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Abstract

This thesis applies an enhanced progressive clustering approach, involving fuzzy clustering
algorithms and fuzzy neural networks, to solve some practical problems of pattern
recognition. A new fuzzy clustering framework, referred to as Cluster Prototype Centring
by Membership (CPCM), has been developed. A Possibilistic Fuzzy c-Means algorithm
(PFCM), which is also new, has been formulated to investigate properties of fuzzy
clustering. PFCM extends the useability of the Fuzzy c-Means (FCM) algorithm by

generalisation of the membership function.

CPCM provides a flexible framework to integrate clustering methods that detect
cluster substructures. Four pattern recognition theories. consisting of the Bayes decision
rule, partitional clustering, fuzzy clustering and neural network. which influenced the
development of the CPCM clustering model and application algorithms are reviewed. Four
new experimental algorithms to detect compact cluster regions and outlines are adduced to
illustrate the adaptation of analytic fuzzy clustering algorithms for the CPCM framework.
Three new cluster validity indices are developed to evaluate the clustering performance of

the basic k-Nearest Neighbour, FCM. PFCM and CPCM based algorithms.

Application development 1s focused on three problem contexts: (1) detection of
contaminants in wool and paint defect on tile surface (region segmentation), (1)
identification of real object lines and circles (boundary detection) and (111) recognition of a
notched feature on an armature housing (general pattern recognition). The CPCM
algorithms demonstrate more accurate segmentation of small scale defect patterns
compared to FCM. Results obtained from these algorithms mdicate robust clustering and
accurate identification of cluster parameters (circle centre, radius, line gradient and
corners) from real data silhouettes characterised by the presence of noise, fragmentation
and partial obscurity. These algorithms also facilitate a solution for general pattern
recognition. Several fuzzy neural network configurations are developed to improve object

recognition and to model the cluster prototype from a progressive clustering algorithm.
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Chapter 1

Introduction

This thesis is about the understanding and interpretation of images acquired from a video
camera. Humans perform this task almost instantly by intuition. It is however, incredibly
difficult to replicate this task on a machine. This is because the articulated aspects of hu-
man perception are incongruent with the knowing aspects. Consequently, the goals of pat-
tern recognition must be considered idealisations of the real world conditions and the re-
sults of pattern recognition methods, approximations of human perceptions. By limiting
the conditions upon which the graphical image of the object is dependent, some useful re-
sults can be obtained. Indeed, the recognition of these limitations has produced some suc-
cessful applications. Notably, in the areas of large scale integrated electronics, automotive

manufacturing, ecology, meteorology, brain scan diagnostics and vision guided robotics.

In the thesis, a new enhanced progressive fuzzy clustering approach 1s applied to
solve some practical problems in the following areas of pattemn recognition: (1) region seg-
mentation, (i1) boundary detection and (i11) general pattern recognition. New fuzzy cluster-
ing algorithms have been developed to enable successful and accurate 1dentification of
cluster parameters in a noisy environment. New fuzzy neural configurations have been de-
signed to enable accurate pattern classification for object recognition and cluster prototype

modelling.

Section 1.1 of this chapter. introduces the background information and motivations
for pattern recognition. This 1s followed by a discussion of the scope and contributions of

the thesis in Section 1.2. The last section of this chapter gives an overview of each chapter

of the thesis.
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1.1 Background and Motivations

This thesis is primarily concerned with the use of fuzzy clustering, specifically the Cluster
Prototype Centring by Membership (CPCM) framework, to solve practical problems of
pattern recognition such as the detection of defect patterns or identification of structure in
data. Fuzzy clustering may be broadly defined as a cluster analysis or neural network

technique that applies fuzzy concepts based on fuzzy set theories to partition data.

Cluster analysis i1s the exploration of data for structure or clusters. Clusters are
natural groupings or partitions in data. Cluster analysis organises data that are typically
not labelled by a process which attempts to disclose the structure or geometric properties
in data. By organising data into discrete groups, cluster analysis performs classification.
The study of data groupings has a long history involving diverse disciplines and known
under various names such as cluster analysis, numerical taxonomy and automatic data
classification. Cluster analysis is widely used in many different fields including the follow-
ing: artificial intelligence, vision guided robotics, medical research, remote sensing, biol-

ogy, psychology, voice recognition, political science, economics, meteorology and ecology.
1.1.1 Background

A representative context of image processing for pattern recognition is shown in Figure
1.1. The pattern recognition applications presented in the thesis, from Chapters 4 to 7, as-
sume this context for data preprocessing and may also involve the use of a knowledge or

rule base within specific algonthms for robust clustering.

The problem domain is a problem to be solved by a machine vision system or com-
puter vision such as the detection of contaminants in wool samples or to count the number
of cells in a blood sample. The image acquisition and preprocessing stages are also known
as low level stages. These involve the acquisition of information from the world using a
camera or other transducers, data conversion to a form suitable for computer processing,
and preprocessing to improve the image for subsequent or downstream stages. Preprocess-
ing typically involves techniques for enhancing contrast, removing noise, and isolating re-
gions. The intermediate level stages include segmentation and representation or feature

description. Segmentation may be broadly defined as the partitioning of an image into its
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constituent parts or objects. In isolating an object from a scene, segmentation reduces the
level of complexity and the amount of data for processing and so simplifies the task for
object feature extraction. Feature extraction deals with extracting features or patterns that
result in some quantitative information of interest or features that are basic to discriminat-
ing one class of objects from another. Pattern recognition and interpretation are consid-
ered a high level stage of image processing. Note that pattern recognition 1s used in a wider
sense to include object recognition. Pattern recognition 1s a process that assigns a label to
an object based on the information provided by its descriptors. Interpretation involves as-
signing meaning to an ensemble of recognised objects. Knowledge about the problem do-
main 1s coded into the image processing system as a knowledge base. The knowledge base
interacts with each stage to facilitate the process of pattern recognition. Some fuzzy algo-
rithms incorporates the lower and mid-level stages within the same algorithm. In Chapter 7

an example 1s given to illustrate the use of the image processing stages shown on Fig. 1.1.

] Segmentation Representation

and Description
|
[

b b
Preprocessing L-J— -

| Pattern

i :
! : i .
’ Knowledge Base ‘|<—>‘ Rec;)r?cr;mon — Results

1
i Interpretation
Problem Image ‘

Domain Acquisition ‘

Figure 1.1 Basic steps in image processing. Adapted from [Gonzalez and Woods, 1992].

An object recognition system finds objects in the real world from object models
which are known a priori. The problem can be described as assigning a set of labels to an
image containing one or more objects of interest, corresponding to a set of models known

to the system. Another way of representing the basic steps to object recognition 1s shown in

Fig. 1.2.

Image‘ Feature Featursﬂ Hypothesis Candidatg Hypothesis Object
Detector Formation Objects Verification Class
3
Model
Database

Figure 1.2 Basic steps to object recognition. Adapted from [Jain et al., 1995].
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The model database contains all the representative models to identify images pre-
sented for object recognition. Information in the model database depends on the problem
domain, and the methods of recognition. The feature detector operates on the image to as-
sist with object hypothesis. The features selected depend on the objects to be recognised
and the organisation of the model database. From the detected features, the hypothesiser
assigns likelthoods to objects in the scene to facilitate a solution by limiting the search
space. The model database uses an indexing scheme to eliminate unlikely candidate objects
from recognition consideration. The hypothesis formation and verfication components
vary in importance depending on the recognition methods used. For example, the general

pattern recognition scheme in Chapter 7 does not require hypothesis formation.

Some of the important 1ssues to be considered in the design of an object recognition
system are:

o Object or model representation: How should objects be represented in the database?
What important object features are to be captured by the models?

o Feature extraction: Which features are to be detected? How reliably and with what de-
gree of accuracy can they be detected? Are they adequate to enable object identifica-
tion?

e Feature model matching: How to match features in images to the models in the data-
base? An exhaustive match in many cases may be too slow for real-time applications.
Effectiveness of features and matching efficiency must be considered in developing a
pattern matching method.

o Hypothesis formation: How can a set of likely objects based on feature matching be
selected? How to assign probabilities to each possible object? This step uses heurnstics
to reduce the size of the search space.

o Object verification: How can object models be used to select the most probable object
from an image? The models provide a means of vernfying the probability of a correct

decision.

Object recognition is a complex process involving many factors that determine the -
result of recognition. Some of these factors are:
o Scene constancy: Are the scenes similar to the conditions of the models? The scene may

contain problems for recognition such as illumination vanations, shadows, camera pa-
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rameters and camera viewpoint. Multiple objects can present problems for recognition,
by touching or overlapping one another, or casting shadows on other pieces of objects.

» Image-models spaces: Three dimensional objects tend to be too complex to model. If
these objects can be approximated by a 2D model, the problem of perspective effects
can be greatly reduced and mode! representation considerably simplified.

o Number of objects in the model database: If the number of objects is small, the hy-
pothesis formation stage may not be necessary. A large number of objects has implica-

tions for increasing computation complexity and feature selection.
1.1.2 Motivations

A significant reason to use cluster analysis is related to the problem of data size. To illus-
trate, Jain and Dubes [1988] showed that a brute force approach to the partitioning of data
1s quite impractical, even for a small number of partitions. If S(V,K) denotes the number of
clusterings of NV objects into K clusters, the solution is the Stirling number of the second
kind given by

K

SN, K)= %Z(—I)K"[f }'“

“i=l

There are 34,105 distinct partitions of 10 objects into 4 clusters, but grows explosively to
11,259,666,950 partitions for 19 objects and 4 clusters. Cluster algonthms can signifi-
cantly alleviate this kind of problems and consequently, reduce the time and effort to ana-

lyse data.

Academic interest 1s certainly a strong motivation for this research. Automatic class-
ification is still a very new science, undergoing a vigorous but exciting growth. The diver-
sity of algorithms is an indication that no general definition of a cluster exists. In particu-
lar, this research attempts to improve the utility of fuzzy clustering techniques by the in-
clusion of features that automatically find the number of clusters in data, enhance compu-
tation efficiency, accuracy of clustering and the algorithm’s ease of use. At a pragmatic
level, there are potentially immense rewards to be reaped from this technology. Activities
that are ripe for the application of this technology are those conducted in environments
considered inimical to human health and life, of a boring, stressful or fatiguing nature and

for processes which exceed human capabilities.
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1.2 Scope and Contributions
1.2.1 Scope

Recent research publications [see Chapter 6 of Yager and Zadeh, 1992; Krishnapuram and
Keller, 1992] indicate firstly, that fuzzy clustering provides a general approach to pattern
recognition and secondly, it is able to characterise complicated data substructures
[Krishnapuram et al., 1995]. For the purpose of the thesis, the algorithms are restricted to
gray scale patterns in 256 x 256 pixel resolution. This has been done to manage, program
development and testing, the efficient use of computer memory and processing time. For

other applications, these algorithms may be generalised to higher dimensions.

Thus thesis 1s presented in roughly two parts, theory and applications. The first part.
comprising Chapters 1 and 2, describes the context, basic concepts and theories of pattern
recognition. The second part, from Chapters 3 to 8, examines the practical applications of
the fuzzy clustering algonithms developed from the pattern recognition theories of Chapter
2. Applications are limited to the following three categories: (i) region segmentation, (i1)
boundary detection and (1i1) general pattern recognition. The fuzzy clustering equations
introduced in the application algorithms of Chapters 3 to 8 freely assume the pattern rec-

ognition theories given in the first two chapters, without further elaboration.
1.2.2 Contributions

My contributions to the field of pattern recognition can be considered at two levels. The
first level relates to the algorithms’ basic characteristics, their significant design and per-
formance features. The second level considers the application aspects of these algorithms

and the kind of problems they can effectively solve.

1.2.2.1 First Level Contributions

The first level contributions may be summarised by the following seven points:
e Possibilistic Fuzzy c-Means (PFCM) extends the membership functions of the Fuzzy c-
Means (FCM) to enhance the selectivity, controllability and nature of clusters.

e Sequential Fuzzy Clustering (SFM) with a single prototype, as an alternative to FCM.
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* Enhanced Possibilistic c-Means (EPCM) improves clustering at local centroids.

* Cluster Prototype Centring by Membership (CPCM) finds the number of clusters in the
data set automatically without needing cluster validity testing like FCM.

e CPCM significantly improves clustering speed by the progressive removal of cluster
points or noise points, compared to FCM.

e CPCM detects small scale defect problems more accurately compared to FCM.

 Three cluster validity indices for the objective evaluation of clustering performance.

1.2.2.2 Second Level Contributions

The second level contributions may be summarised under the following seven points:

* Fuzzy neural network applied to improve object recognition by statistical correlation
coefficient matching.

* Fuzzy neural network applied to improve cluster identification under various illumina-
tions.

* Fuzzy neural network applied to model fuzzy cluster prototypes.

e CPCM applied to progressive clustering based on the Fuzzy ¢-Means.

e CPCM applied to region segmentation.

e CPCM applied to linear and circular boundary detection.

e CPCM and pattern matching algorithms applied to general pattern recognition.

1.3 Overview of Thesis

Chapter | outlines the background and motivations for this research. It describes the scope

and contrnibutions of the thesis.

Chapter 2 mtroduces four theories for pattern recognition comprising: (1) Bayes de-
cision rule, (i1) partitional clustering, (iit) fuzzy clustering and (iv) neural networks. The
Bayes decision rule ntroduces fundamental concepts of classification and the discriminant
function. Partitional clustering theory is used to derive the k-Nearest Neighbour algorithm
and to 1illustrate cluster concepts and properties. The basic structure of FCM 1s discussed,
followed by Bezdek and Im’s PFCM, developed to extend FCM clustering properties. The
variable norms of Gustafson and Kessel’s algornithm, and Gath and Geva’s algorithm are

examined. The Possibilistic c-Means (PCM) algorithm from Krishnapuram and Keller is
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reviewed. Bezdek and Im’s EPCM algonthm is developed to improve PCM’s clustering
performance at local centroids. The clustering performance of FCM, PFCM, PCM and
EPCM clustering algorithms are evaluated. The basic architecture and learning character-
istic of a backpropagation neural network are presented. Two different ways of designing a

fuzzy neural network, by model embedment and by model mapping are discussed.

Chapter 3 examines four experimental algorithms to illustrate the adaptation of
analytic fuzzy clustering algorithms for the CPCM framework. The experimental algo-
rithms explore a variety of geometric cluster structures. SFM is developed to explore an
alternative scheme for progressive clustering. Comparative tests of clustering performance

are conducted on the FCM, KNN and CPCM algorithms.

Chapter 4 applies the CPCM framework to the segmentation of regions. Fuzzy
clustering algorithms are developed to solve pattern recognition problems relating to: (i)
detection of contaminants in wool samples and (ii) detection of surface defects in roof tiles.
The CPCM based clustering algorithm demonstrates superior detection of small scale de-

fect patterns compared to FCM.

The detection of linear boundaries 1s presented in Chapter 5. This and the detection
of circular boundaries in Chapter 6, demonstrate useful extension of the basic FCM algo-

rithm and the accurate identification of cluster parameters in the presence of noise.

Chapter 7 describes a solution to a general pattern recognition problem involving a
combination of pattern matching and fuzzy clustering algorithms. It demonstrates how
fuzzy clustering techniques facilitate the detection of an arbitrary feature from the top face

of an armature housing object.

Chapter 8 presents three neural network applications to: (1) improve object recogni-
tion, (ii) improve cluster identification and (iii) extract cluster prototypes from image data.
The fuzzy neural networks demonstrate improved classification performance compared to

the conventional neural networks.

Chapter 9 concludes the thesis with a summary of the major conclusions and sug-

gestions for future research directions.
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Chapter 2

Methods of Pattern Recognition

Basic concepts of image processing and cluster analysis are introduced in Section 2.1 to
prepare the context for a review of the theories of pattern recognition in the next four sec-
tions. The Bayes decision theory is presented in Section 2.2, partitional clustering theory in
Section 2.3, fuzzy clustering theory in Section 2.4 and neural network theory in Section
2.5. The construction of fuzzy clustering models and algorithms in Chapters 3 to 8 as-
sumes to a large extent the pattern recognition theories of this chapter, particularly fuzzy

clustering theories and methods from Section 2 .4.

The materials of this chapter involve quite extensive use of differential calculus be-
cause of the optimisation problems associated with objective functions. The contents are
intended to be a succinct but fairly comprehensive survey of the field, directed at fuzzy
clustering practitioners. This chapter may be skipped to enjoy the practical flavour of the

applications and returned to later for advanced insight into the pattern recognition theories.

The discussion of fuzzy clustering theories is largely expressed through the proper-
ties of vectors in real space. To define the usage of vectors in the thesis and to provide suf-
ficient details to arrive at correct results, Appendix A is included. It reflects the convention

of the leading FCM practitioners.

2.1 Introduction

Duda and Hart, in a preface to their book [1973, p. vii], define pattern recognition as the

“machine recognition of meaningful regularities (of data) in notsy or complex environ-
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ment”. This definition makes two important statements for pattern recognition: (i) useful
data is significant and has meaningful pattemns in contrast to random patterns and (i1) the

data is typically embedded in noise or other complex features.
2.1.1 Nature of Data

Data in the context of the thesis, consist mostly of digital images acquired from a video
camera. However, the clustering algorithms place no restriction on the type of data for
clustering provided it can be represented symbolically. Video signals can be acquired in
either gray tones or typically in the three primary colors of red, green and blue (in video
systems, there are several other image formats). Processing color signals requires more
computer memory and intensive processing for each color component and sometimes mix-
ture of components. Therefore for the purposes of the research, images in 256 levels of
gray. at a resolution of 256 x 256 (row x col) pixels are used. This specification gives
adequate feature resolution without excessive demands on processing power from personal
computer systems. Another reason for gray scale image processing 1s that 1t is not difficult

to make the transition to color processing.

2.1.2 Data Preprocessing

Next, we discuss part (1) of Duda and Hart’s definition of pattern recognition. It has been
previously noted that real data is typically embedded in noise or a complex environment.
Data for analysis may be associated with one or more objects of interest. To enable analy-
sis of the object in data. it is first necessary to separate the objects from the environment or
background. This process 1s called image segmentation. It is possible to apply clustering
algorithms that operate directly on raw mmage data (see Chapter 4) but in some cases, (see
Chapter 7) 1t is necessary to process the data before applying the clustering algorithm. One
common process (among several others) uses a technique called thresholding. Threshold-
ing uses an image point operator to produce a binary image from a gray scale image.
Mathematically, any point function ffx,y), for which f{x,y) > T where T is the intensity or
color threshold, is regarded as an object point with some value greater than zero. The
background is assigned a value of zero. Bi-level thresholding segments an object in the
range of 7; < f{x.y) < T>. Methods for image thresholding are quite diverse of which a
sample is given in [Sonka et al.. 1993; Davies, 1990: Haralick and Shapiro, 1992: Gon-
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zalez and Woods, 1992]. An objective for thresholding is to reduce the complexity of the
raw data to a binary level or combinations of binary levels. Another reason for threshold-

Ing is to obtain an object’s sithouette for other processes such as feature extraction.

In some cases, thresholding may not segment the object adequately because the ob-
ject along with portions of the background are extracted within the range of the threshold.
One method to extract distinct blobs or regions from such data is by analysis of neigh-
bourhood pixels or connectivity analysis [Im, 1992; Cunningham, 1981]. Depending on
the application, one could be more interested in the outlines of the object rather than in its
region properties. In this case, there are numerous methods to perform edge segmentation
[Sonka et al., 1993; Davies, 1990; Haralick and Shapiro, 1992: Gonzalez and Woods,
1992; Fu and Mui, 1981]. Probably the more popular conventional varieties of these are
the Roberts, Prewit and Sobel edge detectors. These are also known as gradient operators
since they detect intensity gradients. Other exotic methods for edge detection include the
morphological operations in [Yang and Li, 1995, Krishnapuram and Gupta, 1992], fuzzy
and neural methods in [Pal and King, 1983, Bezdek and Kerr, 1994] or smart heunstics
[Cohen, 1993]. In Chapter 7, we illustrate the use of some of these image preprocessing
procedures, namely thresholding, connectivity analysis and edge segmentation for general

pattern recognition.

The above review is intentionally brief because the landscape of image preprocess-
ing 1s huge and we do not wish to digress too far from our particular field of interest.
Having successfully segmented the object from its environment, the next task is to analyse
the data derived from the object for structure. The theories of pattern recognition presented
in this chapter provide the basic tools to accomplish this task. In anticipation of this we

review some of the basic concepts of cluster analysis.

2.1.3 Definitions of Cluster

Clustering algorithms such as partitional clustering algorithms are oriented to find struc-
ture in data, not to establish rules relating to the separation of the data. Eventt [1974]

gives three definitions of a cluster:

e A cluster is a set of entities which are alike: entities from different clusters are not alike.
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* A cluster is an aggregation of points in the test space such that the distance metric be-
tween any two points 1n the cluster 1s less than the distance between any two points not
n it.

» Clusters may be described as connected regions of a multi-dimensional space containing

a relatively high density of points, separated from other such regions containing a rela-

tively low density of points.

While 1t is undoubtedly easy to give a functional definition of a cluster, a general defini-
tion of a cluster 1s extremely difficult to define precisely. This is partly because its interpre-

tation depends on subjective processes involving aesthetics, imagination and experiences.

2.1.4 Data Presentation and Types

Raw data for cluster analysis can be presented in two standard formats: (i) as a pattern

matrix and (i1) as an #n x d proximity matrix.

In the pattern matrix format, data is represented by # rows of objects and d columns
of measurements or attributes. For example, if students at a university are to be clustered,
each object may represent a student and each column, students” responses to a question of
a course content. Each row then represents a pattern and each column a feature or meas-
urement. In image analysis, the d features are the orthogonal axes and the » objects are
points in the d dimensional space, called a pattern space. The pattern space is the space
occupied by these n points. In this patten space, a cluster can be visualised as a collection
of points grouped together according to some clustering criteria. A clustering algorithm is

particularly useful for identifying the natural groupings in spacings of many dimensions.

The proximity matrix accumulates the indices of proximity or affinity. For example,
if the first row of each column and the first column of each row represent the subjects (in
same sequential order) prescribed for a course at a umiversity, then the intersections of a
row to each column contain the same values as the identical column intersections with each
row. The intersection of a row and a column may represent an average of students’ subjec-

tive response, on a scale of one to ten, of the two subjects’ dissimularity.
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The types of data commonly encountered within these two matrix formats are indi-
cated in Fig. 2.1. Pattern matrix data types can be binary, discrete or continuous. The
scale category indicates the relative significance of numbers that can be either nominal or
ordinal for qualitative data and interval or ratio for quantitative data. An example of each

data type is given below:

Qualitative nominal: yes = 1, no = 0.

Qualitative ordinal: 1, 2, 3, 4, 5 where 1 = cold and 5 = hot.

Quantitative interval: 0 to 100, degrees Celsius (in relative reference scale).

Quantitative ratio: 0 to 100, degrees Kelvin (in absolute reference scale).

DATA
PRESENTATION

PROXIMITY E&
MATRIX

PATTERN
MATRIX

Binary
S Similari
“"—— Discrete TYPE - 4
~ Continuous Dissimilarity

\ ] \
) Qualitative £ Quantitative Qualitative Quantitative

Nominal  Ordinal Interval Ratio Ordinal Interval Ratio

Figure 2.1 Data presentation and types. Adapted from [Jain and Dubes, 1988].

2.1.5 Measures of Proximity

A proximity index (or coefficient) is either a similarity or a dissimilarity and is de-
fined to reflect maximum value (normally unity) when the condition is true. For example,
the Euclidean distance (see Definition A.5, Appendix A) is a dissimilarity index because
when the distance 1s small the index has a low value (or low dissimilarty), and when the

distance 1s large the index has a high value (or high dissimilarity). In contrast, a member-
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ship function of a fuzzy clustering algorithm is a similarity index. Denoting two points by i
and j, then the proximity indices are related by

s)y=1-dGyj) for0<s(j)<land0<d(ij)<1 (2.1.1)
where s(ij) and d(i ;) are the similanty index and dissimilarity index respectively. Denoting

a proxumity index by D(7,f), then the three properties of a proximity index are:

1 (a). For a dissimilanty, D(i,i) =0, Vi.

(b). For a similanity, D(i,i) > max D(i, j), Vi.
;

2 D(ij)=D(,i), Vij.
3 D(ij) = 0, Vi,

In fuzzy clustering, a norm (or vector length) is used to represent the distance (or
metric) between feature vectors or points (see Appendix A for details). If d-component
vectors x; and x; belong in R, then |jx; — x| (or |X]| if X =x; - x;) represents the distance
between two vectors x; and x; (or the length of their vector difference). Alternatively, this
distance 1s denoted by d; = ||x; — x| (also d(i,j) or d(x;,x;)) to represent the distance between
two items of data at points 7 and ;. The four unit norms in R’ are shown on Fig. 2.2. The
distance formula represented by the four norms are summarised in Table 2.1. These norms

can be obtained from the Minkowsky metric (except the sup norm)

d 1/q
d(iJ‘){Zixik —x,kl"} forg =1 (2.1.2)
k=1

The value of g 1n (2.1.2) corresponds to the norm type (eg. ‘q = 2 1s a Euclidean norm). The
norms of Table 2.1 exert a significant influence over the shape of clusters that are detected
in fuzzy clustering. For feature vectors in °, round clusters are obtained from the Euclid-
ean norm, elliptic clusters from the Mahalanobis norm, and square shape clusters from the

supremum norm. Higher dimensional norms detect hyperquadrics.
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Figure 2.2 Four unit norms of vectors in R°. The boundary has a unit norm. Norms less
than unuty are contained inside the boundary. Adapted from [Bezdek, 1995a].

Name of norm Distance formula

Mabhalanobis I, _VJ.H;_, =(x; v, y F(x, -v,)
- 2 2

Euclidean ”Xz‘—Vj“z:Zk(Xik—ij)

City block 1%, = v =2 1% = v il

Sup or Max

1%, =Vl = max{x e = v
k

Table 2.1 Distance formula of four norms used in fuzzy clustering

F is a covariance matrix, v, denotes the jth cluster prototype and x; is the ith feature vec-

tor of data set X. Both vectors are in R,

Additional to the norms described above, the similarity measures in Table 2.2

[Diday and Simon, 1976] are useful in conventional cluster analysis.

Name Similanty measure
Camberra i —x |
d(i, j)= 2, ——
'xik + xj'k |
Chi-square

1

(i, )= 2. Tl T v
K ¢ 2 x| 2w k]

Correlation Zk(x,-k =X )X — %)

a(i, j)= Y
[Zk(xik =X )2Zk(xjk —fk)Z]

Table 2.2 Four similarity measures used in conventional cluster analysis.
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To obtain meaningful results in clustering, a meaningful norm has to be established
a priori. Also, the choice of variables must contain relevant information. In general, the
selection of meaningful vanables is a non-trivial task that may involve some common

sense, subject matter knowledge and experimentation.

2.1.6 Types of Classifications

The types of classification categories are depicted in Fig. 2.3.

Classifications

| R3S “

Non-Exclusive

(Overlapping) Exclusive

Extrinsic [ Intrinsic

(Supervised) (Unsupervised)

Hierarchical . Partitional

Figure 2.3 Tree of classification types. Adapted from Jain and Dubes [1988].

Exclusive classification refers to subsets of disjoint classes where each object be-
longs to only one class. Non-exclusive classification allows overlapping of classes such
that an object can belong to more than one class. Fuzzy clustering is an example of such a
classification. Intrinsic classification is called unsupervised learning in pattern recognition
because the objects used are unlabelled. Extrinsic classification uses category labels as
well as the proximity index on objects. Extrinsic classifiers learn to classify from labelled
data. This mode of classification is described as supervised clustering. An example of this
1s the Bayes classifier where the number of classes is assumed known. Intrinsic classifiers
use unlabelled data. Cluster analysis is intrinsic classification. Unsupervised clustering
may be divided into two types: (i) hierarchical and (ii) partitional. Partitional clustering is
discussed in Section 2.3. Other clustering methods are outside the scope of this thesis. For
a discusston of these, refer to [Jain and Dubes, 1988; Kaufman and Rousseeuw, 1990;

Eventt, 1974; Gordon, 1981; Har-even and Brailovsky, 1995; Postaire et al., 1993].
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Remarks

Cluster analysis and classification are pattern recognition terms with different meanings
but sometimes used as if they are alike. In classification, the objective is to find the optimal
decision boundaries separating the objects, whereas cluster analysis is concerned with
identifying objects (a labelling problem) in the partition space. Classifiers are usually
taught the correct groupings from labelled data but clustering algorithms attempt to pro-
duce the correct groupings from data that are unlabelled. Roughly speaking, both methods

help to identify objects for pattern recognition, although in different ways.

Some of the common methods of pattern recognition includes the following: knowl-
edge based methods [Adiman et al. 1988; Jolion, 1994], rule based methods
[Krishnapuram and Keller, 1993b; Rhee and Krishnapuram, 1994], mathematical mor-
phology [Serra, 1988; Dougherty, 1992], Hough transform [Davies, 1990; Leavers, 1992].
semantic networks [Nieman et al., 1990] and geometric constraints [Grimson, 1990].

These methods of pattern recognition are outside the scope of the thesis.
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2.2 Bayes Decision Theory

Historically, the Bayes decision theory 1s the basis for most pattern recognition techniques.
The objective function of FCM and the clustering cnitenon of KNN incorporate the Bayes
decision rule implicitly. According to Diday and Simon [1976], the field of pattern recog-
nition has developed mostly as statistical classification techniques. It 1s widely acknowl-
edged that the Bayes decision rule gives the optimum classifier performance in the sense
of minimum probability of error. This chapter presents the principles of classification for
pattern recognition and introduces the discriminant function and its relation to the decision

boundary of classes. These concepts are assumed in the fuzzy cluster models.

2.2.1 Bayes Decision Rule — Discrete Case

If there are only two possible states of nature w, and w,, and these occur randomly, then
the simplest decision rule for classification is to decide w; if the a priori probability P(w)
is greater than P(w,). This rule maximises the probability of a correct decision or mini-
mises the probability of error. In general, a decision rule is not limited to a prion prob-
abilities. Suppose a continuous random variable x can be observed such that p(x|w;) is its
conditional probability density function given that the class is w;. In this case, the Bayes
decision rule relates the conditional a posteriori probability P(w,|x) of a random vanable x

to its a priori probability P(w;) according to the relation

YP(w -

P(wj|x):p(x|wf) &) (2.2.1)
p(x)

p(x)= 2 plxlw ) P(w;) 2.22)

J=1
where ¢ is the number of classes. Note that the lower case p denotes probability density
function and the upper case P the probability distribution function. For an observation x, if
P(w\[x) > P(wslx), one would decide class wy. To justify this procedure, consider the prob-
ability of error associated with a particular observation of x:
P(wy|x) 1f decide w,

P =
(error|x) {P(w2|x) if decide w,
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For the same observation x, the probability of error can be minimised by deciding w, if
P(w|x) > P(w,|x), and w, if P(w,|x) > P(w,|x). To confirm that this rule minimises the av-

erage probability of error, it may be noted that the average probability of error is
P(error)= Jm P(error x)dx = J: P(error|x)p(x)dx

If for every x, P(error|x) is made as small as possible then the integral must be as small as

possible. This justifies the Bayes decision rule for mimmising the probability of error

given by:

Baves decision rule.

e decide the class w; if P(w|x) > P(w;|x) and

e decide the class w, if P(w;|x) > P(w,|x).

This rule emphasises the role of the a posteriori probabilities. The Bayes decision rule in
terms of the conditional and a priori probabilities (ignoring the scale factor of (2.2.2)) 1s:

e decide the class wy if p(x|w))P(w;) > p(x|w,)P(w) and

o decide the class w; if p(x|w2)P(wy) > p(x|w)P(w)).

2.2.2 Bayes Decision Rule — Continuous Case

The Bayes decision rule can be generalised for the continuous case with the following

conditions:

e more than two class states
¢ more than one feature

¢ aloss function

Let the loss function for all errors be equally costly. Let 2= {w,,...,w.} be the ¢ fi-
nite number of classes and A = {a,...,c,} be the a possible actions. Let A(a|w;) be the loss
incurred for action @ when the true class is w;. Let feature vector x be d component and
p(x|w,) be the probability density function for x conditioned on class w;. Then the Bayes

rule 1s

w )YP(w .
P(wj|x):p(xl P (2.2.3)
p(x)
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p(x)= 2 p(xlw)P(w)) (2.2.4)
J=1

Given that the loss associated with ¢; 1s A(;|w;) when the true state is w;, and P(w;|x) 1s the

probability that the state is w;, then the risk associated with ¢; is

R(a,|x)= 2L A, |w ) )P(w,[x) (22.5)

j=1

R(a; |1x) 1s known as the conditional risk. For an observation of x, the expected loss is
minimised by selecting the action that minimises the conditional risk. Therefore the Bayes
rule that minimises the overall risk is to compute the conditional risk given by (2.2.5) for
every possible action ¢, for i = 1,...,a and to select the ¢; for which R(¢;|x) is 2 minimum.

The resulting overall risk is called the Bayes risk and 1s the best that can be achieved.
2.2.3 Two Category Classification

Denoting A; = A(a;|w;) as the loss incurred for deciding w; when the true class is w;. then

(2.2.5) can be reformulated for a two class case as
R(ay|x) = A1 P(w)|x) + A, P(wy]x) (2.2.6)
R(ay|x) = A P(w1|x) + Aga P(W,[x) (2.2.7)
The Bayes rule that minimises the conditional risk is to decide w, if R(a|x) < R(a|x). The

corresponding a posteriori probabilities of the Bayes rule 1s to decide w) if

(A1 = A P(w|x) > (Ay — Ay )P(wo|x) (2.2.8)
The Bayes rule in terms of the a priori probabilities is to decide w, 1f
(A1 = A0 p(x|w)P(wy) > (A = Ay ) p(x|wy )P(wy) (2.2.9)

2.2.4 Minimum Error-Rate Classification

A rule that minimises the average probability of error or error rate is given by the loss

function

0 J
l(a,-le):{ - forij=1,.,c (2.2.10)
1 i=j

This equation is also known as the zero-one loss function. If a decision is correct (i =) it
assigns no loss but if a decision is incorrect (i #) it assigns a loss of one unit. Thus all

errors are equally costly. Substituting (2.2.10) into (2.2.5) gives the conditional risk
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Mmhﬁ:ZHyﬁ)d—Hmh) 2.2.11)

i=1i%f

where P(wj|x) is the conditional probability that ¢; is the correct action. Thus the Bayes

decision rule to minimise the conditional nisk is equivalent to the rule that minimises the

average probability of error (or error rate) given by a posterion probabilities. Decide w; if
P(wilx) > P(wj|x)  foralli#j (2.2.12)

or in terms of the conditional probability density function for x

p(x|w; )P(w;) > p(x|w;)P(w,) forall i # (2.2.13)

2.2.5 Classifiers, Discriminant Functions and Decision Sur-
faces

In representing pattern classifiers, it i1s convenient to define discriminant (or decision)
functions di(x), i = 1,...,c such that di(x) is maximum for class w; and

di(x) > d{(x) foralli=j 2.2.14)
For minimum average error, the a posteriorn probability is the maximum discriminant

function expressed by

di(x) = P(w,|x) (2.2.15)
Since the choice of di(x) is not unique, it can also be represented as

di(x) = p(x|w)P(w)) (2.2.16)
or by taking the natural logarnithm

d(x) = In p(x|w;) + In P(w;) | (2.2.17)

Note that the discriminant functions of (2.2.15), (2.2.16) and (2.2.17) are obtained
from minimum error-rate classification. The discriminant function divides the feature space
comprising of regions of classes according to the rule:

assign to class w; if di(x) > dj(x) where i # .

More commonly, this is expressed as

d(x) = di(x) - d(x)

Ties where d(x) = 0 are resolved arbitrarily. The discriminant function of (2.2.17) for a
two class case 1s
P(x|wy) ln P(wy)

d(x)=1In
P(x|wy) P(wy)

(2.2.18)
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2.2.6 Discriminant Functions For Normal Density

A general solution for (2.2.17) can be obtained by approximating the densities p(x|w;) with

a multivaniate normal (Gaussian) density function given by

1 1 T -1
N(H,Z):Wexp —5(x-p)y Z (x—p) (2.2.19)

where

T . .
X =[Xx],X3,...,Xg] 1S a d-component random variable vector

w=[, 4a,..., yd]T 1s a d-component mean vector
o111 %12 - O-ldw
T 021 T . . .
Z=Elx-—pu(x-pwl= 1s a d x d symmetric positive semi-
LT d1 - 044 |

definite covariance matrix.

o= E(x; - M) (X = ) = O

p = E[x], the expectation of x.

(x — w)” is the transpose of (x — p).
= is the inverse of I.

|Z| 1s the determinant of £.

The contours of constant density are the hyperellipsoids given by

F=x-p2'x-p (2.2.20)
where the principal axes are the eigenvectors and the lengths of these axes are determined
by their eigenvalues. Equation (2.2.20) is also known as the squared Mahalanobis distance.
The contours of constant density are the hyperellipsoids of constant Mahalanobis distance
from x to p. The volume of the hyperellipsoid corresponding to the Mahalanobis distance r

1S

V=V, e (2.2.21)
where
ﬂ_d/2
- Wz)-’ d even 0o

2d ﬂ_(d—l)/Z(ﬂ)!

2
d!

d odd
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For a given dimensionality d, the scatter of the samples varies directly with |E|1/ ? The dis-
crniminant function of (2.2.17) can be solved by approximating p(x|w;) with (2.2.19) to give
d(x)=-3(x - p) 7 (x ~ 1) - Lin27 - SIn| S, In P(w, ) (2.2.23)

This equation has some interesting features which are discussed under three cases.

Case 1: 2 = ol

In this case, the covariance matrix is diagonal with oy times the identity matrix /. The
features are statistically independent and each feature has the same variance oy, (defined
under Eq. (2.2.19) for k = 1,....c). Geometrically, this corresponds to samples of equal size

hyperspherical clusters in which the ith cluster is centred at mean vector p,. Since both

%lnl 2| and %ln 27 are constant terms, these may be ignored to give

I = ||
d,-(x):——zg_p'—HnP(w,-) (2.2.24)
kk

where
lx = wl* = (x — ) "(x — ) is the Euclidean norm (see Appendix A).

If the a priori probabilities P(w;) are the same for all ¢ classes then the In P(w;) terms can
also be ignored. In this case, the optimum classification rule is to assign x to the class of
the nearest mean. Such a classifier is called the minimum distance classifier. The optimum
classification rule (or least squares error) is the basis of numerous clustering algorithms. Tt
is the clustering criterion of KNN and the objective function in the FCM, weighted by the
fuzzy memberships. If the In P(w;) terms are not equal, then (2.2.24) can be expressed as

d,(x)=———[x x=2p) x+p, p,]+In P(w,) (2.2.25)

Ok
Since (x'x) is the same for all /, it may be ignored so that (2.2.25) yields the linear dis-

criminant functions

d(x)=g x+h (2.2.26)
where
1
gi=—""H (2.2.27)
Okk
h=- nlp, +1n P(w,) (2.2.28)
20k

At this point. note that hyperplanes are defined by the linear discniminant functions
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di(x) = d(x) (2.2.29)
Substituting (2.2.27) and (2.2.28) into (2.2.29) and noting the different indices, a decision
plane for two classes w; and w; with the same variance oy is defined by

1

1 T T
d,(x)—d (x)=—(1 —p,;)x———(u p, —pyp,)+M (2.2.30)
Ok 20
P(w;)
where M =1In
P(w ;)
From (2.2.30) the hyperplane through the point x, is given by
1 T T
(ip —pyp,)-M
_ 20k
o= I 7 7
— (K —1y)
Otk

which simplifies to
Tk | P(w;)
> In
i —myll” POwy)

1
XOZE(P-,"FP-])_ (p'i_p'j) (2.2.31)

This hyperplane plane defined by (2.2.31) represents the decision boundary that separates

the two regions of the classes w; and w; and has the following properties:

e It is orthogonal to the vector (p; — p;). The right side second term of (2.2.31) 1s the pro-
jection of (p; + ;) onto (p,; — ;). Thus the vector difference of the two terms of (2.2.31)
1s the hyperplane vector through x,, orthogonal to the vector (p; — ).

e If P(w;) = P(w)) then xo = (W; + ,;)/2, and the hyperplane plane bisects the means.

o If P(w;) # P(w)) then the point x, shifts away from the more likely mean.

o If ou << (p: — ) then the position of the decision boundary is insensitive to the values

of the a priorn probabilities.

The above result has practical implications for neural networks functioning as clas-
sifiers. It has been demonstrated theoretically by [Ruck et al., 1990] that the backpropaga-
tion neural network (introduced in Section 2.5) approximates to the optimum decision
boundary of (2.2.31). This result also suggests a clustering criterion for clustering algo-
rithm. For the image data, the probabilities of x are normally uncorrelated and are equally
likely. Therefore the data approximates Case 1 with P(w;) = P(w;). The optimum cluster
boundary (in the Bayes sense) is then defined by the mean of the two closest cluster proto-
types. This rule is realised in practice by assigning a point x to its nearest cluster according

to the criterion: decide x € w; if
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min px — v’ < - v, Vi)
where v; are the cluster centres corresponding to classes w;. Section (2.3.3) shows how this

rule is implemented in the KNN algorithm.

Case 2: ;= % (defined by (2.2.19))

For this case, the covariance matrices for all ¢ classes are identical and the samples fall
into hyperellipsoidal clusters of equal size and shape. Since both |Z,| and -‘;—ln 27 are inde-

pendent of 7 in (2.2.23) they can be ignored as additive constants. The discriminant func-

tions are given by
d(x)==3(x-p,) I (x—p,)+InP(w) (2.232)
Assuming equal probabilities for all ¢ classes, InP(w;) can also be ignored yielding
d(x)=-3(x—p,) I/ (x-p,) (2.2.33)
which implies that the optimum decision boundary is just the squared Mahalanobis dis-
tance of x to each of the ¢ mean vectors p, The bivariate normal density function of

(2.2.33) has some interesting geometric properties that also appear in fuzzy clustering (see

Section 2.4). This distribution function has the expression

2 2
T s g — )= 1 WXI—MJ [xz—#zJ ) [xl—ﬂlIXZ—,u2] 2.2.34)
(x—n) (x—p) 1 p122‘\ \/O'_” + /—0_22 P12 \/0'711 /—0_22 (

where

_ T
X = [X.'],xz]

— T
B = [14, ]

- | Oyp 012
S

011022 — 012 —012 a11

O12

" Jouon
Note that if the random variables x; and x, are uncorrelated, then the joint correlation coef-
ficient oy, = 0 and the joint density can be expressed as the product of two univariate nor-
mal densities similar to the form of (2.2.19). For the two class case, the following constant
density contours are obtained from (2.2.34):
(a) Circular contour: If 611 = 61 = o> 0and p, = 0.
(b) Elliptic contour: If 0y, = 0= 0> 0and 0 < p;; < 1.

(c) Linear contour: If 6y, = 61, = 6> 0 and p» = 1.
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Following the procedure of Case 1, the result for the multivariate case is given by
P(w;)
P(w;)

In

\
XO=E(H1+H1)“ (P-r—Hj) (2235)

T =

(B —p;) X " —H;)
The decision boundary of (2.2.35) is a hyperplane like Case 1. However, the differences of
vectors (p; — 1) are generally not orthogonal to the hyperplanes, although the planes do

bisect the lines between the means.

Case 3: %; Arbitrary

For the multivanate case, the %ln 2 term can be ignored resulting in

d,(x)=x Wx+w x+h (2.2.36)
W=7 (2.2.37)
w, =% ', (2.2.38)
h=-dpl s —dinjs rinP(w,) (2.2.39)

The discriminant function of (2.2.36) i1s quadratic in x and the decision surfaces are hyper-
quadrics that can assume any of the forms of pairs of hyperplanes, hyperspheres, hyper-

ellipsoids, hyperparaboloids and hyperhyperboloids of varous types.

Remarks

In classification problems, the Bayes rule for mirxinﬁsiné the probability of error is to
choose class w; which maximises the a posterion probability P(w;|x). This probability can
be calculated from the a priori probabilities P(w;) and conditional densities p(x|w;). The
main problem in using Bayes rule for pattern recognition 1s that the conditional densities
p(x|w;) are rarely known. If p(x/w,) can be approximated by N(w,;, Z,), then a discriminant
function given by (2.2.23) can be used for optimal classification. Although widely used,
the Bayes rule is not the only statistical criterion for classification. James [1985] gives
other criteria of classification. Further details on statistical classification can be found in

[Jain, 1987; Duda and Hart, 1973; Fukunaga, 1972].
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2.3 Partitional Clustering Theory

Section 2.2 showed that an optimum discriminant function and thus the optimum partition,
can be obtained from the Bayes decision rule if the class-conditional densities are Gaus-
sian. If the forms of the class-conditional densities are unknown, one can use non-
parametric procedures of the partitional clustering type like the k-Nearest Neighbour
(KNN) algorithm. The chapter begins with features of partitional clustering in Sections

2.3.11t0 2.3.2, followed by a discussion of the KNN algorithm in Section 2.3.3 and cluster
validity in Section 2.3.4.

2.3.1 Definition and Properties

Let E be a set of NV elements (or objects) x; in R A partition of P = {P, P,,....P,...Pc } 1s
a set of subsets of E such that P, ~ P;= &, for all 7, j and U;-\,_. P; = E. Partitional clus-
tering obtains a partition of a set £ of N objects x; by the use of one or more proximity in-
dices. A partition P is a set of disjoint subsets of £. An element P; of P is a cluster. The
goal of clustering is to define a mapping 7 such that

T:x,—> P, fori=1..N.

2.3.1.1 Homogeneity

A cluster P; 1s said to be homogeneous

if and only if x;, x; € P;and x, ¢ Ps, or

d(x;, x;) < d(x,, x,) and d(x;, x;) < d(x;, Xi)
fori,j, k=1,....N. A partition P is said to be homogeneous if the above property is true
for all P, € P. This statement means that two elements of the same cluster are more similar

than to any other cluster of £. Similarity is defined via a proximity index (Section 2.1.5).

2.3.1.2 Stability of a Partition

A good partition minimises a criterion function J. For example, let

Sup Ps = max [d(X,‘,X}')] for Xi, X; € P-V'
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Let P/be a cluster obtained from P; by removing some objects and taking some new ones
but having the same total number of objects. If Sup P, > Sup P/, P is said to be better
than P/ in the sense of the criterion. If no other P; better than P, can be found, P; is said to

be stable.

2.3.2 Criterion Function

Partitional methods generally expect data as a pattern matrix and assume the data is meas-
ured on a ratio scale. If the features are on a nominal or ordinal scale, the data types do not

give meaningful cluster centres based on Euclidean distances. In this case, hierarchical

methods of clustering are used.

In Section 1.1.2, a problem with data dimensions was noted. One way of avoiding a
combinatorial explosion is to evaluate a criterion function on a small set of reasonable
partitions. This solution involves optimising a criterion function using gradient ascent or
iterative hill climbing techniques. Starting from an initial partition, objects are moved from
one cluster to another to improve the criterion function. Each successive partition repre-
sents a perturbation of the previous partition. Algonthms based on this technique can be
computation efficient but may or may not converge to a global minimum of the criterion
function. Other approaches to solve this problem are described in [Jensen,1969; Rao,
1971; Koontz et al., 1975; Letkovich, 1980].

Since clusters can assume any arbitrary shape and size, it is difficult to conceive a
criterion function that is equally good for all clusters. Many criterion functions have been
proposed in the literature, some appearing in different guises. Examples of these are the
mutual near-neighbour clustering of Gowda and Krishna [1978], the Maximal Spanning
Trees (MST) of Zahn [1971], shared near neighbour MST in Jarvis [1978], mode seeking
partitional clustering in Kittler [1976] and the bootstrap approach of Moreau [1987]. Pos-
sibly the most common cluster criterion is the Least Squared Error criterion (LSE). This
criterion partitions the data for fixed number of clusters that minimise the squares of the

CITOIS.
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The procedure for LSE is as follows. For a data set of N points in R, let the ¢
cluster set {c), cs,...,c.} have corresponding set of points {n,, n,,...,n.}, and each object
belongs only to its cluster so that

2 =N (2.3.1)

The mean of the 4th cluster is the centroid defined by
1
e=—2" x,, (2.3.2)
My

where xy, is the ith element of the data set belonging to the kth cluster ¢,. If a Euclidean

metric is used, then the least squares error for cluster ¢, is

er =200 (0 — 1) (xj — 1) (2.33)

In general, the LSE can be weighted by any d x d symmetric positive definite matrix 4 so
that

2 n T
€k,4 =Zk;(x/a-—uk) A(x g —py) (2.3.4)

In particular, for a Euclidean distance, 4 = I (d x d identity matrix), and for a Mahalanobis
distance, 4 = X' is a covariance matrix. The geometric forms of these constant norm loci
are hyperellipsoids centred at the means 4 described in Section 2.2. The LSE criterion

function finds partitions of fixed ¢ clusters that minimises the sum of the within cluster

variations

Ef =20 et (2.3.5)
An optimal partition 1s defined as one which minimises £j. Clusters of this function are
called minimum variance partitions. The kinds of data that are suited to the LSE criterion
function are those which form compact clusters that are well separated from one another.
However, the LSE criterion is sensitive to outliers because the splitting of clusters, from

the influence of outliers, are favoured over one that maintains the integrity of clusters.

2.3.3 k-Nearest Neighbour

The KNN is a non-parametric method in which # stands for the number of data partitions
(generated from initial ¥ neighbour points). Several vanants of KNN exist, essentially to
improve the control of cluster development [Anderberg, 1973; Dubes and Jain, 1980]. For
the purpose of comparison with our algorithms of Chapter 3, we will only describe the

procedure for the basic KNN algorithm.
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A basic KNN algorithm.

Step 1. Select k elements of x; as prototypes w; of the & clusters {c), c3,..., ¢}

Step 2. For all remaining data, assign x; to cluster J if d(x,, W) is the minimum for j=1,....k.
Step 3. For all j, compute new mean ;.

Step 4. If ||w;: — w1 < 8, Stop, else go to Step 2.

Note: & controls the stopping condition and ¢ is an iteration index.
The KNN has four main characteristic features, described as follows:

2.3.3.1 Partition Forming

Partitions are formed by specifying the number of clusters k. The positions of the & cluster
centres can be randomly selected or based on some heuristics that spread the centres in the
vicinity of the data centroid. The partition is developed by each point attaching itself to the
nearest cluster prototype. The centroid of a resulting cluster becomes the cluster prototype
for the next iteration of clustering until eventually, all cluster prototype values stop chang-
ing. The clustering criterion of KNN is of the LSE type. Consequently, different initial
partitions may not yield the same final result especially if the clusters are not well sepa-
rated. This problem is identified as a convergence to local minima. One way to overcome
this problem is to run the algorithm with different initial partitions, but the problems of

cluster validity remain largely unresolved.

2.3.3.2 Partition Update

Partitions are updated by computing local cluster centroids (centres) and so reduce the
square error. There are two main variants to the update of partitions. The method of
McQueen [1967] updates the cluster centre immediately on assignment of each data point.
Forgy’s method [1965] updates all cluster centres after all data points have been assigned
to the clusters. The two most commonly used distance metrics are the Euclidean and the
Mahalanobis metrics. The Mahalanobis metric is more complex to use as it requires an
invertible symmetric positive definite matrix. However, the Mahalanobis metric is a more

general metric compared to the Euclidean metric.
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2.3.3.3 Cluster Adjustment

Cluster adjustment refers to the adjustment of cluster numbers after certain conditions are
met. This capability allows an algorithm to recover from poor cluster results. For example,
a cluster is split if it has too many patterns and a large spread along a feature. Two clus-
ters may merge 1f their clusters are sufficiently close. In most cases however, only ad hoc
rules can be applied because general rules cannot deal with the complexity of cluster
structures. The presence of outliers can also significantly distort the cluster structures of

KNN (except the fuzzy structures derived from PFCM or the possibilistic varieties).

2.3.3.4 Convergence

Convergence of cluster prototypes or centres, in the context of clustering, can be under-
stood in two ways. In the one case, convergence is analytically determined, such as the case
with FCM for which convergence theorems exist. In the other, convergence is coerced by
rules or algorithmic procedures such as the KNN and most partitional algorithms. At the
point of convergence, cluster prototypes may not correspond to their cluster centroids. This
occurs 1n fuzzy clustering algorithms such as the FCM at normal m values. Partitional al-
gorithms do not have automatic stopping points. The algorithm may converge in the sense
that the cluster prototypes can be confined to a small radius for larger number of iterations.
The stopping point is usually decided on the basis of negligible change in the prototype
value between successive iterations. There is no guarantee that the prototypes will con-
verge to global minima. To ensure convergence, a maximum number of iterations may be
specified, although the KNN has a reputation for fast convergence (see article [Juan and
Vidal, 1994], for a faster k centroid clustering). Partitional clustering algorithms require
the number of partitions to be given or known a priori. Consequently, cluster validity is an

important consideration for these type of algorithms.

2.3.4 Cluster Validity

Cluster validity addresses the question of cluster number optimality or how many good
clusters there are in the data. As Fig. 2.4 shows, this question is neither trivial nor simple
to answer. The plus symbols denote the 32 points of some data in 2D real space. The ellip-
tic boundary shown on Fig. 2.4 is not part of the cluster. The boundary is drawn to show

the possible cluster structure as detected by an algorithm such as the Gustafson-Kessel
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algorithm [1979]. The four different possible cluster substructures in Fig. 2.4 indicate
some practical problems in determining cluster validity. A cluster validity measure or index
provides an objective basis to make a correct selection of the cluster partitions. One simple
validity measure is to assess a change in the cluster criterion function by running the al-
gorithm for a range of cluster numbers, then selecting the cluster number that gives the best

result. This may involve some trial and error.

+
+,. 7 +
S +, +
++7 4+

Figure 2.4 Four possible ways of clustering 32 points in R’

A more formal approach is to devise a2 measure of the goodness of fit to indicate how
well a given ¢ cluster description matches the data. The classical measures of fit are the
Chi-square and the Kolmogorov-Smirnov statistics, but the problem of dimensionality

precludes their direct application, except for the simplest of cases.



Chapter 2 Methods of Pattern Recognition 33

The topic of cluster validity covers a wide field of many different methods. Bezdek
[1995b] identifies three different categories of cluster validity: (i) direct methods, (ii) indi-
rect methods and (iii) performance based. The direct methods are the (a) Hubert statistics
[Hubert, 1985], (b) Davies-Bouldin index [Davies and Bouldin, 1979], (¢) Dunn’s Com-
pact and Separated index [Dunn, 1974] and (d) Generalised Dunn’s indices [Dunn, 1976].
The indirect methods are the (a) Partition Coefficient [Bezdek, 1974; Zadeh, 1965], (b)
Partition Entropy [Shannon, 1948], (¢) Xie-Bemt and Extended Xie-Beni indices [Xie and
Beni, 1991] and (d) Fukuyama-Sugeno index. The performance based method 1s exempli-

fied by Backer and Jain’s fuzzy set decomposition measure [Backer and Jain, 1981].

Other measures of cluster validity are given in [Jain and Dubes, 1988; Kaufman and
Rousseeuw, 1990; Bezdek et al., 1980; Dubes, 1987]. Section 3.3 describes our procedure
to construct a cluster validity based on the Bayes optimum discriminant function. The fol-

lowing caveats are given to guide the sensible use of cluster validity [Bezdek, 1995b].

fo—

. Numerical representation may not mean adequate powers of discrimination.
2. Algorithms used may not extract structure from data.

3. Appropriate parameters of an algorithm may never be used.

4

. The validity indices may give an incorrect cluster interpretation.

Remarks

More details on the partitional clustering algorithms are given in: [Hartigan, 1975, Duda
and Hart, 1973; Tou and Gonzalez, 1974; Jain and Dubes, 1988; Kaufman and
Rousseeuw, 1990].
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2.4 Fuzzy Clustering Theory

Fuzzy sets [Zadeh, 1965] manipulate data and information that possess nonstatistical un-
certainty. According to Zadeh, “the fuzzy set was conceived as a result of an attempt to
come to grips with the problem of pattern recognition in the context of imprecisely defined
categories” [Bezdek, 1981, p. v]. Zadeh coined the audacious term “fuzzy” because it was
concrete, immediate and descriptive. The successful applications of fuzzy logic are sum-

marised in [Bezdek, 1995b].

This chapter introduces the theories of fuzzy clustering and examines the analytic
procedures for solving fuzzy objective functions. It begins with the first systematic exposi-
tion of the fuzzy clustering method of Ruspini in Section 2.4.2, followed by the Duda and
Hart’s Hard ¢-Means (HCM) in Section 2.4.3 and Bezdek’s Fuzzy c-Means (FCM) in
Section 2.4.4. This leads to Bezdek and Im’s Possibilistic Fuzzy ¢-Means (PFCM) algo-
rithm introduced in Section 2.4.5. Clustering properties of PFCM are discussed and com-
pared with FCM. Objective functions with different kinds of membership constraints are
presented in Sections 2.4.6 and 2.4.7. These include the vanable norms of Gustafson and
Kessel’s algorithm, and Gath and Geva's algorithm in Section 2.4.6. Next, Krishnapuram
and Keller’s Possibilistic c-Means (PCM) algorithm, and Bezdek and Im’s Enhanced Pos-
sibilistic c-Means (EPCM) algorithm are presented in Section 2.4.7. The clustering per-
formances of EPCM, PCM, PFCM and FCM are compared using three standard data sets.
Section 2.4.8 illustrates a method to solve cluster parameters from parametrized proto-
types. The cluster parameters characterises the shape and type of cluster structure devel-
oped. The chapter concludes with a brief review of the fuzzy partition space in Section

2.4.8 and the relationship between crisp and fuzzy cluster partitions.

2.4.1 Introduction

Fuzzy sets as a basis for clustering were first suggested by Bellman, Kalaba and Zadeh
[1966] from which several classification schemes were developed [Gitman and Levine,
1970]. In 1969, Ruspini presented the first systematic account of fuzzy clustering

[Ruspini, 1969]. Dunn developed the first fuzzy extension of the least squares clustering
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criterion [Dunn, 1973]. Bezdek generalised this to an infinite family of algorithms [Bezdek,
1973].

Set membership can be realised mathematically by a membership function defined
for each of the clusters as u : X — [0,1] where X = {x,x,....xy} is the data set and u(x)
gives the grade of membership of a feature vector x € X in the fuzzy set u (see Section
2.4.9 for details). The memberships (eg. u;) are suffixed by two indices; i and k refer re-

spectively to the row index (of the ith cluster) and column index (of the kth data element).

All fuzzy clustering objective functions use memberships as a weighting on the met-
ric or norm. The fuzzy clustering algorithm is characterised by a minimisation of the ob-
Jective function by a Picard iteration involving the memberships and prototypes, to gener-

ate optimal c partitions of the data in the sense of the least squared error criterion.

2.4.2 Ruspini’s Objective Function

The objective function of Ruspini [1970] contains three clustering criteria. Denoting the

objective function by Jz, the form is

2
N TN 2 )
Jr = j=1 kﬂ{[ziczlo'(“ij_“ik) }_djk} (24.1)

where o is a constant, u; and u; are memberships, and 2 <c¢ <N is fixed a priori. The
metric is denoted by di. The optimal fuzzy c-partitions of a data set X is taken to be the
local minima of Jr (global minima of prototypes are difficult to attain on account of the
complex surface described by Jg). Ruspim considered Jgz as a measure of cluster quality
based on the local density because it will be small when the terms of (2.4.1) are each small.
This occurs when close pairs of points have nearly equal membership. We will ignore the
details of the algorithm (described in [Bezdek, 1981]), except to note a few features that

have general significance for other fuzzy clustering algorithms. Specifically:

1. The stationary points of any objective function are not necessarily the local minima.

2. There is no assurance that a global optimum of an objective function gives a “good”
clustering.

3. Dufferent choices of the cluster parameters (eg. # and d) may lead to different “optimal”

partitions.
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4. A reasonable cluster structure may exist for more than one value of c.

These four points do not mean that useful cluster results are impossible to obtain. They do
however, caution against uncritical interpretation of the cluster results, and emphasise the
need for cluster validation. A practical solution is to use the algorithm which works best

for the particular data set.

Figure 2.5, adapted from [Bezdek, 1981] shows the result of applying Ruspini’s al-
gorithm for two clusters (c = 2). Point membership value is indicated next to the circled
point number. The significant point to note is that point number 8 forms a bridge between
two symmetric clusters. Only the memberships of one cluster is shown on Figure 2.5.
Memberships for the second cluster is symmetrically opposite to the first cluster. Under
conventional crisp clustering, point number 8 must belong exclusively to one or the other
cluster. However, this example shows that it is more natural to interpret point number & as
belonging equally to both clusters, hence a membership of 0.5. The two cluster prototypes
located at the wing tips of the clusters are a consequence of the clustering criterion of

(2.4.1).
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Figure 2.5 The butterfly membership assignment with Ruspini’s algo'rithm. Only the
memberships of one cluster is shown. Memberships of the second cluster 1s symmetrically
opposite.
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2.4.3 Hard c-Means (HCM)

The HCM has an objective function given by

Jn=2u 2.0 ugdy (2.4.2)
where di, = |[x, — v/ is a Euclidean distance (Appendix A).
Note that J, assesses the dissimilarity in dj, between x, and v, where v; is not necessarily in

X. Since uy = ux,) = 1 if x, belongs in ith cluster and is zero otherwise, (2.4.2) can be

expressed as
Jh=2.2

Minimising (2.4.2) with respect to v; gives the cluster centroid

2,
ey Hik Xk

Vi=EToy 244
Zk:l Uik

Ixg v, (2.4.3)

X €En;

If a scatter matrix for the ith cluster is defined as

S =2 (%, = vi )%, —vi) (2.45)
and a within cluster scatter matrix as

Sy=2.05, (2.4.6)

then if dy is defined by a Euclidean metric, it can be shown that the trace of .S, equals J, of

(2.4.2) given by

Tr(Sy) = Jy (2.4.7)
where the trace of a k& x k square matnx 4 = {a;} is defined as the sum of its diagonal ele-
ments by

Tr(A)=2." a,

From (2.4.3), J, will be small when d, 1s small 1e. when the points are close to their
cluster centre. Consequently, .J, represents the overall within-group sum of squares errors
over 7. Since (2.4.3) is a measure of the squared Euclidean error in representing x by v;, J,
1s also a measure of the local density. Hence the objective function is alternatively known
as a density functional. From (2.4.7), the trace of .Sy is proportional to the sum of vari-
ances. Therefore minimising ./, amounts to a minimisation of these variances. The preced-
ing discussion illustrates that the objective function J; has an appealing solution, from both
geometric and statistical perspective. The HCM algorithm is obtained as the approximating

minima of J, by an iterative optimisation procedure given by the following algorithm:
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The Hard c-Means (HCM) algorithm [Duda and Hart, 1973].

Step 1. Fix ¢, 2 < ¢ < N, and initialise u,.
Step 2. Calculate v; from (2.4.4).
Step 3. Update memberships

I, dy = min{d;}
Uy = 1s/5c for all i and k (2.4.8)
0, otherwise

Step 4. If |U, — U..)| <&, Stop, else go to Step 2.

Note: € is a small number to control the stopping point and ¢ is an iteration index.

Since the membership is hard (or crisp), v; approximates to a cluster centroid. The
condition of (2.4.8) is an assignment of points to the nearest cluster. If step four is replaced
with the cluster centroids in the HCM algorithm, the KNN algorithm of Section 2.3.3 is
obtained. Since the HCM algorithm is essentially a gradient descent technique, it is also

sensitive to the four problem features noted for the Ruspini’s algorithm.

2.4.4 ISODATA and Fuzzy c-Means

A more elaborate version of HCM 1s the ISODATA (acronym for lterative Self Organising
DAta Type A) algorithm by Ball and Hall [1967]. It is helpful to distinguish the
ISODATA of Ball and Hall from the ISODATA of Bezdek. Bezdek’s version is an ex-
tended form of Ball and Hall’s ISODATA, by a generalisation of the membership exponent
from m = 2 [Dunn, 1973] to m = oo [Bezdek, 1981]. '

The result of HCM is shown for one cluster memberships in Fig. 2.6. Memberships
for the second cluster is symmetrically opposite. The cluster prototypes for v, and v, are
(1.71, 3) and (6, 3) respectively. Comparing Fig. 2.5 with Fig. 2.6, 1t is evident that Rus-
piu’s fuzzy partition conveys more information than the hard partition. The low member-
ship of point number &8 signals a closer look at the data. The hard assignment of cluster
points not only distorts the symmetry of cluster structures but also removes points that

signify a problem condition, like point number 8.
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Figure 2.6 The butterfly memberships of HCM algorithm.

The generalisation of HCM objective function J, was reported by Dunn [1973]
which Bezdek subsequently extended to include a family of fuzzy clusterning algorithms
based on the least squared errors criterion [1973]. The generalisation of FCM is taken a
step further with Bezdek and Im’s PFCM to improve the definition cluster properties. Prior
to doing this, we examine the analytic structure of FCM to elucidate similarity of form.
The FCM algorithm is an iterative procedure for approximately minimising the objective

function by a Picard iteration via the memberships and prototypes.

Fuzzy c-Means [Bezdek, 1981]. Theorem 2.4.1:

Let the data set X be defined as X = {x,,Xa,...,Xy,...xy} for N items in the finite subset of R,

Let the fuzzy objective function be defined as

I UVy=20 D urdl (2.4.9)

where p = 2 (for the case of FCM) and d =||x; —v;ll4, = \/(xk —v,«)T A (x, —v,;) 1s an
inner product norm weighted with a d x d positive definite matrix 4;. Let U defines the real
memberships u; on X of x, in the ith fuzzy subset, and V denotes the c-tuples of cluster

prototypes, v;. for i =1,...c. Let the cxN matrix U = [uy] be a constrained fuzzy c-partitions

of X which satisfies three conditions:
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N c
up € [01] Vik, 0<Qup<N Vi and Duy=1 Wk (2.4.10)
k=1 i=1

Fix the fuzzifier m € (1,00) and let X have at least ¢ < N distinct points. Define for all ,
the sets

L= {ill <i<c;du=|xg —v,lly, =0}

Tk = {1,2,...,0} _Ik

then J,(U,V) may be globally minimised only if
1

Li=@=uy=——— (2.4.11)
i
I\
I, #@=u, =0Yiel, and D.u,-= (2.4.12)
iel,

N
z m

U X g
k=1

V,- = N
Dy
Ui

k=1

The proof of Theorem 2.4.1 is given in Appendix B. Convergence theorems for FCM exist
[Bezdek, 1981]. The FCM algorithm is presented below:

(2.4.13)

FCM algorithm [Bezdek. 1981].

Step 1. Fix ¢, 2 < ¢ < N. Choose any inner product norm defined by dy in (2.4.9).
Step 2. Fix m. Normally m = 2 is satisfactory. Initialise Uy (or V5).

Step 3. Calculate prototypes v; from (2.4.13) with u; from (2.4.11).

Step 4. Update u;, from (2.4.11) with v; from (2.4.13).

Step 5. If U, — U,.| <&, Stop, else go to Step 3.

Note: € is a small number to control the stopping point and ¢ is the iteration index.

There are several features of FCM to be observed. Initialisation of the memberships
can be satisfactorily accomplished with random numbers less than unity. Hall et al. [1992]
gives another method consisting of pairs of /s, offset sequentially by two positions along
each subsequent row. It is also possible to use random initial prototypes, ¥,. The occur-
rence of singularity in (2.4.11) is avoided by specifying a cluster set L. If singularity oc-

curs (dy = 0), then the membership is defined by (2.4.12). The metric d can include any
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inner product norm with a symmetric positive definite weighting matrix 4. This type of
norm is useful for detecting non-circular clusters such as the elliptic or linear cluster varie-
ties. An example of its use is given in Section 3.4.2. FCM has the interesting property
where m — 17 results in crisp memberships in which u; € {0, 1}. The crisp memberships
may also be obtained from

I dy=min{d,|

Uy = I<j<e (2.4.14a)
0 otherwise

for 1 <i<c and 1<k<N. Alternatively, crisp partitions may be obtained from fuzzy
partitions by applying the maximum membership rule, ie. selecting a point with the maxi-

mum membership from all ¢ clusters from the relation

” l u,-k = maX{uj-k}
ik = I<j<e (2.4.14b)
0 otherwise

The FCM algorithm contains a number of parameters, the more important ones be-
ing ¢ and m, denoting the number of clusters (for ¢ > 1) and the “smoothing” or
“fuzziness” factor m. There are no analytic relations to calculate m. The best guide is to
select the value of m that fits the data best. Normally, a value of two or three is satisfac-
tory. In FCM, v; is dependent on m (see Eqs. 2.4.11 and 2.4.13). FCM solutions are re-
stricted to m > 1. As m approaches infinity, the memberships in all clusters tend towards a

value of 1/c. This result is a consequence of the membership constraint of (2.4.10).

Figure 2.7 shows the FCM memberships for one fuzzy cluster of Ruspini’s butterfly
data with m = 1.25. Memberships for the second cluster are symmetnically opposite. For
this case, the partitions are considered hard, but the bridge point number & preserves the
fuzzy membership. However, decreasing m close to unity will produce the totally hard
clusters of Fig. 2.6. Figure 2.8 shows the memberships with m = 2. Note the effect of m on

the stationary points of the cluster prototypes (compare Figs. 2.7 and 2.8).
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Figure 2.7 The butterfly memberships of FCM algorithm, using m = 1.25. Cluster proto-
types are located at (1.843,3) and (6.155, 3). Only the memberships of one cluster at

(1.843,3) is shown.
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Figure 2.8 The butterfly memberships of FCM algorithm, using m = 2. Cluster prototypes
are located at (1.855, 3) and (6.145, 3). Only the memberships of one cluster at (1.855,3)

1S shown.
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2.4.5 Possibilistic Fuzzy c-Means (PFCM)

The PFCM extends FCM in two ways. Firstly, it generalises the metric dy, with an expo-

nent p. Secondly, it generalises the membership constraint with an exponent « (see Eq.
(2.4.16)).

Possibilistic Fuzzy c-Means (Bezdek and Im). Theorem 2.4.2:

For similar notations and parameters to FCM, define the objective function as

N ¢
T pa (U V)= 2D uppd}, (2.4.15)
k=1 i=1

where

i Al ~villa=(xx v Alx—v))
represents the weighted distance of a feature vector (or data point) x, from prototype v;,
with a d x d symmetric positive definite matrix 4. Let the fuzzy c-partitions of N items of
X in R satisfy the following three conditions:

N c
u, €[01] Vik O0<duy<N Vi and Dul=1 Vka (2.4.16)
k=1 i=1

Define for all £, the sets
I = {i|l<i<c;dy = |Ixx — vi| = 0}
I, ={12,..,c}-1,
then J,,., (U,V) may be globally minimised only if

! .
I, =0 > uy = ] (2.4.17)

{Z[ 42 s T

)]
I, #B=u,=0Viel, and D=1 (2.4.18)
fEI/‘
N
Zuf'i’dfzxk
v, =5 Cl<is<e (2.4.19a)
Zui,l?dif_z
k=1

Relaxing the minimisation condition for Ju,,,« with respect to v, improved computation

efficiency and convergence around centroids may be obtained from the alternative solution
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N
p-l
Zuik X
v, = 2.4.19
TN om (2.4.19b)

Equation (2.4.19b) does not involve the metric dy, hence it is algorithmically simpler and

more efficient to compute. Its structure suggests that prototype development is governed by

the fuzzy and metric exponents m and p respectively, to provide greater control over cen-

troid clustering. The metric exponent in (2.4.19b) is resticted to p > 1 so that its unit norm

lies on the upper triangle of Fig. 2.2. However in (2.4.19a), the exponent p > 0 so that its

unit norm lies within the square boundary.

Both prototype equations show no convergence problems in the normal range of the pa-

rameters. The proof of PFCM 1s given in Appendix C. Note that the forms of (2.4.17) and

(2.4.19) are similar to (2.4.11) and (2.4.13), except for the extra exponent terms, ¢ and p.

The algorithm steps involving (2.4.19a) and (2.4.19b) are slightly different. For identifica-

tion purpose, these are labelled as PFCM1 and PFCM2;

PFCMI algorithm with equation (2.4.19a), (Bezdek and Im).

Step 1. Fix ¢, 2 < ¢ < N. Choose any inner product norm defined by d in (2.4.15).

Step 2. Fix a, m and p. Normally m = 2 and p = 2 are satisfactory. Initialise U, (or V).

Step 3. Calculate mitial prototypes from (2.4.13).
Step 4. Update memberships u;, from (2.4.17).
Step 5. Update prototypes v, from (2.4.19a).
Step 6. If |U, — U,.\| < &, Stop, else go to Step 4.

PFCM?2 algonthm with equation (2.4.19b), (Bezdek and Im).

Step 1. Fix ¢, 2 < ¢ < N. Choose any inner product norm defined by d n (2.4.15).

Step 2. Fix @, m and p. Normally m = 2 and p = 2 are satisfactory. Initialise Uj (or Vo).

Step 3. Update prototypes v, from (2.4.19b) with uy from (2.4.17).
Step 4. Update memberships u;, from (2.4.17) with v; from (2.4. 19b).
Step 5. If |U, ~ U,.| < ¢, Stop, else go to Step 3.

Note: € is a small number to control the stopping point and ¢ is an iteration index.
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The parameter « is an exponent of the membership, generalised from the third
condition of (2.4.10) to the third condition of (2.4.16). It may be verified that PFCM re-

verts to FCM for parameter values of p=2 and a=1.

The substitution of &= m/2 in (2.4.17), yields an interesting result for the member-
ship function given by

1
g =————" (2.4.20)

Z[diJ "
J=1 dﬁc

Recall that FCM’s membership equation (2.4.11) is restricted to m > 1. In (2.4.20), the

range of m is extended to m > 0. Another useful result is obtained by substituting (2.4.20)
into (2.4.19). Thus unlike FCM, the special case of PFCM with « = m/2 produces proto-

types that are independent of m.

It may also be noted that the extreme values of the « parameter represent a more
general expression of memberships compared to the two cases of FCM. For example, the
crisp case of FCM as m — 17 (m = 1 is undefined), corresponds to & — m for 0 < m < oo
of PFCM. Likewise, the extremely fuzzy case of FCM for m — oo, corresponds to o=~ 0
for 0 < m < oo of PFCM. In other words, each extreme condition of FCM can be repre-
sented by a large family of memberships mvolving m and p. The implications of these pos-

sibilities are yet to be explored.

The intermediate range 0 < a < m of PFCM for 0 <m <o, give a more extensive
description of the memberships than is available from FCM. The possible PFCM member-
ship functions are depicted in Fig. 2.9(a) to 2.9(h). These distributions are obtained from
the data set of Kaufman and Rousseuw shown on Fig. 2.11. The memberships represent
cluster number / at (7.001, 2) calculated for x =7 and y = 1 to 14. The cluster centres for
the other two clusters were assumed to be (2.001, 9) for cluster 2 and (13.501, 9) for
cluster 3. In calculating the membership distribution, each x-coordinate position of the
prototype was made to deviate slightly (by 0.001) from its true position to avoid singular-
ity in the dy term. Figure 2.10(a) to 2.10(d) show the FCM’s membership functions for the

same cluster prototypes.
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A comparison of the FCM and PFCM membership distributions reveals some simi-
lanities and differences. The similarities are: (i) same y-coordinate crossover point of the
curves at y = 7.5 units, (ii) typical fuzzy profile (bell shape) and crisp profile (hat shape),
and (ii1) membership equality at parameters m =2 and a = 0.5m. The differences are: (1)
the crossover points in FCM have a fixed membership that is inversely proportional to the
number of clusters, whereas PFCM has a range of crossover points, depending on the al-

pha value, and (i1)) FCM has no equivalent functions similar to Figs. 2.9(a) and (b).

There are some interesting features in the curves of Figs. 2.9 and 2.10. The cross-
over point represents the decision boundary at which a feature vector has equal member-
ship in each of the three clusters of Fig. 2.11. This condition occurs when dy = dy. Mem-
bership at this boundary for the case of FCM is

1

g =~ (2.4.21)

and for PFCM, it 1s

]
Upp = Va (2.4.22)

where ¢ 1s the number of clusters and the subscript bp denotes a boundary point.

For the three clusters of Fig. 2.11, FCM has u,, = 0.33 (to two decimal places). In
PFCM, « (in Eq. (2.4.22)) may be adjusted so that u,, = 0.5 gives a convenient value that
conforms to the convention used to represent a decision boundary in conventional or neural

classifiers.
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Figure 2.9 PFCM membership functions for data set of Fig. 2.11. Cluster centre is at
(7.2) and memberships are calculated along x =7 fory=1toy=14.
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Figure 2.10 FCM membership functions for data set of Fig. 2.11. Cluster centre 1s at (7, 2)
and memberships are calculated along x =7 fory=1toy = 14.
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Figure 2.11 Data set from [Kaufman and Rousseeuw, 1990]. Each point is labelled by a
number. The coordinates of each point is located at the centre of the labelled circle.
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2.4.5.1 Comparing Fuzzy Clusters at Centroids

Table 2.3 compares the best centroid clustering results of PFCM1, PFCM2 and FCM, us-
ing data from Fig. 2.11. The cluster parameters of m =3.17 and a= 0.5m for PFCM2
produce a decision boundary at #,, = 0.5. Points 6 and /3 have interesting fuzzy values.
For the specified boundary membership, point 6 is seen to belong to clusters / and 3, and
point /3 to clusters / and 2. Both PFCM and FCM show point /3 with a higher member-
ship in cluster 2. These results agree with expectation. The good cluster points (shaded) of
FCM have a few memberships less than 0.9, whereas all memberships of PFCM exceed
0.9. This result indicates that PFCM identifies clusters more positively than FCM. Overall,
PFCM gives a slightly better assessment of the cluster result. Memberships of PFCM1 and
PFCM2 are almost similar. In this example, the cluster prototypes are centred at the local
cluster centroid (such prototypes are alternatively referred to as centred prototypes). Clus-
tering at the local cluster centroids is a characteristic of the clustering criterion defined by
the objective function and determined by the parameters &, m and p. Table 2.3 shows both
FCM and PFCM exhibit centroid clustering for the selected parameter values. However.

note that for p = 2 at normal values of m, FCM clusters poorly at centroids.

k Uy
PFCMI1 | PECM2 | FCM
1 = e e
2
3
4
5 & i L
6 .891 .603 442
7 11 156 047
8 673 .108 027
9 681 113 .030
10 .674 .099 027
11 .680 .104 .030
12 700 122 .040
13 .869 523 354
14 .749 .198 .076
15 .706 137 .042
16 730 170 .060
17 703 133 .041
18 238 .002 0
19 .689 =L .033
20 727 162 .057 : g
21 .687 114 033 ORG s F962 .104 .029
22 714 146 048 CO7 s 9R8 150 050

Table 2.3 Comparison of fuzzy clusters at centroids. The symbols u;, u2 and u3 represent memberships of
cluster /, 2 and 3 respectively. Parameters and prototypes associated with each algorithm are listed as
Type = (a, m, p, vi, v2, v3): PFCM1 = (7.5, 15, 1.2, (2.01, 9), (7, 2), (13.39, 9.05)), PFCM2 = (1.585, 3.17,
1.5, (2.07, 9.06), (7, 1.99) (13.51, 9.04)) and FCM = (1, 1.8, 1.2, (2 03,9.01), (7, 2), (13.39, 9.05)). True
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cluster centroids are at: vy = (2, 9), v2=(7, 2) and vy =(13.5, 9). Memberships of the three clusters are
shown shaded. The data set is from Fig. 2.11.

2.4.5.2 Comparing Cluster Width Selectivity at Centroids

Table 2.4 compares the cluster width selectivity of PFCM with FCM, at best centroids.
Cluster width selectivity refers to the ability of the algorithm to select a small core of the
cluster that is centred at the cluster prototype. In the case of FCM, the core of cluster
width is fixed (see Eq. (2.4.21)). Consequently, the dynamic range of the fuzzy member-
ships is limited by u,, = 0.33, for three clusters. To apply an alphacut (or membership
threshold) on the FCM’s memberships, one needs to know the function’s characteristics
such as Fig. 2.10(a). PFCM offers a simpler procedure for selecting the alphacut. If we
select the parameter « to correspond to a desired cluster width, then the cluster core is ex-
tracted for memberships above a threshold u,,. Table 2.4 shows that u,, > 0.05 selects a
cluster core radius of about 1.5 units of the axes scale of Fig. 2.11. This occurs for low
alpha values (a < 0.3). The boundary at u, = 0.012 is less than u,, by a factor of 4. A low
« permits setting a low u,, threshold for the extraction of the cluster core (and a lower uy,).

In the case of FCM, i1t is more difficult to establish a lower limit for u,,.

k uj 1> u3
PFCMI1 | PFCM2 | FCM PFCMI1 | PFCM2 PFCM2

1 G205 1820 0 16300 O .001 0
2 247 1186 16340 .001 0
4 kS J650 622 o | .00] .002 0
5 62 e le9 i 627 0 .001 0
6 .022 .020 373 .005 .006 .014 :
7 0 002 199 001 .002 CopEI4 FSRETE
8 0 0 179 0 0 Coaf 183
9 0 .001 178 0 .002 il 7
10 0 0 182 0 0 s
11 0 0 182 iS4 609
12 0 .001 197 SRS LS
13 014 .014 342 .008
14 .002 .003 235 .001
15 0 .001 202 .001
16 .001 .002 216 002
17 0 .001 203 Sya 0
18 0 0 .033 470 4935 0 .032
19 0 .001 .189 =l : .001 .193
20 .001 .002 220 B .001 .198
21 0 .001 191 =221 4 0 .183
22 001 002 207 Bl s .002 210

Table 2.4 Comparison of cluster width selectivity at centroids. The symbols u;, u; and u3 represent mem-
berships of cluster /, 2 and 3 respectively. Parameters and prototypes associated with each algorithm are
listed as Type =(a, m, p, v, v2, v2): PFCMI1 =(0.25, 1, 2, (2.21, 9.04), (7.01, 2.07), (13.34, 9.07)),
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PFCM2 = (025, 1, 1.7, (2.03, 9.02), (7, 1.99) (13.52, 9.15)) and FCM = (1, 4, 1.6, (2.07,9), (7, 2.02),
(13.31, 9.02)). True cluster centroids are at: vy = (2, 9), v2=(7, 2) and v3=(13.5, 9). Memberships of the
three clusters are shown shaded. The data set 1s from Fig. 2:11.

Generally, PFCM1 and PFCM2 possess higher membership resolution, hence supe-
rior cluster width selectivity than FCM. Like the case of fuzzy clusters, PFCM1 and
PFCM2 have nearly similar memberships. For the selected parameters, all algorithms show

a possibilistic membership distribution, including FCM.

2.4.5.3 Comparing Crisp Clusters

The crossover point has other interesting implications for clustering. Figure 2.9 suggests
that it 1s possible to select the cluster “bandwidth™ by adjusting m and using « to tune the
“quality factor” or selectivity. For example, if one is interested in capturing a representa-
tive portion of the fuzzy cluster data, one possible set of cluster parameters to use 1s
a=0.08, m~0.] and p~ 1. These parameters have the effect of isolating very fuzzy
points so that only representative data are contained in the cluster. This feature is only ap-
proximated in FCM by applying an alphacut to the fuzzy membership, since all points are

fully assigned in the crisp partitioning case.

Cnsp partitions of the Kaufman and Rousseeuw’s data set and Krishnapuram and
Keller’s data set are shown in Table 2.7 and 2.8 respectively. The position of each point of
Krishnapuram and Keller’s data set is given in Table 2.6. The intermediate noise points
numbered 6 and /3 (see Fig. 2.11), shown shaded in Table 2.7, are incorrectly assigned to
the class of cluster number / (with v,) for the case of FCM. PFCM gives the best cluster
interpretation by not assigning these points to any clusters. In Table 2.8, FCM forces the
noise points numbered / and 2 (see Fig. 2.12) into the number 2 cluster (with v;). PFCM
gives these points zero membership, thus correctly identifying noise points. Note that a
normal p =2 is used to calculate cluster prototypes for FCM (also recall that «=1 and
p =2 for PFCM is equivalent to Bezdek’s FCM). Consequently, the prototypes are not

accurately located at cluster centroids which is a reason for the poor cluster result.
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Figure 2.12 Krishnapuram and Keller’s data set (see Table 2.6) with noise point number /
at (100, 270) and noise point number 2 at (100, 190) [Krishnapuram and Keller, 1993].
Noise points / and 2 are denoted by the two topmost points of the figure.

Point | Coordinate | Point | Coordinate
1 60,155 8 130,150

2 140,155 9 135,150

3 50,150 10 140,150

4 55,150 11 145,150

5 60,150 12 150,150

6 65,150 13 60,145

7 70,150 14 140,145

Table 2.5 Point positions of Krishnapuram and Keller’s data set without noise [1993].

Point | Coordinate | Point | Coordinate

booiae0270 9 70,150
110 130,150
11 135,150
12 140,150
13 145,150
14 150,150
15 60,145
16 140,145

Table 2.6 Point positions of Krishnapuram and Keller’s data set with noise [1993]. Noise
points number / and 2 (see Fig. 2.12) are shown shaded.
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Point Membership Point Membership
PFCMI1 | PFCM2 | FCM PFCMI1 | PFCM2 | FCM
1 1,0,0 1,0,0 1,0,0 , 0,0,1
2 1,0,0 10,0 100 j13 0006 1006 | 93070
3 1,0,0 1,0,0 1,0,0 14 0,1,0 0,1,0 0,1,0
4 1,0,0 1,0,0 1,0,0 15 0,1,0 0,1,0 0,1,0
5 1,0,0 1,0,0 1,0,0 16 0,1,0 0,1,0 0.1,0
¢ 34 £02.0 100 17 0,1,0 0,1,0 0,1,0
7 0,0,1 0,0,1 0,0,1 18 0,1,0 0,1,0 0,1,0
8 0,0,1 0,0,1 0,0,1 19 0,1,0 0,1,0 0,1,0
9 0,0,1 0,0,1 0,0,1 20 0,1,0 0,1,0 0,1,0
10 0,0,1 0,0,1 0,0,1 21 0,1,0 0,1,0 0,1,0
11 0,0,1 0.0,1 0,0,1 22 0,1.0 0,1,0 0,1,0
Table 2.7 Crisp partitioning of Kaufman and Rousseeuw’s data set (Fig. 2.11) into three

clusters. Parameters and prototypes associated with each algorithm are listed as
Type = (a, m, p, vi, vo, v;): PEFCM1=(0.09, 0.1, 0.8, (2, 9), (7, 2), (13.44, 9.06)),
PFCM2 = (0.085, 0.1, 1.1, (2.02, 9.02), (7, 1.99), (13.5, 9)) and FCM = (1, 1.1, 2, (3.39,
9.46), (7, 2.03), (13.5, 9)). True cluster centroids are at: v, =(2, 9), v,=(7, 2) and
v3=(13.5, 9). The data set is from Fig. 2.11. Note the zero memberships of points 6 and
13 for PFCM1 and PFCM2 (shown shaded).

Point Membership Point Membership
PFCM1 | PFCM2 PFCMI | PFCM2 | FCM

01 o 1.0 1,0 1,0
_ [ 10 0,1 0,1 0.1
3 11 0,1 0,1 0,1
4 0,1 0,1 0,1 12 0,1 0,1 0,1
5 1,0 1,0 1,0 13 0,1 0,1 0,1
6 1,0 1,0 1.0 14 0.1 0,1 0,1
7 1,0 1,0 1,0 15 1,0 1,0 1,0
8 1,0 1,0 1,0 16 0,1 0,1 0,1

Table 2.8 Crisp partitioning of Krishnapuram and Keller’s data set (Fig. 2.12 and Table
2.6) into two clusters. Parameters and prototypes associated with each algornithm are listed
as Type =(a, m, p,vi,v,): PFCM1=(0.09, 0.1, 0.8, (60, 150), (140, 150)),
PFCM2 = (0.085, 0.1, 1.1, (60, 150), (140, 150)) and FCM = (1, 1.05, 2, (60, 150.01),
(131.12, 167.76)). True cluster centroids are at: v; = (60, 150), v, = (140, 150). Note the
zero memberships of points / and 2 for PFCM1 and PFCM2 (shown shaded).

PFCM offers some convenience features like improved range of m selection, proto-
type equations that are independent of m, improved cluster width selectivity, automatic
isolation of very fuzzy points, and an easier, more natural way to define boundary points.
More importantly, both PFCM and FCM link an objective function to cluster characterisa-
tion. The parameters of the objective function yield analytic solutions that can be optimised

for different conditions of the cluster structure. Thus. by imposing specific constraints on
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the metric dy, the algorithm can be made to detect ellipse shape clusters, such as the Gus-

tafson-Kessel algorithm [1979] with fuzzy covariance matrix.
2.4.6 Objective Function with Variable Norms

Gustafson and Kessel’s algorithm 1s significant in that it represents a generalisation of the
norm to detect a diversity of hyperellipsoidal cluster substructures. This is achieved by
including a variable d x d symmetric positive definite matrix norm 4; as an optimising pa-

rameter in the objective function J,,,.

2.4.6.1 Gustafson-Kessel Algorithm

The A; norm requires a volume constraint for each ith cluster to limit its growth. This con-
straint 1s expressed as |4, = p;, where |4, denotes the determinant of A4; of the ith cluster
and p; is its volume. To obtain optimised solutions for the three cluster parameters uy, v;

and A4;. we begin by defining an objective function

T UV)=20 20 uiid (2.4.23)

where

di =(xp —v) Ai(xy -v,) (2.4.24)

with identical interpretations of x, and v; to FCM. The two constraints are:

c
(i) membership: u; € [0,1,Vik 0< D uy <N,Vi and D uy =1Vk (2.4.25)
k=1 =1

(11) A; matnx: |4, = pi (2.4.26)

We may minimise J,, for each of the cluster parameters u;, v; and 4;, subject to the two
constraints, by applying the Lagrange multiplier A to the membership and y to the matrix

and setting their derivatives to zero. In other words, define
JAUV)=Ag + (2.427)
where g =Z?= up —1=0
and h = Z {\A |- p,}:
Then
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L 1
0=y =—— 4.
Py . (2.4.28)
Z[dik m=1
a4

J‘=1L djk J

N
Z m
Ui X
k=l

ay,
X:O: V’ _T— (2429)
2 uf
k=1
N
a,, m _
2= D (e =% ~v)) +r 14147 =0 (24.30)
A
T
: .. O(X AX o|A _
where in (2.4.30) the identities ( ) = XX" and % =| Al A " are used.
Solving for yyields
4, =F [ pIF]" (2.4.31)
where d is the dimensionality of the data vector and
N
Z m T
upp (X = Vi) (X = v;)
F=% (2.4.32)

N

Z m
Ui

k=1

i1s a positive definite d x d matrix. Equation (2.4.32) is called the fuzzy covariance matrix
because of the fuzzy memberships and the covariance terms in the numerator. Putting

(2.4.31) and (2.4.32) into (2.4.24), yield a metric given by
di = pl B (xp =v) B sy -v0) | (2.4.33)

In their paper, Gustafson and Kessel [1979] demonstrated the algorithm’s successful
detection of 2 clusters consisting of 20 points in the shape of a cross, intersecting at the
cluster centroids. Although Gustafson and Kessel gave no criteria for establishing the value
of p, others [Gath and Geva, 1989; Krishnapuram, 1994] have obtained satisfactory re-
sults with p, = 1. The iterative optimisation of the cluster parameters proceed along similar
steps as the FCM, and involves initial estimate of F; in (2.4.32) with update of member-

ships from (2.4.28) and the prototypes from (2.4.29).

Proceeding from statistical assumptions, Gustafson and Kessel obtained for the

maximum likelihood estimation
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D p(xpw ) — o )(xg —p) |

sil=k 2.4.34
2. p(xilw,) (2439
k

For the special case where x, is conditionally Gaussian distributed
-1 _
log p(x|w;) =~ log27 +7loglZ7 |3 (xx — 1) 2, (x, ~p,) (2.4.35)

-1, . .
where |Z; '| 1s assumed non-singular and

N
ZP(Xklwi)xk
k

W, = (2.4.36)

N
D p(xglw))
k

Comparing (2.4.36) with (2.4.29), and (2.4.34) with (2.4.32) it can be seen that

p(x|w;)=uy . This implies that the fuzzy covariance matrix is analogous to the statistical
maximum likelthood estimation of mixture densities. Consequently, the Bayes decision rule
for the assignment of x; to class w; if p(x|w;) > p(xjw,) for all 7 # k has the interpretation of
assigning x; to the ith cluster if #; > u,;. This interesting result indicates that the partition-

ing by fuzzy memberships is analogous to Bayes rule for optimal classification.

2.4.6.2 Gath-Geva Algorithm

Gath and Geva [1989] extended the Gustafson-Kessel’s algorithm to perform unsupervised
optimal clustering based on two cluster validity measures called the fuzzy hypervolume,
Fuy and the partitional density Pp. These measures partition X optimally in the sense of

the following three criteria:

1. Clear separation between clusters.
2. Minimal volume of clusters.

3. Maximal number of data points.

Gath and Geva employed a two layer clustering strategy, in which the first layer corre-
sponds to FCM. The prototypes identified by FCM is used in the second layer to obtain
maximal partitions from Fyy and Pp fuzzy measures. All the equations used are similar to
Gustafson and Kessel’s equations, except for the distance measure, reformulated as an ex-

ponential distance measure based on maximum likelihood estimation
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|F|Y? T
dy :1—’N—exp(xk—v,-) F; (xk—v,-) (2.4.37)
N et gy Hik
Note that (2.4.37) of Gath and Geva is similar to (2.4.33) of Gustafson and Kessel. except
for the exponential form of the distance measure. Equation (2.4.37) assumes m = 2 and

d = 2. The fuzzy hypervolume is defined as

C
1
Fyy =Z|F,-|2 (2.4.38)

=1

and the partitional density is calculated from

py = (2.439)
FHV
where
c N
S=2Dur Vxi € xe(xe - vE (x —v,) <] (2.4.40)
i=lk=]

In (2.4.40), x; is constrained to less than | unit distance from the hypervolume. Note that
both the Gath-Geva’s algorithm and Gustafson-Kessel’s algorithm use the same member-

ship function (2.4.28). Therefore. both may be generalised by the PFCM.

2.4.7 Possibilistic Memberships

In this section, a class of fuzzy clustering algorithm with possibilistic memberships is to be
defined by (2.4.41) and (2.4.42). This type of algorithm usually depends on a first layer

algorithm to facilitate iteratively optimised solutions for the cluster parameters u; and v;.

2.4.7.1 Possibilistic c-Means (PCM)

The possibilistic c-Means (PCM) was proposed by Krishnapuram and Keller [1993a] to
obtain clusters that correspond more closely to the ntuitive concept of fypicality or com-
patibility. PCM reformulates FCM membership as a function of the distance of a point

from its prototype. This is achieved by relaxing the membership constraint of (2.4.10) to

N
up €[01] Vik O <Zu,-k <N Vi and max{u;}>0 Vk (2.4.41)
k=1 '

The objective function satisfying this requirement is

c N c N
TaU V=22 uld2 + 3 0 > (1=1y)" (2.4.42)

i=1 k=1 i=l k=1
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where 7, is a factor of the intra-cluster distance of the ith cluster. The first term of (2.4.42)
represents the FCM objective function and therefore inherits similar FCM 'properties for
metric di. The second term 1s new and means that J,, is optimised for minima of (1 — uy),
where 7; is a positive constant of the cluster that determines the weighting of the second
term relative to the first. In other words, u;, 1s maximised to make the second term as small
as possible. Because there are no specific membership constraints to satisfy, other than

(2.4.41), the objective function may be minimised with respect to u; to give

1
Uy = ————— (2.4.43)

2
d. m-1
1 { lk]
ni

which represents possibilistic memberships in contrast to the probabilistic memberships of
(2.4.11). The point memberships of x, in (2.4.43) depend only on a single cluster, unlike
FCM’s memberships of (2.4.11.). Krishnapuram and Keller proposed two equations for

determining 7;. The first equation
N
m ;2
Z uydy
k=1
i =

- N
2
k=1

(2.4.44)

makes 7; an average of the fuzzy intra-cluster distance of the 7th cluster. This form is used
initially when the cluster prototypes are not known. If the prototypes are estimated from

FCM, a more accurate form of the equation is given by

p =t (2.4.45)

1 if uy >«
Fy = :
0 otherwise

where ¢, is the alphacut, a threshold on the membership . Practical problems with 7; are
not satisfactorily solved. The effect of 7; on clustering performance appears to be difficult
to control and good results are obtained only for low noise situations. Recognising the dif-
ficulties of estimating 7;, Krishnapuram in a later paper {1994] proposed an alternative

solution for 7; by equating (2.4.43) with

Mg = exp[-%(xk —v)E (x, —v,.)] (2.4.46)
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Note that the membership function of (2.4.46) is very similar to Gath-Geva’s metric
in (2.4.37) except for a constant term. The negative sign is present in the exponent of

(2.4.46) because membership in possibilistic functions is inversely related to the distance

measure given by (2.4.37).

2.4.7.2 Enhanced Possibilistic c-Means (EPCM)

Bezdek and Im’s Enhanced Possibilistic c-Means (EPCM) bears a close structural relation
to the PCM. We present the objective function corresponding to (2.4.46) (omitted in
[Krishnapuram and Keller, 1994]), but with a slight difference which we shall see in a

moment. Assume an objective function of the form

¢ N c N“
Im(UV) =D, D ulre ! +ZZL1-

i=lk=1 i=1k=1

m ) ]

{m——l}'k J (2.4.47)
for m > 1, and for generality assume dy = ||x, - vi|4 is a norm with a d x d positive definite
matrix 4. The second term of (2.4.47) admits a similar interpretation as in (2.4.42) since m
is a constant except without the intra-cluster scaling factor. Then u; may be a local minima
of J,, with the expression

1

- (2.4.48)
exp(dy /7;)

1 -1

It is apparent that (2.4.48) equals (2.4.46) if we include a fuzzy covariance matrix - F;

in dy and assume 7, = 1. The form of (2.4.48) has a possibilistic distribution. One of the
advantage in expressing the membership function in the form of (2.4.48) is the avoidance
of the singularity problem present in FCM. With possibilistic membership, dy = 0 results
in unit membership. The 7, term controls the cluster bandwidth. It 1s also possible to use 7
as a constant, independent of the cluster variable 7. If the clusters are known a prior, 7,
can be estimated approximately from the average of the cluster mean radius; otherwise it 1s
necessary to guess an initial value for 7. The prototype solution corresponding to local

minima of J,, 1s given by

N
Z m

Upp X g
k=1

- N
Z m
Uiy,

k=1

v (2.4.49)

i

which is identical to FCM after replacing the fuzzifier exponent (m — 1) with m. The ex-

pression for the intra-cluster distance is given by
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N
2. d
7, ==L (2.4.50)

2 Fy

k=1

1 if wy>«a

Fy = o
0 otherwise

2.4.7.3 Comparing FCM, PCM and EPCM Clustering Performance

One misconception of possibilistic clustering (see [Krishnapuam, 1994]) is the attribution
of centroid clustering tendency from a possibilistic distribution. As will be demonstrate
shortly, this property is a function of the exponent parameters of the clustering criterion,
not 1its possibilistic distribution. Undoubtedly. one cogent reason for this view is because

the particular choice of p = 2 does not yield good prototypes for the FCM algorithm.

Table 2.9 shows that there exist values of m and p in (2.4.19) which produce cen-
troid clustering (prototypes shown shaded) from both FCM and PFCM, for the data sets of
Kaufman and Rousseeuw (Fig. 2.11). and Knshnapuram and Keller (Fig. 2.12). Under a
normal value of p =2, FCM does not cluster well to centroid. However. a smaller p =1.2
givesgood prototypes at centroids. The table shows that PCM clusters poorly at the rec-
ommended values of @, (0.1 < a, <0.5. from [Knishnapuram and Keller, 1993]). On the
data sets of Figs. 2.11 and 2.12, PCM gives a less satisfactory result compared to FCM at
normal cluster parameter settings (m=p = 2). This is attributed to the effect of ¢ on the
points in V,. In other words, a centred prototype is obtained from good points in NV, such
that @ > Uppise (1noise 1S @ NOISE point, eg. point 6 or /3 in Fig. 2.11). All three algonthms

clustered at local centroids for the noise free data of Table 2.5.

Tables 2.10 and 2.11 show the cluster prototype results using the recommended pro-
cedure suggested in [Krishnapuram and Keller, 1993]. For both sets of data. especially that
of Kaufman and Rousseeuw’s data set, PCM showed a high degree of sensitivity to the
initial FCM membership values used to the estimate 7;. In the case of Krishnapuram and
Keller’s well-separated and compact cluster data (with noise) of Fig. 2.12. the procedure
yielded accurately centred prototypes only for ¢, 2 0.4. as indicated in Table 2.11. For the

less compact three cluster data of Kaufman and Rousseeuw (Fig. 2. 11). PCM's clustering
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performance deteriorated sigmficantly, finding good cluster prototypes only at «, = 0.3, as

shown in Table 2.10. This is due to PCM’s sensitivity to alphacut .

Algorithm

Parameters

Ul

Prototypes

Data

FCM

m=2, p=2

m=1.38, p=1.2

m=2, p=2

m=2, p=1

259910

128

1331, 9.09

2.03,9.01
T2

13.39. 9.05

KR

59.98, 150 .

KK (no noise)

14002, 150°

0,150
140,150

KK (with noise)

PFCM1

a=1.5, m=15, p=12

=1, m=2, p=2

o=1, m=2, p=2

o=1, m=2, p=2

2019

13.39.9.05

KR

59.98,150
140,150

KK (no noise)

62.78,155.48
137.23.155 48

.6:-(_);:150

140.150

KK (with noise)

PFCM2

m=0.1, p=1.1

=1, m=2, p=2

o=1, m=2, p=2

=075, m=.1, p=1.1

2O
90
G

KR

3998150 -
140.02.1350

.| KK (no noise)

62.78.155.48
137.23,155 .48

5998150
140.02,150

KK (with noise)

PCM

a=l, m=2

10.78
3.59
14.73

2.1583.91

1208

KR

m=2 (fixed 1)

100

6007,150 .
1139.93,150

KK (no noise)

a=0.2, m=2

1.96E+3
I 96E+3

67.44,151.3
132 564513

KK (with noise)

Table 2.9 Summary of clustering characteristics. The true centroids of clusters are at
(2,9), (7,2) and (13.5,9) for Fig. 2.11 (Kaufman and Rousseeuw’s data set), and
(60, 150) and (140, 150) for Fig. 2.12 (Krishnapuram and Keller's data set). Symbols
KR = Kaufman and Rousseeuw, and KK = Krishnapuram and Keller. Prototypes centred
at centroids are shown shaded.
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Method fo2 7; (at 25 iterations) Prototypes

1. FCM (1-8 iter) 0.1 |10.78,16.06,14.73 (7.09,3.91),(7.09,3.99),(7.16,4.50)
2. Estimate #; 02 |10.78,3.59,14.73 (2.15,8.91),(7,2.03),(12.9,8.7)

at 8th iteration

3. PCM (9-25 iter) 0.3 |10.78,3.59,10.52 (2.15,8.91),(7,2.03).(13.4,8.7)

4. Re-estimate 7, 04 |8233.59,1.63 (2.02,8.99),(7,2.03),(13.4,8.44)

at 25th iteration

5.PCM (26-401ter) | 0.5 | 0.985,1.35,1.63 (2.01,8.99),(7,2.03),(13.42 8 .36)

Table 2.10 PCM clustering result for Kaufman and Rousseeuw’s data set (Fig. 2.11).
True centroids are located at (2, 9), (7, 2) and (13.5, 9). Cluster parameter m = 2.

Method o n; (at 25 iterations) Prototypes
1. FCM (1-8 iter) 0.1 347E3,3 47E3 (81.7,152.98),(118.3,152.98)
2. Estimate 7; 0.2 2.7E3.2.7E3 (73.08,152.08),(126.92,152.08)
at 8th iteration
3. PCM (9-25 iter) 0.3 1.17E3,1.17E3 (63.18,150.59),(136.82,10.59)
4. Re-estimate 7, 04 407.18,407.18 (60.6,150.11),(139.4,150.11)
at 25th 1teration
5. PCM (26-40 iter) | 0.5 20,99.93 (60.01,150),(139.91,150)

0.6 20,20 (60.01,150),(139.99,150)

0.7 20,20 (60.01,150),(139.99,150)

0.9 20,20 (60,140),(140,150)

Table 2.11 PCM clustering result for Krishnapuram and Keller’s data set with noise (Fig.
2.12). True centroids are located at (60, 150) and (140, 150). Cluster parameter m = 2.

A practical problem with Krishnapuram and Keller’s procedure is that it is difficult
to use since PCM’s 7; is quite sensitive to FCM memberships. Perhaps this is less of a
problem with denser cluster points and a larger number of points in the data set. We inves-
tigated combinations of high and low m on both data sets, for both PCM and FCM algo-
rithms, but none seemed to produce acceptable and consistent results over the whole or
partial range of «,. Consequently, Bezdek and Im’s EPCM algorithm was developed to
overcome this problem. Table 2.12 and 2.13 show that good cluster prototype results were

obtained from EPCM over a wide range of a.




Chapter 2 Methods of Pattern Recognition 63

Method fo n; (at 8 iterations) Prototypes
1. FCM (1-8 iter) 0.1 245242275 (2.07,8.96),(7,2.05),(13.4,8.94)
2. Estimate 7, 0.2 245,151,275 (2.07,8.96),(7,2.01),(13.4,8.94)
at 8th iteration
3. EPCM (9-33iter) | 0.3 245,151,227 (2.07,8.96),(7,2.01),(13.46,8.99)
04 2.45,1.18,1.39 (2.07,8.96),(7,2),(13.5,9.08)
0.5 2.13,1.18,1.39 (2.03,8.98),(7,2),(13.5,9.08
06-09 |2.13,1.18,1.39 (2,9),(7,2),(13.5,9.08)

Table 2.12 EPCM clustering result for Kaufman and Rousseeuw’s data set (Fig. 2.11).
True centroids are located at (2, 9), (7, 2) and (13.5, 9). Cluster parameters are m = 2,
p=2.6 for FCM and m = 2 for EPCM.

Method a, 7; (at 8 iterations) | Prototypes
1. FCM (1-8 iter) 0.1to |5.71,5.71 (60,150),(140,150)
2. Estimate 7, 0.9

at 8th iteration
3. EPCM (9-33iter)

Table 2.13 EPCM clustering result for Krishnapuram and Keller’s data set with noise
(Fig. 2.12). True centroids are located at (60, 150) and (140, 150). Cluster parameters are
m=1.3and p =2 for FCM and m = 5 for EPCM.

The EPCM algorithm yielded satisfactory cluster prototypes over the entire range of
0.1 < o< 0.9. This result requires a judicious choice of the nght combinations of cluster
parameters m and p for FCM and m for EPCM. Two variations on the cluster parameters
give an acceptable result: (i) normal m for both FCM and EPCM, and high p for FCM
(Table 2.12) and (ii) normal p with low m for FCM and high m for EPCM (Table 2.13).
Other combinations are possible, but have not been investigated. In general, a satisfactory
procedure is to proceed by trial an error until a consistent cluster result is obtained, typi-
cally by varying a single cluster parameter at a time. In this case, it is easier to work with
initial crisp partitions from FCM (1.1 <m < 1.5) and to vary m in EPCM. We have only
considered EPCM in conjunction with FCM because of the popularity of FCM. The pos-
sibility of using PFCM is good and should improve the cluster result.

With regard to the relationship of fuzzy algorithms to noise, it cannot be asserted
that any of the PCM, EPCM or PFCM has an advantage over FCM, for two reasons. A
possibilistic function is not a sufficient criterion for classification purposes since neigh-
bouring clusters are also significant. Moreover, a possibilistic function has no ntrinsic at-
tribute that makes it less sensitive to noise compared to FCM. According to the results of

the Tables 2.9 and 2.10, all three algorithms suffer from unsatisfactory cluster prototypes,
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and for the reason given. Noise insensitivity 1s to a certain degree, obtained from the statis-
tical process of averaging and assisted by the choice of the error criterion. We have dem-
onstrated in Table 2.9 that suitable values of m and p produce centred prototypes from
FCM. Possibilistic algorithms like PCM, EPCM and PFCM on the one hand, and FCM
algorithm and its derivatives on the other, are best considered to be alternative methods of
clustering. The good clustering results from PFCM2 and the similarity of clustering per-
formance to PFCM 1 suggest some freedom in applying the optimising criterion to solve for

prototypes v;. As noted previously, this produces a more efficient algorithm.

For the development of our experimental algorithms discussed in Section 3, we will
use the EPCM membership equation, for the reasons of clustering effectiveness and effi-

ciency (other FCM equations are not excluded).

2.4.8 Parametrized Prototypes

In theory, the distance measure of the fuzzy covariance matrix of Gustafson-Kessel
(2.4.33) and of the Gath-Geva (2.4.37), or the Possibilistic variant of the Gustafson-
Kessel’s memberships (2.4.46) will detect a variety of elliptic cluster structures. This mode
of fuzzy clustering performs an image processing operation called segmentation. The same
result can of course be achieved by other methods such as the Generalised Hough Trans-
form. However, the fuzzy approach solves the segmentation problem more efficiently and
elegantly. More signmificantly, the fuzzy objective function approach provides a systematic
procedure to optimise solutions for cluster parameters, in the sense of minimising the clus-

tering criteria.

In this section, we will examine more elaborate fuzzy methods to parametrize the
prototypes, ie. defining the prototype parameters to enable sophisticated clustering. We
begin with the Man and Gath’s ring shape detection fuzzy clustering algorithm [1994] and
conclude with an extension of Gath and Hoory’s algorithm to detect elliptic outlines
[1995]. In both cases, we present our alternative solutions to demonstrate the procedure for

solving this class of clustering problems.

2.4.8.1 Fuzzy K-Rings [Man and Gath, 1994]

For the ring parameters represented in Fig. 2.13, let the objective function be
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N ¢
) |
Im= 2.2 uf Dy (2.4.51)
k=1i=1 '

The distance measure is defined as

2 T
Di =(x,=V;) (x4 =V)) (2.4.52)
and
_xl,k}
Xp= 2453
%, ( )
v —Vl,i +¥.cos 6
f—_vw frsin 6, (2.4.54)
where

v; = [vis, voul” and ||| = #;

Figure 2.13 A schematic of ring cluster parameters. The cluster centre is at v;, and the
cluster radius is »;. Horizontal and vertical components of #; are r; cos & and r, sin &, re-
spectively.

The circle centre point i1s denoted by v;. The components of data point x, are x,, and
X2 The cluster parameters v;, r; and 6, are defined in Fig. 2.13. The parametrized proto-
type equation (2.4.54) includes two cluster parameters r; and v; for optimisation. Repre-
senting the cluster prototypes in this way means that when d, = 0, the condition for local
minima of J, is satisfied. The optimised solutions for u, v; and r; may be found by mini-
mising .J,, of (2.4.51) with respect to u;, v; and r; respectively. Since u; of the objective
function is identical to FCM, the optimised solution for #; will be identical to FCM. How-
ever, the additional parameters in (2.4.54) are expected to produce a new solution which

resembles FCM. Minimising .J,, with respect to v, gives
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N T N

a]m mﬁ(x —V,-) (X.‘“V,-) m

= Ll = ) i (x, V)= 0 (2.4.55)
k=1 i k=1

Substituting (2.4.53) and (2.4.54) mnto (2.4.55) yield the prototype solutions

% ml:xhk —r cos 6 |
Ui J
rvl i .' -1

, pa Xy g —# Sin 6,
\ ={v J= (2.4.56)
2,i

N
m
Z Uy
k=1

From (2.4.52)
Dy =llx = Vill=ll(x =vi)—r)ll=ldy -l

Minmmising J,, of (2.4.51) with respect to r; results in
N
2 il = v,
_ k=l

r, =" (2.4.57)

N

Z m
Uk

k=1

The form of (2.4.56) resembles the FCM solution, translated by a distance corre-
sponding to the components of r;. The algorithm based on these equations is called the
Fuzzy K-Rings (FKR) by their inventors. Since the Man-Gath algonthm has almost the
same basic equations as the FCM, except for two additional parameters for the prototypes,

it may be iteratively optimised like the FCM algornthm.

2.4.8.2 Fuzzy K-Ellipse [Gath and Hoory, 1995]

An algorithm that detects elliptic cluster outlines is called by their inventors, the Fuzzy K-
Ellipse (FKE). Like the FKR, the FKE is based on the optimisation of an objective func-
tion in which the set of elliptic prototypes is parametrized for optimisation. As shown in
Fig. 2.14, each ellipse is uniquely defined by a radius 7; = 2a; and two foci. The five pa-

_ : : : 1 2
rameters of the ellipse are represented by the two dimensional foci vectors vE ) and vf )

>

and the radius #;. Note the superscript in v; is only a label, not a mathematical operator.

The two foci are derived from the centre v;, the focus length £ and the tilt angle 6.
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Figure 2.14 A schematic of ellipse cluster parameters. The two foci are located at vfl) and
2 . . o .
vE ) and v, is the centre of the ellipse. The semi-major and semi-minor axes are represented

by a; and b, respectively. 6 is the tilt angle.

For the ellipse centred at v,. let

)

=l L (2.4.58)
1OF — f;sin G,
2
() _ Vf,i) + ficos 6 (2.4.59)
' vg’z,-) + f;sin 6,

where

f=al-p? (2.4.60)

for a; > b; and q; is the semi-major axis. Define

Dy =\dy’ +di — 7] 2.4.61)
where

dy =l|x; —vi"| (2.4.62)

dy Hlx, - v (2.4.63)

Note that (2.4.61) is the geometric definition of an ellipse. Define the objective function as

N ¢

T VO y® Ry=2> D} (2.4.64)
k=1i=1

where U represents the ¢ x N membership matrix, ¥ is the c-tuples of prototypes and R the
c-tuples of corresponding radii. Minimising J,, with respect to u; gives the same result as

FCM’s membership (2.4.11), with the metric Dy. Minimising J,, with respect to 7; gives
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a'=—2Zu,L(d‘” di=r)=0
which yields the solution

Zu,k(d‘“ d?

N
g
Ui
k=1

r = (2.4.65)

Minimising J,, with respect to v Yand v( ) by direct differentiation involves lengthy deri-
vations. However, a simpler way to solve it is given by the solutions of the Man-Gath’s
algorithm. In the Man-Gath’s algorithm, we noticed that (2.4.53) and (2.4.54) produced a
solution given by (2.4.56). Since the form of the equations are identical in both cases, we

may deduce a solution by deriving the equivalent expressions to (2.4.53) and (2.4.54). Let

I—xl,k —l
X =
X2,k
From the geometric property of an ellipse,
xe = viVlilixe = vi?ll=2a; = 1 (2.4.66)

Solutions exist when x, = V( ) and when x, = V( ) . Considering the first case, this occurs

at
) ()]
v _ viiHIxg = vi ‘llcos 6, (2.4.67)
i ¢)) My .- 0
V21+”xk Vi ”Sln i
where
v() |
MONNRSH (2.4.68)
i v(2)
2,i
@) _ "52)
H
" ", (2.4.69)
21

Replacing the terms in (2.4.66) with (2.4.62) and (2.4.63), and substituting the result mn
(2.4.67) gives

1 )
v _ \ivfl)"—(ri'dik )0059:}

i

] (2.4.70)
Vi) +(r, -d$)sin 6,

By a similar reasoning, we obtain for the second case

V(z) {vl(,z)"'(r d(l))COS 91:1 (2471)

Vo i +(r - d(l))sin o,
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Comparing (2.4.70) and (2.4.71) with (2.4.56), we deduce the prototype solutions

A m| X1,k _(rl —dsz))COSHi
Zuik ’

(2)y -
Xk —(r,=dy " )sin 6,

(n _ k=1
Vi = N (2.4.72)
2
i
k=1
N ]
Zum|:xl,k -(r _di(k))cosei
ik Dy .
2y k=t [ Yo = —d)sin g,
Vi = (2.4.73)

N

Z m
Uy

k=1

forall7and 1 <i<c. To solve for the cluster parameters a,. b; and &, first diagonalise the

fuzzy covariance positive definite 2 x 2 matrix of the ith cluster given by

N
Zuﬁé(xk - v, )(xy —vi)T
F, = ~ (2.4.74)

Diagonalising F; gives
E FE =D,
which leads to

F =EDE' (2.4.75)
whereE,—T =E; 'is an orthogonal eigenvector matrix and D; 1s a diagonal eigenvalue ma-
trix. These matrices of the ith cluster have the cluster parameters

5 cos@, —sinb, ' (2.4.76)
'“Isin6, cosb, o

2
D, {1/(‘)"' 1/(;2J (2.4.77)

where 6 is the tilt angle of the ellipse, and a; and b; are the semi-major and semi-minor axis
of the ellipse depicted in Fig. 2.14. The column vectors of E; are the eigenvectors of F; and
the diagonal elements of D; are the eigenvalues of F;. The eigenvalues of F; are also the

coefficients of the principal components of the transformed ellipse, rotated by & and cen-

tred at v,

The FKE algorithm [Gath and Hoory. 1995].

Step 1. Run the FKR with two clusters, to provide initial estimates for the 2 foct.
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Step 2. Fix ¢, the number of clusters.
Step 3. Set initial Uy and foci matrices " and /®.
(a) For exocentric case, start from any partition and run FKR for about 10 iterations.

(b) For concentric case, fix the cluster centres such that they are distributed in the

vicinity of the centre.
(c) Run the FKR for 10 iterations.
(d) Calculate the ¢ fuzzy covariances from (2.4.74), their eigenvectors and eigenvalues.

(e) Split each cluster centre into two foci using (2.4.76), (2.4.77), (2.4.58) and (2.4.59).

For each iteration,

Step 4. Update the radii », from (2.4.65), fori=1,...c.

Step 5. Update the foci v\"and v\* from (2.4.72) and (2.4.73).
Step 6. Update memberships u; from (2.4.11) with metric Dy.
Step 7. If |U, — U,.\| < &, Stop, else go to Step 4.

Note: € 1s a small value to control the stopping point and ¢ is an iteration index.

2.4.9 Fuzzy Partition Space

This section ties together some observations on fuzzy partitions and relationships between
fuzzy and cnisp clustering. Conventional clustering methods assume an object belongs
uniquely to a single class. In practice, this is quite an unrealistic class assignment nor does
it best represent the status of the data. The concept of fuzzy subsets offers a more general

classification, one that can be tailored to the nature of the data.

Now we review the fuzzy partition space mentioned earlier more formally. Let ¢ be
an integer in the range of 1 < ¢ <N (¢ = N is a trivial partition and ¢ = | is an mvalid case)
and let X = {x,,x,,...,xy} denote a set of N discrete unlabelled feature vectors in real d fea-
ture space R’ where d is the dimensionality of the feature vector. Given X, we say that ¢
fuzzy subsets {u; :X — [0,1]} are a fuzzy c-partition of X for the case where the ¢V values
of {uy = ui(xy), 1 <k <N, 1<i<c} satisfy the following three conditions:

N c
e €[01] Vik, 0<dup<N Vi and Qup=1 Vk (2.4.78)
k=1 i=1
where u; is the membership of x, in the ith partitioned fuzzy subset (cluster). Each set of

¢ x N values of (2.4.78) can be organised as a real valued ¢ x N matrix U = [uy]. The set
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of all such matrices is the non-degenerate fuzzy c-partitions (ie. no identical zeros in any
row or column of U) of X

M= {Uin R" | uy satisfying condition (2.4.78), for all i and k)}
In the crisp clustering case (ie. when m — 17, for FCM, or a — m, for PFCM), all the u;
are either 1 or 0, giving a subset of hard c-partitions of X-

Mo ={Um Mpy|usx=0o0r 1, forall i and k)}
It is seen that M,y is a special case of My but not vice versa. My is a more realistic
physical model than M.y because My, provides a richer means for manipulating data that
have ambiguous structures than does M.y. Mathematically My, which is the convex hull
of M., provides a more tractable and useable set than M.y. It is helpful to be reminded of
Bezdek’s emphasis that the entries of the fuzzy matrix U are not probabilities, but simi-
larities of object vectors to class paradigms. Furthermore, there are statistical clustering
algorithms that produce solutions in My [Duda and Hart, 1973] and fuzzy algorithms that
produce analogous statistical solutions [Gustafson and Kessel, 1979]. Finally. it is possible
to relax the membership constraint of (2.4.10) so that the sum of the memberships is not
required to be unuty (as in (2.4.16) and (2.4.41)). We have seen examples of this with the
possibilistic vanety of algornthms in Section 2.4 7. The relaxation of the membership con-
straint, according to Bezdek [Bezdek and Pal, 1992, p.15] “is a natural and physically ap-

pealing extension of My to an even larger solution space for clustering™.

Remarks

The procedure for the Gath-Hoory’s algorithm 1s representative of the latest generation of
fuzzy clustering algorithms. It is presented to illustrate some of the “mechanics™ of using a
fuzzy clustering algorithm. Unfortunately, not many fuzzy clustering algonthms are
straight forward to use, the only exception being FCM. The number of cluster parameters
to be found can have a significant impact on the complexity of the algorithm and the com-
putation efforts. Moreover, having obtained the clusters additional processing is often nec-
essary to establish cluster validity. These reasons justify a need to develop simpler forms
of the fuzzy algorithm. The investigation of alternative solutions with the CPCM based
algorithms in following chapters of this thesis, represents an attempt to overcome some of
these problems. This approach does not require a complete abandonment of their fuzzy
analytical counterparts, but allows useful attributes to be adapted within the CPCM

framework, to operate in a manner that is almost analogous to fuzzy clustering algorithms.
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Excellent seminal papers on fuzzy models for pattern recognition are collected n a
comprehensive volume, edited by Bezdek and Pal [1992]. The following references provide
a helpful complement to this topic [Kandel, 1982: Kosko, 1992; Pal, 1986]. Exceptionally
informative and well illustrated guide to the subject of fuzzy clustering are the classic tu-
tonals given by Bezdek in Australia [Bezdek, 1995a and 1995b]. For an interesting per-

sonal view, by an authontative advocate and practitioner of fuzzy thinking, see [Kosko,

1993].

Up to date fuzzy clustering and pattern recognition topics are to be found in the following

conference proceedings:

» IEEE International Conference on Neural Networks.

» IEEE International Conference on Neural Networks and Signal Processing.

e [EEE International Conference on Acoustics, Speech and Signal Processing.

e [EEE International Conference on Fuzzy Systems.

e [EEE Region Ten Conference on Digital Signal Processing Applications.

e Australia New Zealand Intelligent Information Processing Conference.

o Conference on Digital Image Computing: Techniques and Applications (International
Association for Pattern Recognition Inc. and Australian Pattern Recognition Society).

e Intemnational Conference on Control, Automation, Robotics and Vision (Nanyang
Technological University, Singapore).

e JASTED International Conference on Signal and Image Processing.

The following are journal publications:

o IEEE Transactions on Pattern Analysis and Machine Intelligence.
e [EEE Transactions on Fuzzy Systems.

o [EEE Transactions on Systems, Man and Cybernetics.

o Australian Journal of Intelligent Information Processing Systems.
e Pattern Recognition Letters.

e Computer Vision Graphics Image Processing.

e Graphical Models and Image processing.

o Electronics Letters.
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2.5 Neural Network Theory

DARPA defines a neural network as “a system composed of many simple processing ele-
ments, operating in parallel, whose function is determined by network structure, connection
strengths, and the processing performed at computing elements or nodes” [DARPA, 1988,
p.60]. To this, may be added Caudill and Butler’s definition [1992a] that a neural network
1s an information processing system which 1s non-algorithmic and non-digital. In current
literature, there are diverse terminologies for the neural network and its components. Part
of the problem lies with the close relationship to neuroscience, from which neural network
draws its inspiration and paradigm. To merely adopt vocabularies common to neuroscience
seems to exhibit a careless discrimination of the vast scale of qualitative difference between
a neural network and a biological neural network. For this reason, in the works of Bezdek
[Bezdek and Pal, 1992], Lippmann [1987], Pao [1987], Simpson [1990] and many other
proponents of neural networks, we find “neurons” is labelled “computational units” or
“processing elements”, and “neural networks” is qualified with terms like “artificial” or
“computational”. In this thesis, a neural network will mean an artificial network such as a

computational neural network.

Neural networks are popularly believed to have certain advantages over low level

pattern recognition techniques, particularly in the following areas:

1. High processing speed.

Able to adapt to new information.

Tolerant to faults, missing information and noisy data.

Robust to system failure and degrades gracefully.

Able to generalise new patterns, where similar inputs produce similar outputs.

Classifies optimally.

N RN

Extracts model from data.

These advantages should not be treated with uncritical acceptance. Neural networks
are not yet capable of modelling complex brain activities such as cognition, reasoning,
memory, perception and thought. It is not even clear whether this low level of abstraction is

an adequate model of the biological counterpart. A more practical problem pertaining to
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of the multilayer perceptron neural network encouraged the development of other networks
and established the multilayer perceptron as one of the popular models today. This neural
network is known by alternative names such as the feed forward backpropagation or the

backpropagation.

The architecture of a neural network typically consists of weighted connections of

processing elements systematically linked together as shown in Fig. 2.15.
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Figure 2.15 A typical architecture of a neural network. The number of connections and
processing units, the physical layout of connections and the number of layers vary accord-
ing to the specific neural network model. Arrow heads indicate the direction of signal flow.
Circles represent the processing units. Each directed line 1s associated with a weight, ex-
cept at the input layer.

Each processing element or unit shown in Fig. 2.15 performs three functions. In the first

step, input to each unit consists of the weighted sum of the incoming signals given by
n
J=1

where /; is the net weighted input received by the processing unit 7 from a total of 7 units.
The weight wy; is the weight associated with the incoming x; signal from the jth unit to the

ith unit. In the second step, the unit receiving the I; input converts the signal to an output

given by
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neural network is that the “learning” process 1s not transparent. Typically. 1t is hidden in
the weight adjustments, so that the final result of training requires an act of faith to believe
it is “good” enough for testing on new data. In most cases it is but, as any experimenter
knows, an exception can sometimes be found. It is well known that the close interconnec-
tion of nodes and weights can cause “cross-talk” or interference between old and new pat-
terns [Kosko, 1992]. In Chapter 8, we will demonstrate an example of learning anomalies
due to cross-talk and see how a fuzzification of training data can provide dramatically im-
proved generalisation. It is therefore prudent to recognise that a neural network has certain
ntrinsic limitations, the most significant of which is that there is no guarantee of error-free
results, despite impressive theoretical claims of near Bayesian classification performance.
Moreover, unlike a clustering algorithm, where it is possible to fix systemic errors by tun-
ing a procedure or two, errors in the neural network cannot be so easily fixed. This is be-
cause the problem, like network learning itself, is distributed across the network. The mes-
sage from this is that there is no substitute for human responsibility to validate the results
of a neural network. We begin this section with a brief history and review of the structure
of neural networks in Section 2.5.1. Next we examine the two main tvpes of the fuzzy neu-
ral network designs for pattern recognition. by model embedment in Section 2.5.2 and by

model mapping in Section 2.5.3.

2.5.1 Introduction

Neural networks 1s believed to onginate from the work of McCulloch and Pits [1943].
They proposed the first model of processing units in the form of binary threshold switches
and stochastic algorithms. The work by Hebb [1949] attempted to capture the concept of
learning by reinforcement. In the mid-1950s and early 1960s, a class of learning machines
emerged from Rosenblatt [1959. 1962], called Perceptrons. Considerable interest in the
perceptrons was aroused by the mathematical proofs demonstrating convergence of lin-
early separable data to a solution 1n a finite number of steps. At the time however, several
inadequacies soon became apparent. The basic perceptron was inadequate for most pattern
recognition tasks of practical significance and lacked an effective training algorithm. A
discouraging analysis by Minsky and Papert [1969] on the limitation of the perceptron sti-
fled funds and research into neural networks until the the mid-1980s. Thereafter, a resur-
gence in neural network research followed the development of a new training algorithm

called the “‘generalised delta rule for learning by backpropagation”. The successful training
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of the multilayer perceptron neural network encouraged the development of other networks
and established the multilayer perceptron as one of the popular models today. This neural
network is known by alternative names such as the feed forward backpropagation or the

backpropagation.

The architecture of a neural network typically consists of weighted connections of

processing elements systematically linked together as shown in Fig. 2.15.
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Figure 2.15 A typical architecture of a neural network. The number of connections and
processing units, the physical layout of connections and the number of layers vary accord-
ing to the specific neural network model. Arrow heads indicate the direction of signal flow.
Circles represent the processing units. Each directed line ‘is associated with a weight, ex-
cept at the input layer.

Each processing element or unit shown in Fig. 2.15 performs three functions. In the first

step, input to each unit consists of the weighted sum of the incoming signals given by
n
I,' = z Wij
j=1

where J; is the net weighted input received by the processing unit i from a total of 7 units.
The weight w;; is the weight associated with the incoming x; signal from the jth unit to the

ith unit. In the second step, the unit receiving the J; input converts the signal to an output

given by
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1

l+e

J)=

-/

where f{]) is represented by a sigmoid or S-shaped function. Other nonlinear functions can
also be used, provided they are monotonically increasing and bounded with lower and up-

per limits. The third step performed by the processing unit is to convert the output signal to

an activation level given by

{f(l) it f()>T
Yi=

0 otherwise

where T 1s a threshold value.

During tramning, the input signals are transferred to the output nodes via weighted
connections. The weights modify the input signals to correspond to the desired output re-
sponse. Learning is achieved by modifying the weights and is an internal procedure.
Training 1s a procedure by which the neural network learns and is an external process.

There are three basic ways of training:

1. In supervised training, the neural network is provided with input stimulus patterns for
comparing with desired output patterns. A learning law (refer Appendix D for details)
1s applied to compute the error between the desired and actual pattern and to modify the
welghts. For example, the negative gradient descent is one such rule.

2. Graded or reinforcement training provides the desired output in terms of graded levels,
in contrast to the continuous levels.

3. Unsupervised training or self-organisation presents a neural network with only the input

data, from which it produces an output, typically according to clustering principles.

Assuming distinct output classes, a trained network will produce a high output cor-
responding to the most likely class, while other outputs will be low. A taxonomy of six im-
portant neural networks identified by Lippman [1987] for classification of static patterns

(in contrast to time dependent patterns) is shown in Fig. 2.16.
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Figure 2.16 A taxonomy of six neural classifiers. Adapted from Lippman [1987].

Current research has expanded this classification of networks to include, among the
more popular variety, the following: Radial Basis Function Network (RBF) [Powell,
1985], RBF with improved learning [Moody and Darken, 1989], extensions of RBF [Lee
and Kil, 1991; Musavi et al., 1992], the Probabilistic Neural Network [Sprecht, 1990a and
1990b], Leaming Vector Quantization (LVQ) [Kohonen, 1988, includes LVQ and LVQ2]
and more advanced Adaptive Resonance Theory (ART) 2 and ART 3. The ART 1 intro-
duced in 1986 by Carpenter and Grossberg [Pao, 1989] can only process binary inputs.
The ART 2 introduced in 1987 processed gray scale input data. This was followed by the
more advanced and complex ART 3 in 1989 that offers more stability in the processing of
real input data patterns [Grossberg, 1988 and 1989]. Note that each of the networks has

analogous statistical classifier or clustering model.

The classifiers of Fig. 2.16 are used for three diﬂ'efent tasks: (1) as a conventional
classifier (multilayer perceptron), (ii) as a content addressable or associative memory
(Hopfield net) and (iii) as a vector quantiser or clustering algorithm (Kohonen self-
organising). A Hopfield net [Hopfield, 1982; Hopfield and Tank, 1985a and 1985b] is
normally used with binary inputs to solve optimisation problems or as a content address-
able memory. As an associative memory network, patterns are stored by associating them
with other patterns. Autoassociative memory stores a pattern by associating with itself.
This is used to restore degraded patterns of itself. A heferoassociative memory stores a
pattern by associating it with a different pattern. For example, an image of an ordinal
number 5 might be stored by associating with the ASCII code for 5. Other ways of classi-

fying associative memories include the accretive associative memory and the interpolative
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associative memory. Discussion of the Kohonen self-organising and multilayer perceptron

networks, and their uses will be deferred to Sections 2.5.2 and 2.5 3, respectively.

The preceding discussion gives an overview of the history, nature, architecture,
types and uses of neural networks. In the next two sections we will examine in more detail,
the fuzzy neural networks. Being of relatively recent origin, there is no clearly identifiable
paradigms associated with fuzzy networks. In most cases, a fuzzy network is obtained ei-
ther by embedment of a fuzzy model for the learning law or by using the neural network
within a larger framework of the fuzzy model. This is realised in practice by introducing
fuzzifiers at the mput end of the network and defuzzifiers at the output end or various
combinations of these. These fuzzy neural networks implement fuzzy logic operations such
as union (max-nets), intersection (min-nets), or the extension principle. Fuzzy networks are
used to derive optimal rule sets for fuzzy controllers or to automate membership function

tuning of linguistic term sets in both pattern recognition and control (see applications pa-

pers in [Bezdek and Pal, 1992]).

2.5.2 Fuzzy Model Embedment

It is well known among fuzzy pattern recognition researchers that the Kohonen Self-
Organising Feature Maps (SOM) has nearly similar forms of clustering relations to FCM.
Thus the integration of FCM, which is based on an optimising model. into the SOM is one
way to address several limitations of SOM consisting of the following: (i) termination is
based on heuristics, not on optimising a model. (ii) final weight vectors depend on input
sequence and (iii) different initial conditions yield different result. The first fuzzy approach
was attempted by Huntsberger and Ajjimarangsee [1989]. but their scheme fell short of
realising a model for the fuzzy SOM. Bezdek et al. [1992] successfully integrated the FCM
model into the learning rate and updating strategies of SOM. which they named the Fuzzy
Kohonen Clustering Network (FKCN). The SOM algorithm is given below [Lippmann,
1987].

Kohonen Self-Organising Feature Maps.

Step 1. Initialise weights from N input nodes to M output nodes to small random values.

Step 2. Present new input.
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Step 3. Compute distance to all nodes given by
N-1
2
dj = Z(x:’,l —Wi)
j=0

where d; is the distance from input to the jth output node, x;, is the input to the
ith node at iteration 7 and wy;, is the weight from input node i to output node ;.
Step 4. Select output node j* with minimum distance, from d» = min 4.
Step 5. Update weights to node j* and neighbours defined by
Wiger1 = Wi + @Xie = Wise)
for j € neighbourhood NV, and 0 <7 < N-1. The term ¢, (0 < ¢ < 1) is a gain
term (or learning rate) that decreases in time.
Step 6. If jwj; .1 — wy <8, Stop, else go to Step 2.

Note: & 1s used to control the stopping point and # is an iteration index.

To apply the new fuzzy leaming law, replace the weights update by the prototypes update
given by

Vit = Vil T QudXer — Vi) 250D
fori=23,...,(N~1) where N,-1 are the nodes closest to x;.
Next, replace the second term of (2.5.1) with a new fuzzy learning rate and prototype up-

date to yield the iterative expression proposed by Bezdek et al. [1992]

N
Z ﬁik,z (x kt ~ Vi )

Vie = Vi oy 252)
2 B
k=1
The Fuzzy Kohonen Clustering Network algorithm (FKCN):
Step 1. Fix c.
Step 2. Initialise prototypes v;.
Step 3. For t = 1,2,...,fpax, compute Sy and u; given by
Bkt = u,’,ff,; m, =(mg —1)/ tpa for me>1 (2_-5-3)
Uy = : (2.5.4)

2

i{nxk vl r
Jj=1 “xk _Vj”A
Step 4. Update prototypes from (2.5.2).

Step 5. If ||vi, ~ vi.|l < & (a small error), Stop, else go to Step 3.
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The prototype update (2.5.2) 1s seen to implement the optimused prototype equation of
FCM (2.4.13) as follows: Expanding the second term of (2.5.2) gives

N N
Z /Bik,txk,t Z /Bik,t
k=1 k=1

Vit =Vt Vit 1;

N
Z :Bik,t Z /Bik.t
k=1 k=1

which reduces to

N N
2 2
Bk Xis Wi 1 Xkt
k=l k=l
- N - N
2 2!
B s Uik 1
k=1 k=1

On comparing the results of classifying Anderson’s IRIS data [Data and Hart, 1973], the

Vit

FKCN showed less misclassifications compared to the SOM. The SOM always ran to its
iterate limit (#mqc = 50,000) whereas KFCN converged in 14 to 40 iterations. Consequently,

there are significant benefits to be obtained from the FKCN.

The next example on embedment of fuzzy model to neural network topology is given

by Sum and Chan [1994]. They adopted a similar leaming strategy as Bezdek et al. [1992]

ajm
but differed by introducing the FCM model for a form of the error gradient, P The re-

i

sulting prototype update equation is given by

(vt
X—V,-
Vig = Vit Z{—J (x=v,;) (25.6)

2
=1 ||X—Vj-||

The second term on the right hand side of (2.5.6) implements the “Delta rule” for weight
update (see Appendix D), based on the FCM objective function J,, with ¢, as a leaming
rate parameter of the network. Sum and Chan gave another expression that can alterna-
tively be obtained by substituting (m + 1) for m in (2.5.6). Consequently, the claimed
“essential extension on Bezdek’s definition ie. m can be set to less than 1”7 [Sum and Chan,
1994, p. 1851] appears illusory, and does not functionally extends FCM to the realms of
0 <m <1 (unlike the PFCM). Although the procedure demonstrates an interesting way to
embed a fuzzy model into the learning rule, the usefulness of this approach compared to
the KFCN is questionable. The output response of the neural network to a modified ver-

sion of Ruspini’s Butterfly data (incorrectly referenced as the Butterfly data in [Sum and



Chapter 2 Methods of Pattern Recognition 81

Chan, 1994]) exhibited very slow convergence compared to FCM, especially considering
that the data contain so few points (only eleven). Using Sum and Chan’s data, FCM con-
verged in about 6 iterations (our result), but their network’s convergence was still unclear
at 1000 1terations (Sum and Chan’s result). This means the network is about 167 times
slower than FCM. The prototype values given in their paper, (0.8, 2) and (5.2, 2), at 1000
iterations, were still far (relatively speaking) from FCM’s stationary points at (1.1, 2) and
(4.9, 2) for m =2. The slow convergence might be due to a poorly selected learning rate
schedule ¢,. Furthermore, there is a possibility that the network might not converge to the
same FCM stationary points. Consequently, this example shows a poor way of implement-

ing a fuzzy model into a neural network.

2.5.3 Fuzzy Model Mapping

Neural networks used as model free estimators provide the greatest flexibility for designing
a fuzzy solution compared to networks of the type reviewed in Section 2.5.2. One of the
popular but reliable network used is the Feed Forward Backpropagation (FFBP). The pa-
per by Ruck et al. [1990] indicates that any neural network, including FFBP, which incor-
porates a mean squared error in the learning law can be trained to approximate the Bayes
optimal discriminant function for two or more classes. The FFBP network mtroduced by
Rumelhart et al. [1986] provided a persuasive demonstration of a learning algorithm called
the “Delta Learning Rule”. A derivation of this leamning rule is given in Appendix D. Pre-
vious work on the multi-layer perceptrons were limited to linearly separable classes. A
three layer network can form arbitrarv convex boundaries. The Kolmogorov theorem
(described in [Lorentz, 1967]) indicates that a three layer perceptron can be used to create
any continuous discriminant function in a classifier. This network structure together with a
non-linear activation function and the Delta rule, provide the condition for general classifi-
cation. However, practical difficulties remain in deciding how the weights, number of

processing units and transfer function should be selected.

Since Lippmann’s paper, improvements have been made to three areas of the FFBP:
(1) training times, (ii) selection of network size and (iii) generalisation characteristics.
These three areas are discussed in [Hush and Hom, 1993]. They showed that the problem
of slow convergence is related to the complex spiral staircase-like stepped surfaces encoun-

tered in the gradient descent of a non-linear unit. Current research interest in the network’s
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weights selection and control is linked to strong evidence which suggest improvements to
all of the three areas above. Reducing the number of weighted connections, up to a point,
appear to improve training times and generalisation. Generalisation is a measure of how
well the network performs on actual problems after training is completed. It is usually

tested by evaluating the network’s performance on new data, apart from the training set.

We will only examine two methods for weight reduction, because of interesting pro-
cedural similarity with the optimisation of the fuzzy objective function. The first method of
weight reduction is called weight decay [Hanson and Pratt, 1989; Hinton, 1987]. This
mode of weight reduction is viewed as a way of reducing the effective number of weights
by encouraging the network to seek solutions that use as many zero or near zero weights as

possible. The criterion function has the form
P
Jwy= 2 ,(wy+4 2w/ (2.5.7)
=1 i

where the first term is the squared error criterion and the second term is included to penal-
ise the network for using non-zero weights. The A factor 1s a small constant to control the
influences of the second term relative to the first term. How does this improve generalisa-
tion? The answer is that not all weights are made smaller. Some will remain relatively
large, while others will be forced under the learning rule, to be small in order to minimise
the criterion function J(w). The net effect is a reduction of those weights which have little
influence on the solution and so improve generalisation by discouraging overfitting of data.
An alternative technique is called weight elimination [Weigend et al., 1990 and 1991]. The
criterion function is of the form

J(w)= ZJ (w)+,12 /W" (2.5.8)

(w / wg )

where wy is a fixed weight normalisation factor. When w; > wo, the sum approaches unity
and this criterion counts the number of weights. When w; < w,, the sum is proportional to
w,-2 and the criterion works like a weight decay criterion. Thus it is seen that the choice of
wo can influence this criterion function to encourage the network to seek solutions with a
few large weights (w, small) or many small weights (wo large). Therefore (2.5.8) is a gen-

eralisation of the weight reduction scheme of (2.5.7).

Other methods for generalisation will be explored and discussed in Chapter 8. One

practical way of using a neural network is to map the model of the clustering algorithm
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implicitly, by training the network with labelled data. Assuming there are no problems in
mapping the model of the algorithm, then 1t should be possible to extract cluster prototypes
with a neural network. Given the prototypes, 1t should be possible to find the points asso-
ciated with each prototype, once the algorithm has been defined. The advantage in this
scheme is the significant speed improvement from a fully trained network compared to a
clustering algorithm, especially where a large amount of data are involved. This might be
the only viable means for real-time applications and could provide a more cost effective
solution compared to a hardware implementation. Taking this process a step further, it
might also be possible for the network to model an expert’s knowledge of an ideal cluster-
ing algonthm without the need for an actual algorithm to be implemented. This would be a
highly desirable goal, but seems beyond the reach of present achievements. For the mo-
ment, many problems are yet to be resolved because the simplest and most direct method of
modeling the algorithm has not been successful. However, indirect methods involving fuzzy
memberships, fuzzifier and defuzzifier stages appear promising as a way of inducing
meaningful cluster prototypes from the network’s response. We discuss examples of this

approach in Chapter 8.

Remarks

A good general introduction to neural networks is found in [Lippmann, 1987; Hush and
Homm, 1993]. Numerous textbooks giving practical insights into specific network topolo-
gies and applications are to be found in [Freeman and Skapura, 1992; Kosko, 1992;
Zurada, 1992; Hertz et al., 1991; Simpson, 1990; Pao, 1989]. Some of these include soft-
ware programmes to experiment on PC compatible computers [Rao and Rao, 1995; Wel-
stead, 1994; Masters, 1993]. An interesting and surprisingly effective way to experiment
with neural network is network modeling with Mathematica in [Freeman, 1994]. Alterna-
tively, but generally more complicated, is the use of professional neural software packages
such as the HNC ExploreNet 3000, release 2.12, or the NeuralWorks professional [I/Plus
and NeuralWorks Explorer from NeuralWare Inc. Both of these last two products include
informative descriptions of the main network types. There is generally quite a steep learn-
ing curve to overcome initially, but once over this curve, the ability to do more with neural
networks are well rewarded. A more affordable approach with good tutorials on neural
networks are the two volumes by Caudill and Butler [1992]. which contain neural soft-

wares for the Macintosh and IBM PC compatibles. Comprehensive information on fuzzy
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neural networks is found in [Bezdek, 1995a and 1995b; Bezdek and Pal, 1992]. Confer-
ence papers and journal publications relating to fuzzy clustering and pattern recognition

topics are listed in “Remarks” of Section 2.4.
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Chapter 3

An Enhanced Progressive Fuzzy Cluster-
ing Approach

The theory development for fuzzy clustering approaches to pattern recognition has been
presented in Chapter 2. In particular, we have reviewed the analytic forms of the different
fuzzy objective functions with and without constraints, and showed how optimised solu-
tions for the cluster parameters can be obtained from an iteratively minimised objective
function exemplified by the FCM algorithm. Lastly, we examined procedures to formulate
clustering solutions that can be generalised for a range of ellipses with the fuzzy covari-

ance matrix, and for hollow rings and ellipses using the method of parametrized prototype.

In this chapter, we shall apply the basic attributes of fuzzy analytic models in a new
way that enhances its scope and potential. We call this the enhanced progressive fuzzy
clustering approach or CPCM. In the chapter we establish the rationale and justification to
link the analytic fuzzy solutions to the CPCM framework. Although the CPCM approach
is to some extent dependent on the fuzzy analytic theory and models to produce useful re-
sults, 1t does not require the level of theory needed in those algorithms to hamess the power
of fuzzy clustering. We demonstrate how a judicious selection of a few basic equations is
usually effective for this purpose. The CPCM framework takes care of the intricate details

of supervising cluster development.

3.1 Introduction

The CPCM approach to fuzzy clustering introduces five new features to fuzzy clustering,

consisting of the following;
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1. Progressive clustering on a single cluster prototype assumption.

2. Cluster parameter prescription by structural specifications such as minimum number of
points in a cluster, N, and the alphacut. .

3. More efficient management of data and the clustering process.

4. More flexible framework to generate cluster solutions.

5. Improved useability and utility.

Clustering on a single prototype assumption means progressive clustering for a sin-
gle cluster. There are advantages with progressive clustering. Firstly, the principle of clus-
tering the entire data set is analytically more complex; consequently, more sensitive to
other factors influencing the outcomes of the cluster solutions, such as noise and outliers,
and the structure of neighbouring clusters. This is evident in the sensitivity of the conven-
tional fuzzy clustering results to initial conditions for U, and ¥; (see Krishnapuram and
Keller, 1993a; Man and Gath, 1994; Gath and Hoory, 1995). Conceivably, a single cluster
1s a simpler representation of data for fuzzy clustering. Moreover, the algorithm is isolated
from extraneous influences of neighbouring data so that it is easier to represent the typical
characteristics of a single cluster. To realise this goal in CPCM, it is not possible to apply
the fuzzy algorithms without some modifications. Furthermore, the modified algorithm
needs to be constrained to look for only a single cluster. We will show how these issues are

resolved 1n Section 3.2.

The cluster parameter prescription by structural specifications serves two objectives.
Firstly, it eliminates the need for cluster size verification because the specifications will
influence the development of clusters and determine the number of clusters found. This
means greater computation efficiency compared to those algonthms that require cluster
validity checks. Furthermore, the automatic detection of cluster size feature is a simpler,
more appealing and intuitive approach to clustering. Secondly, the cluster structural pa-
rameters such as the alphacut ¢, and the minimum cluster points N, have significant and
unique implications for cluster development. Unlike the conventional fuzzy clustering
schemes, this approach provides a high degree of cluster generalisation. In other words, the
cluster parameters help to identify structurally similar clusters in data. This feature is not
available to algorithms such as the FCM or the KNN, because the initial ¢ prescription

pre-empts the actual cluster numbers present in the data. The CPCM parameters not only
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provide a means of control over cluster development, but also encourage an engineering

design approach to solve clustering problems. For example, ¢, determines the fuzziness of
the cluster boundary and N, provides a design criterion which determines whether small

or big clusters will be developed.

The efficient management of data and the clustering process is important to any
clustering algorithm because this may have a significant impact on the processing times. A
progressive clustering scheme has greater computation efficiency compared to a non-
sequential or global clustering scheme. This occurs primarily because each cluster that is
found can be immediately eliminated from subsequent cluster consideration. Thus as clus-
tering proceeds, the data present is progressively reduced, resulting in greater computation
efficiency. The more data that is removed earlier, the greater will be the computation effi-
ciency. However, the sequential nature of clustering may produce fragmented clusters if the
clusters are not compact and well separated. Therefore, remedial measures to ensure good

outcomes need to be considered. These issues are examined in Section 3.2.3.

CPCM provides a flexible framework to generate cluster solutions. CPCM super-
vises the management of data relating to cluster validity and noise, freeing the clustering
algonthm from these tasks. CPCM also handles the clustering context so that the clustering
algorithm “sees” only a single cluster. This avoids compatibility issues and allows analytic

algorithms to be adapted into the CPCM framework.

Improved useability and utility of the CPCM based algonthms are obtained from the
improvements offered by each of the above mentioned features (items one to four). The
ability to integrate specific clustering algonthms within a common CPCM framework en-
hances clustering performance and simplifies the task of algorithm development. An ex-
ample of this is given in Section 34, involving the detection of clusters with different

shapes and types.

These five items are discussed more comprehensively in the following sections of
this chapter. Section 3.2 introduces the principles of clustering within the CPCM frame-
work, followed by a cluster validity reviewed in Section 3.3. Some experimental algonthms

are explored in Section 3.4 which shows how to apply the fuzzy clustering equations within



Chapter 3 An Enhanced Progressive Fuzzy Clustering Approach 88

the CPCM framework. The chapter concludes with performance comparisons of FCM,
KNN and the CPCM based algorithms in Section 3.5.

3.2 Clustering Principles

Clustering with CPCM generally involves the iterative update of two basic cluster parame-

ters, consisting of the cluster membership and the prototype discussed below:
3.2.1 Membership Update

The membership equation for a given cluster is similar to the form of (2.4.50) given by

wy = — (3.1

exp(dy /17;)

where

di =|lx —v,|| (3.2)
1s the distance of a data point x, from its jth cluster prototype v,. The data x, denotes the
kth item of the data set, X = {x,,x,,..x;.....xy} In real feature space R? In the experimental
algorithms to be presented shortly. g 1s assumed unity to simplify calculations. The lower
its value, the fuzzier is the boundary of the cluster. The 7; term in (3.1) is included to give

a meaningful value to the membership. Since 1t 1s like a scale factor, it can also be defined

as a root mean square of the cluster radius

1 N 2
nj-:s\/N—jZk__fl|xk—vj-| | (3.3)

where N, is the number of feature vectors that satisfy ¢ in the jth cluster for 0 <j <N, and
s 1s a scale factor. Equation (3.3) scales the memberships of (3.1). In some cases a fixed

value of 77, may also be used (see examples in Chapter 6).

3.2.2 Prototype Update

The prototype update equations are identical to FCM, except for the single cluster as-

sumption. It is expressed by
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v, = (3.4)

In most cases, a satisfactory choice for m is 2. A practical version of (3.4) that reflects the
alphacut ¢ 1s given by

N

Zuixka
k=1
Vi="N (3.5)
Zulka
k=1
1 if w>a
Fk: k | t
0  otherwise

A general 1terative procedure for clustering is given by the following algorithm:

A general CPCM clustering algorithm.

Step 1. Fix a, m, q, $, Npin.

Step 2. Compute initial prototype v, from (3.5) for u;, = 1.
Step 3. Compute 7, from (3.3) and d, from (3.2).

Step 4. Calculate memberships from (3.1).

Step 5. Calculate prototypes from (3.5).

Step 6. Repeat Steps 3 to 6 until [|v;, — v;.|| <e.

Note: € is a small value to control the stopping point and ¢ is an iteration index.

If there are more than two cluster parameters to be solved, the basic iterative algo-
rithm remains the same, except to allow for the extra parameters in the metric. For exam-
ple, to detect circular rings of fixed diameter, a radius parameter is included in the general

metric of (3.2). See Chapter 6 for variable ring detection.

3.2.3 The CPCM Framework

The CPCM algorithm provides the framework to supervise the management of data with
respect to initial prototype estimation and to provide the impetus to sustain a progressive

search for clusters in the data set. The latter includes tests for cluster validity.
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3.2.3.1 Estimating Initial Prototype

Since CPCM assumes a single cluster for prototype development, it is necessary to obtain

an initial estimate of the prototype for use by the clustering algorithm. There are several

ways of doing this but we will only examine two of these.
(A) Sequential Fuzzy Means (SFM)

Derived from the basic FCM, this algorithm has not only a surprising simplicity but also
an unusual prototype solution. Although it involves only one cluster parameter (the met-
ric), 1t is nevertheless capable of producing nwo solutions for the cluster prototype. Since
this appears to be a new discovery (to the best of our knowledge), we will call it the SFM.
Perhaps one reason why it 1s not found earlier may be attributed to the implausible notion
that denves sequential clustering from FCM. To recapitulate, we recall the FCM member-
ship

1
0y = —————— (3.6)

gk (m1)

J=1 djk
. . . . (5
where the numerator term is unity because of the constraint assumption 2 _ u =1 (see

Appendix A for details of the proof). The form of (3.6) is obviously not valid for a single
cluster since for ¢ = 1, u, = 1 for all points of the data set. However, eliminating the dy

term from (3.6) with the constraint (assuming ¢ > 1)
2wy =d " (3.7)

yields a new membership

1
e = ————— (3.8)

i[ l J(m”
—
=1\ i

from which it is apparent that (3.8) will admit a single cluster solution given by

1
]

(1 Y1)

LdZJ

(3.92)

llk =

or
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u, =d2™ (3.9b)
where d) =||x; — V|| 4, and u, being roughly proportional to the metric now represents the
dissimilarity index (without upper bound) for the constraint of (3.7) ie. prototypes are lo-
cated at min u,. Under the single cluster assumption, (3.9b) is seen to be equivalent to
(3.7). The prototype equation for this case 1s identical to (3.4). Note that (3.9b) may also

be generalised by PFCM. The SFM algonithm is similar to FCM except for the member-
ship (3.9b) and using ¢ = 1.

To illustrate the interesting properties associated with (3.9b) we present the SFM
cluster prototype convergence characteristics shown in Fig. 3.1, for the data of Fig. 2.11,

and the membership results in Tables 3.1 and 3.2 (one for each prototype).
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Figure 3.1 SFM prototype convergence for data set of Fig. 2.11 at m = 1.6. Prototype po-
sitions in the x and y axes are represented by vx and vy respectively, defined at the upper
and lower envelopes of each curve. The correct prototype converged to (13.58. 9.02).

k| u k Uy k Uy k Uy

4633 |7 |462 |13 |620 |19 | 1497
3558 |8 |156 |14 |1933 |20 |299]
3516 |9 |1.69 |15 | 1471 |21 |2434
3561 |10 [ 175 1115 |22 | 1993
2602 | 11 | 137 |17 |2401

1138 [ 12 |3.20 |18 | 1894

Table 3.1 SFM memberships from data set of Fig. 2.11 for prototype (13.58. 9.02) at
m = 1.6. Minimum membership 1s shown shaded.

A | |w|ro|—
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k Uy k Uy k Uy k Uy

1 17647 |7 1384 | 13 | 60.27 19 | 444.15
2 [95.00 |8 2175 |14 | 117 20 | 377.13
3 14067 |9 1818 | 15 | 188.19 |21 | 485.38
4 i
5

110 12932 |16 | 30437 |22 | 648.08
2551 |11 2527 |17 | 21777
6 | 1151 |12 |3593 |18 | 306.36

Table 3.2 SFM memberships from data set of Fig. 2.11 for prototype (3.64, 6.41) at
m = 1.6. Minimum membership 1s shown shaded.

Fig. 3.1 shows SFM converging in about 6 iterations to two stationary points for the data
of Fig. 2.11. Clearly the prototype at (13.58, 9.02) is the correct prototype, whilst the other
prototype may be ignored since only one cluster is under consideration. This may be easily
verified by checking the memberships in proximity to the prototype. Also, prototype
(13.58, 9.02) has least membership at u, = 1.25, whereas prototype (3.63, 6.43) has higher
minimum membership at u, = 15.13. The memberships of Tables 3.1 and 3.2 confirm that

the prototypes are located at points of minimum membership given by (3.9b).

It is interesting to observe that the SFM convergence always produces two proto-
types in alternating order within the same sequence. This feature could be usefully ex-
ploited for the two clusters of the Butterfly data set. The results are given in Fig. 3.2 and
Table 3.3. Notice that both the two prototypes at (1.818, 3) and (6.182, 3) are found cor-
rectly, for m = 2.72 (other m values shift the prototype position) and is almost identical to
FCM’s prototypes at (1.855,3) and (6.145,3), for m=2. As noted previously, the two

prototypes generated by SFM are both valid only for a two-cluster data set.

Overall, SFM is expected to work better on well separated compact clusters than on
close sparse clusters. Although more research is needed to establish the conditions for good
clusters, SFM is presented here as an alternative and useful means of pursuing sequential
fuzzy clustering with improved computation efficiencies compared to global clustering
schemes. SFM could also be useful in another role. Earlier we mentioned about remedial
measures to overcome poor cluster result. One method is to select dense clusters with SFM

during initial clustering (to minimise cluster fragmentation).
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Figure 3.2 SFM prototype convergence for the data set of Fig. 2.5 at m = 2.72. Prototvpe
positions in the x and y axis are represented by vx and vy respectively, defined at the upper

and lower envelopes of each curve. The two prototypes converged to (1.818, 3) and
(6.182, 3).

k| w k| u k| u k Uy k Uy

1 12449 |4 |1.019 |7 [ 1215 |10 |5453 |13 | 7344
2 10791 |5 [0.138 |8 [2478 |11 |5280 |14 | 6774
3 12449 |6 1019 |9 [3842 |12 |[5453 |15 | 7344

Table 3.3 SFM memberships from the data set of Fig. 2.5 for prototype (1.818, 3) at
m =2.72. Memberships for prototype (6.182, 3) is symmetrically opposite.

(B) Data Centroid

In this scheme, the data centroid is computed from (3.4), for u, = 1. Next, the complete
data set is searched for the nearest neighbour to the prototype. This position 1s used as the
initial prototype. In the event of a tie, the nearest neighbour point is resolved arbitrarily
(eg. taking the first occurrence). The nearest neighbour locates the prototype at a real data

point in X. CPCM applies the test Ny > Nyyin to ensure that only a valid cluster 1s found.

3.2.3.2 Sustaining the Progressive Clustering Cycle

Progressive clustering is realised by a cycle of activities involving: (i) imtial prototype
centring around the data centroid, (ii) developing a cluster, (iii) verifying a cluster, (iv) re-
moval of cluster or non-cluster points, and (v) update of the data list. CPCM initiates each
clustering cycle until the data set is depleted below the level of the minimum cluster points

specification, N,.,. A valid cluster satisfies the specifications for «, and N, Cluster
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membership is defined by equation (3.1). An option to consider at this point is to recluster

the data using the most recent cluster prototype positions. This procedure minimises cluster

fragmentation but compromises computation efficiency.

A basic CPCM framework.

Fix oo, m, q, s, Npin.
Repeat
Assume initial v, from nearest neighbour of data centroid.
Repeat |
Calculate u, from (3.1).
Calculate v, from (3.5).
Until ||v, — vyff <Ee.
If (0 < N, < N,in) Then Remove N, and update N..
If (Ng 2 N,in) Then Save and remove cluster points of prototype v and update V..
Until (N, < N,i»).

Note that € is a small value to control the stopping point and ¢ is an iteration index.

The symbols N,, N, and N, represent respectively, the number of cluster points obtained
from applying alphacut «; to u, the minimum number of points defining a valid cluster,
and the current data count. In the experimental algorithms, alphacut «; has values greater
than 0.9 and the fuzzy factor g is assumed unity. Note that the inner “repeat-until” loop
can include any compatible clustering algorithm or support more than one algorithm. Ex-

amples of this are given in Section 3.4.

Effective use of CPCM requires a judicious selection of cluster parameters ¢« and g.
They are normally determined empirically. The alphacut «, determines the size of the clus-
ter region and the fuzziness of the cluster boundary. The impact of ¢; on cluster develop-

ment will be explained in Section 3.4 and Chapter 5.

3.3 A Cluster Validity Measure

For the purposes of evaluating the experimental algorithms and comparing their perform-

ance against standard algorithms like the FCM and the KNN, we define a point cluster va-
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lidity measure as follows (see Section 2.3.4 for other ways of defining cluster validity). For
each object & of cluster 4, we calculate

a(k)=d(k,vy) (3.10)
where d(k,vy) 1s the distance of & from its cluster prototype v, assuming cluster 4 is not a
singleton. Next we calculate the distance of object & from the nearest cluster prototype in
cluster C, where cluster C # 4, given by

b(k)y=mind(k,v;,) for j=1,..c (3.11)
k#j

where ¢ 1s the number of clusters in the data set. The cluster structure coefficient or index

s(k) 1s calculated by combining (3.10) and (3.11) as
a(k)

s(k):l—% if  a(k)<b(k) (3.12a)

stk)=0 1if a(k)=0b(k) (3.12b)
b(k) .

s(ky=——-1 1f a(k)>b(k) (3.12¢)
a(k)

The s(k) index is a measure of the structure of the clusters. If cluster 4 contains only one
object, it 1s unclear how a(k) 1s defined so we assume arbitrarily s(k) = 0 in (3.12b). Other
values of s(k) are possible. Note that (3.12a) indicates that if & 1s closer to its own proto-
type than to its nearest neighbour prototype, then s(k) is positive (max 1s +1), and makes a
positive contribution to the simularity index. If & is closer to its neighbour prototype than its
own prototype, as in (3.12c), then s(k) is negative (min is —1), indicating a penalty. If & is
equi-distance from either cluster prototypes, then s(k) = 0 and makes no contribution to the
similarity index because the point lies on the decision boundary. Thus the range of values
for s(k) are: —1 <s(k) < 1. When s(k) 1s close to 1 we say k 1s well classified ie. the prox-
imity of k to its own prototype is unambiguous. We may also define cluster measures for
each jth cluster 5;( ), and for the entire data set 5, as follows.

I <,
()= o s(k) (3.13)
]

=D s(6) C19

where N, is the number of points in the jth cluster, and N is the total number of points in

the data set.
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3.4 Experimental Algorithms

The experimental algorithms presented in this section are intended to demonstrate the fea-
sibility of adapting the fuzzy analytic clustering algorithms to the CPCM framework. This
discussion should not be construed to imply that the experimental algorithms introduced in
this section are of little practical significance or unsuitable for real world applications. We
feel there are potentially many useful ideas emerging from the experimental algorithms
than could be adequately considered in this chapter. Obviously, algorithms designed for
practical applications require more thorough and extensive treatments of a practical nature.

We shall examine this 1ssue more fully in chapters 4 to 7.

3.4.1 Round Cluster Structure

Round regions are possibly one of the most common cluster structure in existence and also
one of the most useful structure from an application perspective. Round regions are de-
tected with the membership and prototype equations given by
1
Uy =————
exp(dy /1)
NJ
Z 1%k
v, = k=l 7 (3.16)

N,

(3.15)

where N, is the number of points in the jth cluster having cluster prototype, v;. The cluster
prototype v and the data point x are feature vectors in R°. Applying the alphacut «; to Eq.
(3.15), results in a fixed cluster radius

" :L'z"“f (3.17)

where d, =2, and defines the boundary of a circular region for a fixed 77 and «,

These equations are sufficient to produce centroid seeking prototypes via a cluster-
ing mechanism unique to CPCM. Iterations of (3.15) and (3.16) for a region defined by
(3.17) generate a dynamic (moving) circle that iteratively centres itself around the centroid
of points contained in the region defined by (3.17). The prototype is defined by points
whose memberships exceed the specified o, level. This interesting clustering characteristic

discloses an appealing geometric interpretation of the fuzzy cluster and provides a simple
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mechanism for clustering that converges to a local centroid. For this reason we named this

basic clustering process, cluster prototype centring by membership or CPCM.
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Figure 3.3 Three clusters detected from a data set of 25 points (modified from Kaufman
and Rousseeuw’s data set of Fig. 2.11). (a) is obtained with r,=2.5 and (b) with r, =4.5.
In both cases, the minimum cluster points, N,,=35. Note: “+”=cluster point and
“x” = non-cluster point.

Figure 3.3 shows the effects of clustering with 7, =2.5 units and r, = 4.5 units
(delineated by the circular boundaries). The small circle denotes the cluster centre. Notice
that the prototypes of Fig. 3.3(a) are located at the local centroids (4, 12), (9. 5) and
(15.5, 12) whereas the prototypes of Fig. 3.3(b) is slightly off-centroid at (4.5, 11.83),
(9, 5.73) and (14.86, 11.86), because of the influence of outliers near the data centroid. In
the context of the CPCM algorithm, point (9, 17) which is unclustered in Figs. 3.3(a, b),
may be regarded as a virtual noise point. However, making 7, bigger will eventually cluster
this point. In contrast to conventional fuzzy clustering algorithms, a significant advantage
of CPCM is the automatic detection of the number of clusters demonstrated in Fig. 3.3.
Moreover, CPCM is also designed to detect clusters of a specified radius ri, an advantage
in certain applications where the cluster diameter or area can be approximated from the

problem domain.

We know that the CPCM algorithm detects clusters with a fixed size. Can it be
made to detect variable cluster sizes like the FCM? The answer is yes, by allowing for
variable 7, or 1. Figures 3.4 and 3.5 are examples of a CPCM algorithm using a vanable

n. The cluster statistics are summarised in Table 3.4.
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Figure 3.4 Four clusters detected from the Ruspini’s data set, using variable 7. The co-
hesion factor, f:=9. Minimum cluster radius, 7., = 17. Positions of the data points are
given at the end of Appendix F.

Cluster | Centre Radius Cluster N,
(pixel units) (pixel units) | index, 5

I 68.93, 19.40 17.00 0.8664 15

2 20.15, 6495 25.58 0.8070 20

3 4391, 146.04 | 2646 0.83222 23

4 08.18,114.88 | 31.10 0.7727 17

Table 3.4 Summary of cluster statistics from the data set of Fig. 3.4, for a cohesion factor
fe=9 and 7,;, = 17. Data set cluster index 5, = 0.8158. N, is the number of points in the
cluster.

A minimum cluster radius r,,, is specified to prevent a cluster shrinking (via cluster
convergence) to zero radius. A minimum 77 corresponding to 7, 1s given by
2rmin

=— (3.18)
Ine,

Tmin

At the start of the cluster repeat-until loop, the vanable 7; of the jth cluster is calculated as

N
£ X v
= (3.19)

= N if 17 2 Mmin

J
[ Mmin othenwvise
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where f; is a cohesion factor that relates to the size and number of clusters formed. A high
/. results in bigger cluster radii but smaller number of clusters, and vice versa. Within the

cluster algorithm, the cluster memberships and prototypes are computed from (3.15) and
(3.16) repeated below:
1

y = xp(de /7)) (3.20)
N,
szFk
v, = — (3.21)
W
k=1
F :{1 if >a
0  otherwise
where the number of points in the jth cluster is calculated from
Ne
N,=2F, (3.22)
k=1

The CPCM algonthm for vaniable 7, and varnable cluster sizes.

Fix &, g, Pomin and N,
Repeat
Assume data centroid for mitial vy.
Calculate 7; from (3.19).
Repeat
Calculate u, from (3.20).
Calculate v from (3.21).
Calculate 7, from (3.19).
Until |77, — 71| < 8.
If (0 £ N, < N,;,) Then Remove N, and update N..
If (N, > N,.in) Then Save and remove cluster points of prototype v and update N..
Until (N, < N,,).

Note: & is a small value to control the stopping point and ¢ is an iteration index.

Figure 3.4 shows four clusters obtained for a cohesion factor f; = 9. Like the fixed cluster
radius algorithm, the variable 7; algorithm also finds the cluster numbers automatically.

Unlike the previous algorithm, it finds the cluster radius automatically. Figure 3.5 shows
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three clusters from the same data set for f; = 17. The corresponding cluster statistics are

given in Table 3.5.

20 -
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Figure 3.5 Three clusters detected from the data set of Fig. 3 4, using variable 7, The co-
hesion factor, f, = 17. Minimum cluster radius, 7, = 17.

Cluster | Centre Radius Cluster N,
(pixel units) (pixel units) | index, 5

1 68.93,19.40 | 17.00 0.8664 15

2 20.15,6495 | 3132 0.8086 20

3 6697 1328 | 54.12 0.6338 40

Table 3.5 Summary of cluster statistics from the data set of Fig. 3.4, for a cohesion factor
Je=17 and r,;, = 17. Data set cluster index 5, = 0.7269. N, is the number of points in the
cluster.

The definition of the cluster index 5, is biased towards a smaller number of compact clus-
ters while the data set cluster index ¥, favours a larger number of smaller well-separated

clusters. These observations are evident by comparing the cluster indices of Table 3.4 with

Table 3.5.

Although the cohesion factor f; appears to be like the ¢ initial cluster prescription of

FCM or KNN. it is functionally quite different. The cohesion factor does not find the num-



Chapter 3 An Enhanced Progressive Fuzzy Clustering Approach 101

ber of clusters prescribed by ¢ but instead, determines the number of points in a cluster and
thus its maximum radius. Moreover it is observed experimentally that the cluster result of
the cohesion factor possesses properties of scale, rotational and translational Invariance,
provided the data set contains structurally similar clusters. These properties are evident by
comparing the features of the cluster radii and centres of Figs. 3.4 and 3.5 with Figs. 3.6
and 3.7, for the same cohesion factors. Both Figs. 3.6 and 3.7 are derived from the same
data set as Figs. 3.4 and 3.5, except for a transposition of axes and the removal of one in-
termediate cluster (to simulate the appearance of different clusters). The data set of Figs.

3.6 and 3.7, called the modified Ruspini’s data (derived from Fig. 3.4), refers to these

changes.

160 -

140 -

120 —|

100 -

60 -

40 -

20 -

[ [ t [ ¥ | [ [ 1 [ ] ] 1

[} ]
o 20 40 60 80 100 120 140

1
160

Figure 3.6 Three clusters detected from the modified data set of Fig. 3.4, using variable
7. The cohesion factor, £, = 9. Minimum cluster radius, 7, = 17.

Cluster | Centre Radius Cluster N,
(pixel units) (pixel units) | index, s,

1 19,4, 68.93 17.00 0.9129 15

2 146.04, 43 .91 26.46 0.8267 23

3 117.53,101.13 | 27.46 0.8201 15

Table 3.6 Summary of cluster statistics from the data set of Fig. 3.6, for a cohesion factor
Je=9 and 7, = 17. Data set cluster index 5, = 0.8492. N, is the number of points in the
cluster.
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Figure 3.7 Two clusters detected from the data set of Fig. 3.6, using vaniable 7;. The co-
hesion factor, f, = 17. Minimum cluster radius, 7, = 17.

Cluster | Centre Radius Cluster Ng
(pixel units) (pixel units) | index, 5

1 194, 68.93 17.00 0.9226 15

2 134.94,61.92 | 4746 0.7404 36

Table 3.7 Summary of cluster statistics from the data set of Fig. 3.6, for a cohesion factor
f.= 17 and r,;, = 17. Data set cluster index 5, = 0.7940. N, is the number of points in the
cluster.

The variable 7; feature in CPCM enhances the generalisation capability of an algo-
rithm to detect clusters having regional shapes other than circular. To a limuted extent, this
is also possible with the fixed cluster radius of the CPCM algorithm, although the clusters
detected from the latter is more restricted and in this sense less general than the case of
variable 73, Two interesting properties relating to the cohesion factor are obtained from the
variable 7, algorithm. A bigger cohesion factor f; will detect larger cluster substructures. If
the cohesion factor £ is made sufficiently small (eg. 0 <f. < 1), then the variable 7; algo-
rithm reverts to the fixed 7 or fixed radius algorithm, because all clusters are limited to
rmin. Therefore, the variable 7 algorithm is a generalisation of the fixed radius CPCM

clustering algorithm.
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3.4.2 Elliptic Cluster Structure

Ellipses are another common cluster structure in pattern recognition and also quite useful

for practical applications. In the case of an elliptic region, we use a modified distance me-
sure of Gustafson-Kessel's Eq. (2.4.33) given by
2 T 1
dk,j:(xk_vj) F‘j (Xk_vj) (323)
where d,; represents the distance of a point x, from its prototype v; in the jth cluster. The
fuzzy covariance matrix I has the same interpretation as (2.4.32), repeated below for the
CPCM algorithm
N,
2 T
Zuk(xk _vj)(xk -v;)
F,= k=l (3.24)

2
Uy

S

-
Ul

1
Membership in the jth cluster can take a variety of unconstrained forms reviewed in Sec-
tion 2.4.7. For the ellipse detection algorithm, we used a possibilistic membership

]
uk :'—22— (325)
l+dk/f]j-

Substituting (3.24) into (3.23), the metric for x, and v; in R may be reformulated for the

feature components as

N,

2 2 2

di xCo —de,xdk,yCIZ +dk,nd)Zuk
k=1

dp = : (3.26)
C11C22 _C12
where

N .

Ciy=Yaldl, (3.27a)
k=1
N .

2

C12 = Zukdk,xdkyy (327b)
k=1
N .

Cyp = Zuf—dﬁ,y (3.27¢)
k=1

where dj,. and d,, are the respective x and y coordinate components of the relative vector,
(x¢ — v;). The terms C),, C), and C5, are the coefficients of the 2 x 2 positive definite fuzzy

covariance matrix ¥ The n; factor is calculated as
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N .
2
ZIIXk -v,li
2 _ k=l
ny=r————— (3.28)
N,
and the prototype update has two forms given by
N
2
zukxk
k=1
z 2
Uy
k=1
N
szFk
P k=1
Vi=™N (3.29b)
Fy

1 lf Ilk > (ZI
Fk = .
(0 otherwise

A CPCM algornthm to detect elliptic clusters.

Fix a;, g and N,.
Repeat

Assume Cy, = C); = C»» = 0. assign data centroid to v, and randomise U.

Repeat
Calculate 7; from (3.28).
Calculate v, from (3.29a).
Calculate d, from (3.26) only if C},Cyy # C,t
Calculate u, from (3.25).
Until [|v;, = v;.]| <3.
Assign nearest neighbour of prototype v to v.
Repeat
Calculate 7, from (3.28).
Calculate d, from (3.26).
Calculate u; from (3.25).
Calculate v'; from (3.29b).

Until ||V, =V ]I <e.

If (0 < Ny <M,i,) Then Remove N, and update N..



Chapter 3 An Enhanced Progressive Fuzzy Clustering Approach 105

If (N, 2 N,.in) Then Save and remove cluster points of prototype v and update N,.
Until (N, < N,n).

Note: 6 and € are small values to control the stopping point, and / is the iteration index.

The two ellipses detected by this algorithm are shown in Fig. 3.8, for the same data
set as Figs. 3.3. Ellipse statistics are given in Table 3.8. The ellipses are delineated by

boundaries drawn at ¢, = 0.9.

Cluster | Centre Ng
1 9.00, 6.54 13
2 10.27, 12.00 | 11

Table 3.8 Summary of cluster statistics from the elliptic cluster algorithm, for the data set
of Fig. 3.3. Cluster parameters are o, = 0.91 and N, =5. N, 1s the number of points n
the cluster

o R N W B U & N @ V
1

T 7 7T I~ 1 T 1 Tt 1 7
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 135 16 17 18 19

Figure 3.8 Two elliptic clusters detected from a data set of 25 points (modified from
Kaufman and Rousseeuw’s data set of Fig. 2.11). Cluster parameters are a=0.91 and
N,in = 5. Note: “+” = cluster point and “x” = non-cluster point.

The ellipse algorithm that produced the result shown in Fig. 3.8 is quite sensitive to

the alphacut . In other words, good elliptic clusters are found only for a very narrow
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range of . In the next example, linear clusters are detected from the modified ellipse

equations.

3.4.3 Linear Cluster Structure

To detect linear clusters, we intensify clustering of the elliptic region by recomputing the

fuzzy covanance coefficients Cy,, C); and Cy,. The algorithm is given below:

A CPCM algonthm to detect linear clusters.

Fix a,, g and N,.
Repeat
Assume C,, = Cy, = Cy, = 0, assign data centroid to v, and randomise Us.
Repeat
Calculate 7; from (3.28).
Calculate v; from (3.29a).
Calculate d; from (3.26) only if C},Cp, # Cit
Calculate u;, from (3.25).
Until ||v;, — v, || <38.
Assign nearest neighbour of prototype v to v.
Repeat
Zero the coefficients Cyy, Ci2 and Cy,.
Calculate v/; from (3.29b).
Calculate 7; from (3.28).
Calculate d; from (3.26) only if C},Cy, # C1y".
Calculate %, from (3.25).
Until ||v;, — v .|| <e.
If (0 < Ny < N,:,) Then Remove N, and update N..
If (N, > N,;,) Then Save and remove cluster points of prototype v and update N..
Until (N, <N,;,).

Note: 8 and ¢ are small values to control the stopping point, and ¢ is the iteration index.
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Figure 3.9 Two linear clusters detected from a data set of 25 points (modified from Kauf-
man and Rousseeuw’s data set of Fig. 2.11). Cluster parameters are a; =0.95 and
Nyin = 5. Note: “+” = cluster point and “x”” = non-cluster point.

Like the algonthm of Fig. 3.8, the linear clustering algonthm is also quite sensitive to the

o, cluster parameter. The cluster statistics are summansed in Table 3.9.

Cluster Centre N,
1 (vertical ontentation) 9.00, 8.33 6
2 (horizontal onentation) | 8.60, 12.00 |5

Table 3.9 Summary of cluster statistics from the linear cluster algorithm, for the data set

of Fig. 3.3. Cluster parameters are ;= 0.95 and N,,, = 5. N, 1s the number of points
the cluster.

3.4.4 Ring-Shape Cluster Structure

The ring-shape clustering algorithm presented here is fairly basic, but is adequate to dem-
onstrate the feasibility of adapting conventional fuzzy clustering equations to the CPCM
framework. It detects ring-shape clusters satisfactorily but needs more refinements to suit

practical applications. Practical issues are considered more fully in Chapter 6.



Chapter 3 An Enhanced Progressive Fuzzy Clustering Approach 108

Equations for the ring-shape cluster algorithm are nearly identical to the round re-
gion cluster algorithm. The cluster to be detected is assumed to have a fixed radius (other

forms are possible). Consequently, a simple solution is given by the metric

di=xe = vl = 7, (3.30)
where 7; 1s the radius of the jth cluster. The membership is defined as
U, = _ (3.31)
exp(|dil/n;)
where
- 2w =11 .

N,
A solution to the metric of (3.30) will maximise the membership of (3.31), and thus mini-

mise the objective function. This occurs when 7; = ||x — vj||. The algorithm is given below:

A CPCM algorithm to detect ring-shape clusters.

Fix rj, o, s and Npin.
Repeat
Assume initial v, as nearest neighbour of data centroid.
Repeat
Calculate 7; from (3.32).
Calculate d, from (3.30).
Calculate u, from (3.31).
Calculate v, from (3.29a).
Until ||v;, — vi ]| <6.
Assign nearest neighbour of prototype v to v.
Repeat
Calculate 7; from (3.32).
Calculate d, from (3.30).
Calculate u, from (3.31).
Calculate v'; from (3.29b).

Until ||V, = v 4]l <e.
If (0 < N, < N,:») Then Remove N, and update N..

If (N 2 N, Then Save and remove cluster points of prototype v and update N.
Until (N, < Npyin).
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Note: & and € are small values to control the stopping point and f is an iteration index.

Figure 3.10 shows a ring-shape cluster detected from the data set. The selected
cluster parameters r;=4, =095, s=1 and N, = 10, produced a cluster centred at
4.77, 5.23) with a radius of 4.25 units, indicated by the circular boundary. The true cen-
tres are at (5, 5) and (9, 9) and the true radius for each cluster is 4 units. The algorithm
seems to detect only a single cluster at a time. Another cluster centred at (9, 9), was not
detected. However, selecting cluster parameters «, = 0.95 and scale factor s = 2 success-

fully detect the second cluster centred at (9.21, 9.21), yielding a cluster radius of 4.27

units.
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Figure 3.10 One ring-shape cluster detected from the data set. The selected cluster pa-

[Pl

rameters were o, =095, s=1 and N,;, = 10. Note: “+” = cluster pomnt and “x” = non-
cluster point.

3.5 Clustering Performance

We used Ruspini’s data set (see Fig. 3.4) to compare clustering performance. Our data set
of Fig. 3.4 agrees with Kaufmann and Rousseeuw’s tabulation of Ruspini’s data [Kaufman
and Rousseeuw, 1990, p. 100]. This version differs from [Diday and Simon, 1976. p.72]

by a transposition of coordinates. We evaluate the clustering performances of three algo-
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rithms: (i) KNN, (i1) CPCM vanable 7; for round region and (i) FCM, and examine the
performance criteria in terms of convergence charactenstics and cluster validity based on

(3.14), for several clusters of Ruspini’s data set.
3.5.1 Convergence Characteristics

The convergence characteristics for four clusters are shown in Figs. 3.11 and 3.12 (x, y-
coordinates of cluster number /), Figs. 3.13 and 3.14 (x, y-coordinates of cluster number
2), Figs. 3.15 and 3.16 (x, y-coordinates of cluster number 3) and Figs. 3.17 and 3.18 (x,

y-coordinates of cluster number 4). From these results, the following observations are

made:

e Both the KNN and the CPCM algorithms converge quite rapidly compared to FCM.
e The convergence rate of CPCM is like that of KNN.
e Both the KNN and the CPCM algorithms converge to the same local centroids. FCM

does not converge to local cluster centroids (for fixed m =2, p = 2).

x-coord 104
values
90.5

77

63.5

50 ] | | | ] | | t 1 | | \ \
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

lterations
Figure 3.11 Prototype convergence of number one of four clusters. The three curves rep-

resent the x coordinate component from Ruspini’s data set of Fig. 3.4. The three algorithms
corresponding to symbols x1 = KNN, x2 = CPCM round region with vanable 7, and
x3 = FCM converge to 98.2, 98.2 and 100.4 respectively.
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Figure 3.12 Prototype convergence of number orne of four clusters. The three curves rep-

resent the y coordinate component from Ruspini’s data set of Fig. 3.4. The three algorithms
corresponding to symbols yl = KNN, y2 = CPCM round region with variable 7, and
y3 = FCM converge to 114.9, 114.9 and 116.8 respectively.
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Figure 3.13 Prototype convergence of number two of four clusters. The three curves rep-

resent the x coordinate component from Ruspini’s data set of Fig. 3.4. The three algorithms
corresponding to symbols x1 =KNN, x2 = CPCM round region with varable 7, and
x3 = FCM converge to 20.1, 20.1 and 20.5 respectively.
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Figure 3.14 Prototype convergence of number two of four clusters. The three curves rep-

resent the y coordinate component from Ruspini’s data set of Fig. 3.4. The three algorithms
corresponding to symbols yl = KNN, y2 = CPCM round region with varable 7, and
y3 = FCM converge to 64.9, 64.9 and 64.9 respectively.



Chapter 3 An Enhanced Progressive Fuzzy Clustering Approach 112

x-coord 70 T T T T T T T T T T T T 71
values -
N
625 x3 —
~ \
ssp X2 \ _

a0 | | | | | | | | | | | | |
0 1 2 3 4 35 6 7 8 g 10 11 12 13 14

lterations
Figure 3.15 Prototype convergence of number three of four clusters. The three curves rep-

resent the x coordinate component from Ruspini’s data set of Fig. 3.4. The three algorithms
corresponding to symbols x1 = KNN, x2 = CPCM round region with variable 7, and
x3 = FCM converge to 43.9, 43.9 and 43 .3 respectively.
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Figure 3.16 Prototype convergence of number three of four clusters. The three curves rep-
resent the y coordinate component from Ruspini’s data set of Fig. 3.4. The three algonthms
corresponding to symbols yl = KNN, y2 = CPCM round region with variable 7, and
y3 = FCM converge to 146, 146 and 146.5 respectively.
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Figure 3.17 Prototype convergence of number four of four clusters. The three curves rep-
resent the x coordinate component from Ruspini’s data set of Fig. 3.4. The three algorithms
corresponding to symbols x1 = KNN, x2 =CPCM round region with variable 7, and
x3 = FCM converge to 68.9, 68.9 and 68.8 respectively.
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Figure 3.18 Prototype convergence of number four of four clusters. The three curves rep-
resent the y coordinate component from Ruspini’s data set of Fig. 3.4. The three algorithms
corresponding to symbols yl =KNN, y2 =CPCM round region with variable 7, and
y3 = FCM converge to 19.4, 19.4 and 19.7 respectively.

For ¢ = 4, both FCM and CPCM algorithms produce repeatable cluster results. The
KNN algorithm was sensitive to initial random neighbour points (starting point) and con-

verges to different cluster centres (termination point) as shown in Table 3.10.

Tnal Cluster Starting point Termination point

number | number | x-coord | y-coord | x-coord | y-coord

1 1 85 96 98.2 114.9
2 32 143 20.1 64.9
3 52 152 43.9 146.0
4 70 4 68.9 194

2 1 85 96 98.2 114.9
2 98 116 56.0 137.0
3 78 94 40.6 148.6
4 10 59 41.1 45.4

3 1 85 115 98.2 114.9
2 32 143 52.1 143.5
3 28 147 36.4 148.4
4 61 25 41.1 454

Table 3.10 Summary of the effects of random initial neighbour points on prototype posi-
tions of the KNN algorithm, for four prescribed clusters from the data set of Fig. 3.4.

For ¢ # 4, both FCM and KNN algorithms were sensitive to initial starting points. In
the case of FCM, random initial memberships were used to determine the inutial prototypes.
Table 3.11 shows the effects of random initial memberships on FCM prototypes, for ¢ = 3.
The resulting prototype positions in each case were different. Trials on five clusters also

show variations in the prototype results. The reason that repeatable results were obtained
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from FCM for ¢ = 4 is attributed to the well separated and compact nature of four clusters.

For ¢ =3 or ¢ =5, the cluster boundaries are closer together also increase the probability

of forming different clusters, and thus the nonrepeatable results.

Tnal Cluster Starting point Termination point
number | number | x-coord | y-coord | x-coord | y-coord
1 1 52.70 100.44 ] 59.80 137.88
2 59.83 88.85 69.67 22.66
3 52.15 94.61 23.18 67.09
2 1 57.21 91.61 98.08 114.27
2 62.20 92.20 42.87 144 .47
3 56.06 90.01 43.00 13.13

Table 3.11 Summary of the effects of random initial memberships on prototype positions
of the FCM algorithm, for ¢ = 3 from the data set of Fig. 3 .4.

The cluster result of CPCM, like the FCM and KNN algorithms, is also affected by
utial prototype position. In the case of CPCM, there is a consistent basis to initial proto-
type estimation (because of data centroid assumption). However, unlike both FCM and
KNN algorithms, the same cluster result (eg. cluster index, number of clusters, cluster ra-
dius and prototype) can be produced by adjusting the cohesion factor £;. Table 3.12 shows
the /. values needed to produce the same cluster result (four complete clusters at 7, = 17)
at three different initial prototype positions compared to the algorithm’s normal initial
prototype positions. For example, start position (10,80) for f. =9 gives the same cluster
result as the normal (assumed) position (54.9,92) with /.= 11. The CPCM algorithm can
also optimise the cluster index by adjusting £, and 7., This feature, unavailable in either
the FCM or KNN algorithms, helps to identify possible noise points and umproves the

cluster structure. The next section elaborates on this feature.

Starting | Normal Starting | Normal Starting Normal

position | position position | position position position

(10,80) | (54.9,92) | (70,20) |(54.9,92) | (110,120) | (549, 92)
; 9 11 9 13 9 11

Table 3.12 Several values of f; that produce equivalent cluster result of four complete
clusters at 7,,, = 17, from the data set of Fig. 3.4.
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3.5.2 Comparing the Cluster Index

The data set cluster index defined by §, as Eq. (3.14), is useful in determining the optimal
size of the cluster numbers. The criteria of Eqs. (3.12a), (3.12b) and (3.12¢) favours a
clusterning result that has compact cluster regions and good separation between cluster
prototypes. One significant advantage of this criteria for defining cluster validity is its

simplicity and effectiveness, mvolving only simple operations like summing, division and

subtraction.

Number Data set cluster index, $,
of clusters | KNN CPCM | FCM
2 0.6514 | 0.6154 | 0.6464
3

Table 3.13 A comparison of the data set cluster index from KNN, CPCM and FCM al-
gorithms for a range of cluster numbers from the data set of Fig. 3.4. Maximum index is
shown shaded.

Table 3.13 compares the data set cluster index from each of the three algonthms, for sev-
eral clusters from Ruspini’s data set (see Fig. 3.4). In each case, the index peaked at four
clusters. This result agrees with the analyses of [Diday and Simons, 1976, p.71] and also
[Kaufman and Rousseeuw, 1990, p.101]. Figure 3.4 indicates that four clusters give the

most natural interpretation.

It is interesting to note that FCM gives the best clustering performance with a data
similarity index of 0.8181 for four clusters, but has a limited optimisation scope. FCM’s
result may be attributed to the LSE criterion of the objective function and the choice of
m=2. CPCM has a greater optimisation scope, by allowing selective exclusion of cluster
points, to maximise the data set similarity index from a particular selection of f; and 7
parameters. Table 3.14 reveals a higher index for CPCM at 5, = 0.8568, compared to the

fully clustered case of Fig. 3.4 where 5, = 0.8158. The cluster substructures corresponding

to 5, = 0.8586, shown on Fig. 3.19, are more compact compared to those of Fig. 3.4.
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Figure 3.19 Cluster result from CPCM algorithm for 5, = 0.8586.

5y JA Fmin | N, | Prototype N, | Unclustered points
0.8158 |9 17 17 98.2,114.9 0 | Nil
20 20.1,64.9
23 | 43.9,146.0
15 68.9,19.4
0.8492 | 7 17 19 20.6,63.7 7 12,88; 54,124; 86,132; 85,115; 85,96
22 43.4,147.0 78,94, 74,96
15 68.9,19.4
12 105.1,118.3
08571 |6 17 18 21.5,64.3 9 4,53; 12;88; 54,124; 60,136; 63,139
13 103.5,118.1 86,132; 85,96; 78,94, 74,96
20 41.6,148.0
15 68.9,19.4
15 18 21.5,64.3 11 | 4,53; 12,88; 54,124; 60,136; 63,139
13 103.5,118.1 86,132; 85,96; 78,94; 74,96; 70,4
20 41.6,148.0 83,21
13 | 67.820.5

Table 3.14 Summary of data set cluster indices obtained from the data set of Fig. 3.4 un-
der different conditions of the cohesion factor £ and the minimum cluster radius 7,., of the
CPCM algorithm. The symbols N, and N, represent the number of points in the cluster,
and the number of unclustered points, respectively. The similarity index for the data set 1s
denoted by §,. Note: maximum similarity index has a value of 0.8586. Maximum index is

shown shaded.
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There are two points to note about the cluster result of Section 3.5.2. Firstly, opti-
mum cluster index does not imply optimum cluster structure. although it does in most
cases. Secondly, the optimum index obtained by optimising parameters f; and 7., has to be
weighed against the significance of the cluster result. Ignoring a few cluster points at the
fringe or shrinking the cluster regions will improve the cluster index, but taking thus ap-

proach to extremity will result in loss of data structure.
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Chapter 4

Segmentation of Regions

This chapter examines the practical applications relating to the detection of (i) wool con-
tamnants and (i1) tile surface defects. Many conventional techniques of image processing
exist for region segmentation but possibly only a few are suitable for the above applica-
tions. Methods that are suitable for this purpose are various types of thresholding such as
peak-valley mode detection, adaptive thresholding and local area thresholding [Davies,
1990], boundary representational schemes such as chain coding and polygonal approxima-
tion, and Fourier descriptors [Gonzalez and Woods, 1992]. All these methods depend
rather critically on an adequate lighting environment and illumination condition. For ex-
ample, the peak-valley mode thresholding method requires a good definition of a valley
between two peaks, a condition that rarely exists normally. Consequently, it 1s practically a
necessity to induce a high contrast between object and background by controlling the
lighting environment. A controlled lighting environment can incur substantial costs depend-
ing on the intensity of the illumination and the degree of control needed. For this reason,
any alternative method that mitigates the need for an expensive lighting system will be

considered beneficial.

The proposed fuzzy clustering algorithm to detect defect patterns 1s tolerant to some
variation in llumination. To simplify the computation task, the images of both applications
are processed as 256 gray levels in 256 x 256 resolution. Region segmentation 1s per-
formed using the CPCM algorithm to detect round structures with fixed cluster parameters
a,, q and 7. Clustering performance in terms of cluster structures and processing time are

compared with the FCM algorithm. Following the introduction in Section 4.1. the segmen-
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tation algorithm is reviewed i Section 4.2. Sections 4.3 presents the experimental result

and Section 4.4 the conclusions.

4.1 Introduction

Wool contaminants refer to three types of vegetable matter, typically consisting of burrs
(about 3 mm or greater), grass (about 2 mm) and dirt particles (about | to 2 mm). An ex-
ample 1s 1llustrated in Fig. 4.1(a). These contaminants are normally removed by mechani-
cal means such as a combing machine, by adjusting the size of the comb and the rate of
combing. Current commercial vision systems using strip lighting to detect the material
density are very costly and do not provide sufficient accuracy. The most reliable method is
the standard industry method, using trained human inspectors to manually count and grade
the contaminants. This is also costly and prone to human errors. The proposed method is
simple and cost-effective. It assumes the wool is uniformly combed and sufficiently thin to

enable the detection of contaminants by back lighting.

Tile surface defects refer to chipped edges or cracks, uneven surface texture or color
variations. For the purpose of this thesis, only the problem of uneven tile surface due to
inconsistent paint thickness is examined because this problem can be solved by a similar
fuzzy clustering method. To enable detection of the defect patterns, the angle of incidence
of the light on the tile’s surface is adjusted to reflect sufficient light around the edge of

paint flow (the defect pattern). An example 1s illustrated in Fig. 4.4(a).

4.2 Segmentation Algorithm

The segmentation algorithm uses the same CPCM framework described in Section 3.2. The
membership equation 1s defined by

1

Uy =———— 4.1
exp[d?] / 77]
where the fixed cluster radius d, is defined by the fixed alphacut in
p=—on (42)
Ing,

and d,, = |x; — v. The prototype equation is defined by
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N

Zxka
v, =5 (4.3)
Y
k=1
1 if >
Fk :j 1 Uy, a,

(0 otherwise

where v; represents the prototype (intensity) of the jth cluster, x; denotes the intensity value
at the kth point position, and the fuzzifier exponent g is assumed equal to unity. The seg-

mentation algorithm is given below:

A CPCM region segmentation algorithm.

Assume o, =0.9,g=1, =400 and € = 1.
Repeat
Assume v; from nearest neighbour of intensity centroid.
Repeat
Calculate u;, from (4.1).
Calculate v; from (4.3).
Until |v;; — v;| <e.
If (0 < N, < N,;,) Then Remove N, and update V..
If (Ny = N,i,) Then Save and remove cluster points of prototype v and update V..
Until (V. < Npin).

Note: € 1s a small value used to control the stopping point and ¢ is an iteration index.

Prototypes obtained from this algorithm define the segmented regions according to the re-
lation,

Intensity range of region j: 0 <v; £ d, <255 4.4
where the cluster radius d,, is obtained from (4.2). Note that (4.4) assumes a separate pro-
cedure to check that the boundary limits of each prototype do not overlap. To use this al-
gorithm correctly, the prototype is assumed to define the intensity centre of the defect pat-
tern at the higher end of the intensity spectrum with the background at the lower end of the
intensity spectrum. In other words, defect patterns are detected as brighter objects against a
darker background. Consequently in the case of the wool image, the defect patterns which
are acquired as dark spots in a light background (from back-lighting), are processed as an

“inverted” or negative image. In the case of the tile image, image inversion is not required.



Chapter 4 Segmentation of Regions 121

For these applications, 7 =400 is satisfactory for the detection of small scale
(<3 % of data) defect patterns. If a large number of defect patterns are present in the im-
age, this value of 7 tends to produce excessive residual noise (see Fig. 4.1(b)). To over-
come this problem, an adjustment on the 7 value is made according to the formula

n'vy, = 82500 (4.5)
where 7" denotes the improved estimate for defect pattern identification and v, is the high-
est prototype value from the prototype list. The constant of (4.5) is empirically determined

for both applications. The following rules are suggested for the selection of 7.

17 selection rules (for the wool and tile applications).

Step 1. Initially assume 77 = 400 and generate a prototype list from the algorithm.

Step 2. Select the highest prototype value v, from the prototype list.

Step 3. If the pixel count corresponding to vy is less than 100, select the next highest vy
Step 4. Calculate 7" from (4.5) and generate a new prototype list from the algorithm.
Step 5. Select the highest prototype value v from the prototype list of 7".

Step 6. If the pixel count of v < 100, use v, from Step 2.

4.3 Experimental Results

4.3.1 Detection of Wool Contaminants

Two sets of results are presented from the wool problem. The first set, shown on Figs.
4.1(a) to 4.1(f), represents a moderate level of contamination. The other set, shown on Fig.
4.2(a) to 4.2(f), contains a lower level of contamination. This selection of contaminants 1s

made to evaluate the effects of contaminant levels on the algorithm’s performance.

Figure 4.1(a) of the first set shows the uncombed wool with different kinds of vege-
table matter. A knot of entangled wool 1s visible at the upper left corner. The uneven wool
texture 1s evident from the randomly distributed dark and bright spots. Vegetable matter
appears as dark regions in the shape of small lines, arcs and spots. Figure 4.1(b) 1s the
cluster result using 7 =400. The segmented cluster contains residual noise that interferes
with the identification of wool contaminants. Adjusting 7 according to the selection rules
clearly improves the cluster result shown on Fig. 4.1(c). Applying blob analysis with an

arca threshold of 15 pixels (an area element counts as one pixel) removes unwanted resid-
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ual noise from the segmented image of Fig. 4.1(c). The area threshold is a clustering crite-
rion used in blob analysis to identify good blobs ie. blobs with areas greater than the
threshold. The result shown on Fig. 4.1(d) gives a reasonable estimate of the contaminants
identified from blob analysis. The small cross next to the blob identity number marks the
location of the centroid of area of the blob. The area threshold provides a criterion for the
removal of unwanted specks or residual noise from the segmented image of Fig. 4.1(c).
Figure 4.1(e) shows the nearest FCM cluster to the defect pattern for ¢ = 10. The FCM
result of Fig. 4.1(e) agrees well with the CPCM result of Fig. 4.1(c).

In the second set of results, Fig. 4.2(a) shows a reduced level of contaminants fol-
lowing a more extensive combing process. Segmentation of these particles, shown in Fig.
4.2(b), were obtained at 77° = 439. The result of blob analysis is shown in Fig. 4.2(d). Fig-
ure 4.2(c) shows unsatisfactory result from FCM at ¢ = 12. The FCM cluster result at
¢ =06, 1 Fig. 4.2(e), 1s considerably worse. The extensive level of residual noise in both
Figs. 4.2(c) and 4.2(e) exceed the capacity of blob analysis to estimate the contaminants
present with reasonable accuracy. For this particular case, the numerous spurious blobs,

especially the large one at the lower rnight comer, will be incorrectly detected as contami-

nants.

The histograms of the wool samples of Figs. 4.1(f) and 4.2(f) show no discernible
valley to enable optimal thresholding. Moreover, the intensity boundary between the con-
taminants and wool material seems quite fuzzy. Consequently, methods that rely on detect-
ing histogram profile characteristics cannot be expected to yield reliable results. Unlike the
thresholding methods, the proposed CPCM region segmentation algorithm does not suffer

from this problem.
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(a) Wool image with moderate contaminants.

(b) Segmented image (7 = 400, v = 140).
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(c) Segmented image (1 = 589, v = 158).

(d) Blob analysis of (c) (area > 15 pixels).
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(e) FCM segmented image (¢ = 10, v = 157).

(f) Normalised histogram of (a).

Figure 4.1 Wool with moderate level of contaminants.



Chapter 4 Segmentation of Regions 124

(a) Wool image with few contaminants. (b) Segmented image (7 = 439, v =193).
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(e¢) FCM segmented image (¢ = 6. v = 149). (f) Normalised histogram of (a)

Figure 4.2 Wool with few contaminants.
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4.3.2 Detection of Tile Surface Defects

Two sets of results are presented from the tile problem. The first set, shown on Figs. 4.3(a)
to 4.3(f), represents a low level illumination. The other set, shown on Fig. 4.4(a) to 4.4(f),
contains a higher level illumination. This selection of illumination levels is made to evalu-

ate effects of illumination levels on the algorithm’s performance.

Applying the 7 selection rules, the tile image of Fig. 4.3(a) yields 77 = 400, resulting
in the segmented image shown in Fig. 4.3(b). The result of blob analysis with an area
threshold of 2 pixels, is shown in Fig. 4.3(c). For this particular tile problem, the defect
patterns may be characterised by linear cluster approximations. A linear cluster algorithm
(see Chapter 5) correctly detects the three main features of the defect patterns, shown in
Fig. 4.3(d), demonstrating the effectiveness of the algonthm to characterise the tile defect
patterns. The best cluster result from FCM was obtained with ¢ = 12, shown n Fig. 4 3(e).

However, this result contains excessive noise which cannot be corrected with blob analysis.

The tile image in Fig. 4.4(a) of the second set yields 7" = 327 for the segmented im-
age of Fig. 4.4(b). The result of blob analysis of the image of Fig. 4.4(b) is shown 1n Fig.
4 4(c), for an area threshold of 50 pixels. In general, the level of the area threshold to be
applied depends on the illumination condition of the image. Blob analysis removed most of
the speckles from the image of Fig. 4.4(b) to enable correct identification of the three main
defect pattern shown on Fig. 4.4(d). The optimal FCM cluster numbers, shown in Fig.
4.4(e), 1s obtained with ¢ = 6. This result is quite similar to Fig. 4.4(b) of the CPCM case.

The normalised intensity histogram for the tile sample of Fig. 4.3(f) is similar to the
wool histograms, with a single peak. However, even though the histogram of Fig. 4.4(f)
has a discemnible valley, it remains difficult to predict the lower limit intensity of the defect

patterns.
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(a) Poorly illuminated tile surface.

(b) Segmented image (77 = 400, v = 150).

(c) Blob analysis of (b) (area > 2 pixels).

(d) Three linear clusters detected.
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(e) FCM segm;nted .i;n-age (c=12,v=1 19). (f) Gray level normalised histogram of (a)

Figure 4.3 Tile at low illumination.
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(a) High illumination of tile surface.
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(c) Blob analysis of (b) (area > 50 pixels). (d) Three linear clusters detected.
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(e) FCM segmented image (¢ = 6, v =246). (f) Gray level normalised histogram of (a).

Figure 4.4 Tile at high illumination.
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4.3.3 Comparison of FCM Clustering Performance

Comparing the intensity images of Figs. 4.1(a), 4.2(a), 4.3(a) and 4.4(a), it is observed that
FCM fails to cluster correctly when the defect points are few in number. For example, in
Figs. 4.2(d) (wool) and 4.3(c) (tile), the pixel counts of the segmented blobs were 284 and
139 respectively. Moreover, this condition tends to produce a higher cluster number in
FCM clustering, such as ¢ =12, compared to ¢ =6 in the successful clustering cases.
‘When FCM clusters successfully, the cluster number required is almost half the cluster
number of the difficult clustering cases, with the corresponding pattern points in excess of
1300. However, 1t should not be concluded from this that ¢ = 6 is the optimum for both the
tile and the wool defect detection problems. In fact, the FCM cluster result of Figs 4.2(a)
and 4.3(a), for ¢ = 6, was worse than at ¢ = 12. An example of this is given in Figs. 4.2(c)

with ¢ = 12 and 4.2(e) with ¢ = 6. Figure 4.3(a) has the same problem (not shown).
4.3.4 Comparing Processing Times

A practical problem in using FCM is that several trals with a different cluster number ¢
have to be attempted to pick the best cluster result. More significantly, the processing time
for FCM increases almost exponentially with increasing cluster numbers. The processing
times given in Tables 4.1 and 4.2 were measured on an 1486DX/33-MHz Intel microproc-
essor. In the case of the wool images of Fig. 4.1(a) CPCM was 170 times faster than the
FCM, and for Fig. 4.2(a), 225 times faster than FCM. For the tile images, the best CPCM
speed was 255 times faster than FCM for the image of Fig. 4.3(a). The worst CPCM speed
was 4] times faster than FCM for the image of Fig. 4.4(a). These results are summansed
in Table 4.1 for CPCM, and Table 4.2 for FCM. For the purpose of performance compari-
son, thirty FCM iterations (g < 0.05 for both FCM and CPCM) were used in all the four
images. These results demonstrate the significantly higher data processing efficiency from

the CPCM algorithm.
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Image n Number of | v Intensity d, Processing
pixels low,high time (sec)
Fig. 4.1(a) | 400 58501 81 39,123 42.14 10
3828 140 124,182
2878 29 0.38
53 188 183,230
589 63627 81 19,143 62.06 8
1315 158 144220
318 13 0,18
Fig. 4.2(a) | 400 63285 124 82,166 42.14 9
1642 71 29,81
353 188 167,230
439 63849 124 78,170 46.25 9
1147 68 21,77
284 193 171,239
Fig. 4.3(a) | 400 65131 93 51,135 42.14 8
139 150 136,193
10 224 194,255
550 65218 93 35,151 57.95 8
58 169 152,227
Fig. 4.4(a) | 400 60605 127 85,169 42.14 9
3644 190 170,232
1028 252 233,255
327 58238 126 92,160 34.45 13
5391 177 161,211
1524 242 212255
127 90 55,91

Table 4.1 Summary of cluster statistics from CPCM algorithm. ¢ is the number of clus-
ters, v is the cluster prototype and d,, is the cluster radius, centred at prototype v. Note: The
intensity range is represented by the lower and upper intensity limits, and do not overlap
even though the prototype v is unequally spread. The order of the prototype v in the table
corresponds to the order obtained from the algonthm. Processing time was measured on an
1486DX/33-MHz Intel microprocessor.

Image c v Processing
time (sec)
Fig. 4.1(a) 10 157 1416
Fig. 4.2(a) 6 149 534
12 155 1912
Fig. 4.3(a) 12 119 1976
Fig. 4.4(a) 6 246 533

Table 4.2 Summary of cluster statistics from FCM algorithm. ¢ is the number of clusters
and v is the cluster prototype. Processing time was measured on an 1486DX/33-MHz Intel
MICroOprocessor.
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4.4 Conclusions

Sequential fuzzy clustering algorithms offer certain advantages for image segmentation.
The two applications, relating to the detection of wool contaminants and tile surface de-
fects, demonstrate the simplicity, clustering efficiency and effectiveness of the CPCM re-
gion segmentation algorithm. The failure of FCM to generate reasonable prototypes close
to the defect pattern for the images of Figs. 4 2(a) and 4.3(a) were a surprising discovery.
The problem with FCM seems to be due to the insensitivity of the algorithm to small num-
ber of cluster points. In other words, FCM works well only if the number of defect points
in a cluster exceed a minimum threshold, such as 1200 points in Figs 4.2(a) and 4.3(a).
The CPCM algorithm, unlike FCM, is ideally suited for this role. This is attributed to the
order by which the CPCM segmentation algorithm removes the regions, begining with the
major background cluster, consisting of approximately 96 % of the onginal image data
(see Table 4.1). The remaining 4 % of the data have a higher proportion of the defect pat-
terns and consequently are more easily clustered. Another advantage with the CPCM seg-
mentation algorithm 1s the efficient extraction of a cluster region given the prototype de-
fined by (4.4). With FCM, the process is more computation intensive, involving two sepa-
rate steps. Firstly, the membership of all points must be computed from all ¢ prototypes
and secondly, a crisp partition rule such as (2.4.14) is applied to extract the specific cluster
corresponding to the prototype. The ability to efficiently generate a cluster from the proto-
type allows the use of hybrid schemes such as a neural network and a cluster generating
algorithm (instead of a clustering algorithm) to improve clustering performance. This

technique is reviewed in more detail in Chapter 8.

The particular implementation of the CPCM clustering method can also be varied to
explore the possibility of more efficient clustering performance. For example, a good can-
didate algorithm for consideration is the variable 7 reviewed in Section 3.4.1. The EPCM
and PFCM possibilistic algorithms could also be considered for this purpose. These are
some of the numerous unexplored possibilities offered by the fuzzy clustering approach for

region segmentation.
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Chapter 5

Detection of Linear Clusters

To simplify the analysis, the clustering method is restricted to linear clusters that are de-
tected as points i 2D space. The clustering method incorporates several procedures for
line detection defined by the line prototype and line gradient in Section 5.2 and the line
characteristics tests in Section 5.3. The line tests ensure that valid features present in the
lines such as notches or slots are recognised by the algorithm. The experimental results of
five edge-segmented real objects are discussed in Section 5.5. The clustering method can be

extended for applications involving clusters of higher dimensions.

5.1 Introduction

Characterising the boundary from outlines is an effective method to obtain useful informa-
tion from digital images of real world objects. This method simplifies the image processing
task in terms of computation effort and memory requirements. A variety of line detection
schemes exist in the literature [Davies, 1990; Duda and Hart, 1973; Gonzalez and Woods,
1992]. Historically the Hough transform (HT), invented by Hough in 1962, is considered
to be the main method for detecting straight lines. Currently, other methods are gaining
popularity. One such method is fuzzy clustering which offers higher computation efficiency

with lower memory requirements.

The fuzzy c-varieties clustering algorithms [Bezdek et al., 1981a, 1981b] extended
the detection capabilities of FCM to linear and planar clusters. Dave [1989] improved the
linear cluster detection of non-ordered data set with the Adaptive Fuzzy Clustering algo-

rithm (AFC). The AFC used a modified distance metric involving a mixing coefficient.
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Dave showed that the AFC compared favourably to the HT, uses less memory and pro-
duces better results in the case of polygonal approximation of curves. However, the origi-
nal AFC was sensitive to noise and entails intensive computation. Consequently, Dave
proposed a progressive version of the AFC (this seems to be the first documented reference
to a progressive fuzzy clustering algorithm) that removes good linear clusters during the
clustering process. Possibilistic clustering was introduced in [Krishnapuram and Keller,
1993a] to achieve more robust and accurate clustering in the presence of noise. A possi-
bilistic algorithm reformulates the probabilistic membership of FCM by basing member-
ship values solely as a function of the distance of a point from its nearest prototype or
centre. In 1995, the possibilistic algorithm was extended to detect hyperquadric shell

structures [Krishnapuram et al., 1995].

5.2 Two Stage Clustering

CPCM is a suitable framework for implementing the fuzzy clustering methods to detect
linear clusters. In the first clustering stage, CPCM obtains an approximate prototype with
a round shape cluster structure. At the second clustering stage, a linear cluster prototype is

detected 1f the points satisfy the line definition criteria.

5.2.1 First Stage Clustering

The membership equation for points in R* is given by

| |
1, = - - (5.1)
D{m—vl) +(ye =) I
€X

2
n

where the coordinates of the kth point x, 1s (x,,y:) and the prototype coordinates v 1s (vi,v;).

The root mean square of the Euclidean distances of points from the prototype 1s

U:\/NL iicl[(xk_vl)z‘*‘(yk_vz)z] (5.2)

where N, is the total number of points in the current data list and s is a constant scale fac-
tor. The prototype component equations are given by
e
=1 U Xy

k=
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Sl

k=) Yk Yk

V2 =TV, 2 (5.3b)
k=1 Yk

where v = [y, vz]T.

First stage clustering algorithm.

Fix s, a,, g and N, and assign data centroid to v.
Repeat

Calculate u, from (5.1) and 7 from (5.2).

Calculate v from (5.3a) and (5.3b).

Find nearest neighbour of prototype v and assign to v.

Until ||v, — v.4|| <& or £ > 50.

Note: & is a small number to determine the stopping point and ¢ is an iteration index.

5.2.2 Second Stage Clustering

The second stage coerces the prototype from the first stage towards a linear cluster bound-

ary, with an additional test for a line gradient. The line gradient is defined by

NC

-V
Z(yk 2)Fk
k=1 (xk - vl)
N,
ZFk
k=1
0 otherwise

1 lf uk > a,
Fk = .
0 otherwise

if F,>0 (5.4)

where ¢, is the alphacut threshold on membership. The line gradient is used in a member-
ship equation defined by
1

u, = (5.5)
' pll— |}’k — vy —m(xy — Vl)‘q —I
X

2 2
] 7 ]
where 7 is defined by (5.2) and g is a real valued exponent. The prototype equations are
identical to (5.3a) and (5.3b).
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Second stage clustering algorithm.

Use initial v from the first stage clustering.
Repeat
Calculate m from (5.4).
Calculate u, from (5.5) and 7 from (5.2).
Calculate v from (5.3a) and (5.3b).
Find nearest neighbour of v and assignto v.

Until ||v,— v.4|| <8 or > 50.

Note: 6 1s a small number to determine the stopping point and / is an iteration index.

The point-slope form of the line equation (5.4) requires special treatment as the
slope approaches infinity. One way of dealing with this condition is to accumulate the
points with very small differences in the horizontal axis and later assign these points with
an arbitrary large gradient. Consequently, it is necessary to check for infinite gradient
condition prior to calculating the line gradient. The CPCM framework supervises the clus-
tering process to ensure that only a valid cluster i1s developed and manages the data for ef-

ficient processing.

5.3 Cluster Merging and Corner Detection

Discontinuity in a line may arise in a number of ways that occurs naturally in features of
the object or from the edge segmentation process. Consequently, this information needs to
be considered by the clustering algorithm so that real line breaks are correctly recognised
and spurious ones are ignored. A continuous line is defined according to the rule: If the
pixel gap g < pgap (specification) then the line is continuous. The pixel gap is defined as

the distance between two ordered adjacent pixels.

One algorithm for checking a continuous line is given by the following procedure in
pseudocode, assuming the candidates of line points in the horizontal axis have been first

sorted 1n an ascending order.

For (i=1toN,) do
Begin
If (x;+) — x; > pgap) Then
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If (xcount < N,.,) Then Start a new line and discard previous accumulated points.
Else Continuous line found and exit procedure.

Else Accumulate x; as a line point and increment xcount.

End.

The symbols xcount, N, and N,,;, represent the count of x; as a line point, the current
data count, and the minimum number of cluster points respectively. The loop control vari-
able 1s denoted by the index i. The test for xcount is made to ensure that only a valid clus-

ter (points > N,;,) will constitute a continuous line.

To assess suitability for cluster merging, we apply three tests in the following order:
(1) slope ratio test, (i1) line separation test and (i11) line ends gap test. The slope ratio test
evaluates the sign of the ratio of line gradients. If the ratio is positive, then the lines are
candidates for merging. The line separation test involves two line equations as shown in

Fig. 5.1, where the points (x;,y;) and (x,,y,) are the line prototypes and m,, m, are their cor-

responding gradients.

Figure 5.1 Line separation distance definition.

X

)’1 —y2 +—l+m2x2
x = L (5.6)
my +—
m
V=Y tmy(x=x,) 1if i >m (5.7
1 .
y=y-——(x-x) ifm<m (5.8)

ﬂll

The line separation distance is defined as

g= =) +(y— ) (5.9)
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For g calculated from (5.9), if g < Igap (specification), then the lines are considered
to be candidates for merging. The line ends gap 1s defined as the gap between the two near-
est ends of the two lines. If this gap, g < egap (specification), then the two lines are candi-
dates for merging. In consequence of merging the clusters (may involve more than two
clusters), the prototype position and the gradient for the new line have to be calculated. At
this point, a least squared fit of the line or other robust line regression methods given in
[Lawrence and Arthur, 1990} can be applied to improve line detection in the presence of

noise. Our algorithm implements a standard least squared error fit of the cluster points.

Once a continuous line has been established, the detection of comers is relatively
straight forward. For comer detection, we apply the rule that the closest ends of two lines
form a corner. In case the ends of the lines are intended to be open ended, we can apply a
gap test to ensure that corners are only found for line ends in close proximity. This corner
prescription assumes all comers are defined likewise, a reasonable simplification used in
this application. Fig. 5.2 shows the line relationships for corner calculation. Points (x), y))

and (x;, y,) are the line prototypes and m,, m; are their corresponding gradients.

Figure 5.2 Line comer definition.

x= (5.10)
Ile—ITll

y=y,+my(x-xy) ifm>m (5.11)

y=y +m(x-x) 1fm<m (5.12)

The corner gap is the minimum distance defined by

g=min(\[(x—x1)2 +(y—y1)20r\/(x—x2)2+(y—y2)2j (5.13)

If g < cgap (specification), then the corresponding lines have a candidate corner.
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5.4 Pseudo Code

The pseudo code for linear boundary detection and the eight parameters are given below.

Pseudo code to detect linear clusters.

Initialise @, Noin, q, s, pgap, Igap, egap. and cgap.
Compute initial v from mean data centroid and 7 from (5.2).
Repeat
First stage clustering loop (from Section 5.2.1).
Second stage clustering loop (from Section 5.2.2).
If (0 < N, < Npin) Then Remove N, from data and update V..
If (No >= N,i») Then Save cluster parameters (line ends, slope and prototype),

remove cluster points of prototype v from data and update N,.

Until (N, < N,.)

The symbols N,,,, N. and N, represent the minimum points in a cluster, the current
points count of data list and the number of points in the current cluster, respectively. For
the four objects used in the experiments. satisfactory clustering performance was obtained
by presetting eight of the parameters to the following constant values: o = 0.95,
Nuin=qg=Igap =15, pgap = egap = cgap =10 and, s =0.5. Parameter values for object

number 5 required different settings. All constants, except for s, have units in pixel.

The different types of cluster tests used in the linear cluster detection algorithm are

summarised below:

1. Cluster validity test: If cluster points, N, > N, then a valid cluster is found.
2. Line continuity test: If pixel gap, g < pgap then the points constitute a continuous line.
3. Line merge criteria:

The lines are merged if all three criteria, in the order shown, are satisfied.

(1) If ratio of line slopes (maximum = 1), mratio > 0 and

(11) If the line separation distance, g < /gap and

(1i1) If ends of lines gap, g < egap, then the lines are merged.

4. Corner test: If the two nearest ends of the lines, g < cgap, then a corner exist.
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5.5 Characteristics of Cluster Parameters
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Figure 5.3 First stage membership functions from equation (5.1).

At a fixed membership %, and the distance exponent g, the cluster radius d decreases with
increasing values of 7 as indicated in Fig. 5.3. This means that smaller 7 values are easier
to cluster because they have more points above the alphacut . However, the cluster re-
sults are not likely to be as accurate as those at larger 7 values. Since the first stage clus-
tering is only expected to locate an approximate cluster prototype, accuracy of cluster
prototype location is not essential at this stage. In general, the upper and lower bounds of 7

depend on the data.
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Figure 5.4 Second stage membership functions from equation (5.5), at fixed 7.

The second stage clustering refines the approximate prototype v from the first stage
by applying an alphacut ¢, on the membership and looks for a line gradient from (5.4).
Figure 5.4 shows that the characteristics of the membership is shaped by the values of g.
Like the first stage clustering, smaller ¢ values are easier to cluster because they yield
more cluster solutions. Larger g values generally produce less cluster solutions but more

accurate cluster parameters such as the line gradient and the location of the prototype. The
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inclusion of procedures for compatible cluster merging in the algorithm design supports
high g values for more accurate clustering. Normally, high g clustering results in frag-
mented clusters of small line segments. To remedy this, compatible clusters are merged
according to the three criteria given in Section 5.4, producing a more compact cluster

structure. Examples of cluster merging are demonstrated in Section 5.6.

5.6 Experimental Results

The linear cluster detection algorithm requires input data format as outlines of an object.
This is obtained from any of the conventional methods of edge segmentation discussed in
Section 7.3. The algorithm was evaluated on five different object outlines, numbered / to
5. All objects were acquired in 2D plan view and in 256 x 256 resolution, except for object
number 5, which has a resolution of 300 x 260. Object number / (Fig. 5.5) tests line de-
tection performance. It is an L-shape block with long and short line lengths that are quite
well defined. Object 2 (Fig. 5.6) 1s almost square shape, also with well defined long and
short lines but differentiated by a medium size notch on the top side and a smaller notch on
the right side. The v-notches test the algorithm for correct recognition of lines on either side
of the notch. Object 3 (Fig. 5.7) 1s a poorly defined pentagon in a noisy background to as-
sess the impact of noise on cluster recognition and detection accuracy. Object 4 (Fig. 5.8)
1s a silhouette of an electric motor armature housing, containing edge noises and frag-
mented outlines associated with typical problems of low level edge segmentation. This im-
age is provided to test the algorithm’s performance under real world conditions. Object 5
(Fig. 5.9) contains multiple intersections of complicated outlines with a mixture of single

and double lines, to test comer detection accuracy.
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(a) Eight clusters detected. (b) Eight comers detected.
Figure 5.5 Object number / (475 points) at fixed cluster parameters of Table 5.2.

All eight clusters and comers of Figure 5.5 were detected correctly. The cluster
prototype is computed as the mean of the cluster points. It is denoted by a small circle, lo-
cated at or near the mid point of the cluster line. The lines of the clusters are superimposed
on the object’s outline to assist comparison. The end of each cluster line is indicated by a
small cross. A common problem with a line detection algorithm 1s the creation of false lines
criss-crossing the image in a random manner. The absence of this problem in Fig. 5.5 1s
attributed to the effectiveness of the line continuity check, and also partly to the success of
the compatible cluster merging algorithm. Small gradient errors are noticeable in Fig.
5.5(a), resulting from the general choice of fixed cluster parameters of Table 5.2. Increas-
ing ¢ or using higher «, is expected to improve accuracy of the cluster result, for the rea-

sons given in Section 5.5.
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(a) Ten clusters detected. (b) Ten comers detected.

Figure 5.6 Object number 2 (576 points) at fixed cluster parameters of Table 5.2.

Figure 5.6(a) shows two line notches correctly detected. The line gaps from both
notches are 35 and 17 pixels, respectively. The correct identification of comers is shown in
Fig. 5.6(b). Note that the lower corner of the smaller notch only appear misplaced because
of the way the adjacent lines intersect. As in Fig. 5.5, the algornthm correctly detects verti-

cal lines.

Figure 5.7(a) is a noisy image of a pentagon. The absence of distinct lines in the im-
age would present considerable problems for most boundary tracking algonithms in the
search for edge and comer features. The CPCM based linear fuzzy clustering algorithm
correctly identifies the five major clusters in Fig. 5.7(c) and the five comers in Fig. 5.7(d).
Figure 5.7(b) shows the initial clusters found from the fixed cluster parameters. The top
edge shows three suitable candidate clusters for merging. The result of cluster merging is
shown in Fig. 5.7(c). Note the prototype position after cluster merging. All five comners of
the fragmented pentagon are correctly identified from the intersection of adjacent lines.
Given the noisy condition of the original image, the line gradients of Fig. 5.7(c) are accept-
able. Note that the clean image of Fig. 5.7(c), compared to Fig. 5.7(a), is a feature of
CPCM which automatically removes noise points to sustain cluster development. This is a
reason why a CPCM based fuzzy clustering algorithm is more computation efficient, com-
pared to other non-sequential fuzzy clustering algorithms. Table 5.1 summarises the line
statistics of the pentagon objet, relating to the number of points in each cluster (line), pro-

totype positions, siope and corners.
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(a) Noisy pentagon.

(b) Seven clusters detected.

[
L/

(c) Five clusters detected after merging.

(d) Five comers detected.

Figure 5.7 Object number 3 (252 points) at fixed cluster parameters of Table 5.2. Note:
the cluster centre is denoted by a small circle and the comers and ends by small crosses.

Cluster | Number | Centre Slope
number | of points | (pixel units)

1 o3| 1176,:69 (35

2 30 120, 128 0.224
4 il 194,125 -0.813
S 42 104, 52 -0.277
7 8 70, 102 3.58

Table 5.1 Summary of the 5 line statistics of Fig. 5.7(c). The corner dimensions of Fig.
5.7(d) are: (209, 109), (148, 39), (166, 142), (74, 114) and (60, 65). The origin of the co-
ordinates 1s at the lower left corner of the image.
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Figure 5.8(a) shows a noisy outline of an armature housing. This image demon-
strates the practical problems associated with boundary detection. The edges indicate ex-
tensive noise and line discontinuity. The clusters shown in Fig. 5.8(b) are acceptable, con-
sidening that a linear clustening algornthm 1s applied on an object which has a number of
curves. Consequently, the approximation of curved sides by straight lines are quite notice-
able, particularly at the top side of the housing in Fig. 5.8(b). Despite this condition, the
corners are accurately detected as shown in Fig. 5.8(c). A smaller g (¢ =3) in Fig. 5.8(d)

yields a fuzzier line segment and thus less accurate comer detection compared to ¢ = 6.5 in

Fig. 5.8(c).
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(a) Outline of noisy armature housing,. (b) Clusters identified with ¢ = 6.5.
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(c) Comners detected with ¢ = 6.5 (d) Comners detected with g = 3.

Figure 5.8 Object number 4 (1196 points) at fixed cluster parameters of Table 5.2, except
for the indicated g parameter.

Figure 5.9(a) shows a more complicated image for corner detection. This condition
requires a different set of cluster parameters from those used in Figs. 5.5 to 5.8. Figure
5.9(b) shows that all the main cluster features are correctly identified, including the two
comers of the outer cluster boundary. However, the four interior corners of Fig. 5.9(b)
formed by the intersections of double lines exhibit noticeable errors. This is apparent from
the two non-parallel lines linking the comers in Fig. 5.9(c). This problem illustrates that
real world images have certain features that can be difficult to generalise with a clustering
algorithm. In this particular case, the problem is due to the method which located the line

ends solely from a line continuity test. For line ends defined by the two points (x,y1) and
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(x2.2), one possible solution is to use the merged line gradient m and prototype v to obtain
a better estimate of the line ends along the y axis with

yi=m(x)=vy)+v, (5.14)

Ya=m(xy —v)+ v, (5.15)
where x; and x; are obtained from the line continuity test procedure. This modification pro-
duces an improved corner detection shown in Fig. 5.9(d). Unfortunately in this case, there
1s substantial loss of line details, particularly at the right side interior lines, because of un-
wanted side effects from the modification. Depending on the particular application specifi-
cations, this condition may be satisfactory. For example, if corner detection is the main
objective. Suppose the application specification requires both good line and corner detec-
tion. In this case, a further analysis of the procedure indicates that the above modification
provides only a partial solution. A closer scrutiny reveals that Eqgs. (5.14) and (5.15) do
not give accurate prediction of line end-points for the case where the gradient is large, be-
cause of insufficient resolution in the x axis direction. Thus a small error in the x axis is
accentuated along the y axis. Clearly good end-point estimates for both low and high gradi-

ents will rectify the problem. This provides the solution to the following revised procedure:

If line slope, m < 1 then estimate y, and y, from x,, x,, v and m with
yi=mx;—v)+v, (5.16)
Ya=m(xy —vy)+Vy 5.17)
else estimate x; and x, from yy, y,, v and m with

Y1—V2

m

xl:V1+

(5.18)

-V
xy = v + 222 (5.19)
m

The result of the revised modification is shown in Figs. 5.9(e) and 5.9(f). The improved
line and comer detection of Fig. 5.9(f) compared to Fig. 5.9(d) confirms the substantial

validity of the more extensive analysis.

This example illustrates some of the practical problems of implementing an algo-
rithm for application. More importantly, it indicates that the algorithm design must be suf-
ficiently flexible to address the needs of the particular application. It may be observed that
the specification of a small pgap = 7 correctly detects the line breaks at the top and bottom

edges of Figs. 5.9(c) and 5.9(f).
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(c) Detected comers. (d) Improved comer detection.
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(e) Improved cluster detection. (f) Improved corner detection and lines.
Figure 5.9 Object number 5 (2568 points) with the following cluster parameters: Ny, = 7,

=09,9=4, n=289.44 pgap =", mratio >0, egap =1, Igap =5 and cgap = 10. Note
that 7° is fixed at 8,000.
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Object Number | n a Processing
number of points time (sec)
1 (Fig. 5.5a) | 475 453 1095 |15

2 (Fig. 5.6a) | 576 603 | 095 |35

3 (Fig.5.7a) | 252 489 1095 |15

4 (Fig.5.8a) | 1196 613 | 090 |109

Table 5.2 Summary of processing times. The cluster parameters of all four objects were
fixed to the following values: o, =0.95, N,..,= g = Igap = 5, pgap = egap = cgap = 10 and,
s =0.5. All constants, except for s, have unit of pixel. Note that 7 is determined from Eq.
(5.2). Processing time was measured on an i486DX/33-MHz Intel microprocessor.

Table 5.2 summarises the processing time to cluster each of the four objects on an
1486DX/33-MHz Inte] microprocessor. It indicates that the execution time for objects of
about 500 points averages 2 seconds. However, doubling the number of points increases
the time by a factor of 5. For small sizes up to about 500 points, the clustering speed is

reasonably fast.

5.7 Conclusions

A new method for detecting linear boundary and corners has been presented. It is based on
a fuzzy clustering approach involving two clustering stages within the CPCM. The first
stage centres the prototype at a round shape dense cluster to enable detection of a linear
cluster by the second stage. Five objects have been used to test the algorithm’s clustering
performance in noisy environments. The results demonstrate accurate clustering of lines
and the detection of comers. Processing time for clustering was reasonably good. The ac-
commodation of specific line termination conditions demonstrates the flexibility of the
CPCM framework. By modifying the distance measure dy, it 1s possible to detect other
cluster structures such as hollow circles or shells. These examples indicate that CPCM can
be extended in ways that will support more sophisticated clustering. The ability to do so
with relative ease, as demonstrated in the example of Fig. 5.9, is essential to address the
particular needs of applications. Unlike the non-sequential fuzzy clustering algorithms, 1t is
possible to preset the cluster parameters of the boundary detection algorithm so that cluster
numbers and parameters such as the prototypes, line gradients and the positions of corners
are determined automatically, for a particular type of cluster structure. This feature con-

tributes to the algorithm’s ease of use and utility.
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Chapter 6

Detection of Circular Clusters

A new method for the detection and parameter estimation of 2D ring shape cluster is pre-
sented. The compositional fuzzy clustering approach is based on a supervised synthesis of
independently optimised fuzzy membership, cluster radius and cluster centre. Some dis-
tinctive performance features of the algorithm are (i) automatic detection of optimum
cluster numbers, (11) generalisation of detection from constant parameters and (1i1) accurate
clustering in the presence of noise. Tests on several edge-segmented 1mages of real world
objects consistently produced optimal cluster size with accurate estimation of their centres
and radii. The algonthm provides an alternative approach to solve analytically intractable

clustering problems and can be extended for the detection of clusters of higher dimensions.

6.1 Introduction

Historically the original fuzzy ISODATA, termed the Fuzzy C-Means (FCM) by Bezdek
[1973] and Dunn [1973], is considered to be the basis of most fuzzy clustering algorithms.
The FCM is an unsupervised clustering algorithm that finds optimum fuzzy ¢ partitions of
the feature space by iterative minimisation of a least squared objective function, subject to
the constraint that membership in all clusters sum to one. It has been successfully em-
ployed to find lines and surfaces [Bezdek et al., 1981a and 1981b] and the characterisation
of variable cluster shapes in a multi-dimensional feature space [Gustafson and Kessel,
1979; Gath and Geva, 1989]. Recently, the capabilities of FCM were extended to enable
detection of ring shape clusters by a modification of the objective function [Man and Gath,
1994; Krishnapuram et al., 1995]. Whilst excellent results have been reported, there are

practical problems in applying these algorithms. Optimal performance requires firstly, a
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careful choice of initial conditions and secondly, cluster validity i1s needed to establish op-
timum cluster size. The proposed method presents a -simpler scheme for the selection of

cluster parameters and circumvents cluster validity verification.

6.2 Compositional Fuzzy Clustering

In the compositional fuzzy clustering approach, the approximation of analytic optimisation
of the objective function is achieved by a composition of three separate optimisations in-
volving the fuzzy memberships, the cluster radius and the cluster prototype. Optimisation
of each of the three cluster parameters is supervised by CPCM to ensure optimal cluster
development. Since each cluster parameter is independently optimised, there is considerable
freedom in defining the membership function and the methods for cluster radius and proto-
type convergence. Consequently, a simpler form of the membership function is possible
and more flexible rules for cluster radius and prototype convergence may be used. These

are descnbed in the next section.

6.2.1 Update of Fuzzy Membership Function
The points x; In R? are denoted by coordinates (xt.yx) and prototype v by the coordinates

(v1,v2). The cluster radius » has centre coordinates at the point (r1,72). Membership for the

cluster i1s
1

ue=—T T | (6.1)
epo\/(Tk—\/1)2+(}’k—\’2)2 —’/UJ

where the cluster radius is initially approximated by the two component equations

NC
Zui(xk -v)Fy
n = (6.2)

N,

2
Zuka
k=1

NC
Zui(yk —=v2)F;
ry = k=1 (6.3)

N

2
Zuka
k=1
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0  otherwise

r= \/)‘12 + r22 (64)

and after applying the Optimal Circle Fit equations of (6.14) and (6.15), the cluster radius

Fk:{l if w>aq

has a more accurate expression given by (6.8) in Section 6.2.2, if N, > N,;,. Recall that NV,
is the number of points in the cluster, and N, 1s the minimum number of points constitut-
ing a cluster. Symbol 7 is a factor to scale the metric so that ¢ lies in a convenient range.
For this application 77 is assumed to be 3500, unless otherwise indicated. Note that (6.2)
and (6.3) are similar in form to (2.4.60) for m = 2 (see [Man and Gath, 1994]), except for
the alphacut function Fj. The iterative form of the membership equation of (6.1) is given
by
1

Up =

(6.5)

I 2 2|7
\N(xk Vi) (e —va) | —ha

exp

n
L J

where the iterated variable is indicated by an additional index ¢. Index k denotes the kth

position of a feature point in the data set.

Initial v, is assumed to be the data centroid and initial 7o 1s zero. The form of (6.1)
satisfies the two limits of the fuzzy cluster membership. At the upper limit of maximum
membership, the radius from points of the cluster coincides with the prototype radius r. At
the extremity of non-coincidence, the membership tends toward zero. Unlike the analytic
optimisation methods, the exponent g is not required to be differentiable and solvable. Op-

timisation of the cluster radius and centre are discussed in the next section.

6.2.2 Update of Cluster Radius

Update of the cluster radius 7 is made by using the fuzzy membership (6.1) and the cluster
centres v. Two forms of the radius equations are used. The first set is used to approximate
the cluster radius. The iterated components are given by
N, 2
Zhluk Ok =V11 )1

N, 2
=1 B -1 Fr i

hy=

(6.6)
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N. 2
Z,;l e (Vi = V11 e p1

Py = N. 2 ‘ 6.7)
oy e t-1F% 11
1 if w, >«
Fk,l—l = .
0 otherwise

The second set of equations is used when the cluster radius is defined more accurately with
the Optimal Circle Fit (OCF) equations [Chaudhuri and Kundu, 1993], given in Section

6.2.3. The OCF equations (6.14) and (6.15) calculate v, and v, respectively, from which
the cluster radius can be updated directly as

>l =) + i -v))
r= = (6.8)
Zk:IFk

1 if w>a
Fk = )
0  otherwise

where the alphacut ; is the membership threshold and N, represents the number of points

in the current data list.

6.2.3 Update of Cluster Centre

Update of the cluster centre is accomplished in two stages. The first stage obtains an ap-
proximate cluster centre from the Centre Approximating (CA) equations (derived in Ap-
pendix E) given by their component equations

1

Vi =

N,
N k=1[xk + (V-1 =X )] ‘ (6.9)
c

1 N,
Vo = N—Zk=1[)’k + e (Vo = Yk )] (6.10)
c

The ratio of approximate prototype radius to previous estimated radius is
4
h =— (6.11)

Vet

The denominator and numerator expressions are defined by

2
et = \/Exk V-1 )2 + (Vi —Va,-1) (6.12)

r =\/r1,12+r2,12 (6.13)

where r,; and r;, are obtained from Eqs. (6.2) and (6.3). The centre coordinates of (6.12)

are obtained from the centre estimates of the previous iteration. The update of the cluster
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centre by the CA equations involves all points in the data set without an alphacut thresh-
old. However, the application of the OCF equations is subject to two conditions: (i) for
Ny> N,.» and (ii) for u; > «,. For notational clanty, these two conditions and the iteration

index f are omitted in the following OCF equations for the estimation of the cluster centre,

B'C—BC'
= (6.14)
AB — A'B
A'C— AC
vy=——— (6.15)
A'B— AB'
where
A=20 (x %)%, (6.16)
1 NC -—_
=2, (ve =i )x 6.17)
N. _
B=2" (xy —X, )y (6.18)
' Nc —
B=2 (v~ F)w (6.19)
20= 20" (x5 ) ek + ) (6.20)
N. _
20=2 (v =7 )(xi + v2) (6.21)
_ 1 o,
x:N—czk:lxk (622)
_ 1 o,
v I (6.23)

(o

The cluster radius 7 is computed from (6.8) using cluster centre values from (6.14) and

(6.15).

6.3 Pseudo Code

A critical design feature of the algorithm is the progressive removal of good cluster points
and non-cluster points, in a separate operation external to the optimisation loops for the
fuzzy membership, cluster radius and centre. This strategy frees the optimisation loops to
focus on the convergence of the cluster parameters, and contributes to the progressive de-
velopment of clusters in two major ways. Firstly, it tests for N,., to overcome convergence
problems and secondly, it provides the impetus (by the removal of data points) to search
for a new cluster. Without the controlled removal of data points, multiple cluster develop-
ment would be impossible. In addition, a beneficial spin-off from this strategy is the auto-

matic cleaning of noisy images. The elimination of unclustered points enhances cluster



Chapter 6 Detection of Circular Clusters 153

definition and thereby improves cluster detection. Furthermore, the progressive removal of

cluster points also improves computation efficiency and performance.

Pseudo code to detect circular clusters.

Fix N,in, q, o and 7.
Repeat
Assume ro = 0, use nearest neighbour of data centroid as vy.
Repeat
Calculate uy,, from (6.5) and 7, from (6.8) if N, >= N,,;, else from (6.2) and (6.3).
Calculate v, from (6.9) and (6.10).
If (N, >= N,;,) Then Calculate v, from (6.14) and (6.15) and  from (6.8).
Until (||ve1—v{| < Vie).
If (0 £ N, < N,i,) Then Remove N, and update N..
If (Ng >= N,.i» and & < r,,;) Then Save cluster points N, and update N..
Until (N, < N,..n).

Note: v, 1s a small value to control the stopping condition and ¢ is an iteration index.

The following define the meanings of the symbols: ¢; is the alphacut threshold on
membership; v is the cluster centre; v, 1s the current cluster centre tolerance; N, is the
number of points in the cluster; NV, is the current count of data points; N, 1s the minimum
points per cluster specification; g is the metric exponent; 7, 1s the radial tolerance specifi-
cation;, & 1s the cluster radial tolerance. For this application, v,,; = 0.005 and r,,; = 0.05

were used. The cluster radial tolerance 1s defined as

a

where the cluster vanance is given by

o= \/L%ﬂ:[\/(xk Vi )2 +(yx ‘Vz,:)z —rrjz (6.25)

N(Z =1

Cluster centre coordinates v, , and v;, are obtained from OCF equations (6.14) and (6.15),
and r, from (6.8). Note the particular form of (6.24) to represent the three sigma limits of
the cluster radius per cluster point. This form is used rather than the usual three sigma
limits to improve screening of unwanted clusters. The algorithm has a moderate tendency
to generate small size clusters (with less than 10 points) together with good clusters. The

good clusters typically contain significantly higher number of points. Equation (6.24) is
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found to be effective in isolating small clusters without impeding the development of clus-
ters from a low N, specification. An example of the implications of Eq. (6.24) will be

given in Section 6.5. Practical considerations and the type of applications determine the

specification value of r,,.

6.4 Parameter Selection

u
d
0.5

0.99
0.98

-1

u= q
0.97 d ! 13500
0.96
0.95

Figure 6.1 Plot of membership versus radial standard deviation for several g.

Considering the complexity of the clustering task, the significant cluster parameters of the
algorithm are surprisingly few in number. The algorithm’s performance 1s governed by two
parameters, ¢ and N,.», that could be preset in most cases. Figure 6.1 shows that g limits
the cluster radial standard deviation d to one standard deviation (or 1 pixel unit) for values
of ¢ > 7 at o, = 0.95. With the assumptions of ¢ = 0.95 and 1 = 3,500, our experiments
indicate that a high specification of g (for ¢ >7) 1s generzilly needed to detect poorly de-
fined clusters or clusters in a noisy environment. A clean or noiseless cluster can be de-
tected for a low ¢ specification (for 3 < g < 7). The number of points in the cluster deter-
mines the size of N,;,. In the examples, it is possible to obtain good or optimal cluster per-
formance from N,,;, = 5 if the clusters are clean or well defined. For clusters in a noisy en-
vironment, a substantially higher value of N,,, is appropriate to minimise the detection of
poorly defined clusters. For clusters containing several rings of different radu with a me-
dium level of noise, a good initial set of parameter values is with ¢ =7 and N, =5. In
most cases the presets, ¢ and N, will yield reasonable cluster solutions. The same pre-
sets, corresponding to a particular cluster structure, will exhibit a modest degree of insen-
sitivity to cluster numbers and invariance to scale, rotation and translation of the cluster

points. However, the distribution and level of noise can have a significant bearing on the
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ability of the algorithm to replicate optimal results from the same presets. If the cluster
results do not conform to expectation, the recommended procedure is to search for a solu-
tion by varying g and N, in a sequential order. Although these ranges may appear exces-
sive, In reality, more than one solution may exist within the prescribed ranges. Specific

1ssues concerning the proper selection of these parameters are discussed in the experimen-

tal results of Section 6.5.

6.5 Experimental results

(a) (b)
Fig. 6.2 (a) Two identical circles (538 points) vertically aligned and in contact. (b) Five
possible clusters found at g =41 and N,.,=S5. Cluster solutions are superimposed on

original unclustered rings. The two smallest cluster rings were obtained with ¢ =3 and
Nm,',, =35,

The first example, consisting of a figure of eight formed from two identical circles, shows
the mfluence of subjectivity on the interpretation of a cluster result. One may perhaps rea-
sonably assume that Fig. 6.2(a) contains only two clusters. An extended cluster search
discloses five rings shown in Fig. 6.2(b). The centre of each of the clusters is marked with
a small plus symbol. The significance of this result suggests that it is not possible to predi-
cate a priori the existence of particular cluster solutions at fixed values of g and N,,;,. Gen-
erally, a lower ¢ specification tends to yield the normal cluster interpretation. The final
cluster result is improved by applying equation (6.24). The results of Table 6.1 show five
poorly formed clusters, numbered / to 5, for N, < 10. In this case, it is clearly impossible
to use a 3o cluster tolerance to isolate these clusters. However, cluster validity criterion

(6.24) enables the extraction of good clusters numbered 6 to /0. The results of Table 6.1
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suggest accurate cluster parameter estimation. The true cluster radius and cluster centre,
determuined from the geometry of Fig. 6.2(a), is 47.5 pixel units. The true cluster centres

are located at coordinates (141.5, 93.5) and (141.5, 188.5), corresponding to the lower and

upper rings respectively.

Cluster | N, v, v, Cluster | 3o 30/N,
number radius

1 8 1415 | 1415 |12 1.333 0.1666
2 8 1375 [ 1415 | 1.2 1.333 0.1666
3 8 1455 | 1415 |12 1.333 0.1666
4 8 1335 [ 1415 |12 1.333 0.1666
5 8 1495 | 1415 |12 1.333 0.1666
6 64 1415 | 141.0 | 946 1.492 0.0233
7 42 1094 | 141.0 | 1044 1.070 0.0255
8 42 1736 | 141.0 | 1044 1.070 0.0255
9 172 | 1415 | 1885 |[475 0.750 0.0044
10 178 | 1415 | 943 47.5 0.860 0.0048

Table 6.1 Summary of Fig. 6.2(b) cluster result. Cluster parameter constants are:
a,=0095, g=41, N,;,=5. The true cluster centres (for the two smallest circles) are at
(141.5,93.5) and (141.5. 188.5) and the true cluster radius is 47.5 units of pixels. N, 1s
the points count of each cluster. Point (v;, v,) 1s the cluster centre. Clusters numbered / to

5 with N, < 10 and radius < 2 are poorly formed. They do not give a useful cluster struc-
ture Interpretation.
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(c) All 18 cells correctly detected.

Figure 6.3 (a) Sobel segmented red blood cells comprising 3,101 points. (b) Twenty two
clustered cells with ¢ = 7 and N,,;, = 5. Image (c) is the same as (b), less four cells and ro-
tated by 90 degrees. All eighteen cells of (c) are correctly identified for same cluster pa-
rameters as (b). Source of Fig. 6.3(a): [J.R. Parker, 1994].

The automatic inspection of blood samples 1s suitable for fuzzy clustering, as dem-
onstrated in Fig. 6.3(a). The algorithm is applied to count the number of blood cells. A
close inspection reveals that this is quite a complicated task because the cells not only dis-
play some irregular outlines, but also overlap to various extent. As Parker [12] noted, the
partial occlusion of neighbouring cells presents some problems for conventional image
processing. Although it is possible to solve this problem with the Hough transform method,
the fuzzy clustering approach seems more elegant and efficient. The algorithm performed

well on two different blood samples, correctly identifying all cells in Figs. 6.3(b) and
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6.3(c). All 22 cells in the image of Fig. 6.3(a), consisting of 3,101 points, were detected in
15.5 seconds on an 1486DX/33-MHz Intel microprocessor. The result is shown in Fig.
6.3(b), where the identified cluster is marked by a small cross at the centre of the cell. Fig-
ure 6.3(c) shows a different pattern presented to the algorithm, obtained by rotating Fig.
3(b) 90 deg. and removing four cells. Using the same parameter values as for Fig. 3(b), the
algorithm counted all the eighteen cells of Fig. 3(c) correctly. The results of Figs. 3(b) and
3(c) demonstrate that the algorithm can automatically find the optimum cluster numbers

from preset cluster parameter values.
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(a) Three noisy rings. (b) Three clustered rings.

(c) Clustered rings of (b) superirﬁposed on (a).

Figure 6.4 A noisy image of three rings, comprising 571 points. Image (b) shows th.ree
clusters detected with g = 12 and N,., = 5. Image (c) shows the detected rings supernm-

posed on image (a). Note the accurate centres and radii of the detected cluster parameters
in Fig. 6.4(c).
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To evaluate clustering performance in the presence of noise, the algorithm was pre-
sented with the image of Fig. 6.4(a), consisting of fragmented outlines of three intersecting
circles in a noisy background. The algorithm successfully detected all three clusters with
accurate centres and radii estimation in Fig. 6.4(b). The accurate cluster centres and radii

depicted in Fig. 6.4(c) demonstrate the robust clustering performance.

The next example is concerned with the automatic assembly of an industrial grinder.
Figure 6.5 (a), (b) and (c) depict some randomly oriented holding positions of three differ-
ent sizes of the armature housing before the insertion of the armature component. The tasks
of the vision system are to locate the object centre, the inner circle for component mating
and outer circle to enable a gripper to secure the object for subassembly. One pronounced
effect of the edge segmentation process is the presence of residual noise, especially around
the interior circle. Furthermore, the circular outlines are not well defined, with extensive
fragmentation and extraneous features located between the inner and outer circles that can
confuse the clustering algorithm. Given the concentration of patterns in the vicinity of the
two major circles, discriminating these circles present difficulties for any clustering algo-
rithm. Table 6.2 summarises the result of a first attempt to obtain cluster solutions from
fixed parameters. Cluster solutions (consisting of the inner and outer annuli and centre) are

limited to 40 < N, < 49 at unit intervals, with ¢ = 12.

The cluster results of Table 6.2 indicate that the noi_se features in close proximity to
the inner circle of Fig. 6.5(a) distorts the inner cluster circle, producing a circle that is ec-
centric. Elimination of the noise features, shown in Fig. 6.5(d), produces a dramatic im-
provement, confirming the problem diagnosis. Table 6.2 shows the transformation from no
solutions for Fig. 6.5(a) to 10 solutions for Fig. 6.5(d). This pleasing result demonstrates
the feasibility of using fixed parameter presets for optimal clustering. In practice, the inte-
rior noise can be minimised by controlling the lighting environment or by increasing the
contrast between image and background to improve the edge segmentation process. Despite
the substantial interior noise in Fig. 6.5(a), optimal cluster numbers were obtained as
shown in Fig. 6.5(¢). The accurate location of the four cluster rings in Fig. 6.5(f) demon-

strates good clustering performance from the algorithm.
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Image No Solutions for Ny,

Fig. 6.5a | 2126

Fig. 6.5b | 1186 3 :
Fig. 6.5¢ | 2235 | yes | yes es | yes |yes |yes |yes |yes |yes |yes
Fig. 6.5d | 2027 |yes |yes |yes |yes |yes |yes |yes |yes |yes |yes

Table 6.2 Summary of cluster solutions for 40 < N,,;, < 49 at unit intervals, with g = 12.
N, 1s the number of points in the cluster. Ny, 1s the minimum points per cluster.

A summary of the circle statistics of Fig. 6.5(e) is given in Table 6.3, relating to the

number of points in each cluster, circle centres, radii and the r,,; values.

Cluster | Number Centre Radius | 7
number | of points

1 299 127.49, 125.89 | 83.93 .0054
2 626 126.33, 107.38 | 107.38 | .0024
3 398 127.56, 126.09 | 97.10 .0039
4 347 127.31, 126.65 | 74.33 .0040

Table 6.3 Summary of Fig. 6.5(¢) circle statistics. Note: Circle centre is marked by 2

small cross in Figs 6.5(e) and 6.5(f). The origin of the points is at the lower left corner. All
dimensions are in pixel unit.
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(c) Another outline of armature housing top. (d) Interior noise of (a) removed.

(e) Four segmented clusters of (a). (f) Image (a) with the four rings of (¢).

Figure 6.5 Segmented outlines of an armature housing top, acquired in different orienta-
tions and positions. (¢) Clusters parameters of (¢) are: g=12 and N,,=112.
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6.6 Conclusions

A new approach to fuzzy clustering based on a supervised synthesis of independently op-
timised fuzzy membership, cluster radius and cluster centre has been presented. This com-
positional approach to fuzzy clustering offers certain advantages over the analytical ap-
proaches, such as more freedom to define memberships and greater flexibility to enforce
optimisation of the cluster radius and centre without the analytic constraints. Some distinc-
tive performance features of the algorithm are (i) automatic detection of optimum cluster
numbers, (1) generalisation of detection from constant parameters and (i) accurate clus-
tering in the presence of noise. Additionally, the algorithm provides an alternative approach
to solve analytically intractable clustering problems. The construction of separate optimi-
sation of cluster parameters and the supervising framework entail more design effort, but

produces accurate clustering.
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Chapter 7

A General Pattern Recognition Method

The general pattern recognition of any arbitrary object feature is currently still very diffi-
cult to achieve primarily because of the large number of possible variations of the same
feature and insufficient understanding of the nature of pattern interpretation. Nevertheless,
by constraining the conditions by which the image 1s acquired, with a few simplifying as-
sumptions such as a relatively low noise environment, undistorted and well-defined feature
views in a 2D image plane, it is possible to obtain a satisfactory result for pattern recogni-

tion.

This chapter presents a method for the general pattern recognition of a local feature
on the top face of an electric motor armature housing, consisting of the following proc-
esses: (i) image acquisition in Section 7.1, (ii) image thresholding in Section 7.2, (111) image
segmentation in Section 7.3, (iv) edge detection in Section 7.4 and (v) pattern matching in
Section 7.5. This example illustrates how to use the different fuzzy clustering methods ex-
amined in chapters 4 and 6, with some of the above mentioned techniques, to construct a
solution for general pattern recognition. A schematic of the pattern recognition method 1s

shown in Fig. 7.1.
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Figure 7.1 A schematic of the general pattern recognition method.

7.1 Image Acquisition

The basic requirements for image acquisition are a good lighting environment, suitable
fixtures for lighting and for the placement of the objects for image capture, a video camera

and a frame grabber.

Lighting involves the two important factors; quality and direction. The quality of
lighting relates to the adequacy of illumination intensity to delineate object features from
the background. Usually some control on illumination intensity is necessary to avoid un-
wanted effects of over or under exposure. Diffuse or even lighting is generally desirable to
prevent casting shadows, but difficult to achieve in practice. For this experiment, four 100
watts blue tinted globes were mounted on a fixture, which has adjustable height and light-

ing direction to simulate diffuse lighting.

The armature housing object has a stable bottom position, simplifying the object
placement for image acquisition. The dark colored object was placed on a white back-
ground to provide a good contrast. The camera was mounted on a height adjustable fixture
with a cantilever to position the camera lens directly above the object (to minimise per-

spective distortion).

A calibration of the camera for image position and screen resolution may be needed to ob-
tain true views of the object. Image position calibration was achieved using a calibrated
grid of dot patterns (6 mm diameter dots, spaced 50 mm apart) and acquiring the dot pat-
terns at various camera heights. Errors in the x and y axes were found to be less than + 1
pixel unit over a length of 300 mm. and less than + 2 pixel units over a length of 200 mm,

respectively. An example of the calibration chart for the x axis image position is shown in
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Fig. 7.2. The camera used is a high resolution CCD color camera, Pulnix model TMC-76
fited with an f/1.4, 10 mm lens without auto-focussing. It has a resolution of
756(H) x 581(V) which is incompatible with the Data Translation frame grabber (model
DT2871) display resolution of 512 x 512. Consequently, screen image is not displayed in
true view and appears stretched along the y-axis. Using the camera calibration charts for

the x and y axes, the correction factor on the y-axis was calculated to be 0.7049.

/
.

mn per pixel
o
-~

Il 1 Il
T T T
290 348 405 463 520

camera height, mm

Figure 7.2 Image scale for x axis pixels.

7.2 Image Thresholding

To simplify the image processing task, the image is acquired in gray scales of 256 levels.
This image is thresholded to prepare the image for blob analysis and pattern matching
stages. There are many different methods for image thresholding [see Gonzalez and
Woods, 1992; Haralick and Shapiro, 1992; Davies, 1990]. The fuzzy method presented in
Chapter 4 can also be used effectively. However, some experimental trials are initially nec-
essary to establish a good constant for the 77 adjustment equation (4.5). Once this is com-
pleted, the algorithm is straightforward to use with good discrimination under a wide range

of 1llumination conditions.
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(a) Intensity image. (b) Thresholded image of (a).

Figure 7.3 Top views of an armature housing.

Figure 7.3(a) shows the intensity image of the housing top which is only displayed in
16 gray levels, because of a limitation of the word processor. The image contained 256
levels and was thresholded as 256 levels. Figure 7.3(b) shows the binary image resulting
from thresholding. Note that the binary image of Fig. 7.3(b) contains extraneous data in the
centre region of the image. For our particular method of pattern recognition, the data will
not adversely affect the end result, although it may present problems with other methods
used. However, since the data is not useful for downstream processes, it should be removed
in the interest of improved computation efficiency. The object features are isolated from

the background by a method called image segmentation.

7.3 Image Segmentation

Like thresholding, there are numerous methods for image segmentation. Some examples
are found in [Gonzalez and Woods, 1992; Haralick and Shapiro, 1992; Davies, 1990; Co-
hen, 1993; Fu and Mui, 1981]. The method we used is known as blob (or connectivity)
analysis introduced by [Cunningham, 1981]. We modified his method to include some re-
finements such as improved segmentation accuracy of complicated blob structures and

automatic edge segmentation [Im, 1992].
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Three blobs obtained from a blob analysis of Fig. 7.3(b) are shown in Figs. 7.4 (a),
(c) and (e). The corresponding edges of the segmented blobs are shown in Figs. 7.4(b),
7.4(d) and 7.4(f). For the purpose of visualisation, the segmented blob is shown as a black
object in a white background. As this example illustrates, one or more blobs may be ob-
tained from thresholding an image. Therefore, a method to identify the segmented blobs is
necessary to ensure the correct blob is used for the pattern matching stage. Because blob
analysis performs a normal raster scan of the image, it is easy to implement an efficient
procedure within blob analysis to quantify the geometric properties of an object; for ex-
ample, areas, perimeters, first and second moments of area, bounding dimensions, aspect

ratio and other shape parameters. These properties may be used to identify the object.

7.4 Feature Extraction

Feature extraction is used to obtain a model feature for pattern matching and also to enable
a comparison of selected data features to be made against the desired model feature, during
a search for a pattern match. Several silhouette based techniques, such as curvature scale
space representation of points in [Mokhtanan, 1995], a parametric approach for matching
of polygonal profiles [Ventura et al., 1995] and the correlation coefficient method [Im,
1992], have been used. Our method uses an array of 30 (max) mean radial profile points,
where each point corresponds to a degree of rotation angle. The profile points are used to
calculate the similarity coefficient (see Section 7.5.1) for pattern matching. The maximum
array size is introduced to limit the processing time. The feature extraction process, illus-
trated in Fig. 7.5, shows the extraction of a notch profile from a window with boundaries
defined by a radial angle range of 30 degrees and the inner and outer radii of 80 and 117

pixel units, respectively.
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(a) Segmented image number /. (b) Edge image number /.

(c) Segmented image number 2. (d) Edge image number 2.

(e) Segmented image number 3. (f) Edge image number 3.

Figure 7.4 Three blobs extracted from Fig. 7.3(b).



Chapter 7 A General Pattern Recognition Method 169

7.5 Pattern Matching

Normally, the matching of data features to the model features is done over a restricted zone
of the image area for reasons of processing efficiency. In our method, pattern matching is
confined to the window defined in the lower drawing of Fig. 7.5. The search for a pattern
match starts at 0 degrees, defined in Fig. 7.6 (a), and proceeds in a clockwise direction up
to a full 360 degrees. To improve the accuracy of the search for a pattern match, a number
of screening strategies can be used. These are discussed in [Im, 1992]. For this experiment,
the algorithm used for pattern matching has efficient processing techniques derived from
the use of (1) similarity coefficient (Section 7.5.1, from [Flusser, 1995]) and (11) data sec-
toring (Section 7.5.2). Consequently, the pattern matching algorithm can implement an
exhaustive search over a zone bounded by the two specified radii without any need for

screening strategies.

EDGE SEGMENTED IMAGE

L. Mean ref xou
17 Radial ranse . . .

Figure 7.5. The feature extraction process.
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Press any key to begin search.

0 deg

Figure 7.6 Object presented for pattern matching.
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HATCHED PROFILEChtopl.edg:257?8 points)

Object tupe : housing top :
Profile angle : 139 deg (green line)
Linits angle : 30 dega

Radius min, nax : 80,117 pixels
Similarity coeff . 1.0

Angle is negative clockwise

0 deg

Figure 7.7 Pattern matching of a local feature at 139 degrees.
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Object tupe I housing top
Profile angle : 142 deg (green line)
Limnits angle : 30 dea

Radius min, max : 80,117 pixels
Similarity coeff | 0.9806
Angle is negative clockwise

deg

Figure 7.8 Pattern matching of a local feature at 142 degrees.
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Object type : housing top i
Profile angle t —122 deg (green line)
Linits angle : 30 dega

Radius mnin, nax : 80,117 pixels

Similarity coeff : 0.9863 :
Anale is negative clockwise

dea

Figure 7.9 Pattern matching of a local feature at -122 degrees.
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7.5.1 Similarity Coefficient

To obtain a similarity coefficient, the mean radial point value at each degree of rotation
angle from the two sorted arrays of objects A, (from the model) and B, (from the data) are
compared. The similarity relation is defined by

1

s(A,B)=1-
(AB)=1-1

NC
ZlAk ~ By (7.1
k=1

where N. is the number of points in the array (maximum = 30) and M is the maximum ra-
dial value of either array 4 or B. Note that each value of the array is measured relative to
the radius centre. Since (7.1) involves only the addition, subtraction and division opera-
tions, it is more efficient compared to other similarity indices such as a statistical correla-
tion coefficient. The algorithm allows a minimum of N, = 5 and a maximum of N, = 30 in
calculating the similarity coefficient s(4,B). An additional procedure is used to detect the

maximum similarity coefficient s(4,B) and the angle at which this coefficient occurs.
7.5.2 Data Sectoring

Data sectoring 1s the division of data in the image space into equal sector areas for the pur-
pose of calculating the similarity coefficient. Since the pattern match is confined to the
boundaries of a data window (within which data is extracted), it is only necessary to limit
the zone of data sectoring within the two specified radi. Data extracted from the window is
associated with its sector, resulting in significantly improved data processing efficiency. In
this application for example, the processing speed increased by a factor of five when the
sectors increased from four to eighteen (this figure vanies with different images). It has
been experimentally established that eighteen sectors gives near optimal performance, de-
pending on the image data. A higher number of sectors may result in sub-optimal perform-
ance because of increased processing for the sectors. In using the data sectoring technique,
it is important to ensure that the sectors overlap the extreme boundaries of the window

during each degree of rotation of the window.

7.5.3 Fuzzy Clustering to Locate Circle Centre and Radii

The accuracy of pattern matching depends on an accurate reference centre for the window.

This 1s demonstrated by comparing Figs. 7.7 and 7.8. Figure 7.7 locates the optimal match
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angle at 139 degrees. Note the model profile obtained from the same object at the upper left
corner of Fig. 7.7). Figure 7.6 shows the same object presented for pattern matching. The
orientation angle of the object in Fig. 7.8 is the same as Fig. 7.7, except that the centre of
the object of Fig. 7.8 is located by a centroid of area method, a less accurate method com-
pared to fuzzy clustering. Consequently eccentric circles formed by the rotating window
are clearly visible in Fig. 7.8, because of inaccurate centring. The pattern match algorithm
is however quite robust, finding a match at 142 degrees for Fig. 7.8 with an error of 3 de-
grees compared to the optimum match angle at 139 degrees of Fig. 7.7. The error is also
reflected in a lower similanty coefficient. The fuzzy clustering method for circular cluster
detection, examined in Chapter 6, gives accurate centre values needed by the pattern match
algonithm. For example, Fig. 6.5 demonstrates that accurate circle centre, and the inner and
outer radii of the housing rings can be obtained from the clustering method. Figure 7.9

shows another example of correct pattern match at a rotation angle of -122 degrees.

7.6 Clustering Performance

Table 7.1 summanses the processing times to detect the selected pattern at various indi-
cated orientations of the housing top face. The processing times were measured on an
1486DX/33-MHz Intel microprocessor. The processing time to match all the different
profile angles, averages about 3 seconds. A major portion of the processing time was due
to sectoring data into the 18 sectors. The time to compute similarity coefficients was neg-
ligible. The different orientations of the selected profile on the housing top face were cor-

rectly identified by the pattern matching algorithm, without errors.

Image Number | Profile Processing
of points | angle (deg) | time (sec)
HTOP1.EDG | 2578 139 3.0
HTOP2.EDG | 2703 66 3.2
HTOP3.EDG | 2775 -32 3.5
HTOP4. EDG | 2784 -122 33

Table 7.1 Summary of processing times. The profile angle is measured positive in a
counter clockwise direction. 18 data sectors were used in the algorithm. All four different
orientations of the housing were correctly detected. The processing time was measured on
an 1486DX/33-MHz Intel microprocessor.
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7.7 Conclusions

A general pattern recognition of an arbitrary object feature i1s generally difficult to ac-
complish successfully without simplifying assumptions that constrain the conditions by
which the image features are to be detected. One such approach involves pattern matching
of local feature points using similarity coefficients and a number of low level image proc-
essing routines to convert the data into a form suitable for this task. In constructing a gen-
eral pattern recognition method, the fuzzy clustering methods such as those discussed in
Chapter 4 for region segmentation or thresholding, and in Chapter 6 for the detection of
circles have been found to be particularly useful. One of the significant benefits of fuzzy
clustering methods is the accurate detection of graphic primitives such as lines, arcs and
circles. Quite often, this aspect of image processing is difficult to achieve by conventional

means, especially if the environment is noisy or the image is fragmented or partly occluded.

This example has demonstrated that the fuzzy clustering methods can significantly
improve or simplify the pattern recognition problem. For example, the automatic detection
of the inner and outer annuli of the housing top eliminates the need for extensive trals to
define the probable window boundaries for the pattern matching algorithm. Moreover, the
accurate detection of the annuli centre improves the detection accuracy of the optimal angle

of match compared to conventional methods such as the centroid of area method.
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Chapter 8

A Neural Network Approach

Neural networks open new possibilities for pattern recognition. One of the recognisable
advantage of a neural network, among others, is its generalisation characteristic. In practi-
cal terms, this means a neural network, under suitable conditions of the data and training,
can perform complex mapping that approximates to the desired output even though the
mput pattern is not exactly identical to the training pattern. The generalisation capability is
typically obtained at a significant cost, involving extensive training of the network to learn
the desired pattern features. Often elaborate data preparation is necessary because the form
of the input data has a significant impact in the learning capability of the network. This

chapter examines various ways of extending generalisation in a neural network.

Three different applications of the fuzzy neural networks based on the backpropa-
gation paradigm are presented. Section 8.1 presents a scaled fuzzy prototype mapping
method to improve object identification under a range of illumination conditions. Section
8.2 examines the design of a neural network configuration to improve object recognition.
This involves training a cascaded neural network with membership functions to map a
complex correlation coefficient parameter needed for pattern matching. In Section 8.3, a
fuzzy neural network is implemented to improve cluster substructure identification by
training a neural network to map the cluster prototype from the cluster membership func-

tion.
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8.1 Improving Object Recognition with Scaled
Fuzzy Prototypes

Two neural network methods for the pattern classification of real objects are examined.
The Direct Mapping (DM) method defined in Section 8.1.2, uses normalised histograms
for network inputs while the Scaled Fuzzy Prototype Mapping (SFPM) method, defined in
Section 8.1.3, provides Effective Width Ratios (EWR) data for network inputs. The EWR
defined in Section 8.1.4 is normalised intensity data scaled from FCM prototypes. The
SFPM method proves to be more effective in mitigating the illumination effects compared

to the DM method, thus enabling more robust cluster identification in a noisy environment.
8.1.1 Introduction

Images acquired by a camera are susceptible to 1llumination or reflectance variations which
can have a significant impact on the results of subsequent image analysis. For example, the
detection of specific colour tones in an object can be critically dependent on a controlled
lighting environment that may be difficult or too costly to provide in certain environments.
Consequently, there is a strong motivation to devise illumination insensitive methods for

Image processing.

In the DM method, input data to the neural network are in the form of normalised
histograms. The histograms represent an image of 256 x 256 resolution with 256 gray
levels of intensity. A significant advantage of histogram based image analysis is its sim-
plicity. Its compact feature representation and rotation invariance are readily exploited

without recourse to complex analysis.

8.1.2 Direct Mapping (DM) Method

DM involves mapping of 256 elements of the histogram into the five designated output
classes by a backpropagation neural network, a paradigm [Rumelhart et al., 1986] that has
been widely and successfully applied to pattern recognition problems since its inception in
1986. Other more advanced variants basically improve the reliability and speed of training
times. The standard backpropagation model is also quite suitable for accurate classification

because it can be implemented to give value data (discussed in Section 8.1.5) that indicate
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a controllable degree of classification. The choice of the particular network model is not

critical for the particular application.

A three-layer architecture (256:5:5, corresponding to the input, middle and output
layers) was selected for the network, as shown in Figs. 8.1 and 8.2. For input data com-
patibility, a floating point data type was selected for each of the three layers. Whilst the

DM method is simple to implement, it will be apparent later that the classifier performance

1s rather sensitive to illumination factors.

256:5:5 3:5:5

Normalised
Histogram —| T BP Net Net Outputs EWR =} FFBP Net = Net Outputs

Figure 8.1 Network for DM method.  Figure 8.2 Network for SFPM method.

8.1.3 Scaled Fuzzy Prototype Mapping (SFPM) Method

The SFPM method uses the FCM algorithm [Bezdek, 1981] to generate the scaled fuzzy
prototypes from the intensity data for use as input to a backpropagation neural network.
The network structure also consists of three layers (3:5:5) as indicated in Fig. 8.2, except
that the input layer has three processing elements corresponding to the number of the fuzzy
prototypes which are normalised as Effective Width Ratios (EWR). The FCM partitions a
finite set of feature vectors in real d-dimensional space R into c clusters or natural groups,
where 1 < ¢ < Nis an integer. The ¢ x N matrix U = [u;] contains the fuzzy c partitions of
X which satisfies the following three conditions:
c N
Zu,-k =1, for all k; Zu,-k >0, foralli and uy € [0,1], forall i,k . (8.1.1)
i=1 k=1
The FCM computes the clusters by iterative minimisation of the general objective function
N ¢
Tn(UVY= 2 2 ufllxe —villi  for 1<m<eo (8.1.2)
k=1i=1
where U 1s the fuzzy ¢ partition of the set of cluster centres v; € R% | - |l the weighted in-
ner product norm and m € (1,00) is the weighting exponent of the fuzzy membership. The

norm is the Euclidean distance between the feature vectors and the cluster centres. Hard
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clusters in X exist for m=1. For m> 1, a local minimum of J,, exists, for all i, ¥ and

x; # v;, and for all 7 respectively, when
2(m-1) T

=N
,k-‘{ZUlXF 0 J (8.1.3)

N
Zuimkxk
v, = (8.1.4)

Z L ik
k=1

The exponent of the fuzzy memberships 7 determines the shape of the fuzzy mem-
bership. An exponent of value 2 is generally satisfactory for clustering. The algorithm pro-
ceeds with initial random values for Uy, to produce a series of values for v; and u;. Substi-
tutions nvolving #; in (8.1.3) and v; in (8.1.4) are made repeatedly until the value of either
variable converges to an acceptable limit. This algorithm is quite computation intensive.
To alleviate this problem, neural network solutions were adopted. Bezdek has implemented
a Feed Forward Backpropagation Cascade Correlation network with improved learning
rates in [Hall et al., 1992]. It is also possible to train a backpropagation neural network to

model the cluster centres (or prototypes) of the FCM algorithm (Section 8.3).

8.1.4 Effective Width Ratios (EWR)

If a histogram is used directly in training a neural network, accuracy of pattern classifica-
tion may be adversely affected by lighting conditions since these factors influence the shape
of the histogram. The effects of illumination variation on histogram are illustrated m Figs.
8.4(a) and 8.4(b). To improve the recognition capability of the network, it is possible to
derive parameters from fuzzy clusters that are largely insensitive to illumination effects.
One simple method is to scale the fuzzy prototypes as Effective Width Ratios (EWR),

Il (8.1.5)

W, =
r

where c; 1s the cluster centre for i = 1,2,..,N. The symbol & denotes the lower end mntensity
point of the histogram above the pixel count threshold limit 7', and r the profile range. The

threshold 7' defines the new histogram profile to which pixels are considered to belong, if
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they exceed T. The symbols of T, b and r are defined in Figure 8.3. Equation (8.1.5) is

equivalent to a width normalisation of the histogram data.

b C1 C2 C3

r

Figure 8.3 Illustration of EWR definitions.

To illustrate, an object with 3 cluster prototypes ¢; = 113, ¢, = 134 and ¢; = 156 has
an effective intensity interval from 84 to 251 and a range r = 167 for T specified at 0.1 %.
With b = 84, w, w; and w3 compute to 0.1737, 0.2994 and 0.4311 respectively. Table 8.1
shows the EWR for 3, 4 and 5 clusters of the same object at high and low levels of illumi-
nation. The low and high illumination levels have histogram patterns shown in Fig. 8.4(a)
and Fig. 8.4(b) respectively. Despite the significant difference in illumination intensity, the
good agreement in the EWR for each corresponding cluster confirms the substantia! valid-
ity of (8.1.5). It is observed from Table 8.1 that (8.1.5) holds for any number of clusters
produced by FCM and for any range of illumination except at the extremities. At these

zones, either saturation or under exposure occurs with the loss of feature discrimination.

Normalised histogran Normalised histogram
1.0— 1.0—
0.5— P—
O T iy | T v ra iy
) s0 100 1S5S0 200 250 o 50 100 150 200 250
(a) Low illumination. (b) High illumination.

Figure 8.4 Histograms of identical object at two different levels of illumination.
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Figure Cluster Prototypes Effective Width Ratios
(8.4)
(4] Co C3 Cy Cs wy Wo ) Wy Ws
High/ | 113 | 134 | 156 1737 | 2994 | 4311
Low/ |83 |94 107 1856 | .2990 | .4330
High/ | 108 | 125 | 142 | 161 1437 | 2455 | 3472 | 4611
Low/ |80 |8 |98 109 1546 | 2474 | 3402 | 4536
High/ | 105 | 121 | 134 | 147 [ 165 | .1257 | .2216 | .2994 | .3772 | .4850
Low/ |78 |86 93 101 | 111 | .1340 | .2165 | .2887 | .3711 | .4740

Table 8.1. Comparison of EWR at low and high levels of illumination, /.

8.1.5 Experimental Results

A criterion function based on the Euclidean distance is used to determine the nearest class
and to evaluate the accuracy of the network’s response. The distance formula is
where v; and v; are the EWR vectors of objects 7 and j, and d; is the minimum Euclidean

distance between v; and v; for all i # ;.

The nearest class according to the minimum distance criterion of (8.1.6) is indicated
under the MD column of Tables 8.2, 8.3 and 8.4. The network’s response to the histogram
inputs and the scaled fuzzy prototypes are presented in Tables 8.2 and 8.3 respectively.
The five output classes are represented by the five columns under the caption of Network
Test Response. Each column of the output response represents one of the nominated class
corresponding to features of objects a/ to a5. For example, column a/ refers to the class of
al object. The class assigned by the network is indicated by highest row value, shown
shaded. The network was trained with image objects a/ to a5. Objects a6 to al0 represent

test data.

Table 8.2 shows that the direct method produced 2 misclassifications (a8 and a/0)
for a total of 5 test classes. The misclassification occurred because of the similanty of
histograms. Table 8.3 gives the response of the network trained using the SFPM method.
The SFPM method demonstrates a significant improvement in classification performance

compared to the DM method. All test objects (a6 to al0, the same as Table 8.2) were cor-
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rectly classified without errors. This result is attributed to the insensitivity of EWR to the

illumination factor inherent in the image histogram.

Test Network Test Response M
Class al a2 a3 D
a6 .0000 : 1 .0009
a’ 0076 .0030 .0054
a8 .0024 .0018 .0181
a9 .0021 .0021 0160
al0 .0031 .0046 .0008

Table 8.2 Network response using the DM method. Symbol MD = minimum distance cri-

terion of (8.1.6). Class assigned by the network is shown shaded. Note: Two misclassifica-
tions for test objects a8 and al0.

Test Effective Width Ratios Network Test Response M
Obj (EWR) al a2 a3 D
a6 4199 | 7449 | 8692 | .0018 a2
a7 1969 | 4655 | .8717 | .0007 | .000 a4
a8 1523 | 5000 | .9607 | .0000 | .0000 ad
a9 1149 | 4010 | .9854 | .0000 | .0000 74 a5
al0 | 0872 | 6333 | .8485 | .0027 | .0000 a3

Table 8.3 Network response using the SFPM method. Class assigned by the network is
shown shaded. Note: All five test objects are correctly classified.

In Table 8.4, the test objects all to al5 were artificially created (using same w; and
w3 but varying w,) to test the network’s response to classes close to the decision boundary
of classes al and a4. The network predicts a decision boundary (theoretically at 0.5 value)
at al2 instead of the optimum minimum at a/3. The boundary disparity is considered
small and can be minimised with an improved training regimen and a greater number of
training patterns. At the class boundary, the network produces a value approximating 0.5
for each of the nearest classes (a/ and a4). This experiment demonstrates that a back-

propagation neural network approximates the discriminant function of a Bayes classifier.
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Test Effective Width Ratios Network Test Response M
Object (EWR) al a2 a3 as D
all 1800 | .4896 | .8072 | .1281 | .0000 | .0074 .0000 | a4
al2 1930 | 4896 | .8072 .0000 | .0011 .0001 | a4
al3 2125 | 4896 | .8072 .0000 | .0001 | 4853 | .0000 | al,
a4
ald 2200 | .4896 | .8072 .0001 | .0001 | .4827 | .0000 | a/f
als .2300 | .4896 | .8072 .0001 [ .0000 | .4849 | .0000 | al

Table 8.4 Network response near a decision boundary between al and a4. Symbol
MD = mimumum distance criterion of (8.1.6). Class or classes assigned by the network is

shown shaded.

8.1.6 Conclusions

Two different methods for classifying normalised histogram data have been presented. The

performance of the classifier based on the direct method was unsatisfactory because the

shape of the histogram profile was affected by illumination factors. The classifier based on

the SFPM method was supenor because the effective width ratios proved to be effective in

isolating the illumination factor from the raw image data, to enable more accurate pattern

recognition.
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8.2 Improving Object Recognition for Pattern
Matching

The design of a neural network configuration for object recognition is described. Recogni-
tion is achieved by pattern matching of a local profile using correlation coefficient. Super-
vised networks configured as a conventional classifier and three variations of a fuzzy clas-
sifier are investigated. Their performances are compared with the statistical correlation
coefficient used as the reference. The relative percentage error of the correlation coeffi-
cients from the fuzzy neural network design was significantly less than the results from the
conventional neural network design, indicating improved accuracy from fuzzy networks.

Both the fuzzy and non-fuzzy networks produced the correct angle of match.
8.2.1 Introduction

Object recognition is a high level image processing task preceded by the basic downstream
tasks such as image acquisition, preprocessing, segmentation and feature extraction. Three
categories of object recognition may be identified: (1) decision-theoretic, (2) structural (or
syntactic) and (3) image interpretation [Woods and Gonzalez, 1992]. The method adopted
belongs to the decision-theoretic category. The pose of an object, defined as the angular
orientation in a 2D plan view, is determined with a combination of classical image pre-
processing methods and finally optimised with a fuzzy neural classifier. The aim is to dem-
onstrate firstly that a fuzzy classifier can be designed to match the performance of the con-
ventjonal object recognition methods and secondly, a neural network, given the same input

data, can generalise more accurately with fuzzy stages compared to a conventional classi-

fier.

Numerous papers have been published over the last decade in the area of object rec-
ognition. The Neocognitron developed by [Fukushima et al., 1983] paved the way for the
application of neural networks to object recognition. The results were outstanding. Mod-
elled on the human visual system, the Neocognitron was capable of recognising complex
patterns with a high degree of accuracy. Since then more progress has been made in the

neural network models. Four main types exist today: (i) Hopfield’s associative memory, (11)
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Kohonen’s self organising maps, (111) Carpenter and Grosberg’s adaptive resonance models

and (iv) Rumelhart’s feed forward back propagation (FFBP).

The FFBP model 1s quite widely used for image processing and pattern recognition.
Gosh et al. [Gosh et al., 1993] modified the structure of the FFBP so that it does not re-
quire supervised training (unlike a conventional FFBP model) for the segmentation of ob-
jects. Several fuzzy indices were used to measure the system errors. The learning rates

were evaluated for different error measures.

To improve object recognition, we used a supervised FFBP configured as a fuzzifier
to generate the membership functions. Each function consists of a set of 3 ordered mem-
bership grades. The network structure is shown in Fig. 8.5. The values of the membership
function are used as inputs for the defuzzifier to approximate the corresponding correlation

coefficient.

Pattern Membership Correlation
Vector -Function oefficient
i\ Fuzzifier = Defuzzifier
Net 1 Net 2

Figure 8.5 A fuzzy neural network configuration for object recognition.

8.2.2 Image Processing

A sample of an intensity image is given in Fig. 8.6(a). The image is subsequently thresh-
olded and segmented by connectivity analysis (see Chapter 7) to produce a silhouette of the
object shown in Fig. 8.6(b). Finally, a local feature of the object profile is extracted as a
vector of 30 mean radial points about the object’s centroid of area, at one degree intervals
of rotation from the nominated profile angle. Data on the area centroid and other geometric
properties such as area, moments, major axis angle and perimeter, are obtained from the
blob analysis program. The feature selector described above is used to build the model

profile data base and also to obtain the object pattern vector for the fuzzifier nef /.
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Profile anele (des) : L6J dew,
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Object tupe ! Armature
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(a) Intensity image. (b) Edge detected image for pattern matching.

Figure 8.6 Image of an electric motor armature.

8.2.3 Network Configurations

8.2.3.1 Conventional Design (Type 4)

A direct design method is to train the FFBP net with the desired set of outputs ie. the
maximum correlation coefficients corresponding to different orientations of the profile
from the same object. For the experiment, five pattern vectors from a local profile of the
armature object at /63 to /67 degrees were selected to train the network. The angle of
maximum correlation is /65 degrees which is also referred to as the profile angle. The in-
put object data and correlation coefficients (target values) for network training are sum-

marised below:

arl63=0.8522, arl164 =0.9574, ar165 = 1.0000
arl66 = 0.9580, ar167 = 0.8429

The name of the object on the left side of the equality symbol represents the arma-
ture object. The suffix denotes the object’s pose angle. In the above case, the angle varied
from 163 to 167 degrees. The object’s reference pose angle is represented by the muddle

angle. In the above case, the reference angle is at /65 degrees.

A FFBP network layer structure of 30:15:5 represents the 30 floating points of each
input vector from a local object profile and the 5 floating points for each of the output
class of coefficients. The choice for the single middle layer is guided by the need to provide

sufficient weights for learning.
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8.2.3.2 Fuzzy Design (Type 2 and Type 3)

The fuzzy design involves fuzzy sets and membership functions. A fuzzy set 4 is defined
as a collection of ordered pairs,

A= {My(x).x5),i=1,2,. N} for 0 < M,(x;) < 1, Vi 8.2.1)
The membership function M,(x;) associates each point x; with a real number in the interval

[0,1]. Another useful concept is the fuzziness index / with a fuzziness measure defined in

[Gosh et al., 1993] as

1. I(A) = minimum < M, =0 or 1 Vi.

2. I(A) = maxamum < M, = 0.5 Vi.

3. I(A) = I(A*) where A* is a sharpened version of 4 defined as,
My(x;) 2 M,(x;) if My(x;) > 0.5
Myw(x;) < My(x;) if My(x;) <0.5

4. I(A) = I(A°) where A° is the complement set of 4.

For a Euclidean distance, an index of fuzzy set A having N supporting points is defined as

N
2
V(A)=;\/Z{MA(X,')—MA-(x,)}2 (8.2.1)
i=1
An ordinary set is defined as
Y 0 if Myu(x;)<05 (522)
AGD=1 e ML(x,)205 <

The block schematic for a fuzzy neural network is shown in Fig. 8.5. In the training
mode, Net I was trained with the membership functions of Figs. 8.8 and 8.9 (except for the
interpolated functions denoted by the faint broken lines) and Net 2 with their corresponding
coefficients as given in Table 8.6. In the production (or test response) mode, new data 1s
presented to Net I resulting in the correlation coefficient from Net 2. The network structure

for Net 1 and Net 2 were 30:10:3 and 3:3:1 respectively.

(A) Hard Solution (Type 1)

The hard solution has M,(x;) = 1 as shown in Fig. 8.7. For this particular case, the network
response can be easily predicted (hence training is unnecessary for discussion purpose).

The coefficients for each of the objects from ar206 to ar348 must be identical to the refer-
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ence object (ie. ar/63 to arl67, theoretically). The fuzzifier assigns each of the input vec-

tors to one of five distinct classes of the coefficients without any class overlap.

1M

5

0
I I 1 1 I

163 164 165 166 167
Angle(deg.)

Figure 8.7 Membership functions for a crisp solution (Type 1).

(B) Soft Solution with Narrow Support (Type 2)

The soft solution provides more freedom for the design of the membership function. For
simplicity, only a triangular function is considered. The support (or base) of the member-
ship function consists of 3 points at /63, 165 and /67 degrees with grade levels as shown
in Fig. 8.8. Optimum pose is at /65 degrees. Each of the three functions has a different
triangular profile. The dissimilar functions reflect the different degrees of fuzziness accord-
ing to the relation of (8.2.1). For example, M, maximised at /65 degrees is expected to be
more accurate than the other functions maximised to /63 (M,) and /67 (M.) degrees. The
fuzziness assoclated with the triangular functions helps to shape the neural network re-
sponse to one which is non-linear and convex (bell shape). How does this response charac-
teristic solve the pattern recognition problem? If the response is non-linear and convex,
then it is possible to pick the maximum coefficient and optimum angle of match, which is
impossible with a linear or monotonically increasing response characteristic. The fuzzy

functions provide one effective way to coerce this type of response from a neural network.

! : 1 I ]
163 164 165 166 167
Angle(deg.)

Figure 8.8 Membership functions for a soft solution with narrow supports (7ype 2).
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(C) Soft solution with Wide Support (Type 3)

The membership functions for this category are shown in Fig. 8.9. In contrast to the previ-
ous functions, these functions have base membership grades increased from 0 to 0.5 with a
corresponding increase in the fuzziness index of Eq. (8.2.1). Theoretically, the wider sup-
port of these membership functions should produce less accurate prediction of the coeffi-

cients from the defuzzifier. In Section 8.2.4, we see that this observation is confirmed.

163 164 165 166 167
Angle(deg.)

Figure 8.9 Membership functions for a soft solution with wide supports (Type 3).

8.2.4 Results

Results for the production mode response for Type 2 and Type 3 network configurations
are summarised in Table 8.5. The response correlation coefficients for all four configura-
tions and their relative error (with reference to the statistical correlation coefficient) are
presented in Tables 8.6 and 8.7 respectively. The most accurate prediction, at the optimum
pose angle, is obtained from the fuzzy neural network design (Types /, 2 and 3). Accuracy
better than 98.5 % is obtained from the crisp (Type /) and soft (Type 2) solution with nar-
row support. The soft solution (Type 3) with a wider support yielded an accuracy only
slightly worse at 97 %, but still better than the solution of the conventional (Type 4) design
(at 92% accuracy). The results of Tables 8.6 and 8.7 confirm the validity of (8.2.1) and
demonstrate the usefulness of the fuzzy functions in shaping the neural network’s response.

All the network configurations correctly predicted the optimum pose angle.

An advantage of the soft solution design (7ype 2) is that less data is needed for both
training and production modes, hence better performance. Moreover, intermediate points of
the function can be interpolated by the fuzzy neural network with reasonable accuracy

(represented by the faint broken lines of Figs. 8.8 and 8.9). The crisp fuzzy solution



Chapter 8 A Neural Network Approach 189

(Type 1) and the conventional design (7ype 4) requires a membership point at each angle of

the search space for neural network training, thus longer training time.

The results of Tables 8.5, 8.6 and 8.7 suggest, with additional support from other
researchers in this field [Pal, 1992], that the fuzzy neural network configuration provides

more accurate predictive capability compared to a conventional design.

Object | Angle Fuzzy Membership Function | Fuzzy Membership Function
(deg) Type 2 Type 3
arl63 163 .9938 4998 .0000 9901 7506 .5000
arl64 164 .5796 .9470 .0001 .8809 .9620 3679
arl65 165 .0063 .9890 .0050 4993 9857 4998
arl66 166 .0000 9519 .5546 3654 9610 .8877
arl67 167 .0000 4995 .9950 .5005 .7494 9914
ar206 206 .9843 4963 .0000 9935 .5974 6609
ar207 207 .3869 9385 .0003 4292 9247 4901
ar208 208 .0041 .9808 0118 6138 9776 .5493
ar209 209 .0000 .8853 6989 4693 9521 .8783
ar210 210 .0000 2926 .9948 6017 7274 .9887
ar253 253 .9863 6933 .0000 .9945 6767 4833
ar254 254 2693 9782 .0002 .9220 9571 .3008
ar255 255 .0013 9926 0146 5210 .9896 3567
ar256 256 .0000 9356 8563 .3007 .9804 .7863
ar257 257 .0000 .3863 .9986 3953 .8589 .9835
ar344 344 .9687 3314 .0001 9917 .6373 6532
ar345 345 .3664 .8665 .0006 9261 9223 .5266
ar346 346 .0049 .9620 0161 7161 .9600 6593
ar347 347 .0001 .8891 6354 6421 .8979 .9242
ar348 348 .0000 3530 .9929 7775 5521 9920

Table 8.5. Summary of membership functions. Note that the training data set consists of
arl63, arl65 and arl67, corresponding to membership functions M,, M, and M, of Figs.
8.8 and 8.9. Each function is represented by three points, hence the three columns associ-
ated with Type 2 and Type 3 fuzzy membership function. The data given in Type 2 and
Type 3 membership function columns are the responses from the neural network.
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Object Angle Stat Neural Network Coefficients
(deg) Coeff
Type 1 | Type2 | Type3 | Type 4
arl63 163 .8522 .8522 .8526 .8565 .8521
arl64 164 9574 9574 .9750 .9705 .9549
arl65 165 1.000 9
arl66 166 9570
arl67 167 .8492
ar206 206 8212
ar207 207 9373
ar208 208 9912
ar209 209 9592
ar210 210 8557
ar253 253 8157
ar254 254 .9354
ar255 255 9959
ar256 256 9732
ar257 257 8783
ar344 344 8215
ar345 345 9399
a346 346 .9869
a347 347 .9540
a348 348 .8481

Table 8.6. Summary of statistical correlation coefficients. Symbols: Type I = crisp solu-
tion of fuzzy network, Type 2= soft solution of fuzzy network with narrow support,
Type 3 = soft solution of fuzzy network with wide support and Type 4 = conventional net-
work classifier. Stat. Coeff. denotes the statistical correlation coefficient. The training data
set consists of arl63, arl65 and arl67. The network’s response at optimum match angle is
shown shaded.
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Object Angle Stat Relative Error
(deg) Coeff (%)
Type 1 | Type 2 | Type 3 | Type 4
arl63 163 .8522 0 +0.05 +0.50 -0.01
arl64 164 .9574 0 +1.84 +1.37 -0.26
arl65 | 165 1.000 |@ 15
arl66 166 .9570 0
arl67 167 .8492 0
ar206 206 8212
ar207 207 9373
ar208 208 9912
ar209 209 .9592
ar2l0 210 8557
ar253 253 8157
ar254 254 9354
ar255 255 .9959
ar256 256 9732
ar257 257 8783
ar344 344 8215
ar345 345 .9399
a346 346 9869 T
a347 347 .9540 -0.31 +2.24 -4.91 -18.46
a348 348 .8481 -0.13 -7.53 -40.4 -36.6

Table 8.7. Summary of relative errors. Symbols: Type I = crisp solution of fuzzy network,
Type 2 = soft solution of fuzzy network with narrow support, Type 3 = soft solution of
fuzzy network with wide support and Type 4 = conventional network classifier. Stat. Co-
eff. denotes the statistical correlation coefficient. The training data set consists of ar/63,
arl65 and arl67. The network’s response at optimum match angle is shown shaded.

8.2.5 Conclusions

Several fuzzy neural network designs to improve object recognition have been described.
Using a standard statistical correlation coefficient as a reference, the performances of the
different network configurations are compared for accuracy of prediction. It is demon-
strated that the crisp and soft fuzzy membership functions give the most accurate result

with less than 1.5 % error, compared to a conventional neural network design (with 8 %

erTor).
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8.3 Implementing a Neural Network for a Progres-
sive Fuzzy Clustering Algorithm

A neural network based scheme for the detection of fuzzy cluster prototypes from normal-
ised histogram of a real world image is described. These prototypes can be subsequently
processed external to the neural network to enable viable real time fuzzy clustering appli-
cation. The direct mapping of the histogram data, whilst simple to implement, is demon-
strated to suffer from errors related to a bias condition associated with weight distribution
of the network. The proposed method mitigates this problem by using a conventional back-
propagation neural network with output responses trained to five points of a fuzzy mem-
bership function. Test responses from this network produced less than 5 percent error for

the prototype centres.

8.3 1 Introduction

A new approach using a Feed Forward Back Propagation (FFBP) neural network to obtain
cluster prototypes from the image data is presented. In contrast to the multiple cluster as-
signment of FCM, the FFBP is trained to recognise and respond to a single cluster proto-
type determined by a progressive clustering algorithm. The neural network structure is
sufficiently flexible to accommodate other training regimens. The CPCM based progres-
sive clustering avoids the practical difficulty of establishing cluster validity criteria. Fur-
thermore, this strategy permits the adoption of various clustering models within the same
network or in any compatible network paradigms without being restricted to a particular

fuzzy model.

To perform progressive cluster extraction, the FFBP generates the cluster prototype
or centre corresponding to the input pattern vector (256 patterns). Subsequently, external
to the neural network, a clustering program uses the prototype to extract the cluster from
the image data set. The remaining image data (after removal of the cluster) is re-presented
to the network to generate another cluster prototype until eventually all possible clusters in

the image data are exhausted.
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8.3.2 A Progressive Fuzzy Clustering Algorithm

A general fuzzy objective function for a single prototype cluster development can be de-

fined as

T (UV)=22" ul' f(d) (8.3.1)
where f(d) 1s a distance function and m is a fuzzifier constant. Membership is denoted by u;
fori=1,...,N where N is the number of data features. For an intensity histogram, N equals
256. The cluster prototype is represented by v. Previously in Section 2.4.7.2, we solved the
membership of (2.4.48) by direct differentiation of the objective function (2.4.47). This
membership has a similar form to the membership for (8.3.1). To illustrate an alternative

procedure, we consider a solution using Lagrange multipliers. Let the sum of the member-

ships be a positive real number K > 0 with a constraint function

gl)=2" u-K (8.3.2)

Applying the method of Lagrange multipliers to minimise J,, for membership u subject to

constraint function g yields,
mu™ fld) = A

which may be reduced to

exp -
where

d; =||x; —v| ' (8.3.4)

(8.3.3)

is the Euclidean distance of data point x; from prototype v and the prototype is defined by
N

2
U; X;
1

j=

N

2
Z U;
i=1

V=

(8.35)

Equation (8.3.3) is obtained by applying the lower limit ( = 0) and the upper limit (x = 1)
of membership # and taking the distance function to be f(d) = exp(d’/n). The constant nu-
merator term is assumed to be 1 for a fuzzifier value of m = 2. The 7 constant in the expo-

nent serves as a reference level for all points in the data set. One suitable choice for 771s
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S N 2
n=— 2 x i | (83.6)

which contains a scale factor s.

Pseudo code to perform progressive fuzzy clustering.

Fix a, N, and s.
Repeat
Assume mitial v, from nearest neighbour of data centroid.
Calculate 77 from (8.3.6).
Repeat
Calculate »; from (8.3.3).
Calculate v, from (8.3.5).
Until ||v, — v.|| <e.
If (0 < Ny < Nin) Then Remove N, and update N,
If (Ng 2 Nuin) Then Save and remove cluster points of prototype v and update N,.
Until (N, < Nin).

Note that € is a small value to control the stopping point and ¢ is an iteration index.

8.3.3 Neural Network Implementation

A 3-layer architecture is used for training purposes with node sizes of each layer being de-
termined by the problem domain. The network was trained with normalised intensity histo-
grams of digitised images, each acquired in 256 levels of grey and in resolution of
256 x 256 pixels. Data for the target prototype set were generated from the progressive

fuzzy clustering algorithm.

8.3.3.1 Single Output Configuration

The design configuration for the single output network shown in Fig. 8.10 is the simplest
and most direct means to train a network. Five processing elements were selected for the
middle layer of the FFBP network. It will shortly be demonstrated that this network archi-
tecture suffers from significant errors of pattern recall because of a bias condition associ-
ated with the weight distribution. This error appears to be an intrinsic condition of a net-

work paradigm that relies on pattern leaming by weight adjustments.
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256:5:1 256:5:5
X[256) V1) X[256) VI5]
FEBP — FEBP ——
Normalised Cluster Normalised 5 Points
Histogram Prototype Histogram Memberships

Figure 8.10 Single output neural net.  Figure 8.11. Multiple membership outputs net.

8.3.3.2 Multiple Output Configuration

To minimise the anomalies of such biases in the weight distribution, a network depicted in
Fig. 8.11 with multiple outputs is proposed. Both the middle and output layers have the
same number of 5 processing elements. The 5 outputs of the network correspond to the 5
points on the membership function (8.3.3), obtained by applying alphacuts at o, =0.2,
a;=0.6 and o, = 1. The 5 points are obtained from the intersections of the alphacut and
the membership function in a left to right order: left ¢, = 0.2, left o, = 0.6, centre o, = 1.0,
right &, = 0.6 and nght @, =0.2. The 5 points of the membership function contain more
structural information on the input pattern compared to a single output network. Further-
more, the five outputs help to spread possible errors among five nodes instead of one, and
thus reduce the error at each node. For these reasons, the multiple output network is ex-
pected to map the input patterns more accurately, compared to the single output network.

The correct output response is obtained from the output node for ;= 1.

8.3.4 Experimental Results

The experimental results of Table 8.8 contains a summary of the FFBP network prototype
responses and the actual prototype value calculated from the progressive cluster algorithm
of Section 8.3.2. Each of the test patterns 7/ to 7’15 represents new patterns not used in the
training of the network. The column under Case A refers to training with 13 pattern files
with a mean absolute error (MAE) = (target — output) less than 0.018. For Case B, a
training set of 10 pattern files were used with an MAE < 0.017. Both Case A and Case B
refer to the multiple outputs network of Fig. 8.11. The single output network response
(Fig. 8.10) is represented under the column of Case C for an MAE < 0.01. Despite the low

MAE, two significant response errors were produced in Case C to test patterns 72 and T'/4
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(shaded responses in Table 8.8). As indicated in Section 8.3.3.2, this error is attributed to
the peculiar biases of the weight distribution of the network’s weight matrix. In other
words, there is a leamning problem due to cross-talk [Kosko, 1992]. Case B (with 10 train-
ing patterns) represents a network design (multiple outputs configuration) that attempts to
minimise the learning problem of Case C predictive errors. At first sight, Case B appears
to be worst than Case C because of response errors associated with test patterns T4, 77,
T8, T13 and T4 (shaded responses in Table 8.8). However a closer scrutiny reveals that
Case B errors occur where the network has no closely matched pattern exemplars from the
training phase for values centred near 0.2 and 0.5. The inclusion of additional training
patterns to cover these gaps in Case A (with 13 training patterns) produces the best result
with errors less than 5 %. Considering the few set of training patterns used in this expen-
ment, the results of the prototype response from the multiple output FFBP neural network

(Fig. 8.11) 1s quite good and could be improved with more training patterns.

Test Actual Case 4 Case B Case C
Pattern | Response | Response | Response | Response
Tl 0.4077 0.4625 0.4473

12 0.5310 0.5365 0.4642

73 0.6221 0.6391

T4 0.5540 0.5076

75 0.6770 0.5970

76 0.3188 0.2845

77 0.2504 0.2747

78 0.2767 0.2337

79 0.3971 0.4084 0.3909 0.3836
T10 0.4118 0.4444 0.4695 0.4070
711 0.4307 0.4370 0.4269 0.4356
T12 0.4346 0.5060 0.4226 | 0.5562
T13 0.5438 0.5136

T14 0.7392 0.7450 :
T15 0.8002 0.8028 0.8070 0.8937

Table 8.8 Summary of actual and network test responses. The data in this table refer to
normalised prototype values. Actual response refer to the result from a progressive cluster-
ing algorithm. Note: Case C response refers to the single output network of Fig. 8.10. The
responses of cases A and B refer to the multiple outputs network of Fig. 8.11. Incorrect
response from the network is shown shaded. Note: There are no prototype errors in Case 4
response.
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8.3.5 Conclusions

A progressive fuzzy clustering algorithm and its neural network implementation have been
reviewed. The algorithm consists of a simple structure that can easily accommodate other
fuzzy clustering models. A method to perform progressive clustering using the neural net-
work to generate the prototypes and an external program to extract the clusters from the
prototype has been presented. It has been demonstrated that a fuzzy neural network pre-
dicts the locations of cluster prototypes more reliably compared to a conventional neural

network. Test results indicate that errors less than 5 % are achievable.
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Chapter 9

Conclusions and Future Research Direc-
tions

This chapter summarises the main conclusions of the thesis in Section 9.1 and presents
suggestions for future research directions in Section 9.2. A brief description of the demon-

stration programs available for the thesis is given in Section 9.3.
9.1 Conclusions

9.1.1 Theory Development

The four major pattern recognition theories that influenced the development of the CPCM’s
fuzzy clustering models have been presented in Chapter 2. The Bayes decision theory con-
tributes the principles for optimum classification and discriminant functions for the sepa-
ration of classes. The KNN algorithm was derived from partitional clustering theory as a
non-parametric approximation of the Bayes decision rule. Using a fuzzy neural network,
an attempt was made to model the prototype from a progressive clustering algorithm. Of
these pattern recognition theories, the major contribution to the CPCM algorithms was de-

nived from fuzzy clustering theory, particularly from the FCM model.

In Chapter 2, two new fuzzy clustering algorithms were developed. These were
called the PFCM and EPCM algorithms. In Chapter 3, a new SFM algorithm was devel-
oped. Both PFCM and EPCM are possibilistic algorithms with possibilistic memberships.
PFCM extends FCM in three major ways: (i) the capability to generate more varieties of

membership functions, (ii) the capability to adjust the cluster boundary and profile to con-
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trol the selection of cluster points and (ii1) improved clustering at local centroids via the
three cluster parameters &, m and p. PFCM extends the clustering properties of FCM.
EPCM improves the stability of the possibilistic function to a range of alphacuts, resulting
in less sensitivity to FCM estimates of the eta factor (or intra-cluster distance) and thus
improved centring of prototypes at local centroids. SFM (in Section 3.2.3.1) has a promis-
ing potential for pattern recognition applications involving either the progressive or global
clustering schemes. It uses membership like a dissimilarity index, in contrast to FCM.
More significantly, SFM automatically generates a single cluster via a global clustering
mechanism that is identical to FCM. We are not aware of any documented fuzzy clustering
algorithms with this unusual clustering feature. The extension of SFM by a similar ap-
proach to the extension of FCM by PFCM contains implications for higher clustering effi-
ciency and more interesting clustering possibilities (like FCM without the a priori ¢ clus-
ters). The fundamentals of PFCM and SFM provided in the thesis should facilitate ad-

vanced structural development of these algorithms for pattern recognition applications.

The CPCM approach described in detail in Chapter 3, demonstrates a fundamentally
new method of fuzzy clustering by extending the scope of conventional fuzzy clustering,
which 1s typically global and cluster validity dependent, into the realms of progressive
fuzzy clustering and non cluster validity dependent. The CPCM approach was designed to
realise some of the following advantages: (i) higher data processing efficiency, up to 250
times faster than FCM in comparison tests (compare Tables 4.1 and 4.2) using real images
in 256 x 256 resolution, (ii) an alternative method that allows independently optimised
cluster parameters in the objective function and thus approximates a solution to analyti-
cally intractable problems (see Section 6.2), and (1ii) automatically determines the number
of clusters that agrees well with subjective interpretation (see Fig. 6.3), without the need
for secondary cluster validity verification like FCM. To enable objective clustering per-
formance comparison of the FCM, KNN and CPCM algorithms, three new cluster validity

indices were developed in Section 3.3.

9.1.2 Application Development — Fuzzy Clustering Methods

Applications of CPCM fuzzy clustering methods have been presented to solve three prob-
lem areas of pattern recognition. These problem contexts are: (i) region segmentation, (ii)

boundary detection and (iii) general pattern recognition.
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9.1.2.1 Region Segmentation

In chapter 4, application algonthms that successfully detect wool contaminants or tile sur-
face defects have been presented to demonstrate the superior clustering performance of
CPCM compared to FCM. In clustering real images of high resolutions, the CPCM clus-
tering algorithm clearly has a significant advantage in processing speed compared to FCM.
Moreover, because of the sequential order in which clusters are removed, CPCM can de-

tect small scale defect patterns more accurately than FCM.

9.1.2.2 Boundary Detection

Application algorithms that successfully detect boundary features characterised by noise,
fragmentation and occlusion, such as linear boundaries in Chapter 5 and circular bounda-
ries in Chapter 6, have been presented to demonstrate useful extensions of the basic FCM
algorithm. This was achieved by a modification of the metric d, to include specific cluster
parameter such as the line gradient or the cluster radius. Although fuzzy clustering solu-
tions based on the FCM model can be used, we have instead, adopted optimising methods
from other models. These consist of: (1) line equation from geometry, (i1) OCF equations
from statistics and (ii1) CA equations from heuristics. Our procedure demonstrated the
flexibility of the CPCM approach and the interesting clustering solutions from the CPCM
framework. However, the context of the clustering process remains fuzzy in character, as

1s the CPCM framework.

The clustering method adopted for circle detection 1s quite different from the method
for line detection, because the particular choice of equations used lacks a general character.
If a general form of a quadratic equation is used, such as in [Krishnapuram et al., 1995],

the clustering method to detect any of the quadratic curves will be similar.

Unlike the PCM, FKE or FKR solutions, CPCM is not as sensitive to initial cluster
parameter conditions because there are numerous cluster solutions in the CPCM’s solution
space. Moreover, the specification of CPCM cluster parameters such as N, and «;, have
meaningful notions related to the structure in data, unlike the abstract parameters (such as

Vo or Uy) in other fuzzy algorithms, which are usually selected on a random basis.
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9.1.2.3 General Pattern Detection

In the application presented in Chapter 7, a combination of different pattern recognition
methods involving image preprocessing, fuzzy clustering and model feature matching was
successfully applied to correctly detect and identify a local object feature of any arbitrary
pattern. The accurate determination of cluster centres from a ring-shape cluster detection
algorithm improved the accuracy of the optimum match angle. The application also dem-
onstrates the advantage of fuzzy clustering for locating centre compared to a conventional
technique such as the centroid of area method (compare Figs. 7.7 and 7.8, from the same
object). The speed enhancements in the particular implementation of the pattern matching
algonthm improved the search speed by a factor of five. This was achieved using a combi-

nation of windowing and data sectoring techniques, and the similarity index.

9.1.3 Application Development — Fuzzy Neural Methods

Three fuzzy neural network configurations have been presented in Chapter 8 to demon-
strate the greater response (or classification) accuracy compared to conventional neural
networks. The first application in Section 8.1 presents an illumination insensitive method
called the SFPM method to improve general object recognition for a range of illumination
conditions. The second application in Section 8.2 improved general object recognition by
matching correlation coefficients generated from a fuzzy neural network. The third appli-
cation from Section 8.3 presents a fuzzy neural configuration that performs mapping of
cluster prototypes from normalised gray levels of histogram data. In the third application,
the output response of a conventional neural network suffered from “cross-talk” due to
interference from interconnected weights. This problem was mitigated with a fuzzy net-

work design, thus the improved classification accuracy.

9.2 Future Research Directions

This research has uncovered a number of interesting areas for future research. The follow-

ing suggestions for future research are made along the three principal lines given below:
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9.2.1 Extension of CPCM

CPCM has a flexible framework that can be readily extended in a number of ways, de-

scribed by the following:

9.2.1.1 Cluster Density Control

The location of clusters in the CPCM framework is based on the current data centroid.
This seems adequate for most clustering applications, but provides no selective control
over the density of clusters found. Possibilistic clustering algorithms such as the PCM or

EPCM offer scope for detecting dense clusters via the factor 77 which determines the clus-

ter bandwidth (refer Section 2.4.7).

9.2.1.2 Prototype Estimation

Prototype estimation from the data centroid in CPCM is a commonly used technique (like
the KNN algorithm). A weakness in this approach is that it does not discriminate differ-
ences between low and high density regions for cluster development. A low density region
yields insufficient points for cluster development, resulting in the removal of these points
from subsequent cluster consideration. Consequently, some loss of useful data from the
clustering process is inevitable. The number of missing data, however, does not affect the
clustering result to a significant extent because the minimum cluster size N, provides

some control over the extent of missing data. Nevertheless, this is not a desirable solution.

A better solution may be provided by SFM, derived in Section 3.2.3.1. This algo-
rithm seems to give a good estimate of the densest cluster prototype in any clustering se-
quence. Since, the prototype estimate is an additional operation to the normal CPCM clus-
tering sequence, there is more computation effort in obtaining the cluster result. To im-
prove processing efficiency, it may be possible to use SFM to a greater degree or perhaps

even in a major way, for the determination of cluster prototypes.
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9.2.1.3 Exploration of Other Cluster Structures

Most of the cluster structures considered for applications were of either linear or circular
varieties from both region and edge types. Adding to this list with other graphic primitives
will increase the detection capability of the CPCM clustering methods. The equations to
detect elliptic clusters can be obtained from either a combination of possibilistic member-
ship with fuzzy covariance matrix (Section 2.4.6) or from the parametrized prototypes
(Section 2.4.8). Clusters that are shaped as squares can be detected using either a 1-norm
or a sup-norm (see [Bezdek, 1995]). One way to solve more sophisticated cluster forms is
by partial aggregation of cluster substructures, such as lines and various types of arcs, el-
lipses and circles. The graphic elements segmented by low level algorithms can be com-

bined to form a meaningful composite cluster structure.

9.2.2 Exploration of PFCM Clustering Possibilities

Potentially, PFCM offers greater possibilities for clustering in terms of the greater expres-
sive power of membership functions, most of which are as yet largely unexplored. An ex-
ample has been given in Section 2.4.7 to illustrate the crisp partitioning of data sets with
noise points or points at boundaries of clusters. The PFCM algorithm can directly extract
representative cluster points and so eliminate points at the fringe of membership. Forcing
an arbitrary assignment of these points to any cluster, in the case of FCM, do not give a
reasonable cluster interpretation. This is also possible with possibilistic algorithms such as
PCM or EPCM, but the procedure is less direct. Possibilistic algorithms require initial
cluster prototype estimates to find good clusters. These estimates are usually obtained from

FCM or other clustering algorithms like the KNN.

Clustering around local centroids provides a degree of insensitivity to noise points or
fuzzy points at or near the cluster boundaries. An example has been given in Section 2.4.7
to show that clustering at centroids can be obtained from either FCM or PFCM by a judi-
cious selection of the distance metric exponent p and the fuzzifier exponent m. In practice,
it is satisfactory to assume m = 2, but the selection of the optimal cluster parameter p in-
volves some trial and error since no analytic forms exist. Therefore, an analytic expression

or empirical formulation of p would be quite useful for robust algorithm design. A reason-
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able solution seems possible by taking into consideration the inter-cluster and the intra-

cluster distances.

9.2.3 Unifying Cluster Constants

The cluster constants such as the alphacut a,, the fuzzifier exponent m, the distance metric
exponent p in FCM and the « of CPCM, can be difficult to use without sufficient experi-
ence. There 1s clearly a need to address the needs of the end user. In this thesis, tentative
attempts have been made to understand the role of these constants in clustering perform-
ance (see Sections 2.4.5 and 2.4.7 and parts of Chapters 5 and 6), but not in sufficient
depth, for several reasons. Firstly, this topic involves more intensive investigation of clus-
tering charactenistics than could be adequately given within the limited scope of this thesis.
Secondly, this topic is not the major focus of the thesis. A proper research program is re-

quired to develop a unifying approach to this problem.

9.3 Demonstration Programs

Demonstration programs are available, containing both source codes in C programming
language and executable codes to run under DOS and MS Windows95 environments for
the experiments of Chapters 3 to 7 (inclusive). These may be obtained by contacting the
author or from the Head of the Department of Electrical and Electronic Engineering, As-

sociate Professor Patrick Leung.

Included in Appendix F is a demonstration program (C source code only) for the
round cluster structure with variable 77 algorithm discussed in Chapter 3. This program

contains several features that explain the details of the following:

1. The CPCM framework.
The similarity coefficients used in Chapter 3.
The vanable 7 algorithm.

The reclustering procedure for more accurate prototype location.

A T

Other necessary procedures to support CPCM.
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Appendix A. Vectors in Real n-Space

The material in this appendix is intended to define the usage of vector definitions and prop-
erties mmplicitly assumed in the thesis. In pattern recognition work, it is useful to define an
n-space (n-dimensional coordinates) for each feature vector or point. This space is alterna-
tively known as the Euclidean n-space. Axioms for the inner product space are defined for

the Euclidean n-space. The inner product introduces the concept of length and distance in

the inner product space.

Definition A.1: If n is a positive integer, then an ordered-n-tuple is a sequence of » real

numbers (ay,a,,...,a,). The set of all ordered n-tuples is called n-space and denoted by R”.

In n-space, the symbol (ay,as,...,a,) can be interpreted as a point, in which case
a,,a,,...,a, are the coordinates of a point or it can be interpreted as a vector, in which case

ay,a,,...,a, are the components of a vector. A vector is alternatively denoted as

ap
a,

a=| . ora=[a,,az,...,a,,]T.

Lay ]
A zero vector in R" is 0= [0,0,...,0]". A negative vector (or additive inverse) a is denoted
by —a=[-a;,—as,...,— a,,]T.
The following are some basic definitions of vector operations.
Definition A.2a: Two vectors a = [a1,d2,.. .,a,,]T and b = [b,,b,,. ..,b,,]T are equal if
ay=by,a,=b,,...,a,=b,.
Definition A.2b: The sum of two vectors a = [@1,az,...,a,]" and b = [b1,b2,...,0,]" is de-
fined asa +b =[a, + b,,a; + b,,---.a, + bl
Definition A.2c: If k is any scalar, the scalar multiple ka 1s defined by
ka = [ka, kas,... ka,)"
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Theorem A.1 (addition and scalar multiplication): If a = [a,a5,...,a,]", b = [b1,ba,....b4)"
and ¢ = [¢),c5,...,¢,]" are vectors in R” and k and / scalars, then:

(a) a+rb=b+a

(b) a+(b+c)=(a+b)+c

(c) a+0=0+a=a

(d) a+(-a)=a-a=0

(¢) k(la) = (kD)a

() k(a+b)=ka+kb

() (k+Da=ka+Ib

(h) la=a

Proofs of Theorem A.1(a) to E.1(h) may be found in a textbook on linear algebra.

Definition A.3: If a={[a),a,,...,a,]" and b =[b,,b,,....6,]" are vectors in R”, then the
Euclidean inner (dot or scalar) product a - b is defined by

a-b= alb1 + azbz +ot a,,b,, =Zakbk

k=1

Theorem A.2 (Euclidean inner product theorem): If a = [a1,as,....a,]", b = [61,b4,....0,]"
and ¢ = [¢),¢,,...,c,]" are vectors in R” and k is any scalar, then
(a) a-b=b-a
(b) (a+b)-c=a-b+b-c¢
(c) (ka)-b=k(a-Db)
(d) a-a>0;anda-a=0i1fandonlyifa=0

Proofs of Theorem A.2(a) to (d) may be found i a textbook on linear algebra.

Definition A.4: The Euclidean norm or length of a vector a = [a,,az,...,a,,]T in R” is de-

L W2
fined by [lall, = laf| =y(a - a) = ya? + a2+ +a =[Za£}
k=1

Definition A.S: The Euclidean distance between a vector a= [a,,az,...,a,,]T in R” and

b =1b,,b4,...,0,]" in R" is defined by

; 1/2
d(a,b)=l|a — b= y(a, —b,)* +(ay —by)> +---+(a, —b,)* —[Z(ak _bk)zl

k=1
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In fuzzy clustering, the Euclidean distance (or norm or metric) d(a,b) is alternatively
denoted as dj to represent the distance between the ith cluster prototype vector v; and the
kth feature (or point) vector (or data) x,. Since matrix operations are useful to fuzzy cluster

analysis, the inner product of vectors a and b is alternatively represented by a matrix for-

mula

a-b=2a’b

The preceding discussion presents the Euclidean inner product on the Euclidean
n-space R” of which Theorem A.2 is its most important properties. These properties may

be defined for a general real vector space V as follows:

Definition A.6: An inner product on a real vector space ¥ is a function that associates a
real number <a, b> with each pair of vectors a and b in ¥ in such a way that the following

axioms are satisfied for all vectors a, b and ¢ in V and all scalars 4.

(a) <a,b>=<b, a> (symmetry axiom)
(b) <a+b,c>=<a,c+<b,c> (additivity axiom)
(c) <ka, b>=k<a, b> (homogeneity axiom)
(d) <a,a>>0;and <a,a>=01fandonlyifa=0 (positivity axiom)

The above four axioms define a real inner product space. The Euclidean inner prod-

uct may be modified by weighting each term, such as in the Mahalanobis norm.

Definition A.7: Let a= [a,,az,...,a,,]T be a vector in R”. Let W and 4 be invertible sym-
metric # x » matrices. If a - a is the Euclidean inner product on R” then

<a, a>=a"A"Aa=a"Wa=<a a>y= Hallfy
define a weighted Euclidean inner product norm on R” called the inner product generated

by W. This norm is also called a variable W norm. If the positive weights of W are diago-

n
nal, then <a, a>= Zwka,f. Likewise, a weighted inner product distance may be defined
k=1

by <a—b, a— b>y =|{a —b||, and <a, b>= a’474b=a’Wh =<a, b>y.
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Appendix B. Proof of Theorem 2.4.1
(Fuzzy c-Means)

The Fuzzy c-Means algorithm or FCM [Bezdek, 1981] is an important development in
fuzzy clustering history. It is virtually the basis of most modern versions of fuzzy cluster-
ing algorithms, some of which are presented in Section 2.4 [Man and Gath, 1994, Gath
and Hoory, 1995]. Therefore, it is important to understanding the basic structure of FCM
to understand the character of modem fuzzy clustering methods. However, there is another
cogent reason to do so. The structure of FCM admits a further generalisation, on closer
scrutiny. Evidence of this is demonstrated by the Possibilistic Fuzzy c-Means (PFCM) al-
gorithm, described in Section 2.4.5 and derived in Appendix C.

For the notations, distance norm, data set and fuzzy partitions of Section 2.4.4, let

the membership of FCM satisfies the three conditions

N ¢
up €[01] Vik, 0<Qup<N Vi and Qup=1 Vk (B.1)
k=1 i=1

Using the method of Lagrange multipliers, the objective function J,,, in the expression

N ¢
T p(UV)= D2 D updl  (for all m>},p>0) (B.2)
k=li=1 ‘
may be minimised with respect to u; to give (with a change of subscripts)
m—1

2
mu, dy=A71

for p = 2 (as in [Bezdek, 1981]) and may be simplified to

1

1 _
uy = [%]’"‘1 [d%]m (B.3)

st

Applying the membership constraint of (B.1) to (B.3), with a change of subscript gives

1
1
d — ¢ m—1
>, {i}m-‘ Z[Lz _1 (B.4)
J " d

J= J

which results in
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1
A \m1 1
) B (B:3)
il m-1
2
J=1 djz'f

Putting (B.5) into (B.3) gives
1
1
2 |m
j{dmﬁ

J=1 djz't _I

Ug =

which on rearranging the subscripts, yields the standard form

1
TP — (B.6)

Jaf
j= djz'k

Jm may be minimised for v; by differentiating J,, , in (B.2) with respect to v; and setting the
resulting function to zero. The distance measure dj may be generalised with a norm

weighted by a d x d positive definite matrix 4;. The 4; norm is defined as

T
di :“xk_vi“A,-:\/(xk—vi) Ai(x =v;) (B.7)
which represents the distance of feature vector x, from the cluster prototype v,. Minimising

Jm with respect to v, yields

N
“2) u Alflx g —vill=0
k=1

Since 4, 1s a constant under the summation £, the prototype solution is

N
Duly
Ui X [
_ k=1

- N
Z m
Ui

k=1

v

Vi (B.3)
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Appendix C. Proof of Theorem 2.4.2
(Possibilistic Fuzzy c-Means)

The Possibilistic Fuzzy ¢-Means (PFCM) algorithm is a very recent generalisation of the
famous FCM algonthm, introduced in 1973. For over 23 vears, major extensions to FCM
focused on adapting FCM or its variants to new types of cluster substructures such as
shells and hyperquadrics. Curiously, the possibility of further generalisation of FCM seems
to have escaped the notice of researchers. This may reflect a predisposition to extend ap-
plication development, partly because the method is new or perhaps because of a percep-
tion of hmited scope for structural development. It is hoped the development of PFCM will
lead to more useful mnsights into fuzzy clustering properties (when the implications become
more transparent), reviewed in Sections 2.4.5 and 2.4.7. and promote further structural

development of PFCM, alluded to in Chapter 9.

For the notations, distance measure, data set and fuzzy partitions of Section 2.4 .4,

let the general objective function be defined by

N ¢
Tmpa (UV)= 2D ulkdf  (for all m>0,p>0) (C.1)
k=1i=1

Let the memberships of the objective function (C.1) satisfy.the following three conditions

N c
w, [00] Vik, 0<Qux<N Vi and D2ul=1 Vka (€.2)
k=1 =1

where « is a real valued exponent on the membership. Using the method of Lagrange mul-
tipliers. the resultant expression given by
N ¢ c
> 2 updf = A ug ~1) (C3)
k=1i=1 i=1
may be minimised with respect to u; to give
a-l1

m-1 ,p
muy diy = Aoy

which after a change of subscript, simplifies to
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1 b
(@A e L |
Ug = o df; (C.49)
From (C.4), after redefining subscripts
P e
« a/{ E( 1 \m—a
2
m dh
and applying membership condition (C.2) to (C.4)
a \L
¢ Ve | 1 Im-a
2. {—) ’ Z(—,,J =1 (C5)
=1 m o dh
Simplifying (C.5) gives
a
aA \m-a 1
m) a
iJ: 1 |m-a
L
or
1
A \m-a 1
— = ] (C.6)
2 |a
i[ 1 ]m_a
J=1 dﬁ
Putting (C.6) into (C.4) gives
1
Ug = ]
a
|7 ¢ (dl: \;; ¢
L;—ltdﬁj J
which on rearranging subscripts, yields
1

(T
|

Z[ d[i \]m—a
{Fl dﬁ{
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At this point, it is necessary to avoid the singleton at x, when dj, = 0, by defining the mem-
bership to preclude such a point with the set [,, of (2.4.17). Using the identity
V, (xTAx) =2 Ax, we may mimimise the objective function (C.1) with respect to v;, to give

N

Z 2
iy (xy - v;)=0
k=1

in which the constant matnix A can be factored out to yield the prototype solution
N
Z m p-2
UpQixk Xy
_ k=l

Vi="x
> ag?
Ui i
k=1

, 1<i<e (C.8)
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Appendix D. Derivation of the Delta

Learning Rule for the Backpropagation
Network

Interconnected weights in a neural network are like the memories of their biological coun-
terpart. The magnitude and distribution of the weights determine the response characteris-
tic to a given type of input signals. Because of the size of the complex network of weighted
connections, weight adjustment is not a trivial task. For this reason, a learning rule or a
systematic procedure by which a neural network can automatically adjust weights in a way
that will optimally match the actual response to the target goals, is an important component
in the architecture of a neural network. One common technique is to minimise the error
between output and target, using “negative gradient descent” from differential calculus

principles. The delta learning rule uses this procedure.

Output Response

3 Output Layer

Middle layer

Input layer

Input Signals

Figure D.1 Architecture of a neural network.

Referring to Fig. D.1, let the subscripts 7, j and k denote the input, middle and output
layers, respectively. Let (j+1) denotes the layer after the jth layer and (j—1) the layer before

the jth layer. For a fully connected multi-layer perceptron the input to each jth layer proc-

essing unit 1S
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N
1= Xw(f.r»(f—l,qﬂf—l,q (D.1a)
=1

where N, 1s the number of units in the (j—1) layer; O;, is the outputs from the processing
units of the (j—1) layer; the weight modifying the connection from the (j—1) layer process-
ing unit to the jth layer processing unit is represented by w;;,. Let g represent the unit’s
index 1n the (j—1) layer and 7 the unit’s index in the jth layer. For notational simplicity, we
can ignore the unit’s indices in each layer, because the same equation applies (taking care-

ful account of the connection subscripts) to each processing unit. With this convention, we

have
N
I; = zwj’j_loj_l (D.1b)
n;_1=1
where 7, is the index of units in (j—1) layer. Let the total squared error at the output be
Ny
2
Er=7 2. (- 0p) (D.2)
ﬂk=1
where O is the output response and 7, is the desired value (the half factor is introduced to
eliminate the constant from the differentiation of D.2. This constant does not affect the fi-
nal form of the equations). The Delta rule or negative gradient descent rule is expressed
by

oE,
a
MW k-1

AWy == (D.3)

where o > 0 regulates the magnitude of the correction. It is alternatively called the learning

rate. The delta rule establishes the condition for weight change gtven by

Wi k=1t =Wk k-1,1-1 — & (D.4)

where 1 is the iterate parameter, denoted as a subscript, along with the layer symbols i, j
and k. Applying the chain rule for the partial differentiation of (D.3) gives
Iy ok, Al

_ (C.5)

My iy Ay Wy
Since

Ny
Z Zwk,k—lok—l
a, I
= = Ok
MWy k1 Wi k-1

therefore
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A £ akO 6,0 D6
Wi ) =X = =
k k-1 By p a, k=1 kUi (D.6)

ok, gk, 0
5, =L L O (D.7)
dy 0y dly,
From (D.2)
Z O, dlh ()] -
—=~(r, —0y); = =h, (I,
20, r = O) a, a, v (1)
where we assume the output Oy is a monotonically increasing function of I,. So (D.7) be-
comes
S =(n = Op)hy (1) (D.8)

Substituting (D.8) into (D.6) yields

AWy p = a(r =0y )hkl(lk )0i (D.9)
Note that hk’ 1s the denvative of A, with respect to /,, at the output layer k. The weight
change in the output layer & is given by (D.9). One might be tempted to apply a similar
procedure to obtain the middle layer weight change as

Aw; i =a(r; -0, )hk (1,)0,,

but the problem is we do not know what is the #; (target values) for the muddle layer ;.

Therefore, to solve the weight change for the middle layer, we need to reformulate —in
J

terms which do not involve (r; — ;). Applying (D.7) to the middle layer j we obtain

d; O, :
=~ (D.10)
éO é’l
o, )
J J )
- = (I, (D.11)
A A k( j)

J J
The tricky part of (D.10) is how to represent the first term of the partial derivative. Sup-
pose we use

E, N E a, NZ'[

—151/+1 cU

] ZWM 0, (D.12)

J n-—l

07]+l

n j+l =1
which involves the differentiation of £; with respect to the inputs /., of the next layer, the

j+1 layer. Note that the summation symbol appears because of the inputs j.). So
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N N,

AR AT

0. a. Ly = JHY ja, ) (D.13)
J I+ '

nj+l=1 nj+l=l

Therefore putting (D.13) and (D.11) into (D.10) yields

N'+I
5]':}71'(1]) 25]+le+1,]' (D14)

nj+| =1
and the weight change for the middle layer is thus solved as

Mw; Ly =ab,0;_ (D.15)

where the weight update of any inner layer units can be obtained by propagating the &
from the output layer backwards, towards the input layer. This ingenious solution for the
learning algorithm, attributable to Rumelhart et al. [1986], is called for this reason, the

“backpropagation”. It is usual to define the transfer function as

ho(l;)= :
TN ltexpl-(1,+6,)/ 6]

(D.16)

h (1)
theta=1
1
*" theta=5
0.8 ) =777 theta=10
;/ ////
h())=1/{1+exp{-1 / theta)}
I
-15 -10 -5 0 5 10 15

Figure D.2 Graph of the sigmoid function for three values of 6,. & is assumed zero.

Figure D.2 shows the sigmoid function bounded in the range [0,1] for various inputs /,. It
1s seen that 6, has a marked effect on the slope of the sigmoid function, and thus the re-
sponse of the network. 6, displaces the function along the 7 axis of Fig. D.2. Note also that
the gradient changes more slowly towards the extrema of the output function, hence a
slower convergence by the gradient descent rule. There are ways around this problem, but
none 1s straight forward to use (see Hush and Homn, [1993]). It 1s easy to show that

he (1;)=0,(1-0,) (D.17)

where O; = A(l)).
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Substituting (D.17) into the preceding results, we may summarise the results of the Delta

Leaming Law for the backpropagation network, as follows:

(1) Weight change at the output layer is given by

Awp gy = @6, Oy (D.18)
O =(n —0)O0x(1-0y) (D.19)
(2) Weight change at the inner layers is given by
Aw; i =ad;0,, (D.20)
N jsi
6;,=0,;(1-0;) Xﬁjﬂwﬁw (D.21)
nja=l

or in terms of the output layer

Ny
5,=0,(1-0,) 2.5 Wy s (D.22)

nk=l
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Appendix E. Derivation of Centre Approx-
imating Equations.

The Centre Approximating (CA) equations facilitate a solution for the Optimum Circle Fit
(OCF) equations used in the circle detection algonthm of Chapter 6. This i1s because OCF
does not discriminate cluster points from noise in solving for the circle parameters (centre
and radius). The CA equations have superior discrimination of noise from cluster points,
but do not predict cluster parameters as accurately as OCF. This 1s apparent by examining

the iterative averaging of cluster points, in the equations (E.8 and E.9) given below.

Figure E.1 Circle centre approximation.

Let point 1 with coordinates (x,, y1,) and point 2 with coordinates (x2., V2r) refer to the
current cluster point and the current estimated cluster centre, respectively at iteration . Let
point 3 with coordinates (X1, y2.1) represents the previous estimated cluster centre at 1t-
eration /—1. In estimating the true centre (point 2) from the approximate centre (point 3)
we apply the rule that any line normal to the circle’s tangent intersects the circle’s centre.
Assuming the line containing the points /, 2 and 3 is the normal line, the improved centre

estimate (length 12) is proportional to the previous centre estimate (/ength 13) by a factor

By = (E.1)

Vet



Appendix E 230

where r, = length 12 and r,,, = length 13. The iteration subscript index 7 indicates that these

lengths are successive approximations of the true cluster radius. From Fig. D.1,

AE, , = x5, — X1, (E.2)

AE, =Yy = Y1y (E.3)

AX, =xp, —xy, (E.4)

AYy = Y21 =y, (E.5)
From similar triangles,

AX, =hAE, , (E.6)

AY, =hAE,, (E.7)

Expanding the terms of (E.6) and (E.7) with (E.2), (E.3), (E.4) and (E.5) give the desired

result

v
X1 = X1, +r_1(x2,1—1 —Xxy;) v (E.8)
et
r
Yo=Y, +—_(y2,1—l - Vir) (E.9)

el
Initial values of x; ., and y, ., are assumed zero. Because of the presence of noise, the three
points of Fig. E.1 are rarely collinear and unlikely to intersect the circle’s centre. To im-
prove the situation, it 1S necessary to suppress the noise by some sort of averaging process.
Provided the cluster points are greater than the noise level, the mean of equations (E.8) or
(E.9), calculated from all points in the feature space, will converge towards the centre
whereas points remote from the circle effectively cancel out. However, it should be noted
that very small values of r., can cause overflow error. To avoid this problem, one method

i1s to discard the current computation and use instead, its previous valid result.
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Appendix F. Demonstration Program

/* Program: VarEta.C

Author: Paul Im, Dept of Electrical and Electronic Engineering,
Victoria University of Technology, Australia.

Date: 26th July, 1996

Compiler: BorlandC++ 4.5

Source code: C

Input data type: ASCII

Input file: Ruspini.dat (included at the end of program listing)
Function: Demonstrates the following features described in the
thesis:
(1) CPCM framework
(2) Similarity coefficient of data set s2(j)
(3) Similarity coefficient of cluster sl
(4) Variable eta algorithm
(5) Recluster data from known prototypes
VarEta is a progressive fuzzy clustering algorithm with a variable
eta to detect round cluster structures and also reclusters data to
find more accurate prototypes.
Display: Cluster points are color coded with ‘+’ symbols. The origin
of each cluster is represented by a white 'x’ in a square. A square
with a white centre dot represents the centroid tracks. Centroid of
a cluster is represented by a small white circle. A non-cluster
point is denoted by a diamond symbol with an inside cross symbol.
*/
#include <stdio.h>
#include <stdlib.h>
#include <conio.h>
#include <graphics.h>
#include <time.h>
#include <math.h>
#define bgili pathname ""
#define pi 3.141592654
#define csize 20 // max number of clusters
#define dsize 75 // max points per cluster
#define nchar 40 // max char length of file name
#define kaput -999 // defines non-cluster point
// Data structure for image points
typedef struct {
int x,y’
} PINT;
// Data structure for prototype and centroid tracks
typedef struct {
float x,y-
} PFLT;
// The following are PRIMARY variables
PINT *X; // pointer to image data array
PINT *XC; // duplicate X array for reclustering
PINT *CL[csize]; // pointer to cluster points array
PFLT C[csize)}; // prototype array
PFLT v[csize] [dsize]; // cluster centroid tracks
unsigned int cs[csize]; // array for number of points in cluster
float cra[csize]; // array for cluster eta circle
unsigned int cflcsize]; // array for cluster iterations
unsigned int nl[csize]; // arrray for cluster tracks count
float vx,vy; // X,y coord prototype variable
float *U; // pointer to point membership
double eta; // eta variable
double etam; // minimum eta variable
double acut; // alphacut variable
double df; // cohesion factor fc
double er; // eta tolerance
double md; // minimum cluster radius
float dcx,dcy; // %,y coord data centroid
double q; // fuzzifier



Appendix F 232

unsigned int nc; // number of cluster variable

unsigned int nn; // nearest neighbour variable

unsigned int Na; // count of cluster points

unsigned int mcs; // minimum number of points in a cluster
unsigned int maxx,maxy; // maximum X,y coord dimensions of object
unsigned int iter; // cluster iterations variable
unsigned int tobj,obj; // object total points,current number of points
char dfile[nchar]; // object file name array

float SA[csize]; // cluster similarity coefficient

float SB; // data set similarity coefficient

// The following are SECONDARY variables, in support role
unsigned int newgraph,colr, repeat, cnum;

float crcsize],cd[csize],cetalcsizel];

float B[csize] [dsize],A[csize] [dsize],S[csize] [dsize];
float dx,dy,msv, tpc, sv,svar{csize},CR[csize);

double rmin,nnc, sx, sy, sd, aa;

// Function prototypes

void getinputs (void);

void newcentre (void) ;

void computeEta(void);

void useNN(void);

void finalcluster(void);

void removepoints (void);

void finalresults(void):;

void newcentre (void);

void savedata(void);

void clusterCtr(void);

void newlist (void);

void plus(int, int);

voilid cross(int,int);

void square(int,int);

void cir(int, int, int);

void diamond(int,int);

void graphlt(void);

main ()
{
FILE *img_file;
unsigned int rescan, repeat, recluster=l;
int driver=DETECT,mode;
int 1i,3,k;

initgraph(&driver, smode, bgi_pathname) ;
restorecrtmode () ; . '
printf ("VE: Variable eta progressive fuzzy clustering algorithm.\n");
printf ("Data file name > ");
scanf ("%s",dfile);
if (NULL==(img file=fopen(dfile, "rt"))) | '
printf("\nEf}orlz Cannot open file %s.\n",dfile);
exit (1)
}
fscanf (img file,"%d",&obj); // get size of image
tobj=obj; // make a duplicate
1f (NULL==(U=(float *}calloc (obj,sizeof (float)})) |
printf ("\nError2: Unable to allocate U memory.\n"):;
exit(1l);
if (NULL==(X=(PINT *)calloc (obj,sizeof (PINT)) )} |
printf ("\nError3: Unable to allocate X memory.\n");

exit(l);

)

if (NULL==(XC=(PINT *)calloc(obj,sizeof (PINT)))) { )
printf ("\nError4: Unable to allocate X memory.\n");
exit(l);

)
// Get image data into array X )
for (i=0;i<obj;i++) fscanf(img file, "%d $d"”, &X[1].x,&X[1] .Yy}’
fclose(img file);
// Duplicate image data in XC array
for (i=0;i<obj;i++) (XC[i].x=X[i].x; XC[i].y=X[i].y:}
// Find max x,y dimensions of image data for display scaling
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maxx=X[0] .x; maxy=X[0].y;
for (i=l;i<obj;i++){
maxx= (maxx<X[1i] .x) ? X[i].x : maxx;
maxy=(maxy<X[1].y) ? X[i].y : maxy;
)
// Display unclustered image data
newgraph=1; graphlt(); newgraph=0;

// Begin CPCM loop
do { // recluster loop
getinputs ()’
newcentre (); dcx=vx; dcy=vy;
computeEta();
nc=0; rescan=1;
do { // rescan loop
repeat=1l;
// Cluster control loop
do { // repeat loop
useNN () ;finalcluster():
if ((Na<mcs) && (obj>=mcs)) {
removepoints();
newlist ();
if (obj>0)newcentre();
}
else repeat=0;
if (obj<mcs) |
repeat=0; rescan=0;
if (obj>0) |

for (i=0;i<obj;i++) X[i].x=kaput;

newlist ()
)
}
} while (repeat); // End inner loop
if (rescan) ({
if (Na>=mcs) {
savedata ()
newlist ()
if (obj>mcs)newcentre();
else { // obj<=mcs
if (obj>0) (
rescan=0;

for (i=0;i<obj;i++) X[i].x=kaput;

newlist ()

}
)

) while (rescan); // End outer loop
clusterCtr ()
// compute A(i}, dist from own centroid
for (i=0;i<nc;i++)
for (j=0;j<cs[i}:;j++) A[1][3]1=0/
for (1i=0;i<nc;i++) |
for (3=0;j<cs[il;j++) |
dx=CL[1][j].x-C[1].Xx;
dy=CL[i] [j].y-C[i].y;
Ali]l [j]=sqgrt (dx*dx+dy*dy);
)
)
nmsv=0;
for (i=0;i<nc;i++)} CR[1]=0;
for (i=0;i<nc;i++) |
aa=0;
for (j=0;j<cs[i];j++} |
dx=CL{i][j].x-C[1].x’
dy=CL{i] [j].y-C[i].y7
aat+=sqrt (dx*dx+dy*dy) ;
)
CR[i]l=aa/cs[i];
)

for {i=0;i<nc;i++) svar[i]=0;
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nsv=0;
for (i=0;i<nc;i++) |{
sv=0;
for (j=0;j<cs[i];j++) (
dx=CL[i][Jj].x-C[i].x
dy=CL[1i] [3).y-C[i]).y/
sd=sqgrt (dx*dx+dy*dy) -CR[1];
sv+=sd*sd;
nsv+=sd*sd;
)
svar[i]=(float)sqgrt(sv/cs[i]); // std dev for each cluster
)
tpc=0;
for (i=0;i<nc;i++) tpc+=cs{i]; // total points count
msv=(float)sqrt(msv/tpc); // std dev for all clusters
// compute B(i), dist from nn of other cluster centroid
for (i=0;i<nc;i++) {
for (3j=0;]j<cs[i);J)++) |
rnin=1E7; cnum=0;
for (k=0;k<nc;k++) {
if (k==1)continue; // ensures cluster i '= k
dx=CL[1][J).x-C[k].x; dy=CL[i][J].y-C{k].y’
nnc=sqrt (dx*dx+dy*dy) ;
if (nnc<rmin) {
rmin=nnc;
cnum=k ;
}
}
dx=CL[1i] [j] .x-C[cnum] .x; dy=CL[1i][j].y-Clcnum].y;
B(i] [j]=sqrt (dx*dx+dy*dy) ;
}
}
// compute s1l(j) and s2 similarity coefficients
for (i=0;i<nc;i++)
for (3=0;j<cs[i]:;j++) |
if (B[i][3)>Ali]1([3]) s[i]

) (3] A[l][j]/B[i][j]),
if (B[i)[J1<A[i]([3]) slil([3]
1) 103

=1-
=(B[l][J]/A[l][J]
1=0

if (B[i][j1==A[1]1[] S5[1
)
}
SB=0;
for (i=0;i<nc;i++) {
SA[1]=0

for (j= —0; j<cs[i]73++) (SA[i1+=S[i)[31;SB+=5[1][3]/}
SA[i]/=cs[i]; // sl similarity coefficient for each cluster
}
SB/=tpc; // s2 similarity coefficient for data set
graphIt():;
finalresults ()
for (i=0;i<nc;i++)
for (j=0;j<nl([i];j++){v[i]1[]].x=0; v[i]l[3].y=0;}
for (i=0;i<nc;i++)nl[i]=0; nc=0;
for (i=0;i<nc;i++) free(CL{nc})); // free points for reclustering
printf ("Repeat cluster analysis? [0=Exit, 1=Repeat] > ");
scanf ("%d", &recluster);
if (recluster) {
obj=tobj;
for (i=0;i<tobj;i++) |
X[1].x=XC[1i] .x; ¥[1i].y=XC[i].y/
}
}
} while (recluster); // end of CPCM loop

// free pointers
free(U);
free(X); free(XC);
return 0; // End of program

)

void getinputs(void)
// get user inputs
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( .
// printf ("Alphacut (normal 0.95) > ");
// scanf ("%$1£f", gacut) ;

printf ("Cohesion factor (1 to 100) > ");
scanf ("$1f", &df) ;

printf ("Minimum cluster radius (1 to 100) > ");

scanf ("%$1f", &md) ;

mcs=5;acut=0.95;er=0.5; // assumed constants
etam=-md/log(acut); // min eta
}

void newcentre (void)
// find data centroid
{

int k;

double sumx, sumy;

sumx=0; sumy=0;
for (k=0;k<obj;k++) {
sumx+=X[k].x;
sumy+=X[k] .y,
)
if (obj>0) ({
vx=sumx/obj; // x-coord data centroid

vy=sumy/obj; // y-coord data centroid
}

v[nc] [nl[nc]].x=vx; v[nc] [nl[nc]].y=vy; // save cluster

tracks (centroid)
nl[ncl++; // counts number of tracks

}

vold computeEta(void)
// compute variable eta
// use eta if >= min eta, else use min eta

{
int k;
double xc,yc,d;

d=0;
for (k=0;k<obj;k++) {
xc=X[k] .x-vx;
yc=X (k] .y-vy’
d+=sqrt (xc*xc+yc*yc);
}
if (ob3>0) {
eta=df*d/obj; // eta value
if (eta<=etam) eta=etam;

}

void useNN (void)
// assign nearest neighbour to prototype
{
int k;
double xc,yc,d,dmin;
nn=0;
xc=X[0].x-vx; yc=X[0].y-vy’
dmin=xc*xc+yc*yc;
for (k=1;k<obj;k++){
xc=X[K].x-vx; yc=X[k].y-vy’
d=xc*xctyc*yc;
if (d<dmin) {
dmin=d;
nn=k; // nearest neighbour point
}
}

vx=X[nn].x; vy=X[nn].y; // assign nearest neighbour to prototype
vinc] [nl[nc]].x=vx; v[nc][nl[nc]].y=vy; // save cluster

tracks (centroid)
nl[ncl++; // counts number of tracks

}
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void finalcluster (void)
{
unsigned int k;
double pe,err;
double xc,yc,sux,suy,d;
pe=0; iter=0;
do { // do-while loops until eta differential<0.5
// compute memberships
for (k=0;k<obj;k++) {
xc=X{k].x-vx;
ye=XI[Kk].y-vy;
d=sqrt (xc*xc+yc*yc)/eta; // distance metric
if (d>»25)U[k]=0;
else U[kl=1/exp(d); // point membership
)
Na=0; sux=0; suy=0;
// find points in cluster
for (k=0;k<obj;k++) {
if (U[k]>acut) {
++Na; // number of points in cluster
sux+=X[k].x;
suy+=X[k].y;
}
}
// compute cluster centroids
if (Na>0) {
vx=sux/Na; // x-coord of prototype
vy=suy/Na; // y-coord of prototype
computeEta () ;
vnc] [nl[nc]].x=vx; v[nc] [nl[nc]].y=vy; // save cluster
tracks (centroid)
nl[nc]++; // counts tracks

)

err=fabs(eta-pe);
pe=eta;
iter++;

}) while (err>er); // er=0.5

)

void removepoints (void)
// Remove data points from subsequent clustering

{

unsigned int k;

for (k=0;k<obj;k++)
if (U[k]>acut) X[k].x=kaput;
}

void finalresults (void)

// Show cluster statistics

// CRAD=cluster radius, SDEV=cluster std deviation
// COF=cohesion factor, ACUT=alphacut

// S2=data set sim coeff, Sl=cluster sim coeff

{

unsigned int 1i,Jj,k,ncnt;

for (k=0;k<nc;k++) {
printf ("\nCluster #%d:\n", k+1);
for {i=0;i<nl[k];i++) {
printf ("$d:%2.1f,%2.1f ",i+1,v[k][1].x,v[k][i].y)’
)
)
getch(); printf("\n");
printf ("VE:File:%s Points:%d S2:%6.4f SDEV:%2.2f COF:%1.0f
MCR:%2.1f\n",
dfile, tobj, SB,msv,df,md) ;

printf ("Data Centroid:%2.2f,%2.2f ER:%$2.1f ACUT:%4.2f MCS:%d\n"

dcx,dcy, er, acut, mcs) ;
for (k=0;k<nc;k++) {
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printf(” CLUSTER %d [%d points] CTR:%2.2f,%2.2f S1:%6.4f
SDEV:%2.2f\n",
k+1,cs[k],C[k].x,C[k].y,SA[k],svar[k]):
printf ("CRAD:%2.2f R:%2.2f D:%2.2f ETA:%2.2f ITER:%d\n",
cralk],cr[k],cd[k],cetal[k],cf(k]);
for (i=0;i<cs[k];i++) {
printf ("%d,%d ",CL[k][i].x,CL[k][1i].y):
if ((i+1)%10==0) printf{("\n"):
)
i1f (cs[k]%10!'=0) printf("\n");
getch()
}
// Determine noise points
for (J=0;j<tobj;j++) (X[J].x=XC[J].x; X[J].y=XC[]].y;}
for (j=0;j<tobj;j++)
for (k=0;k<nc;k++)
for (i=0;i<cs[k];i++)
1f (X[3].x>0)
if (CL[X]}[1].x==X[]].x&&CL[k]} [1].y==X[]].y) X[J].x=kaput;
ncnt=0;
for (3=0;j<tobj;j++) if (X{j].x>0) ncnt++;
printf ("UNCLUSTERED [%d points]\n",ncnt);
for (j=0;j<tobj;j++){
if (X[3].x>0) (
printf ("%d,%d ",X[j].%x,X[3].y)’
if ((j+1)%10==0) printf("\n"):;
}
} .
printf ("\n") ;
}

void savedata (void)
// Save cluster statistics
{
unsigned int k,n;
double x,y,rsq;
rsg=0;n=0;
// remove data points from subsequent clustering
for (k=0;k<obj:;k++)
if (U[k]>acut) {
x=X{k].x-vx;
y=X{k].y-vy;
rsq+=x*x+y*y;
X [k] .x=kaput;n++;
}

C[nc).x=vx; // prototype, centroid x coord

Clnc].y=vy; // prototype, centroid y coord

cf[nc]=iter; // cluster iterations

cs[ncl=n; // number of points in cluster

vnc] [nl[nc]].x=vx; // x-coord, cluster centroid tracks
v[nc] [nl[nc]].y=vy; // y-coord, cluster centroid tracks
nlncj++;

cra[nc]=-eta*log(acut); // cluster eta circle
cetalnc]=eta;

cr[ncl=sqrt(rsq/(n-1)); // cluster rms radii
cd[nc]=100* (n-1)/ (pi*rsa/(n-1)); // cluster density
++nc;

}

vold clusterCtr (void)
// Re-cluster from known prototypes
// to obtain more accurate clusters
{

unsigned int i, k,np;

double xc,yc,r,sx,sy;

for (i=0;i<nc;i++) (
if (NULL=={CL[i]=(PINT *)calloc(100,sizeocf{PINT)))) |

printf ("\nError5: Unable to allocate CL memory.\n");
exit (1)
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}
}
for (i=0;i<tobj;i++) (X[1i].x=XC[i].x; X[1i].y=XC[i].y:)
for (i=0;i<nc;i++) {
np=0; sx=sy=0;
for (k=0;k<tobj;k++) {
if (X[k].x>0) ¢
xc=X[k].x-C[i].x; yc=X[k].y-C[i].y;
r=sqrt (xc*xc+yc*yc);
if (r<=crali]) {
// save improved cluster statistics
CL[1] [np].x=X[k].x; // x-coord cluster points
CL[i] [np].y=X[k].y; // y-coord cluster points
sx+=X[k].x; sy+=X[k].y;
np++; X[k].x=kaput; // remove cluster points

}

if (np>0) {vx=sx/np; vy=sy/np;} // improved prototype positions
C[i].x=vx; C[i].y=vy; // save improved prototype positions
cs[1i]=np; // save number of cluster points

}

volid newlist (void)
// Update data array list and fills up
// vacant array cells with image point data

{

unsigned int k,ind=0;

for (k=0;k<obj;k++} {
if (X[k]).x==kaput) continue;
else |
X{ind].x=X[k].x;
X[ind] .y=X[k] .y,
ind++;
}
}
obj=ind;
}

void plus(int x,int vy)
// Constructs a plus symbol
{
setcolor(colr);
line(x-3,y,%+3,y); line(x,y-3,%,y+3);
}

void cross(int x,int y)
// Constructs a cross symbol
{
setcolor(colr);
line (x-2,y-2,x+2,y+2); line(x+2,y-2,%x-2,y+2);
}

void cir(int x,int y,int r)
// Constructs a circle symbol
{
setcolor(colr);
circle(x,y,r):

)

void diamond({int x,int vy)
// Constructs a diamond symbol
{
int n=5;
setcolor(colr);
line(x,y-n,x-n, Y) 7
line (x-n, Y, X, y+n) ;
line (x,y+n, x+n,y);
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}

line(x+n,y,x,y-n);

void square (int x,int vy)

//
{

)

Constructs a square symbol

int n=3;
setcolor(colr):;

line (x-n, y-n, x+n,y-n);
line (x+n, y-n, x+n, y+n) ;
line (x+n, y+n, x-n, y+n) ;
line (x-n, y+n, x-n,y-n);

void graphIt(void)

//
//
{

/7

s

Display color coded cluster points, origins,
centroid tracks and unclustered points (if any)

int i,73,k;

unsigned int xp, yp,icnt, xo, yo, Xw, yw;
unsigned char ints[5],ni,nih;
double Xs,ys;

setgraphmode (getgraphmode ()); // restore graphics mode
setcolor(15);

x0=100;yo=10; xw=yw=440; // (x0,yo)=origin;xw,yw are X,y coords widths

Get X,y coordinates scale factor

1f (maxx<50]| Imaxy<50) (xs=(double)xw/maxx-3;ys=xs;}
else (xs={(double)xw/maxx-0.1; ys={(double)yw/maxy-0.1;)
1f (maxxX>maxy)ys=xs;

else xs=ys;

1f (maxx>200!}lmaxy>200) (ni=30;nih=15;}

else if (maxx>100}|maxy>100) {ni=20;nih=10;}

else if (maxx>50( |maxy>50) (ni=10;nih=5;}

else (ni=1l;nih=1;}

rectangle (X0, YO, XO+Xw, YyO+yW) ;

line (xo, yo+tyw+2,xo,yo+yw+7); // zero x tick

line (x0-2, yo+yw,xo-7,yo+yw); // zero y tick

(
itoa (0, ints, 10); moveto(xo 4,yo+yw+l2); outtext({ints); // x=0
itoa (0, ints, 10); moveto(xo—32,yo+yw—3); outtext{ints); // y=0
for (1cnt 1,k=1;k<(xw+l);k++) { // x coord ticks and number labels

if (k%((lnt)(nlh*xs+0.5)

)==0)
{xp=%x0+k;yp=yot+tyw+2;line
0)s

(Xp, yP, Xp, YP+5) i}
if (k% ((int) (ni*xs+0.5)) 0) (
(itoa(ni*icnt++,ints, 1

}

moveto (xp-4, yp+10); outtext(ints);

for (icnt=1,k=1;k<{yw+l);k++) ( // y coord ticks and number labels

if (k% ((int) (nih*ys+0.5))==0)
(xp=xo-2;yp=yo+yw—k;line (Xp/ YP. Xp_s/ yp) 7 )
if (k% ((int) (ni*ys+0.5))==0)

{itoa{ni*icnt++,ints, 10); moveto (xp-32,yp~-3); outtext({ints);

)
if {(newgraph) {
colr=11;
for (k=0;k<obj;k++) |
xp=x0+xs*X [k] .x; yp=yotyw-ys*X[k].y;
cross (Xp, yp) 7
}
}
else {
colr=15;
A square with inside white cross represents cluster origin
Color of square corresponds to color of cluster
Cross (white) symbol denotes cluster origin
for (k=0;k<nc;k++) |
Kp=X0+xs*v[k] [0] .x+0.5; yp=yo+yw-ys*v[k][0].y+0.5;
Cross{xp,yp):
}
colr=2z;

Square (colored) symbol denotes cluster origin
for (k=0;k<nc;k++) {
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xp=xo+xs*v[k] [0].x+0.5; yp=yot+yw-ys*v([k][0].y+0.5;
square (xp, yp)
colr++;

}
colr=2;

// Plus symbol denotes cluster point
for (k=0;k<nc;k++) |{

for (1=0;1<cs[k];1++)
xp=xo+Xxs*CL{k] (1] .x+0.5; yp=yo+yw-ys*CL{k][1i].y+0.5;
plus (xp, yp);
}
xp=xo+xs*C[k] .x+0.5; yp=yot+tyw-ys*C[k].y+0.5;
// Show variable eta circle of cluster
// Color of circle corresponds to color of cluster
cir(xp,yp, (¥xs*craf{kl+0.5));
colr++;
}

// Remove cluster points for later noise points identification
for (3=0;j<tobj:;j++) {X[J].x=XC[j].x; X[J].y=XC[j].y/’}
for (J=0;j<tobj;j++)

for (k=0;k<nc;k++)
for (i=0;i<cs[k];i++) |
if (X[J1.x>0) {
if (CL[k]}[1].x==X[]j].x&&CL[Kk]}[1].y==X[]].y)
X[]J].x=kaput;
}
}

// Diamond and cross symbols denote unclustered point
colr=7;
for (j=0;j<tobj;j++)

if (X[3].x>0) {
diamond (x0+xs*X[j].x+0.5,yo+yw-ys*X[]j].y+0.5);
cross (xo+xs*X[j].x+0.5, yotyw-ys*X[j] .y+0.5);

)

// Square and a centre white dot symbols denote cluster tracks
colr=2;
for (k=0;k<nc;k++) {

for (i=1l;i<nl[k];i++) (
xp=xo+xs*v[k] [1].x+0.5; yp=yo+yw-ys*v{k] [1].y+0.5;
square (xp, yp);
putpixel (xp,yp,15)’
}
colr++;
)
colr=15;

// Small circle symbol denotes cluster prototype

for (k=0;k<nc;k++) (
Xxp=xo+xs*C[k] .x+0.5; yp=yo+yw-ys*C[k] .y+0.5;
cir(xp,yp.2); // cluster prototype
)
}
getch(}):
restorecrtmode () ;

}
Data File: Ruspini.dat

75

453563105997713491369128815751861 1965

2274277228 76 24 58 27 55 28 60 30 52 31 60 32 61 36 72

28 147 32 149 35 153 33 154 38 151 41 150 38 145 38 143 32 143 34 14]

44 156 44 149 44 143 46 142 47 149 49 152 50 142 53 144 52 152 55 155

54 124 60 136 63 139 86 132 85 115 85 96 78 94 74 96 97 122 98 116

98 124 99 11999 128 101 115 108 111 110 111 108 116 111 126 115 117 117 115

70477 128321611569 1578 16 66 18 58 13 64 20 69 21
662361257627 72316430
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Glossary

This glossary is intended to present a succinct explanation or clarification of some unfamil-
lar pattern recognition terms or concepts used in the thesis. The items in the glossary repre-
sent the more significant terms alluded to directly or indirectly in the thesis, without at-
tempting to be comprehensive. Works from the following authors, where cited in the glos-
sary, are acknowledged with capitalised characters enclosed in square brackets eg. [HS].

Unacknowledged items are from the author.

BF = [Burden and Faires, 1989]

FS = [Freeman and Skapura, 1992]
GW = [Gonzalez and Woods, 1992]

HS = [Haralick and Shapiro, 1993]

JD = [Jain and Dubes, 1988]

JKS = [Jamn, Kasturi and Schuck, 1995]
SHB = [Sonka, Hlavac and Boyle, 1993]
Accuracy

Accuracy refers to the degree of closeness an estimate has to the true value of what it is
estimating. [HS]

Area analysis, region analysis

In area analysis, the area of the image containing the objects or entities to be processed is
located by some simple algorithm. A more complex processing algorithm is applied only in
the located area. This strategy of processing can often increase execution speed. The al-
gorithm locating the area to be processed is called the focus-of-attention mechanism. [HS]

Bayes decision rule

A Bayes decision rule is one that treats the units independently and assigns a unit # having
pattern measurements or features d to the category ¢ whose conditional probability, given
d, 1s highest. [HS] See decision rule.

Binary image
A binary image is an image in which each pixel takes either the value zero or non-zero.
Usually the non-zero value is assumed to be 1. [HS] See pixel.

Blob or connected component
A blob 1s a maximal-sized connected region. [HS] See blob analysis.

Blob analysis, connectivity analysis, connected component analysis
In blob analysis, the position and shape properties of each connected component are meas-
ured. Typical shape propertics include area, perimeter, number of holes, bounding rectan-
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gle, extremal points, centroid, second moments, and orientation derived from second mo-
ments or extremal points. The connected components are then identified or classified by a
decision rule on the basis of their measured properties. [HS] See blob, arca analysis.

Classifier
A classifier is a device or process that sorts patterns into categories or classes. [HS]

Categorised
See classified

Classified, identified, recognised, categorised

A unit is said to be classified if the decision rule is able to assign it to some category from
the set of given categories. In some applications there may be a definite distinction between
recognise and identify. In these applications, for a unit to be recognised, the decision rule
must be able to assign it to a type of category that includes many sub-categories. For a unit
to be 1dentified, the decision rule must be able to assign it not only to a type of category but
also to a sub-category of the category type. For example, a small area ground patch that

may be recognised as containing trees may be specifically identified as containing apple
trees. [HS]

Classification, identification

Refers to the class or category assignment of data. A classified object is said to be identi-
fied. See classified.

Cluster

A cluster is a homogenous group of units that are very “like” one another. “Likeness” be-
tween umts i1s usually determined by the association, similarity or distance between the
measurement patterns associated with the units. [HS] See cluster assignment function.

Cluster prototype

A cluster prototype represents or characterises a cluster in some way eg. the centre or cen-
troid of the cluster. In fuzzy clustering, it is obtained by the iterative minimization of an
objective function J involving the fuzzy memberships.

Cluster assignment function

A cluster assignment function is a function that assigns each observed unit to a cluster on
the basis of their corresponding features. Sometimes the units are treated independently. In
this case the cluster assignment function can be considered as a transformation from meas-
urement space to a set of clusters. [HS]

Clustering, cluster analysis, pattern classification
Cluster analysis is defined as the formal study of algorithms and methods for grouping or
classifying objects. [JD].

Clustering is concerned with constructing the cluster assignment function that groups

similar units. Clustering is synonymous with pattern classification or numerical taxon-
omy. [HS]

Computer vision

Computer vision is the combination of image processing, pattern recognition, and artificial
intelligence technologies that focuses on the computer analysis of one or more images,
taken with a single/multiband sensor in time sequence. The analysis recognises, locates the
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position and orientation of, and provides a sufficiently detailed symbolic description or
recognition of those imaged objects deemed to be of interest in the three dimensional envi-
ronment. The computer vision process often uses geometric modeling and complex-
knowledge representations in an expectation- or model-based matching and searching
methodology. The searching can include bottom-up, top-down, blackboard, hierarchical,
and heterarchical control strategies. [HS] See machine vision systems.

Connectivity analysis, connected component analysis
See blob analysis.

Data

Data is any qualitative or quantitative information containing useful or meaningful patterns
or structure. In machine vision, meaningful data is typically embedded in noise or a com-
plex surrounding. Image processing or clustering algorithms are processes that can extract
meaningful pattemns from noise or the complex surrounding and give an interpretation of
the extracted data. This data is called an object or objects of interest.

Decision rule or simple decision rule

A decision rule usually assigns one and only one category to each observed unit on the ba-
sis of the sequence of measurement patterns in the data sequence Sy or on the basis of the
corresponding sequence of feature patterns. A simple decision rule fis a decision rule that
assigns a category to a unit solely on the basis of the measurements or features associated
with the unit. Hence the units are treated independently, and the decision rule / may be
thought of as a function that assigns one and only one category to each pattern in meas-
urement space or to each feature in feature space. [HS]

Detect, detection

A unit is said to be detected if the decision rule is able to assign it as belonging only to
some given subset A of categories from the set C of categones. To detect a untt does not
imply that the decision rule is able to identify the unit as specifically belonging to one par-
ticular category. [HS]

Digital image

A digital image or digitised image is an image in digital format obtained by partitioning the
area of an image into a finite two dimensional array of small, uniformly shaped, mutually
exclusive regions called resolution cells and assigning a representative image value to each
such spatial region. A digital image may be abstractly thought of as a function whose do-
main is a finite two dimensional set of resolution cells and whose range is the set of possi-
ble image intensities. [HS]

Discriminant function, linear discriminant function

A discriminant function f(d) is a scalar function whose domain s usually measurement
space and whose range is usually the real numbers. When f(d) = fi(d), for k=12,..K,
then the decision rule assigns the ith category to the umt giving rise to pattern d. A linear
discriminant function fis a discriminant function of the form

f(d) ZZLlaﬁj +ay, where d = (), 6,,..., On) TEpresents the measurement pattern.
[HS]

Feature, feature pattern, feature vector or pattern feature
A feature 1s an N-tuples or vector whose components are functions of the mitial measure-
ment pattern variables or some subset of them. Feature N-tuples or vectors are designed to
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contain a high amount of information relative to the discrimination between units of the
types of categories in the given category set. Sometimes the features are predetermined; at
other times they are determined when the pattern discrimination problem is being solved. In
image pattern recognition, features often contain information relative to gray tone intensity,
texture, or region shape. [HS] See feature space.

Feature space
A feature space is the set of all possible feature N-tuples. [HS]

Generalisation

In the context of neural networks, it refers to the capability of the network to associate key
features of new input vectors to the features of the training class. Generalisation capabili-

ties are related to neural network topology, the representativeness of the training samples
and the number of training patterns. [FS]

Gray scale image or gray level image
A gray scale image is an image in which each pixel has a value in a range larger than just 0

or 1. Gray scale images typically have values in the range 0 to 63, 0 to 255, or 0 to 1,023
corresponding to 6-bit, 8-bit or 10-bit digitisations. [HS]

Histogram or histogram image

A histogram is a function defined on the set of image intensity values of non-negative inte-
gers. The value A(k) is given by the number of pixels in the image having image intensity .
For images having a large gray tone range, the image will often be quantised before being
histogrammed or will be quantised on the fly during the histogramming process. [HS]

Hyperplane

A hyperplane is a decision boundary which arises from the use of affine discriminant func-
tions.

Identified
See classified.

Identification
See classification.

Hlumination

The 1llumination at a point on a surface is the luminous flux incident on an infinitesimal
element of the surface centred at the given point divided by area of the surface element.
The unit of illumination is the /ux or meter candle, being equivalent to one lumen per
square meter. The illumination at a point on a surface due to a point source of light 1s pro-
portional to the luminous intensity of the source in the direction of the surface point and to
the cosine of the angle between this direction and surface normal direction. It is inversely
proportional to the square of the distance between the surface point and the source. [HS]

Image

An image is a spatial representation of an object contained in a two or three dimensional
scene. In computer or machine vision, “image” usually means recorded image such as a
video image, digital image, or a picture. In a two dimensional case, it may be thought of as
a continuous function / of two variables in a rectangular plane or region with values at
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§patial or orthogonal coordinates (r, ¢) denoted by I(r, ¢). [HS] See video image, digital
Image, image intensity, gray scale image, image processing and histogram.

Image processing

Image processing encompasses all the various operations that can be applied to image data.
These include, but are not limited to, contrast stretching, edge enhancement, image en-

h_ancement, preprocessing, quantisation, spatial filtering, matching and recognition tech-
miques. [GW] See image.

Interpretation
Interpretation involves assigning meaning to an ensemble of recognised objects. [GW]

Labelled

An object is said to be labelled if its identity or class membership is known. For example,
an approximately circular silhouette can represent any number of objects such as a ball,
¢gg, orange or balloon. However, given additional information that the object has the smell,
texture, color and weight of an orange, the object is said to be identified as an orange.

Linearly separable
Two classes are said to be separable if their class regions do not overlap. If for every class

region there exists a hyperplane that separates it from all other class regions, the classes
are said to be linearly separable. [HS] See hyperplane.

Machine vision system

A machine vision system 1s a system capable of acquiring one or more images of an object;
of processing, analysing and measuring various characteristics of the acquired images; and
of interpreting the results of the measurements in such a way that some useful decision can
be made about the object. Functions of machine vision systems include locating, inspect-

ing, gauging, identifying, recognising, counting, and motion estimating. Also see comput-
ing vision. [HS]

Measurement space
A measurement space is a set large enough to include the set of all possible measurement
patterns that could be obtained by observing some set of units. [HS]

Measurement vector

A measurement vector is the ordered N-tuples of measurements obtained from a unit under
observation. Each component of the N-tuples is a measurement of a particular quality,
feature, or characteristic of the unit. In image pattern recognition, the units are usually
picture elements or simple formations of picture elements, and the measurement N-tuples
are the corresponding gray tone intensities, gray tone intensity N-tuples, or properties of
formations of gray tone intensities. [HS]

Neural network, perceptron

A neural network is an interconnected network of non-linear units or processing elements
capable of learning and self-organising. The response of a unit or a processing element is a
non-linear monotonic function of a weighted sum of the inputs to the processing elements.
The weights, called synaptic weights, are modified by leaming or reinforcement algorithm.
Typical non-linear processing functions are sgn(x), 1/(1+e™), and tanh(x). When each
processing element contributes one component to the output response vector, the percep-
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tron is called a simple perceptron. Processing units whose outputs only indirectly influ-
ences the components of the output response vector are called hidden units. [HS]

The attraction of neural networks for pattern recognition lies in their ability to parti-
tion the feature space using non-linear boundaries for classes. Neural networks are limited

in their ability to introduce known facts about the application domain and the difficulty in
debugging performance. [JKS]

Noise

Two types of noise may be identified.

1. The first kind is random variations in the intensity values. Some of the common types
of noise belonging to this category are: (i) salt and pepper, (ii) impulse and (iii) Gaussian.
Salt and pepper noise contain random occurrences of both black and white intensity values.
Impulse noise contains only white intensity values. Gaussian noise contains variations in
intensity that are drawn from a Gaussian or normal distribution. [JKS]

2. The other kind of noise is associated with the by products of image processing or from

a clustering algorithm. For example blurred edges from an edge operator and low member-
ship values from a fuzzy clustering algonthm.

Norm, vector norm

Let R” denotes the set of all n-dimensional column vectors with real number coefficients.
To define a distance in R”, we use the notion of a norm. A vector norm on R” is a function,
|- I, from R” into R with the following properties:

(1) |Ix||=0 forall x € 9",

(i) |jx|| = 0 if and only if x =[0,0,....0]" =0,

(iii) ||ox|| = |A ||x|| for all @ € R, and x € R,

(iv) [lx + yl| < |[lx]| + [ly|| for all x, y & R".

where X = [x},%2,...,%,]” is the vector in R”. [BF] See Appendix A.

Optimal, optimality

Optimality in the context of clustering is understood in two senses. As subjective optimal-
ity, it refers to an ideal or natural perception of grouping in data. Objective optunality 1s
restricted to the notion of objective performance measures such as the least squares error,
cluster volume or cluster shape, or other cluster parameters. See optimisation techniques.

Optimisation techniques

Optimisation implies the notion of finding the best fit of an objective function to data. A
function optimisation may be defined as follows: given some finite domain D and a func-
tion £ D—R, R being the set of real numbers, find the best value in D under f. Finding the
best value in D is understood as finding a value xeD yielding either the mmimum (function
minimisation) or the maximum (function maximisation) of the function f:

fmin(x):minf(x): fmax(x):maxf(x)
xeD xeD

The function fis called the objective function. The design of the objective function is a key
factor in the performance of any optimisation algorithm. Conventional approaches to op-
timisation use calculus based methods which can be compared to hill-climbing (in maxini-
sation problem) or gradient descent (in minimisation problem) — the gradient of the objec-
tive function gives the steepest direction of climb or descent. The main lunitation of the
calculus based methods is their local behaviour; for example, the search can easily end in a
local minimum and the global minimum can be missed. There are several methods to im-

prove the search for a global minimum, like dynamic programming, random searches and
genetic algorithms. [SHB]
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Partition

A partition is a cluster or natural grouping of data resulting from a clustering process.

Pattern, measurement pattern, pattern vectors

A pattern is the data structure of the measurements resulting from observing a unit. The
word pattern is used in three distinct senses: as measurement pattern; as feature pattemn;
and as the dependency pattern or patterns of relationships among the components of any
measurement or feature N-tuples derived from units of a particular category and that are
unique to those N-tuples, that is, they are dependencies that do not occur in any other cate-
gory. [HS]

A pattern vector is represented by bold face letter such as x = (x,,x; ....x,)", where each
component x; represents the /th descriptor and » is the number of features or dimensions of
such descriptors. The nature of the components of a pattern vector x depends on the meas-
urement technique used to describe the physical pattern. [GW]

Pattern recognition

Pattern recognition techniques can be used to construct decision rules that enable one to
identify units on the basis of their measurement patterns. Pattern recognition techniques
can also be employed to cluster units having similar enough measurement patterns. In sta-
tistical pattern recognition, the measurement patterns have the form of N-tuples or vectors.
In syntactic pattern recognition, the measurement patterns have the form of sentences
from the language of a phrase structure grammar. In structural pattern recognition, the
measurements do not have the form of an N-tuples or vector. Rather, the unit being meas-
ured is encoded in terms of its parts and their relationships and properties. Also see units.
[HS]

Pattern recognition is a high level image processing activity involving the nature of
data interpretation, and the application of constraints and idealisations to assist this task,
such as by the reduction of task complexity or by optimisation techniques. Methods of
pattern recognition may be classified into: (i) decision-theoretic (such as Bayes classifier,
neural networks and fuzzy clustering), (ii) structural (such strings and trees) and (i1) image

interpretation (such as predicate logic, semantic networks and production systems). [GW]
See recognition.

Pixel, picture element or pel

A pixel is a pair whose first member is a resolution cell or (row,column) spatial position
and whose second member is the image intensity value or vector of image values associated
with the spatial position. Also see resolution cell. [HS]

Point operator ' .
A point operator is an image operator in which the output image value at each pixel posi-
tion depends only on the input image value at the corresponding pixel position. [HS]

Precision
Precision refers to the degree of closeness an estimate has to its expected value. (HS]

Preprocessing

Preprocessing is an operation applied before pattern identification is performed. Preproc-
essing produces, for the categories of interest, pattern features that tend to be invariant un-
der changes such as translation, rotation, scale, illumination level, and noise. In essence,
preprocessing converts the measurement patterns to a form that allows a simplification in
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the decision rule. Preprocessing can enhance 1Images, segment target patterns and detect,
normalise or centre objects of interest. [HS]

Prototype or prototype pattern
A prototype is the observable or characteristic measurement or feature pattern denived

from units of a particular category. A category is said to have a prototype pattern only if

the characteristic pattern is highly representative of the N-tuples obtained from units of that
category. [HS] See cluster prototype.

Recognised
See classified.

Recognition

Recognition is the process that assigns a label to an object based on the information de-

rived from quantitative and qualitative features of the object. [GW] See pattern recogni-
tion.

Region
Refers to an area description of connected pixels in an image.

Resolution

Resolution is a generic term that describes how well a system process, component material,
or image can reproduce an isolated object consisting of separate closely spaced objects or

lines. [HS]

Resolution cell

A resolution cell 1s the smallest, most elementary constituent by area, having an associated
image intensity in a digital image. A resolution cell is referenced by its spatial coordinates
which are the centre coordinates of its area. The resolution cell or spatial formations of
resolution cells constitute the basic unit for low level processing of digital image data.
Resolution cells usually have areas that are square, rectangular or hexagonal. [HS]

Robust, robustness
A vision procedure is said to be robust or possesses robustness i1f small changes in the as-
sumed model on which the procedure or technique was developed produce only small
changes in the result. Small fractions of the data that do not fit the assumed model, and in
fact are very far from fitting it, constitute a small change in the assumed model. Data not
fitting an assumed model may be due to rounding or quantising errors, gross errors, or the
fact that the model itself is an idealised approximation of reality. [HS]

In the context of clustering algorithms, robustness is a property that is associated with
a resistance (to varying degrees) to unwanted effects due to such factors as the presence of
or interference from noise or other data, nature of data processing and initial conditions of
the cluster parameters. In neurai networks, robustness means the essential preservation of
generalisation attributes despite the inexactness of the mput data to training data.

Segmentation

Segmentation is a process that typically partitions the spatial domain of an image into
mutually exclusive subsets called regions. Each region is uniform and homogeneous with
respect to some property, such a tone or texture, and its property value differs in some
significant way from that of each neighbouring region. An image segmentation process that
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uses image intensity as a property value produces regions that are called discrete tonal
features. [HS]

Structure
Refers to meaningful patterns in data in contrast to random patterns or noise.

Template matching

Template matching 1s an operation that can be used to find out how well a template sub-
image matches a window of a given image. The degree of matching is often determined by
translating the template subimage all over the given image and for each position, evaluating
the cross-correlation or the sum of the squared or absolute image intensity differences of
corresponding pixels. Template matching can also be used to best match an observed
measurement pattern with a prototype pattern. [HS]

Thresholding, multilevel thresholding

Thresholding is an image point operation that produces a binary image from a gray scale
image. A binary-1 1s produced on the output image whenever a pixel value on the output
image 1s above a specified minimum threshold level. A binary-0 is produced otherwise.
Alternately, thresholding can produce a binary-1 on the output image whenever a pixel
value on the input image is below a specified maximum level. A binary-0 is produced oth-
erwise. Multilevel thresholding is a point operator employing two or more thresholds. Pixel
values that are in the interval between two successive threshold values are assigned an in-
dex associated with the interval. Also see point operator. [HS]

Units

The unit is the entity that is observed and whose measured properties constitute the meas-
urement pattern. The simplest and most practical unit to observe and measure in the pat-
tern recognition of image data is often the pixel (the gray tone intensity or the gray tone
intensity N-tuples in a particular resolution cell). This is what makes pictonal pattern rec-
ognition so difficult, because the objects requiring analysis or identification are not single
pixels but are often complex spatial formations of pixels. [HS]

Vector norm
See norm and Appendix A.

Video image

A video image is an image in electronic signal format capable of being displayed on a
cathode ray tube, screen or monitor. The video signal can be generated from devices like a
CCD camera, a vidicon, a flying spot scanner, a tactile sensor, a range sensor or a frame
buffer driving a digital-to-analog convertor. [HS]











