the lower bound of the range is a popular choice for such a 

number. It is necessary, however, for the decoder to know the end of the sequence. 

Therefore, a special end-of-file symbol is needed to append at the end of the input 

sequence so that the decoder can properly terminate the decoding process. 
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0.0—1 0.6574 

0.658 0.6576 

Figure 3.7 Non-adaptive Arithmetic Coding with Input Sequence; a2 as a4 aj as. 

Given any floating point number, the sequence can be traced by narrowing 

the ranges. For example, the decoder can immediately deduce the first symbol is 02 

given any floating number in [0.6564, 0.6576) since it completely lies within [0.5, 

0.7). It is also within [0.64, 0.66) to be decoded as as and so forth. At the first glance, 

it is conceptually possible to encode a sequence using this algorithm. However, 

because of the finite precision in floating-point arithmetic, it is impractical to 

implement without any modification in producing the floating point number. Another 

problem to this algorithm is that one has to encode the entire sequence of symbols 
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before any release of the compressed bit sfream. Therefore, it is necessary to modify 

the original algorithm so that it has the following desirable properties: 

• Fixed-precision Arithmetic 

Using integer arithmetic with finite precision of 16 or 32 bits, one can use 

simple operations such as shifts and additions which is much better than 

floating-point arithmetic. For example, an implicit decimal point can be 

assumed on the left side of the integer. One can then have a fixed-

precision to represent a floating point number. Since it will eventually mn 

out of precision, the value is requfred to rescale. 

• Incremental Encoding and Decoding 

Rather than waiting for the entire sequence to be processed before 

fransmitting the first encoded bit, it is desirable to transmit portions of the 

code as the sequence is being observed. The decoder, on the other side, 

can start the decoding process as soon as sufficient codes are received. 

The concept of encoding sequence using floating-point arithmetic has been 

knovm for some time. Practical implementations using fixed-precision arithmetic and 

operating incrementally were discovered in 70s. It was based on the fact that once the 

most significant digits in the limits are the same. Any subsequent symbol will not alter 

their values. For example, the subinterval range after the second symbol, as , is 

always started with the value 0.6 and will not change for the rest of the sequence. 

Hence, we can fransmit the most significant digits once the upper and lower limits are 

the same. To recover the precision, the values can then be rescaled by shifting to the 



Chapter 3. Evaluation and Frameworkfor Image Retrieval Using Compressed Data page 72 

left. Although we use an example in decimal, the principle is the same in binary and 

the decimal can be implicit. Once the fransmitted bits are sufficient enough to decode, 

such as 0.6 in our example, the decoder can immediately determine the first symbol is 

a2 since it is in [0.5, 0.7). 

A number of design issues such as the problems of overflow and underflow 

in arithmetic are thoroughly described in [BELL90, WITT87]. The integer 

implementation can also be found in these references. Since the prescribed probability 

for each symbol is not changed throughout the sequence, the proportions of the 

subintervals are fixed. Adaptive model can also be used by allowing the variation of 

cumulative probabilities after each symbol is observed. 

Predictive Coding 

The concept of predictive coding is very simple. If the data is highly 

correlated such as images, we can predict the value from its neighboring data. The 

difference between the predicted value and the actual value is called the prediction 

residual. All we need to keep is the residual in order to faithfully reproduce the 

original data. Since the range and the variance of the residual are generally much 

smaller than the original data, the enfropy should be lower and, hence, better 

compression can be achieved. We will illusfrate the predictive coding using the 

lossless mode of JPEG as an example. A more detailed treatment of the JPEG 

compression schemes will be given in Section 3.2.2. 
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Source 
Image Data 

Predictor 
Entropy 
Encoder 

t 
1 

Table 
Specifications 

^ ^ 
^ ^ 

Compressed 
Image Data 

Figure 3.8 The Encoding Steps for the Sequential Lossless Mode of JPEG 

The overall processing steps for the sequential lossless mode are shown in 

Figure 3.8. The neighboring pixels are used to form the prediction of the current pixel. 

This prediction is then subfracted from the actual value and the residual is encoded by 

either Huffinan or Arithmetic coding. 

a 

Figure 3.9 The Prediction Kemel 

Figure 3.9 shows the prediction kemel for Figure 3.8. Ra, Rb, and Re are 

defined to be the reconstmcted pixels immediately to the left, immediately above, and 
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diagonally to the left of the current predicted pixel Px- A total of 8 aUowable 

predictors, one of which is selected in the header, are Usted in Table 3.4. 

Selection-value Prediction 

0 

1 

2 

3 

4 

5 

6 

7 

no prediction 

Px^^a 

Px = Rb 

Px^^c 

Px^^a^ Rb- R-c 

Px = Ra + aRb-Rc)f2) 

Px = Rb + ((Ra-Rc)/2) 

Px = (Ra+Rb)/2 

Table 3.4 Predictors for the Lossless Coding 

Selection-value 0 should only be used for differential coding in the 

hierarchical mode of operation (see Section 3.2.2). Selections 1, 2, and 3 are one-

dimensional predictors and selections 4, 5, 6 and 7 are two dimensional predictors. 

The first line of an image is always coded using the one-dimensional horizontal 

predictor (i.e. Selection 1) since there is no reconstmcted pixels existed for the ffrst 

line of the image. 

The residual values are not directly encoded by Huffinan or Arithmetic 

coding. They are calculated modulo 2^^ fri the case of using Huffinan coding for the 

enfropy coding, it is expressed using category and magnitude. The table for the 17 
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categories (0 to 16) and the magnitudes can be found in the ISO DIS 10918-1 

document [ISODl, PENN93]. 

Ziv-Lempel Coding 

Jacob Ziv and Abraham Lempel are two Israelii Scientists who developed 

two famous dictionary-based compression techniques in 1977 and 1978 and triggered 

a flood of research activities into the universal coding technique. A universal code is 

referred to a code that is designed to work with an arbitrary source distribution. The 

two techniques by Ziv and Lempel are commonly known as LZ77 and LZ78 [ZIV77, 

ZIV78]. 

LZ77 and LZ78 are two distinctively different approaches to adaptive 

dictionary compression. Both are very practical and easy to implement. LZ77 uses a 

sliding window technique. It assumes that a given pattern will occur close together. 

Hence, the dictionary is simply a portion of the previously encoded sequence. 

References are made within the window for the occurrence of the current coding 

sequence. After a year of the landmark paper published in 1977, Ziv and Lempel put 

forward a completely new approach for building a dictionary. Instead of using the 

sliding window over a fixed-length sequence, LZ78 builds a dictionary by adding each 

new entry using an existing dictionary entry concatenated with one new symbol. 

LZ77 and LZ78 have given rise to a number of variations such as LZSS from 

LZ77 and LZW from LZ78. By far the most well-knovm modification is the LZW 

algorithm by Terry Welch in 1984 [WELC84]. It has been found in many modem 
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appUcations such as UNIX compres s , GIF and V.42 bis. We wdU describe the 

algorithms of LZ77, LZ78 and LZW next. 

LZ77 

In the LZ77 approach, data previous seen is used as a dictionary. A sliding 

window of TV̂  characters composes of two parts: the search buffer with M characters 

and the look-ahead buffer with N - M characters. A search buffer contains the recently 

encoded characters used as the dictionary. A look-ahead buffer contains the characters 

being encoded. Figure 3.10 shows an example of a sUding window with A'̂ ^ 12 and M 

= 8. In practice, the size of the sliding window is much larger and in the order of a few 

thousand characters. 

Match but / = 2 

Longest match / = 3 

I \ 
d a d a b a b a d a b b 

S earch buffer Look- ahead buffer 
M=?> N-M^4 

Figure 3.10 SUding Window witii V - 12 

Initially, the search buffer is filled with some pre-determined characters such 

as spaces or zeros. To encode the sequence in the look-ahead buffer, the ffrst M 
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characters are searched for the longest match. The longest match is then encoded with 

a triple <o,l, a >, where o is the offset from the look-ahead buffer, / is the length of 

the match, and a is the character that follows. In our example, the triple is encoded as 

< 6, 3, b >. The window is then "slid" to the right / + 1 characters. 

Using this scheme, it is possible that the longest match is overlapped into the 

look-ahead buffer. It does not create any problem for the decoder if we impose the 

maximum length of the match to be V-Af characters. Since only the first M characters 

are used, it is guaranteed that the longest match cannot be the look-ahead buffer itself 

The reason to attach the explicit character in the triple is to provide a mechanism for 

the scenario that no match is found. In this case, < 0, 0, c> is used where c is the first 

character in the look-ahead buffer. 

LZ78 

One year after the publication of LZ77, Ziv and Lempel developed a totally 

different scheme to adaptive dictionary compression. This scheme is commonly 

referred to as LZ78. The LZ78 algorithm abandons the use of search buffer and 

generates an explicit dictionary dynamically. The dictionary contains all the 

previously seen phrases. Each phrase is comprised of a previously seen phrase 

followed by an extra character. The decoder is thus output a double <i, a> where i is 

an index of the previous phrase and a is the character. 
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We illusfrate the encoding process using LZ78 by an example with the 

following sequence. 

bbabbbabbaabbbbabb 

Iiutially, the dictionary contains only a null phrase indexed by the value 0. The first 

character will be encoded as < 0, ^ > and the dictionary will now have a phase "b". 

The second character isab which is found in the dictionary. Hence, the next character 

is appended to the phrase and formed a new phase "ba". The processing of the 

sequence is given in Table 3.5. 

Output 

<0,b> 

<ha> 

<hb> 

<2,b> 

<2,a> 

<3,b> 

<4,Z» 

Index 

0 

1 

2 

3 

4 

5 

6 

7 

Phrase 

{} 

b 

ba 

bb 

bab 

baa 

bbb 

babb 

Table 3.5 The Output of our Example Using LZ78 

It is obvious that the dictionary grows quickly if we do not restrict its size. 

This is due to that LZ78 asymptotically approaches to theoretical entropy as the size 

of the input increases. In practice, when the number of entries reaches a pre-defined 
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level, one option is to clear all entries and the dictionary is rebuilt. Another option is 

to stop adding new phrases once it is full. 

LZW 

LZW is the most important modification of LZ78. It dispenses the necessity 

of an explicit character in the double < i, a >. The encoder sends only the index of the 

dictionary. This is accompUshed by initially filling the dictionary with every character 

in the character set. The input sequence is then parsed into a new phrase containing 

the longest seen phrase concatenated with a character. This last character of the new 

phrase is used as the first character of the next phrase. Ortiy the index of the known 

phrase is fransmitted. 

Let us examine the LZW algorithm using the example in the previous 

section. Assuming we have only two characters { a, b ] in the alphabet. The 

dictionary is initialized with two entries as shown in Table 3.6. In practical situation, 

256 entries corresponding to the ASCII set are initialized. Initially, the new phrase 

parsed in is "bb" since it composes of the existing knovm phrase "Z?" concatenated 

with the character, b. Therefore, the index, < 2 >, corresponding to "6" is output and 

the new phrase "bb" is added to the dictionary to form the index < 3 >. The next 

phrase parsed in is "ba" which is again corresponding to "b" concatenated with the 

character, a. The index, < 2 >, is output and the new phrase "ba" is added to the 

dictionary to form the index < 4 >. The complete output of the encoding sequence is 

given in Table 3.6. 
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Output 

< 2 > 

< 2 > 

< 1 > 

< 3 > 

< 4 > 

< 3 > 

< 1 > 

< 5 > 

< 6 > 

< 1 0 > 

Index 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Phrase 

a 

b 

bb 

ba 

ab 

bbb 

bab 

bba 

aa 

abb 

bbba 

-

Table 3.6 The Output ofour Example Using LZW 

In order to faithfully reproduce the sequence, we must construct the 

dictionary in the same way as the encoder. For example, the output, 2 2 1 3 4 3 1 5 6 

10, is parsed one index at a time. The current phrase is concatenated with the first 

character of the next phrase and the new phrase is added to the dictionary. The first 

index is 2 which corresponds to "b". This phase is then concatenated with the first 

character of the next phase which happens to be b again. So we add an entry with the 

new phrase "bb" into the dictionary. The process is then repeated. 
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The decoding process described above is very accurate with one 

complication. There is a situation where the next phrase has not been constmcted in 

the dictionary so the first character of that phrase must be interpreted. To see how this 

happens, let assume we have another sequence, babbababa. The output from the 

encoder is 2 1 2 3 6. The decoding process begins with the ffrst phrase which is "b". It 

concatenated with the first character of the next phrase which is the character, a. A 

new phrase, "ba", is added to the dictionary. The process is continued until it reaches 

the index 3. We know it corresponds to "ba". However, when we constmct the new 

phrase from the next index, we found that the entry referred by 6 is not yet defined. 

Although we may not have this entry, we do know that it must start with ba. Hence, 

we can interpret this phrase starting with the character, b, and the new phrase would 

then be "bab". 

3.2.2 Irreversible Image Compression 

DCT (JPEG) 

JPEG, or Joint Photographic Experts Group, is a collaborative effort between 

CCITT (International Telegraph and Telephone Consultative Committee) and ISO 

(Intemational Standards Organization). This group has been working to estabUsh an 

international compression standard for both color and gray-scale still images since 

1986. As JPEG committee uicludes members from both CCITT and ISO, the 

committee made all technical decisions on the basis of unanimous agreement and 

carried out the selection process by competitive contests. JPEG reached a consensus 
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from twelve proposals that the Adaptive Discrete Cosine Transform (ADCT) 

approach for the lossy compression and the Different Pulse Code Modulation 

(DPCM) for the lossless compression are the best. Two pubUshed documents m 1992 

(ISO DIS 10918-1 and ISO DIS 10918-2) [ISODl, IS0D2] became the milestone of 

JPEG Compression Standard. Part 1 of ISO DIS 10918 describes the requfrements 

and guidelines of JPEG. Part 2 is the compliance testing for Part 1 which sets out tests 

for determining whether implementations comply with the requfrements for the 

various encoding/decoding processes. In August 1994, JPEG published its extensions 

(ISO DIS 10918-3) [IS0D3], which provides the requirements and guidelines for 

coding/decoding extensions to processes defined in Part 1. Interested readers should 

refer to Pennebaker and Mitchell [PENN93] for the in-depth description of JPEG 

Intemational Standard. The complete ISO DIS 10918-1 and ISO DIS 10918-2 

documents can also be found in the Appendix A and B of the book respectively, and 

the short technical paper by Gregory Wallace [WALL92] offers an excellent 

infroduction. Briefly, JPEG offers four modes of operation: 

1. Sequential DCT-based encoding: each image component is encoded in a 

single left-to-right, top-to-bottom scan; 

2. Progressive DCT-based encoding: the image is encoded in multiple scans 

by either specfral selection or successive approximation so that the 

decoded image builds up in multiple coarse-to-clear passes; 

3. Lossless encoding: the image is encoded using predictive coding 

technique to guarantee an exact reproduction; and 
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4. Hierarchical encoding: the image is encoded at multiple resolutions so tiiat 

it provides for progressive coding with increasing spatial resolution 

between progressive stages. Upsampling by interpolation to increase the 

spatial resolution is necessary at each hierarchical stage. 

The DCT-based sequential compression method is the most popular one. 

Figure 3.11 shows the key steps for aU encoding processes based on DCT. Briefly, an 

input image is broken into 8x8 blocks of pixels. All 64 points are shifted from the 

range [0,2^-1] to the range [-2^"\ 2^''-l] and then fransforms into the frequency domain 

using Forward Discrete Cosine Transform (FDCT) as shown in Eq. 3.7. The resulting 

64 coefficients are uniformly quantized using a 64-elements quantization table. This is 

the step which makes this encoding mode lossy. 

8x 8 blocks 
/ 

rZ / 

1 

Source 
Image Data 

FDCT Quantizer 

i i 

Entropy 
Encoder 

i 

Table 
Specifications 

i 

Table 
Specifications 

.., k 
w 

Compressed 
Image Data 

Figure 3.11 DCT-Based Encoder 

8x8 Forward DCT (FDCT): 

F{u,v) = ^C{u)C{v) 
7 7 ^-(-r-, . / ,. {2x + l)un: 

_x=0 y=0 16 

(2y + l)vn-

16 
(3.7) 

where 0 < M, v < 7 , C(0) = 1/V2 , and C{i) = 1 for 1 < z < 7 
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Figure 3.12 DCT-Based Decoder 

8x8 Inverse DCT (IDCT): 

f(^^y) 
1 7 

5]J]C(w)C(v)F(w,v) coŝ ^ '-— cos^ ^ ' 
VTt 

u=0 v=0 16 16 
(3.8) 

where 0<x,y<l , C(0) = 1/V2 , and C{i) = 1 for 1 < z < 7 

After quantization, the DC coefficient and the 63 AC coefficients are 

prepared for enfropy encoding, as shown in Figure 3.13. The DC coefficient (0,0), 

which represents the mean pixel value for each block, is encoded as the difference 

from the DC term of the preceding block in left-to-right, top-to-bottom scan order. 

The remaining 63 coefficients are converted into a one-dimensional "zig-zag" 

sequence. Each non-zero AC coefficient is coded by the "runlength" of preceding 

zeros followed by its size and coefficient value. The sequence of data values are then 

entropy-encoded by either Huffinan or arithmetic coding. 
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DC • ., DC • 
1-1 1 

block j^ J block Jbl 

DIFF = DCj -DCj.., 

DC AC 01 

(a) (b) 

Figure 3.13 (a) Differenced DC Coefficients, and (b) Zig-zag Encoded 
AC Coefficients 

For decoding, the process is just the opposite. The steps for the DCT-based 

decoding are shown in Figure 3.12 with the Inverse Discrete Cosine Transform 

(IDCT) given in Eq. 3.8. Since the computational cost for the encoding and decoding 

processes are roughly equal, the JPEG baseline codecs is considered as a symmetrical 

algorithm. Also, one of its atfractions is that higher compression ratio does not require 

higher codecs time. To obtain higher compression factor only requires changing the 

quantisation table, while the computational cost remains the same [S096a]. 

Although we are primarily deaUng with still images, the work of MPEG is 

also relevant. MPEG-7 aims to create a standard for describing multimedia contents. 

Hence, it is formally named as "Multimedia Content Description Interface". The 

emphasis of MPEG-7 is to develop standard forms to represent and describe audio­

visual information regardless of the types of storage, coding and the underlying 
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technologies. The work of the MPEG-7 committee is significantly shifted from the 

traditional work of encoding data sfreams such as MPEG-1 and MPEG-2 or even the 

object-based representations of MPEG-4. The overaU standard has the following parts: 

1. MPEG-7 Systems 

2. MPEG-7 Description Definition Language 

3. MPEG-7 Audio 

4. MPEG-7 Visual 

5. MPEG-7 Generic Entities and Multimedia Description Schemes 

6. MPEG-7 Reference Software 

7. MPEG-7 Conformance 

The proposed MPEG-7 Standard is largely based on the concept of Descriptors (D) 

and Description Schemes (DS). A Description Definition Language (DDL) similar to 

XML is established to create Ds and DSs. Figure 3.14 outlines the scope of MPEG-7. 

«Multimedia Content Retrieval» 

Search Engine 

DSs are generated by DDL 

DS 

DS (D 

. D ) ( D . 

Feature Extraction 
& Meta-data 

Standard Description 
(Scope of MPEG-7) 

Figure 3.14 The Scope of MPEG-7 
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The scope if MPEG-7 is limited to standardize the descriptors and 

description schemes. A Descriptor is a representation of a Feature. A Descriptor 

defines the syntax of such representation. A Description Scheme specifies the 

stmcture and semantics of the relationships between its Descriptors and, possibly, its 

Description Schemes. 

Fractals 

The main idea of fractal compressions is to find the affme transformations of 

an image which can satisfy the so-called Collage Theorem developed by Michael 

Bamsley [BARN88, BARN93]. The CoUage Theorem states what an Iterated 

Function System must be like in order to represent an image. The amazing property of 

an Iterated Function System is that a imique image emerges from an arbitrary image if 

the IFS are contractive. The latent image is called the fixed point or attractor of the 

n 

IFS. Mathematically^ let AQ be the initial image and fF = | J w,. is the transformation 
1=1 

functions. Then if we apply fF repeatedly: 

A = HA) 

A,=W{A,) = W(W(A,)) = W'(A,) 

A, = W(A,) = W(W{A,)) = W[W(W(A,))) = W'{A,) 

A„=W"{A,) (3.9) 

For rigorous definitions and proofs, refer to [BARN93] 



Chapter 3. Evaluation and Frameworkfor Image Retrieval Using Compressed Data page 

The Contractive Mappmg Fixed Point Theorem states that if X is a complete metric 

space and W: X->X\s confractive, then IT has a uitique fixed point A^ regardless of 

the iiutial Ao, 

I.e. A^ - lim WIAA for any initial A^ (3.10) 

If we want to know whether W is contractive, we have to define a distance 

between two images such that, for any two points Pi and ^2, 

d[w{P,), W{P^)) < sd{P, , P j where 0 < .s < 1 (3.11) 

There are many metrics (e.g. Haussdoriff metric) to choose from. 

The hardest part is how to obtain the transformation fimctions which can 

produce the desired fixed-point image. The very first practical fractal image 

compression is by Amaud Jacquin [JACQ92, JACQ93] who developed the Partitioned 

Iterated Function Systems (PIFS). The idea of PIFS is to partition an original image 

and looks for similar pieces that can be paired and related by an affme transformation 

of the form (for gray scale images): 

X 

y 
z 

= w, 

X 

y 
z 

= 

a, 6, 0 

c. d, 0 

0 0 s, 

where s^ confrols the confrast and 

o- confrols the brightness 

X 

y 
z 

+ 
e, 

fi 

f^i. 

(3.12) 

To encode an image/, we want to find a collection of maps IF = U" w,- such that 

f =f = W(f)^W(f) = w,(f)yjw,{f)^ ... ̂ w^(f) (3.13) 

with d(f' ,f) small. 
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Here is a simple illusfrative example, 

Domain Blocks Dj^ to Range Blocks R^ Mapping 

D be the collection of 
all 16 x 16 pixel (over­
lapping) sub-squares of 
the image 

• D contains 241 * 241 
= 58,081 squares 

• 8 symmetries result to 
= 464,648 comparisons 

to each R^ block 
• Subsampling is requfred 

256 X 256 pixel image 
256 levels of grey 

Rj, R2, ... R1024 
8 x 8 non-overlapping 
sub-squares of the 
image 

• R = 1024 squares 

Figure 3.15 An Example of Fractal Compression 

Although the example uses square partitions, this need not be the case as it 

could be triangulated, or decomposed into irregular rectangles as reported in advanced 

literatures [FISH92, FISH95]. The important point is that every pixel in non-

overlapping range blocks (small blocks) is covered by one and only one block to 

ensure that the Collage Theorem applies. Some of the domain blocks (big blocks) may 

freely overlap. 

Vector Quantization 

The main idea of Vector Quantization in the context of image coding is a 

mapping from a ^-dimensional EucUdean space # to a fmite subset of # [NASS88]. 

This finite set 7is caUed a VQ codebook or VQ table. Figure 3.16 illustrates the block 
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diagram of a simple vector quantizer. The objective is to select an optimal codebook Y 

which results in the lowest possible distortion among all possible codebooks of the 

same size. By proper design of indexes and codebooks, we can explore the 

redundancy in an image so that the coding can be significantly more compact than the 

original image. 

V 
Input 

Vector 

Compare input 

with each 
codeword 

i \. 

Encoder 
codebook 

Index / 
Codebook 

Table look-up 

iL 

Decoder 
codebook 

V 
Output 
Vector 

^ 

Figure 3.16 Block Diagram of a Simple Vector Quantizer 

There are many codebook design methods. The first group of methods 

constmcts codebook based on empirical data (trairung set). This approach is pioneered 

by Linde, Buzo, and Gray [LrND80], and their algorithm is now commonly referred 

to as the LBG algorithm. The second group of methods constmcts codebook based on 

mathematical models. In this approach, it usually needs a probabilistic model of the 

image vector and requires a huge codebook for good performance. 
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Given a codebook, the encoding process is to search for the codevector in the 

codebook to find the best match (least distortion) for each input vector of an image. 

Some of the distortion measures are: 

MSE d(V,V;)^\jyV(m)-V;(m)Y (3.14) 

MAE d(v,v:)-jfy(m)-v:{m) 
m=i 

(3.15) 

L„Norm d(V,v:) = Y,\V(m)-V:(m) 
.m=l 

l/« 

(3.16) 

Weighted d{V,V:) = | ] wJF(m) - V:(m)f 
m=l 

or 

(3.17) 

<i(V,V;) = 2w^V(m)-V;(m) 
m=l 

(3.18) 

where m = 1,2, ...,K,K = Dimension of the input vector, and V{m) = m^ components 

of the input vector. 

There are many variations of Vector Quantizers: Spatial Vector Quantizers 

(SVQ), Transform Vector Quantizers (TVQ), Tree Search VQ, Pyramid VQ, Finite 

State VQ, Predictive VQ, Enfropy Constrained VQ, Sub-band VQ and Fine-Coarse 

VQ etc. I refer the interested readers to [NASS88], [GERS93], and [BARL96] (a 

special issue on VQ). 



Chapter 3. Evaluation and Frameworkfor Image Retrieval Using Compressed Data page 92 

BTC 

Block Truncation Coding was first published by Delp and MitcheU 

[DELP79]. The basic algorithm of BTC used in [DELP79] is to segment an unage 

into small blocks (of, say 4 x 4 or 8 x 8) and a binary representation of the block is 

created by applying a threshold to the intensity values within the block [DASA95]. 

The threshold, the two quantization levels and/or the number of pixels above and 

below the threshold are determined to ensure the preservation of the first and second 

moments of the block. The statistical calculations of BTC are the following: 

Let m = n^ (nxn blocks) and letX,, X2, ... X^n be the values of the pixels in a 

block of the original image. Then the first and second sample moments and the 

sample variance are, respectively 

— 1 " 
X = -Y.X, (3.18) 

m ,=1 

1 m 

X^=-Yx^ (3.19) 

o - ' = X ^ - x ' (3.20) 

As with the design of any one bit quantizer, the objective is to find a 

threshold X^/^, and two output levels, a and b, such that 

if X. > X^^ output = b 

if X,. < X,^ output = a (3.21) 

for z = 1, 2, • • •, m 
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-2 

If we choose Xth = X ,fhe output levels a and b are found by solving the follovmig 

equations: 

Let q = number of X/ ' s greater than or equal to Xfh (=X) 

then to preserve X and X 

mX ={m-q)a +qb (3.22) 

and 

mlC^ ={m-q)a^ +qb'^ (3.23) 

Solving for a and b: 

a^X-aJ-^— (3.24) 
\m-q 

6 = X + c r j ^ - ^ (3.25) 

Each block is then described by the values of X,a and n x n hit plane 

consisting of 1 's and O's indicating whether pixels are above or below X^h-

Wavelets 

Wavelets are topics from pure mathematics which are a mathematical tool for 

hierarchically decomposing fimctions. They allow a function to be described in terms 

of a coarse overati shape, plus details that range from broad to narrow [STOL95a, 

STOL95b]. The very term "wavelet" comes from the fact that they are "waving" 

above or below the x-axis. There are several different famiUes of wavelets such as 

Daubechies, Haar, Coiflet, and Symmlet. Wavelets have shovm a great potential in 
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many fields such as image compressions [ANT092, DEV092, FOUR94, HILT94]. A 

wide variety of wavelet-based image compression schemes exist ranging from 

adaptive transforms, tree encodings, edge-based encodings to the very simple enfropy 

encodings. 

In order to understand wavelets, I will initially present the most simple 

wavelets, the Haar basis, and see how it can be used for image compressions. This 

section is ended with the block diagrams of 2D forward wavelet transforms commonly 

used in wavelet image compressions [HILT94]. 

As in Fourier analysis, one of the most common approach to analyze a 

fimctionX^) is to represent it as a weighted sum of basis fimctions, 

f(x) = i:c,yy,(x) (3.26) 

where the collections of ^,(x) are the basis fimctions and c/ are the coefficients^. To 

simplify things, let us constrain all of the basis functions to be the dilated (scaled) and 

translated versions of the same mother wavelet, y/(x). This is accomplished by 

y/{Vx-k) (3.27) 

where (j,k) eR^ xR 

For Haar wavelets, the basis fimctions are given by 

y/j,{x) = r"i^{rx-k) , ^=0,...,2/'-l (3.28) 

^ The main difference between Founder analysis and wavelets is that Foumier basis functions are 
localized in frequency but not in time. Small changes in frequency domain will induce changes every 
where in the time domain. Wavelets are local in both frequency / scale (via dilations) and in time (via 
translations). 
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where y/(x) = ' 

1 f o r 0 < x < l / 2 

-1 f o r l / 2 < j c < l 

0 otherwise 

It is easy to verify the orthogonality of y/ .. (x) . The constant 2^'^ is to make this basis 

orthonormal (by 1 = 1^^). Now, one can represent the original function on [0,1) by 

n-l 2-'-l 

f(x) = c,J{x) + YjUdj^Yjk (^) (3.29) 

where ^(x) = 
1 for 0 < X < 1 

0 otherwise 

For example, let j = ( 9, 7, 3, 5 ) be a one-dimensional "image" of four 

pixels. We can compute the Haar coefficients by the following: 

The solution is 

"9" 

7 

3 

_5_ 

1 1 

1 1 

1 -1 

1 -1 

4i 
- ^ 

0 

0 

0 

0 

4i 
- ^ . 

^00 

^00 

^10 

du 

^00 

^00 

dxo 

.dn. 

= 

6 

2 

I/V2 
-I/V2 

The goal of compression is to express an initial set of data using some 

smaller set of data, either with or without loss of information. For example, if we have 

a function as a weighted sum of basis function. 

1=1 

(3.30) 
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We can fmd an approximated function, 

1=1 
(3.31) 

where m <m such that for some norm 

/W-/W <s (3.32) 

In general, we could constmct another fimction (different basis function) with 

fewer coefficients to provide a good approximation. If we want to fix the same basis 

function, then we can drop some of the coefficients to satisfy the user-specified error 

tolerance. Therefore, let cr he a permutation of 1,2,...,m and let f(x) he a fimction 

that uses the coefficients corresponding to the first m numbers of the permutation a. 

/(^) = Ic^(/)^.(oW 
1=1 

(3.33) 

The square of the Lj error with this approximation is 

f(x) -f(x)^= {f{x) -f(x) f{x) - f(x) 

f(x)-f(x) =1 X C (̂,)̂ ,(,)(̂ ) 
\i=m+l J=m+l j 

tH fU 

f(x)-f{x)\ = £ S ^ < x ( 0 ^aU) ( ^ a O ) W k c r ( y ) W ) 
i=m+\ j=m+\ 

2 m 
fix)-f(x)\= Z (c,(,) (3.34) 

The last step follows from the assumption that the basis is orthonormal (i.e. 

y^au) y^aij))^ ^ij (Kronecker DeUa). We conclude that to minimize the error for 
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any given in, the best choice for cr is the permutation that sorts the coefficients in 

order of decreasing magititude; that is, a satisfies 'o-(l) 
> • • • > 

-aim) 

The generalization of using Haar Wavelets to 2D image compression can be 

found in [STOL95a, STOL95b]. Obviously, this method is far from ideal. More 

serious method in image compression using Daubechie's W6 wavelet is shovm in 

Figure 3.17 and Figure 3.18 where H is a lowpass filter and G is a highpass filter. H 

and G are the impulse responses of H and G respectively. One can use W6 as the 

mother wavelet basis fimction. The filter coefficients for H and G as well as the 

coefficients of the impulse responses H and G for W6 can be calculated. 

In Figure 3.17, an image is decomposed into an average image (fLL) and 

three images (fLH fHL-> fHH) which are directionally sensitive. To obtain higher 

compression, the average image will be further transform using the same scheme. 

Details of this wavelet image compression technique can be found in [HILT94]. 

f, rx.vi 
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by 2 along y 
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/ f f l (x ,y) 

f (^ xA 
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Figure 3.17 Block Diagram of the 2-D Forward Wavelet Transform 
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Figure 3.18 Block Diagram of the 2-D Inverse Wavelet Transform 

3.3 Image Indexing and Retrieval in Compressed 
Domain 

As described in Section 3.2, the primary objective of any compression 

technique is to reduce the data size for the consideration of fransmission and storage 

requirement. Using compressed data for the purpose of image indexing and retrieval is 

a namral extension to image compression techniques as shovm in Figure 3.19. Two 

approaches are possible into this direction as follows: 

• The indexing and retrieval information can be produced during the 

compression process. This approach is only suitable for an integrated 

system in which the designer of the image database has a total confrol of 

all processes in the system. 
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• The indexing and retrieval information is sought from the already 

compressed data. This is particularly suitable for the existing image files 

compressed into certain formats and standards. 

These two approaches are illustrated in Figure 3.19 where the extraction scheme, Y, is 

either driven by the compression scheme, X, or derived the indexing and retrieval 

information after the compression scheme. 

Compression 
Technique X 

• 

1 f 

Extraction Scheme Y 
(Retrieval Information) 

• 

Compressed 
Data 

Meta-data 
For Retrieval 

Figure 3.19 Extraction of Retrieval Information from Compressed Data 

Before we analyze the advantages and disadvantages of using compressed 

data for image indexing and retrieval in Section 3.4, we will present three recent 

examples based on DCT, VQ and wavelets in here. These are just the representative 

examples in the proliferation of indexing and retrieval techniques using compressed 

data in the literature. 
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3.3.1 Using DCT(JPEG) for Image Indexing and Retrieval 

The study of image indexing and retrieval using the compressed data of 

JPEG is certainly warranted because of its popularity. Many images are now stored in 

this format. Although there are four modes of operation in JPEG, we will describe an 

algorithm, which exploits the DCT-based compression scheme, by Shneier and Abdel-

Mottaleb [SHNE96] for this purpose. Their prime objective is to create index keys so 

that images in similar contents to a given image can be retrieved. For examples, by 

giving an image of a person's face, they want to retrieve other images of people's 

faces from the image database. If an image of a document is given, the aim is to find 

other images which are also documents. Instead of describing their algorithm in plain 

texts and point forms, we will restmcture their algorithm mathematically so that it is 

more concise and easier to understand. 

Let us select a set of sub-images or windows ( W^, ... , Wj-^) from the image 

as in Figure 3.20. These windows can be non-overlapping areas covering the entire 

image or can be a smaller sample of the image data. The window size will be the 

multiple of 8 in each dimension to coincide with the boundary of JPEG 8x8 blocks. 

They randomly pair up the windows in such a way that each window has only one 

partner. The pairs of windows should be far from each other to avoid both windows 

being in the same region. This particular pattern of pairing scheme will be used 

throughout the database and the query image. Let define each pair of windows as 

Pi , . . . , /*k. Refer to Figure 3.11, the quantized 8x8 DCT coefficients in each block can 

be obtained by undo the enfropy coding. The algorithm makes use of the afready 

computed DCT coefficients to provide a set of keys for indexing and retrieval. 
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f^2k-I ^ 2 k 

Examples, 

^1= { W, , fF k̂-i } 

p,= { 

Figure 3.20 Pairs of Windows 

For each window ( )^ ; 1 < z < 2A;), we have a number of quantized 8x8 

DCT blocks {B;- l = l,---,n}. Each block has 64 coefficients { CJ ; 7 = 0, • • • ,63 } . 

We compute the average for each corresponding DCT component by 

^j = ztc'j 
n 

(3.35) 
1=1 

where 0 < 7 < 63 

For examples, AQ and A^^ are the averages of all the DC components and the highest 

AC components in Wf respectively. 

For each pair of windows ( /) ; 1 < / < A: ) , we compare the corresponding 

Aj as follows. 

, 1 if the 1st window^, > the2ndv^ndow^,. of P. 
f f = \ (3.36) 

0 otherwise 

where z = 1,---,A: and 7=0,---,63 

If we organize the Ifj into a set of indexing keys, we have 64 keys of A: bits. 
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The similarity measure is by counting the total number of differences in ly 

between the query image Q and each target image Tin the database, i.e., 

Score(e, r ) = t i | / , f - / , J | (3.37) 
1=1 7=0 

With this measure, the higher score means the weaker match between Q and T. The 

ranking is, therefore, by ordering the images in ascending score. 

They performed a number of experiments; 16- and 32- windows (i.e. k= ^ 

and 16), different window sizes, and DC coefficients only. The conclusion is that the 

best arrangement is by using all 64 coefficients with the 16-window scheme. 

3.3.2 Using VQ for Image Indexing and Retrieval 

By using the histogram of pixels for image indexing is probably one of the 

oldest scalar methods in image retrieval. With the maturify of VQ compression 

techniques, using the histogram of VQ labels for image indexing is the natural 

extension from the scalar counterpart. After all, the frequency of each label used in 

VQ can reveal the characteristics of the image in similar fashion. 

The study of VQ for image indexing and retrieval is reported by Idris and 

Panchanathan in [IDRI95, IDRI96, IDRI97]. They explore not only the usual 

histogram of labels as mentioned above. Their idea of "Usage Map" represents a very 

simple and elegant way for the purpose of generating indices. A usage map of an 

image is a signature of TV bits. Each bit indicates the corresponding codevector has 



Chapter 3. Evaluation and Frameworkfor Image Retrieval Using Compressed Data page 103 

been used. Therefore, let T be the image. The representation of a usage map with N 

codevectors is the following. 

\JM = {u{T,i) ; Q<i<N-\} (3.38) 

where u(T,i) = 
1 if r has at least one codevector, i. 

0 otherwise 

Figure 3.21 illustrates the usage map generation. The bit pattern of the usage 

map characterizes the major features of the image. Also, if the codebook is large, the 

signature will be reasonably unique. 
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Figure 3.21 Usage Map Generation 

The similarity between the target and query images, T and Q, is measured by 

the number of different bits using Eq. 3.39. Again, the smallest score means the 

closest match: 

;v-i 

Score((2,r) = Y,[ «(^ '0 ® ^{QA ) 
1=0 

(3.39) 

where ® is the XOR operator 
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3.3.3 Using Wavelets for Image Indexing and Retrieval 

The study of image indexing and retrieval using Haar wavelet decomposition 

is pioneered by Jacobs, Finkelstein and Salesin [JAC095]. The multfresolution nature 

of wavelets provides a good foundation for them to exploit this possibility. Thefr 

experiments are by far the most comprehensive among the algorithms described in 

this chapter. Hundreds of queries in databases of 1,000 and 20,000 images are used. 

Three types of queries, namely painted queries, scanned queries and memory queries 

(from users), are extensively studied. From the experiments, they found the standard 

2D Haar decomposition on the color space of YIQ works best for their data. 

To understand thefr algorithm, we must first introduce their "image querying 

metric". Instead of using all the wavelet coefficients (e.g., 128x128 image will 

generate 16,384 coefficients), the metric is designed to drastically tnmcate and 

quantize the coefficients so that the significant features in the images are retained and 

the fine details are ignored. According to them, this appears to improve the 

discriminatory power for image querying. 

For each color chaimel, let Q and T are the wavelet decomposition of the 

query and target images. g[0,0] and 710,0] are the scaling function coefficients 

corresponding to the overall average intensity. Q[i,j] and f{i,j] represent the [i,j] -th 

truncated, quantized wavelet coefficients of Q and T; these values are either -1 (large 

negative coefficient), 0, or +1 (large positive coefficient). Their "Lq" image querying 

metric ||2,7]|q is given by 

WO|Q[O,0]-T[O,O]|-I- X w,,„,,,(Q[i,j]^T[i,j]) (3.40) 
i,j:Q[i,j>=0 
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where the expression (Q[i,j]^T[i,j]) is evaluated to 1 if (Q[i,j]5iT[i,j]), and 0 

otherwise. The weights, Wg and w ĵ„(/,y), are obtained experimentally. The function 

bin(ij) is to group terms into a small number of bins. They use only six weights 

(wo'^ivj^^s) for their experiments. Also, not all truncated coefficients are used. The m 

largest-magnitude coefficients (again, m is determined experimentally) of Q and T are 

involved in the database preparation and query formation. 

The algorithm performs a standard 2D Haar wavelet decomposition of all 

images in the database, and store the overall average color (J[0,0]) and the signs and 

indices of the m largest-magiutude coefficients of each color channel. For a given 

query image Q, the same process of preparation is performed. Equation 3.40 is then 

used to compute the score for each image in the database. Finally, the smallest scores 

are considered to be the closest matches. They let the users to browse through the top 

20 target images. 

3.4 Evaluation of the Approaches 

From the studies of the three examples in previous section, we can analyze 

the common approach of using compressed data for image indexing and retrieval, and 

their advantages and disadvantages can be highlighted. In Section 3.4.1, the desfrable 

characteristics in the approach are explained. Furthermore, problems related to the 

approach and image retrieval in general are identified in Section 3.4.2. 
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3.4.1 Common Approach and Desirable Characteristics 

Uncompressed image data take up a large amount of secondary storage, and 

for many database applications, the use of compression techniques is unavoidable. 

Also, for distributed applications over low bandwidth networks, compression 

techniques can, to a certain extent, alleviate some of the bandwidth limitation. These 

are the obvious reasons. Another important reason for using compression techniques 

in image retrieval applications, particularly lossy compression, is the support of 

browsing operation. The search resulting from a query specification may not always 

produce a precise collection of images. Hence, the visual inspection out of the ranked 

images tends to be the most frequent operation in user-machine interaction. 

Most of the compression techniques are computationally expensive. If we can 

make use of the compression process and produce the indexing and retrieval 

information, it is an added bonus. Images, which are afready in compressed files, can 

also benefit from this approach. Instead of completely decoding the compressed image 

and then generating the indexing information, the retrieval system can work on the 

compressed data and will likely result in a faster operation. A good example of this 

scenario is searching images on the Intemet. 

As observed from the above algorithms, the common approach to image 

indexing and retrieval is to generate some manageable signatures or indexing keys. 

These keys are designed to capture the major features of the images without 

excessively concern with fme details. Using fine details for similarity measure is 

likely to be false matches. Also, in many cases, the query formulation is imprecise 
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anyway. Using major feattires to generate mdexuig keys is probably a better choice. In 

other words, we frade the recall ratio to the precision ratio (i.e. the desfred image 

surfaced a little bit later is better than never at all). 

In image retrieval, the properties of rotation, scale, translation and color-shift 

invariants are desfrable. Unfortunately, if compressed data are used for indexing, it is 

most likely dictated by the compression schemes. The total freedom in the algorithm 

design of indices is not available. For example, whether one likes it or not, one needs 

to make use of the block-by-block nature of JPEG if such compressed data is chosen. 

Also, one has to be careful not to heavily rely on the localities of blocks. Otherwise, 

the rotation and translation invariants will be jeopardized. 

One must justify on the computational costs of using compressed data for 

image indexing and retrieval. However, we must separate the indexing part and the 

retrieval part when we consider the computational costs. For well-defined image 

database applications, the indexing information is generated when the images are 

entered into the system. The time and computational costs requfred to generate such 

indices may not be too critical. This is because the scanning process, the cataloging 

routine and the house-keeping interaction are likely to be the bottleneck. On the other 

hand, the retrieval mechanism must be reasonably fast. Users will not tolerate a long 

delay on browsing through a set of target images. The pre-computed indexing keys 

and the similarity matching are related issues but must be separately dealt with. For 

ill-defined image repository and remotely accessed databases such as those on the 

Intemet, both the indexing and retrieval processes must be very efficient. This is 

because (1) we do not have the luxury to pre-compute keys before hand and, therefore. 
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dynamic indexing is the only option, and (2) the querying/retrieval process requfres 

the images to be transmitted over the network which can make the searching 

impracticable. From this vievi^oint, using compressed data for indexing and retrieval 

offers a distinct advantage. 

In all of the algorithms described above, the siirtilarity measure tends to 

measure the difference between two images. In ranking the images, the lowest score 

means the best match. Using the cardinality of positive numbers for the implicit 

ranking is an efficient method particularly for unknovm numbers of target images. 

Also, determining the similarity measure or metric is the second most time critical 

operation next to the browsing operation. If each metric is applied to all the images in 

a large database, the design of such metric must be very efficient. Therefore, the 

metrics such as Z, and Lj (Eq. 3.16) are very expensive, if not ineffective, on the 

querying side. 

Many indexing techniques, particularly in spatial domain, use numeric values 

for the feature vectors. When two images are compared, distance metric or similarity 

measure are generally used to rank the target images. The drawbacks to this approach 

are: 

1. The computational cost is very high when multi-dimensional vectors are 

involved. If the collection of images is very large, the performance on the 

querying side would be seriously affected. Generally, users will not 

sympathize v^th the sheer size of the database and will always demand a 

near instantaneous response to thefr queries. Although tree-based approach 

to organize feature vectors is certainly better than sequential search, the 
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computational cost of using multi-dimensional feature vectors, particularly 

on the querying side, still remains a major issue in image retrieval. 

2. To compute and rank images using multi-dimensional feature vectors, the 

process of using weights for each dimension is often used. The weights 

are normally chosen either from the properties of the retrieval methods or 

from experiments. To a certain extent, it is somewhat superficial and 

counter-productive with respect to retrieval efficiency. 

3. As mentioned before, using coarse features for image retrieval improve 

the recall rates. However, using higher dimension in the constmction of 

the feature vectors will generally have an adverse effect on recall rates but 

may improve on the precision rates. 

3.4.2 Problems to be Solved 

We believe the avenue of using compressed data for image indexing and 

retrieval is promising. However, one must study the effect of the compression ratio to 

the precision of the retrieval. Although fine details of the compressed data are 

normally ignored in generating indices which coincide with the approach of many 

compression schemes themselves, the danger of over truncated and quantized 

processes is evident. 

Currently, there are many compression schemes and file formats available. 

For well-defined image database applications, a particular compression scheme will 

be adopted and indices can be generated as a by-product. But, for other appUcations, it 
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will be far-fetched to hope for an algorithm to work on many different schemes. 

Hence, the only option is to convert from other compression schemes to its ovm 

scheme. This defeats the purpose of using compressed data for image indexing and 

retrieval. 

One may afready observe that we did not dfrectly compare the recall rates, 

the precision rates, and the efficiency of all the algorithms. The reason is very simple; 

it is not fair to do so. We do not have a well-organized testbed and benchmark in 

image databases. In contrast to other related disciplines, the test images for the image 

processing field are Lena, Peppers and Boats etc. Miss America, Flower Garden and 

Mobile & Calendar sequences are the popular test video clips for the video processing 

field. Although testbeds and benchmarks may not always be completely objective and 

fair for each individual algorithm, we do at least have a common ground for 

comparison if the methods fall into the same category and aspects. To cater for a large 

community of image database researchers, we suggest that the collection of images for 

general-purpose image databases should at least include 1) line-art images, 2) images 

from natural scenes, 3) images of man-made objects, and 4) images related to people, 

faces and events etc. Also, for each category, we should include the rotated, translated, 

scaled, and color-shifted variations of the images. A very similar sequence of images, 

perhaps from a short video clip, should also be included for the testing of similarity 

retrieval. Captions for the images should be provided for those algorithms which 

make use of the textual information associated with the images. If the standard test 

images are available, we can also supply a suite of pre-defined queries for testing. The 

recaU rate and the precision rate can then be measured for comparison. The 
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computational costs can also be measured using standard benchmark techiuques or 

some form of complexity analysis. 

3.5 Conclusion 

In this chapter, the overall principle of image indexing and retrieval in 

compressed domain is provided. A comprehensive evaluation of the most 

contemporary compression techniques is undertaken in this chapter. They include 

Run-length Coding, Huffhian Coding, Arithmetic Coding, Predictive Coding and Ziv-

Lempel Dictionary Coding as the representative techniques in the area of the 

distortionless data compaction. Discrete Cosine Transform (DCT), Fractals, Vector 

Quantization (VQ), Block Truncation Coding (BTC) and Wavelets are used to 

demonstrate the irreversible techniques in image compression. 

The general approach to image indexing and retrieval using compressed data 

is studied through examples reviewed in the recent literature. The first possibility 

involves using DCT coefficients in JPEG to construct indexing information. Since 

JPEG is a popular compression standard, the merit of using DCT coefficients for the 

exfraction is certainly justified. The second possibility uses the references of the 

codebook in VQ as the indexing information. It is a simple but efficient way to 

characterize the major feature of an image. Using the coefficients of wavelets to 

generate indexing information is our thfrd example. The properties of wavelets, 

particularly the multi-resolution one, are advantageous to image indexing and 

retrieval. 
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Using the studied examples, the common approach and desfrable 

characteristics are identified. The strength and weakness of using compressed data for 

image indexing and retrieval are analyzed. The problem associated with this approach 

is also provided. We concluded that using compressed data is workable and provides 

significant scope for image indexing and retrieval. The rest of this thesis will be built 

from the concepts developed in this chapter. 



Chapter 4 

Image Hashing 

4.1 Introduction 

The idea of hashing was originated in the 50's. Despite the term, hashing, 

had already become the common jargon in the 60's, researchers were reluctantly to 

use the term in print at that time. This is partly due to the meaning of the term in 

EngUsh. According to the Webster's Dictionary, the meaiungs of "hash" are 1) to 

chop (meat or vege t ab l e s ) i n t o p i e c e s for cooking, 2) to make 

a mess or botch of; bungle. This undignified meaning drove researchers 

away from using it. Not imtil the mid-60's, it became the standard terminology for key 

fransformation. This interesting history of hashing in computing has been documented 

by Donald Knuth in the Art of Computing Programming [KNUT73]. Today, the term 

is very popular and has been used in different areas of computing. Some of these areas 

include the static hashing for text retrieval or file organization [KNUT73], the 

113 
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extendible hashing for relational databases [ELMA94, SILB97, FOLK92], the 

geometric hashing for machine vision [WOLF97], and the secure hashing for 

applications in authentication [PIEP93]. 

The very essence of hashing is to provide 0(1) access to an arbitrary data 

item regardless of the data size. In other words, we would ideally like the underlying 

retrieval mechaiusm to locate the data item in constant time and the access does not 

depend on the size of the collection. In practice, we would satisfy with the retrieval in 

near constant time. For image data, the fundamental concept of hashing is very much 

applicable. The reasons are the following: 

• Data size: Image data are voluminous. If we can hash image data into 

some forms of hash values, we can then organize images into categories or 

buckets and retrieve images via these hash values. Of course, hash values 

should be much smaller than the original to be effective. 

• Ordered access: Hashing is inherently not suitable for ordered access. 

This major weakness for hashing does not really concern image data, since 

the order of images in an image collection is generally not important. 

Given an image, there is no apparent meaning to locate the "next" image if 

we are not dealing with sequence of images. In general, all the relational 

operators with the exception of {=,9i,«} are not meaningful to image data 

unless defined by the applications. 

• Similarity retrieval: In many cases, images are retrieved based on thefr 

visual contents. If we can hash similar images into similar hash values, the 
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hash information can be used for similarity grouping and retrieval. 

Although our primarily goal for image hashing is for efficient access and 

not for sintilarity retrieval, it should be beneficial if the hashing fimction 

exhibits this property. 

Recently, the motivation in efficient access to multimedia data drives the 

proliferation of research findings in visual information retrieval. Surprisingly, the 

concept of Image Hashing based on the visual contents of image data is not well 

researched. We can only see the application of hashing in image databases through the 

textual or object information about the images [RABI90, BHAT94]. This does not 

satisfy our perception of image hashing. We would like to take the paradigm of 

hashing and directly apply to image data. In other words, rather than using the meta­

data for images to generate the hash information, the transformation from image data 

to hash information should be directly and completely based on the contents of 

images. This view is parallel to the key transformation in textoal information. 

In this chapter, we will develop and promote the concept of image hashing. 

To understand our motivation behind image hashing, we provide a brief review and 

analysis of the traditional hashing techniques and their relationship to image hashing 

in Section 4.2. In Section 4.3, we present our complete view of image hashing. These 

include the motivation, the possible approaches and our definition of image hashing in 

Section 4.3.1, Section 4.3.2 and Section 4.3.3 respectively. We conclude that two-

dimensional bitplanes are the better form of hash information for image data. 
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4.2 Evaluation of Traditional Hashing Techniques 

4.2.1 Preliminaries 

Hashing is one of the oldest searching techniques which allows one to 

determine the presence or absence of an arbifrary element in a table of entries. In the 

absence of a priori statistical information, hashing is both conceptually simple and 

also very efficient. It has a better average behavior than other linear or binary 

searching techniques which, at the best, has a search time of 0( log 2 n). The search 

times for hashing techniques can be independent of the number of entries in a table. It 

is achieved through a transformation of an element X using some arithmetic fimction, 

/ f(X) gives the address where X should be placed. IfXis a key in the key space, this 

key-to-address fransformation provides a mapping mechanism from the key space (K) 

into an address space (A). Very often, the key space is usually several orders of 

magititude larger than the address space, many keys will be mapped on to the same 

address. Such a many-to-one mapping results in collisions. For image hashing 

outlined in subsequent sections, we can see that, because of the exfremely large image 

spaces for image data, this problem is more severe. 

There are many hashing methods available [KNUT73, TREM79]. The most 

classic one is the division method. Others include the mid-square method, the folding 

method, the digit-analysis method and the length-dependent method etc. For the 

division method, an integer key, X, out of n possible keys is mapped using a hash 

fimction/fJ5 =Xmod m such tiiat a* m>n, where a is the loading factor. According 
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to Knuth, m should be a prime number to avoid substantial bias in the hashing. In 

general, the desired properties of any hashing method are: 1) it is easy to compute, 2) 

it minimizes the number of collisions, and 3) it does not result in a biased use of the 

hash values. These desfrable properties are equally applicable to image hashing. 

Ideally, a hash function should avoid collisions by mapping a set Sofn keys 

to distinct locations. If this property of the hash function holds, it is a perfect hash 

function. Best of all, if a perfect hash function achieves a loading factor of 1, it is 

called a minimal perfect hash function (MPHF). MPHF is not only optimal in 

performance and guaranteed one probe access, but also optimal in space utilization of 

a given hash table. 

In reality, MPHF is difficult to find. Collisions are often occurred in hashing 

schemes. Hence, the inevitability of collisions has led to the selection of methods for 

collision resolution. The objective of a colUsion-resolution technique is to place the 

colliding element elsewhere. In general, there are two broad classes of collision-

resolution techniques; open hashing and chaining. 

With open hashing, if a key X is mapped to a location i and this location is 

filled, then other locations in the hash table are examined until a free slot is found for 

this key. One simple solution to obtain the free slot is by the following sequence of 

locations for a table of m entries: i, i+1, ..., m-1, 0, 1, ..., i-1. This colUsion-resolution 

technique is called linear probing. Alternatively, a random sequence of positions 

rather than an ordered sequence is generated. Such a technique is called random 

probing. This random sequence should consist of every location exactly once. One 

example to generate a random sequence of position numbers is the following. 
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jv <- (y -f- c) mod m (4.1) 

where y is the initial position number. The values of c and m are chosen such that they 

are relatively prime to each other. For example, if we assume m = 1 and c = 3, the 

random sequence for an initial position number of 2 will be 5, 1, 4, 0, 3, 6 and 

back to 2. 

One advantage of open hashing is that no additional space is required. 

However, it suffers a number of drawbacks. Firstly, deletion is troublesome. Once an 

element is deleted from the table, a special marker is often used to distinguish it from 

an empty slot. Otherwise, compaction is needed. For the random probing, the problem 

for deletion is much more severe. If many deletions are required, the random probing 

should not be employed. Secondly, the clustering effects are usually occurred 

particularly for linear probing. Long sequence of occupied slots tends to become 

longer. Hence, the number of probes is increased and the performance is deteriorated. 

Thirdly, when the table is nearly fiill, the probmg is increased exponentially. 

Moreover, if the entfre table is full, reorganization to a large table is the only option. 

With these drawbacks, open hashing is of little use for relational databases as we will 

describe in the next section. It is mostly used in the constmction of symbol tables for 

compilers where insertion and lookup operations on the symbol tables are the only 

operations during compiling. Also, since single value hashing is not useful for image 

data, the approach of open hashing is of limited use for image hashing. 

With chaining, collision is avoided by linked-allocation techniques. Overflow 

elements are handled by a separate overflow area which provides additional storages 

for chaining. In other words, the colliding elements are chained into a special 
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overflow area which is different from the original prime area of the hashing table. A 

linked list is used for each set of overflow elements. For some appUcations, it may be 

advantageous to have all colUding elements in the list ordered. There are many other 

forms of chaining. For example, a more efficient representation involves the use an 

intermediate hash table which the prime area contains oitiy pointers. Each pointer is 

linked to a list of elements in blocks to minimize the storage spaces to set up the 

linked lists. Since the basic idea of chaining is to cluster data elements using linked 

lists, this approach is universally applicable to organize different types of data 

elements such as images through image hashing techniques. 

Generally, sequential search is generally required after the hash key is 

computed. Therefore, the search time for a particular element is mostly independent of 

the number of entries in the hash table. It depends on the times taken to evaluate the 

hashing function and to perform the data operation. However, it is desirable to keep a 

uniform distribution of elements among the linked lists and the number of elements in 

each linked list should be small. Otherwise, if all elements are mapped into the same 

list, it is no more efficient than a linear search and the load is heavily skewed. In 

practice, it is not a trivial matter to obtain an optimal balance of load in each linked 

list, since the size of the colliding elements in each linked list depends on the keys 

being used. 

The performance analyses for open hashing (linear probing) and chaining are 

thoroughly discussed in [KNUT73]. We will state v^thout proof the results as foUows: 

The average number of probes for chaining are: 
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t/„ « e " +a (unsuccessful search) (4.2) 

'S'„ « 1 + 1 a (successful search) (4.3) 

The average number of probes for linear open hashing are: 

i7„«y(l + ( ^ ) I (unsuccessful search) (4.4) 

5 ' „ « Y ( 1 - I - ^ ) (successful search) (4.5) 

where a = n / m is defined as the loading factor of the hash table. 

4.2.2 Hashing for Relational Databases 

One of the important issues in relational databases is the performance in 

accessing records randomly through key or non-key fields. Particularly for large 

relational databases, fast random access to the desired records in a given table is 

essential. Hence, supporting data stmctures are often used to facilitate the searching. 

Generally, there are two main approaches to build access stmctures to speed up the 

retrieval of records; namely indexing and hashing. These two approaches are 

sometimes inter-mixed to build better access stmctures. For our concept of image 

hashing, we can also combine with tree-based indexing techniques to provide efficient 

access stmctures for image data. 

Given a table of records on disk, an index structure is an altemative search 

path to gain fast access to records based on a particular search field. This search field 

can be the primary key or the secondary keys of the table. There are many types of 

indexing stmctures available ranging from single-level indices to multi-level indices. 

Single-level indices are characterized by one-level ordered indices. If the records of a 
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table are ordered sequentially by its search field, a sparse mdex can be used to provide 

a search time better than 0( log 2 n ) . Otherwise, a dense index for every search value 

(key or non-key) is needed. Single-level indices are of limited use in modem 

relational databases for the following reasons: 

• A binary search is always requfred and is still very inefficient for large 

tables. In other words, too many seeks are needed in binary searching. The 

problem is further complicated if the searching cannot be done on the 

main memory and the index must be kept on disk. 

• Even if we use sparse index, the index itself can become very large and, 

hence, impractical for efficient searching. 

• Insertion and deletion can be costly unless flexible data structures are in 

place to shrink and expand the index easily. 

Therefore, multi-level indices are often adopted to improve the efficiency of 

searching. Multi-level indices are characterized by tree-like stmctures. Multi-level 

indices can be implemented in the form of binary trees, AVL frees, B-trees or B""-

frees. Since the fan-out of binary and AVL frees are less than B- and B''-frees, the 

heights of binary trees are often higher and, hence, more disk probes are required. 

Even with the balanced nature of AVL trees, B- or B"̂ -frees are generally preferred 

over binary frees in relational databases. B- and B''-frees are height-balanced trees 

with the following characteristics: 

• Each nonleaf node has between \p 12"] and p children where p is the 

order of the free. Since the worst case of the node is half empty, it is 
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inevitable that spaces are wasted. The frade-off between performance and 

space overhead is acceptable in B- and B^-trees. 

• The free is balanced through node spUtting, concatenation, and 

redistribution from the bottom up. Through the use of two-to-three 

splitting and of redistribution, a greater storage efficiency is achieved. 

• For higher values of p, the shape of the tree is likely to be broad and 

shadow. Seeks to secondary stores can be reduced. Furthermore, it is also 

suitable to be implemented by virtual tree structures through paging. 

• The restructuring after each insertion or deletion, if needed, maintains the 

performance at an acceptable level. 

The major difference between B- and B^-trees is that every value of the search fields 

together with a data pointer to the record appears once at some nodes in the B-trees. 

Consequently, we may find the record we are looking for at any level of the B-tree. 

This differs from B'̂ -trees which requires the traversal of the tree dovm to the leaf 

nodes for the associated information or data pointers. The internal nodes repeat some 

of the search values in the table as the guide for the traversal. Given a fixed node size, 

an internal node of a B'̂ -free can hold more entries than a B-free. In other words, the 

fanout of B'"-trees can be higher and shadower. Also, since all the data pointers in B^-

frees are ordered in the leaf nodes, sibling pointers can be used to link the leaf nodes 

so that ordered access to the table can be efficiently performed. In practice, B'"-trees 

are preferred over B-frees in relational databases. 
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Retrieval of records based on hashing is another important technique for 

relational databases. Confrast to multilevel indices, the desfred record can be dfrectly 

retrieved by computing the address of the record using a hash function on the search 

field. As described in Section 4.2.1, it is important that a good hash fimction is chosen 

for the data set. Ideally, the distribution should be both uniform and random. This is 

difficult to achieve due to the fact that we do not know at design time precisely the 

statistical information of the data set. The problem can be somewhat alleviated by 

reducing the loading factor of the hash table. But storage spaces are wasted as the 

results. Alternatively, open hashing or chaining can be used at the expense of 

performance. Or better yet, self-adjusting hash stmctures can be used to overcome the 

drawback of static hashing and to allow growth and shrinkage of the databases 

dynamically. Hashing techniques such as dynamic hashing, and extendible hashing 

are some of these algorithms. 

The general approach to flexible hashing techniques is outlined in Figure 4.1. 

Instead of using a fixed hash table to buckets, a use-more-as-you-need-more approach 

is the underlying concept of flexible hashing. To support this concept, the fixed hash 

table must be replaced by a more flexible data stmcture or directory in order to 

accommodate the dynamic nature of most relational tables where insertions and 

deletions of records are constantly performed. The leading bits of the hash value are 

used to guide the distribution of records among the buckets. If a bucket is overflow, it 

is spUtted into two buckets and the records in the bucket are re-distributed by using 

one more bit of the hash value. The corresponding directory or data stmcture is 

updated if necessary. Similarly, if a bucket is empty or below a pre-defined level, it is 
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coalesced with the neighboring bucket to form a single bucket. Since only localized 

buckets are involved in the reorganization, the overall performance is predictable. 

Also, the binary representation of the hash value plays an important role to build the 

directory or data stmcture. It is desirable that the address space for the hash value is 

made to as large as possible. For example, if 32 bits are used for the hash value, we 

can potentially have 4.3 billions of distinct buckets. Obviously, the chosen hash 

function to generate the string of bits ought to be random and uniform. In some cases, 

it is desfrable to reverse the hash value and use the frailing bits first. 

O 
K 

A = n(K) 

Hash 
Function 

10100111...00101 

Flexible Structure 
or 

Directory 

Buckets for records or pointers to records 

Figure 4.1 General Approach to Flexible Hashing Techniques 
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Buckets for records starting 
with hash values: 

0...00(zbits) 

0...01 (/bits) 

0...1x(z-lbits) 

1...XX (z-2bits) 

Figure 4.2 Extendible Hash Stmcttue 

In extendible hashing, a directory of 2̂  pointers is maintained at any one 

time, where Q<i<n and n is the word length of a hash value. Not all the pointers are 

pouiting to distinct buckets. Several consecutive dfrectory locations having the 

common hash prefix may point to the same bucket. Figure 4.2 illustrates an extendible 

hash stmcture. For each bucket, it is necessary to keep a local value j , where 

l<j<i. For example, the last bucket in Figure 4.2 has j = i-2. When a record is 

inserted into the designated bucket according to the leading bits of the computed hash 

value, there are three possible scenarios: 
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1. The bucket is not yet full and the record or a pointer to the records is 

inserted. We do not need to modify the dfrectory. 

2. The bucket is fiill and j <i. The bucket is spUtted into two buckets. Since 

the bucket contains records with the same hash prefixes up to the initial j 

bits, we can separate the records into two buckets using j+l bits. The 

directory is updated to reflect the new buckets. We increment the value of 

y b y l . 

3. The bucket is fiiU and j = i. Doubling the size of the directory is needed. 

Effectively, we increment the value of z by 1. Each entry in the directory is 

then replaced by two entries and pointing to the original bucket. Step 2 is 

then performed to insert the record. 

To delete a record, we take the ffrst / bits of the hash value and locate the 

bucket by just one probe. We can then remove the record or the pointer from the 

bucket. If the bucket becomes empty, buckets with the same hash prefixes can be 

coalesced. It is possible that the size of the directory is reduced by half as the result of 

the deletion. In general, grouping records through partial hash keys are useful 

concepts and certainly applicable to our model of image hashing. 

The approach for dynamic hashing is very similar to extendible hashing. But 

a linked data stmcture rather than a directory is used to keep track of the buckets. The 

linked stmcture is implemented as a radix 2 trie. Buckets are spUtted or coalesced if 

necessary. Space utilization and performance are very similar for both techniques. 
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4.3 Image Hashing 

4.3.1 Motivation 

Images are bulky in nature. We usually retrieve images by thefr file names. 

Within an operating system, the unique labeling of the image files by given a unique 

file name is working to a point that the content of the image can be irrelevant to the 

file name. Although it is very efficient to locate images by file names, this does not 

really allow us to group or cluster images related to their contents. To look at this 

problem from a different perspective, if an image is said to be within a large collection 

of images and the file name is not known, how can we efficiently locate the image 

without resorted to pixel-by-pixel comparison for all images. Even if we need to 

perform any elaborate search, we would like to drastically eliminate a large portion of 

images prior to any comparison. Similarity measures or distance predicates are 

reasonable solutions to solve this problem. However, our main goal is to provide an 

efficient mechanism to locate the image. This is similar to the hashing concept in text 

retrieval for which a record can be quickly retrieved through the key-to-address 

fransformation. 

The main motivation for image hashing is to parallel the success of 

fraditional hashing and to genuinely provide 0(1) access to images based on their 

visual contents. In this chapter, we develop the concept of image hashing and exploit 

the possible avenues in the transformations from image data to hash information. 
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4.3.2 Approaches to Image Hashing 

Given an image, we would like to generate the appropriate hash information 

as shown in Figure 4.3 so that we can place the image into its bucket or cluster 

collectively. The hash information may not have to derive from the visual attributes 

such as colors or shapes. As long as the transformation to obtain the hash information 

can be tracked or reproduced, it can be used for image hashing. After all, we are 

merely interested in the efficient access of the images in a collection. Nevertheless, it 

is advantageous for the hash information to exhibit the property of similarity retrieval 

in addition to our goal for efficient access. 

Clustering 
Structure 

& Placement 

Figure 4.3 Concept of Image Hashing 
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Without lost of generality, we examine the categories of different hash 

information from the possible data characteristics. We aim to hold a general view for 

image hashing and do not specifically associate a particular algorithm for the 

transformation or mapping in each class of hash information. We also suggest some 

possible avenues to obtain the required hash information. 

Hash to a Single Numeric Value 

This category of mapping is to hash an image into a single real or integral 

value. Some of the possible ways to generate such hash information are the following: 

• We can compute the average value of the pixels. 

• We can take the pixel value at the center. 

• We can take the first byte or the upper left comer of the image. 

If an integral value is used, the bucket can be directly correspond to each cluster of 

images using the division method examined in Section 4.2. The mapping ratio will be 

very high. Although the handling of the hash value is very easy and the comparison is 

exfremely fast, content-based similarity retrieval is not really possible. Hence, the 

clustering of images vstill be widely spread. Also, this approach is very sensitive to 

errors. 
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Hash to a Bit Vector 

This category of mapping is to hash an image mto a bit vector. Sintilar to 

hashing in text retrieval, the bit vector is expected to be short. Some of the possible 

ways to generate such hash information are the following: 

• A block partition of an image is used to set a corresponding bit in the bit 

vector. 

• A histogram-based algorithm is computed and some kind of threshold are 

used to set the corresponding bit. 

• The 1 bits are selected by a pre-defined algorithm such as significant color 

regions, chain codes of a significant object and many others. A random 

seeking method is also possible. 

The mapping ratio, however, is still high. The handling of the bit vector is reasonably 

easy if the bit pattern is not too long. The comparison should be relatively fast as it 

may be performed using low-level bitwise operators. Content-based similarity 

retrieval is possible but weak in nature. The main advantage of a bit vector approach 

is that we can make use of the conventional hash stmctures such as extensible hashing 

to organize the image clusters. Also, superimposed coding can be used. 

Hash to a Numeric Vector 

This category of mapping is to hash an image into a numeric vector. This is a 

common approach for similarity retrieval. Image processing is performed to extract 

the salient features of an image. The numeric value of each dimension represents each 
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unage feature. The multi-dimensional feature vector is the basis for similarity 

comparison using some forms of metric. Some of the possible ways to generate such 

hash information are the following: 

• Features are extracted from color histograms. 

• Features are computed from spectmm analyses such as DFT or DCT. 

• Texture analysis is performed to extract the features. 

The mapping ratio will depend on the dimension of the feature vectors. If the 

dimension of the feamre vector is high (say 20), the handling of the numeric vector is 

very clumsy. This is particularly true for large image collections. The comparison can 

also be very inefficient as the metric computation is likely to involve floating point 

arithmetic. Images can be clustered by space partitioning or closest neighboring 

vectors. 

Hash to a Bit Matrix 

This category of mapping is to hash an image into a bit matrix. Most spatial 

and geographical data are dealing with this kind of information [SAME90a, 

SAME90b]. Some of the possible ways to generate such hash information are the 

following: 

• The bit matrix can be obtained from a binary projection of an image. 

• Locations of some salient features are registered using a bitmap. 

• The signs of significant coefficients of a transformation are extracted. 
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The handling of the bit matrix is good if the bit matrix is sparse and can be highly 

compressed. The cost for comparison should not be excessive as it may be performed 

using low-level bitwise operators. Content-based sunilarity retrieval is good. 

Superimposed coding is possible. Conventional clustering data sfructures can be 

applied. 

Hash to a Numeric Matrix 

This category of mapping is to hash an image into a numeric matrix of real or 

integral values. Some of the possible ways to generate such hash information are 

given in the following: 

• The average values such as the DC coefficients of DCT are partitioned 

into macro-blocks for the entries of the matrix. 

• We can select the significant coefficients of a transformation or the 

threshold in the spatial domain. 

• We can use the projected image. 

The handling of the numeric matrix is exfremely poor if the number of rows and 

columns for the numeric matrix are high. Also, the cost for comparison is high unless 

partial matching is achievable under the specific algorithm. Content-based similarity 

retrieval may be good but sensitive to variations in small changes in the image 

contents. Hence, images are difficuU to cluster into groups. This type of mapping is 

counter-productive to our goal. 
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4.3.3 Feature Vector vs. Bit Matrix 

Among the five types of hash information outlined above, we believe that 

only the feature vectors or the bit matrices are the likely candidates for image hashing. 

The considerations are based on the following facts: 

1. Computational cost: The most important property of hashing for image 

data is to provide a good guess as to where the image can be located 

within a clustering structure. If the guess is very expensive to compute, it 

does not meet our goal of efficient access. 

2. Memory and storage consideration: Unlike the conventional hashing, the 

hash information for image data is mostly computed beforehand due to the 

fact that the cost to compute the hash information is very often too high 

for real-time generation. It makes sense to store the pre-computed hash 

information. Therefore, the hash information should be reasonably 

compact to reduce the storage requirement and to ease the demand on 

memory. It also helps the efficient handling and fetching of hash 

information between storage media. 

3. Ability to provide content-based similarity retrieval: Although similarity 

retrieval is not the dfrect goal of image hashing, it helps to provide a mean 

of clustering images. If similar images can hash to similar hash 

information, we can make use of this fact and organize the images into a 

clustering stmcture by visual contents. 
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Between feature vectors and bit matrices, we are in favor of bit matrices for 

the purpose of image hashing. Feature vectors are expensive to compare. Also, the 

namre of bit matrices is more in line with the traditional hashing concepts and 

behaviors for texmal information. For example, we can still make use of the 

superimposed concept on bit matrices. This is an important aspect on which our 

composite bitplane signature scheme in Chapter 5 is based upon. On the other hand, 

feature vectors do not exhibit this property. Furthermore, bit matrices allow us to 

develop suitable organizational stmctures similar to the development of extendible 

hashing in relational databases. 

4.3.4 Our Focus in Image Hashing 

From previous argument outlined in Section 4.3.3, we take the narrower view 

for image hashing and adopt the hash information as being the bit matrix. In our 

approach, we will also use the term, bitplane, instead of bit matrix. 

Formally, the image-to-bitplane transformation is defined as a mapping or a 

hashing function, h , which maps the image space ( / ) into a bitplane space ( B ); 

h: I\-^ B. That is, given an image value (i.e. a point in / ) , a mapping function h 

produces a unique bitplane of the image. We expect that the mapping function is 

suijective to reduce the comparison requfrement and accept the fact that, as in 

conventional hashing, collisions will inevitably occur. Also, to facilitate content-based 

renieval, similar images should ideally hash into similar bitplanes. 
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In practice, the hash information may consist of more than one bitplane as 

shown in Figure 4.4. For example, we need at least three bitplanes to represent color 

images. Also, the hash information for each color channel may collectively require 

multiple bitplanes. However, it is desirable to keep the number of bitplanes as 

minimum as possible. Otherwise, the effectiveness of using bitplanes for image 

hashing will be eroded. 

# 

Image 
Hashing 
Function 

y 
( 
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Bitplane # I 
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Bitplane # n 

Figure 4.4 Using Bitplanes for Image Hashing 

For a given image collection, there are a number of design parameters for 

image hashing. These include 1) the number of bits required to set the bitplane, 2) the 

dimension of the bitplane, and 3) the number of bitplanes to represent an image. 

Generally, these parameters are dictated by the underlying algorithm. The algorithm 

will determine the distribution of the bit patterns and, in turn, will affect the behavior 

of the image hashing scheme. Furthermore, these parameters are unlikely to be altered 

during the life span of a given system. Otherwise, all the images will need to undergo 

"re-hashing" and the exercise can be expensive. 
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4.4 Summary 

In this chapter, the concept of image hashing is presented. Although hashing 

techniques are very popular for information retrieval in modem computing, the 

application of hashing in multimedia particularly to image databases is still not well 

researched. From the conceptual point of view, the basic principle of hashing is very 

suitable for image retrieval. We are motivated by this observation and develop the 

abstract framework of image hashing. This framework will be used in subsequent 

chapters in this thesis. 

The main objective of hashing is to provide an efficient means to access an 

arbitrary data item regardless of the data size. It allows one to determine the presence 

or absence of the data item in constant time. Ideally, the distribution of the data items 

in the organizational structure should be as uniform and random as possible, although 

this property is hard to achieve in practice. Furthermore, we need to take into account 

other considerations such as the possibility of similarity retrieval. 

The reported techniques on using hashing for image or multimedia databases 

are only applied to the textual or object information deduced from the images. This 

falls short ofour expectation. We expect the hash information is dfrectly derived from 

the visual contents of the images. In this way, we can attempt to establish a parallel 

between the fraditional hashing paradigm of key fransformation and achieve our 

perception of image hashing from images to hash information. 

We also examine the categories of different hash information from the 

possible data characteristics. We conclude that bit matrices or bitplanes are the most 
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suitable form of hash information. The nature of bitplanes is more in line with bit 

vectors for text retrieval. The considerations are based on computational costs, 

memory and storage consideration and similarity retrieval. Superimposed coding in 

two-dimensional basis is also possible for the bitplane arrangement. Therefore, our 

approach to image hashing is focused on image-to-bitplane transformation. 

We emphasize that there is no specific algorithms for image hashing 

proposed or defined in this chapter. A more concrete design in the form of Composite 

Bitplane Signature using wavelets is studied in Chapter 5. The study presented in this 

chapter is to gain a broader insight into image hashing in relation to the traditional 

hashing techniques and build up the concepts with similar properties. 



Chapter 5 

Composite Bitplane Signature 

5.1 Introduction 

Signature-based text retrieval methods have been the popular accessing 

techniques for text databases or documents [FAL084, FAL085, FAL087, FAL092, 

SALT89, WITT94]. Signature accessing sfrategy is based on representing every 

indexed term of a document in a binary string or bit vector. A signature file is created 

from either every indexed term or a block of terms using superimposed coding. The 

idea behind superimposed coding for texmal data is particular attractive from the 

image indexing and retrieval point of view. We apply the signature approach to 

picture data and formulate the concept of Bitplane Signature. Bitplane Signature is a 

two-dimensional bit matrix in comparison to the one-dimensional bit vector of the text 

counterpart. Naturally, the superimposed coding concept can then be extended to the 

138 
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bitplane signatures and form a two-dimensional superimposed bit matrix which we 

call it Composite Bitplane Signature. 

In this Chapter, we will demonsfrate the method of Composite Bitplane 

Signature for image indexing and retrieval [S097b, S099]. We briefly present the 

signature concept for text retiieval in Section 5.2. A simple example is used to 

illustrate the various aspects of signature retrieval. The underlying mechanism is very 

useful for the formation of Bitplane Signature. Bitplane Signature is developed in 

Section 5.3; this includes the outline of desirable properties for Bitplane Signamre in 

Section 5.3.1. The scheme of using wavelet coefficients for signatare generation is 

studied in Section 5.3.2. We also highlight other possible schemes for signature 

generation in Section 5.3.3. In Section 5.4, the complete framework of Composite 

Bitplane Signature is presented. The formation of Composite Bitplane Signamre is 

illustrated in Section 5.4.1. In Section 5.4.2, our unique searching and ranking 

mechanism is presented. As a concrete illustration, we provide a simple example to 

demonstrate the formation of Composite Bitplane Signature and how to pose a query 

to it. The framework of Hierarchical Composite Bitplane Signature is then formulated. 

It allows us to rapidly produce the partial ranked Ust of images without the need to 

perform similarity retrieval on every image in the database. We finally conclude this 

Chapter with a summary in Section 5.5. 
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5.2 Signatures for Text Retrieval 

Before we look at Bitplane Signature for image retrieval, let us mvestigate 

the signature retrieval for the text counterpart. This provides us an interesting confrast 

to our Bitplane Signature for image retrieval. This also leads to the development of 

Composite Bitplane Signamre for fast similarity retrieval in two-dimensional bit 

matrix. Furthermore, the idea of image hashing from Chapter 4 is very much 

applicable to the generation of Bitplane Signamre similar to the hashing techniques 

used to generate signatures for words in text databases. 

The common approach to text retrieval is to divide a document into a number 

of logical blocks. Each block consists of a pre-defined number of distinct words. 

Hashing techniques are used to generate the signamre for each word. The word 

signatures in a logical block are superimposed using the bitwise-Or operator to form 

the block signatures. The block signatures are concatenated to form the document 

signature. The number of 1 bits in each word signature and the word length itself are 

design parameters. However, it is desirable to confrol the number of 1 bits in the block 

signatures so that the false drop probability is maintained to the lowest [FAL092, 

SALT89]. It has been proved that the superimposed coding with 50% of 1 bits is an 

optimal design. 

To illusfrate the signature concept for text retrieval, let us look at a simple 

example. Table 5.1 contains four logical blocks for a hypothetical document. To 

simplify the illusfration, we assume each word signature is a 12-bit vector which is 

too small for real applications. It is assumed tiiat no more than 3 bits are set for each 
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word signature. There are two ways to set the 1 bits; 1) three hashing fimctions with 

the given word as the key are used to generate values fri 0 to 11 and settmg tiie 

corresponding bits, and 2) a random generator is used to pick the three positions. 

Overlapping is allowed for both of the schemes. The advantage to use hashing 

functions is that there is no need to store a table of word signatures. This is because 

the bit pattems are predetermined by the hashing functions and can be computed on 

the fly. The disadvantage is that the distribution of bits may not be random and 

uniform as we may hope for. This leads to unnecessary collisions. The advantage and 

disadvantage for using a random generator are just the opposite. Instead of providing 

details for three hashing fimctions, we chose the second scheme just to simplify the 

illustration. 

Block 

1 

2 

3 

4 

Text 

Visual Information System 

Multimedia Database Management 

Visual Information Content 

Multimedia Content Store 

Table 5.1 Sample Document with Four Logical Blocks 

The word signatures for Table 5.1 are shown in Table 5.2. The bit positions 

are generated using a random number function, random ( ) , in UNIX. Initially, the 

seed of the random number generator is set to a randomly picked prime number, 

19937 (i.e. s random (19937) ). The random numbers are converted into the values 
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between 0 and 11 using modulus arithmetic. They are tiien appUed ui sequence to set 

the 12-bit vectors with 3 positions for each word signature. The least significant bit of 

the word signature is designated as position 0. 

Word 

Content 

Database 

Information 

Management 

Multimedia 

Store 

System 

Visual 

Bit Positions 

1,10,7 

6,7,5 

6,11,11 

2,11,7 

5,8,3 

3,3,2 

0, 10,0 

9,10,4 

Word Signature 

010010000010 

000011100000 

100001000000 

100010000100 

000100101000 

000000001100 

010000000001 

011000010000 

Table 5.2 Word Signamres for Table 5.1 Using Random Number Generator 

All word signatures in a logical block are then superimposed into a block 

signature using the logical OR operation. The four block signamres are shovm in 

Table 5.3. To search for a word in the block signatures, any block signature is a 

potential candidate if it consists of all the corresponding bit positions as the query 

word. This, however, does not guarantee the existence of the word in the block 

signature. All the required bit positions may well be set accidentally by different 

words in the logical block. If this is the case, it is caUed a false match. Any potential 

candidate is then sequentially searched to make sure that the word is existed. For 
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examples, a query with the word "Visual" requires the 1 bits set at positions {4,9,10} 

in the logical blocks. Blocks 1 and 3 are the potential candidates. Further scannfrig on 

the blocks indicates that both are valid answers and not false matches. On the other 

hand, a query "Information" produces a false match on tiie second block after 

scanning the potential candidates of the first three blocks. It is noted that a conjunctive 

query on the block level is easy to perform. For example, to search for "Visual 

Information", one has to superimpose the word signatures of "Visual" and 

"Information" and becomes a query signature to the block signatures. Since the query 

is more specific, less signamres can be the potential candidates. The retrieval is faster 

as a result. This is a desirable property. 

Block 

1. Visual Information System 

2. Multimedia Database Management 

3. Visual Information Content 

4. Multimedia Content Store 

Block Signature 

111001010001 

100111101100 

111011010010 

010110101110 

Table 5.3 Block Signatures for Table 5.1 

Sequential search to the signature file can be slow particularly for large text 

databases. Many methods have been suggested to accelerate the response time. 

Compression, vertical partitioning and horizontal partitioning are the main approaches 

to speed up the access which we will briefly describe next. 
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Compression 

We can view the signature file as an x b mattix where n is the number of 

logical blocks and b is the size of the word signature in bits. Normally, we are not able 

to control the value n, but we can, for sure, make the value b larger to reduce 

collisions. This will make the word signatures much sparser and increase the 

compressibiUty of the matrix. 

Many lossless compression techniques described in Chapter 3 are suitable to 

compress the signature matrix. Run-length encoding is one of them. Since our 

Bitplane Signature described in the next section is also sparse in nature, compression 

is very much suitable for Bitplane Signature as well. 

Vertical partitioning 

The idea behind vertical partitioning is that the organization of the signature 

matrix can be done vertically. If each bit position of the signamre matrix is stored 

separately, it is only necessary to retrieve m bit files which correspond to the I bits in 

the query signature. This is much better than performing sequential search on the 

signatures in row order. This technique is called bit-slicing. Table 5.4 shows the bit-

sliced files for the block signatures of Table 5.3. There are a total of 12 bit files. Each 

slice consists of four bits. Generally, the slices are much longer than these. To look for 

a word such as "Visual", we need to fetch only bit files 4, 9 and 10. The potential 

candidates can then be easily identified by bitwise and operations on the slices. In 



Chapter S. Composite Bitplane Signature page 145 

Other words, 1010^1010' '1011 = 1010 reveals quickly that the first and titird logical 

blocks contain the potential candidates. 

Bit 

11 

10 

9 

8 

7 

6 

Slice 

1110 

1011 

1010 

0101 

0111 

1110 

Bit 

5 

4 

3 

2 

1 

0 

Slice 

0101 

1010 

0101 

0101 

0011 

1000 

Table 5.4 Bit-sliced Files for Block Signatures in Table 5.3 

Bit-slicing is not without problems. It is very expensive to update and delete 

words in documents if signatures are organized in bit-slices. One has to fetch all the 

bit files and changes the corresponding bits for minor updating operations. Hence, bit-

slicing is only suitable for static documents involving little updating. Another problem 

is the size of each bit-slices. Large text databases will generate long slices. The 

performance issues of retrieving and comparing long slices cannot be ignored. Hence, 

methods such as frame-sliced signature files and blocked signature files are suggested. 

Compression can also be used to compact long slices. 
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Horizontal partitioning 

The idea behind horizontal partitioning is that the signamre matrix is 

partitioned horizontally by grouping similar signatures together. This will improve the 

searching time as non-similar signatures are avoided initially. There are a number of 

methods to partition the signatures horizontally. Methods commonly used in relational 

databases can be used as the accessing data stmctures. 

Similar to extendible hashing in relational databases, the common prefix 

approach can be used to partition the signatures. Buckets of signatures are 

dynamically expanded and coalesced. Depending on the signature characteristics, the 

performance of better than 0(N) search time is certainly expected. 

Another common technique to group signatures is by free stmctures. B- or 

B""- trees can be used to organize the signamres. Although the performance is 

theoretically at the best of 0(log k N) for B- or B^- trees of order k, the advantage of 

grouping similar signatares into the same subfree eliminates unnecessary disk access. 

Hence, the practical consideration of searching large numbers of signatures can not be 

ignored. 

For image rettieval, the Hierarchical Composite Bitplane Signature exploited 

in Section 5.4.4 takes the dfrection of horizontal partitioning described in here. We 

would like to use free-based data stmctures to avoid the sequential scanning of 

Composite Bitplane Signature. 
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5.3 Bitplane Signature 

To introduce Bitplane Signatures for image retrieval, we shall use the 

metaphor of signing a signature on a document (e.g. a cheque). Every individual has 

his/her ovm signature, which can be an easily recognizable or obscure pattern. The 

purpose of signatures is to uniquely associate an individual to his/her signature. If we 

project a signature onto a rectangular grid, the ON bits are roughly on the same 

locations every time the signamre is signed. 

For image retrieval, we can use a pre-defined size of bitplane as the 

"signature canvas". A hash function or transformation is chosen so that we can 

translate the image into a set of bit pattems and onto the bitplane. It serves as the 

signature of the image. In fact, the signature does not have to be dfrectly related to the 

geometrical properties such as edges and shapes within the image. Ideally, the 

signature is an injective mapping from the image source to the bitplane. Different 

images will give rise to different signatures. However, if a n x m color image is 

transformed to a n x m bitplane, an injective mapping is theoretically impossible. 

Therefore, near injection is the best we can hope for. One may argue that, to reduce 

collisions, we can use a n'x m'bitplane where n « n' and m « m'. Unfortunately, 

this makes the bitplane much more difficult to handle and also against our goal of 

using signatures for fast image retrieval. 

Another fimdamental issue for Bitplane Signature is the behavior of the 

fransformation from images into bitplanes. In text retrieval, we want the hashing 

fimctions to be as random and uniform as possible. This, however, may not be the 
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case for image data. For example, we may not want to dfrectly generate the random 

pattems for the bitplane signatures as in the text counterpart. Unless we can keep track 

of the randomly generated bitplanes, this solution is clearly unworkable. It is tme that 

we want to avoid collisions among bitplane signatures in a given image database as 

much as possible. This, however, cannot undermine the importance of similarity 

retrieval for image data. Hence, the transformation scheme must be able to captures 

the salient characteristics of the images. 

There are a number of desirable properties which we want the bitplane 

signature scheme to exhibit. They are exploited in Section 5.3.1. Having the goal for 

the desirable signature scheme, we propose and design our signature scheme using 

wavelet decomposition in Section 5.3.2. Using wavelet decomposition for image 

retrieval has been proved in Uteramre that it is indeed a good way for similarity 

retrieval [JAC095, STOL96]. The method has been adopted and modified by us to fit 

into our overall model. In Section 5.3.3, we explore other possibilities for signature 

generation. 

5.3.1 Desirable Properties for Bitplane Signature 

Many of the desirable properties for Bitplane Signature are not found in text 

signatures. For example, content-based image retrieval is important for pictorial data. 

Therefore, we would like the fransformation to provide the capability of similarity 

retrieval. Ideally, we would like the signature scheme to exhibit the following 

properties: 
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1. A precise retrieval of an image if the corresponding signature is used to 

query the database. Otherwise, the particular signature scheme is not 

useful at all. 

2. The signature scheme will produce a similar signature if sunilar images 

are given. This is very important for the organization and retrieval of 

images. 

3. The computational cost for comparing two signatiues should be very 

efficient. Otherwise, given a query image, the overall performance of 

retrieving the target images will suffer if the database is very large. 

4. The data stmcmre to organize the signamres should be highly searchable 

and easily manipulated. 

5. Collisions in signatures are unavoidable. Ideally, we would like the hash 

pattems evenly distributed. However, this is proven by our experiment in 

Chapter 7 that it is generally not possible as in other hashing contexts. 

This is because the nature of distribution is dictated by the chosen hashing 

scheme. Once a hashing algorithm is chosen to optimize similarity 

retrieval, the nature of the resultant collisions will be determined by the 

underlying distribution, colUsions will be resulted in frend with the 

distribution. 

6. If the compressibility of the signatures is high, we may be able to store all 

the signatures in memory for a moderate size of image collections. 
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Furthermore, it is much easy to handle the signatures if they are highly 

compressed. 

Admittedly, we may not able to design a bitplane signature scheme with all the 

desirable properties listed above. However, we should satisfy the first three properties 

in order to make the designed scheme usefiil. 

5.3.2 Using Wavelet Coefficients for Signature Generation 

The selection of progressively better signature scheme is an ongoing 

research. Basically, we are looking for a good hashing scheme which can translate an 

image into a set of signamre bitplanes. As long as the scheme generates a reasonably 

unique and sparse signature bitplane and possesses the properties described in Section 

5.3.1, we can use it for the purpose of generating image signatures. The technique of 

retaining the signs of the m largest magnimde of wavelet coefficients proposed in 

[JAC095, STOL96] provides us a good start for signature generation. They originally 

suggested that the multiresolution nature of wavelets could be used as an effective 

scheme for image retrieval. Thefr technique of image retrieval using wavelets can be 

found in Section 3.3.3. Indeed, using wavelet decomposition for the purposes of 

signature generation offers a number of distinct advantages as follows: 

1. A good image approximation can be achieved by just a few coefficients. 

To demonsfrate this point, a simple example is illusfrated in Figure 5.1. 

The famous image, Lena, is scaled to 128x128 and restored from 

substantially reduced coefficients. It is noted that 10 to 20 percent of the 
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largest magnitude of wavelet coefficients can reproduce Lena with 

reasonable clarity. 

1% 5% 

10% 15% 20% 

Figure 5.1 Representing Lena by Fewer Wavelet Coefficients 

It is very simple to implement and reasonably fast to compute. This is 

particularly tme for the wavelet decomposition using Haar basis functions. 

Although the mathematical foundation of wavelets is quite involved, the 

filter bank is very simple to understand as described in Chapter 3. 

Furthermore, the heart of the wavelet decomposition and composition can 

be programmed with just a simple C++ program as follows: 
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#define root2 1.414213562 
#define root2div2 0.707106781 
// ********** Haar Wavelet Decomposition ********** 
void DecompositionStep(float *C, int n) { // C[l..n] 

int i; 
float *T; 
T = new float [n]; 
for(i=l; i <= n/2; i++) { 

T[i] = ( C[2*i-1] + C[2*i] ) / root2; 
T[n/2+i] = ( C[2*i-1] - C[2*i] ) / root2; 

} 
for(i=l; i <= n; i++) C[i] = T[i]; 
delete T; 

} 
void Decomposition(float *C, int n) { // C[l..n] 

int i ; 
for{i=l; i <= n; i++) C[i] = C[i] / sqrt(n); 
while (n > 1) { 

DecompositionStep(C,n) ; 
n = n / 2; 

} 
} 
// *********** Haar Wavelet Composition *********** 
void CompositionStep(float *C, int n) { // C[l..n] 

int i; 
float *T; 
T = new float [n]; 
for(i=l; i <= n/2; i++) { 

T[2*i-1] = ( C[i] + C[n/2+i] ) * root2div2; 
T[2*i] = ( C[i] - C[n/2+i] ) * root2div2; 

} 
f o r ( i = l ; i <= n; i++) C[i] = T [ i ] ; 
d e l e t e T; 

} 
void Composition(float *C, int n) { // C[l..n] 

int i; 
i = 2; 
while (i <= n) { 

CompositionStep(C,i); 
i = i * 2; 

} 
f o r ( i = l ; i <= n; i++) C[i] = C[i] * s q r t ( n ) ; 

Figure 5.2 C ^ Source Codes for HWT 

The standard decomposition for two-dimensional image data is by 

repeatedly calling D e c o m p o s i t i o n ( . . . ) to process each row of 

pixels. Next, the transformed rows are heated as an image and the 
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columns are again processed by repeatedly calling 

D e c o m p o s i t i o n ( . . . ) . The programming effort is amazingly simple 

and the computational cost is reasonably fast in comparison with 

frequency domain transformation. 

3. Not only wavelet decomposition has shown great potential in image 

compression, it has been proven to be an effective way for image retrieval 

in recent years. Because of its multiresolution nature, the coarser image 

can be represented by very few coefficients as illustrated previously. 

Hence, the coefficients can be used to capture the salient feamres of the 

images and provides a good starting point for image indexing and 

retrieval. 

Figure 5.3 outlines the processing steps of our signature scheme. It is our 

view that the raw data should undergo a pre-processing step before any wavelet 

decomposition takes place. Not only the usual conversion of different color spaces are 

performed, but most importantly, this step should include measures to achieve higher 

degrees of franslational, rotational and scale invariance [GEVE96]. For example, a 

pre-processing step of bin-packing the color histogram [VELL95] is geared toward 

this goal. A pre-processing step for our signature scheme is scaled different sizes of 

images into a standard size, % ^ ^y- Scale invariance is being taking care of using a 

fixed size image before any signature is generated. The scaled images are then 

converted to YIQ color spaces. YIQ color spaces are used instead of RGB color 

spaces as the latter is not color invariance. The scaled images are then undergone 

standard Haar wavelet decomposition for each color channel, and a set of 6 bitplane 
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signatures are generated as a result of retaining the signs of the m largest magnimde of 

coefficients, m, nx and ny are design parameters. These parameters are directly affected 

by the behavior of wavelet coefficients and are the subjects of investigation in our 

experiments in Chapter 7. Once the parameters are chosen, they will not be altered for 

the duration of the database. This design decision is similar to the text signatures. 

Also, this is for sure that m«nx* ny in order to make the bit matrices very sparse. 

(m X n) 

# 

i 
Pre-HWT 

Processing 

y r 

Haar Wavelet 
Decomposition 

/I 
Y Channel: 
coefficients 

^ 

, \ 

1 Channel: 
coefficients 

r } 

Sign Planes 
Generation 

Q Channel: 
coefficients 

' 1 

Sign Planes 
Generation 

r 

Sign Planes 
Generation 

/ \ / \ / \ _ 

+ - + - + -

Figure 5.3 Bitplane Signature Scheme Using Haar Wavelet Decomposition 
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On the surface, in numbers of bits, the size of the bitplanes appears to be 

prohibitively large. This is not trae at all. On the contrary, the storage requirement for 

our bitplane signatures is amazingly small. As determined by experiment, only 

approximately 150 bytes are needed for a 128 x 128 sign bitplane (with m = 128) in 

compressed form. Hence, we can store all six sign planes of an image with just a few 

hundred bytes. 

5.3.3 Other Possible Schemes for Signatures Generation 

Bitplane signatures can be constmcted from many methods. Many hashing 

schemes, which can produce two-dimensional bitplanes, are possible for signature 

generation. One obvious scheme is to convert from color images to bi-level images. 

This scheme, however, has far too many bits on a bitplane and sensitive to noise. 

Other schemes based on transformation such as FFT or cosine transforms are possible 

candidates. As a matter of fact, many content-based image retrieval techniques are 

also derived from this approach. Although the frequency domain does not resemble 

the spatial domain, the spectrum can be used to deduce the signatures. After all, 

signatures are for machines to read and they do not need to be human readable. 

We must stress that signature generation using wavelet coefficients in 

previous section is only one of many possible schemes. Because of the multfresolution 

nature of the coefficients, it provides a convenient way to absfract the images as well 

as fitted into our overall concept of bitplane signatures. Nevertheless, it is ongoing 

research to look for a better signature scheme. 
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5.4 Composite Bitplane Signature 

As we have seen in Section 5.2, we can superimpose word signatures into 

block signatures. This concept is equally applicable to bitplane signatures. The motive 

of doing this is similar to the text counterpart. That is we do not want to search the 

bitplane sequentially. We would like to search the bitplanes in groups so that better 

than linear search can be achieved. The formation of Composite Bitplane Signamre is 

described in Section 5.4.1. 

In fact, most of the image retrieval algorithms and searching engines reported 

in the literature are based on ranking of similar images. Very often, not all the images 

are needed to be completely ranked. Only a partial ranking is required for the top most 

candidates. For example, the user may only request the top 50 images which can 

satisfy the sunilarity query. Therefore, it is wasteful in producing a complete list of 

ranked images. Furthermore, if the ranking system can exfract the top ranked images 

without performing the similarity measure to the entfre image collection, this is 

superior in performance to those systems which are required to compare and traverse 

all the images in the collection. Our unique ranking system for Composite Bitplane 

Signamre, described in Section 5.4.2, allows us to produce the target set of unages 

without the need to search the entire database. Regardless of the different composition 

of bitplane signatures, the consistency of our ranking system is always guaranteed if 

false matches are being examined. Moreover, if the Hierarchical Composite Bitplane 

Signature in Section 5.4.4 is implemented, the searching mechanism is likely to be 

much faster for partial ranking. 
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To appreciate the concept of Composite Bitplane Signature, a simple 

illustrative example is given in Section 5.4.3. It outlines the processes of generating 

Bitplane Signature using wavelet decomposition, the formation of Composite Bitplane 

Signature and the querying. 

5.4.1 Formation of Composite Bitplane Signature 

Given a set of bitplane signamres with similar pattems, we can overlay the 

bitplanes and form a composite bitplane signature as shown in Figure 5.4. If similar 

pattems are grouped together, we can superimpose more signatures than from the 

signatures of non-similar pattems. This makes the Composite Bitplane Signature more 

compact. In fact, it is possible to overlay non-similar pattems as long as we do not 

populate the overall bitplane excessively. Otherwise, the uniqueness of the composite 

bitplane signature will be eroded. 

As in the block signatures for text retrieval, the bitwise OR operation is used 

to superimpose the bitplane signatures. For the gray-scale images, only the plus and 

minus composite bitplane signatures are resulted. For color images, we will produce 

the six composite bitplane signatures corresponding to the color channels of the 

images, ^X* ,X~ ,Y^ ,Y'' ,Z* ,Z~\ where {X,Y,Z] represents the color scheme of the 

user's choice. 

For our signature scheme, the bits for the plus and minus bitplanes tend to be 

concenfrated around the scaling coefficient (i.e. the coarsest subband) due to the 

multi-resolution nature of wavelets. Collisions are unavoidable. This characteristic 
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Figure 5.4 Formation of Composite Bitplane Signature 

will limit our freedom to add too many signatures into any composite bitplane. 

Therefore, we would like to find out the behavior of forming Composite Bitplane 

Signature under the influence of wavelet decomposition. However, the analytical 

determmation of behavior is difficult. Hence, we wifl observe this by experiments as 

given in Chapter 7. 
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5.4.2 Searching and Ranking 

To search a particular signature embedded in a composite bitplane signature, 

we rank all the composite bitplane signatures not by the number of matched bits but 

by the least difference of 1 bits from the query signature. The logic behind this 

searching mechanism is that the likelihood of fmding the target image in a composite 

bitplane signature is higher in those composite bitplane signatures having least 

difference. Therefore, it would be logical to search the individual bitplane signatures 

from those composite bitplane signatures having a higher chance of success first. 

Moreover, false matches are being taken care of in the searching process. 

Expressed mathematically, the composite bitplanes |C"',C~| for a set of 

sign planes { /^, /^ ; 1 < A: < V | are defined as, 

C^(x,y)=®i:{x,y), (5.1) 
k=\ 

C-(x,y)^®i;(x,y), (5.2) 

where ® is a bitwise inclusive OR operator. 

The individual score between the sign planes of the query image Q and the 

target image T for all three color channels are computed by the following equations. 

s:=Y.I.QI(^^y)^-Vix,yl (5-3) 
,v=0 y 

in n 

S; = ZZer(^,>')A~ Tr{x,y), l<i<3. (5.4) 
x=0 y 
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The overall score for all three-color channels is the weighted sum of the 

individual scores, 

S=j;^[a,S:+b,S:). (5.5) 
1=1 

With this measure, a higher score means a weaker match between the query 

image and the target image. We rank the target images by the least scores. Also, we 

can place different emphases on the color channels by assigning different weights to 

ai and bi . For example, if the color scheme is YIQ, ranking by intensity only (i.e. 

ignoring colors) can be performed by setting the weights for I and Q scores to zero. 

5.4.3 Illustration 

As a concrete illustration of Composite Bitplane Signamre, let us assume that 

we have three 8x8 gray-scale images with data shown in Figure 5.5. Since they are 

gray-scale images, there are no need to generate all six bitplanes as it would be for 

color images. Only two bitplane signamres corresponding to the plus and minus 

bitplanes are generated. At first glance, the ffrst and third images are very similar. 

Therefore, we will expect that the bitplane signatures are similar as we will see later 

on. 

Under our scheme, we need to perform Haar Wavelet Transformation on the 

image data. We use the standard HWT decomposition. The wavelet coefficients are 

shown in Figure 5.6. They are round to the nearest integers. It is noted that we should 

perform pre-HWT processmg according to our scheme described in Section 5.3. 

However, for this illusfration, we omit the processing for clarity. But the processes of 
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(c) Image #3 

Figure 5.5 Data for Three 8x8 Gray-scale Images 

scaling and color translation are definitely required and performed in all our 

experiments described in Chapter 7. 

It is clear from Figure 5.6 that the multiresolution nature of the wavelet 

fransform is appeared in the coefficients. Larger magnitudes of coefficients are 

concentrated around the coarsest subband. This fiirther confirms our observation that 

we cannot over-populate composite bitplane signatures. The m-largest magnimde of 
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(c) HWT for Image #3 

Figure 5.6 HWT Using Standard Decomposition for Figure 5.5 

coefficients are selected to generate the corresponding plus and minus bitplanes. We 

chose m to be 8 which makes the bitplane signatures reasonably unique. The 

truncated coefficients are shown in Figure 5.7. 

The selected coefficients are then used to generate the plus and minus 

bitplane signatures. The bitplane signatures for the three images are shovm in 



Chapter S. Composite Bitplane Signature page 163 

97 
0 

-30 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 

-27 
0 
0 
0 
0 
0 
0 
0 

27 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 

32 
0 

-32 
0 
0 
0 
0 
0 
0 
0 

32 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 

-32 
0 

(a) Selected Coefficients for Image #1 

80 
-36 
-13 
-13 

0 
0 
0 
0 

-36 
16 
0 
0 
0 
0 
0 
0 

-13 
0 
0 
0 
0 
0 
0 
0 

-13 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 

(b) Selected Coefficients for Image #2 

101 
0 

-30 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 

-24 
0 
0 

24 
0 
0 
0 
0 

28 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 

-26 
0 
0 
0 
0 
0 
0 
0 

32 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 

-32 
0 

(c) Selected Coefficients for Image #3 

Figure 5.7 8-largest Magnitude of Coefficients from Figure 5.6 

Figure 5.8. It is clear from Figure 5.8 that similar images wiU have similar bitplane 

signatures. This characteristic is very useful for similarity retrieval. 

Given the bitplane signatures, we would like to illustrate the formation of 

composite bitplane signatures. Let us assume we intend to form composite bitplane 

signatures from the first and second images and use the third image as a query image 
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Figure 5.8 Bitplane Signatures for Figure 5.5 

to the composite bitplanes. Figure 5.9 shows the formation of composite bitplane 

signatures by bitwise-ORing the corresponding plus and minus bitplanes. 
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Figure 5.10 Query the Composite Bitplane Signatures in Figure 5.9 
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To query the composite bitplane signatures, we count the number of least 

difference of 1 bits to the query image. As shown in Figure 5.10, a total of only 1 bit 

is different in the plus bitplane and none in the minus bitplane. 

From this example, a number of important properties can be observed from 

the bitplane signamres: 

1. If a precise image is given, a precise match will be obtained. The 

composite bitplane signature, which has the signature embedded, will 

definitely come out in the top rank. 

2. Similar images have similar signatures. For example. Image #1 and Image 

#3 are very similar. The bitplane signatures are also similar. This provides 

a good way to group/cluster images together. 

3. The querying operation is very simple and efficient. For large image 

databases, it is extremely advantageous. 

4. The data stmcture to hold the bitplane signatures is also very simple. The 

bitplanes can be packed into an array of words for storage. 

5. To maintain the imiqueness of the bitplane signatures, we cannot over-

populate the composite bitplane signatures. 

6. Since the bitplane signatures are very sparse, it is ideal for compression. 

This example is for illusfration purposes only. The characteristics and 

behaviors of Composite Bitplane Signature using wavelet coefficients are the subjects 

of the experiments in Chapter 7. 
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5.4.4 Hierarchical Composite Bitplane Signature 

The composite bitplane signature discussed above eliminates the need to 

examine individual bitplane signatures in the entfre image repository. For any query 

image, we still have to search through the composite bitplane signatures sequentially. 

Although it is much better than searching the entire collection of images as many 

existing retrieval methods do, performance will suffer if the image database contains a 

large number of composite bitplane signamres. Because of our unique ranking 

scheme, a hierarchical accessing stmcture of composite bitplane signamres can be 

constmcted for exfremely fast image searching as shovm in Figure 5.11. A partial 

ranked Ust of images can be rapidly located through traversal and back fracking. We 

call this Hierarchical Composite Bitplane Signamre. 

Composite Bitplane 
Signatures at level K-\ 

t 
Composite Bitplane 
Signatures at level K 

t 
Individual 
signatures 

( ^ is a bitwise OR operation 

Figure 5.11 Hierarchical Composite Bitplane Signature 



Chapters. Composite Bitplane Signature page 168 

It is possible that other data stmctures can be used to organize the composite 

bitplane signatures. Data stractuies such k-d trees, quad-trees and R-trees are some of 

the possible spatial stmctiires [SAME90a, SAME90b, SILB97]. These data stracttires 

can also take advantage of the subband nature of wavelet coefficients for fast retrieval. 

5.5 Summary 

In this chapter, the concept of Composite Bitplane Signature is presented. 

Composite Bitplane Signature is an approach for fast image indexing and retrieval. 

The basic building block of Composite Bitplane Signature is Bitplane Signatiue. It 

encapsulates the elegance of conventional signature-based text retrieval. This is 

accomplished by extending one-dimensional bit vectors for text signatures into two-

dimensional bit matrices designed for image signatures. 

Specifically, our design for Bitplane Signature enables us to retrieve images 

based on their visual contents. It is achieved by using the signs of m-largest magnimde 

of wavelet coefficients as the scheme for signature generation. Under our scheme, 

similar images will possess similar signamres. This fundamental characteristic is 

important for content-based similarity retrieval. 

Composite Bitplane Signature is a superimposed coding technique for 

Bitplane Signatures. It avoids the need to individually examine every signature. Given 

a query image, the least difference of the composite bitplane signatures to the query 

signature is sought. They are the likely candidates containing the images similar to the 

query. Therefore, tiiey should be examined first. Certainly, false matches are possible 
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and can be detected by further comparison on the individual signature composing the 

composite bitplane. This is similar to the resolution used in text retrieval. 

Hierarchical Composite Bitplane Signature takes the concept of Composite 

Bitplane Signamre one step further. It allows us to rapidly produce the partial ranked 

list of images by traversing a tree-like stmcmre with back-fracking. This accessing 

stmcture is extremely useful for a large database. A simple comparison for the search 

efficiency is summarized in Table 5.5. 

Signature Scheme 

Bitplane Signature 

Composite Bitplane Signature 

Hierarchical Composite Bitplane Signature 

Search Efficiency 

N 
(N= no. of signatures) 

N/G + G 
(G = no.of signatures in a group) 

log ^N + m 
(if a balanced tree of order m is used) 

Table 5.5 A Simple Comparison ofour Image Retrieval Schemes 

Our unique ranking and searching mechanism can efficiently produce a 

partially ranked target set of images without the need to search the entire database. 

This offers significant advantage over those retrieval algorithms which require the 

comparison of aU the images in the database. 



Chapter 6 

Inverted Image Indexing 

and Compression 

6.1 Introduction 

Indexing of information content is vital for voluminous data. It is next to 

impossible to locate a piece of information if it is not properly indexed. For example, 

it is necessary to look up terms in the index of a book when searching for important 

terms. If an index is not provided, readers have to search the headings of chapters and 

sections and may eventually locate the information by a sequential scan to paragraphs. 

This is often a time-consuming and fi-usfrating process. Therefore, the concept of 

postings provides a usefiil solution [HARM92, SALT89, WITT94]. 

Information indexing and retrieval, particularly alphanumeric information, 

have been heavily studied for the last 40 years. The most noticeable contributor in the 

170 
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field is the late Gerard Salton from Cornell University where he and his students 

persistently worked on the areas of automatic indexing and information retrieval. The 

usefulness of automatic indexing for image data is prompted by the recognition of its 

importance in the text domain. Many paradigms and techniques in text retrieval can be 

exploited and improved upon. Hashing and signature schemes described in previous 

chapters are such examples. In this chapter, we take the paradigm of inverted files and 

apply to image data. 

For image retrieval, however, using title, caption, or description of images for 

indexing purposes are not sufficient. In many cases, it is difficult to describe the visual 

effect by words. For instance, if a picture of a designer's dress is indexed by words, 

the descriptions for the material texture, shape, cut, featiure and style would be 

lengthy. Hence, we must also index the contents visually, which is commonly the 

subject of Content-Based Image Retrieval (CBIR) [GUDI95]. However, it is also 

difficult and next to impossible to represent higher level concepts and semantic 

information using just lower level features and syntactic information. The model 

described in this chapter bridges the deficiency of both sides and provides a unified 

framework for accessing image data both semantically and syntactically. 

To understand our motivation of applying the inverted paradigm to image 

data, a simple analogy of text and image contents is given in Table 6.1. If we view the 

counterpart of characters are pixels, then words in a document are equivalent to areas 

of pixels in an image. This comparison is rather cmde but very appropriate in helping 

to establish the indexing and storage technique in this chapter; namely Inverted Image 

Indexing and Compression (IIIC). To proceed fiirther, we can look at the formation of 
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queries in document databases and image databases. Users poses a query to a 

document database by supplying a list of words. Similarly, a query to an image 

database using visual contents is by sample pictures (Query By Picture Examples) to 

any possible area in images. 

Text content 

Document 

Word 

Character 

Word position 

Image content 

Image 

Area 

Pixel 

Area coordinates 

Table 6.1 A Simple Analogy of Text and Image Contents 

Many content-based image retrieval techniques are applied to images as the 

whole pictures. In many applications, multiple objects in images are required to be 

indexed separately. For example, a picture of a woman cuddling a baby contains two 

indexable objects [GROS97b]. Content-based feature extraction on the whole picture 

is neither appropriate nor meaningful with respect to an individual object. In other 

words, each image can have multiple areas which are perceived to be meaningful 

visual contents. Each area must be indexed on its own and related to similar objects in 

the entire image collection. This is analogous to text documents where each word is a 

searchable item. Inverted text files are used to group them together. Recent 

researchers recognize that it is important to consider multiple areas vrithin images 

[CHAN97, GROS97b, SMIT97]. 
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In this chapter, we ffrstly look at a simple example using an inverted file for 

texmal documents in Section 6.2. This provides an interesting contrast to our inverted 

file for pictorial documents. In Section 6.3, the components of the IHC model are 

presented in details. These include picture keys, the Temary Fact Model 

representation (TFM), the Composite Bitplane Signature (CBS) and the image 

coordinates. In Section 6.4, the query model for the inverted paradigm is presented. 

This allows us to provide Boolean and ranked queries in a unified framework. 

Compression consideration for various components of the IIIC model is discussed in 

Section 6.5. Lastly, we conclude this chapter with a summary in Section 6.8. 

6.2 Inverted Files for Text Retrieval 

Indexing techniques for large text databases are pursued mainly in two 

directions. They are signature-based indexing and inversion-based postings. Of these 

two approaches, the inverted paradigm is the most natural way of searching 

information. We are very much used to this paradigm in our daily life. The obvious 

example is the concordance of a book. Another example is the sfreet directory for 

which tiie inverted paradigm is applied to pictorial and spatial information. This is 

very much similar to our inverted schemes for images. 

For completeness, we wdll examine a simple example usmg an inverted file 

for textual documents. This provides an interestmg contrast to our inverted 

organization for pictorial information. Table 6.2 is an example of some proverbs and 

famous phases. To simplify the illusfration, we assume each document consists of 
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only one line. The inverted file for the documents is shown in Table 6.3. The lexicon 

of the inverted file consists of all the words m the documents. We do not consider 

many usual transformations of words in producing the inverted file. In practice, a 

number of automatic indexing techniques [SALT89] would be applied to the text in 

order to improve the retrieval performance as well as the precision or recall. For 

examples, (1) case-folding: uppercase letters or words such as "Life" can be folded to 

lowercase, (2) stop-words: high frequencies of common grammatical words such as 

"the", "a", "but" and other words deemed to be irrelevant can be eUminated, and (3) 

stemming: words such as "Men" and "saved" can be reduced to their morphological 

roots. 

Document 

1 

2 

3 

4 

5 

Text 

Life is ours to be spent, not to be saved 

I must be cruel only to be kind 

Life is nothing but a dream 

Men are cruel but man is kind 

I have a dream 

Table 6.2 Sample Documents 
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Term 

I 

Life 

Men 

a 

are 

be 

but 

cruel 

dream 

have 

is 

{Document: Words} 

{2:1}, {5:1} 

{1:1}, {3:1} 

{4:1} 

{3:5}, {5:3} 

{4:2} 

{1:5,9}, {2:3,7} 

{3:4}, {4:4} 

{2:4}, {4:3} 

{3:6}, {5:4} 

{5:2} 

{1:2}, {3:2}, {4:6} 

Term 

kind 

man 

must 

not 

nothing 

only 

ours 

saved 

spent 

to 

{Document: Words} 

{2:8}, {4:7} 

{4:5} 

{2:2} 

{1:7} 

{3:3} 

{2:5} 

{1:3} 

{1:10} 

{1:6} 

{1:4,8}, {2:6} 

Table 6.3 Word-level Inverted File for Table 6.2 

For each entry in Table 6.3, it consists of two main columns. The first 

column includes all the distinct and searchable words in the entire database. A number 

of organizational methods for these words are possible; (1) 0(1) access using hashing 

if some sorts of word-to-address fransformations or hashing fimctions are used, 

(2) 0( log2 n) access using binary search if these words are sorted, and (3) 0( log^ n) 

access using balanced multiway frees such as B- or B*- frees of order k. All these 

searching methods have thefr advantages and disadvantages. The ultimate selection is 

also dependent on other considerations such as storage. 
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The second column in Table 6.3 contains one or more Usts of pointers 

organized in the form of {d:wi, ...Wyi) where d is the document number and wi is 

the position of the given word in ascending order within the document d. This is a 

word-level inverted list which may be too expensive to perform on some large 

databases. Coarser indices referred only to the document numbers will reduce the 

storage spaces significantly but at the expense of scanning the entire text in the 

document sequentially. Also, proximity queries may result in false match at coarser 

indices. For example, the search for "Bill Clinton" may result from a document 

containing both "Bill Cosby" and "Hilary Clinton". Furthermore, fetchuig and 

scanning dociunents to satisfy basic conjunctive and disjunctive queries on multiple 

terms are likely to be slower. 

Compression can play a major role in reducing the storage required by 

inverted files. Particularly, the list of word positions for an enfry can be very long for 

large documents. Differential coding for each Ust followed by entropy coding can be 

used to compress the list. This leads to the so-called compressed inverted files. 

6.3 Image Indexing and Retrieval Using Inverted 
Paradigm 

Information retiieval, in principle, is based on the similarities between 

queries and stored contents. Regardless of the media types, this principle holds for any 

type of retrieval. Also, information retrieval can be broadly classified into two 

categories; namely high-level semantic discovery and low-level syntactic recovery. 
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Naturally, the results from semantic queries are less precise than syntactic queries. 

Image retrieval is no exception in this. For example, to answer a low-level query of 

locating images with certain color decomposition, the query can be easily satisfied and 

should be reasonably accurate. On the other hand, the semantic queries are much more 

difficult to answer. Human intelligence and intervention are often needed. Therefore, a 

retrieval model should ideally include mechanisms for high-level semantic indexing 

and low-level syntactic feature retrieval. Figure 6.1 outlines the conceptual image 

retrieval model which includes mechanisms for high-level semantic indexing and low-

level feature exfraction. This model is in closely resemblance to the text retrieval 

model given in [SALT89]. 

Negotiation 

Analysis 

Semantic 
Indexing 

Similarity 
Computation 

Syntactic 
Indexing 

Retrieval of 
Similar Items 

Figure 6.1 Conceptual Image Retrieval Model 
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User selected areas 

V* 
i \ 

Semantic 
Indexing 

Syntactic 
Indexing 

\ 
/ 

Inverted Image File 

Figure 6.2 Image Indexing Using Inverted Paradigm 

page 178 

By recognizing the importance of semantic and syntactic indexing, our 

inverted paradigm for pictorial documents must include mechanisms to satisfy these 

needs. Furthermore, each pictorial documents can have multiple areas which are 

perceived to be meaningful visual contents. These areas are selected by users and 

undergo content specification at the semantic level and signature generation at the 
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feature or syntactic level. Figure 6.2 shows our view of image indexing using inverted 

paradigm. 

It is shown in Figure 6.2 that the selected areas are limited to rectangular 

shapes. This restriction is for efficiency in handling and computation only. In theory, 

irregular regions can be used for better representation. However, it is tedious and 

impractical to sketch regions manually. Even with current technology in Machine 

Vision, automatic segmentation is proved to be a difficult task for arbitrary shapes. 

Also, overlapping areas are allowed in our inverted paradigm. 

6.4 Components of Inverted Image Indexing and 
Compression 

Unlike the inverted text file which has a complete and precise lexicon, we 

cannot directly use each area in an image as a searching 'vocabulary' for the inverted 

file. Instead, we must capture the salient feature of the area and translate it into a 

searchable representation. In our approach, we use two forms of representation; high-

level specification using Temary Fact Model [LEUN95] and low-level signature 

generation usfrig Haar Wavelet Transform [JAC095, STOL96]. We use TFM because 

of its canonical nature in description. Hence, the searching mechanism is highly 

stmctured. With regard to the signature generation, we adopt the wavelet 

decomposition using the Haar basis. Composite Bitplane Signature described in 

Chapter 5 is also used for efficient searching. To illusfrate the components of our 

Inverted Image Indexing and Compression model [S097b], let us look at a simple 
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example of three pictures in Figure 6.3. The inverted file for image contents is given 

in Table 6.4. There are four major components of our model; the compressed area 

(picture key), the Temary Fact Model representation, the Composite Bitplane 

Signature and the coordinates of each area. 

Figure 6.3 Three Sample Images 

Area 
(compressed) 

A| 

k 

• 

Ternary Fact 
Model 

red APPLE 

black CAT 

TREE 

Composite 
Bitplane 
Signature 

0,1,... 

1,0,... 

1,1,... 

{ Image: Coordinates } 

{A:(x,,yi)-(x2,y2)}, {C:(x3,y3)-(x4,y4)} 

{A:(x5,y5)-(x6,y6)} 

{A:(Xk,yk)-(xi,yi)}, {B:(Xn„y„)-(Xn,yn)} 

Table 6.4 A Simplified View oflnverted Image File for Figure 6.3 

The inverted image file described in Table 6.4 is for illustrative purposes. We 

will discuss how to construct the components of each entry next. 
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6.4.1 Picture Key 

For each entry of the IIIC model, we need to provide a visual representation 

to signify what are included in the entry. In the simplest case, the entry has only one 

item which corresponds to an area from the original image. Otherwise, this unage 

serves as a representative item among the collections within the entty. There is no 

need to have a precise replica of image contents in order to put them into the entry. 

The sole objective is to provide the users with the salient features and characteristics 

of the entry. We call this a picture key. For example, one can put the portrait of 

President Clinton into the picture key area. Pictures, which have Bill Clinton in them, 

can be cropped out and inserted into the entry. These pictures may include his 

childhood, as a Governor, with Mortica Lewinsky, or with some other politicians. 

The picture keys are stored in compressed form. For the purpose of picture 

keys, the compression can be a lossy one. As they are served as a representative item 

within the entry, they are often used for browsing or thiunbnail purposes. Hence, the 

compression scheme should be reasonably fast and universally accepted. We select 

JPEG as the media for storage purposes. 

6.4.2 Ternary Fact Model 

Instead of using unstmctured text to describe the image contents, a canonical 

description called Temary Fact Model is used to capture the semantics of the images 

[LEUN95]. The semantic information is captured through manual indexing. A data 

model such as TFM is able to provide a set of homogenous structured data items to 
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facilitate searching. The basic building block of the model consists of discrete/flc?5. 

Conceptually, image facts may be classified into five types: 

1. Elementary Facts. An elementary fact merely states the presence of a 

particular item in the image. 

Examples: CHAIR, GRAPE, TREE. 

2. Modified Facts. These are the elementary facts augmented with 

descriptive properties through the use of modifiers. 

Examples: red APPLE, black CAT. 

3. Outline Facts. These outline the abstraction of the images. 

Examples: EXPLOSION, WEDDING. 

4. Binary Facts. These are the facts linking together exactly two elementary 

or modified facts. Such links may correspond to verbs. 

Examples: BOY Rides ELEPHANT, WOMAN Holds CHILD. 

5. Ternary Facts. These are the facts linking together exactly three 

elementary or modified facts together. 

Examples: BOY Hitting CAT With RACKET, WOMAN Giving CHILD 

BISCUIT. 

For the examples given above, the following convention is adopted: 

• Elementary facts and outline facts are indicated by upper case letters. 

• Modifiers are indicated by lower case letters. 
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• In binary and temary facts, the link is expressed using an initial upper case 

letter. 

The above convention is important to faciUtate the searching process if the facts are 

stored in free-text forms. Using free-text to store the canoiucal description has its 

advantages: (1) its data stmcture is much simpler as only strings of characters are 

needed for the storage, (2) text databases can be used to provide efficient searching, 

and (3) it is more natoral to the users. The obvious disadvantage is that, in comparison 

with housing all the facts in different attributes of a relational database, it may reqiure 

additional processing efforts at query time. Furthermore, it is time-consuming to 

process the strings if weighted sums or ranking of different facts are used. Querying 

issues will be examined in Section 6.4. 

Pre-processing of facts are often needed to improve the precision or recall 

rates. Although the data model itself greatly alleviates the ambiguity of English-

language texts, it is necessary to perform some forms of transformation as follows: 

• Words are reduced to their morphological roots. This will narrow the 

queries and, hence, improves the precision rate. For examples, "Hitting" 

and "Rides" are converted to "Hit" and "Ride" respectively. 

• Thesauri may be invoked if the exact matches are not fotmd. This will 

broaden the queries which, in turn, enhances the recall rate. For example, 

if "LORRY" is not found m the facts, it wiU be substimted by "TRUCK" 

for further searching. 
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• Subject classification schemes similar to the Library of Congress can be 

used as the search space reduction sfrategies [S096c, S097a]. It is likely 

to reduce the set of images considerably. Whether it will improve the 

precision or the recall of the query really depends on the classification 

itself 

Elementary facts, modified facts and outUne facts are used more often when the image 

contents are relatively simple. This is particularly tme for our experiments which 

mainly consists of images with simple objects. We also decided to use slightly 

generalized facts for our inverted files so that a number of image areas can be inserted 

into a single entry. This provides an implicit grouping of areas with similar contents. 

6.4.3 Composite Bitplane Signature 

For each entry in the inverted image file, the inverted list may include a 

number of image areas. These areas may come from a single image or multiple 

unages. To facilitate the low-level searching, each image area is requfred to undergo 

signature generation. A set of YIQ bitplane signatures are computed for each image 

area in the list using the wavelet decomposition of the Haar basis. They are then 

combined into composite bitplane signatures or added to the existing composite 

bitplane signatures if the entry is afready existed. Composite bitplane signatures are 

thoroughly explained in Chapter 5 and we will not repeat in here. 

The composite bitplane signatures provide a quick searching facility for all 

the image areas in each entry. The best ranked composite bitplane signatures indicate 
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that the likelihood of the target image is embedded in the entry. Individual bitplanes 

are further analyzed to see whether a false match has occurred or not. Depending on 

the user's requirement, we can cease searching the composite bitplane signatures as 

soon as the number of ranked images are reached. Due to our unique ranking 

technique described in Chapter 5, the searching process will always lead to the closest 

entry first. For example, if an identical image area or a very close resemblance is 

given to test all of the composite bitplane signatures in the inverted file, the top ranked 

image areas will have a score of zero (i.e. perfect match). For integrated query mixing 

TFM and CBS in a query, this characteristic is very useful for the querying of the 

image database. 

Although the image areas are concepmally related and put together in a group 

under a single entry, the low-level feature signamres may be quite different. This does 

not really create much problems to the signature retrieval. After all, it is imnecessary 

to produce a complete ranked list of images. Only the top ranked images under user's 

specification are retrieved. On the other hand, if too many image areas are included in 

each inverted list, false matches will increase. In this case, the performance will 

degrade. Hierarchical composite bitplane signatures described in Chapter 5 can be 

used to improve the search performance. 

6.4.4 Image Coordinates 

The coordinates in each entry of the inverted file indicate where the image 

area comes from. It takes the form { I: Rj ... R^ } where / is the image identifier 

(ImagelD) and Rf is the boundmg box of each area within an image. Each image may 
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consist of a number of related areas. For example, two or more apples in an image is 

cropped out and entered into a single entry. All coordinates in this component are 

measured relative to the upper left comer (0,0) of the original image. If the visual 

content covers the entire image, the coordinates will reflect the width and height of the 

image. Image identifiers can either be the unique frame numbers or the file names 

within the image database. If the image collection spans across different platforms or 

systems, image identifiers must be appropriately designed. In our experiment, we just 

use the file names. 

There are a number of practical uses of the coordinates in our model. 

Proximity, spatial relationship, foreground and background relationship are some of 

the useful information about the image areas. Some of the information deduced from 

the coordinates are: 

I. Relationship among visual contents. 

We can deduce many spatial relationships by using the orientation of the 

visual contents. For example, 

This relationship can be computed by using the centroid from the 

coordinates. Of course, the criteria and tolerance to a spatial relationship 

are just a matter of programmable specification. 
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2. Foreground and background relationships. 

Each area in the inverted file represents the visual content of interest. We 

may consider these areas as the foreground contents. Different 

compression ratios can be applied to the foreground and background 

contents over the entire images to conserve storage spaces. For example, 

Complex Tiling defined in JPEG Extension [IS0D3] could be used to 

implement this kind of multiple compressions requfrement within an 

individual image. 

We can make use of additional mechanisms such as 2D-String [CHAN96b] 

to enrich the deduction of spatial relationships (e.g. nearness, overlapping, 

surrounding and many others). Furthermore, conjunctive queries, disjunctive queries 

and even relational joins are possible. 

6.5 The Query Model 

For any database whether it is for alphanumeric or multimedia information, a 

query model is an important component next to the data model. The query model 

works hand-in-hand with the data model to complete the conceptual framework of a 

database. For any advanced database, particularly multimedia ones, two broad 

categories of queries should be supported. The first category of queries are exact in 

nature. It is also referred to as Boolean queries and commonly used in relational 

databases. For example, we can ask for any image in the database containing "black 

CAT and red CHAIR". The answer ought to be very precise if such conjunctive query 
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is posed to the database. The second category of queries are ranked queries. It is also 

referred to as sunilarity queries. Using our previous example, any image closely 

relevant to CAT and CHAIR will be retrieved as the ranked candidates. One can view 

a Boolean query as really a special case of a similarity query. In other words, if the 

data set resulted from a Boolean query is not empty, it should be ranked at the top for 

any similarity query to be reasonable and meaningful. In image databases, the 

majority of queries are similarity queries due to the fact we do not have a robust 

technique to formulate and identify image contents. 

There are numerous types of queries in image retrieval. Description-based, 

content-based, context-based, example-based (QBE), spatial-based, or constraint-

based queries are some of the types. Regardless of the type. Boolean and ranked 

queries are the fundamental forms of queries and should be supported. For the data 

model which are able to support mixed queries such as otu inverted model, it is not 

unusual to pose an integrated query with high-level concept and low-level feature 

matching on the basis of exact or similarity retrieval. Furthermore, since our inverted 

model can handle multiple entities within an image, it allows us to submit intricate 

queries to the data model. For example, 

((brown CAT or red APPLE or S) and TABLE ) 

where S is the signature of a mouse. This query is looking for a cat, an apple or a 

mouse together with a table in an image. For ranked retrieval, a picture with a brovm 

leopard standing on the table, for example, can be a potential candidate for this query. 
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Figure 6.4 Processing Steps for our Inverted Model with a Simplified Illustration 

Similar to conventional query processing, the steps involved in processing an 

image query include: (I) parsing and validating an query, (2) translating and 

transforming into an intermediate query, (3) optimizing the intermediate query, (4) 

formulating the execution plan, and lastly (4) performing the query. Figure 6.4 shows 
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the processing steps for our inverted model with an illusfrative example. While it is 

not much of a problem to pose an alphanumeric query, it is harder to formulate query 

involving visual contents. Undoubtedly, an integrated user interface is needed for the 

query processing of image data. This is a research area in its own right and we do not 

pursue this further here. 

The rest of this Section is organized as follows. The query processing steps 

will be thoroughly explained in Section 6.5.1. These include how to compose Boolean 

and ranked queries, to formulate intermediate queries for the execution plan, and to 

construct an execution free. In Section 6.5.2, the selection criteria for ranked queries 

are specified. This is one of the possible heuristics which satisfies our expectation. A 

query example is showm in Section 6.5.3 to reinforce the concept. In Section 6.5.4, we 

outline the constraint-based queries using the spatial relationships of the image 

coordinates as an interesting extension to our inverted image model. 

6.5.1 Query Processing 

To begin our illusfration for each processing step, we need to be more formal 

in defining our query. Let Fi be either an TFM fact J/, or a signature Si, in a general 

expression of a query after the parsing and validating processes and presented in the 

form of an Boolean equation, g(Fi,F2,. . . ,Fj . For example, 

Q = ((Jj A iSj) V (7, A 7]) V ^4) for « = 4. Allowable Boolean operators include and 

(A) , or (v) , not (-i) together v^th parentheses. It is noted that Q is specified over an 

image. If and operator is used, both must be tme for an image. An example is "brovm 
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CAT and red APPLE" where both of these entities must exist in an image for this 

expression to be tme. If we want any brown CAT or red APPLE in any image, the or 

operator is used instead. The not operator is rather subtle and not often used. An 

example is "not brown CAT". This means any image containing brown CAT is not 

selected. 

The general expression is required to undergo franslation and transformation 

into an intermediate query. It is not possible to evaluate the query with arbifrary levels 

of parentheses and terms. It must translate into an acceptable form so that the 

execution plan can be formulated. There are two forms we can use. The first one is the 

product-of-sums. It is also referred to as a conjunction of disjunctions or a maxterm 

expression. Any general Boolean equation can be translated into the following form, 

Q[F„F„...,F„) = (F^w ... V F J A ... A ( / ; , V ... vF , ) (6.1) 

where w<x and y<z such that w,x,y,z &[\...n] . The advantage in using this 

form is that it helps the execution plan to do lazy evaluation for Boolean queries. The 

second form is the sum-of-products. It is also referred to as a disjunction of 

conjunctions or a minterm expression. It is in the following form, 

e(i^,F„. . . ,F;) = (F^A ... A F J V ... V ( F , A ... A F , ) (6.2) 

where w<x and y<z such that w,x,y,z G{l...n] . The advantage in using this 

form is that paraUel execution of the image query is possible. These two forms are 

acceptable intermediate queries, but we would take the first one to standardize our 

execution. The reasons to choose this form are: 1) the logical integrity is maintained 

for the disjunctive terms when we relax the disjunctive terms to include less precise 
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target images, 2) this is a commonly used form for text retiieval and, hence, we may 

be able to borrow the research results from them, and 3) we do not expect a long Ust 

of disjunctive expressions for unage queries. The obvious disadvantage is that each 

disjunctive expression can produce a large niunber of intermediate candidates. 

Unnecessary intersections may result. 

It is worth noting that both Boolean and ranked queries are performed the 

same operations up to this point. The next step is optimization. Since the time 

required to evaluate each term is different, it is wise to do terms that are most efficient 

to generate results. For example, we would do terms that contains only TFM facts first 

because it is much easier to perform than searching signatures. Also, the real 

perfomiance issue is not on searching TFM facts. Even with a large image collection, 

the total number of TFM facts is expected to be manageable. If an additional structure 

such as a B^-tree is used, the searching process can be very efficient. Furthermore, 

given the memory capacity of modem computers, we can comfortably fit thousands of 

TFM facts with an average of modified facts or binary facts in memory for searching. 

Since each entry in the inverted file is imlikely containing a long sequence of pointers 

to the areas, the imion and intersection operations are not too excessive. Nevertheless, 

choosing a disjunction with the least maxterms to evaluate first is a better choice. 

Once the order of execution for each disjimction is set, the execution plan is 

formulated. An execution free is used to propagate the intermediate results. Figure 6.5 

illusfrates an execution free for the product-of-sums configuration. The leaf nodes of 

the free consist of each disjunctive term in the query expression. An example of 

performing intersection and union on image sets is also shown in Figure 6.5. Our 
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algorithm to obtain the final set of target unages is sintilar to harvest a crop. The crop 

is going over a number of times. We pick the best at each mn until we have enough. 

At each mn, we relax our selection criteria so that the weaker crop can be picked. 

{a,d,e} 

{a,b,c,d,e} 

Intersection 

• • 

Examples: 
{imagelD...} 

V — 

{d,e,f,g} 

Figure 6.5 Execution Tree (product-of-sums) for Target Images with a 
Selection Criteria 

There are a number of possible heuristics to determine the selection criteria 

for each pass of the tree. The heuristics described in the next section does it without 

resorted to weighting. 

6.5.2 Selection Criteria for Ranked Queries 

The selection criteria should be natural enough so that the results are 

consistent to meet our expectation. In other words, the results from the Boolean query 
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must surface first. These images are ranked at the top of anything else. We then relax 

the criteria step-by-step to accommodate less precise answers. Figure 6.6 depicts the 

heuristics to meet our expectation. Initially, the set of the target unages is empty. For 

each step, a set of possible candidates is selected based on the logic of the execution 

tree. These intermediate candidates are appended to the end of the target set if they are 

not afready in the set. Implicitly, ranked candidates are produced with the most precise 

unages at the top. We can terminate the selection process once the number of target 

images is reached. Also, if only a precise answer is required, we can stop at the first 

step. 

o 

o 
<D 
X 
<D 

O 

(U 

o 

Boolean evaluation 

substitution* 

dropping links 

dropping modifiers 

dropping elementary facts 

relax signatures' 

dropping signatures 

optional 

Figure 6.6 Heuristics for Selecting Target Images 
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The criteria are briefly explained in the following, 

• Boolean evaluation: This step provides the precise solution with a given 

query expression. Temary facts are matched as they are showoi in each 

term of the expression. Exact signatures are also requfred if they are 

included in the query. 

• Substitution: The purpose of this step is to replace the facts in the query 

expression using additional tools such as thesauri or knowledge-based 

tools. This will increase the chances if the exact matching is failed. 

• Dropping links: For any binary facts or temary facts, the links are 

removed. These will give rise to two individual elementary or modified 

facts. These two facts are considered under the disjunctive relationship. 

• Dropping modifiers: To relax further, the modifiers for all modified facts 

are deleted and become the elementary facts. All various forms of facts 

containing the newly established elementary facts will be selected. This 

will further increase the chances of matching. 

• Dropping elementary facts: All of the elementary facts are removed. 

Signatures are remained if they are involved in the query expression. 

• Relaxation of signatures: Since we use signatures for feature retrieval, it is 

unlikely that a perfect zero score occurs in the ranking of signatures unless 

an exact image is given. Hence, we can relax the consideration by 

choosing the closest matches. Depending on the reUability of signatures, 

this step can be employed earlier in the selection criteria. 
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• Dropping signatures: If we still do not have enough ranked images, we 

can selectively drop some of the signatures out of the query expression. 

It is conceivable that we can vary the above heuristics to cater for different precision 

and recall rates. Also, additional criteria can be supplemented to further improve our 

needs and expectations. 

6.5.3 A Query Example 

To reinforce the query processing concept for our inverted paradigm, let look 

at an example using the illustration in Figure 6.3. Let assume we want to locate 

images with the following. 

(BOY Ride ELEPHANT or (GRAPE and green APPLE) or ffl or HOUSE) 

We have a binary fact, a modified fact, a few elementary facts and a QBE image 

intermixed in a logical expression. For argument sake, let assume that the signature 

matching for the QBE image is not a precise one. Also, we do not have thesauri or 

knowledge-based tools to expand the facts. As a quick glimpse for the Boolean 

evaluation, only the image with the house (i.e. ImagelD: B) satisfies the query. For the 

Boolean and ranked query, let us look at each stage of the complete evaluation. 
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Parsing and validating an query: 

The query is parsed and validated. Any QBE image is processed and turned 

into signatures. A good user interface is very useful in formulating and parsing the 

query. Let assume the query is parsed into the following. 

Fi = BOY Ride ELEPHANT (a binary fact) 

F2 = GRAPE 

F3 = green APPLE 

F4 = 

F5 = I 

• 

TOUJ >E 

(an elementary fact) 

(a modified fact) 

(a signature of W\' 
(an elementary fact) 

The parsed query becomes. 

Q(F„F„F„F„F,) = {F,V(F,AF,)VF,VF,) (6.3) 

Transforming into an intermediate query: 

The query is then transformed into an intermediate query so that it can be 

easily processed. The expression in the product-of-sums form is adopted. Theorems of 

Boolean algebra are needed. The intermediate query becomes, 

Q{F„F„F„F„F,) = {F,yF, v F, VF,)A{F, VF,VF,VF,) (6.4) 
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Formulating an execution plan: 

Given the query expression in Eq. 6.4, the execution plan can be formulated. 

An execution free is constmcted with the leaf nodes consisted of two disjunctive 

subexpressions. Figure 6.7 shows the execution free for the query specified in Eq. 6.4. 

Each pass of the execution free will produce a set of incremental candidates 

to be inserted into the final target set of images, Tq . The target set is somewhat 

ordered with the most likely candidates at the top. 

r , ^ r u { . . . } 

Figure 6.7 Execution Tree for Equation 6.4 

Performing the query: 

All the steps except the substitution outline in Figure 6.6 are performed to 

obtain the target set of images. Let assume Q^={F^^F^w F^vF^) and 

Q^ = (F, V F3 V F4 V F5) are the two disjunctive terms in Q. Also, Tq= <Z initially. 



Chapter 6. Inverted Image Indexing and Compression page 199 

The intermediate resuUs are tabulated in Table 6.5. The order of the 

candidates, {B,A,C}, is a logical answer and within our expectation. Admittedly, if we 

have more images with longer inverted Usts, the power of our inverted model will be 

more evident. Nevertheless, this example illustrates that Boolean and ranked queries 

are nicely integrated to provide a ranked sequence of images. 

Fl 

F2 

Fs 

F4 

F5 

Ql 

Q2 

Q 

Tq 

Boolean 
evaluat­

ion 

0 

{C} 

0 

0 

{B} 

{B,C} 

{B} 

{B} 

{B} 

Dropping 
links 

{A} 
Note #1 

{C} 

0 

0 

{B} 

{A,B,C} 

{A,B} 

{A,B} 

{B,A} 

Dropping 
modifiers 

{A} 

{C} 

{A,C} 
Note #2 

0 

{B} 

{A,B,C} 

{A,B,C} 

{A,B,C} 

{B,A,C} 

Dropping 
element­
ary facts 

N/A 

N/A 

N/A 

0 

N/A 

0 

0 

0 

{B,A,C} 

Relax 
signatures 

N/A 

N/A 

N/A 

{A,B} 
Note #3 

N/A 

{A,B} 

{A,B} 

{A,B} 

{B,A,C} 

Dropping 
signatures 

N/A 

N/A 

N/A 

0 
Note #4 

N/A 

0 

0 

0 

{B,A,C} 

Note #1 

Note #2 

Note #3 

Note #4 

The link, "Ride", is dropped. ELEPHANT is matched. 

The modifier, "green", is dropped. APPLE is matched on red APPLE. 

Assuming the relax signature for the tree is matched. 

No signature is left if the signature for the tree is dropped. 

Table 6.5 Results for the Query Specified by Equation 6.3 Using Rules in Figure 6.6 
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6.5.4 Constraint-based Queries Using Spatial Relationships 

With the coordinates specified for image areas, it is possible to deduce many 

spatial relationships among them as mentioned in Section 6.4.4. We can extend our 

queries to incorporate many of these relationships. The extensions can be in the 

formed of functions and integrated into Eq. 6.2. For example, let assume we have a 

fimction. S u r r o u n d (FJ), which is able to return the facts surrounding i^ in an 

image. The results can then be part of the query for further searching. Using our three 

sample images, S u r r o u n d ( HOUSE ) will return the elementary fact, TREE. If we 

pose a Boolean query to the sample images such as ( ELEPHANT and S u r r o u n d ( 

HOUSE ) ) will precisely return the image set {A}, via the connection of TREE. 

Constraint-based queries using the information provided by the coordinates 

are not limited to the Boolean and ranked queries. They can be used in advanced 

queries such as gathering statistical information of the image collections, complex 

proximity search and many others. Certainly, supporting data stmctures and additional 

programming efforts are needed to implement these queries. 

6.6 Compression Consideration 

The main bulk of the data in the inverted text file is the sequence of word 

pointers. Hence, compression is used to reduce the long list of pointers with the fact 

that decompression is needed every time a query hit the entry. On the surface, this 

may seem to be a disadvantage. With the cmrent CPU processing capability, the cost 
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in decompression can easily outweigh the I/O cost in retrieving the uncompressed 

data, especially for distributed data. This is even more tme for image data. 

Compression is always needed to reduce the high demand of storage for image data. 

For our IIIC model, the main area of compression is not on the image coordinates. 

This is because the sequence of coordinates for each inverted list is expected to be not 

very long. We do not see the advantage to compress the coordinates. The main areas 

of compression in the IIIC model would be on the picture keys and the composite 

bitplane signatures. The nature of these two areas require different consideration. 

As mentioned before, the pictore keys are used to capture the salient features 

of the inverted lists. Lossy compression is acceptable. They are mainly used as the 

thumbnail picmres for the entry. Initially, we integrate the compression with the Haar 

decomposition for the signature generation. Performing one decomposition for dual 

purposes seems to be a good idea to start with. However, the compatibility of our 

"home-made" format to the outside world is a problem. We finally store the picture 

keys in JPEG so that we can integrate our experiments with third party software, 

especially user interface software. 

For the composite bitplane signatures, the advantages of using compression 

for both storage and retrieval consideration are apparent. Ffrstly, it is not unusual to 

have thousands of signatures in the databases. The storage requirement is excessive 

and wasteful if the bitplanes are not stored in compressed forms. For example, anxm 

bitplane v^ll take at least [nm/8] bytes to store, which is over 2K bytes for a 128 x 

128 bitplane. If the bitplane is stored using lossless compression, the size is reduced to 

approximately 150 bytes as verified by our experiment. This is because the bitplane is 
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a sparse matrix with many zeros in it. Compression is ideal for this kind of data. 

Secondly, if the bitplane is in compressed form, it is possible to store them in memory 

if the database size is moderate. For example, if the image collection is of the order of 

a few thousand, keeping a few megabytes of the compressed bitplanes in memory is 

not unreasonable. Decompression on demand can be very efficient if everything is 

already in memory. Lossless compression such as LZW described in Chapter 3 is 

ideal for the compression of bitplane signatures. 

We must emphasize that it is essential to use compression in our IIIC model. 

Without compression, it is awkward to handle some components of the HIC model. 

This will hinder the searching and retrieval process. 

6.7 Summary 

In this chapter, the concept of Inverted Image Indexing and Compression is 

presented. The inverted model for text retrieval is well known but the paradigm has 

never been applied to image data. The constituents of an image is distinguished into 

Area, Pixel and Area Coordinates, which correspond to Word, Character and Word 

Position respectively. This provides us with an analogy in formulating our inverted 

image model. 

Many of the existmg content-based image retrieval techniques are concemed 

with the low-level visual features. It is our view that low-level syntactic indexing must 

be accompanied by high-level semantic indexing to provide a complete indexing 

stinicture. Users can search the inverted image file through the semantic indices or tiie 
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syntactic feature indices. The semantically rich description of Temary Fact Model is 

used for our high-level indexing. For the low-level indexing. Composite Bitplane 

Signatures are used for content-based similarity retrieval. 

Another attractive property of our inverted model, unlike many of the 

existing indexing methods, is the ability of indexing different visual contents within 

an image. Each image can have multiple areas which are perceived to be meaningful 

visual contents. They must be indexed separately in the framework that relationships 

among them can be exploited for meaningflil retrieval. This important observation is 

also echoed by recent developments in image retrieval. 

A good data model must be accompanied by a good query model. In general, 

we must support precise Boolean queries as well as the ranked queries for sintilarity 

retrieval. The query model provided in this chapter not only can be used for our 

inverted model, but can also be applied to other content-based image retrieval 

methods. The query model is characterized by harvesting the potential target images 

from the precise solution to the more relaxed solutions under the logical rule and 

specification of the query expression. Advanced queries using the spatial relationships 

of the image areas are possible in our inverted model. 

Compression plays an important role for our inverted model. Without 

compression, it is awkward to handle some of the components. Due to the fact that our 

bitplane signatures are very suitable for compression, the advantage of using 

compression is evident. This also becomes an important property of our inverted 

model. 



Chapter 7 

Experimental Results 

7.1 Introduction 

In this chapter, we devote our attention to the experimental aspects of our 

work. In Section 7.2, we outline the environment of our software developments 

throughout this research project. The nature ofour test images is also described. Most 

of the experiments are using over a thousand of test images. In Section 7.3, we present 

all the experiments collectively. These include the following: 

1. The nature of wavelet compression. Since we use wavelet decomposition 

for our bitplane signatures, we would like to verify that we can indeed use 

a small portion of coefficients to generate a good approximation of the 

original image. Hence, this experiment provides a rough estimation of the 

compressibiUty. Although this is not a dfrect verification or evidence to 

204 
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prove our signature scheme, it just illusfrates the correctness of this 

dfrection. 

2. Characteristics of wavelet subbands. The nature of wavelet coefficients is 

characterized by the subbands. Our experiment reveals the characteristics 

of the directionally sensitive features of the wavelet coefficients. Since we 

use the signs of the m largest magnitude coefficients for the bitplane 

signature generation, our experiment provides insight into how the 

coefficients are picked. 

3. Distribution of the signs of wavelet coefficients. Ideally, we would like the 

image hashing to be as uniform and random as possible with respect to the 

bitplane signamres. This is not achievable in practice for our wavelet 

signatures as the distribution of the bit pattems are dictated by the nature 

of the subbands. Hence, our experiment also reveals the limitation of 

using wavelet signatures for signamre generation. 

4. Performing Bitplane Signature generation. We demonstrate the generation 

of bitplane signatures for our test images. The process of generation is 

followed by the procedure set out m Chapter 5. Examples of bitplane 

signatures are shown. 

5. Image retrieval through Composite Bitplane Signatures. Our experiment 

illusfrates the effectiveness of our image retrieval scheme through 

Composite Bitplane Signatures. The ability to retrieve similar images 
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using our bitplane signatures embedded in Composite Bitplane Signatures 

is evaluated in this experiment. 

6. Analysis of superimposed bitplane signatures. In this smdy, we 

superimpose bitplane signatures to form a composite bitplane. The 

purposes of these experiments are to analyze the behavior of composite 

bitplanes. We investigate how the composite bitplanes are populated. This 

will give us an estimate to the maximum number of images to be 

superimposed. We investigate the behavior using different image 

arrangements and settings. 

7. Inverted Image Retrieval. We perform image indexing and retrieval using 

our inverted model. Inverted lists are generated using high-level semantic 

TFM specifications and low-level bitplane signatures for all the test 

images. Examples of searching through TFM and bitplane signatures are 

provided. 

In Section 7.4, we conclude this chapter with a summary where the main observations 

and experimental results are discussed. 
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7.2 Environment 

7.2.1 Platforms 

Most of the software are developed in UNIX platforms. The hardwares 

include a Pentium 100 Mhz PC and a muUiprocessing SPARC Station. The Pentium is 

equipped with 16M memory, 2 Gbytes hard disk and Diamond Multimedia Card etc. 

It is mainly used for the implementation of the testing software. The operating system 

is Linux. Third party software used regularly in our development and testing include 

XV, gz ip , ImageMagick, pbmplus and cjpeg. The main programming language is 

GNU C-H-. 

7.2.2 Test Images 

The collection ofour test unages is from MasterClips 35,000™. It consists of 

1001 color images. The images are divided in 28 groups ranging from automobiles to 

wild-Ufe animals. Each group contains approximately 35 images of various sizes. 

Most of the images are in 384 x 288 pixels. Table 7.1 summarizes the groups and thefr 

contents. The first and last images of each group can be found in Appendix A. Also, 

all 35 images of the first group, "auto", are shown in Appendix B. The illusfrations of 

these sample images are needed for verification purpose for some of the experiments 

conducted in this chapter. 
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Groups 

auto 

birds 

bkgmds 

boats 

buildngs 

children 

citytwn 

coasts 

dom_an 

dsrtcyn 

fields 

food 

lakerivr 

lifestyl 

mountain 

objects 

people 

planes 

plants 

skycloud 

space 

speclocsn 

sunset 

texture 

treeleav 

underwtr 

watrfall 

wildanim 

No of 
Images 

35 

36 

36 

35 

35 

35 

35 

36 

36 

32 

30 

38 

36 

35 

35 

48 

38 

36 

38 

36 

36 

28 

36 

35 

36 

35 

36 

36 

Descriptions 

automobiles, engines, parts etc. 

buds such as parrots, pelicans, swans, gooses etc. 

background pattems such as mud, sands, roofs etc. 

boats, ships, tankers, yachts, sailboats etc. 

buildings, offices, hospital, churches, colleges etc. 

babies, children at various activities etc. 

cities, streets, towns, bays, freeways etc. 

coasts, cliffs, beaches, surf, shores etc. 

domestic animals such as horses, cats, dogs etc. 

canyons, deserts, sandstone peaks, gorges etc. 

bams, pastures, crops, fields etc. 

food items such as fhiits, pies, seafood, nuts etc. 

lakes, rivers, streams, pools, banks etc. 

life styles, sports, concerts, leisure etc. 

sceneries related to mountains etc. 

assorted objects such as computers, sea shells etc. 

athletes, workers, guards, portraits of women etc. 

aircrafts such as planes, fighters, jets, biplanes etc. 

flowers, fems, leaves, vines, thistles etc. 

sceneries related to clouds etc. 

spaces launches & walks, astronauts, planets etc. 

special occasions such as Christmas, fireworks etc. 

sceneries related to sunsets etc. 

textures for walls, bricks, rocks, water drops etc. 

forests, pines, trees, orchards, branches etc. 

underwater creatures such as coral, fishes, crab etc. 
t • -

water falls, cascades, falls and spray etc. 

wild-life animals such as tigers, lions, bears etc. 

Table 7.1 1001 Test frnages From MasterClips 35,000 ,TM 
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7.3 Experiments 

7.3.1 Wavelet Compression 

The signature scheme proposed for our Composite Bitplane Signature is built 

using the wavelet decomposition. Before we investigate the effectiveness of our 

signature scheme for image retrieval, we would Itice to verify that a good image 

approximation can be achieved by just a small portion of coefficients. In other words, 

we would study the compressibility of such method. The mathematical derivation of 

the Haar wavelet decomposition and composition for the purpose of lossy 

compression is outlined in Section 3.2.2. It has been proven that we can retain the 

largest magrtitudes of coefficients to minimize the errors infroduced by the truncation. 

We arbitrarily pick an image, "autoOOl", from our collection to test the 

compression. The image is scaled to 128 x 128 prior to the wavelet decomposition 

using Haar basis fimctions. It is the nature of wavelet decomposition showTi in Figure 

3.17 and Figure 3.18 that each dimension of the images should be in 2) pixels for the 

subbands to work. Therefore, the images are scaled to a manageable size of 2' x 2' 

(i.e. 128 X 128). We retain the largest coefficients by percentages for each color 

channel and restore the image based on the tnmcated coefficients. The RMS errors 

and PSNR for the compression scheme in RGB-colors are plotted in Figure 7.1 and 

Figure 7.2 respectively. For completeness, we provide the equations in Eqs. 7.1 and 

7.2 for the two error measures - Root Mean-Squared Error (RMS Error) and Peak 

Signal-to-Noise Ratio (PSNR). These definitions assume 8 bits per color channel for 
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Figure 7.1 RMS Errors for "autoOOl" in RGB-colors 
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Figure 7.2 PSNR for "autoOO I" in RGB-colors 
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Figure 7.4 PSNR for "autoOOl" in Y Channel 
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each pixel. Hence, we use 255 for the numerator (i.e. max|F(j:,>')j ) in Eq. 7.2 for the 

RGB colors and only the gray scale images (i.e. the Y channel) in YIQ colors are 

plotted. The original image and the reconstmcted image, F and F, are N x M in 

width and height. 

RMSE = 
i -I N M ''• 

(7.1) 

max|F(ji:,v)| 
PSNR = 20 log ,0 ' •̂ '̂ (in decibels; dB) 

^ ' ° RMSE 

(7.2) 

The conversion from RGB to YIQ is defined as: 

Y 

I 

Q 

0.299 0.587 0.114 

0.596 -0.274 -0.322 

0.211 -0.523 0.312 

R 

G 

B 

(7.3) 

The same experiment is repeated for YIQ-colors. The RMS errors and PSNR 

for Y- channel are plotted in Figure 7.3 and Figure 7.4 respectively. As expected, the 

RMS and PSNR plots confirmed that the image deteriorates gradually initially and we 

do not see any abmpt change in errors for both color schemes. Sometime, it is 

meaningless to quantitatively measure the errors whereas the visual deterioration is a 

different matter. Therefore, we inspect the deterioration visually. Figure 7.5 illusfrates 

the reconstmcted images using a given percentage of the total coefficients. We are 

confident to say that 20 percent of the largest magnitudes of coefficients can 

reproduce the original image with a reasonable degree of clarity. 
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Figure 7.5 Compressed "autoOO 1" at Various Percentages of HWT 
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7.3.2 Characteristics of Wavelet Decomposition 

The nature of wavelet coefficients is characterized by the subbands. From 

Figure 3.17, the 2D forward wavelet decomposition is accompUshed by two separate 

ID wavelet decomposition. For each level of decomposition, an average (low-pass) 

sub-image together with three directionally sensitive (high-pass) sub-images are 

generated. The process is repeated on the average sub-image to produce a higher level 

of decomposition. Figure 7.6 shows the process of decomposition. That is, at each 

level, an image/ is filtered into four suhhands; fn, fiH, ffjL > and fHH • As we can 

verify from the experiments later, f^jj emphasizes the horizontal image features, f}jL 

the vertical features, f}jH the diagonal features and f^^ is being the average image. 
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Figure 7.6 Process of Wavelet Decomposition 



Chapter 7. Experimental Results page 215 

If Haar basis fimctions are used for the wavelet decomposition, the low-pass 

and high-pass sub-images represent the averaging and differencing coefiScients 

respectively. To illustrate this, we use the non-standard decomposition without 

normalization (refer to Section 3.2.2 for details) to produce the different levels of 

decomposition. Two images, "autoOOl" and "lena", are used to demonsfrate tiie 

decomposition. Figure 7.7 shows the whole process of decomposition for "autoOOl". 

The image is initially scaled to 256 x 256 and, hence, the decomposition has 8 levels. 

To amplify the high-pass image features, the absolute values of the coefficients for the 

sub-images fijj, f}ji, and fjjH ^re multiplied by a small factor and the sub-images 

are printed in reverse. 

We also repeat the experiment with the popular image, "lena". Since "lena" 

has many horizontal, vertical and diagonal edges, it is ideal to show the dfrectionally 

sensitive features of fiH, ffji , and ffjH • Figure 7.8 shows a two-level wavelet 

decomposition of "lena". It is clear from Figure 7.8 that the vertical features (e.g. 

hair, mirror's edge) and the horizontal features (e.g. eye-brows, lips) are picked up by 

the subbands. 
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7.3.3 Distribution of Wavelet Coefficients 

Our signature scheme uses the signs of the m largest magnimdes of wavelet 

coefficients to generate the image bitplanes. In this section, we will study the 

distribution of the largest wavelet coefficients using Haar basis functions. This will, in 

turn, dictate the distribution of the bit pattems for our bitplane signature scheme. 

As observed from Section 7.3.2, we expect that the largest magnittides of 

wavelet coefficients are concentrated around the scaling coefficient. This is because 

the scaling coefficient is really the average value of an image. For any given 

decomposition, the low-pass subband/^/, will give rise to higher absolute values than 

other high-pass subbands. 

In this experiment, all images in the Masterclips™ collections are used. They 

are scaled to 128 x 128 and the color space is converted to YIQ. We then use w = 128 

to generate the wavelet signatures of all the images. The plus and minus signs for each 

of the m coefficients are counted. Figure 7.9 shows the distribution of signs for the 

1001 images. To make the graphs easier to read, we plot the counts in 8 x 8 blocks. 

The experimental results confirmed our intuitive observation. We must assert 

that the distribution is not ideal. This characteristic vnll hinder the generation of 

unique bitplane signatures and limit our freedom to perform composite bitplane 

signatures. Ideally, we would like the distribution as uniform and random as possible 

so that our perception of unage hashing is attainable. Nevertheless, this short-coming 

is acceptable if we frade this for the effectiveness of sintilarity retrieval. This nature is 

further explored later in this chapter. 
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Figure 7.9 Distribution of Signs for Y Channel with m = 128 for 1001 
Scaled Images 
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7.3.4 Generation of Bitplane Signatures 

In this section, we generate the bitplane signatures to be used by the 

subsequent experiments. As mentioned before, aU the images in our collection are 

scaled to 128 x 128. These allow the consistent generation of signatures for all the 

images in the collection. The images are converted to YIQ color spaces according to 

our scheme outlined in Chapter 5. The images are then subject to the Haar Wavelet 

decomposition. The signs of the m largest magnitude coefficients are used to generate 

the six bitplane signatures. Again, we use m = 128 for each color channel. These 

design parameters are initially set to the similar research findings in [JAC095, 

STOL96]. They found that the 60 largest magnimde coefficients in each channel 

worked best for painted queries, while 40-coefficients worked best for scanned 

queries. The effect of changing the m values is also the subject of the experiments in 

Section 7.3.6. 

Some examples of the bitplane signatures selected from our collection are 

shown in Figure 7.10. They are the first four images in Appendix A. Only the plus and 

minus signamres of the Y color channel are shown. As demonstrated in Figure 7.10, 

the bits tend to be concentrated around the coarser subbands. Once again, the results 

are consistent with our findings in Section 7.3.3. 
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Figure 7.10 Samples of Bitplane Signatures 
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7.3.5 Image Retrieval Using Composite Bitplane Signatures 

To test the effectiveness of our composite bitplane signatures, the bitplane 

signatures of all 1001 images are used. Using the natural grouping of images, we 

generate the composite bitplanes for each group. This is equivalent to having a 

composite bitplane signamre containing approximately 35 images. We then randomly 

pick an image in the collection and generate some distorted variances. Not only do we 

want to evaluate the robustness of our scheme, we would like to know the ranking of 

similar images. The image, "autoOOS", is picked and distorted by applying some 

filtering techniques such as blur, sharp, oil paint, pixelize and spread. Figure 7.11 

shows the original image and its variances. 

Intuitively, the original image, "autoOOS", is embedded in the ffrst group. We 

expect that it should be ranked first if such an identical image is used for the query. 

Otherwise, our scheme for the composite bitplane signatures is incorrect or not useful 

at all. The variances of the original image are really to verify the power of the 

similarity retrieval using the signs of the wavelet coefficients. 

The ranking of 28 groups is shown in Table 7.2. It illustrates that the 

distorted variances of the original image are able to select the ffrst group as the top 

rank. Now, within the first group, the expressiveness of our signature scheme for 

similarity retrieval is our next investigation. 
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Figure 7.11 Test Images 
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Groups 
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bkgmds 
boats 

buildngs 
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citytwn 
coasts 

dom_an 
dsrtcyn 
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objects 
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texture 
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A. 
original 

1 
6 
4 
15 
14 
9 
15 
17 
10 
7 
19 
5 
13 
16 
15 
2 
11 
17 
3 
17 
9 
18 
20 
8 
10 
10 
12 
5 

B. 
blur 

1 
5 
6 
16 
13 
4 
16 
15 
6 
12 
19 
4 
11 
13 
14 
2 
12 
18 
4 
17 
8 
18 
20 
9 
7 
10 
11 
3 

C. 
sharp 

1 
8 
4 
17 
15 
8 
18 
20 
7 
6 

23 
4 
13 
16 
19 
2 
12 
21 
3 
18 
8 

22 
24 
9 
10 
11 
14 
5 

D. 
oil paint 

1 
4 
5 
16 
13 
5 
14 
17 
9 
9 

20 
7 
10 
18 
12 
2 
10 
15 
3 
18 
7 
19 
21 
8 
8 
9 
11 
6 

E. 
pixelize 

1 
4 
4 
13 
11 
5 
14 
16 
5 
7 

20 
5 
12 
14 
15 
2 
10 
17 
3 
18 
8 
19 
21 
6 
9 
9 
12 
3 

F. 
spread 

1 
7 
3 
15 
13 
10 
18 
15 
8 
11 
21 
4 
12 
14 
16 
2 
12 
19 
6 
17 
9 

20 
22 
8 
7 
12 
11 
5 

Table 7.2 Ranking Using Composite Bitplane Signatures for the Test 
Images in Figure 7.11 

The results of similarity retrieval are given in Table 7.3. From the images in 

Appendix B, "auto006" and "auto007" bear close resemblance to "autoOOS" and 

selected as the top three ranked images. The unages are repeated in Figure 7.12. Even 

tiie distorted variances of tiie origmal image can select "autoOOS" as tiie top ranked 
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image. This shows the similarity retrieval of using wavelet coefficients indeed works 

well. 

Ftie 
autoOOl 
auto002 
auto003 
auto004 
auto005 
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autoOOS 
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autoOlO 
autoOll 
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auto029 
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auto033 
auto034 
auto035 

A. 
original 

22 
5 
6 
8 

24 
2 
3 
1 

23 
10 
12 
20 
17 
15 
19 
18 
21 
9 
15 
16 
13 
15 
10 
8 
17 
9 
11 
18 
14 
10 
7 

20 
10 
17 
4 

B. 
blur 

19 
5 
6 
6 

20 
2 
3 
1 

21 
6 
10 
17 
15 
12 
16 
16 
18 
7 
12 
13 
11 
12 
8 
7 
15 
9 
7 
14 
10 
9 
6 
17 
6 
15 
4 

C. 
sharp 

23 
8 
6 
10 
25 
2 
3 
1 

24 
7 
10 
21 
18 
13 
18 
17 
22 
8 
15 
16 
14 
12 
9 
10 
19 
9 
11 
18 
14 
10 
5 

20 
7 
19 
4 

D. 
oil paint 

24 
7 
6 
8 

25 
2 
3 
1 

22 
9 
8 
18 
19 
11 
16 
20 
23 
10 
14 
15 
12 
14 
9 
8 
18 
9 
12 
18 
13 
10 
5 

21 
8 
17 
4 

E. 
pixelize 

23 
5 
6 
8 

25 
2 
3 
1 

24 
9 
10 
22 
17 
14 
19 
17 
21 
9 
15 
16 
12 
14 
8 
8 
17 
9 
11 
18 
13 
8 
7 

20 
8 
17 
4 

F. 
spread 

21 
5 
7 
6 

22 
2 
3 
1 

22 
8 
12 
19 
16 
15 
17 
17 
20 
8 
14 
14 
13 
13 
8 
9 
16 
11 
10 
16 
12 
11 
9 
18 
6 
16 
4 

Table 7.3 Rankuig Within "Auto' 
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autoOOS 

( /) Top Ranked Target Image 

(//) Second Ranked Target Image 

( Hi) Third Ranked Target Image 

Figure 7.12 Top Three Ranked Images for the Test Images in Figure 7.11 
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7.3.6 Analysis of Composite Bitplane Signatures 

Two most important issues in Composite Bitplane Signature are: 1) the 

robustness of the adopted signature scheme for similarity retrieval, and 2) the behavior 

of the composite signatures. If the wavelet decomposition is used to generate the 

bitplane signature, the results from Section 7.3.5 indicate that using the signs of m 

largest magnitude coefficients is indeed a good way to generate bitplane signatures. In 

this Section, we will focus on the second issue. 

As shown in previous sections, the bits tend to be concentrated around the 

scaling coefficient (i.e. the coarsest subband) due to multi-resolution nature of 

wavelets. This characteristic will limit our freedom to add too many signatures into 

any composite bitplane signature. Therefore, in order to study the behavior of forming 

a composite bitplane signature from a sequence of images, we separate the smdy into 

three parts. 

Firstly, we use the natural ordering of the images and add all the bitplane 

signatures successively with m= 128. Figure 7.13 provides a snapshot of such action 

for the first image, the 493rd image, and the last image. Only the Y color channel of 

the individual signatures and the composite bitplane signatures are shown. From this 

experiment, the distributions of bits into subbands are emerging after a number of 

insertions. 
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1st Image 493rd Image 001st Image 

(a) Images 

(b) Individual Bitplane Signature (Y+ Channel) 

(c) Individual Bitplane Signature (Y- Channel) 
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(e) Composite Bitplane Signature (Y- Channel) 

Figure 7.13 A Snapshot of Overlaying Bitplane Signatures 
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Figure 7.14 Analysis for the Successive Insertion of 1001 Signatures 

Secondly, we analyze the total number of non-colliding bits for each 

successive insertion of the above experiment. Since the bit pattems for the composite 
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bitplanes are not randomly determined, we can expect the number of non-colliding 

bits to diminish quickly after a certain threshold is reached. The trends of Y+ and Y-

chaimels are shown in Figure 7.14. The result indicates that the total number of non-

colliding bits decreases rapidly at around 25 insertions. This is an estimation only and 

should be used as a rough guideline. In other words, if a bitplane of 128 x 128 matrix 

with m = 128, a suitable number of images from which we can form a composite 

bitplane signamre using the wavelet scheme should not exceed 25 images. However, 

if a set of similar images is given to form a composite bitplane signatare, this number 

can increase. This is because similar images should have similar signatares. We can 

accommodate more images without over-populating the bitplane. 

Lastly, since our previous experiment used only m = 128 and in order to 

thoroughly stady the effect with different m for a given sequence of images, we 

repeat our experiments for m = 32, 64, 128 and 256. The first 50 insertions are 

reported in Table 7.4. Also, we shuffle the images randomly and repeat all the 

experiments. The resuUs are shown in Table 7.5. Again, only tiie fust 50 insertions are 

reported. We observe from the results tiiat, despite the matrix is sparser for smaller m, 

the number of non-colliding bits decreases as m decreases. This is largely due to the 

fact that the m largest magnitude coefficients are most likely selected near the scaling 

coefficient. Also, the collision is less likely to occur for the random ordering of 

images as expected. Hence, as the mle of thumb observed from the results, 20% of m 

is roughly the maximum number of images to be inserted into a composite bitplane 

signature. 
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126 
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67 
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65 

54 
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41 
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43 

45 

37 

46 

47 

45 

32 
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22 
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27 
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14 

11 

29 
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18 

19 
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Table 7.4 The Ffrst 50 frisertions for m = 32, 64,128 and 256 
Usfrig tiie Natural Grouping of the Image Collection 
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Y-I- Y-

64 

51 

54 

52 

36 

37 

41 

26 

22 

38 

25 

14 

16 

26 

19 

26 

18 

38 

18 

23 

10 

24 

7 

13 

12 

13 

8 

10 

40 

10 

15 

6 

17 

15 

11 

14 

7 

9 

11 

14 

6 

15 

6 

15 

7 

35 

11 

15 

10 

24 

64 

59 

41 

36 

42 

33 

25 

21 

24 

37 

26 

16 

20 

21 

14 

27 

19 

54 

9 

9 

9 

26 

20 

14 

20 

17 

7 

15 

44 

19 

9 

10 

6 

15 

11 

10 

3 

7 

8 

10 

9 

12 

12 

17 

9 

22 

20 

20 

5 

16 

256 

Y-I- Y-

129 

112 

103 

90 

84 

75 

70 

63 

46 

79 

47 

21 

47 

53 

33 

80 

35 

57 

52 

32 

20 

63 

22 

26 

14 

35 

19 

18 

93 

28 

26 

17 

30 

29 

20 

24 

9 

23 

23 

32 

10 

31 

14 

46 

28 

83 

31 

34 

22 

35 

127 

112 

80 

84 

86 

71 

67 

48 

48 

64 

53 

41 

51 

44 

43 

55 

28 

102 

32 

25 

24 

54 

31 

27 

30 

46 

22 

21 

85 

45 

22 

17 

16 

37 

20 

29 

18 

17 

16 

21 

17 

37 

14 

34 

20 

48 

42 

46 

24 

29 

Table 7.5 The Ffrst 50 frisertions for m = 32, 64,128 and 256 
Using the Random Shuttle of the Image Collection 
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7.3.7 Inverted Image Retrieval 

To test the IIIC model, we perform the TFM specifications on the entfre 

image collection. Using the sample images in Appendix A, we illusfrate the 

corresponding TFM specifications in Table 7.6. The facts are prescribed using the 

conventions specified in Chapter 6. Once the facts are specified, we perform pre­

processing steps to reduce words into their morphological roots. Since we do not use 

any tools to perform this task, this step is done manually. For a complete 

implementation, we need lexical tools to check against stopwords and to perform 

stemming. Entries to our inverted list are then formed using the TFM specifications 

and the bitplane signatures. 

Images 

autoOOl 

auto035 

birdsOOl 

birds036 

bkgmOOl 

bkgm036 

boatsOOl 

boats035 

buildOOl 

build035 

childOOl 

child035 

cityOOl 

city035 

TFM Specifications 

woody CHEVY 

red PICKUP 

green PARROT Clings TREE 

little GOOSE Sits GRASS 

decorative DRAGON 

brown ROOF 

busy MARINA 

SAILBOAT 

angled BUILDING 

COLLEGE 

BLANKET Wraps happy BABY 

CHILD Plays TOYS At POOLSIDE 

aerial VIEW Over CITY 

cenfral FLORENCE 

Table 7.6 Continued 



Chapter 7. Experimental Results page 235 

coastOOl 

coast036 

domanOOl 

doman036 

dsrtOOl 

dsrt034 

fieldOOl 

field030 

foodOOl 

food038 

lakesOOl 

lakes036 

lifeOOl 

life035 

mountOOl 

mount035 

objecOOl 

objec048 

peoplOOl 

peopl038 

planeOOl 

plane036 

plantOOl 

plant038 

cloudOOl 

cloud036 

spaceOOl 

space036 

speclOOl 

specl028 

aerial VIEW Over small HARBOUR 

DRIFTWOOD On BEACH 

appaloosa HORSE 

GOAT Stands ROCKS 

CANYON 

GORGE 

old BARN Over HILL FIELD 

young FIRS 

STANDS With FRUITS M MARKET 

APPLE With ORANGE 

LAKE At SUNRISE 

RIVER In WINTER 

PEOPLE Sit ROCKS FISHING 

PEOPLE Enjoy SUN-BATHING At LAKE 

BOULDERS On MOUNTAIN 

TREE-LINE Of MOUNTAIN 

COMPUTERS 

troll SCULPTURE Under BRIDGE 

MAN Climbs TRAFFIC-LIGHT 

WOMAN Sitting BOATDOCK At LAKE 

PLANE On RUNWAY 

TAIL Of TUNDERBIRDS 

FLOWERS On MEADOW 

asserted FLOWERS 

cumulus CLOinDS 

CLOUDS Between TREES 

ROCKET Launching clear SKY 

SHUTTLE Landing CHUTE 

PEOPLE Watching BASEBALL At STADIUM 

PEOPLE Walking STREET hi RAIN 

Table 7.6 Continued 
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sunstOOl 

sunst036 

txturOOl 

txtur035 

treeOOl 

tree036 

waterOOl 

water035 

wtrflOOl 

wtrfi036 

wldanOOl 

wldan036 

MOON Over desert PLATEAU 

WILLOW With BOATS 

adobe WALL 

DROPS Of WATER 

green FOREST 

white-tmnked ASPENS 

red CORAL 

CRAB 

big FALLS 

FALLS On narrow CLEFT 

TIGER 

BEAR Sleeps LOG 

Table 7.6 TFM Specifications for Images in Appendix A 

We also crop out some of the related images to form additional entries. 

Figure 7.15 illustrates a search using a binary fact: CHILD. BICYCLE, Ride (Factl, 

Fact2, Link). 

childOOS: 
(92,133)-
(188,302) 

childOOS 
(157,145) 
(296,435) 

child009 
(22,39) -
(199,287) 

child009 
(176,45)-
(331,283) 

Figure 7.15 Search ResuUs Using Binary Fact; CHILD, BICYCLE, Ride 
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We also searched for entries with astronauts in space suit through signatures 

by a picture example using the first picture. The resulting list is shown in Figure 7.16 

(For clarity, the ImagelD and coordinates are omitted here). 

Figure 7.16 Astronauts in Space Suit 

Compression is used to substantially reduce the storage requirement for the 

bitplane signatures. Typically, we can compress a bitplane with over 2K bytes into 

150 bytes using off-the-shelf compression tools such as gzip . The compressibility is 

very good. This is largely due to the fact that our bitplane matrices are sparse in 

nature. 
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7.4 Summary 

In this chapter, we perform a number of experiments to support the image 

indexing and retrieval paradigms described in previous chapters. The experimental 

results are summarized in this section. 

We verified that a small portion of the largest magnitades of wavelet 

coefficients at round 20% can reproduce an image with reasonable degree of clarity. 

This demonstrates the possibility of using the signs of those coefficients to generate 

bitplane signatures. 

We determined that wavelet coefficients are concentrated around the scaling 

coefficient. This exhibits the multi-resolution natare of wavelet subbands with the 

coarser coefficients at the low-pass subbands. Also, directionally sensitive features are 

revealed in the subbands. 

We proved that our wavelet signature scheme exhibits a good degree of 

similarity retrieval. It is quite robust for similar or distorted images. Using the sign 

bits of the wavelet decomposition are indeed a good way to generate signatares. 

However, the bits tend to be concentrated on the coarser coefficients. This limits our 

freedom to insert too many bitplane signatures into any composite bitplane signature. 

Otherwise, the uniqueness of the bitplane signattues is eroded. We have determined 

experimentally that 20% of m is roughly the maximum number of signatares to be 

inserted into a composite bitplane. For example, if m is 128, this should not exceed 25 

images. This condition can be relaxed if a set of similar images are used to form a 

composite bitplane signature. 
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We demonsfrated the feasibility of our inverted model. The inverted Usts are 

constmcted using the whole area of the images as weU as the selected regions of the 

images. The high-level semantic indexing is done using the Temary Fact Model. The 

low-level featare information is extracted using Bitplane Signature. The selected 

regions for any entry of the inverted lists are superimposed and a composite bitplane 

is formed. In this way, we can retrieve images or regions of images both semantically 

and syntactically. 

Compression is an important issue to our indexing schemes. Since the 

bitplane of any image is very sparse, the compressibility is excellent. This opens an 

opportunity for us to perform image retrieval completely in memory, which will be 

increasingly essential for large scale visual information systems. Comparison of 

bitplane signatures can then be done by expanding the bitplane signatares without the 

need to fetch from hard disks. Furthermore, handling the compressed form of 

bitplanes can reduce the bandwidth for retrieval. 

In this chapter, we demonstrated a number of experimental results for the 

different concepts developed in this thesis. Admittedly, fiirther experimentations will 

be usefiil, and additional implementations such as a query processing and a good user 

interface will be beneficial. However, we believe that we have clearly illustrated our 

contributions outlined in this thesis through our experiments. 



Chapter 8 

Conclusion 

8.1 Summary of Contributions 

Indexing and retrieval of visual data is one of the most important fimctions of 

Visual Information Systems. In this thesis, we presented new paradigms for content-

based image indexing and retrieval. These paradigms have a strong analogy to the 

conventional signature-based indexing and inversion-based postings. We are able to 

capture the essence of these concepts and develop them for image data. The success of 

using these paradigms for pictorial information opens a new horizon for the indexing 

and retrieval of multimedia data. 

We summarize the major points and contributions of this thesis as follows. 

240 
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• Visual Information Management 

We presented our complete view on the management of visual information. 

Our definition of Visual Information Systems emphasizes the appUcability of usable 

visual information for the benefit of an organization. The high-level components of 

Visual Information Systems include: 1) users, 2) computer-based applications such as 

ESS, DSS, MIS, TPS and many others, 3) Multimedia DBMS with supportuig tools, 

and 4) the visual information and meta-data. The usable visual information is 

characterized by the inter- and intra- relationships of media types. We identity 

Multimedia DBMS should consist of 1) Playout Manager, 2) Query Manager, 3) 

Transaction Manager, 4) Meta-data / Content-based Manager, and 5) Data Placement 

and Storage Manager. 

• Compressed Domain Indexing and Retrieval Techniques 

Effective and efficient retrieval of visual data is necessary to underpin any 

visual information system. Content-based image indexing and retrieval can be 

classified into two categories; 1) spatial domain techniques, and 2) compressed 

domain techniques. Recently, compressed domain techniques are emerged as a 

promising altemative to the indexing and retrieval problem. In this thesis, we analyzed 

this approach through comparative evaluation of the representative methods in JPEG, 

VQ and Wavelets. The advantages and disadvantages of using compressed data for 

image indexing and retrieval can then be dravm. Problems associated with this 

approach are also explored. 
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Many research developments in this thesis are related to compression issues 

and techniques. For example, we use wavelets for our Composite Bitplane Signature. 

To facilitate the investigation, we provided a concise and comprehensive freatment of 

the most popular techniques in data and image compression by way of a taxonomy. 

These include: 1) Distortionless data compaction - Huffinan Coding, Arithmetic 

Coding, Predictive Coding and Ziv-Lempel Coding, and 2) Irreversible image 

compression - JPEG, Fractals, Wavelets, Vector Quantization and Block Truncation 

Coding. 

• Image Hashing 

Hashing has been used in different areas of computing and is an efficient 

paradigm for information retrieval. For image data, the concept of image hashing is 

shov̂ Ti to be highly applicable. We have analyzed the categories of different hash 

information from the possible data characteristics. The hash information can be in the 

form of: 1) a single numeric value, 2) a bit vector, 3) a numeric vector, 4) a bit matrix, 

and 5) a numeric matrix. Among these five types, the bit matrix is found to be the best 

candidate for image hashing, and we establish Image Hashing as the process of 

image-to-bitplane transformation. 

• Composite Bitplane Signature 

Signature-based indexing is well knovm in document or text retrieval. We 

have appUed the signature-based approach to visually index image data and developed 
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Bitplane Signature as a form of image hashing. Bitplane Signature is a two-

dimensional bit matrix in contrast to the one-dimensional bit vector of the text 

counterpart. We use the signs of the m largest magnitades of wavelet coefficients to 

generate the bitplane signatures. A number of bitplane signatures can then be 

superimposed to form Composite Bitplane Signature. In this way, if a bitplane 

signatare of an image is embedded into a composite bitplane signature, then we can 

locate the image without the need to examine the individual signatares. Since oiu 

signatare scheme is able to produce similar signatures with similar images, content-

based similarity retrieval is possible in our signature-based paradigm. 

Many indexing stmctures in image retrieval are using feature vectors to 

perform filtering, but this is not what is required in visual information rettieval. 

Ranking, instead of filtering, is more appropriate for image retrieval. Our indexing 

scheme using composite bitplanes is shown to be far more superior. Firstly, it is a 

ranking system without expensive computation at retrieval. Secondly, we can produce 

a partial ranking of images without the need to compare and traverse all the images in 

the collection. This property is far better than many existing methods. This is achieved 

by ranking all the composite bitplane signatures not by the number of matched bits but 

by the least difference of 1 bits from the query signature. Because of our unique 

ranking scheme, a hierarchical accessing stmcture of composite bitplane signatures 

can also be constmcted for extremely fast image searching using tree traversal and 

back fracking. 

In our experiments, we stadied our bitplane signature scheme under wavelets. 

These confirm that using the signs of m largest coefficients is indeed a good way to 
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generate bitplane signatares. We have also analyzed the behavior of the composite 

bitplane signatares. Since wavelet signatures are chosen for the hashing method to 

generate the bitplane signatures, we expect that the distribution of bits is dictated by 

the subband nature of wavelets, with the bits concenfrating around the scaling 

coefficient (i.e. the coarsest subband) due to the multi-resolution nature of wavelets. 

We observed from our experimental results that, as a mle of thumb, 20% of m is 

roughly the maximum number of images to be inserted into a composite bitplane 

signatare under wavelets. 

• Inverted Image Indexing and Compression 

Inversion-based indexing is another popular teclmique in text retrieval. In this 

thesis, we took the inverted paradigms and applied them to image data. 

Information retrieval can be broadly classified into high-level semantic 

discovery and low-level syntactic recovery. Many image retrieval methods deal with 

low-level information such as color, texture and shape, which can be computed 

automatically. High-level semantic information such as events, scenes, actions and 

objects are normally deduced manually or at least semi-automatically. Our inverted 

model is capable of providing a unified framework for accessing image data both 

semantically and syntactically. 

Many content-based image indexing and retrieval techniques are applied to 

only images as a whole picture, which has severe limitations. Very often, multiple 

objects or regions within an image perceived to be meaningfiil visual contents and 
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should be indexed separately. These regions may be related to other regions in the 

image collection. Therefore, an inverted list is an appropriate data stmcture to 

organize this information. This is sintilar to the words from different documents 

organized using an inverted file, and our inverted model for image data is developed 

from this paradigm. 

The data model consists of four major components: 1) Picture Key, 2) 

Temary Fact Model, 3) Composite Bitplane Signature, and 4) Image Coordinates. A 

picture key is a visual representation to signify the contents in each entry. This image 

serves as a representative item among the collections within the entry. The picture 

keys are stored in compressed form and often used for browsing or thumbnail 

purposes. The high-level semantic information for each entry is captured by a data 

model called Temary Fact Model. The basic constmct of Temary Fact Model consists 

of discrete facts. Image facts may be classified into five types: 1) Elementary Facts, 2) 

Modified Facts, 3) Outline Facts, 4) Binary Facts, and 5) Temary Facts. Each fact is a 

highly stmctured and homogeneous data item to facilitate searching. This canonical 

description is very usefol to captare the semantics of the images in each entry. For 

low-level syntactic information, we superimpose the bitplane signatures of the image 

items in the entry and form a Composite Bitplane Signature for group searching. Since 

the likelihood of obtaining the target unages can be found from the best ranked 

composite signatures, individual signatures are then analyzed for false matching. The 

component of Image Coordinates is to keep track of the coordinates of each image 

region in the entry. Some of the usetal information such as proximity, spatial 
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relationship, foreground and background relationship can be obtained from the image 

coordinates. 

Compression plays an important role for our inverted image model. Picture 

Keys and Composite Bitplane Signatares are two main areas where compression is 

certainly needed. If the pictare keys are compressed, we can reduce the storage and 

alleviate the demands for the browsing operations. Bitplane signatares ought to be 

compressed for efficient retrieval. Since bitplanes are sparse in nature, the storage 

requirement can be significantly reduced by lossless compression. For an 

uncompressed bitplane taking over 2K bytes to store under our wavelet signature 

scheme, the size can be reduced to approximately 150 bytes using lossless 

compression such as LZW. Hence, we can easily fit a few thousand bitplanes in 

memory for searching. This property is an important factor to consider for large image 

databases. 

• Integrated Query Model 

We also developed an integrated query model for our inverted model. 

Boolean or ranked queries are supported in a unified framework. Users can pose an 

integrated query with high-level concept and low-level feature matching on the basis 

of exact or sintilarity retrieval. The processing steps for our query model include: 1) 

parsing and validating a query, 2) franslating and fransfomting into an intermediate 

query, 3) optimizing the intermediate query, 4) formulating the execution plan, and 5) 

performing the query. Allowable logical operators for any query expression include 

and, or, not together with parentheses. We franslate any general query into an 
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intermediate query with the form of a conjunction of disjunctions. An execution tree is 

built to evaluate the disjunctive terms at the bottom. A conjunction is then performed 

on the intermediate results. In order to provide a consistent result for both Boolean 

and ranked queries, we established a general approach to relax the selection criteria 

step-by-step to accommodate less precise answers. This provides a list of ranked 

images with the most probable candidates first. 

8.2 Limitations 

Content-based image indexing and retrieval is widely accepted to be a hard 

problem. This is largely due to the richness and relative imprecision of formulating 

meta-data and retrieval information to satisfy users' queries. The problem is fiirther 

complicated if the design of the indexing scheme is geared toward a general-purpose 

image retrieval application. 

Looking for a "swiss-knife" to solve many problems in visual information 

retrieval is rather unrealistic. Although we developed an integrated paradigm to 

retrieve high-level semantic information and low-level features within a unified 

framework, there are limitations. 

• Our exfraction of the salient characteristics from images is manually 

performed. Although the low-level indexing information is automatically 

extracted, the high-level semantic information to constmct the TFM facts 

are entered manually. This is time consuming. 
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• Given a query expression, we translate the query into an intermediate 

expression in the form of a conjunction of disjunctions. Since the 

disjunctive expressions are evaluated first at the bottom of the execution 

tree, the number of intermediate candidates are likely to increase under the 

union operations. The union sets can be very large. This sitaation is far 

from ideal. 

• Any content-based image retrieval technique should include measures to 

achieve higher degrees of translational, rotational, scaling and color 

invariance. For our wavelet signatare scheme, it is our view that the raw 

data should undergo a pre-processing step before any wavelet 

decomposition takes place. Color space franslation and size scaling are our 

two main steps geared towards this goal. However, we still feel that these 

measures are not sufficient. 

• Hashing colUsions limit our abiUty to uniquely identify signatares 

embedded in composite bitplane signatures. However, this problem is no 

different from any content-based retrieval techniques where featare 

vectors are used for indexing and retrieval purposes. 

• The image indexing and retrieval techniques developed in this research 

project are designed for general-purpose retrieval systems. No domain 

specific knowledge is used in our signature-based and inversion-based 

indexing techniques, fri some applications, we can make use of domain 

specific knowledge to improve the recall or precision of the underlying 

retrieval system. 
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• Throughout the thesis, we are concemed with the constmction of 

signatares and inverted lists. The focus is on the insertion of indexing 

information into the data stmctures, and not much attention has been paid 

to other operations such as deletion. Although these operations are not 

frequent for image collections in comparison to relational databases, the 

impact of these operations should not be neglected in the overall 

implementation of the retrieval system. 

8.3 Future Directions 

We list below some of the possible directions directly related to the different 

aspects ofour research. 

Investigation of other schemes for signature generation. We only use wavelet 

decomposition for our signatiue-based indexing. To achieve more uniform and better 

distribution of bits, further exploration of signature schemes is needed. 

Automatic extraction of semantic information. As mentioned before, it is 

difficult to automate the exfraction of high-level information. However, we should 

attempt to gather as much information as possible related to the images automatically 

or semi-automatically. These include: 1) analysis of voice data associated with the 

image, 2) natural language processing on the captions or descriptions, and 3) 

knowledge-based inference of existing temary facts. 

Visual language and Interfaces. A good visual interface is needed to enter the 

components of our inverted model. Also, integrated queries for high-level semantic 
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and low-level syntactic information require special attention to the constmction of a 

suitable text-oriented query language and visual user interface. 

Many researchers around the world including ourselves beUeved that visual 

information retrieval is still in its infancy. Many areas are waiting to be explored. The 

indexing and retrieval of visual data is probably the most critical area which requires 

major research efforts. We are happy to contribute a small advance toward this 

important area. Let me conclude this thesis with a Chinese proverb, [ ^ pp- ̂  ^ 

^ ^ &̂  g ] ~ "Life is limited. Knowledge is unlimited". 
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Appendix A: Test Images in MasterClips 35,000 TM 

Only the first and last images of each group in the collection are shovm. 
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