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Abstract

Futuristic scenarios feature anthropomorphic robots cooperating with humans in daily
activities. Efficient cooperation requires new techniques for facilitating man-robot skill
transfer. Instead of programming, it is far easier for a human to demonstrate the task,
showing the robot the movements it needs to perform. This thesis presents an approach
on how robots can learn the visuo-motor coordination of their arms and how they can
imitate human arm movements, in order to acquire motor skills from human instructors.
It is argued that in skill acquisition that involves arm moverments, eye-hand coordination
is not sufficient and eye-arm coordination must be developed. A method which allows
the robot to learn how to move its arm while watching the human arm is proposed.
The robot moves its arm to randomly chosen positions and the human places his arm
in similar positions, imitating the robot. Thus the robot can make associations between

images of human arm and commands given to its own arm.

Previous research on neural models has offered promising results in the learning
of visuo-motor coordination, while fuzzy techniques have been successful in coping
with the imprecisely defined concepts used in linguistic instruction and reasoning. The
fuzzy ncuron is one of the many possible neuro-fuzzy hybrids, which attempt to benefit
from the synergism of qualities of neural and fuzzy models. The first part of this thesis
attempts to provide a unified framework for modelling and implementing systems by
using fuzzy neural networks. In particular, two new types of fuzzy neurons are proposed
and analysed: the fundamental fuzzy neuron and the fuzzy neuron with shared weights.
The fuzzy neural structures analysed in the first part of the thesis are used in the second
part for robot learning and control. It is shown that fuzzy neural networks can be used
for learning visuo-motor models, and provide certain advantages over classic neural
networks. The main advantage is the transparency of the fuzzy neural models. As the
robot used for tests is anthropomorphic only in a planar appearance, human imitation is

demonstrated for 2D, while for 3D the robot imitates a second, identically built robot.
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Chapter 1

Introduction

1.1 Teaching by showing - learning by watching

"The long-term vision of Artificial Intelligence is to create intelligent artifacts which
can learn from examples, exhibit goal directed behavior, tolerate error and ambiguity,
communicate with humans in natural language, and operate in real-time or close to

human response time’ (from Raj Reddy’s ' plenary speech at the AAAI-94 Conference).

We are at the dawn of a new era in robotics. Engelberger ° predicts that service
robotics will outstrip industrial robotics sometime early in the 21 century. While in 1994
the industrial robot industry shipped about 65,000 robots, the prediction of the market

for the elderly-care robots alone amounts to millions [Engelberger 1995].

Human friendly communication is the key of the success of the new robots. Teaching

'Raj Reddy. Professor and Director of the Robotics Institute at Carnegie Mellon, is Past President of

American Assoctation for Artificial Intelligence (AAAI).
2Joseph Engelberger is regarded by many as the ’father’ of robotics. He is a founder of Unimation,

the first company that produced commercial robots.
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them in a similar way we teach humans to perform a task seems much more attractive than
programming. If one had to utilize a programming language, or even natural language,
for describing to the housekeeper robot how to stir the boiling soup, most of us would
give up (or give up dinner). If one can have the robot simply watch how we do it. and
then imitate our arm movements, it would be much more effective. For the imitation of

human movements to be effective, anthropomorphic robot apprentices are needed.

A motor skill is an ability to perform the solution of a motion planning problem. To
get this solution, the robot has the following alternatives: to find it on its own, to use
precalculated, embedded solutions, or to be offered a solution. The robot can try to find a
solution on its own, using reasoning or exploration. Finding a solution by reasoning may
require much intelligence and may be too complex to be practically feasible. In order
to dec~idc what is optimal (from the human’s point of view) the robot must understand
the environment and the task. Finding a solution by exploration may be too costly. For
example, reinforcement learning and scarch methods such as genetic algorithms, are
not efficient alternatives as they take a long time and the cost of hitting an object in
the workspace during a search is high 7. Even intelligent exploration as described in
[Schneider 1995] is not practical in this case. As for preprogrammed solutions, these can
not consider the infinite variety of possible situations, and coding only a few solutions

does not make the robots flexible enough.

A human master can offer the solution, which the robot can apply without under-
standing it. Using a programming language to communicate the solution isn’t human
friendly. Natural language instruction is human friendly, but it is not always a good way
of teaching movements, which may be difficult to describe in words. A more efficient
way of transmitting the movement is analogic teaching based on 'guiding’ the robot

through the movements. Analogic teaching is specially useful when the human does

3There are papers describing research in the area of discovering useful behaviors by exploration and
evolutionary means, mainly with simulated systems, e.g. using genetic algorithms (see ¢.g. [Davidor

19911) but also with miniature robots such as Khepera [Nolfi er al. 1994].
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not know the exact coordinate values of a position but can see what he wants [Sheridan
1992]. The coordination of an anthropomorphic arm in a human-like movement is hard
to achieve by guiding it with a teaching pendant or joystick. Acting while having at-
tached a master arm, whose displacements are transmitted to the apprentice robot, would
make it easier to accurately transmit the movement. This solution is commonly used in
telemanipulation. One of the most advanced telemanipulation systems is the Utah arm,
illustrated in Fig. 1.1 (photo from [Sheridan 1992]). Plans for future systems, such as
the one from NASA illustrated in Fig. 1.2, envisage virtual reality environments and
sensors attached on human joints for gesture tracking [Sheridan 1992]. In these systems
communication means are necessary between the human and the robot, to transmit the
joint information signals. The transmission of information can not be avoided in teleop-
eration, however, for teaching a robot in our proximity, it is sufficient to give him vision.
The robot can watch the human arm and imitate its consequent postures. No human
attached sensors are needed, and the human can move his arm unconstrained by any
physical mechanism. The image of the arm can also be directly correlated to the task.

This ’teaching by showing - learning by watching’ approach is schematized in Fig. 1.3.

Figure 1.1: The Utah arm

From a learning perspective this approach enters largely the category of ’learn-

ing by watching’, 'programming by demonstration’, or more general, 'learning from
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6. DOF gemurt
werking

Figure 1.2: Virtual reality for telemanipulation

Figure 1.3: Teaching by showing - learning by watching
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examples’™.

The research performed in the area of skill transfer has targeted mainly rask learning,
i.e. what 1o do. However, it 1s also useful to watch how to do. and copy/learn the
demonstrator’s arm movement during the task, as this provides a model of movement
which is a solution for the robot arm movement problem related to the task. In fact, in
many cases, such as teaching tool handling or coaching in sports like tennis or golf, the

human learner does observe the instructor’s arm and tries to imitate its movements.

In order to imitate the movements of the human arm, the robot has to have the
necessary coordination for transforming images of the human arm into commands for
its arm. Such visuo-motor coordination can be designed or learned. The design can
be cumbersome, as it is hard to predict all aspects of the real environment and cope
with them in advance. For this reason, and also for the purpose of creating ’grounded
representations’ [Harnad 1990] that can help in further cognitive-oriented abilities, the

preferred option might be to build sensory-motor models by learning 6,

The most successful results in the development of visuo-motor coordination are based
on neural networks. Along with the advantages of being good function approximators,
and powerful learning structures, neural networks bring the less desired feature of having

solutions difficult to interpet. Fuzzy modelling seems a good complementary technique,

“There has recently been a growing interest in this area, reflected, for example, in the number of 1995

AAAI symposia on topics such as Programming by Demonstration, Active Learning or Agent Learning.
‘Inductive Learning from Examples (L{E) is a well established subject in Machine Learning. "Pure’

LfE is performed automatically without any human interaction. Programming by Demonstration (PbD),
on the other hand, can be seen as some kind of ‘extreme’ form of user-supported L{E where the user
continually interacts with a PbD system. Its nearly exclusive focus is the learning of programs (adapted
after the Call for Papers of a 1995 Programming by Demonstration Workshop).

®Traditional Al was criticized (e.g. by Searle in his Chincse Room argument [Searle 1980]) that it

relics on symbols and representations arbitrarily interpretable. which have no ’intrinsic’ meaning. To
overcome this, and provide meaning by grounding representations in the physical world, it was proposed

to link intelligence to the the sensory world through visual systems and robots.
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as the knowledge in fuzzy systems is structured (usually in linguistic form) and easy
to understand. Thus, neuro-fuzzy hybrids appear as an attractive path to explore. The
fuzzy neuron is a special type of neuron, defined using a family of operators used in
the fuzzy theory. Systems of fuzzy neurons share properties of fuzzy systems and of
neural networks. Thus, fuzzy neurons may be a powerful elementary computational
unit to implement in hardware. However, a theory of fuzzy neural modelling must be
developed first. Fuzzy neurons and classic neurons need to be compared. Fuzzy neurons
need to be compared among themselves, on the basis of different possible fuzzy operators
which define them. These are motivations for the research on fuzzy neural networks

presented here.

1.2 Thesis statement and main contributions

The claims of this thesis are that anthropomorphic apprentice robots can Jearn to visually
coordinate their arms and consequently acquire motor skills by the imitation of human
instructor’s arm movements, and that fuzzy neural networks offer advantages over classic

neural networks in building learning structures for such robots.

The work presented here solves some problems of fuzzy neural networks theory.
Firstly, it identifies a family of triangular norms which is most suited for implementing
neural operators in fuzzy neurons, and defines the fundamental fuzzy neuron, which
uses this family. Some advantages of using the S-T composition for system modelling
are shown, while noting that the problem of identification (resolution of S-T fuzzy
relational equations) is unsolved. The equations for learning in fundamental fuzzy
neurons derived here provide a numerical resolution method for this problem. It is
shown that better models can be obtained by allowing an adaptive S-T composition. The
study also provides a solution to the problem of implementing multi-input systems using

fuzzy neurons, proposing a model of fuzzy neurons with shared weights.
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Some initial results comparing classic 7 and fuzzy neurons have been arrived at. An
interesting conclusion of this study is that synaptic adaptation can be used for obtaining
better fuzzy neural models, while the most used form of classic neuron is insensitive
to such adaptation. The most interesting aspect of the comparison of classic and fuzzy
neural models is that fuzzy neural models are transparent. This means that the user is able
to understand how the outputs are determined, and is also able to predict the behavior
of the system when presented unseen inputs. Because they lack this property, classical
neural networks have not been able to penetrate safety-critical areas of application.
Although an immediate explanation of the transparency of fuzzy neural models comes
from their relational structure, further investigation is needed to evaluate whether this
transparency is a general property of fuzzy neural models or it is only a characteristic of

particular cases.

Analytical resolution methods for fuzzy relational equations allow incremental on-
line learning in fuzzy neural networks, which is an advantage over classic neural models.
However, the classical neural models have shown greater approximation capabilities,
with their weights allowed to take values in the set of real numbers, while the weights
of fuzzy neurons were limited to [0,1]. In the tests presented, an additional restriction

of fuzzy neurons has been the use of excitatory inputs only.

Fuzzy neural networks are used for learning robot eye-arm coordination. Itis argued
that eye-hand coordination is not sufficient for motor skill transfer in (redundant) an-
thropomorphic robots and that eye-arm coordination is necessary. Eye-arm coordination
is learned from examples in a similar associative manner as used for training ALVINN
[Pomerleau 1993] for visually guided navigation. Pomerleau stated that the technique
of using a neural network trained by supervised learning would not be readily applicable

to controlling individual joint of robot arm for which the correct response is hard to

7In the context of this thesis, the term classic neuron denotes the basic model of neuron whose output
is obtained by a sigmoidal function applied to the weighted sum of inputs. The model is expressed in

Appendix G.
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determine. This thesis presents a method which solves this problem. In the beginning
the robot moves at random, and the human imitates the robor. Thus, the robot can make
associations between commands given to the joints of its own arm and the visual images
of the human arm posture. Once a model is built, images of the human arm generate

correspondent commands to the robot arm, and the robot imitates the human.

Methods and theoretical constructions proposed in this thesis have been validated by
practical tests. The robot needed under five minutes of on-line incremental learning for
building the visuo-motor coordination necessary for tracking a human arm in a planar
movement. Successful tests were also performed in 3D where the robot imitated an

1dentical robot.

As the system can track the human arm close to real time ® it can be considered as
a visual servoing system developed through learning and used as a telemanipulator °, a
first step towards what may be called visual servoing based telemanipulation. In this
work the solutions obtained by imitation have been simply stored for later repetition of
the movement. However, in future systems, more efficient encoding schemes should be

used for the creation of motor patterns.

8As the current implementation is not multi-tasking, visual sampling occurs only when the robot has
finished the movement to the previously detected target - this causes an errar between the reference and
actual performance, which is characteristic to sampling systems. The processing time 1$ pot significant,
the delay between a detected position and the moment it gets there being limited by the speed of the
manipulator, and in general was less than a second (time in which the target has normally changed
position).

°It can be also used in virtual reality systems or for micro-teleoperation, controlling micro-arms for

micro-technology manufacturing (as the arm must be with similar appearance but can be at different scale).
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1.3 Organization of thesis

This thesis is organized in two parts. The first part is dedicated to the development of
the theoretical aspects of fuzzy neural modelling, which is used in the second part for

robot learning and control.

Chapter 2 puts together results which form the basis of the theory of fuzzy neural
modelling. Its main components are the relational approach to system modelling, fuzzy
relational equations and their composition, and fuzzy neurons performing pointwise

composition.

Chapter 3 compares different triangular norms to asses their suitability for the imple-
mentation of neural operators. The fundamental triangular norms are the pair found most
suitable, and accordingly the fundamental fuzzy neuron is defined. Learning and adap-
tation mechanisms in fundamental fuzzy neural networks are subsequently established.
Learning also provides a numerical solution to the unsolved problem of resolution of
S-T fuzzy relational equations. It is shown that adaptive composition leads to better
modelling. The ’rules in weights’ perspective is introduced, showing that the weights
of fuzzy neurons shape structures readily interpretable by humans and which look like

distributed rule-bases.

Chapter 4 solves the problem of neural implementation of multi-input distributed
associative fuzzy systems by defining a fuzzy neuron with shared weights. Learning
mechanisms and the organisation of weights m distributed rule-like clusters are shown
for this type of ncurons. It is also proved that one neuron can implement any boolean
logic function, and has a flexibility which recommends it as a possible general purpose

computational element.

The second part of the thesis initiates research in anthropomorphic robot apprentices,
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the focus being on developing the capability of imitating human arm movements.

Chapter 5 starts with a review of research on skill transfer, visuo-motor coordination,
motor development and other areas related to building robot apprentices able to learn
motor skills. In what follows an approach to learning arm movements in anthropomor-
phic robots 1s proposed. It introduces the eye-arm coordination and a "human imitates
robot” method, by which the robot learns to coordinate its own arm while looking at the
human arm. Once the eye-arm coordination is learned, the robot can imitate the arm
movements performed by the human carrying out a particular task. This Chapter also

describes the experimental setup used for testing the approach.

Chapter 6 presents an implementation of the approach and the results obtained
in tests that enable robots to learn arm movements by imitation. Neural solutions
and fuzzy neural models of eye-arm coordination are investigated. For fuzzy neural
models incremental on-line learning is shown based on analytical algorithms of solving
associated fuzzy relational equations. Interpretations of the neural weights are presented.
[t is shown that the neural models allowed the tested robot (which was anthropomorphic
only in its planar performance, as seen from the top) to imitate 2D arm movements of the
human arm. Tests of 3D arm movements were accomplished using a second, identically

built robot.

Chapter 7 summarises the contributions this research has made to the fields of fuzzy

systems and robotics, and indicates possible areas of future work.



Part I

Fuzzy neural networks in system

modelling

11
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This part attempts to provide a unified framework for modelling and implementing
systems by using fuzzy neural networks. The neural structures developed here are
used in the second part for robot learning and control. The reason for focusing on
fuzzy ncural networks is the desire to obtain a unique structure. and a unique basic
computing element - the fuzzy neuron, which can perform perception-related processing
(in which neural networks outperform alternative techniques) and also reasoning based
on linguistic knowledge (which were successfully approached by fuzzy logic means). In
the case of learning in robots, these relate to learning eye-arm coordination and learning
from shown examples, and to learning from linguistic instructions on how to perform

movements.

Results from various parts of fuzzy theory are put together to set the basis of fuzzy
neural modelling. In order to facilitate the application of neural learning mechanisms, a
fundamental fuzzy neuron is proposed, defined on the basis of a set of fuzzy operators
found suitable for neural adaptation and learning. It is shown that fuzzy neural networks
allow the understanding of their internal representations. A fuzzy neuron with shared
weights is proposed to ensure the implementation of multi-input mappings. Its features

recommend it as a competitive general purpose computational element.



Chapter 2

Fuzzy relations as basis of fuzzy neural

modelling

The aim of this chapter is to provide an introduction to a proposed theory of fuzzy neural
modelling. Central to such a theory are the relational approach to system modelling,
fuzzy relational equations and their composition, and fuzzy neurons performing the

fuzzy composition in a pointwise mode.

The first section introduces basic concepts of fuzzy sets and tuzzy relations. The
composition of fuzzy relations leads to fuzzy relational equations, whose resolution is
briefly reviewed. A fuzzy relation between inputs and outputs of a system constitutes a
fuzzy relational model of the system. Accordingly, system identification is equivalent
to finding a solution for the associated fuzzy relational equation. It is shown here that
a largely unexplored type of composition has rich modelling capabilities. Finally, it is
illustrated how a layer of fuzzy neurons implements a composition of fuzzy relations.

This indicates that it is possible to use fuzzy neural networks for system modelling.
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2.1 Fuzzy sets and fuzzy relations

The concepts presented in this section were introduced by Zadeh [Zadeh 1965], [Zadeh
1973], with some tormulations being taken as in [Zimmermann 1991]. Let X be a space
of points (objects), with a generic element of X denoted x. A fuzzy set (class) A in X
is characterized by a membership (characteristic) function [14(x) which associates with
each point in X a real number in the interval [0.1]. with the value of p  (x) at x

representing the "grade of membership’ of x in A (see Fig. 2.1). Thus, a fuzzy set can

A
| A
\
iy
\ i,
hg(a
G
[ e X
supp(A)

Figure 2.1: A normalized fuzzy set

be considered a set of ordered pairs
A= {(x, ua)|x e X, ma(x) € [0, 1]} 2.1

It is common to identify fuzzy sets with their membership functions [Di Nola et al
1989]. A support of A is the set of points in X at which pia(x) is positive, supp(A) = {x e
X|pa(x) > 0}. A fuzzy singleton is a fuzzy set whose support is a single point in X. The
height of a fuzzy set A is the supremum of its membership function, hgt(A) = supfta(x).
A fuzzy set with hgt(A) = | is called normalized. A is contained in B (or equivalently,

A is a subset of B, or A is smaller than or equal to B) if and only if ua < U,

The complement of a fuzzy set A is defined by A*(x) = 1 — A(x). The intersection of

two fuzzy sets A and B is defined by (A m B){(x) = MIN(A(x),B(x)). The union of
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fuzzy sets A and B is defined (A U B)(x) = MAX(A(x),B(x)). A fuzzy logic 1s defined
by a set of rules for determining the complement, intersection and union of fuzzy sets.
The above complement, intersection (calculated with MIN) and union (calculated with
MAX) define Zadeh’s fuzzy logic. Other fuzzy logics are defined later in this chapter.
When operating at the level of the label of the fuzzy sets, the equivalent logic operations

are NOT, AND and OR respectively.

A fuzzy relation R from a set X to a set Y is a fuzzy subset of the Cartesian product
X X Y (X x Y is the collection of all ordered pairs (x,y) of elements x € X andy € Y).

R 15 characterized by the membership function pg(x, y), and is expressed by

R = {((x,¥), tp(x, y)|(x,») € X x Y} (2.3)

In the fuzzy relational matrix below, elements express the strength of connections be-
tween elements of X, X = {x1,x2}, and those of Y, Y = {y1, y2 }, and can be visualized
as 1n the associated graph of Fig. 2.2.

0.8 0.4
R=
(0.5 0.3 )

A fuzzy relation (FR) can be seen as a mapping between two fuzzy sets described in

0.8
x1 y1

0.4
0.5

x2 y2
0.3

Figure 2.2: Strength of connections between elements of X and Y

terms of values of their membership function in points of their definition domains, or as
a mapping of fuzzy sets represented in terms of values of membership to some reference

fuzzy sets defined on the definition domain. The mapping of sampled membership
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functions is referred in the following as distributed, while the mapping of labels is

referred to as compact.

One of the first fuzzy relations discussed in the literature was that of resemblance.
For example, the resemblance between children x1 and x2 and parents y1 and y2 can be
expressed by the previous relation R, where the first row in the matrix indicates that x|

looks like y1 in a degree of 0.8, and also resembles y2 in a degree of 0.4,

Another type of fuzzy relation, which was largely exploited due to its connection with
fuzzy rule-based systems, and in general with fuzzy algorithms, is that defined by a fuzzy
conditional statement "IF X THEN Y', or X — Y, where X and Y are fuzzy sets and —
is a logic implication'. For example, the statement 'IF the obstacle is close THEN move
slowly;, describes a relation R between a fuzzy variable in the antecedent part of the
rule, X (close) and the fuzzy variable in the consequent part of the rule, Y (slowly), and
is generally defined by the logical implication R = X — Y. For instance, in the context
of a robotic manipulator, a fuzzy relation R can model: a) the resemblance between a
new posture of the arm (determined by a given command) and existing postures, b) the
plausibility of reaching a certain state, ¢) the reward associated with the transition to a

certain state.

2.2 Fuzzy relational equations and their resolution

2.2.1 MAX-MIN fuzzy relational equations

MAX-MIN composition. If Q is a relation from X to Y and R is a relation from Y to

Z, then the composition [Zadeh 1973] of Q and R is a fuzzy relation denoted by ¢ o R

'A discussion on logic implication follows in Section 2.3.
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and defined pointwise by

Hor(x,2) = \/ (p(x, ¥) A tr(¥, 2)) (2.4)
y

where v and A denote respectively MAX and MIN. More specific (2.4) defines the
MAX-MIN composition. In the following a finite universe of discourse is considered,
and MAX and MIN appear directly in the equations. The composition between a fuzzy
st A and the fuzzy relation R, R : X — Y, defines the image of fuzzy set A into the

space Y,
B(y) = (A 0 R)(xi, ;) = MAX[AG)OMINR(x;, y,)], 2.5)

where i = 1,...,m and j = 1,...,n. The MAX-MIN composition of fuzzy relations

defined on finite universes O : X - Y. R: Y — Z, is

P(r,20) = (Q0 R)(x,20) = MAX[Q(x, y)MINRG;, 2] (26)

MAX-MIN fuzzy relational equations. Let A and B be fuzzy sets, R a fuzzy relation
and o a composition (not necessarily MAX-MIN). An equation of type Ao R = Bis a
fuzzy relational equation (FRE). A FRE can be addressed in the sense of solving for R,
when A and B are known, or for A, if R and B are known (in which case it is called
the inverse problem). Equ. (2.5) describes a MAX-MIN FRE. The equation of type
Qo R =P, with Q, T, R fuzzy relations, is called a composite FRE. As fuzzy relational
matrices for Q and P are composed of rows which correspond to fuzzy sets, one can
consider that (2.6) describes a system of equations of type (2.5), and therefore it 1s also

called a system of FRE.

The resolution of FRE was first addressed by Sanchez [Sanchez 1976], who provided
a methodology for solving MAX-MIN FRE, formulating conditions and analysing theo-
retical aspects of obtaining a greatest (or maximal) solution *. For a detailed presentation

of results on MAX-MIN FRE the reader is relerred to {Di Nola ef al. 1989].

*That is the greatest element (in the sense of fuzzy inclusion as given by (2.2)) in the set of FR that
satisfy FRE.
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Conditions of solvability. The necessary and sufficient condition for Equ. (2.5) to

have solutions is * ([Pedrycz 1994], [Sanchez 1976])
hgt(A) > hegt(B). (2.7)

For a FRE of type (2.6), which is a system of equations of the form , o R = Py, a
solution exists if and only if the solution set R} of each of the k equations is nonempty,

and all n solution sets intersect to a nonempty part,

R =(R;. (2.8)
iz

Maximal (greatest) solution. If Equ. (2.5) admits solutions, then a maximal solution

exists, which is given by
R(x;, z) = (AaB)(xi, 2) (2.9)

withaab=1i1fa <bandaab=bifa>b.

If Equ. (2.6) admits solutions, then a maximal solution exists, which is given by the

o-composition {Sanchez 1976]
R=0""o,P, (2.10)
with the o.-composition defined by
(Q 00 R ) = MINTQ(x: )R (s )] @11

(O~ is the transpose of Q).

n the context of a theory of plausibility (e.g. [Dubois and Prade 1988]) where membership functions
are associated to plausibility of events, the interpretation of condition (2.7} 1s that the degree of plausibility
(or certainty) of a conclusion can not be higher than the degree of plausibility of the premise from which

it was inferred.
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Minimal (lower) solutions. a) For the FRE given by (2.5)

If Equ. (2.5) admits solutions, then minimal solutions M exists, which can be
determined by

JB(y) ifx=x,andye Y,

M(x,y) = (2.12)

| 0 otherwise,

where ¥, = {y € Y|B(y) > 0}, and x, are arbitrary elements of G(y) = {x € X/ A(x) >
B(»)}.

If Equ. (2.5) admits solutions, then the union of minimal solutions is given by
Ry = (AoB)(x;,z;) = [Ax)OB(z)], (2.13)
where ach =0ifa<bandagob=bifa>b.

b) For the composite FRE given by (2.6) (the minimal solution of the system of FRE

is the minimal term in the set of solutions that satisfy all equations).

If Equ. (2.6) admits solutions, then minimal solutions exist, which are minimal
elements in the set M* of combinations of unions of minimal solutions for individual

equations obtainable by (2.13).

If Equ. (2.6) admits solutions, then > 7 = [V(OQroTy)] AR (R maximal solution) is
k
the union of all elements of M~ (this is not generally the union of the minimal solutions

of (2.6)).

Solutions with minimal fuzziness. A special category of solutions is that of solutions
with minimal fuzziness, i.e. which have minimal values of a fuzziness measure (see for

example [Di Nola and Sessa 1983]). The membership functions of such solutions are
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"polarized’ towards O or 1, and have less elements with membership around the 0.5 value

(which indicates maximum fuzziness in membership to a set).

Approximate solutions. If all equations have a solution, and their intersection is
nonempty, then the system has a solution, and the presented methods of resolution can
be applied. Practical situations may fail to meet the solvability conditions, in which
case the system of FRE does not have (exact) solutions. In such a case, the problem of
solvability can be approached in a passive way or in active ways [Pedrycz 1991c¢]. The
passive approach s related to the determination of a measure of solvability of the FRE,
reflected in an index of solvability. One active approach is to look at modifications of
fuzzy sets, or to eliminate the equations which impede the existence of an exact solution.
Another active approach is to try to fulfill the constraints to the highest possible degree,
i.e. finding the best approximate solution [Pedrycz 1991c], [Klir and Yuan 1994]). Most
common, the approximation is sought in relation to the optimization of some index
factor, which most often is the fuzzy Hamming distance (a sum of absolute errors) or the
Euclidian distance between desired outputs and images obtained by composition with the
fuzzy relation. Numerical methods are the most common in determining approximate
solutions for FRE. The problem of numerical resolution for approximate solutions was
first addressed in [Pedrycz 19835b], where a modified Newton method was proposed.
Before genetic algorithms proved their power [Sanchez 1993], [Pedrycz 1994], [Negoita
et al. 1994], all numerical methods for finding a solution were gradient-based techniques

[Pedrycz 1994].

2.2.2 Fuzzy relational equations with triangular norms

Pedrycz [Pedrycz 1983a] extended the MAX-MIN composition allowing MIN to be

replaced by any operator from the class of triangular norms [Menger 1942].
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Triangular norms. [Butnariu and Klement 1993]. A function T: [0,1] x [0.1] — [0.1]
1s called rriangular norm (t-norm for short) if it satisfies the following conditions: as-
sociativity (T(x, T(v.2)) = T(T(x,¥),2)), commutativity (7(x, v) = T(y.x)), monotonicity
(T(x,y) < T{x,z), whenever y < z) and boundary condition T(x.1) = x. Some properties

which will be useful in the following sections are:

T(x,0)=0, (2.14)

T(x,y) < T(u,v), whenever x <y and v < v (2.15)

A function S: [0,1] x {0,1] — [0,1] is called rriangular conorm (t-conorm or s-norm
for short) if it satisfies conditions of associativity, commutativity, monotonicity, and the
boundary condition S(x,0) = x. S and T are corresponding (or pairs) if they comply with

De Morgan’s laws.

N-ary extensions. The n-ary extensions for T and S are defined recursively [Di Nola

etal. 1989],

ml T(x),x2) fm=1,
.T ('xl‘x27 . ','x'n) = 21 (2'16)
=1 LT(/“nHI- Z](-tlax27 . ~xm)) 1f m 2 2»
m S(xy,x ) fm=1,
TS J v - (2.17)
=1 LS(an»ly 2\ (-Xl; X, xm)) if m 2 2.

Examples of t-norms. MIN and MAX are the simplest pair of triangular norm/conorm.
Other examples referred in this chapter are: product/probabilistic sum T(x,y) = X -V,
S(x,y) = x+y — x-y, and Yager’s operalors T(x,v) = 1 —=MIN{1,[(1 —ay +(1 —b)’] by,
S(x,y) = MIN{1,(a" + b")'"},p > 1.
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MAX-T composition. Let A be a fuzzy set defined in X, and R a fuzzy relation
between X and Y. The MAX-T composition of a fuzzy set A and a fuzzy relation R is the
fuzzy set B defined in Y, whose membership function is given by

By = (A o, Ry, ) = MAXTA()TR(x,, 7)) (2.18)
LetQ: X =Y, R: Y — Z, fuzzy relations. The MAX-T composition of fuzzy relations

Q and R is the fuzzy relation denoted Q o, R between X and Z defined by

(Q 01 R)(x..20) = MAX(Qx, ) TR 20) (2.19)

Resolution of MAX-T FRE. The problems of resolution are the same as for MAX-
MIN FRE and the condition of solvability ts similar. If for any y € Y, there exists X,
x € X such that A(x) > B(y), then Equ. (2.18) has solutions if T is continuous (this is
another way of expressing (2.7)). The system of FRE (2.19) admits solutions if each
equation respects these condition and the intersection of solutions to individual equations

is nonempty.

If Equ. (2.18) admits solutions, then a maximal solution exists, which is given by
R(xi,y;) = (AarB)(x;, y;) = A(x)arB(y)), (2.20)
where the T-relative pseudocomplement o 1s defined by
aorb = sup{c € [0,1] : T(a,c) < b}. (22D

In general Equ. (2.18) does not have lower solutions [Di Nola er al. 1989]. The

or-composition of Q and R with t-norm T is the fuzzy relation determined by
(Q 00y R)(iy ) = MINTQ(xi, y)0rR(y;. 20)]. (2.22)

The greatest element in the set of solutions of (2.19) is given by Q7! o4, P [Miyakoshi
and Shimbo 1985]. The t-norm needs to be lower semicontinuous, examples of o being
given in [Di Nola et al. 1989]. If the system of MAX-T FRE does not have solutions,

then approximate solutions may be of interest.
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S-T composition. Let A be a fuzzy set defined in X (X = {x;,x2,....x,}), and R
a fuzzy relation between X and Y. The S-T composition of a fuzzy set A and a fuzzy
relation R is the fuzzy set B defined in Y (Y = {y1,),...,¥,}), whose membership

function 1s given by

B(y)) = (Ao, R)x,y) = Sl [AGx) TR, v (2.23)

LetQ: X — Y, R: Y — Z, fuzzy relations. The S-T composition of Q and R 1s the
fuzzy relation denoted Q o, R between X and Z defined by

S

=1

(Q 0 R)(xi,21) = S [Q(xi, y) TRy, 2i)). (2.24)

The S-T composition was introduced by Pedrycz in [Pedrycz 1983a] *. This com-
position received very little attention in the literature (it was not even mentioned in the
most comprehensive monography on fuzzy relational equations [Di Nola er al. 1989]
which Pedrycz also co-authored). It started being mentioned again by Pedrycz only

in the context of fuzzy neurons in [Pedrycz 1992], [Pedrycz et al. 1995] and without
emphasizing any of its advantages. lndépendent of Pedrycz work this composition was

proposed again in a 1988 French publication ([Bour and Lamotte 1988]).

Resolution of S-T FRE. Conditions of solvability and an algorithm for determining a
solution for one FRE given by Equ. (2.23) were presented in [Bour and Lamotte 1988].

For a solution of 2.23 to exist, it i$ necessary that
Vke K, B(w) < ‘SJ(A(x,-)) (2.25)
Jje

where J = {1,....,n} . K = {1,....p}. The condition is sufficient provided S and

T are continuous. In order to determine a solution for (2.23) the following algorithm

4Pedrycz |Pedrycz 1983a] names it max, — min, (¥ = X{p4 R) where max, stands for s-norm and

miny, stands for t-norm.
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was proposed [Bour and Lamotte 1988] (which assumes the existence of a T-relative

pseudocomplement (2.21). Denote a; = A(x)), b = B, J1(k) = {j € Jlby < ay}.

o If Jy(k) #0, Yk € K (acondition similar to the resolution of MAX-T FRE, i.e. it
exists aj'(k), appy = by )
ajorb, ifj=j
J S g (2.26)

[ 0 otherwise

Tk =

o [f exists a k € K, for which J1(k) = 0 (ie. A{IAka > MAXa;). then it exists an
: f ,

index j for which S(ay,...,a;-1,0,...,0) < by and S(ay,...,a7,0,....0) > by

Denote «’ the value of an element in position j* for which the equality holds, 1.e.

S(a,,...,a,0,...,0) = b. Asolution of (2.23) is given by

1 ifj<j
ne=Sqdorb, ifj=j (2.27)
0 ji>Jj

Unfortunately, this algorithm can not be extended to a system of FRE of the form (2.24),

for which the problem of resolution is open.

2.3 The relational approach to system modelling

Fuzzy systems are mappings of fuzzy sets, generally expressed as collections of "pieces’
of knowledge of the form X; maps 1o Y., where X, and Y, are fuzzy sets. For a
particular input, crisp or fuzzy, which is not exactly specified in an expressed mapping,
the output may be obtained by employing some form of fuzzy reasoning. The standard
way of calculating the output is by using a compositional rule of inference of the form

Y: = X; o R, where R is a fuzzy relation describing the mapping.
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In the following 1 propose a grouping of methods of fuzzy reasoning in classes. The
grouping considers the type of representation of the elements that enter the fuzzy relation
and the semantic of the fuzzy relation. The representation can be compact or distributed
(as defined in Section 2.1). The semantic aspect refers to the distinction made between
conditional and associative flavours ot fuzzy relations. The possible classes are shown

in Table 2.1.

Table 2.1: Classes of fuzzy reasoning

Distributed | Compact

Conditional FRClI | FRQ
Associative FRC4 { FRC3

Fuzzy reasoning of class 1 (FRC1) is distributed and conditional. The fuzzy relation
is between sampled fuzzy sets, and is calculated by some form of implication. Fuzzy
reasoning of class 2 (FRC2) is compact and conditional. The inputs match input fuzzy
sets in some degree. These degrees of matching to various inputs are propagated to the
output by some form of implication. Fuzzy reasoning of class 3 (FRC3) is compact and
associative. The fuzzy relation expresses a mapping between labels of fuzzy sets, and
the fuzzy relation is calculated by identification from input-output (I-O) pairs. Fuzzy
reasoning of class 4 (FRC4) is distributed and associative. The fuzzy relation expresses a

mapping between sampled fuzzy sets, and is calculated by identification from 1-O pairs.

Conditional reasoning is generally associated with the most popular form of fuzzy
systems, i.e. fuzzy logic controllers. In fuzzy logic controllers the knowledge of mapping
consists of a set of rules presented as fuzzy conditional statement of the form If x is Xi
then y is Y;. In FRCI the fuzzy relation is between sampled fuzzy sets and models
an implication, and the reasoning is considered a generalization of modus ponens case
of propositional logic [Zadeh 1973]. The implications can be calculated for each rule
as R, = (Xx — Yi), and a partial output can be obtained by composition of input with

each implication. The total output is calculated as a union of individual contributions.
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For MAX-T composition, the same result is obtained if a union of all implications 1s
calculated first. and the input is composed with this union. There are several ways
of calculating the implication (see for example [Lee 1990]), the simplest way being
by Cartesian product calculated as a pointwise t-norm operation. Various forms of
fuzzy reasoning were explored by considering different t-norms in MAX-T composition,
combined with different implications or different ways of aggregating the contribution
of each rule (see for example [Mizumoto and Zimmermann 1982] [Mizumoto 1991])°.
As shown for example in [Di Nola et al. 1989] the output obtained using this form of
reasoning by implication is equivalent to the output resulting in a processing scheme
with an interesting interpretation. The scheme has three steps, i.e (1) a matching step,
in which the input data is matched (by intersection, generally with MIN) against the
premise part of arule and a number is returned which reflects the degree of matching, (2)
an activation step, in which the conclusion part of the rule is modulated (in the way the
particular implication dictates, e.g. by MIN in Mamdani type of reasoning [Mamdani
and Assilian 1975]) with the degree of matching obtained in previous step, and (3) a
combination step in which the contributions of all "fired’ rules are combined together
by a union operator, e.g. MAX (a rule was "fired’ if the input matched its premise in a
nonzero degree). This scheme of processing became so popular that few ever mention
its relational roots. This is the compact conditional reasoning referred here as FRC2,

and mentioned again in the discussion on hardware implementations of fuzzy models.

In an alternative approach to system modelling, the conditional issue is not stressed,
but rather the mappings are seen as associative, i.e. Xy is associated with Yy, or X, is
related to Yy, or X, is similar to Y,. In this case, R is seen as a solution for the fuzzy
relational equation X o R = Y (and not calculated by some implication formula) using

methods of resolution indicated in Section 2.2. Because in the most used scheme of

The combination composition - implication does not always respect modus ponens for known map-
pings, i.e. Xy o (Xx — Yi) # Y [Keller and Tahani 1992]. One example is the combination of MAX-MIN
composition with Lukasiewicz implication a — b = MIN(1,1 — a + b). However the same implication
with the composition MAX-DP (DP stands for drastic product, defined as 7° in Table 3.1) does satisfy

modus ponens.
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reasoning (FRC2) the relational roots are not transparent, and because only the associative
approach leads to solving FRE, only the associative approach is usually referred to as
relational. In general, a representation in a unique fuzzy relation R is sought, which must
satisfy the mapping for each k rule. Compared with FRC2, the associative approach
requires additional memory for storing the fuzzy relation, but offers more flexibility
in applications [Di Nola et al. 1989]. This approach to system modelling is strongly
supported in the papers of Pedrycz and collaborators (e.g. [Pedrycz 1991«] [Di Nola ef
al. 1991] [Pedrycz et al. 1995]) who addresses mainly FRC3.

In this thesis, which investigates fuzzy neural structures, the focus is on FRC4
as the approach best fitting neural qualities, such as distributed processing and graceful
degradation. FRC3 as studied by Pedrvcz presents the advantage of using logic mappings

at concept level, while this study shows that FRC4 uses logic mappings at lower levels.

Information processing in a fuzzy system is illustrated in Fig. 2.3, which exemplifies
the mapping of three fuzzy sets. For this system and the first mapping (X, — Y,), FRC4

1s detailed in Fig. 2.4 and illustrates the composition

(0 0 02 |

0 0 04 07
(1070300000 0 07 07=(00041).

0.7 0 04 0

0.4 0.7 0.2 0.6

Here the definition domains are [0, 1] (to which the real domain of inputs and outputs can
be mapped), a partition {x,xa,...,x,} on the input space, and {yi,y2,...,¥y.} on the
output space, the fuzzy sets being represented in terms of their sampled degrees of mem-
bership over the discrete space, and the composition being MAX-MIN. Processing can
be considered to be performed by a network of distributed processors, each calculating

the output in a particular point of the output domain.
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Fuzzy system
Fuzzy input $ gggx‘?ﬁd;;pin g Fuzzy outputs
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Figure 2.3: Processing in a fuzzy system: outputs are obtained by the composition of

inputs with a fuzzy relation.

X, X.k

\\

Figure 2.4: A network structure implementing FRC4
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2.4 Advantages of using the S-T composition for system

modelling

In practical applications, the conditional approach to system modelling has received
more attention than the associative approach. The common fuzzy composition for the
conditional approach is MAX-T (which includes MAX-MIN as a particular case), which
is consistent with the implicational flavour of the {uzzy relation between premise and
conclusion. It is reasonable to consider that the confidence in a conclusion (Y) does not
exceed the confidence in the premise (X), and this i1s consistent with the condition of
solvability for MAX-T FRE, hgt(X) > hgi(Y). This perspective leaves little room for
the interpretation of a composition that produces hgt(Y) > hgt(X), and it may be one of

the causes of the lack of interest in the S-T composition ©.

S-T composition is acceptable in the associative approach. For example, in the case
of resemblance relations [Zadeh 1973], it is perfectly plausible to have the degree of
resemblance of the resulting set higher than the degrees of resemblance reflected in
composing relations. This is also common to fuzzy similarity relations " [Zadeh 1971],

[Tamura ef al. 1971] used in fuzzy clustering, for which the transitivity is stated as
Upx,2) 2 %AX(HR(X, T ur(y, 2)). (2.28)
One can replace the inequality (2.28) with the equality
Hr(x,2) = SR VT HR(Y, 2)) (2.29)
because (from (3.27)) So (MAX) is the lowest s-norm and thus

S(uur(e, NT RO, 2)) 2 MAX(Ur(x, )T Ha (Y, 2))-

SThere are other reasons, e.g. the lack of distributivity (XSW) o, R # (X o, R)S(W o, R) [Pedrycz

19834]
TA similarity relation R in X is a fuzzy relation in X which is (a) reflexive, (b) symmetric and (c)

transitive.
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The advantage of this replacement 1s that one can actually determine the result of the
fuzzy relation Ug(x, z), once S and T are specified (for example as a result of a learning

process, discussed in detail 10 Chapter 3).

A comparative presentation of properties of S-T composition and MAX-T is deter-

mined in Appendix 1*. Some advantages identitied here for S-T composition are:

1. Ttenlarges the class of problems addressable in a relational perspective, as one can
build exact fuzzy relational models of systems that have the maximal value of the

output larger than the maximal value of the input (i.e. not limited by (2.7)).
2. Ttallows a precise specification of composition of fuzzy similarity relations.

3. When S and T are differentiable (and thus the function that maps inputs to out-
puts is differentiable), gradient based methods of resolution 6f FRE are directly
implementable (MAX, in the MAX-T composition, is not differentiable). When
using parametric t-norms that have MIN as a limit, and s-norms that have MAX

as a limit, the solution for MAX-MIN FRE can also be obtained.

4. In many modelling cases (including the context of fuzzy neural networks) it is
important to have a global cumulative effect on composing elements and not only
a local effect as imposed by MAX (in which case only the maximal value dictates

the output).

5. The lack of distributivity can model a memory property of a system for which the

order of applying the inputs is important.

#For all composition presented here, dual compositions are defined in the literature (see for example
[Di Nola er al. 1989)]) by replacing MAX with MIN, and the (-norm with the associated s-norm. TFor
example, MIN-MAX is dual to MAX-MIN, and MIN-S is dual to MAX-T. One can define also the general
T-S composition as a dual to S-T composition, and as a particular case S-MIN or T-MAX, which arc

distributive.
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An example of a situation that needs the S-T composition for appropriate modelling
is given in the following. Consider a set of learned postures of a robot arm to be
g = {q1,¢2} consisting of two postures whose spatial placement can be linguistically

described in a set of terms | = {left, front, right} (see Fig. 2.5). One can linguistically

A
l” ¢
i

Figure 2.5: Arm postures and a linguistic description of the space

characterize the first posture by W(qy, 1) = {0.3/left,0.8/ front,0/right} and the second
posture by W(g,, ) = {0/ left,0.8/ front, 0.3/ righz}.- A new command to the arm
can place it in the new posture gne., in between the two and resembling them each in a
degree of 0.8, thus X(¢new. q) = {0.8/4,0.8/¢,}. The linguistic description of the new

posture would be given by the composition

0.3 0.8 0
0 08 03/

Y(gnew,l) = X(qnew,q) o W(g,l) = ( 0.8 0.8 ) o (
If the o composition is MAX-MIN composition then Y(gnew,!) = (0. 3,0.8,0.3), ie.
{0.3/1eft,0.8/ front,0.3/right}. No MAX-T composition can give more than 0. 8/ front.
As the drawing shows however, the new posture is 1/ front. This can be modeled by an
S-T composition, e.g. for 8§12, T2 ($'* and T'? are given by formulas in Table 3.1),
one obtains the description Y (gnew, 1) = (0.1,1,0.1), i.e. {0.1/left, 1/ front,0. 1/ right}

(left and right overlap with front).
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2.5 Fuzzy logics

Zadeh's fuzzy logic is defined based on MIN and MAX operations for intersection and
union. A more general case is that of fuzzy logics based on triangular norms ?, T and S,

for which the complement A° of a fuzzy set A is defined by
A'(x) =1 — A(x), (2.30)
the intersection ATB of [uzzy sets A and B is deﬁqed by
(ATB)(x) = T(A(x), B(x)), (2.31)
and the union ASB of fuzzy sets A and B is defined by
(ASB)(x) = S(A(x), B(x)). (2.32)

In the following, the specification of certain fuzzy logic is semantically equivalent to the
specification of an associate composition, and vice-versa. For example, "applying the

MAX-MIN composition’ is equivalent to *working under the MAX-MIN (Sy, 7p) logic’.

This paragraph is adapted from [Butnariu er al. 1995], where fuzzy logics are defined based on

intersection and complement only (considering complementary {-norms).
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2.6 Fuzzy neural modelling

2.6.1 A brief account of approaches combining fuzzy and neural

elements

Fuzzy models have proved their usefulness in a variety of applications (for some recent
accounts see [Yager and Filev 1994], [Yager and Zadeh 1994]). An equally powerful
modelling technique is that of neural networks (NN). These two techniques have a degree
of complementing each other, which may be exploited in structures that combine the

individual strengths.

Combinations of elements of fuzzy logic and neural networks were initiated 1n the
seventies, a first model of fuzzy neuron (FN) and a fuzzy neural network (FNN) being
introduced in [Lee and Lee 1975]. In the late eighties, stimulated by the revival of interest
in neural networks research, and mainly using the backpropagation algorithm [Rumnelhart
et al. 1986], several fuzzy-neuro or neuro-fuzzy approaches have been proposed'?. Work
in this interdomain sector is mainly driven by the aim of combining the powertul features
of each paradigm, the transparent knowledge embodied in fuzzy systems and the learning
ability of NN. For a review of work in this area the reader is referred to [Takagi 19901,

[Hellendoorn 1994}, [Jang 1995].

In this account I refer only to those alternatives of mapping fuzzy processing into

neural structures which are patterned after the approaches to fuzzy modelling discussed H

The first alternative is to use hierarchical structures in which layers in the networks

1n general, fuzzy neuro refers to structures using fuzzy neurons, and neuro-fuzzy refers to fuzzy
systems implemented with classic neurons
U A synthesized overview on neural implementations of fuzzy systems is presented in Appendix B. The

details include the topology of the network, the type of neurons used, and training related aspects.
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implement steps of processing information as in the compact reasoning schemes (FRC2
and FRC3). In such neural architectures (e.g. [Takagi et al. 1992] for FRC?2, [Pedrycz
and Rocha 1993] for FRC3) some neurons are associated with linguistic values, and
fire in the degree in which the linguistic value is matched by the input, while other
neurons are associated with rules, and fire in the degree in which the rule is fired. The
architecture of the network reflects the structure of knowledge. This is what I call
here “the rules in neurons’ approach. It is not a distributed representation as it does
not allow ’graceful degradation’ (meaning that the removal of one neuron should not
greatly affect the result of processing). Learning in networks implementing FRC2 aims
at finding appropriate membership functions and rules, in the context of a fixed reasoning
method (often Sugeno’s). Given the membership functions and the way they map (rules),
Keller and Krishnapuram[Keller and Krishnapuram 1992] investigate which parameters
of reasoning are the best suited ones for the mapping. In the case of FRC3 the network is
considered to form a cognitive map between concepts [Pedrycz et al. 1995]. The weights
of the neurons in the network are elements of the fuzzy relation modelling the system,
and system identification is equivalent to learning by the neural network of a solution of a
fuzzy relational equation [Pedrycz 19905b], [Pedrycz 19915], [Pedrycz 1991c], [Pedrycz
and Rocha 1993].

The second alternative of mapping fuzzy processing into neural structures is to
have a structure of neurons which directly reflects the distributed mapping between
discretized inputs and discretized outputs. This structure can be multilayer, and was
proposed to employ classic neurons [Keller and Tahani 1992], or fuzzy neurons [Keller
and Krishnapuram 1992]. This thesis investigates unilayer implementations of fuzzy
systems, using fuzzy neurons which perform the relational mapping between discretized
inputs and discretized outputs. Since Lee’s first model of fuzzy neuron [Lee and Lee
1975], different types of neurons incorporating elements of fuzzy theory were defined,
ranging from various hybrid structures as in [Pedrycz 19915], [Pedrycz 1992], [Goh and

Lui 1991], [Kwan and Cai 1994] to implementations of complete fuzzy inference systems
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in one neuron [Yamakawa er al. 1992]. In particular. fuzzy logic neurons were defined
[Gupta 1992], employing tuzzy logic operators to model svraptic and somaticactivities
12, For example, a MAX-MIN fuzzy neuron (or simply MAX-MIN neuron) was defined
based on Zadeh’s fuzzy logic, i.e. using MAX as union of activities at somatic level,
and MIN as intersection or joint effect of inputs and synaptic states [Pedrycz 1990b],
[Saito and Mukaidono 1992]. Pedrycz [Pedrycz 1990b] has shown that a fayer of MAX-
MIN neurons implements the MAX-MIN composition and can be considered as the
underlying structure of a fuzzy system in its relational definition (i.e. X o R = Y where
X are input fuzzy sets and Y are outputs fuzzy sets, R is a fuzzy relation between input

and output, and o is the MAX-MIN composition).

Fuzzy logics other than Zadeh’s MAX-MIN can be used for defining logic neurons.
A general model of fuzzy logic neuron, which operates on triangular norms is discussed

in the following.

2.6.2 S-T fuzzy neurons and S-T composition

Consider a neuron as an information processing element, having a number of inputs
X = [x1,%2,...,%,] and an output y. The inputs affect the neuron via synapses, which
modulate the inputs with the values of the weights w = [w, w2, ..., wy,]. The modulation

can be modeled by a t-norm operation
L= T(x;,w;), (2.33)

and the effect of the modulated inputs as perceived by neuron consists in a set of ;. All

these £, i = 1,2,...,m, are somatic input contributions to the neuron, and their aggregation

2This terminology adopted from Neurobiology is used for referring to the main operations that take
place in an artificial neuron model: a modulation of inputs with weights (by neural synapses), and a

nonlinear aggregation of all weighted contributions (by neural somaj.
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in order to determine an output can be modeled by an s-norm operation

y= S}(Zi)- (2.34)

Egs. (2.33) and (2.34) define an S-T fuzzy neuron (S-T FN), which 1s illustrated in
Fig. 2.6. This model of neuron was defined as such by Gupta [Gupta 1992] and Pedrycz

e
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Figure 2.6: S-T fuzzy neuron

and Rocha [Pedrycz and Rocha 1993] 1%,

Consider now n similar neurons, each receiving inputs x via the set of weights W =

[w, w,,....w,]. The equations for the j-th neuron are

tij = T{xi, wij),

¥ = i§](fu)-

The output of the layer of n neurons is the vector y= [y;,¥2,...,¥.] calculated with

y=&oW)=5T(x, W)) (2.35)

3pedrycz addressed a rich variety of fuzzy neurons [Pedrycz 19915, [Pedrycz 1992}, [Pedrycz and
Rocha 1993}, [Hirota and Pedrycz 1994}, the one defined by Equ. (2.33) and (2.34) being the OR neuron

[Pedrycz and Rocha 1993].
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which has the formalism of the S-T composition of x and W.

The inputs presented to the layer are a function of time. The j-th neuron at instant k

is characterized by

f =T, wiy), (2.36)

m

Yiy = é;([{(/) (237)

Considering that inputs at discrete moments of time 1,2....,p, are rows in a matrix X
=[xy, X2,....X,] and the same for outputs Y =[y, ¥2.....¥,] then the detailed form of this

batch processing is (see also Fig. 2.7)

Xi1 Xj2 . Xim Wil Wi L Wiy Yir Y12 - Yin \
X2, X22 .. Xm Wayp Wiz Wi Y2u Va2 o Yaa

' 0 = (2.38)
Xpy Xp2 - Xpm Wpt Xm2 - Xmn Ypi Yp2 - Ypan

or in compressed form
Y= (X0 W)y = ST, W(j)) (239)

which is the formal description of S-T composition of fuzzy relations.

The network consists of fuzzy neurons performing the S-T composition. Presented

with I-O pairs, learning in such a network means the identification of a fuzzy model.

2.7 Summary

This chapter presented basic concepts of the relational approach to systems modelling.

Processing in relational systems is based on the composition of fuzzy relations, and
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Figure 2.7: A layer of S-T neurons

systems identification is equivalent to finding a solution for a fuzzy relational equation.
Analytical methods of resolution of some FRE were briefly reviewed. 1t was argued
that the little investigated S-T composition offers some modelling advantages. S-T
fuzzy neurons were shown to be elementary processors performing a pointwise S-T
composition. The neural weights are clements of a fuzzy relation, and learning in
S-T fuzzy neural networks can be viewed as a numerical method of resolution for

corresponding FRE.

The purpose of this chapter was to introduce concepts and present results setting the
basis for developing a theory of fuzzy neural systems. The fundamental elements for
such a construction are the theory of fuzzy relational equations, the relational perspective
to system modelling (in particular the distributed associative type of reasoning), and the

definition of fuzzy neurons as computational elements performing a fuzzy composition.

Fuzzy neural structures differ from their classic neural counterparts in the type of
operators employed. Network architectures and learning mechanisms used for classic
neurons can be investigated in conjunction with fuzzy neurons. One question that arises

is whether this plethora of techniques is applyable to fuzzy neurons employing any type
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of operators, or are some operators more appropriate. Another question is what type of
tuzzy neuron is most suitable for implementing multi-input mappings. These questions

are the motivation for the research presented in the next chapters.



Chapter 3

Fundamental fuzzy neural networks

The Chapter introduces a new form of fuzzy neuron operating on t-norms. Firstly,
different t-norms are compared in order to select the most suitable one for implementing
synaptic and somatic operators for fuzzy neurons. According to a set of criteria that
favours neural learning, the family of fundamental t-norms is chosen, and from this the
fundamental fuzzy neuron is defined. Learning aspects in fundamental fuzzy neurons
are addressed, and the equations which allow gradient-descent learning in networks
of such neurons are derived. It is shown how leamming can lead to a simultaneous
identification of weights and synaptic/somatic parameters, which in the context of S-T
FRE means the simultancous determination of the optimal FR and fuzzy composition.
This approach presents advantages in comparison with the classic case, where the search
for a solution of FRE is performed under the assumptions of a chosen composition. As
particular cases, solutions can be found for classic MAX-MIN and MAX-T FRE. The
Chapter ends introducing the ’rules in the weights’ perspective, showing that the neural
weight space configures a distributed rule base (and for this purpose can be used as a

rule extraction mechanism) directly interpretable by humans, allowing thus fuzzy neural

40
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networks to alleviate the *black-box’ drawback of classic neural networks ! 2.

3.1 Choosing the appropriate synaptic and somatic op-

erators for fuzzy neurons

The equations for fuzzy neural processing written in terms of T and S operators are
general, and in order to study in more detail the behavior of such structures, or for
application purposes, a selection has to be made for a particular pair of triangular
norm/conorm to replace T and S in the formulas. The most used pairs in fuzzy neural
modelling are: MIN/MAX (which is treated by the majority of researchers) [Pedrycz and
Rocha 1993], [Pedrycz 1994], [Blanco ef al. 1994], product/probabilistic sum [Pedrycz
and Rocha 1993], [Pedrycz 1994] or Hamacher's operators (7%, §¢ in Table 3.1) [Pedrycz
and Rocha 1993]. At present, there is no recommendation specifying which operators
one should choose (although it is observed that MIN/MAX needs some modifications to
allow learning, e.g. [Pedrycz and Rocha 1993], [Blanco er al. 1994]) and it is considered
that in general *one can select any combination of the triangular norms’ [Pedrycz 1994].
In order to benefit from the great number of topologies and learning rules developed
for classic neurons, fuzzy neurons may need to respect some conditions. Also, the
choice of a t-norm should consider aspects of hardware realisation, likely to follow
successful simulation studies. The following compares how different t-norms qualify

for the implementation of S-T fuzzy neurons.

'Several mechanisms for reading the neural weights were proposed. For example, in [Pomerleau 1993]

the number of hidden nodes is kept small.
*From here onwards the word neuron refers to the type of fuzzy neuron under discussion. Classic

(non-fuzzy) neurons are referred as such, and refer to the model described in Appendix G.
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3.1.1 Conditions imposed on the synaptic-somatic operators

e Condition 1, The neural model should permit gradient-descent search {on which
the majority of neural learning algorithms are based). Functions defined with
thresholding by MIN or MAX are poor choices for gradient-descent like methods.
Specifically, the derivative is not defined at the thresholding point, as discussed
for example in [Pedrycz and Rocha 1993]. Also, having the MAX operator
thresholding at 1, as illustrated in Fig. 3.1, results in a null derivative for the
ceiling region, where the search can not continue. For these reasons, a condition
imposed on the operators involved is that they have nonzero, finite derivatives

everywhere.

e Condition 2. The functions should be parametric. Parametrization offers a great
modelling flexibility, remarked forexample in [Zimmermann 1991], [Di Nola et al.
1989], [Pedrycz and Rocha 1993]. In particular Pedrycz and Rocha [Pedrycz and
Rocha 1993] suggest that neural learning can involve the parameters of triangular
norms. A change of the somatic parameter is equivalent to the modification of the
slope of the activation function, which for the case of classic sigmoidal neurons

has been shown to affect the learning rate in backpropagation [Thimm er al. 1995].

e Condition 3. The selected t-norm (s-norm) should cover the MIN (MAX) case.
Parametric families should have these values as their limit for specific values of
their parameters. Apart from being the most thorough investigated pair, there are

many problems which are best modeled by them.

Selecting a triangular norm. The comparison i$ made between the 12 operators
presented in Table 3.1. These operators are gathered from [Di Nola ez al. 1989], [Gupta
and Qi 19915] and [Butnariu and Klement 1993], to which the reader is referred for more
details. In particular Gupta and Qi [Gupta and Qi 1991b] enumerate and give properties

of all but one of these operators, and Butnariu and Klement [Butnariu and Klement 19931
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Figure 3.1: Yager's s-norm implementing a neuro-somatic operator

give a clear description of several families of t-norms, including suggestive graphical
comparisons. Most applications are based on MIN and product, mainly due to their
simplicity and because there is no clear advantage of other t-norms, the best choice
being very much problem dependent. For a study that compares the efficiency of using
different t-norm pairs in implementing fuzzy logic controllers, the reader is referred to
[Gupta and Qi 1991a]. According to the three conditions imposed, the selection of a
t-norm pair is straightforward (the following refer to T only, but the same applies to S).
TV, T2, 7% T4, T3 are not parametric and thus do not satisfy Condition 2. In the remaining
set only T°, T® and T'? are not thresholded by MIN or MAX, and accordingly are the
only ones that satisfy Condition 1. One should note now the following inequalities

[Gupta and Qi 19915]

°<T<T! (3.1

TP<T<T<T<T' (3.2)
and the following limits [Gupta and Qi 19915b] [Butnariu and Klement 1993]:

A-0, T ST AlsoAd =, T > T4 (3.3)

A0, T*5T5 AlsoA — oo, T8 = T, (3.4
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Table 3.1: Triangular norms and co-norms

T-norms

S-norms

T'(x,y) = MIN(x,y)

S'(x,y) = MAX(x,y)

Ir’(y)=x-y

SP(x,y) =x+y —xy

T(x,y) = MAX(x +y — 1,0)

S, y) = MIN(x + v, 1)

I(x,y) = 22

Chy-—xy

S4(X ),) - x+y—2xv

x ify=]
TS(X,_}’)= y

0 otherwise

ifx=1

I —xy
x ify=0
Sxy)=<5y ifx=0

1 otherwise

T, ) = i

gé(x \,) — Alvevyav(l =24)

T =Dty —xv) Lrxy(l—4)
T7(x,y) = MAX(1 = (1 = x)P + (1 — y)")'7,0) §T(x,y) = MIN(( +y")!7, 1)

T3(x,y) = ‘

(3 = 1A (g = DI

S3(x,y) = '

(I D=2+t -=2)=ia

T9 (x, )’) = xy

SO y) = | — =ion

MAX (xy ) MAX( = x 0~y )
T19x,y) = MAX(E-122 () SO, y) = MIN(x + v+ Axy, 1)
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T'(x,y) = MAX((1 + A)(x +y — 1) — Axy,0)

SY(x,y) = MIN(x + v+ Axy, 1)

TR(x,y) =log,[1 + = 4=1]

S2(x,y) = 1 - log [1 + Q-_:_gvl_'_—_u] |




3.1. Choosing the appropriate synaptic and somatic operators for fuzzv neurons 45

s, TP 5T Alsos—=0, T'° > T (3.5)

According to these observations and Condition 3 one can eliminate 7°, which has 74

as its upper limit and therefore can not reach 7' (MIN) as required.

T® and T'? are the only ones that satisfy the imposed requirements. At this point
one should remark that 1t is possible to create new t-norms, for example as shown in
(Kaufmann and Gupta 1988], some of which may satisfy as well all the conditions
imposed here. The purpose of this comparison was (o select from the set of currently
defined operators the one that is best suited for neural modelling according to the selected
criteria. In order to continue the investigation of S-T fuzzy neural networks (S-T FNN),
one must chose either 7% or T'2, and thus specify the neuron by functions Which allow

numerical calculations.

T'? has the advantage of covering the operators used in probabilistic reasoning,
product/probabilistic sum (7%/S%), which is a limit case for (7!*/S!?) when s — | . The
disadvantage is that in order to cover the case s = 1 (in which point 7' is defined
equal to T2, see (3.6)) one must switch between functions 7'% and 7°. If a hardware
implementation is envisaged, then a solution must be found to this switching. 7® has the
advantage of covering the full range of possible t-norms [77, T"] (however, this does not
cover T2, i.e. the two are not identical for any value of A). Its disadvantage is that is
not defined for null arguments, and for values of x (or y) close to O the term 1/x (or 1/y)

becomes very large, which may also cause hardware problems.

It is considered here that T'? is a preferable choice, and it is the one selected for

further study.
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3.2 Fundamental fuzzy neurons

T'2 can be associated with other t-norms, to form the family of t-norms defined by

MIN(x,y) if s=0,

_ Xy its=1,
T.(x,y) = (3.6)

fog,[1+ E=NE=01 if 0 <s <o, 55 1,

MAX(O,x +y— 1) it s=-cc

MAX(x,y) ifs=0,

_ X+y—x-y ifs=1,
S.(x,y) = o (3.7)
I —log 1+ &= 7=D] jf0<s<oo, s # 1,

s—1

MIN(L,x+v) if s =co.

This family of triangular norms, which was initially investigated by Frank [Frank
1979], received special attention in [Butnariu and Klement 1993] where they were
referred to as fundamental t-norms. This term is adopted here to specify a class of fuzzy
neurons. Due to Condition 1, the class of fuzzy neurons is restricted to 0 < s < oo, for

which 7, is also continuous, as it was shown in [Butnariu and Klement 1993] that

lim T5 = Tﬁo’ VS(} S [0, 00) (38)

K X91]
(and the same property is valid for S).
Definition. A fundamental fuzzy neuron (FFN) is an S-T fuzzy neuron for which the
S and T operators are the fundamental t-norms given by Egs. (3.6), (3.7), for 0 <5 < oo

A network of FEN forms a fundamental fuzzy neural network (FENN).

The characteristic function of a FEN with m inputs is expressed by
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_ B = D = ) s 1)
v=1—log,[1+ (55 — 1)im=D

I (3.9)

where each f; represents the synaptic contribution of inputx; modulated by the weight

s sy — |
= log, 1+ S )“’l ) (3.10)
a3y

The parameter of the s-norm, sg, is referred to as the somatic parameter, and the

parameter of the t-norm, sy, is referred to as the synaptic parameter.

The characteristic function for a S-T neuron with two inputs is presented in Fig.
3.2. This illustrates the function y = S1o0(2), 12), Where 1, and 1, are the inputs after the

synaptic composition.

Fos 4

B .
mpA T

Figure 3.2: Somatic characteristic of the fundamental fuzzy neuron
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3.3 Learning in fundamental fuzzy neural networks

For a system whose behavior is known in terms of input-output pairs, one can identify a
model to fit the available data. If one chooses to do the modelling using a neural network
structure, the identification consists in finding the appropriate neural parameters which
ensure the mapping. In particular, if the neurons are fuzzy then arelational interpretation
supports the model. In this case, finding the appropriate neural weights 1s equivalent to
finding the elements of a fuzzy relation, which is a solution to the FRE characterising the
system (see Eqgs. (2.38), (2.39)). The extension of learning to include modifications of
the synaptic and somatic parameters is equivalent to the search for a suitable composition
for the FRE, or, in other terms, for a suitable fuzzy logic for reasoning in such a system.

This section derives the equations that allow learning by FFENN.

3.3.1 Gradient-descent learning in fundamental fuzzy neural net-

works

Most NN learning techniques are gradient descent (GD) based (the best known is back-
propagation [Rumelhart ef al. 1986]). In a fuzzy relational context, learning by gradient
descent was first applied by Pedrycz [Pedrycz 19915]. The equations for learning depend
on the t-norms that define the chosen composition. In the following, the gradient-descent
equations for FENN are derived. Consider the case of an input matrix X(p,m), a weight
(relation) matrix W(m,n), an output matrix Y(p,n) calculated by S-T composition, and
a target matrix B(p,n) representing the desired outputs. This is a case of k input-output
pairs, with m inputs for each of the n output nodes. The equation to solve is Equ. (2.39)
detailed in (2.38). For simplicity, the equations are written in a single t-norm parameter
(s), i.e. considering that the t-norm and the s-norm have the same parameter ss = Sr, 10
which case they comply with De Morgan’s laws and are called corresponding t-norms.

The results can be easily extended to non-corresponding t-norms by replacing s with ss
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and sy as will be indicated at the end of the calculations. The weights are determined
in successive approximations using a GD algorithm. The algorithm is based on the
modifications of weights as to minimize a distance between the outputs produced by
information processing through the network with current weights and the target output
values. The function to be minimized is the sum of squared errors (SSE) taken over all
examples (k = 1,....p) and all output neurons (j = 1,...,n).
P n
SSE(1) =Y > " (ij(T) — b (D), (3.11)
ket |
where 7 is the iteration index number, y;; the j-th output in the k-th example, by; the

target element kj.

In the search for the a minimum of SSE, w;; moves along the gradient of SSE. Its
value at instant (7 + 1) is obtained from its predecessor at the moment T, using the
updating formula

dSSE(T)

W,'J(T’*' 1) = "\’,’J(f) — T
Y

; (3.12)

where p is the learning rate (increment). To simplify the presentation, T is omitted from

equations. The partial derivative of SSE with respect to w;; is given by:

dSSE A
a . d (ZZ()"M' - ka ) = ZZ OLJ’ - bLJ’) - ZOOLJ bk,})
Wi Wij k=1j=1 kl}‘] (313)
(as ' # j does not depend on the weights received by node j (w;))).
The output of the neuron j presented with the k-th input example 1s
. Lk
(= DG = D (s = 1)
=1 — 1+ , (3.14)
=1 ]OE [ (s — 1)(m—-l) J

or in the form



3.3. Learning in fundamental fuzzy neural networks

A — (3.15)

The synaptic contribution of input / to neuron j in example k, is

$ — D)5 — |
L s ) (3.16)

s — 1

The change that the weight w;; produces on the output of neuron j in example & is

AN o af‘
Oy O%y Ol (3.17)
(3W,'J' (-)T,A-J ()W,';,'

The change of outpul as affected by synaptic input ¢, 1s

(\-’—rklf——l) (vl“{'—l> (v'—é"f—lJ ’
dyr; _ —U+ (=11 ) (3.18)
ok o o 6oy -
W n(s)(1 + & e )

which leads after derivation and simplifications to

S]-"rtl"“x ﬁ (Sl—[:’J —_ 1)
8)@ _ g=l g (3.}9)

My (5= 1yt 4[] = 1)
&=l
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The synaptic inputs depend on the weight, (omit for the moment indices i and j)

d (1t s )
LY o = , (3.20)

Iw  In(s)(1+ ==y T sy (e~ D (s — 1)

Iy 5" (s = 1)
Owi; (s — 1)+ (s — (™ — 1)

(3.21)

Reblacing (3.19) and (3.21) in (3.17) we obtain

c ST TR - (e
Ovej _ 9y 9ty _ = S (s - 1)

dwi; - at,kJ I - (s — 1y 4 ﬁ(sl"’ﬁ.; -1 (s = D+ (s — D™ = 1)
g=1

(3.22)

which (with r{‘] given by (3.16)) is introduced in (3.13) allowing the weight update

given by (3.12).

The equations for non-corresponding t-norms can be obtained directly from the
previous equations by replacing s with sg in (3.14), (3.15). (3.18), (3.19), and replacing
s with s, in (3.19), (3.20), (3.21), and also replacing s, in the first term of (3.22). and

sy in the second term of (3.22).

The computations need the specification of the synaptic/somatic parameters for t-
norms and of the learning rate (or increment inc). A method which automatically detects

optimal t-norm parameters is presented in the next section. As for the learning rate, it is
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known from the literature on GD searches how the size of the step affects the outcome:
if it is too small the convergence is slow, while if it is too big the search may fail to

converge. This is illustrated in Fig. 3.3 which plots the SSE versus the number of steps.
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Figure 3.3: The learning rate affects the convergence

3.3.2 The effects of synaptic and somatic adaptation in neural pro-

cessing

The equations of information processing by FFNN, and also the learning equations
derived in the preceding section, indicate that parameters ss and s have an influence
on the results. This section shows more precisely how these parameters affect network
behavior. Modifications of the logic parameter of the neurons have an equivalent in the
classic NN literature. A direct analogy can be drawn between the somatic parameter ss
and the parameter which controls the slope of the activation function of a classic
neuron. In [Thimm ez al. 1995] itis shown that changing the gain (steepness of the slope)
is equivalent to changing the learning rate and the weights. The sigmoidal function to
which Thimm refers to is >

o= 3.23)
¥ 1 +epe (

5The results are valid for other activation functions that depend on the product fa.
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where [§ is the gain. ¥ is the steepness (slope) of activation function and a is given by

the weighted sum of the inputs

a= Zw,-x,f, (3.24)

Thimm shows that if two networks are topologically identical, and one has the gain f8
times smaller, the learning rate 3* times higher, and the weights 3 times higher than
the other, then the networks are equivalent under on-line backpropagation. Large gains
produce results similar to large learning rates. For FNN, a larger value of ss determines
a steeper activation function. As a particular case, different s values can be used by
different neurons, in the same way as pointed out by Rumelhart [Rumelhart e al. 1986]

for the classic NN.

Apart from increasing the learning speed, a more interesting modification would be
to adapt the neural parameters in order to achieve a better mapping. In [Hirota and
Pedrycz 1994] a nonlinear sigmoidal element (of a similar form to the one used by
Thimm) is placed in series with an OR neuron, and the nonlinearity parameter of its
activation function is modified during learning. The adaptation leads to improved results.
It 1s interesting to observe that not the parametric nonlinearity per se was the cause of
a better results as suggested in the paper (|[Hirota and Pedrycz 1994]). For the same
nonlinearity, as follows from Thimm’s result, a modification of its parameter 3 would
result in a scaled solution which would produce the same mapping. What contributed in
the case of [Hirota and Pedrycz 1994] is the fact that the input to the activation function
was a non-linear combination of inputs and weights, as opposed to the linear case of

(3.24).

The following interesting observation can be made here. For classic neural networks,
with neurons as described by equations similar to (3.23), (3.24), modifications of the
somatic parameter can not offer better mappings *. This follows directly from Thimm’s

result. However, for fundamental fuzzy neurons, or for parametric S-T neurons In

*This is valid for the common case, when all neurons have the same gain for the activation function.
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general, better mappings are possible, and adaptation mechanisms for somatic/synaptic
parameters can lead to improved modelling capabilities. Equations (3.6) (3.7) show
that the relationship between weights and the gamn parameter is not linear (for other
parametric t-norms, see Table 3.1). It follows that some synaptic/somatic combinations
offer better modelling solutions, and this is illustrated in an example in the next section.
An algorithm which permits finding such optimal parameters is also described in the

next section.

Processing in FENN with different synaptic/somatic parameters can be studied in
relation to the ordering of parametric S-T compositions. In order to derive such an
ordering, it is useful to note some important properties of the operators on which the S-T

composition is based. These properties are proved in [Butnariu and Klement 1993].

1. The fundamental t-norms form a decreasing family
1.<T < Ty, (3.25)
and also for all a, b e [0,e] witha <b
1, <71, (3.26)
By duality, fundamental s-norms form an increasing family
So < S <8, (3.27)
and also for all a, b e [0,0] witha<b
Sa < Sp. (3.28)
2. Fundamental t-norms are strict in the sense that they are continuous and satisty
the property
T(x,y) < T(x,7),whenever x > Oand y < z. (3.29)
Fundamental s-norms are strict, being continuous and having the property that

S(x,y) < S(x,z),whenever x < landy < z. (3.30)
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Consider the simplified notation S7°(s, f) standing for §, — 7., the S-T composition
having s as the parameter for the s-norm and 1 the parameter for the t-norm. Consider P,
Q. R fuzzy relations, and for each (x;, ) the S-T composition expressed as a function of
(s, 1) (the argument (x;, ) being omitted for simplicity) $7'(s, 1) = SR, y) T, Q0y), 2]

J=1
Proposition. Let a and b be two positive real numbers satisfying the relation a < b.

The following relations exists:

ST(a,b) < ST(a,a) < ST(b,a), (3.31)

ST(a, by < ST(b,b) < ST(b,a). (3.32)

Proof:

I. The arguments of the s-norm in both ST(a.a) and ST(b,a) are the same (i.e.
[R(x;, y) T, 00, z)])- As shown in Equ. (3.28), S is an increasing function in its

logic parameter. With a < b that means $7'(a,a) < ST{(b,a).

2. §T(a,b) < ST(b,b). The same reasoning as before, but for a different argument

of the S operator (now obtained using 7).

3. The argument of ST (a, a) (which is [R(x;, y;))T.Q(y;, 2)]) is greater (or equal) than
the argument of ST(a,b), (which is [R(x;, ;) T»Q(¥;, 2)]) according to (3.26). From
(3.30) it follows that ST(a, b) < ST(a, a).

4. The same argumentation as before, this time for ST(b,b) < ST(b, a).

The relation between ST(b,b) and ST(a,a) depends on the values of the relational matrices
involved in the composition, as one function (T) is decreasing and the other (S) is

increasing.

Knowledge of this ordering allows neurons to guide the modification of ncural

parameters in response to the input data available at inputs. For example if the outputs
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are too high and saturate®, then a decrease of the somatic parameter (which can be
combined with an increase in the synaptic parameter) will scale back the output into the
active range. For example for neurons with 192 weighted inputs used in the visuo-motor
coordination described in Chapter 6, all the S-T compositions that have ss = s+ saturate

the output. The choice of 55 = 0.1 or smaller, and sy = 10 or larger, is more appropriate.

3.4 Applications to resolution of fuzzy relational equa-

tions and fuzzy system identification

The learning mechanisms presented in the previous section have direct applications to
the resolution of fuzzy relational equations, which, as explained in Chapter 2, determine
the identification in systems modeled by fuzzy relations. Neural learning provides a
powerful numerical technique for FRE resolution, This is particularly useful for systems
of S-T FRE, for which analytical resolution methods are not available. It is also a way

of finding approximate solutions for any type of FRE.

3.4.1 Application to solving FRE of a given composition

The equations derived in the previous section allow the numerical resolution of FRE based
on S-T composition or its particular cases, such as MAX-T, MAX-MIN, or even S-MIN,
which can be employed to extend MAX-MIN by incorporating a global effect. For S-T
FRE the gradient descent search is made directly by replacing the particular values of
parameters s5 and s7 in equations. For FRE that involve MAX and MIN the continuity

of parametric t-norms (3.8) is used. For example MAX-MIN is the instantiation of S-T

SHere saturation is considered when neural outputs take values in a small vicinity of 1, generally due

to a large number of inputs.
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composition for s = 0, (S-T),,, = MAX-MIN. Using the GD equations, solutions are
searched for S-T FRE with s — 0 6.

The following discuss the results of applying GD learning in FFNN, for the purpose
of finding solutions for MAX-MIN FRE. Details of the examples are given in Appendix
I,

Example 1. An exact solution (see also Example | in Appendix F).
In a first case, which is an example taken from [Blanco er al. 1994], an exact solution
exists, and after a single step the solution was i1dentified with an accuracy better than
0.0001 per element. The search was performed for s = 107 and learning rate p = I.
The result 1s qualitatively similar to the one obtained in [Blanco er al. 1994] using a
smooth derivative for a MAX-MIN NN. One should remark here that the solution was
also obtainable by analytic methods. In this case the maximal solution given by (2.10)

and the minimal one given by (2.13) coincide, thus the solution being unique.

Example 2: An approximate solution (see also Example 2 in Appendix F).
In a second case, which 1s an example from [Pedrycz 1990a] (also used as a test case
in [Negoita et al. 1994]), the system does not admit exact solutions and an approximate
solution is sought. The search was performed for s = 10~ and the search was stopped
after 200 steps. The resulting solution is qualitatively equivalent to the solution obtained
in [Negoita et al. 1994] using genetic algorithms, which is a better solution than the one
obtained in [Pedrycz 1990a]. Four indices were used for comparison: (1) maximum error

per input-output pair, (2) maximum error in all input-output pairs, (3) sum of absolute

®Gradient learning in MAX-MIN FNN was proposed for solving MAX-MIN FRE [Pedrycz 19915].
However, for MAX-MIN FNN the gradient search can not be employed directly, as derivatives have
a binary character. The solutions proposed are based on an approximation of MAX and MIN with
differentiable functions or 'smoothing’ the derivative [Pedrycz and Rocha 1993], [Blanco et al. 1994].
The possibility of approximation of MAX-MIN with any parametric family of triangular norms that tends
to maximum/minimum for some values of the parameter was also suggested in [Pedrycz and Rocha 1993],

however [ am not aware of any implementation of this proposal.
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errors (SAE), (4) sum of squared errors (SSE). Except tor SAE, the result was better
for FFNN trained by GD. Note however that the results are not directly comparable,
because the optimization index in [Negoita et al. 1994] was SAE, and in GD methods
the optimization is done for SSE {and other indices may also be small as a consequence
of using SSE). The number of necessary steps {or obtaining the results was smaller for
GD than for the genetic algorithm: 200 and ~ 10° respectively. However, different

learning rates may give different numbers of steps for the same accuracy .

The two examples show that FENN can be successtully applied for solving MAX-
MIN FRE. The advantage of using a FFNN (as opposed to a genetic algorithm) is that a
unique structure is used for representing the relation and for implementing the learning
mechanism. A FFNN has also greater flexibility than a MAX-MIN NN as used in
[Blarico et al. 1994], as it can change the composition to obtain a model which better

‘fitts’ the data, This is illustrated in the next section.

3.4.2 Resolution of FRE with adaptive composition: fuzzy relation

- fuzzy composition optimality

The classic approach to fuzzy modelling is to choose a composition and to identify a
fuzzy relation. There is little indication of which composition to choose, and quite often
MAX-MIN is chosen for its simplicity, while not necessarily being the best choice.
Instead of limiting the identification to finding a fuzzy relation, one can search also
for an optimal composition. In the context of FENN that means extending the search
for a weight matrix to include finding optimal synaptic and somatic parameters for
neurons. As indicated in a previous section, this has the potential of offering a better

mapping. Using the t-norm parameter as the only variable in an evidence aggregation
pping g p b

7Pedrycz has reported a case in which a combined genetic - neural search gives better results than a

simple neural search [Pedrycz 1994].
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network based on Yager’s operators, Keller and Krishnapuram [Keller and Krishnapuram
1992] have shown that training can lead to the value of the parameter that optimises a
performance index. Their search however was performed assuming fixred weights. Even
earlier in [Pedrycz 1983a], Pedrycz expressed the idea of best 'fitting’ of the model
by involving parameter search on the composition. However, he restricted the form
of the acceptable fuzzy relation, by calculating it with a formula which depends on the
parameter of the composition, and the search was performed to identify the optimal value
of this parameter. Thus, the solution obtained is optimal only for the given form of fuzzy
relation. In here I propose to use an unconstrained search for the fuzzy relation and the
parameters of the t-norms which define the composition. The paramcters of the t-norms
can be used in the same way as the other variables (elements of the fuzzy rclation) in an

iterative search, to find an optimal value for the approximation.

Example 3: A better approximate solution for adaptive composition (see also Exam-
ple 3 in Appendix F).
Using the same data as in Example 1, a combined search for W and s gives a weight
matrix and a logic giving a better approximation (SSE = 0.93) than the one obtained for

MAX-MIN (SSE = 1.04).

Example 4: An exact solution in which both fuzzy relation and fuzzy logic are found
(see also Example 4 in Appendix F).
The focus now is on a system for which an exact solution exists. as the output Y is
determined by the S-T composition (with s = 5 = 57 = 10) of input X with W, X and
W randomly generated. Searching for a fuzzy relation only in the context of a fixed
given composition gives models with various power of approximation, as illustrated in
Fig. 3.4. A combined search identified the fuzzy relation and the best composition. In
this example, each step of the GD procedure was intercalated with a selection of the s
parameter (of same, higher, or lower value than the current one) that gave the lower SSE.

Fig. 3.5 shows the convergence of SSE while s was converging from smaller values of
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Figure 3.4: Accurate modelling for the composition with s = 10, and errors in modelling

with others (sum of squared errors versus number of iterations)

s to s = 10 as shown in Fig. 3.6. The same convergence towards the optimal logic (s =

10) is shown when the search starts from larger values of s.
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Figure 3.5: SSE convergence in the combined search for fuzzy relation and fuzzy logic

3.5 The ’rules in weights’ representation

A weakness of the artificial neural networks approach to system modelling is the difficuly
of interpreting their internal representations. A classic neural network appears as a "black

box’, which performs well in the cases for which it was trained, but whose behavior
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Figure 3.6: Convergence towards the optimal composition while also finding the fuzzy

relation

in new situations is hard to predict, and which offers no logical explanation on how it
has reached a certain decision. For this reason they are not selected for applications
where safety is critical, such as air traffic control, power plant operation, etc. Currently
there are several architectures which offer rule extraction from artificial neural networks,
e.g. KBANN [Towell and Shavlik 1993], or BRAINNE [Sestito and Dillon 1994]
(sec [Andrews et al. 1995] for a recent survey of extraction techniques). In neural
implemented fuzzy rule based systems knowledge extraction consists in identifying the
rules and membership functions that fit the training data. Implementations with classic
neurons are reported in [Horikawa et al. 1992], [Takagi et al. 1992], [Jang 1995] for
FRC2. Pedrycz and Rocha [Pedrycz and Rocha 1993] advise the use of fuzzy neurons in
knowledge based-networks, which are networks that map concepts and implement FRC3.
The input interface is ensured by marching neurons. Compact methods (FRC2, FRC3)
lead to the ’rules in neurons’ form of representation. The representation observed here
in connection to FRC4 is a ’rules in weights’ representation and offers all the advantages

of true distributed representations.

When presented with examples in the form of input-output pairs, the FNN learns
the mapping in terms of corresponding fuzzy relation (weights) and S-T composition

(synaptic/somatic parameters). It is interesting to observe that clusters in the weight
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space take the shape of a distributed rule table-like, which is an image of a macro-
level rule table modulated by membership functions. This is in tact a rule extraction

procedure®,

In the example which follows, to facilitate the analysis, the fuzzy system which
generated the input-output data are shown at the start. The problem can be seen as
a transformation of representation, or how a neural system can learn a model from a
linguistic description. In practice, the focus is generally on learning from data, the only

information available being examples of 1-O pairs.

The system for which it is proposed to identify the fuzzy relational model has one
input and one output. The fuzzy sets and the way they map are represented in Fig. 3.7
(each input maps to the output on its right) and in Table 3.2 ?. The input and output
domains are mapped onto the [0,1] interval, and are sampled in 11 points (the same
resolution was also found suitable in [Keller and Krishnapuram 1992]). The training
pairs are formed by the sampled representations of mapping sets (the data set is shown
in Appendix E). The training was done by GD. As the input and output sets were each
sampled in 11 points, the resulting fuzzy relation is of size (11.11) and the assoclated
network has 11 nodes, each connected to the 11 inputs. Atthe end of learning, the weights
form clusters which constitute a distributed rule-base (Fig. 3.8) reflecting directly the

rules in Table 3.2.

The knowledge shaped in the weight space is the combined knowledge from the rule
table and the membership functions. Adaptation is simplified, as tuning of rules and
membership functions does not need to be made separately. A change of rule at macro-

level (Table 3.2) affects many points, and it is equivalent to modifying an entire cluster

$1f the weights outside the cluster contribute this can be seen as "exceptions to rules’, small deviations
which are recorded in this way (the concept of rules is our construction and may not capture a situation
perfectly , not even if rules are fuzzy).

"The abbreviations of fuzzy set labels stand for the following: VS - Very Small.-S - Small, M - Medium,
L - Large, VL - Very Large.
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Table 3.2: Rule table describing the set mapping

Output
Input | VS S M L VL
VL Rule 5
L Rule 4
M Rule 3
S Rule |
A | Rule 2

rule base of Fig. 3.8 has a local effect, allowing for a finer control in shaping the system.

The network encodes the knowledge of mapping in neural weights, which reflect the
fuzzy relation between inputs and outputs. The neurons act as distributed elementary
fuzzy processors performing the S-T composition of inputs with the fuzzy relation. The
network is thus a distributed fuzzy system, and the weights have the meaning of a point to
point relationship between samples in the input and samples in the output space. It may
happen in fuzzy modelling that although the membership functions and rules are in the
way the experts have expressed, the result of processing differs from experts’ predicted
result. One thing that experts can not express is the logic of their reasoning (i.c. the
composition used, which in not necessary MAX-MIN), to which a good approximation

can be identified from examples, as shown in a previous section.

3.6 Summary

A new type of fuzzy neuron operating on (riangular norms was defined and investigated.
The fundamental fuzzy neuron was defined based on the fundamental t-norms which were
found to be the optimal t-norms (from a learning point of view) for implementing synaptic

and somatic operators in fuzzy neurons. It was shown that synaptic modifications can
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not improve models of classic neurons, but they affect the quality of the solution using
fuzzy neurons, and optimal values may be found. GD equations for learning by FFNN
were derived. Tt was shown how learning can address the simultaneous 1dentification of
optimal weights and synaptic/somatic parameters. In terms of FRE resolution this means
a search for both fuzzy relation and fuzzy composition. which leads to better modelling
than the classic approach, which look for solutions for FRE under the assumption of a
prespecified composition. Finally, it is shown that during learning the weights cluster
and form a distributed rule base in the weight space. The ‘rulesin weights’ representation

allows S-T FNN to be seen as “transparent boxes’ rather than "black boxes’.



Chapter 4

Fuzzy neurons with shared weights

Fuzzy neurons discussed so far allow the implementation of distributed reasoning for
single-input systems. In this chapter, a general model of fuzzy neuron is proposed,
which supports the implementation of multi-input systems. This neuron has properties

of a general purpose computational element.

4.1 Implementation of multi-dimensional fuzzy systems

The fuzzy relational equation (2.39) formalises information processing in a relational
structure modelling linguistic statements of the form Input X maps to output Y. The case
when X stands for a conjunction of inputs (X = X; AND X> AND ..AND X,,} can be

described by the FRE of complex structure (see also [Di Nola er al. 1989])

X TX,T...X)oW=Y (4.1)

66
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with the fuzzy relation W defined in the Cartesian product ' W ;é] X; X Y . One
=
should detail here a distinction between the compact and distributed classes of fuzzy
reasoning. In compact reasoning (FRC2, FRC3) the conjunction of terms in antecedent
is interpreted as a scalar operator, and each input x; is matched against the classes
defined on that variable, returning a degree of membership, Uy, (x;). The degree of
matching the antecedent is then calculated as py(xy, ..., x,) = f{ux,. (x;) the result being
uni-dimensional (1D). This degree of membership then modulates the output set selected
by the rule. The contribution of all rules gives a fuzzy set, which is the final result, unless

a crisp value is required and in this case a defuzzification procedure must be applied.

In distributed reasoning (FRC1, FRC4, see also [Takagi et al. 1992] and [Foulloy er
al. 1994]) the mapping is from the m-dimensional space Sl X; to the one dimensional
space Y. In the perspective of FRE this is interpretable by considering 7" a pointwise
T between all combinations of elements of X;. Thus, a m-dimensional (mD) input 1s
matched against a mD fuzzy set IITTX, giving a mD result, which is further composed

with the fuzzy relation W. Equ. (4.1) can be rewritten as
Y=T"XoW= S(T(T™X,, W)). (4.2)

A neural implementation of this form of reasoning is suggested by an analogy with the
classic Sigma-Pi model [Williams 1986]. The Sigma-Pi activation function 15 delined
asy = f* g, with

gxy, ... Xp) = ij - Tl x

L

where f is nondecreasing function into [0,1] (usually by a sigmoid), * is the composition
of the two functions in a right-left manner, ¥ is the simple sum, ITis the product, and P
is the power set of [1,....m]. This equation can be rearranged as

gy, X)) = Y (H(ﬂzj(xi), wj). (4.3)

Eje P

I'The Cartesian product of two fuzzy sets is defined as a pointwise AND between all combinations of

elements of sets [Zadeh 1973},
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The main characteristics of the model are: weight sharing. aggregation of inputs and non-
decreasing (differentiable) nonlinearity on output. (Observe that for example for 3 inputs
{x1,x2,x3}, thepowersetis { {x]}, {x2},{x3}, {x1,x2}, {x1,x3}, {x2,x3}, {x1, x2,x3}}
(the empty set was omitted), and for each element of the set there is a synapse weighting
the contribution of the element). By analogy, one can define a fuzzy logic counterpart of
the model, by replacing IT with T, and }_ with S. However, instead of operating on the
power set, we restrict to the Cartesian product ot some subsets, which may correspond to
classes of similar inputs. In other words, the number of inpuls associated with a shared

weight is fixed, and equal to the number of classes.

Definition. The S-T activation function is defined by the functiony, y:(0, 11" — [0, 1],
of the form

¥ x) = S (T xm)), (44)

m
ez

where S is an s-norm, T is a t-norm, and F, are classes (in a total of m) of inputs. The
neuron operating on (4.4) is called S-T fuzzy neuron with shared weights abbreviated as

FNSW.

Fig. 4.1 illustrates a neuron with inputs coming from two classes x and v, each
synapse having exactly two inputs (i.e. inputs x; and v; share the weight w;;). The total
number of weights is given by the cardinality of the Cartesian product between the two
sets of inputs. For a layer of FNSW, an element of the relation matrix W is a weight wi;
connecting the input samples x;, v;, to the k-th neuron. To produce the output Y, each
k-th neuron performs a somatic operation (S) on synaptic inputs T(x;, v;, wi), for all 1,]
combinations. Considering m input classes, it is possible to implement m-dimensional
mappings (Equ. (4.2)) with one layer of fuzzy neurons with shared weights described

by (4.4).
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y = SQLi2,.49)

Note that T TOxi,vj), wij ) = TLv,wy)

Figure 4.1: S-T fuzzy neuron with shared weights

4.2 Learning multi-dimensional mappings

In this section it is shown how a fuzzy neural structure based on S-T neurons with shared
weights can learn the mapping from multi-input variables to an output variable. The
nc.ural weights obtained after learning configure a distributed rule-table which reflects
the initial rule-table used to generate the I-O training sets. In practice, the data is obtained
from the unknown system subject to modelling, and the network performs a knowledge

extraction.

FNSW can learn by the same mechanisms as FFN. This is made possible by the fact
that one can calculate a combined input ( a combination of individual inputs by a t-norm)
which is modulated by the shared weight. Having the combined input as a unique input

for the weight, the FNSW reduces to a FN.

Example 1. Consider the fuzzy system with two inputs and one output, with mem-
bership functions illustrated in Fig. 4.2 and the mapping of the fuzzy sets given by Table
412

7The abbreviations of fuzzy set labels stand for the following: N - Negative, Z - Zero, P - Positive, NB
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Figure 4.2: Membership functions for inputs and output

At the chosen resolution of 11 points per definition domain, the neural model consists

of 11 neurons (associated to points in output domain), each having a maximum of 121

active synapses. The training set was obtained from the mapping of discretized sets.

The mappings to be learned are from 2D input fuzzy sets, obtained by pointwise logic

AND of two input fuzzy sets, to 1D output fuzzy sets. For example, one training pair

is determined by the first rule in Table 4.1. The pair represents the mapping between

Table 4.1: Rule table for the two input system

inl
In2 N Z P
NB  NB/R1 | NB/R2 | NS/R3
NS | NB/R4 | NS/R5 | Z/R6
Z | NS/R7 | Z/R8 PS /R9
PS | Z/R10 | PS/RI11 | PB/RI12
PB | PS/R13 | PB/R14 | PB/RI15

- Negative Big, NS - Negative Small, Z - Zero, PS - Positive Small, PB - Positive Big.
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T(N,NB) and NB and is illustrated in Fig. 4.3. Each of the 11 neurons receives inputs
from all the input cells of the bi-dimensional fuzzy set in Fig. 4.3. In computations,
the matrix was transformed into a long vector by appending consequent rows to each
other. For example, the 11 by 11 bi-dimensional fuzzy set "N AND NB’ in Fig. 4.3 was
transformed into a 121 element vector, which is the bottom line array (on the left) in Fig.
4.4. Similarly, the 11 points of the fuzzy set 'NB’ in Fig. 4.3 become the bottom line
in the right array in Fig. 4.4. The grey level reflects the magnitude of the element: the
bigger the element the darker its representation. Thus for each rule a vector was mapped

to a vector, obtaining the training pairs shown in Fig. 4.4.
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Figure 4.4: Visualisation of the training set: inputs map to outputs. The bottom line

corresponds to the training pair shown in Fig. 4.3
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The resulting fuzzy relation is of size (121,15) 3. After learning, the neural structure
encodes the knowledge from rules and membership functions in the synaptic weights.
'Slices’ of weight space look like distributed rule tables as shown in Fig. 4.5, and reflect
the separated rule tables for each output set shown in Table 4.2. A FNSW from the set
of 11 performing the mapping is detailed in Fig. 4.6. Potentially the model suffers from
the *curse of dimensionality’, the number of weights increasing exponentially with the
number of inputs. However, as seen in Fig. 4.6, few of the 121 possible connections are
active. To ensure a reasonable number of connections, a competitive learning mechanism
can be imposed, thereby limiting the number of allowed synapses in a trade-off with
the modelling precision desired. For an alternative approach to distributed modelling in

fuzzy systems the reader is referred to [Pedrycz et al. 1995] *.
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Figure 4.5: Projections in weight space for neurons 1-6 associated with the first 6 points

in the discretised output domain. Darker colors proportionally represent larger weights.

Excitatory and inhibitory inputs. The inputs to any type of fuzzy neuron can be
excitatory (x;), or inhibitory, in which case they are complemented (1 — x;). By inhibitory
it is meant that an increase on that input will reflect in a decrease on the output, while
excitatory inputs increase the output. The definition of FNSW does not specify the

type of t-norms used for S and T, however for the reasons presented in Section 3, the

¥The neurons are independent and can be trained independently to solve y; = X; o Ry; foraltk=1,....p,
and all j = 1,...,n. This reduces the computational burden of training a network with 1331 synapses, to
the simpler task of training neurons with 121 synapses. However, one must rcalize that the freedom of
finding different synaptic and somatic parameters for each neuron offers greater approximating power at

the cost of a non-uniform reasoning (composition) law.
*According to the classification proposed in Section 2.3 the approach proposed by Pedrycz is not

distributed, but compact.
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Table 4.2: Rule tables for outputs NB, NS, Z.

NB | inl NS | Inl Z | Inl

2| N | Z P2 N | Z P |Ih2| N Z | P

NB | R1 | R2 NB R3 || NB

NS | R4 NS RS NS R6
Z Z | R7 Z R8

PS PS PS | R10

PB PB PB
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Figure 4.6: A FNSW and its weight space

fundamental t-norms are preferable and in the following FNSW are assumed to be

fundamental.

4.3 Implementation of logic functions

Proposition. Any boolean function (and in consequence any logic gate) can be imple-
mented with a single FNSW, working under any fuzzy logic. (Otherwise stated, any

boolean function is vertex equivalent to an S-T activation function whose weights are all
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either O or 1.)

Proof: The above follows directly from the fact that any boolean function can be
expressed in a disjunctive normal form (DNF). The DNF contains one term for each
output TRUE, represented by 1 in the complete truth table. Its general form is y =
OR ((x; AND ... AND x,,) AND w;), where OR is taken on all pairs xy,....x,,, for all
possible combinations of inputs and their conjugates. As S generalises the boolean OR,
and T generalises the boolean AND (they become the same for binary arguments), the

expression can be written y = S((x; T ... T x,) T wy), which is equivalent to Equ. (4.4).

Example 2. The following shows the FNSW implementation of the XOR. The XOR
table (Table 4.3) leads to y = (x; AND ) OR (£; AND x,). This is a particular case for
y = (w; AND (i} AND %)) OR (w; AND (x; AND x2)) OR (w3 AND (x; AND %)) OR
(wqg AND (x; AND x2)) withw; = wy =0, wyp =wy = L.

In the simulations performed the neuron learned the XOR solution in one GD step.
More precisely it learned the OR function, as the inputs for training come after the
neuron preprocesses the inputs by pointwise AND, with the T~ operation given by
T {{x, 0} {x,0 = {aTxx To, 5 Tx, X T x;} as in Table 4.4°. The FNSW
implementation of the fuzzy XOR and its characteristic for s = 0.01 are illustrated in

Fig. 4.7.

3X is not x,calculated by / - x,
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Table 4.3: XOR logical table

x1 | x2
0|0
11

110 |1

1|10

Table 4.4: Training set for neuron implementing XOR

T | T |xi1Th | x1Tx
1 0 0 0 0
0 1 0 0 1
0 1 0 1
0 0 1 0

4.4 TImplementation of various connectives and relation

with other fuzzy neuron models

FNSW can be reduced to implement the T operation (which models the logic AND) by
having a unique synapse with multiple inputs. Alternatively, FNSW can be reduced to
implement the S operation (which models the logic OR) by having only one input per
weight, and all the weights equal to 1. Configurations in between these two extremes
allow intermediate logical characteristics between AND and OR (as 'pure’ AND and
OR may not cope well with experimental data [Hirota and Pedrycz 1994)) and thus it
exhibits a similar functionality to the OR/AND neuron (a layered arrangement of OR
and AND neurons), proposed in [Hirota and Pedrycz 1994] as a generic model of local

connectives®.

8In knowledge-based applications, the concepts are often linked by and or or connectives. Some

concepts are strongly related to others, while others are almost unrelated. For example and in 'red and
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Figure 4.7: FNSW implementing XOR, and the fuzzy XOR surface

Similarities can be observed between the FNSW as proposed here and the SOM
(sum of miniterms) architecture of logic processors [Pedrycz and Rocha 1993], [Pedrycz
et al. 1995]. SOM is a network with a layer of AND neurons (z; = T(v;Sx;)) which
realize the miniterms, and a unifying OR neuron (y = S(w;7%;)) which does the sum of
miniterms. FNSW stays between the OR neuron (to which it can reduce by not allowing
shared weights (i.e. having one input per weight) and the SOM network which reduces

to FNSW if some weights in the AND neurons are 1’s, and some are 0’s.

4.5 Summary

The Chapter extends the fuzzy neural models to allow implementations of multi-input
fuzzy systems. For this purpose, the fuzzy neuron with shared weight was defined. The

multiple inputs that share the same weight come from different input variables. Thus

new car’ is different to and in "large and expensive car’ (example from [Di Nola er al. 1989]). In the
first construction the properties are unrelated, whereas in the second case the properties are related. In
each case a different t-norm may be the most appropriate for modelling. T-norms (other than MIN)
have compensatory effects (i.e. = T(x,x2) can be obtained for a different x; by a change in x,). It
is also possible to define compensative logic operators (such as the ‘compensatory and’ or 'y operator’
[Zimmermann 1991]), for which the aggregated output is between *pure’ and and or.
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a layer of FNSW 15 a direct implementation of the multi-input system. An example
of learning a neural representation for a two input system is given. As in the case of
single input systems, the weights reflect distributed rule tables, and such an organization
obtained through learning is in fact a rule extraction mechanism. It is proved that one
FNSW can implement any boolean function and can simulate several types of fuzzy

neurons, qualities that recommend it as a potential general purpose computational unit.



Part 11

Towards robot apprentices
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This part mitiates a new direction in robotics research: that of anthropomorphic
robots learning to move by imitating hurman movements. Imitation is based on vision,
and employs neural and fuzzy neural models of eye-arm coordination. Results of learning
are demonstrated in 2D for a robot imitating human arm movements, and in 3D for the

robot imitating the movements of a second robot, of identical construction.

The researcher interested in fuzzy systems can treat this second part as providing
application results for fuzzy neural models treated in Part 1. On the other hand, the
researcher in robotics would have had treated Part I as providing theoretical details for

the computational methods employed for solving a problem in robotics.



Chapter 5

Learning arm movements from a

human instructor

The first part of this chapter reviews results which contribute to an integrated approach to
motor development in anthropomorphic robots. The focus is on learnin g the visuo-motor
coordination and on skill transfer. The second part of this chapter presents a scenario
on learning arm movements from a human instructor. It argues in favor of developing
eye-arm coordination for motor skill acquisition in anthropomorphic robots. Once the
eye-arm coordination is learned, the robot can imitate the human arm movements for
solving a particular task. To provide the training examples necessary for learning eye-arm

coordination, a technique in which the human imitates the robot 1s proposed.

80
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5.1 Towards anintegrated approach to robot motor learn-

ing

In the last few years a number of papers have described research in the area of developing
sensory-motor coordination for robotic manipulators. Some researchers use robots as a
vehicle for the investigation of learning systems and behavior, while others are mainly
interested in developing systems which by learning become better adapted to their
working environments, and cope easier with changes is such environments or their own
structure. Some representative systems that have the development of sensory-motor
coordination as one of their goals are INFANT [Kuperstein 1991], MURPHY [Mel
1991], and the DARWIN series of automata [Edelman et al. 1992] (see also [Reeke
and Sporns 1993] for a review). Different in many respects, and particularly in the
purpose for which they were built !, these systems share the use of a mechanism which
Piaget called circular reaction, and which consists in correlating self-generated actions
with consequent perceptions. Thus, these robots learn by exploration, without having
an nittal model, for example by flailing their hands and perceiving the effects, and
are subsequently able to achieve the coordination that enables them to grasp and track

moving objects.

Most of the work in learning visuo-motor coordination by robotic manipulators is
related to the idea of obtaining an association between the hand position in the image
and the corresponding joint values that determine the positioning of the hand at that
position [Kuperstein 1991], [Martinez et al. 1989], [Graf and Lalonde 1989]. [Walter
and Schulten 1993], [Smagt et al. 1993]). The learning structures are neural based and

in general the image is preprocessed in order to locate the center of the hand/object (its

'INFANT was addressed at learning visuo-motor coordination of a multi-joint arm able (o grasp
objects in the 3D space. MURPHY was focused on neurally-based visually guided reaching, which
includes movement planning in an environment with obstacles. In the DARWIN series of automata the
emphasis was on demonstrating learning based on Neural Darwininsm, Edelman’s theory of neural group

selection [Edelman 1987].
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x,y coordinates in the image). The neural network learns the mapping between center
coordinates and joint angles, mapping which is a particular solution for the inverse
kinematic problem?. When two cameras are used the two pairs of coordinates of hand
in the image are combined in a four-dimensional vector, for example as in [Walter
and Schulten [993]. In the case of redundant manipulators there is more than one
configuration of the arm which can be chosen for placing the end-effector in a desired
position. Teaching a particular configuration avoids the problem of choosing a solution
from a sel of alternatives. Alternative methods include, for example, the choice of
a solution (i.e. arm configuration) at random , making a choice based on previous
configurations, or based on the optimisation of some index function, etc. Restrictions on
the internal joint coordinates can be made based on appropriate criteria such as distances
of the links from the boundaries, as well as from external obstacles. In [Palm 1992] the
arm avoids obstacles whereas the end-effector follows a planned path. Distances and
corrections are denoted as fuzzy terms, and various criteria for controlling the arm are
formulated linguistically by fuzzy production rules. In [Guez et al. 1992] the solution
to the inverse kinematics problem attempts to capture the solution (and obey the same
criteria) that a human used when asked to move an object in free space, in a plane parallel

to the ground.

The common approach to visually-guided manipulation assumes that there are no
obstacles in the environment. If obstacles exist than the solutions obtained by eye-
arm coordination models can fail, and motion planning is necessary. In MURPHY
[Mel 1991] motion planning was possible by learning a forward model of the arm, and
building *mental’ images of the arm, which were used in an error minimization try-and-
error search for a path to the target. To Jearn the forward kinematics function MURPHY

stepped his arm through a uniform sample of approximately 17,000 arm configurations.

*Traditionally, inverse kinematics refers to the mapping between the hand position in world coordinates
and the joint commands. In the case of eye-arm coordination the mapping is between the hand position in

camera coordinates and arm commands.
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In general, learning of sensory-motor coordination is characterized by the following:

it is self-controlled and the predominant form of learning 1s learning by exploration

the input patterns (models of movement) are not provided by a human teacher, and

there is no reinforcement from a teacher

the desired movement is not known in advance (in terms of trajectory), but it 1s

subject to a selection process and its acceptance depends on the particular task

it makes no usc of prior experience from external sources.

In contrast, skill acquisition is characterized by:

learning is mainly human-guided (possibly by reinforcement), and the predominant

form is learning from examples or hints

the input patterns are selected by a teacher and the error signals and reinforcement

are produced mainly by the teacher
the desired movement is explained (shown), and its reproduction is attempted

it makes use of the teacher’s experience.

Work in computational models of human skill acquisition and their application to

robots was reported by Gelfand, Handelman and Lane in [Lane e? al. 1990].

Inspired from a classic classification of phases of human motor skill acquisition [Fitts

and Posner 1967], they proposed a model based on a knowledge-base in which rules

about movement already exist.
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In the beginning there is a Declarative Phase in which a knowledge-based execution
monitor determines how to accomplish a given control task using rules and algorithms
within the KB. In the Hybrid Phase the KB system supervises the training of a NN
which gradually takes responsibility for control. In the Reflexive Phase, reinforcement
learning takes over to further refine system performance (trajectory, etc). In more
recent work [Gelfand er al. 1992}, machine vision input was used for planning and
executing movements under an algorithmic controller, while a NN learned the control
using sensory feedback. The accent in these constructions is on the transformation of
representation, mainly on the transfer from the KB to the NN. From the perspective of the
approach adopted in this thesis, their work has the lIimitation that the knowledge about
the movement is assumed available. However, in practice, obtaining the knowledge into

the KB is usually the most difficult problem.

Contributions in the direction of knowledge acquisition come, for example, from
the work of Asada and colleagues (see for example [Asada and Liu 1990], [Asada and
Liu 1991]), who investigated the possibility of acquiring task performance skills from
human experts. In their reports they describe how an operator demonstrated the task (a
deburring task) and a set of signals, including forces and positions, were recorded. The
data was used to train a neural network for performing the mapping between process
parameters (such as material properties and workspace geometry) and control actions
(1.e. tool manipulation parameters). The training was done off-line. In more recent work
[Liu and Asada 1992], the operator linguistically expressed his strategies while he was
performing the task. The hybrid numeric-linguistic system, structured around if-then
rules which form a collection of local control strategies applying to a particular situation,
lead to a more efficient system then its neural predecessor. The focus in Asada’s work

is on learning the task and not the arm movements to perform the task.

Automated learning of tasks by a robotic system through observation of a human

operator was also considered by Belmans [Belmans 1990]. He modeled a task by an
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error function between the actual state of the robot and the reference state (or reference
trajectory) it should occupy, and the robot was required to minimize the error function.

This servo-control perspective is analogous to telemanipulation.

[n telemanipulation the human moves its arm, which has attached a master arm,
and its movemnent is reproduced by the slave arm. It is important to have a suitable
impedance’, however, what is the optimal impedance for master-slave teleoperators is
otill a matter of debate (see [Sheridan 1992] for a review). Some argue that an ideal
teleoperator is one that is transparent, i.c. infinitely stiff and weightless mechanism
between slave and master arm end effectors. It is also important to note that operators
get tired when holding their arms in awkward positions or applying constant forces, as
master-slave systems often require. A camera-driven telemanipulation may be thought
of as a solution to the above problems, in which nothing is attached to the arm and there
is a complete [reedom of movement, but which inherently requires more complicated

processing®. In this way the approach becomes connected to a form of visual-servoing.

Image based visual-servoing is a relatively recent approach to control, characterised
by closing the control loop around visual inputs [Shirai and Inoue 1973]. [Sanderson and
Weiss 1986]. This is part of a novel trend to use noncontact sensors inside the servo-
loops themselves, while initially their use was limited to providing data for higher level
decisions, that involved mainly pattern recognition problems(Espiau et al. 1992]. The
reported applications in robotics, target achieving the proper position and orientation
of end-effector in respect to an object. The common technique is 'eye-in-the-hand’,
the camera being mounted on the end-effector. Some dynamic effects present in this
approach, such as the perspective gain effect, manipulator vibration, and latency from

servo-error to action are discussed in [Corke 1992]. In the approach proposed in this

3Impedance is defined as the relation between applied force and the velocity.
4Note that camera-guidance as proposed later in this chapter, there is no force information communi-

cated and also no force feedback, which normally in teleoperation increases the task completion time. The
information refers to the trajectory, or the succession of movements necessary 1o successfully accomplish

a manipulation task.
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thesis visual servoing is used by a robot arm as a mean of tracking/imitating a master
arm. The cameras are not fixed "in-the-hand’, but are positioned as to take a ’bird’s eye’
top view, and thus the only important dynamic effect is the time delay between image
acquisition and the placement of the arm in the desired position. As for a real-time vision
system used in conjunction with a robot, an excellent example is the ping-pong player

robot, initially designed for testing a high-speed camera system [Anderson 1988].

Some robots have used vision-based systems for task learning from practice. For
example, a robot was programmed to juggle a single ball by batting it upwards with a
large paddle [Atkeson 1990]. The robot used a real-time binary vision system to track
the ball and measure its performance. A model of performance errors was built at the
task level during practice and used to refine task-level commands. A recent thesis by
Schnéider [Schneider 1995] deals with robot skill learning by intelligent experimentation
and proposes some new algorithms for accelerating learning from practice. In these
systems learning is based on an individual effort and is not the result of a skill transfer
from a coach (Schneider uses a kind of ’virtual coaches’ - particular algorithms that each

improve some part of controller’s performance).

Teaching and learning bear a close relationship, and it is important to develop not
only good learning abilities, but also good teaching schemes, which allow the skill
transfer to be coordinated by the human. Coaching is thus very important in developing
motor skills. Some important aspects of coaching, and in general of motor skill transfer

to humans, are presented in Appendix 7 3.

From a human’s point of view, the ideal way of communicating with robots would be
natural language. An example of a system that learns from natural language instruction

is Instructo-Soar [Huffman and Laird 1994]. The system starts with a small set of

5Their placement in an Appendix is because they do not directly affect the results presented here,
however, they are of particular importance for developing robot apprentices that learn in similar ways that

people do, and could be very useful in future work continuing the approach presented in this thesis.
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primitive operators and learns completely new procedures from sequences of interactive
instruction. At the first execution of the procedure, everything that changed from the
initial state to the final state during execution is associated with the goal of the procedure.
In following executions, the system recalled instructions learned by rote and explained

to itself how each contributed to achieving the goal.

Natural language instruction of future robots should be done using spoken language.
A precursor of future spoken language interfaced robots is the Speech Activated Ma-
nipulator (SAM) [Brown ef al. 1992]. SAM lives in a complex world, has different
types of sensors and communicates with the human teacher via spoken natural language.
Through combined human-machine and machine-world interactions SAM substantially

reduced the amount of knowledge and skill needed by a human operator. -

In the process of skill acquisition, the movement can initially be performed at a lower
speed than desired, and then subsequently repeated at increasingly higher speeds, until
the desired one is reached. The practice control strategy presented in [Sanger 1994]
could be used to mathematically formalise such an approach. Instead of simply storing
the motor sequences, specialized structures should be deviced to learn the motor patterns.
The learning of motor patterns can be addressed in relation to the learning of a complex
temporal sequence, for which a neural network solution was proposed in [Wang and
Arbib 1990], [Wang and Arbib 1993]. The storing and generation of visually acquired
two dimensional trajectories by a motor program generator was described by Eckmiller
[Eckmiller 1990]. He suggests a way in which a robot with NN modules can learn to
draw a visually monitored pattern. The example given is a typical writing trajectory -

the letter ’b" - and the corresponding hand trajectory in 2D.

The acquisition of motor skills by a system which has learned its sensory-motor
coordination on its own is a largely unexplored area. It is also an important step towards

an integrated approach to robot motor learning. The remainder of this chapter is intended
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to offer a possible scenario on how this may be achieved.

5.2 Learning arm movements from a human instructor:

an approach based on imitation

Learning as a single entity experience has received appropriate interest in the robotic,
machine learning and artificial intelligence communities. Much less studied has been
learning from similar entities. Half a century ago, Turing wrote "The isolated man
does not develop any intellectual power. It is necessary for him to be immersed in an
environment of other men, whose techniques he absorbs...". One particular thing humans

transfer to each other is skills.

Skills (of a qualified operator, sportsmar, etc) can be broadly divided into two large
categories: planning skills, 1.e. the know-how expertise, and motor control skills, i.e. the
ability acquired after performing a movement many times. Accordingly, the mapping
between process characteristics and actions can be divided in a mapping between process
characteristics and desired actions (which determine the planning skills), and the mapping
between desired actions and performed ones (which corresponds to motor control skills).
The former are related to strategies at a higher level, while the later refer to dexterity
and motor abilities (see Fig. 5.2). In the case of arm coordination the mapping between
desired and actual performance is subject to a representation in which a motor controlier
maps the desired performance into commands, and the arm plays the role of the controlled
plant, mapping commands to actual performance. The motor controller also performs
a coordinate transformation, from a sensory coordinate system to a motor coordinate

system.

A transfer of motor skills refers mainly to the transfer of the mapping between desired
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Figure 5.1: Planning skills and motor skills

actions and performed ones. If the robot can ’see’ the desired movement performed by
a human, and can imitate it, then there is no need for the robot to be very intelligent
and figure out for itself "how’ to perform the movement. There is no need for task
understanding, path planning, etc; the human offers the solution for motion planning and
all that is needed is to imitate human's movement (and repeat as necessary) ®. Teaching

by showing 1s also for the human the simplest way of instructing a robot.

Imitation allows the robot to get the solution of a movement problem in terms of
its own internal representation of motor commands. Ideally this should be followed
by some associative processes, the robot learning that it was useful to perform certain
movements (shown by human) in a certain context. Two alternative ways in which the
robot can imitate the human were tested in simple experiments. In one alternative the

robot looked alternatively at the human arm and at his own arm, and tried to reproduce

°A very interesting experiment communicated recently [Nagell ef al. 1993] shows amajor difference in
the way imitation is performed by humans and chimpanzees respectively. On a tool demonstration task, the
chimpanzees retain the general functional relations in the task and the results obtained, but not the actual
methods of tool use demonstrated. On the contrary, human children were reproducing demonstrator’s

actual methods of tool use. Interesting enough, it is the human children who *ape’ and not the chimps !
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human’s arm posture by canceling a positional error between the two’. The vision
system has to continuously switch focus between instructor’s arm and own arm as to
react on differences, and therefore fast movements could be difficult to track in this way.
Another way of imitating is by watching the teacher’s arm only®. In order (o imitate,
l.e. to place its own arm in postures similar to those of the human’s arm, the robot must
have an eye-arm coordination which associates the images of the human arm in different

postures to the commands to own arm.

Two questions naturally arise at this stage. First, why eye-arm coordination and not
eye-hand coordination (the form of visuo-motor coordination which has been attempted
so far in robotics research)? Second, how can one learn the eye-arm coordination
which associates images of human arm to commands of own arm? These questions are

answered in the following.

5.2.1 Eye-arm coordination

For redundant manipulators (including here the human arm and anthropomorphic robot
arms) the associated inverse kinematics problem is underconstrained, admitting more
than one solution (i.e. more than one set of joint values can place the hand at a specific
point in space) and some alternatives to cope with this were mentioned in Section 4.1.1.
However, none of these alternatives is acceptable if the given task requires specific
arm postures, as imposed by obstacles in the environment, or by the task itself. This
is exemplified in Fig. 5.2, in which the learned solution (Posture 1) for placing the

hand in a particular point is unacceptable due to an obstacle, while a posture shown by

"This could be regarded as a classic 'tracking’ problem in a control perspective. For a desired
‘reference’ configuration of arm and an actual configuration for own arm, the error (difference between
the two) is the input value for a controller. In some initial experiments, based on arm contour detection,

this solution was tried by using a simple proportional controller.
¥This control is open loop, with no information about robot’s own arm coming from the cameras (a

model of the robot’s own arm can be used to predict the positions).
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Posture 2

Obstacle

Shoulder

Figure 5.2: Two possible arm postures for performing same hand movement, the first

one forbidden by an obstacle

an instructor (Posture 2) provides a feasible (and in general quasi-optimal) alternative.
Eye-arm coordination is thus necessary for skill transfer to redundant manipulators,
determining successive positions of the arm and not of the hand only, and adds to other

models of coordination as shown in Fig. 5.3.

In many situations which do not pose external spatial constraints, humans find eye-
hand coordination more efficient for manipulation tasks. The choice of a solution
for the control of the redundant human arm is determined by internal constrains of
energy minimization, smoothness of movement, comfort (biomechanics studies show
that positions around the middle of the permitted range are preferred), etc. In tasks that
require learning to move a hand held object, only the trajectory of the instructor’s hand is
watched for, and eye-hand coordination appears sufficient. However for learning skilled
movements, in working environments that contain obstacles or other spatial constrains, it
i$ necessary to watch the movement of the whole arm, and this is the aspect treated here.

Future systems could benefit from a combination of eye-hand and eye-arm coordination.
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Figure 5.3: Models of arm coordination

Eye-arm coordination is addressed here as a direct mapping between the configuration
of the whole arm, as seen by the camera, and joint commands. In this respect it is more
related to ALVINN (Automated Land Vehicle In an Neural Network) used in NAVLAB
[Pomerleau 1993] than to any work in sensory-motor coordination ?_ ALVINN is a three
layer feedforward neural network trained to associate images of the road to commands of
the steering wheel. Examples for training the net are obtained "on the fly’ while driving, or
from computer generated situations which cover situations rarely encountered in correct
driving. In an analogy to ALVINN, the arm in the image corresponds to the street as
seen by the camera, while the commands to joints have as correspondent commands to
the steering wheel. Three major differences distinguish the approach presented in the
following from ALVINN. First, there is more than one output variable to be controlled
(here shoulder and elbow angles - and z displacement for 3D tests). Second, after
the successful use of classic NN trained by batch backpropagation, it is investigated

the use of a fuzzy NN, which performs incremental learning at the presentation of

One can attempt to directly extended the procedure used in eye-hand coordination, i.e. finding centers
of hand, lower-arm, upper-arm, but this may mean heavy preprocessing and a careful correlation between
different parts. Also possible is to find the skeleton of the arm, and to use this information for mapping.
My first attempts were oriented in this direction but the image processing burden and the dependence of

the results on carefully controlied laboratory conditions determined the search for better solutions.



3.2, Learning arm moverments from a human mstructor: an approach based on imitation 93

cach example. The last, and most important difference is the method of providing the

examples necessary for supervised training, which 1s presented in the following section.

5.2.2 The human imitates the robot

How can the robot learn what commands to give to its own arm in order to produce a
posture similar to that of the human arm? In building associative models, the associations
were generally between commands and results of commands through the same system.
This idea of associating actions with determined perceptions was applied for example,
in INFANT [Kuperstein 1991] in the context of learning the eye-hand (own hand)
coordination. In the context of learning autonomous driving with ALVINN, the images
of the street were associated to certain rotations of the wheel, the effect of direct human
action. The human performance of the task offers directly the input-output data set,
which can be used in supervised training for deriving an associative model. This
method appears much more difficult to apply to skill transfer at manipulators. To quote
ALVINN’s builder *The same techniques would not be readily applicable to domains
such as the controlling individual joints of a robot arm...since in these tasks the correct

response is difficult to determine’ (p. 175 in [Pomerleau 1993]).

The solution proposed here is that the human imitates the robot, positioning his own
arm in postures similar to the ones produced by the robot. The robot gives a certain
command set to its joints, and as a result its arm takes a certain posture. The human
tries to place his arm in a posture similar to the robot’s. Then it validates the image of
his arm seen by the robot’s eye which becomes example for training, being associated

with the robot command set'®. The method is subject to human error in the estimation

100ne can draw an analogy to this technique, relating it to the fact noticed by child psychologists
that quite often parents happily reproduce the first attempts of speech of a baby, although these are not
proper words of a language; this provides the child with some feedback, which some researchers consider

important in Jearning. (The teacher imitates and reinforces imitation. The child learns that imitation is
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of identical or most similar posture. The two arms are not identical, and the metric
according to which the two positions are similar is not formally defined, the assessment
being subjective. Accordingly, the method can be best evaluated based on some "posture

similarity’ criterion.

Thus, in the approach proposed here, the main steps in developing robot apprentices

that learn from shown movements are considered:

1. learning of a visuo-motor model of arm coordination,
2. imitation of the teaching arm,

3. correlation of the solution with the task and repetition of the movement to optimize

parameters and develop a motor pattern.

Only the first two aspects receive treatment in the following. The human imitates the
robot and this offers a solution for developing an association between images of the
human arm and the commands that the robot gives to position its own arm in similar
postures. In the second stage, the robot imitates the humnan and thus receives a model of

the movement it needs to learn (see Fig. 5.4).

5.2.3 Experimental framework

A series of experiments were conducted in order to validate the fesibility of the proposed
approach. To compensate the lack of a true anthropomorphic manipulator (but still

maintain real world conditions) two types of experiments were conducted.

nice/rewarding.)
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Figure 5.4: Imitation by human and imitation by robot
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A first type of experiments involved a robot imitating human arm movements per-
formed in a horizontal plane. Viewed from above, and while performing in a horizontal
plane, the robot used (RTX, which is an UMI made SCARA robot) was anthropomorphic
(see Fig. 5.7). The experiments investigated the effect of non-identical arms. variations
in human arm appearance as determined by folds and color of clothing, objects in the
environment, effect of changes in lighting, the necessary resolution of the "eye’, and
compared classic neural and fuzzy neural models of eye-arm coordination. The robust-
ness at variations of instructor’s arm appearance is very important as the folds on cloths
produce a varying contour of the arm, and also different cloths may have different color,
and in the end one wants the robot to learn to follow any instructor whose arm stays
within a reasonable variation in appearance compared to a ’standard’ arm, and not only

a particular instructor.

The full setup used in the first set of experiments is presented in Fig. 5.5. A photo of
the laboratory, while using this setup 1s shown in Fig. 5.6. The two cameras mounted on
the ceiling do not appear in the photo. One camera takes images of the robot arm. and
the other takes images of the human arm (Fig. 5.7). Which particular camera 1s used
by the robot for learning the visuo-motor coordination or for imitation depends on the
particular experiment. The video monitors were installed to help the human instructor
to more precisely estimate similar postures when imitating the robot arm. The robot was

controlled from the PC via a serial interface.

The second type of experiments were targeted at investigating how the approach
extends to the 3D performance. Two identical looking robots (RTX) were used, one
learning to imitate the other. The human operators controls the master robot via a
computer. This time the camera was placed at the approximate position of the human
eye, gazing at an oblique angle to the master arm (only one camera was used), as
illustrated in the drawing in Fig. 5.8 and the photo in Fig. 5.9. One image as seen by

the camera is shown in Fig. 5.10.
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Figure 5.5: Laboratory setup for experiments of first type

5.3 Summary

This Chapter has reviewed work related to an integrated approach to robot motor learning.
Italso has introduced a perspective on developing robot apprentices, robots that first learn
to visually coordinate their arms and then imitate human arms in their performance of
a task. It was proposed and argued here that, for learning skilled movements, eye-arm
coordination is more appropriate than eye-hand coordination. A technique for providing
training examples for learning eye-arm coordination was also proposed, in which the
human imitates the robot. The final part presented the experimental setup in which
the approach was tested. The next Chapter presents experimental results of using the

proposed technique for learning neural models of eye-arm coordination.
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Figure 5.6: Photo from the lab

Figure 5.7: Images taken by the two cameras for the teacher and apprentice arm
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Figure 5.8: Laboratory setup for experiments of second type

Figure 5.9: The two robots side-by-side. Camera on top left'of the image
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Figure 5.10: Image of master arm as seen by the eye’ of the apprentice



Chapter 6

Learning neural models of eye-arm

coordination

This chapter describes experiments with a neural based robot that learns to imitate
the movemenls of a master arm, illustrating the 1’easibi1ify of the approach proposed 1n
Chapter 5. It is shown that only one neuron per joint is sufficient for learning the eye-arm
coordination. The neurons can be classic' or fuzzy. Classic neurons were trained using
off-line gradient descent, while fuzzy neurons were trained on-line, incrementally, using
algorithms that solve fuzzy relational equations. The fuzzy neural model 1s transparent
and has a direct interpretation, which makes it a better choice than the "black box’ classic
neural model. Fuzzy neural models of eye-arm coordination learned from one arm can
be used for tracking other arms of similar appearance. Also, fuzzy neural models are

less influenced by additional objects that appear in the image of the workspace.

'"The classic neuron model considered is the “sum-product-logsig’ model presented in Appendix G.

' 101
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6.1 Inputs, outputs, and the choice of a neural model

6.1.1 Visuo-motor mapping

The purpose of developing a visuo-motor coordination is to allow the robot to place its
arm in a position similar to that of the master arm. Thus, a mapping between images of
the master arm and commands to the robot arm must be learned. During the learning
of the visuo-motor mode] the visual inputs could be from the robot’s own arm, from
the arm to follow, or from another teaching arm (these variations are discussed in detail
later in this chapter). During the imitation of human arm movements, the visual inputs
are 1mages of the human arm. To reflect this visuo-motor coordination, a model can be

considered as in Fig. 6.1, reflecting the mapping between visual inputs and joint motor

commands.
Visual Motor
input Visuo—motor commands
model
X W Y

Figure 6.1: A model of visuo-motor coordination

6.1.2 Inputs: images at low resolution

The inputs to the model, denoted by X in Fig.6.1, are low resolution images originating
in the images obtained from video cameras. Fig. 6.2 depicts a typical view of the arm,
the image at low resolution, and the same image in a presentation which indicates the

levels of grey of various regions in the image.
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Initial experiments were performed using low sampling, by selecting each 16-th pixel
in a 200x256 input image, to form a low resolution image. This did not prove robust
enough and resulted in coarse movement. For example, if the arm contour had a close
proximity to a sampling point, a one pixel shift in the high resolution image produced a
change in the low resolution image. At the other extreme, for the arm contour relatively
remote from a sampling point, a several pixels shift in the high resolution image had no
effect on the low resolution image. To avoid this non-uniform sensitivity, the following
solution was adopted. The low resolution images were obtained by averaging regions
of 16x 16 neighbouring pixels, and their average was considered the contribution of the
region to the low resolution input. This lead to a 12x16 image, with a total of 192 inputs
per image (see Fig. 6.2). A higher resolution (of 24x32, i.e. 7668 inputs per image)
was also tested and its effect on system performance is discussed later in this chapter
2, The intensity values were normalised (as the fuzzy models require inputs in the [0,1]

interval), with 256 grey levels between white (0) and black (1).

Figure 6.2: Image taken by the video camera and image at low resolution

INAVLAB uses a 30x32 low resolution image derived by averaging a low fraction (around 3%) of
pixels in areas of size 16x16 in the high resolution image.


http://clo.se

6.1. Inputs, outputs, and the choice of a neural model 104

6.1.3 Outputs: control commands to joint motors

The output variables, denoted by Y in Fig 6.1, were associated with shoulder and
elbow joint angles (Fig. 6.3). The "home’ position for shoulder was considered on a
side, forming an angle of 90 degrees with the frontal direction (for the right arm in a
horizontal plane). The maximum range of the shoulder angle varied trom O to 180, which
corresponded to the movement of the armi from front to back; the interval [0,180] was
mapped into the [0,1] interval. The elbow angle was considered between the upper-arm
and the lower-arm, with a maximum of 180 degrees for the fully extended arm. The

maximal range of variation of [0,180] was mapped to [0,1].

Lower—arm

Elbow
angle

Shoulder

/\ angle

Upper—arm

Figure 6.3: Arm skeleton showing shoulder and elbow angles

6.1.4 Mathematical models and identification from examples

The visuo-motor mapping of Fig. 6.1 can be expressed as a function Y = f(X). For neural
models the expression of the function depends on the architecture of the network and the
type of neurons used. For example, for a layered structure of fuzzy neurons the output

Y can be obtained by a repeated S-T composition, i.¢.

Y=XoW=XoWo,...,oW,
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where Wi...,W, represent the weight matrices of the neural layer. The experiments
performed have shown good results using the simplest possible structure with only one
neuron per joint. More complicated structures which may give even better models were
not considered for investigation because the limitations of the approach did not come
from this direction. The limitations of the practical implementation are derived from
a set of assumption detailed in Chapter 7, such as, for example, the use of a fixed
direction of viewing the arm, To cope with non-simplified situations, including variable
viewing positions and changing backgrounds, more complicated neural structures would

be needed.

The two neurons associated with the joints generate a graded output in the [0,1]

interval, and produce a command signal to shoulder and elbow motor joints (Fig. 6.4).

R Shoulder

Figure 6.4: Shoulder and elbow neurons that map images to joint commands

Model identification from training examples consists of finding W, for given X
and Y pairs. The procedure for generating training examples was that proposed n
Chapter 5, according to which the human imitates the robot. The image-command pairs
were selected to (approximately) uniformly cover the workspace. A total of 97 image-
command pairs was collected, and separated in a training set (88 pairs) and a test set 9
pairs), the number of pairs in the test being taken to be about 10 percent of the training set

}. The order in which the examples were presented did not influence learning. However,

YThe system of 88 training pairs is a system of 88 equations with 192 unknowns.
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as the human had to imitate the robot, it was easier to have minimal arm posture changes
in consecutive examples, so that the human could track them easier. [t is predictable
that an increased number of training examples, which determine a better sampling of the
workspace, would increase the accuracy of the model (up to a limit which is determined
by the method of generating examples). This was confirmed by the experiments. All
the tests were initially performed at the lowest image resolution image and the lowest
number of examples, which was kept as a reference for comparison. The performance

of models with classic and fuzzy neurons is presented in the following.

6.2 A model based on classic neurons

The classic neuron model employed in the tests was the sum-product-logsig presented
in Appendix G. The learning method was batch GD with momentum and an adaptive
learning rate (trainbpx in Matlab [Demuth and Beale 1994]). The plots of the convergence

during training are illustrated in Fig. 6.5.

The model was evaluated against the target values from the training set, the results
being illustrated in Fig. 6.6, and on the test set using images which the robot had not seen
before, the results being illustrated in Fig. 6.7 ¢. The performance of the neural model
is considered good. As the test examples were part of the total number of examples
selected to approximately uniformly cover the workspace, and did not appear in the
training set, the test regions were poorly covered by training. Doubling the number of
examples lead to an increased accuracy of the model, as seen in Fig. 6.8. Increasing
the number of training examples beyond some value would not continue to improve the

approximation power of the model as the examples used in learning were prone to errors

*Simulations have shown that using a compressed outputi.e. [0.25,0.75] instead of [0,1] (thus avoiding
the region in the neighbourhood of O and 1, see the logsig characterislic in Appendix G) the error decreases
faster, the accuracy after 8000 steps having increased about 6 times for the training set and about 3.5 times

for the test set.
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resulted from what the human perceives to be ’similar’ posture positions.

The analysis of the neural weights did not show any readily interpretable distribution.
Fig. 6.9 shows the graphic representation of the weights of the elbow neuron, organized
as a 12x16 array, similar to the 12x16 image inputs upon which it acts as a weighting

element (each weight modulates an mput cell of the low resolution image).
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Figure 6.9: Weightspace for elbow node after training by GD

6.3 Fuzzy neural models

This section investigates fuzzy neural models of eye-arm coordination. The learning
algorithms proposed here are inspired from analytic resolution methods of FRE, and

allow on-line learning with a single pass through training data.

6.3.1 A necessary condition of solvability of a system of MAX-MIN
FRE

The problem of training MAX-MIN motor control neurons from input-output examples
is equivalent to the resolution of a MAX-MIN FRE. The conditions of solvability for
MAX-MIN FRE (Egs. 2.7, 2.8) indicate that, for the given training set (the same set used
for training the classic neurons), the system of FRE does not have solutions. A first step
to render the system solvable, is to scale down the output, below the maximum values
of inputs (which for my uncovered arm gave a grey level of about 0.22, and for the robot
arm gave a level of about 0.5). This condition guarantees a solution for each individual

equation, however, does not guarantee that the system of equations has a solution.
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Numerical experiments indicated the following necessary condition of solvability of
a system of MAX-MIN FRE. Consider the fuzzy relations X (of size pxm), W (of size

mxn) and Y (of size pxn), and indices i€ 1,....m,je 1,...,n, andpe 1,... k.

Theorem. A necessary condition of solvability for a system of MAX-MIN FRE given

by XoW =V is

M{N(M[N(Y(k,j))) > Mi-‘&X(_MIN(X(k, ). (6.1)
7 {

This excludes the case when for all k,
Yk,jy=m < Mi&X(MIN(X(k, ), (6.2)

which 1s trivial.

Proof: The theorem states that, if any of the outputs is smaller than the minimum
value of the inputs, then the system does not admit solutions. Each column of the output
can be treated separately and the results assembled at the end. Assume that the condition
(6.1) 1s false and still a solution exists which doesn’t lead to the trivial result (6.2).
Consider the columns for which the output has a value m, less than the smallest input.
Then by a-composition (2.11), the solution obtained has all 1ts elements equal to m.
This being lower than the inputs, all the outputs by MAX-MIN composition are equal
to m, which is (6.2). The assumption that (6.1) is false lead to a contradiction, so (6.1)

must be true.
From the combination of (6.1) with (2.7), results a necessary condition of solvability

for a system of MAX-MIN FRE. The condition is to have, for each output column ]

(which also represents here the output of neuron j),

MAX(MIN(X(k, 1)) < MIN(Y(k)) < MAX(Y(K)) < MIN(MAX(X(k, D). (6.3)
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where 1 15 the index of the input column and k the index of row. For the visuo-motor
model. | indicates the output of the neuron, i indicates the pixel in the image, and k
indicates the exampie. In practice one can scale the input or output levels to satisfy
this condition. Here the output was compressed, and the operation was given the
name *Compressed Qutput As a Threshold” (COAT for short), as the outputs act as a
separating threshold between the maximal values and the minimal values of the input. In
this problem where the inputs are grey-scale images, the maximal values are informative
dark values indicating the arm, and the minimal values indicating the level of background
noise. For solvability the outputs need to be greater than the maximum noise and smaller

than the minimum information level. The situation is illustrated in Fig. 6.10.
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Figure 6.10: The position of the output determines the solvability of a system of MAX-
MIN FRE

The (approximate) solution obtained in this case by o-composition is illustrated for

shoulder neuron in Fig. 6.11.

The output of the MAX-MIN neurons having the weights calculated by ct-composition

is illustrated in Fig. 6.12 for the training set and in Fig. 6.13 and for the test set.
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The evaluations against target values indicate a satisfactory result, considering that it
required only one pass through data, as compared to 8000 passes through data, as were

needed for the classic model to achieve the performance shown in Fig. 6.6 and Fig. 6.7.
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Figure 6.12: MAX-MIN model evaluation on the training data

6.3.2 The am-composition

Very likely, the solution obtained by a-composition includes some 1’s, represented as

black regions in Fig. 6.11. In trying to understand the distributed representations shaped
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Figure 6.13: MAX-MIN model evaluation on the test data

in the neural weights, 1's are like a cover hiding interesting structures. One can remove

this cover by performing a change in the a-composition. This leads to a more casily

interpretable weight matrix and offers an explanation of the processing by MAX-MIN

neurons.

The minimized o-composition (oum for short) is obtained by replacing the 1's in the

o-composition given by

X(Da¥(i) =

in the way indicated by Equ. (6.4)

X(amY,(i) =

For example

0.3 0.7 5 wi)
0.5 0.1 w2y

1

Yi(D)

0.4
0.9

Mz]‘}X (Yi(i))
YD)

if Xp (D) > Yili),

if Xi(i) < Yi(D),

(6.4)

0.4

0.9
0.4

am
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If the system of MAX-MIN FRE admits solutions, then the am composition gives a

solution.

Applying the am - composition to the the set of image-commands pairs leads to the
solution illustrated in Fig.6.11. Fig. 6.14 differs from Fig. 6.11 in the intensity of the
maximal grey level, which corresponds to the maximal elements in the matrices. Both
the (z-composition and the am-composition lead to the the same output of MAX-MIN
neurons as illustrated in Fig, 6.6 and Fig. 6.7.

Solution by alphavn-composition

T

| e i

e

£ T
=

2
Figure 6.14: Weight matrix: solution by am-composition

Moreover, the same output response is obtainable by replacing I’s with O’s in the
solution obtained by a-composition, defining the a0-composition. The weight matrix of
a0-composition is shown in Fig. 6.15. Unfortunately, unlike am-composition, the a0-
composition does not provide a general method of resolution for MAX-MIN FRE, i.e. it
may the case that the system admits solutions, but the result obtained by ot0-composition

is not a solution.

The am-composition constrains the solution to be within the same limits as the

output (6.3):
MéX(MIN(X(k, ) < MIN(W) < MAX(W) < M{N(MAX(X(k, ). (6.5)

Placed between the information carrying level and the noise level, the weights act as
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Figure 6.15: Weight matrix: solution by a0-composition

a modulating threshold, as suggested in Fig. 6.16. Fig. 6.16 also indicates how the
output of the MAX-MIN neurons is determined. Fig. 6.17 indicates how the output is
determined for the shoulder neuron. The weights are the same as in Fig. 6.14, but the
grey-level was decreased to establish a common scale with the input image. Fig. 6.16
can be understood as a transversal section in the superimposed input and weight matrix

in Fig. 6.17.

Input (I)

Grey level

Out = Max(Min(1.W) )

" Weights (W)

Line of pixels in the image
Figure 6.16: Output of MAX-MIN neurons as a point on the modulating threshold

The neural representations show the role of weights acting as a filter on input images.
Some of the weights have been‘ generated by the images of the arm, and this profiles an
area within the envelope of the arm. The high level of noise in input images has lead to
the weights represented in the upper part of the figures. Some of the weights in between

the envelope and the noisy regions are 'don’t care’ weights, without influence on the
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Figure 6.17: Input image of the arm, weights and the way MAX-MIN composition
determines the output

output. These ’don’t care’ weights form the black region in Fig. 6.11, or the white

region in Fig. 6.15.

6.3.3 An incremental learning algorithm

This section presents an algorithm which produces a solution very close to the ones
discussed, and has an immediate interpretation. The algorithm aims to get the weights
to cluster as filters shaped to favour some features in input images. Specifically the
features addressed are those that determine the membership of the input pattern to an

output class. The weights have associated the value of the output class they characterize.

The algorithm is called *Maximize if Bigger, Minimize if Same (MBMS)’, and
includes a mechanism which reduces the noninformative weights. The algorithm uses
four arrays of the same size as the image input array: the weight array, the reference
array, the counter array and the filter array. The algorithm is presented in Fig. 6.18 and
the corespondent MATLAB file is given in Appendix. Terms darker and same should
be given an approximate meaning, possibly as fuzzy relations. In this test darker was
considered as a level higher by 0.04 than the one compared with. Weights that change
because they belong to different classes end up with lowest value associated with a class.

The algorithm builds the weights incrementally. Instances during learning are illustrated
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Initialize filter matrix to 1'’s and the other matrices to 0's
For all examples and for all input pixels
If the input pixel is darker than the reference then it becomes reference,
and its weight is given the corresponding output value.
Increment a counter for pixel change.
Else if the input is the same as the reference then the weight is given
the minimum value between the previous weight and the current output
value.
Else increment the counter for pixel change.

For all elements of the counter matrix

If counter is less than 2 reset to O the associated weight and filter element
(there was no informative change in the input images).

If counter equals the number of examples reset the ussociated weight
and filter element to 0.

Figure 6.18: The MBMS algorithm
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Figure 6.19: Instants during learning by MBMS. Input image of the arm, weights and

arm on weights.

The solutions obtained by MBMS and the output it produces are presented in
Fig. 6.20. The outputs have a bigger approximation error than that obtained by a-

composition. However, of special interest is the filter obtained from the counter.

It is interesting to observe that the solutions obtained by o-composition filtered by
the filter resulted from applying MBMS (Fig. 6.21) lead to the same output as obtained
by a-composition alone, which was illustrated in Fig. 6.6 and Fig. 6.7. The filter reflects
a maximal envelope of the arm and the filtered solution makes the system insensitive to

modifications of the image outside the arm’s envelope.
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Figure 6.20: Weights obtained using MBMS, and the corresponding output

Figure 6.21: Filter from MBMS: 1's are black, 0’s are white
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6.3.4 Interpreting the structure in the weights.

The combination of o-composition solution with the filter resulted from applying MBMS
allows insensitivity to variations in input images which are outside arm’s envelope. The
weight matrices for shoulder and elbow are illustrated in Figs. 6.22, 6.23. Fig. 6.24
presents the image of the arm superimposed on the final weights (the arm is presented

black for better contrast) and the final weights,

Weighi matrix for shoutder neurcn

3D repressntation ef wemhls of shoukdet nsuron

| | 1

Figure 6.22: Weights of shoulder neuron

Higher values of the shoulder joint commands which make the arm move to the right
are reflected in higher weights (darker in the figure) on the right. For the elbow, higher
commands for extending the arm reflect in darker values along the radial direction. For
the shoulder, each class of same grey level is disposed along a radial direction, the levels
decreasing as the angle at shoulder joint varies from right to left. For the elbow, the
classes are circular with higher values of the weights placed at greater distance from the
shoulder joint and also at the rightmost extremity. This can be seen in the simplified
drawings of Fig. 6.25, where classes (C;) in input space have associated the numerical

outputs indicated, and an ordering exists of input classes, along output values.

One can consider that the weights modulate input classes. Thus the system can be

described by rules of the form °If input is in X then the output is Y’, where X is a



6.3. Tuzzy neural models 122

2D fuzzy set and Y is a singleton. This can also be seen as a form of Takagi-Sugeno

reasoning.

An object in the image has no influence on the output, if the arm is darker than it, or
if the object is outside the arm envelope. Note also that MBMS eliminates any feature

which is common in all examples. Classic NN algorithms usually learn such features

first.

6.3.5 Increased resolution and number of training examples.

An increased image resolution, and accordingly an increased size of the weight matrix,
should be accompanied by an increase in the number of examples used for training.
Otherwise, there is a risk of having *gaps’ in the weight matrix, which appear if the
superposition of surfaces of all arm postures used in training does not completely cover
the working envelope. In the tests illustrated here, the resolution was increased from
12x16 to 24x32, and the number of examples was increased from 88 to 140. The
solutions obtained using the increased resolution and increased number of examples 1s
shown in Fig. 6.26. The results illustrate the increased approximation power of the high

resolution model.

6.3.6 Limitations of MAX-MIN neural models.

1. The MAX-MIN neural model presented here does not allow for interpolation. The
outputs can only take values from the set of output values used for training, which are
moulded in the weights. The number of outputs is also limited by the resolution utilized
in the input images, as this dictates the number of elements in the weight matrix. For

example, the errors for the elbow output are larger at high values of elbow output. This
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is because at high values of the elbow angle a variation of this angle has little effect
on changing an output class, as illustrated in Fig. 6.25. This effect is very strong at
low resolution, as illustrated in Fig. 6.12, but can also be noticed at high resolutions as

illustrated in Fig. 6.26.

2. The model is not working based on images of the surface of the arm. For the
shoulder the result is determined by the contour of the arm. For the chosen arrangement
with the larger outputs of the shoulder neuron producing a movement to the right, the
model works on the exterior contour. When clothing folds exist on the contour, the arm
is evaluated as being more to the right than it really is. The magnitude of the error
depends on the size of the bump’ that deforms the contour. For the elbow, the model
works on the tip extremity of the arm, which ’covers’ circles closer or further away from
the circle center (Fig. 6.25). Opening the hand, or using a longer arm than the one used
in training, affects the evaluated elbow angle, the angle appearing bigger than it really

1.

6.3.7 MAX-T neural model

The good approximation power of classic neurons is favoured by the use of interpolation
combined with the use of grey levels for the arm. A grey pixel in the image of low
resolution is obtained by an average of an area in the image of high resolution, and an
indicator on how much dark (from the arm. which i1s darker than the background) is
present in that area. Using black and white pixels only, this information would have
been eliminated. MAX-MIN models can not interpolate, however MAX-T models can.
The maximal solution for a MAX-T FRE is calculated in general using (2.21). When

T is the fundamental t-norm (3.6) with 0 < s < oo, s & 1, the solution is given by the
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6.4 Model verification by robot control

Arm postures. The neural models determined by training were used by the robot in
tracking movements of the master arm. The qualitative evaluation consisted of subjective
assessments of how close the posture of the robot’s arm was resembling the posture of
the human’s arm. The postures looked very similar as can be seen in Fig. 6.28, which

shows a series of images taken during the tests.

Hand trajectories. If perfect models would be available, and the wrist fixed,
identical postures of identically looking arms would guarantee identical trajectories of the
end-effectors. This is usually not the case. Arm movements may lead to hand trajectories
insufficiently precise for many tasks concerned with end-effector trajectory. For effective

usage, eye-arm coordination should be combined with eye-hand coordination.

6.5 Learning from arms with a different appearance

Learning to "recognize’ only the arm used for training can be a strong limitation. How-
ever, the tested neural models have shown a reasonably good robustness to variations
in the appearance of the human arm. Several tests were conducted, which are briefly
discussed in the following. The arms used in this set of experiments are shown in Fig.

6.29.

6.5.1 Learning from an arm and extending the model to other arms

In this test, the robot learned the eye-arm coordination by watching the arm "skin’ shown

in Fig. 6.29. It was then tested on the all the arms shown in Fig. 6.29. The test results
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Figure 6.28: Robot moving after the human arm
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are presented in Fig. 6.30. The results indicate that the classic model is greatly affected
by the color of the arm. On the contrary, the fuzzy (MAX-MIN) neurons are insensitive
to the color of the arm and the model learned from one arm can be directly used for

allowing the imitation of other arms.

Figure 6.29: Arms used in the experiments: ’skin’, "grey’, 'black’, "arm2’

6.5.2 Learning from a variety of arms

In this test, the data used in supervised training came from a variety of arms, more
precisely from the arms 'grey’, *black’, and ’arm2’ shown in Fig. 6.29. The model
obtained by learning was tested on the arms used for learning and on an arm which

hasn’t been seen before (the ’skin’ arm) the results being illustrated in Fig. 6.31.



6.5. Learning from arms with a different appearance

129

Using tha classic neuron

Using the fuzzy neuron

r > 1 — —
[1iR:1d larget A 0.4k * targel
- skin //' L - skin
08} 1 y
- grey RO .. grey
— black C
Qoy o ozt — black A
’ ¢ C 1
+am2 S & ’
goe 5 Eos + ama2 o
. E X . 4
a_JO,S— . 2° R - i
Dol e 4
20 150
2 2
u)o‘a./ _ 1Mo
N I
N ?
o2t ey i
v’ -~ ¢
+ I'd
AR 4 7z 0.1
-/
c - b 1 Pl 1 i 1l o i 1 i j— 4 i
1 2 3 [} 7 ] 9 1 2 3 4 6 7 8 )

4 5
Test number

5
Test number

Figure 6.30: Model evaluation for the case of learning from one arm and testing on arms

of different appearance

Training on a variety of arms improves the performance of the classic neural model,

while it didn’t affect the fuzzy neural model.

Using the classic neuron

Using the fuzzy neuron

1 T

* target
o - skin
o8r .. grey

— black
+arm2

e
<
T

Pl
>
T

Shoulder command
N
\
1 \
AY
A
“w
B
E)
¥
! em
.
EY
Shoulder command
(=] [~]
E o0

U * target
) - gkin
l o} ., grey
-~- black
97r s am2

©
)

»t - -
osg -~~~ 0.3
02 {1 o2f
0.1 1 oa
3. 2, A A o k. A i i H
R 2 3 4 7 3 9 1 2 3 6 7 a o

Figure 6.31:

5 6
Test number

4 5
Test number

Model evaluation for the case of learning from a variety of arms



6.6. Comparing classic and fuzzy neural models 130

6.5.3 Learning from its own arm and extending the model to other

arms

An important property of the fuzzy neural model is that allows the transfer of the gained
knowledge over another user. The robot can learn on its own arm, and than can track a
different arm, which can vary in color or contours. This is true for arms that appear to the
robot eye as being of similar length, while the arms of different length need adjustment
by scaling by a constant. The robot can learn also from images of low resolution and
then use the determined weight space as a good first approximation for an increased

resolution solution.

The weight matrices obtained in learning a model of the robot’s own arm and a model
of human’s arm are illustrated in Figs 6.32, 6.33. They show the same representation,
however, their similarity is limited by two factors. Firstly, there is a difference in the
appearance of the two arms. Secondly, an estimation error 1s always present when the
human imitates the robot. These sources of error produce for example the dark points in
the center-left of human elbow in Fig. 6.33. Such errors should be reduced when a more
precise positioning occurs, and also at a higher resolution of covering the workspace
with training examples. A modification of those dark values to match the neighbors, has

reduced the error obtained for these regions of the space.

6.6 Comparing classic and fuzzy neural models

In this study on learning eye-arm coordination, fuzzy neural models using t-norm based
activation functions present some advantages over models using neurons based on sum-

product-sigmoid operations. The advantages are:
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Figure 6.32: Robot shoulder and elbow neural weights |

Human shoulder neural weights space Human elbow neural welghis space

Figure 6.33: Human shoulder and elbow neural weights
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» The weight space is directly interpretable by humans. The weights organized as
filters took the shape of a right-left downhill slope for the shoulder neuron, and of
a semicircular stadium shape for the elbow neurons. This organization, which for
MAX-MIN neurons is independent of the color of the arm, lighting, and is little
dependent on clothing folds, allows a model learned with one arm to be used with

other arms of similar dimensions.

* Fuzzy neurons support well incremental learning. This comes as a direct con-
sequence that learning can be based on analytical methods of solving associated

FRE.

» Fuzzy neural models have shown increased robustness to structured noise. The

filters enable the robot to be highly insensitive to other objects in the image.

It should be noted however, that in general the classical model has shown an increased
approximation power. This is likely due to the fact that fuzzy neural models are limited
to solutions in the [0,1] interval, while the weights of classic neurons can take on any
real value; moreover, the fuzzy models presented in this chapter used only excitatory

inputs.

6.7 Robot imitating another robot in a 3D performance

The main reason for limiting the tests of learning from humans to the 2D performance
was the availability of a manipulator, which appeared as anthropomorphic only in its
horizontal performance. The fact that the upper-arm and the lower-arm are not in the
same horizontal plane, as it can be seen in Fig. 6.35, required a top view of the arm, if
similarity with the human’s arm was sought. The vertical movement of the SCARA type
arm used consists of a vertical translation of the shoulder along the vertical axis, unlike

the up-down movement of the human arm around a fixed point at the shoulder joint. For
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the demonstration of learning and representation properties of fuzzy neural networks on
a real problem, the tests performed in 2D were sufficient. However, for developing real

world robot apprentices that learn by imitation, demonstrating the 3D case is essential.

The learning approach proposed in Chapter 5 is general, and equally well applies to
3D, as long as different arm commands determine different visual images of the arm. For
extending the imitation of a human arm to 3D, an anthropomorphic arm having similar
appearance and similar degrees of freedom must be used (and this was not available).
However, the general idea is to imitate a similar arm, and the 3D tests were performed
using 2 identical robots, one acting as a master and one acting as an apprentice, as seen
in Fig. 6.34. The 3D tests performed have shown a similar level of performance as for

the 2D case.

Figure 6.34: Apprentice (closer to viewer) follows master

Some images during training, as seen by the single camera, are illustrated in Fig.
6.35. Each of these images associates with a pair of motor commands for the shoulder,

elbow, and z-axis motor neuron. The tests were done with the low resolution vision of
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12x16 and 175 training examples, uniformly covering the range of possible displacement.
Training lead to a good model which, when presented with input arm images, accurately
predicted the correct arm control. A scene during imitation is shown in Fig. 6.34. Fig.
6.36 shows the response given by the model to a test set of images which the robot had not
seen before. These results are better than most of the 2D evaluations previously tested,
because of the more careful choice of training examples and because the number of
training examples was approximately double than used in the 2D tests. This results were

obtained using classic neurons trained by gradient descent, which at this low resolution

performed better than the fuzzy models.

Figure 6.35: Images of the arm as seen by the robot "eye’ during a 3D performance
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as the knowledge coded in the weight space is directly interpretable.

The models of eye-arm coordination were validated in 2D tests in which the raobot
imitated the movements of a human arm. The models were also demonstrated for the

3D case, in which the robot imitated another robot of identical appearance.



Chapter 7

Conclusion

Learning from a teacher versus learning by exploration. The proposed approach
addressing the development of robot apprentices is influenced by the ideas promoted by
Brooks on robots which are situated, embodied, and progressively acquire more complex
behaviors [Brooks 1991]. The majority of systems influenced by these ideas concentrate
on exploration (and selection mechanisms), which is the principal mean of acquiring
new behaviors. 1support the idea that in an attempt to build robot apprentices, which can
learn behaviors from a teacher, the emphasis should be on teaching-learning mechanisms
rather than on exploration. It was observed in natural systems that the longer the period of
immaturity of a species, the greater its ability to adapt to a changing environment [Bruner
1972]. Thus rather than launching itself in an exhaustive explorational adventure in the
rapacious world, the robot can learn from a 'parent’, a system with similar appearance
and with knowledge on how to perform tasks in the environment. The parent could have
had acquired the knowledge from its own exploration or could have had learned itself

from a teacher .
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7.1 Contributions

This thesis has addressed aspects of fuzzy neural networks and aspects of motor learning
in anthropomorphic robots. Two main claims have been made. The first claim is
that anthropomorphic robots can learn the eye-arm coordination which enables them to
learn arm movements by imitating arm movements of a human instructor. To enable
this, neural models of eye-arm coordination have been proposed, and a technique was
deviced for generating training examples for learning in this models. The approach was
successfully demonstrated by simulations and by practical tests with a robot that imitated

2D movements of a human arm and 3D movements of an identically built robot.

The second claim of this thesis is that fuzzy neural networks have advantages over
classic neural networks in building learning and control structures for such robots. To
enable the use of fuzzy neural models, theoretical and practical aspects of learning in
relational structures have been investigated, adapting existing results and contributing
new constructions such as novel neuron models and learning mechanisms. The advan-
tages shown for the fuzzy models are related to their transparency, portability, robustness
and the mechanism of learning. The transparency is related to the shape of the neural
weight matrix, which acts as a filter on the inputs, and which allows the prediction of the
output for any input situation. The portability refers to the fact that a model obtained by
learning from one arm can be used to respond to images of other arms. The robustness
reflects the filtering property of the weights, which are relatively insensitive to variations
of lighting, color of clothing worn by the human arm, or presence of objects outside
the arm envelope, or inside the envelope if the arm is darker than the objects, Learning
by fuzzy models has the advantage of being on-line, incremental, and corresponding to

analytical methods of resolution of associated fuzzy relational equations.

The following is a brief summary of contributions made in this thesis.



7.1

Countributions 139

[t has brought together results which can be considered the basis of a theory
of fuzzy neural systems. Included here are the relational approach to system

modelling, the theory of fuzzy relational equations (FRE) and the model of fuzzy

logic neuron.

It has shown that the S-T composition brings advantages to system modelling

mainly by extending the class of problems subject to relational modelling.

A classification of fuzzy reasoning methods has been proposed, which refiects

directly in alternatives of neural implementation.

Triangular norms have been compared on the basis of their suitability for imple-
menting synaptic/somatic neural operators. The criteria used for this comparison

favoured neural learning and adaptation abilities.

The fundamental fuzzy neuron (FFN) has been defined, based on the fundamental
t-norms, which were selected as optimal for implementing fuzzy neurons (in

software and hardware).

Gradient descent equations for FFN networks have been determined, providing a
method of learning in such structures, as well as offering a numerical method of

resolution of S-T FRE.

It has been shown that synaptic modification can be used as an additional parameter

for adaptation in FEN, which is not possible for classic neurons.

It has been exemplified how learning in FFN leads to the resolution of a variety of
FRE, and how it leads to better modelling when combined with synaptic/somatic
adaptation. This combined optimality of weights and synaptic/somatic parameters
is equivalent to a system identification method which addresses an optimal fuzzy

relation - fuzzy composition pair.

The ’rules in weights’ representation has been demonstrated, which differs from the

rules in neurons’ representation commonly emphasized in neuro-fuzzy systems.
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The rules in weights’ representation offers transparency to fuzzy neural models.
which is an important advantage over classic neural networks often described as

"black boxes™!.

The fuzzy neuron with shared weights (FNSW) has been defined, allowing the
direct implementation of sampled multi-input fuzzy systems which perform dis-

tributed associative fuzzy reasoning.
It has been shown how multi-input systems can be identified using FNSW.

The 'rules in weights’ representation has also been shown for multi-input systems,

where “slices” of neural space represent distributed rule tables.

It has been shown that any boolean function can be implemented using only one

FNSW, and it was argued in favor of FNSW as a general computational element.

It has been proposed to build anthropomorphic robot apprentices that learn by

imitating human movements.

It has been argued that eye-arm coordination is necessary for vision-based motor

skill acquisition.

A method of generating training examples for building an eye-arm coordination
has been proposed. The basic idea is that initially the human should imitate the
robot, to allow the correlation of images of the human arm with commands to the

robot arm.

A neural model of eye-arm coordination has been proposed and demonstrated with

both classic and fuzzy neurons.

It has been shown how results from the theory of fuzzy relational equations can
be applied in the practical case of learning eye-arm coordination. A necessary
condition for the resolution of a system of FRE has been provided indicating a

practical scheme for creating solvable models.

"The extent to which this transparency applies to other problems is yet to be investigated.
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e The orm-composition has been defined, providing a solution for a system of
MAX-MIN FRE: in the particular situation considered in the study, the solution

was easier to interpret than the maximal solution of MAX-MIN FRE obtained by

¢-composition.

e A learning algorithm (MBMS) has been proposed, which offers an approximate
solution for MAX-MIN FRE in the context of learning from images. The algorithm
gives a solution and a filter. The solution was not as good as the one obtained
by a-composition. However, applying the filter to the solution obtained by «-

composition leads to a solution of increased robustness and transparency.

e It has been shown that both the increased resolution of input images and the

increased number of training examples, lead to better fuzzy neural models.

e Retter interpolation has been noted when using grey-scale images for the arm than
for simple binary images (obtained using a thresholding technique to isolate the

arm from the background).

e It has been shown that 3D movements of a robot arm could be imitated by another

robot which perceived them using a single camera.

Some of the listed contributions have a high degree of generality, while others may
be strictly connected to the particular application, and their extension in other situations
has still to be investigated. All the results demonstrated for fuzzy neural networks
are general. The delicate point is the transparency and ease of interpretation of the
rules in weights’ interpretation, which although shown for simple examples and for the
2D case of eye-arm coordination model, needs further study so that they may be fully
characterized. In particular, for systems that admit a multitude of solutions, a question
that needs to be answered is how to determine the solution whose representation makes
most sense for humans (in the case of eye-arm coordination the technique found useful
was to minimize the solution, starting with a-composition, continuing with om and

o0-composition and filtering by MBMS filter). One issue which was not made explicit
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is that the choice of maximal elbow values associated with the extended arm posture
was important for the model obtained (the choice of minimal values would not have lead
to the same model). This suggests that even before choosing a solution for the fuzzy
relational equation, the formulation of the fuzzy relational mode] itself needs careful

consideration in the search for the interpretable fuzzy neural models.

The approach for the acquisition of motor skills by imitation can be applied to the
extent that the teaching arm and the apprentice arm are similar. Learning associations
with the method in which the teacher imitates the apprentice 1s more general that the
context of learning arm movements from similar creatures; in fact the teacher and
apprentice do not need to look alike at all. The purpose of teacher imitation was to
provide a visual pattern associated with acommand given to the robot arm. In a different
context, this pattern can be of completely different nature, or even a word. For instance,
when the robot generates a command to move to the left, the image of a cat can be
shown, or the word ’left” said, and when the robot generates a command to move to
the right, the picture of a fish can be presented, or the word ’right’ said. This would
"condition’ the robot to move to the left whenever it sees the cat, or hears ’left’, and move
to the right whenever it sees the fish, or hears 'right’. The possibility of conditioning
was demonstrated for example in the robot MAVIN [Baloch and Waxman 19911, which
associates reflex motor behaviors with certain learned objects, demonstrating classical

conditioning paradigms 2.

Mobile Adaptive Visual Navigator (MAVIN) [Baloch and Waxman 1991] is a mobile robot based on
dynamical neural networks, which takes as inputs various patterns of light (corresponding to 3D objects)
and learns objects invariant to location, size, orientation, angle of gaze and aspect on the visual field. It

also learns to associate motor behaviors to visual objects demonstrating behavioral conditioning.
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7.2 Future work

Fuzzy neural models. More investigation is needed in fuzzy neural models. It has
been suggested in this thesis that fuzzy neural solutions can have advantages over classic
neural ones, although the extent to which the advantages extend to other situations needs
to be clarified. In the application discussed, the models did not benefit from the full
range of capabilities that fuzzy neurons have, such as using inhibitory inputs or shared
weights. A very useful contribution would be an analytical method of resolution of S-T

FRE.

Variable direction of gaze and changing environments. There are two main prob-
lems which need to be solved before the approach to learning by imitation proposed in
this thesis can become feasible outside the Jaboratory. The first problem derives from
the tact that, in the tests performed, a fixed direction of gaze (a fixed position of the eye
in relation to the arm) was considered for learning and the same direction was used for
interpretation of the input images. To some extent, humans also learn mappings of fixed
orientation; the easiest way to control a telemanipulator is to face the same direction
(as illustrated 1n Figs 1.1, 1.2). This is also true in learning arm movements from a
coach as in martial arts or fencing. However, humans have a high degree of adaptation to
variations from the learned position. In order to allow the robot to imitate while watching
from a variety of positions, the immediate technique would be to include a variety of
positions in the set of training examples. This can be done by having the camera take arm
images of a given posture as seen from different points in space and using the examples
in supervised training. The structure with one neuron per joint is much too simple for
this case; an alternative would be to allocate processing to two neural structures, a first
neural structure that performs a rotation/transformation of the image to a given pattern
(which has for example the shoulder centred in the bottom of the image), and a second

neural structure that does the mapping as already exemplified. A mechanism that may
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help 1s to impose a kind of initial "calibration’ through a couple of simple ’put your arm
like mie’ posture agreements. This would help the robot to perform the rotation of
incoming images to suit the internal model. Image processing algorithms can probably

play arole.

The second problem comes from learning in changing environments, more precisely,
with various backgrounds behind the teaching arm. It is assumed that no object obstructs
the arm, which would be quite unusual for human motor skill acquisition as well. It
was seen that fuzzy neural networks can develop representations that allow them to
ignore objects outside an envelope limited filter. This was possible with noisy 3 static
backgrounds (even when the noise intensity was higher than that of the signal), which do
not vary from one example to another. One can possibly restrict the learning of eye-arm
coordination to a static environment, while the imitation is performed in an environment
with a variable background outside the arm envelope. However, for variable noisy
patterns inside the envelope, the one neuron model is powerless. The way to cope with
this situation may be to first recognize and separate the arm from the background, and
only then to provide the preprocessed input to a neural structure that maps it to a motor

command.

Correlating eye-arm coordination, eye-hand coordination and object manipulation.
The focus in this thesis was on learning eye-arm coordination, because it was considered
important for learning from an instructor and because it was not treated before in
the literature. However, for achieving full potential, eye-arm coordination should be
combined with eye-hand coordination. The two should also correlate with the object
to be manipulated and the task. For example in learning how to use a hammer, the
focus should not be on the correct trajectory only, but also on whether the hammer hits
the nail properly or not! Once the trajectories are determined, the motor sequence for

producing them should be transformed m motor patterns, reducing the amount of stored

ere noise includes everything except the arm and pure “white’ background.
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information required, and optimizing the movement for some chosen indices. Fully

anthropomorphic arms need to be developed to gain the most of the approach proposed

in this thesis.

Language acquisitionin correlation with movements. An interesting direction of re-
search would be to integrate the development of visuo-motor coordination with language
acquisition. This can be seen as a modification of the Miniature Language Acquisition
task [Feldman et al. 1990] (proposed for language descriptions of visual scenes) to aim
at language acquisition 1n correlation with movements. The task would be to build a
robot that, when trained on a sequence of motion motor commands - motion linguistic
descriptions - motion visual perception pairs, will learn to "understand’ the language,
where understanding is measured by the system’s ability to correctly perform move-
ments according to their descriptions. Words from a possible vocabulary could refer,
for example, to actors (robot, teacher), arm parts (shoulder, elbow, wrist, arm, forearm),
actions (move, stop, continue), direction (up, down, left, right), distance (close, far) or
speed (fast, slow). During learning, the words are gradually offered to the robot in the
context of a movement that has the particular characteristic, thus establishing correspon-
dent associations. The learned mappings are seen as reversible, in the sense that the
robot can describe linguistically a movement it performs or sees, or can respond to the

linguistic command by performing its own movement.

Learning to imitate. Instead of being programmed to imitate, the robot can learn to
do so*. Imitation can be developed as the consequence of an evolutionary process or by
reinforcement, for example as proposed in [Stoica 1994]. By reinforcing the accidental
coincidence or by favorizing coincidence of actions, e.g. by human imitation, a robot

may be controlled into developing imitation.

A distinction is made here between learning to imitate and learning how to imitate, the later being

addressed in this thesis.
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Developmental robotics. In the recent years new directions in robotics research have
emerged. These include, for example, behavior-based robotics, perceptual robotics.
cognitive robotics and evolutionary robotics. An increasing number of researchers
usc robotics as a vehicle for the exploration of theories in disciplines dealing with
living organisms. For example the name of a popular conference *From animals to
animats’ reflects such a tendency. The benefits are mutual as robots become more
versatile and incorporate solutions from nature. In the same way as the solution to
the ’symbol grounding’ problem is expected to come from robots acting, perceiving
the world and building their own representations, it may be the case that an efficient
ability of "being taught’ is not programmable but would need a developmental process,
with robots building representations of their own actions, perceptions, and interactions
with humans, in a way similar to child development. Investigation in this area could
lcad to a new direction of robotics research, possibly called developmental robotics,
aiming at building robots based on mechanisms similar to human cognitive and motor

development.
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Appendix A

Some properties of MAX-MIN,
MAX-T and S-T compositions.

A summary of some properties of MAX-MIN, MAX-T and S-T composition 1s presented

in Table A.1. E is a matrix of 1’s, I is the identity matrix and H is a matrix of 0’s.
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Table A.1: Some properties of MAX-T and S-T compositions
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Appendix B

Comparison of neuro-fuzzy
models

Citations in Table 1.1: {1] = [Lee and Lee 1975], {2] = [Takagi and Hayashi 1991}, [3]
=[Takagi ef al. 1992], (4] = [Honkawa et al. 1992], [5] = [JTang 1992], [6] = [Pedrycz
and Rocha 1993], [7] = [Gupta 1992], [8] = {Keller and Krishnapuram 1992], [9] =
[Keller and Tahani 1992], [10] = [Pedrycz 1991], [11] = [Blanco er af. 1994], [12] =
[Yamakawa et al. 1992], [13] = [Uchino and Kubo 1994].



Table B.1: Comparison of some neuro-fuzzy models

i51

Authors Architecture Type of neuron Significance | Significance Learning Destination
of neurons of weights
Lee {1] fully connected, non-fuzzy, basic element all 17, full no synthesis
one common arithmetic for a state transmission of fuzzy
input machine of signal automata
Takagi [2] multilayer, non-fuzzy, depends parameters GD configure,
or[3] layers map either on layer for tuning (BKP) implement
Horikawa stages of sum-product- contribution FS
in (4] processing sigmoid or of each rule with adapuive
Jang [5] in F§ bell-shape- charact,,
product [5] automatic
extraction of
memb.func
and rules
Pedrycz, multilayer, fuzzy (OR, aggregative + parameter GD, knowledge
in [6] maps the logic AND MATCH) reference n. other based
Gupta of the problem in some logic processor sugested networks
in {7] 10 a logic work based some represent
oriented net on a parametric contribution
t-norm of rules
(Hamacher)
Keller multilayer fuzzy, of logical all are I's global networks for
m [8], [9] inputs outputs different processors full scarch fuzzy logic
-discretized types, ecach implementing | lransmission for param inference
/O space implementing a a specific of logic of logic
Yager type of logic value [8] operator {8]
operator {8] operator [8]
classic 2. processing | 2. parameter 2.BKP
neuron |9} element [9] (9] [9]
Pedrycz [10] one layer non-fuzzy or processing parameters GD, solve
Blanco [11] max-min fuzzy clement elements of | GD/GA in FRE
FRE GAREL from
1-O data
Yamakawa neo-fuzzy arithmetic newron is a singleton modified identification
in[12] neuron summing complete outs GD of nonlincar
Uchino non-linear fuzzy for one dynamic
in[13] synapses system variable systems
performing
Sugeno
type of
inference
one layer fuzzy 3« elemnentary shape hebbian, find
This for fuzzy (similar with processor distributed GD, best
thesis reasoning, Pedrycz’'s OR for fuzzy MBMS model
same mapping and Gupta’s fuzzy rules, COAT (find
as Keller, neuron), reasoning fuzzy fuzzy
discretized calculated relation relation
I/O space with fundamental and
{-norms composition)




Appendix C

Example of modelling by S-T

composition

The following example illustrates a situation, in which the S-T composition offers
better modelling than the MAX-MIN composition. The displaying technique is that
~of *Chernoff faces’!. In Fig. C.1 the children A and B resemble in some degree to
their brothers C and D, which in turn resemble in some degree to the parents. A and B
resemble their parents more than what can be inferred using MAX-MIN. Each similar
ear, nose or mouth are given 1 point, while the eyes are given 4 points. The resemblance

1s defined as (number of points)/10. The fuzzy relations are:

0 0.3 0.7 R B 0.5 0.5 p B 0.8 0.6
AB—jo-Cl) — 04 06 CD~1w—FM — 05 0.7 ABroF M 0.5 09

In the last relation there are elements with higher values than in the first two relations.
As stated by condition 2.7 this situation can not be modeled with MAX-T composition

(The use of MIN-S restricts in the opposite direction).

'Chernoff faces ([Chernoff 1973] referred to in [Krzanowski 1993)) are a display technique proposed
for monitoring systems of many variables. As facial patterns are easily perceived by humans, the shape

of eyes, ears, nose and mouth are correlated with different values of the variables.
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Figure C.1: Chernoff faces illustrating resemblance relations



Appendix D

Fuzzy Hebbian learning

In many cases the result of fuzzy hebbian learning can be a good initial approximation
for a FRE solution, which can be further tuned by using GD. Fuzzy hebbian learning
supports incremental learning.

Classic Hebb law refers to changes in synaptic strength r;; as depending on simulta-

neous firing of x;, y;. In the context of logic neurons, the law can be interpreted as r; =

r;y OR (x; AND y;). Incremental learning starting with a null connection strength:

=0 (D.1)

after the first presentation,

0Qf TR T NI .
ry = roS(xl ) = SOy, T(x, ¥, = T(x;, y)) (D.2)
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after the second

ry =Sy T 3h) = STl ), T 7))

t2.0 iy

and the third,

ry = S05. 705, ) = ST, 3)), T, ), T, )

iy

which after using Equ. (2.17) this generalizes to

A S
A= S (T

The vectorial form can be written as

R=S(TX",v)=X"0Y

(D.3)

(D.4)

(D.6)

where o can be any S-T composition. Observe that hebbian learning can be driven

by the same type of fuzzy neurons, whose output in this case determines the weights of

other fuzzy neurons.

Hebbian learning is strongly affected by the choice of synaptic and somatic parame-

ters. Large values of the somatic parameter ss and small values of the synaptic parameter



156

st lead to the fastest increase in the weights, in effect it often leads to saturation. The
surface shaped by R is non-decreasing at the presentation of each new learning example.
To reduce this surface a decay effect may be considered, or a GD technique can be

employed for finer shaping of the weights.

The solution obtained by hebbian learning is close to the solution of the FRE. Fig.
D.1shows the shape of the solution obtained by hebbian learning, which can be compared

with the solution of FRE illustrated in Fig 3.8.

Figure D.1: Fuzzy relation determined by hebbian learning



Appendix E

Training pair for learning fuzzy

distributed representations

Training pairs formed by the discretised representations of mapping sets in Example

from Section 3.5.

The generated data is:

Inj=(1070300000000); Out, =(1105030000000);
Iny=(003061070300000), Out, =(00.10410000000);
In;=(000020610.6040.100); Out; =(000.10410500000);
Ing=(000000.10510.600); Out; =(000.102040.810.80.60.10);

Ins=(000000000.20.7 I); QOuts =(000000000.10.3 1),




Appendix F

Application of FFNN to FRE

resolution: working examples

Example 1: An exact solution

The following MAX-MIN FRE (from [Blanco er al. 1994]) admits an exact solution

1 0000
01000
X=|l00100
00010
0000 1/

Example 2: An approximate solution

0.6
0.4
0.1
0.9
0.4

0.5 0.8 0.3 0.2
0.1 0.9 0.6 0.4
0.1 0.9 0.8 0.5
0.2 0.9 0.1 0.5
0.5 0.3 0.8 0.9

The problem is from [Pedrycz 1990a], and was also used as a test case in [Negoita

et al. 1994]. The system XoW = Y does not admit exact solutions and an approximate

solution 1s sought.

oL



1.0 0.4 0.3 0.1 0.5 0.5 0.7 1.0
0.4 1.LO 0.6 0.4 0.3 0.3 1.0 0.9
¥ = 0.5 0.5 0.8 0.9 v = 0.4 0.2 0.2 0.6
0.6 0.4 0.7 1.0 0.5 0.6 1.0 0.3
0.9 0.6 0.4 0.3 0.4 0.3 0.5 0.7
0.5 0.6 0.8 1.0 1.0 0.6 0.3 0.2

The search was done for a S-T network with s = 0.000001. The results obtained
by GD are compared with results from [Pedrycz 1990a] and more recent results from
[Negoita et al. 1994]. Criteria considered for comparison include maximum error per pair
(M), maximum error per matrix (MM), sum of absolute errors (SAE) (fuzzy Hamming
distance between target and obtained outputs, which is the performaﬁce index used in
[Pedrycz 1990a], [Negoita ef al. 1994}), and the sum of squared errors (SSE) which is

the performance index in the GD search.

Notations: P - refers to results obtained in [Pedrycz 1990a], N - results obtained in
[Negoita et al. 1994], G - results obtained here by GD. E - error matrix expressing the
distance between target outputs and those obtained by S-T composition with determined
solutions W. Values used in training: number of iterations = 200, s = 0.000001 (Y¢ 1s

obtained by proper MAX-MIN).

The results are:

0.4 0.3 0.7 0.7 040 0.37 0.7 1.0 0437 0.406 0.661 0.913
yo_ |04 03 10 00f 0.37 030 1.0 0.9 | |0.109 0.174 0.999 0.897
“loa 03 1.0 06| “ |03 00 025 037  |0165 0.142 0.111 0.25]

0.5 0.6 1.0 0.6 0.5 0.6 0.25 0.6 0.632 0.409 0.223 0.250
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0.4 0.3 0.7 0.7
0.4 0.4 1.0 0.9
0.5 0.6 0.9 0.6
0.5 0.6 1.0 0.6
0.4 0.3 0.7 0.7
0.5 0.6 1.0 0.6/

]

0.4 0.3
0.4 0.4
0.5 0.6
0.5 0.6
0.4 0.37
0.5 0.6

Mp=10.3,0.1,0.7,0.3,0.2,0.7] ,

My

MMp = 07,
SAE[J: 4.1,
SSEp=1.85,

MMy= 0.5,
SAEy = 3.6,
SSEy = 1.1418,

0.7
1.0
0.5
0.6
0.7
0.6

1.0
0.9
0.6
0.6
0.9
0.6

Y

[0.13,0.1,0.4,0.4,0.2,0.5],

0.437 0.406 0.661
0.400 0.400 0.999
0.632 0.409 0.500
0.632 0.409 0.600
0.437 0.406 0.661
0.632 0.409 0.600

M¢ =10.094,0.1,0.3,0.4,0.2,0.4]

MIW(; =04

SAE; =4.1126
SSEq = 1.0436

Example 3: Adaptive composition gives a better approximate solution for Ex-

ample 2

A combined search for W and s on the data set used in Example 2, gives after 25

steps a weight matrix and a logic (s = 12970000), for which the sum of squared errors is

SE2,4=0.93. This 1s a better approximation than obtained for MAX-MIN composition,

for which SE2,,; = 1.04.

Example 4: The simultaneous identification of the fuzzy relation and the com-

position

The focus is on a system for which it is known that an exact solution exists, as the

output Y is determined by the S-T composition (s = 10) of input X with W.

0.913
0. 897
0.500
0.600
0.900
0.600
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X

0.21
0.04
0.67
0.67
0.93
0.38
0.51
0.83
0.03

0.05

0.52
0.67
0.00
0.38
0.06
0.41
0.68
0.58
0.93
0.84

0.52
0.09
0.65
0.41
0.70
0.91
0.76
0.26
0.04
0.73

W=

0.32
0.63
0.75

0.99 0.98)
0.36 0.72
0.24 0.75

Y =

=
A
o0

0.41

0.54
0.69
0.80
0.81
0.6l
0.58
0.82

0.38
0.22
0.72
0.73
0.94
0.59
0.72
0.87
0.34
0.42

0.72
0.50
0.86
0.87
0.97
0.91

0.94
0.94
0.68
0.87
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Appendix G

A classic neuron model

The classic neuron model referred in this thesis is a perceptron modulated by a squashing

sigmoid.

y = [ WX )

Figure G.1: Classic neuron model

The neuron performs a summation of weighted inputs,

asz,»x,» (G.1)

to which applies a nonlinear sigmoid function

y = fla) = (G.2)

1 +¢—ba
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Figure G.2: Logsig characteristic

With y = | the function takes values in [0, 1] interval. The function logsig

(logarithmic-sigmoid) implemented in Matlab, has ¥ = 1 and B =1



Appendix H

A coach’s perspective on teaching

motor skills

Coaching is very important in developing motor skills. Some important aspects of

teaching humans how to move are itemised in the following ',

e Movements are learned in increasing order of their complexity, starting with
simple movements and progressing toward complex movements, which usually

are presented in terms of simple movements (Progressive).

* A complex movement can be presented as an ordered sequence of simple move-

ments (Order).

» When simple movements are introduced, it is mentioned in what context the

respective movement will be useful (Utility).

* Movements (especially complex ones) are presented in 3-D perspective (front and

side profile). Note that those who show the movements do not always have the

"The list is the result of personal observations and not the result of a scientific study (which couldn't
be found as such in the literature). Its purpose was to help creating skill transfer scenarios inspired after

the human experience.
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same length of the arm as those who learn, but the learner has the capability to
grasp the essential (Spatiality).

Significant points of the trajectory (prototypes) are pointed out with the hand or

indicated in words (Prototypes).
The attention is concentrated on one movement at a time (Attention).

Words help in a variety of situations such as in remembering and generalising what
one sees, in naming the elementary movements, in describing the complex ones
and in pointing where to concentrate attention (e.g. in what you see). Descriptive
fuzzy statements often accompany the exemplified movement ('Push your right
hand slower and withdraw it quickly, like this"). *The angle between the chest and

the shoulder 1s 90 degrees’ (Language).

The teacher has the key role in feedback. A jumper made the following comments
referring to his couch: "Mark 1s my eyes, | don’t know what I am doing wrong’. The
coach points out important points of the trajectory “prototypes for the trajectory’,

and indicates wrong trajectories (Feedback).

Wrong movements can be shown, and explained why they are wrong. This is a

case of examples associated with a negative reinforcement (Negative examples).

The actions are divided into small elements, and one needs to systematically
evaluate the athlete performance, focus concentration on one thing a time, and
decide where the most fundamental lies. It is important not to give many changes

at once. (Strategy).

After a movement is learned it becomes a reflex action. The cognitive phase 1S no
longer involved. "Fencing is also a mental game. Once a fencer has practised the
various movements until he is physically able to carry out a plan without having
to think about how the various parts of the body must move, he finds that the
real excitement lies in outthinking and outwitting his opponent. You must quickly
analyse your adversary’s style and then plan your strategy accordingly. You must
set traps for your opponent while being careful to avoid those set by him.” [Bower
and Mori 1986] (Reflex).
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TINMAN’s behaviours
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TINMAN’S SOFTWARE IMPLEMENTATION

FUNCTIONAL FLOWCHART

SELECT
(CLASSIC OR FUZZY)

WAKE-UP AND
RECALL MEMORIES

TYPE OF NEURONS

BEHAVIOUR SELECTION

GO TO
SLEEP
LEARN VISUO-MOTOR
COORDINATION e A
(FROM OWN ARM IMITATE REPEAT
OR FROM HUMAN ARM) HUMAN ARM MOVEMENT
GIVE COMMAND TO : SRR
MOVE ARM TO : :

A NEW POSITION

GET IMAGE OF ARM

INPUT IMAGE TO

NEURAL MODEL

EVALUATE MODEL
PREDICTION

MODIFY MODEL TO
ENCODE CORRELATIONS
BETWEEN IMAGES AND
ARM COMMANDS

EVALUATE
UPDATED MODEL

IF MODEL IS NOT
MODIFYING ANY MORE
OR IF THE LIMIT OF
TRAINING EXaAMPLES
WAS REACHED
THEN ELSE
FINISH BEHAVIQOUR
AND RETURN TO
BEHAVIOUR SELECTION

GET IMAGE OF
HUMAN ARM S SR—

INFUT IMAGE TO
NEURAL MODEL

USE NEURAL OQUTPUT
COMMAND TC MOVE
THE ARM

MEMORIZE THE
SEQUENCE OF

MOTOR COMMANDS

OR LEARN THE
SPATIO~TEMPORAL
SEQUENCE IN

A NEURAL STRUCTURE

IF THE TIME

ALLOCATED IS OVER

OR AN INTERRUPTING | :
COMMAND IS RECEIVED;E

THEN ELSE-
FINISH REHAVIOUR

AND RETURN TO
BEHAVIQUR SELECTION

Figure [.1: TINMAN's behaviours



Bibliography

ANDERSON R. L. (1988). A robot ping-pong player: experiment in real time intelligent
control. MIT Press.

ANDREWS R., J. DIEDERICH AND A. B. TICKLE (1995). A survey and critique of tech-
niques for extracting rules from trained artificial neural networks. Technical report.
Neurocomputing Research Center, Queensland University of Technology. Box
2434 GPO Brisbane 4001, Queensland, Australia.

ASADA H. AND S. LU (1990). Acquisition of task performance skills from a human
expert for teaching a machining robot. in Proc. of the 1990 American Control
Conference. pp. 2827-2832.

ASADA H. AND S. L1U (1991). Transfer of human skills to neural net robot controllers. in
Proc. of 1991 IEEE International Conference on Robotics and Automation. IEEE.
IEEE. pp. 2442-2448.

ATKESON C. G. (1990). Memory-based techniques for task-level learning in robots and
smart machines. in Proc of the 1990 American Control Conference, San Diego, CA.

pp. 2815-2820.

BALOCH A. A. AND A. M. WAXMAN (1991). Visual learning, adaptive expectations,
and behavioral conditioning of the mobile robot mavin. Neural Networks Vol. 4,

pp. 271-302.

BELMANS P. (1990). An approach to elemental task learning. in SPIE Vol. 1293 Appli-
cations of Artificial Intelligence VIII. pp. 634-644.

168



BIBLIOGRAPHY 169

BLANCO A., M. DELGADO AND 1. REQUENA (1994). Solving fuzzy relational equations
by max-min neural networks. in Proc of the IEEE Conference on Fuzzy Logic,

World Congress on Compuational Intelligence, Orlando, Florida. pp. 17371742,

BOUR L. AND M. LAMOTTE (1988). Equations des relations floues avec la composition
conorme-norme triangulaires. BUSEFAL Vol. 34, pp. 86-94.

BOWER M. AND T. MORI (1986). Fencing. Dubuque. Iowa, W. C. Brown Co.

BROOKS R. A. (1991). New approaches to robotic science. Science Vol. 253. pp. 1227~
1232.

BROWN M. K., B. M. BUNTSCHUH AND J. G. WILPON (1992). Sam: A perceptive spoken
language understanding robot. in IEEE Trans. on Systems, Man, and Cybernetics,
Vol. 22, No.6. IEEE. pp. 1390-1402.

BRUNER 1. S. (1972). Nature and uses of mmaturity. American Psychologist Vol. 27, No.
8, pp. 687-709.

BUTNARIU D. AND E. P. KLEMENT (1993). Triangular norm-based measures and games

with fuzzy coalitions. Kluwer Academic Publishers.

BUTNARIU D., KLEMENT E.P. AND S. ZAFRANI (1995). On triangular norm-based propo-
sitional fuzzy logics. Fuzzy Sets and Systems Vol. 69, pp. 241-255.

CHERNOFF H. (1973). the use of faces to represent points in k-dimensional space graph-
ically. J. Amer. Statist. Assoc. Vol. 68, pp. 361-368.

CORKE P. (1992). Dynamic effects in high-performance visual servoing. in Proc [EEL
Int Conf on Robotics and Automation. pp. Vol 2, 1838-43.

DAVIDOR Y. (1991). A genetic algorithm applied to robot trajectory generation. in Hand-
book of Genetic Algorithms (L. Davis, Ed.). Van Nostrand Reinhold. New York.
pp. 145-165.

DEMUTH H. AND M. BEALE (1994). Matlab: Neural Network Toolbox User’s Guide.
MathWorks Inc.

DINOLA A. AND S. SESsA (1983). On the set of solutions of composite fuzzy relational
equations. Fuzzy Sets and Systems Vol. 9, pp. 275-285.



BIBLIOGRAPHY [7Q

DINOLA A., S. SESSA, W. PEDRYCZ AND E. SANCHEZ (1989). Fuzzy relation equations

and their applications to knowledge engineering. Kluwer Academic Publishers.

DI NoLA A., W. PEDRYCZ, S. SESSA AND E. SANCHEZ (1991). Fuzzy relation equations
theory as a basis of fuzzy modelinng: An overview. Fuzzy Sets and Systems Vol.
40, pp. 415-429.

DUBOIS D. AND H. PRADE (1988). Possibility Theory - An Approach to Computerized

Processing of Uncertainty. Plenum, New York.

ECKMILLER R. (1990). The design of intelligent robots as a federation of geometric
machines. in An introduction to neural and electronic networks (S. F. Zornetzer,

J. L. Davis and C. Lau, Eds.). Academic Press.

EDELMAN G. M. (1987). Neural Darwinism: The theory of neuronal group selection.
Basic Books. New York.

EDELMAN G. M., G.N.JR. REEKE, W. E. GALL, G. TONONI, D. WILLIAMS AND O. SPORNS
(1992). Synthetic neural modeling applied to a real world artifact. in Proc. Natl.
Acad. Sci. USA 89. pp. 7267-7271.

ENGELBERGER J. (1995). Service robots arise. International Federation of Robotics

Newsletter No. 18, pp. 1.

EspiaU B., F. CHAUMETTE AND P. RIVES (1992). A new approach to visual servoing n
robotics. IEEE Trans on Robotics and Automation Vol. 8, No. 3, pp. 313-326.

FELDMAN J. A.. G. LAKOFF, A. STOLCKE AND S. H. WEBER (1990). Miniature language
acquisition: A touchstone for cognitive science. in TR-90-009, Int Comp Sci Inst

ICSI.

FITTS P, AND M. POSNER (1967). Human performance. Brooks/Cole Publ. Co.. Belmont
CA.

FOULLOY L., S. GALICHET AND E. BENOIT (1994). Fuzzy control with fuzzy state
sensors. in EUFIT 94, Second European Congress on Intelligent Techniques and

Soft Computing, Aachen, Germany. pp. 1156-1 160.

FRANK M. J. (1979). On the simultaneous associativity of f(x.y) and x+y-f(x,y). Aequa-
tiones Math. Vol. 19, pp. 194-226.



BIBLIOGRAPHY 171

GELFAND J., M. FLAX, R. ENDRES, S. LANE AND D. A. HANDELMAN (1992). Acquisition
of automatic activity through practice: changes in sensory input. in Proc. of the

Tenth National Conference on Artificial Intelligence AAAI-92. pp. 189-193.

GOH T. H. WANG P. Z. AND H. C. LUt (1991). Learning algorithm for enhanced fuzzy

perceptron. Technical report. National University of Singapore, Inst of Systems

Science.

GRAFD. H. AND W. R. LALONDE (1989). Neuroplannerrs for hand/eye coordination. in
Int. Joint Conf. on Neural Networks (IJCNN ). IEEE. pp. 1I, 543-548.

GUEZ A., Z. AHMAD AND J. SELINSKY (1992). The application of neural networks to
robotics. in Neural Networks: Current Applications (P.G.J. Lisboa, Ed.). Chapman
and Hall. pp. 111-122.

GUPTA M. M. (1992). Fuzzy logic and neural networks. in Proc. of Tenth Int Conf on
Multiple Criteria Decision Making (TAIPEI’92), vol 3 July 19-24, Japan. pp. 281-
294.

GUPTA M.M. AND J. QI (1991a). Design of fuzzy logic controllers based on generalized
t-operators. Fuzzy Sets and Systems Vol. 40, pp. 473-489.

GUPTA M. M. AND J. QI (19915). Theory of t-norms and fuzzy inference methods. Fuzzy
Sets and Systems Vol. 40, pp. 431-450.

HARNAD S. (1990). The symbol grounding problem. Physica D No. 42, pp. 335-346.

HELLENDOORN H. (1994). Neural-fuzzy: basics and industrial applications. in Proc of
EUFIT 94.

HIROTA K. AND W PEDRYCZ (1994). OR/AND mneuron in modeling fuzzy set

connectives. JEEE Transactions on Fuzzy Systems Vol. 2. pp. 151-1 61.

HORIKAWA S., T. FURUHASHI AND Y UcCBIKAWA (1992). On fuzzy modeling using
fuzzy neural networks with the back-propagation algorithm. JEEE Trans on Neural
Networks Vol. 3, No. 5, pp. 801-806.

HUFFMAN S. B. AND J. E. LAIRD (1994). Acquiring procedural knowledge through
tutorial instruction. in Proc. of the 1994 Knowledge Acquisition for Knowledge-

Based Systems Workshop, Banf, Canada (B. Gaines, Ed.).



BIBLIOGRAPHY

—
-
(g}

JANG J.S.R. (1995). Neuro-fuzzy modeling and control. Procedings of the IEEE.

KAUFMANN A. AND M. M. GUPTA (1988). Fuzzy mathematical models in enginecring

and management science. North-Holland.

KELLER J. M. AND H. TAHANI (1992). Implementation of conjunctive and disjunctive

fuzzy logic rules with neural networks. Int’l Journal of Approximate Reasoning
Vol. 6, pp. 221-240.

KELLER J. M. AND R. KRISHNAPURAM { 1992). Evidence aggregation networks for fuzzy
logic inference. IEEE Transactions on Neural Networks Vol. 3, No. 5, pp. 761-769.

KLIR G. J. AND B. YUAN (1994). Approximate solutions of systems of fuzzy relation
equations. in Proc of the [IEEE Conference on Fuzzy Logic, World Congress on
Compuational Intelligence, Orlando, Florida. pp. 1452-1457.

KRZANOWSKI W. 1. (1993). Principles of multivariate analysis: a user's perspective.

Oxford University Press.

KUPERSTEIN M. (1991). INFANT neural controller for adaptive sensory-motor
coordination. Neural Networks Vol. 4, pp. 131-145.

KwaN H. K. AND Y. CAI (1994). A fuzzy neural network and its application to pattern
recognition. IEEE Transactions on Fuzzy Systems Vol. 2, No. 3. pp. 185-193.

LANE S. H, D. A. HANDELMAN AND J. J. GELFAND (1990). Can robots learn like
people do?. in SPIE Vol. 1294 Applications of Artificial Neural Networks (1990).
pp. 296-309.

LEE C. C. (1990). Fuzzy logic in control systems: fuzzy logic controller - part i and i1.

IEEE Transactions on Systems, Man, and Cybernetics.

LEE S. C. AND E.T. LEE (1975). Fuzzy neural networks. Mathematical Biosciences Vol.
23, pp. 151-177.

LIU S. AND H. ASADA (1992). Transfer of human skills to robots: learning from hu-
man demonstrations for building an adaptive control system. in Proc. of the 1992

American Control Conference. pp. 2607-2612. gq.



BIBLIOGRAPHY

MAMDANI E. H. AND S. ASSILIAN (1975). An experiment in linguistic synthesis with a

fuzzy logic controller. Int. J. Man-Machine Studies Vol. 7, pp. 1-13.

MARTINEZ T. M, H. J. RITTER AND K. J. SCHULTEN (1989). 3d-neural-net for learning

visuomotor-coordination of a robot arm. in Int. Joint Conf. on Neural Networks
(IJCNN 89). IEEE. pp. 11, 351-356.

MEL B. (1991). A connectionist model may shed light on neural mechanisms for visually
guided reaching. Journal of Cognitive Neuroscience Vol. 3, No. 3, pp. 274-292.
MIT Press.

MENGER K. (1942). Statistical metrics. in Proc. Nat. Acad. Sci. U.S.A. 28. pp. 535-537.

MIYAKOSHI M. AND M. SHIMBO (1985). Solutions of composite fuzzy relational equa-

tions with triangular norms. Fuzzy Sets and Systems Vol. 16, pp. 53-63.

MIZUMOTO M. (1991). Min-max-gravity method versus product-sum-gravity method for
fuzzy controllers. in Fourth IFSA (Engineering). pp. 127-130.

MIZUMOTO M. AND H. J. ZIMMERMANN ( 1982). Comparison of fuzzy reasoning methods.
Fuzzy Sets and Systems pp. 253-283.

NaGELL K., R.S. OLGUIN AND M. TOMASELLO (1993). Processes of social learning in
the tool use of chimpanzees (pan troglodytes) and human children (homo sapiens).

Journal of Comparative Psychology Vol. 107, No. 2, pp. 174-186.

NEGOITA M. GH., A. AGAPIE AND F. FAGARASAN (1994). Applications of genetic algo-
rithms in solving fuzzy relational equations. in Proc of the 2nd European Congress

on Intelligent Techniques and Sofi Computing, EUFIT’94. pp. 1 126-1129.

NOLFI S., D. FLOREANO, O. MIGLINO AND F. MONDADA (1994). How to evolve au-
tonomous robots: different approaches in evolutionary robotics. in Proc of Artificial
Life IV Conference, July 6-8, Cambridge, MA, USA.

PALM R. (1992). Control of a redundant manipulator using fuzzy rules. Fuzzy Sets and
Systems Vol. 45, pp. 279-298.

PEDRYCZ W. (1983a). Fuzzy relational equations with generalized connectives and their

applications. Fuzzy Sets and Systems Vol. 10, pp. 185-201.



BIBLIOGRAPHY 174

PEDRYCZ W. (1983b). Numerical and applicational aspects of fuzzy relational equations.
Fuzzy Sets and Systems Vol. 11, pp. 1-18

PEDRYCZ W. (1990a). Algorithms for solving fuzzy relational equations in a probabilistic
setting. Fuzzy Sets and Systems Vol. 38, pp. 313-327.

PEDRYCZ W. (1990b). Relational structures in fuzzy sets and neurocomputation. in Proc.

of the Int. Conf. on Fuzzy Logic and neural Networks, lizuka, Japan. pp. 235-238.

PEDRYCZ W. (1991a). Fuzzy modelling: fundamentals, construction and evaluation.

Fuzzy Sets and Systems pp. 1-15.

PEDRYCZ W. (1991b). Neurocomputations in relational systems. IEEE Trans. Pattern
Machine Intell Vol. PAMI-13, No. 3, pp. 289-297.

PEDRYCZ W. (1991¢). Processing in relational structures: Fuzzy relational equations.
Fuzzy Sets and Systems Vol. 40, pp. 77-106.

PEDRYCZ W. (1992). Fuzzy neural neworks with reference neurons as pattern classifiers.
IEEE Transactions on Neural Networks Vol. 3, No. 5, pp. 770-775.

PEDRYCZ W. (1994). Garel: A hybrid genetic learning in fuzzy relational equations. in
Proc of the IEEE Conference on Fuzzy Logic, World Congress on Compuational
Intelligence, Orlando, Florida. pp. 1354—-1358.

PEDRYCZ W AND A. F. ROCHA (1993). Fuzzy-set based models of neurons and
knowledge-based networks. IEEE Transactions on Fuzzy Systems Vol. 1, No. 4,
pp. 254-266.

PEDRYCZ W., P.C.F. LAM AND A. F. ROCHA (1995). Distributed fuzzy system modelling.
IEEE Transactions on Systems, Man, and Cybernetics Vol. 25, No. 5, pp. 769-780.

POMERLEAU D. A. (1993). Neural network perception for mobile robot guidance. Kluwer
Academic Publishers.

REEKE G. N. AND O. SPORNS (1993). Behaviorally based modeling and computational

approaches to neuroscience. Annual Review of Neuroscience Vol. 16, pp. 597-623.

RUMELHART D., G. HINTON AND J. L MCCLELLAND (1986). A general framework
for distributed processing. in Parallel Distributed Processing (D. Rumelhart, J.L.
McClelland and the PDP group, Eds.). MIT Press.



BIBLIOGRAPHY

SAITO T. AND M. MUKAIDONO (1992). A learning algorithm for max-min network and
its application to solve fuzzy relation equations. in Proc. of the 2nd Int Conf on

Fuzzy Logic and Neural Networks [TZUKA'92. pp. 184-187.

SANCHEZ E. (1976). Resolution of composite fuzzy relation equations. Information and
Control Vol. 30, pp. 38-48.

SANCHEZ E. (1993). Fuzzy genetic algorithms in soft computing environment. in Proc
Fifth IFSA Congress, Seoul, Korea. pp. 44-50.

SANDERSON A. C AND L. E. WEISS (1986). Dynamic sensor-based control of robots with

visual feedback. in Proc IEEE Conf Robotics and Automation.

SANGER T. D. (1994). Neural network learning control of robot manipulators using
gradually increasing task difficulty. JEEE Transactions on Robotics and Automation
Vol. 10, No. 3, pp. 323-333.

SCHNEIDER J. G. (1995). Robot skill learning through intelligent experimentation. PhD

thesis. Computer Science, University of Rochester.
SEARLE J. R. (1980). Minds, brains and science. Behaviour and Brain Science.

SESTITO S. AND T. DILLON (1994). Automated knowledge aquisition. Prentice Hall,

Australia.

SHERIDAN T. B. (1992). Telerobotics, automation, and human supervisory control. MIT

Press.

SHIRAI'Y. AND H. INOUE (1973). Guiding a robot by visual feedback in assembling tasks.
Pattern Recognition Vol. 5, pp. 99-108.

SMAGT P. VAN DER, F. GROEN AND B. KROSE (1993). Robot hand-eye coordination
using neural networks. Technical Report TR CS-93-10. Unjversity of Amsterdam,

Department of Computer Systems. Kruislaan 403.

STOICA A. (1994). Evolving creatures that can learn by imitation: apprentice behavior
and its role in robot motor learning. in Proc. of Int. Conf on Autonomous Robots and
Arificial Life PERAC'94 - From Perception 1o Action, Switzerland. pp. 440—443.



BIBLIOGRAPHY 176

TAKAGI H. (1990). Fusion technology of fuzzy theory and neural networks - survey and
future directions. in Proc. of the Int. Conf. on Fuzzy Logic and neural Networks,

lizuka, Japan. pp. 13-26.

TakAaG] H., N. SUZUK1, T. KODA AND Y. Koimva (1992). Neural networks designed on

approximate reasoning architecture and their applications. [EEE Trans on Neural
networks Vol. 3, No. 5, pp. 752-760.

TaMURA S., S. HIGUCHI AND K. TANAKA (1971). Pattern classification based on fuzzy
relations. [EEE Trans. on Systems, Man, and Cvbernetics Vol. SMC-1, pp. 61-66.

THIMM G., P. MOERLAND AND FIESLER (1995). The interchangeability of learning rate

and gain in backpropagation networks. submitted to Neural Computation.

TOWELL G. AND J. SHAVLIK (1993). The extraction of refined rules from knowledge
based neural networks. Machine Learning Vol. 131, pp. 71-101.

WALTER J. A. aND K. J. SCHULTEN (1993). Implementation of self-organizing neural

networks for visuo-motor control of an industrial robot. JEEE Transactions on
Neural Networks Vol. 4, No. 1, pp. 86-95.

WANG D. AND M. A. ARBIB (1990). Complex temporal sequence learning based on
short-term memory. Proc. of the IEEE Vol. 78, No. 9, pp. 1536-1542. qq.

WANG D. L. AND M. A. ARBIB (1993). Timing and chunking in processing temporal
order. in IEEE Trans. on Systems, Man, and Cybernetics. IEEE. pp. 993-1009.

WILLIAMS R. J. (1986). The logic of activation functions. in Parallel Distributed Pro-
cessing (D. Rumelhart, J.L. McClelland and the PDP group, Eds.). MIT Press.

Yager, R. R. and Filev, D., Eds. (1994). Essentials of fuzzy modeling and control. J.
Wiley, New York.

Yager, R. R. and Zadeh, L. A, Eds. (1994). Fuzzy sets, neural networks, and soft

computing. Van Nostrand Reinhold.

YAMAKAWA T., E. UCHINO, T. MIKI AND H. KUSANAGI (1992). A neo fuzzy neuron and
its application to systems identification and prediction of system behavior. in Proc.
2nd Int Conf on Fuzzy Logic and Neural Networks, IIZUKA 92. pp. 477-483.



BIBLIOGRAPHY 173

ZADEH L.A. (1965). Fuzzy sets. Information and Control Vol. §, pp. 338-353.

ZADEH L. A (1971). Similarity relations and fuzzy orderings. Information Science Vol.
3, pp. 177-200.

ZADEH L. A. (1973). Outline of a new approach to the analysis of complex systems
and decision processes. IEEE Transactions on Systems, Man, and Cybernetics Vol.
SMC-3, No. |, pp. 28-44.

ZIMMERMANN H. I, (1991). Fuzzy Set Theory and Its Applications. Kiuwer-Nijhoff

Publishing.



A listing of main Matlab and C
programs used

178



. slongnsar 2uoy Lsddns |
SPILI VYA IR 10U Y9 XEZO] ) 1WaYSH] = b w
« (DOTXOTE 21 UOUNJOSIL USBINN 1SANO) () WMWY . © () wmad

}
0 95zvda 12219p 23y Ul

SINE N AQ paainbad jueisuod
dn-ayea 20015 §31080 IUBW MOq /7
sypoda Suiwe?| Suew woy i

YHIG IR (U SHTLS (suru) sTNVINTL L PIO, moy jo e sdaay ¢

{(noy(2) 4
(33p|NOYS) SINEIIN J0f SIUN0

hpdj 2|gnop

‘uayeameawi) uo| paudisun

syoodawsea) uw| paudisun
‘ade 8uoj paudisun
ze61]zaunoca jul
dz61]1s2unod Jw

(s vd), t6DEx0) quodine

{110 Z61 w1t =)y
{0 "8 XD) quodine
MIR1T]

)

Sd, Jeyo

{(d) g0y s proa

s ed anajed
¢ [957]) amoped gy yopady

Ta0y |
Lanjq reyd
fudald reyo
Lpasaeyn
i
1nns Japadsy

DI [telf, Ay dTew, Cdpy Ay oy e, YL

suounau Asing 10y sovdoy s

s

SPURTUILIOD 1010W 10 SI0TOR] 9[edS

‘15 ‘ss Jgnop

‘qossodz winysodz ‘quusod)2
wnysod]s qossodystmnysedys ponsada powsadys *prosodz sadz "pposodia “sodpo “prosodys ‘sadys ajynop

Loyegz ajqhop
LI0)aRIHPINOYS 3fqnap
HGLRINOYD d]quop
wunssye [ ua o[gnap

SIOLIY g7 Lo CELIS 7LD T LR TJOULLD d[qnop

FUILNLI QU0 1Q] SAUOWIU [ENSLA
YorqAuld 10f s31018 #/
:C: topuel ,_C,« SPUBURUIND ._,.Cﬁ:Q pue .k_b___m:v:,/
SHOINDW DISS]D JOJ SEiq
suonau wey indino wodui g
UQINAU UON23NYD 2 10] SIY31om
HOINRU £2/nY MO 1y sWyFiam
UOINdU LZ2TY Japinoeys Jof S1y8ram

SINGIN A pasn
eusuen wolj yedw o JOS25 oY *

SUOINAL 2isseLe 30} SIFIom 210N

Iy tize lswoawass a8ny ajgnop
Hellgs 1l puvunuosdas sjquop
Hellge1pusuruosuie agnop

[¢]swmig apqnop

‘| ¢ juoneanse sjquop
[zetlzm apqnop
z61]ea aqnop

[z 1ls apgnop
{z611z20uas0521-31qn0p

26 1] 190u212321 ajqnop
‘[z61]sindury ajqnap
‘fzetieInnwSo g a1qnop

0 NP3 A arsquasueLIpe ‘SHojouyds ] Jo ANSIATL ] RO A ‘B210)§ URUPY £q UM

RIUVATOTRIS I PPy VA EITER ]

Ve IDPIOYS j/ ¢ 1 ewn ut

20BN MO i/ ¢t oo

XD et

Sepdsip aop pasn g 2|91 }lz 1] zwrea {9 (]lz1] 1wea i pauBisun
uonnjosas mof /7 9 1){z1} 74 [o1][z1] 1243 wi paudisun

lajjng odeull 1892 z¢lq S1g a8ny Jeys poudisun
sedeunt ut 1ays Junyegs wwop-dn sjeuiwl(2 01 / ‘loozlgy wn paudisun
WI0)SAS 1311} 28usyo suij v Hooz]iy wr paudisun

lagqger@aurey wioyy ;¢ Twwmzomm_ vasled o8Ny seys paudisun
STRY2NIU 1eyYd
*IOIARYA JeyD

Jagotows,, apupouly
Jgreayosiu, spupuly
Jeryizzgy, apnplyy

Jdune,  apnpouty

<y'sop>  apmjouly

<YOWod,,  Ipn[ouly

YOS, 2paRuly

<y 3uns: apnpouly
<qqups>  Ipnouny

<AYIRWS  9pD|ouly

<ygsowdesds apnpuly

NVINNIL uo suni ¢ ‘1sey uo sund g ‘pafueyn s1 uis (zaa0uod) pg Joj 9 pue /
{zranw0s) gunuon1ad 01 (ALK, JUILOAT pa1JIPoN 1

51004 [E01LAPY 021 BULST UOHETIUT ([€ JOJ UONRIYIPOIY // /7 /f

i

fqo s pppow " gniAzzng < o x> dutre Y joolosd ut sy siy 1

"Z |UURYD Ul BISWED IIISTRY [ [QUUELD Ul 308 BISWED 1040y \

i

i
SUGINAL 77N puE d188T[ Jof ‘sanbiuoo) Jurwres| /;

[RIBARS JO 251 oY) Smojfe wesBoud sy swired JojoUW STURI| PUR ULIE //
IISBRY B JO SJUDLISAOW SHRILN UDY] J] "ULE L0 0] USAIT SPURLUILOS Im //
sadrun paatasted une1sosse Aq UOEUIPIOOD LLE-942 SILIEd| NVINNLL //

NVIKNLL //

1-1-dO

pasn sweidoid 7y pue qe[iejy Jo Suns v



TR

ULE 0} PUBILIUOD 2818 -,

udjesvown uotsad spuviiaes Jagng W} pueituo> ojey ;- (Jasadsip ((JoAaayew
()elozrrauied
1252 W uOnNIOSaE wWo J8 11 ing
(§ vaposures
(0qoa) su vagtwes wogp ddeun axe

UpEmEIIL Uehsod $aFewt agay ut 101004 st 1 jnd pue afeun 103 -

G123 doq Odasg:(daog Ouoag (SRS VHAOIN
LIS Py - 12 7Py = ys e, Jund
(sodparsadys: gy, s soda gy, sodgs u pund
(fy _E_._:S:::_:_::.:a.,.:,é.;:...w,.: = [ [Juoneanse ¢ o, - [oJuotieanae | )juud
(b1 (Axows
WIE 0] PUTLIWOD 2a13 -
‘plosodia - sodjs = 2
‘posedys - sodys = ys

o oqR, (¢l | Jueneape) - sodpe
Hopepopinugs (s o-[gluoneanae) - sodys
sadj2 - plosod)a

wodys = prosodys

e s e Jpuvunuontg — [ 1 uonranoe
YR e [puriawesue = {pluoneanse

va?.‘}/sv—t.—_ :CS_.ALQ spueiiation I3pgnq WodJ pupwio? ANE].

}

1AL (), s d01ARYRQ) I

Jeetalsmdury - [uasemesiun]|zg [ 2]swousssa
(e 2612612617 10 = TG10) J0f

‘paadsip (Josasuw

(1)alozeiowro

1242 Ul UOBN|OSII MO] 17 11 Ing

(] Nodjasites

(1eqed) sun esumes woyp odvun ayey

Ui voipsod ssdeun Jajjng ut Jopas su i nd puw 3ewn 128 ;

Oyl (daaq(daayg(doagt Ydaag (daoq (daa(jdaaqi(idaaq
‘Odsaq (Jdaag:(daaq (dasy (sixer pys vy HAOW

‘prosodia - sodpo = [2

‘prosodys - sodys - gs

Hopeynegpp (ol 1 juoneanoe) L sod)s
Sopepapinogs,{gg-laluote snow) - sodys

sodpa = prosod)s
‘sadys == pjosodys
1 Huaseagoum fpustuiiooue « [ [ Juogesnoe
| o]{uormmeaun | puetiiooutte < [ojuoyeayor

UIAY) 01 $2A0UL pUR AI0Wdul Wog suoliisod jo 128 v saye |
4
wed([}) /7 ([, == Joraeyoq) Ji
NN //
aisse]o Suisn BUILIES|-J18s "NV T §! 1Y U] SMO||0) SIMOLD J0 1S Y/

ZE1 W
}
i Joraeyaq) . Ouyqyi) spiym
Odnayem
ma
}

(ptoajuieur proa

Japgo daoqsoudpym i (8

{(plosodz sjynop ‘plosodia ajqnop plosodys

21qnop “sadz ajqnop ‘sods 2gnop ‘sodys ajquop’ SIXRZ Ul [o Ui ‘ys ‘[ ¢Juonwanoe sjquop)safessaw proa

(sumuy, seyI)o2IBWN PIOA

{proajwunyaiaayew ploa

{(proa)ehaayeiu proa

‘(oweuy, Jeyd)3wioaes pioa

(2w, reya)adsanes proa

‘(aureny, Twga)serqiad proa

{(ouwreny, 1Ry )N NS pioa

(pioa)daay proa

“(ptoa)esadstp proa

(proajsepioias proa

{akayonym ju)okoy vIswed ploa

‘(urereduses wi)oajasures proa

‘(aureuy, Jerd)yunuosd proa

[i®[} UIopuel 1o) SPUBIIWOD 5108 ;/ {(aureyy, reyo)unuuesdd proa
ajty uf yoods Burwresj soaes {(sureyy, reya)ysodesses proa

311} wiogy yooda Jurures| $153 ;; {ouwreyy, reyo)ys0dsod pioa

9[1j ut a3e saaes (pwely, Jeyskdeoars ploa

2]y woJy 23v 5108 (aweyy, Jeyo)de1ad proa

sucnezipennu redqdesd 4 ‘(pronjius proa

SINGIN W pasn se suoanau z2n) 10§ 90Us12431 PrO) ;/ J(oureuy, Jeyalaunod}dd poa
SINETIN U1 pasn Se SUBINIU AZZT} 10} 30U213jal pro {{3ueyy, Ieys)eousldfenad ploa
SINEIIN Wi pasn B Suonou A7zn) 10j 90Ud.12J21 IS /; {(sweuy, regolsunonnd ptoa
SINEIN U PasT SE SUOINL AZZNY J0] 30UI2[] 9AES 1 ‘(aureuy, reyolaouaizennd proa
SUCINDU A7z Jo S1yBiam daes “(aweyy, reyo)znjuumind proa

uotpisod 2Oy 03 ULIT PUAS SOLIS SATS // {(proa)daajs o8 proa

$5{1} WOy sowdw 193 pue SUONEBZIJENIUT /; {pioaydnasem proa

pasn swes50Id 3 pue qefiejA Jo Bunsl] v



UINRMP LY uel isad Sputaiiuos _v.::L WO puguRuG) IATY i/

Jraadsip (jeAse e
(1 elazriowes

{532 UL BONN[OSa Mo e 1 ng 2
{Thoojaswes

(uguumy) 0wy ot Wiy 28ens sy 4

1521 uttuny (Y, == J0L8RYDQ) o

f

—~—

Yzg1alsndury = fuayesweaan|[ ¢ g 1o]swswoasa
(+476197T61.-7619 0 == T619) 30

asadsip (Junyafsayew

{7 )ssazrmwes

T[22 1 BORMYGSAL wO] 1R 1IN /7

(D napesiuen

{uruny) owy vimaes wody aewt aye]

uaNEneaU uomsod sageuw 4 U1 301037 sz 11 nd pue adeun 108:

Oyma8 (daaq(Jdaaq i Jdaag( jdoaq
Oddaq:(doay daay: (Hdoay
Odoag)dasq:(davg(kleaq (SINEZ YOIV AV IAORN
{0 = SIX®¥Z
{presodpa “posodys “sodp> “sodys 12 *ys [luonvanoe)  wem ol prwwen aatd,;
0sod(a - sodd = |2
‘plosodys - sodys = ys

I0ORA0G]0,

(s o1 Juonmanor) - sodjs
Hopepspinoys. (g

s o-[oJuoneanoe) - sodys
sodpo = prosodya
sodys - pjosodys

S Huageseawn lpurwiioswse - | 1Juoheanoe

‘[olluayesmesumjpuniuwosiuse - [olueneanse

ua NEMROUM ED,STLDL SpurtiIos 13} 0y WIOIY PUTILIOD 2NE}. -

}

UFE3] PUBR URLINY Y298y, (4, == JOLsRYRq) J)

{

GREZRYSINUYIAON
RS, Pog = GOSN | Py = GOI-WII S U, u yuud
LW 0} pURLLILIOY 8A1S )/
WU 541 OF PURILLLIOD S1Y) 2415 /
RRE L
4YS=+ 1014s
qossodya - wingsod(s ~ |2

qoisodys - wnysodys = qy
SPURLLLIOD BY1 UdMAQ IDUBIIJIP 24 2jejna|e;

{goisodiargoisodys’ J¢ 405, = qorsod)o I€ b6 = qoasodys i Jjjunid
(1 Tuonesnoe|pluoneaw J¢ by = [[Juoneanaeqos Je o, = |0)uoneanseges L
OREJMOQD, (5 0-{ 1 [uoneande) = qoisod]s
e papnols, (gg-fpluoneanae) - qorodys
o1 1)&x0wd
(uoneanoeseig sindary NNIF B ) NNB1sTo|

(autoy wro.p) 2121 11 298]d 0f pUBLIId A1 R[N
Oakadsip  (Jorsaypw
{(1)eAozvroured
{AAR UL UONIASIS MO J' 1 0 [/
{1 hosjosures
10402 woyy 9Feun 108

Odooyi(doeq:daeg(Mdaag  (Jyose8 i
((unysodia winysodys, 3¢ pogy = powsodya Jepa, - powsodys w , )puud
“rjuoneanoe|pjuonrance’ g¢ s = [1Juoneanorwng Je oy = [oluoneanoeumy puid
HoRemoq,(§ - [ Juoneanoe) - wnysodpa
Hopelspluoys,(§ g-{gluoneanze) = wnysodys
L1 1)Ax008
(uoneanau‘seiqsindury NN 4 NNS1sT0|
PUBLRUGO-[OpOW 31 Wekio oy NN 0} ¥ indut pue 28eun 328
(uonised auroy woiy) asoly 1t Savjd o) puvwLLS 243 Jpnofeo

U2 YEMEBANT uONIsOd SPURLIIGS I2EING WO} PUBUILIOD 3E] // (Ookadstp  (umyesaayeus
{7 riezriotuen

"Z343 W1 UONINGOS3Y MO] 1B 11 Ing 4
{hoopasures

(205w} oa) RILIRD Woy oFeus aye AN/

mofloyy  (J, == Jotaryaq) 1

{

purLLOD {opotl 3Y) pue pueiLiwos uaasd oy Kejdstpy;

{Ongoieg
(powsodie‘powsodus* J¢ g, = powsodys I ~ pouisodys wy, yund
‘T Juoneanse{gluonsanse’ ge 4o, = [[Juoneanseppow g poy - [gluoneanoeppowr u Jnuud
L010IMog)2,(5 o-[ T Juoteanse) - powsodis
owepapinoys, (¢ o-{glusiieanoe) - powsodys
217 1)Ax0108

R:Qﬁ.ﬁﬁu“wﬂ.n,ﬁ._acPﬁZZE@E»CZZm_&Q
PUBLALIO-[0pOW JUI UTPIqo 03 NN 01 11 yndul pue s3eun 158




GLz o< [ rivenesnae) wry (1< o> [1uonranor Jypp(ss o [ofuonea

(daog{ )laay:{Jdaaq i jloaq (Yo ddeaqi(3dasq:(ilooy
Odang Odaagi{Jdaagr()deny  SINRZPYSIIN YA A OW 'O = SIXEZ

{plosodp -

odys ssedpp sodys 1o s [Juonranam)  aor o1 puetinuoen 3aid-
pposods - sodfa = [0
provodys - sodys - s

01RO (-] | Juoneanoe) - sodfe

soprpapineys,($ o-[pjuoieanoe) - sodys

‘sudja = plosode

ssodys = pjosedys

L usyeweswnpurwwioadas = {{Juoneanae

Toluayr weawuypurunwosdas - [gluoneanse
UYR MR HONES0d SPUBILILIOD J2JFNg 01} PUBLLIRICD 39BY/

}

PRI YNY 2ary NOA RN 1Eddar (1 = J0TaRYAQ) J

Oyosad
{dasyi(ploaqg) aspe

{

WINUZ s . JOI

N SEEE VT )

U JOIYS

S PYSIN YV HA O 10 = Stxwy

t
{£< o~ [z]uoneance) 33 (210« [zluoneanse Yy

t noe) 3% ($7°0< [pluoneanse )
Sopyaeyy i/

‘qoasodyys- {uayrameaujrewn
‘gausedio = {uaeauawnjoa
{usNenE gy, pe, - UdNeaRaw U pud

SINUZ PO, PG = SINEZ Py s QUIWIN {2 POy = Guu-LUmi] s i, yiuad

LLIE O} pUBLLLIOD JAI3;
K0 I} O} PURLILLOD SIJ) SALF /7
o=+ JOYe
Ys==+ JOWS
{qorsodz - winysodz = stxez
‘qossodpp ~ wnysodis — 1o
gquasadys - wnysodys = ys
SPUELINOS 3t :OUJ/—DL Q,JEM,—U(C;J S} eI

srgedsodequssedirqoasodys Jepo, o qoasods 90peg e quisedje e ey, w qossodys | jpuad

10 [ #1012 = qoasodz r
{071 41002 - qodsods
101 IS = quasodys

g i

Odoag’(dasgi(daay (pdaay  (Oyind
*(wnysodz wnysod[p wnysodys* g pop = powusodz Jepe, - powsad)a Jg g = posadys o Spud
‘I zjuonesnae] {Juoneanae|pluoneaniae 4¢ 05
= |z]uoneanovming J¢ poq = |1 ROURAIORWNY JEp0; = {oluotizanaruny pud

Hz]uoneanoe = [z]|ueyesesuanjpurwiosdal
‘1 Juoneanoe = [ | J[usxemestunpurwwosdas
;uonnedas sopstsigys  Holuoneanos = [p]fueemeawn jpurunucodal
oRez(s - zJuoneanor) = wnysodz 1
“opeimoq)a,(s o[ 1 Juoneanoe)- - wnysod(s
Sopepap(noys,(§-p-lojuoneanoe) - wmysodys

~z

JURISUOD [QdJU0d JOJoW (et ot dooY SIUSWaA0W (jZ Wi /7 ‘g7 = [Zuonreaypoe /7

J(uoneanoeseigsinduny  \ NIB M OINNSsE0]
Uzlserq(11seqolseiq’ g e ps JE 1% JC % = seiq, und
PURLILLOO-[3pOt 3L BIEIqo 0} NN 01 1t jndur pue 28ewy 128,

{uonisod 2oy wWox) 21243 1t oejd 01 pURULALOD AR AB[UI(RI //
“ollz]namBrom (ol INnuB1a 4 TOHOINNWS M 3 € ¥o%
(ollziwBm e p% = ol 1w Jev% = [ollojuSon Dpund
([zJuoneanse| Juoneanse’[pJuoneance’ 3¢ vo,
[juoneanpe ‘Jgpoy = [gluoneansce [ Juiad

= [Zjuoneanse ygpo, = |

o1’ 1 )Axnod
UEMEIUN OISO SPURILLIOD I3)Ing Wiolj puetuwmos ¥y ;7 ‘(JsAadsip  {QuinysAssyewt
(7eAsgriswm
"ZAAR UL BOKNJOSIE MOL 1R 1IN f/
{ZNoojeswed
(19350} om1 viowied woly o8vun axe ]/
}
RISUIRD JUO  MOJJUIISRULY (W w0 JOTABYRQ) JI
{

PURWIILOD [SPOUL 3Y) pUR PURLWOS UIAIS oy Aeldsip);
‘Oyored

{1 uenesnor | pluoneanse’ je'ie, = | Juousanorepows J¢ b = [pluoneanaeiepowr u )und
30108j8000[2,4(5 0~ 1 Juoyeane) - powsodjd
Lolrpepinogs, (s -[oJuoneanse) = powsodys
(L1 DAx008
(uoneaneeseiy sindury N aE12 ;)N N8180o]
PURLILIOS- [2pOU 31 Wieiqo o) NN 01 1 ndut puy 28w 193

UL 0] PUETLRLIOD 9ATd 7/

P-1-dO

pasn swieifo1d 5 pue qefie Jo Sunsy v



((pdosgi( day (Vdaay:(jdaag JUEENR Waag:(daaq doag
‘Odaagi(ddasq (jdaag:(ddoag (¢ XEZLYSINIVYIAOR

(prosodis ‘Plosodys sodps ‘sodys s ys [ Juoneanony uue o purwiLoN 3413+
‘plosoda - sadfa = |2
prosodys - sodys ~ ys

(14811 03 ansoddo se Yoy 89) jena uay; UOUIDIP I3L10 341 0} SJUBWAAOW /;
40995 purtuGs R13)p € jo - HowepvoqleL(sog-[1 Juoneanae)- - sodja
80 21 01 PIROLIOY ST udis st ayy- HovrpRpInoys, (¢ p-[pluoneanoe). - sodys
sod2 = pjosodys
sodys . piosodys
T1){uayerpatun )puennoo suuy - L1 Juorpeanse
[ o)[ueyeseaun | prrunuosung - [oJuoneanoe

UDRUMEDIUY UONISOd SPUBWIIOS 1]§nq WALy puTwILes MeY;

1

WD) PUR UBLINY 4oqesm - ({7, == 50 VEURQ) | (], = d0laRyRY) IR

{

{Bwrzqoy, Yuwnases

Aoy [y 22)q 81
(ve809¢7 » X7 i) 10}

(X (ZeXo X 19¢7 x5 wx X} 40}

(T == uwemedtuny j1

{

Ay qoi, Yaunaaes

P&} xfraaums o -2 diq
(188957419 = A} 10§

(ooX {Zaxe x 9¢z>xig -2 X} Jaj

{1 == ufeasrvaum) (1
(ospswes
418 (SINeL P YS IV A O 10 = sxez

‘qossodys - [uayeseawn]ewm
‘qoisodja - [uayemraum)jos
{UIHPMWEIHY POy uayeweawn w, ud
(U, pYy - quamwny:je ‘po, QOI-Wngs .y, Jpinyd
ULIR OF pURILWIOD 9A18);
10GOT 3} O PUBLRUOD Sig) 2418
R T )
YS=- 10WS
‘qorsadpa - winysoda - 2

S-1-dO

tqossedys - wnysodys = s
SPURLULLIOD 3} U22M13G 33UUIYIP 2] 2ivjno|ea

{Quasadjargoasodys’ ¢ by = qosod)o JE P = qoasodys oy Yl
1071 IUNR = qossodia
0 1 01YS - qousodys

g0l i

(Odsagi(Jdsaq:(daeqi(Ydoaq  (yote8 i

((wnysodjaumysodys’, J¢ po; - powsadja Jgpo, = powsodys w,,, Jjyunsd

(1 Juoyranoe [pluonmanse’, j¢ pog, = [ Juoneansewny Ggpop = | oJuoneanoewny , ypuiid

-010EIMOq2,(¢ 0-[ | juotieanse)- - wmysodyo

“opepiapnoys, (s ¢-[p)ucneande) - winysodys

{41 Mxor108

{uoneanoe'seiqsindury Ao NNSisdo]
puBuIos-ppow sl urelqo o} NN o1 U ndut puw sBews 123,
{nogsod JWOY WO} 131y 1 20vyd 03 pugunuo Ay yEnaeD 4

USXNEMEDLIL UCIISOd SPUBLILLIOD L31jN Wie ] pUBLLRLIOD Ay Oehedsip Ounysiasyew

{2)adnznizwes
“TRAR UL UOHIIOSBI MOf 1R 31 Ing

!

(. Funguiny, Buioaes

&l ]esmues . [12]q Big

(1+4- L7967 % 410 = A) 103

{e0Xi7 (TrX= X 2947 5 X3y =20 %) 10§

URAMEIUIY) JT

By Tunmy ydwroaaes
AN s fetowes = [+47]q "8

(1+4=4K" 9575 & £y = A) 10}
(T % X 96T X 4§ w2 20)

{1 == UyTMEAUIY) 1

{Zwepesues
(121501 oA BIOUIES WO oFew e AN
TIAURY U (MO]OHISTW) IATS PUP Ispu JO SoBRWI 2ABS K 1 (A o JoLarysg)
{

pasn stier3oid 7y pue qe[IeJN JO BUnSI ¥



i [lusyemesumjpuewiwosdas = { { juotjeanoe
Jnjluayeaeswn]pueunuosdar == [pluoneanse
UMAR LD

;
pauR{pie dary Nl eys yeadas . (f, e Jotaeyag) Ji
{
{Odoay Odaaqdaaq Odaaq(Qdasg (Gdooq ((YdasqOdaaq:()doag} ospo
{
HERES L)
s - i 101Ys

IXEL P UYSIN IV HAON}
Fopyses -

Wz o« L1uonuana) 99 (0570 [Huoneanaw )pw(<0s [oJuenvsnae) i (87 o« [olusneanoe )t

quusedys. [uayrucawnjavuin
qorsods = [uayemeawn]ion
(UDNE MBI PO, = USNEMEBIWN U, Jjud
KRS PP = QOISUNYI[R Poy, = qor-wmyrys u u. Jpund
UHE O} PUBULLIOD DA1T
10401 2Y) 0} PURLIIOD 511} aAIF /

‘qossod(e - wnysod[s = |2
‘qoasodys - wnysodys - ys
SPURLILIULIOY 2] UADMIAYG DOUDLAYIP S} 21ejN3jEd

{Quasudirqorsodys Jeps, = qoised(a JE iy, = qousadys u. | ywd
71410119 = gossodps
LIS« qousodys

10q04

(uunysodjpwnysodys’ j¢ peg, = powsodia JEpe, = powsodys e nand
(] { lnonreanaw [gluoneanoe” g pog, — | [Juogeanoewny Jg pog = [olusneanoviuny Jpund

wl

[ 1juoneaiae = [ 1] [usyesmeotug [puriuicxdol
fuommadaraoy sisingr, {oluoneanse = [pllusyeaeasun)purimicodas

ope)aog]a, (5o [ Juoteanoe)- = woysod)s
sopepnpoygs, (s o-lplooneanse)- - wnysodys
1 1axojod

(uoneare sindury ‘ax 15 [ )swquano

{uoneande siwduiy sy 1S ‘gismquune
LA ! A 0)suq

tsod ,r(_,u:«uC::Cu 13(INY oL puekitund aNe)::

UayEmesl uasod SpURRALOD Iohneg oy puvunues aye) - (JaAadsip Huinyasajews
N RSO 5P 4 - ;

Y(Z)eAagRIBUIED

“Z3A3 UL UDTINJOSIL NO] T AR

S(Zhoposwed
{(12157W) oM BISWED Wadj 23ewWE T, //
1
viaWIEs U0 mUjjopIsEUl  {(f, = I0IATIG) 1
{

{1 Juoneanae’ Jg po, = Suures) sye [ | juoneanse japowt w, )uud
(uoneanse spndury sa IS [ )swiguyno

f(oray [ [ Juonranoe ‘syndury ‘zadipiajal ‘TIOUNO 2 40 )stuqur

([ 1)uoneanov 3¢ pog = Sutarea) siojoq || Juoneayor [apow w Jpuad
(uonearoe ‘sinduty ‘o 1S ‘P)Swguano g

([pjuoneanse, Jo 9, = Sutwres| soye [gluoneatpe ppowa u, Jhaud
‘(uoneanoe sindury ‘spy s ‘Qlswiquino

‘(se3) “[pJuoneanoe ‘syndury ©{a0uaIagal [ IUNOD'S A JSUIGU

“(JoJuoueanoe ¢ vy, = Buleal 2100q [gluoneanse japows w, )purud
‘uoneanoe ‘snduny sa s ‘g)swaguano g/

Hzg1olsindury = [uaNemeowy]{z61o]stuowoie

(426197617612 0 = T612) 10f
*(exadsip  (unyalades

(7)akazeioweD
“[942 i UOTIN|0SAL MO TB 11 Iy 7
{
(Dwaresuwea  (Oyo1e8
(uetuny) omj eisures wioxj adewy B
}ospp

{1 pasjesumes
(Jogo4) 2u0 TIGWERS WOl 28Rl 4R ],

(1, == Jo1aTY2q) JI

uayearauny uomsod sa8ewn sayng ut 1004 se 1 ind pue s3ews 1038

&

Uzlav s JEb% = [2]om JEboe = [Z]sam w )pund
(41261 >0 =1)d0  j

9-1-d

pasn suieigoid ) pue qepIejA JO SUls




“T-d))

LOITINOY10, 0 ([ ] Juonranan) - sodja
orepappnoys (g :._:_:::n NIYR) ,/.,:_P_J.
sads e provods

sodja = posodpo

sodys = plosadys

7 lfuasenesiun|puewiuonue = | 7juonesnoe
e uayewesunipueuncaaune = | jaoneagoe
Lolluasemeawn [puewiuosuue = [gluoneanoe

Jorjod puonay e uo dutuan witiBoad | Xdoo e sty (9, == J01aEyag)

(L woneanor g vty = Junuesy oye [ juoneanor jppow w Jund
H(uoneatare sindury aaq I8 [ )SLguno

3ty [} uoneanoe sindury zasuniajas 7Iounos 9 Ay Jsuiquu

(] tluoneanaw g pog < Juiuseay 210509 {1 |ueyeanoe japow u., Jund

{uoneatde ‘sindury oy 98 | Jswquino

Juoneanoe Je oy - Bunea) Joye {pluoneanas [ppow i, Jaund i,

(uoneanoe ../.._:LE/.. S NS ) sgunno. o
Wavap {pluotieanae ssindury T a0usiajal FLMTUNOY s A SgUE
(foluonewse ¢ e, - Gunuesp aaojaq [plucnreanoe japow w, oud g/

J(uoneanae sinduny sy 98 ‘p)swquino

drerslsmdury « [uayeaneawn)fz g o)swaunio
(+1TH1Z61-2612 70 = TE10) Koy

Defadsip Qwimppaes yew

{(Z)aAezeIURD
TL9AS UL LON|OSAL MO 1B 1IN

{

(3w zwmy, Jdwioans
JlxJerowes - [+ - 2] Siq

(16A: A196Z A1) = 4) 1)

(+ X (T+X= N 19§ =X 1= X))

(7 == uayemeawn) p

(LSun pwny, J8unases
xjerawien o 4

ki

(18- AL0¢T » 800 = R) 1)
(1% {7 ex. X9gZ XU 7 X))
}
(] e UDJENEDUL) ]

{znoapaswes  ()yored
(URWITL]) OM] BIDWRD WOT) 280Ul OB ]/,

e nestun uoursod sedewin sagny ul oo se it ind puw a8ewt 128

Uzl dzlsntog poo = [Tom Je b = [zls w Jpuud o
(g6t >0 =1020) /)

()doag:)doaq i )daaqi daaq (Hdsaqg:(ddaaq’(Jdoeqi{)daagq
Ouoaq()danqi)daagi)daeq (sixes P UsINIVAAON

(plosodpe ‘prosodys sodjs sodys ‘|2 ys | jJuonpanse) uLE 0] PURLLILIOS dAI8)/
‘plosodz - sodz - sixez
prosodpo - sodps = |2
‘piosodys - sodys = gs
L0ugz,{§ grlz)uonvanse) = sodz
Lopemnog)s, ¢ o[ 1 juoneanse) = sode
(unepinoys, (¢ g-{pluoneane) = sudys
s0d7z = plosodz
:sodpo = plosod|a
‘sodys - plosodys
Jz]{uayemesum]purunuosuue - {Juoeanse
1 {uaemeswn]puenurozure ~ | {juoneanow
[p}usyemesum]purunuosuue - [gjuoieanoe
U YA UOISOd SPURIILOS I5Nq O] PUBLUIOD INEY/
b
7/ (.S, == JolaTypg) g1

‘Odangi(idaaq( Ydooq ()dazq (daeg:(dasq(Hdasq:{ddoag
Odaag (oo (ddza (Jdang  (srxez R ys NIV HAONW

Wil 0} pULUrUod aAd
<pjosodje - sodya = 12
‘prosodys - sodys = s

UOPRIMOY, (¢ - Juoteanae) = sodls
Hoprpapnoys, (¢ g-{pluoneatoe}- = sodys
sodj2 = plosodjs

{sodys = pjosodys

pasn suie1so1d ) pue qQeIejA JO 3unsSy



{
{
= ({Tza2un02 ) - [[] prounos
0= 1ex 0 = Msw
[Ncanuazgaap = [[]1a0uasagel
iy = Yoodaurmsy }
U eliget=fip- Dag
1

i

(0 == 28u)

( Arp Yoo, Juisonad () jep adiwed Jwwoaad 2s]2
{
{20, epyooda, Jysodared
Caepaopunos, yiounoaad  Jep cuniga Joouasapenad (a8e ¢ po, 28e, Jpuud b () « 28e) §s
(ode ¢ po, 93 jwund
CAUP A2A00D, Huueodd  { 1Ep Oyuun NN (IR ZADILOD Yy wiie28 )
{ (9, == x017824)

(P, = AOLNEYOG) | (g, o JOIABYAYY (7, 2om IOWAEYRQ) 1 (], = JOIARYD()) YT

== SO YmY)

N

(, Jep1o3q,, Jse1qied
P 1o8a, NN R8s

{
Laeppeq seqpd
(IEPPEM,INN WIS

,..:_.‘5._./5_.5

(LIep pey, senped
{LepPEM, INNAWE
4

Jolaryaq) ;i
Haosap

{(uapiro1ad

NI o) $pue 50 {13 K S0L 010007 = 1082

oQo’r 0008t = JowrjRpnoys

DO0PT 0008 = 10R0'MOqIS

) = UMRATIULY

30 = plosodz (yp = sodz

11 ¢ = plosodfa g - sod2

20°0 = posodys (g = sodys

1) = 1012 50 = JOYR T e OIS 10 = SIXEZ 10 = 330 = YS
HOO[= B 100 =38

(g0 = [7uoneane g0 = [1juoneance IHQ = lpjuonesnoe
(oey AL Jo, ST Jpuud el Ao, JUEDs
«, ey puud

L9070 = dulj
e vy, g p0g = ovy 4
1070 ~ WINSSqR LD
R
Hop] apyrsowan ey?

L JJURDS

{org)’ JT 195 = drd), yuud (0w © e

}

{(poajdnasem proa

{
‘()dseys 08
{

{
LS, = JOIATYRq
{
{
of
10 =[xl
0 = [xlzaouaimyel }
(ippodawies] = {X|gLmuno) 31
{
‘0= [XIsa
(o =[xl 120U }
(ypodowieaj = [x]]1uN00) J¥
H
(4+X 1261 > X5 Q= X)10]
L4 Yoodaures]
}
((§, === 1010050Q) (T, === I0laeUq} | (], « « JOABYQ)) J1
}
sdets uoneten Jo sajdurexa Suures 76 210y ;7 (L6 == B empOUI) JI
- 4 U2 e BIUL)

(Y018 {op01)Aelep

()daagq()doagi(desq:()doeq *(pdvoqi()donqi(ideaqi(idasq  {(stxez 2 USINIVIAOIN

{Odoaq (Meaq:(daeq:()daog ()deaqi{)dooq()dasqi()deay ‘pjosodz - sodz = stxer
‘pjosodja - sodje - |3

prosodys - sodys - ys

‘10r)7, (¢ o[ 7 juoneanoe) = sodz

FT7d0

pasn sureiSoId ) pue qe[ieJA JO US|




6-1-dD)

{
(daaq
(O VEIVID ON
8as” Yng'xy AQFY uise
sjo JNg I AO wise
1

’
(08T < ppuns) p
{pguns, ppog, [ywns, jpuad

o Isqe o (UNs (441200751 1 = 1) 0]

dgziligeanwuma = [z (+41 00211 = 1) Joj

(jdoag
O VEavViO DR
awryy 150y 108 7

Fos gna v AQIN wse
SJ0 NG’ 1A AOW wse

ez i)l mauwes w (11 (441 200251 1] = 1) 0§

()dadq
0 vsgvian O
swey sy 108 g

Fos gV AOIN Wse
O Png I AQW wse

{(ds2q
T vavaD O
awel) 1841 198 7
Bos” gng XV A QN wise
o PORTA AOIN wise

< (rsowreD) 4§ = Jas gag
¢ (rIured) 440 dd = HO 4o

() HOIHSTULAS DN

SO ZNVHDLES OIsP

SO INVHLAS DN (1 = wiesndureo) g
) 1304dLAS DR

BLENO'NXY AQI use

) = [rpuns

1 §as Ynq ‘syo Jng paudisun
SqEurns 3uUo| 5w

}

{WweaedwRo JUE)I0[ISIED PIas

{(Oyderdasord

1(,1Ep J00JRWn JodIeun

(. 1Ep oluawaka, Ja409ALs

4, ep aMunoed, Jiunooind
A:Evd:&&&Lou:o;&o::a
(,1ep Znjuum,, yznjuusmind
(, 1epyooda, Jyoodaaaes

« ,yepo8e, yoBuoaes

uonisod swuy UE YoBg WY 380U, OdHF IS0

119P[0 3}240 2UO a2e NoA “Aquqy {[+088 = 238

}

(Q XL W) NOLLISOd 0D /NOLLISOd 111§ uonisod renju ur paoe|d wiie 5Avy] //
"$ILICLIAWE 2ATS pue 22URdI() //

{proa)daas oF proa

-

{

H{p 1) exadind
s OP9 > 1T =) JOf
}
Glipgp > 0 = Doy

SICOWE o7T{ eI, O LONINI

{

Ly, = (-] 1-fesweo

(+41:95T=>1 11 =D 101}
(++fi9gT=>1 1 = N0y

‘0= [ ] 1942
‘0= [1-011-1]z240 }
(++1:7 =311 = D g}
(++ligp=fp = a0y
53492 Mo Yulq /

PasST stueIsold 1) pue qe[igjA] JO SUnsy v



(2t adeun pa

21 O1 SALIOUINW IAES

(oure), 1pYd)TEIG proa

{yondaweny © peg, Py 2de) puid

baa ayy puy jou pine)y, TLaps) puudy

IN

(a8 *,pog, 21y Hde) punidy

¢, U0 oq1y aFetur pasinbai Ay puj jou ppno),, “Luepis) pud)

anjea [R21 5aUFNy 198 PPUR SANVULIOJUT 318 SOD{EA ST,

(TTON = ((m, ‘sureup) uadog = apy a8e)) it

S

g

3

e

{

§
(211 93w) asol)
{
S
’
(( o, cowreny) uadoy = aq1p 28e)) 1t
31y B woyy a8ew ue 128
}
(awey, deyayypodaases pros
{
(211 28e) asopg
{
(D) e
H
aly v woyy a8ewy ur 109
H

S[1f 01 SALIOWIDUL DABS //

{ouretry, JBY2)23BOAES Ploa

[1-l1-tza80) -
0

{

{
REE B
0'1= [1-y)sindury
9= It = D sog}
{44117 w0l 1] = 1) 10]
J=
RRERY

1]
3

{Pros JIngaaayeul proa

a0jta B2 19BN 108 ppUR 2ATILIORN AT SaN{RA IR cosszAl-O0-dee) - 0= 1-4]sindury }

(++09 =0 = 0 05}
(+o1Zl V=D Ry
=

Irjut
1

{(P1oA)2A033ELW PIOA

A

8y azeavgosy; H{0$ + ("9 T AreuIns pg UL = | 1-i}[1-t]z040 aspo

WSty yos. - (0 + §'9¢ T ArLRLINS GETIWW = [1-001-1]12xa

odesaaw

(1

L A3y JI

{

Jq: 91l 1-D)fes915(1-D]etowsd -+ Aeirewns

(- +q g 1= ‘0= 4) Jo}}
(4R g =) =€) IO

7y SPOD JOLID UE LN JJRUILLD] 4/
Hyme8

{0 = Aeltewuns}
(31 T 210 = D JOJ)
(e+L291=00 0y = Doy

‘Resrewmns dqnop qe o
}

(AaUPIyM JU1)OADZRIIUIES PIOA

*(,, '3y 03 Aay Auw ssaid,, Jyuud

{(>poatona)dsutionoydesd ¢ useq 30110 sowdeln, ypuud |}

(1018 ={ sponIon) i

/x POLINDIO JOLID UR ;

‘Oyynsargdeid = SpoIOIR

7 UONEZI[PUIUL JO J11S3 PO 4/

Y, opoudy “1alpiz ydesdinn
$pRas JOJOOXEL ‘AXBLI XXRW O[O0 A 'K T Ul

B

‘apooaonan ‘epotsd

1DALAQ = Joaups

2p0od” 10113 *2poLl “I3ALIp Jt

uonezi)elul owydeiny:.

}

{(proa)mut pioa

ot-1-dJ

pasn swergold 1) pug qejIejA JO Sunsl|




Lo g ey 21y regp) Jueas)

(1) e
L2 pruahinog 9y P U o), Lapis) jiudy
}
UPIIN ((,4,, ‘awreny) uadoy = apy ey p
2NqTE Jeol)

tEur
}
(e, JeY2)SeIqlad proa
H
H
Cia) peyy) asopd)
{
Cone s BEINNER A 0 - DIlZINNBm
Lot s NBa g
S0 1% = PHoINNWS R
SO PEEE 1 PR
010 = Dl
) L0Tye = Hsw
C(OR QR LU0, 10 100, 1Y (e Jueay 0t (@ R LU Jeg e, a1y pel) Jueos] )
(++1761» 110 =1) 10}
{
S(1) uxa
N ::,.. ,u_: ﬁotswﬁﬁ ur: ﬁ:: jou —u_:OU: ‘.Cnumuwmv f:f&
13
E
CPINN == (4, awrewy) usdoj = 2y peyd) p
o'qe teuy
S
}

Jze U ZIN NS oAy o[qnop  3jY Wioy uu 21T S0y SPf81om 1938

{aureuy, fRYIINNMIOE proa

T3 qrey) oS0y

0712 = [Tl ] puvwwoniure

3 154 = L1 preunuosuue

15 - Loflipurunuosunm
CLOW R R LSO, o0 JT6., O0Y (R JURdS) )
(+e1352 15 120 = D 4014

. (X
© (U afty pasinbar oy putp jou pinosy, “wapys) punady
’ \
CTEAN - (LA, dwewg) uadag = a4 {IR)))!
e oy
ot
}
5]t} Wy SPUBUNUQS 128 //
{3tuTLy, fego)CuIu01a8 proa

{
Sy qiTy) 980y
{
0144 = [1][1]purunuosuniz
0 1% = Iplli]purwuioousse
T(Qa e Lg% Jo. T HEE) JURAS) )
(42136215 10 =D 1oy {
(1) X2
7 (.U 9yt pannbal 3y} puly 100 pnnyy, ‘Lepts) putidy
}
(TN == ({4, 2weny) uadaf = (1] JIey)) g
‘q'e yeoyf
oy
}

{1} WO} SPUBIMIOD 108 j/
{swreny, Jeyo)wwnded ploa

¢ (g1 28t) @s0}0)
¢ (yoodauaeapiy © pap, o1y adr) Jurosy
{
D) o
(oY pasinbal ot puy 10U pInos), “Lapis) yuundy
H
CTIN == ({4, swewy) uodoy = 211 988)) J¥

}

{ouureuy, reysyjoods1sd proa

s (opy 29e) as0py
< (a8ezg * pre. o1y o8e) Juedsy
{
(1) wxe
¢ {wapy pannbod i puif U pinoy,, (Ieps) Jiurudy
}
~e (), “owrewy) uadoj = 211y d8e))

(111

-

[1-1-dO

pasn swreigold 7y pue qeiejA JO SUiiSy



SR
I islzwes (o « [5J1A] 2asa) g1
) , }aspo
0= x)[Sfram (Grg < I3[ zake) g1}
(418571 A0 K) doy

!
‘

v

)
(#4X 191 > R0 = X) 1oj
{
i
C({XJ(A) vaawen 1 c([x] {8 wes S0 X 91+ 9¢7) fexadind
{
L (XS] e
aspay

poL g1 = Il hwes (of < AT 1esa)
}aspe

081 0= XUATrwes {op7 < XYL 1osa) 1}

(A7 >A = 4) 2
3

(54X 9] » X5 = X)W

U215 2y) uo et 5280 jnd
AKX qut

}
(2 adsip proa

() = 28 aspo

= (uyeeg) g
(, (U 10 X) Yrug AW ST sif) o 31 wody 28w aye o1 Jwem nok ogg | Jpuud

k0108 = Jolaryayg

{9y wqor iseiy () [SALL (OS2t (oo Jen (T urunijwior jurea jzuy] | hoqoyuiol Jues jzng

w, dac(S) eadayg) * wopopaseiyoaaes 4 sodum(p) s [opaise{Jy)  )Saun] | CEagyNR A WROZA0][0]

qOAISA ] TR R (0p 0) MU jues ok op ey U U N TSNLL 1 0 M LSVIN Sepoy w Ypund

H

(PIOAJIOPAGIA3 PIOA

s (aly 1rey) oLy

'q = [1]zaewnos

e (1] 4900
(4 T PO P, U IR RS )
(++1°761> 120 = 1) 107

{
() uxe
_.— —uuhﬂvuh Urt ﬁcc jou E:GU: (.r_ovwmv,.::.—ha
}
CTINN == (4, awewy) usdoj « 2y jreg)) )t
‘ge un
T

}
61 ]ZINNIBiapm 2lqnop 21y wioy uu dise]d Jof siyFiam 193
(ouruy, Juyo)I2UN0n)ad piia

{
{1y e 9501
¢
L0144 = [1jzoouarjel
D0 14% = [ ocuaiages
L(geg e L §%., 1Y ey Jueosy
(#1261 Vi = 1) JOJ
{
(1) uxs
< ( uoorg pexinbol 11 puyy jou pinoD,, ‘uspls) putsdy
}
CTINN == (3, ‘owewy) uadoy = Ay [1eff)} !
Qe yro[]
B
}

{retllzinnuon 21gnop a1 woy wu disep Jof suiBlos 198 //
(Fweyy, Jeyo)eoL13jeNal ploa

RSN

(Y reyy) 95019
10 Te0 = [7]5EIQ
1A = [1serq
10 (% = [o}serq

Ay

pasn sweIdord ) pue qe[iejA JO SUInlSl]



!
COory prey) a3
{
TG UIETL IS L%, Y TRY) putidy
oA = q
sy = v
!
'
Go1ig6 s 10 = 1 aop
D) e
< o pannbal aygy puy jou pine ), C1opis) puudy
!
A
(A, 2weuy) uodoj = afy e Ji
qe oy
S
}
{ouwreuy, reyo)znjuusind pioa
{
SOy, U Swiis sy ajy uado Lueyy, uap)suiedy}
as[o
{
oy aBruujesey
SS9 FRE9L: aly RERITR9. T q Siq)atinyg
!
({am, Qweapuasdoy. s a8wvwip
}

{aurByy, JeyaYdiaaes proa

{
oy (reg) asolo)
{
T LR PO, P, D1y ) puiad)
Hihoo = q
*ifaetun v
}

s {,woapy paanbal a1 puty 1ou pinoed,, cuapss) Juridy

S TN 2 0 RV AR R
{

REPRIAY
I

)
(TION == {{, v, ‘dwsuy) wadey = o)y PRI I
‘gle

(aweuy, JEUIHUOIRWIN PIOA

{
$(o1y pey)asoly
{
H{(p UG 0, 2Ty BY) ulidy
¢ 1]{fjswawade ~v
}
(raze1>0 0= D 10y ,
(16210 100 = Do)
(1) uxa
¢ (L ucopy pohinbal sy puyy jou pinny,, “Lopys) puudy
H
(TN == ((aw,, owlg) usdoy = a1y 1ei)) J1
‘e yeoy}
o
}

(oureuy, IBUSIIAGGARS PIOA

‘(pumosolu

{00000TABPp  {00CT)ARP
(opo9Ipunos {(oo000z)Avep  (000T)ARIop
{oons )puUnos

{ouo00D)Aeisp  {000TAeRP
(opppIpuncs }

() dasg pioa

-

cyar e oy stawn unysay o S (x]IA] zuaes A, 91 X  91) joxudind

{

gL (x]{A]zures

cl-1-dO

pasn swerdoid 7y pue qe[IeJN JO SUlISI] v



(SINBZ[OYS, P2 = SIXEZ PO = ]2 Pl = S Lund
(pposadsplesodja plosodys” J€ #0 = plosodz Je 495 = plosad{d J¢ prg = plosodys Jpuud
(sodzsodyasodys J§ $o4 = s0dz JEpop = sod T o, sodys |, ypud

|z Juoneanpe [ | juoneane| OluotEAndE’ JE 100

{1]uoneanse Jppog — |ojuoneanoe Wpund
(g1 )Ax08

= [7Juoneanoe JEpey =

1
s

{piosodz 2quop ‘pjosodys ajquop pjosodys

ajquop “sodz apqnap ‘sodja 2jgnop ‘sodys 2gnop "SINEZ R[S 1ULgs W] ¢ juotizatiae afqnop) saFessaw ploa

{
t{opy pey) 250}
{
$Q e LRISTLO% S L%, D1 (tey) Jutidy
rzoounisal = g
frjyoonaraged - €
y
3
(41176110 = D a0
C(1)ymxe
M A:S,,_.ﬁ._c ﬁu.:_:uwu syl U:C 3O U—SOO.. h.EwUHm.VrﬁC.CQ.u
}
(TN == (o, sureny) uadof = ajy ey} 1
Qe oy
9
}
(aureuy, Jeyojoousisjannd ploa
{
oy rey) 2501
{
(g B MPY PY, P11y Treg) jund)
‘[1]zaounoo = q
1) 101uno0 =
}
(- 161> 110 = D30y 4
W) wxe
* (o pannbay a puy jou pjan)), “Lopis) Jrundy
¥
CTIAN o (0, ‘Sueayy uadog « 7y {12[)) 31
‘g
R

(sureuy, Jeysuspunosind proa

pasn sweIdoid 7y pue qejejN JO SuUnsy v

P1-1-dD



}

ppung o tu o g R agnop {elH sy ognop i clqnep s a[qnop |ss ajgnop) 3f ploa

(A0 )00 - A SWutL 10 18 Tuaous Joj ss 30|

UDATE B 10§ SO2LPUE 0] U02 wing Losoduon 1-§ sunopad 4 0unoun ., e

ey

‘00 Wnal

AN 2 A+

09}
2519
COE-5) O - (-psmadi O - (x-1s)mod)s D3o1 180D - 1 =00
(1 =i ) jrasp
AKX = 09)
(==8)p
001 2[gnop

({ 2[qnOp "X 3|gnop 'S S[YROP) LS d[gnop

{UXSINYONS ‘s o130
UAAET T IO SAAQBUEBA 0] J0 PN ONS [MIUSWEPUN] 341 stUnIdd INHONS UOHIUN {4 ppx /

-~

3 und

AeX )
asp
o {(sydop) =1
(t =i s) Jraspo
KEUNITE IS
{Q==97
'} sygnop

s (- (U Ined) 1~ (xsimod)s

}

(X 2jqnep X 2[gnop S 3]4NOP) WO} 9[Gnop

{A X INAONL s 2180]
DA R 0] SO[RUEA 0M] JO [N HONL [RIUSIRRUR] oY1 STl IWHONL HONMUN [y, 4y

INHINITdWNT OL IS SNOLLONNA 40 SNOLLINIAAA SNIVINOD #1101 STH.L /

17ONYBA WNIRS 98]
Spanes woyas (7an[ea < [anjea) Ji

}

(zon[uA 2)QnOP ' [SD[EA JGOPHX R S[qNOP

CUSOXNV I SA[QRLIEA 0x) JO WRIIXTI QYL SR [NV N YOO 4 ys

{

LZonfeA WIds 95)9

]2N[EA WAL (ZON]RA > [IN[A) J1
}

{zan]ea 2gnop ‘{anjea |¢nop U dIgnop
CAOINTIN (Sa1qETiza 041 JO UL 3L SWINGal INTFN MOUU N s //

JYrestosiu,, apnjouly
Jgreeyhzzng, apnjouly
Jduue,  apnjout

QT 00owW,, 9pnouly
<'gHpIs:. apnpouly

<Y OIpIs , opnouUly

<Y YRl apn[aUilY

/%
SIWHWILNO
SWHIN
TEXETOISHOT
NNOISOO
SSHAONTY:L
HAHLHOHA
24
188804
WAONS
WIONL
IXVIX

INIIX %/

gxtieiiilve ¥y

nE P2 A ABSqUOPURLIPE //
‘AINOGIAPY AB0JOUYDA [, JO AUSIAAIUN] RO A "SUlIoUBUT] 10D puR (B3O //
661 ‘eol01S UBLIPY Aq UTNLIA

NOLLISOdWOD-L-§ NO ddSVYY SWILLSAS AZZNd #

1-2-dD

pasn swelsoid 1) pue qe[iejy Urel JO guns v



: H

sapou yndino e 10) 7 (e ol 0= Iy = oy

(L apgnop [y aignopf I aguepsoz [ a 21anop)z expgBisao) poa

KURURS QFIR @ ETYAL

{0} = [p]a oynop

{ ‘§1 ‘poxd ajqnop
{ "AAA 2gnep
(([fums-pdsa- o 1) o1 = [le “AALA s1quep
0q: [Fruns = [funs CLAAC Agnop
Jrhw, 0w« [funs = [Mums g agqnop
(+ 15U 15 = 1) 40 L algnop
BT
‘0 = [Nuns }
H
Coelig el g = gy (u s wu (][ ]a 21gnop “ous ajgnop ‘[Jaq 2(gnop ‘{lx ajqnop s sjqnop ss A[GROPISSIPOULL) PIoA
Jygwns apgnop
6T e UL Burwiva| Judosap Wwerpesd ojdurexs Aq s(durexa ‘spou i
ERRE £3042 10 520p (W‘sm Ul “Gq Y WSISSAAON T B VoMM Luxax /7
!
({1e apgnop[1q apguop Thvy aignop[z6 11 T 21quep)nNFisdof proa {
wingg
{
v sindino sustieanoe pue q seiq Sy sindur g siydaa g {
1a4e] [eanoU ¥ Jo ndine M) SAROolEr (UG AUNNDISOO ] UOIOUT 4y ex // CC-00-dan Ty Ssyauowm | -0l A A A sshunous = [T-{-1TAAA
(441 Wy 1] = 1) 10§
{ 0= -0 ARA
LIl }
§ sopou ndino [ 10f 7 (i fWen T =iy }
o { sopdwrexa fre 10y /1 (o e N =0 40)
6660 = Tl (< H-0l-dad g A
o070 - TEAh-dac o - DOl . ;
SMAA - (O - edm _ _ UOLOURY//
TMCLULLAAT - MAXA (uyur w oy d e p] (1A & 2tanop Tell] a 2ignop {1]T1X 21an0p 5 21qnop ‘ss 2jgnop) qaypiBian pioa
(-
Q- asmedy - (Exsivod) < ()1 - (=axossod) (d -0 sved) = naLa
dpead o (1w pmss o (- (- s ismod) poasd) (-1 sshaed = TA {
(e TN wunouy = ‘wnga
} ¢
(v =0 M sy D0 1) JOF {
O Ty asjunou (1= A A 4 ssjusous = [ X AL
apou fa0f 1000 d§D 7/ 1-fag- LR =9 Cott S0 8 O] == 1) 2QY
$ 0= 0AKA
{1 - (811 ssimod)pord - poxd }
(-0 18] (18] whuow - ) sopou ndino e 4oy 7 (el u=s iy =00y}
H sajdwexa fedop 7 (+oid =5 Y1 =) 10J
(¢ w8 (] = 8) g 4 =dm
pnpead ajes ‘[ = poid o

pasn swieigo1d ) pue qe[iejN Ulell JO SUnSl v




]
3

s = ygea
H
(e < [rhown
(el (Hze spusomn = s
}
(+51°261 > 170 = 1)1
W0 = HEA
N
{z6 1] apgnop
‘ifea 2ignop
U0 1-XBW © Jo indino saiein ;

{Jzax apgnop Tlze 2ignop 1AL Jgnep 95 2JgRop S1L3 JUSWGURND Pioa

o

{
i [ilepmos = {ifiumon {oea}- s (qre)
Whbahum = [y (se1p o {g-eisqep) i

{

A im
O+ [ = [Hiunod
il = i]oouniagag
¥
(ovyy =< (- ) !
Jeountapas = q 1%« e }
(441 UL 500 = 1) JO)

e 2Qnop

“tul

1761 = wan

(3a](¥1us J1 SZILIEL 16F51G J1 9ZIUAXEW) SUOINAU 1-XEW 0] SWS1oM sae[nate);/

}

(oeg) 2(qnop ‘A 2gnop ]x aquop | |aauaizyai opqnop‘[Lmwnos W] Ay afqnopisuigur proa

{

tiingol

4
t

{
(LA T Uy asyuuom [-0H-Y1A XA ‘sshuwous = [1-N] 4] 4 4 4
(41 UL 1] = 1} IO
0= D-HIAAA
}
sopou indmo (e 10} 7 (el U= 0] = G oy }
sojdwexa e oy ;1 (+o i = 1 = ) s

REREC

}

vonpungy (du uue w1 AAX a1anop (][] A aignop {z6 1K aimop s o1qnop "ss 2jgnop) 155533 pioa

NN

(([Muns-ydxa+ o71) 01 = [{e

Dl + [Juans - [fJwns
{1 WL 030 = 1) 40J

‘0 = [uung
)
(s+l0z >0 = D10y

{{z]ums ajqnop
'8G/ = UL
bt

£-7-dI

pasn SuieIsold ) pu® (B[JEJA Uurewd JO 3UISy



XU ISI jo souf] Jo 1oy ()RS = W

{q)az1s = Qs
SULUNJOD PUE S04 S32UIRW J 37159, (T)azIs = Bs

(zduiy s (duydiey
Ltdurg)di e
(Z)di-s

(1)dr-ss

2+7/du = [du
‘z-zdu = du

(dnags. Em;:.m;;_

sRBm Sutpuodsaon ¢ pue sindus ¢ seYy [2 0905000 100 £ 0] = d1 odwexa soge,
sdie gy smdug iy sy spuauodwos moy jo sopaa st die

udInA A/ /0y [EIALEpUTy  Ju 1ndino ay ststg ] (juesd)
WOU-) [PIUALLEPUN] JU} S ULOU-] ‘g PUR B SUCUR|AS A2/N) JO Uoiisodand ] -§ suiniai (RIS SsING %
{dnuy = o uotpouny

08 000 000, . a0 ” I 404 . 00,0,
::i e ::;v:,c _ :«:&:: c :.w:: « :~ o 0 0, c\: LN M‘\cc\cc 0./ 0 : 0 c\ 0 0 0.0

070 ©%0%0%0 (O I o\oo\w
NOYIAN K220 TV INGAIWVANAL %%

; 3 00,060 z . - g 0,7
110 (8 G 42 0%0%6% %% 6% 6% 0% 1 0 0% 1% 6% 020% 0%

_hm.cc

pua
puo
S CCrDeas ) uaou)sshaausous . (Mo
u: )= 10g
Wi =1 10)

paads ayp Suisvauour xoj 20rds Jo uonesojeaide,, (UUSOIZ = 0

NUTBIU PUODIS JO SUWUNJOD JO MY, (TS = U
XUTRW S Jo sout]jJo ung, (s = U

SULLNJOS PR SMOT SAOLIRU JO 37188, {B)041S = BS
I puE § Joj sisjeurered aie is pur ss ‘(quely)

ULIOL-) CRUDWEpUnY 9t SUia HLiou-) 4 Piie ¢ Stoqr)al 771 Jo uenisodwnd [ -8 S {GRIs'ss) 1$SS0T %
{4 135°$$ 118880 == O UOHOUNY

0.0 G D
o ¥ )

PRI
o o Ol ot

9 0 Lo
ARALR S :OA {

0 153 (<] 23 . 37 LR IPR
22 52 0% 0% n% e o 0.0 0o 0 oY 0 o 0.0 4 o%%6%0% %64 D,

ETNY S Q c\c o o wu \6\./.\0 (L4 e\c&: o\o\c\c 0va

NOLLISOdWOO L-§ o&ﬁv

n 497 5 y 3o
262620202 0% %% 0% 0% %00 %0 6%0 %% o

LA
NAUEER

pu2
{1\ “and ‘sjunous - a0d]

diy = 120§

() = A0}

)zs - [d'dd)

131owrird B ST 2000M TN H0I0AN UL SIUIWAPD JO G0N0 [FIUdUMPUT} ) SIS (X7S)DAAINVAONS %
) (X S)PRAULIOUS - 10D} UOIIIUNY

/040
J cPc \ca\ oo 0%

WAON-S ‘_/.ﬂ_ma,ﬁr,\v,._,/ 9070

§ ; ' . 0,100,500 o 0040
049%6%6%02 07602 0" 00 0% 19 0" 1% 126 %0% 0% 6 0% 0% 0% %0 b % " %02 0% 190% %02 0%6%%0%0% %0 0% % 1l e Bt v e

00,9 01,9, a

. { a0 (. 0. Q80 0 ;rc -0, 0 ci_\o\ o
1620%6%0" 0060 1% 6% 0%% u¥ 6 0%0% %6 0% %1 0% % 0" 0”0 s 0%t

%21 2R O i

pus
LO-AT - (AT 9 (1 - (-1 Sk D801, {{8)50141) - | = 09

as]?
KX - &£4X = 00

] === § JOS|3
H{AX X RW = 001

0==5Jt

pud

1000000 = >
Q=>A
pu»

NSl {]ews
= £ 0~ X I0) YOIy XIU( VLV IN AQ SIOUS 3W0S PIoa®e, (0000070 = X
0 =X g

Auaa) aanedou ¥ SNyl 1°g =

1eppuresed € 15 229ym ‘S PUE X JO LLIOUOD-} [PIawrepuny 3¢ suial (KXSJIWEONS %
{AX'SJUUOUS = 0J] USHIUNY

262 4%5%0%0%0%6%6%6%0%6%0% 0% 6%0%%6%6% %% o%a® 2%0%0%6" %% %6%6%0% 0%
' Q040
w). AONS % \o
%62 005%%6%0%6%%6 %Y 6% 0%6%6% 1% 6 %% %0 %0" Y% %% %6%6% %% %%

pua
AT - A9y (1 - X 8)+ 1801 ((s)30171) = 3
Is)2
‘A*,N =1
[ = 8 JIOS12
.?JQ:_E =)
O==83

S20LRL 2 UED A PUE X %,
1ojetueled B STS 214m ‘A pUR X JO ULIQU-) [RIUSTURPUIY 31j} SWUM)I (AX)INYONL %
(Ax's)uLiotn) « ) uonUny

T S 5 i ” 5 o . 107.6/.0/,.040
9,49 (%4900 02620969 620021 %0%0%6 % 6% 00086 % %0 %020 %0 % %% 0% %630 0% 0% 6% % %0%6%6%0 %62 5% 62076 0
P ‘- / . 5 T i . A . p 0000, B 6 O/ G007
WUON-L 260560265 0%0%0%0%0%0%0% 0%6%%4%0%6% %1% 0%a” 0%%%%6%6 %% %53 6% 0%0% 196%6%6% %% %6% %" 0% 0% 0% %%

F10°25013001018 "k “BI[RIISTY “AF0Jouyna | Jo KJIISAILL RISGINA BOICIS UBLUPY AQ UMM

Buissaooad eanou Azznj 1o] suonpury vV LLVIN

I-T-dWN

pasti stueIsold [) pug qE[1BN urew jo Suilsl v




{(L)azis = [bbb]
Wxjans - [ddd]

A PUE X 40008 JO ULCH] astmod Kede G Wit (SN S AV VN OND ©
(A'N'sIARURUIOU = AU :::uc&

2000”7 6% 0% 0% 0¥ %020 6%0% a2 5% 6% 6% 1 0% 0% 0% 02046 % 0% 0% 0%

2o

2&3/_.,_. AVAYY  20%0
O O :\__ c 0 C :\Ot 0 CC.\_O OCOOCO\@OOD\ \O\-.@\EC\QC\:
pua
{0y ‘aup sjuuouy - auw
diy =110
= Aau
(7Hdd = d

x)pzs = dd

opwrd RS 210G Y 101008 UL SIUAMIDD Jo ULIGU-) Jeiiauiepuny ayp siimal (XSIIAWIONL %

(N SJASAULOU} = AU} LOTOUNY

A 0 s
o.:c c_ oc\ccéc i oz O - c ::::

L0 G , ‘ot A
®ul o0 %00 ¢c=ccc@.2 SRR a\ca\a o\:coco\o\c\c: "6%0% 60 6™ r%a%

WHON-LIVIIOILDAA

0% % 6% 6™0%a% 6% 0% 0%a?

Gonpen Qoo

G” "0 0% o o c

3 ©
Yo" 0% % u 6" 0% o0

P R 0./
22620200 0% %0 %

pua
pua
(Fnn
10 = $9 80 - (mmd' Do
puo
SY [J8 J0] 510310012 JO Wnso, hsis ¢ $3 = 53
pu?
pu2
‘6660 = (D
t<®Bug
pus

0070 = (Hm
0> (Dt
AV A 33P012,0U0 - (D3 - (D
TAULUs DA = MUA
183 (1 - (Ovaas) ({0 18) = (AVCLLG

L (o)L ,Ex;,,u, {1
SIRERN (3128 é posd) ({{m-1)oss) = (DIAAU

poad () (-5
Hinw (D% sjiuaom = ()
w10}

pus
S - (8N ss)poxd = poad

(8w ()N sHuuou = ()
wey -~ 8oy
1 = poad

7238049 + JbsK

G- A = 2ITOLR

S M XISTULIOW “$S)OIAULIOUS = &
‘0opeg = 9
Y = X
dig e ) 20§
sauay | - Jed Jof

‘0 =92
ﬁ £)qq = vq
(Fomm =
S2POU {12 10195 Uy = (10}

H{SOUWINWSOLAZ = D

Uonesipiul pueg,
puR

JISSSD] = A
G e WIBIOU S

{qq W'

puo
Q' XIS SSNSEE0Y = Al
670 = out
9 > uidrea ji

“{qq)sz1s = [udd]
»m/xvv‘\mm ey ms.n:
uonESI[EnIL LI}y,

apou ndine yoes 10 “Bunes| apduwiex2
Aq opdurexo Jututopad Iy 1-S 403 vonnos arunxoidde spury (man ‘sut ‘sawiy qq Y BS)SSHUONT Y%
{man DUT ‘SIWIY ‘qq K “ISTSSSSAPOLBY] = A BOLIOUNY

%6%6%6%6%0%695% %% ?a acy 6% 60202506 % %% 0% Yo% %6 % %% %% %% %0% %% %% %%
SHAOMLAN TYANAN AZZNA TV INIWVANL 404 ONINIVIT LNIDSEd ,_.Z\:Q«QO @\e
26%41%6%6%0%6% 5% 6™ v;t ao 946 0%% %660 1% 266 0a0 0% %660 %0 %00 %60 %0 %0 % %0 %% 6% %% %%
puo
puz
P Ces o s )avatmous={ 1)o
u ped a0j
W =1.140j

|

poads ay1 Surseaout sof adeds Jo uoneaojeasdo;, (U'UNS0IZ = 0
XLIRU PUOOS JO SULINIOD O U9 (ZXS = U

H]

- 1-dW

pasn swrersoid 7y pue qe[iejy ureld Jo Sunsi v




PO Lofa;,  puUd
pu»

jonuiul = (apot'y)jos
ENE]

(A)XTIL w (3pouryijos

1 (joojunw

Xadu 1oy, pus
pus
1= {11oa
2512
= ()02
mp < (s

XDIUT| == 1 IO

opout)g = 8
oyppady = x

$IPOUI | - PPOU 10§
UIZOE | = Y 4O

NI [ JS0L07 e [OO
{(SPpOUTUIZIANSOISL - |OS

(g )ans - [sapoutxai]
Hwiudgens = [xanruizaa]
Ly o= uiady

ARl NIV N 0T UoHnjos B pul o1 totiisoduios-eyd]e [BLUTIIUE SaST U0NDURY $111 9,
{51y Ipotuofos = [os UofdUNg

ool 5202 6%0%% a2 00 5% %% 0% 0% 6%6%0%0% %0 %
NOLLISOdINOD Ix
VHd TV B2 0™ 0% %0 6% 6% 00 0P 6% p% 0 oMo p% 0% 0% 6% 0% 0% 6% ¥ 12 07 %% 1% 0% 0% 0% % 0% 0% 0% % %0 0% % %0

N I0pee pue
Jpott gy ey, pud
ooyt = (apouryjas

XU 1 10f 8 PUD
pus
- (D00
o8]0
(A = (1100
(s < (Ox p

NI | = 1 40

(apot )] = A
(oypndy? = x

SOPOU; | = SPOU IO
UIZAR | = 3 JOY

xR Js0aaz = |03
(SOPOUTHIZAL)SOLY = |OS

(£1)°21s = [sopouxan]
{unsdy joars = [xoyu‘uizal
LY = wudy

e = (oS VININIXVIA %
Fad NIF-XV I JO woninjos 1s3jeaid ayi puy 01 vonsadwoo-eydfe spuswiapduwn uonouny SIY 1 9%
(¢1'y yo1jios = [0s uollpun

0 00,0 0 (LS?) 0.0 0696%6%0%%62

' \-\ p
WLt n% e 00 6% %02 6% 0% v2 52620 20% %% %% 0% 0% %% Y %Y

696%0%0%6%%%0%6%6%0%0 %% %
73_,:%&&_20\,%: 7&4 c\ca\w
o

YRTAOR C B0 00000 2186% %%

‘. oo . . y
H B, B G0 o:: 0 0,50 0 24 \.,.\c C\c\c 2%090%%

AR AN AT TR Yo" 0%

‘R8T 0 \A.\c 7o ov\o@.:\o Y070
(pm)osAagie = Aol

pus
‘(508 *(1)z ‘sypmouy — (1o
981 = 150y
{AUIDIATIY = SOS
pu»
(XA sunow = (CDawm
bb: | = t oy

(2)ours = [39)
(A)ozis = [bb*b]
{x)azis = [ddd]

2 'L X 101004 Jo uuow asimutod Leue (€ b Jo Uros JOI03s T SRl {(AX ) AVAYVINIONLL %
{2/ £°x's)pqnsuLIou] = ADU} UONISUTY

Y ra . r) ’ 70, 0,

420962 %02 0% %% 0%6% %26 %6% %60 %o %000 % 0% 0% 0% 6% %0 %% %00 %% 8% 6% %%
Fo g ;

EMMO? LAdND %%

06909 %%ed 0%0% %% 5% %0%6%6%0%

AT

pu2
3% (A ‘shulom = (g
bb:y = 110§

pasnswierSord ) pue gefigj urew JO SUNSI|



t-1-dW

1.10J05 puo
1)s jiog, pua

0 = {1y

= e

0=

P (1)
E\;J._v— <. 1._0;

Z <Y 10jeq pUI

UIZa1 1 10j &y pu

pua
P (s = (s
ENE
(o = (1o
oudy » ({wm-{1)x Isqe Jros|e
A (1o
RENC N
(DX = (m
oegy o (Dwm-{0x
U234t = 110§

(opouwy K] = &
OV = X
y
NOqut} = § J0J
©sopdureNs Lo (e 10§94,

ASHBITIUY | 10jog, pUd
-y
0=(e
HERUOS
EIORN

WL =1 10]

8B SQPOUL | = JPOU 10}

CPOD = drapE,

{SOPOUTUIZAI)SAUO = Y1}
IERICERETEY S (1] < 2NN

LJARINOD = AOURIR RIS

{(2poU NIZIINSVIDZ = I2IUNIOD

{g)a7s = [sapouxan]
Sy 9218 = [urzaINou|

12111 ® pue Y] NIN-X VN J0) u0injos E_WEEP_&L: SINH N e sl uonoung siy yo,
(omypgp v )swqua = |1 ySom| uonoung

S “ N - . . PPN W 00 L0000, 0 500"
YR i 06052 6"0%% 0% o 0 0902 0% 6" 0% 0% ¢ 0% 0240 %% ot 1o W% 6V 0% 0%
SINAIN %00
O f; O ‘. n, z t, ) 7 UG M DXL . I ALY IRIEA Y
Qoo 020 50020000 o 6% 0 0250 6 e 0% 0% 1 07 % oM 6o 0% a0 H M0 e vt Yo

3 30j 9y puo

apuu JOj 9y PUd

pua

{{jooluui o (spouy)jos
280

HAYXTIIY, () = (apouy)jos
[ (JOO)Unm pt

XOJU § 10} 05, pU
pua
REAU By
aste
(DA = (Thoo
L < (r p

XU = 1 JOJ

(apout)g = A
Lpundy = X

$9POU: | = BPOU JOJ
urzax ] = Y JoJ

XN [ JSO8RZ = JO3
{{SopOUUIZA1)S0I0Z = [0S

“g1)ezs = [sapou'xasu]
S(unudy )ozts - [xauu‘urzai)

v =y

A NIN-X VI 10§ uonnjos e pulj o) uoijisodutoo- ( sydfe sosn Uolpuny sy %
(51°V)pe1]os = {08 vonuny
9126%0% %% % %% 0% %% % 0% 106762 000 %
NOLLISOdWOD- 0 VHATV %%

20967 % %0 %0 0% 0% 01 0% 6% % Y0

F%5%5% 0" 0% 2026%%%

L0200, £07 <37 £,
° 0%0%0%0%6% 0% %%

0,070

0,00, 0300
09%%6% 04!

A L0f o pu2

posn swrergord 7y pue GE[iejA urel Jo Sunsi|



apou JoJ 95, Ppud

L = (apou’: 103y

< 0 = (apou‘ JyBrom
1 = (3pou’ Jeouaajal
‘S =(apout Jopnoo

11049 puo
05 19y pud
0= DY
: ‘0= (o
HESOE
isapdurexs e AppInjosqe ut sa3ueyae, (S)XeUL = {1)S 1
wWzak] = 1 10f

FEIE T : : . , ST 010 pue QU TP IO TS v












