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Abstract 

This thesis applies an enhanced progressive clustering approach, involving fiizzy clustering 

algorithms and fuzzy neural networks, to solve some practical problems of pattem 

recognition. A new fuzzy clustering framework, referred to as Cluster Prototype Centring 

by Membership (CPCM), has been developed. A Possibilistic Fuzzy c-Means algorithm 

(PFCM), which is also new, has been formulated to investigate properties of frizzy 

clustering. PFCM extends the useability of the Fuzzy c-Means (FCM) algorithm by 

generalisation of the membership function. 

CPCM provides a flexible framework to integrate clustering methods that detect 

cluster substmctures. Four pattem recognition theories, consisting of the Bayes decision 

mle, partitional clustering, fuzzy clustering and neural network, which influenced the 

development of the CPCM clustering model and application algorithms are reviewed. Four 

new experimental algorithms to detect compact cluster regions and outlines are adduced to 

illustrate the adaptation of analytic fuzzy clustering algorithms for the CPCM framework. 

Three new cluster validity indices are developed to evaluate the clustering performance of 

the basic -t-Nearest Neighbour, FCM, PFCM and CPCM based algorithms. 

Application development is focused on three problem contexts: (i) detection of 

contaminants in wool and paint defect on tile surface (region segmentation), (ii) 

identification of real object lines and circles (boundary detection) and (iii) recognition of a 

notched feature on an armature housing (general pattem recognition). The CPCM 

algorithms demonstrate more accurate segmentation of small scale defect pattems 

compared to FCM. Results obtained from these algorithms indicate robust clustering and 

accurate identification of cluster parameters (circle centre, radius, line gradient and 

comers) from real data silhouettes characterised by the presence of noise, fragmentation 

and partial obscurity. These algorithms also facilitate a solution for general pattem 

recognition. Several fiizzy neural network configurations are developed to improve object 

recognition and to model the cluster prototype from a progressive clustering algorithm. 
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Chapter 1 Introduction 

Chapter 1 

Introduction 

This thesis is about the understanding and interpretation of images acquired from a video 

camera. Humans perform this task almost instantly by intuition. It is however, incredibly 

difficult to replicate this task on a machine. This is because the articulated aspects of hu­

man perception are incongment with the knowing aspects. Consequently, the goals of pat­

tem recognition must be considered idealisations of the real world conditions and the re­

sults of pattem recognition methods, approximations of human perceptions. By limiting 

the conditions upon which the graphical image of the object is dependent, some useful re­

sults can be obtained. Indeed, the recognition of these limitations has produced some suc­

cessful applications. Notably, in the areas of large scale integrated electronics, automotive 

manufacturing, ecology, meteorology, brain scan diagnostics and vision guided robotics. 

In the thesis, a new enhanced progressive fuzzy clustering approach is applied to 

solve some practical problems in the following areas of pattem recognition: (i) region seg­

mentation, (ii) boundary detection and (iii) general pattem recognition. New fiizzy cluster­

ing algorithms have been developed to enable successful and accurate identification of 

cluster parameters in a noisy environment. New fuzzy neural configurations have been de­

signed to enable accurate pattem classification for object recognition and cluster prototype 

modelling. 

Section 1.1 of this chapter, introduces the background information and motivations 

for pattem recognition. This is followed by a discussion of the scope and contributions of 

the thesis in Section 1.2. The last section of this chapter gives an overview of each chapter 

of the thesis. 
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1.1 Background and Motivations 

This thesis is primarily concemed with the use of fiizzy clustering, specifically the Cluster 

Prototype Centring by Membership (CPCM) framework, to solve practical problems of 

pattern recognition such as the detection of defect pattems or identification of stmcture in 

data. Fuzzy clustering may be broadly defined as a cluster analysis or neural network 

technique that applies fuzzy concepts based on fuzzy set theories to partition data. 

Cluster analysis is the exploration of data for stmcture or clusters. Clusters are 

natural groupings or partitions in data. Cluster analysis organises data that are typically 

not labelled by a process which attempts to disclose the structure or geometric properties 

in data. By organising data into discrete groups, cluster analysis performs classification. 

The study of data groupings has a long history involving diverse disciplines and known 

under various names such as cluster analysis, numerical taxonomy and automatic data 

classification. Cluster analysis is widely used in many different fields including the follow­

ing: artificial intelligence, vision guided robotics, medical research, remote sensing, biol­

ogy, psychology, voice recognition, political science, economics, meteorology and ecology. 

1.1.1 Background 

A representative context of image processing for pattem recognition is shown in Figure 

1.1. The pattem recognition applications presented in the thesis, from Chapters 4 to 7, as­

sume this context for data preprocessing and may also involve the use of a knowledge or 

mle base within specific algorithms for robust clustering. 

The problem domain is a problem to be solved by a machine vision system or com­

puter vision such as the detection of contaminants in wool samples or to count the number 

of cells in a blood sample. The image acquisition and preprocessing stages are also known 

as low level stages. These involve the acquisition of information from the world using a 

camera or other transducers, data conversion to a form suitable for computer processing, 

and preprocessing to improve the image for subsequent or downstream stages. Preprocess­

ing typically involves techniques for enhancing confrast, removing noise, and isolating re­

gions. The intermediate level stages include segmentation and representation or feature 

description. Segmentation may be broadK defined as the partitioning of an image into its 
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constituent parts or objects. In isolating an object from a scene, segmentation reduces the 

level of complexity and the amount of data for processing and so simplifies the task for 

object feature extraction. Feature extraction deals with extracting features or patterns that 

result in some quantitative information of interest or features that are basic to discriminat­

ing one class of objects from another. Pattem recognition and interpretation are consid­

ered a high level stage of image processing. Note that pattem recognition is used in a wider 

sense to include object recognition. Pattem recognition is a process that assigns a label to 

an object based on the information provided by its descriptors. Interpretation involves as­

signing meaning to an ensemble of recognised objects. Knowledge about the problem do­

main is coded into the image processing system as a knowledge base. The knowledge base 

interacts with each stage to facilitate the process of pattem recognition. Some fiizzy algo­

rithms incorporates the lower and mid-level stages within the same algorithm. In Chapter 7 

an example is given to Ulustrate the use of the image processing stages shown on Fig. 1.1. 

Problem 
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i I 
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r*-^ 

• 4 - ^ 
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Representation 
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Pattern 
Recognition 

and 
Interpretation 

Results 

Figure 1.1 Basic steps in image processing. Adapted from [Gonzalez and Woods, 1992]. 

An object recognition system finds objects in the real world from object models 

which are known a priori. The problem can be described as assigning a set of labels to an 

image containing one or more objects of interest, corresponding to a set of models known 

to the system. Another way of representing the basic steps to object recognition is shown in 

Fig. 1.2. 
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Figure 1.2 Basic steps to object recognition. Adapted from [Iain et a l , 1995]. 
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The model database contains all the representative models to identify images pre­

sented for object recognition. Information in the model database depends on the problem 

domain, and the methods of recognition. The feature detector operates on the image to as­

sist with object hypothesis. The features selected depend on the objects to be recognised 

and the organisation of the model database. From the detected features, the hypothesiser 

assigns likelihoods to objects in the scene to facilitate a solution by limiting the search 

space. The model database uses an indexing scheme to eliminate unlikely candidate objects 

from recognition consideration. The hypothesis formation and verification components 

vary in importance depending on the recognition methods used. For example, the general 

pattem recognition scheme in Chapter 7 does not require hypothesis formation. 

Some of the important issues to be considered in the design of an object recognition 

system are: 

• Object or model representation: How should objects be represented in the database? 

What important object features are to be captured by the models? 

• Feature extraction: Which features are to be detected? How reliably and with what de­

gree of accuracy can they be detected? Are they adequate to enable object identifica­

tion? 

• Feature model matching: How to match features in images to the models in the data­

base? An exhaustive match in many cases may be too slow for real-time applications. 

Effectiveness of features and matching efficiency must be considered in developing a 

pattem matching method. 

• Hypothesis formation: How can a set of likely objects based on feature matching be 

selected? How to assign probabilities to each possible object? This step uses heuristics 

to reduce the size of the search space. 

• Object verification: How can object models be used to select the most probable object 

from an image? The models provide a means of verifying the probability of a correct 

decision. 

Object recognition is a complex process involving many factors that detemune the 

result of recognition. Some of these factors are: 

• Scene constancy: Are the scenes similar to the conditions of the models? The scene may 

contain problems for recognition such as illumination variations, shadows, camera pa-
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rameters and camera viewpoint. Multiple objects can present problems for recognition, 

by touching or overlapping one another, or castmg shadows on other pieces of objects. 

• Image-models spaces: Three dimensional objects tend to be too complex to model. If 

these objects can be approximated by a 2D model, the problem of perspective effects 

can be greatly reduced and model representation considerably simpUfied. 

• Number of objects in the model database: If the number of objects is small, the hy­

pothesis formation stage may not be necessary. A large number of objects has implica­

tions for increasing computation complexity and feature selection. 

1.1.2 Motivations 

A significant reason to use cluster analysis is related to the problem of data size. To illus­

trate, Jain and Dubes [1988] showed that a brute force approach to the partitioning of data 

is quite impractical, even for a small number of partitions. If S(N,K) denotes the number of 

clusterings of N objects into K clusters, the solution is the Stirling number of the second 

kind given by 

S(N,K) = ^Y{-lf-{'y 
^'•,=1 ^ ^ 

There are 34,105 distinct partitions of 10 objects into 4 clusters, but grows explosively to 

11,259,666,950 partitions for 19 objects and 4 clusters. Cluster algorithms can signifi­

cantly alleviate this kind of problems and consequently, reduce the time and effort to ana­

lyse data. 

Academic interest is certamly a strong motivation for this research. Automatic class­

ification is still a very new science, undergoing a Adgorous but exciting growth. The diver­

sity of algorithms is an indication that no general definition of a cluster exists. In particu­

lar, this research attempts to improve the utility of fiizzy clustering techniques by the in­

clusion of features that automatically find the number of clusters in data, enhance compu­

tation efficiency, accuracy of clustering and the algorithm's ease of use. At a pragmatic 

level, there are potentially immense rewards to be reaped from this technology. Activities 

that are ripe for the application of this technology are those conducted in environments 

considered inimical to human health and life, of a boring, stressful or fatiguing nature and 

for processes which exceed human capabilities. 
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1.2 Scope and Contributions 

1.2.1 Scope 

Recent research publications [see Chapter 6 of Yager and Zadeh, 1992; Knshnapuram and 

Keller, 1992] indicate firstly, that fiizzy clustering provides a general approach to pattem 

recognition and secondly, it is able to characterise compUcated data substructures 

[Krishnapuram et al., 1995]. For the purpose of the thesis, the algorithms are restricted to 

gray scale pattems in 256 x 256 pixel resolution. This has been done to manage, program 

development and testing, the efficient use of computer memory and processing time. For 

other applications, these algorithms may be generalised to higher dimensions. 

This thesis is presented in roughly two parts, theory and applications. The first part, 

comprising Chapters 1 and 2, describes the context, basic concepts and theories of pattem 

recognition. The second part, from Chapters 3 to 8, examines the practical applications of 

the fuzzy clustering algorithms developed from the pattem recognition theories of Chapter 

2. Applications are limited to the following three categories: (i) region segmentation, (ii) 

boundary detection and (iii) general pattem recognition. The fuzzy clustering equations 

introduced in the application algorithms of Chapters 3 to 8 freely assume the pattem rec­

ognition theories given in the first two chapters, without further elaboration. 

1.2.2 Contributions 

My contributions to the field of pattem recognition can be considered at two levels. The 

first level relates to the algorithms' basic characteristics, their significant design and per­

formance features. The second level considers the application aspects of these algorithms 

and the kind of problems they can effectively solve. 

1.2.2.1 First Level Contributions 

The first level contributions may be summarised by the following seven points: 

• Possibilistic Fuzzy c-Means (PFCM) extends the membership functions of the Fuzzy c-

Means (FCM) to enhance the selectivity, controllability and nature of clusters. 

• Sequential Fuzzy Clustering (SFM) with a single prototype, as an altemative to FCM. 
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• Enhanced Possibilistic c-Means (EPCM) improves clustering at local centroids. 

• Cluster Prototype Centring by Membership (CPCM) finds the number of clusters in the 

data set automatically without needing cluster validity testing like FCM. 

• CPCM significantly improves clustering speed by the progressive removal of cluster 

points or noise points, compared to FCM. 

• CPCM detects small scale defect problems more accurately compared to FCM. 

• Three cluster validity indices for the objective evaluation of clustering performance. 

1.2.2.2 Second Level Contributions 

The second level contributions may be summarised under the following seven points: 

• Fuzzy neural network applied to improve object recognition by statistical correlation 

coefficient matching. 

• Fuzzy neural network applied to improve cluster identification under various iUumina-

tions. 

• Fuzzy neural neUvork applied to mode! fuzzy cluster prototypes. 

• CPCM applied to progressive clustering based on the Fuzzy c-Means. 

• CPCM applied to region segmentation. 

• CPCM applied to linear and circular boundary detection. 

• CPCM and pattem matching algorithms applied to general pattem recognition. 

1.3 Overview of Thesis 

Chapter 1 outlines the background and motivations for this research. It describes the scope 

and contributions of the thesis. 

Chapter 2 introduces four theories for pattem recognition comprising: (i) Bayes de­

cision mle, (ii) partitional clustering, (ui) fuzzy clustering and (iv) neural networks. The 

Bayes decision mle introduces fundamental concepts of classification and the discriminant 

fimction. Partitional clustering theory is used to derive the ^c-Nearest Neighbour algorithm 

and to illustrate cluster concepts and properties. The basic stmcture of FCM is discussed, 

followed by Bezdek and Im's PFCM, developed to extend FCM clustering properties. The 

variable norms of Gustafson and Kessel's algorithm, and Gath and Geva's algorithm are 

examined. The Possibilistic c-Means (PCM) algorithm from Krishnapuram and Keller is 
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reviewed. Bezdek and Im's EPCM algorithm is developed to unprove PCM's clustering 

performance at local centroids. The clustering performance of FCM, PFCM, PCM and 

EPCM clustering algorithms are evaluated. The basic architecture and learning character­

istic of a backpropagation neural network are presented. Two different ways of designing a 

fiizzy neural network, by model embedment and by model mapping are discussed. 

Chapter 3 examines four experimental algorithms to illustrate the adaptation of 

analytic fiizzy clustering algorithms for the CPCM framework. The experimental algo­

rithms explore a variety of geometric cluster stmctures. SFM is developed to explore an 

altemative scheme for progressive clustering. Comparative tests of clustering performance 

are conducted on the FCM, KNN and CPCM algorithms. 

Chapter 4 applies the CPCM framework to the segmentation of regions. Fuzzy 

clustering algorithms are developed to solve pattem recognition problems relating to: (i) 

detection of contaminants in wool samples and (ii) detection of surface defects in roof tiles. 

The CPCM based clustering algorithm demonstrates superior detection of small scale de­

fect pattems compared to FCM. 

The detection of linear boundaries is presented in Chapter 5. This and the detection 

of circular boundaries in Chapter 6, demonstrate usefiil extension of the basic FCM algo­

rithm and the accurate identification of cluster parameters in the presence of noise. 

Chapter 7 describes a solution to a general pattem recognition problem mvolving a 

combination of pattem matching and fuzzy clustering algorithms. It demonstrates how 

fuzzy clustering techniques facilitate the detection of an arbitrary feature from the top face 

of an armature housing object. 

Chapter 8 presents three neural network apphcations to: (i) improve object recogni­

tion, (ii) improve cluster identification and (iii) extract cluster prototypes from image data. 

The fiizzy neural networks demonstrate improved classification performance compared to 

the conventional neural networks. 

Chapter 9 concludes the thesis with a summary of the major conclusions and sug­

gestions for future research directions. 
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Chapter 2 

Methods of Pattern Recognition 

Basic concepts of image processing and cluster analysis are introduced in Section 2.1 to 

prepare the context for a review of the theories of pattern recognition in the next four sec­

tions. The Bayes decision theory is presented in Section 2.2, partitional clustering theory in 

Section 2.3, fuzzy clustering theory in Section 2.4 and neural network theory in Section 

2.5. The constmction of fuzzy clustering models and algorithms in Chapters 3 to 8 as­

sumes to a large extent the pattem recognition theories of this chapter, particularly fuzzy 

clustering theories and methods from Section 2.4. 

The materials of this chapter involve quite extensive use of differential calculus be­

cause of the optimisation problems associated with objective functions. The contents are 

intended to be a succinct but fairly comprehensive survey of the field, directed at fuzzy 

clustering practitioners. This chapter may be skipped to enjoy the practical flavour of the 

applications and retumed to later for advanced insight into the pattem recognition theories. 

The discussion of fiizzy clustering theories is largely expressed through the proper­

ties of vectors in real space. To define the usage of vectors in the thesis and to provide suf­

ficient details to arrive at correct results. Appendix A is included. It reflects the convention 

of the leading FCM practitioners. 

2.1 Introduction 

Duda and Hart, in a preface to their book [1973, p. vii], define pattem recognition as the 

"machine recognition of meaningfiil regularities (of data) in noisy or complex environ-
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ment". This definition makes two important statements for pattem recognition: (i) usefiil 

data is significant and has meaningfiil pattems in contrast to random pattems and (u) the 

data is typically embedded in noise or other complex features. 

2.1.1 Nature of Data 

Data in the context of the thesis, consist mostly of digital images acquired from a video 

camera. However, the clustering algorithms place no restriction on the type of data for 

clustering provided it can be represented symbolically. Video signals can be acquired in 

either gray tones or typically in the three primary colors of red, green and blue (in video 

systems, there are several other image formats). Processing color signals requires more 

computer memory and intensive processing for each color component and sometimes mix­

ture of components. Therefore for the purposes of the research, images in 256 levels of 

gray, at a resolution of 256 x 256 (row x col) pixels are used. This specification gives 

adequate feature resolution without excessive demands on processing power from personal 

computer systems. Another reason for gray scale image processing is that it is not difficult 

to make the transition to color processing. 

2.1.2 Data Preprocessing 

Next, we discuss part (ii) of Duda and Hart's definition of pattem recognition. It has been 

previously noted that real data is typically embedded in noise or a complex environment. 

Data for analysis may be associated with one or more objects of interest. To enable analy­

sis of the object in data, it is first necessary to separate the objects from the environment or 

background. This process is called image segmentation. It is possible to apply clustering 

algorithms that operate directly on raw image data (see Chapter 4) but in some cases, (see 

Chapter 7) it is necessary to process the data before applying the clustering algorithm. One 

common process (among several others) uses a technique called thresholding. Threshold­

ing uses an image point operator to produce a binary image from a gray scale image. 

Mathematically, any point fimction/("x.jj, for wiuch f(x,y) > T where T is the intensity or 

color threshold, is regarded as an object point with some value greater than zero. The 

background is assigned a value of zero. Bi-level thresholding segments an object m the 

range of Tj < f(x,y) < T2. Methods for image thresholding are quite diverse of which a 

sample is given in [Sonka et al.. 1993; Davies, 1990; Harahck and Shapiro, 1992; Gon-
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zalez and Woods, 1992]. An objective for thresholdmg is to reduce the complexity of the 

raw data to a binary level or combinations of binary levels. Another reason for threshold­

ing is to obtain an object's silhouette for other processes such as feature extraction. 

In some cases, thresholding may not segment the object adequately because the ob­

ject along with portions of the background are extracted within the range of the threshold. 

One method to extract distinct blobs or regions from such data is by analysis of neigh­

bourhood pixels or connectivity analysis [Im, 1992; Cunningham, 1981]. Depending on 

the application, one could be more interested in the outlines of the object rather than in its 

region properties. In this case, there are numerous methods to perform edge segmentation 

[Sonka et al., 1993; Davies, 1990; Haralick and Shapiro, 1992; Gonzalez and Woods, 

1992; Fu and Mui, 1981]. Probably the more popular conventional varieties of these are 

the Roberts, Prewit and Sobel edge detectors. These are also known as gradient operators 

since they detect intensity gradients. Other exotic methods for edge detection include the 

morphological operations in [Yang and Li, 1995, Krishnapuram and Gupta, 1992], fuzzy 

and neural methods in [Pal and King, 1983, Bezdek and Kerr, 1994] or smart heuristics 

[Cohen, 1993]. In Chapter 7, we illustrate the use of some of these image preprocessing 

procedures, namely thresholding, connectivity analysis and edge segmentation for general 

pattem recognition. 

The above review is uitentionally brief because the landscape of image preprocess­

ing is huge and we do not wish to digress too far from our particular field of interest. 

Having successfully segmented the object from its environment, the next task is to analyse 

the data derived from the object for stmcture. The theories of pattem recognition presented 

in this chapter provide the basic tools to accomplish this task. In anticipation of this we 

review some of the basic concepts of cluster analysis. 

2.1.3 Definitions of Cluster 

Clustering algorithms such as partitional clustering algorithms are oriented to find stmc­

ture in data, not to establish mles relating to the separation of the data. Everitt [1974] 

gives three definitions of a cluster: 

• A cluster is a set of entities which are alike; entities from different clusters are not alike. 
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• A cluster is an aggregation of points in the test space such that the distance metnc be­

tween any two points in the cluster is less than the distance between any two points not 

in it. 

• Clusters may be described as connected regions of a multi-dimensional space containing 

a relatively high density of points, separated from other such regions containing a rela­

tively low density of points. 

While it is undoubtedly easy to give afunctional definition of a cluster, a general defini­

tion of a cluster is extremely difficult to define precisely. This is partly because its interpre­

tation depends on subjective processes mvolving aesthetics, imagination and experiences. 

2.1.4 Data Presentation and Types 

Raw data for cluster analysis can be presented in two standard formats: (i) as a pattern 

matrix and (ii) as an « x dproximity matrix. 

In the pattem matrix format, data is represented by n rows of objects and d columns 

of measurements or attributes. For example, if students at a university are to be clustered, 

each object may represent a student and each column, students' responses to a question of 

a course content. Each row then represents a pattem and each column a feature or meas­

urement. In image analysis, the d features are the orthogonal axes and the n objects are 

points in the d dimensional space, called a pattem space. The pattem space is the space 

occupied by these n points. In this patten space, a cluster can be visualised as a collection 

of points grouped together according to some clustering criteria. A clustering algorithm is 

particularly usefiil for identifying the natural groupings in spacings of many dimensions. 

The proximity matrix accumulates the indices of proximity or affinity. For example, 

if the first row of each column and the first column of each row represent the subjects (in 

same sequential order) prescribed for a course at a university, then the intersections of a 

row to each column contain the same values as the identical column intersections with each 

row. The intersection ofa row and a column may represent an average of students' subjec­

tive response, on a scale of one to ten, of the two subjects' dissimilarity. 
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The types of data commonly encountered within these two matrix formats are indi­

cated in Fig. 2.1. Pattem matrix data types can be binary, discrete or continuous. The 

scale category indicates the relative significance of numbers that can be either nominal or 

ordinal for qualitative data and interval or ratio for quantitative data. An example of each 

data type is given below: 

• Qualitative nominal: yes = 1, no = 0. 

• Qualitative ordinal: 1, 2, 3, 4, 5 where 1 = cold and 5 = hot. 

• Quantitative interval: 0 to 100, degrees Celsius (m relative reference scale). 

• Quantitative ratio: 0 to 100, degrees Kelvin (in absolute reference scale). 
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Figure 2.1 Data presentation and types. Adapted from [Iain and Dubes, 1988]. 

2.1.5 Measures of Proximity 

A proximity index (or coefficient) is either a similarity or a dissimilarity and is de­

fined to reflect maximum value (normally unity) when the condition is trae. For example, 

the Euclidean distance (see Definition A.5, Appendix A) is a dissimilarity index because 

when the distance is small the index has a low value (or low dissimilarity), and when the 

distance is large the index has a high value (or high dissimilarity). In contrast, a member-
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ship function of a fiizzy clustering algorithm is a similanty index. Denoting two points by / 

andy, then the proximity indices are related by 

s(ij) = 1 - d{ij) for 0 < 5(zV) < 1 and 0 < £/(/j) < 1 (2.1.1) 

where s(ij) and d(ij) are the similarity index and dissimilarity index respectively. Denoting 

a proximity index by D(jj), then the three properties ofa proximity index are: 

1 (a). For a dissimilarity, D(i,i) = 0, Vz. 

(b). For a similarity, D{i,j) > max.D{i, J), Vi. 
J 

2 D{ij) = D(j,i), Mi J. 

3 D{ij)>0, \/ij. 

In fuzzy clustering, a norm (or vector length) is used to represent the distance (or 

metric) between feature vectors or points (see Appendix A for details). If t/-component 

vectors x, and x, belong in Jl'̂ , then ||x, - x,|| (or ||X|| if X = x, - x,) represents the distance 

between two vectors x, and Xj (or the length of their vector difference). Altematively, this 

distance is denoted by dy = ||x, - Xj\\ (also d{ij) or c/(x,,xy)) to represent the distance between 

two items of data at points / andy. The four unit norms in 9̂ ^ are shown on Fig. 2.2. The 

distance formula represented by the four norms are summarised in Table 2.1. These norms 

can be obtained from the Minkowsky metric (except the sup norm) 

( d ^V 
d(i,j)--Y^Xik-XJk\'' foxq>\ (2.1.2) 

U=i ) 

The value of ^ in (2.1.2) corresponds to the norm type (eg. ^ = 2 is a Euclidean norm). The 

norms of Table 2.1 exert a significant influence over the shape of clusters that are detected 

in fiizzy clustering. For feature vectors in 91 ,̂ round clusters are obtained from the Euclid­

ean norm, elliptic clusters from the Mahalanobis norm, and square shape clusters from the 

supremum norm. Higher dimensional norms detect hyperquadrics. 
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lix|| = i 

Figure 2.2 Four unit norms of vectors in 91 .̂ The boundary has a unit norm. Norms less 
than unity are contained inside the boundary. Adapted from [Bezdek, 1995a]. 

Name of norm 
Mahalanobis 

Euclidean 

City block 

Sup or Max 

Distance formula 

| |x,-Vy||^-, =(X,.-V^)^F"'(X,. -Vy) 

l|X/-Vy||2 = E^(x,t -Vj , t )^ 

\\^i-^j\\i = X,,\^ik-yjk\ 

||x,.-Vy|U = max{lx,x--Vy^.|} 

Table 2.1 Distance formula of four norms used in fuzzy clustering 

F' is a covariance matrix, y, denotes the jth cluster prototype and x; is the zth feature vec­

tor of data set X. Both vectors are in 91''. 

Additional to the norms described above, the similarity measures in Table 2.2 

[Diday and Simon, 1976] are useful in conventional cluster analysis. 

Name Similarity measure 
Camberra 

d{i,j) = ll, 
l^ik ~^jk\ 

l^ik "̂ -̂ /̂ l 

Chi-square 
d{i,j) = ll, 

1 

l^i^ik 

Xa- ^jk 

IjK^ik 2-1'^ k^jk 

Correlation 
d{i,j) = 

2J^(^;A: -Xk)(Xjk -Xk) 

[S^.(^,jt -Xk)^zl,^(Xjk -XkY 
2 / 2 

Table 2.2 Four similarity measures used in conventional cluster analysis. 
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To obtain meaningful results in clustering, a meaningful norm has to be established 

a priori. Also, the choice of variables must contain relevant information. In general, the 

selection of meaningfiil variables is a non-trivial task that may involve some common 

sense, subject matter knowledge and experimentation. 

2.1.6 Types of Classifications 

The types of classification categories are depicted in Fig. 2.3. 

Classifications 

Non-Exclusive 
(Overlapping) Exclusive 

Extrinsic 
(Supeivised) 

Intrinsic 
(Unsuperidsed) 

Hierarchical 

Figure 2.3 Tree of classification types. Adapted from Iain and Dubes [1988]. 

Exclusive classification refers to subsets of disjoint classes where each object be­

longs to only one class. Non-exclusive classification allows overlapping of classes such 

that an object can belong to more than one class. Fuzzy clustering is an example of such a 

classification. Intrinsic classification is called unsupervised learning in pattem recognition 

because the objects used are unlabelled. Extrinsic classification uses category labels as 

well as the proximity index on objects. Extrinsic classifiers learn to classify from labelled 

data. This mode of classification is described as supervised clustering. An example of this 

is the Bayes classifier where the number of classes is assumed known. Intrinsic classifiers 

use unlabelled data. Cluster analysis is intrinsic classification. Unsupervised clustering 

may be divided into two types: (i) hierarchical and (ii) partitional. Partitional clustering is 

discussed in Section 2.3. Other clustering methods are outside the scope of this thesis. For 

a discussion of these, refer to [Jain and Dubes, 1988; Kaufinan and Rousseeuw, 1990; 

Everitt, 1974; Gordon, 1981; Har-even and BraUovsky, 1995; Postaire et al., 1993]. 
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Remarks 

Cluster analysis and classification are pattem recognition terms with different meanings 

but sometimes used as if they are alike. In classification, the objective is to find the optimal 

decision boundaries separating the objects, whereas cluster analysis is concemed with 

identifying objects (a labelling problem) in the partition space. Classifiers are usually 

taught the correct groupings from labelled data but clustering algorithms attempt to pro­

duce the correct groupings from data that are unlabelled. Roughly speaking, both methods 

help to identify objects for pattem recognition, although m different ways. 

Some of the common methods of pattem recognition includes the following: knowl­

edge based methods [Adimari et al.. 1988; Jolion, 1994], mle based methods 

[Krishnapuram and Keller, 1993b; Rhee and Krishnapuram, 1994], mathematical mor­

phology [Serra, 1988; Dougherty, 1992], Hough transform [Davies, 1990; Leavers, 1992], 

semantic networks [Nieman et al., 1990] and geometric constraints [Grimson, 1990]. 

These methods of pattem recognition are outside the scope of the thesis. 
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2.2 Bayes Decision Theory 

Historically, the Bayes decision theory is the basis for most pattem recognition techniques. 

The objective fimction of FCM and the clustering criterion of KNN incorporate the Bayes 

decision mle implicitly. According to Diday and Simon [1976], the field of pattem recog­

nition has developed mostly as statistical classification techniques. It is widely acknowl­

edged that the Bayes decision rule gives the optimum classifier performance in the sense 

of minimum probability of error. This chapter presents the principles of classification for 

pattern recognition and introduces the discriminant function and its relation to the decision 

boundary of classes. These concepts are assumed in the fiizzy cluster models. 

2.2.1 Bayes Decision Rule - Discrete Case 

If there are only two possible states of nature W] and W2, and these occur randomly, then 

the simplest decision mle for classification is to decide W] if the a priori probability /'(w,) 

is greater than P{w2). This mle maximises the probability of a correct decision or mini­

mises the probability of error. In general, a decision mle is not limited to a priori prob­

abilities. Suppose a continuous random variable x can be observed such that p(x\Wj) is its 

conditional probabUity density fimction given that the class is w,. hi this case, the Bayes 

decision mle relates the conditional a posteriori probabihty P(Wj\x) of a random variable x 

to its a priori probability P{wj) according to the relation 

p{x\Wj)P(Wj) 
P{w \x) = — {2.2.1) 

^ P(x) 

c 

p(x) = Tp{x\^j)F(^j) (2.2.2) 

where c is the number of classes. Note that the lower case p denotes probabUity density 

function and the upper case P the probability distribution function. For an observation x, if 

P(M'I|X) > P(vt'2|x), one would decide class Wj. To justUy this procedure, consider tiie prob­

ability of error associated with a particular observation of x: 

[P(H' I |X) if decide W2 
P{error\x) = \ , ^ .^ , . , 

[P(w2|x) if decide w^ 
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For the same observation x, the probability of error can be minimised by deciding w, if 

P(M'I|X) > P{w2\x), and Wj if/'(v»'2|x) >/'(M'I|X). TO confirm that this mle minimises the av­

erage probability of error, it may be noted that the average probability of error is 

f 00 f oo 

P(error)=\ P(error,x)dx- \ P(error\x)p{x)dx 
—OO —CO 

If for every x, P(error\x) is made as small as possible then the integral must be as small as 

possible. This justifies the Bayes decision rule for minimising the probability of error 

given by: 

Baves decision mle. 

• decide the class wi if P(wi |x) > P(M'2|X) and 

• decide the class W2 if P(w2|x) > P{M/X \X). 

This mle emphasises the role of the a posterion probabilities. The Bayes decision mle in 

terms of the conditional and a priori probabilities (ignoring the scale factor of (2.2.2)) is: 

• decide the class w, ifp{x\wx)P{M>{) >p(x\w2)P{M>-j) and 

• decide the class wi ifP(X\WT)P{WJ) > p{x\wx)P{w{). 

2.2.2 Bayes Decision Rule - Continuous Case 

The Bayes decision mle can be generalised for the continuous case with the following 

conditions: 

• more than two class states 

• more than one feature 

• a loss function 

Let the loss fimction for all errors be equally costly. Let /2= {wi,...,wj be the c fi­

nite number of classes and.4 = {«!,...,«„} be the a possible actions. Let X(ai\wj) be the loss 

incurred for action a; when the tme class is Wj. Let feature vector x be <3' component and 

p{x\wj) be tiie probability density function for x conditioned on class Wy. Then the Bayes 

mle is 

P(:!^:^j)n^ ,2.2.3) 
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P{X) = 11P(X\WJ)P{WJ) (2.2.4) 
7=1 

Given that the loss associated with Oi is HcCi\Wj) when the tme state is Wj, and P{wj\x) is the 

probability that the state is w,, then the risk associated with a, is 

c 

R{a^\x)=Y.Aj{cCi\Wj)F(Wj\x) (2.2.5) 
7=1 

R{ai \x) is known as the conditional risk. For an observation of x, the expected loss is 

minimised by selecting the action that minimises the conditional risk. Therefore the Bayes 

mle that minimises the overall risk is to compute the conditional risk given by (2.2.5) for 

every possible action cCi, for / = l,...,a and to select the cCj for which R(oCi\x) is a minimum. 

The resulting overall risk is called the Bayes risk and is the best that can be achieved. 

2.2.3 Two Category Classification 

Denoting A^j = Aj(ai\Wj) as the loss incurred for deciding w, when the tme class is Wj, then 

(2.2.5) can be reformulated for a two class case as 

/?(cKi|x) = ;^iP(wi|x) + ̂ 2^(>*'2|x) (2.2.6) 

R{a2\x)=^,P{w,\x)+^2F(^2\^) (2-2.7) 

The Bayes mle that minimises the conditional risk is to decide w, if R{a\\x) < R{a2\x). The 

corresponding a posteriori probabilities of the Bayes mle is to decide w, if 

(^1 -Ai)P(w,\x)>(^2 -^2)Piy^2\^) (2.2.8) 

The Bayes mle in terms of the a priori probabilities is to decide w^ if 

(Ai-Ai)p(^\yvi)F{wO>(A2-\2)P{^\y^2)P(^2) (2-2.9) 

2.2.4 Minimum Error-Rate Classification 

A mle that minimises the average probability of error or error rate is given by the loss 

function 

^ « , > / ) = , for/,7 = i,...,c (2.2.10) 

This equation is also known as the zero-one loss function. If a decision is correct (/ =7) it 

assigns no loss but if a decision is incorrect (/ ^j) it assigns a loss of one unit. Thus all 

errors are equally costly. Substituting (2.2.10) into (2.2.5) gives the conditional risk 
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/?(ar,|x)= Z^(>i '^ |x)=l -P(w, |x) (2.2.11) 
i=l,i*j 

where P(w,|x) is the conditional probability that a, is the correct action. Thus the Bayes 

decision mle to minimise the conditional risk is equivalent to the mle that minimises the 

average probability of error (or error rate) given by a posteriori probabilities. Decide w, if 

P(w,|x) > P(wj\x) for aU / ^j (2.2.12) 

or in terms of the conditional probability density fimction for x 

p(x\Wi)P{w,) > p{x\Wj)P{Wj) for aU / ^j (2.2.13) 

2.2.5 Classifiers, Discriminant Functions and Decision Sur­
faces 

In representing pattem classifiers, it is convenient to define discriminant (or decision) 

functions di{x), i = l,...,c such that di(x) is maximum for class w, and 

^,(x)>4(x) for aU 7^7 (2.2.14) 

For minimum average error, the a postenori probability is the maximum discriminant 

fimction expressed by 

di{x) = P{Wi\x) (2.2.15) 

Since the choice of 4(x) is not unique, it can also be represented as 

d,{x)=p{x\w,)P(wd (2.2.16) 

or by taking the natural logarithm 

c/,(x) = hi p{x\w,) + hi P{w,) (2.2.17) 

Note that the discriminant fiinctions of (2.2.15), (2.2.16) and (2.2.17) are obtained 

from minimum error-rate classification. The discriminant fimction divides the feature space 

comprising of regions of classes according to the mle: 

assign to class W; if c/,(x) > dj(x) where / ^j. 

More commonly, this is expressed as 

d{x) = di{x) - dj{x) 

Ties where d(x) = 0 are resolved arbifrarily. The discriminant fimction of (2.2.17) for a 

two class case is 
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2.2.6 Discriminant Functions For Normal Density 

A general solution for (2.2.17) can be obtained by approximating the densities/?(x|iv,) with 

a multivariate normal (Gaussian) density function given by 

1 
N(\i,^)-

where 

.» .af/2,„,l/2 
(2 ;T) | 2 | 

^T • 

e x p [ - | ( x - ^ ) ^ S \x~\i)\ (2.2.19) 

X = [xi, X2,..., x^ ] is a (i-component random variable vector 

\i = [pi,P2,--,Pd] IS a (/-component mean vector 

E = E[(x-^)(x-^)^] = 

(Til 0-12 

(T21 

.(^dl o-dd 

is ad X d symmetric positive semi-

definite covariance matrix. 

aik = E(x, - pi){xk - pk) = cTki. 

p. = E[x], the expectation of x. 

(x - \iY is the transpose of (x - p.). 

E ' is the inverse of E. 

|E| is the determinant of Z. 

The contours of constant density are the hyperellipsoids given by 

r^ = {x-\iY i:\x-\i) (2.2.20) 

where the principal axes are the eigenvectors and the lengths of these axes are determined 

by their eigenvalues. Equation (2.2.20) is also known as the squared Mahalanobis distance. 

The contours of constant density are the hyperellipsoids of constant Mahalanobis distance 

from X to p.. The volume of the hyperellipsoid corresponding to the Mahalanobis distance r 

is 

(2.2.21) V = Vj\Lf'^r'^ 

where 

V,=\ 

n 
dl2 

['Ay-

7\ 

d even 

I 
(2.2.22) 

d odd 

file://i:/x-/i
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For a given dimensionality d, the scatter of the samples varies directly with |E| ^ . The dis­

criminant function of (2.2.17) can be solved by approximating/7(x|vf,) with (2.2.19) to give 

J,(x) = -{ (x -H, )^ l7 ' (x -n , ) -y ln2 ; r -y ln |E , |+ lnP(M' , ) (2.2.23) 

This equation has some interesting features which are discussed under three cases. 

C a s e 1: Ei = cjkkl 

In this case, the covariance matrix is diagonal with cTkk times the identity matrix /. The 

features are statistically independent and each feature has the same variance akk (defined 

under Eq. (2.2.19) for ^= l,...,c). Geometrically, this corresponds to samples of equal size 

hyperspherical clusters in which the /th cluster is centred at mean vector \ii. Since both 

^ln|S,| and -^\xi27r are constant terms, these may be ignored to give 

^,(x) = - " ^"' +\xiP{w,) (2.2.24) 
2ĉ ;-.̂ -

where 

||x - |x,|f = (x - p.,)̂ (x - |x,) is the Euclidean norm (see Appendix A). 

If the a priori probabilities P{w,) axe the same for all c classes then the In P{Wi) terms can 

also be ignored. In this case, the optimum classification mle is to assign x to the class of 

the nearest mean. Such a classifier is called the minimum distance classifier. The optimum 

classification mle (or least squares error) is the basis of numerous clustering algorithms. It 

is the clustering criterion of KNN and the objective function in the FCM, weighted by the 

fiizzy memberships. If the In P{Wi) terms are not equal, then (2.2.24) can be expressed as 

di(x) = - [x^x-2nfx + pf^,] + lnP(w,) (2.2.25) 
^CTkk 

Since (x^x) is the same for all /, it may be ignored so that (2.2.25) yields the linear dis­

criminant functions 

d,{x) = gjx-hh (2.2.26) 

where 

g , = ^ l t , (2.2.27) 
(^kk 

h = — nf^,+lnP(w,) (2.2.28) 
2cr̂ -̂ -

At this point, note that hyperplanes are defined by the linear discriminant fiinctions 
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di(x) = dj{x) (2.2.29) 

Substituting (2.2.27) and (2.2.28) into (2.2.29) and noting the different indices, a decision 

plane for two classes Wj and Wj with the same variance akk is defined by 

d,(x)-dj(x) = (ix^-/j)x— (iiJii,-ii]iij) + M (2.2.30) 
(^kk ^(^kk 

P{Wj) 
where M = In 

P(Wj) 

From (2.2.30) the hyperplane through the point XQ is given by 

( l i f l i / - l i y l ^ / ) - ^ 
^CTkk 

1 r r . 
(\^, -1^/) 

X 0 : -(^i, + ^i,.) - ^ l n - - ^ ( ^ i , - ^ , ) (2.2.31) 

<^kk 

which simplifies to 

K.. ... . ^kk i ^ / K ) 

This hyperplane plane defined by (2.2.31) represents the decision boundary that separates 

the two regions of the classes w, and wj and has the following properties: 

• It is orthogonal to the vector (p, - Pj). The right side second term of (2.2.31) is the pro­

jection of (pi + \ij) onto (\ii - Pj). Thus the vector difference of the two terms of (2.2.31) 

is the hyperplane vector through xo, orthogonal to the vector (|A, - Pj). 

• If P(w,) = P{Wj) then xo = (p, + Mj)/2, and the hyperplane plane bisects the means. 

• If ^(M',) ^ P{Wj) then the point XQ shifts away from the more likely mean. 

• If akk « (MI - M?) then the position of the decision boundary is insensitive to the values 

of the a priori probabilities. 

The above result has practical implications for neural networks functioning as clas­

sifiers. It has been demonstrated theoretically by [Ruck et al., 1990] that the backpropaga­

tion neural network (introduced m Section 2.5) approximates to the optimum decision 

boundary of (2.2.31). This resuU also suggests a clustering criterion for clustering algo­

rithm. For the image data, the probabilities of x are normally uncorrelated and are equally 

likely. Therefore the data approxunates Case 1 with P(Wi)=P{wj). The optimum cluster 

boundary (in the Bayes sense) is then defined by the mean of the two closest cluster proto­

types. This mle is realised in practice by assigning a point x to Us nearest cluster according 

to the criterion: decide x e w, if 
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min |x - v,f < |x - v/ , Vz *j 

where v, are the cluster centres corresponding to classes w,. Section (2.3.3) shows how this 

mle is implemented in the KNN algorithm. 

C a s e 2 : E i = Z (defined by (2.2.19)) 

For this case, the covariance matrices for all c classes are identical and the samples fall 

into hyperellipsoidal clusters of equal size and shape. Since both |E,| and -:^h\2K are inde­

pendent of i in (2.2.23) they can be ignored as additive constants. The discriminant fiinc­

tions are given by 

flf,(x) = 4 ( x - ^ , ) ^ E ^ ( x - ^ , ) + lnP(w,) (2.2.32) 

Assuming equal probabilities for all c classes, lnP(w,) can also be ignored yielding 

af,(x) = - ^ ( x - n , ) ^ Z 7 \ x - ^ , ) (2.2.33) 

which implies that the optimum decision boimdary is just the squared Mahalanobis dis­

tance of X to each of the c mean vectors p,. The bivariate normal density fimction of 

(2.2.33) has some interesting geometnc properties that also appear in fiizzy clustering (see 

Section 2.4). This distribution function has the expression 

( x - ^ ) Z ^ (x - ^ ) : 
I 

1 2 

^ l - / " l 
-I-

V'^11 ) V \ ^ 2 2 

^2 - / '2 
f 

- 2 A ; 

Y 
X1- / /1 1^2 

V'^H k A/'^22 

(2.2.34) 

where 

X=[Xi,X2] 

V-=\MIM2]^ 

E " = • 
1 

f'"! 1*̂ 22 ~<^12 

< 1̂2 

'^22 ~<^12 

.-<7l2 <̂ 11 

Note that if the random variables xi and X2 are uncorrelated, then the jomt correlation coef­

ficient P12 = 0 and the joint density can be expressed as the product of two univariate nor­

mal densities simUar to tiie form of (2.2.19). For tiie two class case, tiie following constant 

density contours are obtained from (2.2.34): 

(a) Circular contour: If oii = 012 = cr> 0 and /7i2 = 0. 

(b) EUiptic contour: If au = an= a>Q and 0 < pi2 < 1-

(c) Linear contour: If CTH = an- a> 0 and pn= 1. 
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Following the procedure of Case 1, the result for the multivariate case is given by 

1 P(Wj) 
^o=-(\i,+^j)-- ^r-rr i^.-l^j) (2.2.35) 

2 (\ii-\i-j) E (\ii-\ij) 

The decision boundary of (2.2.35) is a hyperplane like Case 1. However, the differences of 

vectors (p, - pj) are generally not orthogonal to the hyperplanes, although the planes do 

bisect the lines between the means. 

Case 3: Ei Arbitrary 

For the multivariate case, the Yln2;r term can be ignored resulting in 

di(x) = x^WiX-l-wJx + h (2.2.36) 

W,=-^Z-' (2.2.37) 

w,=E7V/ (2.2.38) 

/7 = - | ^ l f s :V , -T ln |E , |+ lnP(w, ) (2.2.39) 

The discriminant fimction of (2.2.36) is quadratic in x and the decision surfaces are hyper­

quadrics that can assume any of the forms of pairs of hyperplanes, hyperspheres, hyper­

ellipsoids, hj^erparaboloids and hyperhyperboloids of various types. 

Remarks 

In classification problems, the Bayes mle for minimising the probability of error is to 

choose class w, which maximises the a posteriori probability P{wi\x). This probability can 

be calculated from the a priori probabilities P{wi) and conditional densities p(x\wi). The 

main problem in using Bayes mle for pattem recognition is that the conditional densities 

p(x\Wj) axe rarely known. If p{x\w,) can be approximated by N{\ii, Z,), then a discriminant 

fimction given by (2.2.23) can be used for optimal classification. Although widely used, 

the Bayes rale is not the only statistical criterion for classification. James [1985] gives 

other criteria of classification. Further details on statistical classification can be found in 

[Jain, 1987; Duda and Hart, 1973; Fukunaga, 1972]. 

file:///ii-/i-j
file:///ii-/ij
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2.3 Partitional Clustering Theory 

Section 2.2 showed that an optimum discriminant function and thus the optimum partition, 

can be obtained from the Bayes decision rale if the class-conditional densities are Gaus­

sian. If the forms of the class-conditional densities are unknown, one can use non-

parametric procedures of the partitional clustering type like the ^-Nearest Neighbour 

(KNN) algorithm. The chapter begins with features of partitional clustering in Sections 

2.3.1 to 2.3.2, followed by a discussion of the KNN algorithm in Section 2.3.3 and cluster 

validity in Section 2.3.4. 

2.3.1 Definition and Properties 

Let E be a set of iV elements (or objects) x; in ^i^. A partition of P = {P\F2,.- J*s,-,Pc } is 

a set of subsets ofE such that Pi n P, = 0 , for all /, j and Uy= i, .c Pj = E. Partitional clus­

tering obtains a partition of a set EofN objects x, by the use of one or more proximity m-

dices. A partition P is a set of disjoint subsets of E. An element Pj of P is a cluster. The 

goal of clustering is to define a mapping T such that 

T : X, ^ Ps fox i=h...JV. 

2.3.1.1 Homogeneity 

A cluster Ps is said to be homogeneous 

if and only if Xj, x̂  e P^ and Xki Ps, or 

d(x„ Xj) < d{Xi, Xk) and d(xi, xj) < d(Xj, Xk) 

fox i,j,k=\,...J^. A partition P is said to be homogeneous if tiie above property is trae 

for all Ps e P. This statement means that two elements of the same cluster are more similar 

than to any other cluster ofE. Similarity is defined via a proximity index (Section 2.1.5). 

2.3.1.2 Stability of a Partition 

A good partition minimises a criterion function J. For example, let 

Sup Ps = max [d(xi,Xj)] for x„ x, e Pj. 
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Let Pj' be a cluster obtained from Ps by removing some objects and taking some new ones 

but having the same total number of objects. If Sup Ps > Sup P/, Ps is said to be better 

than P/ in the sense of the criterion. If no other Pj' better than Ps can be found, Ps is said to 

be stable. 

2.3.2 Criterion Function 

Partitional methods generally expect data as a pattem matrix and assume the data is meas­

ured on a ratio scale. If the features are on a nominal or ordinal scale, the data types do not 

give meaningful cluster centres based on Euclidean distances. In this case, hierarchical 

methods of clustering are used. 

In Section 1.1.2, a problem with data dimensions was noted. One way of avoiding a 

combinatorial explosion is to evaluate a criterion fimction on a small set of reasonable 

partitions. This solution involves optimising a criterion fimction using gradient ascent or 

iterative hill climbing techniques. Starting from an initial partition, objects are moved from 

one cluster to another to improve the criterion fimction. Each successive partition repre­

sents a perturbation of the previous partition. Algorithms based on this technique can be 

computation efficient but may or may not converge to a global minimum of the criterion 

fimction. Other approaches to solve this problem are described in [Jensen, 1969; Rao, 

1971; Koontz et al., 1975; Leflcovich, 1980]. 

Since clusters can assume any arbitrary shape and size, it is difficult to conceive a 

criterion function that is equally good for all clusters. Many criterion flmctions have been 

proposed in the literature, some appearing in different guises. Examples of these are the 

mutual near-neighbour clustering of Gowda and Krishna [1978], tiie Maximal Spanning 

Trees (MST) of Zahn [1971], shared near neighbour MST in Jarvis [1978], mode seeking 

partitional clustering in Kittler [1976] and the bootstrap approach of Moreau [1987]. Pos­

sibly the most common cluster criterion is the Least Squared Error criterion (LSE). This 

criterion partitions the data for fixed number of clusters that miimnise the squares of the 

errors. 
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The procedure for LSE is as follows. For a data set of N points in 31'^, let the c 

cluster set {c,, C2,...,Cc} have corresponding set of pomts {«i, «2,-,«e}, and each object 

belongs only to its cluster so that 

T.,^n,,=N (2.3.1) 

The mean of the Mi cluster is the centroid defined by 

„ .-. (2-3.2) 

where x̂ , is the /th element of the data set belonging to the kth cluster Ck. If a EucUdean 

metric is used, then the least squares error for cluster Ct is 

4=zl2.^^ki-\^k)^(^k,-^k) (2.3.3) 

In general, the LSE can be weighted by any dxd symmetnc positive definite matrix A so 

that 

4,A^zllt^{^ki-\^kf A^k,-\^k) (2.3.4) 

In particular, for a Euclidean distance, A=l{dx d identity matrix), and for a Mahalanobis 

distance, A = £ is a covariance matrix. The geometric forms of these constant norm loci 

are hyperellipsoids centred at the means pk described in Section 2.2. The LSE criterion 

function finds partitions of fixed c clusters that minimises the sum of the within cluster 

variations 

Ei=lll^/k,A (2.3.5) 

An optimal partition is defined as one which minimises Ek. Clusters of this function are 

called minimum variance partitions. The kinds of data that are suited to the LSE criterion 

fimction are those which form compact clusters that are well separated from one another. 

However, the LSE criterion is sensitive to outUers because the splitting of clusters, from 

the influence of outliers, are favoured over one that maintains the integrity of clusters. 

2.3.3 /r-Nearest Neighbour 

The KNN is a non-parametric method in which k stands for the number of data partitions 

(generated from initial k neighbour points). Several variants of KNN exist, essentially to 

improve the control of cluster development [Anderberg, 1973; Dubes and Jain, 1980]. For 

the purpose of comparison with our algorithms of Chapter 3, we will only describe the 

procedure for the basic KNN algorithm. 
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A basic KNN algorithm. 

Step 1. Select k elements of x, as prototypes p, of the k clusters {c\, ci,..., Ck). 

Step 2. For all remaining data, assign X; to cluster/ if t/(x„ Pj) is the minimum for7=1,...,^. 

Step 3. For ally, compute new mean p,. 

Step 4. If ||pj;f - pj;,.i|| < 5, Stop, else go to Step 2. 

Note: 5 controls the stopping condition and t is an iteration index. 

The KNN has four main characteristic features, described as follows: 

2.3.3.1 Partition Forming 

Partitions are formed by specifying the number of clusters k. The positions of the k cluster 

centres can be randomly selected or based on some heuristics that spread the centres in the 

vicinity of the data centroid. The partition is developed by each point attaching itself to the 

nearest cluster prototype. The centroid of a resulting cluster becomes the cluster prototype 

for the next iteration of clustering until eventually, all cluster prototype values stop chang-

mg. The clustering criterion of KNN is of the LSE type. Consequently, different initial 

partitions may not jield the same final result especially if the clusters are not well sepa­

rated. This problem is identified as a convergence to local minima. One way to overcome 

this problem is to run the algorithm with different initial partitions, but the problems of 

cluster validity remain largely umesolved. 

2.3.3.2 Partition Update 

Partitions are updated by computing local cluster centroids (centres) and so reduce the 

square error. There are two main variants to the update of partitions. The method of 

McQueen [1967] updates the cluster centre immediately on assignment of each data point. 

Forgy's method [1965] updates all cluster centres after all data points have been assigned 

to the clusters. The two most commonly used distance metrics are the Euclidean and the 

Mahalanobis metrics. The Mahalanobis metric is more complex to use as U requires an 

invertible symmetric positive definite matrix. However, the Mahalanobis metric is a more 

general metric compared to the Euclidean metric. 
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2.3.3.3 Cluster Adjustment 

Cluster adjustment refers to the adjustment of cluster numbers after certain conditions are 

met. This capability allows an algorithm to recover from poor cluster results. For example, 

a cluster is split if it has too many pattems and a large spread along a feature. Two clus­

ters may merge if their clusters are sufficiently close. In most cases however, only ad hoc 

rales can be applied because general rales cannot deal with the complexity of cluster 

stractures. The presence of outliers can also significantly distort the cluster stractures of 

KNN (except the fuzzy stractures derived from PFCM or the possibiUstic varieties). 

2.3.3.4 Convergence 

Convergence of cluster prototypes or centres, in the context of clustering, can be under­

stood in two ways. In the one case, convergence is analytically determined, such as the case 

with FCM for which convergence theorems exist. In the other, convergence is coerced by 

rales or algorithmic procedures such as the KNN and most partitional algorithms. At the 

point of convergence, cluster prototypes may not correspond to their cluster centroids. This 

occurs in fuzzy clustering algorithms such as the FCM at normal m values. Partitional al­

gorithms do not have automatic stopping pomts. The algorithm may converge in the sense 

that the cluster prototypes can be confined to a small radius for larger number of iterations. 

The stopping point is usually decided on the basis of negligible change in the prototype 

value between successive iterations. There is no guarantee that the prototypes will con­

verge to global minima. To ensure convergence, a maximum number of iterations may be 

specified, although the KNN has a reputation for fast convergence (see article [Juan and 

Vidal, 1994], for a faster k centroid clustering). PartUional clustering algorithms require 

the number of partitions to be given or known a priori. Consequently, cluster validity is an 

important consideration for these type of algorithms. 

2.3.4 Cluster Validity 

Cluster validity addresses the question of cluster number optimality or how many good 

clusters there are in the data. As Fig. 2.4 shows, this question is neither trivial nor simple 

to answer. The plus symbols denote the 32 points of some data in 2D real space. The ellip­

tic boundary shown on Fig. 2.4 is not part of the cluster. The boundary is drawn to show 

the possible cluster stmcture as detected by an algonthm such as the Gustafson-Kessel 
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algorithm [1979]. The four different possible cluster substmctures in Fig. 2.4 indicate 

some practical problems in determining cluster validity. A cluster validity measure or index 

provides an objective basis to make a correct selection of the cluster partitions. One simple 

validity measure is to assess a change in the cluster criterion function by running the al­

gorithm for a range of cluster numbers, then selecting the cluster number that gives the best 

result. This may involve some trial and error. 

Figure 2.4 Four possible ways of clustering 32 points in 5R̂ . 

A more formal approach is to devise a measure of tiie goodness of fit to indicate how 

well a given c cluster description matches the data. The classical measures of fit are tiie 

Chi-square and the Kolmogorov-Smirnov statistics, but tiie problem of dimensionality 

precludes their direct application, except for the simplest of cases. 
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The topic of cluster validity covers a wide field of many different methods. Bezdek 

[1995b] identifies three different categories of cluster vaUdity: (i) direct methods, (ii) mdi-

rect methods and (in) performance based. The direct methods are the (a) Hubert statistics 

[Hubert, 1985], (b) Davies-Bouldin index [Davies and Bouldin, 1979], (c) Dunn's Com­

pact and Separated index [Duim, 1974] and (d) Generalised Dunn's indices [Dunn, 1976]. 

The indirect methods are the (a) Partition Coefficient [Bezdek, 1974; Zadeh, 1965], (b) 

Partition Entropy [Shannon, 1948], (c) Xie-Beni and Extended Xie-Beni indices [Xie and 

Beni, 1991] and (d) Fukuyama-Sugeno index. The performance based method is exempli­

fied by Backer and Jain's fuzzy set decomposition measure [Backer and Jain, 1981]. 

Other measures of cluster validity are given in [Jain and Dubes, 1988; Kaufinan and 

Rousseeuw, 1990; Bezdek et al., 1980; Dubes, 1987]. Section 3.3 describes our procedure 

to constract a cluster validity based on the Bayes optimum discriminant function. The fol­

lowing caveats are given to guide the sensible use of cluster validity [Bezdek, 1995b]. 

1. Numerical representation may not mean adequate powers of discrimination. 

2. Algorithms used may not extract stracture from data. 

3. Appropriate parameters of an algorithm may never be used. 

4. The validity indices may give an incorrect cluster interpretation. 

Remarks 

More details on the partitional clustering algorithms are given in: [Hartigan, 1975; Duda 

and Hart, 1973; Tou and Gonzalez, 1974; Jain and Dubes, 1988; Kaufinan and 

Rousseeuw, 1990]. 
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2.4 Fuzzy Clustering Theory 

Fuzzy sets [Zadeh, 1965] manipulate data and information that possess nonstatistical un­

certainty. Accordmg to Zadeh, "the fiizzy set was conceived as a result of an attempt to 

come to grips with the problem of pattem recognition in the context of imprecisely defined 

categories" [Bezdek, 1981, p. v]. Zadeh coined the audacious term "fiizzy" because it was 

concrete, immediate and descriptive. The successfiil applications of fiizzy logic are sum­

marised in [Bezdek, 1995b]. 

This chapter introduces the theories of fiizzy clustering and examines the analytic 

procedures for solving fuzzy objective functions. It begins with the first systematic exposi­

tion of the fiizzy clustering method of Ruspini in Section 2.4.2, followed by the Duda and 

Hart's Hard c-Means (HCM) in Section 2.4.3 and Bezdek's Fuzzy c-Means (FCM) in 

Section 2.4.4. This leads to Bezdek and Im's Possibilistic Fuzzy c-Means (PFCM) algo­

rithm introduced in Section 2.4.5. Clustering properties of PFCM are discussed and com­

pared with FCM. Objective fiinctions with different kinds of membership constraints are 

presented in Sections 2.4.6 and 2.4.7. These include the variable norms of Gustafson and 

Kessel's algorithm, and Gath and Geva's algorithm in Section 2.4.6. Next, Krishnapuram 

and Keller's Possibilistic c-Means (PCM) algorithm, and Bezdek and Im's Enhanced Pos­

sibilistic c-Means (EPCM) algorithm are presented in Section 2.4.7. The clustering per­

formances of EPCM, PCM, PFCM and FCM are compared using three standard data sets. 

Section 2.4.8 illustrates a method to solve cluster parameters from parametrized proto­

types. The cluster parameters charactenses the shape and type of cluster stracture devel­

oped. The chapter concludes with a brief review of the fiizzy partition space in Section 

2.4.8 and the relationship between crisp and frizzy cluster partitions. 

2.4.1 Introduction 

Fuzzy sets as a basis for clustering were first suggested by Belhnan, Kalaba and Zadeh 

[1966] from which several classification schemes were developed [Gitman and Levine, 

1970]. hi 1969, Ruspmi presented the first systematic account of fiizzy clustering 

[Ruspini, 1969]. Dunn developed the first fiizzy extension of the least squares clustering 
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criterion [Dunn, 1973]. Bezdek generalised this to an infinite family of algorithms [Bezdek, 

1973]. 

Set membership can be realised mathematically by a membership fimction defined 

for each of the clusters as w : X-> [0,1] where X= {x,,X2,...,XAr} is the data set and u{x) 

gives the grade of membership of a feattire vector x e JT in tiie fuzzy set u (see Section 

2.4.9 for details). The memberships (eg. w,̂ ) are suffixed by two indices; / and k refer re­

spectively to tiie row index (of the /tii cluster) and column index (of tiie kfh data element). 

All fuzzy clustering objective fiinctions use memberships as a weighting on the met­

nc or norm. The fuzzy clustering algorithm is characterised by a minimisation of the ob­

jective fimction by a Picard iteration involving the memberships and prototypes, to gener­

ate optimal c partitions of the data in the sense of the least squared error criterion. 

2.4.2 Ruspini's Objective Function 

The objective fimction of Ruspini [1970] contains three clustering criteria. Denoting the 

objective fimction by JR, the form is 

-^R = 2]^=iSjliI Zti^("y -^'k) -d%\ (2.4.1) 

where cris a constant, Wy and w,* are memberships, and 2<c<N is fixed a priori. The 

metric is denoted by djk. The optimal fiizzy c-partitions of a data set X is taken to be the 

local minima of JR (global minima of prototypes are difficult to attain on accoimt of the 

complex surface described by JR). Ruspini considered JR as a measure of cluster quality 

based on the local density because it will be small when the terms of (2.4.1) are each small. 

This occurs when close pairs of points have nearly equal membership. We will ignore the 

details of the algorithm (described in [Bezdek, 1981]), except to note a few features that 

have general significance for other fiizzy clustering algorithms. Specifically: 

1. The stationary points of any objective fimction are not necessarily the local minima. 

2. There is no assurance that a global optimum of an objective fimction gives a "good" 

clustering. 

3. Different choices of the cluster parameters (eg. u and d) may lead to different "optimal" 

partitions. 
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4. A reasonable cluster stracture may exist for more than one value of c. 

These four points do not mean that useful cluster resuUs are unpossible to obtain. They do 

however, caution against uncritical interpretation of the cluster resuUs, and emphasise the 

need for cluster validation. A practical solution is to use the algorithm which works best 

for the particular data set. 

Figure 2.5, adapted from [Bezdek, 1981] shows tiie resuU of applying Ruspini's al­

gorithm for two clusters (c - 2), Point membership value is indicated next to die circled 

point number. The significant point to note is that point number 8 forms a bridge between 

two symmetric clusters. Only die memberships of one cluster is shown on Figure 2.5. 

Memberships for the second cluster is symmetrically opposite to the first cluster. Under 

conventional crisp clustering, point number 8 must belong exclusively to one or the other 

cluster. However, this example shows that it is more natural to interpret point number 8 as 

belonging equally to both clusters, hence a membership of 0.5. The two cluster prototypes 

located at the wing tips of the clusters are a consequence of the clustering criterion of 

(2.4.1). 
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Figure 2.5 The butterfly membership assignment with Ruspini's algorithm. Only the 
memberships of one cluster is shown. Memberships of the second cluster is symmetricaUy 
opposite. 
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2.4.3 Hard c-Means (HCM) 

The HCM has an objective function given by 

J h =Yjl^^]^^u,kdl (2.4.2) 

where dik = \\xk - v,|| is a Euclidean distance (Appendix A). 

Note tiiat Jh assesses the dissimilarity in djk, between x̂ , and v, where v, is not necessarily in 

X. Since Uik = u{Xk) = 1 if xt belongs in zth cluster and is zero otherwise, (2.4.2) can be 

expressed as 

«^;.=ZtiS,^,„_j|x,-v,||' (2.4.3) 

Minunising (2.4.2) with respect to v, gives the cluster centroid 

k^.^ik^k 

""'^-^^ (2.4.4) 

If a scatter matrix for the /th cluster is defined as 

E N T 

fc=l"/Ar(x,-V^)(x,-V;.) (2 .4 .5 ) 

and a within cluster scatter matrix as 

Sh = Y.]^^Si (2.4.6) 

then if dik is defined by a Euclidean metric, it can be shown that the trace of Sh equals Jh of 

(2.4.2) given by 

Tr{S^)=^Ju (2.4.7) 

where the trace of a ^ x ^ square matrix A = {a,y} is defined as the sum of its diagonal ele­

ments by 

^ K > 4 ) = ZJLI« ,7 

From (2.4.3), Jf, will be small when dik is small ie. when the points are close to their 

cluster centre. Consequently, Jj, represents the overall within-group sum of squares errors 

over /. Since (2.4.3) is a measure of the squared Euclidean error in representing %k by v„ Jt, 

is also a measure of the local density. Hence the objective function is altematively known 

as a density flmctional. From (2.4.7), the trace of Sh is proportional to the sum of vari­

ances. Therefore minimising Jh amounts to a minimisation of these variances. The preced­

ing discussion illustrates that the objective fimction Jh has an appealing solution, from both 

geometric and statistical perspective. The HCM algorithm is obtamed as the approximating 

minima of J;, by an iterative optimisation procedure given by the following algorithm: 
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The Hard c-Means (HCM) algoritiim [Duda and Hart. 19731. 

Step 1. Fix c,2<c <N, and initialise UQ. 

Step 2. Calculate v, from (2.4.4). 

Step 3. Update memberships 

fl, dj,, = xxim{dj;,} 
Ujk = i i^/^c for all / and A: (2 4 8) 

[0, otherwise 

Step 4. If \Ut - Ut.i\ < E, Stop, else go to Step 2. 

Note: 8 is a small number to control the stopping point and t is an iteration index. 

Since the membership is hard (or crisp), v, approximates to a cluster centroid. The 

condition of (2.4.8) is an assignment of points to the nearest cluster. If step four is replaced 

with the cluster centroids in the HCM algorithm, the KNN algorithm of Section 2.3.3 is 

obtained. Since the HCM algorithm is essentially a gradient descent technique, it is also 

sensitive to the four problem features noted for the Ruspini's algorithm. 

2.4.4 ISODATA and Fuzzy c-Means 

A more elaborate version of HCM is the ISODATA (acronym for Iterative Self Organising 

DAta Type A) algorithm by Ball and Hall [1967]. It is helpfiil to distinguish the 

ISODATA of Ball and Hall from die ISODATA of Bezdek. Bezdek's version is an ex­

tended form of Ball and HaU's ISODATA, by a generalisation of the membership exponent 

from m = 2 [Dunn, 1973] to w = oo [Bezdek, 1981]. 

The result of HCM is shown for one cluster memberships in Fig. 2.6. Memberships 

for the second cluster is symmetrically opposite. The cluster prototypes for v̂  and V2 are 

(1.71, 3) and (6, 3) respectively. Comparing Fig. 2.5 with Fig. 2.6, it is evident that Rus­

pini's fiizzy partition conveys more information than the hard partition. The low member­

ship of point number 8 signals a closer look at the data. The hard assignment of cluster 

points not only distorts the symmetry of cluster stractures but also removes points that 

signify a problem condition, like point number 8. 
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Figure 2.6 The butterfly memberships of HCM algorithm. 

The generaUsation of HCM objective function Jh v/as reported by Dunn [1973] 

which Bezdek subsequently extended to include a family of fuzzy clustering algorithms 

based on the least squared errors criterion [1973]. The generalisation of FCM is taken a 

step fiirther with Bezdek and Im's PFCM to improve the definition cluster properties. Prior 

to doing this, we examine the analytic stracture of FCM to elucidate similarity of form. 

The FCM algorithm is an iterative procedure for approximately minimising the objective 

function by a Picard iteration via the memberships and prototypes. 

Fuzzv c-Means [Bezdek, 1981]. Theorem 2.4.1: 

Let the data setXbe defmed asX= {xi,X2,...,Xfc,...XAf} for A/'items in the finite subset of IH''. 

Let the fiizzy objective function be defined as 

Jr.{U,V) = Y.lXU^ldr, (2.4.9) 

where/J = 2 (for tiie case of FCM) and d,k -||x^-v,-|U,. = V(^^ -v , )^^ , (x^ - v , ) is an 

inner product norm weighted vrith adxd positive definite matrix Ai. Let U defines the real 

memberships Uik on X of x̂  in tiie zth fiizzy subset, and V denotes tiie c-tuples of cluster 

prototypes, v,. for z =l,..,c. Let the cxTVmatrix U= [Uik] be a constrained fiizzy c-partitions 

of Jf which satisfies three conditions: 
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N c 

M,fce[0,l] \fi,k, Q<YaUik<N Vz and 2]",fe=l Vyt (2.4.10) 
/t=i i=i 

Fix the fiizzifier m e (l,oo) and let X have at least c<N distinct points. Define for all k, 

the sets 

/ t={z | l<z<c;a '„= | |x^-v, | |^_ .= 0} 

7^ = {l,2,...,c}-7, 

then J„{U,V) may be globally minimised only if 

1 
I,^ = 0^Uik (2.4.11) 

7=1 

^ 2 ^ 

v^7-t y 

(m-l) 

Ii, ^0=> Uiu = 0, Vz e /> and 

V,- = • 

N 

z 
y t = l 

^ik^k 

X«/yt=l (2.4.12) 

AT (2.4.13) 

A r = l 

The proof of Theorem 2.4.1 is given in Appendix B. Convergence theorems for FCM exist 

[Bezdek, 1981]. The FCM algorithm is presented below: 

FCM algoritiim [Bezdek. 1981]. 

Step 1. Fix c,2<c<N. Choose any inner product norm defined by dik in (2.4.9). 

Step 2. Fix m. Normally w = 2 is satisfactory. Initialise f/o (or FQ). 

Step 3. Calculate prototypes v, from (2.4.13) with Uik from (2.4.11). 

Step 4. Update Uik from (2.4.11) with v, from (2.4.13). 

Step 5. If \Ut- Ui.i\ < 8, Stop, else go to Step 3. 

Note: 8 is a small number to control the stopping point and t is the iteration index. 

There are several features of FCM to be observed. Initialisation of the memberships 

can be satisfactorily accomplished with random numbers less than unity. Hall et al. [1992] 

gives another method consisting of pairs of is, offset sequentially by two positions along 

each subsequent row. It is also possible to use random initial prototypes, VQ. The occur­

rence of singularity in (2.4.11) is avoided by specifyuig a cluster set h If singularity oc­

curs (dik = 0), then the membership is defined by (2.4.12). The metric d,k can include any 
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inner product norm with a symmetric positive definite weighting matrix A. This type of 

norm is usefiil for detecting non-circular clusters such as the elliptic or linear cluster varie­

ties. An example of its use is given m Section 3.4.2. FCM has the interesting property 

where m ^ V results in crisp memberships in which Uik e {0,1}. The crisp memberships 

may also be obtained from 

*ik 
1 dik = xxiixiid J 

i<7̂ ^ (2.4.14a) 
0 otherwise 

for 1 < z" < c and \<k<N. Altematively, crisp partitions may be obtained from fiizzy 

partitions by applying the maximum membership rale, ie. selecting a point with the maxi­

mum membership from aU c clusters from the relation 

" / f c 
1 Uik=xxiax{uJ 

i<7̂ c ' (2.4.14b) 
0 otherwise 

The FCM algorithm contains a number of parameters, the more important ones be­

ing c and m, denoting the number of clusters (for c > 1) and the "smoothing" or 

"fuzziness" factor m. There are no analytic relations to calculate m. The best guide is to 

select the value of m that fits the data best. Normally, a value of two or three is satisfac­

tory. In FCM, v, is dependent on m (see Eqs. 2.4.11 and 2.4.13). FCM solutions are re­

stricted to m> I. As m approaches infinity, the memberships in all clusters tend towards a 

value of 1/c. This result is a consequence of the membership constraint of (2.4.10). 

Figure 2.7 shows the FCM memberships for one fiizzy cluster of Ruspini's butterfly 

data with m= 1.25. Memberships for the second cluster are symmetrically opposite. For 

this case, the partitions are considered hard, but the bridge point number 8 preserves the 

fuzzy membership. However, decreasing m close to unity will produce the totally hard 

clusters of Fig. 2.6. Figure 2.8 shows the memberships with w = 2. Note the effect of m on 

the stationary points of the cluster prototypes (compare Figs. 2.7 and 2.8). 
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Figure 2.7 The butterfly memberships of FCM algorithm, using m = 1.25. Cluster proto­
types are located at (1.843, 3) and (6.155, 3). Only the memberships of one cluster at 
(1.843,3) is shown. 
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Figure 2.8 The butterfly memberships of FCM algoritiim, using zw = 2. Cluster prototypes 
are located at (1.855, 3) and (6.145, 3). Only the memberships of one cluster at (1.855,3) 
is shown. 
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2.4.5 Possibilistic Fuzzy c-Means (PFCM) 

The PFCM extends FCM in two ways. Firstly, it generalises the metric dik vvith an expo­

nent p. Secondly, it generalises the membership constraint with an exponent a (see Eq. 

(2.4.16)). 

Possibilistic Fuzzy c-Means (Bezdek and Im). Theorem 2.4.2: 

For similar notations and parameters to FCM, define the objective fimction as 

N c 

Jm,p,a (U,V) = Y.Z^u'^kdfk (2.4.15) 
k=\ i=\ 

where 

'^/-t=l|xfc-v,iU = V(X/t-V/)^v4(xfc-v,) 

represents the weighted distance of a feature vector (or data point) x̂  from prototype v„ 

with adxd symmetric positive definite matrix y4. Let the fuzzy c-partitions of TV items of 

Jfin Ĵ "' satisfy the following three condUions: 

N c 

M,t6[0,l] Vz,/t, 0<Y.u,k<N Vz and Z « , ° = l V/t.a (2.4.16) 
k=\ 

Define for all k, the sets 

/^={zll<z<c;cf,-, = |lx,-v,|l = 0} 

7^={l,2, . . . ,c}-/ , 

then Jm,p,Jdd,V) may be globally mimmised only if 

1 

/=i 

4 = 0 ^ « ' f t = - (2.4.17) 

/ \ 

7=1 

dl ik 

rlP 

/^;t0=>M,.^=O,Vz6 4 

Lj^ik^ik ^k 

Ik 3nd 2-1 ";X- = 1 (2.4.18) 

v,- = 
k=\ 

• ~ N 

Yj^Tkd^^ 
k=\ 

\<i<c (2.4.19a) 

Relaxing the mmimisation condition for /„,;,,« witii respect to v„ improved computation 

efficiency and convergence around centroids may be obtained from die aUemative solution 
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2-i'^tk '^k 

^' = ^^L m (2.4.19b) 

Z",f' 
/ t= l 

Equation (2.4.19b) does not involve the metric dik, hence it is algorithmically simpler and 

more efficient to compute. Its stracture suggests that prototype development is governed by 

the fiizzy and metric exponents m and p respectively, to provide greater control over cen­

troid clustering. The metric exponent in (2.4.19b) is resticted to ;? > 1 so that Us unit norm 

lies on the upper triangle of Fig. 2.2. However in (2.4.19a), the exponent/? > 0 so that its 

unit norm lies within the square boundary. 

Both prototype equations show no convergence problems in the normal range of the pa­

rameters. The proof of PFCM is given in Appendix C. Note that the forms of (2.4.17) and 

(2.4.19) are similar to (2.4.11) and (2.4.13), except for the extra exponent terms, aandp. 

The algorithm steps involving (2.4.19a) and (2.4.19b) are slightly different. For identifica­

tion purpose, these are labelled as PFCMl and PFCM2: 

PFCMl algorithm with equation (2.4.19a), (Bezdek and Im). 

Step 1. Fix c,2<c<N. Choose any inner product norm defined by t/.ĵ  in (2.4.15). 

Step 2. Fix a, m and p. Normally w = 2 andp = 2 axe satisfactory. Initialise UQ (or VQ). 

Step 3. Calculate initial prototypes from (2.4.13). 

Step 4. Update memberships M,> from (2.4.17). 

Step 5. Update prototypes v, from (2.4.19a). 

Step 6. If \Ut- C/M| < E, Stop, else go to Step 4. 

PFCM2 algorithm with equation (2.4.19b). (Bezdek and hn). 

Step 1. Fix c, 2 < c < TV. Choose any inner product norm defined by dik in (2.4.15). 

Step 2. Fix a, m andp. Normally m^2 andp = 2 axe satisfactory. Initialise f/o (or VQ). 

Step 3. Update prototypes v; from (2.4.19b) with M,* from (2.4.17). 

Step 4. Update memberships Uik from (2.4.17) with v, from (2.4.19b). 

Step 5. If \Ut- f/r.il < 8, Stop, else go to Step 3. 

Note: 8 is a small number to control the stopping point and ris an iteration index. 
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The parameter a: is an exponent of the membership, generalised from the third 

condition of (2.4.10) to the third condition of (2.4.16). It may be verified that PFCM re­

verts to FCM for parameter values ofp = 2 and a=l. 

The substitution of a = w/2 in (2.4.17), yields an interestmg resuU for the member­

ship function given by 

1 
"/;t= T (2.4.20) 2 

^ /' ^' 

E 4 
^P 

J=l\'^jk j_ 

— 
m 

Recall that FCM's membership equation (2.4.11) is restricted to m> 1. In (2.4.20), the 

range of m is extended to z« > 0. Another usefiil result is obtained by substituting (2.4.20) 

into (2.4.19). Thus unlike FCM, the special case of PFCM with a= m/2 produces proto­

types that are independent ofm. 

It may also be noted that the extreme values of the a parameter represent a more 

general expression of memberships compared to the two cases of FCM. For example, the 

crisp case of FCM as zw ^^ T (ZTZ = 1 is undefined), corresponds to a -> zw for 0 < w < 00 

of PFCM. Likewise, the extremely fuzzy case of FCM for zw ^- 00, corresponds to or* 0 

for 0 < zw < 00 of PFCM. In other words, each extreme condition of FCM can be repre­

sented by a large family of memberships involving m andp. The implications of these pos­

sibilities are yet to be explored. 

The intermediate range 0 < o: < zw of PFCM for 0 < zzz < 00, give a more extensive 

descnption of the memberships than is available from FCM. The possible PFCM member­

ship functions are depicted in Fig. 2.9(a) to 2.9(h). These distributions are obtained from 

the data set of Kaufinan and Rousseuw shown on Fig. 2.11. The memberships represent 

cluster number i at (7.001, 2) calculated for x = 7 and jv = 1 to 14. The cluster centres for 

the otiier two clusters were assumed to be (2.001, 9) for cluster 2 and (13.501, 9) for 

cluster 3. hi calculating die membership distribution, each x-coordmate position of tiie 

prototype was made to deviate slightly (by 0.001) from its trae position to avoid singular­

ity in the d,k term. Figure 2.10(a) to 2.10(d) show the FCM's membership functions for the 

same cluster prototypes. 
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A comparison of die FCM and PFCM membership distributions reveals some simi­

larities and differences. The similarities are: (i) same ^/-coordinate crossover point of die 

curves aty^ 7.5 units, (ii) typical fiizzy profile (bell shape) and crisp profile (hat shape), 

and (iii) membership equality at parameters zw = 2 and a = 0.5m. The differences are: (i) 

the crossover points in FCM have a fixed membership that is inversely proportional to tiie 

number of clusters, whereas PFCM has a range of crossover pomts, depending on die al­

pha value, and (ii) FCM has no equivalent fiinctions similar to Figs. 2.9(a) and (b). 

There are some interesting features in the curves of Figs. 2.9 and 2.10. The cross­

over point represents the decision boundary at which a feature vector has equal member­

ship in each of the three clusters of Fig. 2.11. This condition occurs when dik = djk. Mem­

bership at this boundary for the case of FCM is 

I 
^bp=- (2.4.21) 

c 

and for PFCM, U is 

1 
" 6 / ' = ~ V ^ (2.4.22) 

c 
where c is the number of clusters and the subscript bp denotes a boundary point. 

For the three clusters of Fig. 2.11, FCM has Ubp = 0.33 (to two decimal places). In 

PFCM, a (in Eq. (2.4.22)) may be adjusted so that Ubp = 0.5 gives a convenient value that 

conforms to the convention used to represent a decision boundary in conventional or neural 

classifiers. 
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Figure 2.9 PFCM membership functions for data set of Fig. 2.11. Cluster centre is at 
(7. 2) and memberships are calculated along x = 7 for >/ = 1 to 7 = 14. 
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Figure 2.10 FCM membership fiinctions for data set of Fig. 2.11. Cluster centre is at (7, 2) 
and memberships are calculated along x = 7for>'= I toy= 14. 
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Figure 2.11 
number. The 

Data set from [Kaufinan and Rousseeuw, 1990]. Each point is labelled by a 
coordinates of each point is located at the centre of the labelled circle. 
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2.4.5.1 Comparing Fuzzy Clusters at Centroids 

Table 2.3 compares the best centroid clustering results of PFCMl, PFCM2 and FCM, us­

ing data from Fig. 2.11. The cluster parameters of zn = 3.17 and a = 0.5ZM for PFCM2 

produce a decision boundary at ŵ ,̂  = 0.5. Points 6 and 13 have interesting fiizzy values. 

For the specified boundary membership, point 6 is seen to belong to clusters 1 and i , and 

point i i to clusters i and 2. Both PFCM and FCM show point 13 with a higher member­

ship in cluster 2. These resuUs agree with expectation. The good cluster points (shaded) of 

FCM have a few memberships less than 0.9, whereas all memberships of PFCM exceed 

0.9. This resuU indicates that PFCM identifies clusters more positively than FCM. Overall, 

PFCM gives a slightly better assessment of the cluster resuU. Memberships of PFCMl and 

PFCM2 are ahnost similar. In this example, the cluster prototypes are centred at the local 

cluster centroid (such prototypes are aUematively referred to as centred prototypes). Clus­

tering at the local cluster centroids is a characteristic of the clustering criterion defined by 

the objective function and determined by the parameters a, m and p. Table 2.3 shows both 

FCM and PFCM exhibit centroid clustering for the selected parameter values. However, 

note that for/? = 2 at normal values of zzz, FCM clusters poorly at centroids. 

k 

1 

2 
3 
4 

5 
6 
7 

8 

9 

10 

11 
12 

13 
14 

15 

16 
17 

18 

19 
20 

21 
22 

Ul 

PFCMl 

.985 

.'^85 
1 

.483 

.983 

.891 

.711 

.673 

.681 

,674 

.680 

.700 

.869 

.749 

.706 

.730 

.703 

.238 

.689 

.727 

.687 

.714 

PFCM2 
,961 

,9f)7 

,999 

,954 
,961 
.603 
.156 
.108 

.113 

.099 

.104 

.122 

.523 

.198 

.137 

.170 

.133 

.002 

.117 

.162 

.114 
,146 

FCM 
943 

,944 
1 
,932 

,934 
.442 
.047 
.027 

.030 

.027 

.030 

.040 

.354 

.076 

.042 

.060 

.041 

.0 

.033 

.057 

.033 

.048 

U2 

PFCMl 

.692 

.688 

.345 

.708 

.702 

.818 

.729 

.684 

.710 

.688 

.710 

.723 

.880 
;;-.971 

: ,981 

::..972 
;:;.982 

:1 

i:,982 

.976 

:MA 

:;:.977„ ....:. 

PFCM2 
.125 
.110 

.013 

.144 

.125 

..361 

.178 

.118 

.144 

.111 

.133 

.147 

.556 

.918:: 

.950 

,920 
,956 

! 
,957 . 

^ ,937 

.962 

:....93S,,,:.:,,. 

FCM 
,035 
.032 
.0 

.043 
,039 
,199 

,058 
,031 

.045 

.032 

.044 

.054 

.393 

,874 • • 
,923 
,877 

,931 
1 

,931 

,901 

,939 

„,-9,02„:„ ,:„, 

U) 

PFCMl 
,660 
,667 

,329 
,666 
,675 
872 

;:,:975 

, .985 
:i.;98i 

::,984 

\yM\ 
;978 , 
,839 

,716 

,692 
.735 
.677 

.234 

,693 

,704 

,678 

.718 

PFCM2 
.094 

,091 
,010 

,099 
,097 

,519 
.924 
.960: 

,950 

,964 
,956 
,946 
,415 

,150 

,122 

,176 
,105 

,002 
.120 

.134 

.104 

.150 

FCM 
.022 

.024 
0 
.024 
.027 
,360 

.895 

.942 

.925 

; .941 
,926 . 

:: ,907 
.253 
.050 

.035 

.064 

.029 

0 

.035 

.042 

.029 

.050 

Table 2.3 Comparison of fiizzy clusters at centroids. The symbols u\, m and m represent memberships of 
cluster 1, 2 and i respectively. Parameters and prototypes associated with each algorithm are listed as 
Type = {a, m,p, v,, vj, vj.):PFCMl = (7.5, 15, 1.2, (2.01, 9), (7, 2), (13.39, 9.05)), PFCM2 = (1.585, 3.17, 
1.5, (2.07, 9.06), (7, 1.99) (13.51, 9.04)) and FCM = (1, 1.8, 1.2, (2 03,9.01), (7, 2), (13.39, 9.05)). True 
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cluster centroids are at: vi = (2, 9), v̂  = (7, 2) and V3 = (13.5, 9). Memberships of the three clusters are 
shown shaded. The data set is from Fig. 2.11. 

2.4.5.2 Comparing Cluster Width Selectivity at Centroids 

Table 2.4 compares the cluster width selectivity of PFCM vrith FCM, at best centroids. 

Cluster width selectivity refers to the ability of the algorithm to select a small core of the 

cluster that is centred at the cluster prototype. In the case of FCM, the core of cluster 

width is fixed (see Eq. (2.4.21)). Consequently, the dynamic range of the fiizzy member­

ships is limited by Uhp = 0.33, for three clusters. To apply an alphacut (or membership 

threshold) on the FCM's memberships, one needs to know the ftmction's characteristics 

such as Fig. 2.10(a). PFCM offers a simpler procedure for selecting the alphacut. If we 

select the parameter a to correspond to a desired cluster width, then the cluster core is ex­

tracted for memberships above a threshold u^o. Table 2.4 shows that Uco ^ 0.05 selects a 

cluster core radius of about 1.5 units of the axes scale of Fig. 2.11. This occurs for low 

alpha values (or < 0.3). The boundary at ẑ p̂ = 0.012 is less than u^o by a factor of 4. A low 

a permits setting a low Uco threshold for the extraction of the cluster core (and a lower Ubp). 

In the case of FCM, it is more difficult to establish a lower limit for u^o. 

k 

1 
2 
3 
4 

5 
6 
7 

8 
9 

10 
11 
12 

13 
14 

15 
16 
17 

18 

19 
20 

21 
22 

Ul 

PFCMl 
:215 : 

.247 
,570 

: ,215 
,262 
,022 

0 
0 
0 

0 
0 
0 
,014 

,002 

0 
,001 

0 
0 

0 
,001 

0 
,001 

PFCM2 

,182 
.186 

,721 
.165 
.169 
.020 

,002 
0 
,001 

0 
0 

,001 

.014 

.003 

.001 

.002 

.001 
0 

.001 

.002 

.001 

.002 

FCM 
A30 : : 
.634 

.876 

.622 

.627 -

.373 
,199 
,179 

,178 

,182 
,182 
,197 

.342 

.235 

.202 

.216 

.203 

.033 

.189 

.220 
,191 

.207 

"."• 
PFCMl 
0 
0 
0 
,001 
0 

,005 
,001 
0 
0 

0 

.001 

.001 

.017 

K.150 

; .216 
V.152 

::̂ -.216 
:.,729 

; .220 

.166 

.221 
:,;.I68 

PFCM2 
,001 
,001 

0 
,002 
,001 
.006 
.002 

0 
.002 

0 
.002 
.002 
.016 

M I O 
,151 

,111 
,163 

: ,847 

,164 

,131 
: ,177 

; ,131 

FCM 
,200 

,192 
,066 
,208 

.199 

.280 

.215 

.188 

.205 

.195 

.209 

.219 

.354 

.562 •: 

.608 
,562 
,617 

,935 

,618 

,583 
,626 

.583::;::V: 

113 

PFCMl 
0 
0 
0 

0 
0 
,015 
.1:70 
.147 

J 0 8 

:-234 
,203 

J.74 
,007 

0 

0 
,001 
0 

0 

0 
0 
0 

,001 

PFCM2 
0 
0 

0 
0 
0 
,014 

,114 
,183 
,141 

.197 

;,i54 
;,145 
,008 

,001 
,001 

.002 
0 

0 
.001 

.001 
0 

.002 

FCM 
.171 
.174 
.057 
,170 
,174 
,347 

.sM'rn 
,633 
,617 

,623 
,609 

; .583 Hi:; 

.304 

.203 

.190 

.222 

.180 

.032 

.193 

.198 

.183 

.210 
1— — 

Table 2.4 Comparison of cluster width selectivity at centroids. The symbols u\, ui and M3 represent mem­
berships of cluster /, 2 and J respectively. Parameters and prototypes associated with each algorithm are 
listed as T>pe = (a, m,/?, vj, V2, vj): PFCMl = (0.25, 1, 2. (2.21, 9.04), (7.01, 2.07), (13.34, 9.07)), 



Chapter 2 Methods of Pattem Recognition 51 

PFCM2 = (0.25, 1, 1.7, (2.03, 9.02), (7, 1.99) (13.52, 9.15)) and FCM = (1, 4, 1.6, (2.07,9), (7, 2.02), 
(13.31, 9.02)). True cluster centroids are at; v, = (2, 9), v? = (7, 2) and V3 = (13.5, 9). Memberships of the 
three clusters are shown shaded. The data set is from Fig. 2:11. 

Generally, PFCMl and PFCM2 possess higher membership resolution, hence supe­

rior cluster width selectivity than FCM. Like the case of fuzzy clusters, PFCMl and 

PFCM2 have nearly similar memberships. For the selected parameters, aU algorithms show 

a possibiUstic membership distribution, including FCM. 

2.4.5.3 Comparing Crisp Clusters 

The crossover point has other interesting implications for clustering. Figure 2.9 suggests 

that it is possible to select the cluster "bandwidth" by adjusting m and using a to tune the 

"quality factor" or selectivity. For example, if one is interested in capturing a representa­

tive portion of the fuzzy cluster data, one possible set of cluster parameters to use is 

a«0 .08 , zw«0.1 and />« 1. These parameters have the effect of isolating very fiizzy 

points so that only representative data are contained in the cluster. This feature is only ap­

proximated in FCM by applying an alphacut to the fuzzy membership, since all points are 

fiiUy assigned in the crisp partitioning case. 

Crisp partitions of the Kaufinan and Rousseeuw's data set and Krishnapuram and 

Keller's data set are shown in Table 2.7 and 2.8 respectively. The position of each point of 

Krishnapuram and KeUer's data set is given in Table 2.6. The intermediate noise points 

numbered 6 and 13 (see Fig. 2.11), shown shaded m Table 2.7, are incorrectly assigned to 

the class of cluster number 1 (with v,) for the case of FCM. PFCM gives the best cluster 

interpretation by not assigning these points to any clusters. In Table 2.8, FCM forces the 

noise pomts numbered 7 and 2 (see Fig. 2.12) into the number 2 cluster (with Vj). PFCM 

gives these pomts zero membership, thus correctiy identifymg noise points. Note that a 

normal p = 2is used to calculate cluster prototypes for FCM (also recall that a = 1 and 

/> = 2 for PFCM is equivalent to Bezdek's FCM). Consequently, the prototypes are not 

accurately located at cluster centroids which is a reason for the poor cluster result. 
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Figure 2.12 Krishnapuram and Keller's data set (see Table 2.6) with noise point number 1 
at (100, 270) and noise point number 2 at (100, 190) [Krishnapuram and KeUer, 1993]. 
Noise points 1 and 2 are denoted by the two topmost points of the figure. 

Point 
1 
2 
3 
4 
5 
6 
7 

Coordinate 
60.155 
140,155 
50,150 
55,150 
60,150 
65,150 
70,150 

Point 
8 
9 
10 
11 
12 
13 
14 

Coordinate 
130.150 
135,150 
140,150 
145,150 
150,150 
60,145 
140,145 

Table 2.5 Point positions of Krishnapuram and Keller's data set without noise [1993]. 

Point 
I 

: 2 . . .. 
3 
4 
5 
6 
7 
8 

Coordinate 
1O0;27O 

: 100U90 
60,155 
140,155 
50,150 
55,150 
60,150 
65,150 

Point 
9 
10 
11 
12 
13 
14 
15 
16 

Coordinate 
70,150 
130,150 
135,150 
140,150 
145,150 
150,150 
60,145 
140.145 

Table 2.6 Point positions of Krishnapuram and KeUer's data set with noise [1993]. Noise 
points number 1 and 2 (see Fig. 2.12) are shown shaded. 
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Point 

1 
2 
3 
4 
5 

mm'-::- -
7 
8 
9 
10 
11 

Membership 
PFCMl 
1,0,0 
1,0,0 
1,0,0 
1,0,0 
1,0,0 
:̂:03;diO'- • 
0,0,1 
0,0,1 
0,0,1 
0,0,1 
0,0,1 

PFCM2 
1,0,0 
1,0,0 
1,0,0 
1,0,0 
1,0,0 
:02;;0,0-::: 

0,0,1 
0,0,1 
0,0,1 
0,0,1 
0,0,1 

FCM 
1,0,0 
1,0,0 
1,0,0 
1,0,0 
1,0,0 

;i;o,o :: 
0,0,1 
0,0,1 
0,0,1 
0,0,1 
0,0,1 

Point 

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

• 

PFCMl 
0,0,1 
0,0,0 
0,1,0 
0,1,0 
0,1,0 
0,1,0 
0,1,0 
0,1,0 
0,1,0 
0,1,0 
0,1.0 

Membership 
PFCM2 
0,0,1 
0,0,0 
0,1,0 
0,1,0 
0,1,0 
0,1,0 
0,1,0 
0,1,0 
0,1,0 
0,1,0 
0,1,0 

FCM 
0,0,1 
.93, 07,0 
0,1,0 
0,1,0 
0,1,0 
0,1,0 
0,1,0 
0,1,0 
0,1,0 
0,1,0 
0,1,0 

Table 2.7 Crisp partitioning of Kaufinan and Rousseeuw's data set (Fig. 2.11) into three 
clusters. Parameters and prototypes associated with each algorithm are listed as 
Type = {a,m,p,vuv2,v^): PFCMl =(0.09, 0.1, 0.8, (2, 9), (7, 2), (13.44, 9.06)), 
PFCM2 = (0.085, 0.1, 1.1, (2.02, 9.02), (7, 1.99), (13.5, 9)) and FCM = (1, l.I, 2, (3.39, 
9.46), (7, 2.03), (13.5, 9)). Tme cluster centroids are at: vi = (2, 9), V2 = (7, 2) and 
V3 = (13.5, 9). The data set is from Fig. 2.11. Note the zero memberships of points 6 and 
13 for PFCMl and PFCM2 (shown shaded). 

Point 

1 
2 
3 
4 
5 
6 
7 
8 

PFCMl 
0.0 
0,0 
1,0 
0,1 
1,0 
1,0 
1,0 
1,0 

Membership 
PFCM2 
0,0 
0,0 
1,0 
0,1 
1.0 
1,0 
1,0 
1,0 

FCM 
OJ 
0..1 
1,0 
0,1 
1,0 
1,0 
1,0 
1,0 

Point 

9 
10 
11 
12 
13 
14 
15 
16 

PFCMl 
1.0 
0,1 
0,1 
0,1 
0,1 
0,1 
1,0 
0,1 

Membership 
PFCM2 
1,0 
0,1 
0,1 
0,1 
0,1 
0,1 
1,0 
0,1 

FCM 
1,0 
0,1 
0,1 
0,1 
0,1 
0,1 
1,0 
0,1 

Table 2.8 Crisp partitioning of Krishnapuram and Keller's data set (Fig. 2.12 and Table 
2.6) into two clusters. Parameters and prototypes associated with each algorithm are listed 
as Type = {a,m,p,v,,V2): PFCMl = (0.09, 0.1, 0.8, (60, 150), (140, 150)), 
PFCM2 = (0.085, 0.1, 1.1, (60, 150), (140, 150)) and FCM = (1, 1.05, 2, (60, 150.01), 
(131.12, 167.76)). Tme cluster centroids are at: v, = (60, 150), vj = (140, 150). Note the 
zero memberships of points I and 2 for PFCMl and PFCM2 (shown shaded). 

PFCM offers some convenience features like improved range of m selection, proto­

type equations that are independent of m, improved cluster width selectivity, automatic 

isolation of very fiizzy points, and an easier, more natural way to define boundary points. 

More importantly, both PFCM and FCM link an objective function to cluster characterisa­

tion. The parameters of the objective function yield analytic solutions that can be optimised 

for different condUions of the cluster stmcture. Thus, bv imposing specific constraints on 
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the metric dik, the algorithm can be made to detect ellipse shape clusters, such as the Gus­

tafson-Kessel algorithm [1979] with fuzzy covariance matrix. 

2.4.6 Objective Function with Variable Norms 

Gustafson and Kessel's algorithm is significant m that U represents a generalisation of the 

norm to detect a diversity of hyperellipsoidal cluster substmctures. This is achieved by 

including a variable dxd symmetric positive definite matrix norm ^, as an optimising pa­

rameter in the objective fimction J^. 

2.4.6.1 Gustafson-Kessel Algorithm 

The Aj norm requires a volume constraint for each zth cluster to limit its growth. This con­

straint is expressed as \A^ = pi, where \A,\ denotes the determinant of /4, of the zth cluster 

and Pi is its volume. To obtain optimised solutions for the three cluster parameters iz,>, v, 

ax\d Ai. we begin by defining an objective function 

^.(f/,l^) = Z t i2 t i "" -4 (2.4.23) 

where 

dl={Xk-v,i Mxk-Vi) (2.4.24) 

with identical interpretations of x̂  and v, to FCM. The two constraints are: 

Â  c 

(i) membership: M,̂  e [0,1],Vz,A: 0 < Z " * < ^ , V z and Z",jt=l,V-t (2.4.25) 
k=l i=l 

( i i )^ matrix: P4,| = A (2.4.26) 

We may minimise Jm for each of the cluster parameters Uik, v, and Ai, subject to the two 

constraints, by applying the Lagrange muUiplier X to the membership and / t o the matrix 

and setting their derivatives to zero. In other words, define 

Jr„{U,V) = Xg + jh (2.4.27) 

where g = Z^^jZZ,^.-1 = 0 

and/z = S t i { M r | - p , } = 0 

Then 
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3Jm 1 
0^zz,;t= r (2.4.28) du 

c d' ik 

,2 

w-l 

N 

i^ik^k E-" 
' ^ w „ k=l 

-— = 0^y.=-^ (2.4.29) 
Zlu-) m 

hk 
k=l 

dA 
"*(x;t-v,)(xfc-v,) +r\Ai\Ai =0 (2.4.30) 

k=l 

rT 

where m (2.4.30) tiie identities = XX^ and - ^ = 1 ^ 1 ^~^ are used 

Solving for ;ryields 

^i = F~^[pi\Fif'' (2.4.31) 

where d is the dimensionality of the data vector and 

N 

L.u1l{Xk-Vi){Xk~\if 

Fi = — N (2.4.32) 

k=l 

is a posUive definite dxd matrix. Equation (2.4.32) is called the^wzzy covariance matrix 

because of the fuzzy memberships and the covariance terms in the numerator. Putting 

(2.4.31) and (2.4.32) mto (2.4.24), yield a metric given by 

4 = Pi\Fi\'^\^k -yifF-\xk -v,) (2.4.33) 

In their paper, Gustafson and Kessel [1979] demonstrated the algorithm's successful 

detection of 2 clusters consisting of 20 points in the shape of a cross, intersecting at the 

cluster centroids. Although Gustafson and Kessel gave no criteria for establishing the value 

ofp,, others [Gath and Geva, 1989; Krishnapuram, 1994] have obtained satisfactory re­

sults with Pi= 1. The iterative optimisation of the cluster parameters proceed along sunilar 

steps as the FCM, and involves initial estimate of Fi m (2.4.32) with update of member­

ships from (2.4.28) and the prototypes from (2.4.29). 

Proceeding from statistical assumptions, Gustafson and Kessel obtamed for the 

maximum likelihood estimation 
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^p(Xk\Wi){Xk - \ii )(Xk - \l, ) ^ 

Z7' = \ - , , (2.4.34) 
2^p(xk\yvi) 
k 

For the special case where Xk is conditionally Gaussian distributed 

log;7(x^|w,) = - f l o g 2 ; r + ^ l o g | S 7 ^ | - | ( x ^ - ^ , ) ^ 2 7 ' ( x ^ - ^ , ) (2.4.35) 

where |S, | is assumed non-singular and 

N 

zlp{^k\^i)^k 

l>-i=^ (2.4.36) 

Hp(^k\^,) 
k 

Comparing (2.4.36) with (2.4.29), and (2.4.34) with (2.4.32) U can be seen tiiat 

p{xk\Wj ) = u^. This implies that the fuzzy covariance matrix is analogous to the statistical 

maximum lUcelUiood estimation of mixture densities. Consequently, the Bayes decision mle 

for the assignment of x, to class w, if p{xj\Wi) >p{xj\wk) for all z ^ k has the interpretation of 

assigning Xj to the zth cluster if zz,y > Ukj. This interesting result indicates that the partition­

ing by fiizzy memberships is analogous to Bayes mle for optimal classification. 

2.4.6.2 Gath-Geva Algorithm 

Gath and Geva [1989] extended the Gustafson-Kessel's algorithm to perform unsupervised 

optunal clustering based on two cluster validity measures called the fuzzy hypervolume, 

FHV and the partitional density PD. These measures partition X optimally in the sense of 

the following three criteria: 

1. Clear separation between clusters. 

2. Minimal volume of clusters. 

3. Maximal number of data points. 

Gath and Geva employed a two layer clustering strategy, in which the first layer corre­

sponds to FCM. The prototypes identified by FCM is used in tiie second layer to obtain 

maximal partitions from FHV and PD fiizzy measures. All the equations used are sunilar to 

Gustafson and Kessel's equations, except for the distance measure, reformulated as an ex­

ponential distance measure based on maximum likelihood estimation 
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\F,\"' i ^T^-u 
^•k=-r^ exp(xi.-v,) Fi\xk-Vi) (2.4.37) 

Note that (2.4.37) of Gath and Geva is simUar to (2.4.33) of Gustafson and Kessel, except 

for the exponential form of the distance measure. Equation (2.4.37) assumes ZM = 2 and 

d = 2. The fiizzy hypervolume is defined as 

c 

FHV=21\F,\' (2.4.38) 
;=1 

and the partitional density is calculated from 

S 
PD=-=r- (2.4.39) 

t'HV 

where 

c N 

S^Y^Uik \fxk^[xk:{xk-v,)F~\xk-yi)<i\ (2.4.40) 
i=lk=l 

In (2.4.40), Xk is constrained to less than 1 unit distance from the hypervolume. Note that 

both the Gath-Geva's algorithm and Gustafson-Kessel's algorithm use the same member­

ship function (2.4.28). Therefore, both may be generahsed by the PFCM. 

2.4.7 Possibilistic Memberships 

In this section, a class of fiizzy clustering algorithm with possibilistic memberships is to be 

defined by (2.4.41) and (2.4.42). This type of algorithm usually depends on a first layer 

algorithm to facilitate iteratively optimised solutions for the cluster parameters M,t and v;. 

2.4.7.1 Possibilistic c-Means (PCM) 

The possibilistic c-Means (PCM) was proposed by Krishnapuram and Keller [1993a] to 

obtain clusters that correspond more closely to the intuitive concept of typicality or com­

patibility. PCM reformulates FCM membership as a fimction of the distance of a point 

from its prototype. This is achieved by relaxing the membership constraint of (2.4.10) to 

N 

ẑ ,x. e[0,I] Vz,yt 0 < Z " , t ^ A ' Vz and ma!c^fc}>0 \/k (2.4.41) 
/t=i 

The objective function satisfying this requirement is 

c N c N 

'Jr.{lJy) = YLuldfk+Y.ri,Y.(i-n,kf (2.4.42) 
i = l fc=l , = 1 A-=i 
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where z/, is a factor of the intra-cluster distance of the zth cluster. The first term of (2.4.42) 

represents the FCM objective function and therefore inherits similar FCM properties for 

metric dik. The second term is new and means that Jm is optimised for minima of (1 - Uik), 

where r/, is a positive constant of the cluster that determines the weightmg of the second 

term relative to the first. In other words, Uik is maximised to make the second term as small 

as possible. Because there are no specific membership constraints to satisfy, other than 

(2.4.41), the objective function may be minimised with respect to Uik to give 

«/^= ^ — T - (2.4.43) 

1 + 
^ 2 ^ 

ik d m-l 

which represents possibilistic memberships in contrast to the probabilistic memberships of 

(2.4.11). The pomt memberships of x̂  in (2.4.43) depend only on a single cluster, unlike 

FCM's memberships of (2.4.11.). Krishnapuram and KeUer proposed two equations for 

determining z/,. The first equation 

N 

zL^ildl 
^ , = H (2.4.44) 

Lj^hk 
k=l 

makes z/, an average of the fiizzy uitra-cluster distance of the zth cluster. This form is used 

inrtially when the cluster prototypes are not known. If die prototypes are estimated from 

FCM, a more accurate form of the equation is given by 

N 

HdfkFk 
r,.=^ (2.4.45) 
'h N 

YuFik 
k=\ 

J 1 if Ujk > cct 

[0 otherwise 

where a, is the alphacut, a threshold on the membership Ujk. Practical problems with z/, are 

not satisfactorily solved. The effect of 7, on clustering perfbnnance appears to be difficuU 

to control and good resuUs are obtamed only for low noise situations. Recognismg the dif­

ficulties of estimating 77,, Krishnapuram in a later paper [1994] proposed an altemative 

solution for rji by equating (2.4.43) with 

u,k=exp\-\{xk-y,)F-\xk-y,)] (24.46) 
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Note that the membership function of (2.4.46) is very sunilar to Gafh-Geva's metric 

in (2.4.37) except for a constant term. The negative sign is present in the exponent of 

(2.4.46) because membership m possibilistic flmctions is inversely related to the distance 

measure given by (2.4.37). 

2.4.7.2 Enhanced Possibilistic c-Means (EPCM) 

Bezdek and fin's Enhanced Possibilistic c-Means (EPCM) bears a close stmctural relation 

to the PCM. We present the objective fimction corresponding to (2.4.46) (omitted in 

[Krishnapuram and Keller, 1994]), but witii a slight difference which we shall see m a 

moment. Assume an objective function of the form 

c N c N 

Jrr,(u,v)=ZTurke''^'mZni-[fm^ 
^ik (2.4.47) 

;=it=i ,=ik=l ^m-lJ 

for ZZ2 > 1, and for generality assume dk = \\xk - v,|t4 is a norm with adxd posrtive definite 

matrix ^. The second term of (2.4.47) admits a similar interpretation as in (2.4.42) since m 

is a constant except without the intra-cluster scaling factor. Then Uik may be a local minima 

of Jm with the expression 

% = TT—-T (2-4.48) 

It is apparent that (2.4.48) equals (2.4.46) if we include a fuzzy covariance matrix ^F~ 

in dik and assume 77, = 1. The form of (2.4.48) has a possibilistic distribution. One of the 

advantage in expressing the membership fimction in the form of (2.4.48) is the avoidance 

of the singularity problem present in FCM. With possibilistic membership, dtk = 0 results 

in unit membership. The 7, term controls the cluster bandwidth. It is also possible to use ;;, 

as a constant, independent of the cluster variable z. If the clusters are known a priori, rji 

can be estimated approximately from the average of the cluster mean radius; otherwise it is 

necessary to guess an initial value for z/,. The prototype solution corresponding to local 

minima of J^ is given by 

N 

V w 

y.=^ (2.4.49) 

k=l 

which is identical to FCM after replacing the fuzzifier exponent (zzz - 1) with m. The ex­

pression for the intra-cluster distance is given by 
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N 

' " \k 
k-\ 

V,=^ (2.4.50) 

/t=i 

Z^djkFk 
=1 

N 

/t=l 

J 1 if u,i, > a, 
Pik — I 

[0 otherwise 

2.4.7.3 Comparing FCM, PCM and EPCM Clustering Performance 

One misconception of possibilistic clustering (see [Krishnapuam, 1994]) is the attribution 

of centroid clustering tendency from a possibilistic distribution. As will be demonstrate 

shortly, this property is a fimction of the exponent parameters of the clustering criterion, 

not its possibilistic distribution. Undoubtedly, one cogent reason for this view is because 

the particular choice ofp = 2 does not yield good prototypes for the FCM algorithm. 

Table 2.9 shows that there exist values of m andp in (2.4.19) which produce cen­

troid clustering (prototypes shown shaded) from both FCM and PFCM, for the data sets of 

Kaufinan and Rousseeuw (Fig. 2.11), and Krishnapuram and Keller (Fig. 2.12). Under a 

normal value ofp = 2, FCM does not cluster well to centroid. However, a smaller p =1.2 

give?good prototypes at centroids. The table shows that PCM clusters poorly at the rec­

ommended values of at (0.1 < a,< 0.5. from [Krishnapuram and Keller. 1993]). On the 

data sets of Figs. 2.11 and 2.12, PCM gives a less satisfactory result compared to FCM at 

normal cluster parameter settings {m=p - 2). This is attributed to the effect of or, on the 

points in Na. In other words, a centred prototype is obtained from good points in Â ^ such 

that at > u„oise (Unoise IS a noise point, eg. point 6 or 13 in Fig. 2.11). AU three algorithms 

clustered at local centroids for the noise free data of Table 2.5. 

Tables 2.10 and 2.11 show the cluster prototype resuUs using the recommended pro­

cedure suggested m [Krishnapuram and Keller, 1993]. For both sets of data, especially that 

of Kaufinan and Rousseeuw's data set, PCM showed a high degree of sensitivity to the 

initial FCM membership values used to the estimate z;,. In the case of Krishnapuram and 

KeUer's well-separated and compact cluster data (with noise) of Fig. 2.12, the procedure 

yielded accurately centred prototypes only for a, > 0.4. as indicated in Table 2.11. For the 

less compact three cluster data of Kaufinan and Rousseeuw (Fig. 2.11). PCM's clustering 
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performance deteriorated significantly, finding good cluster prototypes only at a, = 0.3, as 

shown in Table 2.10. This is due to PCM's sensitivity to alphacut a,. 

Algorithm 

FCM 

PFCMl 

PFCM2 

PCM 

Parameters 
m-2, p=2 

Z77-I.8,/?=1.2 

m=2, p-2 

m-2, p-\ 

«=7.5, m^\5,p=\.2 

«=1, m=2, p=2 

QF=1, m=2, p=2 

0=1, m=2, p-1 

w=0.1,/?=l.l 

«=1, m=2, p=2 

«=1, m=2,p-2 

c^.075, zzz=.l,p=l.I 

a(=l, z?z=2 

zzz=2 (fixed rf) 

a,=0.2. zz7=2 

n^ 

10.78 
3.59 
14.73 
100 

1.96E+3 
I.96E+3 

Prototvpes 
2 39.0 19 
7.2 13 
13.31.9.09 

;2,03, 9.01 
7,2 
13.39. 9.05 

59,98, 150 
,140.02. 150 
60,150 
140, 150 
2.01,9 
7,2 
13,39.9.05 
59.98,150 
140,150 
62.78,155.48 
137.23.155.48 

•60,150 
140.150 
2,9 
7,1,99 
13.51,9 
59.98,150 
.140.02,150 
62.78.155.48 
137.23,155.48 
59,98,150 
140,02,150 
2.15.8.91 
1,2,03 
12.9,8.7 

60,07,150 
139.93,150 
67.44,151.3 
132.56,151.3 

Data 

KR 

KK (no noise) 

KK (with noise) 

KR 

KK (no noise) 

KK (with noise) 

KR 

KK (no noise) 

KK (with noise) 

KR 

KK (no noise) 

KK (with noise) 

Table 2.9 Summary of clustering characteristics. The tme centroids of clusters are at 
(2,9), (7,2) and (13.5,9) for Fig. 2.11 (Kaufinan and Rousseeuw's data set), and 
(60, 150) and (140, 150) for Fig. 2.12 (Krishnapuram and Keller's data set). Symbols 
KR = Kaufinan and Rousseeuw, and KK = Krishnapuram and Keller. Prototypes centred 
at centroids are shown shaded. 
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Method 
1. FCM (1-8 iter) 
2. Estimate 77, 
at 8th iteration 
3. PCM (9-25 iter) 
4. Re-estimate rji 
at 25th iteration 
5. PCM (26-40 iter) 

a, 
0.1 
0.2 

0.3 
0.4 

0.5 

rji (at 25 iterations) 
10.78,16.06,14.73 
10.78,3.59,14.73 

10.78,3.59,10.52 
8.23,3.59,1.63 

0.985,1.35,1.63 

Prototypes 
(7.09,3.91),(7.09,3.99),(7.16,4.50) 
(2.15,8.91),(7,2.03),(12.9,8.7) 

(2.15,8.9I),(7,2.03),(13.4,8.7) 
(2.02,8.99),(7,2.03),(13.4,8.44) 

(2.01,8.99),(7,2.03),(13.42,8.36) 

Table 2.10 PCM clustering resuU for Kaufinan and Rousseeuw's data set (Fig. 2.11). 
Tme centroids are located at (2, 9), (7, 2) and (13.5, 9). Cluster parameter m = 2. 

Method 
1. FCM (1-8 iter) 
2. Estimate z/, 
at 8th iteration 
3. PCM (9-25 iter) 
4. Re-estimate rji 
at 25th iteration 
5. PCM (26-40 iter) 

at 

0.1 
0.2 

0.3 
0.4 

0.5 
0.6 
0.7 
0.9 

rji (at 25 iterations) 
3.47E3,3.47E3 
2.7E3,2.7E3 

I.17E3,I.I7E3 
407.18,407.18 

20,99.93 
20,20 
20,20 
20,20 

Prototypes 
(81.7,I52.98),(118.3,152.98) 
(73.08,152.08),(126.92,152.08) 

(63.I8,150.59),(136.82,I0.59) 
(60.6,150.1I),(I39.4,I50.II) 

(60.01,150),(I39.91,150) 
(60.01,150),(139.99,150) 
(60.01,150),(139.99,150) 
(60,140),(I40,I50) 

Table 2.11 PCM clustering result for Krishnapuram and Keller's data set with noise (Fig. 
2.12). Tme centroids are located at (60, 150) and (140, 150). Cluster parameter m = 2. 

A practical problem with Krishnapuram and Keller's procedure is that it is difficult 

to use since PCM's rji is quite sensitive to FCM memberships. Perhaps this is less of a 

problem with denser cluster points and a larger number of points in the data set. We mves-

tigated combinations of high and low m on both data sets, for both PCM and FCM algo­

rithms, but none seemed to produce acceptable and consistent results over the whole or 

partial range of at. Consequently, Bezdek and Im's EPCM algorithm was developed to 

overcome this problem. Table 2.12 and 2.13 show that good cluster prototype results were 

obtained from EPCM over a wide range of at. 
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Method 
1. FCM (1-8 iter) 
2. Estimate rji 
at 8th iteration 
3. EPCM (9-33iter) 

at 

0.1 
0.2 

0.3 
0.4 
0.5 
0.6-0.9 

rji (at 8 iterations) 
2.45,2.42,2.75 
2.45,1.51,2.75 

2.45,1.51,2.27 
2.45,1.18,1.39 
2.13,1.18,1.39 
2.13,1.18,1.39 

Prototypes 
(2.07,8.96),(7,2.05),(13.4,8.94) 
(2.07,8.96),(7,2.01),(13.4,8.94) 

(2.07,8.96),(7,2.0I),(13.46,8.99) 
(2.07,8.96),(7,2),(13.5,9.08) 
(2.03,8.98),(7,2),(13.5,9.08 
(2,9),(7,2),(13.5,9.08) 

Table 2.12 EPCM clustering result for Kaufinan and Rousseeuw's data set (Fig. 2.11). 
Tme centroids are located at (2, 9), (7, 2) and (13.5, 9). Cluster parameters are m= 2, 
p = 2.6 for FCM and zw = 2 for EPCM. 

Method 
I. FCM (1-8 iter) 
2. Estimate 77, 
at 8th iteration 
3. EPCM (9-33iter) 

at 

0.1 to 
0.9 

77, (at 8 iterations) 
5.71,5.71 

Prototypes 
(60,I50),(140,150) 

Table 2.13 EPCM clustering result for Krishnapuram and Keller's data set with noise 
(Fig. 2.12). Tme centroids are located at (60, 150) and (140, 150). Cluster parameters are 
z« = 1.3 andp = 2 for FCM and zzz = 5 for EPCM. 

The EPCM algorithm yielded satisfactory cluster prototypes over the entire range of 

O.I < «(< 0.9. This resuU requires a judicious choice of the right combinations of cluster 

parameters m andp for FCM and m for EPCM. Two variations on the cluster parameters 

give an acceptable resuU: (i) normal m for both FCM and EPCM, and high p for FCM 

(Table 2.12) and (ii) normal p with low m for FCM and high m for EPCM (Table 2.13). 

Other combinations are possible, but have not been mvestigated. In general, a satisfactory 

procedure is to proceed by trial an error until a consistent cluster resuU is obtamed, typi­

cally by varymg a single cluster parameter at a time. In this case, rt is easier to work with 

mitial crisp partitions from FCM (I.I < zzz < 1.5) and to vary m m EPCM. We have only 

considered EPCM in conjunction with FCM because of the popularity of FCM. The pos­

sibility of usmg PFCM is good and should unprove the cluster resuU. 

With regard to the relationship of fiizzy algorithms to noise, rt cannot be asserted 

tiiat any of the PCM, EPCM or PFCM has an advantage over FCM, for two reasons. A 

possibilistic function is not a sufficient criterion for classification purposes since neigh­

bouring clusters are also significant. Moreover, a possibUistic function has no intrinsic at­

tribute that makes rt less sensitive to noise compared to FCM. Accordmg to the results of 

the Tables 2.9 and 2.10, all three algorithms suffer from unsatisfactory cluster prototypes. 
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and for the reason given. Noise insensitivity is to a certam degree, obtamed from the statis­

tical process of averaging and assisted by the choice of the error criterion. We have dem­

onstrated in Table 2.9 that suitable values of m and p produce centred prototypes from 

FCM. Possibilistic algorithms like PCM, EPCM and PFCM on tiie one hand, and FCM 

algorithm and rts derivatives on the other, are best considered to be altemative methods of 

clustering. The good clustering results from PFCM2 and the similarity of clustering per­

formance to PFCMl suggest some freedom in applying the optimising criterion to solve for 

prototypes v,. As noted previously, this produces a more efficient algorithm. 

For the development of our experimental algorithms discussed in Section 3, we will 

use the EPCM membership equation, for the reasons of clustering effectiveness and effi­

ciency (other FCM equations are not excluded). 

2.4.8 Parametrized Prototypes 

In theory, the distance measure of the fuzzy covariance matrix of Gustafson-Kessel 

(2.4.33) and of the Gath-Geva (2.4.37), or the Possibilistic variant of the Gustafson-

Kessel's memberships (2.4.46) wiU detect a variety of eUiptic cluster stmctures. This mode 

of fuzzy clustering performs an image processing operation called segmentation. The same 

result can of course be achieved by other methods such as the Generalised Hough Trans­

form. However, the fiizzy approach solves the segmentation problem more efficiently and 

elegantly. More significantly, the fiizzy objective fimction approach provides a systematic 

procedure to optimise solutions for cluster parameters, in the sense of minimising the clus­

tering criteria. 

In this section, we will examine more elaborate fiizzy methods to parametrize the 

prototypes, ie. defining the prototype parameters to enable sophisticated clustering. We 

begm with the Man and Gath's ring shape detection fuzzy clustering algorithm [1994] and 

conclude with an extension of Gath and Hoory's algorithm to detect elliptic outlines 

[1995]. In both cases, we present our altemative solutions to demonstrate the procedure for 

solving this class of clustering problems. 

2.4.8.1 Fuzzy K-Rings [Man and Gath, 1994] 

For the ring parameters represented in Fig. 2.13, let the objective fimction be 
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N c 

dm - 2-i2Li^ikF^ik 
k=li=l 

The distance measure is defined as 

A ' ^ = ( X , - V , ) ^ ( X , - V , ) 

and 

X t = 

V,= 

^l,k 

l^2,k] 

V j , + Z y C O S ^ , 

Vj, -I- rj sin 6^ 

where 

Vi = [v,,i, V2,,/ and ||r/|| = r,-

(2.4.51) 

(2.4.52) 

(2.4.53) 

(2.4.54) 

Figure 2.13 A schematic of ring cluster parameters. The cluster centre is at v„ and the 
cluster radius is r,. Horizontal and vertical components of r, are r, cos Oi and r, sin ^ re­
spectively. 

The circle centre point is denoted by v,. The components of data point Xk are X\_k and 

xxk. The cluster parameters vi, r, and Oi are defined in Fig. 2.13. The parametrized proto­

type equation (2.4.54) includes two cluster parameters r, and vi for optimisation. Repre-

sentmg the cluster prototypes in this way means that when dik = 0, the condition for local 

minima of J^ is satisfied. The optimised solutions for Ujk, v, and r̂  may be found by mini­

mising Jm of (2.4.51) with respect to w,i, Vi and r̂  respectively. Since Uik of the objective 

function is identical to FCM, the optimised solution for w,t will be identical to FCM. How­

ever, the additional parameters in (2.4.54) are expected to produce a new solution which 

resembles FCM. Minunising J„ with respect to v, gives 
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3Jm 
N 

zL^Tk 
^(x,-V,)^(x,-V,) 

N 

-2Z%(x,-V,) = 0 (2.4.55) 
k=l '^"i k=\ 

Substituting (2.4.53) and (2.4.54) into (2.4.55) yield the prototype solutions 

I ^ U - ^ , cos ̂ , 

'^ J^2,k ~ ̂ i sin Oj _ 

N 

'l,i 

'2,i J 

/k= l 
N 

z 
k=l 

(2.4.56) 
m 

^hk 

From (2.4.52) 

A^=l |x , -V, | |= l l (x , -v , ) - r , ) | |H |^ , , - r , | | 

Minimising Jm of (2.4.51) with respect to r, resuUs in 

TV 

» • / = 

ZauTk\\xk-yi\\ 
k=\ 

N 
(2.4.57) 

' m 
t^ik 

k=l 

The form of (2.4.56) resembles the FCM solution, translated by a distance corre­

sponding to the components of z-,. The algorithm based on these equations is called the 

Fuzzy AT-Rings (FKR) by their inventors. Since the Man-Gath algorithm has almost the 

same basic equations as the FCM, except for two additional parameters for the prototypes, 

it may be iteratively optimised Uke the FCM algorithm. 

2.4.8.2 Fuzzy K-Ellipse [Gath and Hoory, 1995] 

An algorithm that detects elliptic cluster outlines is called by their inventors, the Fuzzy K-

EUipse (FKE). Like the FKR, the FKE is based on tiie optimisation of an objective fimc­

tion m which the set of elliptic prototypes is parametrized for optimisation. As shown in 

Fig. 2.14, each eUipse is uniquely defined by a radius r, = 2a, and two foci. The five pa­

rameters of the ellipse are represented by the two dimensional foci vectors v, and v, , 

and the radius r,. Note the superscript m vi is only a label, not a mathematical operator. 

The two foci are derived from the centre v,, the focus lengtiij^ and the tiU angle Oi. 
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(1) Figure 2.14 A schematic of ellipse cluster parameters. The two foci are located at v; and 
(2) 

v, and v, is the centre of the ellipse. The semi-major and semi-minor axes are represented 
by a, and 6, respectively. Oi is the tiU angle. 

For the ellipse centred at v„ let 

.(1) 

.(2) 

(1) r a 
vy -fcosO, 
V2,i -fsmOi_ 

vff + fi COS Oi 

^2] + f sin Oi 

where 

]=^a^-bf A 

for Oi > bi and a, is the semi-major axis. Define 

Dik=\dllKdlP-r,\ 

where 

*ik |X fc -Vi 

"ik - | | X / t - V ; 

(2.4.58) 

(2.4.59) 

(2.4.60) 

(2.4.61) 

'(1)N (2.4.62) 

•(2)H (2.4.63) 

Note that (2.4.61) is the geometric definition of an ellipse. Define the objective function as 

JJU,v''\v''\R) = tturkDl (2.4.64) 
k=l ;=1 

where U represents the c x //membership matrix, F i s the c-tuples of prototypes and R the 

c-tuples of correspondmg radii. Minimismg Jm with respect to M,i gives the same resuU as 

FCM's membership (2.4.11), with the metric Dik. Minimising Jm with respect to r, gives 
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dr 

N 

• = -2Zu7k(dJl^+d^P-n) = 0 
k=l 

which yields the solution 

N 

Uik{dy+d]k') 
k=\ 

N 

E 
k=l 

(2.4.65) 
m 

Uik 

Minimising J„ with respect to y] and V; ^ by direct differentiation involves lengthy deri­

vations. However, a simpler way to solve rt is given by the solutions of the Man-Gath's 

algorithm. In the Man-Gath's algorithm, we noticed that (2.4.53) and (2.4.54) produced a 

solution given by (2.4.56). Since the form of the equations are identical in both cases, we 

may deduce a solution by deriving the equivalent expressions to (2.4.53) and (2.4.54). Let 

^l,k 

^2,k 

From the geometric property of an ellipse, 

\\Xk-y^PM\xk-y?\=2a,=r, (2.4.66) 

Solutions exist when Xk = V/ and when Xk = V, . Considering the first case, this occurs 

at 

r(l) 
.(1) .( l)i vi:i+iix^-vnicos(9,-
.(1) (i)i vVH|x^--vnisin^,-

(2.4.67) 

where 

.(1) 

V, 
(2) 

(2) 

L^2,/ J 

(2.4.68) 

(2.4.69) 

Replacmg tiie terms in (2.4.66) with (2.4.62) and (2.4.63), and substitutmg tiie resuU m 

(2.4.67) gives 

rd) 
.(1) (2), v\'jHri-dTk')cosOi 

v 2 + ( r , - 4 ^ ) s i n ^ , 
(2.4.70) 

By a similar reasoning, we obtain for the second case 

v(2) = vg)+(z-,-4'^)cos^, 

Lv2?+(r,-4 '^)sin^, 
(2.4.71) 
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Comparing (2.4.70) and (2.4.71) with (2.4.56), we deduce the prototype solutions 

N 

Yj^Uk 
(1) k=i 

V,- -

N 

jL^^ik 

(2) A:=l 
V,- -

(2) 

y^i,k-(ri-d)k)eosOi 

,X2,k-(fi-diP)sinO, N 

H^ik 
k=l 

Xik-{n-diP)cosO, 

_X2,k-{>'i-dll^)sinOi_ 
\7 

(2.4.72) 

(2.4.73) 

z% 
k=l 

for all z and 1 < z < c. To solve for the cluster parameters a,, bi and Oi, first diagonalise the 

fuzzy covariance positive definite 2 x 2 matrix of the zth cluster given by 

N 

zl^'fk{^k-^i)(^k-yi)^ 

F 
k=l 

N s 
k=l 

(2.4.74) 
m 

Uik 

Diagonalising /^ gives 

EjFiEi=D, 

which leads to 

Fi = EiD.Ej (2.4.75) 

T - 1 

wheref, = Ej is an orthogonal eigenvector matnx and Z), is a diagonal eigenvalue ma­

trix. These matrices of the zth cluster have the cluster parameters 

cos Oi -sin Oj sin Oj cos Oj 

Di 
\la] 0 

(2.4.76) 

(2.4.77) 
0 l/6?_ 

where Ot is the tilt angle of the ellipse, and a, and 6, are the semi-major and semi-minor axis 

of the eUipse depicted m Fig. 2.14. The column vectors of £, are the eigenvectors of F, and 

the diagonal elements of A are the eigenvalues of Fi. The eigenvalues of F, are also the 

coefficients of the principal components of the transformed ellipse, rotated by Oi and cen­

tred at Vy. 

The FKE algonthm [Gath and Hoory, 19951. 

Step 1. Run the FKR with two clusters, to provide initial estimates for the 2 foci. 
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Step 2. Fix c, the number of clusters. 

Step 3. Set initial UQ and foci matrices P̂ '̂  and Ĵ \̂ 

(a) For exocentric case, start from any partition and mn FKR for about 10 iterations. 

(b) For concentric case, fix the cluster centres such that they are distributed in the 

vicinity of the centre. 

(c) Run the FKR for 10 iterations. 

(d) Calculate the c fuzzy covariances from (2.4.74), their eigenvectors and eigenvalues. 

(e) Spirt each cluster centre into two foci using (2.4.76), (2.4.77), (2.4.58) and (2.4.59). 

For each iteration. 

Step 4. Update the radii z-, from (2.4.65), for z = l,...,c. 

Step 5. Update the foci y^^and v-^^from (2.4.72) and (2.4.73). 

Step 6. Update memberships Uik from (2.4.11) with metric Dik. 

Step 1. If \Ut- {/MI < E, Stop, else go to Step 4. 

Note: 8 is a small value to control the stopping point and t is an iteration index. 

2.4.9 Fuzzy Partition Space 

This section ties together some observations on fuzzy partitions and relationships between 

fuzzy and crisp clustering. Conventional clustering methods assume an object belongs 

uniquely to a single class. In practice, this is quite an unrealistic class assignment nor does 

it best represent the status of the data. The concept of fuzzy subsets offers a more general 

classification, one that can be tailored to the nature of the data. 

Now we review the fuzzy partition space mentioned earlier more formally. Let c be 

an integer in the range of 1 <c<N (c = N is a trivial partition and c = 1 is an invalid case) 

and letX= {xi,X2,...,xw} denote a set of 7*/discrete unlabelled feature vectors in real d fea­

ture space R^, where d is the dimensionality of the feature vector. Given X, we say that c 

fiizzy subsets (z/, :X -^ [0,1]} are a fuzzy c-partition of X for the case where the cTV̂  values 

of {Uik = w,(xk), 1 < ZS: < TV, I < z < c} satisfy the following three conditions: 

N c 

z/,fce[0,l] \Ii,k, 0 < Z " * < ^ V' and Y.u,k=^ V^ (2.4.78) 
k=\ 1=1 

where Uik is the membership of Xk in the zth partrtioned fuzzy subset (cluster). Each set of 

cxNvalues of (2.4.78) can be organised as a real valued cxNmatrix U= [Uik]. The set 
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of all such matrices is the non-degenerate fiizzy c-partitions (ie. no identical zeros in an\ 

row or column of U) of X: 

MfcM ={UinI^\ Uik satisfying condition (2.4.78), for aU / and k)} 

In the crisp clustering case (ie. when m -> T, for FCM, or a ^ zzz, for PFCM), all die u,k 

axe either 1 or 0, giving a subset of hard c-partrtions of Jf: 

McM = {UinMfcN I Uik = 0 or 1, for all z and k)} 

It is seen that Ma^ is a special case of M/CN but not vice versa. A d̂v is a more realistic 

physical model than MCM because A^^N provides a richer means for mampulating data that 

have ambiguous stmctures than does M^N. Mathematically Mfcsr, which is the convex hull 

of Men, provides a more tractable and useable set than MCN. It is helpfiil to be reminded of 

Bezdek's emphasis that the entries of the fiizzy matrix U are not probabilities, but suni-

larities of object vectors to class paradigms. Furthermore, there are statistical clustering 

algorithms that produce solutions in MfcN [Duda and Hart, 1973] and fuzzy algorithms that 

produce analogous statistical solutions [Gustafson and Kessel, 1979]. Finally, rt is possible 

to relax the membership constraint of (2.4.10) so that the sum of the memberships is not 

required to be unity (as in (2.4.16) and (2.4.41)). We have seen examples of this with the 

possibilistic variety of algorithms m Section 2.4.7. The relaxation of the membership con­

straint, according to Bezdek [Bezdek and Pal, 1992, p. 15] "is a natural and physically ap­

pealing extension ofM^N to an even larger solution space for clustering". 

Remarks 

The procedure for the Gath-Hoory's algorithm is representative of the latest generation of 

fuzzy clustering algorithms. It is presented to illustrate some of the "mechanics" of using a 

fuzzy clustering algorithm. Unfortunately, not many fiizzy clustering algorithms are 

straight forward to use, the only exception being FCM. The number of cluster parameters 

to be found can have a significant impact on the complexity of the algorithm and the com­

putation efforts. Moreover, having obtained the clusters additional processmg is often nec­

essary to establish cluster validity. These reasons justify a need to develop simpler forms 

of the fuzzy algorithm. The mvestigation of altemative solutions with tiie CPCM based 

algorithms in following chapters of this tiiesis, represents an attempt to overcome some of 

these problems. This approach does not require a complete abandonment of tiieir fiizzy 

analytical counterparts, but allows useful attnbutes to be adapted witiim tiie CPCM 

framework, to operate in a manner tiiat is almost analogous to fiizzy clustenng algorithms. 
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Excellent seminal papers on fiizzy models for pattem recognition are collected in a 

comprehensive volume, edited by Bezdek and Pal [1992]. The following references provide 

a helpfiil complement to this topic [Kandel, 1982; Kosko, 1992; Pal, 1986]. Exceptionally 

informative and well illustrated guide to the subject of fuzzy clustering are the classic tu­

torials given by Bezdek in Australia [Bezdek, 1995a and 1995b]. For an interesting per­

sonal view, by an authoritative advocate and practitioner of fiizzy thinking, see [Kosko, 

1993]. 

Up to date fuzzy clustering and pattem recognition topics are to be found in the following 

conference proceedings: 

• IEEE Intemational Conference on Neural Networks. 

• IEEE Intemational Conference on Neural Networks and Signal Processing. 

• IEEE Intemational Conference on Acoustics, Speech and Signal Processing. 

• IEEE Intemational Conference on Fuzzy Systems. 

• IEEE Region Ten Conference on Digital Signal Processing Applications. 

• Australia New Zealand InteUigent Information Processing Conference. 

• Conference on Digital Image Computing: Techniques and Applications (Intemational 

Association for Pattem Recognrtion Inc. and Australian Pattem Recognition Society). 

• Intemational Conference on Control, Automation, Robotics and Vision (Nanyang 

Technological University, Singapore). 

• lASTED Intemational Conference on Signal and Image Processing. 

The following are journal publications: 

• IEEE Transactions on Pattem Analysis and Machine Intelligence. 

• IEEE Transactions on Fuzzy Systems. 

• IEEE Transactions on Systems, Man and Cybemetics. 

• Australian Joumal of Intelligent Information Processing Systems. 

• Pattem Recognition Letters. 

• Computer Vision Graphics Image Processing. 

• Graphical Models and Image processing. 

• Electronics Letters. 
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2.5 Neural Network Theory 

DARPA defines a neural network as "a system composed of many simple processing ele­

ments, operating in parallel, whose fimction is determined by network stmcture, connection 

strengths, and the processing performed at computing elements or nodes" [DARPA, 1988, 

p.60]. To this, may be added Caudill and Butler's definition [1992a] that a neural network 

is an mformation processing system which is non-algorithmic and non-digital. In current 

literature, there are diverse terminologies for the neural network and its components. Part 

of the problem lies with the close relationship to neuroscience, from which neural network 

draws its inspiration and paradigm. To merely adopt vocabularies common to neuroscience 

seems to exhibit a careless discrimination of the vast scale of qualitative difference between 

a neural network and a biological neural network. For this reason, in the works of Bezdek 

[Bezdek and Pal, 1992], Lippmann [1987], Pao [1987], Sunpson [1990] and many otiier 

proponents of neural networks, we find "neurons" is labelled "computational units" or 

"processing elements", and "neural networks" is qualified with terms like "artificial" or 

"computational". In this thesis, a neural network will mean an artificial network such as a 

computational neural network. 

Neural networks are popularly believed to have certain advantages over low level 

pattem recognition techniques, particularly in the following areas: 

1. High processing speed. 

2. Able to adapt to new information. 

3. Tolerant to faults, missuig mformation and noisy data. 

4. Robust to system failure and degrades gracefully. 

5. Able to generalise new pattems, where similar mputs produce similar outputs. 

6. Classifies optimally. 

7. Extracts model from data. 

These advantages should not be treated with uncritical acceptance. Neural networks 

are not yet capable of modeUing complex braui activities such as cognition, reasomng, 

memory, perception and thought. It is not even clear whether this low level of abstraction is 

an adequate model of the biological counterpart. A more practical problem pertaimng to 
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of the muUilayer perceptron neural network encouraged the development of other networks 

and established the multilayer perceptron as one of the popular models today. This neural 

network is known by altemative names such as the feed forward backpropagation or the 

backpropagation. 

The architecture of a neural network typically consists of weighted connections of 

processing elements systematically linked together as shown in Fig. 2.15. 

Output Response 

Output Layer 

Middle layer 

Input layer 

Input Signals 

Figure 2.15 A typical architecture of a neural network. The number of connections and 
processing units, the physical layout of connections and the number of layers vary accord­
ing to the specific neural network model. Arrow heads indicate the direction of signal flow. 
Circles represent the processing units. Each directed line is associated with a weight, ex­
cept at the input layer. 

Each processing element or unit shown in Fig. 2.15 performs three functions. In the first 

step, input to each unit consists of the weighted sum of the incoming signals given by 

n 

Ii = Z^^i,x <J^J 
7=1 

where /, is the net weighted input received by the processing unit z from a total of n units. 

The weight Wy is the weight associated with the incoming Xj signal from the jth unit to the 

zth unit. In the second step, the unit receiving the /, input converts the signal to an output 

given by 
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neural network is that the "learning" process is not transparent. Typically, it is hidden in 

the weight adjustments, so that the final result of training requires an act of faith to believe 

it is "good" enough for testmg on new data. In most cases rt is but, as any experimenter 

knows, an exception can sometimes be found. It is well known that the close mterconnec-

tion of nodes and weights can cause "cross-talk" or interference between old and new pat­

tems [Kosko, 1992]. In Chapter 8, we will demonstrate an example of learning anomalies 

due to cross-talk and see how a fiizzification of training data can provide dramatically im­

proved generalisation. It is therefore pradent to recognise that a neural network has certain 

intrinsic lunrtations, the most significant of which is that there is no guarantee of error-free 

resuUs, despite unpressive theoretical claims of near Bayesian classification performance. 

Moreover, unlUce a clustering algorithm, where it is possible to fix systemic errors by tun­

ing a procedure or two, errors in the neural network cannot be so easily fixed. This is be­

cause the problem, like network leaming itself, is distributed across the network. The mes­

sage from this is that there is no substitute for human responsibility to validate the results 

of a neural network. We begin this section with a brief history and review of the stmcture 

of neural networks in Section 2.5.1. Next we examine the two main types of the fiizzy neu­

ral network designs for pattem recognition, by model embedment in Section 2.5.2 and by 

model mapping in Section 2.5.3. 

2.5.1 Introduction 

Neural networks is believed to originate from the work of McCulloch and Pits [1943]. 

They proposed the first model of processing units in the form of binary threshold switches 

and stochastic algorithms. The work by Hebb [1949] attempted to capture the concept of 

leaming by reinforcement. In the mid-1950s and early 1960s, a class of learning machines 

emerged from Rosenblatt [1959, 1962], called Perceptrons. Considerable interest in the 

perceptrons was aroused by the mathematical proofs demonstrating convergence of lin­

early separable data to a solution in a finite number of steps. At the time however, several 

inadequacies soon became apparent. The basic perceptron was inadequate for most pattem 

recognition tasks of practical significance and lacked an effective training algorithm. A 

discouraging analysis by Minsky and Papert [1969] on the limitation of the perceptron sti­

fled fiinds and research into neural networks until the the mid-1980s. Thereafter, a resur­

gence in neural network research followed the development of a new training algorithm 

called the "generalised delta mle for leaming by backpropagation". The successful training 



Chapter 2 Methods of Pattem Recognrtion 75 

of the muUilayer perceptron neural network encouraged the development of other networks 

and established the multilayer perceptron as one of the popular models today. This neural 

network is known by altemative names such as the feed forward backpropagation or the 

backpropagation. 

The architecture of a neural network typically consists of weighted connections of 

processing elements systematically linked together as shown in Fig. 2.15. 

Output Response 

Output Layer 

Middle layer 

Input layer 

Input Signals 

Figure 2.15 A typical architecture of a neural network. The number of connections and 
processing units, the physical layout of connections and the number of layers vary accord­
ing to the specific neural network model. Arrow heads indicate the direction of signal flow. 
Circles represent the processing units. Each directed line is associated with a weight, ex­
cept at the input layer. 

Each processing element or unit shown in Fig. 2.15 performs three functions. In the first 

step, input to each unit consists of the weighted sum of the incoming signals given by 

n 

h = zlwijXj 
;=i 

where /, is the net weighted input received by the processing unit z from a total of n units. 

The weight w,y is the weight associated with the incoming x, signal from the/th unit to the 

zth unit. In the second step, the unit receiving the J input converts the signal to an output 

given by 
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/ ( / ) ^ 
l + e-' 

where y(/) is represented by a sigmoid or .S'-shaped fimction. Other nonlinear functions can 

also be used, provided they are monotonically increasing and bounded with lower and up­

per limits. The third step performed by the processing unrt is to convert the output signal to 

an activation level given by 

{/( / ) If f{I)>T 

[ 0 otherwise 

where T is a threshold value. 

During traming, the input signals are transferred to the output nodes via weighted 

connections. The weights modify the input signals to correspond to the desired output re­

sponse. Leaming is achieved by modifying the weights and is an intemal procedure. 

Training is a procedure by which the neural network leams and is an external process. 

There are three basic ways of training: 

1. In supervised training, the neural network is provided with input stimulus pattems for 

comparing with desired output pattems. A leaming law (refer Appendix D for details) 

is applied to compute the error between the desired and actual pattem and to modify the 

weights. For example, the negative gradient descent is one such mle. 

2. Graded or reinforcement training provides the desired output in terms of graded levels, 

in contrast to the continuous levels. 

3. Unsupervised training or self-organisation presents a neural network with only the mput 

data, from which it produces an output, typically according to clustering principles. 

Assuming distinct output classes, a trained network will produce a high output cor­

responding to the most likely class, while other outputs will be low. A taxonomy of six im­

portant neural networks identified by Lippman [1987] for classification of static pattems 

(in contrast to time dependent pattems) is shown in Fig. 2.16. 
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NEURAL NET \s\ 
CLASSIFIERS tS: 

BINARY INPUT 

SUPERVISED UNSUPERVISED 

X 

CONTINUOUS-VALUED 
INPUT 

SUPERVISED UNSUPERVISED 

HOPFIELD NET HAMMING NET 
CARPENTER/ 
GR0SS8ERG 
CLASSIFIER 

OPTfMUM LEAC 

PERCEPTRON :S 
MULTILAYER tiS 

PERCEPTRON ElS 

LEADER 
CLUSTERING 
ALGORITHM 

GAUSSIAN 
CLASSIFIER 

K-NEJ^REST 
NEIGHBOUR 

KOHONEN 
SELF-ORGANISING 

FEATURE MAPS 

K-MEANS 
CLUSTERING 

Figure 2.16 A taxonomy of six neural classifiers. Adapted from Lippman [1987]. 

Current research has expanded this classification of networks to include, among the 

more popular variety, the following: Radial Basis Function Network (RBF) [Powell, 

1985], RBF with unproved leaming [Moody and Darken, 1989], extensions of RBF [Lee 

and Kil, I99I; Musavi et al., 1992], the Probabihstic Neural Network [Sprecht, 1990a and 

1990b], Leammg Vector Quantization (LVQ) [Kohonen, 1988, includes LVQ and LVQ2] 

and more advanced Adaptive Resonance Theory (ART) 2 and ART 3. The ART 1 intro­

duced in 1986 by Carpenter and Grossberg [Pao, 1989] can only process binary inputs. 

The ART 2 introduced in 1987 processed gray scale input data. This was followed by the 

more advanced and complex ART 3 in 1989 that offers more stability in the processmg of 

real input data pattems [Grossberg, 1988 and 1989]. Note that each of the networks has 

analogous statistical classifier or clustering model. 

The classifiers of Fig. 2.16 are used for three different tasks: (i) as a conventional 

classifier (multilayer perceptron), (ii) as a content addressable or associative memory 

(Hopfield net) and (iii) as a vector quantiser or clustering algoritiun (Kohonen self-

organismg). A Hopfield net [Hopfield, 1982; Hopfield and Tank, 1985a and 1985b] is 

normally used with binary inputs to solve optimisation problems or as a content address­

able memory. As an associative memory network, pattems are stored by associating them 

with other pattems. Autoassociative memory stores a pattem by associating with itself 

This is used to restore degraded pattems of rtself A heteroassociative memory stores a 

pattem by associating rt with a different pattem. For example, an image of an ordinal 

number 5 might be stored by associatmg with the ASCII code for 5. Other ways of classi­

fying associative memories include the accretive associative memory and the interpolative 
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associative memory. Discussion of the Kohonen self-organising and multilayer perceptron 

networks, and their uses will be deferred to Sections 2.5.2 and 2.5.3, respectively. 

The preceding discussion gives an overview of the history, nature, architecture, 

types and uses of neural networks. In the next two sections we will examine in more detail, 

the fiizzy neural networks. Being of relatively recent origin, there is no clearly identifiable 

paradigms associated with fuzzy networks. In most cases, a fiizzy network is obtained ei­

ther by embedment of a fuzzy model for the leaming law or by using the neural network 

within a larger framework of the fuzzy model. This is realised in practice by introducing 

fuzzifiers at the input end of the network and deflizzifiers at the output end or various 

combinations of these. These fuzzy neural networks implement fuzzy logic operations such 

as union (max-nets), intersection (min-nets), or the extension principle. Fuzzy networks are 

used to derive optimal mle sets for fiizzy controllers or to automate membership function 

tuning of linguistic term sets in both pattem recognition and control (see applications pa­

pers m [Bezdek and Pal, 1992]). 

2.5.2 Fuzzy Model Embedment 

It is well known among fuzzy pattem recognition researchers that the Kohonen Self-

Organising Feature Maps (SOM) has nearly similar forms of clustering relations to FCM. 

Thus the integration of FCM, which is based on an optimising model, into the SOM is one 

way to address several lunitations of SOM consisting of the following: (i) termination is 

based on heuristics, not on optimising a model, (ii) final weight vectors depend on input 

sequence and (iii) different inrtial condrtions yield different result. The first fuzzy approach 

was attempted by Huntsberger and Ajjimarangsee [1989]. but their scheme fell short of 

realismg a model for tiie fiizzy SOM. Bezdek et al. [1992] successfiiUy integrated the FCM 

model into the leaming rate and updating strategies of SOM, which they named the Fuzzy 

Kohonen Clustering Network (FKCN). The SOM algonthm is given below [Lippmann, 

1987]. 

Kohonen Self-Organising Feature Maps. 

Step I. Initialise weights from A'̂  input nodes to M output nodes to small random values. 

Step 2. Present new input. 
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Step 3. Compute distance to all nodes given by 

N-l 

dj = Lj(^i,t-'^ij\tf 
;=0 

where dj is the distance from input to the/th output node, x,,, is the mput to the 

zth node at iteration t and Wy, is the weight from input node z to output node/. 

Step 4. Select output node/* with minimum distance, from dj* = min dj. 

Step 5. Update weights to node/* and neighbours defined by 

Wy;t-F/ = Wijj + (pt{Xi,t - Wy;,) 

for/ € neighbourhood A',, and 0<i<N-\. The term ^, (0 < ^, < 1) is a gain 

term (or leaming rate) that decreases in time. 

Step 6. If |Wy;f-n - Wy;,| < 5, Stop, else go to Step 2. 

Note: 5 is used to control the stopping point and Ms an iteration index. 

To apply the new fiizzy leaming law, replace the weights update by the prototypes update 

given by 

y,.t = v,.M + (p,k.t{xk.t - vu-i) (2.5.1) 

for z = 2,3,...,(A^rl) where M-l are the nodes closest to x̂ .̂ 

Next, replace the second term of (2.5.1) with a new fuzzy leaming rate and prototype up­

date to yield the iterative expression proposed by Bezdek et al. [1992] 

Jl/^ik,t(^k,t-'^,,t-l) 
, k=l 

V;,^-l+ JT 
(2.5.2) 

llj3,k,t 
k=l 

The Fuzzy Kohonen Clustering Network algonthm (FKCN): 

Step 1. Fix c. 

Step 2. Initialise prototypes Vj. 

Step 3. For t = l,2,...,t„ax, compute /Jtk and Utk given by 

I3ik,t = "?z; zzJf = (Wo -1) / m̂ax for /"o > 1 (2.5.3) 

1 
u,k = 

c 

/=1 

W'^k-^ilU 

_\\^k-yj\\A_ 

2 

m-l 

(2.5.4) 

Step 4. Update prototypes from (2.5.2). 

Step 5. If llvi.r - V;,M|| < e (a small error). Stop, else go to Step 3. 
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The prototype update (2.5.2) is seen to implement the optimised prototype equation of 

FCM (2.4.13) as follows: Expanding the second term of (2.5.2) gives 

N N 

2->Pik,t''^k,t 2^Pik,t 

V,., = V,-,_i + ^ ^ ^ V , , . ; ^ 

Zz9,l̂ z ILPik, 
k=l k=l 

which reduces to 

N N 

LjPik,t^k,t 2j";l-'fX/t,r 
fl k=l 

N ^ N 

2^Pik,t 2LjUik',t 

^1,,=^ = ^ (2.5.5) 

'̂=l k=i 

On comparing the results of classifying Anderson's IRIS data [Data and Hart, 1973], the 

FKCN showed less misclassifications compared to the SOM. The SOM always ran to its 

iterate limit (tmax = 50,000) whereas KFCN converged in 14 to 40 iterations. Consequentiy, 

there are significant benefits to be obtained from the FKCN. 

The next example on embedment of fiizzy model to neural network topology is given 

by Sum and Chan [1994]. They adopted a simUar leammg strategy as Bezdek et al. [1992] 

dim 
but differed by introducing the FCM model for a form of the error gradient, . The re-

d', 
sultmg prototype update equation is given by 

v,v = V,-, + <p, S 
/=! 

|x-v,|| 
i|2 

,,X — V ' 
( x - v , , ) (2.5.6) 

The second term on the right hand side of (2.5.6) implements the "Delta mle" for weight 

update (see Appendix D), based on the FCM objective function Jm, with (pt as a leaming 

rate parameter of the network. Sum and Chan gave another expression that can alterna­

tively be obtamed by substituting (m + 1) for m in (2.5.6). Consequently, the claimed 

"essential extension on Bezdek's definition ie. zzz can be set to less than 1" [Sum and Chan, 

1994, p. 1851] appears illusory, and does not ftmctionally extends FCM to the reahns of 

0 < z« < I (unlike the PFCM). Although the procedure demonstrates an mterestmg way to 

embed a fiizzy model into the leaming mle, the usefiihiess of this approach compared to 

the KFCN is questionable. The output response of the neural network to a modified ver­

sion of Ruspini's Butterfly data (incorrectly referenced as the Butterfly data in [Sum and 
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Chan, 1994]) exhibited very slow convergence compared to FCM, especially considering 

that the data contain so few points (only eleven). Using Sum and Chan's data, FCM con­

verged in about 6 iterations (our resuU), but their network's convergence was still unclear 

at 1000 iterations (Sum and Chan's result). This means the network is about 167 times 

slower than FCM. The prototype values given in their paper, (0.8, 2) and (5.2, 2), at 1000 

iterations, were stiU far (relatively speaking) from FCM's stationary points at (1.1, 2) and 

(4.9, 2) for zzz = 2. The slow convergence might be due to a poorly selected leaming rate 

schedule (pt. Furthermore, there is a possibility that the network might not converge to the 

same FCM stationary points. Consequently, this example shows a poor way of implement­

ing a fuzzy model into a neural network. 

2.5.3 Fuzzy Model Mapping 

Neural networks used as model free estimators provide the greatest flexibility for designing 

a fiizzy solution compared to networks of the type reviewed in Section 2.5.2. One of the 

popular but reliable network used is the Feed Forward Backpropagation (FFBP). The pa­

per by Ruck et al. [1990] indicates that an\- neural network, including FFBP, which incor­

porates a mean squared error in the learning law can be trained to approximate the Bayes 

optimal discriminant fimction for two or more classes. The FFBP network introduced by 

Rumelhart et al. [1986] provided a persuasive demonstration ofa leaming algorithm called 

the "Delta Leaming Rule". A derivation of this leaming mle is given in Appendix D. Pre­

vious work on the multi-layer perceptrons were limited to linearly separable classes. A 

three layer network can form arbitrar\' convex boundaries. The Kolmogorov theorem 

(described in [Lorentz, 1967]) indicates that a three layer perceptron can be used to create 

any continuous discriminant fimction in a classifier. This network stmcture together with a 

non-linear activation function and the Delta mle, provide the condition for general classifi­

cation. However, practical difficuUies remain m deciding how the weights, number of 

processing units and transfer function should be selected. 

Since Lippmann's paper, improvements have been made to three areas of the FFBP: 

(i) training times, (ii) selection of network size and (iii) generalisation characteristics. 

These three areas are discussed in [Hush and Hom, 1993]. They showed that the problem 

of slow convergence is related to the complex spiral staircase-like stepped surfaces encoun­

tered in the gradient descent of a non-linear unit. Current research interest in the network's 
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weights selection and control is linked to strong evidence which suggest improvements to 

all of the three areas above. Reducing the number of weighted connections, up to a point, 

appear to unprove training times and generalisation. Generalisation is a measure of how 

well the network performs on actual problems after training is completed. It is usually 

tested by evaluating the network's performance on new data, apart from the training set. 

We will only examine two methods for weight reduction, because of interesting pro­

cedural similarity with the optimisation of the fiizzy objective function. The first method of 

weight reduction is called weight decay [Hanson and Pratt, 1989; Hinton, 1987]. This 

mode of weight reduction is viewed as a way of reducing the effective number of weights 

by encouraging the network to seek solutions that use as many zero or near zero weights as 

possible. The criterion function has the form 

p 

J(^) = lldp(y^) + i'Z^f (2.5.7) 
p=i i 

where the first term is the squared error criterion and the second term is included to penal­

ise the network for using non-zero weights. The A factor is a small constant to control the 

influences of the second term relative to the first term. How does this improve generalisa­

tion? The answer is that not all weights are made smaller. Some will remain relatively 

large, while others will be forced under the leaming mle, to be small in order to minimise 

the criterion function J{w). The net effect is a reduction of those weights which have little 

influence on the solution and so improve generalisation by discouraging overfitting of data. 

An altemative technique is called weight elimination [Weigend et al., 1990 and 1991]. The 

criterion function is of the form 
p 2 2 

Z V~> Wi I Wn 
•/p(v^)+Al ' . 2 , (2.5.8) 

^ I , \ + (Wi /WQ) 

where WQ is a fixed weight normalisation factor. When w, > WQ, the sum approaches unity 

and this criterion counts the number of weights. When w, < WQ, the sum is proportional to 

wf and the criterion works like a weight decay criterion. Thus rt is seen that the choice of 

Wo can influence this criterion function to encourage the network to seek solutions with a 

few large weights (WQ small) or many small weights (WQ large). Therefore (2.5.8) is a gen­

eralisation of the weight reduction scheme of (2.5.7). 

Other methods for generalisation will be explored and discussed in Chapter 8. One 

practical way of using a neural network is to map the model of the clustenng algorithm 
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implicitly, by training the network with labelled data. Assuming there are no problems in 

mapping the model of the algorithm, then it should be possible to extract cluster prototypes 

with a neural network. Given the prototypes, it should be possible to find the points asso­

ciated with each prototype, once the algorithm has been defined. The advantage in this 

scheme is the significant speed improvement from a fully trained network compared to a 

clustering algorithm, especially where a large amount of data are involved. This might be 

the only viable means for real-time applications and could provide a more cost effective 

solution compared to a hardware implementation. Taking this process a step further, it 

might also be possible for the network to model an expert's knowledge of an ideal cluster­

ing algorithm without the need for an actual algorithm to be implemented. This would be a 

highly desirable goal, but seems beyond the reach of present achievements. For the mo­

ment, many problems are yet to be resolved because the simplest and most direct method of 

modeling the algorithm has not been successfiil. However, indirect methods involving fiizzy 

memberships, fuzzifier and defiizzifier stages appear promising as a way of inducmg 

meaningful cluster prototypes from the network's response. We discuss examples of this 

approach in Chapter 8. 

Remarks 

A good general uitroduction to neural networks is found in [Lippmann, 1987; Hush and 

Hom, 1993]. Numerous textbooks giving practical insights into specific network topolo­

gies and applications are to be found in [Freeman and Skapura, 1992; Kosko, 1992; 

Zurada, 1992; Hertz et al., I99I; Sunpson, 1990; Pao, 1989]. Some of tiiese mclude soft­

ware programmes to experiment on PC compatible computers [Rao and Rao, 1995; Wel-

stead, 1994; Masters, 1993]. An mteresting and surprisingly effective way to experiment 

vrith neural network is network modeling with Mathematica in [Freeman, 1994]. Altema­

tively, but generally more complicated, is the use of professional neural software packages 

such as the HNC ExploreNet 3000, release 2.12, or the NeuralWorks professional II/Plus 

and NeuralWorks Explorer from NeuralWare Inc. Both of these last two products include 

mformative descriptions of the mam network types. There is generally quite a steep learn­

ing curve to overcome mitially, but once over this curve, the ability to do more with neural 

networks are well rewarded. A more affordable approach with good tutorials on neural 

networks are the two volumes by Caudill and Butler [1992], which contam neural soft­

wares for the Macintosh and IBM PC compatibles. Comprehensive information on fuzzy 
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neural networks is found in [Bezdek, 1995a and 1995b; Bezdek and Pal, 1992]. Confer­

ence papers and joumal publications relating to fuzzy clustering and pattem recognition 

topics are listed in "Remarks" of Section 2.4. 
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Chapter 3 

An Enhanced Progressive Fuzzy Cluster­
ing Approach 

The theory development for fiizzy clustering approaches to pattem recognrtion has been 

presented in Chapter 2. In particular, we have reviewed the analytic forms of the different 

fiizzy objective flmctions with and without constraints, and showed how optimised solu­

tions for the cluster parameters can be obtained from an iteratively mmimised objective 

function exemplified by the FCM algorithm. Lastly, we examined procedures to formulate 

clustering solutions that can be generalised for a range of ellipses with the fiizzy covari­

ance matrix, and for hollow rings and ellipses using the method of parametrized prototype. 

In this chapter, we shall apply the basic attributes of fuzzy analytic models in a new 

way that enhances its scope and potential. We call this the enhanced progressive fuzzy 

clustering approach or CPCM. In the chapter we establish the rationale and justification to 

link the analytic fuzzy solutions to the CPCM framework. Although the CPCM approach 

is to some extent dependent on the fiizzy analytic theory and models to produce useful re­

sults, it does not require the level of theory needed in those algorithms to harness the power 

of fiizzy clustering. We demonstrate how a judicious selection of a few basic equations is 

usually effective for this purpose. The CPCM framework takes care of the intricate details 

of supervismg cluster development. 

3.1 Introduction 

The CPCM approach to fiizzy clustering introduces five new features to fiizzy clustering, 

consisting of the following: 
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1. Progressive clustering on a single cluster prototype assumption. 

2. Cluster parameter prescription by stmctural specifications such as minimum number of 

points in a cluster, //„,„ and the alphacut, at. 

3. More efficient management of data and the clustenng process. 

4. More flexible framework to generate cluster solutions. 

5. Improved useability and utUity. 

Clustering on a single prototype assumption means progressive clustering for a sin­

gle cluster. There are advantages with progressive clustering. Firstly, the principle of clus­

tering the entire data set is analytically more complex; consequentiy, more sensrtive to 

other factors influencmg the outcomes of the cluster solutions, such as noise and outiiers. 

and the stmcture of neighbouring clusters. This is evident m the sensrtivity of the conven­

tional fiizzy clustering results to initial conditions for UQ and VQ (see Krishnapuram and 

KeUer, 1993a; Man and Gath, 1994; Gath and Hoory, 1995). Conceivably, a single cluster 

is a sunpler representation of data for fiizzy clustering. Moreover, the algorithm is isolated 

from extraneous influences of neighbouring data so that rt is easier to represent the typical 

characteristics of a single cluster. To realise this goal in CPCM, rt is not possible to appK 

the fuzzy algorithms without some modifications. Furthermore, the modified algorithm 

needs to be constrained to look for only a single cluster. We will show how these issues are 

resolved in Section 3.2. 

The cluster parameter prescription by stmctural specifications serves two objectives. 

Firstly, it eliminates the need for cluster size verification because the specifications will 

influence the development of clusters and detemune the number of clusters found. This 

means greater computation efficiency compared to those algorithms that require cluster 

validity checks. Furthermore, the automatic detection of cluster size feature is a simpler, 

more appealmg and intuitive approach to clustering. Secondly, the cluster stmctural pa­

rameters such as the alphacut at and the minimum cluster points N^in have significant and 

unique implications for cluster development. Unlike the conventional fuzzy clustering 

schemes, this approach provides a high degree of cluster generalisation. In other words, the 

cluster parameters help to identify stmcturally sunilar clusters m data. This feature is not 

available to algorithms such as the FCM or the KNN, because the inrtial c prescription 

pre-empts the actual cluster numbers present in the data. The CPCM parameters not onh 
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provide a means of control over cluster development, but also encourage an engmeering 

design approach to solve clustering problems. For example, a, determines the flizzmess of 

the cluster boundary and Âm,„ provides a design criterion which determmes whether small 

or big clusters will be developed. 

The efficient management of data and the clustering process is important to any 

clustering algorithm because this may have a significant impact on the processmg times. A 

progressive clustering scheme has greater computation efficiency compared to a non­

sequential or global clustering scheme. This occurs primarily because each cluster that is 

found can be immediately eUminated from subsequent cluster consideration. Thus as clus­

tering proceeds, the data present is progressively reduced, resulting in greater computation 

efficiency. The more data that is removed earlier, the greater will be the computation effi­

ciency. However, the sequential nature of clustering may produce fragmented clusters if the 

clusters are not compact and well separated. Therefore, remedial measures to ensure good 

outcomes need to be considered. These issues are examined in Section 3.2.3. 

CPCM provides a flexible framework to generate cluster solutions. CPCM super­

vises the management of data relating to cluster validity and noise, freemg the clustering 

algorithm from these tasks. CPCM also handles the clustering context so that the clustering 

algorithm "sees" only a single cluster. This avoids compatibUity issues and allows zmalytic 

algorithms to be adapted into the CPCM framework. 

Improved useability and utility of the CPCM based algorithms are obtained from the 

improvements offered by each of the above mentioned features (items one to four). The 

ability to mtegrate specific clustering algorithms within a common CPCM framework en­

hances clustering performance and simplifies the task of algorithm development. An ex­

ample of this is given in Section 3.4, involving the detection of clusters with different 

shapes and types. 

These five items are discussed more comprehensively in the following sections of 

this chapter. Section 3.2 introduces the principles of clustering within the CPCM frame­

work, followed by a cluster validity reviewed in Section 3.3. Some experimental algorithms 

are explored in Section 3.4 which shows how to apply the fuzzy clustering equations within 
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the CPCM framework. The chapter concludes with performance comparisons of FCM, 

KNN and the CPCM based algorithms in Section 3.5. 

3.2 Clustering Principles 

Clustering with CPCM generally involves the iterative update of two basic cluster parame­

ters, consistuig of the cluster membership and the prototype discussed below: 

3.2.1 Membership Update 

The membership equation for a given cluster is similar to the form of (2.4.50) given by 

1 
"fe= (3.1) 

exp(dl Irjj) 

where 

dk=\\^k-yj\\ (3.2) 

is the distance of a data point Xk from its /th cluster prototype vy. The data x̂  denotes the 

^th item of the data set, X= {x,,X2,..x<r,...,x//} in real feature space ?!''. In the experimental 

algorithms to be presented shortly, q is assumed unity to simplify calculations. The lower 

its value, the fiizzier is the boundary of the cluster. The z/y term in (3.1) is included to give 

a meaningfiil value to the membership. Since it is like a scale factor, it can also be defined 

as a root mean square of the cluster radius 

Vi=s^lt;Y^k^i\''k-yjf (3.3) 

where Nj is the number of feature vectors that satisfy at in the/th cluster for 0<j <N, and 

s is a scale factor. Equation (3.3) scales the memberships of (3.1). In some cases a fixed 

value of rjj may also be used (see examples in Chapter 6). 

3.2.2 Prototype Update 

The prototype update equations are identical to FCM, except for the smgle cluster as­

sumption. It is expressed by 
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i^k^k ir 
k=l 

^ = ~ ^ ; (3.4) 

k=l 

In most cases, a satisfactory choice for zzz is 2. A practical version of (3.4) that reflects tiie 

alphacut a, is given by 

^ 2 

k=l 

^;=-?r (3.5) 

k=i 

1 if Uk> a, 

FkA 
0 otherwise 

A general iterative procedure for clustering is given by the following algorithm: 

A general CPCM clustering algorithm. 

Step 1. Fix at,m,q,s,Nmi„. 

Step 2. Compute initial prototype VQ from (3.5) for u^ = 1. 

Step 3. Compute rjj from (3.3) and dk from (3.2). 

Step 4. Calculate memberships from (3.1). 

Step 5. Calculate prototypes from (3.5). 

Step 6. Repeat Steps 3 to 6 until ||y,;, - V;;M|| < s. 

Note: e is a small value to control the stopping point and t is an rteration index. 

If there are more than two cluster parameters to be solved, the basic iterative algo­

rithm remains the same, except to allow for the extra parameters in the metric. For exam­

ple, to detect circular rings of fixed diameter, a radius parameter is included in the general 

metric of (3.2). See Chapter 6 for variable ring detection. 

3.2.3 The CPCM Framework 

The CPCM algorithm provides the framework to supervise the management of data with 

respect to inrtial prototype estimation and to provide the impetus to sustain a progressive 

search for clusters in the data set. The latter includes tests for cluster validitv. 
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3.2.3.1 Estimating Initial Prototype 

Since CPCM assumes a single cluster for prototype development, rt is necessar>' to obtam 

an initial estimate of the prototype for use by the clustering algorithm. There are several 

ways of doing this but we will only examine two of these. 

(A) Sequential Fuzzy Means (SFM) 

Derived from the basic FCM, this algorithm has not only a surprising simplicity but also 

an unusual prototype solution. Although it involves only one cluster parameter (the met­

ric), it is nevertheless capable of producing two solutions for the cluster prototype. Since 

this appears to be a new discovery (to the best of our knowledge), we will call rt the SFM. 

Perhaps one reason why it is not found earlier may be attributed to the implausible notion 

that derives sequential clustering from FCM. To recapitulate, we recall the FCM member­

ship 

1 
(3.6) 

Z 
;=i 

dtk 

K'^jkJ 

(m-l) 

where the numerator term is unity because of the constraint assumption 2^. Uj^ = 1 (see 

Appendix A for details of the proof). The form of (3.6) is obviously not valid for a single 

cluster since for c= I, ?<,<.= I for all points of the data set. However, eliminating the dik 

term from (3.6) with the constraint (assuming c > 1) 

Yf,^.=dfm 0-1) 
yields a new membership 

1 
Ua- (3.8) 

I 
V̂ ;X- / 

C"-!) 

from which rt is apparent that (3.8) will admit a single cluster solution given by 

1 
Uk 

(3.9a) 

1 \m-l) 

\dk J 

or 
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u,=df"'-'^ (3.9b) 

where df^ =l|xji. - vH^, and Uk being roughly proportional to the metric now represents the 

dissimilarity uidex (without upper bound) for the constraint of (3.7) ie. prototypes are lo­

cated at min Uk. Under the single cluster assumption, (3.9b) is seen to be equivalent to 

(3.7). The prototype equation for this case is identical to (3.4). Note that (3.9b) may also 

be generalised by PFCM. The SFM algorithm is similar to FCM except for the member­

ship (3.9b) and using c = 1. 

To illustrate the interesting properties associated with (3.9b) we present the SFM 

cluster prototype convergence characteristics shown in Fig. 3.1, for the data of Fig. 2.11, 

and the membership results in Tables 3.1 and 3.2 (one for each prototype). 

K.y-coord 
values 

Figure 3.1 SFM prototype convergence for data set of Fig. 2.11 at zzz = 1.6. Prototype po­
sitions m the X and y axes are represented by vx and vy respectively, defined at the upper 
and lower envelopes of each curve. The conect prototype converged to (13.58, 9.02). 
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4.62 
1.56 

1.69 

L25 
1.37 
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1933 

1471 

I1I5 

2401 

1894 

k 
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20 
21 
22 

Uk 

1497 

2991 

2434 

1993 

Table3.1 SFM memberships from data set of Fig. 2.11 for prototype (13.58, 9.02) at 
zw = 1.6. Minimum membership is shown shaded. 
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k 

1 
2 
3 
4 
5 
6 

Uk 

16.A1 
95.00 

40.67 

Il5,.13 :•: 

25.51 

1151 

k 

1 
8 
9 
10 
11 
12 

Uk 

1384 

2175 

1818 

2932 

2527 

3593 

k 

13 
14 
15 
16 
17 
18 

Uk 

60.27 

117 
188.19 

304.37 

217.77 

306.36 

k 

19 
20 
21 
22 

Uk 

444.15 

377.13 

485.38 

648.08 

Table 3.2 SFM memberships from data set of Fig. 2.11 for prototype (3.64, 6.41) at 
zzz = 1.6. Minimum membership is shown shaded. 

Fig. 3.1 shows SFM converging in about 6 iterations to two stationary points for the data 

ofFig. 2.II. Clearly the prototype at (13.58, 9.02) is the correct prototype, whilst the other 

prototype may be ignored since only one cluster is under consideration. This may be easily 

verified by checking the memberships in proximity to the prototype. Also, prototype 

(13.58, 9.02) has least membership at Uk^ 1.25, whereas prototype (3.63, 6.43) has higher 

minimum membership at z/<:= 15.13. The memberships of Tables 3.1 and 3.2 confirm that 

the prototypes are located at points of minimum membership given by (3.9b). 

It is interesting to observe that the SFM convergence always produces two proto­

types in aUemating order within the same sequence. This feature could be usefully ex­

ploited for the two clusters of the Butterfly data set. The resuUs are given in Fig. 3.2 and 

Table 3.3. Notice that both the two prototypes at (1.818, 3) and (6.182, 3) are found cor­

rectiy, for zzz = 2.72 (other zzz values shift the prototype position) and is ahnost identical to 

FCM's prototypes at (1.855,3) and (6.145,3), for zzz = 2. As noted previously, the two 

prototypes generated by SFM are both valid only for a two-cluster data set. 

Overall, SFM is expected to work better on well separated compact clusters than on 

close sparse clusters. Altiiough more research is needed to establish the conditions for good 

clusters, SFM is presented here as an altemative and useful means of pursumg sequential 

fiizzy clustering with improved computation efficiencies compared to global clustering 

schemes. SFM could also be useful m another role. Eariier we mentioned about remedial 

measures to overcome poor cluster resuU. One method is to select dense clusters with SFM 

during initial clustering (to minimise cluster fragmentation). 



Chapter 3 An Enhanced Progressive Fuzzy Clustering Approach 93 

x,y-coo'd 
values 

6 7 8 9 10 11 12 13 14 

Iterations 

Figure 3.2 SFM prototype convergence for the data set of Fig. 2.5 at zzz = 2.72. Prototype 
positions m the x and y axis are represented by vx and vy respectively, defined at the upper 
and lower envelopes of each curve. The two prototypes converged to (1.818,3) and 
(6.182,3). 
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0.138 
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5.453 
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5.453 

k 

13 
14 
15 

Uk 

7.344 

6.774 

7.344 

Table 3.3 SFM memberships from the data set of Fig. 2.5 for prototype (1.818, 3) at 
zzz = 2.72. Memberships for prototype (6.182, 3) is symmetrically opposite. 

(B) Data Centroid 

In this scheme, the data centroid is computed from (3.4), for Uk-\. Next, the complete 

data set is searched for the nearest neighbour to the prototype. This posrtion is used as the 

initial prototype. In the event of a tie, the nearest neighbour point is resolved arbrtrarily 

(eg. taking the first occurrence). The nearest neighbour locates the prototype at a real data 

point in X. CPCM applies the test N^ > Nr„i„ to ensure that only a valid cluster is found. 

3.2.3.2 Sustaining the Progressive Clustering Cycle 

Progressive clustering is realised by a cycle of activrties mvolvmg: (i) mitial prototype 

centring around the data centroid, (ii) developmg a cluster, (iii) verifying a cluster, (iv) re­

moval of cluster or non-cluster points, and (v) update of the data list. CPCM mrtiates each 

clustering cycle untU the data set is depleted below the level of the mmimum cluster points 

specification, Nmm- A valid cluster satisfies the specifications for a, and Â™„. Cluster 
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membership is defined by equation (3.1). An option to consider at this pomt is to recluster 

the data usmg the most recent cluster prototype positions. This procedure minimises cluster 

fragmentation but compromises computation efficiency. 

A basic CPCM framework. 

Fix at, m, q, s, Nmin-

Repeat 

Assume initial vo from nearest neighbour of data centroid. 

Repeat 

Calculate Uk from (3.1). 

Calculate v, from (3.5). 

Until ||vf-VMII < E . 

If (0 < Â „ < Nmin) Then Remove Na and update Nc. 

If (Na > N„i„) Then Save and remove cluster points of prototype v and update Nc. 

Vnii\{Nc<Nmin). 

Note that s is a small value to control the stopping point and t is an iteration mdex. 

The symbols Na, Nmin and Nc represent respectively, the number of cluster points obtained 

from applying alphacut at to Uk, the minimum number of pomts defining a valid cluster, 

and the current data count. In the experimental algorithms, alphacut a, has values greater 

than 0.9 and the fuzzy factor q is assumed unity. Note that the inner "repeat-until" loop 

can include any compatible clustering algorithm or support more than one algorithm. Ex­

amples of this are given in Section 3.4. 

Effective use of CPCM requires a judicious selection of cluster parameters a, and q. 

They are normally determmed empirically. The alphacut at determines the size of the clus­

ter region and the fuzziness of the cluster boundary. The impact of a, on cluster develop­

ment will be explained in Section 3.4 and Chapter 5. 

3.3 A Cluster Validity Measure 

For the purposes of evaluating the experimental algorithms and comparing their perform­

ance against standard algorithms like the FCM and the KNN, we define a point cluster va-
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lidity measure as follows (see Section 2.3.4 for other ways of defining cluster validity). For 

each object k of cluster /I, we calculate 

a(k)^d{k,Vk) (3.10) 

where d{k,Vk) is the distance of A: from rts cluster prototype Vk, assuming cluster A is not a 

singleton. Next we calculate the distance of object k from the nearest cluster prototype in 

cluster C, where cluster C^A, given by 

b(k) = xnind(k,Vj) for / = l,...,c (3.11) 
k*] 

where c is the number of clusters in the data set. The cluster stmcture coefficient or index 

s{k) is calculated by combining (3.10) and (3.11) as 

•'(^) = ^-I77T f̂ a{k)<b(k) (3.12a) 
h{k) 

s{k) = {) if a{k)^b(k) (3.12b) 

b{k) 
s{k) = -^-^-\ if a{k)>b{k) (3.12c) 

a(k) 

The s{k) index is a measure of the stmcture of the clusters. If cluster A contains only one 

object, it is unclear how a{k) is defined so we assume arbitrarily s{k) = 0 in (3.12b). Other 

values of s(k) are possible. Note that (3.12a) indicates that if ^ is closer to its own proto­

type than to its nearest neighbour prototype, then s(k) is posrtive (max is +1), and makes a 

positive contribution to the similarity index. If ^ is closer to its neighbour prototype than rts 

own prototype, as in (3.12c), then s{k) is negative (min is - I ) , indicating a penalty. \f k is 

equi-distance from either cluster prototypes, then s{k) = 0 and makes no contribution to the 

similarity index because the point lies on the decision boundary. Thus the range of values 

for s(k) are: -1 < s{k) < 1. When s{k) is close to 1 we say k is well classified ie. the prox­

imity of k to its own prototype is unambiguous. We may also define cluster measures for 

each/th cluster ?i(/), and for the entire data set 2̂ ^s follows. 

MJ) = ~TlUs(k) (3.13) 

N *•-' 

where TV, is the number of pomts in the/th cluster, and N is the total number of points in 

the data set. 
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3.4 Experimental Algorithms 

The experimental algorithms presented m this section are intended to demonstrate the fea­

sibility of adapting the fuzzy analytic clustering algorithms to the CPCM framework. This 

discussion should not be constmed to imply that the experimental algorithms introduced m 

this section are of little practical significance or unsuitable for real world applications. We 

feel there are potentially many useful ideas emergmg from the experimental algorithms 

than could be adequately considered in this chapter. Obviously, algorithms designed for 

practical applications require more thorough and extensive treatments of a practical nature. 

We shall examine this issue more fully in chapters 4 to 7. 

3.4.1 Round Cluster Structure 

Round regions are possibly one of the most common cluster stmcture in existence and also 

one of the most useful stmcture from an application perspective. Round regions are de­

tected with the membership and prototype equations given by 

Wfc= ^- (3.15) 
exp(dk I rj) 

^ Z W ^ (3.16) 

where A', is the number of points in the/th cluster havmg cluster prototype, y,. The cluster 

prototype v and the data point x are feature vectors in 9?̂ . Applying the alphacut or, to Eq. 

(3.15), results in a fixed cluster radius 

-rj}na^ (3.17) 

2 

where d^ = 2r̂  and defines the boundary ofa circular region for a fixed rj and at 

These equations are sufficient to produce centroid seeking prototypes via a cluster­

ing mechanism unique to CPCM. Iterations of (3.15) and (3.16) for a region defined by 

(3.17) generate a dynamic (moving) circle that iteratively centres itself around the centroid 

of points contained in the region defined by (3.17). The prototype is defined by points 

whose memberships exceed the specified at level. This interesting clustenng characteristic 

discloses an appealing geometric interpretation of the fuzzy cluster and provides a sunple 
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mechanism for clustering that converges to a local centroid. For this reason we named this 

basic clustering process, cluster prototype centring by membership or CPCM. 

l O I L L2 13 H 1 5 16 17 1 8 19 

(a) (b) 

Figure 3.3 Three clusters detected from a data set of 25 points (modified from Kaufinan 
and Rousseeuw's data set of Fig. 2.11). (a) is obtained with rk = 2.5 and (b) with rk = 4.5. 
In both cases, the minimum cluster points, Nmin = 5. Note: "-h" = cluster point and 
"x" = non-cluster point. 

Figure 3.3 shows the effects of clustering with rk = 2.5 units and z-̂ . = 4.5 unrts 

(delineated by the circular boundaries). The small circle denotes the cluster centre. Notice 

that the prototypes of Fig. 3.3(a) are located at the local centroids (4, 12), (9, 5) and 

(15.5, 12) whereas the prototypes of Fig. 3.3(b) is slightly off-centroid at (4.5, 11.83), 

(9, 5.73) and (14.86, 11.86), because of the influence of outiiers near the data centroid. In 

the context of the CPCM algorithm, point (9, 17) which is unclustered in Figs. 3.3(a, b), 

may be regarded as a virtual noise point. However, making r*. bigger will eventuaUy cluster 

this point. Ui contrast to conventional fiizzy clustering algorithms, a significant advantage 

of CPCM is the automatic detection of the number of clusters demonstrated in Fig. 3.3. 

Moreover, CPCM is also designed to detect clusters of a specified radius r̂ , an advantage 

m certain applications where the cluster diameter or area can be approxunated from the 

problem domain. 

We know that the CPCM algorithm detects clusters with a fixed size. Can rt be 

made to detect variable cluster sizes like the FCM? The answer is yes, by allovring for 

variable r̂  or 77. Figures 3.4 and 3.5 are examples of a CPCM algorithm using a variable 

rj. The cluster statistics are summarised in Table 3.4. 
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Figure 3.4 Four clusters detected from the Ruspini's data set, usmg variable z/y. The co­
hesion factor,/, = 9. Minimum cluster radius, r„i„= 17. Positions of the data points are 
given at the end of Appendix F. 

Cluster 

1 
2 
3 
4 

Centre 
(pixel units) 
68.93, 19.40 
20.15, 64.95 
43.91, 146.04 
98.18, 114.88 

Radius 
(pixel units) 
17.00 
25.58 
26.46 
31.10 

Cluster 
index, î 
0.8664 
0.8070 
0.8222 
0.7727 

Na 

15 
20 
23 
17 

Table 3.4 Summary of cluster statistics from the data set of Fig. 3.4, for a cohesion factor 
fc = 9 and rmin =17. Data set cluster index Jj = 0-8158. iV^ is the number of points in the 
cluster. 

A minimum cluster radius /•„,„ is specified to prevent a cluster shrinking (via cluster 

convergence) to zero radius. A minimum q conesponding to rmm is given by 

^n 
2r • 

In Off 
(3.18) 

At the start of the cluster repeat-until loop, the variable rjj of the/th cluster is calculated as 

/ c2 - | |X ; t -Vj | 
fc=l 

"min 

if rjj > rj^^ 

otherwise 

(3.19) 
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where ŷ  is a cohesion factor that relates to the size and number of clusters formed. A high 

fc results in bigger cluster radii but smaller number of clusters, and vice versa. Within the 

cluster algorithm, the cluster memberships and prototypes are computed from (3.15) and 

(3.16) repeated below: 

"it= , , , . (3.20) 
exp(£/^ / rjj) 

2-i^kFk 

V / = ^ ^ - (3.21) 

k=l 

1 if Uk> a, 
Pk=\ 

[ 0 otherwise 

where the number of points in the/th cluster is calculated from 

Nj=Y.Fk (3.22) 
k=l 

The CPCM algorithm for variable z?, and variable cluster sizes. 

Fix at, q, rmi„ and Nmin-

Repeat 

Assume data centroid for initial VQ. 

Calculate ẑ , from (3.19). 

Repeat 

Calculate Uk from (3.20). 

Calculate v from (3.21). 

Calculate z/̂  from (3.19). 

Untn|77y,,- z7y,M|<5. 

If (f)<Na< Nmin) Thcn Remove Na and update Nc. 

If (Na > Nmir) THcn Save and remove cluster pomts of prototype v and update Nc. 

\5xvii\(Nc<Nm,„). 

Note: 5 is a small value to control the stopping pomt and t is an iteration index. 

Figure 3.4 shows four clusters obtained for a cohesion factor/^ = 9. Like tiie fixed cluster 

radius algorithm, the variable rjj algorithm also finds the cluster numbers automatically. 

Unlike the previous algorithm, rt finds the cluster radius automatically. Figure 3.5 shows 
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three clusters from the same data set for/c= 17. The corresponding cluster statistics are 

given in Table 3.5. 

Figure 3.5 Three clusters detected from the data set of Fig. 3.4, using variable rjj. The co­
hesion factor,/^ =17. Minimum cluster radius, rmin =17. 

Cluster 

1 
2 
3 

Centre 
(pixel units) 
68.93, 19.40 
20.15,64.95 
66.97, 132.8 

Radius 
(pixel units) 
17.00 
31.32 
54.12 

Cluster 
index, fj 
0.8664 
,0.8086 
0.6338 

Na 

15 
20 
40 

Table 3.5 Summary of cluster statistics from the data set of Fig. 3.4, for a cohesion factor 
fc~ il and rmin - 17. Data set cluster index I2 ~ 0.7269. Na is the number of points in the 
cluster. 

The definition of the cluster index Jj is biased towards a smaller number of compact clus­

ters while the data set cluster index 2̂ favours a larger number of smaller well-separated 

clusters. These observations are evident by comparing the cluster indices of Table 3.4 with 

Table 3.5. 

Although the cohesion factor^ appears to be like the c initial cluster prescription of 

FCM or KNN, rt is fiinctionally quite different. The cohesion factor does not find the num-
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ber of clusters prescribed by c but instead, determines the number of points in a cluster and 

thus rts maximum radius. Moreover rt is observed experimentally that the cluster resuU of 

the cohesion factor possesses properties of scale, rotational and translational mvariance, 

provided the data set contains stmcturally sunilar clusters. These properties are evident by 

comparing die features of the cluster radii and centres of Figs. 3.4 and 3.5 with Figs. 3.6 

and 3.7, for the same cohesion factors. Both Figs. 3.6 and 3.7 are derived from the same 

data set as Figs. 3.4 and 3.5, except for a transposition of axes and tiie removal of one in­

termediate cluster (to simulate the appearance of different clusters). The data set of Figs. 

3.6 and 3.7, called the modified Ruspini's data (derived from Fig. 3.4), refers to these 

changes. 

1 4 0 

60 -

Figure 3.6 Three clusters detected from the modified data set of Fig. 3.4, using variable 
rjj. The cohesion factor,y^ = 9. Minimum cluster radius, rmin =17. 

Cluster 

1 
2 
3 

Centre 
(pixel units) 

19.4, 68.93 
146.04,43.91 
117.53, 101.13 

Radius 
(pixel units) 
17.00 
26.46 
27.46 

Cluster 
mdex, Si 

0.9129 
0.8267 
0.8201 

Na 

15 
23 
15 

Table 3.6 Summary of cluster statistics from the data set of Fig. 3.6, for a cohesion factor 
Tc = 9 and /•„,„ = 17. Data set cluster index J2 = 0.8492. Na is the number of points in the 
cluster. 
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1 2 0 -

1 0 0 -

Figure 3.7 Two clusters detected from the data set of Fig. 3.6, using variable z/y. The co­
hesion factor,/^ =17. Minimum cluster radius, r„,„ =17. 

Cluster 

1 
2 

Centre 
(pixel units) 

19.4, 68.93 
134.94,61.92 

Radius 
(pixel units) 
17.00 
47.46 

Cluster 
index, J[ 

0.9226 
0.7404 

Na 

15 
36 

Table 3.7 Summary of cluster statistics from the data set of Fig. 3.6, for a cohesion factor 
ĉ- = 17 and r„,„ =17. Data set cluster index 52 = 0.7940. Na is the number of points m the 
cluster. 

The variable TJJ feature in CPCM enhances the generalisation capability of an algo­

rithm to detect clusters having regional shapes other than circular. To a limited extent, this 

is also possible with the fixed cluster radius of the CPCM algorithm, although the clusters 

detected from the latter is more restricted and m this sense less general than the case of 

variable qj. Two interesting properties relatmg to the cohesion factor are obtained from the 

variable zj algorithm. A bigger cohesion factor j ^ will detect larger cluster substmctures. If 

the cohesion factor/^ is made sufficiently small (eg. 0 <fc < I), then the variable TJJ algo­

rithm reverts to the fixed q or fixed radius algorithm, because all clusters are limited to 

rmin. Therefore, the variable qj algorithm is a generalisation of the fixed radius CPCM 

clustering algorithm. 
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3.4.2 Elliptic Cluster Structure 

Ellipses are another common cluster stmcture m pattem recognition and also quite usefiil 

for practical applications. In the case of an elliptic region, we use a modified distance me-

sure of Gustafson-Kessel's Eq. (2.4.33) given by 

dl,j =(^k -y if F~\xk -y j) (3.23) 

where dkj represents the distance of a pomt x̂  from rts prototype y, m the /th cluster. The 

fuzzy covariance matrix F has the same mterpretation as (2.4.32), repeated below for the 

CPCM algorithm 

2^ul{Xk-yj){Xk-yjf 

F] = — w- (3-24) 

i- 2 
k=l 

Membership in the /th cluster can take a variety of unconstrained forms reviewed in Sec­

tion 2.4.7. For the ellipse detection algorithm, we used a possibilistic membership 

1 
"^ = YT~2 (3-25) 

X + dklq, 

Substituting (3.24) into (3.23), the metric for Xk and y, in 5R" may be reformulated for the 

feature components as 

(3.26) 
QlC'22"Q2 

where 

(3.27a) 

(3.27b) 

(3.27c) 

where dk.x and dk,y are the respective x and y coordinate components of the relative vector, 

(xk - yj). The terms Cn, C12 and C22 are the coefficients of the 2 x 2 positive definite fiizzy 

covariance matrix F. The z/̂  factor is calculated as 

dl-

Q i 

Q2 

Q2 

\dk.xC22'''^(^k,xdk,yC 

QlC'22 " 

^ 2 
= 2-iUkdk,x 

k=l 

^ 2 
- ZuUkdk,x^k,y 

k=l 

^ 2 2 

k=l 

,2 
12+dk,_ 

^2 
^12 

k=l 



Chapter 3 An Enhanced Progressive Fuzzy Clustering Approach 104 

2^l|xt-vJ| 
2 k=l 

r}j= (3.28) 

and the prototype update has two forms given by 

i^k^k 

y i = 
k=l 

(3.29a) 

k-=\ 

Za^kFk 

^'j=^ (3.29b) 

k=l 

1 if u,. > a, 
Fk=\ 

0 otherwise 

A CPCM algorithm to detect elliptic clusters. 

Fix at, q and Nmin-

Repeat 

Assume Cn = Cn = C22 = 0, assign data centroid to vo and randomise UQ. 

Repeat 

Calculate z/̂ from (3.28). 

Calculate y, from (3.29a). 

Calculate dk from (3.26) only ifCnC22 ^ Ci2 .̂ 

Calculate Uk from (3.25). 

UntU ||V;,t-V,;M|| <5. 

Assign nearest neighbour of prototype v to v. 

Repeat 

Calculate z/yfrom (3.28). 

Calculate dk from (3.26). 

Calculate Uk from (3.25). 

Calculate v} from (3.29b). 

Untn||v',,,-v},,_i||<8. 

If {0<Na< Nmin) Then Remove yV„ and update Nc. 
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If (Na > Nmin) THcn Save and remove cluster points of prototype v and update TV̂. 

l]nti\(Nc<Nm,n). 

Note: 5 and e are small values to control the stopping point, and t is the iteration mdex. 

The two ellipses detected by this algonthm are shown in Fig. 3.8, for the same data 

set as Figs. 3.3. Ellipse statistics are given in Table 3.8. The eUipses are delineated by 

boundaries drawn at or, = 0.9. 

Cluster 
I 
2 

Centre 
9.00, 6.54 
10.27, 12.00 

Na 
13 
11 

Table 3.8 Summary of cluster statistics from the elliptic cluster algorithm, for the data set 
of Fig. 3.3. Cluster parameters are a, = 0.91 and Nmin = 5. 7/Q. is the number of points in 
the cluster 

Figure 3.8 Two elliptic clusters detected from a data set of 25 pomts (modified from 
Kaufinan and Rousseeuw's data set of Fig. 2.11). Cluster parameters are a=0.91 and 
Nmin = 5. Note: "+" = cluster point and "x" = non-cluster point. 

The ellipse algorithm that produced die resuU shown in Fig. 3.8 is quite sensitive to 

the alphacut a,. In other words, good elliptic clusters are found only for a very narrow 
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range of a,. In the next example, Imear clusters are detected from the modified eUipse 

equations. 

3.4.3 Linear Cluster Structure 

To detect linear clusters, we intensify clustering of the elliptic region by recomputing the 

fiizzy covariance coefficients Cn, Cn and C22. The algorithm is given below: 

A CPCM algorithm to detect linear clusters. 

Fix at, q and 7V„,„. 

Repeat 

Assume C\\ — C12 = C22 = 0, assign data centroid to vo and randomise UQ. 

Repeat 

Calculate z/y from (3.28). 

Calculate Vj from (3.29a). 

Calculate dk from (3.26) only if C11C22 ^ C^ . 

Calculate Uk from (3.25). 

UntU||v,,-v,,M||<5. 

Assign nearest neighbour of prototype v to v. 

Repeat 

Zero the coefficients Cn, Cn and C22. 

Calculate y) from (3.29b). 

Calculate ^yfrom (3.28). 

Calculate dk from (3.26) only if CnC22 ̂  Cn -

Calculate Uk from (3.25). 

Untn||y,.,,-vy,M||<e. 

If (0<Na< Nmin) THcn Remove Na and update Nc. 

If (Na > Nmin) THcn Save and remove cluster pomts of prototype v and update Â -̂

VntW {Nc<Nm,„). 

Note: 6 and s are small values to control the stoppmg point, and t is the iteration mdex. 
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Figure 3.9 Two linear clusters detected from a data set of 25 points (modified from Kauf­
man and Rousseeuw's data set of Fig. 2.11). Cluster parameters are a, = 0.95 and 
Nmin - 5. Note: "+'' = cluster point and "x" = non-cluster point. 

Like the algorithm of Fig. 3.8, the linear clustering algorithm is also quite sensitive to the 

at cluster parameter. The cluster statistics are summarised in Table 3.9. 

Cluster 
1 (vertical orientation) 
2 (horizontal orientation) 

Centre 
9.00, 8.33 
8.60, 12.00 

Na 
6 
5 

Table 3.9 Summary of cluster statistics from the linear cluster algorithm, for the data set 
of Fig. 3.3. Cluster parameters are at = 0.95 and Nmin = 5. Â a is the number of points in 
the cluster. 

3.4.4 Ring-Shape Cluster Structure 

The ring-shape clustering algorithm presented here is fairly basic, but is adequate to dem-

onsfrate the feasibility of adapting conventional fuzzy clustering equations to the CPCM 

framework. It detects ring-shape clusters satisfactorily but needs more refinements to surt 

practical applications. Practical issues are considered more fiiUy in Chapter 6. 
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Equations for the ring-shape cluster algorithm are nearly identical to the round re­

gion cluster algorithm. The cluster to be detected is assumed to have a fixed radius (other 

forms are possible). Consequently, a simple solution is given by the metric 

dk = \\xk-yj\\-rj (3.30) 

where r, is the radius of the/th cluster. The membership is defined as 

1 
Uk= (3.31) 

exp(|^fc|/z7y) 

where 

" ' • " l l ^. 
A solution to the metric of (3.30) will maximise the membership of (3.31), and thus mini­

mise the objective function. This occurs when z} = ||xk - Vj||. The algorithm is given below: 

A CPCM algorithm to detect ring-shape clusters. 

Fix z}, at, s and Nmtn-

Repeat 

Assume mitial vo as nearest neighbour of data centroid. 

Repeat 

Calculate z/y from (3.32). 

Calculate dk from (3.30). 

Calculate Uk from (3.31). 

Calculate y, from (3.29a). 

Untn||v,.,-v,M||<5. 

Assign nearest neighbour of prototype v to v. 

Repeat 

Calculate ŷ from (3.32). 

Calculate dk from (3.30). 

Calculate Uk from (3.31). 

Calculate y) from (3.29b). 

UntUllv},,-v},,_i|l<8. 

If (0 < Â „ < Nmin) Then Remove Na and update Nc. 

If (Na > Nmin) ThcH Savc and remove cluster points of prototype v and update Â , 

Vntil {Nc<Nm,n). 
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Note: 5 and e are small values to control the stopping pomt and t is an iteration index. 

Figure 3.10 shows a ring-shape cluster detected from the data set. The selected 

cluster parameters r, = 4, ar = 0.95, s=\ and 7V„,„= 10, produced a cluster centred at 

(4.77, 5.23) with a radius of 4.25 unrts, indicated by the circular boundary. The tme cen­

tres are at (5, 5) and (9, 9) and the tme radius for each cluster is 4 units. The algorithm 

seems to detect only a single cluster at a time. Anotiier cluster centred at (9, 9), was not 

detected. However, selecting cluster parameters a, = 0.95 and scale factor 5 = 2 success­

fully detect the second cluster centred at (9.21, 9.21), yieldmg a cluster radius of 4.27 

units. 
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Figure 3.10 One ring-shape cluster detected from the data set. The selected cluster pa­
rameters were a, = 0.95, s= 1 and Nmin= 10. Note: "+" = cluster point and "x" = non-
cluster point. 

3.5 Clustering Performance 

We used Ruspini's data set (see Fig. 3.4) to compare clustering performance. Our data set 

of Fig. 3.4 agrees with Kaufinann and Rousseeuw's tabulation of Ruspini's data [Kaufinan 

and Rousseeuw, 1990, p. 100]. This version differs from [Diday and Simon, 1976. p.72] 

by a transposition of coordinates. We evaluate the clustering performances of three algo-
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rithms: (i) KNN, (ii) CPCM variable qj for round region and (iii) FCM, and examine the 

performance criteria in terms of convergence characteristics and cluster validity based on 

(3.14), for several clusters of Ruspini's data set. 

3.5.1 Convergence Characteristics 

The convergence characteristics for four clusters are shown in Figs. 3.11 and 3.12 (x, y-

coordinates of cluster number 1), Figs. 3.13 and 3.14 (x, j^-coordinates of cluster number 

2), Figs. 3.15 and 3.16 (x, ^^-coordinates of cluster number 3) and Figs. 3.17 and 3.18 (x, 

jV-coordinates of cluster number 4). From these results, the following observations are 

made: 

• Both the KNN and the CPCM algorithms converge quite rapidly compared to FCM. 

• The convergence rate of CPCM is like that of KNN. 

• Both the KNN and the CPCM algorithms converge to the same local centroids. FCM 

does not converge to local cluster centroids (for fixed zzz = 2, /> = 2). 
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1 1 

-

1 1 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Iterations 
Figure 3.11 Prototype convergence of number one of four clusters. The three curves rep­
resent the X coordinate component from Ruspini's data set of Fig. 3.4. The three algorithms 
corresponding to symbols xl = KNN, x2 = CPCM round region with variable 7y, and 
x3 = FCM converge to 98.2, 98.2 and 100.4 respectively. 
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Figure 3.12 Prototype convergence of number one of four clusters. The three curves rep­
resent the>' coordinate component from Ruspini's data set of Fig. 3.4. The three algorithms 
conesponding to symbols yl = KNN, y2 = CPCM round region with variable 7y, and 
y3 = FCM converge to 114.9, 114.9 and 116.8 respectively. 
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Figure 3.13 Prototype convergence of number two of four clusters. The three curves rep­
resent the X coordinate component from Ruspini's data set of Fig. 3.4. The three algorithms 
correspondmg to symbols xl = KNN, x2 = CPCM round region with variable z/y, and 
x3 = FCM converge to 20.1, 20.1 and 20.5 respectively. 
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Figure 3.14 Prototype convergence of number two of four clusters. The three curves rep­
resent the J' coordinate component from Ruspmi's data set of Fig. 3.4. The three algorithms 
corresponding to symbols yl = KNN, y2 = CPCM round region with variable z/,, and 
y3 = FCM converge to 64.9, 64.9 and 64.9 respectively. 
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Figure 3.15 Prototype convergence of number three of four clusters. The three curves rep­
resent the X coordinate component from Ruspini's data set of Fig. 3.4. The three algoritiims 
corresponding to symbols xl = KNN, x2 = CPCM round region with variable Z7,, and 
x3 = FCM converge to 43.9, 43.9 and 43.3 respectively. 
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Figure 3.16 Prototype convergence of number three of four clusters. The three curves rep­
resent the >' coordinate component from Ruspini's data set of Fig. 3.4. The three algorithms 
corresponding to symbols yl = KNN, y2 = CPCM round region with variable q,, and 
y3 = FCM converge to 146, 146 and 146.5 respectively. 
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Figure 3.17 Prototype convergence of number/fez/r of four clusters. The three curves rep­
resent the X coordinate component from Ruspmi's data set of Fig. 3.4. The three algorithms 
corresponding to symbols xl = KNN, x2 = CPCM round region with variable z/y, and 
x3 = FCM converge to 68.9, 68.9 and 68.8 respectively. 
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Figure 3.18 Prototype convergence of number/oz^r of four clusters. The three curves rep­
resent the ;̂  coordinate component from Ruspmi's data set of Fig. 3.4. The three algorithms 
correspondmg to symbols yl = KNN, y2 = CPCM round region with variable z/y, and 
y3 = FCM converge to 19.4, 19.4 and 19.7 respectively. 

For c = 4, both FCM and CPCM algorithms produce repeatable cluster results. The 

KNN algorithm was sensitive to mitial random neighbour points (startmg point) and con­

verges to different cluster centres (termination point) as shown in Table 3.10. 

Trial 
number 
1 

2 

3 

Cluster 
number 
I 
2 
3 
4 
1 
2 
3 
4 
1 
2 
3 
4 

Starting point 
x-coord 
85 
32 
52 
70 
85 
98 
78 
10 
85 
32 
28 
61 

y-cooxd 
96 
143 
152 
4 
96 
116 
94 
59 
115 
143 
147 
25 

Termination point 
x-coord 
98.2 
20.1 
43.9 
68.9 
98.2 
56.0 
40.6 
41.1 
98.2 
52.1 
36.4 
41.1 

_y-coord 
114.9 
64.9 
146.0 
19.4 
II4.9 
137.0 
148.6 
45.4 
114.9 
143.5 
148.4 
45.4 

Table 3.10 Summary of the effects of random initial neighbour pomts on prototype posi­
tions of the KNN algorithm, for four prescribed clusters from the data set of Fig. 3.4. 

For c 9t 4, both FCM and KNN algorithms were sensitive to mitial startmg points. In 

the case of FCM, random initial memberships were used to determine the mitial prototypes. 

Table 3.11 shows the effects of random mitial memberships on FCM prototypes, for c = 3. 

The resulting prototype positions in each case were different. Trials on five clusters also 

show variations in the prototype resuUs. The reason that repeatable results were obtamed 
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from FCM for c = 4 is attributed to the well separated and compact nature of four clusters. 

For c = 3 or c = 5, the cluster boundaries are closer together also mcrease the probability 

of forming different clusters, and thus the nonrepeatable results. 

Trial 
number 
1 

2 

Cluster 
number 
1 
2 
3 
1 
2 
3 

Startin 
x-coord 
52.70 
59.83 
52.15 
57.21 
62.20 
56.06 

g point 
j^-coord 
100.44 
88.85 
94.61 
91.61 
92.20 
90.01 

Termination point 
x-coord 
59.80 
69.67 
23.18 
98.08 
42.87 
43.00 

_y-coord 
137.88 
22.66 
67.09 
114.27 
144.47 
13.13 

Table 3.11 Summary of the effects of random mitial memberships on prototype positions 
of the FCM algorithm, for c = 3 from the data set of Fig. 3.4. 

The cluster resuU of CPCM, like the FCM and KNN algoritiims, is also affected by 

initial prototype position. In the case of CPCM, there is a consistent basis to mitial proto­

type estimation (because of data centroid assumption). However, unlike both FCM and 

KNN algorithms, the same cluster result (eg. cluster index, number of clusters, cluster ra­

dius and prototype) can be produced by adjusting the cohesion factor/^. Table 3.12 shows 

the fc values needed to produce the same cluster result (four complete clusters at z-̂ .̂  =17) 

at three different initial prototype posrtions compared to the algorithm's normal initial 

prototype positions. For example, start position (10,80) fox fc = 9 gives the same cluster 

result as the normal (assumed) position (54.9,92) with/^= II. The CPCM algorithm can 

also optimise the cluster index by adjusting/^ and rmin- This feature, unavailable in either 

the FCM or KNN algorithms, helps to identify possible noise points and improves the 

cluster stmcture. The next section elaborates on this feature. 

fc 

Starting 
position 
(10, 80) 
9 

Normal 
position 
(54.9, 92) 
11 

Starting 
position 
(70, 20) 
9 

Normal 
position 
(54.9, 92) 
13 

Starting 
position 
(110, 120) 
9 

Normal 
position 
(54.9, 92) 
11 

Table 3.12 Several values off that produce equivalent cluster result of four complete 
clusters at r̂ m = 17, from the data set of Fig. 3.4. 
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3.5.2 Comparing the Cluster index 

The data set cluster index defined by 2̂ as Eq. (3.14), is useful in determming the optunal 

size of the cluster numbers. The criteria of Eqs. (3.12a), (3.12b) and (3.12c) favours a 

clustering resuU that has compact cluster regions and good separation between cluster 

prototypes. One significant advantage of this criteria for defining cluster validity is its 

simplicity and effectiveness, mvolving only simple operations like summing, division and 

subtraction. 

Number 

of clusters 
2 
3 
4 
5 

Data set cluster index, .̂ 2 
KNN 
0.6514 
0.7269 
0J15S 
0.7467 

CPCM 
0.6154 
0.7269 
0.815& 
0.7891 

FCM 
0.6464 
0.7229 
0.S18I 
0.7924 

Table 3.13 A comparison of the data set cluster index from KNN, CPCM and FCM al­
gorithms for a range of cluster numbers from the data set of Fig. 3.4. Maximum index is 
shown shaded. 

Table 3.13 compares the data set cluster index from each of the three algorithms, for sev­

eral clusters from Ruspini's data set (see Fig. 3.4). In each case, the index peaked at four 

clusters. This result agrees with the analyses of [Diday and Sunons, 1976, p.71] and also 

[Kaufinan and Rousseeuw, 1990, p. 101]. Figure 3.4 mdicates that four clusters give the 

most natural interpretation. 

It is interesting to note that FCM gives the best clustering performance with a data 

similarity index of 0.8181 for four clusters, but has a lunited optimisation scope. FCM's 

resuU may be attributed to the LSE criterion of the objective function and the choice of 

zzz = 2. CPCM has a greater optimisation scope, by allowing selective exclusion of cluster 

points, to maximise the data set similarity index from a particular selection off and r„,„ 

parameters. Table 3.14 reveals a higher mdex for CPCM at 2̂ = 0.8568, compared to the 

fully clustered case of Fig. 3.4 where Ĵ2 = 0.8158. The cluster substmctures corresponding 

to J2 = 0.8586, shown on Fig. 3.19, are more compact compared to those of Fig. 3.4. 
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Figure 3.19 Cluster result from CPCM algorithm for $2 ~ 08586. 

^2 
0.8158 

0.8492 

0.8571 

0,8536 

/ . 
9 

7 

6 

6 

Fmin 

17 

17 

17 

15 

Na 
17 
20 
23 
15 
19 
22 
15 
12 
18 
13 
20 
15 
18 
13 
20 
13 

Prototype 
98.2,114.9 
20.1,64.9 
43.9,146.0 
68.9,19.4 
20.6,63.7 
43.4,147.0 
68.9,19.4 
105.1,118.3 
21.5,64.3 
103.5,118.1 
41.6,148.0 
68.9,19.4 
21.5,64.3 
103.5,118.1 
41.6,148.0 
67.8,20.5 

Â„ 
0 

7 

9 

11 

Unclustered points 
Nil 

12,88; 54,124; 86,132; 85,115; 85,96 
78,94; 74,96 

4,53; 12;88; 54,124; 60,136; 63,139 
86,132; 85,96; 78,94; 74,96 

4,53; 12,88; 54,124; 60,136; 63,139 
86,132; 85,96; 78,94; 74,96; 70,4 
83,21 

Table 3.14 Summary of data set cluster indices obtained from the data set of Fig. 3.4 un­
der different conditions of the cohesion factor/^ and the muumum cluster radius r„in of the 
CPCM algorithm. The symbols Na and Nu represent the number of points in the cluster, 
and the number of unclustered points, respectively. The similarity index for the data set is 
denoted by J2. Note: maximum similarity index has a value of 0.8586. Maximum index is 
shown shaded. 
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There are two points to note about the cluster result of Section 3.5.2. Firstly, opti­

mum cluster index does not imply optimum cluster stmcture, although it does in most 

cases. Secondly, the optimum index obtained by optunising parameters/^ and r„in has to be 

weighed against the significance of the cluster result. Ignoring a few cluster points at the 

fringe or shrinking the cluster regions will improve the cluster index, but taking this ap­

proach to extremity will result in loss of data stmcture. 
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Chapter 4 

Segmentation of Regions 

This chapter examines the practical applications relating to the detection of (i) wool con­

taminants and (ii) tile surface defects. Many conventional techniques of image processing 

exist for region segmentation but possibly only a few are suitable for the above applica­

tions. Methods that are suitable for this purpose are various types of thresholding such as 

peak-valley mode detection, adaptive thresholding and local area thresholding [Davies, 

1990], boundary representational schemes such as chain coding and polygonal approxima­

tion, and Fourier descriptors [Gonzalez and Woods, 1992]. All these methods depend 

rather critically on an adequate lighting environment and illumination condition. For ex­

ample, the peak-valley mode thresholding method requires a good definition of a valley 

between two peaks, a condition that rarely exists normally. Consequently, it is practically a 

necessity to induce a high contrast between object and background by controlling the 

lighting environment. A controlled lighting environment can incur substantial costs depend­

ing on the intensity of the illumination and the degree of control needed. For this reason, 

any altemative method that mitigates the need for an expensive lighting system will be 

considered beneficial. 

The proposed fiizzy clustering algorithm to detect defect pattems is tolerant to some 

variation in illumination. To simplify the computation task, the images of both applications 

are processed as 256 gray levels in 256 x 256 resolution. Region segmentation is per­

formed usmg the CPCM algorithm to detect round stmctures with fixed cluster parameters 

at, q and q. Clustering performance in terms of cluster stmctures and processmg time are 

compared with the FCM algorithm. Following the introduction in Section 4.1, the segmen-
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tation algorithm is reviewed in Section 4.2. Sections 4.3 presents the experimental resuU 

and Section 4.4 the conclusions. 

4.1 Introduction 

Wool contammants refer to three types of vegetable matter, typically consistmg of burrs 

(about 3 mm or greater), grass (about 2 mm) and dirt particles (about I to 2 mm). An ex­

ample is illustrated m Fig. 4.1(a). These contaminants are normally removed by mechani­

cal means such as a combing machine, by adjustmg the size of the comb and the rate of 

combing. Curtent commercial vision systems using strip lighting to detect the material 

density are very costly and do not provide sufficient accuracy. The most reliable method is 

the standard industry method, using trained human inspectors to manually count and grade 

the contaminants. This is also costly and prone to human enors. The proposed method is 

simple and cost-effective. It assumes the wool is uniformly combed and sufficiently thin to 

enable the detection of contaminants by back lighting. 

Tile surface defects refer to chipped edges or cracks, uneven surface texture or color 

variations. For the purpose of this thesis, only the problem of uneven tile surface due to 

inconsistent paint thickness is examined because this problem can be solved by a similar 

fuzzy clustering method. To enable detection of the defect pattems, the angle of incidence 

of the light on the tile's surface is adjusted to reflect sufficient light around the edge of 

paint flow (the defect pattem). An example is illustrated m Fig. 4.4(a). 

4.2 Segmentation Algorithm 

The segmentation algorithm uses the same CPCM framework described in Section 3.2. The 

membership equation is defined by 

1 
Uk 

expld^ I q 
(4.1) 

where the fixed cluster radius dr, is defined by the fixed alphacut m 

d„ 
ri = - - ^ (4.2) 

ma , 

and dr, = [x̂  - y,]. The prototype equation is defined by 
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N, 

^ J = ^ , (4.3) 

\Fk 
y t = l 

luXk-Fk 
c=l 

I 
y t = l 

I 1 if zzjt > a, 
Fk=\ 

[0 otherwise 

where v, represents the prototype (intensity) of the/th cluster, Xk denotes the mtensity value 

at the Ml point position, and the fuzzifier exponent q is assumed equal to unity. The seg­

mentation algorithm is given below: 

A CPCM region segmentation algorithm. 

Assume at = 0.9, q= I, q = 400 and 8 = 1 . 

Repeat 

Assume Vy from nearest neighbour of intensity centroid. 

Repeat 

Calculate Uk from (4.1). 

Calculate v, from (4.3). 

UntU|v,;,-Vy<.]|<E. 

If (0 < 7V„ < Nmin) Then Remove Na and update K. 

If (Na > Nmin) Then Save and remove cluster points of prototype v and update Nc. 

Vnti\{Nc<Nm,n)-

Note: 8 is a small value used to control the stopping point and t is an iteration mdex. 

Prototypes obtained from this algorithm define the segmented regions according to the re­

lation. 

Intensity range of region/: 0 <Vj±dr,< 255 (4.4) 

where the cluster radius dj, is obtamed from (4.2). Note that (4.4) assumes a separate pro­

cedure to check that the boundary lunits of each prototype do not overiap. To use this al­

gorithm correctly, the prototype is assumed to define the intensity centre of the defect pat­

tem at the higher end of the intensity spectmm with the background at the lower end of the 

mtensity spectmm. In other words, defect pattems are detected as brighter objects agauist a 

darker background. Consequently in the case of the wool unage, the defect pattems which 

are acquired as dark spots in a light background (from back-lighting), are processed as an 

"inverted" or negative image. In the case of the tile image, unage inversion is not required. 
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For these applications, q = 400 is satisfactory for the detection of small scale 

(< 3 % of data) defect pattems. If a large number of defect pattems are present m the im­

age, this value of q tends to produce excessive residual noise (see Fig. 4.1(b)). To over­

come this problem, an adjustment on the q value is made according to the formula 

Z7*v, = 82500 (4.5) 

where q* denotes the unproved estunate for defect pattem identification and Vh is the high­

est prototype value from the prototype list. The constant of (4.5) is empirically determmed 

for both applications. The following mles are suggested for the selection of q\ 

V selection mles (for the wool and tile applications). 

Step I. Initially assume q = 400 and generate a prototype list from the algorithm. 

Step 2. Select the highest prototype value Vh from the prototype list. 

Step 3. If the pixel count corresponding to v̂  is less than 100, select the next highest v̂ ,. 

Step 4. Calculate q* from (4.5) and generate a new prototype list from the algorithm. 

Step 5. Select the highest prototype value v* from the prototype list of q*. 

Step 6. If the pixel count of v < 100, use Vh from Step 2. 

4.3 Experimental Results 

4.3.1 Detection of Wool Contaminants 

Two sets of results are presented from the wool problem. The first set, shown on Figs. 

4.1(a) to 4.1(f), represents a moderate level of contamination. The other set, shown on Fig. 

4.2(a) to 4.2(f), contains a lower level of contamination. This selection of contaminants is 

made to evaluate the effects of contaminant levels on the algorithm's performance. 

Figure 4.1(a) of the first set shows the uncombed wool with different kinds of vege­

table matter. A knot of entangled wool is visible at the upper left comer. The uneven wool 

texture is evident from the randomly distributed dark and bright spots. Vegetable matter 

appears as dark regions in the shape of small lines, arcs and spots. Figure 4.1(b) is the 

cluster resuU using Z7 = 400. The segmented cluster contains residual noise that mterferes 

with the identification of wool contaminants. Adjusting q according to the selection mles 

clearly improves the cluster resuU shown on Fig. 4.1(c). Applying blob analysis with an 

area threshold of 15 pixels (an area element counts as one pixel) removes unwanted resid-



Chapter 4 Segmentation of Regions 122 

ual noise from the segmented image of Fig. 4.1(c). The area threshold is a clustering crite­

rion used m blob analysis to identify good blobs ie. blobs with areas greater than the 

threshold. The resuU shown on Fig. 4.1(d) gives a reasonable estunate of the contaminants 

identified from blob analysis. The small cross next to the blob identity number marks the 

location of the centroid of area of the blob. The area threshold provides a criterion for the 

removal of unwanted specks or residual noise from the segmented image of Fig. 4.1(c). 

Figure 4.1(e) shows the nearest FCM cluster to the defect pattem for c = 10. The FCM 

resuU of Fig. 4.1(e) agrees well with the CPCM resuU of Fig. 4.1(c). 

In the second set of results. Fig. 4.2(a) shows a reduced level of contaminants fol­

lowing a more extensive combing process. Segmentation of these particles, shown in Fig. 

4.2(b), were obtamed at q* = 439. The result of blob analysis is shown in Fig. 4.2(d). Fig­

ure 4.2(c) shows unsatisfactory resuU from FCM at c = 12. The FCM cluster resuU at 

c = 6, in Fig. 4.2(e), is considerably worse. The extensive level of residual noise in both 

Figs. 4.2(c) and 4.2(e) exceed the capacity of blob analysis to estunate the contaminants 

present with reasonable accuracy. For this particular case, the numerous spurious blobs, 

especially the large one at the lower right comer, will be inconectly detected as contami­

nants. 

The histograms of the wool samples of Figs. 4.1(f) and 4.2(f) show no discernible 

valley to enable optimal thresholding. Moreover, the intensity boundary between the con­

taminants and wool material seems quite fiizzy. Consequently, methods that rely on detect­

ing histogram profile characteristics cannot be expected to yield reliable resuUs. Unlike the 

thresholdmg methods, the proposed CPCM region segmentation algorithm does not suffer 

from this problem. 
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(a) Wool unage with moderate contammants. 
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(b) Segmented image {q = 400, v = 140). 
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(c) Segmented image {q = 589, v = 158). (d) Blob analysis of (c) (area > 15 pixels). 

« 

\$ 

'>\ 

k 
] 

1.0-

0.5 — 

I I I I I I I I I I I I I I I I I I I I ' ' ' ' 

0 50 100 150 200 250 

(e) FCM segmented image (c = 10, v = 157). (f) Normalised histogram of (a). 

Figure 4.1 Wool with moderate level of contaminants. 
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(a) Wool image with few contaminants. 
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(c) FCM segmented image (c = 12, v = 155). (d) Blob analysis of (b) (area > 5 pixels). 
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(e) FCM segmented image (c = 6. v = 149). (f) Normalised histogram of (a) 

Figure 4.2 Wool with few contaminants. 
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4.3.2 Detection of Tile Surface Defects 

Two sets of results are presented from the tile problem. The first set, shown on Figs. 4.3(a) 

to 4.3(f), represents a low level illumination. The other set, shown on Fig. 4.4(a) to 4.4(f), 

contains a higher level illununation. This selection of illumination levels is made to evalu­

ate effects of illumination levels on the algorithm's performance. 

Applying the q selection mles, the tile image of Fig. 4.3(a) yields q = 400, resultmg 

m the segmented unage shown m Fig. 4.3(b). The resuU of blob analysis with an area 

threshold of 2 pixels, is shown m Fig. 4.3(c). For this particular tile problem, the defect 

pattems may be characterised by linear cluster approximations. A linear cluster algorithm 

(see Chapter 5) correctly detects the three main features of the defect pattems, shown in 

Fig. 4.3(d), demonstrating the effectiveness of the algorithm to characterise the tile defect 

pattems. The best cluster result from FCM was obtained with c = 12, shown in Fig. 4.3(e). 

However, this result contains excessive noise which cannot be conected with blob analysis. 

The tile image in Fig. 4.4(a) of the second set yields q = 327 for the segmented im­

age of Fig. 4.4(b). The result of blob analysis of the image of Fig. 4.4(b) is shown in Fig. 

4.4(c), for an area threshold of 50 pixels. In general, the level of the area threshold to be 

applied depends on the illumination condition of the image. Blob analysis removed most of 

the speckles from the image of Fig. 4.4(b) to enable correct identification of the three main 

defect pattem shown on Fig. 4.4(d). The optimal FCM cluster numbers, shown in Fig. 

4.4(e), is obtained with c = 6. This resuU is quite similar to Fig. 4.4(b) of the CPCM case. 

The normalised intensity histogram for the tile sample of Fig. 4.3(f) is similar to the 

wool histograms, with a single peak. However, even though the histogram of Fig. 4.4(f) 

has a discernible valley, rt remains difficuU to predict the lower limrt mtensity of the defect 

pattems. 
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1 1 (b) Segmented image (q = 400, v = 150). 
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(c) Blob analysis of (b) (area > 2 pixels). (d) Three linear clusters detected. 
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(e) FCM segmented image (c = 12, v = 119). (f) Gray level normalised histogram of (a) 

Figure 4.3 Tile at low illumination. 
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(a) High illumination of tile surface (b) Segmented image {q = 327, v = 242). 

(c) Blob analysis of (b) (area > 50 pixels). (d) Three Imear clusters detected. 
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(e) FCM segmented image (c = 6, v = 246). (f) Gray level normalised histogram of (a). 

Figure 4.4 Tile at high illumination. 
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4.3.3 Comparison of FCM Clustering Performance 

Comparing the intensity images of Figs. 4.1(a), 4.2(a), 4.3(a) and 4.4(a), rt is observed that 

FCM fails to cluster correctiy when the defect pomts are few in number. For example, in 

Figs. 4.2(d) (wool) and 4.3(c) (tile), the pixel counts of the segmented blobs were 284 and 

139 respectively. Moreover, this condition tends to produce a higher cluster number in 

FCM clustering, such as c = 12, compared to c = 6 in the successful clustering cases. 

When FCM clusters successfiiUy, the cluster number required is ahnost half the cluster 

number of the difficult clustering cases, with the corresponding pattem pomts in excess of 

1300. However, rt should not be concluded from this that c = 6 is the optimum for both the 

tile and the wool defect detection problems. In fact, the FCM cluster result of Figs 4.2(a) 

and 4.3(a), for c = 6, was worse than at c = 12. An example of this is given in Figs. 4.2(c) 

with c = 12 and 4.2(e) with c = 6. Figure 4.3(a) has the same problem (not shown). 

4.3.4 Comparing Processing Times 

A practical problem in using FCM is that several trials with a different cluster number c 

have to be attempted to pick the best cluster resuU. More significantly, the processmg time 

for FCM increases almost exponentially with mcreasing cluster numbers. The processing 

tunes given in Tables 4.1 and 4.2 were measured on an i486DX/33-MHz Intel microproc­

essor. In the case of the wool images of Fig. 4.1(a) CPCM was 170 times faster than the 

FCM, and for Fig. 4.2(a), 225 times faster tiian FCM. For the tile images, the best CPCM 

speed was 255 times faster than FCM for the unage of Fig. 4.3(a). The worst CPCM speed 

was 41 times faster than FCM for the image of Fig. 4.4(a). These results are summarised 

in Table 4.1 for CPCM, and Table 4.2 for FCM. For the purpose of performance compari­

son, thirty FCM iterations (e < 0.05 for both FCM and CPCM) were used m all the four 

unages. These resuUs demonstrate the significantly higher data processing efficiency from 

tiie CPCM algoritiun. 
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Image 

Fig. 4.1(a) 

Fig. 4.2(a) 

Fig. 4.3(a) 

Fig. 4.4(a) 

V 

400 

589 

400 

439 

400 

550 

400 

327 

Number of 
pixels 
58501 
3828 
2878 
53 
63627 
1315 
318 
63285 
1642 
353 
63849 
1147 
284 
65131 
139 
10 
65218 
58 
60605 
3644 
1028 
58238 
5391 
1524 
127 

V 

81 
140 
29 
188 
81 
158 
13 
124 
71 
188 
124 
68 
193 
93 
150 
224 
93 
169 
127 
190 
252 
126 
177 
242 
90 

Intensity 
low,high 
39,123 
124,182 
0.38 
183,230 
19,143 
144,220 
0,18 
82,166 
29,81 
167,230 
78,170 
21,77 
171,239 
51,135 
136,193 
194,255 
35,151 
152,227 
85,169 
170,232 
233,255 
92,160 
161,211 
212,255 
55,91 

dr, 

42.14 

62.06 

42.14 

46.25 

42.14 

57.95 

42.14 

34.45 

Processing 
time (sec) 
10 

8 

9 

9 

8 

8 

9 

13 

Table 4.1 Summary of cluster statistics from CPCM algorithm, c is the number of clus­
ters, V is the cluster prototype and dr, is the cluster radius, centred at prototype v. Note: The 
intensity range is represented by the lower and upper intensity lunits, and do not overlap 
even though the prototype v is unequally spread. The order of the prototype v m the table 
corresponds to the order obtamed from the algorithm. Processing tune was measured on an 
i486DX/33-MHz Intel microprocessor. 

Image 

Fig. 4.1(a) 
Fig. 4.2(a) 

Fig. 4.3(a) 
Fig. 4.4(a) 

c 

10 
6 
12 
12 
6 

V 

157 
149 
155 
119 
246 

Processing 
time (sec) 
1416 
534 
1912 
1976 
533 

Table 4.2 Summary of cluster statistics from FCM algorithm, c is the number of clusters 
and V is the cluster prototype. Processing time was measured on an i486DX/33-MHz Intel 
microprocessor. 
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4.4 Conclusions 

Sequential fuzzy clustering algorithms offer certain advantages for unage segmentation. 

The two applications, relating to the detection of wool contaminants and tile surface de­

fects, demonstrate the sunplicity, clustering efficiency and effectiveness of the CPCM re­

gion segmentation algorithm. The failure of FCM to generate reasonable prototypes close 

to the defect pattem for the images of Figs. 4.2(a) and 4.3(a) were a surprising discovery. 

The problem with FCM seems to be due to the insensitivity of the algorithm to small num­

ber of cluster points. In other words, FCM works well only if the number of defect pomts 

in a cluster exceed a minimum threshold, such as 1200 points in Figs 4.2(a) and 4.3(a). 

The CPCM algorithm, unlike FCM, is ideally suited for this role. This is attributed to the 

order by which the CPCM segmentation algorithm removes the regions, begining with the 

major background cluster, consisting of approximately 96 % of the original image data 

(see Table 4.1). The remaining 4 % of the data have a higher proportion of the defect pat­

tems and consequently are more easily clustered. Another advantage with the CPCM seg­

mentation algorithm is the efficient extraction of a cluster region given the prototype de­

fined by (4.4). With FCM, the process is more computation intensive, involving two sepa­

rate steps. Firstly, the membership of all points must be computed from all c prototypes 

and secondly, a crisp partrtion mle such as (2.4.14) is applied to extract the specific cluster 

corresponding to the prototype. The ability to efficiently generate a cluster from the proto­

type allows the use of hybrid schemes such as a neural network and a cluster generating 

algorithm (mstead of a clustering algorithm) to improve clustering performance. This 

technique is reviewed in more detail in Chapter 8. 

The particular implementation of the CPCM clustering method can also be varied to 

explore the possibility of more efficient clustering performance. For example, a good can­

didate algorithm for consideration is the variable q reviewed in Section 3.4.1. The EPCM 

and PFCM possibilistic algorithms could also be considered for this purpose. These are 

some of the numerous unexplored possibilities offered by the fiizzy clustering approach for 

region segmentation. 
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Chapter 5 

Detection of Linear Clusters 

To simplify the analysis, the clustering method is restricted to linear clusters that are de­

tected as points in 2D space. The clustering method incorporates several procedures for 

line detection defined by the line prototype and line gradient in Section 5.2 and the line 

characteristics tests in Section 5.3. The line tests ensure that valid features present in the 

lines such as notches or slots are recognised by the algorithm. The experimental results of 

five edge-segmented real objects are discussed in Section 5.5. The clustering method can be 

extended for applications involving clusters of higher dimensions. 

5.1 Introduction 

Characterising the boundary from outimes is an effective method to obtain useful informa­

tion from digital unages of real world objects. This method sunplifies the image processing 

task in terms of computation effort and memory requirements. A variety of line detection 

schemes exist m the literature [Davies, 1990; Duda and Hart, 1973; Gonzalez and Woods, 

1992]. Historically the Hough transfonn (HT), invented by Hough in 1962, is considered 

to be the main method for detecting straight lines. Currently, other methods are gaining 

popularity. One such method is fiizzy clustenng which offers higher computation efficiency 

with lower memory requirements. 

The fiizzy c-varieties clustering algonthms [Bezdek et al., 1981a, 1981b] extended 

the detection capabilities of FCM to linear and planar clusters. Dave [1989] unproved the 

linear cluster detection of non-ordered data set with the Adaptive Fuzzy Clustering algo­

rithm (AFC). The AFC used a modified distance metnc involvmg a mixing coefficient. 
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Dave showed that the AFC compared favourably to the HT, uses less memory and pro­

duces better results in the case of polygonal approximation of curves. However, the origi­

nal AFC was sensrtive to noise and entails intensive computation. Consequently, Dave 

proposed a progressive version of the AFC (this seems to be the first documented reference 

to a progressive fuzzy clustering algorithm) that removes good linear clusters during the 

clustering process. Possibilistic clustering was introduced in [Krishnapuram and Keller, 

1993 a] to achieve more robust and accurate clustering in the presence of noise. A possi­

bilistic algorithm reformulates the probabilistic membership of FCM by basing member­

ship values solely as a function of the distance of a point from its nearest prototype or 

centre. In 1995, the possibilistic algorithm was extended to detect hyperquadric shell 

stmctures [Krishnapuram et al., 1995]. 

5.2 Two Stage Clustering 

CPCM is a suitable framework for implementing the fiizzy clustering methods to detect 

linear clusters. In the first clustering stage, CPCM obtains an approximate prototype with 

a round shape cluster stmcture. At the second clustering stage, a linear cluster prototype is 

detected if the points satisfy the line definrtion criteria. 

5.2.1 First Stage Clustering 

The membership equation for points in 5R' is given by 

1 
Uk = 

exp 
{Xk-vif+iyk-v2f 

2 

(5.1) 

where the coordinates of the M pomt x̂  is (Xkj>k) and the prototype coordinates v is (vi,V2). 

The root mean square of the Euclidean distances of points from the prototype is 

ri = j^i:ii(Xk-v,)'Hyk-^2)' (5.2) 

where Nc is the total number of points in the current data list and 5 is a constant scale fac 

tor. The prototype component equations are given by 

V ^ . 2 

^k=l"k 

(5.3a) 
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^k=i uhk 
Y^c 2 

(5.3b) 

where v = [V], V2] . 

First stage clustering algorithm. 

Fix s, at, q and Nmi„, and assign data centroid to v. 

Repeat 

Calculate Uk from (5.1) and q from (5.2). 

Calculate v from (5.3a) and (5.3b). 

Find nearest neighbour of prototype v and assign to v. 

UntU||v,-VM||<6or?>50. 

Note: 5 is a small number to determine the stopping point and Ms an iteration index. 

5.2.2 Second Stage Clustering 

The second stage coerces the prototype from the first stage towards a linear cluster bound­

ary, with an additional test for a line gradient. The line gradient is defined by 

Z ? Z : 

Fk 

F,=-

Nc t ^ 

y{yk-^2) 
k=l(xk-^l) 

Nc 

IF.. 
k=l 

0 otherwise 

1 if Uj^> a^ 

if F^ > 0 (5.4) 

0 otherwise 

where at is the alphacut threshold on membership. The line gradient is used in a member­

ship equation defined by 

1 
Uk = 

exp 
yk-v2-m{Xk-Vy) 

(5.5) 

where q is defined by (5.2) and q is a real valued exponent. The prototype equations are 

identical to (5.3a) and (5.3b). 



Chapter 5 Detection of Linear Clusters 134 

Second stage clustering algorithm. 

Use initial v from the first stage clustering. 

Repeat 

Calculate zzz from (5.4). 

Calculate Uk from (5.5) and q from (5.2). 

Calculate v from (5.3a) and (5.3b). 

Find nearest neighbour of v and assign to v. 

Until | |v,-VM||<6orr>50. 

Note: 5 is a small number to determine the stoppmg point and r is an iteration mdex. 

The point-slope form of the Ime equation (5.4) requires special treatment as the 

slope approaches infinity. One way of dealing with this condition is to accumulate the 

pomts with very small differences in the horizontal axis and later assign these points with 

an arbitrary large gradient. Consequently, it is necessary to check for infinite gradient 

condition prior to calculating the line gradient. The CPCM framework supervises the clus­

tering process to ensure that only a valid cluster is developed and manages the data for ef­

ficient processing. 

5.3 Cluster Merging and Corner Detection 

Discontinuity in a line may arise in a number of ways that occurs naturally in features of 

the object or from the edge segmentation process. Consequently, this information needs to 

be considered by the clustering algorithm so that real Ime breaks are correctly recognised 

and spurious ones are ignored. A continuous line is defined according to the mle: If the 

pixel gap g <pgap (specification) then the line is continuous. The pixel gap is defined as 

the distance between two ordered adjacent pixels. 

One algonthm for checking a continuous Ime is given by the followmg procedure in 

pseudocode, assuming the candidates of Ime pomts m the horizontal axis have been first 

sorted in an ascending order. 

For (z = 1 to Nc) do 

Begin 

If (x,+i - Xi> pgap) Then 
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If (xcount < Nmin) Then Start a new line and discard previous accumulated points. 

Else Continuous line found and exit procedure. 

Else Accumulate x, as a line point and increment xcount. 

End. 

The symbols xcount, Nc and Nmi„ represent the count of x, as a line point, the current 

data count, and the minimum number of cluster points respectively. The loop control vari­

able is denoted by the mdex z. The test for xcount is made to ensure that only a valid clus­

ter (points > Nmin) will constitute a continuous line. 

To assess suitability for cluster merging, we apply three tests in the following order: 

(i) slope ratio test, (ii) Ime separation test and (iii) Ime ends gap test. The slope ratio test 

evaluates the sign of the ratio of line gradients. If the ratio is positive, then the lines are 

czmdidates for merging. The line separation test involves two line equations as shown in 

Fig. 5.1, where the points (xi j ' l) and (x2j'2) are the Ime prototypes and zzzj, z«2 are their cor­

responding gradients. 

X , 

mi / 

, yi ^ 

-1^ 
mi 

i X2,y2 

""W X̂'y 

/ m2 

Figure 5.1 Line separation distance definition. 

yj -y2+ — + m2X2 
m. 

x = 
zzzj-f-

m. 

>> = JM2-I-ZZZ2 ( x - ^ 2 ) ifzZZi>ZZZ2 

1 
y = yx-—(x-xj) ifzzzi<zzz2 

nu 

The line separation distance is defined as 

g = 4^^-y^\f +{y-yxf 

(5.6) 

(5.7) 

(5.8) 

(5.9) 
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For g calculated from (5.9), if g < Igap (specification), then the luies are considered 

to be candidates for merguig. The line ends gap is defined as the gap between the two near­

est ends of the two lines. If this gap, g < egap (specification), then the two luies are candi­

dates for merguig. In consequence of merging the clusters (may involve more than two 

clusters), the prototype position and the gradient for the new line have to be calculated. At 

this pomt, a least squared fit of the line or other robust line regression methods given in 

[Lawrence and Arthur, 1990] can be applied to improve line detection in the presence of 

noise. Our algorithm implements a standard least squared error fit of the cluster points. 

Once a continuous line has been established, the detection of comers is relatively 

straight forward. For comer detection, we apply the mle that the closest ends of two lines 

form a comer. In case the ends of the Imes are intended to be open ended, we can apply a 

gap test to ensure that comers are only found for line ends in close proxunity. This comer 

prescription assumes all comers are defined likewise, a reasonable simplification used in 

this appUcation. Fig. 5.2 shows the line relationships for comer calculation. Points (X],_Vi) 

and (X2, y2) are the line prototypes and zzzj, zzz2 are their conesponding gradients. 

mi / 

Xx,,yi 

/ x , y 

• \ m 2 

X 2 , y 2 ^ ^ 

x = • 

Figure 5.2 Line comer defmition. 

yy-y2-m^x^+1712X2 

ZZZ2-/ZZ1 

y - y2 + ni2(x-X2) ifm\>m2 

y ^ y^ + m^{x - x^) ifm\<m2 

The comer gap is the mimmum distance defined by 

g - min(^^(x - Xl )^ + (:»̂  - y^ f ox^j{x - X2 )^ + (>' - y2 f 

lfg< cgap (specification), then the cortesponding lines have a candidate comer. 

(5.10) 

(5.11) 

(5.12) 

(5.13) 
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5.4 Pseudo Code 

The pseudo code for linear boundary detection and the eight parameters are given below. 

Pseudo code to detect linear clusters. 

Initialise at, Nmin, q, s,pgap, Igap, egap, and cgap. 

Compute mitial v from mean data centroid and q from (5.2). 

Repeat 

First stage clustering loop (from Section 5.2.1). 

Second stage clustering loop (from Section 5.2.2). 

If (0 < JV„ < Nmin) Then Remove Na from data and update Nc. 

If (Na >= Nmin) Thcu SavB cluster parameters (line ends, slope and prototype), 

remove cluster points of prototype v from data and update Nc. 

Vntil {Nc< Nmin) 

The symbols Nmin, Nc and Na represent the minimum points in a cluster, the current 

points count of data list and the number of points in the cunent cluster, respectively. For 

the four objects used in the experiments, satisfactory clustering performance was obtained 

by presetting eight of the parameters to the following constant values: a, = 0.95, 

Nmin = q = Igap = 5, pgap = egap = cgap = 10 and, 5" = 0.5. Parameter values for object 

number 5 required different settings. All constants, except for s. have units in pixel. 

The different types of cluster tests used in the linear cluster detection algorithm are 

summarised below: 

1. Cluster validity test: If cluster points, Na > N„in then a valid cluster is found. 

2. Line continuity test: If pixel gap, g<pgap then the points constitute a continuous line. 

3. Line merge criteria: 

The lines are merged if all three criteria, in the order shown, are satisfied. 

(i) If ratio of line slopes (maximum = 1), mratio > 0 and 

(ii) If the line separation distance, g < Igap and 

(iii) If ends of luies gap, g < egap, then the lines are merged. 

4. Corner test: If the two nearest ends of the lines, g < cgap, then a comer exist. 
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5.5 Characteristics of Cluster Parameters 
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Figure 5.3 First stage membership functions from equation (5.1). 

At a fixed membership Uk and the distance exponent q, the cluster radius d decreases with 

increasing values of q as indicated m Fig. 5.3. This means that smaller q values are easier 

to cluster because they have more points above the alphacut at. However, the cluster re­

sults are not likely to be as accurate as those at larger q values. Since the first stage clus­

tering is only expected to locate an approximate cluster prototype, accuracy of cluster 

prototype location is not essential at this stage. In general, the upper and lower bounds of q 

depend on the data. 
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Figure 5.4 Second stage membership functions from equation (5.5), at fixed q. 

The second stage clustering refines the approxunate prototype v from the first stage 

by applying an alphacut a, on the membership and looks for a Ime gradient from (5.4). 

Figure 5.4 shows that the characteristics of the membership is shaped by the values of q. 

Like the first stage clustering, smaller q values are easier to cluster because they yield 

more cluster solutions. Larger q values generally produce less cluster solutions but more 

accurate cluster parameters such as the line gradient and the location of the prototype. The 
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inclusion of procedures for compatible cluster merging in the algorithm design supports 

high q values for more accurate clustermg. Normally, high q clustering resuUs in frag­

mented clusters of small line segments. To remedy this, compatible clusters are merged 

accordmg to the three criteria given in Section 5.4, producmg a more compact cluster 

stmcture. Examples of cluster merguig are demonstrated m Section 5.6. 

5.6 Experimental Results 

The linear cluster detection algorithm requires mput data format as outlines of an object. 

This is obtained from any of the conventional methods of edge segmentation discussed in 

Section 7.3. The algorithm was evaluated on five different object outimes, numbered 1 to 

5. All objects were acquired in 2D plan view and in 256 x 256 resolution, except for object 

number 5, which has a resolution of 300 x 260. Object number 1 (Fig. 5.5) tests line de­

tection performance. It is an i-shape block with long and short line lengths that are quite 

weU defined. Object 2 (Fig. 5.6) is almost square shape, also with well defined long and 

short lines but differentiated by a medium size notch on the top side and a smaller notch on 

the right side. The v-notches test the algorithm for correct recognition of lines on either side 

of the notch. Object 3 (Fig. 5.7) is a poorly defined pentagon in a noisy background to as­

sess the impact of noise on cluster recognition and detection accuracy. Object 4 (Fig. 5.8) 

is a silhouette of an electric motor armature housing, containing edge noises and frag­

mented outlines associated with typical problems of low level edge segmentation. This im­

age is provided to test the algorithm's performance under real world conditions. Object 5 

(Fig. 5.9) contains multiple intersections of complicated outlines with a mixture of single 

and double lines, to test comer detection accuracy. 
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(a) Eight clusters detected. (b) Eight comers detected. 

Figure 5.5 Object number 1 (475 points) at fixed cluster parameters of Table 5.2. 

All eight clusters and comers of Figure 5.5 were detected conectly. The cluster 

prototype is computed as the mean of the cluster points. It is denoted by a small circle, lo­

cated at or near the mid point of the cluster line. The lines of the clusters are superimposed 

on the object's outline to assist comparison. The end of each cluster line is indicated by a 

small cross. A common problem with a line detection algorithm is the creation of false lines 

criss-crossing the image in a random manner. The absence of this problem in Fig. 5.5 is 

attributed to the effectiveness of the line continuity check, and also partly to the success of 

the compatible cluster merging algorithm. Small gradient enors are noticeable in Fig. 

5.5(a), resulting from the general choice of fixed cluster parameters of Table 5.2. Increas­

ing q or using higher at is expected to improve accuracy of the cluster result, for the rea­

sons given in Section 5.5. 
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(a) Ten clusters detected. (b) Ten comers detected. 

Figure 5.6 Object number 2 (576 points) at fixed cluster parameters of Table 5.2. 

Figure 5.6(a) shows two line notches correctly detected. The line gaps from both 

notches are 35 and 17 pixels, respectively. The correct identification of comers is shown in 

Fig. 5.6(b). Note that the lower comer of the smaller notch only appear misplaced because 

of the way the adjacent lines intersect. As in Fig. 5.5, the algorithm correctly detects verti­

cal lines. 

Figure 5.7(a) is a noisy image of a pentagon. The absence of distinct lines in the im­

age would present considerable problems for most boundary tracking algorithms in the 

search for edge and comer features. The CPCM based linear fuzzy clustering algorithm 

conectly identifies the five major clusters m Fig. 5.7(c) and the five comers in Fig. 5.7(d). 

Figure 5.7(b) shows the mitial clusters found from the fixed cluster parameters. The top 

edge shows three suitable candidate clusters for merging. The resuU of cluster merging is 

shown in Fig. 5.7(c). Note the prototype position afl;er cluster merging. All five comers of 

the fragmented pentagon are conectly identified from the intersection of adjacent lines. 

Given the noisy condrtion of the original image, the line gradients of Fig. 5.7(c) are accept­

able. Note that the clean image of Fig. 5.7(c), compared to Fig. 5.7(a), is a feature of 

CPCM which automatically removes noise pomts to sustain cluster development. This is a 

reason why a CPCM based fuzzy clustering algorithm is more computation efficient, com­

pared to other non-sequential fuzzy clustering algorithms. Table 5.1 summarises the line 

statistics of the pentagon objet, relating to the number of points m each cluster (line), pro­

totype positions, slope and comers. 
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(a) Noisy pentagon. (b) Seven clusters detected. 

(c) Five clusters detected after merging. (d) Five comers detected. 

Figure 5.7 Object number 3 (252 points) at fixed cluster parameters of Table 5.2. Note: 
the cluster centre is denoted bv a small circle and the comers and ends bv small crosses. 

Cluster 
number 
1 
2 
4 
5 
7 

Number 
of points 
51 
30 
31 
42 
8 

Centre 
(pixel unrts) 
176, 69 
120, 128 
191, 125 
104, 52 
70, 102 

Slope 

1.12 
0.224 
-0.813 
-0.277 
3.58 

Table 5.1 Summary of the 5 line statistics of Fig. 5.7(c). The comer dimensions of Fig. 
5.7(d) are: (209, 109), (148, 39), (166, 142), (74, 114) and (60, 65). The origm of the co­
ordinates is at the lower left comer of the image. 
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Figure 5.8(a) shows a noisy outline of an armature housing. This image demon­

strates the practical problems associated with boundary detection. The edges indicate ex­

tensive noise and line discontinuity. The clusters shown in Fig. 5.8(b) are acceptable, con­

sidering that a linear clustering algorithm is applied on an object which has a number of 

curves. Consequently, the approximation of curved sides by straight lines are quite notice­

able, particularly at the top side of the housing in Fig. 5.8(b). Despite this condition, the 

comers are accurately detected as shown m Fig. 5.8(c). A smaller q (q-3) in Fig. 5.8(d) 

yields a fiizzier Ime segment and thus less accurate comer detection compared to ^ = 6.5 in 

Fig. 5.8(c). 



Chapter 5 Detection of Linear Clusters 144 

(a) Outline of noisy armature housing. (b) Clusters identified with q = 6.5. 

(d) Comers detected with q = 3. (c) Comers detected with q = 6.5 

Figure 5.8 Object number ^ (1196 pomts) at fixed cluster parameters of Table 5.2, except 
for the indicated q parameter. 

Figure 5.9(a) shows a more complicated unage for comer detection. This condition 

requires a different set of cluster parameters from those used in Figs. 5.5 to 5.8. Figure 

5.9(b) shows that all the main cluster features are correctiy identified, mcluding the two 

comers of the outer cluster boundary. However, the four Ulterior comers of Fig. 5.9(b) 

formed by the mtersections of double lines exhibU noticeable errors. This is apparent from 

the Uvo non-parallel luies Imking the comers m Fig. 5.9(c). This problem illustrates that 

real worid images have certain features that can be difficuU to generalise with a clustering 

algorithm. In this particular case, the problem is due to the method which located the line 

ends solely from a line continuity test. For line ends defined by the two points (xi j^i) and 
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(^2j'2), one possible solution is to use the merged line gradient m and prototype v to obtam 

a better estunate of the line ends along they axis with 

>'i=zzz(xi-Vi)-fV2 (5.14) 

:y2 = w(x2-Vi) + V2 (5.15) 

where Xi and Xj are obtained from the line continuity test procedure. This modification pro­

duces an improved comer detection shown in Fig. 5.9(d). Unfortunately in this case, there 

is substantial loss of Ime details, particularly at the right side interior lines, because of un­

wanted side effects from the modification. Depending on the particular appUcation specifi­

cations, this condition may be satisfactory. For example, if comer detection is the main 

objective. Suppose the application specification requires both good line and comer detec­

tion. In this case, a further analysis of the procedure indicates that the above modification 

provides only a partial solution. A closer scmtiny reveals that Eqs. (5.14) and (5.15) do 

not give accurate prediction of line end-points for the case where the gradient is large, be­

cause of insufficient resolution in the x axis direction. Thus a small enor in the x axis is 

accentuated along the j axis. Clearly good end-point estunates for both low and high gradi­

ents will rectify the problem. This provides the solution to the following revised procedure: 

If line slope, zzz < 1 then estimate >>] and>'2 from Xi, X2, v and m with 

J'l =Z7Z(Xi -Vi)-|-V2 (5.16) 

y2 = m{x2-Vx) + V2 (5.17) 

else estunate x, and X2 from^'i, y2, v and zzz with 

Xi=vi-i- (5.18) 
zzz 

X 2 = v , + ^ ^ ^ ^ ^ (5.19) 
zzz 

The resuU of the revised modification is shown in Figs. 5.9(e) and 5.9(f). The improved 

line and comer detection of Fig. 5.9(f) compared to Fig. 5.9(d) confirms the substantial 

validity of the more extensive analysis. 

This example illustrates some of the practical problems of implementing an algo­

rithm for application. More importantiy, rt mdicates that the algorithm design must be suf­

ficiently flexible to address the needs of the particular application. It may be observed that 

the specification ofa sxnaW pgap = 7 conectly detects the line breaks at the top and bottom 

edges of Figs. 5.9(c) and 5.9(f). 
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(a) Object outline. (b) Detected clusters. 
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(c) Detected comers. (d) Improved comer detection. 

(e) Improved cluster detection. (f) Improved comer detection and Imes. 
Figure 5.9 Object number 5 (2568 points) with the following cluster parameters: Nmin = 7, 
Ot = 0.9, q = 4, q= 89.44, pgap = 7, mratio > 0, egap = 7, Igap = 5 and cgap = 10. Note 
tiiat q^ is fixed at 8,000. 
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Object 
number 
1 (Fig. 5.5a) 
2 (Fig. 5.6a) 
3 (Fig. 5.7a) 
4 (Fig. 5.8a) 

Number 
of points 
475 
576 
252 
1196 

V 

45.3 
60.3 
48.9 
61.3 

at 

0.95 
0.95 
0.95 
0.90 

Processing 
time (sec) 
1.5 
3.5 
1.5 
10.9 

Table 5.2 Summary of processing times. The cluster parameters of all four objects were 
fixed to the following values: at =0.95, A „̂j„= q = Igap = 5, pgap = egap = cgap = 10 and, 
.y = 0.5. All constants, except for s, have unit of pixel. Note that q is determined from Eq. 
(5.2). Processing tune was measured on an i486DX/33-MFlz Intel microprocessor. 

Table 5.2 summarises the processmg time to cluster each of the four objects on an 

i486DX/33-MHz Intel microprocessor. It indicates that the execution time for objects of 

about 500 points averages 2 seconds. However, doubling the number of pomts mcreases 

the time by a factor of 5. For small sizes up to about 500 points, the clustering speed is 

reasonably fast. 

5.7 Conclusions 

A new method for detecting linear boundary and comers has been presented. It is based on 

a fiizzy clustering approach involving two clustering stages within the CPCM. The first 

stage centres the prototype at a round shape dense cluster to enable detection of a linear 

cluster by the second stage. Five objects have been used to test the algorithm's clustering 

performance in noisy environments. The results demonstrate accurate clustering of lines 

and the detection of comers. Processing time for clustering was reasonably good. The ac­

commodation of specific Ime termination conditions demonstrates the flexibility of the 

CPCM framework. By modifying the distance measure dik, U is possible to detect other 

cluster stmctures such as hollow circles or shells. These examples indicate that CPCM can 

be extended in ways that will support more sophisticated clustering. The ability to do so 

with relative ease, as demonstrated in the example of Fig. 5.9, is essential to address the 

particular needs of applications. UnlUce the non-sequential fuzzy clustering algorithms, rt is 

possible to preset the cluster parameters of the boundary detection algorithm so that cluster 

numbers and parameters such as the prototypes, line gradients and the positions of comers 

are determmed automatically, for a particular type of cluster stmcture. This feature con­

tributes to the algorithm's ease of use and utility. 
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Chapter 6 

Detection of Circular Clusters 

A new method for the detection and parameter estimation of 2D ring shape cluster is pre­

sented. The compositional fuzzy clustering approach is based on a supervised synthesis of 

independently optimised fuzzy membership, cluster radius and cluster centre. Some dis­

tinctive performance features of the algorithm are (i) automatic detection of optunum 

cluster numbers, (ii) generalisation of detection from constant parameters and (iii) accurate 

clustering in the presence of noise. Tests on several edge-segmented images of real world 

objects consistently produced optimal cluster size with accurate estimation of their centres 

and radii. The algorithm provides an altemative approach to solve analytically intractable 

clustering problems and can be extended for the detection of clusters of higher dimensions. 

6.1 Introduction 

Historically the original fiizzy ISODATA, termed the Fuzzy C-Means (FCM) by Bezdek 

[1973] and Dunn [1973], is considered to be the basis of most fuzzy clustering algorithms. 

The FCM is an unsupervised clustering algorithm that finds optimum fiizzy c partrtions of 

the feature space by iterative minimisation of a least squared objective fimction, subject to 

the constraint that membership in all clusters sum to one. It has been successfiiUy em­

ployed to find lines and surfaces [Bezdek et al., 1981a and 1981b] and the characterisation 

of variable cluster shapes in a multi-dimensional feature space [Gustafson and Kessel, 

1979; Gath and Geva, 1989]. Recently, the capabUities of FCM were extended to enable 

detection of ring shape clusters by a modification of the objective fimction [Man and Gath, 

1994; Krishnapuram et al , 1995]. Whilst excellent results have been reported, there are 

practical problems in applying these algorithms. Optimal performance requires firstly, a 
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careftil choice of initial conditions and secondly, cluster validity is needed to establish op­

timum cluster size. The proposed method presents a simpler scheme for the selection of 

cluster parameters and circumvents cluster validity verification. 

6.2 Compositional Fuzzy Clustering 

In the compositional fuzzy clustering approach, the approxunation of analytic optimisation 

of the objective fimction is achieved by a composition of three separate optimisations in­

volving the fiizzy memberships, the cluster radius and the cluster prototype. Optimisation 

of each of the three cluster parameters is supervised by CPCM to ensure optimal cluster 

development. Since each cluster parameter is independently optimised, there is considerable 

freedom in defining the membership fimction and the methods for cluster radius and proto­

type convergence. Consequently, a simpler form of the membership function is possible 

and more flexible mles for cluster radius and prototype convergence may be used. These 

are described in the next section. 

6.2.1 Update of Fuzzy Membership Function 

The pomts x̂^ m 91̂  are denoted by coordmates (xk,yk) and prototype v by the coordmates 

(v;,V2). The cluster radius r has centre coordinates at the pomt (z-i,z-2). Membership for the 

cluster is 

1 
Uk= p 

ex I(xk-vi)'^+{yk-v2f 
9 

-r 

(6.1) 

where tiie cluster radius is mitially approximated by the two component equations 

Nc 

Hul{Xk-Vi)Fk 
r,,i=L_ (6.2) 

^, 

A^ulFk 
k=l 

zlul(yk -v2)Fk 

HulFk 

M (6.3) 
N^ 

^k 
/t=i 



Chapter 6 Detection of Circular Clusters 150 

Fk=-
1 if u^.> a, 

0 otherwise 

/ 2 ~ 2 

r = iri +r2 (6.4) 

and after applying the Optimal Circle Fit equations of (6.14) and (6.15), the cluster radius 

has a more accurate expression given by (6.8) in Section 6.2.2, if Â ^ > A™„. Recall that Na 

is the number of points m the cluster, and Nmi„ is the minimum number of points constitut­

ing a cluster. Symbol q is a factor to scale the metric so that q lies in a convenient range. 

For this application q is assumed to be 3500, unless otherwise indicated. Note that (6.2) 

and (6.3) are similar in form to (2.4.60) for zzz = 2 (see [Man and Gath, 1994]), except for 

the alphacut fimction Fk. The iterative form of the membership equation of (6.1) is given 

by 

1 
Uk,t = • 

exp 

yj(Xk -vii-if +(yk -V2,t-if -ft-i 

(6.5) 

where the iterated variable is indicated by an additional index t. Index k denotes the Mi 

position of a feature point in the data set. 

Initial Vo is assumed to be the data centroid and mitial Z-Q is zero. The form of (6.1) 

satisfies the two limits of the fuzzy cluster membership. At the upper lunit of maxunum 

membership, the radius from pomts of the cluster coincides with the prototype radius r. At 

the extremity of non-comcidence, the membership tends toward zero. Unlike the analytic 

optunisation methods, the exponent q is not required to be differentiable and solvable. Op­

timisation of the cluster radius and centre are discussed m the next section. 

6.2.2 Update of Cluster Radius 

Update of the cluster radius r is made by using the fiizzy membership (6.1) and the cluster 

centres v. Two forms of tiie radius equations are used. The first set is used to approximate 

the cluster radius. The iterated components are given by 

2jll,ul(Xk-Vi,t-i)Fk,t-i 
n,t V ^ . 2 „ 

^k=l k,t-l^k,t-l 

(6.6) 



Chapter 6 Detection of Circular Clusters 151 

H^^iul{yk -Vi^,.i)Fk,t-i 

j I if Ui^j_-^ > at 

[O otherwise 

The second set of equations is used when the cluster radius is defined more accurately with 

the Optunal Circle FU (OCF) equations [Chaudhuri and Kundu, 1993], given m Section 

6.2.3. The OCF equations (6.14) and (6.15) calculate vi and V2 respectively, from which 

the cluster radius can be updated directly as 

Z^Ji (xk-vi)^ +{yk -v2f]Fk 
' ~^^ ^— (6.8) 

^k=l^k 

I 1 if Uk > a, 
Fk=\ 

[ 0 otherwise 

where the alphacut a, is the membership threshold and Nc represents the number of points 

in the current data list. 

6.2.3 Update of Cluster Centre 

Update of the cluster centre is accomplished in two stages. The first stage obtauis an ap­

proximate cluster centre from the Centre Approximating (CA) equations (derived in Ap­

pendix E) given by their component equations 

vi,t=—ll^^i[xk+hk{vi,t-i-xk)] (6.9) 

V2, ^ ^ Z ^ J l U +/'A-(V2,M -yk)] (6.10) 
•l^ c 

The ratio of approximate prototype radius to previous estimated radius is 

h,=^ (6.11) 

The denommator and numerator expressions are defined by 

e,t=^(Xk -Vl,t-lf+(yk -V2,t-lf (6.12) 

rt=W+r^/ (6.13) 

where ri,t and r2,f are obtamed from Eqs. (6.2) and (6.3). The centre coordmates of (6.12) 

are obtained from the centre estimates of the previous iteration. The update of the cluster 
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centre by the CA equations involves all points in the data set without an alphacut thresh­

old. However, the application of the OCF equations is subject to two condrtions: (i) for 

Na > Nmin aud (u) for Ui > a,. For notational clarity, these two conditions and the iteration 

index t axe omitted in the following OCF equations for the estunation of the cluster centre, 

B'C-BC 

A'C-AC 

where 

^ = ZfcJj(^/t-^O^A: (6.16) 

A' = ll^^^^(yk-yk)xk (6.17) 

B = ll^^^^(xk-x,,)yk (6.18) 

B' = ll'',:^(yk-yk)yk (6.i9) 

2C'^T.'',:,{xk-Xk){xl+yl) (6.20) 

2C = T,^^:^{yk-yk)(xl + yl) (6.21) 

x = -^Lk:iXk (6.22) 
N. c 

1 V^A^ 
y=—\:,yk (6.23) 

The cluster radius r is computed from (6.8) using cluster centre values from (6.14) and 

(6.15). 

6.3 Pseudo Code 

A critical design feature of the algorithm is the progressive removal of good cluster points 

and non-cluster points, in a separate operation extemal to the optimisation loops for the 

fiizzy membership, cluster radius and centre. This strategy frees the optimisation loops to 

focus on the convergence of the cluster parameters, and contributes to the progressive de­

velopment of clusters m two major ways. Firstly, it tests for Nrmn to overcome convergence 

problems and secondly, rt provides the unpettis (by the removal of data pomts) to search 

for a new cluster. Without the controlled removal of data points, multiple cluster develop­

ment would be impossible. In addition, a beneficial spin-off from this strategy is the auto­

matic cleaning of noisy images. The elimination of unclustered points enhances cluster 
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definition and thereby improves cluster detection. Furthermore, the progressive removal of 

cluster points also unproves computation efficiency and performance. 

Pseudo code to detect circular clusters. 

Fix Nmin, q. Ok and q. 

Repeat 

Assume Z-Q = 0, use nearest neighbour of data centroid as VQ. 

Repeat 

Calculate Uk,t from (6.5) and r, from (6.8) if iV„ >= Nmin else from (6.2) and (6.3). 

Calculate v* from (6.9) and (6.10). 

If (Na >= Nmin) ThcH Calculate v̂^ from (6.14) and (6.15) and r from (6.8). 

Until (||v,+i-v,|| < vtoi). 

If {0<Na< Nmin) Then Remove Na and update Â ,,-

If (Na >= Nmin aud ^ < rtoi) Then Save cluster points Na and update Nc. 

Vntil {Nc<Nm,n). 

Note: Vtoi is a small value to control the stopping condition and Ms an iteration index. 

The following define the meanings of the symbols: at is the alphacut threshold on 

membership; v is the cluster centre; Vtoi is the current cluster centre tolerance; Na is the 

number of points in the cluster; Nc is the current count of data points; A„,„ is the minimum 

points per cluster specification; q is the metric exponent; rtoi is the radial tolerance specifi­

cation; ^ is the cluster radial tolerance. For this application, v^; = 0.005 and r^; = 0.05 

were used. The cluster radial tolerance is defined as 

^ = a (6.24) 
N 

where the cluster variance is given by 

<^ = J—JjJ(Xk-Vi,t)^+{yk-V2,tf-rt] (6.25) 

Cluster centre coordinates Vi_, and V2^t are obtained from OCF equations (6.14) and (6.15), 

and rt from (6.8). Note the particular form of (6.24) to represent the three sigma limits of 

the cluster radius per cluster point. This form is used rather than the usual three sigma 

limits to improve screening of unwanted clusters. The algorithm has a moderate tendency 

to generate small size clusters (with less than 10 pomts) together with good clusters. The 

good clusters typically contain significantly higher number of points. Equation (6.24) is 
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found to be effective m isolating small clusters without unpeding the development of clus­

ters from a low Nmin specification. An example of the implications of Eq. (6.24) wiU be 

given m Section 6.5. Practical considerations and the type of applications determine the 

specification value of rtoi. 

6.4 Parameter Selection 

u 

0 . 9 9 

0 . 9 8 

0 . 9 7 

0 . 9 6 

0 . 9 5 

u= 

0 . 3 

1 
d''/3500 

1 \ i C B - ^ \ 2 2 . 5 3 

1 \ \ 

i ^̂  \ 
\q=I5 \^q=7 ^ = 5 

Figure 6.1 Plot of membership versus radial standard deviation for several q. 

Considering the complexity of the clustering task, the significant cluster parameters of the 

algorithm are surprisingly few in number. The algorithm's performance is govemed by two 

parameters, q and Nmi„, that could be preset m most cases. Figure 6.1 shows that q limits 

the cluster radial standard deviation d to one standard deviation (or 1 pixel unit) for values 

of q>l at at- 0.95. With the assumptions of or, = 0.95 and q = 3,500, our experiments 

indicate that a high specification of q (for q>l) is generally needed to detect poorly de­

fined clusters or clusters in a noisy environment. A clean or noiseless cluster can be de­

tected for a low q specification (for 3 < ^ < 7). The number of points in the cluster deter­

mines the size of Nmin- In the examples, it is possible to obtain good or optimal cluster per­

formance from Nmin = 5 if the clusters are clean or well defined. For clusters in a noisy en­

vironment, a substantially higher value of A„,>, is appropriate to minimise the detection of 

poorly defined clusters. For clusters containing several rings of different radii with a me­

dium level of noise, a good initial set of parameter values is with q = 7 and Nmin = 5. In 

most cases the presets, q and Nmm, will yield reasonable cluster solutions. The same pre­

sets, corresponding to a particular cluster stmcture, will exhibrt a modest degree of insen­

sitivity to cluster numbers and invariance to scale, rotation and translation of the cluster 

points. However, the distribution and level of noise can have a significant bearing on the 
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ability of the algorithm to replicate optimal resuUs from the same presets. If the cluster 

results do not conform to expectation, the recommended procedure is to search for a solu­

tion by varymg q and Nmi„ m a sequential order. Although these ranges may appear exces­

sive, in reality, more than one solution may exist withui the prescribed ranges. Specific 

issues concerning the proper selection of these parameters are discussed in the experimen­

tal results of Section 6.5. 

6.5 Experimental results 

(a) (b) 
Fig. 6.2 (a) Two identical circles (538 points) vertically aligned and in contact, (b) Five 
possible clusters found at q = A\ and N,mn = 5. Cluster solutions are superimposed on 
original unclustered rings. The two smallest cluster rings were obtained with q = 3 and 
•^^min ^ • 

The first example, consisting of a figure of eight formed from two identical circles, shows 

the influence of subjectivity on the interpretation of a cluster resuU. One may perhaps rea­

sonably assume that Fig. 6.2(a) contains only two clusters. An extended cluster search 

discloses five rings shown in Fig. 6.2(b). The centre of each of the clusters is marked with 

a small plus symbol. The significance of this result suggests that it is not possible to predi­

cate a priori the existence of particular cluster solutions at fixed values ofq and Nmin- Gen­

erally, a lower q specification tends to yield the normal cluster mterpretation. The final 

cluster result is improved by applying equation (6.24). The results of Table 6.1 show five 

poorly formed clusters, numbered 7 to 5, for A^ < 10. In this case, rt is clearly impossible 

to use a 3 cr cluster tolerance to isolate these clusters. However, cluster validify criterion 

(6.24) enables the extraction of good clusters numbered 6 to 10. The results of Table 6.1 
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suggest accurate cluster parameter estimation. The tme cluster radius and cluster centre, 

determined from the geometry of Fig. 6.2(a), is 47.5 pixel units. The tme cluster centres 

are located at coordinates (141.5, 93.5) and (141.5, 188.5), correspondmg to the lower and 

upper rings respectively. 

Cluster 
number 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Na 

8 
8 
8 
8 
8 
64 
42 
42 
172 
178 

V; 

141.5 
137.5 
145.5 
133.5 
149.5 
141.5 
109.4 
173.6 
141.5 
I4I.5 

V2 

141.5 
141.5 
141.5 
141.5 
141.5 
141.0 
I4I.0 
141.0 
188.5 
94.3 

Cluster 
radius 
1.2 
1.2 
1.2 
1.2 
1.2 
94.6 
104.4 
104.4 
47.5 
47.5 

3a 

1.333 
1.333 
1.333 
1.333 
1.333 
1.492 
1.070 
1.070 
0.750 
0.860 

3dNa 

0.1666 
0.1666 
0.1666 
0.1666 
0.1666 
0.0233 
0.0255 
0.0255 
0.0044 
0.0048 

Table 6.1 Summary of Fig. 6.2(b) cluster result. Cluster parameter constants are: 
«( = 0.95, q = 41, Nmin = 5. The tme cluster centres (for the two smaUest circles) are at 
(141.5, 93.5) and (141.5, 188.5) and the tme cluster radius is 47.5 units of pixels. Na is 
the points count of each cluster. Pomt (v;, V2) is the cluster centre. Clusters numbered 1 to 
5 with AQ, < 10 and radius < 2 are poorly formed. They do not give a useful cluster stmc­
ture interpretation. 
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(a) 22 edge segmented blood cells. (b) All 22 cells correctly detected. 

© © 
© 

^© 
^ © 
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@ 

© 

(c) All 18 cells correctly detected. 

Figure 6.3 (a) Sobel segmented red blood cells comprising 3,101 points, (b) Twenty two 
clustered cells with q = 7 and N,mn = 5. Image (c) is the same as (b), less four cells and ro­
tated by 90 degrees. All eighteen cells of (c) are correctly identified for same cluster pa­
rameters as (b). Source of Fig. 6.3(a): [J.R. Parker, 1994]. 

The automatic inspection of blood samples is suitable for fiizzy clustering, as dem­

onstrated m Fig. 6.3(a). The algorithm is applied to count the number of blood cells. A 

close mspection reveals that this is quite a complicated task because the cells not only dis­

play some irregular outimes, but also overlap to various extent. As Parker [12] noted, the 

partial occlusion of neighbouring cells presents some problems for conventional image 

processmg. Although it is possible to solve this problem with the Hough transform method, 

the fiizzy clustering approach seems more elegant and efficient. The algorithm performed 

well on two different blood samples, correctly identifying all cells m Figs. 6.3(b) and 
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6.3(c). All 22 ceUs m the image of Fig. 6.3(a), consisting of 3,101 pomts, were detected in 

15.5 seconds on an i486DX/33-MHz Intel microprocessor. The result is shown in Fig. 

6.3(b), where the identified cluster is marked by a small cross at the centre of the cell. Fig­

ure 6.3(c) shows a different pattern presented to the algorithm, obtained by rotating Fig. 

3(b) 90 deg. and removing four cells. Using the same parameter values as for Fig. 3(b), the 

algorithm counted all the eighteen cells of Fig. 3(c) correctly. The results of Figs. 3(b) and 

3(c) demonsfrate that the algorithm can automatically find the optimum cluster numbers 

from preset cluster parameter values. 
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(a) Three noisy rings. (b) Three clustered nngs. 

(c) Clustered nngs of (b) superimposed on (a). 

Figure 6.4 A noisy image of three nngs, comprising 571 pomts. Unage (b) shows three 
clusters detected with 17= 12 and A™„ = 5. Unage (c) shows the detected nngs supenm-
posed on image (a). Note die accurate centres and radii of the detected cluster parameters 
in Fig. 6.4(c). 
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To evaluate clustering performance in the presence of noise, the algorithm was pre­

sented with the unage of Fig. 6.4(a), consistmg of fragmented outimes of three uitersecting 

circles ui a noisy background. The algorithm successfiiUy detected all three clusters with 

accurate centres and radii estunation in Fig. 6.4(b). The accurate cluster centres and radii 

depicted m Fig. 6.4(c) demonstrate the robust clustering performance. 

The next example is concemed with the automatic assembly of an industrial grinder. 

Figure 6.5 (a), (b) and (c) depict some randonUy oriented holding positions of three differ­

ent sizes of the armature housing before the insertion of the armature component. The tasks 

of the vision system are to locate the object centre, the inner circle for component mating 

and outer circle to enable a gripper to secure the object for subassembly. One pronounced 

effect of the edge segmentation process is the presence of residual noise, especially around 

the interior circle. Furthermore, the circular outlines are not well defined, with extensive 

fragmentation and extraneous features located between the inner and outer circles that can 

confiise the clustering algorithm. Given the concentration of pattems in the vicinity of the 

two major circles, discriminating these circles present difficulties for any clustering algo­

rithm. Table 6.2 summarises the result of a first attempt to obtam cluster solutions from 

fixed parameters. Cluster solutions (consisting of the inner and outer annuli and centre) are 

limited to 40 < Nrmn ^ 49 at unit intervals, with q= 12. 

The cluster results of Table 6.2 mdicate that the noise features in close proximity to 

the inner circle of Fig. 6.5(a) distorts the inner cluster circle, producing a circle that is ec­

centric. Elimination of the noise features, shown in Fig. 6.5(d), produces a dramatic im­

provement, confirming the problem diagnosis. Table 6.2 shows the transformation from no 

solutions for Fig. 6.5(a) to 10 solutions for Fig. 6.5(d). This pleasing resuU demonstrates 

the feasibility of usmg fixed parameter presets for optimal clustering. In practice, the ulte­

rior noise can be minimised by controUmg the Ughtmg environment or by increasmg the 

contrast between im^e and background to improve the edge segmentation process. Despite 

the substantial interior noise m Fig. 6.5(a), optimal cluster numbers were obtamed as 

shown in Fig. 6.5(e). The accurate location of die four cluster rings m Fig. 6.5(f) demon­

strates good clustering performance from the algorithm. 
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Image 

Fig. 6.5a 
Fig. 6.5b 
Fig. 6.5c 
Fig. 6.5d 

Na 

2126 
II86 
2235 
2027 

Solutions for Amin 

40 
no 
yes 
yes 
yes 

41 
no 
yes 
yes 
yes 

1 42 

no 
yes 
yes 
yes 

43 
no 
ves 
yes 
yes 

44 
m> 

• m> 

yes 
yes 

45 
no 
no 
yes 
yes 

46 
no 
no 
yes 
yes 

47 
no 
yes 
yes 
yes 

48 
i m> 
yes 
yes 
yes 

49 
no 
no 
yes 
yes 

Table 6.2 Summary of cluster solutions for 40 < Nmin ^ 49 at unit uitervals, with q = 12. 
Na is the number of points in the cluster. N^am is the minimum pomts per cluster. 

A summary of the circle statistics of Fig. 6.5(e) is given m Table 6.3, relatmg to the 

number of points in each cluster, circle centres, radii and the rtoi values. 

Cluster 
number 
1 
2 
3 
4 

Number 
of points 
299 
626 
398 
347 

Centre 

127.49, 125.89 
126.33, 107.38 
127.56, 126.09 
127.31, 126.65 

Radius 

83.93 
107.38 
97.10 
74.33 

rtoi 

.0054 

.0024 

.0039 

.0040 

Table 6.3 Summary of Fig. 6.5(e) circle statistics. Note: Circle centre is marked by a 
small cross in Figs 6.5(e) and 6.5(f). The origin of the points is at the lower left comer. All 
dimensions are in pixel unit. 
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(a) Outline of armature housing top. (b) Another outline of armature housing top. 

(c) Another outline of armature housing top. (d) Intenor noise of (a) removed. 

(e) Four segmented clusters of (a). (f) Image (a) with the four nngs of (e). 

Figure 6.5 Segmented outlines of an armature housing top, acquired in different onenta-
tions and positions, (e) Clusters parameters of (e) are: ^=12 and AA™„=112. 
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6.6 Conclusions 

A new approach to fiizzy clustering based on a supervised synthesis of independently op­

timised fiizzy membership, cluster radius and cluster centre has been presented. This com­

positional approach to fiizzy clustering offers certain advantages over the analytical ap­

proaches, such as more freedom to define memberships and greater flexibility to enforce 

optimisation of the cluster radius and centre without the analytic constraints. Some distinc­

tive performance features of the algorithm are (i) automatic detection of optunum cluster 

numbers, (ii) generalisation of detection from constant parameters and (iii) accurate clus­

tering Ul the presence of noise. Additionally, the algorithm provides an altemative approach 

to solve analytically intractable clustering problems. The constmction of separate optuni­

sation of cluster parameters and the supervising framework entail more design effort, but 

produces accurate clustering. 
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Chapter 7 

A General Pattern Recognition Method 

The general pattem recognition of any arbitrary object feature is cunently still very diffi­

cult to achieve primarily because of the large number of possible variations of the same 

feature and insufficient understanding of the nature of pattem interpretation. Nevertheless, 

by constraining the conditions by which the image is acquired, with a few simplifying as­

sumptions such as a relatively low noise environment, undistorted and well-defined feature 

views m a 2D unage plane, it is possible to obtain a satisfactory result for pattem recogni­

tion. 

This chapter presents a method for the general pattem recognition of a local feature 

on the top face of an electric motor armature housing, consistmg of the following proc­

esses: (i) image acquisition m Section 7.1, (ii) image thresholding in Section 7.2, (iii) image 

segmentation m Section 7.3, (iv) edge detection in Section 7.4 and (v) pattern matching m 

Section 7.5. This example illustrates how to use the different fuzzy clustering methods ex­

amined in chapters 4 and 6, with some of the above mentioned techniques, to constmct a 

solution for general pattem recognition. A schematic of the pattem recognition method is 

shown in Fig. 7.1. 
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Figure 7.1 A schematic of the general pattem recognition method. 

7.1 Image Acquisition 

The basic requirements for image acquisrtion are a good lighting environment, suitable 

fixtures for lighting and for the placement of the objects for image capture, a video camera 

and a frame grabber. 

Lighting involves the two important factors; quality and direction. The quality of 

lighting relates to the adequacy of illumination intensity to delineate object features from 

the background. Usually some control on illumination intensity is necessary to avoid un­

wanted effects of over or under exposure. Diffuse or even lighting is generally desirable to 

prevent casting shadows, but difficult to achieve m practice. For this experiment, four 100 

watts blue tmted globes were mounted on a fixture, which has adjustable height and light­

ing direction to simulate diffiise lighting. 

The armature housing object has a stable bottom posrtion, simpUfying the object 

placement for unage acquisition. The dark colored object was placed on a white back­

ground to provide a good contrast. The camera was mounted on a height adjustable fixture 

with a cantilever to position the camera lens directly above the object (to mmimise per­

spective distortion). 

A calibration of the camera for image position and screen resolution may be needed to ob­

tam tme views of the object. Image position calibration was achieved using a calibrated 

grid of dot pattems (6 mm diameter dots, spaced 50 mm apart) and acquiring the dot pat­

tems at various camera heights. Errors in the x and y axes were foimd to be less than ± 1 

pixel unit over a length of 300 mm, and less than ± 2 pixel units over a length of 200 mm, 

respectively. An example of the calibration chart for the x axis image posrtion is shown in 
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Fig. 7.2. The camera used is a high resolution CCD color camera, Pulnix model TMC-76 

fitted with an £^1.4, 10 mm lens without auto-focussing. It has a resolution of 

756(H) X 581(V) which is incompatible with the Data Translation frame grabber (model 

DT287I) display resolution of 512 x 512. Consequently, screen unage is not displayed in 

tme view and appears stretched along the y-axis. Using the camera calibration charts for 

the X and;' axes, the correction factor on the j;-axis was calculated to be 0.7049. 

Figure 7.2 Image scale for x axis pixels. 

7.2 Image Thresholding 

To simplify the image processing task, the image is acquired in gray scales of 256 levels. 

This unage is thresholded to prepare the image for blob analysis and pattem matching 

stages. There are many different methods for image thresholdmg [see Gonzalez and 

Woods, 1992; Haralick and Shapiro, 1992; Davies, 1990]. The fiizzy metiiod presented m 

Chapter 4 can also be used effectively. However, some experimental trials are mitially nec­

essary to establish a good constant for the q adjustment equation (4.5). Once this is com­

pleted, the algorithm is straightforward to use with good discrimination under a wide range 

of illumination conditions. 
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(a) Intensity image. (b) Thresholded image of (a). 

Figure 7.3 Top views of an armature housing. 

Figure 7.3(a) shows the intensity image of the housing top which is only displayed m 

16 gray levels, because of a limitation of the word processor. The image contained 256 

levels and was thresholded as 256 levels. Figure 7.3(b) shows the binary image resulting 

from thresholding. Note that the binary image of Fig. 7.3(b) contains extraneous data in the 

centre region of the image. For our particular method of pattem recognition, the data will 

not adversely affect the end result, although it may present problems with other methods 

used. However, since the data is not usefiil for downstream processes, it should be removed 

in the interest of improved computation efficiency. The object features are isolated from 

the background by a method called image segmentation. 

7.3 Image Segmentation 

Like thresholding, there are numerous methods for image segmentation. Some examples 

are found m [Gonzalez and Woods, 1992; Haralick and Shapiro, 1992; Davies, 1990; Co­

hen, 1993; Fu and Mui, 1981]. The method we used is known as blob (or connectivity) 

analysis introduced by [Cunningham, 1981]. We modified his method to mclude some re­

finements such as improved segmentation accuracy of complicated blob stmctures and 

automatic edge segmentation [Im, 1992]. 
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Three blobs obtamed from a blob analysis of Fig. 7.3(b) are shown in Figs. 7.4 (a), 

(c) and (e). The corresponding edges of the segmented blobs are shown m Figs. 7.4(b), 

7.4(d) and 7.4(f). For the purpose of visualisation, the segmented blob is shown as a black 

object in a white background. As this example Ulustrates, one or more blobs may be ob­

tamed from thresholdmg an image. Therefore, a method to identify the segmented blobs is 

necessary to ensure the correct blob is used for the pattem matching stage. Because blob 

analysis performs a normal raster scan of the unage, it is easy to implement an efficient 

procedure within blob analysis to quantify the geometric properties of an object; for ex­

ample, areas, perimeters, first and second moments of area, bounding dimensions, aspect 

ratio and other shape parameters. These properties may be used to identify the object. 

7.4 Feature Extraction 

Feature extraction is used to obtain a model feature for pattem matching and also to enable 

a comparison of selected data features to be made against the desired model feature, during 

a search for a pattem match. Several silhouette based techniques, such as curvature scale 

space representation of points in [Mokhtarian, 1995], a parametric approach for matching 

of polygonal profiles [Ventura et al., 1995] and the correlation coefficient method [Im, 

1992], have been used. Our method uses an array of 30 (max) mean radial profile points, 

where each point corresponds to a degree of rotation angle. The profile pomts are used to 

calculate the similarity coefficient (see Section 7.5.1) for pattem matching. The maximum 

array size is introduced to limit the processing tune. The feature extraction process, illus­

trated in Fig. 7.5, shows the extraction ofa notch profile from a window with boundaries 

defined by a radial angle range of 30 degrees and the mner and outer radii of 80 and 117 

pixel units, respectively. 
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(a) Segmented image number 1. (b) Edge image number 1. 

(c) Segmented image number 2. (d) Edge image number 2. 

(e) Segmented image number 3. (f) Edge image number 3. 

Figure 7.4 Three blobs extracted from Fig. 7.3(b). 



Chapter 7 A General Pattem Recognition Method 169 

7.5 Pattern Matching 

Normally, the matching of data features to the model features is done over a restricted zone 

of the image area for reasons of processing efficiency. In our method, pattem matchmg is 

confined to the window defined in the lower drawing of Fig. 7.5. The search for a pattem 

match starts at 0 degrees, defined in Fig. 7.6 (a), and proceeds in a clockwise direction up 

to a full 360 degrees. To improve the accuracy of the search for a pattem match, a number 

of screening strategies can be used. These are discussed in [Im, 1992]. For this experiment, 

the algorithm used for pattem matching has efficient processmg techniques derived from 

the use of (i) similarity coefficient (Section 7.5.1, from [Flusser, 1995]) and (ii) data sec­

toring (Section 7.5.2). Consequently, the pattem matching algorithm can unplement an 

exhaustive search over a zone boimded by the two specified radii without any need for 

screening strategies. 

EDGE SEGMENTED IMAGE 

MODEL FEATURES EXTRACTION 

MODEL PROFILE TEMPLATE 

naK M w po-in4 cc 

, He^rV rB.r. X..UL . . . 
Rad ia l , r a n ^ e -

.(Dlx.>. : eO-,XX7. 
un* •(p.iM-> .; 9 1 

(toix-)- : l o ^ 
. . . :<p.*k>. ;: 4.13..36it <.•>. 
. . .(piK.> .: 29 

Figure 7.5. The feature extraction process. 
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O d e g 

P r e s s anvi k e y t o b e g i n s e a r c h . 

Figure 7.6 Object presented for pattern matching. 
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Figure 7.7 Pattem matching ofa local feature at 139 degrees. 
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Figure 7.8 Pattern matching ofa local feature at 142 degrees. 
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Figure 7.9 Pattem matchmg ofa local feature at -122 degrees. 
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7.5.1 Similarity Coefficient 

To obtam a sunilarity coefficient, the mean radial point value at each degree of rotation 

angle from the two sorted anays of objects Ak (from the model) and Bk (from the data) are 

compared. The similarity relation is defined by 

I ^' 
'(^'B) = l--—-J^\Ak-B,\ (7.1) 

where Ac is the number of pomts in the array (maximum = 30) and M is the maximum ra­

dial value of either array A ox B. Note that each value of the array is measured relative to 

the radius centre. Since (7.1) mvolves only the addition, subtraction and division opera­

tions, it is more efficient compared to other sunilarity mdices such as a statistical correla­

tion coefficient. The algorithm allows a minimum of Nc- 5 and a maximum of A^ = 30 in 

calculatmg the similarity coefficient s{A,B). An additional procedure is used to detect the 

maximum similarity coefficient s(A,B) and the angle at which this coefficient occurs. 

7.5.2 Data Sectoring 

Data sectoring is the division of data in the image space into equal sector areas for the pur­

pose of calculating the similarity coefficient. Since the pattem match is confined to the 

boimdaries of a data window (within which data is extracted), it is only necessary to limit 

the zone of data sectoring within the two specified radii. Data extracted from the window is 

associated with its sector, resulting in significantly improved data processing efficiency. In 

this application for example, the processing speed increased by a factor of five when the 

sectors increased from four to eighteen (this figure varies with different images). It has 

been experimentally established that eighteen sectors gives near optimal performance, de­

pending on the unage data. A higher number of sectors may result in sub-optunal perform­

ance because of mcreased processing for the sectors. In usmg the data sectoring technique, 

it is important to ensure that the sectors overlap the extreme boimdaries of the window 

during each degree of rotation of the window. 

7.5.3 Fuzzy Clustering to Locate Circle Centre and Radii 

The accuracy of pattem matching depends on an accurate reference centre for the window. 

This is demonstrated by comparmg Figs. 7.7 and 7.8. Figure 7.7 locates the optimal match 
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angle at 139 degrees. Note the model profile obtained from the same object at the upper left 

comer of Fig. 7.7). Figure 7.6 shows the same object presented for pattem matchmg. The 

orientation angle of the object in Fig. 7.8 is tiie same as Fig. 7.7, except that the centre of 

the object of Fig. 7.8 is located by a centroid of area method, a less accurate method com­

pared to fuzzy clustering. Consequently eccentric circles formed by the rotating window 

are clearly visible in Fig. 7.8, because of maccurate centring. The pattem match algorithm 

is however quite robust, finding a match at 142 degrees for Fig. 7.8 with an error of 3 de­

grees compared to the optimum match angle at 139 degrees of Fig. 7.7. The error is also 

reflected in a lower similarity coefficient. The fiizzy clustering method for circular cluster 

detection, exammed in Chapter 6, gives accurate centre values needed by the pattem match 

algorithm. For example. Fig. 6.5 demonstrates that accurate circle centre, and the inner and 

outer radii of the housing rings can be obtained from the clustering method. Figure 7.9 

shows another example of conect pattem match at a rotation angle of-122 degrees. 

7.6 Clustering Performance 

Table 7.1 summarises the processing times to detect the selected pattem at various indi­

cated orientations of the housing top face. The processing times were measured on an 

i486DX/33-MHz Intel microprocessor. The processing tune to match all the different 

profile angles, averages about 3 seconds. A major portion of the processmg time was due 

to sectoring data into the 18 sectors. The time to compute similarity coefficients was neg­

ligible. The different orientations of the selected profile on the housing top face were cor­

rectly identified by the pattem matching algorithm, without enors. 

Image 

HTOPl.EDG 
HT0P2.EDG 
HT0P3.EDG 
HT0P4.EDG 

Number 
of pomts 
2578 
2703 
2775 
2784 

Profile 
angle (deg) 
139 
66 
-32 
-122 

Processing 
time (sec) 
3.0 
3.2 
3.5 
3.3 

Table 7.1 Summary of processing tunes. The profile angle is measured posUive in a 
counter clockwise direction. 18 data sectors were used m the algorithm. All four different 
orientations of the housing were correctiy detected. The processing time was measured on 
an i486DX/33-MHz Intel microprocessor. 



Chapter 7 A General Pattem Recognition Method 174 

7.7 Conclusions 

A general pattem recognition of an arbUrary object feature is generally difficuU to ac­

complish successfully without simpUfying assumptions that constrain the conditions by 

which the image features are to be detected. One such approach involves pattem matching 

of local feature points using similarity coefficients and a number of low level image proc­

essmg routines to convert the data into a form suitable for this task. In constmcting a gen­

eral pattem recognition method, the fiizzy clustering methods such as those discussed in 

Chapter 4 for region segmentation or thresholding, and m Chapter 6 for the detection of 

circles have been found to be particularly useful. One of the significant benefits of fuzzy 

clustering methods is the accurate detection of graphic primitives such as lines, arcs and 

circles. Quite often, this aspect of unage processing is difficult to achieve by conventional 

means, especially if the environment is noisy or the unage is fragmented or partly occluded. 

This example has demonstrated that the fiizzy clustering methods can significantly 

unprove or simplify the pattem recognition problem. For example, the automatic detection 

of the inner and outer annuli of the housuig top eluninates the need for extensive trials to 

define the probable window boundaries for the pattem matching algorithm. Moreover, the 

accurate detection of the aimuli centre improves the detection accuracy of the optimal angle 

of match compared to conventional methods such as the centroid of area method. 
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Chapter 8 

A Neural Network Approach 

Neural networks open new possibilities for pattem recognition. One of the recognisable 

advantage ofa neural network, among others, is its generalisation characteristic. In practi­

cal terms, this means a neural network, under suitable conditions of the data and training, 

can perform complex mapping that approximates to the desired output even though the 

input pattem is not exactly identical to the training pattem. The generalisation capability is 

typically obtained at a significant cost, involving extensive traming of the network to leam 

the desired pattem features. Often elaborate data preparation is necessary because the form 

of the input data has a significant impact in the leaming capability of the network. This 

chapter examines various ways of extending generalisation m a neural network. 

Three different applications of the fiizzy neural networks based on the backpropa­

gation paradigm are presented. Section 8.1 presents a scaled fuzzy prototype mappmg 

method to improve object identification under a range of illumination conditions. Section 

8.2 examines the design ofa neural network configuration to improve object recognition. 

This involves training a cascaded neural network with membership functions to map a 

complex correlation coefficient parameter needed for pattem matching. In Section 8.3, a 

fiizzy neural network is implemented to improve cluster substmcture identification by 

trammg a neural network to map the cluster prototype from the cluster membership fimc­

tion. 
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8.1 Improving Object Recognition with Scaled 
Fuzzy Prototypes 

Two neural network methods for the pattem classification of real objects are examined. 

The Direct Mapping (DM) method defined m Section 8.1.2, uses normalised histograms 

for network mputs while the Scaled Fuzzy Prototype Mappmg (SFPM) method, defined in 

Section 8.1.3, provides Effective Widtii Ratios (EWR) data for network mputs. The EWR 

defined in Section 8.1.4 is normalised intensity data scaled from FCM prototypes. The 

SFPM method proves to be more effective m mitigating the iUumination effects compared 

to the DM method, thus enabling more robust cluster identification in a noisy environment. 

8.1.1 Introduction 

Images acquired by a camera are susceptible to illumination or reflectance variations which 

can have a significant impact on the results of subsequent image analysis. For example, the 

detection of specific colour tones in an object can be critically dependent on a controlled 

lighting environment that may be difficult or too costly to provide in certam environments. 

Consequently, there is a strong motivation to devise illumination insensitive methods for 

image processing. 

In the DM method, input data to the neural network are m the form of normaUsed 

histograms. The histograms represent an image of 256 x 256 resolution with 256 gray 

levels of intensity. A significant advantage of histogram based unage analysis is Us sim­

plicity. Its compact feature representation and rotation mvariance are readily exploited 

without recourse to complex analysis. 

8.1.2 Direct Mapping (DM) Method 

DM involves mappmg of 256 elements of the histogram into the five designated output 

classes by a backpropagation neural network, a paradigm [Rumelhart et al., 1986] that has 

been widely and successfully applied to pattem recognition problems suice its inception in 

1986. Other more advanced variants basically improve the reUabUity and speed of training 

tunes. The standard backpropagation model is also quUe suitable for accurate classification 

because it can be implemented to give value data (discussed m Section 8.1.5) that indicate 
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a controllable degree of classification. The choice of the particular network model is not 

critical for the particular application. 

A three-layer architecture (256:5:5, correspondmg to the mput, middle and output 

layers) was selected for the network, as shown Ui Figs. 8.1 and 8.2. For input data com­

patibility, a floating pomt data type was selected for each of the three layers. WhUst the 

DM method is sunple to unplement, rt vrill be apparent later that the classifier performance 

is rather sensitive to illumination factors. 

256:5:5 3:5:5 

Normalised 
Histogram FFBP Net =t> Net Outputs EWR ^^ FFBP Net ^^ Net Outputs 

Figure 8.1 Network for DM method. Figure 8.2 Network for SFPM method. 

8.1.3 Scaled Fuzzy Prototype Mapping (SFPM) Method 

The SFPM method uses the FCM algorithm [Bezdek, 1981] to generate the scaled fuzzy 

prototypes from the intensity data for use as mput to a backpropagation neural network. 

The network stmcture also consists of three layers (3:5:5) as indicated in Fig. 8.2, except 

that the input layer has three processing elements corresponding to the number of the fuzzy 

prototypes which are normalised as Effective Width Ratios (EWR). The FCM partitions a 

finite set of feature vectors in real ^/-dimensional space i?^ into c clusters or natural groups, 

where 1 < c < A is an integer. The c xN matrix U = [Ujk] contams the fuzzy c partrtions of 

X which satisfies the followmg three conditions: 

c N 

2j";jt = 1, for aU k; X " * > 0, for aU / and w,* € [0,1], for aU i,k. (8.1.1) 
i=l ^=1 

The FCM computes the clusters by iterative minunisation of the general objective fimction 

N c 

Jm(U,V) = YLul\\xk-yt\ti for\<m<^ (8.1.2) 

it=i)=i 

where U is the fiizzy c partition of the set of cluster centres v, e i?'̂ , || • |t4 the weighted in­

ner product norm and m e (l,oo) is the weighting exponent of the fuzzy membership. The 

norm is the Euclidean distance between the feature vectors and the cluster centres. Hard 
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clusters in X exist for w = I. For w > 1, a local minunum of Jm exists, for all /, k and 

Xk -^ Vy, and for all i respectively, when 

Uik^ Lu \\ ^ (8.1.3) 

v, = 

c s 
k=l 

l̂k-v,| 
11 

y^-v, 
J 
A J 

21 (m-l) 

N 

Au^ik'^k 
k=l 

1-1 

' N (8.1.4) 

Su,̂  
k=l 

The exponent of the fuzzy memberships m determines the shape of the fuzzy mem­

bership. An exponent of value 2 is generally satisfactory for clustering. The algorithm pro­

ceeds with initial random values for Uo to produce a series of values for v, and M,t. Substi­

tutions involving Uik in (8.1.3) and v, in (8.1.4) are made repeatedly until the value of either 

variable converges to an acceptable limit. This algorithm is quite computation intensive. 

To alleviate this problem, neural network solutions were adopted. Bezdek has unplemented 

a Feed Forward Backpropagation Cascade Correlation network with improved leaming 

rates ui [Hall et al., 1992]. It is also possible to train a backpropagation neural network to 

model the cluster centres (or prototypes) of the FCM algorithm (Section 8.3). 

8.1.4 Effective Width Ratios (EWR) 

If a histogram is used directly in training a neural network, accuracy of pattem classifica­

tion may be adversely affected by lighting conditions since these factors influence the shape 

of the histogram. The effects of illumination variation on histogram are illustrated in Figs. 

8.4(a) and 8.4(b). To improve the recognition capability of the network, rt is possible to 

derive parameters from fiizzy clusters that are largely insensitive to Ulumination effects. 

One simple method is to scale the fiizzy prototypes as Effective Width Ratios (EWR), 

w , = • 
c, -b 

(8.1.5) 

where c, is the cluster centre for / = l,2,..,N. The symbol b denotes the lower end intensity 

pomt of the histogram above the pixel count threshold limit T, and r the profile range. The 

threshold T defines the new histogram profile to which pixels are considered to belong, if 
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they exceed T. The symbols of T,b andr are defined in Figure 8.3. Equation (8.1.5) is 

equivalent to a width normalisation of the histogram data. 

1.0 

T 
_y 

b C1 C2 C3 
r 

\ 

Figure 8.3 Ulustration of EWR definitions. 

To illustrate, an object with 3 cluster prototypes c, = 113, C2 = 134 and Cs = 156 has 

an effective mtensity interval from 84 to 251 and a range r = 167 for 7 specified at 0.1 %. 

Witii b = 84, w,, W2 and Wj compute to 0.1737, 0.2994 and 0.4311 respectively. Table 8.1 

shows the EWR for 3, 4 and 5 clusters of the same object at high and low levels of illumi­

nation. The low and high illumination levels have histogram pattems shown ui Fig. 8.4(a) 

and Fig. 8.4(b) respectively. Desprte the significant difference in illumination mtensity, the 

good agreement m the EWR for each corresponding cluster confirms the substantial valid­

ity of (8.1.5). It is observed from Table 8.1 that (8.1.5) holds for any number of clusters 

produced by FCM and for any range of illumination except at the extremities. At these 

zones, either saturation or under exposure occurs with the loss of feature discrimination. 

Nornalised histosran 

l.O-

0.5 — 

I I I I I I I { I I I I I I I I I I I I I I I 
50 lOO ISO 200 250 

Normalised histogran 

l.O-

0.5 — 

I I I I I I I 1 1 I I I I I I I I I I I I I I I I 
50 lOO 150 200 250 

(a) Low illumination. (b) High illumination. 

Figure 8.4 Histograms of identical object at two different levels of iUumination. 
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Figure 
(8.4) 

High/ 
Low/ 

High/ 
Low/ 

High/ 
Low/ 

Cluster Prototypes 

C\ 

113 
83 

108 
80 

105 
78 

C2 

134 
94 

125 
89 

121 
86 

<?3 

156 
107 

142 
98 

134 
93 

CA 

161 
109 

147 
101 

C5 

165 
111 

Effective Widdi Ratios 

w, 
.1737 
.1856 

.1437 

.1546 

.1257 

.1340 

Vt'2 

.2994 

.2990 

.2455 

.2474 

.2216 

.2165 

W3 

.4311 

.4330 

.3472 

.3402 

.2994 

.2887 

W4 

.4611 

.4536 

.3772 

.3711 

W5 

.4850 

.4740 

Table 8.1. Comparison of EWR at low and high levels of illumination, /. 

8.1.5 Experimental Results 

A criterion function based on the Euclidean distance is used to detemune the nearest class 

and to evaluate the accuracy of the network's response. The distance formula is 

c/,=min||v,-vy|| \/i*j (8.1.6) 
J 

where v, and y, are the EWR vectors of objects / and /, and di is the minunum Euclidean 

distance between V; and y, for all / ^j. 

The nearest class according to the minunum distance cntenon of (8.1.6) is mdicated 

under the MD column of Tables 8.2, 8.3 and 8.4. The network's response to the histogram 

inputs and the scaled fiizzy prototypes are presented m Tables 8.2 and 8.3 respectively. 

The five output classes are represented by the five columns under the caption of Network 

Test Response. Each column of the output response represents one of the nominated class 

corresponding to features of objects al to a5. For example, column al refers to the class of 

al object. The class assigned by the network is indicated by highest row value, shown 

shaded. The network was trained with image objects al to a5. Objects a6 to alO represent 

test data. 

Table 8.2 shows that the direct method produced 2 misclassifications {a8 and a 10) 

for a total of 5 test classes. The misclassification occurred because of the sunilarity of 

histograms. Table 8.3 gives the response of the network trained using the SFPM method. 

The SFPM method demonstrates a significant unprovement in classification performance 

compared to tiiie DM method. All test objects {a6 to alO, the same as Table 8.2) were cor-



Chapter 8 A Neural Network Approach 181 

rectly classified without errors. This result is attributed to the insensitivity of EWR to the 

illumination factor inherent in the image histogram. 

Test 

Class 

a6 
a7 
a8 
a9 
alO 

Network Test Response 

al 
.0000 

.0076 

.0024 

.0021 

.0031 

a2 
,9981 

.0030 

.0018 

.0021 

.0046 

a3 
.0009 

.0054 

.0181 

.0160 

.0008 

a4 
.0006 

118793; 

.0013 

.0015 

.9853 

a5 
.0028 

0956 

.9603 

.9796 

.0174 

M 
D 
a2 
a4 
a4 
a5 
a3 

Table 8.2 Network response usmg the DM method. Symbol MD = minimum distance cri­
terion of (8.1.6). Class assigned by the network is shown shaded. Note: Two misclassifica­
tions for test objects a8 and alO. 

Test 

Obi 

a6 
a7 
aS 
a9 
alO 

Effective Width Ratios 

(EWR) 

.4199 

.1969 

.1523 

.1149 

.0872 

.7449 

.4655 

.5000 

.4010 

.6333 

.8692 

.8717 

.9607 

.9854 

.8485 

Network Test Response 

al 
.0018 

.0007 

.0000 

.0000 

.0027 

a2 
.9988 

.0000 

.0000 

.0000 

.0000 

a3 
.0002 

.0009 

.0197 

.0008 

;i9984;: 

a4 
.0001 

.<)987 

.9943 

.0188 

.0002 

a5 
.0000 

0001 

.0113 

,9^74 

.0004 

M 
D 
a2 
a4 
a4 
a5 
a3 

Table 8.3 Network response using the SFPM method. Class assigned by the network is 
shown shaded. Note: All five test objects are conectly classified. 

In Table 8.4, the test objects all to al5 were artificially created (using same wj and 

W3 but varying w{) to test the network's response to classes close to the decision boundary 

of classes al and a4. The network predicts a decision boundary (theoretically at 0.5 value) 

at al2 instead of the optimum minimum at al3. The boundary disparity is considered 

small and can be minimised with an improved traming regimen and a greater number of 

training pattems. At the class boundary, the network produces a value approximating 0.5 

for each of the nearest classes (aI and a4). This experiment demonstrates that a back-

propagation neural network approximates the discriminant function of a Bayes classifier. 
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Test 
Object 
all 
al2 
al3 

al4 
al5 

Effective Widtii Ratios 
(EWR) 

.1800 

.1930 

.2125 

.2200 

.2300 

.4896 

.4896 

.4896 

.4896 

.4896 

.8072 

.8072 

.8072 

.8072 

.8072 

Network Test Response 
al 

.1281 

.4758 

.8849 

.9317 

. 9 ^ 3 

a2 
.0000 
.0000 
.0000 

.0001 

.0001 

a3 
.0074 
.0011 
.0001 

.0001 

.0000 

a4 
.4 )̂70 
4987 
.4853 

.4827 

.4849 

a5 
.0000 
.0001 
.0000 

.0000 

.0000 

M 
D 
a4 
a4 
al, 
a4 
al 
al 

Table 8.4 Network response near a decision boundary between al and a4. Symbol 
MD = minimum distance criterion of (8.1.6). Class or classes assigned by the network is 
shown shaded. 

8.1.6 Conclusions 

Two different methods for classifying normalised histogram data have been presented. The 

performance of the classifier based on the direct method was unsatisfactory because the 

shape of the histogram profile was affected by illumination factors. The classifier based on 

the SFPM method was superior because the effective width ratios proved to be effective in 

isolating the illumination factor from the raw image data, to enable more accurate pattem 

recognition. 
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8.2 Improving Object Recognition for Pattern 
Matching 

The design of a neural network configuration for object recognition is described. Recogni­

tion is achieved by pattem matching of a local profile using correlation coefficient. Super­

vised networks configured as a conventional classifier and three variations of a fuzzy clas­

sifier are investigated. Their performances are compared with the statistical correlation 

coefficient used as the reference. The relative percentage error of the correlation coeffi­

cients from the fuzzy neural network design was significantly less than the results from the 

conventional neural network design, indicating improved accuracy from fuzzy networks. 

Both the fiizzy and non-fiizzy networks produced the correct angle of match. 

8.2.1 Introduction 

Object recognition is a high level image processmg task preceded by the basic downstream 

tasks such as image acquisrtion, preprocessmg, segmentation and feature extraction. Three 

categories of object recognition may be identified: (1) decision-theoretic, (2) stmctural (or 

syntactic) and (3) image interpretation [Woods and Gonzalez, 1992]. The method adopted 

belongs to the decision-theoretic category. The pose of an object, defined as the angular 

orientation ui a 2D plan view, is determined with a combination of classical unage pre­

processing methods and finally optimised with a fiizzy neural classifier. The aim is to dem­

onstrate firstly that a fiizzy classifier can be designed to match the performance of the con­

ventional object recognition methods and secondly, a neural network, given the same mput 

data, can generalise more accurately with fiizzy stages compared to a conventional classi­

fier. 

Numerous papers have been published over the last decade ui the area of object rec­

ognition. The Neocognitron developed by [Fukushuna et al., 1983] paved the way for tiie 

application of neural networks to object recognition. The results were outstandmg. Mod­

elled on the human visual system, the Neocognitron was capable of recognismg complex 

pattems with a high degree of accuracy. Smce then more progress has been made in the 

neural network models. Four main types exist today: (i) Hopfield's associative memory, (ii) 
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Kohonen's self organising maps, (iii) Carpenter and Grosberg's adaptive resonance models 

and (iv) Rumelhart's feed forward back propagation (FFBP). 

tion. The FFBP model is quite widely used for image processing and pattem recognitii—. 

Gosh et al. [Gosh et al., 1993] modified the stracture of the FFBP so that it does not re­

quire supervised traming (unlUce a conventional FFBP model) for the segmentation of ob­

jects. Several fiizzy mdices were used to measure the system errors. The leaming rates 

were evaluated for different error measures. 

To improve object recognition, we used a supervised FFBP configured as a fuzzifier 

to generate the membership flmctions. Each function consists of a set of 3 ordered mem­

bership grades. The network stmcture is shown in Fig. 8.5. The values of the membership 

fimction are used as inputs for the defiizzifier to approximate the corresponding correlation 

coefficient. 

Pattern 
Vector 

Membership 
.:function 

Fuzzifier 
Net1 

Defuzzifier 
Net 2 

Correlation 
..Coefficient 

Figure 8.5 A fuzzy neural network configuration for object recognition. 

8.2.2 Image Processing 

A sample of an intensity image is given m Fig. 8.6(a). The unage is subsequently thresh­

olded and segmented by connectivity analysis (see Chapter 7) to produce a silhouette of the 

object shown in Fig. 8.6(b). Finally, a local feature of the object profile is extracted as a 

vector of 30 mean radial pomts about the object's centroid of area, at one degree intervals 

of rotation from the nonunated profile angle. Data on the area centroid and other geometric 

properties such as area, moments, major axis angle and perimeter, are obtamed from the 

blob analysis program. The feature selector described above is used to buUd the model 

profile data base and also to obtam the object pattem vector for the fuzzifier net 1. 
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/ ,'4':f,5;^,V^'" ', I", -•/; 

' '"'.' "' 
FI la njwa 

(a) Intensity unage. (b) Edge detected image for pattem matching. 

Figure 8.6 Image of an electric motor armature. 

8.2.3 Network Configurations 

8.2.3.1 Conventional Design (JypBA) 

A direct design method is to train the FFBP net with the desired set of outputs ie. the 

maximum correlation coefficients conesponding to different orientations of the profile 

from the same object. For the experiment, five pattem vectors from a local profile of the 

armature object at 163 to 167 degrees were selected to train the network. The angle of 

maximum correlation is 165 degrees which is also referred to as the profile angle. The in­

put object data and correlation coefficients (target values) for network traming are sum­

marised below: 

arl63 = 0.8522, arl64 - 0.9574, arl65 = 1.0000 

arl66 = 0.9580, arl67=0.U29 

The name of the object on the left side of the equality symbol represents the arma­

ture object. The suffix denotes the object's pose angle. In the above case, the angle varied 

from 163 to 167 degrees. The object's reference pose angle is represented by the middle 

angle. In the above case, the reference angle is at 165 degrees. 

A FFBP network layer stmcture of 30:15:5 represents the 30 floatmg points of each 

input vector from a local object profile and the 5 floatmg points for each of the output 

class of coefficients. The choice for the single middle layer is guided by the need to provide 

sufficient weights for leaming. 
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8.2.3.2 Fuzzy Design (Type 2 and Type 3) 

The fuzzy design involves fiizzy sets and membership flmctions. A fiizzy set A is defined 

as a collection of ordered pairs, 

A = {(MA(X,),X,), i = \,2,..,N} for 0 <MA{X,) < I, V/ (8.2.1) 

The membership fimction MA(X,) associates each point x, with a real number in the interval 

[0,1]. Another usefiil concept is the flizzmess mdex / with a fuzziness measure defined m 

[Gosh et al., 1993] as 

1. 1(A) = minimum <» MA = 0 or I V/. 

2. 1(A) - maximum <^ M^ = 0.5 V/. 

3. 1(A) > I(A *) where A* is a sharpened version of yl defined as, 

M^*(x,)>M^(x,)ifM4(x,)>0.5 

MA*{xi)<MA{xi) ifMA{xi) < 0.5 

4. 1(A) = I(A') where A" is the complement set of ̂ 4. 

For a Euclidean distance, an index of fuzzy set A having N supportmg points is defined as 

V(^) = ^ J S { M ^ ( X , ) - M ^ . ( X , - ) } ' (8.2.1) 

An ordinary set is defined as 

fo if M^(x,)<0.5 

^-'^'>Hl if M.(.,,.03 <^^^> 

The block schematic for a fiizzy neural network is shown in Fig. 8.5. In the traming 

mode, Net I was trained with the membership functions of Figs. 8.8 and 8.9 (except for the 

mterpolated fiinctions denoted by the famt broken Imes) and Net 2 vrith their correspondmg 

coefficients as given in Table 8.6. In the production (or test response) mode, new data is 

presented to Net 1 resulting m the correlation coefficient from Net 2. The network stmcture 

fox Net 1 andNet 2 were 30:10:3 and 3:3:1 respectively. 

(A) Hard Solution [Type 1) 

The hard solution has MA{X,) = 1 as shown in Fig. 8.7. For this particular case, the network 

response can be easily predicted (hence trammg is unnecessary for discussion purpose). 

The coefficients for each of the objects from ar206 to ar348 must be identical to tiie refer-
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ence object (ie. arl63 to arl67, theoretically). The fuzzifier assigns each of the mput vec­

tors to one of five distinct classes of the coefficients without any class overlap. 

1 ^ 

.5 -

0 

163 164 165 166 167 
Angle(deg.) 

Figure 8.7 Membership functions for a crisp solution (Type 1). 

(B) Soft Solution with Narrow Support (Type 2) 

The soft solution provides more freedom for the design of the membership fimction. For 

simplicity, only a triangular fimction is considered. The support (or base) of the member­

ship function consists of 3 points at 163, 165 and 167 degrees with grade levels as shown 

in Fig. 8.8. Optimum pose is at 165 degrees. Each of the three functions has a different 

triangular profile. The dissimilar functions reflect the different degrees of fiizziness accord­

ing to the relation of (8.2.1). For example, Mc maximised at 165 degrees is expected to be 

more accurate than the other fimctions maximised to 163 (Ma) and 167 (Me) degrees. The 

fuzziness associated with the triangular fimctions helps to shape the neural network re­

sponse to one which is non-lmear and convex (bell shape). How does this response charac­

teristic solve the pattem recognition problem? If the response is non-lmear and convex, 

then it is possible to pick the maximum coefficient and optimum angle of match, which is 

impossible with a linear or monotonically increasing response characteristic. The fuzzy 

functions provide one effective way to coerce this type of response from a neural network. 

jM^^ Mb Mc Md Me 

163 164 165 166 167 
Angle(deg.) 

Figure 8.8 Membership fiinctions for a soft solution with nanow supports (Type 2). 
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(C) Soft solution with Wide Support (Type 3) 

The membership fimctions for this category are shown m Fig. 8.9. In contrast to the previ­

ous fiinctions, these fimctions have base membership grades increased from 0 to 0.5 with a 

correspondmg mcrease m the fiizziness mdex of Eq. (8.2.1). Theoretically, the wider sup­

port of these membership ftmctions should produce less accurate prediction of the coeffi­

cients from the defuzzifier. In Section 8.2.4, we see that this observation is confirmed. 

M, M K M , M(J Mg 

1 1 1 1 — 

163 164 165 166 167 
Angle(deg.) 

Figure 8.9 Membership fiinctions for a soft solution with wide supports (Type 3). 

8.2.4 Results 

Results for the production mode response for Type 2 and Type 3 network configurations 

are summarised in Table 8.5. The response correlation coefficients for all four configura­

tions and their relative error (with reference to the statistical conelation coefficient) are 

presented in Tables 8.6 and 8.7 respectively. The most accurate prediction, at the optimum 

pose angle, is obtained from the fuzzy neural network design (Types / , 2 and 3). Accuracy 

better than 98.5 % is obtained from the crisp (Type 1) and soft (Type 2) solution with nar­

row support. The soft solution (Type 3) with a wider support yielded an accuracy only 

slightly worse at 97 %, but still better than the solution of the conventional (Type 4) design 

(at 92% accuracy). The results of Tables 8.6 and 8.7 confirm the validity of (8.2.1) and 

demonstrate the usefulness of the fiizzy fiinctions m shaping the neural network's response. 

All the network configurations correctly predicted the optunum pose angle. 

An advantage of the soft solution design (Type 2) is that less data is needed for both 

trammg and production modes, hence better performance. Moreover, mtermediate pomts of 

the function can be interpolated by the fuzzy neural network with reasonable accuracy 

(represented by the faint broken Imes of Figs. 8.8 and 8.9). The crisp fuzzy solution 
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(Type 1) and the conventional design (Type 4) requires a membership pomt at each angle of 

the search space for neural network training, thus longer traming time. 

The results of Tables 8.5, 8.6 and 8.7 suggest, with additional support from other 

researchers m this field [Pal, 1992], that the fuzzy neural network configuration provides 

more accurate predictive capability compared to a conventional design. 

Object 

arl63 
arl64 
arl65 
arl66 
arl67 
ar206 
ar207 
ar208 
ar209 
ar2I0 
ar253 
ar254 
ar255 
ar256 
ar257 
ar344 
ar345 
ar346 
ar347 
ar348 

Angle 

(deg) 

163 
164 
165 
166 
167 

206 
207 
208 
209 
210 

253 
254 
255 
256 
257 

344 
345 
346 
347 
348 

Fuzzy Membership Function 
Type 2 

.9938 

.5796 

.0063 

.0000 

.0000 

.9843 

.3869 

.0041 

.0000 

.0000 

.9863 

.2693 

.0013 

.0000 

.0000 

.9687 

.3664 

.0049 

.0001 

.0000 

.4998 

.9470 

.9890 

.9519 

.4995 

.4963 

.9385 

.9808 

.8853 

.2926 

.6933 

.9782 

.9926 

.9356 

.3863 

.3314 

.8665 

.9620 

.8891 

.3530 

.0000 

.0001 

.0050 

.5546 

.9950 

.0000 

.0003 

.0118 

.6989 

.9948 

.0000 

.0002 

.0146 

.8563 

.9986 

.0001 

.0006 

.0161 

.6354 

.9929 

Fuzzy Membership Function 

Type 3 
.9901 

.8809 

.4993 

.3654 

.5005 

.9935 

.4292 

.6138 

.4693 

.6017 

.9945 

.9220 

.5210 

.3007 

.3953 

.9917 

.9261 

.7161 

.6421 

.7775 

.7506 

.9620 

.9857 

.9610 

.7494 

.5974 

.9247 

.9776 

.9521 

.7274 

.6767 

.9571 

.9896 

.9804 

.8589 

.6373 

.9223 

.9600 

.8979 

.5521 

.5000 

.3679 

.4998 

.8877 

.9914 

.6609 

.4901 

.5493 

.8783 

.9887 

.4833 

.3008 

.3567 

.7863 

.9835 

.6532 

.5266 

.6593 

.9242 

.9920 

Table 8.5. Summary of membership flmctions. Note that the training data set consists of 
arl63, arl65 and arl67, corresponding to membership fimctions Ma, Mc and Me of Figs. 
8.8 and 8.9. Each function is represented by three points, hence the three columns associ­
ated with Type 2 and Type 3 fuzzy membership function. The data given in Type 2 and 
Type 3 membership function columns are the responses from the neural network. 
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Object 

arl63 
arl64 
arl65 
arl66 
or 167 
ar206 
ar207 
ar208 
ar209 
ar210 
ar253 
ar254 
ar255 
ar256 
ar257 
ar344 
ar345 
a346 
a347 
a348 

Angle 

(deg) 

163 
164 
165 
166 
167 
206 
207 
208 
209 
210 
253 
254 
255 
256 
257 
344 
345 
346 
347 
348 

Stat 

Coeff 

.8522 

.9574 

1.000 

.9570 

.8492 

.8212 

.9373 

.9912 

.9592 

.8557 

.8157 

.9354 

.9959 

.9732 

8783 

.8215 

.9399 

.9869 

.9540 

.8481 

Neural Network CoefBcients 

Type 1 
.8522 

.9574 

if-OOO:::;: 
.9570 

.8492 

.8522 

.9574 

J.000 

.9570 

.8492 

.8522 

.9574 

1,000 
.9570 

.8492 

.8522 

.9574 

t.OOO 
.9570 

.8492 

Type 2 
.8526 

.9750 

::^ms:, 
.9734 

.8496 

.7628 

.9634 

9892 

.9793 

.8501 

.9067 

.9604 

.9895 

.9843 

.9081 

.7929 

.9668 

.9885 

.9754 

.7842 

Type 3 
.8565 

.9705 

\:M(y^ ' 

.9692 

.8523 

.6402 

.9446 

9780 

.9588 

.7982 

.8113 

.9719 

,9905 
.9821 

.9309 

.6896 

.9388 

-957S 
.9072 

.5058 

Type 4 
.8521 

.9549 

•••9$73:-; 

.9539 

.8491 

.8556 

.8786 

952e 
.9244 

.7090 

.9550 

.8696 

,9772 
.9740 

.6796 

.7554 

.7699 

J043 
.7779 

.5374 

Table 8.6. Summary of statistical correlation coefficients. Symbols: Type 1 - crisp solu­
tion of fuzzy network. Type 2 - soft solution of fuzzy network with narrow support. 
Type 3 = soft solution of fuzzy network with wide support and Type 4 = conventional net­
work classifier. Stat. Coeff. denotes the statistical correlation coefficient. The training data 
set consists of arl63, orl65 and arl67. The network's response at optunum match angle is 
shown shaded. 
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Object 

arl63 
or 164 
or 165 
arl66 
arl67 
ar206 
ar207 
ar208 
ar209 
ar210 
ar253 
ar254 
ar255 
ar256 
ar257 
ar344 
ar345 
a346 
a347 
a348 

Angle 
(deg) 

163 
164 
165 
166 
167 
206 
207 
208 
209 
210 
253 
254 
255 
256 
257 
344 
345 
346 
347 
348 

Stat 
Coeff 

.8522 

.9574 
1.000 
.9570 
.8492 
.8212 
.9373 
.9912 
.9592 
.8557 
.8157 
.9354 
.9959 
.9732 
8783 
.8215 
.9399 
.9869 
.9540 
.8481 

Relative Enor 
(%) 

Type 1 
0 
0 
0 
0 
0 
+3.78 
+2.14 

wmm:: 
-0.23 
-0.76 
+4.47 
+2.35 
+0,41 
-1.66 
-3.31 
+3.74 
+1.86 
• U l 
-0.31 
-0.13 

Type 2 
+0.05 
+1.84 
-105 
+1.71 
+0.05 
-7.11 
+2.78 
-0.20 
+2.10 
-0.65 
+11.16 
+2.67 
-0 64 
+1.14 
+3.39 
-3.48 
+2.86 
+0,16 
+2.24 
-7.53 

Type 3 
+0.50 
+1.37 
-137 
+1.27 
+0.37 
-22.0 
+0.78 
-i;;33 
-0.04 
-6.72 
-0.54 
+3.9 
-0 54 
+0.91 
+5.99 
-16.1 
-0.12 
•2.93 
-4.91 
-40.4 

Type 4 
-0.01 
-0.26 
-127 
-0.32 
-0.01 
+4.19 
-6.26 
-3,87 3iii 
-3.63 
-17.14 
+17.1 
-7.03 
-1,88 
+0.08 
-22.6 
-7.99 
-18.1 
^.37 
-18.46 
-36.6 

Table 8.7. Summary of relative errors. Symbols: Type 1 = crisp solution of fiizzy network. 
Type 2 = soft solution of fuzzy network with narrow support. Type 3 = soft solution of 
fuzzy network with wide support and Type 4 - conventional network classifier. Stat. Co­
eff. denotes the statistical conelation coefficient. The framing data set consists of ar 163, 
arl65 and arl67. The network's response at optunum match angle is shown shaded. 

8.2.5 Conclusions 

Several fuzzy neural network designs to improve object recognition have been described. 

Using a standard statistical conelation coefficient as a reference, the performances of the 

different network configurations are compared for accuracy of prediction. It is demon­

strated that the crisp and soft fuzzy membership flmctions give the most accurate resuU 

with less than 1.5 % error, compared to a conventional neural network design (with 8 % 

error). 
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8.3 Implementing a Neural Network for a Progres­
sive Fuzzy Clustering Algorithm 

A neural network based scheme for the detection of fuzzy cluster prototypes from normal­

ised histogram of a real world image is described. These prototypes can be subsequently 

processed extemal to the neural network to enable viable real time fuzzy clustering appli­

cation. The direct mapping of the histogram data, whilst simple to implement, is demon­

strated to suffer from errors related to a bias condition associated with weight distribution 

of the network. The proposed method mitigates this problem by using a conventional back-

propagation neural network with output responses trained to five points of a fuzzy mem­

bership function. Test responses from this network produced less than 5 percent error for 

the prototype centres. 

8.3 1 Introduction 

A new approach using a Feed Forward Back Propagation (FFBP) neural network to obtain 

cluster prototypes from the image data is presented. In contrast to the multiple cluster as­

signment of FCM, the FFBP is trained to recognise and respond to a single cluster proto­

type determined by a progressive clustering algorithm. The neural network stmcture is 

sufficiently flexible to accommodate other traming regunens. The CPCM based progres­

sive clustering avoids the practical difficulty of establishing cluster validity criteria. Fur­

thermore, this strategy permits the adoption of various clustering models within the same 

network or m any compatible network paradigms without being restricted to a particular 

fiizzy model. 

To perform progressive cluster extraction, the FFBP generates the cluster prototype 

or centre correspondmg to the mput pattem vector (256 pattems). Subsequently, extemal 

to the neural network, a clustering program uses the prototype to extract the cluster from 

the image data set. The remaining unage data (after removal of the cluster) is re-presented 

to the network to generate another cluster prototype until eventually all possible clusters in 

the image data are exhausted. 
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8.3.2 A Progressive Fuzzy Clustering Algorithm 

A general fuzzy objective function for a single prototype cluster development can be de­

fined as 

Jm(u,v)=Y!',^^u';'f{d) (8.3.1) 
vihexef(d) is a distance function and w is a fuzzifier constant. Membership is denoted by w, 

for / = 1,...,A where N is the number of data features. For an intensity histogram, A equals 

256. The cluster prototype is represented by v. Previously m Section 2.4.7.2, we solved the 

membership of (2.4.48) by direct differentiation of the objective function (2.4.47). This 

membership has a similar form to the membership for (8.3.1). To illustrate an altemative 

procedure, we consider a solution using Lagrange multipliers. Let the sum of the member­

ships be a positive real number AT > 0 with a constraint function 

g(") = S ^ i " , - ^ (8.3.2) 

Applying the method of Lagrange multipliers to minunise Jm for membership u subject to 

constraint function g yields, 

mu'"-'f(d) = X 

which may be reduced to 

I 

exp 

where 

di 
(8.3.3) 

di=\\^t-y\\ (8-3.4) 

is the Euclidean distance of data point x, from prototype v and the prototype is defined by 

N 

Ajufxi 
V--H (8.3.5) 

2 

;=1 

Equation (8.3.3) is obtamed by applymg the lower lunit (u = 0) and the upper lunit (u = 1) 

of membership u and taking the distance fimction to heffd) = exp(d^lq). The constant nu­

merator term is assumed to be 1 for a fiizzifier value ofm = 2. The q constant m the expo­

nent serves as a reference level for all points m the data set. One suitable choice for q is 
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7̂ = —2.^=jl|X;-v|| (8.3.6) 

which contains a scale factor s. 

Pseudo code to perform progressive fuzzy clustering. 

Fix a, Nmin, and .s. 

Repeat 

Assume initial Vo from nearest neighbour of data centroid. 

Calculate ;;from (8.3.6). 

Repeat 

Calculate w, from (8.3.3). 

Calculate v, from (8.3.5). 

UntU ||vr-VMII <s . 

If (0 < A„ < Nmin) Then Remove A„ and update Nc. 

If (Na > Nrmr) Then Save and remove cluster pomts of prototype v and update Nc. 

VnX\l{Nc<Nm,n). 

Note that s is a small value to control the stoppmg point and ris an iteration index. 

8.3.3 Neural Network Implementation 

A 3-layer architecture is used for training purposes with node sizes of each layer being de­

termined by the problem domain. The network was trained with normalised intensity histo­

grams of digitised images, each acquired in 256 levels of grey and in resolution of 

256 X 256 pixels. Data for the target prototype set were generated from the progressive 

fuzzy clustering algorithm. 

8.3.3.1 Single Output Configuration 

The design configuration for the smgle output network shown in Fig. 8.10 is the sunplest 

and most direct means to train a network. Five processing elements were selected for the 

middle layer of the FFBP network. It will shortly be demonstrated that this network archi­

tecture suffers from significant errors of pattem recall because of a bias condition associ­

ated with the weight distribution. This error appears to be an intrinsic condition of a net­

work paradigm that relies on pattem leaming by weight adjustments. 
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Figure 8.10 Single output neural net. Figure 8.11. Multiple membership outputs net. 

8.3.3.2 Multiple Output Configuration 

To minimise the anomalies of such biases m the weight distribution, a network depicted m 

Fig. 8.11 with multiple outputs is proposed. Both the middle and output layers have the 

same number of 5 processing elements. The 5 outputs of the network correspond to the 5 

points on the membership function (8.3.3), obtained by applying alphacuts at at-0.2, 

at =0.6 and a,= 1. The 5 points are obtained from the intersections of the alphacut and 

the membership fimction in a left to right order: left a, = 0.2, left at = 0.6, centre at = 1.0, 

right a, = 0.6 and right at = 0.2. The 5 points of the membership function contain more 

stmctural information on the mput pattem compared to a smgle output network. Further­

more, the five outputs help to spread possible errors among five nodes instead of one, and 

thus reduce the error at each node. For these reasons, the multiple output network is ex­

pected to map the mput pattems more accurately, compared to the single output network. 

The correct output response is obtained from the output node for or, = 1. 

8.3.4 Experimental Results 

The expenmental results of Table 8.8 contams a summary of the FFBP network prototype 

responses and the actual prototype value calculated from the progressive cluster algorithm 

of Section 8.3.2. Each of the test pattems Tl to T15 represents new pattems not used m the 

trammg of the network. The column under Case A refers to trainmg with 13 pattern files 

with a mean absolute error (MAE) = (target - output) less than 0.018. For Case B, a 

training set of 10 pattem files were used witii an MAE < 0.017. Botii Case A and Case B 

refer to the multiple outputs network of Fig. 8.11. The smgle output network response 

(Fig. 8.10) is represented under the column of Case C for an MAE < 0.01. Despite tiie low 

MAE, two significant response errors were produced in Case C to test pattems T2 and TI4 
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(shaded responses in Table 8.8). As mdicated m Section 8.3.3.2, this error is attributed to 

the peculiar biases of the weight distribution of the network's weight matrix. In other 

words, there is a leammg problem due to cross-talk [Kosko, 1992]. Case B (with 10 tram­

mg pattems) represents a network design (multiple outputs configuration) that attempts to 

minimise the leaming problem of Case C predictive errors. At first sight. Case B appears 

to be worst than Case C because of response errors associated with test pattems T4, T7, 

T8, T13 and T14 (shaded responses in Table 8.8). However a closer scmtiny reveals that 

Case B errors occur where the network has no closely matched pattem exemplars from the 

training phase for values centred near 0.2 and 0.5. The inclusion of additional traming 

pattems to cover these gaps in Case A (with 13 training pattems) produces the best result 

with errors less than 5 %. Considering the few set of training pattems used in this experi­

ment, the results of the prototype response from the multiple output FFBP neural network 

(Fig. 8.11) is quite good and could be improved with more training pattems. 

Test 
Pattem 
Tl 
T2 
T3 
T4 
T5 
T6 
T7 
T8 
T9 
TIO 
Til 
T12 
T13 
T14 
T15 

Actual 
Response 
0.4077 
0.5310 
0.6221 
0.5540 
0.6770 
0.3188 
0.2504 
0.2767 
0.3971 
0.4118 
0.4307 
0.4346 
0.5438 
0.7392 
0.8002 

Case A 
Response 
0.4625 
0.5365 
0.6391 
0.5076 
0.5970 
0.2845 
0.2747 
0.2337 
0.4084 
0.4444 
0.4370 
0.5060 
0.5136 
0.7450 
0.8028 

Case B 
Response 
0.4473 
0.4642 
0 6384 
0.4344 
0.6763 
0.4452 
0 619! 
0.5947 
0.3909 
0.4695 
0.4269 
0.4226 
0.4346 
0.5740 
0.8070 

Case C 
Response 
0.4909 
;0;7078: 
0.6526 
0.5753 
0.5959 
0.3154 
0.2800 
0.2470 
0.3836 
0.4070 
0.4356 
0.5562 
0.5143 
0.5883 • 
0.8937 

Table 8.8 Summary of actual and network test responses. The data m this table refer to 
normalised prototype values. Actual response refer to the resuU from a progressive cluster­
ing algorithm. Note: Case C response refers to the single output network of Fig. 8.10. The 
responses of cases A and B refer to the multiple outputs network of Fig. 8.11. Incorrect 
response from the network is shown shaded. Note: There are no prototype errors m Case A 
response. 
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8.3.5 Conclusions 

A progressive fuzzy clustering algorithm and its neural network implementation have been 

reviewed. The algorithm consists of a simple stmcture that can easily accommodate other 

fuzzy clustering models. A method to perform progressive clustering usmg the neural net­

work to generate the prototypes and an extemal program to extract the clusters from the 

prototype has been presented. It has been demonstrated that a fuzzy neural network pre­

dicts the locations of cluster prototypes more reliably compared to a conventional neural 

network. Test results indicate that errors less than 5 % are achievable. 
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Chapter 9 

Conclusions and Future Research Direc­
tions 

This chapter summarises the main conclusions of the thesis in Section 9.1 and presents 

suggestions for future research directions m Section 9.2. A brief description of the demon­

stration programs available for the thesis is given in Section 9.3. 

9.1 Conclusions 

9.1.1 Theory Development 

The four major pattem recognition theories that mfluenced the development of the CPCM's 

fuzzy clustering models have been presented in Chapter 2. The Bayes decision theory con­

tributes the principles for optimum classification and discriminant flmctions for the sepa­

ration of classes. The KNN algorithm was derived from partitional clustering theory as a 

non-parametric approximation of the Bayes decision mle. Usmg a fuzzy neural network, 

an attempt was made to model the prototype from a progressive clustering algorithm. Of 

these pattem recognition theories, the major contribution to the CPCM algorithms was de­

rived from fuzzy clustering theory, particularly from the FCM model. 

In Chapter 2, two new fuzzy clustering algorithms were developed. These were 

called the PFCM and EPCM algorithms. In Chapter 3, a new SFM algorithm was devel­

oped. Both PFCM and EPCM are possibUistic algorithms with possibiUstic memberships. 

PFCM extends FCM in three major ways: (i) the capability to generate more varieties of 

membership functions, (ii) the capability to adjust the cluster boundary and profile to con-
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trol the selection of cluster points and (iii) improved clustering at local centroids via the 

three cluster parameters a, m and p. PFCM extends the clustering properties of FCM. 

EPCM improves the stability of the possibilistic function to a range of alphacuts, resuUing 

Ul less sensitivity to FCM estimates of the eta factor (or intra-cluster distance) and thus 

improved centring of prototypes at local centroids. SFM (in Section 3.2.3.1) has a promis­

ing potential for pattem recognition applications mvolving either the progressive or global 

clustering schemes. It uses membership like a dissunilarity mdex, in contrast to FCM. 

More significantly, SFM automatically generates a smgle cluster via a global clustering 

mechanism that is identical to FCM. We are not aware of any documented fuzzy clustering 

algorithms with this unusual clustering feature. The extension of SFM by a sunilar ap­

proach to the extension of FCM by PFCM contains unplications for higher clustering effi­

ciency and more interesting clustering possibilities (like FCM without the a priori c clus­

ters). The fundamentals of PFCM and SFM provided in the thesis should facilitate ad­

vanced stmctural development of these algorithms for pattem recognition applications. 

The CPCM approach described in detail in Chapter 3, demonstrates a fundamentally 

new method of fuzzy clustering by extending the scope of conventional fuzzy clustering, 

which is typically global and cluster validity dependent, into the reahns of progressive 

fuzzy clustering and non cluster validity dependent. The CPCM approach was designed to 

realise some of the following advantages: (i) higher data processing efficiency, up to 250 

times faster than FCM in comparison tests (compare Tables 4.1 and 4.2) usmg real unages 

m 256 X 256 resolution, (ii) an altemative method that allows independently optimised 

cluster parameters in the objective function and thus approximates a solution to analyti­

cally intractable problems (see Section 6.2), and (iii) automatically determmes the number 

of clusters that agrees well with subjective interpretation (see Fig. 6.3), without the need 

for secondary cluster validity verification like FCM. To enable objective clustering per­

formance comparison of the FCM, KNN and CPCM algorithms, three new cluster validity 

mdices were developed in Section 3.3. 

9.1.2 Application Development - Fuzzy Clustering Methods 

Applications of CPCM fuzzy clustering methods have been presented to solve three prob­

lem areas of pattem recognition. These problem contexts are: (i) region segmentation, (ii) 

boundary detection and (iii) general pattem recognrtion. 
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9.1.2.1 Region Segmentation 

In chapter 4, application algorithms that successfully detect wool contaminants or tile sur­

face defects have been presented to demonstrate the superior clustering performance of 

CPCM compared to FCM. In clustering real unages of high resolutions, the CPCM clus­

tering algorithm clearly has a significant advantage m processmg speed compared to FCM. 

Moreover, because of the sequential order in which clusters are removed, CPCM can de­

tect small scale defect pattems more accurately than FCM. 

9.1.2.2 Boundary Detection 

Application algorithms that successfiiUy detect boundary features characterised by noise, 

fragmentation and occlusion, such as lmear boimdaries in Chapter 5 and circular bounda­

ries in Chapter 6, have been presented to demonstrate useful extensions of the basic FCM 

algorithm. This was achieved by a modification of the metric dk to include specific cluster 

parameter such as the Ime gradient or the cluster radius. Although fuzzy clustering solu­

tions based on the FCM model can be used, we have instead, adopted optimismg methods 

from other models. These consist of: (i) line equation from geometry, (ii) OCF equations 

from statistics and (iii) CA equations from heuristics. Our procedure demonstrated the 

flexibility of the CPCM approach and the interestmg clustering solutions from the CPCM 

framework. However, the context of the clustering process remams fuzzy m character, as 

is the CPCM framework. 

The clustering method adopted for circle detection is quite different from the method 

for line detection, because the particular choice of equations used lacks a general character. 

If a general form ofa quadratic equation is used, such as in [Krishnapuram et al., 1995], 

the clustering method to detect any of the quadratic curves will be sunilar. 

Unlike tiie PCM, FKE or FKR solutions, CPCM is not as sensitive to initial cluster 

parameter conditions because there are numerous cluster solutions in the CPCM's solution 

space. Moreover, the specification of CPCM cluster parameters such as A„,„ and a,, have 

meanmgful notions related to the stmcture m data, unlike the abstract parameters (such as 

Fo or f/o) in other fuzzy algorithms, which are usually selected on a random basis. 
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9.1.2.3 General Pattern Detection 

In the application presented ui Chapter 7, a combination of different pattem recognition 

methods involving image preprocessing, fuzzy clustering and model feature matching was 

successfully applied to correctly detect and identify a local object feature of any arbitrary 

pattem. The accurate determination of cluster centres from a ring-shape cluster detection 

algorithm unproved the accuracy of the optimum match angle. The appUcation also dem­

onstrates the advantage of fuzzy clustering for locatmg centre compared to a conventional 

technique such as the centroid of area method (compare Figs. 7.7 and 7.8, from the same 

object). The speed enhancements in the particular implementation of the pattem matching 

algorithm improved the search speed by a factor of five. This was achieved usmg a combi­

nation of windowing and data sectoring techniques, and the similarity mdex. 

9.1.3 Application Development- Fuzzy Neural Methods 

Three fuzzy neural network configurations have been presented in Chapter 8 to demon­

strate the greater response (or classification) accuracy compared to conventional neural 

networks. The first application in Section 8.1 presents an illummation insensitive method 

called the SFPM method to improve general object recognition for a range of illumination 

condUions. The second application m Section 8.2 improved general object recognition by 

matching correlation coefficients generated from a fuzzy neural network. The third appli­

cation from Section 8.3 presents a fuzzy neural configuration that performs mappmg of 

cluster prototypes from normalised gray levels of histogram data. In the third application, 

the output response of a conventional neural network suffered from "cross-talk" due to 

mterference from interconnected weights. This problem was mUigated with a fuzzy net­

work design, thus the improved classification accuracy. 

9.2 Future Research Directions 

This research has uncovered a number of mteresting areas for future research. The follow­

ing suggestions for fiiture research are made along the three principal Imes given below: 
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9.2.1 Extension of CPCM 

CPCM has a flexible framework that can be readily extended in a number of ways, de­

scribed by the foUowing: 

9.2.1.1 Cluster Density Control 

The location of clusters m the CPCM framework is based on the current data centroid. 

This seems adequate for most clustering applications, but provides no selective control 

over the density of clusters found. Possibilistic clustering algorithms such as the PCM or 

EPCM offer scope for detecting dense clusters via the factor q which determines the clus­

ter bandwidth (refer Section 2.4.7). 

9.2.1.2 Prototype Estimation 

Prototype estimation from the data centroid in CPCM is a commonly used technique (like 

the KNN algorithm). A weakness in this approach is that it does not discriminate differ­

ences between low and high density regions for cluster development. A low density region 

yields insufficient points for cluster development, resultmg in the removal of these pomts 

from subsequent cluster consideration. Consequently, some loss of useful data from the 

clustering process is inevitable. The number of missuig data, however, does not affect the 

clustering resuU to a significant extent because the mmimum cluster size N,mn provides 

some control over the extent of missing data. Nevertheless, this is not a desirable solution. 

A better solution may be provided by SFM, derived m Section 3.2.3.1. This algo­

rithm seems to give a good estunate of the densest cluster prototype m any clustering se­

quence. Since, the prototype estimate is an additional operation to the normal CPCM clus­

termg sequence, there is more computation effort m obtammg the cluster resuU. To im­

prove processing efficiency, it may be possible to use SFM to a greater degree or perhaps 

even m a major way, for the determination of cluster prototypes. 
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9.2.1.3 Exploration of Other Cluster Structures 

Most of the cluster stmctures considered for apphcations were of either linear or circular 

varieties from both region and edge types. Adduig to this list with other graphic primitives 

will increase the detection capability of the CPCM clustering methods. The equations to 

detect elliptic clusters can be obtamed from either a combmation of possibilistic member­

ship with fuzzy covariance matrix (Section 2.4.6) or from the parametrized prototypes 

(Section 2.4.8). Clusters that are shaped as squares can be detected using either a l-norm 

or a sup-norm (see [Bezdek, 1995]). One way to solve more sophisticated cluster forms is 

by partial aggregation of cluster substmctures, such as lines and various types of arcs, el­

lipses and circles. The graphic elements segmented by low level algorithms can be com­

bined to form a meaningful composite cluster stmcture. 

9.2.2 Exploration of PFCM Clustering Possibilities 

Potentially, PFCM offers greater possibilities for clustermg in terms of the greater expres­

sive power of membership flmctions, most of which are as yet largely unexplored. An ex­

ample has been given in Section 2.4.7 to illustrate the crisp partitioning of data sets with 

noise points or points at boundaries of clusters. The PFCM algorithm can directly extract 

representative cluster points and so eliminate points at the fringe of membership. Forcing 

an arbitrary assignment of these pomts to any cluster, in the case of FCM, do not give a 

reasonable cluster interpretation. This is also possible with possibilistic algorithms such as 

PCM or EPCM, but the procedure is less direct. Possibilistic algorithms require mitial 

cluster prototype estimates to find good clusters. These estimates are usually obtained from 

FCM or other clustering algorithms like the KNN. 

Clustering around local centroids provides a degree of insensitivity to noise points or 

fuzzy points at or near the cluster boundaries. An example has been given in Section 2.4.7 

to show that clustering at centroids can be obtained from either FCM or PFCM by a judi­

cious selection of the distance metric exponent/? and the fuzzifier exponent m. In practice, 

it is satisfactory to assume m = 2, but the selection of the optimal cluster parameter p in­

volves some trial and error since no analytic forms exist. Therefore, an analytic expression 

or empirical formulation ofp would be quite useful for robust algorithm design. A reason-
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able solution seems possible by taking into consideration the inter-cluster and the intra-

cluster distances. 

9.2.3 Unifying Cluster Constants 

The cluster constants such as the alphacut at, the fiizzifier exponent m, the distance metric 

exponent p m FCM and the a of CPCM, can be difficuU to use without sufficient experi­

ence. There is clearly a need to address the needs of the end user. In this thesis, tentative 

attempts have been made to understand the role of these constants in clustering perform­

ance (see Sections 2.4.5 and 2.4.7 and parts of Chapters 5 and 6), but not in sufficient 

depth, for several reasons. Firstly, this topic involves more intensive investigation of clus­

tering characteristics than could be adequately given within the limited scope of this thesis. 

Secondly, this topic is not the major focus of the thesis. A proper research program is re­

quired to develop a unifying approach to this problem. 

9.3 Demonstration Programs 

Demonstration programs are available, contaimng both source codes in C programming 

language and executable codes to mn under DOS and MS Windows95 environments for 

the experiments of Chapters 3 to 7 (mclusive). These may be obtained by contactmg the 

author or from the Head of the Department of Electrical and Electronic Engmeering, As­

sociate Professor Patrick Leung. 

Included in Appendix F is a demonstration program (C source code only) for the 

round cluster stmcture vrith variable q algorithm discussed in Chapter 3. This program 

contams several features that explain the details of the following: 

1. The CPCM framework. 

2. The similarity coefficients used in Chapter 3. 

3. The variable 77 algorithm. 

4. The reclustering procedure for more accurate prototype location. 

5. Other necessary procedures to support CPCM. 
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Appendix A. Vectors in Real n-Space 

The material in this appendix is intended to define the usage of vector definitions and prop­

erties implicitly assumed in the thesis. In pattem recognition work, it is useful to define an 

n-space (A3-dimensional coordinates) for each feature vector or point. This space is altema­

tively known as the Euclidean «-space. Axioms for the inner product space are defined for 

the Euclidean «-space. The inner product introduces the concept of length and distance m 

the inner product space. 

Definition A.l: If n is a posUive mteger, then an ordered-«-tuple is a sequence of n real 

numbers {ai,a2,... ,an). The set of all ordered «-tuples is called «-space and denoted by 5R". 

In «-space, the symbol {ax,a2,...,an) can be mterpreted as a pomt, m which case 

ai,a2,...,a„ are the coordinates ofa point or it can be interpreted as a vector, m which case 

a\,a2,...,a„ are the components ofa vector. A vector is altematively denoted as 

« i 

«2 

a. 

or a = {ax,a2,...,anY. 

A zero vector in 91" is 0 = [0,0,...,0]^. A negative vector (or additive mverse) a is denoted 

by - a =[- ax,- 02,...,- a„Y. 

The following are some basic definitions of vector operations. 

Definition A.2a: Two vectors a = [ai,a2,..-,««]^ and b = [bx,b2,...,b„f axe equal if 

fli = bx,a2 = b2,...,an = b„. 

Defmition A.2b: The sum of two vectors a = [fli,a2,...,a„f and h = [bx,b2,...,b„Y is de­

fined as a + b =[«! + b],a2 + b2,—,a„ + b„] . 

Definition A.2c: If A: is any scalar, the scalar multiple ka is defined by 

ka = [ka],ka2,...,kanY 
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Theorem A.l (addition and scalar multiplication): If a = [a 1,02,...,a„f, h = [bx,b2,...,b„f 

and c = [cuC2,.-.,c„f axe vectors in 9i" and k and / scalars, then: 

(a) a + b = b + a 

(b) a + (b + c) = (a + b) + c 

(c) a + 0 = 0 + a = a 

(d) a + ( - a ) = a - a = 0 

(e) k{U) = (/t/)a 

(f) ^(a + b) =/ta + ^b 

(g) {k+r)a=ka + lb 

(h) la = a 

Proofs of Theorem A. 1(a) to E.l(h) may be found in a textbook on linear algebra. 

Definition A.3: If a = [a],a2,...,a„Y and b = [61,62,...,6„]^ are vectors in 5R", then the 

Euclidean inner (dot or scalar) product a • b is defined by 

n 

a • b = a]bi + 0262 +•••+ a„b„ =z_,a,^bk: 
k=l 

Theorem A.2 (Euclidean inner product theorem): If a = [a\,a2,...,a„Y, b = [61,62,...,6„]^ 

and c = [ci,C2,...,c„]^ are vectors in 91" and A:is any scalar, then 

(a) a • b = b • a 

(b) (a + b) • c = a • b +b • c 

(c) (ka) • b - /(:(a • b) 

(d) a • a > 0; and a • a = 0 if and only if a = 0 

Proofs of Theorem A.2(a) to (d) may be found in a textbook on lmear algebra. 

Definition A.4: The Euclidean norm or length ofa vector a = [a\,a2,...,anf in 91" is de-

fined by ||a||2 = ||a|| =^{si-a) = ̂ ja^ +al+--- + a„= Z^a^ 

U=i J 

Definition A.5: The EucUdean distance between a vector a = [a],a2,...,a„] in 91" and 

b = [6,,62,...,6„]^ in 91" is defined by 
V/2 

d{a,b)=\\a-b\\=^{ai-bif +{a2-b2)^ +--- + {ar,-b„)^ = Ec^fc-^fc) 
\k=i 
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In fuzzy clustering, the Euclidean distance (or norm or metric) < (̂a,b) is altematively 

denoted as dik to represent the distance between the /th cluster prototype vector v, and the 

^ h feature (or point) vector (or data) x .̂ Since matrix operations are useful to fuzzy cluster 

analysis, the inner product of vectors a and b is altematively represented by a matrix for­

mula 

a • b = a^b 

The preceding discussion presents the EucUdean inner product on the Euclidean 

«-space 91" of which Theorem A.2 is its most unportant properties. These properties may 

be defined for a general real vector space Fas follows: 

Definition A.6: An inner product on a real vector space F is a function that associates a 

real number <a, b> with each pair of vectors a and b m Fm such a way that the following 

axioms are satisfied for all vectors a, b and c in Fand all scalars k. 

(a) <a, b> = <b, a> (symmetry axiom) 

(b) <a + b, c> = <a, c> + <b, c> (additivity axiom) 

(c) <ka, b> = k<a, b> (homogeneity axiom) 

(d) <a, a> > 0; and <a, a> = 0 if and only if a = 0 (positivity axiom) 

The above four axioms define a real mner product space. The Euclidean mner prod­

uct may be modified by weighting each term, such as in the Mahalanobis norm. 

Defmition A.7: Let a = [ai,a2,...,a„f be a vector m 91". Let IT and ^ be uivertible sym­

metric n X n matrices. If a • a is the Euclidean inner product on 91" then 

<a, a> = a^A^Asi = a^Wa = <a, a>w= M\iv 

define a weighted Euclidean mner product norm on 91" called the mner product generated 

by W. This norm is also called a variable Wnoxxn. If the positive weights of W axe diago-

n 

nal, then <a, a> = "^Wj^al. Likewise, a weighted inner product distance may be defmed 
J k = l 

by <a - b, a - b>H. =|ia - b||^ and <a, b> = a^.4^^b = a^Wb = <a, b>w. 



Appendix B 219 

Appendix B. Proof of Theorem 2.4.1 
(Fuzzy c-Means) 

The Fuzzy c-Means algorithm or FCM [Bezdek, 1981] is an unportant development m 

fuzzy clustering history. It is virtually the basis of most modem versions of fuzzy cluster­

ing algorithms, some of which are presented in Section 2.4 [Man and Gath, 1994; Gath 

and Hoory, 1995]. Therefore, it is important to understanding the basic stmcture of FCM 

to understand the character of modem fuzzy clustering methods. However, there is another 

cogent reason to do so. The stmcture of FCM admits a further generaUsation, on closer 

scmtiny. Evidence of this is demonstrated by the Possibilistic Fuzzy c-Means (PFCM) al­

gorithm, described in Section 2.4.5 and derived in Appendix C 

For the notations, distance norm, data set and fuzzy partitions of Section 2.4.4, let 

the membership of FCM satisfies the three conditions 

N 

Uik e [0,1] \Ii,k, 0<YjUik<N Vz and Z", i -=1 VA: (B.I) 
k=l /=1 

Using the method of Lagrange multipliers, the objective function Jmp m the expression 

N c 

Jm,p{U,V)=YLuTkdtk (for all m>\,p>0) (B.2) 
^ - = l ; • = l 

may be minunised with respect to w,t to give (with a change of subscripts) 

m-l j 2 ., 
mu,t d,j = /I 

foxp = 2 (as in [Bezdek, 1981]) and may be simplified to 

a ^ 
/• \ 

m-l 

\mJ 

m-l 
(B.3) 

\"stJ 

Applymg the membership constraint of (B.l) to (B.3), with a change of subscript gives 

X Im-l z«„=-r2: 
\m 

m-l 

/=lL<^yf J 
= 1 (B.4) 

which results in 
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(X^ m-l 

\mJ 

I m-l 

'Jt 

Puttuig (B.5) into (B.3) gives 

(B.5) 

c 

y=i 

dst 
m-l 

which on rearranging the subscripts, yields the standard form 

I 
" * = • 

dik 

i _ 

m-l 

(B.6) 

j=i_djk j 

Jm may be minunised for v, by differentiating Jm^p in (B.2) with respect to v, and setting the 

resultmg function to zero. The distance measure dik may be generalised with a norm 

weighted by ad x d positive definite matrix Ai. The Aj norm is defined as 

dik =\\^k -V/IU. = V(x;fc -v , )^^ , (x; t -V/) (B.7) 

which represents the distance of feature vector x̂  from the cluster prototype v,. Minimismg 

Jm with respect to v; yields 

N 

-2Z,u^Ai\\xk-yi\\=0 
k=l 

Since Ai is a constant under the summation k, the prototype solution is 

N 

Z" Uik'^k 

V, 
k=l 

N Vz (B.8) 
• m 
/Uik 

k=l 
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Appendix C. Proof of Theorem 2,4.2 
(Possibilistic Fuzzy c-Means) 

The Possibilistic Fuzzy c-Means (PFCM) algorithm is a very recent generalisation of the 

famous FCM algorithm, introduced in 1973. For over 23 years, major extensions to FCM 

focused on adapting FCM or its variants to new types of cluster substmctures such as 

shells and hyperquadrics. Cunously, the possibility of further generalisation of FCM seems 

to have escaped the notice of researchers. This may reflect a predisposition to extend ap­

plication development, partly because the method is new or perhaps because of a percep­

tion of limited scope for stmctural development. It is hoped the development of PFCM will 

lead to more useful insights into fuzzy clustermg properties (when the implications become 

more transparent), reviewed in Sections 2.4.5 and 2.4.7, and promote further stmctural 

development of PFCM, alluded to in Chapter 9. 

For the notations, distance measure, data set and fiizzy partitions of Section 2.4.4, 

let the general objective function be defined by 

N c 

Jm,p.a(Uy)-YLuX (for aU m>0,p>0) (CI) 
k = li = l 

Let the memberships of the objective function (CI) satisfy the foUowing three conditions 

N c 

M,^e[0,l] Vz,yt, 0<Y.Uik<N Vz and Z " , " = l V^,a (C.2) 
k=l i=l 

where a is a real valued exponent on the membership. Using the method of Lagrange mul­

tipliers, the resultant expression given by 

i t " M = ̂ (I%-i) (C-3) 
k=li=l i=l 

may be mmimised with respect to w,* to give 

OT-l J P ~ a-l 

mUik c/,!- = Xcai,k 

which after a change of subscript, simplifies to 
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faA^ 

\m J 

-( . Y 

\dst) 
(C.4) 

From (C.4), after redefining subscripts 

a (ccA^ 

m J 

a ( \-

" ; f = 
m~a 

\"]t J 

and applying membership condition (C.2) to (C4) 

zLu"^ (aX^ ( \ 

; = i \ m J ]=i\"jt j 
(C5) 

Sunplifying (C5) gives 

^a2> 

\ m J 

4 J 

or 

'aX^ 
. m J 

N 

z 
7=1 

/ A 

d^ 

(C.6) 

Puttmg (C.6) mto (C.4) gives 

1 

S 
7=1 

f .\-
'st 

KdjtJ 

which on rearranging subscripts, yields 

1 
Uik = • 

7=1 

C \ 
dfk 

\"jkj 

(C.7) 
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At this pomt, it is necessary to avoid the singleton at Xk when dik = 0, by defining the mem­

bership to preclude such a pomt with the set Ik, of (2.4.17). Usmg the identity 

Vj (x ^x) = 2^x, we may mirumise the objective function (CI) with respect to v„ to give 

• N 

S",T^r^(XA:-Vy) = 0 
k=\ 

Ul which the constant matrix A can be factored out to yield the prototype solution 

N 
m 

^ik ^k Hu^kd,r^-
^i=^j , 1^'^c (C8) 

Z^Uij^dik 
k=\ 
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Appendix D. Derivation of the Delta 
Learning Rule for the Backpropagation 
Network 

Interconnected weights in a neural network are like the memones of their biological coun­

terpart. The magrutude and distribution of the weights determine the response characteris­

tic to a given type of input signals. Because of the size of the complex network of weighted 

connections, weight adjustment is not a trivial task. For this reason, a learning mle or a 

systematic procedure by which a neural network can automatically adjust weights in a way 

that will optimally match the actual response to the target goals, is an unportant component 

in the architecture of a neural network. One common technique is to minimise the error 

between output and target, using "negative gradient descent" from differential calculus 

principles. The delta leaming mle uses this procedure. 

Output Response 

Output Layer 

Middle layer 

Input layer 

Input Signals 

Figure D. 1 Architecture of a neural network. 

Referring to Fig. D. 1, let the subscripts / , / and k denote tiie mput, middle and output 

layers, respectively. Let (j+l) denotes the layer after the/tii layer and (j-l) the layer before 

the/th layer. For a fully connected muUi-layer perceptron the input to each/th layer proc­

essing unit is 
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N , 

Ij,r^ Z^^{j,r),{j-l,q)Oj-\,q (D.Ia) 
9=1 

where Ay.i is the number of units in the (j-l) layer; Oj.x is the outputs from the processmg 

uruts of the (/-I) layer; the weight modifying the connection from the (j-l) layer process­

ing unit to the/th layer processing unit is represented by Wjj,x- Let q represent the unit's 

index in the (j-l) layer and r the unit's index in the/th layer. For notational simplicity, we 

can ignore the unit's mdices in each layer, because the same equation applies (taking care­

ful account of the cormection subscripts) to each processing unit. With this convention, we 

have 

/ , = 2l^j,j-iOj-i (D.lb) 
" . 7 - 1 = 1 

where «y.i is the index of uruts in (j-l) layer. Let the total squared enor at the output be 

Nk 

Ek=kY.(rk-0,f (D.2) 

where Ok is the output response and rk is the desired value (the half factor is mtroduced to 

eluninate the constant from the differentiation of D.2. This constant does not affect the fi­

nal form of the equations). The Delta rule or negative gradient descent rule is expressed 

by 

^Ek 

d>Vk,k-i 

where a > 0 regulates the magnitude of the cortection. It is altematively called the learning 

rate. The delta mle establishes the condition for weight change given by 

^k,k-i,t -^k,k-i,t-i a ^ ^ (D.4) 
d^k,k-i 

where t is the iterate parameter, denoted as a subscript, along with tiie layer symbols z,; 

and k. Applying tibie chain mle for tiie partial differentiation of (D.3) gives 

dEk dEk dik ((-5) 

^k,k-l ^k ^k,k-l 

Since 

'Nk^x ^ 

d 
dk 

Y^^k.k-iO, k,k-Y^k-l 

J 

d^k,k-l ^k,k-l 

therefore 

= o,_, 
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^k ^k 

Aw fc,yt_i = -a = -a -—-Ok-x = adkO^-x 

<^k,k-i ^k 

Applying the cham mle to Sk gives 

oEk dEk dOk 

(D.6) 

From (D.2) 

^k 

dOk 

dfk dOk dik 

= -{rk-Ok)\ -z^^ ^h(Ik) 

(D.7) 

'k dik dik 

where we assume the output Ok is a monotonically increasing function ofh. So (D.7) be­

comes 

5k^(rk-0k)K{Ik) (D.8) 

Substituting (D.8) into (D.6) yields 

^^k,k-i = cc{rk-Ok )hk (h )Ok-x (D.9) 

Note that hk is the derivative of hk with respect to h, at the output layer k. The weight 

change in the output layer k is given by (D.9). One might be tempted to apply a similar 

procedure to obtain the middle layer weight change as 

Awy y_i = a(rj -Oj)hk {Ij)Oj_x 

but the problem is we do not know what is the r, (target values) for the middle layer j . 

Therefore, to solve the weight change for the middle layer, we need to reformulate 

terms which do not involve (r, - Oy). Applying (D.7) to the middle layer; we obtain 

dEi dO, 

dO, m 

c ^ , = - 1L__2_ 
dOj dlj 

dO, 3ij(I,) 

dli dl, 
hk(Ij) 

(D.IO) 

(D. l l ) 

'7 '^•'7 

The tricky part of (D.IO) is how to represent the first term of the partial derivative. Sup­

pose we use 

dO, 

_ j £ dEj ^ y , , i _ ^ ' 

„,,,=i^/+i ^j 
"7+1 " y + l = l 

^ i 

\ '^J+IJ 

d 

dO, 

N< 

zl^j+ijOj 

V"7=l 

(D.12) 

which involves die differentiation of Ej witii respect to the inputs Ij+x of the next layer, the 

y+I layer. Note that the summation symbol appears because of the mputs Ij+x- So 
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dO 

N,.,r ^ ^ A 

7 nM=l\ ^^j+lj d i . 
W 

7+1 y-t dj+iWj+.^j (D.13) 
"7+1=1 

Therefore puttmg (D. 13) and (D. 11) into (D.IO) yields 

S 
NM 

= hj(Ij)2lc '^j+i'^j+hj 
">i=i 

(D.I4) 

and the weight change for the middle layer is thus solved as 

AWjj_^=aSjOj_x (D.15) 

where die weight update of any inner layer units can be obtamed by propagatmg the 4 

from the output layer backwards, towards the mput layer. This ingenious solution for the 

leammg algorithm, attributable to RumeUiart et al. [1986], is called for dus reason, tiie 

"backpropagation". It is usual to define the transfer function as 

I 
MJ,) = 

l + exp[-(7^ + ^^)/^o] 
(D.16) 

theta=1 

- 1 5 - 1 0 - 5 0 5 10 15 

Figure D.2 Graph of the sigmoid function for three values of OQ. OJ is assumed zero. 

Figure D.2 shows the sigmoid function bounded in the range [0,1] for various inputs h. It 

is seen that 0o has a marked effect on the slope of the sigmoid function, and thus the re­

sponse of the network. Oo displaces the fimction along the I axis of Fig. D.2. Note also that 

the gradient changes more slowly towards the extrema of the output function, hence a 

slower convergence by the gradient descent mle. There are ways around this problem, but 

none is straight forward to use (see Hush and Hom, [1993]). It is easy to show that 

hk{Ij) = 0j(l-0j) (D.17) 

where Oj = h{Ij). 
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Substituting (D.I7) mto the preceding results, we may summarise the results of the Delta 

Leaming Law for the backpropagation network, as follows: 

(1) Weight change at the output layer is given by 

A^k,k-i = ccdkOk-\ (D.I 8) 

dk = (rk-0k)0k(l-0k) (D.19) 

(2) Weight change at the inner layers is given by 

Awjj_^ = aSjOj_i (D.20) 

N.X 

5j = 0 , ( 1 - 0 , ) L^y+lH'y+l,; (D.2I) 
"7+1=1 

or in terms of the output layer 

Nk 

8j=0j{l-0j)YadkM^k,k-i (D.22) 
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Appendix E. Derivation of Centre Approx­
imating Equations. 

The Centre Approximating (CA) equations facilitate a solution for the Optunum Circle Fit 

(OCF) equations used in the circle detection algorithm of Chapter 6. This is because OCF 

does not discriminate cluster points from noise in solving for the circle parameters (centre 

and radius). The CA equations have superior discrimination of noise from cluster pomts, 

but do not predict cluster parameters as accurately as OCF. This is apparent by examining 

the iterative averaging of cluster pomts, in the equations (E.8 and E.9) given below. 

Figure E. 1 Circle centre approximation. 

Let point 1 with coordinates (xx,t,yx.t) and point 2 with coordinates (x2,,,>'2.f) refer to the 

current cluster pomt and the current estimated cluster centre, respectively at iteration t. Let 

point 3 with coordmates (X2,M, y^t-i) represents tiie previous estunated cluster centre at it­

eration t-l. hi estimatmg the tme centre (point 2) from tiie approxunate centre (point 3) 

we apply the mle that any line normal to the circle's tangent mtersects the circle's centre. 

Assuming the line contammg tiie points 7, 2 and i is the normal Ime, the improved centre 

estunate (length 12) is proportional to the previous centre estunate (length i i ) by a factor 

ht=^ (El) 
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where r, = length 12 and r̂ ,, = length 13. The iteration subscript mdex t indicates that these 

lengths are successive approximations of the tme cluster radius. From Fig. D.I, 

A£x,r =^2,M-^U (E.2) 

^y,t=y2,t-l-yi,t (E.3) 

^t=X2,t-Xxj (E.4) 

^^t = y2,t - y\,t (E.5) 

From similar triangles, 
AXt = h,AE^t (E.6) 

Ay, = htAEy^t (E.7) 

Expanding the terms of (E.6) and (E.7) with (E.2), (E.3), (E.4) and (E.5) give tiie desired 

result 

X2,t = ^u +-^(x2.t-i - Xu ) (E.8) 

y2,t^yi,!+^-(y2,t-i-yu) (E.9) 
fe,t 

Initial values of X2,M andy2,t-] are assumed zero. Because of the presence of noise, the three 

points of Fig. E.I are rarely coUinear and unlikely to intersect the circle's centre. To im­

prove the situation, it is necessary to suppress the noise by some sort of averaging process. 

Provided the cluster points are greater than the noise level, the mean of equations (E.8) or 

(E.9), calculated from all points in the feature space, will converge towards the centre 

whereas points remote from the circle effectively cancel out. However, it should be noted 

that very small values of r̂ ,, can cause overflow error. To avoid this problem, one method 

is to discard the current computation and use instead, its previous valid result. 
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Appendix F. Demonstration Program 

/* Program: VarEta.C 
Author: Paul Im, Dept of Electrical and Electronic Engineering, 

Victoria University of Technology, Australia. 
Date: 26th July, 1996 
Compiler: BorlandC++ 4.5 
Source code: C 
Input data type: ASCII 
Input file: Ruspini.dat (included at the end of program listing) 
Function: Demonstrates the following features described in the 
thesis: 
(1) CPCM framework 
(2) Similarity coefficient of data set 32(j) 
(3) Similarity coefficient of cluster si 
(4) Variable eta algorithm 
(5) Recluster data from known prototypes 
VarEta is a progressive fuzzy clustering algorithm with a variable 
eta to detect round cluster structures and also reclusters data to 
find more accurate prototypes. 
Display: Cluster points are color coded with '+' symbols. The origin 
of each cluster is represented by a white 'x' in a square. A square 
with a white centre dot represents the centroid tracks. Centroid of 
a cluster is represented by a small white circle. A non-cluster 
point is denoted by a diamond symbol with an inside cross symbol. 

*/ 
#include <stdio.h> 
tinclude <stdlib.h> 
#include <conio.h> 
#include <graphics.h> 
#include <time.h> 
#include <math.h> 
tdefine bgi_pathname "" 
#define pi 3.141592654 
#define csize 20 // max number of clusters 
#define dsize 75 // max points per cluster 
#define nchar 4 0 // max char length of file name 
#define kaput -999 // defines non-cluster point 
// Data structure for image points 
typedef struct { 

int x,y; 
} PINT; 
// Data structure for prototype and centroid tracks 
typedef struct { 

float x,y; 
} PFLT; 
// The following are PRIMARY variables 
PINT *X; // pointer to image data array 
PINT *XC; // duplicate X array for reclustering 
PINT *CL[csize]; // pointer to cluster points array 
PFLT C[csize]; // prototype array 
PFLT v[csize][dsize]; // cluster centroid tracks 
unsigned int cs[csize]; // array for number of points in cluster 
float era[csize]; // array for cluster eta circle 
unsigned int cf[csize]; // array for cluster iterations 
unsigned int nl[csize]; // arrray for cluster tracks count 
float vx,vy; // x,y coord prototype variable 
float *U; // pointer to point membership 
double eta; // eta variable 
double etam; // minimixm eta variable 
double acut; // alphacut variable 
double df; // cohesion factor fc 
double er; // eta tolerance 
double md; // minimum cluster radius 
float dcx,dcy; // x,y coord data centroid 
double q; // fuzzifier 
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lonsigned int nc; // number of cluster variable 
unsigned int nn; // nearest neighbour variable 
unsigned int Na; // count of cluster points 
unsigned int mcs; // minimum number of points in a cluster 
unsigned int maxx,maxy; // maximum x,y coord dimensions of object 
unsigned int iter; // cluster iterations variable 
unsigned int tobj,obj; // object total points,current number of points 
char dfile[nchar]; // object file name array 
float SA[csize]; // cluster similarity coefficient 
float SB; // data set similarity coefficient 
// The following are SECONDARY variables, in support role 
unsigned int newgraph,coir,repeat,cnum; 
float cr[csize],cd[csize],ceta[csize] ; 
float B[csize] [dsize],A[csize] [dsize],S[csize] [dsize]; 
float dx,dy,msv,tpc,sv,svar[csize],CR[csize] ; 
double rmin,nnc,sx,sy,sd,aa; 
// Function prototypes 
void getinputs(void); 
void newcentre(void) ; 
void computeEta(void); 
void useNN(void); 
void finalcluster(void) ; 
void removepoints(void); 
void finalresults(void); 
void newcentre(void); 
void savedata(void); 
void clusterCtr(void) ; 
void newlist(void) ; 
void plus(int,int); 
void cross(int,int); 
void square(int,int); 
void cir(int,int,int); 
void diamond(int,int); 
void graphit(void); 

main() 
{ 

FILE *img_file; 
unsigned int rescan,repeat,reclu3ter=l; 
int driver=DETECT,mode; 
int i,j,k; 

initgraph(sdriver,&mode,bgi_pathname) ; 
restorecrtmode(); 
printfC'VE: Variable eta progressive fuzzy clustering algorithm.\n"); 
printfC'Data file name > " ) ; 
scanf("%s",dfile); 
if (NULL==(img_file=fopen(dfile, "rt"))) { 

printf("\nErrorl: Cannot open file %s.\n",dfile); 
exit(l); 

fscanf(img_file,"%d",&obj); // get size of image 
tobj=obj; // make a duplicate 
if (NULL==(U=(float *)calloc(obj,sizeof(float)))) { 

printf("\nError2: Unable to allocate U memory.\n"); 
exit(l); 

if (NULL==(X=(PINT *)calloc(obj,sizeof(PINT)))) { 
printf("\nError3: Unable to allocate X memory.\n"); 
exit(l) ; 

} 
if (NULL== (XC= (PINT *) calloc (obj, sizeof (PINT) )) ) { ^̂  

printf("\nError4: Unable to allocate X memory.\n"); 
exit(l); 

) 
// Get image data into array X 

for (i=0;i<obj;i++) fscanf(img_file,"%d %d",&X[i]-x,&X[i].y); 
fclose(img_file); 

// Duplicate image data in XC array 
for (i=0;i<obj;i++) {XC[i].x=X[i].x; XC[i].y=X[i].y;} 

// Find max x,y dimensions of image data for display scaling 

file:///nErrorl
file:///nError2
file:///nError3
file:///nError
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maxx=X[0].x; maxy=X[0].y; 
for (i=l;i<obj;i++){ 

maxx= (ma.xx<X[i]-x) ? X[i].x : maxx; 
maxy=(maxy<X[i].y) ? X[i].y : maxy; 

} 
// Display unclustered image data 

newgraph=l; graphit(); newgraph=0; 

// Begin CPCM loop 
do { // recluster loop 

getinputs(); 
newcentre(); dcx=vx; dcy=vy; 
computeEta(); 
nc=0; rescan=l; 
do { // rescan loop 

repeat=l; 
// Cluster control loop 

do { // repeat loop 
useNNO ;f inalcluster () ; 
if ((Na<mcs) && (obj>=mcs)) { 

removepoints(); 
newlist(); 
if (obj>0)newcentre0; 

} 
else repeat=0; 
if (obj<mcs) { 

repeat=0; rescan=0; 
if (obj>0) { 

for (i=0;i<obj;i++) X[i].x=kaput; 
newlist(); 

} 
} 

} while (repeat); // End inner loop 
if (rescan) { 

if (Na>=mcs) { 
savedata(); 
newlist(); 
if (obj>mcs)newcentre0; 
else { // obj<=mcs 

if (obj>0){ 
rescan=0; 
for (i=0;i<obj;i++) X[i].x=kaput; 
newlist(); 

} 
} 

} 
} 

} while (rescan); // End outer loop 
clusterCtr(); 

// compute A(i), dist from own centroid 
for (i=0;i<nc;i++) 

for (j=0;j<cs[i];j++) A[i][j]=0; 
for (i=0;i<nc;i++) { 

for (j=0;j<cs[i];j++) { 
dx=CL[i][j].x-C[i].x; 
dy=CL[i][j].y-C[i].y; 
A[i][j]=sqrt(dx*dx+dy*dy); 

msv=0; 
f o r ( i = 0 ; i < n c ; i + + ) C R [ i ] = 0 ; 
f o r ( i = 0 ; i < n c ; i + + ) { 

aa=0 ; 
f o r ( j = 0 ; j < c s [ i ] ; j + + ) { 

d x = C L [ i ] [ j ] . x - C [ i ] . x ; 
d y = C L [ i ] [ j ] . y - C [ i ] . y ; 
a a + = s q r t ( d x * d x + d y * d y ) ; 

} 
C R [ i ] = a a / c s [ i ] ; 

} 
f o r ( i = 0 ; i < n c ; i + + ) s v a r [ i ] = 0 ; 
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msv=0; 
f o r ( i = 0 ; i < n c ; i + + ) { 

sv=0 ; 
f o r ( j = 0 ; j < c s [ i ] ; j + + ) { 

d x = C L [ i ] [ j ] . x - C [ i ] . x ; 
d y = C L [ i ] [ j ] . y - C [ i ] . y ; 
s d = s q r t ( d x * d x + d y * d y ) - C R [ i ] ; 
s v+=sd*sd ; 
msv+=sd*sd; 

) 
svar[i]=(float)sqrt(sv/cs[i]); // std dev for each cluster 

} 
tpc=0; 
for (i=0;i<nc;i++) tpc+=cs[i]; // total points count 
msv=(float)sqrt(msv/tpc); // std dev for all clusters 

// compute B(i), dist from nn of other cluster centroid 
for (i=0;i<nc;i++) { 

for (j=0;j<cs[i];j++) { 
rmi n= 1E 7; cnum= 0; 
for (k=0;k<nc;k++) { 

if (k==i)continue; // ensures cluster i != k 
dx=CL[i][jl.x-C[k].x; dy=CL[i][j].y-C[k].y; 
nnc=sqrt(dx*dx+dy*dy); 
if (nnc<rmin) { 

rmin=nnc; 
cnum=k; 

} 
} 
dx=CL[i][j].x-C[cnum].x; dy=CL[i][j].y-C[cnum].y; 
B[i][j]=sqrt(dx*dx+dy*dy); 

} 
} 

// compute sl(j) and s2 similarity coefficients 
for (i=0;i<nc;i++) { 

f o r ( j = 0 ; j < c s [ i ] ; j + + ) { 
i f ( B [ i ] [ j ] > A [ i ] [ j ] ) S [ i ] [ j ] = l - ( A [ i ] [ j ] / B [ i ] [ j ] ) ; 
i f ( B [ i ] [ j ] < A [ i ] [ j ] ) S [ i ] [ j ] = ( B [ i ] [ j ] / A [ i ] [ j ] ) - l ; 
i f ( B [ i ] [ j ] = = A [ i ] [ j ] ) S [ i ] [ : ] = 0 ; 

} 
} 
SB=0; 
for (i=0;i<nc;i++) { 

SA[i]=0; 
for (j=0;j<cs[i];j++) {SA[i]+=S[i] [j];SB+=S[i] [j ] ;} 
SA[i]/=cs[i]; // si similarity coefficient for each cluster 

SB/=tpc; // s2 similarity coefficient for' data set 
graphit(); 
finalresults(); 
for (i=0;i<nc;i++) 

for (j=0;j<nl[i];j++){v[i][j].x=0; v[i][j].y=0;) 
for (i=0;i<nc;i++)nl[i]=0; nc=0; 
for (i=0;i<nc;i++) free(CL[nc]); // free points for reclustering 
printf("Repeat cluster analysis? [0=Exit,l=Repeat] > " ) ; 
scanf("%d",srecluster); 

if (recluster) { 
obj=tobj; 
for (i=0;i<tobj;i++) { 

X[i].x=XC[i].x; X[i].y=XC[i].y; 
} 

) 
} while (recluster); // end of CPCM loop 

// free pointers 
free(U); 
free(X); free(XC); 
return 0; // End of program 

} 

void getinputs(void) 
// get user inputs 
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// printf("Alphacut (normal 0.95) > " ) ; 
// scanf("%lf",Sacut); 

printf("Cohesion factor (1 to 100) > " ) ; 
scanf("%lf",&df); 
printf("Minimum cluster radius (1 to 100) > ") ; 
scanf("%lf",&md); 
mcs=5;acut=0.95;er=0.5; // assumed constants 
etam=-md/log(acut); // min eta 

} 

void newcentre(void) 
// find data centroid 
{ 

int k; 
double sumx,sumy; 

sumx=0; sumy=0; 
for (k=0;k<obj;k++) { 

sumx+=X[k].x; 
sumy+=X[k].y; 

} 
if (obj>0) { 

vx=sumx/obj; // x-coord data centroid 
vy=sumy/obj; // y-coord data centroid 

} 
v[nc][nl[nc]].x=vx; v[nc][nl[nc]].y=vy; // save cluster 

tracks(centroid) 
nl[nc]++; // counts number of tracks 

} 

void computeEta(void) 
// compute variable eta 
// use eta if >= min eta, else use min eta 
{ 

int k; 
double xc,yc,d; 

d=0; 
for (k=0;k<obj;k++){ 

xc=X[k].x-vx; 
yc=X[k].y-vy; 
d+=sqrt(xc*xc+yc*yc); 

} 
if (obj>0){ 

eta=df*d/obj; // eta value 
if (eta<=etam) eta=etam; 

} 
} 

void useNN(void) 
// assign nearest neighbour to prototype 
{ 

int k; 
double xc,yc,d,dmin; 
nn=0; 
xc=X[0].x-vx; yc=X[0].y-vy; 
dmin=xc*xc+yc*yc; 
for (k=l;k<obj;k++){ 

xc=X[k].x-vx; yc=X[k].y-vy; 
d=xc*xc+yc*Yc; 
if (d<dmin) { 

dmin=d; 
nn=k; // nearest neighbour point 

} 
) 
vx=X[nn].x; vy=X[nn].y; // assign nearest neighbour to prototype 
v[nc][nl[nc]].x=vx; v[nc][nl[nc]].y=vy; // save cluster 

tracks(centroid) 
nl[nc]++; // counts number of tracks 

) 
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void finalcluster(void) 
{ 

unsigned int k; 
double pe,err; 
double XC,yc,sux,suy,d; 
pe=0; iter=0; 
do { // do-while loops until eta dif f erentiaKO. 5 

// compute memberships 
for (k=0;k<obj;k++) { 

xc=X[k].x-vx; 
yc=X[k]-y-vy; 
d=sqrt(xc*xc+yc*yc)/eta; // distance metric 
if (d>25)U[k]=0; 
else U[k]=l/exp(d) ; // point membership 

} 
Na=0; sux=0; suy=0; 

// find points in cluster 
for {k=0;k<obj;k++) { 

if (U[k]>acut) { 
++Na; // number of points in cluster 
sux+=X[k].x; 
suy+=X[k].y; 

} 
} 

// compute cluster centroids 
if (Na>0) { 

vx=sux/Na; // x-coord of prototype 
vy=suy/Na; // y-coord of prototype 
computeEta{); 
v[nc][nl[nc]].x=vx; v[nc][nl[nc]].y=vy; // save cluster 

tracks(centroid) 
nl[nc]++; // counts tracks 

err=fabs(eta-pe); 
pe=eta; 
iter++; 
while (err>er); // er=0.5 

void removepoints(void) 
// Remove data points from subsequent clustering 
{ 

unsigned int k; 

for (k=0;k<obj;k++) 
if (U[k]>acut) X[k].x=kaput; 

} 

void finalresults(void) 
// Show cluster statistics 
// CRAD=cluster radius, SDEV=cluster std deviation 
// COF=cohesion factor, ACUT=alphacut 
// S2=data set sim coeff, Sl=cluster sim coeff 
{ 

unsigned int i,j,k,ncnt; 

for (k=0;k<nc;k++) { 
printf("\nCluster #%d:\n",k+l); 
for (i=0;i<nl[k];i++) { 

printf("%d:%2.If,%2.If ",i+l,v[k][i].x,v[k][i].y); 
} 

} 
getchO ; printf ("\n") ; 

printf("VE:File:%s Points:%d S2:%6.4f SDEV:%2.2f COF:%1.0f 
MCR:%2.1f\n", 

dfile,tobj,SB,msv,df,md); 
printf("Data Centroid:%2.2f,%2.2f ER:%2.1f ACUT:%4.2f MCS:%d\n", 

dcx, dcy, er,acut,mcs); 
for (k=0;k<nc;k++) { 

file:///nCluster
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printf(" CLUSTER %d [%d points] CTR:%2.2f, %2.2f Sl:%6.4f 
SDEV:%2.2f\n", 

k+l,cs[k],C[k].x,C[k].y,SA[k],svar[k]) ; 
printf("CRAD:%2.2f R:%2.2f D:%2.2f ETA:%2.2f ITER:%d\n", 

cra[k],cr[k],cd[k] ,ceta[k] ,cf[k] ) ; 
for (i=0;i<cs[k];i++) { 

printf("%d,%d ",CL[k][i].x,CL[k][i].y); 
if ((i+l)%10==0) printf("\n"); 

} 
if (cs[k]%10!=0) printf("\n"); 
getchO ; 

} 
// Determine noise points 

for (j=0;j<tobj;j++) {X[j].x=XC[3].x; X[j].y=XC[j].y;} 
for (j=0;j<tobj;j++) 

for (k=0;k<nc;k++) 
for (i=0;i<cs[k];i++) 

if (X[j].x>0) 
if (CL[k][i].x==X[j].x&&CL[k][i].y==X[j].y) X[j].x=kaput; 

ncnt=0; 
for (j=0;j<tobj;j++) if (X[j].x>0) ncnt++; 
printf("UNCLUSTERED [%d points]\n",ncnt); 
for (j=0;j<tobj;j++){ 

if (X[j].x>0) { 
printf("%d,%d ",X[j].x,X[j].y); 
if ((j+l)%10==0) printf("\n"); 

} 
} 
printf("\n"); 

} 

void savedata(void) 
// Save cluster statistics 
( 

unsigned int k,n; 
double x,y,rsq; 
rsq=0;n=0; 

// remove data points from subsequent clustering 
for (k=0;k<obj;k++) 

if (U[k]>acut) { 
x=X[k].x-vx; 
y=X[k].y-vy; 
rsq+=x*x+y*y; 
X[k].x=kaput;n++; 

} 

C[nc].x=vx; // prototype, centroid x coord 
C[nc].y=vy; // prototype, centroid y coord 
cf[nc]=iter; // cluster iterations 
cs[nc]=n; // number of points in cluster 
v[nc][nl[nc]].x=vx; // x-coord, cluster centroid tracks 
v[nc][nl[nc]].y=vy; // y-coord, cluster centroid tracks 
nl[nc]++; 
era[nc]=-eta*log(acut); // cluster eta circle 
ceta[nc]=eta; 
cr[nc]=sqrt(rsq/(n-l)); // cluster rms radii 
cd[nc]=100*(n-l)/(pi*rsq/(n-l)); // cluster density 
++nc; 

void clusterCtr(void) 
// Re-cluster from known prototypes 
// to obtain more accurate clusters 
{ 

unsigned int i,k,np; 
double xc,yc,r,sx,sy; 

for (i=0;i<nc;i++){ 
if (NULL==(CL[i]=(PINT *)calloc(100,sizeof(PINT)))) { 

printf("\nError5: Unable to allocate CL memory.\n") 
exit(l); 

file:///nError5
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) 
} 
for (i=0;i<tpbj;i++) {X[i].x=XC[i] .x; X[i].y=XC[i].y; } 
for (i=0;i<nc;i++) { 

np=0; sx=sy=0; 
for (k=0;k<tobj;k++){ 

if (X[k].x>0) { 
xc=X[k].x-C[i].x; yc=X[k].y-C[i].y; 
r=sqrt(xc*xc+yc*yc); 
if (r<=cra[i]) { 

// save improved cluster statistics 
CL[i][np].x=X[k].x; // x-coord cluster points 
CL[i][np].y=X[k].y; // y-coord cluster points 
sx+=X[k].x; sy+=X[k].y; 
np++; X[k].x=kaput; // remove cluster points 

) 
} 

} 
if (np>0) {vx=sx/np; VY=sy/np;} // improved prototype positions 
C[i].x=vx; C[i].y=vy; // save improved prototype positions 
cs[i]=np; // save number of cluster points 

) 
} 

void newlist(void) 
// Update data array list and fills up 
// vacant array cells with image point data 
{ 

unsigned int k,ind=0; 

for (k=0;k<obj;k++) { 
if {X[k].x==kaput) continue; 
else { 

X[ind].x=X[k].x; 
X[ind].y=X[k].y; 
ind++; 

) 
} 
obj=ind; 

} 

void plus(int x,int y) 
// Constructs a plus symbol 
{ 

setcolor(coir); 
Iine(x-3,y,x+3,y); line(x,y-3,x,y+3) ; 

void cross(int x,int y) 
// Constructs a cross symbol 
{ 

setcolor(coir); 
line(x-2,y-2,x+2,y+2); line(x+2,y-2,x-2, y+2) 

void cir(int x,int y,int r) 
// Constructs a circle symbol 
{ 

setcolor(coir); 
circle(x,y,r); 

} 

void diamond(int x,int y) 
// Constructs a diamond symbol 
{ 

int n=5; 
setcolor(coir); 
line(x,y-n,x-n,y); 
line(x-n,y,x,y+n); 
line(x,y+n,x+n,y); 
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line(x+n,y,x,y-n); 
} 

void square(int x,int y) 
// Constructs a square symbol 
{ 

int n=3; 
setcolor(coir); 
line(x-n,y-n,x+n,y-n); 
line(x+n,y-n,x+n,y+n); 
line(x+n,y+n,x-n,y+n); 
line(x-n,y+n,x-n,y-n); 

) 

void graphit(void) 
// Display color coded cluster points, origins, 
// centroid tracks and unclustered points (if any) 
( 

int i,j,k; 
unsigned int xp,yp,icnt,xo,yo,xw, yw; 
unsigned char ints[5],ni,nih; 
double xs,ys; 

setgraphmode(getgraphmode()); // restore graphics mode 
setcolor(15) ; 
xo=100;yo=10;xw=yw=440; // (xo,yo)=origin;xw,yw are x,y coords widths 

// Get x,y coordinates scale factor 
if (maxx<50||maxy<50){xs=(double)xw/maxx-3;ys=xs;} 
else {xs=(double)xw/maxx-0.1; y3=(double)yw/maxy-0.1;} 
if(maxx>maxy)ys=xs; 
else xs=ys; 
if (maxx>200| |maxy>200) {ni=30;nih=15 ;} 
else if (maxx>100 1lmaxy>100)(ni=20;nih=10;} 
else if (maxx>50I |maxy>50) {ni=10;nih=5; } 
else {ni=l;nih=l;} 
rectangle(xo,yo,xo+xw,yo+yw); 
line(xo,yo+yw+2,xo,yo+yw+7); // zero x tick 
line(xo-2,yo+yw,xo-7,yo+yw); // zero y tick 
itoa(0,ints,10); moveto(xo-4,yo+yw+12); outtext(ints); // x=0 
itoa(0,ints,10); moveto(xo-32,yo+yw-3) ; outtext(ints); // y=0 
for (icnt=l,k=l;k<(xw+l);k++) { // x coord ticks and number labels 

if (k%((int)(nih*xs+0.5))==0) 
{xp=xo+k;yp=yo+yw+2;line(xp,yp,xp,Yp+5) ; } 

if (k%((int)(ni*X3+0.5))==0) { 
{itoa (ni*icnt++, ints, 10) ; moveto (xp-4, yp+10) ; outtext (mts) ; } 

for (icnt=l,k=l;k<(yw+l);k++) { // y coord ticks and number labels 
if (k%((int)(nih*ys+0.5))==0) 

{xp=xo-2;yp=yo+yw-k;line(xp,yp,xp-5, yp) ;} 
if (k%{(int)(ni*ys+0,5))==0) 

{itoa(ni*icnt++,ints,10); moveto(xp-32, yp-3) ; outtext(ints);} 

) 
if (newgraph){ 

colr=ll; 
for (k=0;k<obj;k++) { 

xp=xo+xs*X[k].x; yp=yo+yw-ys*X[k] .y; 
cross(xp,yp); 

} 
} 
else { 

colr=15; 
// A square with inside white cross represents cluster origin 
// Color of square corresponds to color of cluster 
// Cross (white) symbol denotes cluster origin 

for (k=0;k<nc;k++) { 
xp=xo+xs*v[k][0].x+0.5; yp=yo+yw-ys*v[k][0].y+0.5; 
cross(xp,yp); 

} 
colr=2; 

// Square (colored) symbol denotes cluster origin 
for (k=0;k<nc;k++) { 
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xp=xo+xs*v[k][0] .x+0.5; yp=yo+yw-ys*v[k][0].y+0.5; 
s q u a r e ( x p , y p ) ; 
col r++; 

} 
co l r=2 ; 

/ / Plus symbol denotes c l u s t e r po in t 
for (k=0;k<nc;k++) { 

for ( i=0 ; i<cs [k ] ; i++) { 
xp=xo+xs*CL[k][i].x+0.5; yp=yo+yw-ys*CL[k][i].y+0.5; 
plus(xp,yp); 

} 
xp=xo+xs*C[k].x+0.5; yp=Yo+yw-ys*C[k].y+0.5; 

// Show variable eta circle of cluster 
// Color of circle corresponds to color of cluster 

cir(xp,yp,(xs*cra[k]+0.5)); 
colr++; 

} 
// Remove cluster points for later noise points identification 

for (j=0;j<tobj;j++) {X[j].x=XC[j ] .x; X[j].y=XC[j ] . y; } 
for (j=0;j<tobj;j++) 

for (k=0;k<nc;k++) 
for (i=0;i<cs[k];i++) { 

if (X[j].x>0) { 
if {CL[k][i].x==X[j].x&&CL[k][i].y==X[j].y) 

X[j].x=kaput; 
} 

} 
// Diamond and cross symbols denote unclustered point 

colr=7; 
for (j=0;j<tobj;j++) 

if (X[j].x>0) { 
diamond(xo+xs*X[j].x+0.5,yo+yw-YS*X[j].y+0.5) ; 
cross(xo+xs*X[j].x+0.5,yo+yw-ys*X[j].y+0.5); 

} 
// Square and a centre white dot symbols denote cluster tracks 

colr=2; 
for (k=0;k<nc;k++) { 

for (i=l;i<nl[k];i++) { 
xp=xo+xs*v[k][i].x+0.5; yp=yo+yw-ys*v[k][i].y+0.5; 
square(xp,yp); 
putpixel(xp,yp,15); 

} 
colr++; 

} 
colr=15; 

// Small circle symbol denotes cluster prototype 
for (k=0;k<nc;k++) [ 

xp=xo+xs*C[k] .x+0.5; yp=yo+yw-ys*C[k] .y+0.5; 
cir{xp,yp,2); // cluster prototype 

} 
) 
getch(); 
r e s t o r e c r t m o d e ( ) ; 

} 

Data F i l e : R u s p i n i . d a t 

75 
4 53 5 63 10 59 9 77 13 49 13 69 12 88 15 75 18 61 19 65 
22 74 27 72 28 76 24 58 27 55 28 60 30 52 31 60 32 61 36 72 
28 147 32 149 35 153 33 154 38 151 41 150 38 145 38 143 32 143 34 141 
44 156 44 149 44 143 46 142 47 149 49 152 50 142 53 144 52 152 55 155 
54 124 60 136 63 139 86 132 85 115 85 96 78 94 74 96 97 122 98 116 
98 124 99 119 99 128 101 115 108 III 110 111 108 116 111 126 115 117 117 115 
70 4 77 12 83 21 61 15 69 15 78 16 66 18 58 13 64 20 69 21 
66 23 61 25 76 27 72 3164 30 
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Glossary 

This glossary is mtended to present a succinct explanation or clarification of some unfamil­

iar pattem recognUion terms or concepts used in the tiiesis. The items m the glossary repre­

sent the more significant tenns alluded to directiy or indirectly in die tiiesis, witiiout at-

temptmg to be comprehensive. Works from the following authors, where cited in the glos­

sary, are acknowledged with capitalised characters enclosed in square brackets eg. [HSJ. 

Unacknowledged items are from the author. 

BF = [Burden and Faires, 1989] 
FS = [Freeman and Skapura, 1992] 
GW = [Gonzalez and Woods, 1992] 
HS - [Haralick and Shapiro, 1993] 
JD = [Jam and Dubes, 1988] 
JKS = [Jam, Kasturi and Schuck, 1995] 
SHB = [Sonka, Hlavac and Boyle, 1993] 

Accuracy 
Accuracy refers to the degree of closeness an estimate has to the tme value of what it is 
estimating. [HS] 

Area analysis, region analysis 
In area analysis, the area of the image containing the objects or entities to be processed is 
located by some simple algorithm. A more complex processing algorithm is applied only m 
the located area. This strategy of processing can often increase execution speed. The al­
gorithm locating the area to be processed is called the focus-of-attention mechanism. [HS] 

Bayes decision rule 
A Bayes decision mle is one that treats the uruts independently and assigns a urut u having 
pattem measurements or features d to the category c whose condUional probability, given 
d, is highest. [HS] See decision mle. 

Binary image 
A binary image is an image in which each pixel takes either the value zero or non-zero. 
Usually the non-zero value is assumed to be 1. [HS] See pixel. 

Blob or connected component 
A blob is a maximal-sized connected region. [HS] See blob analysis. 

Blob analysis, connectivity analysis, connected component analysis 
In blob analysis, the posUion and shape properties of each connected component are meas­
ured. Typical shape properties include area, perimeter, number of holes, bounding rectan-
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gle, extremal points, centroid, second moments, and orientation derived from second mo­
ments or extremal points. The connected components are then identified or classified by a 
decision mle on the basis of tiieir measured properties. [HS] See blob, area analysis. 

Classifier 
A classifier is a device or process that sorts pattems mto categories or classes. [HS] 

Categorised 
See classified 

Classified, identified, recognised, categorised 
A unit is said to be classified if the decision mle is able to assign U to some category from 
the set of given categories. In some applications there may be a definite distmction between 
recognise and identify. In these applications, for a unit to be recognised, the decision mle 
must be able to assign U to a type of category that uicludes many sub-categories. For a imit 
to be identified, the decision mle must be able to assign it not orUy to a type of category but 
also to a sub-category of the category type. For example, a small area ground patch that 
may be recognised as containing trees may be specifically identified as containing apple 
trees. [HS] 

Classification, identification 
Refers to the class or category assignment of data. A classified object is said to be identi­
fied. See classified. 

Cluster 
A cluster is a homogenous group of units that are very "like" one another. "Likeness" be­
tween units is usually determined by the association, similarity or distance between the 
measurement pattems associated with the units. [HS] See cluster assignment fimction. 

Cluster prototype 
A cluster prototype represents or characterises a cluster in some way eg. the centre or cen­
troid of the cluster. In fiizzy clustering, it is obtained by the iterative minimization of an 
objective fimction J involving the fiizzy memberships. 

Cluster assignment function 
A cluster assignment fimction is a fimction that assigns each observed imit to a cluster on 
the basis of their corresponding features. Sometimes the uruts are treated independently. In 
this case the cluster assignment function can be considered as a transformation from meas­
urement space to a set of clusters. [HS] 

Clustering, cluster analysis, pattern classification 
Cluster analysis is defmed as the formal study of algorithms and methods for grouping or 
classifying objects. [JD]. 

Clustering is concemed with constmctmg the cluster assignment function that groups 
sunilar uruts. Clustering is synonymous with pattem classification or numerical taxon­
omy. [HS] 

Computer vision 
Computer vision is the combination of unage processing, pattem recognition, and artificial 
intelligence technologies that focuses on the computer analysis of one or more unages, 
taken with a single/muUiband sensor in time sequence. The analysis recognises, locates the 
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posrtion and orientation of, and provides a sufficiently detailed symbolic description or 
recognition of those unaged objects deemed to be of mterest in the three dimensional envi-
roranent. The computer vision process often uses geometric modelmg and complex-
knowledge representations m an expectation- or model-based matching and searching 
methodology. The searching can mclude bottom-up, top-down, blackboard, hierarchical, 
and heterarchical control strategies. [HS] See machine vision systems. 

Connectivity analysis, connected component analysis 
See blob analysis. 

Data 
Data is any qualitative or quantitative information containing useful or meaningful pattems 
or stmcture. In machine vision, meaningful data is typically embedded in noise or a com­
plex surroundmg. Image processing or clustering algorithms are processes that can extract 
mearungful pattems from noise or the complex surrounding and give an interpretation of 
the extracted data. This data is called an object or objects of mterest. 

Decision rule or simple decision rule 
A decision mle usually assigns one and orUy one category to each observed unit on the ba­
sis of the sequence of measurement pattems m the data sequence Sd or on the basis of the 
corresponding sequence of feature pattems. A simple decision mle/ is a decision mle that 
assigns a category to a unit solely on the basis of the measurements or features associated 
with the unit. Hence the units are treated independently, and the decision mle / may be 
thought of as a fiinction that assigns one and only one category to each pattern in meas­
urement space or to each feature in feature space. [HS] 

Detect, detection 
A unrt is said to be detected if the decision mle is able to assign rt as belongmg only to 
some given subset A of categories from the set C of categories. To detect a unit does not 
unply that the decision mle is able to identify the unit as specifically belonging to one par­
ticular category. [HS] 

Digital image 
A digital image or digitised image is an image m digital format obtained by partitioning the 
area of an unage mto a fmite two dimensional array of small, uniformly shaped, mutually 
exclusive regions caUed resolution cells and assigning a representative image value to each 
such spatial region. A digital image may be abstractiy thought of as a function whose do-
mam is a finite two dunensional set of resolution cells and whose range is the set of possi­
ble image intensities. [HS] 

Discriminant function, linear discriminant function 
A discrimmant fimction f{d) is a scalar fiinction whose domaui s usually measurement 
space and whose range is usually the real numbers. V^enfi(d)>fk(d), for k= l,2,...,K, 
then the decision mle assigns the zth category to tiie unit givmg rise to pattem d. A linear 
discriminant function/is a discriminant fimction of the form 

/ ( ^ ) = S " « / ^ , + « o , where t/= (<?;, ^,..., dn) represents the measurement pattem. 
J—'I J J 

[HS] 

Feature, feature pattern, feature vector or pattern feature 
A feature is an A-tuples or vector whose components are fimctions of the inrtial measure­
ment pattem variables or some subset of them. Feature A-tuples or vectors are designed to 
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contam a high amount of infonnation relative to die discnnunation between units of tiie 
types of categories in the given category set. Sometimes tiie feattires are predetennmed; at 
otiier times they are detemiined when the pattern discrimmation problem is bemg solved' hi 
image pattem recognrtion, feattires often contain infonnation relative to gray tone mtensity 
texttire, or region shape. [HS] See feattire space. 

Feature space 
A feature space is the set of all possible feature A-tuples. [HS] 

Generalisation 
Ul tiie context of neural networks, rt refers to tiie capabUity of die network to associate key 
feattires of new mput vectors to the feattires of the training class. Generalisation capabUi­
ties are related to neural network topology, the representativeness of tiie trammg samples 
and the number of training pattems. [FS] 

Gray scale image or gray level image 
A gray scale image is an image m which each pixel has a value in a range larger than just 0 
or 1. Gray scale images typically have values in tiie range 0 to 63, 0 to 255, or 0 to 1,023 
correspondmg to 6-bit, 8-brt or 10-bit digitisations. [HS] 

Histogram or histogram image 
A histogram is a function defmed on the set of unage mtensity values of non-negative inte­
gers. The value h{k) is given by the number of pixels in the image havmg image mtensity k. 
For images having a large gray tone range, the image will often be quantised before bemg 
histogrammed or will be quantised on the fly during the histogramming process. [HS] 

Hyperplane 
A hyperplane is a decision boundary which arises from the use of affine discriminant func­
tions. 

Identified 
See classified. 

Identification 
See classification. 

Illumination 
The illumination at a point on a surface is the lummous flux incident on an infirutesimal 
element of the surface centred at the given point divided by area of the surface element. 
The unit of illumination is the lux or meter candle, being equivalent to one lumen per 
square meter. The illumination at a point on a surface due to a point source of light is pro­
portional to the luminous intensity of the source in the direction of the surfece point and to 
the cosine of the angle between this direction and surface normal direction. It is inversely 
proportional to the square of the distance between the surface point and the source. [HS] 

Image 
An image is a spatial representation of an object contained in a two or three dimensional 
scene. In computer or machine vision, "image" usuaUy means recorded unage such as a 
video image, digital unage, or a picture. In a two dimensional case, it may be thought of as 
a continuous function / of two variables m a rectangular plane or region with values at 
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spatial or orthogonal coordinates (r, c) denoted by I{r, c). [HS] See video unage, digital 
image, image intensity, gray scale unage, unage processmg and histogram. 

Image processing 
Unage processmg encompasses all the various operations that can be applied to image data. 
These include, but are not limited to, contrast stretchuig, edge enhancement, unage en­
hancement, preprocessmg, quantisation, spatial filtering, matching and recognition tech­
niques. [GW] See image. 

Interpretation 
Interpretation mvolves assignmg meaning to an ensemble of recognised objects. [GW] 

Labelled 
An object is said to be labelled if its identity or class membership is known. For example, 
an approximately circular silhouette can represent any number of objects such as a ball, 
egg, orange or balloon. However, given additional mformation that the object has the smell, 
texture, color and weight of an orange, the object is said to be identified as an orange. 

Linearly separable 
Two classes are said to be separable if their class regions do not overlap. If for every class 
region there exists a hyperplane that separates it from aU other class regions, the classes 
are said to be linearly separable. [HS] See hyperplane. 

Machine vision system 
A machine vision system is a system capable of acquiring one or more images of an object; 
of processing, analysing and measuring various characteristics of the acquired images; and 
of interpreting the results of the measurements in such a way that some usefiil decision can 
be made about the object. Functions of machine vision systems mclude locating, inspect­
ing, gauging, identifying, recogrusmg, counting, and motion estimating. Also see comput­
ing vision. [HS] 

Measurement space 
A measurement space is a set large enough to include the set of all possible measurement 
pattems that could be obtamed by observing some set of units. [HS] 

Measurement vector 
A measurement vector is the ordered A-tuples of measurements obtained from a unit under 
observation. Each component of the A-tuples is a measurement of a particular quality, 
feature, or characteristic of the unit. In image pattem recognition, the units are usually 
picture elements or simple formations of picture elements, and the measurement A-tuples 
are the corresponding gray tone mtensrties, gray tone mtensity A-tuples, or properties of 
formations of gray tone intensities. [HS] 

Neural network, perceptron 
A neural network is an interconnected network of non-linear units or processing elements 
capable of leaming and self-organismg. The response ofa unit or a processing element is a 
non-linear monotonic function of a weighted sum of the mputs to the processmg elements. 
The weights, called synaptic weights, axe modified by leaming or reinforcement algorithm. 
Typical non-lmear processmg fiinctions are sgn(x), ll(l+e'% and tanh(x). When each 
processmg element contributes one component to the output response vector, the percep-
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tron is called a simple perceptron. Processing uruts whose outputs only indirectiy uiflu-
ences the components of the output response vector are called hidden units. [HS] 

The attraction of neural networks for pattem recognition Ues in their ability to parti­
tion the feature space usmg non-linear boundaries for classes. Neural networks are lunited 
m their abUity to introduce known facts about the application domain and the difficulty in 
debugging performance. [JKS] 

Noise 
Two types of noise may be identified. 
1. The first kind is random variations in the intensity values. Some of the common types 
of noise belonging to this category are: (i) salt and pepper, (ii) impulse and (ui) Gaussian. 
Salt and pepper noise contain random occurrences of both black and white intensity values. 
Impulse noise contains only white intensity values. Gaussian noise contains variations in 
intensity that are drawn from a Gaussian or normal distribution. [JKS] 
2. The other kind of noise is associated with the by products of image processmg or from 
a clustering algorithm. For example bluned edges from an edge operator and low member­
ship values from a fuzzy clustering algorithm. 

Norm, vector norm 
Let Ji" denotes the set of all ^-dimensional column vectors with real number coefficients. 
To define a distance in 5H", we use the notion of a norm. A vector norm on 5R" is a fimction, 
II • II, from 91" into 51 with the following properties: 
(i) ||x|| > 0 for all X e 9t", 
(ii) ||x|| = 0 if and only if x = [0,0,. ..,0]^ ^ 0, 
(iii) ||ax|| = M IWI for aU a e 91, and x e 9i", 
(iv)||x + y||<||x|| + | |y | | foraUx,ye9r. 
where x = [xi,X2,...,Xn]̂  is the vector in 9^. [BF] See Appendix A. 

Optimal, optimality 
Optunality m the context of clustering is understood in two senses. As subjective optimal­
ity, it refers to an ideal or natural perception of grouping in data. Objective optimality is 
restricted to the notion of objective performance measures such as tiie least squares error, 
cluster volume or cluster shape, or other cluster parameters. See optimisation techniques. 

Optimisation techniques 
Optimisation implies tiie notion of findmg the best fit of an objective fimction to data. A 
fimction optunisation may be defined as follows: given some finite domam D and a fimc­
tion/ D->i?, R being tiie set of real numbers, find the best value in D under f Findmg the 
best value m D is understood as findmg a value xeD yieldmg either the muumum (fimction 
minimisation) or the maximum (function maxunisation) of the function/ 

/„i„(x) = min/(x) , /„3^(x)=max/(x) 

The fimction/is called tiie objective fiinction. The design of tiie objective function is a key 
factor in the performance of any optimisation algoritiim. Conventional approaches to op­
timisation use calculus based metiiods which can be compared to hiU-climbing (in maxUm-
sation problem) or gradient descent (in mmimisation problem) - the gradient of the objec­
tive function gives the steepest direction of climb or descent. The mam limitation of the 
calculus based methods is their local behaviour; for example, the search can easily end in a 
local minimum and the global minimum can be missed. There are several methods to un­
prove the search for a global minimum, like dynamic progranuning, random searches and 
genetic algorithms. [SHB] 
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Partition 
A partition is a cluster or natural grouping of data resultmg from a clustering process. 

Pattern, measurement pattern, pattern vectors 
A pattem is the data stmcture of the measurements resultmg from observmg a urut. The 
word pattem is used in three distmct senses: as measurement pattem; as feature pattem; 
and as the dependency pattem or pattems of relationships among the components of any 
measurement or feature A-tuples derived from uruts of a particular category and that are 
umque to those A-tuples, that is, they are dependencies that do not occur in any other cate­
gory. [HS] 

A pattem vector is represented by bold face letter such as x = (xi,X2 ...,x„)^, where each 
component x, represents the zth descriptor and n is the number of features or dimensions of 
such descriptors. The nature of the components of a pattem vector x depends on the meas­
urement technique used to describe the physical pattem. [GW] 

Pattern recognition 
Pattem recognition techniques can be used to constmct decision mles that enable one to 
identify uruts on the basis of their measurement pattems. Pattem recognition techruques 
can also be employed to cluster uruts having similar enough measurement pattems. In sta­
tistical pattem recognition, the measurement pattems have the form of A-tuples or vectors. 
In syntactic pattem recognition, the measurement pattems have the form of sentences 
from the language of a phrase stmcture grammar. In structural pattern recognition, the 
measurements do not have the form of an A-tuples or vector. Rather, the urut being meas­
ured is encoded ui terms of its parts and their relationships and properties. Also see units. 
[HS] 

Pattem recognition is a high level image processmg activity involvmg the nature of 
data interpretation, and the application of constramts and idealisations to assist this task, 
such as by the reduction of task complexity or by optimisation techruques. Metiiods of 
pattem recognition may be classified mto: (i) decision-theoretic (such as Bayes classifier, 
neural networks and fiizzy clustering), (ii) stmctural (such strings and trees) and (ii) unage 
mterpretation (such as predicate logic, semantic networks and production systems). [GW] 
See recognition. 

Pixel, picture element or pel 
A pixel is a pair whose first member is a resolution cell or (row,column) spatial position 
and whose second member is the unage mtensity value or vector of image values associated 
with the spatial position. Also see resolution cell. [HS] 

Point operator 
A pomt operator is an unage operator m which the output image value at each pixel posi­
tion depends only on the mput image value at the correspondmg pixel position. [HS] 

Precision 
Precision refers to the degree of closeness an estimate has to its expected value. [HS] 

Preprocessing 
Preprocessmg is an operation appUed before pattem identification is performed. Preproc­
essmg produces, for the categories of mterest, pattem features that tend to be invariant un­
der changes such as translation, rotation, scale, illumination level, and noise. In essence, 
preprocessuig converts the measurement pattems to a form that aUows a simplification in 
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tiie decision mle. Preprocessmg can enhance images, segment target pattems and detect, 
normaUse or centre objects of mterest. [HS] 

Prototype or prototype pattern 
A prototype is the observable or characteristic measurement or feature pattem derived 
from units of a particular category. A category is said to have a prototype pattem only if 
the characteristic pattem is highly representative of tiie A-ttipIes obtained from units of tiiat 
category. [HS] See cluster prototype. 

Recognised 
See classified. 

Recognition 
Recognition is the process that assigns a label to an object based on the mformation de­
rived from quantitative and qualitative features of the object. [GW] See pattem recogni­
tion. 

Region 
Refers to an area description of cormected pixels m an image. 

Resolution 
Resolution is a generic term that describes how well a system process, component material, 
or image can reproduce an isolated object consistmg of separate closely spaced objects or 
luies. [HS] 

Resolution ceU 
A resolution cell is the smallest, most elementary constituent by area, having an associated 
unage mtensity in a digital unage. A resolution cell is referenced by its spatial coordmates 
which are the centre coordinates of its area. The resolution cell or spatial formations of 
resolution cells constitute the basic imit for low level processmg of digital image data. 
Resolution cells usually have areas that are square, rectangular or hexagonal. [HS] 

Robust, robustness 
A vision procedure is said to be robust or possesses robustness if small changes in the as­
sumed model on which the procedure or technique was developed produce only small 
changes in the result. Small fractions of the data that do not fit the assumed model, and in 
fact are vety far from fitting it, constitute a small change in the assumed model. Data not 
fitting an assumed model may be due to rounding or quantismg errors, gross errors, or the 
fact that the model itself is an idealised approximation of reality. [HS] 

In the context of clustering algorithms, robustness is a property that is associated with 
a resistance (to varying degrees) to unwanted effects due to such factors as the presence of 
or interference from noise or other data, nature of data processing and mitial conditions of 
the cluster parameters. In neural networks, robustness means the essential preservation of 
generalisation attributes despite the inexactness of the mput data to traming data. 

Segmentation 
Segmentation is a process that typically partitions the spatial domain of an image into 
mutually exclusive subsets called regions. Each region is uniform and homogeneous with 
respect to some property, such a tone or texture, and its property value differs m some 
sigruficant way from that of each neighbouring region. An unage segmentation process that 
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uses image intensity as a property value produces regions that are called discrete tonal 
features. [HS] 

Structure 
Refers to meaningful pattems in data in contrast to random pattems or noise. 

Template matching 
Template matching is an operation that can be used to find out how weU a template sub-
image matches a window of a given image. The degree of matching is often determined by 
translating the template subimage all over the given image and for each position, evaluating 
the cross-correlation or the sum of the squared or absolute image intensity differences of 
corresponding pixels. Template matching can also be used to best match an observed 
measurement pattem with a prototype pattem. [HS] 

Thresholding, multilevel thresholding 
Thresholding is an image point operation that produces a binary image from a gray scale 
image. A binary-1 is produced on the output image whenever a pixel value on the output 
image is above a specified minimum threshold level. A binary-0 is produced otherwise. 
Alternately, thresholding can produce a binary-1 on the output image whenever a pixel 
value on the input image is below a specified maxunum level. A binary-0 is produced oth­
erwise. Multilevel thresholdmg is a pomt operator employing two or more thresholds. Pixel 
values that are m the interval between two successive threshold values are assigned an in­
dex associated with the interval. Also see point operator. [HS] 

Units 
The unit is the entity that is observed and whose measured properties constitute the meas­
urement pattem. The simplest and most practical unit to observe and measure in the pat­
tem recognition of image data is often the pixel (the gray tone intensity or the gray tone 
mtensity A-tuples in a particular resolution cell). This is what makes pictorial pattem rec­
ognition so difficult, because the objects requiring analysis or identification are not smgle 
pixels but are often complex spatial formations of pixels. [HS] 

Vector norm 
See norm and Appendix A. 

Video image 
A video image is an image m elecfronic signal format capable of being displayed on a 
cathode ray tube, screen or monitor. The video signal can be generated from devices Uke a 
CCD camera, a vidicon, a flymg spot scanner, a tactile sensor, a range sensor or a frame 
buffer driving a digital-to-analog converter. [HS] 








