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Abstract 

Futuristic scenarios feature anthropomorphic robots cooperating with humans in daily 

activities. Efficient cooperation requires new techniques for facilitating man-robot skill 

transfer. Instead of programming, it is far easier for a human to demonstrate the task, 

showing the robot the movements it needs to perform. This thesis presents an approach 

on how robots can learn the visuo-motor coordination of their arms and how they can 

imitate human arm movements, in order to acquire motor skills from human instructors. 

It is argued that in skill acquisition that involves arm movements, eye-hand coordination 

is not sufficient and eye-arm coordination must be developed. A method which allows 

the robot to learn how to move its arm while watching the human arm is proposed. 

The robot moves its arm to randomly chosen positions and the human places his arm 

in similar positions, imitating the robot. Thus the robot can make associations between 

images of human arm and commands given to its own arm. 

Previous research on neural models has offered promising results in the learning 

of visuo-motor coordination, while fuzzy techniques have been successful in coping 

with the imprecisely defined concepts u.sed in linguistic instruction and reasoning. The 

fuzzy neuron is one of the many possible neuro-fuzzy hybrids, which attempt to benefit 

from the synergism of qualities of neural and fuzzy models. The first part of this thesis 

attempts to provide a unified framework for modelling and implementing systems by 

using fuzzy neural networks. In particular, two new types of fuzzy neurons are proposed 

and analysed: the fundamental fuzzy neuron and the fuzzy neuron with shared weights. 

The fuzzy neural structures analysed in the first part of the thesis are used in the second 

part: for robot learning and control. It is shown that fuzzy neural networks can be used 

for learning vi.suo-motor models, and provide certain advantages over classic neural 

networks. The main advantage is the transparency of the fuzzy neural models. As the 

robot used for tests is anthropomorphic only in a planar appearance, human imitation is 

demonstrated for 2D, while for 3D the robot imitates a second, identically built robot. 
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Introduction 

1.1 Teaching by showing - learning by watching 

'The long-term vision of Artificial Intelligence is to create intelligent artifacts which 

can learn from examples, exhibit goal directed behavior, tolerate error and ambiguity, 

communicate with humans in natural language, and operate in real-time or close to 

human response time' (from Raj Reddy's ^ plenary speech at the AAAl-94 Conference). 

We are at the dawn of a new era in robotics. Engelberger - predicts that service 

robotics will outstrip industrial robotics sometime early in the 21 century. While in 1994 

the industrial robot indu.stry shipped about 65,000 robots, the prediction of the market 

for the elderly-care robots alone amounts to millions [Engelberger 19951. 

Human friendly communication is the key of the success of the new robots. Teaching 

' Raj Reddy, Professor and Director of the Robotics Institute at Carnegie Mellon, is Past President of 
American As.sociation for Artificial Intelligence (AA.AI). 

"Joseph Engelberger is regarded by majiy as the 'father' of robotics. He is a founder of Unimation, 
the first company that produced commercial robots. 



1.1. Teaching by showmg - learning by watching 

them in a similar way we teach humans to perform a task seems much more attractive than 

programming. If one had to utilize a programming language, or even natural language, 

for describing to the housekeeper robot how to stir the boiling soup, most of us would 

give up (or give up dinner). If one can have the robot simply watch how we do it, and 

then imitate our arm movements, it would be much more effective. For the imitation of 

human movements to be effective, anthroporaorphic robot apprentices are needed. 

A motor skill is an ability to perform the solution of a motion planning problem. To 

get this solution, the robot has the following alternatives: to find it on its own, to use 

precalculated, embedded solutions, or to be offered a solution. The robot can try to find a 

solution on its own, using reasoning or exploration. Finding a solution by reasoning may 

require much intelligence and may be too complex to be practically feasible. In order 

to decide what is optimal (from the human's point of view) the robot must understand 

the environment and the task. Finding a solution by exploration may be too costly. For 

example, reinforcement learning and search methods such as genetic algorithms, are 

not efficient alternatives as they take a long time and the cost of hitting an object in 

the workspace during a search is high ^ Even intelligent exploration as described in 

[Schneider 1995] is not practical in this case. As for preprogrammed solutions, these can 

not consider the infinite variety of possible situations, and coding only a few solutions 

does not make the robots flexible enough. 

A human master can offer the solution, which the robot can apply without under­

standing it. Using a programming language to communicate the solution isn't human 

friendly. Natural language instruction is human friendly, but it is not always a good way 

of teaching movements, which may be difficult to describe in words. A more efficient 

way of transmitting the movement is analogic teaching based on 'guiding' the robot 

through the movements. Analogic teaching is specially useful when the human does 

•'There are papers describing research in the area of discovering useful behaviors by exploration and 

evolutionary means, mainly with simulated systems, e.g. using genetic algorithms (see e.g. [Davidor 

1991]) but also with miniature robots such as Khepera [Nolfi et al 1994]. 



1. i. Teaching by showing - learning by watcliing 

not know the exact coordinate values of a position but can see what he wants [Sheridan 

1992], The coordination of an anthroporaorphic arm in a human-like movement is hard 

to achieve by guiding it with a teaching pendant or joystick. Acting while having at­

tached a master arm, whose displacements are transmitted to the apprentice robot, would 

make it easier to accurately transmit the movement. This solution is commonly used in 

telemanipulation. One of the most advanced telemanipulation systems is the Utah arm, 

illustrated in Fig. 1.1 (photo from [Sheridan 1992]). Plans for future systems, such as 

the one from NASA illustrated in Fig. 1.2, envisage virtual reality environments and 

sensors attached on human joints for gesture tracking [Sheridan 1992]. In these systems 

communication means are necessary between the human and the robot, to transmit the 

joint information signals. The transmission of information can not be avoided in teleop-

eration, however, for teaching a robot in our proximity, it is sufficient to give him vision. 

The robot can watch the human arm and imitate its consequent postures. No human 

attached sensors are needed, and the human can move his arm unconstrained by any 

physical mechanism. The image of the arm can id&o be directly correlated to the task. 

This 'teaching by showing - learning by watching' approach is schematized in Fig. 1.3. 

Figure 1.1: The Utah arm 

From a learning perspective this approach enters largely the category of 'learn­

ing by watching', 'programming by demonstration', or more general, 'learning from 
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Figure 1.2: Virtual reality for telemanipulation 

Figure 1.3: Teaching by showing - learning by watching 
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examples"'-, 

The research performed in the area of skill transfer has targeted mainly task learning, 

i.e. what to do. However, it is also useful to watch how to do, and copy/learn the 

demonstrator's arm movement during the task, as this provides a model of movement 

which is a solution for the robot ami movement problem related to the task. In fact, in 

many cases, such as teaching tool handling or coaching in .sports tike tennis or golf, the 

human learner does observe the instructor's arm and tries to imitate its movements. 

In order to imitate the movements of the human arm, the robot has to have the 

necessary coordination for transforming images of the human arm into commands for 

its arm. Such visuo-motor coordination can be designed or learned. The design can 

be cumbersome, as it is hard to predict all aspects of the real environment and cope 

with them in advance. For this reason, and also for the purpose of creating 'grounded 

representations' [Hamad 1990] that can help in further cognitive-oriented abilities, the 

preferred option might be to build sensory-motor models by learning .̂ 

The most successful results in the development of visuo-motor coordination are based 

on neural networks. Along with the advantages of being good function approximators, 

and powerful learning structures, neural networks bring the less desired feature of having 

solutions difficult to interpet. Fuzzy modelling seems a good complementary technique, 

••There has recently been a growing interest in this area, reflected, for example, in the number of 1995 

AAAI sympo.sia on topics such as Programming by Demonstration, Active Learning or Agent Learning. 

•''Inductive Learning from Examples (LfE) is a well established subject in Machine Learning. 'Pure' 

LfE is performed automatically without any human interaction. Programming by Demonstration (PbD), 

on the other hand, can be seen as some kind of 'exueme' form of user-supported LfE where the user 

continually interacts with a PbD system. Its nearly exclusive focus is the learning of programs (adapted 

after the Call for Papers of a 1995 Programming by Demonstration Workshop). 

'^Traditional AI was criticized (e.g. by Searle in his Chinese Room aiigument [Searle 1980]) that it 

relies on symbols and representations arbitrarily interpretable, which have no 'intrinsic' meaning. To 

overcome this, and provide meaning by grounding representations in the physical world, it was proposed 

to link intelligence to the the sensory world through visual systems and robots. 



1.2- Thesis statement and main contributions 

as the knowledge in fuzzy .systems is structured (usually in linguistic form) and ea.sy 

to understand. Thus, neuro-fuzzy hybrids appear as an attractive path to explore. The 

fuzzy neuron is a special type of neuron, defined using a family of operators used in 

the fuzzy theory. Systems of fuzzy neurons share properties of fuzzy systems and of 

neural networks. Thus, fuzzy neurons may be a powerful elementary computational 

unit to implement in hardware. However, a theory of fuzzy neural modelling must be 

developed first. Fuzzy neurons and classic neurons need to be compared. Fuzzy neurons 

need to be compared among them..selves, on the ba.sis of different possible fuzzy operators 

which define them. These are motivations for the research on fuzzy neural networks 

presented here. 

1.2 Thesis statement and main contributions 

The claims of this thesis are that anthropomorphic apprentice robots can learn to visually 

coordinate their arms and consequently acquire motor skills by the imitation of human 

instructor's arm movements, and that fuzzy neural networks offer advantages over classic 

neural networks in building learning strucmres for such robots. 

The work presented here solves some problems of fuzzy neural networks theory. 

Firstly, it identifies a family of ti-iangular norms which is most suited for implementing 

neural operators in fuzzy neurons, and defines the fundamental fuzzy neuron, which 

uses this family. Some advantages of using the S-T composition for system modelling 

are shown, while noting that the problem of identification (resolution of S-T fuzzy 

relational equations) is unsolved. The equations for learning in fundamental fuzzy 

neurons derived here provide a numerical resolution method for this problem. It is 

shown that better models can be obtained by allowing an adaptive S-T composition. The 

study also provides a solution to the problem of implementing multi-input sy.stems using 

fuzzy neurons, proposing a model of fuzzy neurons with shared weights. 



1.2. Thesis statement and main contributions 

Some initial results comparing classic "^ and fuzzy neurons have been arrived at. An 

interesting conclusion of this study is that synaptic adaptation can be used for obtaining 

better fuzzy neural models, while the most u.sed form of classic neuron is insensitive 

to such adaptation. The most interesting aspect of the comparison of classic and fuzzy 

neural models is that fuzzy neural models are transparent. This means that the user is able 

to understand how the outputs are determined, and is also able to predict the behavior 

of the system when presented unseen inputs. Because they lack this property, classical 

neural networks have not been able to penetrate safety-critical areas of application. 

Although an immediate explanation of the transparency of fuzzy neural models comes 

from their relational structure, further investigation is needed to evaluate whether this 

transparency i.s a general property of fuzzy neural models or it is only a characteristic of 

particular cases. 

Analytical resolution methods for fuzzy relational equations allow incremental on­

line learning in fuzzy neural networks, which is an advantage over classic neural models. 

However, the classical neural models have shown greater approximation capabilities, 

with their weights allowed to take values in the set of real numbers, while the weights 

of fuzzy neurons were limited to [0,1]. In the tests presented, an additional restriction 

of fuzzy neurons has been the use of excitatory inputs only. 

Fuzzy neural networks are used for learning robot eye-arm coordination. It is argued 

that eye-hand coordination is not sufficient for motor skill tran-sfer in (redundant) an­

thropomorphic robots and that eye-arm coordination is necessary. Eye-arm coordination 

is learned from examples in a similar associative manner as used for training ALVINN 

[Pomerleau 1993] for visually guided navigation. Pomerieau stated that the technique 

of using a neural network trained by supervised learning would not be readily applicable 

to controlling individual joint of robot arm for which the correct response is hard to 

În the context of this thesis, the term classic neuron denotes the basic model of neuron whose output 

is obtained by a sigmoidal function applied to the weighted sum of inputs. The model is expressed in 

Appendix G. 
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determine. This thesis presents a method which solves this problem. In the beginnmg 

the robot moves at random, and the human imitates the robot. Thus, the robot can make 

associations between commands given to the joints of its own arm and the visual images 

of the human arm posture. Once a model is built, images of the human arm generate 

correspondent commands to the robot amn, and the robot imitates the human. 

Methods and theoretical constructions proposed in this thesis have been validated by 

practical tests. The robot needed under five minutes of on-hne incremental learning for 

building the visuo-motor coordination necessary for tracking a human arm in a planar 

movement. Successful tests were also performed in 3D where the robot imitated an 

identical robot. 

As the system can track the human arm close to real time * it can be considered as 

a visual servoing system developed through learning and used as a telemanipulator ,̂ a 

first step towards what may be called visual servoing based telemanipulation. In this 

work the solutions obtained by imitation have been simply stored for later repetition of 

the movement. However, in future systems, more efficient encoding schemes should be 

used for the creation of motor patterns. 

''As the current implementation is not multi-tasking, visual sampling occurs only when the robot has 

finished the movement to the previously detected target - this causes an error between the reference and 

actual performance, which is characteristic to sampling systems. ITie processing time is not significant, 

the delay between a delected position and the moment it gets there being limited by the speed of the 

manipulator, wsvA in general w® Ims than a second (ttae in which the target has normally changed 

position). 

Ît can be also used in virtual reality systems or for micro-teleoperation, controlMag micro-anns for 

micro-technology manuf^turing (as the arm must be with similar appearance but can be at different scale). 



L3. Organization of the.si.s 

1.3 Organization of thesis 

This thesis is organized in two parts. The first pan is dedicated to the development of 

the theoretical aspects of fuzzy neural modelling, which is used in the second part for 

robot learning and control. 

Chapter 2 puts together re.sults which form the basis of the theory of fuzzy neural 

modelling. Its main components are the relational approach to system modelling, fuzzy 

relational equations and their composition, and fuzzy neurons performing pointwise 

composition. 

Chapter 3 compares different triangular norms to asses their suitability for the imple­

mentation of neural operators. The fundamental triangular norms are the pair found most 

suitable, and accordingly the fundamental fuzzy neuron is defined. Learning and adap­

tation mechanisms in fundamental fuzzy neural networks are sub.sequently established. 

Learning also provides a numerical solution to the unsolved problem of resolution of 

S-T fuzzy relational equations. It is shown that adaptive composition leads to better 

modelling. The 'rules in weights' perspective is introduced, showing that the weights 

of fuzzy neurons shape structures readily interpretable by humans and which look like 

distributed rule-bases. 

Chapter 4 solves the problem of neural implementation of multi-input distributed 

associative fuzzy systems by defining a fuzzy neuron with shared weights. Learning 

mechanisms and the organisation of weights in distributed rule-like clusters are shown 

for this type of neurons. It is also proved that one neuron can implement any boolean 

logic function, and has a flexibility which recommends it as a possible general purpose 

computational element. 

The second part of the thesis initiates research in anthroporaorphic robot apprentices, 
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the focus being on developing the capability of imitating human arm movements. 

Chapter 5 starts with a review of research on skill transfer, visuo-motor coordination, 

motor development and other areas related to building robot apprentices able to learn 

motor skills. In what follows an approach to learning arm movements in anthropomor­

phic robots is proposed. It introduces the eye-arm coordination and a 'human imitates 

robot' method, by which the robot learns to coordinate its own arm while looking at the 

human arm. Once the eye-arm coordination is learned, the robot can imitate the arm 

movements performed by the human carrying out a particular task. This Chapter also 

describes the experimental setup used for testing the approach. 

Chapter 6 presents an implementation of the approach and the results obtained 

in tests that enable robots to learn arm movements by imitation. Neural solutions 

and fuzzy neural models of eye-arm coordination are investigated. For fuzzy neural 

models incremental on-line learning is shown based on analytical algorithms of solving 

associated luzzy relational equations. Interpretations of the neural weights are presented. 

It is shown that the neural models allowed the tested robot (which was anthropomorphic 

only in its planar performance, as seen from the top) to imitate 2D arm movements of the 

human arm. Tests of 3D arm movements were accomplished using a second, identically 

built robot. 

Chapter 7 summarises the contributions this research has made to the fields of fuzzy 

systems and robotics, and indicates possible areas of future work. 



Parti 

Fuzzy neural networks in system 

modeliing 

U 
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This part attempts to provide a unified framework for modelling and implementing 

systems by using fuzzy neural networks. The neural structures developed here are 

used in the second part for robot learning and control. The reason for focusing on 

fuzzy neural networks is the desire to obtain a unique structure, and a unique basic 

computing element - the fuzzy neuron, which can perform perception-related processing 

(in which neural networks outperform alternative techniques) and also reasoning based 

on linguistic knowledge (which were successfully approached by fuzzy logic means). In 

the case of learning in robots, these relate to learning eye-arm coordination and learning 

from shown examples, and to learning from linguistic instructions on how to perform 

movements. 

Results from various parts of fuzzy theory are put together to set the basis of fuzzy 

neural modelling. In order to facilitate the application of neural learning mechanisms, a 

fundamental fuzzy neuron is proposed, defined on the basis of a set of fuzzy operators 

found suitable for neural adaptation and learning. It is shown that fuzzy neural networks 

allow the understanding of their internal representations. A fuzzy neuron with shared 

weights is proposed to ensure the implementation of multi-input mappings. Its features 

recommend it as a competitive general purpose computational element. 



Chapter 2 

Fuzzy relations as basis of fuzzy neural 

modelling 

The aim of this chapter is to provide an introduction to a proposed theory of fuzzy neural 

modelling. Central to such a theory are the relational approach to system modelling, 

fuzzy relational equations and their composition, and fuzzy neurons performing the 

fuzzy composition in a pointwise mode. 

The first section introduces basic concepts of fuzzy sets and fuzzy relations. The 

composition of fuzzy relations leads to fuzzy relational equations, whose resolution is 

briefly reviewed. A fuzzy relation between inputs and outputs of a system constitutes a 

fuzzy relational model of the system. Accordingly, system identification is equivalent 

to finding a solution for the associated fuzzy relational equation. It is shown here that 

a largely unexplored type of composition has rich modelling capabihties. Finally, it is 

illustrated how a layer of fuzzy neurons implements a composition of fuzzy relations. 

This indicates that it is possible to use fuzzy neural networks for system modelling. 

13 
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2.1 Fuzzy sets and fuzzy relations 

The concepts presented in this section were introduced by Zadeh [Zadeh 19651, [Zadeh 

19731, with some formulations being taken as in [Zimmermann 1991 ]. Let X be a space 

of points (objects), with a generic element of X denoted x. A fuzzy set (class) A in X 

is characterized by a membership (characteristic) function ^A(X) which associates with 

each point in X a real number in the interval [0,1], with the value of p^(x) at x 

representing the 'grade of membership' of x in A (see Fig. 2.1). Thus, a fuzzy set can 

supp(/^ 

Figure 2.1: A normalized fuzzy set 

be considered a set of ordered pairs 

A = {{x,^A(x))\xe X,PA{X) E [0,1]}. (2.1) 

It is common to identify fuzzy sets with their membership functions [Di Nola et al 

1989]. A support of A is the set of points in X at which ^A(X) is positive, supp(A) = {x e 

X\^A{X) > 0}. A fuzzy singleton is a fuzzy set whose support is a single point in X. The 

height of a fuzzy set A is the supremum of its membership function, hgt{A) = SUP^}XA(X). 

A fuzzy set with hgt(A) = 1 is called normalized. A is contained in B (or equivalently, 

A is a subset o/B. or A is smaller than or equal to B) if and only if M-4 < MS' 

A £ 5 o /XA < Ms. (2.2) 

The complement of a fuzzy set A is defined by A'{x) ~ 1 - A(x). The intersection of 

two fuzzy sets A and B is defined by (A n B)(x) = MIN(A(x),B(x)). The union of 
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fuzzy sets A and B is defined (A u B)ix) = MAX(A(x),B(x)). A fuzzy logic is defined 

by a set of rales for determining the complement, intersection and union of fuzzy sets. 

The above complement, intersection (calculated with MIN) and union (calculated with 

MAX) define Zadeh's fuzzy logic. Other fuzzy logics are defined later in this chapter. 

When operating at the level of the label of the fuzzy sets, the equivalent logic operations 

are NOT, AND and OR respectively. 

A fuzzy relation R from a set X to a set Y is a fuzzy sub.set of the Cartesian product 

X xY (X xY IS the collection of all ordered pairs (x,y) of elements x e X and y e Y). 

R is characterized by the membership function ^R(x,y), and is expressed by 

R = {{(x,y),^dx,y))\(x,y) eXxY}. (2.3) 

In the fuzzy relational matrix below, elements express the strength of connections be­

tween elements of X, X = {^l,x2}, and those of Y, Y = {y 1, y2 }, and can be visualized 

as in the associated graph of Fig. 2.2. 

/ 0 . 8 0.4 
R=. 

\ 0.5 0.3 

A fuzzy relation (FR) can be seen as a mapping between two fuzzy sets described in 

Figure 2.2: Strength of connections between elements of X and Y 

terms of values of their membership function in points of their definition domains, or as 

a mapping of fuzzy sets represented in terms of values of membership to some reference 

fuzzy sets defined on the definition domain. The mapping of sampled membership 
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functions is referred in the following as distributed, while the mapping of labels is 

referred to as compact. 

One of the first fuzzy relations discussed in the literature was that of resemblance. 

For example, the resemblance between children x 1 and x2 and parents y I and y2 can be 

expressed by the previous relation R, where the first row in the matrix indicates that xl 

looks like y 1 in a degree of 0.8, and also resembles y2 in a degree of 0.4. 

Another type of fuzzy relation, which was largely exploited due to its connection with 

fuzzy rule-based systems, and in general with fuzzy algorithms, is that defined by afuzzy 

conditional statement 'IF X THEN Y', or X -» Y, where X and Y are fuzzy .sets and -^ 

is a logic implication'. For example, the statement I F the obstacle is close THEN move 

slowly, describes a relation R between a fuzzy variable in the antecedent part of the 

rale, X (close) and the fuzzy variable in the consequent part of the rule, Y (slowly), and 

is generally defined by the logical implication R = X -^Y. For instance, in the context 

of a robotic manipulator, a fuzzy relation R can model: a) the resemblance between a 

new posture of the arm (determined by a given command) and existing postures, b) the 

plausibility of reaching a certain state, c) the reward associated with the transition to a 

certain state. 

2.2 Fuzzy relational equations and their resolution 

2.2.1 MAX-MIN fuzzy relational equations 

MAX-MIN composition. If Q is a relation from X to Y and R is a relation from Y to 

Z, then the composition [Zadeh 1973] of Q and R is a fuzzy relation denoted by QoR 

'A discussion on logic implication follows in Section 2.3. 
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and defined pointwise by 

ll(QoR)(x, z) = \/(IIQ(X, y) A p.ii(y, z)) (2.4) 
>• 

where v and A denote respectively MAX and MIN. More specific (2.4) defines the 

MAX-MIN composition. In the following a finite universe of discourse is considered, 

and MAX and MIN appear directiy in the equations. The composition between a fuzzy 

.set A and the fuzzy relation R, ^ : X -^ F, defines the image of fuzzy set A into the 

space Y, 

m 

B(yj) = (A o R)(x„yj) = MAX[A(xi)MINR(Xi,yj)], (2.5) 

where / = I , . . . , w and j = 1,...,«. The MAX-MIN composition of fuzzy relations 

defined on finite universes Q:X -^ Y,R : F ~» Z, is 

P(Xi,Zk) = (Q 0 R){Xi,Zk) = MAX[Q{x„yj)MINR(yj,Zk)l (2.6) 

MAX-MIN fuzzy relational equations. Let A and B be fuzzy sets, R a fuzzy relation 

and 0 a composition (not necessarily MAX-MIN). An equation of type A o /? = B is a 

fuzzy relational equation (FRE). A FRE can be addressed in the sense of solving for R, 

when A and B are known, or for A, if R and B are known (in which case it is called 

the inverse problem). Equ. (2.5) describes a MAX-MIN FRE. The equation of type 

Qo R~ P, with Q, T, R fuzzy relations, is called a composite FRE. As fuzzy relational 

matrices for Q and P are composed of rows which correspond to fuzzy sets, one can 

consider that (2.6) describes a system of equations of type (2.5), and therefore it is also 

called a system of FRE. 

The resolution of FRE was first addressed by Sanchez [Sanchez 1976], who provided 

a methodology for solving MAX-MIN FRE, formulating conditions and analysing theo­

retical aspects of obtaining a greatest (or maximal) solution -. For a detailed presentation 

of results on MAX-MIN FRE the reader is referred to [Di Nola et al 1989]. 

ÎTiat is the greatest element (in the sense of fuzzy inclusion as given by (2.2)) in the .set of FR that 

satisfy FRE. 
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Conditions of solvability. The necessary and sufficient condition for Equ. (2.5) to 

have solutions is ^ ([Pedrycz 1994], [Sanchez 1976]) 

hgt{A) > hgt(B). (2.7) 

For a FRE of type (2.6), which is a system of equations of the form Qk o R = Pk, a 

solution exists if and only if the solution set R^ of each of the k equations is nonempty, 

and all n solution sets intersect to a nonempty part, 

R*=f)Rl. (2.8) 

Maximal (greatest) solution. If Equ. (2.5) admits solutions, then a maximal solution 

exists, which is given by 

R(Xi,Zk) = (AaB)(x:,Zk) (2.9) 

with aab = I if a < b and aab = bif a> h. 

If Equ. (2.6) admits solutions, then a maximal solution exists, which is given by the 

a-composition [Sanchez 1976] 

k^Q-'o„P, (2.10) 

with the a-composition defined by 

(Q o„ R)(Xi, Zk) = MmQ(xi, yi)aR(y), Zk)] (2- H) 
/=' 

(Q"' is the transpose of Q). 

În the context of a theory of plausibility (e.g. [Dubois ajid Prade 1988|) where membership functions 

are associated to plausibility of events, the interpretation of condition (2.7) is that the degree of plausibility 

(or certainty) of a conclusion can not be higher than the degree of plausibility of the premise from which 

it was inferred. 
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Minimal (lower) solutions, a) For the FRE given by (2.5) 

If Equ. (2.5) admits solutions, then minimal solutions M exists, which can be 

determined by 

[ B(y) if X = X, and yeYt 
Mix,y) = { (2.12) 

1̂0 otherwise, 

where F| = {y e Y\B(y) > ()}, and Xy are arbitrary elements of G(y) = {jr e X\A(x) > 

Biy)}. 

If Equ. (2.5) admits solutions, then the union of minimal solutions is given by 

Rk = (AGB){X„ Zj) = [A(xd(JB(Zj)l (2.13) 

where aab = 0 if a < b and aab = b if a > b. 

b) For the composite FRE given by (2.6) (the minimal solution of the system of FRE 

is the minimal term in the set of solutions that satisfy all equations). 

If Equ. (2.6) admits solutions, then minimal solutions exist, which are minimal 

elements in the set M* of combinations of unions of minimal solutions for individual 

equations obtainable by (2.13). 

If Equ. (2.6) admits solutions, then E* = mQk(^n)]Ak (R maximal solution) is 
k 

the union of all elements of M* (this is not generally the union of the minimal solutions 

of (2.6)). 

Solutions with minimal fuzziness. A special category of solutions is that of solutions 

with minimal fuzziness, i.e. which have minimal values of a fuzziness measure (see for 

example [Di Nola and Sessa 1983]). The membership functions of such solutions are 
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'polarized' towards 0 or 1, and have less elements with membership around the 0.5 value 

(which indicates maximum fuzziness in membership to a set). 

Approximate solutions. If all equations have a solution, and their intersection is 

nonempty, then the system has a solution, and the presented methods of resolution can 

be applied. Practical situations may fail to meet the solvability conditions, in which 

ca.se the system of FRE does not have (exact) solutions. In such a case, the problem of 

solvability can be approached in a passive way or in active ways [Pedrycz 1991c]. The 

passive approach is related to the determination of a measure of solvability of the FRE, 

reflected in an index of solvability. One active approach is to look at modifications of 

fuzzy sets, or to eliminate the equations which impede the existence of an exact solution. 

Another active approach is to try to fulfill the constraints to the highest possible degree, 

i.e. finding the best approximate solution [Pedrycz 1991c], [Klir and Yuan 1994]). Most 

common, the approximation is sought in relation to the optimization of some index 

factor, which most often is the fuzzy Hamming distance (a sum of absolute errors) or the 

Euclidian distance between desired outputs and images obtained by composition with the 

fuzzy relation. Numerical methods are the most common in determining approximate 

solutions for FRE. The problem of numerical resolution for approximate solutions was 

first addres.sed in [Pedrycz 1983ifr], where a modified Newton method was proposed. 

Before genetic algorithms proved their power [Sanchez 1993], [Pedrycz 1994], [Negoita 

et al 1994], all numerical methods for finding a solution were gradient-based techniques 

[Pedrycz 1994]. 

2.2.2 Fuzzy relational equations with triangular norms 

Pedrycz [Pedrycz 1983a] extended the MAX-MIN composition allowing MTN to be 

replaced by any operator from the class of triangular norms [Menger 1942]. 

http://ca.se
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Triangular norms. [Butnariu and Klement 1993]. A function T: [0,1 ] x [0,1 ] ^ [0,1 ] 

is called triangular norm (t-norm for short) if it satisfies the following conditions: as­

sociativity (T(x, Tix.z)) = r(r(x,y),z)),commutativity {T(x,y) = Tiy.x)), monotonicity 

iT(x,y) < T(x,z), whenever>• < z) and boundary condition T(x.l) = x. Some properties 

which will be useful in the following sections are: 

7XA-,0) = 0, (2.14) 

T{x:y) < T(u,v), whenever x < n and y < v. (2.15) 

A function S: [0,1] x [0,1] -> [0,1] is called triangular conorm (t-conorm or s-norm 

for short) if it satisfies conditions of associativity, commutativity, monotonicity, and the 

boundary condition S(x,0) = x. S and T are corresponding (or pairs) if they comply with 

De Morgan's laws. 

N-ary extensions. The n-ary extensions for T and S are defined recursively [Di Nola 

etal 1989], 

- - ' (7'(-yi>^2) i f m = l , 
TfXuX2,...,X„,)= \ m _ _ ^ ^ (^-JOJ 

ir(jc,„^,, r(x,,X2,..x„)) i f m > 2 , 

m^i \S(xux^) ifm=:l, 
S (x\,X2,...,Xni)= \ m . •. ^ ^ \^-^n 
**» jS(jiwi, .5(X!,.V2,. .x^)) if m > 2. 

Examples of t-norms. MIN and MAX are die simplest pair of triangular norm/conorm. 

Other examples referred in this chapter are: product/probabilistic sum T(x,y) = x • y, 

S{x,y) = x+y~x-y, and Yager's operators T{x,y) = l-MIN{h [(1 -af + d-byY^P}, 

S(x,y) = MIN{l,{af' + bPy''P],p> I. 
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MAX-T composition. Let A be a fuzzy set defined in X, and R a fuzzy relation 

between X and Y. The MAX-T composition of a fuzzy set A and a fuzzy relation R is the 

fuzzy set B defined in Y, whose membership function is given by 

m 

B(yj) = (A o, R)(x^,yj) = MAXlAixfFR{Xi,yj)]. (2.18) 

Let Q : X -^ Y, R : Y -^ Z, fuzzy relations. The MAX-T composition of fuzzy relations 

Q and R is the fuzzy relation denoted QoiR between X and Z defined by 

(Q o, R)(xi. Zk) = MAX[Q(x,yj)TR{yj, z,)]. (2.19) 

Resolution of MAX-T FRE. The problems of resolution are the same as for MAX-

MIN FRE and the condition of solvability is similar. If for any y e Y, there exists x, 

x e X such that A(;c) > B(y), then Equ. (2.18) has solutions if T is continuous (this is 

another way of expressing (2.7)). The system of FRE (2.19) admits solutions if each 

equation respects these condition and the intersection of solutions to individual equations 

is nonempty. 

If Equ. (2.18) admits solutions, then a maximal solution exists, which is given by 

R(xi,yj) = (AarB)(Xi,yj) = A(x,)ar5(y,), (2.20) 

where the T-relative pseudocomplement ar is defined by 

aarb = sup{c G [0,1] : T(a,c) < b}. (2.21) 

In general Equ. (2.18) does not have lower solutions [Di Nola et al 1989]. The 

ar-composition of Q and R with t-norm T is the fuzzy relation determined by 

(Q Oar R)iXi,Zk) = MIN[Q(xuyi)aTR{yj,Zk)l (2.22) 

The greatest element in the set of solutions of (2.19) is given by Q~^ o^P [Miyakoshi 

and Shimbo 1985]. The t-norm needs to be lower semicontinuous, examples of aj being 

given in [Di Nola et al 1989]. If the system of MAX-T FRE does not have solutions, 

then approximate solutions may be of interest. 
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S-T composition. Let A be a fuzzy set defined in X (X = {xi,X2,—x„,}), and R 

a fuzzy relation between X and Y. The S-T composition of a fuzzy set A and a fuzzy 

relation R is the fuzzy set B defined in Y (F = {y\,y2,---,yn}), whose membership 

function is given by 

m 

B(y,) = (A 0,,Kfrx̂ yj) = S[A{xdTR(x„yj)l (2.23) 

Let (2 : X -» y, i? : F -» Z, fuzzy relations. The S-T composition of Q and R is the 

fuzzy relation denoted Q o^,j R between X and Z defined by 

n 
(Qot,R)(xi,Zk) = S[Q(Xi,yj)TR(yj,Zk)]. (2-24) 

The S-T composition was introduced by Pedrycz in [Pedrycz 1983a] \ This com­

position received very tittle attention in the literature (it was not even mentioned in the 

most comprehensive monography on fuzzy relational equations [Di Nola et al 1989] 

which Pedrycz also co-authored). It started being mentioned again by Pedrycz only 

in the context of fuzzy neurons in [Pedrycz 1992], [Pedrycz et al 1995] and without 

emphasizing any of its advantages. Independent of Pedrycz work this composition was 

proposed again in a 1988 French publication ([Bour and Lamotte 1988]). 

Resolution of S-T FRE. Conditions of solvability and an algorithm for determining a 

solution for one FRE given by Equ. (2.23) were presented in [Bour and Lamotte 1988]. 

For a solution of 2.23 to exist, it is necessary that 

yk e K, B(yk) < S (A{Xj)) (2.25) 

where i = {l,... ,n} , K = {!,.,.,p). The condition is sufficient provided S and 

T are continuous. In order to determine a solution for (2.23) the following algorithm 

^Pedrycz [Pedrycz 1983a] names it maXq - miup (Y = XOp^ R) where max^ stands for s-norm and 

niin,, stands for t-norm. 
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was proposed [Bour and Lamotte 1988] (which assumes the existence of a T-relative 

pseudocomplement (2.21). Denote aj = A(xj), bt = B{y\), J\(k) = {/ ^ A^k < a^]. 

• If ii(fc) 7/ 0, VA: G K (a condition similar to the resolution of MAX-T FRE, i.e. it 

exists a/(^),«/(« > bt) 

laiarbk ifj=f 
rjjc^l (2.26) 

\^0 otherwise 

• If exists ak € K, for which Ji{k) = 0 (i.e. MAXbk > MAXaj), then it exists an 
k j 

index/ for which S(ai,...,a/_!,0,...,0) < bk and S(ai,...,aj>,Q,...,0) > bt. 

Denote a' the value of an element in position/ for which the equality holds, i.e. 

S(ai,...,a\0,...,0)=bk. A solution of (2.23) is given by 

rj,k = < 

1 i f i < / 

a'arbk if j" = / (2.27) 

0 J>f 

Unfortunately, this algorithm can not be extended to a system of FRE of the form (2.24), 

for which the problem of resolution is open. 

2.3 The relational approach to system modelling 

Fuzzy sy.stems are mappings of fuzzy sets, generally expressed as collections of 'pieces' 

of knowledge of the form Xt maps to F̂ -, where Xj, and Y^ are fuzzy sets. For a 

particular input, crisp or fuzzy, which is not exactiy specified in an expressed mapping, 

the output may be obtained by employing some fonn of fuzzy reasoning. The standard 

way of calculating the output is by using a compositional rule of inference of the form 

FA- = XICOR, where R is a fuzzy relation describing the mapping. 
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In the following 1 propose a grouping of methods of fuzzy reasoning in classes. The 

grouping considers the type of representation of the elements that enter the fuzzy relation 

and the semantic of the fuzzy relation. The representation can be compact or distributed 

(as defined in Section 2.1), The semantic aspect refers to the distinction made between 

conditional and associative flavours of fuzzy relations. The possible classes are shown 

in Table 2.1. 

Table 2.1: Classes of fuzzy reasoning 

Conditional 

Associative 

Distributed 

FRCl 

FRC4 

Compact 

FRC2 

FRC3 

Fuzzy reasoning of class 1 (FRCl) is distributed and conditional. The fuzzy relation 

is between sampled fuzzy sets, and is calculated by some form of implication. Fuzzy 

reasoning of class 2 (FRC2) is compact and conditional. The inputs match input fuzzy 

sets in some degree. These degrees of matching to various inputs are propagated to the 

output by some form of implication. Fuzzy reasoning of class 3 (FRC3) is compact and 

associative. The fuzzy relation expresses a mapping between labels of fuzzy sets, and 

the fuzzy relation is calculated by identification from input-output (I-O) pairs. Fuzzy 

reasoning of class 4 (FRC4) is distributed and associative. The fuzzy relation expresses a 

mapping between sampled fuzzy sets, and is calculated by identification from I-O pairs. 

Conditional reasoning is generally associated with the most popular form of fuzzy 

systems, i.e. fuzzy logic controllers. In fuzzy logic controllers the knowledge of mapping 

consists of a set of rules presented as fuzzy conditional statement of the form, Ifx is Xk 

then y is Yi,. In FRCl the fuzzy relation is between sampled fuzzy sets and models 

an implication, and the reasoning is considered a generalization of modus ponens case 

of propositional logic [Zadeh 1973]. The implications can be calculated for each rule 

as Rk - (Xk -» Ft), and a partial output can be obtained by composition of input with 

each implication. The total output is calculated as a union of individual contributions. 



2.3. The relational approach to sy.steni modelling 26 

For MAX-T composition, the same result is obtained if a union of all implications is 

calculated first, and the input is composed with this union. There are several ways 

of calculating the implication (see for example [Lee 1990]), the simplest way being 

by Cartesian product calculated as a pointwise t-norm operation. Various forms of 

fuzzy rea.soning were explored by considering different t-norms in MAX-T composition, 

combined with different implications or different ways of aggregating the contribution 

of each rule (see for example [Mizumoto and Zimmermann 1982] [Mizumoto 1991])^. 

As .shown for example in [Di Nola et al 1989] the output obtained using this form of 

reasoning by implication is equivalent to the output resulting in a processing scheme 

with an interesting interpretation. The scheme has three steps, i.e (1) a matching step, 

in which the input data is matched (by intersection, generally with MIN) against the 

premise part of a rule and a number is returned which reflects the degree of matching, (2) 

an activation step, in which the conclusion part of the rule is modulated (in the way the 

particular implication dictates, e.g. by MIN in Mamdani type of reasoning [Mamdani 

and Assilian 1975]) with the degree of matching obtained in previous step, and (3) a 

combination step in which the contributions of all 'fired' rules are combined together 

by a union operator, e.g. MAX (a rule was 'fired' if the input matched its premise in a 

nonzero degree). This scheme of processing became so popular that few ever mention 

its relational roots. This is the compact conditional reasoning referred here as FRC2, 

and mentioned again in the discussion on hardware implementations of fuzzy models. 

In an alternative approach to system modelling, the conditional issue is not stressed, 

but rather the mappings are seen as associative, i.e. Xk is associated with Yk, or Xt is 

related to F ,̂ or X^ is similar to Yk. In this case, R is seen as a solution for the fuzzy 

relational equation X o R •= Y (and not calculated by some imphcation formula) using 

methods of resolution indicated in Section 2.2. Because in the most used scheme of 

^The combination composition - implication does not always respect modus ponens for known map­

pings, i.e. Xk o (Xk -^ Yk) 4 i i [Keller and Tahani 1992]. One example is die combination of MAX-MIN 

composition with Lukasiewicz implication a -^ h ~ M1N{\, 1 - a->rh). However the same implication 

with the composition MAX-DP (DP stands for drastic product, defined as T^ in Table 3.1) does satisfy 

modus ponens. 
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reasoning (FRC2) the relational roots are not transparent, and because only the associative 

approach leads to solving FRE, only the associative approach is usually referred to as 

relational. In general, a representation in a unique fuzzy relation R is sought, which must 

satisfy the mapping for each k rule. Compared with FRC2, the dissociative approach 

requires additional memory for storing the fuzzy relation, but offers more flexibility 

in applications [Di Nola et al. 1989]. This approach to system modelling is strongly 

supported in the papers of Pedrycz and collaborators (e.g. [Pedrycz 199la] [Di Nola et 

al. 1991] [Pedrycz etal. 1995]) who addresses mainly FRC3. 

In this thesis, which investigates fuzzy neural structures, the focus is on FRC4 

as the approach best fitting neural qualities, such as distributed processing and graceful 

degradation. FRC3 as studied by Pedrycz presents the advantage of using logic mappings 

at concept level, while this study shows that FRC4 uses logic mappings at lower levels. 

Information processing in a fuzzy system is illustrated in Fig. 2.3, which exemplifies 

the mapping of three fuzzy sets. For this system and the first mapping (Xi —> Yx), FRC4 

is detailed in Fig. 2.4 and illustrates the composition 

/ 0 0 0.2 1 \ 

0 0 0.4 0.7 

0 0 0.7 0.7 

0.7. 0 0.4 0 

V0.4 0.7 0.2 0.6/ 

Here the definition domains are [0,1 ] (to which the real domain of inputs and outputs can 

be mapped), a partition {xi,X2,...,x„] on the input space, and {yi,yi,...,>'n} on the 

output space, the fuzzy sets being represented in terms of their sampled degrees of mem­

bership over the discrete space, and the composition being MAX-MIN. Processing can 

be considered to be performed by a network of distributed processors, each calculating 

the output in a particular point of the output domain. 

( l 0.7 0.3 0 0 O) o = (O 0 0.4 l ) 
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Fuzzy system 

Fuzzy input s 

X 

Knowiecige 
about mapping 

R 

Fozzy output s 

—_—> 

XoB=Y 

Xi Y1 

X2 Y2 

X3 Y3 

Figure 2.3; Processing in a fuzzy sy.stem: outputs are obtained by the composition of 

inputs with a fuzzy relation. 

k\ "a '•km 

Figure 2.4: A network structure implementing FRC4 
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2.4 Advantages of using the S-T composition for system 

modelling 

In practical applications, the conditional approach to system raodelhng has received 

more attention than the associative approach. The common fuzzy composition for the 

conditional approach is MAX-T (which includes MAX-MIN as a particular case), which 

is consistent with the imphcational flavour of the fuzzy relation between premise and 

conclusion. It is reasonable to consider that the confidence in a conclusion (Y) does not 

exceed the confidence in the premise (X), and this is consistent with the condition of 

solvability for MAX-T FRE, hgt(X) > hgt{Y). This perspective leaves littie room for 

the interpretation of a composition that produces hgt(Y) > hgt{X), and it may be one of 

the causes of the lack of interest in the S-T composition ̂ . 

S-T composition is acceptable in the associative approach. For example, in the case 

of resemblance relations [Zadeh 1973], it is perfectly plausible to have the degree of 

resemblance of the resulting set higher than the degrees of resemblance reflected in 

composing relations. This is also common to fuzzy similarity relations ' [Zadeh 1971], 

[Tamura et al. 1971] used in fuzzy clustering, for which the transitivity is stated as 

pLn(x,z) > MAX(iiH(x,y)T^uiy,z)). (2.28) 
>' 

One can replace the inequality (2.28) with the equality 

M«(x, z) = S(IIR{X, y)Tii,(y, z)) (2.29) 

because (from (3.27)) So (MAX) is the lowest s-norm and thus 

S{H}i(x,y)T^R(y,z)) > MAX{^!i(x,y)Tp.R(y,z)), 

^There are other reasons, e.g. the lack of distributivity (XSW) o,^ R ^ (X o,j R)S(W o,j R) [Pedrycz 

1983«] 
''A similarity relation R in X is a fuzzy relation in X which is (a) reflexive, (b) symmetric and (c) 

transitive. 
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The advantage of this replacement is that one can actually determine the result of the 

fuzzy relation HR(X, Z), once S and T are specified (for example as a result of a learning 

process, discussed in detail in Chapter 3). 

A comparative presentation of properties of S-T composition and MAX-T is deter­

mined in Appendix 1̂ . Some advantages identified here for S-T composition are: 

1. It enlarges the class of problems addressable in a relational perspective, as one can 

build exact fuzzy relational models of systems that have the maximal value of the 

output larger than the maximal value of the input (i.e. not limited by (2.7)). 

2. It allows a precise specification of composition of fuzzy similarity relations. 

3. When S and T are differentiable (and thus the function that maps inputs to out­

puts is differentiable), gradient based methods of resolution of FRE are directly 

implementable (MAX, in the MAX-T composition, is not differentiable). When 

using parametric t-norms that have MIN as a limit, and s-norms that have MAX 

as a limit, the solution for MAX-MIN FRE can also be obtained. 

4. In many modelling cases (including the context of fuzzy neural networks) it is 

important to have a global cumulative effect on composing elements and not only 

a local effect as imposed by MAX (in which case only the maximal value dictates 

the output). 

5. The lack of distributivity can model a memory property of a system for which the 

order of applying the inputs is important. 

'̂For ail composition presented here, dual compositions are defined in the literature (see for example 

[Di Nola et al. 1989]) by replacing MAX with MIN, and the s-norm with the as.sociated s-norm. For 

example, MIN-MAX is dual to MAX-MIN, and MIN-S is dual to MAX-T. One can define also the general 

T-S composition as a dual to S-T composition, and as a particular case S-MIN or T-MAX, which are 

distributive. 
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An example of a situation that needs the S-T composition for appropriate modelling 

is given in the following. Consider a set of learned postures of a robot arm to be 

Q = { î'<y2} consisting of two postures who.se spatial placement can be linguistically 

described in a set of terms / = {left, front, right] (see Fig. 2.5). One can linguistically 

Figure 2.5: Arm postures and a Unguistic description of the space 

characterize the first posture by W(qi, I) = {0.31 left, 0. SI front, 01 right) and the second 

posture by W(q2,l) = {0 / /e/r,0.8 / front,Q.3 / right). A new command to the arm 

can place it in the new posture qnew, iti between the two and resembling them each in a 

degree of 0.8, thus X(<|„,vv,̂ ) = {0.8/^i ,0.8/^2}. The linguistic description of the new 

posture would be given by the composition 

Y(qnew, I) = X(qnew, q) o W(q, I) 0.8 0.8 ) o j 
0.3 0.8 0 

0 0.8 0.3 

If the o composition is MAX-MIN composition then Y(qnew,l) = (0.3,0.8,0.3), i.e. 

{0.3/left,0. %i front,Q. 31 right}. No MAX-T composition can give more than 0. $1 front. 

As the drawing shows however, the new posture is 11 front. This can be modeled by an 

S-T composition, e.g. for SH^Q,, PJ^Q, (S' ' and P^ are given by formulas in Table 3.1), 

one obtains the description Y(qnew,D = (0.1,1,0.1), i.e. {0. ineft,\lfront,Q. U right} 

(left and right overlap with front). 

http://who.se
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2.5 Fuzzy logics 

Zadeh's fuzzy logic is defined based on MIN and MAX operations for intersection and 

union. A more general case is that of fuzzy logics based on triangular norms ̂ , T and S, 

for which the complement A" of a fuzzy set A is defined by 

A%x}=l~A{x), (2.30) 

the intersection ATB of fuzzy sets A and B is defined by 

iATB){x) = T{A(x),B{x)), (2.31) 

and the union ASB of fuzzy sets A and B is defined by 

(ASB)(x) = S(A(x), B(x)). (2.32) 

In the following, the specification of certain fuzzy logic is seraantically equivalent to the 

specification of an associate composition, and vice-versa. For example, 'applying the 

MAX-MIN composition' is equivalent to 'working under the MAX-MIN (So, TQ) logic'. 

'•*This paragraph is adapted from [Butnariu et al. 1995], where fuzzy logics are deiined based on 

intersection and complement only (considering complementary t-norms). 
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2.6 Fuzzy neural modelling 

2,6.1 A brief account of approaches combining fuzzy and neural 

elements 

Fuzzy models have proved their usefulness in a variety of applications (for some recent 

accounts see [Yager and Filev 1994], [Yager and Zadeh 1994]). An equally powerful 

modelling technique is that of neural networks (NN). These two techniques have a degree 

of complementing each other, which may be exploited in structures that combine the 

individual strengths. 

Combinations of elements of fuzzy logic and neural networks were initiated in the 

.seventies, a first model of fuzz.y neuron (FN) and afuzz.y neural neM'ork (FNN) being 

introduced in [Lee and Lee 1975]. In the late eighties, stimulated by the revival of interest 

in neural networks research, and mainly using the backpropagation algoritlim [Rumelhart 

et al. 1986], several fuzzy-neuro or neuro-fuzzy approaches have been proposed'^. Work 

in this interdomain sector is mainly driven by the aim of combining the powerful features 

of each paradigm, the transparent knowledge embodied in fuzzy systems and the learning 

ability of NN. For a review of work in this area the reader is referred to [Takagi 1990], 

[Hellendoorn 1994], [Jang 1995]. 

In this account I refer only to those alternatives of mapping fuzzy processing into 

neural structures which are patterned after the approaches to fuzzy modelling discussed^'. 

The first alternative is to use hierarchical structures in which layers in the networks 

'''In general, fuzzy neuro refers to structures using fuzzy neurons, and neuro-fuzzy refers to fuzzy 

systems implemented with classic neurons 

' ' A synthesized overview on neural implementations of fuzzy systems is presented in Appendix B. The 

details include the topology of the network, the type of neurons used, and training related aspects. 



2.6. Fuzzy neural modellmg 34 

implement steps of processing information as in the compact reasoning schemes (FRC2 

and FRC3). In such neural architectures (e.g. [Takagi et al 1992] for FRC2, [Pedrycz 

and Rocha 1993] for FRC3) some neurons are associated with linguistic values, and 

fire in the degree in which the linguistic value is matched by the input, while other 

neurons are associated with rules, and fire in the degree in which the rule is fired. The 

architecture of the network reflects the structure of knowledge. This is what I call 

here 'the rules in neurons' approach. It is not a distributed representation as it does 

not allow 'graceful degradation' (meaning that the removal of one neuron should not 

greatly affect the result of processing). Learning in networks implementing FRC2 aims 

at finding appropriate membership functions and rules, in the context of a fixed reasoning 

method (often Sugeno's), Given the membership functions and the way they map (rules), 

Keller and Krishnapuram[Keller and Krishnapuram 1992] investigate which parameters 

of reasoning are the best suited ones for the mapping. In the case of FRC3 the network is 

considered to form a cognitive map between concepts [Pedrycz et al 1995]. The weights 

of the neurons in the network are elements of the fuzzy relation modelling the system, 

and system identification is equivalent to learning by the neural network of a solution of a 

fuzzy relational equation [Pedrycz 1990/?], [Pedrycz 1991^], [Pedrycz 1991c], [Pedrycz 

and Rocha 1993]. 

The second alternative of mapping fuzzy processing into neural structures is to 

have a structure of neurons which directly reflects the distributed mapping between 

discretized inputs and discretized outputs. This structure can be multilayer, and was 

proposed to employ classic neurons [Keller and Tahani 1992], or fuzzy neurons [Keller 

and Krishnapuram 1992]. This thesis investigates unilayer implementations of fuzzy 

systems, using fuzzy neurons which perform the relational mapping between discretized 

inputs and discretized outputs. Since Lee's first model of fuzzy neuron [Lee and Lee 

1975], different types of neurons incorporating elements of fuzzy theory were defined, 

ranging from various hybrid structures as in [Pedrycz I99\b'\, [Pedrycz 1992], [Goh and 

Lui 1991], [KwanandCai 1994] to implementations of complete fuzzy inference systems 
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in one neuron [Yamakawa et al. 1992]. In particular, fuzzy logic neurons were defined 

[Gupta 1992], employing fuzzy logic operators to model synaptic and i'omaf/cactivities 

^̂ . For example, a MAX-MIN fuzzy neuron (or simply MAX-MIN neuron) was defined 

based on Zadeh's fuzzy logic, i.e. using MAX as union of activities at somatic level, 

and MIN as intersection or joint effect of inputs and synaptic states [Pedrycz \99Qb], 

[Saito and Mukaidono 1992]. Pedrycz [Pedrycz 19901?] has shown that a layer of MAX-

MIN neurons implements the MAX-MIN composition and can be considered as the 

underlying structure of a fuzzy system in its relational definition (i.e. X oR -Y where 

X are input fuzzy sets and Y are outputs fuzzy sets, R is a fuzzy relation between input 

and output, and o is the MAX-MIN composition). 

Fuzzy logics other than Zadeh's MAX-MIN can be used for defining logic neurons. 

A general model of fuzzy logic neuron, which operates on triangular norms is discussed 

in the following. 

2.6.2 S-T fuzzy neurons and S-T composition 

Consider a neuron as an information processing element, having a number of inputs 

X = [jci,.t2,.. .,x„,] and an output y. The inputs affect the neuron via synapses, which 

modulate the inputs with the values of the weights w = [wi, VV2,..., w',„ ]. The modulation 

can be modeled by a t-norm operation 

ti^T(Xi,w,), (2-33) 

and the effect of the modulated inputs as perceived by neuron consists in a set of r,. All 

these /„ i = 1,2,...,m, are somatic input contributions to the neuron, and their aggregation 

'̂ This terminology adopted from Neurobiology is used for referring to the main operations that take 

place in an artificial neuron model: a modulation of inputs with weights (by neural synapses), and a 

nonlinear aggregation of all weighted contributions (by neural soma). 

file:///99Qb
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in order to determine an output can be modeled by an s-norm operation 

y=S(td. (2.34) 

Eqs. (2.33) and (2.34) define an S-T fuzzy neuron (S-T FN), which is illustrated in 

Fig. 2.6. This model of neuron was defined as such by Gupta [Gupta 1992] and Pedrycz 

W l 

f \ 

"'- ^ | t 1 = T{x1,w1) \ 
X2 w2 i y = S(t1,t2, ..tm) 

T | t 2 S i -- --"-^ 

I 
wm * t m / 

„ . . . - - - t • * / 

Figure 2,6: S-T fuzzy neuron 

and Rocha [Pedrycz and Rocha 1993] ' I 

Consider now n similar neurons, each receiving inputs x via the set of weights W = 

[wi, W2,...,w„]. The equations for the j-th neuron are 

/,,/ = T(xi, Wij), 

yj^.Sitij). 

The output of the layer of n neurons is the vector y= [>*!, ya, •. •, >'«] calculated with 

y = (X o W) = S(T(X, W)) (2.35) 

'-̂ Pedrycz addressed a rich variety of fuzzy neurons [Pedrycz 1991 ]̂, [Pedrycz 19921, [Pedrycz and 
Rocha 1993], [Hirota and Pedrycz 1994], the one defined by Equ. (2.33) and (2.34) being the OR neuron 
[Pedrycz and Rocha 1993]. 
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which has the formalism of the S-T composition of x and W. 

The inputs presented to the layer are a function of time. The j-th neuron at instant k 

is characterized by 

t^^. = T(Xk,nW,j), (2.36) 

(2.37) 

Considering that inputs at discrete moments of time },2,...,p, are rows in a matrix X 

= [xj, X2,...,Xp] and the same for outputs Y =[yi, y2,...,yp] then the detailed form of this 

batch processing is (see also Fig. 2.7) 

( X\\ JCi.2 . . X i . „ \ / VVi.i VVs,2 . .Wl . ; , ,1 X[2 ••X\^m 

Xlj X22 ..X2,«j 

\ ( y\,\ y\.2 ••yi.fl ^ 

yi.\ yi.2 --yifi 
(2.38) 

\Xp,\ Xp^2 ••Xp,m I \ Wrn.i X^X •-^m-n / \ J/^.l » , 2 ••}'/..« / 

or in compressed form 
m 

7 = (X o m(jki) = S(J{X(k, i), 'N{i,fi)) 

which is the formal description of S-T composition of fuzzy relations. 

(2.39) 

The network consists of fuzzy neurons performing the S-T composition. Presented 

with I-O pairs, learning in such a network means the identification of a fuzzy model. 

2.7 Summary 

This chapter presented basic concepts of the relational approach to systems modelling. 

Processing in relational systems is based on the composition of fuzzy relations, and 
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Figure 2.7: A layer of S-T neurons 

systems identification is equivalent to finding a solution for a fuzzy relational equation. 

Analytical methods of resolution of some FRE were briefly reviewed. It was argued 

that the littie investigated S-T composition offers some modelhng advantages. S-T 

fuzzy neurons were shown to be elementary processors performing a pointwise S-T 

composition. The neural weights are elements of a fuzzy relation, and learning in 

S-T fuzzy neural networks can be viewed as a numerical method of resolution for 

corresponding FRE. 

The purpose of this chapter was to introduce concepts and present results setting the 

basis for developing a theoty of fuzzy neural systems. The fundamental elements for 

such a construction are the theory of fuzzy relational equations, the relational perspective 

to system modelling (in particular the distributed associative type of reasoning), and the 

definition of fuzzy neurons as computational elements performing a fuzzy composition. 

Fuzzy neural structures differ from their classic neural counterparts in the type of 

operators employed. Network architectures and learning mechanisms used for classic 

neurons can be investigated in conjunction with fuzzy neurons. One question that arises 

is whether this plethora of techniques is applyable to fuzzy neurons employing any type 
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of operators, or are some operators more appropriate. Another question is what type of 

fuzzy neuron is most suitable for implementing multi-input mappings. These questions 

are the motivation for the research presented in the next chapters. 



Chapter 3 

Fundamental fuzzy neural networks 

The Chapter introduces a new form of fuzzy neuron operating on t-norms. Firstly, 

different t-norms are compared in order to select the most suitable one for implementing 

synaptic and somatic operators for fuzzy neurons. According to a .set of criteria that 

favours neural learning, the family of fundamental t-norms is chosen, and from this the 

fundamental fuzzy neuron is defined. Learning aspects in fundamental fuzzy neurons 

are addressed, and the equations which allow gradient-descent learning in networks 

of such neurons are derived. It is shown how learning can lead to a simultaneous 

identification of weights and synaptic/somatic parameters, which in the context of S-T 

FRE means the simultaneous determination of the optimal FR and fuzzy composition. 

This approach presents advantages in comparison with the classic case, where the search 

for a solution of FRE is performed under the assumptions of a chosen composition. As 

particular cases, solutions can be found for classic MAX-MIN and MAX-T FRE. The 

Chapter ends introducing the 'lules in the weights' perspective, showing that the neural 

weight space configures a distributed rule base (and for this purpose can be used as a 

rule extraction mechanism) directiy interpretable by humans, allowing thus fuzzy neural 

40 



3.1. Chocsing the appropriate synaptic and somatic operators for fuzzy neurons 41 

networks to alleviate the 'black-box' drawback of classic neural networks ^ 2. 

3.1 Choosing the appropriate synaptic and somatic op­

erators for fuzzy neurons 

The equations for fuzzy neural processing written in terms of T and S operators are 

general, and in order to study in more detail the behavior of such structures, or for 

application purpo,ses, a selection has to be made for a particular pair of triangular 

norm/conorm to replace T and S in the formulas. The most used pairs in fuzzy neural 

modelling are: MIN/MAX (which is treated by the majority of researchers) [Pedrycz and 

Rocha 1993], [Pedrycz 1994], [Blanco et al. 1994], product/probabilistic sum [Pedrycz 

and Rocha 1993], [Pedrycz 1994] or Haraacher's operators (r*,S^ in Table 3.1) [Pedrycz 

and Rocha 1993]. At present, there is no recommendation specifying which operators 

one should choose (although it is observed that MIN/MAX needs some modifications to 

allow learning, e.g. [Pedrycz and Rocha 1993], [Blanco etal. 1994]) and it is considered 

that in general 'one can select any combination of the triangular norms' [Pedrycz 1994]. 

In order to benefit from the great number of topologies and learning rules developed 

for classic neurons, fuzzy neurons may need to respect .some conditions. Also, the 

choice of a t-norm should consider aspects of hardware realisation, likely to follow 

successful simulation studies. The following compares how different t-norms qualify 

for the implementation of S-T fuzzy neurons. 

'Several mechanisms for reading the neural weights were proposed. For example, in [Pomerleau 1993] 

the number of hidden nodes is kept small. 
^From here onwards the word neuron refers to the type of fuzzy neuron under discussion. Classic 

(non-fuzzy) neurons are referred as such, and refer to the model described in Appendix G. 
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3.1.1 Conditions imposed on the synaptic-somatic operators 

• Condition 1. The neural model should permit gradient-descent search (on which 

the majority of neural learning algorithms are based). Functions defined with 

thresholding by MIN or MAX are poor choices for gradient-descent like methods. 

Specifically, the derivative is not defined at the thresholding point, as discussed 

for example in [Pedrycz and Rocha 1993]. Also, having the MAX operator 

thresholding at 1, as illustrated in Fig. 3.1, results in a null derivative for the 

ceiling region, where the search can not continue. For the.se reasons, a condition 

imposed on the operators involved is that they have nonzero, finite derivatives 

everywhere. 

• Condition 2. The functions should be parametric. Parametrization offers a great 

modelling flexibility, remarked for example in [Zimmermann 1991], [Di Nolaet al. 

1989], [Pedrycz and Rocha 1993]. In particular Pedrycz and Rocha [Pedrycz and 

Rocha 1993] suggest that neural learning can involve the parameters of triangular 

norms. A change of the somatic parameter is equivalent to the modification of the 

slope of the activation function, which for the case of classic sigmoidal neurons 

has been shown to affect the learning rate in backpropagation [Thimm et al. 1995]. 

• Condition 3. The selected t-norm (s-norm) should cover the MIN (MAX) case. 

Parametric families should have these values as their limit for specific values of 

their parameters. Apart from being the most thorough investigated pair, there are 

many problems which are best modeled by them. 

Selecting a triangular norm. The comparison is made between the 12 operators 

presented in Table 3.1. These operators are gathered from [Di Nola et al. 1989], [Gupta 

and Qi 1991 h] and [Butnariu and Klement 1993], to which the reader is referred for more 

details. In particular Gupta and Qi [Gupta and Qi 1991 h] enumerate and give properties 

of all but one of these operators, and Butnariu and Klement [Butnariu and Klement 1993] 

http://the.se
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Figure 3.1: Yager's s-norm implementing a neuro-somatic operator 

give a clear description of several famiUes of t-norms, including suggestive graphical 

comparisons. Most applications are based on MIN and product, mainly due to their 

simplicity and because there is no clear advantage of other t-norms, the best choice 

being very much problem dependent. For a study that compares the efficiency of using 

different t-norm pairs in implementing fuzzy logic controllers, the reader is referred to 

[Gupta and Qi 1991a]. According to the three conditions imposed, the selection of a 

t-norm pair is straightforward (the following refer to T only, but the same applies to S). 

r ' , r^, T^, T^, T^ are not parametric and thus do not satisfy Condition 2. In the remaining 

set only P", P and Ĵ ^ are not thresholded by MIN or MAX, and accordingly are the 

only ones that satisfy Condition 1. One should note now the following inequalities 

[Gupta and Qi 1991i?] 

r <T < r (3.1) 

P <P <P <P <P (3.2) 

and the following limits [Gupta and Qi 1991^] [Butnariu and Klement 1993]: 

A-4 0, P~^T\ AlsoA^oo, p~^T\ (3.3) 

A-»0, r-^T\ AlsoA-»oo, P-^TK (3.4) 
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Table 3,1: Triangular norms and co-norms 

T-norms S-norms 

P(x,y) = MIN(x,y) SHx,y) = MAX(x,y) 

P(x,y)=x-y S^(x,y) = x + y — xy 

THx,y)=MAX(x + y-1,0) SHx,y)=^MIN(x-i-y,l) 

T\x,y) 
...ity-xy 

S'(Ay) 1—.xy 

THx,y) = { 

X if y = I 

y if X = 1 

0 otherwise 

sHx,y)={ 

X if y = 0 

y if X = 0 

1 otherwise 

T\x,y) l-O-XKx-i-v-xv) 3 iX,>; - x^xyil-X) 

T\x,y) = MAX(l - ((1 ~xf + {l~~ y)^)''^,0) ^{x,y) = MIN({xP + fy'P,\) 

T'(x,y) |+((l_l)^+(i_t)A)W S^(x,y) l+ ( ( l „ l ) -^+( i_ l ) -A) -W 

TXx,y) MAX{x,y.X) 
0{Y YA - 1 _ _ J , l - x ) ( i - ^ 
^ K-^^yj — » MAXi 1 -jc. I --V MAX{\-x,\~%X) 

PHx,y) = MAX('-i^=^,0) S^\x, y) = MIN(x + y + Xxy,\) 

PHx,y) = MAX((1 + X){x + y - I) - Xxy,0) S' ̂  (jc, y) = M/Ar(;c + y + Xxy, 1) 

r^2(;,,y) = log4i + i^riMid)| S»^(x,y)=l- log,[ l - f^- ' - \y-^"^^] 
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5_^oo, p^^p^ Also 5 - ^ 0 , P^~^P. (3.5) 

According to these observations and Condition 3 one can eliminate P\ which has P 

as its upper limit and therefore can not reach P (MIN) as required. 

P and T^^ are the only ones that satisfy the impo.sed requirements. At this point 

one should remark that it is possible to create new t-norms, for example as shown in 

[Kaufmann and Gupta 1988], some of which may satisfy as well all the conditions 

imposed here. The purpose of this comparison was to select from the set of currently 

defined operators the one that is best suited for neural modelling according to the selected 

criteria. In order to continue the investigation of S-T fuzzy neural networks (S-T FNN), 

one must chose either P or P^, and thus specify the neuron by functions which allow 

numerical calculations. 

P"^ has the advantage of covering the operators used in probabilistic reasoning, 

product/probabilistic sum (PlS^), which is a limit case for (T^ '̂/Sp) when 5 - ^ 1 . The 

disadvantage is that in order to cover the case 5 = 1 (in which point P^ is defined 

equal to P, see (3.6)) one must switch between functions P'^ and P. If a hardware 

implementation is envisaged, then a solution must be found to this switching. P has the 

advantage of covering the full range of possible t-norms [P, P] (however, this does not 

cover P, i.e. the two are not identical for any value of X). Its disadvantage is that is 

not defined for null arguments, and for values of x (or y) close to 0 the term 1/x (or 1/y) 

becomes very large, which may also cause hardware problems. 

It is considered here that P^ is a preferable choice, and it is the one selected for 

further study. 
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3.2 Fundamental fuzzy neurons 

P'^ can be associated with other t-norms, to form the family of t-norms defined by 

TAx,y) = < 

MIN(x,y) ifs = 0, 

x-y if s= 1, 

| 0 y | + (£lrM£lzJi] i f O < S < o o , S ^ l , 

MAXiO, X + y - I) if s = =o. 

(3.6) 

S..ix,y) 

MAX(x,y) 

x + y — X'y 

i - I o g , [ l + ̂ ^̂ ^̂ ^̂ ^̂  
. 5 - ! 

M/iV(l,x + y) 

ifs = 0, 

ifs= 1, 

^ ] i fO<s<«>, ST*"!, 

if s = oo. 

(3.7) 

This family of triangular norms, which was initially investigated by Frank [Frank 

1979], received special attention in [Butnariu and Klement 1993] where they were 

referred to a& fundamental t-norms. This term is adopted here to specify a class of fuzzy 

neurons. Due to Condition I, the class of fuzzy neurons is restricted to 0 < .? < °°, for 

which P is also continuous, as it was shown in [Butnariu and Klement 1993] that 

lim P = p.,, \fsQ G [0, oo) (3.8) 

(and the same property is valid for S). 

Definition. A fundamental fuzzy neuron (FFN) is an S-T fuzzy neuron for which the 

S and T operators are the fundamental t-norms given by Eqs. (3.6), (3.7), for 0 <s <°°. 

A network of FFN forms a fundamental fuzzy neural network (FFNN). 

The characteristic function of a FFN with m inputs is expressed by 
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.!-'! i\^J-f2 ,1 -im 

(.yy- I)^*"-^) 
(3.9) 

where each /;• represents the synaptic contribution of input x,- modulated by the weight 

Wj 

?,• = log, J l + ~ ; ]. 
'to.n^' ST — I 

(3.10) 

The parameter of the s-norm, ss, is referred to as the somatic parameter, and the 

parameter of the t-norm, Sf, is referred to as the synaptic parameter. 

The characteristic function for a S-T neuron with two inputs is presented in Fig. 

3.2. This illustrates the function y = S]m(tut2), where t^ and fa are the inputs after the 

.synaptic composition. 

Figure 3.2: Somatic characteristic of the fundamental fuzzy neuron 
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3.3 Learning in fundamental fuzzy neural networks 

For a system whose behavior is known in terms of input-output pairs, one can identify a 

model to fit the available data. If one chooses to do the raodeUing using a neural network 

structure, the identification consists in finding the appropriate neural parameters which 

ensure the mapping. In particular, if the neurons are fuzzy then a relational interpretation 

supports the model. In this case, finding the appropriate neural weights is equivalent to 

finding the elements of a fuzzy relation, which is a solution to the FRE characterising the 

system (see Eqs. (2.38), (2.39)). The extension of learning to include modifications of 

the synaptic and somatic parameters is equivalent to the search for a suitable composition 

for the FRE, or, in other terms, for a suitable fuzzy logic for reasoning in such a system. 

This section derives the equations that allow learning by FFNN. 

3.3.1 Gradient-descent learning in fundamental fuzzy neural net­

works 

Most NN learning techniques are gradient descent (GD) based (the best known is back-

propagation [Rumelhart et al 1986]). In a fuzzy relational context, learning by gradient 

descent was first applied by Pedrycz [Pedrycz 1991 ib]. The equations for learning depend 

on the l-norms that define the chosen composition. In the following, the gradient-descent 

equations for FFNN are derived. Consider die ca.se of an input matrix X(p,m), a weight 

(relation) matrix W(m,n), an output matrix Y(p,n) calculated by S-T composition, and 

a target matrix B(p,n) representing the desired outputs. This is a case of k input-output 

pairs, with m inputs for each of the n output nodes. The equation to solve is Equ. (2.39) 

detailed in (2.38). For simplicity, the equations are written in a single t-norm parameter 

(s), i.e. considering tliat the t-norm and the s-norm have the same parameter 55 = ST, in 

which case they comply with De Morgan's laws and are called corresponding t-norms. 

The results can be easily extended to non-corresponding t-norms by replacing s with ss 

http://ca.se
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and s-f as will be indicated at the end of the calculations. The weights are determined 

in successive approximations using a GD algorithm. The algorithm is based on the 

modifications of weights as to minimize a distance between the outputs produced by 

information processing through the network with current weights and the target output 

values. The function to be minimized is the sum of squared errors (SSE) taken over all 

examples (k = l,...,p) and all output neurons (j = l,...,n), 

SSE(r) = EEO'*/^) - hAr))\ (3.11) 

where t is the iteration index number, y^j the j-th output in the k-th example, bkj the 

target element kj. 

In the search for the a minimum of SSE, wij moves along the gradient of SSE. Its 

value at instant (T + 1) is obtained from its predecessor at the moment T, using the 

updating formula 

, ,, , , dSSE{t) .. ,-. 
Wij(t+l) = Wij(r)--p^ , (3.12) 

where p is the learning rate (increment). To simplify the presentation, x is omitted from 

equations. The partial derivative of SSE with respect to w,j is given by: 

BSSE a '^^ , . ^ ^ d 2 A dykj 

dWij dWij ^ .̂ĵ ,̂ j i^iy-^i^w,^ fc=i (3 13) 

(as/ ^j does not depend on the weights received by nodej (Wy)). 

The output of the neuron j presented with tlie k-th input example is 

(,,5-4, - l)(s^-i -- l)...(s^-^- - 1)̂  . . ... 
ykj = 1 " iog,[ 1 + " ~ - ™ - ^ ^ ^ _ | y ^ - i ) J' ^^'^^^ 

or in the form 
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Uis'-'^'^-l) 
ytj = 1 - }og,[l + I= i_^-^- - - j - ] . (3.15) 

The synaptic contribution of input i to neuron/ in example k, is 

r̂  = log,[l -H ^̂  i i - ^ ] . (3.16) 
•̂  . y —• 1 

The change that the weight wij produces on the output of neuron j in example k is 

dykj ^ dytj dt^j 

dwij dtfj dwij 

The change of output as affected by synaptic input /, is 

(3.17) 

l _ r * l _ f * l - ( * 

D / I , (s 'i-I)...fa '̂ -1)...C^ " ' i -Dy 

(.v~ ! )"<- ' 
' y M.)(i + ^-""-'^-'-::;z!M-"''^-'^) 

(3.18) 

which leads after derivation and simplifications to 

dykj .u=!..i;yi 
s'-^^ n (i-'"^^- 1) 

(3.19) 
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The synaptic inputs depend on the weight, (omit for the moment indices / andy) 

ifjzlMjrIl\' dt (i + i^^:iii^)' 5«'(^-~.|) 

Bw ln{s)(I + t i r i l i l r i l ) {s~~\) + (s" - 1 )(s^ - 1) 
(3.20) 

I.e. 

drlj •̂"''̂ (.̂ *-' - 1) 
dwu (̂  " 1) + (s'^' - 1 )(.y»*-'v - 1)' 

Replacing (3.19) and (3.21) in (3.17) we obtain 

(3.21) 

s'"̂ - n (5-'-4-i) 
dyki ^ dykj_^ ^ ,=LJ -y"'^(^*^" i) 

aw, , dtf^ dw,j ^^ _ j ) . ,_ , ^ f^^^^-rl. _ I) {s ^ I) + ( . . - - l ) ( . -v _ 1) 

which (with t^j given by (3.16)) is inti-oduced in (3.13) allowing the weight update 

given by (3.12). 

The equations for non-corresponding t-norms can be obtained directly from the 

previous equations by replacing s with ss in (3,14), (3.15), (3.18), (3.19), and replacing 

s with Sj- in (3.19), (3.20), (3.21), and a i » replacing % in the first term of (3.22). and 

Sj. in the sc ŝond term of (3.22). 

The computations need the specification of the synaptic/somatic parameters for t-

norms and of the learning rate (or increment inc). A method which automatically detects 

optimal t-norm parameters is presented in the next section. As for the learning rate, it is 
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known from the literature on GD searches how the size of the step affects the outcome: 

if it is too small the convergence is slow, while if it is too big the search may fail to 

converge. This is illustrated in Fig. 3.3 which plots the SSE versus the number of steps. 

0 10 so 30 *0 60 eo 70 

Figure 3.3: The learning rate affects the convergence 

3.3.2 The effects of synaptic and somatic adaptation in neural pro­

cessing 

The equations of information processing by FFNN, and also the learning equations 

derived in the preceding section, indicate that parameters ss and sj- have an influence 

on the results. This section shows more precisely how these parameters affect network 

behavior. Modifications of die logic parameter of the neurons have an equivalent in the 

classic NN literature. A direct analogy can be drawn between the somatic parameter ss 

md the pwaiiwter which controls the slope of the activation function of a classic 

neuron. In [Thimm et al. 1995] it is shown that changing the gain (steepness of the slope) 

is equivalent to changing the learning rate and the weights. The sigmoidal function to 

which Thimm refers to is -̂  

y(a) = r 
I + g-^« 

(3.23) 

'The results are valid for other activation functions that depend on the product ̂ a. 
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where P is the gain, -fi is the steepness (slope) of activation function and a is given by 

the weighted sum of the inputs 

a = J2^i'^^" (3.24) 
i 

Thimm shows that if two networks are topologically identical, and one has the gain ft 

times stnaller, the learning rate j}- times higher, and the weights j5 times higher than 

the other, then the networks are equivalent under on-line backpropagation. Large gains 

produce results similar to large learning rates. For FNN, a larger value of ss determines 

a steeper activation function. As a particular case, different s values can be used by 

different neurons, in the same way as pointed out by Rumelhart [Rumelhart et al. 1986] 

for the classic NN. 

Apart from increasing the learning speed, a more interesting modification would be 

to adapt the neural parameters in order to achieve a better mapping. In [Hirota and 

Pedrycz 1994] a nonlinear sigmoidal element (of a similar form to the one used by 

Thimm) is placed in series with an OR neuron, and the nonlinearity parameter of its 

activation function is modified during learning. The adaptation leads to improved results. 

It is interesting to observe that not the parametric nonlinearity per se was the cause of 

a better results as suggested in the paper ([Hirota and Pedrycz 1994]). For the same 

nonlinearity, as follows from Thimm's result, a modification of its parameter J3 would 

result in a scaled solution which would produce the same mapping. What contributed in 

the case of [Hirota and Pedrycz 1994] is die fact that the input to the activation function 

was a non-linear combination of inputs and weights, as opposed to the linear case of 

(3.24). 

The following interesting observation can be made here. For classic neural networks, 

with neurons as described by equations similar to (3.23), (3.24), modifications of the 

somatic parameter can not offer better mappings .̂ This follows directiy from Thimm's 

result. However, for fundamental fuzzy neurons, or for parametric S-T neurons in 

"•This is valid for the common case, when al! neurons have the same gain for the activation function. 
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general, better mappings are possible, and adaptation mechanisms for somatic/synaptic 

parameters can lead to improved modelling capabilities. Equations (3.6) (3.7) show 

that the relationship between weights and the gain parameter is not linear (for other 

parametric l-norms, see Table 3.1). It follows that some synaptic/somatic combinations 

offer better modelling solutions, and this is illustrated in an example in the next section. 

An algorithm which permits finding such optimal parameters is also described in the 

next section. 

Processing in FFNN with different synaptic/somatic parameters can be studied in 

relation to the ordering of parametric S-T compositions. In order to derive such an 

ordering, it is useful to note some important properties of the operators on which the S-T 

composition is based. These properties are proved in [Butnariu and Klement 1993]. 

1. The fundamental t-norms form a decreasing family : 

r . < r < To, (3-25) 

and also for all a, b e [0, «>] with a < b 

P < P- (3.26) 

By duality, fundamental s-norms form an increasing family 

SQ<S< S^, (3.27) 

and also for all a, b e [0, oo] with a < b 

2. Fundamental t-norms are strict in the sense that they me continuous and satisfy 

the property 

T{x,y) < Tix, z), whenever jc> 0 and y < z. (3-29) 

Fundamental s-norms are strict, being continuous and having the property that 

S(x,y) < S{x,z), whenever x < 1 and y < z. (3-30) 
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Consider the simplified notation ST(s,t) standing for S, - T. the S-T composition 

having s as the parameter for the s-norm and / the parameter for the t-norra. Consider P, 

Q, R fuzzy relations, and for each (xi,Zic) the S-T composition expressed as a function of 

(s, t) (the argument (jC/, Zk) being omitted for simplicity) ST{s, t) = S,[R(xi,yj)TQ(yj, Zk)]. 

Proposition. Let a and b be two positive real numbers satisfying the relation a < b. 

The following relations exists; 

ST{a, b) < ST(a, a) < ST(b, a), (3.31) 

ST(a, b) < ST(b, b) < ST(b, a). (3.32) 

Proof: 

1. The arguments of the s-norra in both ST(a,a) and ST(b,a) are the same (i.e. 

[R(Xi,yj)TaQ(yj,Zk)])^ As shown in Equ. (3.28), S is an increasing function in its 

logic parameter. With a < b that means ST(a,a) < ST(h,a). 

2. ST{a, b) < ST(b, b). The same reasoning as before, but for a different argument 

of the S operator (now obtained using p). 

3. The argument of ST{a, a) (which is [R(Xi,yj)TaQ(yj, Zk)]) is greater (or equal) than 

the argument of ST(a,b), (which is [R(xi,yj)ThQ(yj, Zk)]) according to (3.26). From 

(3.30) it follows that ST(a,b) < ST(a,a). 

4. The same argumentation as before, this time for ST(b, b) < ST{b, a). 

The relation between ST(b,b) and ST(a,a) depends on the values of the relational matrices 

involved in the composition, as one function (T) is decreasing and the other (S) is 

increasing. 

Knowledge of this ordering allows neurons to guide the modification of neural 

parameters in response to the input data available at inputs. For example if the outputs 
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are too high and saturate^ then a decrease of the somatic parameter (which can be 

combined with an increase in the synaptic parameter) will scale back the output into the 

active range. For example for neurons with 192 weighted inputs used in the visuo-motor 

coordination described in Chapter 6, all the S-T compositions that have ss = ST saturate 

the output. The choice of 5s = 0.1 or smaller, and ST = 10 or larger, is more appropriate. 

3.4 Applications to resolution of fuzzy relational equa­

tions and fuzzy system identification 

The learning mechanisms presented in the previous section have direct applications to 

the resolution of fuzzy relational equgU:ions, which, as explained in Chapter 2, determine 

the identification in systems modeled by fuzzy relations. Neural learning provides a 

powerful numerical technique for FRE resolution. This is particularly useful for sy.stems 

of S-T FRE, for which analytical resolution methods are not available. It is al.so a way 

of finding approximate solutions for any type of FRE. 

3.4.1 Application to solving FRE of a given composition 

The equations derived in the previous section allow the numerical resolution of FRE bi^ed 

on S-T composition or its particular cases, such as MAX-T, MAX-MIN, or even S-MIN, 

which can be employed to extend MAX-MIN by incorporating a global effect. For S-T 

FRE the gradient descent search is made directiy by replacing the particular values of 

parameters ss and sj in equations. For FRE that involve MAX and MIN the continuity 

of parametric t-norms (3.8) is used. For example MAX-MIN is the instantiation of S-T 

^Here saturation is considered when neural outputs take values in a small vicinity of 1, generally due 

to a large number of inputs. 
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composition for s = 0, (S-T),_o = MAX-MIN. Using the GD equations, solutions are 

.searched for S-T FRE with s -^0^. 

The following discuss the results of applying GD learning in FFNN, for the purpose 

of finding solutions for MAX-MIN FRE. Details of the examples are given in Appendix 

Example I: An exact solution (see also Example 1 in Appendix F). 

In a first case, which is an example taken from [Blanco et al. 1994], an exact solution 

exists, and after a single step the solution was identified with an accuracy better than 

0.0001 per element. The search was pert'ormed for s = 10~* and learning rate p = 1. 

The result is qualitatively similar to the one obtained in [Blanco et al. 1994] using a 

smooth derivative for a MAX-MIN NN. One should remark here that the solution was 

also obtainable by analytic methods. In this case the maximal solution given by (2.10) 

and the minimal one given by (2.13) coincide, thus the solution being unique. 

Example 2: An approximate solution (see also Example 2 in Appendix F). 

In a second case, which is an example from [Pedrycz 1990fl] (also used as a test case 

in [Negoita et al. 1994]), die system does not admit exact solutions and an approximate 

solution is sought. The search was performed for s = 10~ '̂ and the search was stopped 

after 200 steps. The resulting solution is qualitatively equivalent to the solution obtained 

in [Negoita et al. 1994] using genetic algorithms, which is a better solution than the one 

obtained in [Pedrycz 1990a]. Four indices were used for comparison: (l)maximumerror 

per input-output pair, (2) maximum error in all input-output pairs, (3) sum of absolute 

^Gradient learning in MAX-MIN FNN was proposed for solving MAX-MIN FRE [Pedrycz 1991/71. 

However, for MAX-MIN FNN the gradient search can not be employed directly, as derivatives have 

a binary character. Tlie solutions proposed are based on an approximation of MAX and MIN with 

differentiable functions or 'smoothing' the derivative [Pedrycz and Rocha 1993], [Blanco et al. 1994]. 

The possibility of approximation of MAX-MIN with any parametric family of triangular norms that tends 

to maximum/minimum for some values of the parameter was also suggested in [Pedrycz and Rocha 1993], 

however I am not aware of any implementation of this proposal. 
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errors (SAE), (4) sum of squared errors (SSE). Except for SAE, the result was better 

for FFNN trained by GD. Note however that the results are not directly comparable, 

because the optimization index in [Negoita et al 1994] was SAE, and in GD methods 

the optimization is done for SSE (and other indices may also be small as a consequence 

of using SSE). The number of necessary steps for obtaining the results was smaller for 

GD than for the genetic algorithm; 200 and - 10-̂  respectively. However, different 

learning rates may give different numbers of steps for the same accuracy .̂ 

The two examples show that FFNN can be successfully applied for solving MAX-

MIN FRE. The advantage of using a FFNN (as opposed to a genetic algorithm) is that a 

unique structure is used for representing the relation and for implementing the learning 

mechanism. A FFNN has also greater flexibility than a MAX-MIN NN as used in 

[Blanco et al. 1994], as it can change the composition to obtain a model which better 

'fitts' the data. This is illustrated in Uie next section. 

3.4.2 Resolution of FRE with adaptive composition: fuzzy relation 

- fuzzy composition optimality 

The classic approach to fuzzy modelling is to choose a composition and to identify a 

fuzzy relation. There is little indication of which composition to choose, and quite often 

MAX-MIN is chosen for its simplicity, while not necessarily being die best choice. 

Instead of limiting the identification to finding a fuzzy relation, one can search also 

for an optimal composition. In the context of FFNN that means extending the search 

for a weight mati-ix to include finding optimal synaptic and somatic parameters for 

neurons. As indicated in a previous section, this has the potential of offering a better 

mapping. Using the t-norm parameter as the only variable in an evidence aggregation 

•'Pedrycz has reported a c^e in which a combined genetic - neural search gives better results than a 

simple neural search [Pedrycz 1994]. 
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network based on Yager's operators, Keller and Krishnapuram [Keller and Krishnapuram 

1992] have shown that training can lead to the value of the parameter that optimises a 

performance index. Their .search however was performed assuming^e^i weights. Even 

earlier in [Pedrycz 1983a], Pedrycz expressed the idea of best 'fitting' of the mode! 

by involving parameter search on the composition. However, he restricted the form 

of the acceptable fuzzy relation, by calculating it with a formula which depends on the 

parameter of the composition, and the search was performed to identify the optimal value 

of this parameter. Thus, the solution obtained is optimal only for the given form of fuzzy 

relation. In here I propose to use an unconstrained search for the fuzzy relation and the 

parameters of the t-norms which define the composition. The parameters of the t-norms 

can be used in the same way as the other variables (elements of the fuzzy relation) in an 

iterative search, to find an optimal value for the approximation. 

Example 3: A better approximate solution for adaptive composition (see also Exam­

ple 3 in Appendix F). 

Using the same data as in Example I, a combined search for W and s gives a weight 

matiix and a logic giving a better approximation (SSE = 0.93) than the one obtained for 

MAX-MIN (55£= 1.04). 

Example 4: An exact solution in which both fuzzy relation and fuzzy logic are found 

(see also Example 4 in Appendix F). 

The focus now is on a system for which an exact solution exists, as the output Y is 

determined by the S-T composition (with s - ss = 5r = 10) of input X with W, X and 

W randomly generated. Searching for a fuzzy relation only in the context of a fixed 

given composition gives models with various power of approximation, as illustrated in 

Fig. 3.4. A combined search identified the fuzzy relation and the best composition. In 

this example, each step of die GD procedure was intercalated with a selection of the s 

parameter (of same, higher, or lower value than the current one) that gave the lower SSE. 

Fig. 3.5 shows the convergence of SSE while s was converging from smaller values of 
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Figure 3.4: Accurate modelhng for the composition with s = 10, and errors in modelling 

with others (sum of squared errors versus number of iterations) 

s to s = 10 as shown in Fig. 3.6. The same convergence towards the optimal logic (s = 

10) is shown when the search starts from larger values of s. 
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Figure 3.5: SSE convergence in the combined search for fuzzy relation and fuzzy logic 

3.5 The 'rules in weiglits' representation 

A weakness of the artificial neural networks approach to system modelling is the difficuly 

of interpreting their internal representations. A classic neural network appears as a 'black 

box', which performs well in the cases for which it was trained, but whose behavior 
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Figure 3.6: Convergence towards the optimal composition while also finding the fuzzy 

relation 

in new situations is hard to predict, and which offers no logical explanation on how it 

has reached a certain decision. For this reason they are not selected for applications 

where safety is critical, such as air traffic control, power plant operation, etc. Currently 

there are several architectures which offer rule extraction from artificial neural networks, 

e.g. KBANN [Towell and Shavlik 1993], or BRAINNE [Sestito and Dillon 1994] 

(see [Andrews et al. 1995] for a recent survey of extraction techniques). In neural 

implemented fuzzy rule based systems knowledge extraction consists in identifying the 

rules and tnerabership functions that fit the training data. Implementations with cla.ssic 

neurons are reported in [Horikawa et al. 1992], [Takagi et al 1992], [Jang 1995] for 

FRC2. Pedrycz and Rocha [Pedrycz and Rocha 1993] advise the use of fuzzy neurons in 

knowledge based-networks, which are networks that map concepts and implement FRC3. 

The input interface is ensured by matching neurons. Compact metiiods (FRC2, FRC3) 

lead to the 'rules in neurons' form of representation. The representation observed here 

in connection to FRC4 is a 'rules in weights' representation and offers all the advantages 

of true distributed representations. 

When presented with examples in the form of input-output pairs, the FNN leams 

the mapping in terms of corresponding fuzzy relation (weights) and S-T composition 

(synaptic/somatic parameters). It is interesting to observe that clusters in the weight 
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space take the shape of a distributed rale table-like, which is an image of a macro-

level rule table modulated by membership functions. This is in fact a rule extraction 

procedure .̂ 

In the example which follows, to facilitate the analysis, the fuzzy system which 

generated the input-output data are shown at the start. The problem can be seen as 

a transformation of representation, or how a neural system can learn a model from a 

linguistic description. In practice, the focus is generally on learning from data, the only 

information available being examples of I-O pairs. 

The system for which it is proposed to identify the fuzzy relational model has one 

input and one output. The fuzzy sets and the way they map are represented in Fig. 3.7 

(each input maps to the output on its right) and in Table 3.2 '. The input and output 

domains are mapped onto the [0,1] interval, and are sampled in 11 points (the same 

resolution was also found suitable in [Keller and Krishnapuram 1992]). The training 

pairs are formed by the sampled representations of mapping sets (the data set is shown 

in Appendix E). The training was done by GD. As the input and output sets were each 

sampled in 11 points, the resulting fuzzy relation is of size (11,11) and the associated 

network has 11 nodes, each connected to the 11 inputs. At the end of learning, the weights 

form clusters which constitute a distributed rule-base (Fig. 3.8) reflecting directiy the 

rules in Table 3.2. 

The knowledge shaped in the weight space is the combined knowledge from the rule 

table and the membership functions. Adaptation is simplified, as timing of rules and 

membership functions does not need to be made separately. A change of rule at macro-

level (Table 3.2) affects many points, and it is equivalent to modifying an entire cluster 

•̂ If the weights outside the cluster contribute this can be seen as 'exceptions to rules', small deviations 

which are recorded in this way (the concept of rules is our construction and may not capture a situauon 

perfectly , not even if rules are fuzzy). 
'Tlie abbreviations of fuzzy set labels stand for die following: VS - Very Small, S - Small, M - Medium, 

L - I^ge , VL - Very Large. 
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Figure 3.7: Fuzzy sets and their mapping: inputs and corresponding outputs 
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Figure 3.8: The weights .shape a distributed, microlevel rule table 
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Table 3.2: Rule table describing the set mapping 

Input 

YL 

L 

M 

S 

VS 

Output 

VS 

Rule 1 

S 

Rule 2 

M: 

Rule 3 

L 

Rule 4 

VL 

Rule 5 

in Fig. 3.8. On the contrary, the change of one weight (a mini-rule) in the distributed 

rule base of Fig. 3.8 has a local effect, allowing for a finer control in shaping the system. 

The network encodes the knowledge of mapping in neural weights, which reflect the 

fuzzy relation between inputs and outputs. The neurons act as distributed elementary 

fuzzy processors performing the S-T composition of inputs with the fuzzy relation. The 

network is thus a distributed fuzzy system, and the weights have the meaning of a point to 

point relationship between samples in the input and samples in the output space. It may 

happen in fuzzy modelling that although the membership functions and rules are in the 

way die experts have expressed, the result of processing differs from experts' predicted 

result. One thing that experts can not express is the logic of their reasoning (i.e. die 

composition used, which in not necessary MAX-MIN), to which a good approximation 

can be identified from examples, as shown in a previous section. 

3.6 Summary 

A new type of fuzzy neuron operating on triangular norms was defined and investigated. 

The fundamental fuzzy neuron was defined based on the fundamental t-nomis which were 

found to be the optimal t-norms (from a learning point of view) for implementing synaptic 

and somatic operators in fuzzy neurons. It was shown that synaptic modifications can 
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not improve models of classic neurons, but they affect the quality of the solution using 

fuzzy neurons, and optimal values may be found. GD equations for learning by FFNN 

were derived. It was shown how learning can address the simultaneous identification of 

optimal weights and synaptic/somatic parameters. In terms of FRE resolution this means 

a search for both fuzzy relation and fuzzy composition, which leads to better modelling 

than the cla.ssic approach, which look for solutions for FRE under the assumption of a 

prespecified composition. Finally, it is shown that during leaming the weights cluster 

and form a distributed rule base in the weight space. The 'rules in weights' representation 

allows S-T FNN to be seen as 'transparent boxes' rather than 'black boxes'. 



Chapter 4 

Fuzzy neurons with shared weights 

Fuzzy neurons discussed so fiir allow the implementation of distributed reasoning for 

single-input systems. In this chapter, a general model of fuzzy neuron is proposed, 

which supports the implementation of multi-input systems. This neuron has properties 

of a general purpose computational element. 

4.1 Implementation of multi-dimensional fuzzy systems 

The fuzzy relational equation (2.39) formalises information processing in a relational 

structure modelling linguistic statements of the form Input X maps to output Y. The case 

when X stands for a conjunction of inputs (X = Xi AND Xo AND ...AND Xm) can be 

described by the FRE of complex structure (see also [Di Nola etal. 1989]) 

(X1TX2T ...X„)oW=^Y (Al) 

66 
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with the fuzzy relation W defined in the Cartesian product ^ W :x Xi x Y . One 

should detail here a distinction between the compact and distributed classes of fuzzy 

reasoning. In compact reasoning (FR.C2, FRC3) the conjunction of terms in antecedent 

is interpreted as a scalar operator, and each input xi is matched against the classes 

defined on that variable, returning a degree of membership, lixi(Xi)- The degree of 
m 

matching the antecedent is then calculated as fix(xi,... ,x„) = TfixXxd the result being 
1=1 

uni-dimensiona! (ID). This degree of membership then modulates the output set selected 

by the rule. The contribution of all rules gives a fuzzy set, which is the final result, unless 

a crisp value is required and in this case a defuzzifi cation procedure must be applied. 

In distributed reasoning (FRCl, FRC4, see also [Takagi et al. 1992] and [Foulloy et 

al. 1994]) the mapping is from the m-dimensionai space x X, to the one dimensional 

space Y. In the perspective of FRE this is interpretable by considering T* a pointwise 

T between all combinations of elements of X,. Thus, a m-dimensional (mD) input is 
m 

matched against a mD fuzzy .set T*Xi, giving a mD result, which is further composed 

with the fuzzy relation W. Equ. (4.1) can be rewritten as 

Y = rXioW = s(T(rx^, w)). (4.2) 

A neural implementation of this form of reasoning is suggested by an analogy with the 

classic Sigma-Pi model [Williams 1986]. The Sigma-Pi activation function is defined 

as y = / * g, with 

g(xu...,x^)= Ylwj- UXi 

where f is nondecreasing function into [0,1] (usually by a sigmoid), * is the composition 

of the two functions in a right-left manner, J2 is the simple sum, n is the product, and P 

is the power set of [l,...,m]. This equation can be rearranged as 

g(x,,...,x,) = j:(n(n(xo,w,-). (4-3) 

'The Cartesian product of two fuzzy sets is defined as a pointwise AND between all combinations of 

elements of sets [Zadeh 19731. 
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The main characteristics of the model are: weight sharing, aggregation of inputs and non-

decreasing (differentiable) nonlinearity on output. (Observe that for example for 3 inputs 

{jrl,Jt2,i-3},thepowersetis{{jrl}, {x2},{x3},{x\,x2}, {.xl,x3},{.x2,x3},{xl,x2,x3}] 

(the empty set was omitted), and for each element of the set there is a synapse weighting 

the contribution of the element). By analogy, one can define a fuzzy logic counterpart of 

the model, by replacing 11 with T, and Yl with S. However, instead of operating on the 

power set, we restrict to the Cartesian product of some sub.sets, which may correspond to 

classes of similar inputs. In other words, the number of inputs associated with a shared 

weight is fixed, and equal to the number of classes. 

Definition. The S-T activationfunction is dQfimdby the functiony,y:[0. If -^ [0,1], 

of the form 

y(xu...,x„,)= S (T(Tx;,Wj)), (4.4) 

where S is an s-norm, T is a t-norm, and F^ are classes (in a total of ra) of inputs. The 

neuron operating on (4.4) is called S-T fuzzy neuron with shared weights abbreviated as 

FNSW. 

Fig. 4.1 illustrates a neuron witlt inputs coming from two classes x and v, each 

synapse having exactiy two inputs (i.e, inputs Xi and v,- share the weight WQ). The total 

number of weights is given by the cardinality of the Cartesian product between the two 

sets of inputs. For a layer of FNSW, an element of the relation matrix W is a weight Wyk 

connecting the input samples Xi, vj, to the k-th neuron. To produce the output Y, each 

k-th neuron performs a somatic operation (S) on synaptic inputs T{xi, Vj, wp), for all i,j 

combinations. Considering ra input classes, it is possible to implement m-dimensional 

mappings (Equ. (4.2)) with one layer of fuzzy neurons with shared weights described 

by (4.4). 
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y = S(ll,t2„.t9) 

N«e that T( T(xi,vj), wij) = T<xi,-vj,wij) 

Figure 4.1: S-T fuzzy neuron with shared weights 

4.2 Learning muiti-dimensional mappings 

In this section it is shown how a fuzzy neural stmctiire based on S-T neurons with .shared 

weights can learn the mapping from multi-input variables to an output variable. The 

neural weights obtained after learning configure a distributed rale-table which reflects 

the initial rule-table used to generate the I-O training sets. In practice, the data is obtained 

from the unknown system subject to modelling, and the network performs a knowledge 

extraction. 

FNSW can learn by the same mechanisms as FFN. This is made possible by the fact 

that one can calculate a combined input (a combination of individual inputs by a t-norm) 

which is modulated by the shared weight. Having the combined input as a unique input 

for the weight, the FNSW reduces to a FN. 

Example 1. Consider the fuzzy system with two inputs and one output, with mem­

bership functions illusti-ated in Fig. 4.2 and the mapping of the fuzzy sets given by Table 

4.1.^ 
2'nie abbreviations of fuzzy set labels stand for the following: N - Negative, Z - Zero, P - Positive, NB 
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5 6 7 
Output fuzzy sets 

Figure 4.2: Membership functions for inputs and output 

At the chosen resolution of 11 points per definition domain, the neural model consists 

of 11 neurons (associated to points in output domain), each having a maximum of 121 

active synapses. The training set was obtained from the mapping of discretized sets. 

The mappings to be learned are from 2D input fuzzy sets, obtained by pointwise logic 

AND of two input fuzzy sets, to ID output fuzzy sets. For example, one training pair 

is determined by the first rule in Table 4.1. The pair represents the mapping between 

Table 4.1: Rule table for the two input system 

/«2 

NB 

NS 

Z 

PS 

PB 

Inl 

N 

NB/Ri 

NB/R4 

NS/R7 

Z/RIO 

PS/R13 

Z 

NB/R2 

NS/R5 

Z/R8 

PS/Rl l 

PB / R14 

P 

NS/R3 

Z/R6 

PS/R9 

PB / R12 

PB/R15 

Negatiw Big, NS - N^ative S»ri!, Z - Zaro, PS - Positive Sniail. PB - Positive Big, 
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T(N,NB) and NB and is illustrated in Fig. 4.3, Each of the 11 neurons receives inputs 

from all the input cells of the bi-dimensional fuzzy set in Fig. 4.3. In computations, 

the matrix was transformed into a long vector by appending consequent rows to each 

other. For example, the 11 by 11 bi-dimensional fuzzy set 'N AND NB' in Fig. 4.3 was 

transformed into a 121 element vector, which is the bottom line array (on the left) in Fig. 

4.4. Similarly, the 11 points of the fuzzy set 'NB' in Fig. 4.3 become the bottom line 

in the right array in Fig. 4.4. The grey level reflects the magnitude of the element: the 

bigger the element the darker its representation. Thus for each rule a vector was mapped 

to a vector, obtaining the training pairs shown in Fig. 4.4. 

\ \ 
. \ NB 

. \ 
\ 

\ \ 

• V. 
8 7 8 H 

. 

• 

• 

10 ^^ 

Figure 4.3: 'N AND NB' maps to 'NB' (2D to ID fuzzy set mapping) 

Figure 4.4: Visualisation of the training set: inputs map to outputs. The bottom fine 

corresponds to the training pair shown in Fig. 4.3 
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The resulting fuzzy relation is of size (121,15) ^ After learning, the neural structure 

encodes the knowledge from rules and membership functions in the synaptic weights. 

'Slices' of weight space look like distributed rule tables as shown in Fig. 4.5, and reflect 

the separated rule tables for each output set shown in Table 4.2. A FNSW from the set 

of 11 peribrming the mapping is detailed in Fig. 4.6. Potentially the model suffers from 

the 'curse of dimensionality', the number of weights increasing exponentially with the 

number of inputs. However, as seen in Fig. 4,6, few of the 121 possible connections are 

active. To ensure a reasonable number of connections, a competitive learning mechanism 

can be imposed, thereby limiting the number of allowed synapses in a trade-off with 

the modelling precision desired. For an alternative approach to distributed modelling in 

fuzzy systems the reader is referred to [Pedrycz et al. 1995]''. 

Figure 4.5: Projections in weight space for neurons 1 -6 associated with the first 6 points 

in the discretised output domain. Darker colors proportionally represent larger weights. 

Excitatory and inhibitory inputs. The inputs to any type of fuzzy neuron can be 

excitatory (x,), or inhibitory, in which case they are complemetited (1 — x,). By inhibitory 

it is meant that an increase on that input will reflect in a decrease on the output, while 

excitatory inputs increase the output. The definition of FNSW does not specify the 

type of t-norms used for S and T, however for the reasons presented in Section 3, the 

-̂ Tlie neurons are independent and can be trained independently to solve yj = X), o Ri,j for all k = 1 „..,p, 

and all j = l,...,n. This reduces the computational burden of training a network with 1331 synapses, to 

the simpler task of training neurons with 121 synap.ses. However, one must realize that the freedom of 

finding differeni synaptic and somatic parameters for each neuron offers greater approximating power at 

the cost of a non-uniform reasoning (composition) law. 
''According to the cla.ssification proposed in Section 2.3 the approach proposed by Pedr>'cz is not 

distributed, but compact. 
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Table 4.2: Rule tables for outputs NB, NS, Z. 

NB 

inl 

NB 

NS 

Z 

PS 

PB 

inl 

N 

Rl 

R4 

Z 

R2 

P 

NS 

Inl 

NB 

NS 

Z 

PS 

PB 

in\ 

N 

R7 

Z 

R5 

F 

R3 

Z 

Inl 

NB 

NS 

Z 

PS 

PB 

/nl 

N 

RIO 

Z 

R8 

P 

R6 
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Figure 4.6: A FNSW and its weight space 

fundamental t-norms are preferable and in the following FNSW are assumed to be 

fundamental. 

4.3 Implementation of logic functions 

Proposition. Any boolean function (and in consequence any logic gate) can be imple­

mented with a single FNSW, working under any fuzzy logic. (Otherwise stilted, any 

boolean function is vertex equivalent to an S-T activation function whose weights are all 
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either 0 or 1.) 

Proof: The above follows directiy from the fact that any boolean function can be 

expressed in a disjunctive normal form (DNF). The DNF contains one term for each 

output TRUE, represented by I in the complete truth table. Its general form is y = 

OR ((x\ AND ... AND x«) AND w,), where OR is taken on all pairs xi,...,jc,„, for all 

possible combinations of inputs and their conjugates. As S generalises the boolean OR, 

and T generalises the boolean AND (they become the same for binary arguments), the 

expression can be written y = S((xi T ... T x^) T wd, which is equivalent to Equ. (4.4). 

Example 2. The following shows the FNSW implementation of the XOR. The XOR 

table (Table 4.3) leads to y = (jci AND xz) OR (xi AND X2). This is a particular case for 

y = (wi AND (jci AND i,)) OR (W2 AND (xj AND xj)) OR (W3 AND (x, AND xi)) OR 

(W4 AND (jTi AND .̂ 2)) with wi = W4 = 0, W2 = W3 = 1. 

In the simulations performed the neuron learned the XOR solution in one GD step. 

More precisely it learned the OR function, as the inputs for training come after the 

neuron preprocesses the inputs by pointwise AND, with the P operation given by 

^"{{--tbXi}, {X2,X2}} = {xiT X2, Xl T X2, Xl T X2, Xi T X2} as in Table 4.4^. The FNSW 

implementation of the fuzzy XOR and its characteristic for s = 0.01 are illustrated in 

Fig. 4,7. 

5 '.? i.s nor.;?,calculated by i • x. 
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Table 4.3: XOR logical table 

xl 

0 

0 

1 

1 

x2 

0 

1 

0 

1 

y 

0 

1 

1 

0 

Table 4.4: Training set for neuron implementing XOR 

X\ T X2 

I 

0 

0 

0 

Xl TX2 

0 

1 

0 

0 

Xl 1X2 

0 

0 

1 

0 

Xl TX2 

0 

0 

0 

1 

y 

0 

1 

1 

0 

4.4 Implementation of various connectives and relation 

with other fuzzy neuron models 

FNSW can be reduced to implement the T operation (which models the logic AND) by 

having a unique synapse with multiple inputs. Alternatively, FNSW can be reduced to 

implement the S operation (which models the logic OR) by having only one input per 

weight, and all the weights equal to 1. Configurations in between these two extremes 

allow intermediate logical characteristics between AND and OR (as 'pure' AND and 

OR may not cope well with experimental data [Hirota and Pedrycz 1994]) and thus it 

exhibits a similar functionality to the OR/AND neuron (a layered arrangement of OR 

and AND neurons), proposed in [Hirota and Pedrycz 1994] as a generic model of local 

connectives^. 

În knowledge-based applications, the concepts are often linked by and or or connectives. Some 

concepts are strongly related to others, while others are almost unrelated. For example and in 'red and 
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Figure 4.7: FNSW implementing XOR, and the fuzzy XOR surface 

Similarities can be observed between the FNSW as propo.sed here and the SOM 

(sum of miniterms) architecture of logic processors [Pedrycz and Rocha 1993], [Pedrycz 

et al. 1995]. SOM is a network with a layer of AND neurons (z,- = r(v,-5x,-)) which 

reaUze the miniterms, and a unifying OR neuron (y = S(WjTzj)) which does the sum of 

miniterms. FNSW stays between the OR neuron (fo which it can reduce by not allowing 

shared weights (i.e. having one input per weight) and the SOM network which reduces 

to FNSW if some weights in the AND neurons are 1 's, and some are O's. 

4.5 Summary 

The Chapter extends the fuzzy neural models to allow implementations of multi-input 

fuzzy systems. For this purpose, the fuzzy neuron with shared weight was defined. The 

multiple inputs that share the same weight come from different input variables. Thus 

new car' is different to and in 'large and expensive car' (example from [Di Nola el al. 19891). In the 

first construction the profjerties are unrelated, whereas in the second case the properties are related. In 

each case a different t-nonn may be the most appropriate for modelling. T-norms (other than MIN) 

have compensatory effects (i.e. r = T{xuX2) can be obtained for a different x\ by a change in xj). It 

is also possible to define compensative logic operators (such as the 'compensatory and' or 'y operator' 

[Zimmermann 199 i 1), for which the aggregated output is between 'pure' and and or. 



4.5. Summary 77 

a layer of FNSW is a direct implementation of the multi-input system. An example 

of learning a neural representation for a two input system is given. As in the case of 

single input systems, the weights reflect distributed rule tables, and such an organization 

obtained through leaming is in fact a rule extraction mechanism. It is proved that one 

FNSW can implement any boolean function and can simulate several types of fuzzy 

neurons, qualities that recommend it as a potential general purpose computational unit. 



Part II 

Towards robot apprentices 

78 
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This part initiates a new direction in robotics research: that of anthropomorphic 

robots learning to move by imitating human movements. Imitation is based on vision, 

and employs neural and fuzzy neural models of eye-arm coordination. Results of leaming 

are demonstrated in 2D for a robot imitating human arm movements, and in 3D for the 

robot imitating the movements of a second robot, of identical construction. 

The researcher interested in fuzzy systems can treat this second part as providing 

application results for fuzzy neural models treated in Part I. On the other hand, the 

researcher in robotics would have had treated Part I as providing theoretical details for 

the computational methods employed for solving a problem in robotics. 



Chapter 5 

Learning arm movements from a 

human instructor 

The first part of this chapter reviews results which contribute to an integrated approach to 

motor development in anthropomorphic robots. The focus is on leaming the visuo-motor 

coordination and on skill transfer. The second part of this chapter presents a scenario 

on learning arm movements from a human instructor. It argues in favor of developing 

eye-arm coordination for motor skill acquisition in anthropomorphic robots. Once the 

eye-arm coordination is learned, the robot can imitate the human arm movements for 

solving a particular task. To provide the training examples necessary for learning eye-arm 

coordination, a technique in which the human imitates the robot is proposed. 

80 
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5.1 Towards an integrated approach to robot motor learn­

ing 

In the last few years a number of papers have described research in the area of developing 

sensory-motor coordination for robotic manipulators. Some researchers use robots as a 

vehicle for the investigation of learning systems and behavior, while others are mainly 

interested in developing systems which by learning become better adapted to their 

working environments, and cope easier with changes is such environments or their own 

structure. Some representative systems that have the development of sensory-motor 

coordination as one of their goals are INFANT [Kuperstein 1991], MURPHY [Mel 

1991], and the DARWIN series of automata [Edelraan et al 1992] (see also [Reeke 

and Sporns 1993] for a review). Different in many respects, and particularly in the 

purpose for which they were built K these systems share the use of a mechanism which 

Piaget called circular reaction, and which consists in correlating self-generated actions 

with consequent perceptions. Thus, these robots leam by exploration, without having 

an initial model, for example by flailing their hands and perceiving the effects, and 

are subsequently able to achieve the coordination that enables them to grasp and track 

moving objects. 

Most of the work in leaming visuo-motor coordination by robotic manipulators is 

related to the idea of obtaining an association between the hand position in the image 

and the corresponding joint values that determine the positioning of the hand at that 

position [Kuperstein 1991], [Martinez et al. 1989], [Graf and LaLonde 1989], [Walter 

and Schulten 1993], [Smagt et al. 1993]). The leaming stnactures are neural based and 

in general the image is preprocessed in order to locate the center of the hand/object (its 

'INFANT was addressed at learning visuo-motor coordination of a multi-joint arm able to grasp 

objects in the 3D space, MURPHY was focused on neural!y-ba.sed visually guided reaching, which 

includes movement planning in an environment with obstacles. In the DARWIN series of automata the 

emphasis was on demonstrating leaning based on Neural Darwininsm, Edelman's theory of neural group 

selection [Edelman 1987], 
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x,y coordinates in the image). The neural network le^uns the mapping between center 

coordinates and joint angles, mapping which is a particular solution for the inverse 

kinematic problem^. When two cameras are used the two pairs of coordinates of hand 

in the image are combined, in a four-dimensional vector, for example as in [Walter 

and Schulten 1993]. In the case of redundant manipulators there is more than one 

configuration of the arm which can be chosen for placing the end-effector in a desired 

position. Teaching a particular configuration avoids the problem of choosing a solution 

from a set of alternatives. Alternative methods include, for example, the choice of 

a solution (i.e. arm configuration) at random , making a choice based on previous 

configurations, or based on the optimisation of some index function, etc. Restrictions on 

the internal joint coordinates can be made based on appropriate criteria such as distances 

of the links from the boundaries, as well as from external obstacles. In [Palm 1992] the 

arm avoids obstacles whereas the end-effector follows a planned path. Distances and 

corrections are denoted as fuzzy terms, and various criteria for controlling the arm are 

formulated linguistically by fuzzy production rules. In [Guez et al. 1992] the solution 

to the inverse kinematics problem attempts to capture the solution (and obey the same 

criteria) that a human used when asked to move an object in free space, in a plane parallel 

to the ground. 

The common approach to visually-guided manipulation assumes that there are no 

obstacles in the environment. If obstacles exist than the solutions obtained by eye-

arm coordination models can fail, and motion planning is necessary. In MURPHY 

[Mel 1991] motion planning was possible by leaming a forward model of the arm, and 

building 'mental' images of the arm, which were used in an error minimization try-and-

error search for a path to the target. To learn the forward kinematics function MURPHY 

stepped his arm through a uniform sample of approximately 17,000 arm configurations. 

-Traditionally, inverse kinematics refers to the mapping between the hand position in world coordinates 

and the joint commands. In the case of eye-arm coordination the mapping is between the hand position in 

camera coordinates and arm commands. 
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In general, learning of sensory-motor coordination is characterized by the following: 

• it is self-controlled and the predominant form of leaming is learning by exploration 

• the input patterns (models of movement) are not provided by a human teacher, and 

there is no reinforcement from a teacher 

• the desired movement is not known in advance (in terms of trajectory), but it is 

subject to a selection process and its acceptance depends on the particular task 

• it makes no use of prior experience from external sources. 

In contrast, skill acquisition is characterized by: 

• learning is mainly human-guided (possibly by reinforcement), and the predominant 

form is learning from examples or hints 

• the input patterns are selected by a teacher and the error signals and reinforcement 

are produced mainly by the teacher 

• the desired movement is explained (shown), and its reproduction is attempted 

• it makes use of the teacher's experience. 

Work in computational models of human skill acquisition and their application to 

robots was reported by Gel fand, Handelraan and Lane in [Lane et al. 1990]. 

Inspired from a classic classification of phases of human motor skill acquisition [Fitts 

and Posner 1967], they proposed a model based on a knowledge-base in which rules 

about movement already exist. 
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In the beginning there is a Declarative Phase in which a knowledge-based execution 

monitor determines how to accomplish a given control task using rules and algorithms 

within the KB. In the Hybrid Phase the KB system supervises the training of a NN 

which gradually takes responsibility for control. In the Reflexive Phase, reinforcement 

leaming takes over to further refine system performance (trajectory, etc). In more 

recent work [Gelfand et al. 1992], machine vision input was used for planning and 

executing movements under an algorithmic controller, while a NN learned the control 

using sensory feedback. The accent in these constructions is on the transformation of 

representation, mainly on the transfer from the KB to the NN. From the perspective of the 

approach adopted in this thesis, their work h^ the limitation that the knowledge about 

the movement is assumed available. However, in practice, obtaining the knowledge into 

the KB is usually the most difficult problem. 

Contributions in the direction of knowledge acquisition come, for example, from 

the work of Asada and colleagues (see for example [Asada and Liu 1990], [Asada and 

Liu 1991]), who investigated the possibility of acquiring task performance skills from 

human experts. In their reports they describe how an operator demonstrated the task (a 

deburring task) and a set of signals, including forces and positions, were recorded. The 

data was used to train a neural network for performing the mapping between process 

parameters (such as material properties and workspace geometry) and control actions 

(i.e. tool manipulation parameters). The training was done off-line. In more recent work 

[Liu and Asada 1992], the operator linguistically expressed his strategies while he was 

performing the task. The hybrid numeric-linguistic system, stmctured around if-then 

rules which form a collection of local control strategies applying to a particular situation, 

lead to a more efficient system then its neural predecessor. The focus in Asada's work 

is on learning the task and not the arm movements to perform the la.sk. 

Automated learning of tasks by a robotic system through observation of a human 

operator was also considered by Belmans [Belmans 1990], He modeled a task by an 

http://la.sk
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error function between the actual .slate of the robot and the reference slate (or reference 

trajectory) it should occupy, and the robot was required to minimize the error function. 

This servo-control perspective is analogous to telemanipulation. 

In telemanipulation the human moves its arm, which has attached a master arm, 

and its movement is reproduced by the slave arm. It is important to have a suitable 

!mpedance^ however, what is the optimal impedance for master-slave teieoperators is 

still a matter of debate (see [Sheridan 1992] for a review). Some argue that an ideal 

teleoperalor is one that is transparent, i.e. infinitely stiff and weightless mechanism 

between slave and master arm end effectors. It is also important to note that operators 

get tired when holding their arms in awkward positions or applying constant forces, as 

master-slave systems often require. A camera-driven telemanipulation may be thought 

of as a solution to the above problems, in which nothing is attached to the arm and there 

is a complete freedom of movement, but which inherentiy requires more complicated 

processing"̂ . In this way the approach becomes connected to a form of visual-servomg. 

Image based visual-servoing is a relatively recent approach to control, characterised 

by closing the conti-ol loop around visual inputs [Shirai and Inoue 1973], [Sanderson and 

Weiss 1986]. This is part of a novel trend to use noncontact sensors inside the servo-

loops themselves, while initially their use was limited to providing data for higher level 

decisions, tiiat involved mainly pattern recognition problems[Espiau et al 1992). The 

reported applications in robotics, target achieving the proper position and orientation 

of end-effector in respect to an object. The common technique is 'eye-in-the-hand', 

the camera being mounted on the end-effector. Some dynamic effects present in this 

approach, such as the perspective gain effect, manipulator vibration, and latency from 

servo-en-or to action are discussed in [Corke 1992]. In the approach proposed in this 

Împedance is defined as the reladon between applied force and the velocity. 

"Note that camera-guidance as proposed later in this chapter, there is no force information communi­

cated and also no force feedback, which normally in teleoperation increases the task completion time. The 

information refers to the trajectory, or the succession of movements necessary to successfully accomplish 

a manipulation task. 
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thesis visual servoing is used by a robot arm as a mean of tracking/imitating a master 

arm. The cameras are not fixed 'in-the-hand', but are positioned as to take a 'bird's eye' 

top view, and thus the only important dynamic effect is the time delay between image 

acquisition and the placement of the arm in the desired position. As for a real-time vision 

.system used in conjunction with a robot, an excellent example is the ping-pong player 

robot, initially designed for testing a high-speed camera system [Anderson 1988]. 

Some robots have used vision-based systems for task learning from practice. For 

example, a robot was programmed to juggle a .single ball by batting it upwards with a 

large paddle [Atkeson 1990]. The robot used a real-time binary vision system to track 

the ball and measure its performance. A model of performance errors was built at the 

task level during practice and used to refine task-level commands. A recent thesis by 

Schneider [Schneider 1995] deals with robot skill learning by intelligent experimentation 

and proposes some new algorithms for accelerating learning from practice. In these 

systems learning is based on an individual effort and is not the result of a skill transfer 

from a coach (Schneider uses a kind of 'virtual coaches' - particular algorithms that each 

improve some part of controller's perfonnance). 

Teaching and learning bear a close relationship, and it is important to develop not 

only good learning abilities, but also good teaching schemes, which allow the skill 

transfer to be coordinated by the human. Coaching is thus very important in developing 

motor skills. Some important aspects of coaching, and in general of motor skill transfer 

to humans, are presented in Appendix 7 .̂ 

From a human's point of view, the ideal way of communicating with robots would be 

natural language. An example of a system that learns from natural language instruction 

is Instructo-Soar [Huffman and Laird 1994]. The system starts with a small set of 

•''Tbeir placement in an Appendix is because they do not directly affect the results presented here, 

however, they are of particuhtr importance for developing robot apprentices that leam in similar ways that 

people do, and could be very useful in future work continuing the approach presented in this thesis. 
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primitive operators and leams completely new procedures from sequences of interactive 

instraction. At the first execution of the procedure, everything that changed from the 

initial state to the final state during execution is associated with the goal of the procedure. 

In following executions, the system, recalled instractions learned by rote and explained 

to itself how each contributed to achieving the goal. 

Natural language instraction of future robots should be done using spoken language. 

A precursor of future spoken language interfaced robots is the Speech Activated Ma­

nipulator (SAM) [Brown et al 1992]. SAM lives in a complex world, has different 

types of sensors and communicates with the human teacher via spoken natural language. 

Through combined human-machine and machine-world interactions SAM substantially 

reduced the amount of knowledge and skill needed by a human operator. 

In the process of skill acquisition, the movement can initially be performed at a lower 

speed than desired, and then subsequently repeated at increasingly higher speeds, until 

the desired one is reached. The practice control strategy presented in [Sanger 1994] 

could be used to mathematically formalise such an approach. Instead of simply storing 

the motor sequences, specialized stractures should be deviced to leam the motor pattems. 

The leaming of motor pattems can be addressed in relation to the learning of a complex 

temporal sequence, for which a neural network solution was proposed in [Wang and 

Arbib 1990], [Wang and Arbib 1993]. The storing and generation of visually acquired 

two dimensional trajectories by a motor program generator was described by Eckmiller 

[Eckmiller 1990]. He suggests a way in which a robot with NN modules can leam to 

draw a visually monitored pattern. The example given is a typical writing trajectory -

the letter 'b ' - and the corresponding hand trajectory in 2D. 

The acquisition of motor skills by a system which has learned its sensory-motor 

coordination on its own is a largely unexplored area. It is also an important step towards 

an integrated approach to robot motor leaming. The remainder of this chapter is intended 



5.2. Learning arm movements from a human instructor: an approach based on imitation 88 

to offer a possible scenario on how this may be achieved. 

5.2 Learning arm movements from a human instructor: 

an approach based on imitation 

Learning as a single entity experience has received appropriate interest in the robotic, 

machine learning and artificial intelligence comnaunities. Much less studied has been 

leaming from similar entities. Half a century ago, Turing wrote 'The isolated man 

does not develop any intellectual power. It is necessary for him to be immersed in an 

environment of other men, whose techniques he absorbs...'. One particular thing humans 

transfer to each other is skills. 

Skills (of a qualified operator, sportsman, etc) can be broadly divided into two large 

categories: planning skills, i.e. theknow-howexpertise, and motor controLskills, i.e. the 

ability acquired after performing a movement many times. Accordingly, the mapping 

between process characteristics and actions can be divided in a mapping between process 

characteristics and desired actions (which determine the planning skills), and the mapping 

between desired actions and performed ones (which corresponds to motor control skills). 

The former are related to strategies at a higher level, while the later refer to dexterity 

and motor abilities (see Fig. 5.2). In the case of arm coordination the mapping between 

desired and actual performance is subject to a representation in which a motor controller 

maps the desired performance into commands, and the arm plays the role of the controlled 

plant, mapping commands to actual performance. The motor controller also performs 

a coordinate transformation, from a sensory coordinate system to a motor coordinate 

sy.stem. 

A transfer of motor skills refers mainly to the transfer of the mapping between desired 
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Figure 5.1: Planning skills and motor skills 

actions and performed ones. If the robot can 'see' the desired movement performed by 

a human, and can imitate it, then there is no need for the robot to be very intelligent 

and figure out for itself 'how' to perform the movement. There is no need for task 

understanding, path planning, etc; the human offers the solution for motion planning and 

all that is needed is to imitate human's movement (and repeat as necessary) .̂ Teaching 

by showing is also for the human the simplest way of instructing a robot. 

Imitation allows the robot to get the solution of a movement problem in terms of 

its own internal representation of motor commands. Ideally this should be followed 

by some associative processes, the robot leaming that it was useful to perform certain 

movements (shown by human) in a certain context. Two alternative ways in which the 

robot can imitate the human were tested in simple experiments. In one alternative the 

robot looked alternatively at the human arm and at his own arm, and tried to reproduce 

''A very interesting experiment communicated recently [Nagell et al. 1993| shows a major difference m 

the way imitation is performed by humans and chimpanzees respectively. On a tool demonstration task, the 

chimpanzees retain the general functional relations in the task and the results obtained, but not the actual 

methods of tool use demonstrated. On the contrary, human children were reproducing demonstrator's 

actual methods of tool use. Interesting enough, it is the human children who 'ape' and not the chimps ! 
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human's arm posture by canceling a positional error between the twol The vision 

systeiTi has to continuously switch focus between instructor's arm and own ai-m as to 

react on differences, and therefore fast movements could be difficult to track in this way. 

Another way of imitating is by watching the teacher's arm onlyl In order to imitate, 

i.e. to place its own ami in postures similar to those of the human's arm, the robot must 

have an eye-arm coordination which associates the images of the human arm in different 

postures to the commands to own arm. 

Two questions naturally arise at this stage. First, why eye-arm coordination and not 

eye-hand coordination (the form of visuo-motor coordination which has been attempted 

so far in robotics research)? Second, how can one leam the eye-arm coordination 

which associates images of human arm to commands of own arm? These questions are 

answered in the following. 

5.2.1 Eye-arm coordination 

For redundant manipulators (including here the human arm and anthropomorphic robot 

arms) the associated inverse kinematics problem is underconstrained, admitting more 

than one solution (i.e. more than one set of joint values can place the hand at a specific 

point in space) and some alternatives to cope with this were mentioned in Section 4.1.1. 

However, none of these altematives is acceptable if the given task requires specific 

arm postures, as imposed by obstacles in the environment, or by the task itself. This 

is exemplified in Fig. 5.2, in which the learned solution (Posture 1) for placing the 

hand in a particular point is unacceptable due to an obstacle, while a posture shown by 

'''This could be regarded as a classic 'tracking' problem in a control perspective. For a desired 

'reference' configuration of ann and an actual configuration for own arm, the error (difference between 

the two) is the input value for a controller. In some initial experiments, based on arm contour detection, 

this solution was tried by using a simple proportional controller, 
'̂Tliis control is open loop, with no information about robot's own arm coming from the cameras (a 

model of the robot's own arm can be used to predict the positions). 
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Figure 5.2: Two possible arm postures for performing same hand movement, the first 

one forbidden by an obstacle 

an instructor (Posture 2) provides a feasible (and in general quasi-optimal) altemative. 

Eye-ami coordination is thus necessary for skill transfer to redundant manipulators, 

determining successive positions of the arm and not of the hand only, and adds to other 

models of coordination as shown in Fig. 5.3. 

In many situations which do not pose external spatial constraints, humans find eye-

hand coordination more efficient for manipulation tasks. The choice of a solution 

for the control of the redundant human arm is determined by intemal constrains of 

energy minimization, smoothness of movement, comfort (biomechanics studies show 

that positions around the middle of the permitted range are preferred), etc. In tasks that 

require learning to move a hand held object, only the trajectory of the instructor's hand is 

watched for, and eye-hand coordination appears sufficient. However for learning skilled 

movements, in working environments that contain obstacles or other spatial constrains, it 

is necessary to watch the movement of the whole arm, and this is the aspect treated here. 

Future systems could benefit from a combination of eye-hand and eye-arm coordination. 
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Figure 5.3: Models of arm coordination 

Eye-arm coordination is addressed here as a direct mapping between the configuration 

of the whole arm, as seen by the camera, and joint commands. In this respect it is more 

related to ALVINN (Automated Land 'Vehicle In an Neural Network) used in NAVLAB 

[Pomerleau 1993] than to any work in sensory-motor coordination .̂ ALVINN is a three 

layer feedforward neural network trained to associate images of the road to commands of 

the steering wheel. Examples for training the net are obtained' on the fly' while driving, or 

from computer generated situations which cover situations rarely encountered in correct 

driving. In an analogy to ALVINN, the arm in the image corresponds to the street as 

seen by the camera, while the commands to joints have as correspondent commands to 

the steering wheel Three major differences distinguish the approach presented in the 

following from ALVINN. First, there is more than one output variable to be controlled 

(here shoulder and elbow angles - and z displacement for 3D tests). Second, after 

the successful use of classic NN trained by batch backpropagation, it is investigated 

the use of a fuzzy NN, which performs incremental leaming at the presentation of 

Ône can attempt to directly extended the procedure used in eye-hand coordination, i.e. finding centers 
of hand, lower-arm, upper-arm, but this may mean heavy preprocessing mid a careful correlation between 
different parts. Also possible is to find the skeleton of the arm, and to use this information for mapping. 
My first attempts were oriented in this direction but the image processing burden and the dependence of 
the results on carefully controlled laboratory conditions determined the search for better solutions. 
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each example. The last, and most important difference is the method of providing the 

examples necessary for supervised training, which is presented in the following section. 

5.2.2 The human imitates the robot 

How can the robot learn what commands to give to its own ann in order to produce a 

po.sture similar to that of the human arm? In building associative models, the associations 

were generally between commands and results of commands through the same system. 

This idea of associating actions with determined perceptions was applied for example, 

in INFANT [Kuperstein 1991] in the context of leaming the eye-hand (own hand) 

coordination. In the context of learning autonomous driving with ALVINN, the images 

of the street were associated to certain rotations of the wheel, the effect of direct human 

action. The human performance of the task offers directly the input-output data set, 

which can be u.sed in supervised training for deriving an associative model. This 

method appears much more difficult to apply to skill transfer at manipulators. To quote 

ALVINN's builder 'The same techniques would not be readily applicable to domains 

such as the controlling individual joints of a robot arm...since in these tasks the correct 

response is difficult to determine' (p. 175 in [Pomerieau 1993]). 

The solution proposed here is tiiat the human imitates the robot, positioning his own 

arm in postures similar to the ones produced by the robot. The robot gives a certain 

command set to its joints, and as a result its arm takes a certain posture. The human 

ti-ies to place his arm in a posture similar to the robot's. Then it validates the image of 

his arm seen by the robot's eye which becomes example for training, being associated 

with the robot command set^°. The method is subject to human error in the estimation 

'f'One cm draw an analogy to diis technique, relating it to the fact noticed by child psychologists 

that quite often parents happily reproduce the first attempts of speech of a baby, although these are not 

proper words of a language; this provides the child with some feedback, which some researchers consider 

important in leaming. (The teacher imitates and reinforces imitation. The child leams that imitation is 
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of identical or mo.st similar posture. The two arms are not identical, and the metric 

according to which the two positions are similar is not formally defined, the assessment 

being subjective. Accordingly, the method can be best evaluated based on some 'posture 

similarity' criterion. 

Thus, in the approach proposed here, the main steps in developing robot apprentices 

that learn from shown movements are considered: 

1. learning of a visuo-motor model of arm coordination, 

2. imitation of the teaching arm, 

3. correlation of the solution with the task and repetition of the movement to optimize 

parameters and develop a motor pattern. 

Only the first two aspects receive treatment in the following. The human imitates the 

robot and this offers a solution for developing an association between images of the 

human arm and the commands that the robot gives to position its own arm in similar 

postures. In the second stage, the robot imitates the human and thus receives a model of 

the movement it needs to learn (see Fig. 5.4). 

5.2.3 Experimental framework 

A series of experiments were conducted in order to validate the fesibility of the proposed 

approach. To compensate the lack of a true anthropomorphic manipulator (but sttll 

maintain real worid conditions) two types of experiments were conducted. 

nice/rewarding.) 
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Figure 5,4: Imitation by human and imitation by robot 
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A first type of experiments involved a robot imitating human arm movements per­

formed in a horizontal plane. Viewed from above, and while performing in a horizontal 

plane, the robot used (RTX, which is an UMl made SCARA robot) was anthropomorphic 

(see Fig. 5.7). The experiments investigated the effect of non-identical arms, variations 

in human arm appearance as determined by folds and color of clothing, objects in the 

environment, effect of changes in lighting, the necessary resolution of the 'eye', and 

compared classic neural and fuzzy neural models of eye-arm coordination. The robust­

ness at variations of instructor's arm appearance is very important as the folds on cloths 

produce a varying contour of the arm, and also different cloths may have different color, 

and in the end one wants the robot to learn to follow any instructor whose arm stays 

within a reasonable variation in appearance compared to a 'standard' arm, and not only 

a particular instractor. 

The full setup used in the first set of experiments is presented in Fig. 5.5. A photo of 

the laboratory, while using this setup is shown in Fig. 5.6. The two cameras mounted on 

the ceiling do not appear in the photo. One camera takes images of the robot arm, and 

the other takes images of the human arm (Fig. 5.7). Which particular camera is used 

by the robot for learning the visuo-motor coordination or for imitation depends on the 

particular experiment. The video monitors were installed to help the human instmctor 

to more precisely estimate similar postures when imitating the robot arm. The robot was 

controlled from the PC via a serial interface. 

The second type of experiments were targeted at investigating how the approach 

extends to the 3D performance. Two identical looking robots (RTX) were used, one 

learning to imitate the other. The human operators controls the master robot via a 

computer. This time the camera was placed at the approximate position of the human 

eye, gazing at an oblique angle to the master arm (only one camera was used), as 

illustrated in the drawing in Fig. 5.8 and the photo in Fig. 5.9. One image ŝ .seen by 

the camera is shown in Fig. 5.10. 
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Figure 5.5: Laboratory setup for experiments of first type 

5.3 Summary 

This Chapter has reviewed work related to an integrated approach to robot motor leaming. 

It also has introduced a perspective on developing robot apprentices, robots that first learn 

to visually coordinate their arms and then imitate human anns in their performance of 

a task. It was proposed and argued here that, for learning skilled movements, eye-arm 

coordination is more appropriate than eye-hand coordination. A technique for providing 

training examples for learning eye-arm coordination was also proposed, in which the 

human imitates the robot. The final part presented the experimental setup in which 

the approach was tested. The next Chapter presents experimental results of using the 

proposed technique for leaming neural models of eye-arm coordination. 
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Figure 5.6: Photo from the lab 

Figure 5.7: Images taken by the two cameras for the teacher and apprentice arm 



•5.3. Summarv 
99 

Robot 
apprentice 

Robot 
master 

Human operator 
controlling the 
master robot 

Figure 5.8: Laboratory setup for experiments of second type 

Figure 5.9: The two robots side-by-side. Camera on top left of the image 
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V 
Figure 5.10: Image of master arm as seen by the 'eye' of the apprentice 



Chapter 6 

Learning neural models of eye-arm 

coordination 

This chapter describes experiments with a neural based robot that learns to imitate 

the movements of a master arm, illustrating the feasibility of the approach proposed in 

Chapter 5. It is shown that only one neuron per joint is sufficient for leaming the eye-arm 

coordination. The neurons can be classic^ or fuzzy. Classic neurons were trained using 

off-line gradient de.scent, while fuzzy neurons were trained on-line, incrementally, using 

algorithms that solve fuzzy relational equations. The fuzzy neural model is transparent 

and has a direct interpretation, which makes it a better choice than the 'black box' classic 

neural model. Fuzzy neural models of eye-arm coordination learned from one arm can 

be used for tracking other arms of similar appearance. Also, fuzzy neural models are 

less influenced by additional objects that appear in the image of the workspace. 

'The classic neuron model considered is the 'sum-product-logsig' model presented in Appendix G. 

101 
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6.1 Inputs, outputs, and the choice of a neural model 

6.1.1 Visuo-motor mapping 

The purpose of developing a visuo-motor coordination is to allow the robot to place its 

arm in a position similar to that of the master arm. Thus, a mapping between images of 

the master arm and commands to the robot arm must be learned. During the learning 

of the visuo-motor model the visual inputs could be from the robot's own arm, from 

the arm to follow, or from another teaching arm (these vaiiations are discussed in detail 

later in this chapter). During the imitation of human arm movements, the visual inputs 

are images of the human arm. To reflect this visuo-motor coordination, a model can be 

considered as in Fig. 6.1, reflecting the mapping between visual inputs and joint motor 

commands. 

Visual 
input Visuo-motor 

model 

Motor 
commands 

w 

Figure 6.1: A model of visuo-motor coordination 

6.1.2 Inputs: images at low resolution 

The inputs to the model, denoted by X in Fig.6.1, are low resolution images originating 

in the images obtained from video cameras. Fig. 6.2 depicts a typical view of the arm, 

the image at low resolution, and the same image in a presentation which indicates the 

levels of grey of various regions in the image. 
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Initial experiments were performed using low sampling, by selecting each 16-th pixel 

in a 200x256 input image, to form a low resolution image. This did not prove robust 

enough and resulted in coarse movement. For example, if the arm contour had a clo.se 

proximity to a sampling point, a one pixel shift in the high resolution image produced a 

change in the low resolution image. At the other extreme, for the arm contour relatively 

remote from a sampling point, a several pixels shift in the high resolution image had no 

effect on the low resolution image. To avoid this non-uniform sensitivity, the following 

solution was adopted. The low resolution images were obtained by averaging regions 

of 16x16 neighbouring pixels, and their average was considered the contribution of the 

region to the low resolution input. This lead to a 12x16 image, with a total of 192 inputs 

per image (see Fig. 6.2). A higher resolution (of 24x32, i.e. 7668 inputs per image) 

was also tested and its effect on system performance is discussed later in this chapter 

.̂ The intensity values were normalised (as the fuzzy models require inputs in the [0,1] 

interval), with 256 grey levels between white (0) and black (1). 

Figure 6.2: Image taken by the video camera and image at low resolution 

^NAVLAB uses a 30x32 low rs^siution iaage derived by averaging a low fraaion (»otind 3%) of 

pixels in areas of size 16x16 in the high resolution image. 

http://clo.se
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6.1.3 Outputs: control commands to joint motors 

The output variables, denoted by Y in Fig 6.1, were associated with shoulder and 

elbow joint angles (Fig. 6.3). The 'home' position for shoulder was considered on a 

side, forming an angle of 90 degrees with the frontal direction (for the right arm in a 

horizontal plane). The maximum range of the shoulder angle varied from 0 to 180, which 

corresponded to the movement of the arm from front to back; the interval [0,180] wtis 

mapped into the [0,1] interval The elbow angle was considered between the upper-arm 

and the lower-arm, with a maximum of 180 degrees for the fully extended arm. The 

maximal range of variation of [0,180] was mapped to [0,1]. 

Lower-arm 

Upper-arm 

Figure 6.3: Arm skeleton showing shoulder and elbow angles 

6.1.4 Mathematical models and identification from examples 

The visuo-motor mapping of Fig. 6.1 can be expressed as a function Y = f(X). For neural 

models the expression of the function depends on the architecture of the network and the 

type of neurons used. For example, for a layered structure of fuzzy neurons the output 

Y can be obtained by a repeated S-T composition, i.e. 

r = XoW = XoW,o,...,oW„ 
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where Wi,...,Wn represent the weight matrices of the neural layer. The experiments 

performed have shown good results using the simplest possible stractore with only one 

neuron per joint. More complicated stractures which may give even better models were 

not considered for investigation because the limitations of the approach did not come 

from this direction. Tbe limitations of the practical implementation are derived from 

a set of assumption detailed in Chapter 7, such as, for example, the use of a fixed 

direction of viewing the arm. To cope with non-simplified situations, including variable 

viewing positions and changing backgrounds, more complicated neural stractures would 

be needed. 

The two neurons associated with the joints generate a graded output in the [0,1] 

interval, and produce a command signal to shoulder and elbow motor joints (Fig. 6.4). 

Shoulder 

Elbow 

Figure 6.4: Shoulder and elbow neurons that map images to joint commands 

Model identification from training examples consists of finding W, for given X 

and Y pairs. The procedure for generating training examples was that proposed in 

Chapter 5, according to which the human imitates the robot. The image-command pairs 

were selected to (approximately) uniformly cover the workspace. A total of 97 image-

command pairs was collected, and separated in a training set (88 pairs) and a test set (9 

pairs), the number of pairs in the test being taken to be about 10 percent of the training set 

•\ The order in which the examples were presented did not influence leaming. However, 

T̂Tic system of 88 training pairs is a system of 88 equations with 192 unknowns. 
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as the human had to imitate the robot, it was easier to have minimal arm po.sture changes 

in consecutive examples, so that the human could track them easier. It is predictable 

that an increased number of training examples, which determine a better sampling of the 

workspace, would increase the accuracy of the model (up to a limit which is determined 

by the method of generating examples). This was confirmed by the experiments. All 

the tests were initially performed at the lowest image resolution image and the lowest 

number of examples, which was kept as a reference for comparison. The performance 

of models with cla,ssic and fuzzy neurons is presented in the following. 

6.2 A model based on classic neurons 

The classic neuron model employed in the tests was the sum-product-logsig presented 

in Appendix G. The leaming method was batch GD with momentum and an adaptive 

learning rate (trainbpx in Matlab [Demuth and Beale 1994]), The plots of the convergence 

during traitiing are illustrated in Fig. 6.5, 

The model was evaluated against the target values from the training set, the results 

being illustrated in Fig. 6.6, and on the test set using images which the robot had not seen 

before, the results being illustrated in Fig. 6.7 ^. The performance of the neural model 

is considered good. As the test examples were part of the total number of examples 

selected to approximately uniformly cover the workspace, and did not appear in the 

training set, the test regions were poorly covered by training. Doubling the number of 

examples lead to an increased accuracy of the model, as seen in Fig. 6.8. Increasing 

the number of training examples beyond some value would not continue to improve the 

approximation power of the model as the examples used in leaming were prone to errors 

"*Simulations have shown that using a compressed output i.e. [0.25,0.75] instead of [0,1 ] (thus avoiding 

the region in the neighbourhood of 0 and 1, see the logsig ch^acteristic in Appendix O) the error decreases 

faster, the accuracy after 8000 steps having increased about 6 times for the training set and about 3.5 times 

for the test set. 
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resulted from what the human perceives to be 'similar' posture positions. 

The analysis of the neural weights did not show any readily interpretable distribution. 

Fig. 6.9 shows the graphic representation of the weights of the elbow neuron, organized 

as a 12x16 array, similar to the 12x16 image inputs upon which it acts as a weighting 

element (each weight modulates an input cell of the low resolution image). 

Training tor 8O0O Epochs 

Figure 6.5: Convergence of the GD algorithm 

Figure 6.6: Evaluation of the classic neural model on training data 
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Figure 6.8: Evaluation (on test data) of the classic neural model trained with double 

number of examples 
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12 20 

Figure 6.9: Weightspace for elbow node after training by GD 

6.3 Fuzzy neural models 

This section investigates fuzzy neural models of eye-arm coordination. The leaming 

algorithms proposed here are inspired from analytic resolution methods of FRE, and 

allow on-line learning with a single pass through training data. 

63.1 A necessary condition of solvability of a system of MAX-MIN 

FRE 

The problem of training MAX-MEN motor control neurons from input-output examples 

is equivalent to the resolution of a MAX-MIN FRE, The conditions of solvability for 

MAX-MIN FRE (Eqs. 2.7,2.8) indicate that, for the given training set (the same set used 

for fi-aining the classic neurons), the system of FRE does not have solutions. A first step 

to render the system solvable, is to scale down the output, below the maximum values 

of inputs (which for my uncovered arm gave a grey level of about 0.22, and for the robot 

arm gave a level of about 0.5). This condition guarantees a solution for each individual 

equation, however, does not guarantee tiiat the system of equations has a solution. 
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Numerical experiments indicated the following necessary condition of solvability of 

a system of MAX-MIN FRE. Consider the fuzzy relations X (of size pxm), W (of size 

mxn) and Y (of size pxe), and indices I e l , . . . ,m, /e ! , . . . ,« , and p e l,...,k. 

Theorem. A necessary condition of solvability for a system of MAX-MIN FRE given 

byXo W = Fis 

MIN(MIN( Y(k,j))) > M.AX(MIN(X(k, /))). (6.1) 
k j k i 

This excludes the case when for all k, 

Y{k,]) = m < MAX(MIN(X(k, i))), (6.2) 
k i 

which is trivial. 

Proof: The theorem states that, if any of the outputs is smaller than the minimum 

value of the inputs, then the system does not admit solutions. Each column of the output 

can be treated separately and the results assembled at the end. Assume that the condition 

(6.1) is false and still a solution exists which doesn't lead to the trivial result (6.2). 

Consider the columns for which the output has a value m, less than the smallest input. 

Then by a-coraposition (2.11), die solution obtained has all its elements equal to m. 

This being lower than the inputs, all the outputs by MAX-MIN composition are equal 

to m, which is (6.2). The Jissuraption that (6.1) is false lead to a contradiction, so (6.1) 

must be true. 

From the combination of (6.1) with (2.7), results a necessary condition of solvability 

for a system of MAX-MIN FRE. The condition is to have, for each output column j 

(which also represents here the output of neuron j), 

MAX(MlN(X{k, i))) < MIN(Y(k)) < MAX{Y{k)) < MIN(MAX(X(k, i))). (6.3) 
k i k k k i 
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where i is the mdex of the input column and k the index of row. For the visuo-motor 

model j indicates the output of the neuron, i indicates the pixel in the image, and k 

indicates the example. In practice one can scale the input or output levels to satisfy 

this condition. Here the output was compressed, and the operation was given the 

name 'Compressed Output As a Threshold' (COAT for short), as the outputs act as a 

separating threshold between the maximal values and the minimal values of the input. In 

this problem where the inputs are grey-scale images, the maximal values are informative 

dark values indicating the arm, and the minimal values indicating the level of background 

noise. For solvability the outputs need to be greater than the maximum noi.se and smaller 

than the minimum information level. The situation is illu-strated in Fig. 6.10. 

0,25 

0.15 

0.05 

f ( y « ) ) targe! outputs within the Hmte V(*>) 

mWBMtl g*ey tewl {feaokfrouBtf oase ) 

0 10 20 30 40 . 50 60 70 80 90 100 
K 

Figure 6.10: The position of the output determines the solvability of a system of MAX-

MIN FRE 

The (approximate) solution obtained in this case by a-composition is illustrated for 

shoulder neuron in Fig. 6.11. 

The output of the MAX-MIN neurons having die weights calculated by a-composition 

is illustrated in Fig. 6.12 for the trmnitig set md in Fig. 6.13 and for the t^t set. 

http://noi.se
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S<*jlKm by alp*ia-c5wT^x)sii)on 

Figure 6,11: Weight matrix: solution by a-composition 

The evaluations against target values indicate a satisfactory result, considering that it 

required only one pass through data, as compared to 8000 passes through data, as were 

needed for the classic model to achieve the performance shown in Fig. 6.6 and Fig. 6.7. 

Tfainlna data (ahwMer) TraMig data (Obnv) 

40 50 
Examination pomte 

30 40 50 SO 
Exarmnation points 

Figure 6.12: MAX-MIN model evaluation on the training data 

6.3.2 The am-composition 

Very likely, the solution obtained by a-composition includes some 1 's, represented as 

black regions in Fig. 6.11. In trying to understand the distributed representations shaped 
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Te^ <^ta (shcH^dcti) T«« data (eftsow) 

Figure 6.13: MAX-MIN model evaluation on the test data 

in the neural weights, 1 's are like a cover hiding interesting stractures. One can remove 

this cover by performing a change in the a-composition. This leads to a more easily 

interpretable weight matrix and offers an explanation of the processing by MAX-MIN 

neurons. 

The minimized a-composition (am for short) is obtained by replacing the I's in the 

a-composition given by 

X,(OaF,(i) 
I ifX,(i)<F*(0. 

YkH) if Xk(i)>Yic(i), 

in the way indicated by Equ. (6.4) 

MAX(Yk(m ifXk{i)<Yk(il 
Xk{i)amYk(i)={ ' 

Ykii) ifXk(i) > Yk(i). 

(6.4) 

For example 

0.3 0.7 

0.5 O.l 

0.4 

0.9 
W„ = 

1 

0.4 
rVam ~-

0.9 

0.4 
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If the system of MAX-MIN FRE admits solutions, then the am composition gives a 

.solution. 

Applying the am - composition to the the set of image-commands pairs leads to the 

solution illustrated in Fig.6.11. Fig. 6.14 differs from Fig. 6.11 in the intensity of the 

maximal grey level, which corresponds to the maximal elements in the matrices. Both 

the a-coraposition and the am-composition lead to the the same output of MAX-MIN 

neurons as illustrated in Fig. 6.6 and Fig. 6.7. 

Soiufcn tPi aipttaioJrt-compositton 

Figure 6.14: Weight matrix: solution by am-composition 

Moreover, the same output response is obtainable by replacing I's with O's in the 

solution obtained by a-composition, defining the aO-composition. The weight matrix of 

aO-composition is shown in Fig. 6.15. Unfortunately, unlike am-composition, the aO-

composition does not provide a general method of resolution for MAX-MIN FRE, i.e. it 

may the case that the system admits solutions, but die result obtained by aO-composition 

is not a solution. 

The am-composition consti-ains the solution to be within the same limits as the 

output (6.3): 

MAX(MIN(X(k, i))) < MIN{W) < MAX{W) < MmMAX{X(k, i))). (6,5) 
k i k i 

Placed between the information carrying level and the noise level, the weights act as 
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Figure 6.15: Weight matrix: solution by aO-composition 

a modulating threshold, as suggested in Fig. 6.16. Fig. 6.16 also indicates how the 

output of the MAX-MIN neurons is determined. Fig. 6.17 indicates how the output is 

determined for the shoulder neuron. The weights are the same as in Fig. 6.14, but the 

grey-level was decreased to establish a common scale with the input image. Fig. 6.16 

can be understood as a transversal section in the superimposed input and weight matrix 

in Fig. 6.17. 

> 

6 
Out = Max(Min(l,W)) 

Weight.s (W) 

Line of pixels in the image 

Figure 6.16: Output of MAX-MIN neurons as a point on the modulating threshold 

The neural representations show the role of weights acting as a filter on input images. 

Some of the weights have been generated by the images of the arm, and this profiles an 

area within the envelope of the ann. The high level of noise in input images has lead to 

the weights represented in the upper part of the figures. Some of the weights in between 

the envelope and the noisy regions are 'don't care' weights, without influence on the 
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Figure 6.17: Input image of the arm, weights and the way MAX-MIN composition 

determines the output 

output. These 'don't care' weights form the black region in Fig. 6.11, or the white 

region in Fig. 6.15. 

6.3.3 An incremental learning algorithm 

This section presents an algorithm which produces a solution very close to die ones 

discussed, and has an immediate interpretation. The algorithm aims to get the weights 

to cluster as filters shaped to favour some features in input images. Specifically die 

features addressed are those that determine the membership of the input pattern to an 

output class. The weights have associated the value of the output class tiiey characterize. 

The algoritiira is called 'Maximize if Bigger, Minimize if Same (MBMS)', and 

includes a mechanism which reduces the noninformative weights. The algorithm uses 

four arrays of the same size as the image input array: the weight array, the reference 

array, the counter array and the filter array. The algorithm is presented in Fig. 6.18 and 

the comspondent MAmAB file is given in Appendix. Terras darker and same should 

be given an approximate meaning, possibly as fuzzy relations. In this test darker was 

considered as a level higher by 0.04 than the one compared with. Weights that change 

because they belong to different classes end up with lowest value associated with a class. 

The algorithm builds the weights incrementally. Instances during learning are illustrated 
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Initialize filter matrix to I's and the other matrices to O's 

For all examples and for all input pixels 

If the input pixel is darker than the reference then it becomes reference, 
and its weight is given the corresponding output value. 
Increment a counter for pixel change. 

Else if the input is the same as the reference then the weight is given 
the minimum value between the previous weight and the current output 
value. 

Else increment the counter for pixel change. 

For all elements of the counter matrix 

If counter is less than 2 reset to 0 the associated weight andfdter element 
(there was no informative change in the input images). 

If counter equals the number of examples reset the associated weight 
andfdter element to 0. 

Figure 6.18: The MBMS algorithm 
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in Fig. 6.19. 
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Figure 6.19: Instants during learning by MBMS. Input image of the arm, weights and 

arm on weights. 

The solutions obtained by MBMS and the output it produces are presented in 

Fig. 6.20. The outputs have a bigger approximation error than that obtained by a-

composition. However, of special interest is the filter obtained from the counter. 

It is interesting to observe that the solutions obtained by a-composition filtered by 

the filter resulted from applying MBMS (Fig. 6.21) lead to the same output as obtained 

by a-composition alone, which was illustrated in Fig. 6.6 and Fig. 6.7. The filter reflects 

a maximal envelope of the arm and the filtei^d solution makes the system insensitive to 

modifications of the image outside the arm's envelope. 
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Figure 6.20: Weights obtained using MBMS, and the corresponding output 

Figure 6.21: Filter from MBMS: 1 's are black, O's are white 
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6.3.4 Interpreting the structure in the weights. 

The combination of a-composition solution with the filter resulted from applying MBMS 

allows insensitivity to variations in input images which are outside arm's envelope. The 

weight matrices for shoulder and elbow are illustrated in Figs. 6.22, 6.23. Fig. 6.24 

presents the image of the arm .superimposed on the final weights (the arm is presented 

black for better contrast) and the final weights. 
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Figure 6.22: Weights of shoulder neuron 

Higher values of the shoulder joint commands which make the arm move to the right 

are reflected in higher weights (darker in the figure) on the right. For the elbow, higher 

commands for extending the arm reflect in darker values along the radial direction. For 

the shoulder, each class of same grey level is disposed along a radial direction, the levels 

decreasing as the angle at shoulder joint varies from right to left. For the elbow, the 

classes are circular with higher values of the weights placed at greater distance from the 

shoulder joint and also at the rightmost extremity. This can be seen in the simplified 

drawings of Fig. 6.25, where clas.ses (C/) in input space have associated the numerical 

outputs indicated, and an ordering exists of input classes, along output values. 

One can consider that the weights modulate input classes. Thiis the system can be 

described by rules of the form 'If input is in X then the output is Y', where X is a 
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2D fuzzy set and Y is a singleton. This can also be seen as a form of Takagi-Sugeno 

reasoning. 

An object in the image has no influence on the output, if the arm is darker than it, or 

if the object is outside the arm envelope. Note also that MBMS eliminates any feature 

which is common in all examples. Classic NN algorithms usually learn such features 

first. 

6.3.5 Increased resolution and number of training examples. 

An increased image resolution, and accordingly an increased size of the weight matrix, 

should be accompanied by an increase in the number of examples used for training. 

Otherwise, there is a risk of having 'gaps' in the weight matrix, which appear if the 

superposition of surfaces of all arm postures used in training does not completely cover 

the working envelope. In the tests illustrated here, the resolution was increased from 

12x16 to 24x32, and the number of examples was increased from 88 to 140. The 

solutions obtained using the increased resolution and increased number of examples is 

shown in Fig. 6.26. The results illustrate the increased approximation power of the high 

resolution model. 

6.3.6 Limitations of MAX-MIN neural models. 

1. The MAX-MIN neural model presented here does not allow for interpolation. The 

outputs can only take values from the set of output values used for training, which are 

moulded in the weights. The number of outputs is also limited by the resolution utilized 

in the input images, as this dictates the number of elements in the weight matrix. For 

example, the errors for the elbow output are larger at high values of elbow output. This 
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Figure 6.26: Model evaluation for high resolution input 
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is because at high values of the elbow angle a variation of this angle has little effect 

on changing an output class, as illustrated in Fig. 6.25. This effect is very strong at 

low resolution, as illustrated in Fig. 6.12, but can also be noticed at high resolutions as 

illustrated in Fig. 6.26. 

2. The model is not working based on images of the surface of the arm. For the 

shoulder the result is determined by the contour of the arm. For the chosen arrangement 

with the larger outputs of the shoulder neuron producing a movement to the right, the 

model works on the exterior contour. When clothing folds exist on the contour, the arm 

is evaluated as being more to the right than it really is. The magnitude of the error 

depends on the size of the 'bump' that deforms the contour. For the elbow, the model 

works on the tip extremity of the arm, which 'covers' circles closer or further away from 

the circle center (Fig. 6.25). Opening the hand, or using a longer arm than the one used 

in training, affects the evaluated elbow angle, the angle appearing bigger than it really 

is. 

6.3.7 MAX-T neural model 

The good approximation power of classic neurons is favoured by die use of interpolation 

combined with the use of grey levels for the arm. A grey pixel in the image of low 

resolution is obtained by an average of an area in the image of high resolution, and an 

indicator on how much dark (from the arm, which is darker than the background) is 

present in that area. Using black and white pixels only, this information would have 

been eliminated. MAX-MIN models can not interpolate, however MAX-T models can. 

The maximal solution for a MAX-T FRE is calculated in general using (2.21). When 

T is the fundamental t-norm (3.6) with 0 < s < oo, s =̂  1, the solution is given by the 
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6.4 Model verification by robot control 

Arm postures. The neural models determined by training were used by the robot in 

tracking movements of the master arm. The qualitative evaluation consisted of subjective 

assessments of how close the posture of the robot's arm was resembling the posture of 

the human's arm. The postures looked very similar as can be seen in Fig. 6.28, which 

shows a series of images taken during the tests. 

Hand trajectories. If perfect models would be available, and the wrist fixed, 

identical postures of identically looking arms would guarantee identical trajectories of the 

end-effectors. This is usually not the case. Arm movements may lead to hand tirajectories 

insufficiently precise for many tasks concerned with end-effector trajectory. For effective 

usage, eye-arm coordination should be combined with eye-hand coordination. 

6.5 Leaming from arms with a different appearance 

Learning to 'recognize' only the arm used for training can be a strong limitation. How­

ever, the tested neural models have shown a reasonably good robustness to variations 

in the appearance of the human arm. Several tests were conducted, which are briefly 

discussed in the following. The arms used in this set of experiments are shown in Fig. 

6.29. 

6.5.1 Learning from an arm and extending the model to other arms 

In this test, the robot learned the eye-arm coordination by watching the arm 'skin' shown 

in Fig. 6.29. It was then tested on the all the arms shown in Fig. 6.29. The test results 
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Figure 6.28: Robot moving after the human arm 
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are presented in Fig. 6.30. The results indicate that the classic model is greatly affected 

by the color of the arm. On the contrary, the fuzzy (MAX-MIN) neurons are insensitive 

to the color of the arm and the model learned from one arm can be directiy used for 

allowing the imitation of other arms. 

iaaaawBr^HWMiM^iyjftiiJwaiBit'iBt^A 

Figure 6.29: Arms used in the experiments: 'skin', 'grey', 'black', 'arm2' 

6.5.2 Leaming from a variety of arms 

In this test, the data used in supervised training came from a variety of arms, more 

precisely from the arms 'grey', 'black', and 'arm2' shown in Fig. 6.29. The model 

obtained by learning was tested on the arms used for learning and on an arm which 

hasn't been seen before (the 'skin' arm) the results being illustrated in Fig. 6.31. 
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Figure 6,30: Model evaluation for the case of learning from one arm and testing on arms 

of different appearance 

Training on a variety of arms improves the performance of the classic neural model, 

while it didn't affect the fuzzy neural model. 

o.s-

0,1 

« 
1 

Using the classic neuron Using the fuzzy neuron 

— black 
+ arm2 

4 5 6 7 

Test number 
4 6 « 7 

Test number 

Figure 6.31: Model evaluation for the case of learning from a variety of arms 



6.6. Comparing classic and fuzzy neural models 130 

6.5.3 Leaming from its own arm and extending the model to other 

arms 

An important property of the ftizzy neural model is that allows the transfer of the gained 

knowledge over another user. The robot can leam on its own arm, and than can track a 

different arm, which can vary in color or contours. This is true for arms that appear to the 

robot eye as being of similar length, while the arms of different length need adjustment 

by scaling by a constant. The robot can leam also from images of low resolution and 

then use the determined weight space as a good first approximation for an increased 

resolution solution. 

The weight matrices obtained in learning a model of the robot's own arm and a model 

of human's arm are illustrated in Figs 6.32, 6.33. They show the same representation, 

however, their similarity is limited by two factors. Firstiy, there is a difference in the 

appearance of the two arms. Secondly, an estimation error is always present when the 

human imitates the robot. These sources of error produce for example the dark points in 

the center-left of human elbow in Fig. 6.33. Such errors should be reduced when a more 

precise positioning occurs, and also at a higher resolution of covering the workspace 

with training examples. A modification of those dark values to match the neighbors, has 

reduced the error obtained for these regions of the space. 

6.6 Comparing classic and fuzzy neural models 

In this study on learning eye-arm coordination, fuzzy neural models using t-norm based 

activation functions present some advantages over models using neurons based on sum-

product-sigmoid operations. The advantages are: 
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• The weight space is directiy interpretable by humans. The weights organized as 

filters took the shape of a right-left downhill slope for the shoulder neuron, and of 

a semicircular stadium shape for the elbow neurons. This organization, which for 

MAX-MIN neurons is independent of the color of the arm, lighting, and is little 

dependent on clothing folds, allows a model learned with one arm to be used with 

other arms of similar dimensions. 

• Fuzzy neurons support well incremental leaming. This comes as a direct con­

sequence that leaming can be based on analytical methods of solving associated 

FRE. 

• Fuzzy neural models have shown increased robustness to structured noise. The 

filters enable the robot to be highly insensitive to other objects in the image. 

It should be noted however, that in general the classical model has shown an increased 

approximation power. This is likely due to the fact that fuzzy neural models are limited 

to solutions in the [0,1] interval, while the weights of classic neurons can take on any 

real value; moreover, the fuzzy models presented in this chapter used only excitatory 

inputs. 

6.7 Robot imitating another robot in a 3D performance 

The main reason for limiting the tests of leaming from humans to the 2D performance 

was the availability of a manipulator, which appeared as anthroporaorphic only in its 

horizontal performance. The fact that the upper-arm and the lower-arm are not in the 

same horizontal plane, as it can be seen in Fig. 6.35, required a top view of the arm, if 

similarity witii the human's arm was sought. The vertical movement of the SCARA type 

arm used consists of a vertical translation of the shoulder along the vertical axis, unlike 

the up-down movement of the human arm around a fixed point at the shoulder joint. For 
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the demonstration of learning and representation properties of fuzzy neural networks on 

a real problem, the tests performed in 2D were sufficient. However, for developing real 

world robot apprentices that leam by imitation, demonstrating the 3D case is essential. 

The learning approach proposed in Chapter 5 is general, and equally well applies to 

3D, as long as different arm commands determine diffet-ent visual images of the arm. For 

extending the imitation of a human arm to 3D, an anthropomorphic arm having similar 

appearance and similar degrees of freedom must be used (and this was not available). 

However, the general idea is to imitate a similar arm, and the 3D tests were performed 

using 2 identical robots, one acting as a master and one acting as an apprentice, as seen 

in Fig. 6.34. The 3D tests performed have shown a similar level of performance as for 

the 2D case. 

Figure 6.34: Apprentice (closer to viewer) follows master 

Some images during ti-aining, as seen by the single camera, are illustrated in Fig. 

6.35. Each of these images associates with a pair of motor commands for the shoulder, 

elbow, and z-axis motor neuron. The tests were done with the low resolution vision of 
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12x 16 and 175 training examples, uniformly covering the range of possible displacement. 

Training lead to a good model which, when presented with input arm images, accurately 

predicted the correct arm control. A scene during imitation is shown in Fig. 6.34. Fig. 

6.36 shows the response given by the model to a test set of images which the robot had not 

seen before. These results are better than most of the 2D evaluations previously tested, 

because of the more careful choice of training examples and because the number of 

training examples was approximately double than used in the 2D tests. This results were 

obtained using classic neurons trained by gradient descent, which at this low resolution 

performed better than the fuzzy models. 

Figure 6.35: Images of the arm as seen by the robot 'eye' during a 3D performance 
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as the knowledge coded in the weight space is directiy interpretable. 

The models of eye-ami coordination were validated in 2D tests in which the robot 

imitated the movements of a human arm. The models were also demonstrated for the 

3D case, in which the robot imitated another robot of identical appearance. 
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Conclusion 

Learning from a teacher versus learning by exploration. The proposed approach 

addressing the development of robot apprentices is influenced by the ideas promoted by 

Brooks on robots which are situated, embodied, and progressively acquire more complex 

behaviors [Brooks 19911. The majority of systems influenced by these ideas concentrate 

on exploration (and selection mechanisms), which is the principal mean of acquiring 

new behaviors. I support the idea that in an attempt to build robot apprentices, which can 

learn behaviors from a teacher, the emphasis should be on teaching-learning mechanisms 

rather than on exploration. It was observed in natural systems that the longer the period of 

immaturity of a species, the greater its ability to adapt to a changing environment [Bmner 

1972]. Thus rather than launching itself in an exhaustive explorational adventure in the 

rapacious world, the robot can leam from a 'parent', a system with similar appearance 

and with knowledge on how to perform tasks in the environment. The parent could have 

had acquired the knowledge from its own exploration or could have had learned itself 

from a teacher. 
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7.1 Contributions 

This thesis has addressed aspects of fuzzy neura! networks and aspects of motor leaming 

in anthropomorphic robots. Two main claims have been made. The first claim is 

that anthropomorphic robots can learn the eye-arm coordination which enables them to 

leam arm movements by imitating arm movements of a human instractor. To enable 

this, neural models of eye-arm coordination have been proposed, and a technique was 

deviced for generating training examples for learning in this models. The approach was 

successfully demonstrated by simulations and by practical tests with a robot that imitated 

2D movements of a human arm and 3D movements of an identically built robot. 

The .second claim of this thesis is that fuzzy neural networks have advantages over 

classic neural networks in building leaming and control stmctures for such robots. To 

enable the use of fuzzy neural models, theoretical and practical aspects of leaming in 

relational structures have been investigated, adapting existing results and contributing 

new constructions such as novel neuron models and leaming mechanisms. The advan­

tages shown for the fuzzy models are related to their transparency, portability, robustness 

and the mechanism of learning. The transparency is related to the shape of the neural 

weight matrix, which acts as a filter on the inputs, and which allows the prediction of the 

output for any input situation. The portability refers to the fact that a model obtained by 

leaming from one arm can be used to respond to images of other arms. The robustness 

reflects the filtering property of the weights, which are relatively insensitive to variations 

of lighting, color of clothing worn by the human arm, or presence of objects outside 

the arm envelope, or inside the envelope if the arm is darker than the objects. Leaming 

by fuzzy models has the advantage of being on-line, incremental, and corresponding to 

analytical methods of resolution of associated fuzzy relational equations. 

The following is a brief summary of contributions made in this thesis. 
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• It has brought together results which can be considered the basis of a theory 

of fuzzy neural systems. Included here are the relational approach to system 

modelling, the theory of fuzzy relational equations (FRE) and the model of fuzzy 

logic neuron. 

• It has shown that the S-T composition brings advantages to system modelling 

mainly by extending the class of problems subject to relational modelling. 

• A classification of fuzzy reasoning methods has been proposed, which reflects 

directly in altematives of neural implementation. 

• Triangular norms have been compared on the basis of their suitability for imple­

menting synaptic/somatic neural operators. The criteria used for this comparison 

favoured neural learning and adaptation abilities. 

• The fundamental fuzzy neuron (FFN) has been defined, based on the fundamental 

t-norms, which were selected as optimal for implementing fuzzy neurons (in 

software and hardware). 

• Gradient descent equations for FFN networks have been determined, providing a 

method of leaming in such stractures, as well as offering a numerical method of 

resolution of S-T FRE. 

• It has been shown that synaptic modification can be used as an additional parameter 

for adaptation in FFN, which is not possible for classic neurons. 

• It has been exemplified how leaming in FFN leads to the resolution of a variety of 

FRE, and how it leads to better modelling when combined with synaptic/somatic 

adaptation. This combined optimality of weights and synaptic/somatic parameters 

is equivalent to a system identification method which addresses an optimal fuzzy 

relation - fuzzy composition pair. 

• The 'rules in weights' representation has been demonstrated, which differs from the 

'rules in neurons' representation commonly emphasized in neuro-fuzzy systems. 
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The 'rules in weights' representation offers transparency to fuzzy neural models, 

which is an important advantage over classic neural networks often described as 

'black boxes''. 

• The fuzzy neuron with shared weights (FNSW) has been defined, allowing the 

direct implementation of sampled multi-input fuzzy systems which perform dis­

tributed associative fuzzy reasoning. 

• It has been shown how multi-input systems can be identified using FNSW. 

• The 'rules in weights' representation has also been shown for multi-input systems, 

where 'slices' of neural space represent distributed rale tables. 

• It has been shown that any boolean function can be implemented using only one 

FNSW, and it was argued in favor of FNSW as a general computational element. 

• It has been proposed to build anthropomorphic robot apprentices that leam by 

imitating human movements. 

• It has been argued that eye-arm coordination is neces.sary for vision-based motor 

skill acquisition. 

• A method of generating training examples for building an eye-arm coordination 

has been proposed. The basic idea is that initially the human should imitate the 

robot, to allow the correlation of images of the human arm with commands to the 

robot arm. 

• A neural model of eye-arm coordination has been proposed and demonstrated with 

both classic and fuzzy neurons. 

• It has been shown how results from the theory of fuzzy relational equations can 

be applied in the practical case of learning eye-arm coordination. A necessary 

condition for the resolution of a system of PRE has been provided indicating a 

practical scheme for creating solvable models. 

'The extent to which this transparency applies to other problems is yet to be investigated. 
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• The am-composition has been defined, providing a solution for a .sy.stem of 

MAX-MIN FRE: in the particular situation considered in the study, the solution 

was easier to interpret than the maximal solution of MAX-MIN FRE obtained by 

a-composition. 

• A learning algorithm (MBMS) has been proposed, which offers an approximate 

solution for MAX-MIN FRE in the context of learning from images. The algorithm 

gives a solution and a filter. The solution was not as good as the one obtained 

by a-composition. However, applying the filter to the solution obtained by a-

composition leads to a solution of increased robustness and transparency. 

• It has been shown that both the increased resolution of input images and the 

increased number of ti-aining examples, lead to better fuzzy neural models. 

• Better interpolation has been noted when using grey-scale images for the arm than 

for simple binary images (obtained using a thresholding technique to isolate the 

arm from the background). 

• It has been shown that 3D movements of a robot arm could be imitated by another 

robot which perceived them using a single camera. 

Some of the listed contributions have a high degree of generality, while others may 

be strictly connected to the particular application, and their extension in other situations 

has still to be investigated. All the results demonstrated for fuzzy neural networks 

are general. The delicate point is the transparency and ease of interpretation of the 

'rales in weights' interpretation, which although shown for simple examples and for the 

2D case of eye-arm coordination model, needs further study so that they may be fully 

characterized. In particular, for systems that admit a multitiide of solutions, a question 

that needs to be answered is how to determine the solution whose representation makes 

most sense for humans (in the case of eye-ann coordination the technique found useful 

was to minimize the solution, starting with a-composition, continuing with am and 

aO-composition and filtering by MBMS filter). One issue which was not made explicit 



"4r, Co»triJ2i|tions .._._„__________ 142 

is that the choice of maximal elbow values associated with the extended arm po.smre 

was important for the model obtained (the choice of minimal values would not have lead 

to the same model). This suggests that even before choosing a solution for the fuzzy 

relational equation, the formulation of the fuzzy relational model itself needs careful 

consideration in the search for the interpretable fuzzy neural models. 

The approach for the acquisition of motor skills by imitation can be applied to the 

extent that the teaching arm and the apprentice arm are similar. Learning associations 

with the method in which the teacher imitates the apprentice is more general that the 

context of learning arm movements from similar creatures; in fact the teacher and 

apprentice do not need to look alike at all. The purpose of teacher imitation was to 

provide a visual pattern associated with a command given to the robot arm. In a different 

context, this pattern can be of completely different nature, or even a word. For instance, 

when the robot generates a command to move to the left, the image of a cat can be 

shown, or the word 'left' said, and when the robot generates a command to move to 

the right, the picture of a fish can be presented, or the word 'right' said. This would 

'condition' the robot to move to the left whenever it sees the cat, or hears 'left', and move 

to the right whenever it sees the fish, or hears 'right'. The possibility of conditioning 

was demonstrated for example in the robot MAVIN [Baloch and Waxman 1991], which 

associates reflex motor behaviors with certain learned objects, demonstrating classical 

conditioning paradigms ̂ . 

^Mobile Adaptive Visual Navigator (MAVIN) [Baloch and Waxman 1991J is a mobile robot based on 

dynamical neural networks, which takes as inputs various pattems of light (corresponding to 3D objecUi) 

and learns objects invariant to location, size, orientation, angle of gaze and aspect on the visual field. It 

also learns to associate motor behaviors to visual objects demonstrating behavioral conditioning. 
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7.2 Future work 

Fuzzy neural models. More investigation ss needed in fuzzy neural models. It has 

been suggested in this thesis that fuzzy neural solutions can have advantages over classic 

neural ones, although the extent to which the advantages extend to other situations needs 

to be clarified. In the application discussed, the models did not benefit from the full 

range of capabilities that fuzzy neurons have, such as using inhibitory inputs or .shared 

weights. A very useful contribution would be an analytical method of resolution of S-T 

FRE. 

Variable direction of gajte and changing environments. There are two main prob­

lems which need to be solved before the approach to leaming by imitation proposed in 

this thesis can become feasible outside the laboratory. The first problem derives from 

the fact that, in the tests performed, a fixed direction of gaze (a fixed position of the eye 

in relation to the arm) was considered for learning and the same direction was used for 

interpretation of the input images. To some extent, humans also learn mappings of fixed 

orientation; the easiest way to control a telemanipulator is to face the same direction 

(as illustrated in Figs 1.1, 1.2). This is also true in leaming arm movements from a 

coach as in martial arts or fencing. However, hutnans have a high degree of adaptation to 

variations from the learned position. In order to allow the robot to imitate while watching 

from a variety of positions, the immediate technique would be to include a variety of 

positions in the set of training examples. This can be done by having the camera take arm 

images of a given posture as seen from different points in space and using the examples 

in supervised training. The structure with one neuron per joint is much too simple for 

this case; an altemative would be to allocate processing to two neural structures, a first 

neural structure that performs a rotation/transformation of the image to a given pattern 

(which has for example the shoulder centred in the bottom of the image), and a second 

neural structure that does the mapping as already exemplified. A mechanism that may 
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help is to impose a kind of initial 'calibration' through a couple of simple 'put your arm 

like mine' posture agreements. This would help the robot to perform the rotation of 

incoming images to suit the internal model. Image processing algorithms can probably 

play a role. 

The second problem comes from leaming in changing environments, more precisely, 

with various backgrounds behind the teaching arm. It is assumed that no object obstructs 

the arm, which would be quite unusual for human motor skill acquisition as well. It 

was seen that fuzzy neural networks can develop representations that allow them to 

ignore objects outside an envelope limited filter. This was possible with noisy ^ static 

backgrounds (even when the noise intensity was higher than that of the signal), which do 

not vary from one example to another. One can possibly restrict the leaming of eye-arm 

coordination to a static environment, while the imitation is performed in an environment 

with a variable background outside the arm envelope. However, for variable noisy 

patterns inside the envelope, the one neuron model is powerless. The way to cope with 

this situation may be to first recognize and separate the arm from the background, and 

only then to provide the preprocessed input to a neural structure that maps it to a motor 

command. 

Correlating eye-arm coordination, eye-hand coordination and object manipulation. 

The focus in this diesis was on leaming eye-arm coordination, because it was considered 

important for leaming from an instractor and because it was not treated before in 

the literature. However, for achieving full potential, eye-arm coordination should be 

combined with eye-hand coordination. The two should also correlate with the object 

to be manipulated and tiie task. For example in leaming how to use a hammer, the 

focus should not be on the correct ti-ajectory only, but also on whether the hammer hits 

the nail properly or not! Once the trajectories are determined, the motor sequence for 

producing them should be ti-ansformed in motor pattems, reducing the amount of stored 

^Here noise includes everything except the arm and pure Vhite' background. 
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information required, and optimizing the movement for some chosen indices. Fully 

anthropomorphic arms need to be developed to gain the most of the approach proposed 

in this thesis. 

Language acquisition in correlation with movements. An interesting direction of re­

search would be to integrate the development of visuo-motor coordination with language 

acquisition. This can be seen as a modification of the Miniature Language Acquisition 

task [Feldman et al 1990] (proposed for language descriptions of visual scenes) to aim 

at language acquisition in correlation with movements. The task would be to build a 

robot that, when trained on a sequence of motion motor commands - motion linguistic 

descriptions - motion visual perception pairs, will learn to 'understand' the language, 

where understanding is measured by the system's ability to correctly perform move­

ments according to their descriptions. Words from a possible vocabulary could refer, 

for example, to actors (robot, teacher), ami parts (shoulder, elbow, wrist, arm, forearm), 

actions (move, stop, continue), direction (up, down, left, right), distance (close, far) or 

speed (fast, slow). During leaming, the words are gradually offered to the robot in the 

context of a movement that has the particular characteristic, thus establishing correspon­

dent associations. The learned mappings are seen as reversible, in the sense that the 

robot can describe linguistically a movement it performs or sees, or can respond to the 

linguistic command by performing its own movement. 

Leaming to imitate. Instead of being programmed to imitate, the robot can learn to 

do so"*. Imitation can be developed as the consequence of an evolutionary process or by 

reinforcement, for example as proposed in [Stoica 1994]. By reinforcing the accidental 

coincidence or by favorizing coincidence of actions, e.g. by human imitation, a robot 

may be controlled into developing imitation. 

^A distinction is made here between leaming to imitate and learning how to imitate, the later being 

addressed in this thesis. 



i A - J . u t » r e work 146 

Developmental robotics. In the recent years new directions in robotics research have 

emerged. These include, for example, behavior-based robotics, perceptual robotics, 

cognitive robotics and evolutionary robotics. An increasing number of researchers 

u.se robotics as a vehicle for the exploration of theories in disciplines dealing with 

living organisms. For example the name of a popular conference 'From animals to 

animats' reflects such a tendency. The benefits are mutual as robots become more 

versatile and incorporate solutions from nature. In the same way as the solution to 

the 'symbol grounding' problem is expected to come from robots acting, perceiving 

the world and building their own representations, it may be the case that an efficient 

ability of 'being taught' is not programmable but would need a developmental process, 

with robots building representations of their own actions, perceptions, and interactions 

with humans, in a way similar to child development. Investigation in this area could 

lead to a new direction of robotics research, possibly called developmental robotics, 

aiming at building robots based on mechanisms similar to human cognitive and motor 

development. 
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Appendix A 

Some properties of MAX-MIN, 

MAX-T and S-T compositions. 

A summary of some properties of MAX-MIN, MAX-T and S-T composition is presented 

in Table A.i. E is a matrix of 1 's, I is the identity matrix and H is a matrix of O's. 
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Table A, 1: Some properties of MAX-T and S-T compositions 

No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Property 

H < A < E 

A"' =^A 0A0..A (mtimes) 

If A fuzzy matrix, so is A'" 

AoH=HoA=H 

A o / = / o A = A 

A 0 (B 0 C) = (A 0 B) 0 C 

A <B,C<D,AoC<BoD 

AoB^BoA 

Ao(B\JC) = (AoB){J(AoQ 

A 0 (Bf]C) < (A 0B)f]{A 0 0 

B < C=^AoB <AoC 

MAX-MIN 

T 

T 

T 

T 

T 

T 

T 

T 

T 

T 

T 

T 

MAX-T 

T 

T 

T 

T 

T 

T 

T 

T 

T 

T 

F 

T 

S-T 

T 

T 

T 

T 

F 

F 

F 

T 

T 

F 

F 

T 



Appendix B 

Comparison of neuro-fuzzy 
models 

Citations in Table 1.1: [1] = [Lee and Lee 1975], [2] = (Takagi and Hayashi 1991], [3] 
= [Takagi et al. 1992], [4] = [Horikawa et al. 1992], [5] = [Jang 1992], [6] = [Pedrycz 
and Rocha 1993], [7] = [Gupta 1992], [8] = [Keller and Krishnapuram 1992], [9] = 
[Keller and Tahani 1992], [10] = [Pedrycz 1991], [11] = [Bianco et al. 1994], [12] = 
[Yamakawa etal. 1992], [13] = [Uchinoand Kubo 1994], 
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Table B.l: Comparison of some neuro-fuzzy models 
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Autljors 

Leefl] 

Takagi [2] 
or [3] 

Horikawa 
in [4] 

Jang [5] 

Pedrycz, 
in [6] 
Gupta 
in [7] 

Keller 
in [8], [9] 

Pedrycz [10] 
Bianco [11) 

Yamakawa 
in [12) 
Uchino 
in [13] 

This 
thesis 

. „ 

ArcbJtecture 

fully connected. 
one common 

input 
multiJayer, 
layers map 
stages of 

processing 
inFS 

multilayer. 
maps the logic 
of the problem 

to a logic 
oriented net 

multilayer 
inputs outputs 

-discretized 
I/O space 

one layer 

neo-fu2zy 
neuron 

one layer 
for fuzzy 

reasoning. 
same mapping 

as Keller, 
discretized 
I/O space 

Type of nmmm 

non-fuzzy. 
arithmetic 

non-fuzzy. 
either 

sum-producl-
sigmoid or 
bell-shapc-
producl [5] 

fuzzy (OR, 
AND,MATCH) 

in some 
work based 

on a parametric 
t-norm 

(Hamacher) 
fuzzy, of 
different 

types, each 
implementing a 

Yager 
operator [8| 

classic 
neuron [9] 

non-fuzzy or 
max-min fuzzy 

arithmetic 
summing 
non-linear 
.synapses 

performing 
Sugeno 
type of 

inference 

fuzzy s-t 
(similar with 
Pedrycz's OR 
and Gupta's 

neuron), 
calculated 

wilh (undamental 
t-noraij. 

SipMmmx 
of neurons 

basic element 
for a state 
machine 
depends 
on layer 

contribudon 
of each rule 

aggregative + 
reference n. 

logic processor 
some represent 

contribution 
of rules 

logical 
processors 

implementing 
a specific 

type of logic 
operator [8] 

2. processing 
element [9) 
processing 

element 

neuron is a 
complete 

fuzzy 
system 

elementary 
processor 

for 
ftizzy 

reasoning 

Significance 
of weights 
all I's, full 

transmission 
of signal 

parameters 
for tuning 

parameter 

al! are 1 's 
full 

transmission 
of logic 
value [8] 

2. parameter 
[9] 

parameters 
elements of 

FRE 

singleton 
outs 

for one 
variable 

shape 
distributed 

ftizzy 
rules, 
fuzzy 

relation 

Leaming 

no 

GD 
(BKP) 

GD. 
other 

sugested 

global 
search 

for param 
of logic 

operator [8] 

2.BKP 
[9] 

GD, 
GD/GA in 
GAREL 

modified 
GD 

hebbian. 
GD, 

MBMS 
COAT 

Destination 

synthesis 
of fuzzy 
automata 
configure. 
implement 

FS 
with adaptive 

charact., 
automatic 

extraction of 
memb.func 
and rules 

knowledge 
based 

networks 

networks for 
fijzzy logic 
inference 

solve 
FRE 
from 

I-O data 
identification 
of nonlinear 

dynamic 
systems 

find 
best 

model 
(find 
ftizzy 

relation 
and 

composition) 



Appendix C 

Example of modelling by S-T 

composition 

Tlie following example illustrates a situation, in wliich the S-T composition offers 

better modelling than the MAX-MIN composition. The displaying technique is that 

of 'Chernoff faces'^ In Fig. C.l the children A and B resemble in some degree to 

their brothers C and D, which in turn resemble in some degree to the parents. A and B 

resemble their parents more than what can be inferred using MAX-MIN. Each similar 

ear, nose or mouth are given 1 point, "while the eyes are given 4 points. The resemblance 

is defined as (number of points)/! 0. The fuzzy relations are: 

/ 0.3 0.7 \ ^ / 0.5 0.5 \ / 0.8 0.6 

^'^~"~'''^[o.4 0.6) """̂ -̂ -̂"̂ "̂ U-̂  0.7J ^ '̂'̂ "-"H 0-5 0.9 
In the last relation there are elements with higher values than in the first two relations. 

As stated by condition 2.7 this situation can not be modeled with MAX-T composition 

(The use of MIN-S restricts in the opposite direction). 

'Chernoff faces ([Chernoff 1973] referred to in [Krzanowski 1993]) are a display technique proposed 

for monitoring 8y.stems of many variables. As facial patterns are easily perceived by humans, the shape 

of eyes, ears, nose and mouth are correlated with different values of the variables. 
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Figure C.l: Chernoff faces illustrating resemblance relations 



Appendix D 

Fuzzy Hebbian learning 

In many cases the result of fuzzy hebbian learning can be a good initial approximation 

for a FRE solution, which can be further tuned by using GD. Fuzzy hebbian learning 

supports incremental learning. 

Classic Hebb law refers to changes in synaptic strength ry as depending on simulta­

neous firing of x„ yj. In the context of logic neurons, the law can be interpreted as ry = 

rij OR (Xj AND yj). Incremental learning starting with a null connection strength: 

4 = 0 (D.l) 

after the first presentation, 

4 = r^S(xlTyj) = S(4,T{xl,y^)) = T(xj,y;) (D.2) 
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after the second 

rf^ = S{rl, Tix^,y})) = S(T(xj,yj), T{x;,v;)) (D.3) 

and the third. 

rl = S(4, T(x^,y])) = S{S(T(xj,y;), T(xf,yf)), T(x^,y^)) (D.4) 

which after using Equ. (2.17) this generalizes to 

4= S(r(x;,>0) (D.5) 
k=l 

The vectorial form can be written as 

R = S(T(X\Y))=X''oY (D.6) 

where o can be any S-T composition. Observe that hebbian leaming can be driven 

by the same type of fuzzy neurons, whose output in this case determines the weights of 

other fuzzy neurons. 

Hebbian leaming is strongly affected by the choice of synaptic and somatic parame­

ters. Large values of the somatic parameter ss and small values of the synaptic parameter 
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ST lead to the fastest increase in the weights, in effect it often leads to samration. The 

surface shaped by R is non-decreasing at the presentation of each new leaming example. 

To reduce this surface a decay effect may be considered, or a GD technique can be 

employed for finer shaping of the weights. 

The solution obtained by hebbian leaming is close to the solution of the FRE. Fig. 

D. 1 shows the shape of the solution obtained by hebbian leaming, which can be compared 

with the solution of FRE illustrated in Fig 3.8. 

fuzzy rtiia£ky< ca^uatec t>y nax'tnin 

Figure D.l: Fuzzy relation determined by hebbian leaming 



Appendix E 

Training pair for learning fuzzy 

distributed representations 

Training pairs formed by the discretised representations of mapping sets in Example 

from Section 3.5. 

The generated data is: 

/«!= (1 0.7 0.3 0 0 0 0 0 0 0 0); Outi = (1 1 0.5 0.3 0 0 0 0 0 0 0); 

/«2 = (0 0.3 0.6 1 0.7 0.3 0 0 0 0 0); Out2 = (0 0.1 0.4 1 0 0 0 0 0 0 0); 

In J = ( 0 0 0 0.2 0.6 I 0.6 0.4 0.1 0 0); Out^ = (000.1 0.4 1 0.5 0 0 0 0 0 ) ; 

/«4 = (0 0 0 0 0 0.1 0.5 1 0.6 0 0); Out4 = (00 0.1 0.2 0.4 0.8 1 0.8 0.6 O.l 0); 

/n5 = ( 0 0 0 0 0 0 0 0 0 . 2 0.7 I); OM Ŝ = ( 0 0 0 0 0 0 0 0 0 . 1 0.3 1); 
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Appendix F 

Application of FFNN to FRE 

resolution: working examples 

Example 1: An exact solution 

The following MAX-MIN FRE (from [Blanco et al 1994J) admits an exact solution 

X = 

A 0 0 0 o) 

0 1 0 0 0 

0 0 1 0 0 

0 0 0 1 0 

^0 0 0 0 ij 

Y = 

fO.6 0.5 0.8 0.3 0.2\ 

0.4 0.1 0.9 0.6 0.4 

0.1 0.1 0.9 0.8 0.5 

0.9 0.2 0.9 0.1 0.5 

^0.4 0.5 0.3 0.8 0.9/ 

Example 2: An approximate solution 

The problem is from [Pedrycz 1990«], and was also used as a test case in [Negoita 

et al 1994]. The system XoW = Y does not admit exact solutions and an approximate 

solution is sought 
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X = 

/ l .O 0.4 0.3 O.A 

0.4 1.0 0.6 0.4 

0.5 0.5 0.8 0.9 

0.6 0.4 0.7 1.0 

0.9 0.6 0.4 0.3 

0.5 0.6 0.8 1.0 

Y = 

0.5 

0.3 

0.4 

0.5 

0.4 

1.0 

0.5 

0.3 

0.2 

0.6 

0.3 

0.6 

0.7 

1.0 

0.2 

1.0 

0.5 

0.3 

i.o\ 
0.9 

0.6 

0.3 

0.7 

0.2 

The search was done for a S-T network with s = 0.000001. The results obtained 

by GD are compared with results from [Pedrycz 1990fl] and more recent results from 

[Negoita et al. 1994]. Criteria considered for comparison include maximum error per pair 

(M), maximum error per matrix (MM), sum of absolute errors (SAE) (fuzzy Hamming 

distance between target and obtained outputs, which is the performance index used in 

[Pedrycz 1990a], [Negoita et al 1994]), and the sum of squared errors (SSE) which is 

the performance index in the GD search. 

Notations: P - refers to results obtained in [Pedrycz 1990a], N - results obtained in 

[Negoita et al 1994], G - results obtained here by GD. E - error matrix expressing the 

distance between target outputs and those obtained by S-T composition with determined 

.solutions W. Values used in training: number of iterations = 200, s = 0.000001 (Yc is 

obtained by proper MAX-MIN). 

The results are: 

Wp~ 

/0.4 0.3 0.7 0.7\ 

0.4 0.3 1.0 0.9 

0.4 0.3 1.0 0.6 

VO.5 0.6 1.0 0,6/ 

W,s = 

/0.40 0.37 0.7 1.0 \ 

0.37 0.30 1.0 0.9 

0.35 0.0 0.25 0.37 

\ 0 .5 0.6 0.25 0 .6 / 

Wn = 

/0.437 0.406 0.661 0.913\ 

0.109 0.174 0.999 0.897 

0.165 0.142 0.111 0.251 

\0.632 0.409 0.223 0.250/ 

file:///0.632
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F,= 

(0.4 0.3 0.7 0.7\ 

0.4 0.4 1.0 0.9 

0.5 0.6 0.9 0.6 

0.5 0.6 1.0 0.6 

0.4 0.3 0.7 0.7 

\0.5 0.6 1.0 0.6/ 

Yr,= 

(0.4 0.3 0.7 ! .0 \ 

0.4 0.4 1.0 0.9 

0.5 0.6 0.5 0.6 

0.5 0.6 0.6 0.6 

0.4 0.37 0.7 0.9 

\0.5 0.6 0.6 0.6/ 

Fn = 

/0.4-37 0.406 0.661 0.913\ 

0.400 0.400 0.999 0.897 

0.632 0.409 0.500 0.500 

0.632 0.409 0.600 0.600 

0,437 0.406 0.661 0.900 

\0.632 0.409 0.600 0.600/ 

Mp = [0.3,0.1,0.7,0.3,0.2,0.7], 

MM = [0.13,0.1,0.4,0.4,0.2,0.5], 

MG = [0.094,0. 1,0,3,0.4,0.2,0.4] 

MMp = 0.7, 

SAEp=^4A, 

SSEp= 1.85, 

MMf^= 0.5, 

SAEM = 3.6, 

SSEN= 1.1418, 

MMG = 0.4 

SA£G = 4.1126 

SSEG= 1.0436 

Example 3: Adaptive composition gives a better approximate solution for Ex­

ample 2 

A combined search for W and s on the data set used in Example 2, gives after 25 

steps a weight matrix and a logic (s = 12970000), for which the sum, of squared errors is 

SE2gj = 0.93. This is a better approximation than obtained for MAX-MIN composition, 

for which 5£2 r̂f = 1.04. 

Example 4: The simultaneous identification of the fuzzy relation and the com­

position 

The focus is on a system for which it is known that an exact solution exists, as the 

output Y is determined by the S-T composition (s = 10) of input X with W. 

file:///0.632
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1 = 

/0.21 0.52 0.52\ 

0.04 0.67 0.09 

0.67 0.00 0.65 

0.67 0.38 0.41 

0.93 0.06 0.70 

0.38 0.41 0.91 

0.51 0.68 0.76 

0.83 0.58 0.26 

0.03 0.93 0.04 

\0.05 0.84 0.73/ 

l¥ = 

/0.32 0.99 0.98\ 

0.63 0.36 0.72 

\0.75 0.24 0.75^ 

F = 

/0.58 

0.41 

0.56 

0.54 

0.69 

0.80 

0.81 

0.61 

0.58 

\0.82 

0.38 

0.22 

0.72 

0.73 

0.94 

0.59 

0.72 

0.87 

0.34 

0.42 

0.72^ 

0.50 

0.86 

0.87 

0.97 

0.91 

0.94 

0.94 

0.68 

0.87y 

file:///0.05
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Appendix G 

A classic neuron model 

The classic neuron model referred in this thesis is a perceptron modulated by a squashing 

sigmoid. 

y = fCEw-x^) 

Figure G.I: Classic neuron model 

The neuron performs a summation of weighted inputs, 

a = 5 3 ^̂ ' • ^^ (G.l) 

to which applies a nonlinear sigmoid function 

y = f(a) = 
1 + <?-^^ 

(G.2) 
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Figure G.2: Logsig characteristic 

With 7 = 1 the function takes values in [0, 1] interval. The function logsig 

(logarithmic-sigmoid) implemented in Matlab, has y = 1 and /3 = 1. 



Appendix H 

A coach's perspective on teaching 

motor skills 

Coaching is very important in developing motor skills. Some important aspects of 

teaching humans how to move are itemised in the following \ 

Movements are learned in increasing order of their complexity, starting with 

simple movements and progressing toward complex movements, which usually 

are presented in terms of simple movements (Progressive). 

A complex movement can be presented as an ordered sequence of simple move­

ments (Order). 

When simple movements are introduced, it is mentioned in what context the 

respective movement will be useful (Utility). 

Movements (especially complex ones) are presented in 3-D perspective (front and 

side profile). Note that those who show the movements do not always have the 

'The list is the result of personal observations and not the result of a .scientific study (which couldn't 

be found as such in the literature). Its purpose was to help creating skill transfer scenarios inspired after 

the human experience. 
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sam,e length of the arm as those who leam,, but the learner has the capability to 
grasp the essential (Spatiality). 

• Significant points of the trajectory (prototypes) are pointed out with the hand or 
indicated in words (Prototypes). 

• The attention is concentrated on one movement at a time (Attention). 

• Words help in a variety of situations such as in remembering and generalising what 

one sees, in naming the elementary movements, in describing the complex ones 

and in pointing where to concentrate attention (e.g. in what you see). Descriptive 

fuzzy statements often accompany the exemplified movement ('Push your right 

hand slower and withdraw it quickly, like this'). 'The angle between the chest and 

the shoulder is 90 degrees' (Language). 

• The teacher has the key role in feedback. A jumper made the following comments 

referring to his couch: 'Mark is my eyes, I don't know what I am doing wrong'. The 

coach points out important points of the trajectory 'prototypes for the trajectory', 

and indicates wrong trajectories (Feedback). 

• Wrong movements can be shown, and explained why they are wrong. This is a 

case of examples associated with a negative reinforcement (Negative examples). 

• The actions are divided into small elements, and one needs to systematically 

evaluate the athlete performance, focus concentration on one thing a time, and 

decide where the most fundamental lies. It is important not to give many changes 

at once. (Strategy). 

• After a movement is learned it becomes a reflex action. The cognitive phase is no 

longer involved. 'Fencing is also a mental game. Once a fencer has practised the 

various movements until he is physically able to carry out a plan without having 

to think about how the various parts of the body must move, he finds that the 

real excitement lies in outthinking and outwitting his opponent. You must quickly 

analyse your adversary's style and then plan your strategy accordingly. You must 

set traps for your opponent while being careful to avoid those set by him.' [Bower 

and Mori 1986] (Reflex). 



Appendix I 

TINMAN'S behaviours 
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TINMAN'S SOFTWARE IMPLE14ENTATI0N 

FUNCTIONAL FLOWCHART 

WAKE~UP MID 

RECALL MEMORIES 

SELECT TYPE OF NEURONS 
(CLASSIC OR FUZZY) 

BEHAVIOUR SELECTION 

LEARN VISUO-MOTOR 
COORDINATION 

(FROM OWN ARM 
OR FROM HUMAN ARM) 

GIVE COIMAND TO 
MOVE ARM TO 
A NEW POSITION 

GET IMAGE OF ARM 

INPUT IMAGE TO 
NEURAL MODEL 

EVALUATE MODEL 
PREDICTION 

MODIFY MODEL TO 
ENCODE CORRELATIONS 
BETWEEN IMAGES AND 
ARM COMMANDS 

EVALUATE 
UPDATED MODEL 

IF MODEL IS NOT 
MODIFYING ANY MORE 
OR IF THE LIMIT OF 
TRAINING EXAMPLES 
WAS REACHED 

THEN ELSE 

FINISH BEHAVIOUR 
AND RETURN TO 
BEHAVIOUR SELECTION 

GO TO 
SLEEP 

IMITATE 
HUMAN ARM 

REPEAT 
MOVEMENT 

GET IMAGE OF 
HUMAN ARM 

INPUT IMAGE TO 
NEURAL MODEL 

USE NEURAL OUTPUT 
COMMAND TO MOVE 
THE ARM 

MEMORIZE THE 
SEQUENCE OF 
MOTOR COfrMANDS 
OR LEARN THE 
SPATIO-TEMPORAL 
SEQUENCE IN 
A NEURAL STRUCTURE 

IF THE TIME 
ALLOCATED IS OVER 
OR AN INTERRUPTING 
COMMAND IS RECEIVED 

THEN ELSE—-

FINISH BEHAVIOUR 
AND RETURN TO 
BEHAVIOUR SELECTION 

Figure LI: TMMAN's behaviours 
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..- X .Ŝ  '̂ ; 
« to « X 

^ g J3 .is 
•1=̂  «! C -< 
c:̂  y^ V "^ 

X -o 5 4( 

^ • « . ^*.1 _ > 

«/ 
;>-» 

.*- ^ 

c c 

I , — > f- i ^ . . c 

f- S <=.< § f I- ; 

SiD 

i i 

3 

o —. 

'•S 
•3 <-si « 

"S - ? V.' 
:̂  

3 

Wl 
O 

u 
T3 
C 

J 
03 

O 

c 

<( 

-8 
S 
E 
c 

•Sx 
F £ 

li 



u 

'$ 

^-

9 

> 
'S 

> •5 ?5" 
« '; :? ' 
-^ }f 

« - 5 
'« g 
«-̂  tl 

A «« 

0 ^ 

¥2'-
*i 0 

^ 
« 
< 
'i^ 

> • 

0 
, . X 

0 !f 
il i. 
y5 ,..» 

<j 

2. 

"S 
4:^ 

II 

1 

E S 

V. 

0 . 

"2 

1 
0 
0 

1 J 
1 

1& -a 
g 

V 

' w 

s 

c 

o* 
0 

C3 

'̂  U 

'i.^ 

c 
' • ^ 

c 
!3 

a. 

,—., 
'^ 
.2 
"M 

w 

^ 

,x: 
SI 

ir 
C 
a, J : : 

vT' 

Cu 
13 
ii 

3 
s 
X 

T J 

5 
^ 

»' 
i/'t 

^ 

> 
«3 

H 
'S 
C 

& JZ 

^ 
X 

V l 

^r 

P3 

> 
••6 

il 

c 

i « 

8 

"o 3 s 

X o 

^ 
0 
(i 

« 
'§ 

.^-C 

ex 
« 4 i 

' f l 

E 
I 

<u 
so 
3 

E 

2 
U 

«s 

o 

I 
I 

e 

t I 
i 
i 
i 

g-

^ 

3 

a 
••3 

E 

I 3 

9-
rt 

> 
SJ 

g 
<»-r f*-, 

S 
c 
li 

, 

. .• 
rT 
c 0 

^ 
^ 

t ?; • . 

15 

H 
S3 

C 
iirf 

m 

"T 

^ 
ŝ  

J 

~pl l( 
^ X 

K 
.u ?J 

"S .S c 



l O 

u 

1 a 
so M 

t : •;:; 

S 

X _ ' 

i-
4 i 

i i 

O 

it 

o 4.1^ 
4 : ^ 
<A 

3 
x : 
•55 

•$ 

li 
X ; 

E 2 
S g 
0 3 

£ ^ 
£ .9 
0 Ss" 
«i t^ 
> . 3 

a^ 

"i 
o~ 
B 

g X-
^ K" 0 
> 0 ĉ  
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