

Applications of Smalltalk/V to
Digital Image Processing

A thesis submitted in fulfilment of the requirements for the award of the degree of

MASTER OF SCIENCE

from

Victoria University of Technology

by

Fei Liu, BE

Department of Computer and Mathematical Sciences

February 1994

FTS THESIS
006.42 LIU
30001004589695
Liu, Fei
Applications of Smalltalk/V
to digital image processing

Abstract

The author has demonstrated Smalltalk as a medium for explorations in image

processing by creating within it an expandable environment for image processing. He

has produced two versions: one for DOS, and one for Windows which is hereafter

referred to as ImageLab. The Windows version, ImageLab, may be used in two ways:

as a stand alone by a non-programmer for whom the existing functionality is adequate;

or within the Smalltalk environment by a programmer who might wish to expand the

functionality.

In creating ImageLab the author recognised that:

• the BitBlt operation was eminently suitable for implementing basic morphological

operations;

• and that Smalltalk was eminently suitable for implementing other morphological

operations as algebraic expressions in three basic operations (using Huang's BIA).

He has given examples to show ImageLab 'in action'. In particular, he has applied his

environment to making a contribution to the detection and counting of clusters of

points (relevant to the detection and counting of clusters of microcalcifications

revealed in mammograms of patients with early signs of breast cancer).

He has also demonstrated the suitability of Smalltalk for the use of quad-tree

techniques in image processing. In particular he has indicated how a recently

published adaptive technique can be applied to quad-trees.

1
•

nppljii^iif inn
JL^Cl^Iill < H I w l I

The candidate hereby declare that the work in this thesis, presented for the award of

the Master of Applied Science and submitted in the Department of Computer and

Mathematical Sciences, Victoria University of Technology :-

• is that of the candidate alone and has not been submitted previously, in whole

or in part, in respect of any other academic award and has not been published

in any form by other person except where due reference is given, and

• has been carried out during the period from January 1992 to February 1994

under the supervision of Dr. Don Watson and Mr. Tom Peachey.

Signatur

Fei Liu

= — • - — - •

Acknowledgments

The author of this thesis wishes to acknowledge the following organisations or people

for directly or indirectly providing assistance and guidance while carrying out this

research and writing this thesis.

Dr. Don Watson and Mr. Tom Peachey, the academic supervisors, for their patient,

encouraging supervision, invaluable guidance and assistance, enlightening advice and

suggestions, and constructive criticisms during the research and preparation of the

thesis.

Mr. Robert Hinterting, for Smalltalk and debugging of my programming. Thanks are

extended to Associate-Professor Charles Osborne, Mr. Alasdair McAndrew, Mr.

Martin Schweitzer, Dr. Hao Shi for their constructive suggestions, and the people

who discussed the topic with me through internet.

Mr. P. Rajendran and Mr. Damon Burgess, technical officers, for their significant help

in providing machines, manuals and other facilities.

The Australian International Development Assistance Bureau, for providing the

scholarship covering tuition fees and health insurance cover.

Since the English is the author's second language, a lot of people helped him when he

wrote the thesis. The author would like to give his thanks to Dr. Don Watson, Mr.

Tom Peachey, Mrs. Betty Watson and Mr. Mehmet Tat.

Finally, the author would like to express his special gratitude to his wife Cao-wei Xie

and his lovely daughter Xing-Xing for their continuous support, encouragement,

understanding, patience and love. Grateful acknowledgment is extended to the

author's father Yu-cai Liu and mother Jian-xi Luo for their encouragement and

understanding.

ui

Table of contents

Abstract
Declaration
Acknowledgments
Table of contents
List of figures
List of tables

1

a
iii
iv
viii
xi

Chapter One
1.1
1.2

Chapter Two
2.1
2.2

Introduction 1
The problem 1
The scope of the thesis 2

Image-processing languages - a brief review 5
The computer and digital image processing 5
The computer languages used in image
processing 7

Chapter Three
3.1
3.2

3.3
3.3.1

3.3.2

3.3.3

3.3.4

3.4

3.4.1

3.4.2

Object-oriented techniques and Smalltalk 9
The history of object-oriented technology 10
The history of object-oriented programming
languages 10
Constituents of an OOL 11

Programming with objects 11

Computation by message-passing 11

Abstraction to classes and subclasses 12

Programming in the presence of inheritance 12

The benefits of introducing OOL to image
processing 13

Modelling an image as an object 14

Image class 15

IV

3.4.3

3.5
3.6
3.7

3.7.1

3.7.2

3.7.3

3.8
3.8.1

3.8.2

Chapter Four
4.1

4.1.1

4.1.2

4.2
4.3

4.3.1

4.3.2

4.3.3

4.4
4.4.1

4.4.2

4.4.3

4.4.4

Chapter Five

5.1
5.2

5.2.1

5.2.2

5.2.3

5.2.4

5.2.5

5.3
5.3.1

5.3.2

Quadtree and multi-resolution

The history of Smalltalk
Smalltalk versus other OOLs
The development environment

Inspecting an instance of Form

Browsing a disk file containing a Form

Constructing windows

Bit-block transfer (BitBlt)
The operations

Advantages of Smalltalk in image processing

Mathematical morphology and image algebra
The overview of morphology

Image and image transformation

Mathematical morphology for binary images

History of image algebra
Huang's image algebra

Two principles and the basic elements

Three basic operations

Other operations

Applications of image algebra in Smalltalk
Applications: filters

Application: shape recognition (template matching)

Application: edge detection

Application: convex hull

Development of image-algebra applications in
Smalltalk

Overview of image-processing applications
An image-processing system in Smalltalk/V286

The user interface of the application

The class ImageDataBaselnspector

The class ImageProcessor

Adding methods to a system class

Limitations in SmalltalkA^286

ImageLab in Smalltalk/VWin
The SmalltalkAWin environment

The classes GraphLab and ImageLab

17
19
20
21
22
23
24
24
24
25

26
26
27
28
30
31
31
32
34
41
41
43
44
44

47
48
50
50
54
56
57
59
60
60
62

5.3.3
5.3.4

5.3.5
5.4

Chapter
6.1

6.2
6.3

Chapter
7.1

7.1.1
7.1.2

7.1.3

Chapter

8.1
8.1.1
8.1.2

8.2

Chapter
9.1
9.2

9.2.1

9.2.3

9.2.3

9.2.4

Six

Seven

Eight

Nine

References

Appendices
Appendix A

Multi-Document Interface
Tool bar and status bar

On-line help system
Customised design

Exploring gray-scale images
Ways of viewing gray-scale erosion and
dilation
Pseudo gray-scale morphological operations
Three-level gray-scale images

An application of ImageLab
Labelling connected components in binary
image

The classical method

The morphological method
Application of the new labelling method

Non-morphological image processing methods
in Smalltalk

Quad-tree in Smalltalk
Quad-tree fundamentals
Quadcode in Smalltalk

Adaptive quadtree: A new method for image
coding

Conclusion and further work
Conclusions
Further work

Further work on gray-scale images

Other Smalltalk platforms

Object-oriented image database

An image processing language

Disk 1 (The programs in VWin)

0!)
68
69
72

75

75
79
82

85

85
86
90
94

96
96
96
97

101

102
102
102
103
103
103
103

105

Al
Al

VI

Appendix B Disk 2 (Sample images and programs in V286) Al
Appendix C Classes and methods of Small-Image Database A2
Appendix D Classes and methods of Image processor A6
Appendix E Classes and methods of Image(V286) A14
Appendix F Classes and methods of ImageLab A19

F.l Methods in class Bitmap A19
F.2 Methods in class ImageLab A31
F.3 Methods in class ILTextWindow A49
F.4 Methods in class Image Window A50
F.5 Methods in class Matrix A51

VU

List of figures

Figure 2.1 Fundamental steps in digital image processing 6

Figure 3.1 Illustration of the relationship between class and objects 12

Figure 3.2 An image object 15

Figure 3.3 Class Image and its hierarchy 16

Figure 3.4 Partitioned image 17

Figure 3.5 Corresponding quadtree of partitioned image 18

Figure 3.6 A typical Smalltalk environment(VWin) 21

Figure 3.7 An instance of class Form 22

Figure 3.8 Bit array of form circular disk 22

Figure 3.9 The form store format in Smalltalk/V286 23

Figure 4.1 Illustration of dilation 28

Figure 4.2 The three basic operations 33

Figure 4.3 Sample images for the difference operation 35

Figure 4.4 Sample images for the intersection operation 35

Figure 4.5 Sample images for the erosion operation 36

Figure 4.6 Sample images for the symmetric difference operation 37

Figure 4.7 Sample images for the open operation 38

Figure 4.8 Sample images for the close operation 38

Figure 4.9 Sample images for the hit or miss transform operation 39

Figure 4.10 Sample images for the thinning operation 40

Figure 4.11 Sample images for the thickening operation 41

Figure 4.12 Sample images showing noise removal 42

vm

Figure 4.13 Sample images for removing high frequencies 42

Figure 4.14 Sample images for band pass filter 43

Figure 4.15 Sample images for shape recognition 44

Figure 4.16 Sample image of edge detection 44

Figure 4.17 Sample image of convex hull 46

Figure 4.18 Sample images of shape analysis by using convex hull 46

Figure 5.1 The run-time structure 50

Figiu*e 5.2 The user interface of the Small-Image Database 51

Figure 5.3 The window of image processor environment 52

Figure 5.4 The structure of class ImageDatabaselnspector 55

Figure 5.5 Communication via a global variable Q 57

Figure 5.6 Class hierarchy structure 61

Figure 5.7 A typical ImageLab working environment 68

Figure 5.8 Tool pane of ImageLab 69

Figure 5.9 Status pane of ImageLab 69

Figure 5.10 Work flow diagram 71

Figure 5.11 Contents of ImageLab's on-line help system 72

Figure 6.1 OR table 81

Figure 6.2 MAX table 81

Figure 6.3 The original image (Lena) 82

Figure 6.4 The edge detected image 83

Figure 7.1 J shapes template for blob colouring 87

Figure 7.2 L shapes template for blob colouring 89

Figure 7.3 Original image for D-transform 91

Figure 7.4 D-transformed image 91

Figiû e 7.5 Foreground reference image 92

Figure 7.6 Background reference image 92

Figure 7.7 Original image 92

Figure 7.8 Transformed image 92

IX

Figure 7.9 The original image X 93

Figure 7.10 The noise need to be removed 93

Figure 7.11 High frequency noise is removed 93

Figure 7.12 The blobs of interest are extracted 93

Figure 7.13 Selected blobs transformed to single points 93

Figure 7.14 The band filter image pair 94

Figure 7.15 Original image with clusters 95

Figure 7.16 Structuring element 95

Figure 7.17 Result after closing operation 95

Figure 7.18 Selected blobs transformed to single points 95

Figure 8.1 Representation of a binary image by a region quadtree 97

Figure 8.2 The original image 101

Figure 8.3 The quadtree 101

Figure 8.4 The adaptive quadtree 101

iilil?
A t* 'j_ l 1 '

| | |)f tables

Table 3.1 An image class

Table 3.2 A subclass of image class

Table 3.3 The form store format in Smalltalk/VWin

Table 3.4 BitmapFilelnfoHeader format

Table 3.5 Bit Block operations

Table 4.1 Five basic elements

Table 5.1 A survey of current image-processing software

16

16

23

23

25

32

48

XI

Chapter 1

Introduction

1.1 The problem

One of the approaches traditionally used for the building of image-processing systems
makes use of subroutine libraries. Such an approach, while allowing some ease of
development through standard pieces of software in the context of widely diffused
languages, such as Fortran or C[CART89], has significant limitations. Extensibility is
restricted: the collage of routines with other pieces of software can produce
inconsistencies due to the overlaying of global control variables and the possible
mismatch of the routine interfaces with the problem to be solved. Speed is affected by
the difficulties of supporting integration for specific architectures.

Recent developments in the field of programming languages, specifically object-

oriented programming, offer a highly modular structure of programs, good reusability

of software modules with ease of reconfiguration and a single data model between the

main memory and the database. Moreover, object-oriented languages allow the

extension of the basic data types to data types related to the specific application. For

example in the development of an image-processing system, an object-oriented

language will facilitate the creation of an image data-type. In this way, a highly

specific development environment can be created, based on standard platforms,

without the need to define specific languages.

Smalltalk is a pure object-oriented programming language that provides great

flexibility for scientific experiment and application development [LALO90a]. The

programming development environment offers full object-oriented characteristics that

allows programmers to enjoy the benefits of object-oriented programming such as

inheritance, encapsulation, polymorphism and classification.

This work develops an image processing system within the Smalltalk environment.

Since our aim is to explore the use of object-oriented programming in image

processing, the system does not offer all the facilities of a commercial imaging system.

In the main we have concentrated on those techniques based on mathematical

morphology.

Mathematical morphology modifies an image by applying various binary operations to

the image and a smaller image, called the structuring element. The first systematic

treatment of mathematical morphology was the two-volume work by J. Serra

[SERR82a]. However, a visit to Serra's work could well be prefaced by the reading of

two relevant chapters of a recent book by R.M. Haralick and L. Shapiro [HARA92].

In the course of developing his Digital Optical Cellular Image Processor (DOCIP), K-

S Huang [HUAN89] devised a Binary-Image Algebra (BIA) which allowed him to

express morphological operations in terms of three fundamental operations. These

three operations are implemented in Smalltalk as basic methods in this work.

Within Smalltalk the key underlying process in the author's work has been the bit-

block transfer (BitBlt). BitBlt appears to the programmer as a parallel operation on a

rectangular array of bits(or bytes) and the operations of BitBlt are admirably suitable

for morphological operations.

The use that one can make of image-processing software is limited by the

flinctionality provided by the designer. There is a place for software that is expandable

in the hands of a user. The present work creates within the Smalltalk environment a

sub-environment for image processing. The environment may be used as a stand alone

program, in which case no knowledge of Smalltalk is required. Alternatively, it may

be run from inside the Smalltalk environment using only a cursory knowledge of

Smalltalk. Within that environment the kernel operations may be readily expanded by

a Smallalk programmer to perform other processes required by the user.

1.2 The scope of the thesis

The thesis is divided into nine chapters. Chapter Two contains a brief overview of the

application of computers to image processing.

In Chapter Three, we introduce the object-oriented concepts, and the benefits which

an object-oriented language can offer to image processing. Also in this chapter, we

demonstrate how to model an image as an object. Beginning with a brief history of

Smalltalk followed by a comparison of Smalltalk with other object-oriented

languages, we highlight two features of Smalltalk particularly pertinent to image

processing - the graphics classes and the bit-block- transfer operation.

Chapter Four presents the theoretical background of this project. We begin with a
brief introduction to the concept of mathematical morphology and its history. We then
turn to Huang's image algebra [HUAN89] which expresses each morphological
operation in terms of three fundamental operations. For each operation we state
Huang's expression, give the Smalltalk method implementing it, and use Smalltalk to
generate the images illustrating the operation.

The core of Chapter Five is a description of the image-processing environment which
we have developed in Smalltalk. This chapter begins with a brief overview of existing
image-processing packages available either commercially or from the public domain,
and running under the most common operating systems (DOS, Windows, Macintosh
and UNIX). We then introduce our own image-processing environment in two
versions: (1) the DOS version and (2) the Windows version - ImageLab.

Chapter Six gives an exploration on gray-scale images. First we introduce a different

ways of viewing the gray-scale dilation, then we present the pseudo gray-scale

morphological operation.

The purpose of Chapter Seven is to show ImageLab in action by describing how the

author used ImageLab to make a contribution to the research on the counting of

'blobs' in a binary image. Chapter Eight complements the preceding chapter by giving

two examples of the implementation of non-morphological operations. In the first we

create a class QuadCode which offers an introduction to multi-resolution techniques,

and propose the adaptive quad-tree. In the second we explore the fast Fourier

transform (FFT).

The final Chapter of the thesis contains the concluding remarks and some suggestions

for fiiture work.

In this thesis ordinary text appears in Times New Roman. However, we use
Cour ie r New for Smalltalk scripts and methods. We use Ariel whenever Smalltalk

words (instance variable, method names, class names, etc) are embedded in ordinary

text.

SmalltalkA^286, SmalltalkAWin are registered trademarks of Digitalk Inc.. Microsoft

and MS-DOS are registered trademarks, and Windows is trademarks of Microsoft

Corporation. Smalltalk-80 is a trademark of Xerox Corporation.

Chapter 2

Image-processing languages - a brief review

Introduction

This chapter gives an overview of digital image-processing. We begin with a brief
history of the impact of computers on image processing, and display the structure of a
modem digital image-processing system. We then survey the computer languages,
including object-oriented languages, that are used in digital image-processing.

2.1 The computer and digital image processing

Digital image-processing is used for two different purposes:

• enhancing particular aspects of an image; and

• preparing images for the measurement of the features and structures present.

In the eariy days, that is, in the 60s and 70s, digital image-processing was done on

large computers, such as IBM main frames, DEC 11, and Cyber 170 etc.[PRES83]. In

the late 1970s and early 1980s, image-processing languages tended to be specific to

special-purpose and high speed image-processing hardware. Examples are

MORPHAL generated at the Centre de Morphologic Mathematique for the Leitz

TAS cellular logic machine, PPL (Pattern Processing Language) coded at the

University of Linkoping for use with their PICAP hardware[PRES81]. Another

development in image processing in the 1970s was the introduction of several

specialized image-processing systems which, initially, were programmed entirely from

a control console using specialized keysets[PAT079].

At that time (from late 60's to early 80's), there were three prominent scientific

applications of digital image processing: (1) remote sensing, (2) medical imaging and

(3) particle physics. Images in such applications are large, require high resolution, and

need much computation time. The cost was such that only government and military

agencies, in the main, could sponsor the work.

Today, we are in the middle of a revolution sparked by the rapid progress in video and
computer technology. Personal computers and workstations have become powerfiil
enough to process image data. They have also become cheap enough to be widely
used. Consequently, image processing is turning from a specialized science in areas
such as astronomy, remote sensing, electrical engineering, and computer science into
a standard scientific tool. Applications of image processing are now found in virtually
all natural sciences[JAIN89] and are serving many industrial purposes (eg. robot
vision).

A general digital image processing system involves five sub-systems which are
[GONZ92]:-

1. image acquisition,

2. image storage,
3. image processing,

4. image communication, and

5. image output.
The fundamental steps in digital image processing are shown in the following
diagram:-

Segmentation Representation
& description

/ " T

Pre-Processing

7r\—
^

Image
acquisition

\ l /

(r

Knowledge base

Problem domain

Recognition

and

interpretation

Output lUt

Storage

Fig. 2.1 Fundamental steps in digital image processing*

*Redrawn from [JAIN89]

Digital images can be acquired by video cameras, scanners and other digitisers.

Output devices include monitors, film and printers. Storage of images entails the need

for high capacity devices such as optical disks, magnetic tapes and magnetic hard

disks. Software for genemal-purpose digital image-processing tends to be

concentrated in the areas of pre-processing, segmentation, representation and

description, recognition and interpretation [RUSS92].

2.2 The computer languages used in image processing

The origins of image-processing languages in the United States lie in two projects: (1)
the DoD (ARPA)-sponsored ILLIAC project at the University of Illinois[McC063]
from which evolved the PAX language, later more fiilly developed and documented at
the University of Maryland and (2) the NASA-sponsored IPL (Image Processing
Laboratory) at JPL (Jet Propulsion Laboratory) which produced the language VICAR
(Video Image Communication and Retrieval) reviewed by Castleman[CAST79].
These projects were implemented in the early to mid-1960s. PAX was written as a
collection of FORTRAN subroutines to run on the Univac 1108, while VICAR, also
in FORTRAN, was written for the IBM 360. PAX is a general purpose image-
processing language while VICAR is more mission oriented being intended for use
with the Ranger, Surveyor, Mariner, Viking and Voyager space exploration
projects[PRES81].

It is not surprising that, until the early 1980s, FORTRAN was the language most

widely used for digital image processing[PRES83]; it was widely available on many

platforms and could satisfy the heavy computational demands of image processing.

However, since even the best FORTRAN compilers can not always generate assembly

language optimised for rapid manipulation of arrays of numbers, many image-analysis

systems are partly coded directly in assembly language, thus placing a burden on the

image-processing programmer especially one whose training is not in computer

science.

The growing population of small computers and the expanding use of the UNIX

operating system has led to C becoming the most popular language for both system

software and digital image-processing software[PIPE85].

Today, many widely used image-processing packages are written in CpLIND91].
Khoros, a complete image-processing package, running on the Sun-Sparc
workstation, which has been placed in the public domain, is completely written in C.
This package is widely used by scientists around the world, and there is a very active
news group on Internet. Much commercial image-processing software is also written
in C; examples are GlobLab Image from Data Translation, and OPTIMAS from
BioScan Incorporated.

Other popular computer languages are also employed in image processing. Pascal, a
typical procedural computer language, was used to create NIH Image 1.52, image
processing software for the Macintosh. Prolog was used by Vision Dynamics in
creating the VSP software[BATC91].

Image-processing languages have also emerged as extensions of existing computer
languages. An example is PICL (Pictorial C Language) which is an extension of PCL
(Pyramid C language) and is oriented to image analysis because it supports pictorial
data-types[GESU91].

To combine the advantages of mathematical rigour and completeness with the benefits
of the object-oriented paradigm, Roberto Cecchini et al developed IL (Image
Language) by extending a host language called Common Lisp Object System
(CL0S)[CECC91]. Lambert used object-oriented programming in image-processing
algorithms; he proposed a model for use of the object-oriented programming {C++)

for digital image-processing software design and maintenance[LAMB93].

Chapter 3

Object-oriented techniques and Smalltalk

Introduction

This chapter has two objectives: to introduce object-oriented technology and its
relevance to image processing; and to show why we have chosen Smalltalk as our
medium for applying object-oriented techniques to image processing.

To attain the first objective we begin with a brief review of the history of object-
oriented technology, and object-oriented languages (OOLs). We then examine object-
oriented languages in more detail. We shall discuss the main constituents of an OOL.
These will include objects, messages, methods, classes and inheritance. We shall then
be ready to see the benefits which an OOL can offer to image processing. We shall see
how an image may be treated as an object, how objects with identical behaviour and
structure may be gathered in to a class, and how inheritance enables the commonality
of similar classes to be elevated to a superclass. As a further example, we shall see
how readily a data-structure such as a quad-code, which is part of the image-
processing toolbox, may be accommodated within the Smalltalk system.

The work of this thesis conjoins two activities - image processing and object-oriented

programming. Of the various object-oriented languages the one that emerged as most

suitable for our task was Smalltalk, the subject of the second objective of this chapter.

After a brief note on the history of Smalltalk and comparison with other OOLs we

turn to a description of the Smalltalk environment.

Smalltalk is both a language and an environment. We shall examine both aspects in

this chapter. For the moment we remark that amongst the object-oriented languages

Smalltalk is the purest, and amongst programming environments, Smalltalk's is the

most creative and productive.

Finally we highlight two features of Smalltalk particularly pertinent to image

processing - the graphics classes and the bit-block transfer operation.

3.1 The history of object-oriented technology

The first person to formally identify the importance of composing a system in levels of
abstraction was Dijkstra [DIJK76]. Pamas later introduced the concept of
information hiding [PARN72] which is central to the nature of an object. The
greatest influence upon object-oriented development derives from a small number of
programming languages which will be discussed in the next section. In two decades,
the object-oriented technology has become mature and has divided into several
branches such as, object-oriented language (OOL), object-oriented programming
(OOP), object-oriented analysis (OOA) and object-oriented design (OOD)

3.2 The history of object-oriented programming
languages

Several programming languages have contributed to the evolution of today's object-

oriented programming languages (OOL). In the 1950s, LISP, a language for list

processing, introduced the concept of dynamic binding. SIMULA 67, developed in

the 1960s as a language for programming simulations, introduced the class as a

language mechanism for encapsulating data, and inheritance as a mechanism for

elevating the commonality of two classes into a superclass. Data abstraction, in the

form of abstract data types, was introduced in the r970s, first in academic languages

such as CLU, developed at the Massachusetts Institute of Technology, and later in

more commercially popular languages such as Ada and Modula-2. With the beginning

of the 1980s came the real dawn of the object-oriented programming era. Smalltalk-

80 was introduced commercially in 1983. Other object-oriented programming

languages, such as C++, Objective-C, Eiffel, the Commom Lisp Object System, and

Actor became commercially available [C0X91].

The object-oriented languages which emerged during the last decade fall into two

camps. One camp contains the pure object-oriented languages where almost

10

everything is an object. This group includes Smalltalk, Actor, and Eiffel. The other

camp includes the hybrid languages such as C++, Objective-C, The Common Lisp

Object System (CLOS) and the various object-oriented Pascals [WINB90].

In general the pure object-oriented languages emphasise exploration and rapid

prototyping, while hybrid languages emphasise runtime speed and ease of

incorporating object-oriented extensions for the programmer with an orientation

towards procedural languages. The more mature OOLs, such as Smalltalk, also offer

robust class libraries and rich sets of development tools. These capabilities are

gradually being incorporated into the hybrid languages.

3.3 Constituents of an OOL

An object-oriented programming language has four basic mechanisms. They are:-

• Objects,

• Messages and methods,

• Classes, subclasses,

• Inheritance.

3.3.1 Programming with objects

A traditional program consists of procedures and data. An object-oriented program

consists only of objects that encapsulate both procedures and data. An object

orientation views such a system as a collection of objects, where each object models

an entity or event in an application problem and where all objects work together to

achieve the goal and task of the overall system. The central software concept is

"object". An object captures the identity, structure and behaviour of the application

entity that it represents.

3.3.2 Computation by message-passing

Objects have the ability to act. Action occurs when an object receives a message, that

is, a request asking the object to behave in some way. When object-oriented programs

are executed, objects are receiving, interpreting and responding to message from

objects.

11

Methods are procedures which reside in an object and determine how the object acts
when it receives a message. The instance variables store information or data local to
the object. Methods execute in response to messages and manipulate the values of
instance variables. Methods may also send messages to other objects requesting action
or information.

3.3.3 Abstraction to classes and subclasses

A class is a description of a set of nearly identical objects. It consists of methods and
data that summarise common characteristics of a set of objects. The ability to abstract
common methods and data descriptions from a set of objects and store them in a class
is central to the power of object-orientation. An object is an instance of a class. A
class can also summarise common elements for a set of subclasses. By using
subclasses, object-oriented programmers describe applications as collections of
general, or abstract, modules. Common methods and data are elevated as high as
possible so that they are accessible to all relevant subclasses. The relationship between
a class and its instances is similar to the relationship between a factory and its
products:-

CD

Products - Objects

Factory - Class

Fig. 3.1 niustration of the relationship between class and objects

3.3.4 Programming in the presence of inheritance

The most important feature supported by object-oriented programming languages is

inheritance: the ability to derive new classes from existing ones. Inheritance allows a

programmer to use and extend large amounts of existing program code. Inheritance is

12

the object-oriented concept that contributes most to the increase in productivity which

flows from the use of an object-oriented programming language.

Classes and their subclasses form class hierarchies, which capture the "is a"

relationship among them. An instance of a derived class is also an instance of all its

superclasses. While object-oriented languages all implement inheritance, they vary in

how they treat multiple inheritance, and how they handle the access and redefinition

of features in a subclass that are defined by a superclass. For example, some languages

provide multiple inheritance, which means that classes can have more than one

superclass. These languages provide more generality, solving, for example, problems

like expressing what a toy house is. Is it a kind of toy, or is it a kind of house? With

mutiple inheritance, it can be both [C0X91].

3.4 The benefits of introducing OOL to Image
processing

Four key concepts that summarise the advantages of the object-oriented approach are

encapsulation, abstraction, polymorphism and persistence [MEYE88].

Encapsulation is the formal term used to describe the bundling of data and methods

inside an object. It provides information hiding* as well as access to selected features

of an object.

Abstraction is defined as extracting essential properties of a concept. It allows us to

neglect the specific details of something and focus on its essence.

Polymorphism is the capability of program entities to belong to more than one type.

The same message may be defined in several classes and an argument passed by a

message is not restricted in type. It allows the specification of algorithms at higher or

more abstract levels.

Persistence refers to the permanence of an object, that is, the amount of time for

which it is allocated space and remains accessible in the computer memory.

* The principle that users of a software component (such as a class) need to know the essential details
of how to initialize and access the component, and do not need to know the details of the
implementation. By reducing the degree of interconnectedness between separate elements of a
software system, the principle of information hiding helps in the development of reliable software
[BUDD91].

13

Before talking about the utility of image processing in an OOL, we need to examine

the general benefits of an OOP language. An object-oriented programming language

offers a major opportunity for improving software productivity [EGE92]. A

programming language that supports the object-oriented paradigm benefits the

software developer by providing a natural way to model complex, real-world

phenomena, this resulting in faster and easer coding. The overall approach of reducing

code by using inheritance to program the differences is one of the key tactics of

object-oriented programming and a unique capability of object-oriented languages.

Pre-defined class libraries, a component of the mature object-oriented languages

which results in a reduction of design time and coding time, enhance the benefits of

using object-oriented languages.

Encapsulation is one of the most beneficial concepts in the context of object-oriented

programming. It combines data structures and functionality into objects. It also hides

internal aspects of objects from its users and declares which features of an object are

accessible[Y0UR91a].

Another very important characteristic and benefit of object-oriented programming is
that the interpretation of a message is in the hands of the receivers. Operations
exhibiting this property are said to be polymorphic. Messages can be thought of as
late-bound procedure calls, where the actual method of procedure to be invoked is
not determined until the message is actually sent to a specific receiver. The
programmer does not have to memorise a unique vocabulary for each class used in
building his applications[YOUR91b].

3.4.1 Modelling an image as an object

Like other objects in the real world, images can be modelled as objects. Images have

common characteristics which can be used in the description of the image. For

example:-

Size ~ width and height.

Colour — mono or colour.

Resolution ~ bits per pixel.

Offset ~ positions mapping to screen or storage media.

Data set ~ set of pixel that describe an image(or bits).

14

Operations frequently performed on images are:

Copy ~ copy to another device.

Cut ~ cut partial image.

Paste ~ paste another image to the image.

Reflect ~ reflect the original image about a line.

Complement ~ forming the photographic negative of the image.

In OOP this set of operations is called the behaviour of the image objects. Other

examples of operations, combine two images, are the union of image and logical

operations such as the logical a/iJ of pixel values.

The data and the behaviour can be encapsulated into an object. A set of image objects

may be represented as a pack of templates:-

3.4.2 Image class

After we have modelled images as objects, we can abstract the identical structure and

behaviour of some into a class, and then elevate the commonality of similar classes

into a superclass. The commonality of all images might be captured by a class Image:-

15

Class name

Instance Variable

Class Method*

Instance Method

Image

Size, name, bits...

fromFile:aFileName.

Copy, cut, paste...

Table 3.1 An image class

We can then introduce subclasses of Image to differentiate among binary, grey-scale

and colour images. Consider, for example, a class Binarylmage as subclass of the class

Image. Taking advantage of inheritance, we do not need to re-code the copy, cut and

paste methods. The instance variables and methods of the class Image will be inherited

by the class Binarylmage, and methods may be re-defined if necessary. Additional

instance variables and methods which might be needed by the class Binarylmage may

be added to it. In the following table, the parentheses enclose what is inherited from

the superclass:-

Sub-Class nam€

Instance Variable

Class Method

Instance Method

Binarylmage

(Size, name, bits...) offset

(fromFile:aFileName...),

fromScreen...

(Copy, cut, paste...), union, reflect...

Table 3.2 A subclass of image class

In the same way we may define classes GrayScalelmage and Colorlmage as subclasses

of the class Image, thus yielding the following class hierarchy :-

GrayScalelmage Colorlmage

Fig. 3.3 Class Image and its hierarchy

* Class methods respond to message sent to class objects, rather than to instances of the class. They
are often used for creating initialized instances of a class.

16

An object-oriented programming language supports polymorphism which allows us to

pass the same message to objects produced by different classes. When an object

receives a message the method for the message will be found in the class to which the

receiver belongs. For example, the unary message selector union might be found in

the class GrayScalelmage and in the class Binarylmage, but the methods would be

different. When the message union is passed to an object which is an instance of class

Binarylmage, the method union in class Binarylmage will be executed.

3.4,3 Quadtree and multi-resolution

A quadtree is a tree data-structure (a tree in which each node has exactly four
descendants) which represents an image [HARA93]. Each node of the quadtree
represents a square subset of the image's spatial domain. The root node of the
quadtree represents the spatial domain of the entire image. If all pixels of the square
represented by a node have the same value, then that node becomes a leaf in the tree.
If the image being represented is a binary image, then the corresponding quadtree is
called binary quadtree. If the image represented is a gray-scale image, then the
corresponding quadtree is called a grey-scale quadtree.

For example, suppose we have the following image:-

Fig. 3.4 Partitioned image

The corresponding quadtree is as follows:-

17

Fig. 3.5 Corresponding quadtree of above partitioned image

The root of the tree corresponds to the entire image, and each set of four child nodes
of a parent node corresponds to a subdivision of the square represented by the parent
node. In this case it is only the quadrants represented by Ql and Q4 which have
undergone further subdivision since all the pixels in Q2 and Q3 have the same value.

Since we model the image as an object and abstract it into a class and its subclasses, it
is easy to use the data structure to encode and decode an image. All we need to do is
to introduce a few instance methods into the class Binarylmage (to encode a binary
image). If the method offers scope for generalisation we can elevate it to the class
Image. We need to introduce instance methods as follows :-

• Introduce in the class Image an instance method to return a nominated quadrant

of an Image - quadrant: anint
• Introduce an instance method in the class Image to return a 'sub-quadrant' or

quadcell by a Quadtree - quadcellAt: aQuadcode
• Introduce in the class Image an instance method to determine whether an image

is white (pixel values equal to 1 if we deal with a binary image) - is White.

• Introduce an instance method in the class Image which returns an

OrderedCollection of instances of Quadcode, indicating the quadrants which are

white - quadsWhite

Two more instance methods are introduced into the class Image,

quadRecursiveWhite and quadRecursiveWhiterqC qCdCllln:qCdColln, which

specify all quadrants and sub-quadrants.

We have written code to reconstruct an image from its quadcode. As with the

encoding, we simply introduce pertinent methods into the appropriate classes. The

details of implementing quadtree in an object-oriented language will be given in

18

Chapter Eight which discusses non-morphological image-processing methods in

Smalltalk.

The class Quadtree exemplifies the use of object-oriented techniques in image

processing. The first benefit is that we only need to program the difference, since the

class Quadtree is a subclass of OrderedCollection. This not only increases our

programming productivity but also reduces the number of mistakes in coding the

program thus reducing the time spent in debugging. Another obvious advantage is the

reuseability of the code. Some of the methods for a binary image will be applicable to

a gray-scale image or a colour image without modification because we defined

GrayScalelmage and Colorlmage as subclasses of the class Image. More advantages

will be discussed in later chapters.

3.5 The history of Snnalltalk

In the eariy 1970s, Alan Kay and Adele Goldberg developed the Smalltalk system at

the Software Concepts Group of the Xerox Palo Alto Research Centre. While not the

first object-oriented programming language, it was Smalltalk which lead the way into

the object-oriented era [WINB90].

The first publicly available version of Smalltalk was released in 1983 as Smallltalk-80.

It was a result of evolution from the early versions Smalltalk-72, Smalltalk-74,

Smalltalk-76 and Smalltalk-78 respectively. Smalltalk-80 was initially available only

on powerful graphical workstations. Because Smalltalk is embedded in a complete

interactive programming environment it requires significant memory, computing, and

graphics capabilities. However these requirements become less onerous as the cost of

memory, storage and speed falls. The current versions of Smalltalk, Object-works for

Smalltalk-80 and SmalltalkA ,̂ are available for a range of computers, from small

personal computers up to the most advanced graphical workstations [LALO90a].

There are also two versions of Smalltalk which reside in the public domain: Little

Smalltalk which implements the language only and provides a text-based user

interface; and GNU Smalltalk, which is based on the XI1 window system.

In this project, we used the dialect of Smalltalk which is marketed by Digitalk Inc. ~

SmalltalkA^ 286 (a DOS version) and SmalltalkA^in 2.0(a WINDOWS version).

19

In this chapter, VWin refers to SmalltalkA^in and V286 refers to SmalltalkA^286.

SmalltalkA^ is available on various personal platforms such as PCs and Macs.

3.6 Snnalltalk versus other OOLs

Smalltalk is the purest of the object-oriented languages. In Smalltalk every object is an
instance of a class; in contrast, C++ grafts class objects onto the non-class objects of
C. In Smalltalk a variable is a pointer to an object, the assigimient operator re-directs
a pointer, and one explicitly makes a copy of an object when necessary; in contrast, in
C++, making copies is implicit and one must explicitly introduce pointers in order to
avoid copying. In Smalltalk it is implicit that all objects are created at runtime, and a
garbage collector gathers any object which is no longer referenced by another object;
in contrast, in C++, one must explicitly use new to create an object at runtime, and
use d e l e t e to reclaim its space. In Smalltalk it is implicit that the method invoked
by a message is determined by the class (rather than a superclass) of the receiver; in
contrast, in C++, one must explicitly use virtual to accomplish the same effect.
SmaUtalk has always been equipped with a vast library of classes; in contrast, although
class libraries have begun to appear with various C++ compilers, they have yet to
achieve the commonality that exists amongst the dialects of Smalltalk.

The cost of simplicity and purity can be loss of power. Smalltalk achieves

encapsulation by hiding all instance-variables and exposing all instance-methods. C++

grants the programmer the discretion to classify members as private or public (or

protected).

However all such comparisons as above must be relative to the context in which the

language is to be used. For example, if the context is the teaching of object-oriented

programming then Smalltalk has much to commend it, even though a novice,

especially if the person is an experienced programmer of conventional languages,

might find it hard to master the Smalltalk approach at the begiiming. The biggest step

is to write the first Smalltalk program. After that, programming productivity will

rapidly increase.

Smalltalk excels in the context of development of a fuUy-flmctioning prototype of an

application. Its wealth of predefined classes allows rapid creation of new applications.

Execution speed, however, is a negative factor, due to Smalltalk's dynamic nature .

20

Smalltalk also excels in the context of exploring concepts from some domain, such as
image processing.

3.7 The developnnent environment

Smalltalk provides the richest and most mature programming environment. Smalltalk
programming is characterised by a total integration of tools. Editors, file managers,
compilers, debuggers, and print utilities are all included wdthin the Smalltalk
environment. All those tools are available at all times. The Smalltalk programmer
carries on a series of activities or conversations with individual tools. These activities
can be interleaved. Activities or conversations can be interrupted and resumed at any
time without loss of context or information. Switching from one activity or
conversation to another is as simple as clicking a mouse button. The following is a
typical screen display in the Smalltalk development environment:-

Fig. 3.6 An typical Smalltalk environment(VWin)

Smalltalk applications are developed by piece-by-piece addition to the Smalltalk

system -programming by extension. The system contains an extensive on-line library

of classes. Moreover, the source is written almost entirely in Smalltalk and can be

viewed and modified by the programmer. Programming is totally interactive. New or

21

modified code can be recompiled and tested in a matter of seconds. Sequences of such

modifications result in working prototypes and eventually elaborate designs that can

be polished and turned into finished applications. This style of program development

could be described as programming by iterative enhancement.

3.7.1 Inspecting an instance of Form

The two fundamental classes for creating and manipulating graphical images in
Smalltalk-80 are the classes Form and BitBlt. Forms are used to represent images,
while instances of class BitBlt represent operations on forms. The corresponding
classes in VWin are Bitmap and GraphicsTool respectively.

Let us examine an instance of the class Form. The data of an instance of Form
comprises a height, a width, an offset, and a bit-array that stores the image. The offset
of a form is the amount by which the form should be offset when it is displayed or
when its position is tested. Every form has an assumed origin at the top left-hand
comer of the image. For example, we have a form of a circular disk as follow:-

Q
Fig. 3.7 An instance of class Form

This disk form has height and width equal to 32 and an olTset 0@0. The bit array is:-

Fig. 3.8 Bit array of form circular disk

22

In the above figure, "1" represents a white pixel in the circle form and "0" stands for a

black pixel in the form.

3.7.2 Browsing a disk file containing a Form

Different platforms have different ways of storing forms. In SmalltalkA'̂ 286 we shall

define our own file format as:-

iiiliigiiiiiiiiiiii

^̂ •ilfpiliiiiiiiiliii

space Image

namc(8)

space Width(2)

Height(2>

Bit

Arrav(n)

Fig. 3.9 The form store format in SmalltalkA^286*

In SmalltalkAWin, forms (images) are stored in windows bitmap format. A bitmap

file stored by SmalltalkA^in will have following structure:-

Bitmap File Header

Bitmap Information Header

Bitmap Byte Array

Table 3.3 The form store format in SmalltalkA^in

The BitmapFileHeader in the above table is the first fourteen bytes of the bitmap file.

The following table illustrates the BitmapFileHeader structure*:

Field Type

WORD

DWORD

WORD

WORD

DWORD

Argument Type

bfType

bfSize

bfReserved

bfReserved

bfOffBits

Description

Type of file

Size of file

RESERVED

RESERVED

Offset to beginning of bitmap

Restrictions

Must be BM

Specified in DWORDs

Must be set to 0

Must be set to 0

Specified in bytes

Table 3.4 BitmapFilelnfoHeader Structure Format

* Numbers shown in parentheses are bytes occupied in the format

Source: Microsoft Windows 3.0 SDK Programmer's Reference, Page 7-10

23

3.7.3 Constructing windows

We can easily manipulate images with the help of Smalltalk's graphical programming
enviroimient. To construct a graphics window to display images, we need to invoke
the GraphicPane class in V286 or the GraphPane class in VWin, to obtain an instance
of those classes.

VWin graphics windows are built on a graphics interface language called Graphics

Device Interchange (GDI) in Microsoft Windows. In run time, VWin calls the GDI

library functions to implement Smalltalk graphical operations.

3.8 Bit-block transfer (BitBlt)

The class BitBlt is the heart of Smalltalk's graphics system. It performs all bitmap
manipulations. Smalltalk-74 was the first Smalltalk to used BitBlt as its main
operation for bitmap graphics. The specification for BitBlt arose out of earlier
experience with Turtle graphics, text display and other screen operations such as
scrolling and menu overlays. The specification of BitBlt has been used by others under
the name RasterOp. These operations are implemented directly as machine-coded
primitives to improve performance [KRAS83].

Recent work by Simon Lau [LAU93] demonstrated the performance gains in using

BitBlt. He produced various implementations of Conway's game of Life in V286. The

best time he could get without BitBlt was 3 minutes. He then used the BitBlt

algorithm from Adele Goldberg's book "Smalltalk-80 The language" [GOLD89], and

reduced the time to 7 seconds - reduction by a factor of about 25.

3.8.1 The operations

In Smalltalk, the BitBlt operation is implemented by sending the message copyBits

with different rules. The BitBlt operation rules in SmalltalkA^286 are:

24

3

7

1

1

4

6

• '

Form over destination becomes source

Form orRule source OR into destlnafion

Form andRule source AND into destination

Form under source AND into destination

Form erase if source is 1 then destination becomes 0

Form reverse source XOR into destination

Form orThru first erase without specifying mask form,

then OR with mask form specified

Table 3.5 Bit Block operations*

VWin uses Window's 256 BitBlt operations which include the seven operations in

V286. In SmalltalkA^286 syntax, the copyBits message is executed like this:-

dForm copy: (sPoint extent:sExtent)
from: sForm

to: dPoint
rule: anInt

3.8.2 Advantages of Smalltalk in image processing

An important class of image processing algorithms is based upon the theory of
mathematical morphology, described in detail in the next chapter. Morphological
operations form logical combinations of the values at sets of adjacent pixels. The
BitBlt operations are adnurably suited to morphological operations since they appear
to the programmer as parallel operations on a rectangular array of bits (or bytes). In
the image processing area, one approach is to use image algebra to express image
operations.

We shall find that Huang's image algebra [HUAN89] provides a decomposition of

general operations, including low-level image processing operations, into three

fundamental operations. This decomposition is inherently parallel and provides a

direct mapping to the machine architecture, such as the Bit Block Transfer in

Smalltalk.

* Re-write from SmalltalkA'lSe User Manual

25

Chapter 4

Mathematical morphology and image
algebra

Introduction

The word morphology commonly denotes a branch of biology that deals with the
form and structure of animals and plants. We use the same word here in the context of
mathematical morphology as a tool for extracting image components that are useful
in the representation and description of region shape, such as boundaries, skeletons,
and the convex hull.

This chapter presents the theoretical background of this project. We begin with a brief

introduction to the concept of mathematical morphology and its history. We then turn

to Huang's image algebra which expresses each morphological operation in terms of

three fundamental operations. For each operation we state Huang's expression, give

the Smalltalk method for implementing it, and use Smalltalk to generate the images

illustrating the operation. Next, we give examples of the use of these operations in

image processing: construction of filters, shape recognition and forming the convex

hull of a set.

4.1 The overview of morphology

Mathematical morphology is that part of image processing which is concerned with

image filtering and analysis by structuring elements. It grew out of the early work of

H.Minkowski and H. Hadwiger [MINK03] on geometric measure theory and integral

geometry, and entered the modem era through the work of G. Matheron and J. Serra

[SERR82a] of the Ecole des Mines in Fontainebleu, France. Matheron and Serra not

26

only formulated the modem concepts of morphological image-transformations but

also designed and built the Texture Analyser System. Since those early days,

morphological operations and techniques have been applied to vision problems at all

levels.

Mathematical morphology is a form of mathematics used for analysing and describing

shapes. It treats images as set of points in space (rather than as arrays of numbers or

as connected blobs). Because it treats images as sets, the operations for combining

two images are set operations, rather than arithmetic ones.

This approach is both non-linear and irreversible ~ for most morphological operations

there is no inverse operation to undo their effect. Each operation thus loses some of

the information that was there before. It is the art of the user to manage the loss of

information, so that he can extract the message that he seeks and progressively

eliminate irrelevant detail.

4.1.1 Image and image transformation

We are concemed with images defined at points {x, y) in the plane. We denote the

universal set of all image points by W. Normally W will be some rectangular window.

An image is defined by a function gonW such that g{x, y) is the value of the image at

{x, y). This will be a real value in the case of a gray-scale image or a 3-component

vector for a colour image.

A binary image is a special case of gray-scale image for which the set of image values

is composed of two elements: " 1" representing white, a foreground point or image

point, and "0" representing black, a background point. The set of foreground points in

such an image is interpreted as the object or shape depicted by the image. So a binary

image may be considered as a set, the set of points in FT with value 1.

An image transformation is a mapping T from each image function g to a new image

function T^, converting each image to a new image. Mathematical morphology is

concemed with a special class of such functions. This is most easily explained for

binary images.

27

4.1.2 Mathematical morphology for binary images

For binary images, mathematical morphology treats images as sets of points. So the

image transformations are considered as set operations. Serra [SERR82a] restricts

mathematical morphology on binary images to those set operations that satisfy four

principles. The first is that the transformation must be independent of a translation of

the sets, that is, the transform of the translation of a set must be the translation of the

transform of that set. The second is that the transformation must be independent of a

scaling of the set. The final two principles are rather technical, concemed v/ith the

localisation of the information used to compute the result and a requirement that

arbitrarily small changes in a set cannot produce large changes in its transform.

In practice, mathematical morphology is mainly concemed with transformations based

upon two fundamental ones: dilation and erosion. We now describe these. At this

stage we restrict the underlying image space to the discrete lattice J\J, the set of

points with integer coordinates, although mathematical morphology also applies to

images defined on a continuous domain. Now (x, y) is considered to define a pixel and

gix, y) the image value there.

Consider an image A (considered as a subset of the pixels in W). We perform a

dilation to obtain a new set B in the following way. Each pixel in W will be in B if it,

or any of its "neighbours" are in A. There is complete freedom in deciding which

pixels are considered neighbours so long as there is consistency. For example. Figure

4.1(a) shows one possible selection of neighbours. The central pixel, containing a

circle, is interpreted as the pixel under consideration and the pixels denoted by crosses

are the neighbours. This particular dilation will convert set/i, shown in Fig. 4.1(b), to

set Bin Fig. 4.1(c).

X

o

X

X

X

X

X 1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

(a) (b)
Fig. 4.1 Illustration of dilation

(c)

28

Mathematically, the most convenient way to describe this process is to consider the

pbcels marked o or x in (a) as a set or image itself, called the structuring element.

We denote it by R here. Then the result of the dilation is vsritten A®R. For the

stmcturing element the origin is taken at the o pixel. Then in set notation,

A®R = {{x, y)\{x + u,y + v)&A for any (w, v) G R)

For later generalisation to gray-scale images, an altemative formula is

{A®R){x,y)= \ g{x+u,y+v)
{u,v)eR

where V denotes the logical OR of the Boolean g values.

An erosion C of a set A is defined similariy to a dilation, except that pixel {x, y) will be
in C if (jf, y) and all of its neighbours are in A. For a stmcturing element R the result is
written AQR. SO I '

AeR^ {{x, y)\ {x + u, y + v) G A for a\\ {u, v) E R)

or equivalently,

{AeR){x,y)= A g{x+u,y+v)
{u,v)eR

Where A denotes the logical AND.

We may consider the stmcturing element as a mask. The origin of the mask is moved

to each pixel in turn and that pixel is considered part of the dilation of A if the

stmcturing element touches A. It is considered part of the erosion of A if the

stmcturing element lies entirely inside A. In the example shown in Fig. 4.1, the

stmcturing element can nowhere fit inside A, so the erosion of A in that case is the

null set.

The complement of a set A (denoted by .4) is the set of points in the universal set W

but not in A. Clearly dilating a set has the effect of eroding its complement. More

precisely

AeR=A®R

Here the notation R signifies the reflection of the set R,

29

^= {(X, y) I {-X, -y) G R}

More generally, a morphological operation is some logical combination of the
Boolean values g(x+u, y+v) where {u, v) ranges over the stmcturing element. In
general we drop the requirement that the origin is in the stmcturing element. Different
stmcturing elements address different concerns. For example, a 3-by-3 square
stmcturing element can be used to eliminate a round comer in a shape, and a
stmcturing element in the form of a thin line can be used in the processing of striated
textures.

4.2 History of image algebra

Serra and Sternberg were the first to unify morphological concepts and methods into
a coherent algebraic theory specifically designed for image processing and image
analysis. Sternberg was also the first to use the term image algebra [STER80]. More
recently, P. Maragos introduced a new image algebra unifying a large class of linear
and non-linear systems under the theory of mathematical morphology [MARA85].

G.X. Ritter et al introduced Air Force Armament Laboratory (AFATL) Standard

Image Algebra [RITT90]. This algebra provides a common mathematical environment

for image-processing algorithm development and methodologies for algorithm

optimisation, comparison and performance evaluation. In addition, the image algebra

provides a powerfiil algebraic language for image processing which, if properly

embedded into high level programming, will greatly increase a programmer's

productivity as programming tasks are greatly simplified due to replacement of large

blocks of code by short algebraic statements.

Another algebraic stmcture with the same goals as the AFATAL image algebra is the

algebra described by Giardina and Dougherty [DOUG87]. It also defines a set of basic

or primitive image operations.

In the course of developing his Digital Optical Cellular Image Processor (DOCIP),

K.S Huang [HUAN89] devised a Binary-Image Algebra(BIA) which allowed him to

express morphological operations in terms of three fundamental operations. A basic

purpose of BIA is the development of a programming language for the specific

parallel architecture of DOCIP.

30

4.3 Huang's image algebra

Huang's image algebra provides a decomposition of general operations, including low-
level image processing operations, into three fundamental operations. The parallelism
of these fundamental operations makes them suitable for expression in terms of the bit
block-transfer operations in Smalltalk.

4.3.1 Two principles and the basic elements

Huang proved his two fundamental principles that basically define the BIA. They are:-

Principle 1.

Fundamental Principle of Image Transformations

Any binary image morphology transformation T can be implemented by
using an appropriate reference image R and the three fimdamental
operations (details in next section):-

1. Complement of an image.

2. Union of two images.

3. Dilation of an image using a reference image.

Principle 2.

Fundamental Principle of Reference Images R

Any reference image R can be generated from elementary images (I, A, A'

1, B, B"l) by using the three flindamental operations.

The five elementary images are constant images. Each elementary image has only one

image point. They are:-

31

/ = 1(0,0)}

A = {(1,0)}

A-^= {(-1,0)}
B={{0,1)}

B-^= {(0,-1)}

consisting of an image point at the origin

consisting of an image point right of the origin

consisting of an image point left of the origin

consisting of an image point above of the origin

consisting of an image point below of the origin

Table 4.1 Five basic elements

For example, we can define a 4-connected reference image thus:-

N.=I^AUA-'KJB^B-^

Huang defined 4-connected and 8-connected as follows:-

Two image points (x,v) and |i j) of an image are 4-connected <-> there exists a
sequence of image points {X,V) = (XO,YO), (X I , Y I) , ..., (Xm/Vm> =(i,i), where
(X|̂ ,yî) is a 4-neighbour of (^\^.^,'V\i.'\) and {x^^,y^JeX, 1^l<^m.

Two image points (x.y) and (i,j) of an image are 8-connected <^ there exists a
sequence of image points (x,y) = (xo,yo), (x^.V^), • / (Xm'Vm) =(iJ)r where
(x,̂ ,Vî) is a 8-neighbour of (xi^.i/Vi^.^) and |X|^,y|^)eX, l ^ k ^ m .

Other operations such as opening, closing, thinning and thickening can be expressed

in terms of three basic operations to be defined in the next section.

4.3.2 Three basic operations

Huang's binary-image algebra (BIA) expresses general operations on binary-images in

terms of three fundamental operations:-

1. Complement of an image X.

X = {{x,y)\(x,y)eWA(x,y)^X}

2. Union of two images X and R.

XuR = {(x,y)\(x,y) eXv(x,y) eR}

32

3. Dilation of an image X with a reference image R.

X e R={{x\ + x2,y\+y2) &W\{x\,y\) &X,{x2,y2) GR}

Following are some examples of the three basic operations :-

Q O O O O O O

o o n 110
0 0 0 1 1 1 0
0 0 0 0 1 1 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

Input Image X

011 n n
0 1 1 1 1 1 1
0 t 11 1 11

001 n u
0 0 0 1 1 1 1
0 0 0 0 1 1 1
0 0 0 0 0 0 0

ooooooo
0 0 0 0 0 0 0
0 0 1 1 10 0
0 0 1 1 1 0 0
0 0 1 1 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

Reference Image R

0000000
0 0 11110
0 0 11110
0 0 11110
0 0 1 I i 1 0

0 0 0 0 0 0 0
0000000

1 1 1 1 1 1
1 0 0 0 0 1
1 10 0 0 1
1 n 00 1
1 1 n o i
l i n n
n n n

Dilation X e R Union X u R Complement X

Fig. 4.2 The three basic operations

In the following operations and in section 4.3.3, each operation is implemented by an

instance method of the class Image. In conformance with Smalltalk convention, we

use the comment to make it clear whether we are changing the receiver and returning

it, or whether we are returning a new instance of Image. In Smalltalk the default

return is self, that is, the receiver. In the following methods, we are changing the

receiver.

We may implement the fiandamental operations in SmalltalkA^286 by means of the

following instance methods:-

complement
"Answer the complement of an image. "

"self reverse

33

union:imageR
"Answer an image containing the image of the union of imageR and

the receiver imageX. "

self copy: (0@0 extent:(imageR extent)) from:imageR to:0@0 rule:? .

dilationBy:imageR
" D i l a t i o n of an image (imageX) by a r e fe rence image (imageR) "

I a b c|
b:= (Image width: (self width) height: (self height)) black.
c:= (Image width: (self width) height: (self height)) black.
a:= OrderedCollection new.
a:= imageR getPointsFrom:imageR.
1 to: a size do:[:il

b copy: (000 extent:(self extent)) from:self
to:((a at:i)- (imageR centre)) rule:3.

c union:b
] .

self copy: (0@0 extent:(self extent)) from:c to:0@0 rule:3

4.3.3 Other operations

In this section, we give other operations which are derived fi^om the three basic
operations, together with their Smalltalk implementations and test-scripts. To
illustrate each operation we use small sample images, which we created by using the
small-image database environment to be described in the next chapter, rather than
real-world xmdLgQS. [In this section, Smalltalk refers to SmalltalkA^286.]

Difference

The difference is one of the standard operations. If i? is a template or ideal image and

X is the actual image then X/R shows defects in X by showing the extra pixels that X

contains. Huang's expression for the difference of an image X by an image R is given

in his Formula 4.1:-

XI R^{(^x,y)\{x,y)eX A{x,y)^R}

We may implement the operation in Smalltalk by means of the followdng instance

method :-

difference:imageR
"Answer an image that contains the difference between original image
(imageX) and reference image (imageR)"

34

((self complement) union: imageR) complement

We may test the method in the following way using global variables X, Y and Z:
X:= ImageDataBase idbFromDisk:'image.dbs'.
Y:=X at:'differenceX'.
Y displayAt: 0(320.
R:=X at:'differenceR'.
R displayAt: 50020.
Y difference: R.
Y displayAt: 100020

(a) Original (b) Reference (c) Result

Fig. 4.3 Sample images for the difference operation

I n t e r s e c t i o n

The intersection operation is the parallel form of Boolean AND. Huang's expression

for the intersection of an image A'by an image R is given in his Formula 4.2 :-

Xr^R= {{x,y) GXA{x,y) GR= Xy^R

We may implement the operation in Smalltalk by means of the foUovsdng instance

method:-

i n t e r s e c t i o n : i m a g e R
"Answer an image that contains the intersection of original image
(imageX) and reference image (imageR)"

((self complement) union:(imageR complement)) complement

Although we do not give the script, this, and following operations may be tested in

the same way as the preceding operation.

c
(a) Original

3
(b) Reference

(c) Result

Fig. 4.4 Sample images for the intersection operation

35

Eros ion

Erosion is the morphological dual to dilation. It is the morphological transformation
which combines two sets using the vector subtraction of set elements. In general, the
erosion of an image Zby a reference image R can be used to remove pixels around the
boundary of regions and so decrease their size, increase the size of holes, eliminate
regions and break bridges in X. Huang's expression for the erosion of an image X by
an image R is given in his Formula 4.3 :-

xeR = xeR

We may implement the operation in Smalltalk by means of the following instance
method :-

erosionBy:imageR
"Answer an image that containing the erosion of original image
(imageX) by reference image (imageR)"

((self complement) dilationBy:(imageR reflect)) complement

We may test erosionBy: in the same way as before.

(a) Original (b) Reference (c) Result

Fig. 4.5 Sample images for the erosion operation

Symmetric Difference

The symmetric difference operation is the parallel form of the Boolean Exclusive-OR.

It is a commutative operation and its inverse operation is itself If 7? is a template then

XlsR indicates all the discrepancies between X and that template and so detects

defects in X. Huang's expression for the symmetric difference of an image X by an

image R is given in his Formula 4.4 :-

X^R = {XtR)y^{RI X) = XKJR^R^X |

36

We may implement the operation in Smalltalk by means of the following instance
method:-

syrametricDiff:imageR
"Answer an image which i s the symmetric d i f f e r e n c e between o r i g i n a l
image (imageX) and re fe rence image (imageR) "

I a b I
a:= (Image width: (self width) height: (self height)) black.
a copy: (000 extent:(self extent)) from:self to:O0O rule:3.
a difference:imageR.
b:= (Image width: (self width) height: (self height)) black.
b copy: (000 extent: (self extent)) fromiself to:Oi@0 rule:3.
imageR difference:b.
a union:imageR.
self copy: (000 extent:(self extent)) from:a to:O0O rule:3

We may test symmetricDiff: in the same way as before.

(a) Original (b) Reference (c) Result

Fig. 4.6 Sample images for the symmetric difTerence operation

Opening

Opening of images X and R is simply the erosion of A'by R, followed by a dilation of

the result by R. We can interpret opening as moving the stmcturing element around

inside the foreground of the image. Those parts that the stmcturing elements can

reach are preserved. Opening generally smooths the contours of an image, breaks

narrow isthmuses and eliminates thin protmsions. Huang's expression for the opening

of an image Jf by an image R is given in his Formula 4.5 :-

XOR = {XBR)®R = X®R®R

We may implement the operation in Smalltalk by means of the following instance

method :-

openingBy:imageR
"The opening operation is an erosion followed by a dilation with the
same reference imageR."

37

[self erosionBy:imageR) dilationBy:imageR

We may test openingBy: in the same way as before.

n
(a) Original (b) Reference (c) Result

Fig. 4.7 Sample images for the open operation

Closing

The closing of images A'and R is simply the dilation of A'by R, followed by an erosion
of the result by R. We can interpret closing as moving the reference image around in
the background of the image. Those parts of the image that are not reached by the
reference image consititue the closing. Closing tends to smooth sections of contours
but, as opposed to opening, it generally fijses narrow breaks and long thin gulfs,
eliminates small holes and fills gaps in the contour. Huang's expression for the closing
of an image Xhy an image R is given in his Formula 4.6 :-

X»R = {X®R)e R = {X®R)®R

We may implement the operation in Smalltalk by means of the following instance

method:-

closingBy:imageR
"The closing operation is an dilation followed by an erosion with
the same reference imageR. "

(self dilationBy:imageR) erosionBy:imageR

We may test closingBy: in the same way as before.

Ill
(a) Original (b) Reference

III
(c) Result

Fig. 4.8 Sample images for close operation

38

Hit or Miss Transform

The hit or miss transform uses a pair of reference images R={Rl,R2). The transform is

used to detect a given shape in the connected components of the foreground of an

image. The reference images constitute a template for the shape sought; Rl specifies

its foreground and R2 its background. Huang's expression for the hit or miss

transform of an image ̂ by an image pair {Rl,R2) is given in his Formula 4.7:-

XOR = {XeRl) n {XeR2) = {X® Rl) u (X 0 ^2)

We may implement the operation in Smalltalk by means of the following instance
method:-

hi tMissTransByrimageRl and:imageR2
" Ins t ance method of H i t -o r -mi s s t r ans fo rm. "

I a b I
a:= (Image width: (self width) height: (self height)) black,
a copy: (000 extent:(self extent)) from:self to:O0O rule:3.
a erosionBy:imageRl.
b:= (Image width: (self width) height: (self height)) black,
b copy: (000 extent:(self extent)) from:self to:O0O rule:3.
(b complement) erosionBy:imageR2.
a intersection:b.
self copy: (000 extent:(self extent)) from:a to:O0O rule:3

In the following test, the pyramids in the orginal image are recognised, and
represented by a dot in the resulting image.

X:= ImageDataBase idbFromDisk:'image.dbs'.
Y:=X at:'hitMissTrans'.
Y displayAt: 0020.
R:=X at:'triangle'.
R displayAt: 50020.
X:=X at:'cap'.
X displayAt: 100020.
Y hitMissTransBy: R and: X .
Y displayAt: 150020

(a) Original (b) Foreground Rl (c) Background R2 (d) Result

Fig. 4.9 Sample images for the hit or miss transform operation

39

Thinning

The thinning operation decreases the size by removing the central points of the

regions which match the reference image pair R = {Rljil). Huang's expression for the

thinning of an image A" by an image pair {RIJH) is given in his Formula 4.8 :-

X@R=Xl{X@R) = X<j{X®Rl)^{X®R2)

We may implement the operation in Smalltalk by means of the following instance
method:-

thinningBy:imageRl and:imageR2
"The instance method thinning."

I a I
a:= (Image width: (self width) height: (self height)) black.
a copy: (000 extent:(self extent)) from:self to:O0O rule:3.
a hitMissTransBy:imageRl and:imageR2.
self difference: a

We may test thinningBy: in the same way as we test hitlransBy: and: method.

(a) Original (b) Foreground Rl (c) Background R2 (d) Result

Fig. 4.10 Sample images for the thinning operation

Thickening

The thickening operation increases the size by filling the image points where the

regions match the reference image pair R = {Rl,R2). Huang's expression for the

thickening of an image X by an image pair (R1,R2) is given in his Formula 4.9 :-

XQR = X^{XeR) = X<j{X@Rl)(j{X@R2)

We may implement the operation in Smalltalk by means of the following instance

method:-

40

t h i c k i n g B y : i m a g e R l and:imageR2
"Thicking instance method."

I a I
a:= (Image width: (self width) height: (self height)) black.
a copy: (000 extent:(self extent)) from:self to:0@0 rule:3.
a hitMissTransBy:imageRl and:imageR2.
self union: a

We may test thickeningBy: in the same way as we test hitlransBy: and: method.

iJ • • U
(a) Original (b) Foreground Rl (c) Background R2 (d) Result

Fig. 4.11 Sample images for the thickening operation

4.4 Applications of image algebra in Smalltalk

With the preceding discussion as background, we can now give some practical
applications of image algebra and their Smalltalk implementation. When dealing with
binary images, the principal application of image algebra is extracting components that
are useful in the representation and description of shape. In particular, we consider
image algebra algorithms for finding boundaries, connected components and the
convex hull. We also present some examples of image filters that are often used in
conjunction with the above methods as pre- or post-processing steps. For
convenience, we assign X, Y, R as globe variables in Smalltalk.

4.4.1 Application: filters

One kind of morphological low pass filter, to remove high fi-equencies in the

foreground of an image, can be achieved by opening:-

X:= ImageDataBase idbFromDisk:'image.dbs'.
Y:=X at:'noise'.
Y displayAt: 0020.
R:=X at:'openOrcloseR'.
R displayAt: 50020.
Y openingBy: R .
Y displayAt: 100020

41

The little white spots are considered as noise that we intend to remove. We use a 3-

by-3 square reference image as the filter. We can get a clean image as foUows:-

(a) Original (b) Reference (c) Result

Fig. 4.12 Sample images showing noise removal

A second kind of morphological low pass filter can be achieved by closing:

X:= ImageDataBase idbFromDisk:'image.dbs'.
Y:=X at:'openOrcloseX'.
Y displayAt: 0020,
R:=X at:'openOrcloseR',
R displayAt: 50020.
Y closingBy: R .
Y displayAt: 100020

III
(a) Original (b) Reference

III
(c) Result

Fig. 4.13 Sample images for remove high frequencies

A morphological band-pass filter which removes low frequencies and high frequencies

in the foreground of an image Jc'can be achieved by the difference between its opening

with a smaller reference image R, and its opening with a larger reference image Q,

where /? is a subset ofQ:-

Y = (XoR)/{XoQ)

X:= ImageDataBase idbFromDisk:'image.dbs'
Y:=X at:'openOrcloseX'.
Y displayAt: 0020.
R:=X at:'openOrcloseR'.
R displayAt: 50020.
Y openingBy: R .
X:= ImageDataBase idbFromDisk:'image.dbs'
R:=X at:'openOrcloseX'.
Q:=X at:'openOrcloseQ'.
Q displayAt: 100020.
R openingBy: Q.
Y difference: R.

42

Y displayAt:150020

Fig. 4.14 shows removal of the high-frequency and low-frequency components from

an image, leaving only the mid-frequency components

ill I I I

EMM
(a) Original (b) Foreground Rl (c) Background R2 (d) Result

Fig. 4.14 Sample images for band pass filter

4.4.2 Application: shape recognition (template matching)

In one form of shape recognition we may use the hit or miss transform to recognise

locations of foreground points given by Rl, and locations of background points given

byi?2.:-

X:= ImageDataBase idbFromDisk:'image.dbs'.
Y:=X at:'hitMissTransl'.
Y displayAt: 0020.
R:=X at:'triangle'.
R displayAt: 50020.
X:=X at:'cap',
X displayAt: 100020.
Y hitMissTransBy: R and: X .
Y displayAt: 150020

43

In Fig. 4.15 two up-triangles have been recognised and represented by two dots.

(a) Original (b) Foreground Rl (c) Background R2 (d) Result

Fig. 4.15 Sample images for shape recognition

4.4.3 Application: edge detection

In a binary image, the edge is the boundary between white (foreground) area and

black(background) areas. The detection of an 8-connected edge of an image X can be

achieved by:-

1 Xl{XeN8)=X u (^ © A 8̂)

The edge is detected by finding the difference between the original image and the
original image eroded by a 3-by-3 8-connected reference image {Ng). An 8-connected
edge is the boundary of two regions which have 8-connectivity (defined in 4.3.1 cited
from Huang's definition). Here is an example of edge detection, the edge has been
detected by using a 3-by-3 8-connected reference image {Ng):-

(a) Original (b) Reference (c) Result

Fig. 4.16 Sample images of edge detection

Simularly, using N4 instead of iV§ would give the 4-connected edge.

4.4.4 Application: convex hull

Azriel Rosenfeld and Avinash C. Kak defined convex and convex hull in their book

Digital Picture Processing\K0K%2]:-

In the real plane, S is called convex if any strait line meets S at most once, ie.,
in only one run of points. Evidently, a convex set must be connected and can

44

have no holes; and an arc can be convex only if it is a strait-line segment, it is
easily seen that each of the following properties is equivalent to convexity:

• For any points P,Q of S, the strait-line segment from P to Q lies in S.
• For any points P = (X,Y), Q = (U,V) of S, the midpoint((x + u)/2, (y + v)/2) of P

and Q lies in S.

In the real plane, there is a smallest convex set S^ containing any given set S
(Proof: Readily, any intersection of convex sets is convex; in particular, the
intersection of all the convex sets containing S is convex.) S^ is called Convex
hull of S.

If there is only one object in the image X, or several objects separated by distances
greater than their own diameters, then the convex hull is the intersection of
projections:-

C{X) = h{X®Ql)
1=1

where ©j, i = 1.2.3.4 are projections of horizontal, vertical, left-diagonal and right-
diagonal. The superscript k should be greater than the longest radius of objects in X.

For example, 0^ is the set { (1, 0), (2, 0), (3, 0), (4, 0)} and the horizontal projection
of Jfis X®%\. We might say that A'has been smeared 4 pixels to the right and 4 pixels
to the left. The following instance method may be introduced into the class Image in
SmalltalkA'̂ to find the convex hull of an image:-

convexHull:aninteger

"Private — Answer the convex hull of an image."

I a b c d I
a := Image width: self width

height: self height
planes: self planes

bitCount: self bitCount ,
self displayAt:000 with: a pen.
b := Image width: self width "Create image working

space."
height: self height

planes: self planes
bitCount: self bitCount .

self displayAt:000 with: b pen.
c := Image width: self width

height: self height
planes: self planes

bitCount: self bitCount .
self displayAt:000 with: c pen.
d := Image width: self width

height: self height
planes: self planes

bitCount: self bitCount .
self displayAt:000 with: d pen.

45

a dilationBy:(self builtH:aninteger).
horizontal
direction."

b dilationBy: (self builtV:aninteger) .

c dilationBy:(self builtLD:aninteger)

direction."
d dilationBy:(self builtRD:aninteger)

"Project to

"Project to vertical
direction."

"Project to left-
diagonal

"Project to right-
diagonal

direction."
((a intersection:b) intersection:c) intersection:d.
a displayAt:000 with: self pen.
a release.
b release.
c release.
d release.
^self

An example appears in Fig. 4.17:-

[•!•]

(a) Original image
•

(b) Convex hull
Fig. 4.17 Sample images of convex hull

Comparing an image X with its convex hull is a useflil technique to analyse shape. The

difference of the convex hull and the image [ROR82] X indicates how many

concavities the image X has and what their individual shapes and sizes are.

(a) Original image
•
(b) Convex hull

WM i;>
(c) C(X)/X

Fig. 4.18 Sample images of shape analysis by using convex hull

46

Chapter 5

Development of imaj
in Smalltalk

•

ge-algebra applications

Introduction

The core of this chapter is a description of the image processing environment which

we have developed in Smalltalk.

The chapter begins with a brief overview of existing image processing packages

available either commercially or from the public domain, and running under the most

common operating systems (DOS, Windows, Macintosh and UNIX). We then

introduce our own image processing environment in two versions:

• The DOS version (Smalltalk/V286) has two parts: the Small-Image Database

and Image Processor;

• The Windows version (SmalltalkA^in), which we call ImageLab, includes not

only binary morphological operations but also some image transforms and a

simple graphics editor. To use the windows facility, we have built a user

interface which includes a tool bar, a status bar, on-line help and a Multi-

Document Interface(MDI).

The chapter closes with some remarks on customising either version to one's own

requirements.

47

5.1 Overview of image-processing applications

We begin with a brief overview of existing image processing packages available either

commercially or fi-om the public domain, and running under the most common

operating systems (DOS or Windows on PC, Macintosh and UNIX). This information

emerged from a survey conducted by the author over internet.

Software

GlobeLab

Khoros

NIH Image

Morph 4.1

Xlips Vl.O

SCIDESK

XITE

Wang Image

Cabinet

Image

Version

Library

Xcalibur

Utah Raster

Toolkit

OPTMAS

Running
Platfomi(s)

MS-Windows

X-windows

MAC

SUN-openWin

X-windows

MS-DOS

X-windows

Muti-

plateform

SUN-OS

X-windows

X-windows

MS-Windows

Written
Language

C

C

Think Pascal

C

C

C, C-H-

c
c

C-H-,

interface C,

Fortran

C, PixScript

C

MS-C

User interface

GUI(Windows)

GUI(X-windows)

GUI(MAC)

Command Line

GUI(X-windows)

Dos Menu-drive

Shell commands

GUI(Windows)

Command line

GUI(X-windows)

GUI(X-windows)

GUI(Windows)

Available from
(Author/Supplier)

Data Translation Inc. 1

ftp pprg.eece.uimi.edu in

pub/khoros/*

Wayne Rasband(author)

R A. Peters Il(author)

rap2@vuse.vanderbilt.edu

L. Rosenthaler (author)

rosenthaler@urz.unibas.ch

JASP Research

dsimkins@cscns.com

ftp ftp.tfi.uio.no

Wang Coorpration

Silicon Graphics Inc.

BDS Systems

(703)4377651

ftp cs.utah.edu in

pub/urt-*

BioScan Incorporated

Table 5.1 A survey of current image-processing software

Khoros is a complete image-processing package, running on the Sun-Sparc

workstation. It is an integrated software development environment for information

processing and visualisation. Khoros features include a visual programming language,

the ability to add new application packages to the system, an interactive user interface

editor, interactive image display programs, surface visualisation, an extensive library

48

http://pprg.eece.uimi.edu
mailto:rap2@vuse.vanderbilt.edu
mailto:rosenthaler@urz.unibas.ch
mailto:dsimkins@cscns.com
ftp://ftp.tfi.uio.no
http://cs.utah.edu

of image processing, numerical analysis and signal processing routines, and 2D or 3D
plotting packages.

Globe-Lab Image is a commercial product which provides a standard Windows
interface to a wide range of image-processing and image-analysis operations including
object counting, measurement calibrated to user-defined real-worid coordinates,
Fourier analysis with editing in the frequency domain, morphological filtering, image
enhancement etc.

NIH Image is a small but complete image processing for the Macintosh which is
available in the public domain with its PASCAL source code. It supports many
standard image processing flinctions, including contrast enhancement, density
profiling, smoothing, sharpening, edge detection, median filtering, and spatial
convolution with user defined kernels with size up to 63 by 63 pixels.

Wang's Image Cabinet is an image-database interface which emphasises image
storage and retrieval from an existing database rather than image processing. It is
available on many platforms.

Morph 4.0 is comprehensive in its coverage of 2-dimensional and 3-dimensional
morphological operations with images. It is in the public domain, replete with the
source-code, in C, for hundreds of sub-routines.

XLIPS Vl.O is an X-based image processing environment which is designed to help

scientists to develop and implement their own routines. It is not a complete system; it

is a framework fiimished with low-level tools to facilitate the development of

application-specific routines. There are three parts:

• display of multiple images using operations such as zoom, paste and contrast

adjustment;

• a library of subroutines dealing with input, output, networking and command

line parsing, etc;

• a set of routines which provide some image processing functions(eg.

convolution, median filter, etc) which are programmed using the above

mentioned library.

49

5.2 An image-processing system in SmalltalkA/286

Smantalk/V286 is an MS-DOS version of a dialect of Smalltalk first marketed by

Digitalk Inc in 1988. It offers an entry to Smalltalk via lower-performance machines

such as the IBM-PC, PS/2 with an 80286 or 80386 processor. SmalltalkA^286

enabled the author to adapt quickly to the object-oriented paradigm and to begin

creating, almost immediately, an image processing environment.

There are two essentially separate parts of the environment. One is an image-browser
which we call the Small-Image Database which can store and retrieve binary images
and colour images, the other we call the Image Processor which can perform binary
morphological operations. Both share an image-dictionary file. The following figure
gives the run-time structure:-

Share via a Share via a global variable
< >

\

^ :

Image Dictionaty

y

Fig. 5.1 The run-time structure*

5.2.1 The user interface of the application

There are two windows that permit the user to interact with computer. One is the

interface to the Small-Image Database which allows the user to browse images. The

other is the interface to the Image Processor.

* In the figure, Ul stand for User Interface

50

The Small-Image Database allows the user to browse images stored against dictionary
keys listed in the left pane, and to add and remove images fi-om the dictionary. A
selected image will be displayed in the right pane(Fig. 5.2).

The interface to the Image Processor presents the user with three upper panes above a
fourth pane (the result pane). The first of the three panes holds the source image
which can be loaded fi-om the Small-Image Database, or from disk, or fi-om the result
plane. The remaining two upper panes each hold a reference image which may be
loaded from either the disk or the Small-Image Database. A menu offers the user a
choice of binary morphological operations to be applied to the upper images; the
result of the operation appears in the lower pane(Fig 5.3).

The following figure is a sketch of the user interface of the Small-Image Database:-

Small Image Database

Left Pane Right Pane

Fig. 5.2 The user interface of the Small-Image Database
Following Smalltalk we shall refer to the left pane as the list pane and to the right

pane as the instance pane.

To build the Small-Image Database user interface in Smalltalk/V286, we inherit the
V286's window user-interface system. We couple an instance of class GraphPane,
which will display images, with an instance of class ListPane, which will list keys to
the images. These two panes are organised by a top pane which is an instance of the
class IdbTopPane.

The menu for the left-pane offers the following options:-

add from disk

bit editor

free drawing

inspect

remove

save IDB

Add a new image from a disk file .

Enter bit editor environment .

Enter free hand drawing environment.

Inspect the stmcture of the selected image.

Remove the selected image.

Save whole Small-Image Database as a disk file.

51

The menu for the right-pane offers the following options:-

clear

print

save as

Clear the displayed Image in the pane

Print the selected image on a pin printer.

Save the selected image as a disk file.
=

The user interface of the Image Processor has five components ~ the top-pane
containing the title, left pane, middle pane, right pane and bottom pane ~ as shovm in
Fig 5.3 :-

Demo Image Processor Environment

Left Pane Middle Pane Right Pane

Bottom Pane

Fig. 5.3 The window of image processor environment

The left pane displays a selected original image X. The middle pane and the right pane
display reference images that we refer to as Rl and R2 respectively. The bottom pane
displays Z, the image resulting from a chosen operation on the images in the previous
panes.

The menu for the left upper pane is:-

get it

load IDB

from result

from disk

Get X from a selected image in Small-Image Database.

Load the Small-Image Database from disk and open the data base

environment.

Get the image from the result image. Then we can perform a

sequence of morphology operations.

Get the image from disk file.

The menu for the middle upper pane is:

52

get it

from result

from disk

Get R1 from selected image in Small-Image Database.

Get the image from the result image. 1

Get the reference image from disk file. |

The menu for the right upper pane is:

get It

from result

1 from disk

Get R2 from selected image in Small-Image Database.

Get the image from the result image.

Get the reference image from disk file.

The menu for the lower pane is:

complement

union

dilation

erosion

difference

reflect

closing

opening

intersection

symmetricDiff

hitMissTrans

thicken

thin

print

save as

Reverse X.

Form the union of the two images X and R1.

Dilate X by R1.

Erode X by R1.

Get the difference between X and R1

Reflect X in the origin.

Close X with R1.

Open X with R1.

Form the intersection of X and R1.

Form the symmetric difference of X and R l .

Form the hit-and-miss transform of X with the image pair (R1, R2).

Thicken X with the reference image pair (R1, R2).

Thinning X with the reference image pair (R1, R2).

Print the result-image on a pin printer.

Save the result-image as a disk file.

The following method attaches the interface to the Small-Image Database:

openOn: anObject
"Open an Inspector on anObject. Define the pane sizes
and behaviour, and schedule the window."

object := anObject.
instPane := GraphPane new

menu: #idbInsPaneMenu;
model: self;
name: #instance:;
framingRatio: (1/3 0 0 extent: 2/3 @ 1).

53

anIdbTopPane := IdbTopPane new.
anIdbTopPane

label:'Small-Image Database';
model: anIdbTopPane dispatcher;
menu: #workSpaceMenu;
minimumSize: 80@80;
yourself.

anIdbTopPane addSubpane:
(ListPane new

menu: #idbListMenu;
model: self;
name: #instVarList;
change: #selectlnstance:;
returnlndex: true;
framingRatio: (0@0 extent: 1/3 @ 1))

anIdbTopPane addSubpane: instPane.
CursorManager normal change,
self setlnstList.
anIdbTopPane dispatcher open scheduleWindow!

5.2.2 The class ImageDataBaselnspector

The class ImageDataBaselnspector inherits the properties of class Dictionarylnspector. It
is the basic class for the Small-Image Database (image dictionary). The class
Dictionarylnspector provides the basic mechanism for browsing the instance variables,
the class variables and the instance methods of an object. To enable an Inspector to
browse images contained in a dictionary, we need to create a class
ImageDataBaselnspector as a sub-class of Dictionarylnspector.

In Fig. 5.4, the left block is an illustration of the class ImageDataBaselnspector. The

right block shows how a Small-Image Database has been created by sending the

message:-

ImageDataBaselnspector new.

54

The following diagram shows the structure and functionality of the inspector :-

ImageDataBaselnspector

^Subcla^ss of lJictK)nar>luspei.lo[;

Instance Methods

storDic freDrw fromDisk
instance: bitEdt remove
storeOnFile selectlnstance:

openOn loadDic clear
idblnsPaneMenu printlmage

StoreOnFile
Mi'ii'.'''."

Send the Message
j ^ I m a g e D a t a B a s e l n s p e c t o r new

•^'^Os^ anIdbTopPane

Create an

instance

Small Image Database

Left Pane Right Pane

An instance of
Imagel>ata Iia.seJ n specfor

Fig. 5.4 The structure of class ImageDataBaselnspector

The instance methods of the ImageDataBaselnspector:-

bitEdt

clear

freDrw

fromDisk

idblnsPaneMenu

idbListMenu

instance:anlmage

loadDic

openOn:anObject

printlmage

remove

selectlnstance:anlnteger

StorDic

StoreOnFile

Edit the image by using a bit editor.

Clear the instance pane, that is, the image display pane.

Draw the graph by using a free hand drawing tool.

Retrieve image from disk file, insert into data base.

Pop up a menu on the right pane.

Answer the list pane menu.

Display the selected image on the instance pane.

Retrieve whole image dictionary from disk.

Open an inspector window on an object, define the pane

sizes and behaviour and schedule the window.

Print the selected image.

Remove the selected key and value from the dictionary.

Select the instance at index position aninteger in the list.

Store the image dictionary as a disk file.

store the selected image as a disk file.

55

http://Iia.se

5.2.3 The class ImageProcessor

The class ImageProcessor, the main class in the image processing environment, is

created as a sub-class of Object. The tasks of an ImageProcessor are to:-

create the window with one-top pane and four sub-panes;

build the menu system for each pane;

execute the relevant method of each menu selector;

communicate with the Small-image Database via a global variable.

We create an ImageProcessor by executing

ImageProcessor new openOn:anObject

anObject is an image dictionary which is shared with a Small Image Database
environment object.

The menu system is provided by the system's Menu class. The class Menu defines the
protocol for an application to present a menu of items to the user, allows the selection
of an item, and then takes some action based on the selection. There are many menus
in the SmalltalkA^286 environment such as menu bars or pop-up menus which are
hidden behind windows, panes and the system screen. In this version of the image-
processor environment, the author uses pop-up menus.

In the class ImageProcessor, the three upper panes ~ upper left pane, upper middle

pane and upper right pane ~ use the same instance method to communicate, via a

global variable, with the class SmalllmageDatabase. The global variable contains the

index of the selected image in the SmalllmageDatabase.

getit
"To get an image from the Small Image Data Base."

instIndex:=Q. "Globe variable (Q) for exchange data"
leftPane hasCursor ifTrue:[
indexSet at:l put: instlndex.
'̂ (self changed: #instanceLft:)] .
middlePane hasCursor ifTrue:[
indexSet at:2 put: instlndex.
^ (self changed: #instanceMid:)].
rightPane hasCursor ifTrue:[
indexSet at:3 put: instlndex.
^(self changed: #instanceRit:)]

The above code illustrates the use of a global variable in the class ImageProcessor, the

value of the global variable Q being assigned to an instance variable instlndex. The

56

following code shows the setting of the value of the global variable Q in the class
I mageDataBase I nspector: -

instance: anlmage
"private:- to set the current instance index to a globe variable

for exchange data with other class."

Q:=instlndex. "Global variable (Q) for exchange data"
instlndex isNil
ifTrue: ['^(instPane clear)].
instPane clear,
^(object at: (instList at: instlndex) key)

displayAt: instPane frame origin
clippingBox: ((instPane frame origin)
extent:(instPane frame extent))!

Figure 5.5 details the communication between the two classes via the global variable.

5.2.4 Adding methods to a system class

In object-oriented modelling, we usually identify an object, model its behaviour as
methods, and represent its data as instance variables. We gather objects with identical
behaviour and structure into a class. If several classes have sufficient commonality in
behaviour and structure, we extract the commonality by making the classes subclasses
of a superclass.

^ Image Dictionary

Fig. 5.5 Communication via a global variable Q

Often, however, we can adapt an existing class to accommodate our application

objects. We can do this either directly by enhancing the class with additional methods

57

or indirectly by subclassing the class and adding variables and methods as required. As
an example of the former, consider the instance-method clear is a method which we
introduced into the system-class GraphPane:-

clear
"Clears the instance pane "

"(Image new width:self frame
width height:self frame height; white)

displayAt: self frame origin.

As further examples we have the following instance methods which we introduced
into the system-class ColorForm for storing and retrieving an instance of ColorForm :-

storeAsBkAndWt: fileNazne
"Stores an Colorform as a black and white form."

I anlmage length aBitmap aWidthj
aWidth:=self width.
((aWidth\\16)=0) ifFalse:[
aWidth:=aWidth+(16 - (aWidth\\16)) deepCopy].
length:=aWidth*(self height)/8.
aBitmap:= Bitmap new:length.
1 to: length do:[:i|aBitmap at:i put:(((((bits at: 1) at: We)

bitAnd: ((bits at: 2) at: i))
bitAnd: ((bits at: 3) at: i))
bitAnd: ((bits at: 4) at:

i))].
anlmage:= Image new width:self width height:self height,
anlmage bitmap: aBitmap.
anlmage storeOnFile:fileName

storeColorOnFile: fileName
"Stroes a color form as a disk file."

I outFile length aWidth|
outFile := Disk newFile: fileName.
outFile nextPutAll: 'color'.
outFile nextPut:$.
outFile nextTwoBytesPut: (self width)
outFile nextTwoBytesPut: (self height) .
aWidth:=self width.
((aWidth\\16)=0) ifFalse:[
aWidth:=aWidth+(16 - (aWidth\\16)) deepCopy].
length:=aWidth*(self height)/8.
1 to: 4 do:[:aBitmapI (bits at: aBitmap) do:

[:ea j outFile nextPut: ea asCharacter].] .
outFile close.

changeToBkAndWt
"Instance method of ColorForm. Answer an image which is a derived

from a color form."

I anlmage length aBitmap anArray j
length:=(self width)*(self height) deepCopy.
length inspect.
((length\\16)=0) ifFalse:[
length:=length+(16 - (length\\16)) deepCopy].
anArray:= self getBits:length.

58

We)

i))]

aBitmap:= Bitmap new:length.
1 to: length do: [: i j aBitmap at:i put: (((((anArray at: 1) at;

bitOr: ((anArray at: 2) at: i))
bitOr: ((anArray at: 3) at: i))
bitOr: ((anArray at: 4) at:

anlmage:= Image new width:self width height:self height.
anlmage bitmap: aBitmap.
'^anlmage

colorFroioFile: fileNazne
"Retrieve a color form from a disk file."

IinFile aBitmapl aBitmap2 aBitmap3 aBitmap4 anArray w h anlmage
wTemp head length|

inFile := Disk file: fileName.
inFile reset.
head:= inFile nextWord.
(head='color') ifFalse: ['̂ nil] .
inFile next.
h := inFile next asciiValue.
wTemp := inFile next asciiValue.
wTemp := (wTemp bitShift: 8) bitAnd:65280.
w := wTemp bitOr: h.
h := inFile next asciiValue.
wTemp := inFile next asciiValue.
wTemp := (wTemp bitShift: 8) bitAnd:65280 deepCopy.
h := wTemp bitOr: h.
anlmage := (ColorForm new width: w height: h).
((w\\16)=0) ifFalse:[
w:=w+(16 - (w\\16)) deepCopy].
length:=w*h/8 deepCopy.
aBitmapl:= Bitmap new:length.
aBitmap2:= Bitmap new:length.
aBitmap3:= Bitmap new:length.
aBitmap4:= Bitmap new:length.
(1 to:length) do:[:i| aBitmapl at: We

asciiValue)].
(1 to:length) do:[:i|

asciiValue)] .
(1 to:length) do:[:i|

asciiValue)].
(1 to:length) do:[:i|

asciiValue)].
anArray:= Array with:aBitmapl

with:aBitmap2
with:aBitmap3
with:aBitmap4

anlmage bitmap:anArray.
"anlmage

aBitmap2 at: We

aBitmap3 at: We

aBitmap4 at: We

put: (inFile next

put: (inFile next

put: (inFile next

put: (inFile next

5.2.5 Limitations in SmalltalkA/286

Limitations in SmalltalkA^286 now began to loom as obstacles to further development

of the image-processing environment. First, the programmer can not make a stand­

alone version of his/her product, thus impeding the sharing of it with others. Second,

59

to process an image larger than 640k, the programmer must use an array of arrays

rather than a single array. To avoid these limitations, we turn to another Smalltalk

dialect ~ SmalltalkAWin.

5.3 ImageLab in SmalltalkA/Win

Microsoft Windows offers a graphical user-interface. SmalltalkA^in 2.0 is an object-

oriented programming environment running under Windows 3.x. To access the

windows facility, the programmer can make an API call through the class KemelDLL.

ImageLab is a user-fnendly image processing environment developed in

SmalltalkA^in 2.0.

5.3.1 The SmalltalkAAA/in environment

Object-oriented modelling involves recognising objects, defining their behaviour and

delineating their interrelationships. The SmalltalkAWin environment supports an

incremental and evolutionary approach to such modelling.

A typical SmalltalkA^in development envirormient includes a transcript window,

one or more workspaces, a class-hierarchy browser and an online debugger. The

transcript window is used by the system for various messages and can be used by the

programmer to display output and code diagnostics. The multi-paned class hierarchy

browser window shows the class inheritance within Smalltalk/VWin, and the structure

and behaviour of each class; it also allows editing of the variables and methods

associated with a class. The bulk of application development takes place within this

window.

The online debugger has four sub-panes, it gives an expanded view of the Walkback

window (a window pops up automatically when errors are detected) and provides a

high-level debugging aid to help the programmer correct programming errors. Fig. 3.6

shows a typical VWin programming envirormient.

To apply VWin to image processing, we need to add some classes to the class

hierarchy. The parts of the class hierarchy relevant to image processing are shown in

Fig. 5.6.

60

Development of a typical SmalltalkA^̂ application divides into six steps:-

• state the problem;

• draft the user interfaces that appear to the user;

• describe the objects;

• identify the classes;

• list the object interfaces;

• implement the methods.

We applied the language to develop an environment for processing images. Because it
is image data which is to be manipulated in our application we define a class Image to
store, in each of its instances, the structure and behaviour of an image. To create the
graphical user interface we define the class ImageLab as a subclass of GraphLab which
is, in turn, a subclass of ViewManager.

Object
AnimatedObject
Behavior

Ĉlass
L_MetaClass

Boolean
L_True
l_False

Collection

_3ag
IndexedCollection

Array...
__ByteArray

Interval
L_String

^OrderedCollection
I Process
LjSortedCollection

LSet

I Dictionary
Compiler
Context
CursorManager
Directory
DynamicDataExchange
File
Font

o
GraphicsMedium

.Bitmap
Binarylmage

_GrayscaleImage
I ^Colorlmage

Printer

GraphicsTool
L_TextTool

l_Pen
I RecordingPen

I ^Commander
InputEvent
Magnitude...
Menu...
Pattern

_ Point
ProcessScheduler
Rectangle
Stream...
ViewManager
|_MDIViewManager

__GraphLab
L_ImageLab
LjmageWindow

6 Windows.

Fig. 5.6 Class hierarchy structure

61

5.3.2 The classes GraphLab and ImageLab

With the Microsoft Windows 3.x user interface, SmalltalkA^ is able to take direct and

powerful advantage of this graphical interface capability, allowing the user to program

a Windows application from within an entirely object-oriented fi-amework.

Of all the objects which populate the Windows worid, the most important are

windows. Windows are the access points between users and applications. Although it

is the application which creates a window for user interaction, its behaviour and

control is a cooperative effort between the application and the host system.

Much of the generic behaviour of a window ~ its position on our display, its scroll bar

action, resizing etc. ~ is automatically handled by the host Window manager. Our

main concern as a developer is in making a generic window appear for some special

purpose by providing the information and interaction unique to the application.

In SmalltalkAWin, an application with a graphical user interface typically involves

three kinds of windows classes:-

• a subclass of ViewManager (such as GraphLab), which handles the interaction

between panes, and the interaction between the user and the underlying model;

• TopPane, which is the top level window containing all the subpanes;

• a subclass of SubPane, which displays output and processes user input.

As already mentioned, the classes GraphLab and ImageLab are descendants of the class

ViewManager. The class ViewManager has five major functions:-

• to remember the current state;

• to create panes;

• to provide the contents of panes;

• to carry out communication and synchronisation;

• to define menus for panes.

The classes GraphLab and ImageLab automatically inherit the above five flmctions.

Additionally, the class GraphLab has the basic graphics editor flinctions such as

drawing a line or circle, cut and paste etc.. The class ImageLab, a subclass of

GraphLab, contains the morphological operations.

62

The class GraphLab has the following data structure:-

ViewManager subclass: #GraphLab
instanceVariableNames:

'pen state start previous penSize penColor pane '
classVariableNames: ''
poolDictionaries:

'WinConstants ColorConstants '

The instance variable pen stores the graphics tool of current graphics pane, state
records the pen state, start contains the current pen start position and pane points to
current opened graphics pane.

The class ImageLab has the following data structure:-

GraphLab subclass: #ImageLab
instanceVariableNames:

'image selmage fileName anOc '
classVariableNames:

'MapDictionary '
poolDictionaries:

'ColorConstants WinConstants VirtualKeyConstants '

The instance variable image stores the current working image, selmage contains the
current reference image(structure element), fileName holds the file name of the current
working image and anOc holds the white pixel co-ordinates of the current reference
image. The class variable MapDictionary contains the online help file address.

The instance methods that support ImageLab and GraphLab classes can be classified
into three kinds:-

• methods for building the environment,

• methods to perform morphological operations,

• methods for graphics editing.

Methods for building the environment

open

openTextWindow

aboveV

activelmageProPane

childActivate:

childClose:

close:

Open an image-processing window

Open a TextWindow application as an MDI document

Open the dialogue box about Image Lab

Answer cunrent active ImageProPane

Update the StatusPane, current working pane and its pen and

show the label of the active MDI document.

Update the StatusPane. If there is no more document, erase the

StatusBox #status

Close the receiver

63

Methods for creating the menu system:

anaMenu Answer a menu with a list of image-analysis operations

fileMenu Answer the receiver's first menu title

mdiMenu: Create the menuBar for the frame

morphMenu Answer a menu with a list of morphology operations

optionsMenu Answer a menu with a list of miscellaneous operations

otherMenu Answer a menu with a list of other morphology operations

aletteMenu Answer a menu with a list of palette changing operations

Methods to handle the status pane and the tool pane:-

toggleMenu: item:

toggleStatusPane

toggleToolPane

toolPane:

timer:

Toggle the selected menu item

Show/Hide the StatusPane

Show/Hide the ToolPane

Set the ToolPane contents

Update the time in the StatusPane

Methods to perform morphological operations:-

closing

complement

convexHull

damond

differ

dilation

edgeTrace

erosion

intersec

opening

symeDif

Perform close operation of the loaded image with the selected

structure element

Answer the complement of the original image

Answer the convex hull of the image

Answer the diamond transform of the image

Answer the difference of the \)NO images

Dilate the loaded image with the selected structure element

Trace the edge of the loaded image with the selected structure

element

Erode the loaded image with the selected structure element

Answer the intersection of two images

Perform open operation of the loaded image with the selected

structure element

Answer the symmetric difference of two images

64

The methods for graphics editing in class GraphLab are inherited by both class
ImageLab and class ImageWindow. They are:-

display:

copyGraph

pasteGraph

circle:

clear

curve:

bitEdit

changeSize

ellipse:

freeDraw:

line:

• " - ' — ' • — — ^ 1 = — ^ = ^ • -

display current Image on a user selected place

copy a portion of the receiver's contents to the clipboard and current

image working buffer |

paste the graphics from the clipboard to the receiver 1

draw a circle

erase current working pane to white

draw a curve

prompt the user for a rectangle and open a BitEditor on the bitmap

associated with the rectangle

change the pen size

draw a ellipse

change to free hand drawing mode

draw a strait line

The source code for these methods is given in the Appendix.

5.3.3 Multi-Document Interface

The multiple-document interface (MDI) is a user-interface standard for presenting and

manipulating multiple documents within a single application. An MDI application has

one main window, within which the user can open and work with several documents.

Each document appears in its own separate child window within the main application

window.

The main window of an MDI application is similar to that of most Windows

applications. In an MDI application, the main window is called the "frame window".

The frame window differs from a normal main window in that its client area is filled

by a special child window called the "client window". Because Windows maintains the

MDI client window and controls the MDI interface, the application needs to store

very little information about the MDI user interface.

SmalltalkA'Win 2.0 provides the MDI classes as an extra feature. We can install it if

we need. New classes that have been introduced are:

65

MDIChild

MDICIient

MDIFrame

MDIMenu

MDITranscript

MDISystem

MDIViewManager

MDIChild class is responsible for creating MDI documents and manage its subpanes. It

responds to the system MDI messages and allows applications to set event hooks.

MDIFrame class is responsible for creating MDI frame window and managing its
subpanes. It responds to the system MDI messages and allows applications to set
event hooks. Typical subpanes of an MDI frame window are MDICIient, StatusPane
and ToolPane. The MDIFrame class creates the MDICIient subpane.

The owner of an MDIFrame class should be an MDIViewManager class. An

MDIViewManager subclass is primarily responsible for provide the basic data structure

and methods of multi-document interface.

By sub-classing the ImageLab under MDIViewManager, the open instance method

creates the structure of ImageLab's MDI environment. The method for open in the

class ImageLab is:-

open
"Open an image Processing window."

I h m I

self
addView: (self frame:(

MDIFrame new
owner:self ;
labelWithoutPrefix: 'Image Lab';
icon: (Icon fromModule: self resourceDLLFile

id:'face')
when: #mdiMenuBuilt perform: #mdiMenu:;
when: #childClose perform: #childClose:;
when: #toggleKey perform:#toggleKey:;
when: #close perform: #close:;
when: #validated perform: #startTimer:;
when: #timer perform: #timer:;
when: #childActivate perform:#childActivate:;
when: #menuBuilt perform: #menu:)).

self
addSubpane:(

ToolPane new
owner: self;

66

height: 27;
when: #getContents perform: #toolPane:) .

self
addSubpane:(

StatusPane new
owner:self;
when:#getContents perform: #statusPane:),

self class buildMapDictionary.

hm: =HelpManager
for: self mainView
title: 'ImageLab Help'
file: 'c:\windows\help_il.hlp'
dialogs: nil.

hm map: MapDictionary.

self openWindow.
self menuWindow

removeMenu: (self menuWindow menuTitled: '&Color')

The above code creates the MDIFrame. To open a MDIChild window we need a
separate class called ImageWindow. This class, parallel with class ImageLab, is also a
sub class of GraphLab.

open
"Open an MDI Child."

I child I
self addView: (child :=

MDIChild new
when: #activate perform: #activate:;
style: WsMaximizebox |

WsMinimizebox j
WsThickframe |
WsSysmenu j
WsCaption j
WsOverlapped |
WsClipsiblings |
WsClipchildren;

frame:self frame;
owner:self;
icon:(Icon fromModule:self resourceDLLFile

id:•IMAGE_WORKSPACE');
label:'Image Workspace';
yourself).

child addSubpane:(
pane := ImageProPane new

owner: self;
when: #getMenu perform: #modeMenu:;
when: #getContents perform: #initPen:;
when: #buttonlDown perform: #mouseDown:;
yourself).

child openWindow

The following picture(Figure 5.7) is a sample of a typical ImageLab's multi-document

interface.

67

file://'c:/windows/help_il.hlp'

Fig. 5.7 A typical ImageLab working environment

5.3.4 Tool bar and status bar

The two major contributors to the graphic user interface are Tool Bar and Status Bar.

They give the user a convenient way of accessing the system's property and display

information reflecting the states of the application.

Class ToolPane provides the necessary methods for creating and using a ToolPane.

ToolPane is a subclass of GroupPane and therefore inherits all the behaviour of

SubPane. One creates a ToolPane in an application's open method just as one creates

any subpane.

A ToolPane window uses an auxiliary class called Tool. One loads a ToolPane by

sending the message contents: to it, together with an argument referencing a collection

of instances of Tool.

Figure 5.8 is the tool pane inside the ImageLab:
" AM Ml. I II V i - ^

^Uww^fe'nwwffllnffffi sill
'.v;..vrry..;.vr. *'***"

mmm
Fig. 5.8 Tool pane of ImageLab

68

StatusPane uses an auxiliary class called StatusBox. StatusPane handles a collection of

StatusBox objects. A StatusBox object appears as a small box with a 3D effect.

StatusPane can be left justified or right justifed, fixed size or resizable. The default

style is left justified and resizable.

Figure 5.9 shows the status pane inside the ImageLab:-

Fig. 5.9 Status pane of ImageLab

In the ImageLab's status pane, it gives the status of cursor position, time, current
working status and other keyboard status. To create tool pane and status pane, we
need add following code included in the open method in the class ImageLab:-

self
addSubpane:(

ToolPane new
owner: self;
height: 27;
when: #getContents perform:#toolPane:).

self
addSubpane:(

StatusPane new
owner:self;
when:#getContents perform: #statusPane:).

The detailed code to create tool pane and status pane are given in the attached

Appendices (program code list).

5.3.5 On-line help system

The ImageLab environment has an on-line help system. The help system provides

users with online information about an application. Basically, there are three main

steps for developing an on-line help system:-

1. Write the help documents and save it as a Rich Text Format (a .rtf file).

2. Compile it by using a Help compiler either from Windows SDK or from Borland

C++; it can be run as a stand alone file under MS-Windows environment.

69

3. Build it into the application.

The flow-diagram. Fig. 5.10 from Tools — Microsoft Windows Development Kit,

shows the general flow of work in the conception and development of the Help
system.

There two steps to including Help in ImageLab. The first is to use any compatible text

editor, to compose the help text into the help_il.rtf file. The second step is to create

an instance of HelpManager in the open: method of the class ImageLab by inserting

the following code before the message self openWindow.

hm :=HelpManager
for: self mainView
title: 'ImageLab'
file: ^c:\windows\help_il.hlp'.

hm mapDictionary: aMapDictionary

The #for:title:file: message needs to be sent once for each view, passing that view as

the parameter of for:. While each view of the ViewManager has a different

HelpManager associated with it, the help file associated with each of them is the

same.

70

file:///windows/help_il.hlp'

Gather product data from:-
* Product specification
* Command Reference manual or User Reference
* Hands-on work with the application
* Software developers

List topics and create Help outline.

Js^

Program the application to access Help.
Define the context-sensitive hooks.

_ ^ ^

Write and edit text files.
Enter the control codes for jumps and definitions
Assign context strings, titles, sequence numbers,

and build tags.

iiLi.
^Transfer files to the PC (if necessary) J

Create the Help Project file. •
Map context-sensitive topics tocontext numbers.
Run the Build program.

_ ^ ^
Test the help system.
Perform debugging and retest.

Fig. 5.10 Work flow diagram

71

Figture 5.11 shows the appearance of the on-line help system:-

sK<^x<':^i<^x^^^^^>i•;^I^:^:':<'^<^;^^^:^^x•^K':^:<^:<^<^^<^^'I'^^^x

\ ImageLab Help - HELPJL.HLP
File £dit Bookmark Help

Content!? I Seardh \ %m^ T Ni«[(Ĥ tf I

Welcome to /i r O

Contents

Commands

Palette Menu
Cp'gr M^nu
Option.Mfenu
Help Menu

Glossary
Defined Termis

a;,..,..;.,MMm
i^iiimHii^mm^mm^'Si^mi-^iii^

Fig. 5.11 Contents of ImageLab's on-line help system

5.4 Customised design

ImagLab, although less extensive than other image processing software, offers the

advantage of being readily expandable. The extensibility flows not only from its

object-orientation but also from its being written in Smalltalk. We can introduce a

new function (such as a transform) into the environment simply by adding an instance

method into the related class.

For example, suppose we wish to add a function to draw a chord line into the

graphics editor inside the ImageLab application. We only need to perform following

steps:-

1. Add the chord method into class Pen (subclass of GraphicsTool), this method

is provided within the SmalltalkAWin 2.0

chord: major minor: minor angles: aPoint
"Draw a chord whose major axis is major and minor

72

axis is minor. aPoint x
is the starting angle of the arc in degrees. aPoint y is

the
sweeping angle between the starting angle and ending
angle which goes clockwise if positive and counter­

clockwise
if negative. The interior of the chord is not filled."

I startPoint endPoint boundingBox hOldBrush points j
boundingBox := (self location leftAndUp: major @ minor) corner:

(
self location rightAndDown: major @ minor).

points := self getArcPoints: major minor: minor angles: aPoint.
StartPoint := points at: 1.
endPoint := points at: 2.
hOldBrush := self selectStockObject: NullBrush.
self chord: boundingBox

start: startPoint
end: endPoint.

self selectObject: hOldBrush

2. Add the following instance method to the class GraphLab (Super class of

ImageLab and ImageWindow) :-

chord: aPoint
I major minor newMajor newMinor center newPoint oldPointj
pen

setLineWidth: 1;
setRop2: R2Notxorpen.

self place: (center := aPoint).
major := minor := 0.
Notifier consumelnputUntil: [: event 1

newPoint := self mouseLocation.
newMajor := (newPoint x - center x) abs.
newMinor := (newPoint y - center y) abs.
newPoint = oldPoint

ifFalse: [
pen

place: center;
chord: major minor: minor angles: aPoint;
chord: newMajor minor: newMinor angles: aPoint.

major := (newPoint x - center x) abs.
minor := (newPoint y - center y) abs.
oldPoint := newPoint].

event selector = #buttonlUp:].
self reset.
pen chord: major minor: minor angles: aPoint.
pane backup pen chord: major minor: minor angles: aPoint

Introduce chord as a label in the draw menu and insert the symbol chord: into

the list of selectors:-

modeMenu: aPane
"Answer a menu with a list of drawing modes."

aPane setMenu: (
(Menu

labels:('draw\line\rectangle\circle\ellipse\chord
\curve\fill\text\erase')withers

lines: #()

73

file:///curve/fill/text/erase

selectors: #(freeDraw: line: rectangle: circle: ellipse;
chord: curve: fillAt: text: erase:))

selector: #drawingMode: ;
owner: self;
title: '&Mode';
checkltem: #freeDraw:;
yourself)

To customise ImageLab one can begin by using ImageLab itself to experiment with
various sequences of morphological operations, and then modify ImageLab to include
the resulting new compound operation as a meun-item.

74

Chapter 6

Exploring gray-scale images

Introduction

Morphological concepts can be extended to gray-scale images. The binary
morphological operations of dilation, erosion, opening, and closing are all naturally
extended to gray-scale imagery by the use of a minimum or maximum operation.
Nakagawa and Rosenfeld [NAKA78] first discussed the use of neighbourhood min
and max operators. Peleg and Rosenfeld [PELE81] use gray-scale morphology to
generalise the medial axis transform to gray-scale imaging. Werman and Peleg
[WERM85] use gray-scale morphology for texture feature extraction.

The extension often leads to theoretical issues and to implementation complexities.

When applied to a binary image, dilation and erosion operations cause an image to

increase or decrease in spatial extent, respectively. Also, it is assumed that the objects

and background are both relatively spatially smooth. Under these conditions, it is

reasonable to ask: Why not just threshold the image and perform binary image

morphology? The reason for not taking this approach is that the thresholding

operation often introduces significant error in segmenting objects from the

background. This is especially true when the gray-scale image contains shading

caused by nonuniform scene illumination.

6.1 Ways of viewing gray-scale erosion and dilation

For morphological dilation, gray-scale dilation of/by b {f'ls the original image, b is

an SE, which may be a binary image or a gray-scale image), denoted/© b, is defined

as [GONZ92]

75

(/•e b){s, t) = max{f{s-x, t-y)+b{x, y)\{s-x,t -y)eDf;{x, y)GDb}

where Df and Db are the domains of/ and b, respectively. Similar to its binary
operation counterpart, b is the structuring element of the morphological process but
note that b is now a function rather than a set.

The condition that the displacement parameters {s - x) and {t -y) have to be contained
in the domain of/ is analogous to the condition in the binary definition of dilation,
where the two sets had to overiap by at least one element.

To compute the defined gray-scale operation, we first translate the image/by (-x, -y)

for each {x, y) in the domain of b. We then add the value g{x, y) to the translated
image. Finally for the set of images obtained, create an image that has the maximum
value at each pixel.

These three steps are shown in the following example [DOUGH92]. Consider the

image:-

/ =

r* 0 2 2 2 1^
* 1 2 6 2 1

* 0 6 7 2 1
* 1 1 6 1 *

* 1 0 2 2 1

and the structuring element:-

g =
fO 3̂

3 4

In the matrices, each entry is the gray value of a pixel in the image, and the star (*)

represents the non-interest pixel. After we have performed the first two steps, we get

four transformed images. The following shows the formation of the maximum of four

images and the resulting dilation:

76

/ (x - 0 , y-l) + 0 =

-k

*

*

0
1
0
1
1
1

2
2
6
1
1
0

2
6
7
6
6
2

2
2
2
1
1
2

1^
1
1

* * * •*• • * .

/ (x - 0 . y-0) + 3 =

' ^ * 3 5 5 5 4 ^
* 4 5 9 5 4

* 3 9 10 5 4
* 4 4 9 4 *
* 4 3 5 5 4

V J

f(x-l, y-l) + 3 =

r * *
* *

3 5 5 5 4 ^
4 5 9 5 4

3 9 10 5 4
4 4 9 4 *
4 3 5 5 4
• • * • * * *

* + + * +
J

(*

f{x-l, y-0) + 4 =
* *

4 6 6 6 5 ^
5 6 10 6 5
4 10 11 6 5
5 5 10 5 *
5 4 6 6 5
* * * * *

J

DILATE(/,g) =

r* 0
* 3
* 4
* 3
* 4
* 4
* *

3 5
5 6
6 9

5 5
9 6

10 6
9 10 11 6
5 9 10 5
5 5
* *

6 6
* *

4^
5
5
5
4
5

Haralick defined and computed gray-scale morphology in different ways [HARA92],

all equivalent to the earlier maximum formula.

Basically, he introduced the concepts of the surface of a set and the related concept of

the umbra of a surface. Suppose a set A in Euclidean A -̂space is given. We adopt the

convention that the first {N- I) coordinates of the A'-tuples of ^ constitute the spatial

domain of A, and the JV̂ jj coordinate is for the surface. For ordinary gray-scale

imagery, N = 3. The top or top surface of A is onto its first (A'̂ - 1) coordinates. For

77

each {N - l)-tuple x, the top surface of A at x is the highest value y such that the N-

tuple (x, y)GA. If the underiying space is Euclidean, we can express this relationship

by using the concept of supremum. If the space is discrete, we use the more familiar

concept of maximum. Since we have suppressed the underlying space in what follows,

we use maximum throughout.

Let A c E^, and F= {x e E^-^ | for some>' E E, {x, y) G A}. The top or top surface
of A, denoted by T[A]: F-^E, is defined by

7I/l](x) = max {y\{x,y)GA}

A set A c E^'^ X £• is an umbra if and only if (x, y) & A implies that (x, z) G A for
every z<>'.

For any fiinction/defined on some subset F of Euclidean (Â - l)-space, the umbra of

/ i s a set consisting of the surface/and everything below the surface.

le tFc£^-^ mAfF^E. The umbra off denoted by U[f], U[f\^FXE, is defined

by:-

U[f\= {{X, y) G F X E\ y <f{x)}

Haralick defined the gray-scale dilation of two flinctions as the surface of the dilation

of their umbra:-

fBk^T{U[fl®U[k]}

The above refers to a one-dimensional image. It also works on the two-dimensional

image by substituting the fiinction/and k into two-dimensional flinctions.

Haralick also gives a reasonable way to compute it in hardware. The following

theorem establishes that gray-scale dilation can be accomplished by taking the

maximum of a set of sums. Hence gray-scale dilation has the same complexity as

convolution. However, instead of doing the summation of products as in convolution,

we perform a maximum of sums.

Let/: F^E. Thenf^k: F®K-^E can be computed by using:-

78

(/©A:)(x)=max{/(x-2)+^z) | XGK, X-ZGF)

Gray-scale erosion is defined as [GONZ92]

(/•e b){s,t) = min(/(s+x. t+y) - b{x,y)\{s+x, t+y)GDf\i^,y)GDh\.

In binary morphology, dilation and erosion are duals with respect to complementation
followed by reflection. So we can compute erosion as follow:

Here, -/is the complement of/and g'- is the reflection ofg.

The expressions for opening and closing of gray-scale images have the same form as
their binary counterparts [HARAS 7].

6.2 Pseudo gray-scale morphological operations

We tried using bit-block transfer to implement gray-scale morphological operations,

hoping to treat gray-scale operation in the same way as the binary image. We use the

word pseudo to distinguish our operations on gray-scale images from functional

gray-scale morphology operations defined above.

Our pseudo gray-scale morphological operations are based on Smalltalk VAVin

version 2.0 which uses the Windows GDI library. From the definition of gray-scale

morphological operations, the result of a gray-scale dilation will be the maximum of

Minkowski [MINK03] addition with the given structure element (gray-scale or

binary, usually flap-top).

In implementing morphological operations on binary images in SmalltalkA'̂ 286 we

were able to express the three basic operations in terms of logical operations on

instances of the class Image. However, one of the basic operations for gray-scale

images is max which is not directly available in the class Bitmap in SmalltalkA^in.

Exploration of ways of expressing max indirectly in terms of the available operations

on instances of Bitmap did not prove fiuitfijl. However, if we restrict the gray-scale

levels to 2"-l we find that the operations OR and max are equivalent.

79

Consider a 5-level image, with levels selected from (0, 1, 3, 7, 15) that is, 2"-l.

Now, we can have a OR table:-

0 1 3 7 15

0 0 1 3 7 15

1 1 1 3 7 15

3 3 3 3 7 15

7 7 7 7 7 15

15 15 15 15 15 15

From the table, we can see that OR is equivalent to the operation maximum. But for
the 16 level image or 256 level image, the OR does not correspond with maximum.
For example, 12 OR 6 is 15 not 12(the maximum of 12 and 6). Since the operation
OR adds more I's into the result, the result will not be less than the maximum of two
numbers. For verification, execute the following Smalltalk code:-

I aP bM bA w h numBytes 1

bM:=OrderedCollection new.
w :=256.
h := 256.
numBytes := w*h.
bA := ByteArray new: numBytes.

(1 to: w) do: [:i |
(1 to: h) do: [:jI " Create an OR table "

aP:={(j- 1) bitOr:(i - 1)).
bA at:((i- 1)*256 + j) put:aP.

(aP < (j- 1)) ifTrue:[bM add:aP].
(aP < (i- D) ifTrue: [bM add:aP].]].
bM inspect

The result will be an empty ordered collection, indicating that in no case does OR

yield a result which is less than either of its operand.

We can set the colour table to give 256 gray levels with the following code:-

I colorTab |
colorTab := ByteArray new: 1024.

(0 to: 255) do: [:i |
(1 to: 4) do: [:j I
colorTab at: 4*i + j put: i

]].
(0 to: 255) do: [:i I colorTab at: (4*i + 4) put: 0].

80

The Window's 8 bit colour fields are:-

RED

0-255

GREEN

0-255

BLUE

0-255

FLAG

0

The above script replaces the colour table of a bitmap with 256 shades of gray. For
any shade each field is given the same value between 0 and 255..

The following is the spectrum of an 256-level image OR table, and we can compare it
with the maximum table :-

>f»i.\.

Fig. 6.1 OR table Fig. 6.2 MAX table

To compare the two tables, consider a point moving vertically from the bottom of one

to its top. In the MAX table there is a uniform increase in brightness (that is,

whiteness); for the corresponding vertical line in the OR table, the point is always at

least as bright as the corresponding point in the OR table but can decrease as well as

increase.

81

It would seem then, that if we wish to extend our work into gray-scale images,

exploiting BitBlt within SmalltalkA^in, then we must accept either the loss of

information in reducing the number of levels to 5 or the loss of monotonicity in

replacing MAX by OR.

The figures are examples of using pseudo gray-scale morphology to perform an edge

detection on the test image LENA(512 by 512):-

Fig. 6.3 The original image

6.3 Three level gray-scale images

A binary image has pixels of two shades, black and white. We could use the term

ternary image to denote a three-level monochrome image which has pixels of three

shades, say, black, dark-red and red. Ultimately we wish to study monochrome

82

images with 16 (or 64, or 256) shades, and to generalise the morphological operations
which we have been applying to binary images.

Ternary images offer a useflil stepping stone in this direction. However, we may find
that, like binary images, ternary images have an intrinsic role to play in image
processing.

Fig. 6.4 The edge detected image

We begin with ternary images using the shades ClrBlack, ClrDarkred and ClrRed (the

standard colors named in the global Dictionary ColorConstants of SmalltalkAAVin),

and explore the copy operations (in the class GraphicsTool) using various logical

rules. For example, construct the AND table:-

I bM colNum baseMap bigMap srcRect arr |
Transcript pane cancel.
arr := Array with: ClrBlack with: ClrDarkred with;
bM := Bitmap screenWidth: 32 height:32.
baseMap := Bitmap screenWidth: 96 height: 32.

ClrRed.

83

1) .
baseMap pen.
Display pen.

96 height: 32.

(0 to: 2) do: [:i |
bM pen fill: (arr at: i +
bM displayAt: 32*i@0 with

baseMap displayAt: 5060 with:
srcRect := 0@0 extent: 32@32
bigMap := Bitmap screenWidth:
(0 to: 2) do: [:j |

bM pen fill: (arr at: j + 1),
bM displayAt: 0@(j*32 + 50) with: Display pen.
bigMap pen copyBitmap: baseMap from: (baseMap boundingBox)

at: Oeo rule: Srccopy.
(0 to: 2) do: [: i |
bigMap pen copyBitmap: bM from: srcRect at: 32*i@0

rule: Srcand.]. "AND"
bigMap displayAt: 50@(j*32 + 50) with: Display pen.
] .

bM release.
bigMap release.
baseMap release

We can construct the OR table by using Srcpaint rule instead of Srcand rule on above
code.

We also experimented with other operations (they are listed on the global Dictionary
WinConstants) by using above code:-

Srccopy, Srcerase,
Dstinvert, Mergepaint.

Srcinvert, Notscrcopy, Notsrcerase,

From the RGB values of the shades, we find that AND corresponds to MEN and that
OR corresponds to MAX (prelude to gray-scale morphology).

We also can use other triplets of colours and find out the equivalence of MAX/MIN
with AND/OR:-

arr
arr
arr
arr
arr
arr
arr
arr

: =

: =
: =
: =
: =
: =

: =
: =

Array
Array
Array
Array
Array
Array
Array
Array

with:
with:
with:
with:
with:
with:
with:
with:

ClrBlack
ClrBlack
ClrBlack
ClrBlack
ClrBlack
ClrBlack
ClrBlack
ClrBlack

with
with
with
with
with
with
with
with

ClrDarkred with: ClrRed.
ClrDarkgreen with: ClrGreen.
ClrDarkblue with: ClrBlue.
ClrBrown with: ClrYellow.
ClrDarkpink with: ClrPink.
ClrDarkcyan with: ClrCyan.
ClrDarkgray with: ClrWhite.
ClrPalegray with: ClrWhite.

84

Chapter 7

An application of ImageLab

Introduction

The purpose of this chapter is to show ImageLab in action by describing how the

author used ImageLab to explore the counting of'blobs' in a binary image.

We begin with a description of the blob-counting problem; we then discuss a classical

algorithm as a preface to presenting an altemative method for counting blobs. Finally,

we show how the method might be applied to the detection of clusters of

microcalcifications in mammograms.

7.1 Labelling connected components in binary image

Separation of objects fi^om their background is a major problem in pattern recognition

and image analysis [R0SE76]. In the case of grey scale pictures, it is commonly

referred to as segmentation. In the simpler case of binary pictures, it is known as

detection of connected components.

Detection of connected components in binary pictures is an indispensable step in such

applications as automatic visual inspection, optical character recognition, extraction of

karyotypes fi-om photomicrographs of mitotic cells, robot vision, facsimile coding

systems, etc. In some industrial applications we need to count 'blobs', as in tablet

packaging or cluster counting in digitised mammograms.

Blob counting algorithms vary according to the input images. The more complicated

the input image, the longer and more complex is the algorithm. In this chapter, we

85

introduce an altemative method for counting blobs which uses morphological
operations. This removes some restrictions on the input image and also reduces the
counting time.

7.1.1 The classical method

Here we demostrate how do we implement a modified classical blobs counting
algorithm in Smalltalk. The basic idea of the algorithm is to walk over the image fi^om
left to right and firom top to bottom. For each pixel, we determine if it is the same as
the one above or the one to the left. If it is the same as one of those then mark it as
the same blob. If its upper neighbour is different from its left neighbour, then we
change its left neighbour into the same as its upper neighbour.

The original algorithm is described in Dana H.Ballard & Christopher M.Brown's book

Computer Vision pl51[BALL82]; they use the term blob colouring, here is the

pseudo code of their algorithm:-

Algorithm: Blob Colouring
Let the initial colour, k=l. Scan the image from left to right
and top to bottom.

If i'(Xc)=0 then continue
else
begin

if (/(Xu)=l and f(Xj^)=0)
then colour (Xc) := colour(Xu)

if (/(X2,)=l and :f(Xu)=l)
then begin

colour (Xc) := colour (Xj_)

coimnent: colour (Xjr̂) is equivalent to colour (Xu)

end

cotoment: two colors are equivalent.

if (Jf(X2,)=0 and i^(Xu)=0)
then colour (Xj,) :=k, k:=k+l

coimnent: new colour

end

86

To perform the above algorithm, we need the following template:-

X.

Xu

Xc

Fig. 7.1J shaped template for blob colouring

To implement the above algorithm in Smalltalk, we first define a class Matrix as a
subclass of Array. In defining the matrix we could make it a subclass of Array, or
make it a subclass of Object with an instance variable holding an array. After choosing
the former we found that Dusko Savic [SAVI90] and Carieton University Smalltalk
group [DIGI88] had donelikewise. Next, we represent an image numerically, with Is
and Os, as a matrix. Application of the the labelling algorithm replaces the Is by
characters, with all entries in a connected component receiving the same character.

The data structure o f class Matrix is as follow:-

Array variableSubclass: #Matrix
instanceVariableNames:

'rows columns pivotValue '
ClassVariableNames: '"
poolDictionaries:

'CharacterConstants '

The class Matrix currently has twenty four instance methods and two class methods.

The instance methods which we used for cormected component labelling include:-

at: i at: j Access matrix element in (i.j)

at: I at: j put: k Assignment for matrices

columns Answer the number of columns in matrix

columns: anInt Force a new number of columns

eNbr:j at:i Answer the east neighbour of element (i,j)

eNbr:j

put:k

at: Replace the east neighbour of element (ij) with k

loc:i wlth:j Locate the (i.j) matrix element in the matrix

nIMbrj at: Answer the north neighbour of element (i,j)

nNbr:j

put:k

at: Replace the north neighbour of element (ij) with k

nUp:j at:i Fill the north neighbours with element at Q.i) untill a zero value is met

rows Answer the number of rows in matrix

87

rows: anInt

sNbr:j at:i

sNbrj at:i

put:k

wBack:j at:i

westNorth:j

at:!

wNbrj at:l

wNbr:j at:i

put:k

Force new number of rows

Answer the south neighbour of element (iJ)

Replace the south neighbour of element (ij) with k

Fill the west neighbours with element at OJ) untill a zero value is met

Fill the west neighbours with north neighbour's value untill a zero is met

Answer the west neighbour of element (i j)

Replace the west neighbour of element (i j) with k

This algorithm can not handle U-shape or W-shape blobs. It will count a U-shape blob
as two blobs and a W-shape blob as three blobs. We improved the algorithm by
adding back-track. The improvement that we made involves backtracking at each
point by using a L-shaped trace template:-

Improved Algorithm: Connected Components Labelling
Let the initial colour, k=l. Scan the image from left to right
and top to bottom.

If i'(Xc)=0 then continue
else
begin

if (f(Xu)=l and f(Xj^)=0)
then begin

colour (Xc) := colour(Xu)
while colour (N (Xĵ .j)) !=0 do

colour (N(Xĵ __2)) := colour (Xu)
end while

end

if (f(X2,)=l and f(Xu)=l)
then begin

colour (Xc):= colour(X^)
colour (Xĵ) is equivalent to colour (Xu)
begin

while colour (Xj__2) != 0 do
[colour (Xĵ -j) := colour (Xu)
while colour (N (X̂ ,-̂)) !=0 do

colour {N(X2̂ _2)) := colour(Xu)

comment: ^C^j^-i) is north neighbour of Xj^_j.

end while]
end while

end
end

comment: two colors are equivalent, set three colour same as
original north neighbour colour and fill all non-zero left

88

value same as original north neighbour. Then the U-shaped and
W-shaped blob can be counted as one blob.

if (f(X2,)=0 and f(Xu)=0)
then colour (Xj,) :=k, k:=k+l

comiaent: new colour
end

For the backtrack, we use the following template at each point:-

Xu

X Xc

Fig. 7.2 L shaped template for blob colouring

Armed with the class Matrix, we may implement the above algorithm by using

following Smalltalk code:-

label: aColor
"This is the method for labeling specified color blobs."

I label n row column!
n:=l.
row:=self height.
column:=self width.
label:=Matrix new:row with:column.

"Obtain a Matrix object to mapping image"

0 to: (row- 1) do:[:j|
0 to: (column- 1) do:[:i|

i:=i+l. j:=j+l.

((self getPixel:((i- l)@{j- 1)))= aColor) ifTrue:[

(((label wNbr:j at:i)=0)and:[(label nNbr:j at:i)=0])
ifTrue:[

label at:j at:i put:n.
n:=n+l. "New color"].

(((label wNbr:j at:i)~=0)and:[(label nNbr:j at:i)=0])

label at:j at:i put:(label wNbr:j at:i).].

"Has left neighbour, but no upper neighbour"

(((label wNbr:j at:i)=0)and:[(label nNbr:j at:i)~=0])

label at:j at:i put:(label nNbr:j at:i).
label nUp:j at:i].

"Has upper neighbour, but no left neighbour"

(((label wNbr:j at:i)~=0)and:[(label nNbr:j at:i)~=0])
ifTrue:[

label at:j at:i put:(label nNbr:j at:i).

89

ifTrue:[

ifTrue:[

^label

label westNorth:j at:i].

"Has both upper and left neighbour, set three color
same as upper neighbour color and fill all non-zero
left value same as upper neighbour."

] ifFalse:[
label at:j at:i put:0.].
i:=i- 1. j:=j- 1.

1].

To locate the blobs in the image, we send the message locate to the matrix
representing the image. The instance method locate of class Matrix returns an ordered
collection which contains the numbers of blobs and the positions of the first upper left
point in the related blob. The retum value is follow:-

count valuel pointi value

2

point

2

valueLas

t

pointLast

Here count is the number of counted blobs, valueN is the labelled number and pointN is

the first upper left point in the related blob. The code of locate as follow:-

locate
"Locate the position of same value non-zero group in a matrix.(

first from left-top, related to left-top corner."

I n e count|
n:= OrderedCollection new.
count:=0.
1 to: (self rows) do:[:i|

1 to: (self columns) do:[:j|
e:=self at:i at:j .
(e~=0) ifTrue:[

(n includes:e) ifFalse:[
count:=count+l.
n add:e.
n add:(j@i)]]

]].
n addFirst:count.

7.1.2 The morphological metho(J

The algorithms we discussed above are based on pixel-level operations. They are time

consuming if we just need to count the number of blobs in the image. Mathematical

morphology is a form of mathematics for analysing and describing shapes. It treats

images as sets of points in space (rather than as arrays of numbers or as cormected

90

blobs). Because it treats images as sets, the operations for combining two images are
set operations, rather than arithmetic ones.

The basic idea of using mathematical morphology to count blobs is to transform the
blobs into dots, i.e. each blob is represented by a single point. Then, after the
transformation, the numbers of white pixels in the entire image equals the number of
blobs in the original. Gasperi[GASP86] employed a D-type skeleton to perform the
transformation. His method repeatedly applies the morphological thirming operation
to the original image by using a set of templates called D-type skeleton templates,
until the blobs become single points. There are two shortcomings in his algorithm. On
the one hand, all his operations are based on a hexagonal co-ordinate system and he
used special hardware because he wants to achive the designed speed. On the other
hand, there is a restriction on the input image - the region must be continuous wdthout
holes.

Here we introduce another operation to transform the blobs to a single points.
Because it gives blobs a diamond-like shape we call it the diamond transform. It will
eliminate the holes inside the blobs and fill the cavities of the U-shape or W-shape
blobs. The diamond transform is expressed by the following formula:-

£)(^)= n (Xe0p

where 0j, (i=l,2) are the projections of the left-diagonal and the right-diagonal. The

upper script k in the formula is greater than the size of the smallest blobs. The

following example shows the effect of a diamond-shape transform on an image:-

Fig. 7.3 Original image Fig. 7.4 D-transformed image

In the above example, we can see that the blobs acquire a diamond-like shape, and

that the holes and cavities in the blobs have been removed.

91

After applying the diamond transform, we can employ another morphological

operation, the hit-or-miss transform, to convert the diamonds into single points. The

hit-or-miss transform of an image pair R=(R1,R2) is used to match the shape (or

template) defined by the reference image pair R where Rl defines the foreground of

the shape and R2 defines the background of the shape. It is a basic tool for shape

detection. It can be expressed by the following formula:-

XOi? = {XORl) n {XQR2) = {X® Rl) ^{Xe R2)

The operation © (dilation) is one of the fimdamental morphological operations. For

diamond-like blobs we can use a triangle as the foreground reference image and an

inverted v (^) as the background image. The template pair is as follows:-

Fig. 7.5 Foreground reference image Fig. 7.6 Background reference image

The following figure shows the transformation of the original image to single points.

Fig. 7.7 Original image Fig. 7.8 Transformed image

The only restriction on the input image is that the blobs inside the input image are of

similar size or classified into several size groups. If the blobs in the input image differ

in size we may employ a band filter to extract the blobs of the size of interest. The

following example shows how we use a band-filter to extract blobs of a required size.

Let Xdenote the original image, (Rl, R2) denote the band filter image pair, we have:-

92

Fig. 7.9 The original image X Fig. 7.10 Extract the noise need to be removed

(Result of JToi^l)

Fig. 7.11 High frequency noise is removed (Result oiXr^{XoRl))

Fig. 7.12 The blobs of interest are extracted (Result Q{ (Kr\{X o Rl)) • R2)

Fig. 7.13 Selected blobs transformed to single points

93

D D
Fig. 7.14 The band filter image pair (Rl, R2)

We tested this image (209 by 182) on a 486/33 DX with 8 meg RAM under Smalltalk
Â Win environment. The result shows that it is about 2.5 times faster than the
classical algorithm in the same environment. The above operations also can be
performed inside the ImageLab we described in Chapter Five.

The above work, although still in progress, suffices to indicate a way in which one
might use ImageLab. Further work needs to be done on the choice of a template
which avoids the merging of blobs, and a rigorous assessment of the speed of the
algorithm is needed.

7.1.3 Application of the new labelling method

Blob counting has many industrial applications. One typical use is in counting the
pharmaceutical tablets in a tablets packaging line [GASP86]. Another application is
counting clusters in a digitised X-ray mammogram. Here we give a detailed discussion
of this application.

We intend to use this technique to detect the microcalcifications in mammograms.
Breast cancer is a leading cause of death in women. The early diagnosis and treatment
significantly improves the chances of survival for patients with breast cancer. Because
microcalcification in the breast is the main symptom of breast cancer, better detection
of clusters of microcalcification in mammograms will lead to fiirther improvements in
the early detection of breast cancer [SICK82].

H.P. Chan et al investigated the feasibility of an automated computer method for the

detection of clusters of microcalcification in digital mammograms [CHAN87]. F.F.

Yin et al used the bilateral subtraction technique for the detection of potential masses

in digital mammograms [YIN91]. Y.Z. Wu used artificial neural networks to

distinguish actual "tme" clusters from normal parenchyma pattems and also to

distinguish actual clusters from false-positive clusters as reported by a computerised

scheme for the detection of microcalcifications in digital mammograms [WUYZ92].

94

The steps of technique described in Wu's paper [WUYZ92] are:-

1. Digitise the mammogram

2. If simulating, superpose the clusters of calcifications.

3. Enhance the signals; and suppress the signal.

4. Form the difference in (2) and (3)

5. Use a threshold to create a binary image.

6. Extract the signal and locate the clusters

We have concentrated on step six. After we have created a binary image, the
morphological process of closing is employed to transform the clusters into blobs.
Then, we can locate the clusters and count the numbers of clusters by using the
method developed above.

The mathematical expression of the morphological closing operation is:-

—1 X»R = (X©R)© R = (X©R)®R

where © is dilation of image by a structure-element (filter) and © is the erosion by

the same stmcture element.

We use the followingimage to simulate the found clusters in a digitised mammogram.

Fig. 7.15 Original image with clusters Fig 7.16 Structure Element

Fig. 7.17 Result after closing Fig. 7.18 Selected blobs transformed
operation to single points

These operations can performed either by using the image processing environment

(ImageLab) which we described in Chapter Five or by implementing the following

code inside the development envirormient:-

I anOcl anOc2 bitmap image result)
result :=1.
bitmap:=Bitmap fromFile:'c:\vwin\bmp\blob4.bmp'.
image:=Image fromBitmap:bitmap.
image displayAt:0@0 with: Display pen.
image label:5.
image displayAt:08260 with: Display pen.

95

file://'c:/vwin/bmp/blob4.bmp'

CHAPTER 8

Non-morphological image processing
methods in Smalltalk

Introduction

One could say that the general context of the present thesis is image-processing in an
object-oriented envirormient, and that the specific focus has been the development of
ImageLab (Chapter Five) and its application to the particular problem of counting
blobs (Chapter Seven). Looking back, we see that there were two key steps:-

1. We were able to use the class BitBlt to implement the three fimdamental
morphological processes.

2. Smalltalk facilitated our implementing other morphological operations as
algebraic expressions involving the basic operations.

This chapter complements the preceding chapter by giving examples of the
implementation of non-morphological operations. In the first we create a class
QuadCode which offers an introduction to multi-resolution techniques. In the second
we offer an introduction to adaptive quadtree coding.

8.1 Quad-tree in Smalltalk

In Chapter Three, we demonstrated an advantage of an object-oriented language
through a quad-tree example. We now give more details on how to implement a quad­
tree in Smalltalk.

8.1.1 Quad-tree fundamentals

The quadcode is a base-4 code representing the quadrants of a binary image. First, the
whole image is decomposed into four equal-sized quadrants. If a quadrant is not

96

included entirely in the object or in the background, it is agam subdivided mto four
sub-quadrants; otherwise the decomposition ends. [JAHN91].

The recursive decomposition can be represented in a tree. At the top of the tree,
known as the root, the decomposition starts. The root corresponds to the entire
binary image. It is connected via four edges to four child-nodes which represent from
left to right the NW, NE, SE, and SW quadrants. If a quadrant needs no fiirther
subdivision, it is represented by a terminal or leaf node in the tree. It is called black
when the quadrant belongs to an object and white otherwise, and is indicated as such
by a filled and open square, respectively. Non-leaf nodes require fiarther subdivision
and are said to be gray and are shown as open rectangles. (Fig. 8.1)

a) the original image
f̂e

b) the quad tree

Fig. 8.1 Representation of a binary image by a region quadtree

Quadtrees can be encoded, for example, by a depth-first travel of the tree starting at
the root. A quadtree is a compact representation of a binary image if it contains many
leaf nodes at high levels. However, in the worst case, for example a regular
checkerboard pattern, all leaf nodes are at the lowest level. The quad tree then
contains as many as pixels and requires much more bytes of storage space than the
direct representation of the binary image as a matrix [SAME90].

8.1.2 Quadcode in Smalltalk

We now implement quadcode in SmalltalkA^286. To start, we define the class
Quadcode as a subclass of OrderedCollection. First, we introduce the instance method:

asPoint
"Returns coords of quad-cell determined by self"

I 1 D n I
i :=0.
j :=0.
n := self
(1 to: n)

i
j

''i@j

size.
do: [:k1
:= (self at: k)//2
:= (self at: k)//2

(2 raisedTo: (n - k)) + i.
(2 raisedTo: (n - k)) + j]

97

Next, we introduce instance methods for returning the quadcode of a neighbouring
quad-cell. Each quadcode has north, south, west and east neighbours. The methods
are as foUows:-

eastNbr
" Returns the east quad-cell of self, false if none"

I j q c I
j := 0.
(1 to: self size) do: [:i |

(((self at: i) = 0) or: [(self at: i)=2]) ifTrue: [j:=i]].
(j = 0) ifTrue: ['̂ false]

ifFalse:[qC := Quadcode new.
(1 to: self size) do:[:i|

(i>j) ifTrue: [qC add:((self at: i) + 2)] .
(i=j) ifTrue: [qC add:((self at: i) - 2)] .
(i<j) ifTrue: [qC add: (self at: i)]]].

''qC

In the same way we could define the methods for northNbr, southNbr and westNbr.

An image is represented by a two-dimensional array of values. For binary images the
value of an entry in the array is 0 or 1 only. For a gray-scale image, the value may be
an integer in the range 0 - 15 for a VGA display, or in the range 0 - 255 for a super
VGA display.

We have introduced the class Quadcode in cotmection with the nesting of quadrants in
an arbitrary 2" - by - 2" array. We shall now apply Quadcode to encoding and
decoding a binary image, that is, to an array with each element either 0 or 1.

Let us encode a binary image first. To encode a binary image into a quadcode, we
need to introduce into the class Form an instance method to retum a nominated
quadrant of a Form :-

quadrantAt: anInt
"anInt = 0, 1, 2, 3"
I w qF orgn cnr y |
y := 0.
w := self width/2.
qF := Form width: w height:w.
(anInt > 1) ifTrue:[y:=w].
orgn := (anlnt\\2 * w)@y.
qF copy: (orgn extent: w@w) from: self to: 0@0 rule:3.
^qF.

Now introduce an instance method in the class Form to retum a 'sub-quadrant' or
quadcell defined by aQuadcode:-

quadCellAt: aQuadcode
"Returns a Form for the relevant quadcell"
I qF I
qF := self quadrantAt: (aQuadcode at: i).
(aQuadcode size = 1) ifTrue: ['̂ qF] .
(2 to: aQuadcode size) do:

98

[:i IqF := qF quadrantAt: (Quadcode at: i)]
q̂F

Then, we need an instance method in the class Form to determine whether an image is
white(pbcel values equal to 1):-

iswhite
self bitmap detect: [:ea | ea ~=255] ifNone: [^true].
'^false

In our case, 'isWhite' works for a 4-by-4 Form because the padding to 16-by-4 is via
white pixels. Hence all tWs work is in terms of'white'.

In the class Fonn, we need to introduce another instance method which returns an
OrderedCollection of instances of Quadcode, indicating the quadrants which are white:-

quadsWhite
I qCdColln qC j
qCdColln := OrderedCollection new.
qC := quadcode new.
qC add: 0.
(0 to: 3) do: [:i |

qC removeLast.
qC add: i.

(self quadrantAt: i) isWhite ifTrue: [
qCdColln add: qC deepCopy

]
].

'^qCdColln

The following two instance methods, to be introduced into the class Fonn, retum an
OrderedCollection of instances of Quadcode specifying all quadrants and sub-quadrants
which are white:-

quadRecursiveWhi te
" This method initiates the recursion"
I qCdColln qC quad 1
qCdColln := QuadcodeCollection new.
qC := Quadcode new.
qC add: 0.
(0 to: 3) do: [:i|

qC removeLast.
qC add:i.
quad := self quadrantAt:!.
quad isWhite

ifTrue: [
qCdColln add:qC deepCopy

1
ifFalse:[

quad quadRecursiveWhite: qC qCdColln: qCdColln
]

] .
' 'qCdColln

99

quadRecursiveWhite: qC qCdColln: qCdColln

" The recursion occures in this method"
I qCdColln qC quad |

qC add: 0.
(0 to: 3) do: [:i |

qC removeLast.
qC add: i.

quad := self quadrantAt:i.
quad isWhite

ifTrue:[
qCdColln add: qC deepCopy

]
ifFalse:

[
(quad width>l)
ifTrue:

[quad quadRecursiveWhite: qC qCdColln: qCdColln]
ifFalse:[]

]].
qC removeLast.
^qCdColln

The above codes are intended to encode a binary image into quadcode. Now we want
to reconstruct an image from its quadcode. You might have noticed in the instance
method of class Fonn quadRecursiveWhite, that we invoked a class called
QuadcodeCollection which is a subclass of class OrderedCollection. The instance of class
QuadcodeCollection contains the quadcodes of encoded image. In order to decode the
quadcode, we need to introduce an instance method asForm into the class
QuadcodeCollection :-

asForm
" Returns the Form determined by a QuadcodeCollection"
I length w z qCdSize orgn aFm quad qW tP |
length :=0.
self do : [: ea | (ea size > length) ifTrue: [length := ea

size]].
w := 2 raisedToInteger: length.
aFm := (Form width: w heigth: w) reverse.
z := self deepCopy.
z do: [:ea |

qCdSize := ea size.
qW := length - qCdSize.
tP := 2 raisedToInteger: qW.
qW timesRepeat: [ea add:0].
orgn := ea asPoint.
quad := Form width: tP height: tP.
aFm copy: (0@0 extent: tP@tP) from:quad to: orgn rule:3
].

'"aFm

100

8.2 Adaptive quadtree: A new method for image coding

In the preceding section, we discussed the quadcode and its Smalltalk implementation.
This conventional scheme is based on the regular decomposition of space that is
recursively divided into four quadrants (quadtrees) which are square regions of the
same size. It is a non-adaptive, in the sense that its rule of decomposition is fixed and
not depenendent on the content of the image.

Aurelio J. C. Campilho recently proposed a new method for image representation by
means of an adaptive tree [CAMP93]. His adaptive scheme recursively decomposes
the image into two rectangular regions, according to a joint uniformity measure of the
regions. He studied two adaptive methods, one simply directionally adaptive and the
other more general. The first method bisects the image recursively, the choice
between a horizontal bisection and a vertical bisection being determined by the
content of the image. In the second method the division is not restricted to a
bisection; the line of division is dependent upon the content of the image.

Our purpose in this section is show how readily Smalltalk allows us to explore an
extension of Campilho's adaptive technique. We shall constmct a quadtree which
recursively divides a rectangular regions into four subregions where the positions of
the two lines of division are dependent upon the image content. We shall call the
intersection of the two division lines the 'hub' of the division. We redraw figure 8.1
here and campare it vsdth its adaptive tree.

^

R

^ i

A

m . K ?.

Fig. 8.2 The original image

Fig. 8.3 The quadtree Fig. 8.4 The adaptive quadtree
The quadtree has four levels but the adaptive tree only has three levels and has fewer
leaves. The only extra work is we need to record the 'hub' points (A, B, C in the
original image Fig. 8.2) which are the place where we made the vertical and horizontal
division.

We borrow the partitioning criteria from Campilho's paper [CAMP93]. The decision
to make a division is based on a partition which evaluates the uniformity between
regions.

101

Chapter 9

Conclusion and further work

9.1 Conclusions

The chief concern of this thesis has been the creation of ImageLab which is intended
to give a researcher ready access to an object-oriented language. We have seen
several reasons for embedding ImageLab in Smalltalk. Smalltalk is uncluttered by
features which, although offering advantages in other endeavours, can only place
obstacles in the way of exploration. Smalltalk is an environment as well as a language,
offering a class library, browsers, inspectors and debuggers.

Our interest in morphological operations highlighted two special reasons for the

choice of Smalltalk. With the BitBlt class we can readily represent images and operate

on them; and the Smalltalk language facilitates the algebraic expression of complex

image operations in terms of simpler ones.

9.2 Further work

We indicate below how the work of this thesis might be extended in the following

ways:-

• introducing true gray-scale image-processing;
• transporting the environment from the PC to other platforms such as UNIX;

• transporting the environment from SmalltalkA^ to ObjectWorks (formerly

ST-80);

• expanding the object-oriented image database;

• introducing an image-processing language.

102

9.2.1 Further work on gray-scale images

In chapter seven, we proposed pseudo gray-scale morphological operations. Further
work could address the following questions:-

(1) Where might we find the pseudo operation usefiil?

(2) To what extent can we exploit BitBlt in introducing 16-level and 256-level

gray-scale operations?

9.2.2 Other Smalltalk platforms

The most efficient way to port ImageLab to other platforms (UNIX, Mac) would be
via a conversion from SmaltalkA^in to ObjectWorks (or VisualWorks, the version
of ObjectWorks carrying code-generating class for creating interfaces). Code or an
image created in ObjectWorks (VisualWorks) on, say, a PC will run under
ObjectWorks (VisualWorks) on other platforms.

In the same way, the present work could be translated into Envy/Smalltalk

9.2.3 Object-oriented image database

ImageLab could be coupled with an object-oriented database, the best candidate

appearing to be Gemstone [STE188]. Shamim Ahmed [AHME92] has reviewed

commercial object-oriented databases, and has rated them according to several

attributes. He examined five products: Orion/Tasca, Gemstone, Ontos, ObjectStore

and Versant. Orion/Tasca tended to lead in all attributes. Gemstone compared

favourably with the others (where comparisons were relevant). Gemstone was the

only product which could be accessed from both Smalltalk and CH

9.2.4 An Image processing language

This present work could be overiayed with an image processing language. To do this,

we need to define a syntax for the image-processing language. We have two ways to

extend the current work towards the image processing languages:-

103

build a fiinctional language so that a user can program by inputting a

sequence of mathematical morphology fiinctions;

build a graphical language so that users can use it to do image processing in

visual programming style

104

[AHME92] S. Ahmed, et al. "Object-Oriented database management systems for

engineering: A comparison", JOOP^ pp. 27-43 June, 1992

[BALL82] D. H. Ballard, C. M. Brown Computer Vision, Prentice-Hall, 1982

[BATC91] B. Batchelor Intelligent Image Processing in Prolog, Springer-

Veriag, 1991

[BEIL89] R. Beilinson, A. Ginige, et al. "An Object-Oriented Approach to

Feature Extraction", in Image Processing and the Impact of New

Technologies, Proce. of IREE Australia, pp. 119-121, Dec. 18-20,

1989

[BUDD91] T. Budd An Introduction to Object-Oriented Programming, Addison

Wesley, 1991

[CAMP93] A.J.C. Campilho "Adaptive-tree: A new method for image

representation", in DICTA-93, Conference Proceeding, pp. 706-713,

Sydney, Dec, 1993

[CART89] M. Carter, et al. "The Design and implementation of a Portable Image
Processing Library (IPAL) in Fortran and C", in 3rd lEE International

Conference on Image Processing and its Applications, Warwick, 1989

[CAST79] K.R. Castleman Digital Image Processing, Prentice-Hall,

Englewood, pp. 401-411, 1979

105

[CHAN87] H.P. Chan, et al. "Image feature analysis and computer-aided

diagnosis in digital radiography. 1. Automated detection of

microcalcifications in mammography", in Medical Physics{l4), pp.

538-548, 1987

[C0X91] B.J. Cox, A. Nonobilski Object-oriented programming: an

evolutionary approach, Addison-Wesley, 1991

[DIG 188] Goodies #3, Carieton Projects Application Pack for Smalltalk/V,

Digitalk Inc., 1988

[DIJK76] E.W. Dijkstra, A Discipline of Programming, Prentice-Hall, 1976

[DOUG87] E.R Dougherty, C.R. Giardina "Image Algebra ~ Induced operators

and induced subalgebras", in Proceedings, SPIE Conf. ~ Visual

Communation and Image Processing II, Cambridge, MA, pp. 270-

275, Oct., 1987

[DOUG92] E.R. Dougherty An Introduction to Morphological Image Processing,

SPIE, 1992

[DOUG93] E.R. Dougherty Mathematical Morphology In Image Processing,

Marcel Dekker Inc., 1993

[EGE92] R.K. Ege Programming in an Object-Oriented Environment,

Academic Press, 1992

[GASP86] M.L. Gasperi "Introduction to Morphological Image Processing", in

Conference Proceedings Vision 86, pp. 5.63-5.84, 1986

[GOLD89] A. Goldberg, R. David Smalltalk-80 The Language, Reading Mass:

Addison-Wesley, 1989

[GONZ92] R.C. Gonzalez, R.E. Woods Digital Image Processing, Addison

Wesley, 1992

106

[HARA87] R.M. Haralick, et al. "Image Analysis Using Mathematical

Morphology", in IEEE Transactions on Pattern Analysis and Machine

Intelligence, Vol. PAMI-9, No.4, pp. 532-550, July, 1987

[HARA92] RM. Haralick, L.G. Shapiro Computer And Robot Vision, Vol. 1

Addison Wesley, 1992

[HARA93] R.M. Haralick, L.G. Shapiro Computer And Robot Vision, Vol. 2

Addison Wesley, 1993

[HUAN89] K.S. Huang A Digital Optical Cellular Image Processor, Worid

Scientific, 1989.

[JAIN89] A.K. Jain Fundamentals of Digital Image Processing, Prentice Hall,

1989

[KRAS83] G. Krasner Smalltalk-80 Bits of History, words of advance, Addison

Wesley, 1983

[l_ALO90a] W.R. LaLonde, J.R. Pugh Inside Smalltalk, Vol. 1 Prentice Hall,

1990

[LALO90b] W.R. LaLonde, J.R. Pugh Inside Smalltalk, Vol. 2 Prentice Hall,

1990

[LAMB93] A. Lambert "Using Object-Oriented Programming in Image

Processing", in DICTA-93, Conference Proceeding, pp. 220-227,

Sydney, Dec, 1993

[LAU93] S. Lau "Performance comparison: The Object-Oriented Languages",

Minor Thesis, CAMS, Victoria Uni. of Tech., 1993

[LIND91] C.A. Lindley Practical Image Processing in C: acquisition,

manipulation, storage. New York: Wiley, 1991

107

[MARA85] P. Maragos A Unified Theory of Translation-Invariant Systems with

Applications to Morphological Analysis and Coding of Images, PhD

thesis, Georgia Inst. Tech, Atlanta, 1985

[McC063] B.H. McCormick "The Illinois pattern recognition computer-ILLIAC

III", in IEEE Trans. Electron, Comput, pp. 791-813, EC-12, 1963

[MEYE88] B. Meyer Object-oriented Software Construction, Prentice Hall, 1988

[MINK03] H. Minkowski "Volumen und oberflache", in Math. Ann., pp. 447-

495, Vol. 57, 1903

[NAKA78] Y. Nakagawa, A. Rosenfeld "A Note on the use of Local min and

max operation in Digital Picture Processing", in IEEE Transactions on

Systems, MAN, AND Cybernetics, Vol. SMC-8, No.8, Aug., 1978

[PARN72] D.L. Parnas "On the Criteria to Be Used in Decomposing Systems

into Modules", in Communications of the ACM, 15(12), pp. 1059-

1062, 1972

[PAT079] K.A. Paton Clinical Research Centre, Harrow, Personal

Communication, 1979

[PELE81] S. Peleg, A. Rosenfeld "A min max medial axis transformation", in

IEEE Trans. Pattern Anal. Machine Intell, VOL. PAMI-3, pp. 206-

210, 1981

[PIPE85] J. Piper, D. Rutowitz "Data Structure for Image Processing in a C

Language and Unix Environment", in Pattern Recognition letters, vol.

3, pp. 119, 1985

[PRES81] K. Preston Jr. "Image Processing Software-A Survey", Progress in

Pattern Recognition, Nothe-Ko\\a.nd Publishing, pp. 123-147, 1981

[PRES83] K. Preston Jr. "Progress in Image Processing", in Computing

Structures for Image Processing, Academic Press, pp., 195-211, 1983

108

[RITT90] G.X. Ritter, et al. "Image Algebra: an overview", in Computer Vision,

Graphics, and Image Processing, 49, pp. 297-331, 1990

[ROSE76] A. Rosenfeld "Adjacency in digital pictures", in Information and

Control, vol. 26, pp. 24-33, 1976

[ROSE82] A. Rosenfeld, A.C. Kak Digital Picture Processing, Vol. 2 Academic

Press, 1982

[RUSS92] J.C. Russ The Image Processing Handbook, CRC Press, 1992

[SAVI90] D. Savic Object Oriented Programming with Smalltalk/V, Ellis

Horwood, 1990

[SERR82a] J. Serra Image Analysis and Mathematical Morphology, Vol. 1

Academic Press, 1982.

[SERR82b] J. Serra Image Analysis and Mathematical Morphology, Vol. 2

Academic Press, 1982.

[STEI88] J. Stein "Object-oriented programming and databases", in Dr. Dobb's

Journal, pp. 18-34 Mar, 1988

[STER80] S.R. Sternberg "Language and architecture for parallel image

processing", in Proceedings, Conf. Pattern Recognition in Practice,

Amsterdam, May, 1980

[WERM85] M. Werman, S. Peleg "Min-max operators in texture analysis", in

IEEE Trans. Pattern Anal Machine Intell, VOL. PAMI-7, pp. 730-

733, 1985

[WINB90] A.L. Winblad, et al. Object-Oriented Software, Addison Wesley,

1990

[WUYZ92] Y.Z. Wu, et al. "Computerised detection of dusted microcalcification

in digital mammograms: Applications of artificial neural networks", in

Medical Physics, pp. 555-560 18(5), May/June, 1992

109

[YIN91] F.F. Yin, et al. "Computerised detection of masses in digital

mammograms: Analysis of bilateral subtraction images", in Medical

Physics, pp. 955-963 18(5), Sep./Oct., 1991

[Y0UR91 a] P. Coad, E. Yourdon Object-Oriented Analysis, Yourdon Press, 1991

[Y0UR91 b] P. Coad, E. Yourdon Object-Oriented Design, Yourdon Press, 1991

110

Appendices

Appendix A. Disk 1, Programs in VWin

There are two disks accompanied with this thesis. The first disk(Diskl) has ImageULab

programs written in VWin. The second disk(Disk2) contains the Small-image

database programs written in V286 and also some sample images. In each disk there is

a read.me file which explains to the user how to install the programs and sample

images. The subdirectories of the two disks contain a readmclst file, these files

explain to the user how to implement the programs and some brief instmctions for the

use of the programs.

Diskl has three subdirectories. The reader is recommended to go first to vwinrun

which contains a compressed file vwin_run.exe. Copy into a new directory on the

hard drive. Then type:-
\AA/in_run[J]

then open windows and install (v.exe) in the usual way. Finally double-cHck the icon.

If the reader wishes to study the VWin development he/she should go to the

subdirectories vwinjmg and vwincls. The first contains a compressed image and

change.log. The second contains compressed *.cls files which can filed into an

existing image.

Appendix B. Disk 2, Sample images and programs in
V286

The subdirectory bin contains sample binary images in Microsoft Windows Bitmap

format. The subdirectory gray contains gray-scale sample images also in Bitmap

format. The subdirectory img contains sample images in the format we defined in

chapter three for Small-image database.

Al

Appendices A2

If the reader wishes to study the V286 development he/she should go to the

subdirectories v286_img and v286_cls. The first contains a compressed image and

change.log. The second contains compressed *.cls files which can filed into an

existing image.

Appendix C. Classes and methods of Small-image
Database

Dictionarylnspector subclass: #ImageDataBaseInspector
instanceVariableNames:

'anIdbTopPane fileName '
classVariableNames: ''
poolDictionaries: '' !

!ImageDataBaselnspector class methods ! !

[ImageDataBaselnspector methods !

bitEdt

I aPrompter anlmage width height key size index|

(instlndex = nil) ifTrue:[
aPrompter:=Prompter prompt:'Graph object name?'

default:''.
fileName:= aPrompter.
fileName isEmpty ifTrue: [''nil] .
width:=(Prompter prompt:'Width = ?'

default: '47') aslnteger.
(width = 0) ifTrue: ['"nil] .
height:=(Prompter prompt:'Height = ?'

default: '47') aslnteger.
anlmage:=Image new width:width height:height .
IdbBtEdt new openOn: anlmage .
^self]

ifFalse:[
aPrompter:=Prompter prompt:'Graph object name?'

default: (instList at: instlndex) key].
fileName := aPrompter.
(fileName = nil) ifTrue: [''nil] .
fileName isEmpty ifTrue;[
width:=(Prompter prompt:'Width = ?'

default: '47') aslnteger.
(width = 0) ifTrue:["nil].
height:=(Prompter prompt:'Height = ?'

default: '47') aslnteger.
anlmage:=Image new width:width height:height .
IdbBtEdt new openOn: anlmage].
anlmage:=object at: (instList at: instlndex) key.
IdbBtEdt new openOn: anlmage .!

clear

" To clear the instance pane"

"(Image new width:instPane frame

Appendices A3

width height:instPane frame height; white)
displayAt: instPane frame origin.!

freDrw

IdbFreeDraw new!

froioDislc

" To get image from disk file, insert into the
data base"

I anlmage aPrompter key size index |

aPrompter:=Prompter prompt:'file name?'
default: fileName.

fileName := aPrompter.
(fileName=nil) ifTrue:["nil].
fileName isEmpty ifTrue:["nil].
CursorManager execute change,
anlmage:=Image idbFromFile:fileName.
CursorManager normal change.

key := Prompter
prompt: 'new key expression'
default: String new.

key isNil
ifTrue: ["self].

(object includesKey: key)
ifTrue: [

Menu message: 'key already in dictionary',
"self].

object at: key put: anlmage.
instList add:

(Association key: key value: key).
size := instList size,
index := 1.
[index > size

or: [(instList at: index) key = key]]
whileFalse: [index := index + 1].

instlndex := index,
self

changed: #instVarList
with: #restoreSelected:
with: instlndex;

changed: #instance:!

idblnsPaneMenu
" Answer instance pane menu"

I menu |
menu := Menu

labels: 'clear\print\save as' withers
lines: #(1)
selectors: #(clear printlmage storeOnFile)

"menu!

idbListMenu
"Private - Answer the small image data base inspector list

pane menu."

Appendices A4

"Menu
labels:'add from disk\bit editor\free drawing\

inspect\remove \save IDE' withers
lines: #(1 3 5)
selectors: #(fromDisk bitEdt freDrw inspectSelection remove

storDic)!

instance: anlmage

Q:=instlndex.
instlndex isNil
ifTrue: ["(instPane clear)].
instPane clear,
"(object at: (instList at: instlndex) key)

displayAt: instPane frame origin
clippingBox: ((instPane frame origin)
extent:(instPane frame extent))!

loadDic

"To load all the images in data base onto disk"

I aPrompter fileName |
aPrompter:=Prompter prompt:'file name?'

default:'image.die'.
fileName:= aPrompter.
(fileName=nil) ifTrue:["nil].
(fileName size=0) ifTrue:["nil].
CursorManager execute change.
object:=ImageDataBase idbFromDisk:fileName deepCopy.
CursorManager normal change .
anIdbTopPane dispatcher close scheduleWindow.
"self openOn:object!

openOn: anObject
"Open an inspector window on anObject. Define the pane sizes

and behavior, and shedule the window."
object := anObject.
instPane := GraphPane new

menu: #idbInsPaneMenu;
model: self;
name: #instance:;
framingRatio: (1/3 @ 0

extent: 2/3 @ 1).
anIdbTopPane := IdbTopPane new.
anIdbTopPane

label: ' Small Image Data Base ';
model: anIdbTopPane dispatcher;
menu: #workSpaceMenu;
minimumSize: 80@80;
yourself.

anIdbTopPane addSubpane:
(ListPane new

menu: #idbListMenu;
model: self;
name: #instVarList;
change: #selectlnstance:;
returnlndex: true;
framingRatio: (

oeo extent: 1/3 @ 1)) .

file:///save

Appendices ^5

anIdbTopPane addSubpane: instPane.
CursorManager normal change.
self setlnstList.
anIdbTopPane dispatcher open scheduleWindow!

printlmage

"To print out the selected image on pin-printer"

"(object at: (instList at: instlndex) key)

outputToPrinterUpright!

remove
"Private - Remove the selected
key from the dictionary."

I assoc I
instlndex isNil

ifFalse: [
assoc := instList at: instlndex.
instList remove: assoc.
object removeKey: assoc key.
instlndex := nil.
self

changed: #instVarList with: #restore;
changed: #instance:]!

selectlnstance: aninteger

"Private - Select the instance variable at index position
aninteger in the list."

I lastlndex |
lastlndex := instlndex.
instlndex := aninteger.
self changed: #instance:.
instlndex = lastlndex

ifTrue: [self inspectSelection]!

setlnstList
"Private - Compute instList, an OrderedCollection of key

strings for the list pane."
I aSet I
aSet := Set new: object size,
object keysDo: [:aKey |

aSet add:
(Association key: aKey value: aKey)].

instlndex := nil.
(instList := SortedCollection new)

sortBlock: [:a :b| a value < b value];
addAll: aSet!

storDic

"To store all the image data base on disk"

I aPrompter |
aPrompter:=Prompter prompt:'file name?'

default: fileName .

Appendices A6

fileName:= aPrompter.
(fileName=nil) ifTrue:["nil].
(fileName size=0) ifTrue:["nil].
CursorManager execute change,
object idbStoreOnDisk:fileName.
CursorManager normal change!

StoreOnFile

" To save selected image on a disk file."

I aPrompter anlmage |
instlndex isNil

ifTrue: ["self].
aPrompter:=Prompter prompt:'file name?'

default:fileName .
fileName:= aPrompter.
(fileName=nil) ifTrue:["nil].
(fileName size=0) ifTrue:["nil].
anlmage:= (object at: (instList at: instlndex) key).
(anlmage class name)='Image' ifTrue:[
CursorManager execute change,
anlmage storeOnFile:fileName.
CursorManager normal change.]

ifFalse:[
CursorManager execute change,
anlmage storeColorOnFile:fileName.
CursorManager normal change,]! !

Appendix D. Classes and methods of Image processor

Object subclass: #ImageProcessor
instanceVariableNames:

'object leftPane midlePane rightPane bottomPane fileName
instList instlndex indexSet resultlmage resultlmageA resultlmageB
resultlmageC '
classVariableNames: ''
poolDictionaries: '' !

!ImageProcessor class methods ! !

!ImageProcessor methods !

bottomPan^denu

"Menu
labels:

'complement\union\dilation\reflect\erosion\difference\closing\openin
g\intersection\symmetricDiff\hitMissTrans\thicken\thin\print\save
as' withers

lines: #(1 5 9 13)
selectors: #(complement union dilation reflect erosion difference

closing opening intersection symmetricDiff hitMissTrans thicken thin
printResult storeOnFile)!

Appendices A7

closing

1 a b I

bottomPane clear.
a:=resultImageA deepCopy.
b:=resultImageB deepCopy.
CursorManager execute change,
a closingBy: b.
CursorManager normal change,
resultlmage:=a deepCopy.

"resultlmage displayAt: bottomPane frame origin
clippingBox: ((bottomPane frame origin)
extent:(bottomPane frame extent))!

complement

bottomPane clear.
a:=resultImageA deepCopy.
CursorManager execute change.
a complement.
CursorManager normal change.
resultlmage:=a deepCopy.
'resultlmage displayAt: bottomPane frame origin

clippingBox: ((bottomPane frame origin)
extent:(bottomPane frame extent))!

difference

I a b I

bottomPane clear.
a:=resultImageA deepCopy.
b:=resultImageB deepCopy.
CursorManager execute change.
a difference: b.
CursorManager normal change.
resultlmage:=a deepCopy.
"resultlmage displayAt: bottomPane frame origin

clippingBox: ((bottomPane frame origin)
extent:(bottomPane frame extent))!

dilation

lab I

bottomPane clear.
a:=resultImageA deepCopy.
b:=resultImageB deepCopy.
CursorManager execute change.
a dilationBy: b.
CursorManager normal change.
resultlmage:=a deepCopy.

"resultlmage displayAt: bottomPane frame origin
clippingBox: ((bottomPane frame origin)
extent:(bottomPane frame extent))!

Appendices A8

erosion

l a b I

bottomPane clear.
a:=resultImageA deepCopy.
b:=resultImageB deepCopy.
CursorManager execute change,
a erosionBy: b.
CursorManager normal change,
resultlmage:=a deepCopy.

"resultlmage displayAt: bottomPane frame origin
clippingBox: ((bottomPane frame origin)
extent:(bottomPane frame extent))!

fromDisk

" To get image from disk file, insert into the data base"

I aPrompter key size index |

aPrompter:=Prompter prompt:'file name?'
default: fileName.

fileName:= aPrompter.
(fileName=nil) ifTrue:["nil].
fileName isEmpty ifTrue:["nil].
CursorManager execute change,
resultlmage:=Image idbFromFile:fileName.
CursorManager normal change.

leftPane hasCursor ifTrue:[
leftPane clear.
resultlmageA:=resultlmage deepCopy.

"resultlmageA
displayAt: leftPane frame origin
clippingBox: ((leftPane frame origin)
extent:(leftPane frame extent))].

midlePane hasCursor ifTrue:[
midlePane clear.
resultlmageB:=resultlmage deepCopy.
"resultlmageB

displayAt: midlePane frame origin
clippingBox: ((midlePane frame origin)
extent:(midlePane frame extent))].
rightPane hasCursor ifTrue:[
rightPane clear.

resultlmageB:=resultImage deepCopy.
"resultlmageC

displayAt: rightPane frame origin
clippingBox: ((rightPane frame origin)
extent:(rightPane frame extent))]!

fromResult

"To get the image from the result image for another operation."

leftPane hasCursor ifTrue:[
resultlmageA: =resultlmage deepCopy.
leftPane clear.
"resultlmageA

displayAt: leftPane frame origin
clippingBox: ((leftPane frame origin)

Appendices A9

extent:(leftPane frame extent))].
midlePane hasCursor ifTrue:[
resultlmageB:=resultlmage deepCopy.
midlePane clear.
"resultlmageB

displayAt: midlePane frame origin
clippingBox: ((midlePane frame origin)
extent:(midlePane frame extent))].
rightPane hasCursor ifTrue:[
resultlmageC:=resultImage deepCopy.
rightPane clear.

"resultlmageC
displayAt: rightPane frame origin
clippingBox: ((rightPane frame origin)
extent:(rightPane frame extent))]!

getIt

"To get the image from the Small Image Data Base."

instIndex:=Q.
leftPane hasCursor ifTrue:[

indexSet at:l put: instlndex.
" (self changed: #instanceLft:)].

midlePane hasCursor ifTrue:[
indexSet at:2 put: instlndex.

" (self changed: #instanceMid:)].
rightPane hasCursor ifTrue:[

indexSet at:3 put: instlndex.
"(self changed: #instanceRit:)]!

hitMissTrans

I a b c I

bottomPane clear.
a:=resultImageA deepCopy.
b:=resultImageB deepCopy.
c:=resultImageC deepCopy.
CursorManager execute change,
a hitMissTransBy: b and: c.
CursorManager normal change,
resultlmage:=a deepCopy.

"resultlmage displayAt: bottomPane frame origin
clippingBox: ((bottomPane frame origin)
extent:(bottomPane frame extent))!

instanceBtm: anlmage

instlndex isNil
ifTrue: ["(bottomPane clear)].
bottomPane clear,

"resultlmage
displayAt: bottomPane frame origin
clippingBox: {(bottomPane frame origin)
extent:{ bottomPane frame extent))!

instanceLft: anlmage

instlndex isNil

Appendices AlO

ifTrue: ["leftPane clear].
leftPane clear.
resultlmageA:=(object at: (instList at: instlndex) key)

deepCopy.
"resultlmageA

displayAt: leftPane frame origin
clippingBox: ((leftPane frame origin)
extent:(leftPane frame extent))!

instanceMid: anlmage

instlndex isNil
ifTrue: ["midlePane clear].
midlePane clear.
resultlmageB:=(object at: (instList at: instlndex) key)

deepCopy.
"resultlmageB

displayAt: midlePane frame origin
clippingBox: ((midlePane frame origin)
extent:(midlePane frame extent))!

instanceRit: anlmage

instlndex isNil
ifTrue: ["(rightPane clear)].
rightPane clear.

resultImageC:=(object at: (instList at: instlndex) key)
deepCopy.

"resultlmageC
displayAt: rightPane frame origin
clippingBox: ((rightPane frame origin)
extent:(rightPane frame extent))!

intersection

lab I

bottomPane clear.
a:=resultImageA deepCopy.
b:=resultImageB deepCopy.
CursorManager execute change.
a intersection: b.
CursorManager normal change.
resultlmage:=a deepCopy.
"resultlmage displayAt: bottomPane frame origin

clippingBox: ((bottomPane frame origin)
extent:(bottomPane frame extent))!

leftPaneMenu

"Menu
labels: 'get it\load IDB\from result\from disk' withers
lines: #(0)
selectors: #(getIt openldb fromResult fromDisk)!

openldb

(ImageDataBaselnspector alllnstances size)=0
ifFalse:["nil].

Appendices All

object open!

opening

l a b I

bottomPane clear.
a:=resultImageA deepCopy.
b:=resultImageB deepCopy.
CursorManager execute change,
a openingBy: b.
CursorManager normal change,
resultlmage:=a deepCopy.
"resultlmage displayAt: bottomPane frame origin

clippingBox: ((bottomPane frame origin)
extent:(bottomPane frame extent))!

openOn:anObject

"To open an image processing environment"

I anIdbTopPane |
obj ect:=anObj ect.
indexSet:=Array new:4.
anIdbTopPane := IdbTopPane new.
anIdbTopPane

label: 'Demo Image Processing';
model: anIdbTopPane dispatcher;
menu: #workSpaceMenu;
minimumSize: 80080;
yourself.

anIdbTopPane addSubpane:
(leftPane:=GraphPane new
menu: #leftPaneMenu;
model: self;
name: #instanceLft:;
framingRatio: (0 @ 0

extent: 3/7 @ (1/2))).

anIdbTopPane addSubpane:
(midlePane:=GraphPane new
menu: #rightPaneMenu;
model: self;
name: #instanceMid:;
framingRatio: (3/7 @ 0

extent: 2/7 @ (1/2))) .

anIdbTopPane addSubpane:
(rightPane:=GraphPane new
menu: #rightPaneMenu;
model: self;
name: #instanceRit:;
framingRatio: (5/7 @ 0

extent: 2/7 @ (1/2))) .

anIdbTopPane addSubpane:
(bottomPane:=GraphPane new
menu: #bottomPaneMenu;
model: self;
name: #instanceBtm:;
framingRatio: (0 @ (1/2)

Appendices A12

extent: 1 @ (1/2))) .

CursorManager normal change.
self setlnstList.
anIdbTopPane dispatcher open scheduleWindow!

printResult

"To print out the result image on pin-printer"

"resultlmage outputToPrinterUpright!

reflect

bottomPane clear.
a:=resultImageA deepCopy.
CursorManager execute change.
a reflect.
CursorManager normal change.
resultlmage:=a deepCopy.
^resultlmage displayAt: bottomPane frame origin

clippingBox: ((bottomPane frame origin)
extent:(bottomPane frame extent))!

rightPaneMenu

"Menu
labels: 'get it\from disk\from result' withers
lines: #(0)
selectors: #(getIt fromDisk fromResult)!

setlnstList
"Private - Compute instList, an
OrderedCollection of key strings
for the list pane."

I aSet I
aSet := Set new: object size,
object keysDo: [:aKey |

aSet add:
(Association key: aKey value: aKey printstring)]

instlndex := nil.
(instList := SortedCollection new)

sortBlock: [:a :b| a value < b value];
addAll: aSet!

StoreOnFile

" To save selected image on a disk file."

t aPrompter j
instlndex isNil

ifTrue: ["self].
aPrompter:=Prompter prompt:'file name?'

default:fileName .
fileName:= aPrompter.
(fileName=nil) ifTrue:["nil].
(fileName size=0) ifTrue:["nil].

Appendices A13

(resultlmage class name)='Image' ifTrue:[
CursorManager execute change,
resultlmage storeOnFile:fileName.
CursorManager normal change.]

ifFalse:[
CursorManager execute change,
resultlmage storeColorOnFile:fileName.
CursorManager normal change.]!

symmetricDiff

l a b I

bottomPane clear.
a:=resultImageA deepCopy.
b:=resultImageB deepCopy.
CursorManager execute change,
a symmetricDiff: b.
CursorManager normal change,
resultlmage:=a deepCopy.

"resultlmage displayAt: bottomPane frame origin
clippingBox: ((bottomPane frame origin)
extent:(bottomPane frame extent))!

thicken

I a b c I

bottomPane clear.
a:=resultImageA deepCopy.
b:=resultImageB deepCopy.
c:=resultlmagee deepCopy.
CursorManager execute change,
a thickeningBy: b and: c.
CursorManager normal change,
resultlmage:=a deepCopy.
"resultlmage displayAt: bottomPane frame origin

clippingBox: ((bottomPane frame origin)
extent:(bottomPane frame extent))!

thin

l a b e l

bottomPane clear.
a:=resultImageA deepCopy.
b:=resultImageB deepCopy.
c:=resultImageC deepCopy.

CursorManager execute change.
a thinningBy: b and: c.
CursorManager normal change.
resultlmage:=a deepCopy.
"resultlmage displayAt: bottomPane frame origin

clippingBox: ((bottomPane frame origin)
extent:{ bottomPane frame extent))!

union

I a b I

Appendices A14

bottomPane clear.
a:=resultImageA deepCopy.

b:=resultImageB deepCopy.
CursorManager execute change,
a union: b.
CursorManager normal change,
resultlmage:=a deepCopy.

"resultlmage displayAt: bottomPane frame origin
clippingBox: ((bottomPane frame origin)
extent:(bottomPane frame extent))! !

Appendix E. Classes and methods of lmage(V286)

Form subclass: #Image
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: '' !

!Image class methods !

fromFile: fileName

I inFile aBitmap w h anlmage wTemp|
anlmage:=Image new.
inFile := Disk file: fileName.
inFile reset.

1 to: 18 do:[:i| inFile next].

h := inFile next asciiValue.
wTemp := inFile next asciiValue.
wTemp := (wTemp bitShift: 8) bitAnd:65280.
w := wTemp bitOr: h.
inFile next.
inFile next.
h := inFile next asciiValue.
wTemp := inFile next asciiValue.
wTemp := (wTemp bitShift: 8) bitAnd:6528 0 deepCopy.
h := wTemp bitOr: h.
anlmage := (anlmage width: w height: h) .
((w\\16)=0) ifFalse:[
w:=w+(16 - (w\\16)) deepCopy].

1 to:36 do:[:i| inFile next].

aBitmap := Bitmap new: w*h/8.
(1 to: w*h/8) do:

[:i I aBitmap at: i put: inFile next asciiValue].
anlmage bitmap: aBitmap .
"anlmage!

idbFromFile: fileKaroe
"To retrive the stroed image from disk— both color image and

black and white image."

I inFile aBitmap aBitmapl aBitmap2 aBitmap3 aBitmap4
anArray w h anlmage wTemp head length I

inFile := Disk file: fileName.
inFile reset.

Appendices A15

head:= inFile nextWord.
(head='color') ifFalse:["black an white"

inFile reset.
h := inFile next asciiValue.
wTemp := inFile next asciiValue.
wTemp := (wTemp bitShift: 8) bitAnd:65280.
w := wTen^ bitOr: h.
h := inFile next asciiValue.
wTemp := inFile next asciiValue.
wTemp := (wTemp bitShift: 8) bitAnd:65280 deepCopy.
h := wTemp bitOr: h.
anlmage := Image new width: w height: h .
((w\\16)=0) ifFalse:[
w:=w+(16 - (w\\16)) deepCopy].
aBitmap := Bitmap new: w*h/8.
(1 to: w*h/8) do:

[:i I aBitmap at: i put: inFile next asciiValue].
anlmage bitmap: aBitmap .
"anlmage

].
inFile next.
h := inFile next asciiValue.
wTemp := inFile next asciiValue.
wTemp := (wTemp bitShift: 8) bitAnd:65280.
w := wTemp bitOr: h.
h := inFile next asciiValue.
wTemp := inFile next asciiValue.
wTemp := (wTemp bitShift: 8) bitAnd:65280 deepCopy.
h := wTemp bitOr: h.
anlmage := (ColorForm new width: w height: h).
((w\\16)=0) ifFalse:[
w:=w+(16 - (w\\16)) deepCopy].
length:=w*h/8 deepCopy.
aBitmapl:= Bitmap new:length.
aBitmap2:= Bitmap new:length.
aBitmap3:= Bitmap new:length.
aBitmap4:= Bitmap new:length.
(1 to: length) do:[:i I aBitmapl at: i put: (inFile next

asciiValue)] .
(1 to: length) do: [:i I aBitmap2 at: i put: (inFile next

asciiValue)].
(1 to: length) do: [:i I aBitmap3 at: i put: (inFile next

asciiValue)].
(1 to: length) do: [:i j aBitmap4 at: i put: (inFile next

asciiValue)].
anArray:= Array with:aBitmapl

with:aBitmap2
with:aBitmap3
with:aBitmap4.

anlmage bitmap:anArray.
"anlmage! !

!Image methods !

center
"Answer a Point, the center of the receiver."

"((self width- l)@(self height- l)//2)!

closingBy:imageR
"The opening operation is an dilation followed by a erosion with

the same reference imageR ."

Appendices A16

(self dilationBy:imageR) erosionBy:imageR!

complement
"Answer the complement of an image."

"self reverse!

difference:imageR
"Answer an image that containing the difference between
original image (imageX) and referrence image (imageR)"

((self complement) union: imageR) complement!

dilationBy:imageR
"Dilation an image (imageX) by a reference image (imageR)"

I a b c|
b:= (Image width: (self width) height: (self height)) black.
c:= (Image width: (self width) height: (self height)) black.
a:= OrderedCollection new.
a:= imageR getPointsFrom:imageR.
1 to: a size do:[:i|

b copy: (0@0 extent:(self extent))
from: self

to: ((a at:i)- (imageR center))
rule: 3.

c union:b
] .

self copy: (0@0 extent:(self extent)) from:c to:000 rule:3!

erosionBy:imageR
"Answer an image that containing the erosion of original image

(imageX) by referrence image (imageR)"

((self complement) dilationBy:(imageR reflect)) complement!

getPointsFrom:imageR
"Method to get the position of each white pixel (forground) of

the reference image, answer a ordered collection containing white
points."

I a I
a:=OrderedCollection new.
0 to: (imageR height- 1) do:[:j|

0 to: (imageR width- 1) do:[:i|
((imageR at: (i0j))=1) ifTrue:[a add:i@j]]] .

hi tMi s s TransBy:imageRl and:imageR2
"The hit or miss transform of an image pair R=(R1,R2) is used to

match the shape (or template) defined by the reference image pair R
where Rl defines the for ground of the shape and R2 defines the
background of the shape."

I a b I
a:= (Image width: (self width) height: (self height)) black.
a copy: (000 extent:(self extent)) from:self to:0@0 rule:3.

Appendices A17

a erosionBy:imageRl.
b:= (Image width: (self width) height: (self height)) black,
b copy: (0@0 extent:(self extent)) from:self to:0@0 rule:3.
(b complement) erosionBy:imageR2.
a intersection:b.
self copy: (0@0 extent:(self extent)) from:a to:000 rule:3!

intersection:imageR
"Answer an image that containing the intersection of original

image (imageX) and referrence image (imageR)"

((self complement) union:(imageR complement)) complement!

label
" This is the method for counting and labeling blobs. Based on

Algorithm 5.1: Blob Coloring. Dana H.Ballard & Christopher M.Brown
Computer Vision, 621.380 414 BAL pp.151 The author made some
improvement"

I label n row col\imn |
n:=l.
row:=self height.
column:=self width.
label:=Matrix new:row with:column.
0 to: (row- 1) do:[:j|

0 to: (column- 1) do:[:i|

i:=i+l. j:=j+l.

((self at:((i- l)@(j- 1)))=1) ifTrue:[

(((label wNbr:j at:i)=0)and:[(label nNbr:j at:i)=0])
ifTrue:[

].

ifTrue:[

].

ifTrue:[

ifTrue:[

label at:j at:i put:n.
n:=n+l. "New color"

(((label wNbr:j at:i)~=0)and:[(label nNbr:j at:i)=0])

label at:j at: i put: (label wNbr:j at:i).

"Has left neighbour, but no upper neighbour"

(((label wNbr:j at:i)=0)and: [(label nNbr:j at:i)~=0])

label at:j at:i put:(label nNbr:j at:i)

"Has upper neighbour, but no left neighbour"

(((label wNbr:j at:i)~=0)and:[(label nNbr:j at:i)~=0])

label at:j at:i put:(label nNbr:j at:i)
label westNorth:j at:i

color

non-zero

"Has both upper and left neighbour, set three

same as upper neighbour color and fill all

left value same as upper neighbour."

] ifFalse:[
label at:j at:i put:0.]•

Appendices .A18

i:=i- 1. j:=j- 1.

1].

"label!

openingBy:imageR

"The opening operation is an erosion followed by a dilation with
the same reference imageR ."

(self erosionBy:imageR) dilationBy:imageR!

reflect
"Answer an image which containing the Reflected Reference Image

II

I a b I
a:= OrderedCollection new.
b:= OrderedCollection new.
a:= self getPointsFrom: self.
1 to: a size do: [:i| b add:(self center- (a at:i)+self center).

self at:(a at:i) put:0].
1 to: b size do:[:i| self at:(b at:i) put: 1] .!

StoreOnFile: fileName

I outFile I
outFile := Disk newFile: fileName.
"Delete existing contents"
outFile nextTwoBytesPut: (self width)
outFile nextTwoBytesPut: (self height) .
self bitmap do:

[:ea | outFile nextPut: ea asCharacter].
outFile close.!

symmetricDiff:imageR

"Answer an image that containing the symmetric difference between
original image (imageX) and referrence image (imageR)"

I a b I
a:= (Image width: (self width) height: (self height)) black.
a copy: (000 extent:(self extent)) from:self to:000 rule:3.
a difference:imageR.
b:= (Image width: (self width) height: (self height)) black.
b copy: (000 extent: (self extent)) from: self to:000 rule:3.
imageR difference:b.
a union:imageR.
self copy: (000 extent:(self extent)) from:a to:0@0 rule:3!

thi ckeningBy:imageRl and:imageR2
"The thinning operation is extensive and increases the size by

filling the image points where the regions match the reference image
pair R = (R1,R2)."

I a I
a:= (Image width: (self width) height: (self height)) black.

Appendices A19

a copy: (000 extent:(self extent)) from:self to:000 rule:3.
a hitMissTransBy:imageRl and:imageR2.
self union: a!

thinningBy:imageRl and:imageR2
"The thinning operation is antiextensive and decreases the size

by removeing the central points of the regions which match the
reference image pair R = (R1,R2)."

I a I
a:= (Image width: (self width) height: (self height)) black.
a copy: (000 extent:(self extent)) from:self to:0@0 rule:3.
a hitMissTransByrimageRl and:imageR2.
self difference: a!

union: imageR
"Answer an image containing the image of the union
of imageR and the receiver imageX. Usage:— imageX union:

imageR"

self copy: (0@0 extent:(imageR extent)) from:imageR to:O0O
rule:7 . ! !

Appendix F. Classes and methods of ImageLab

F.1 Methods in class Bitmap
GraphicsMedium subclass: #Bitmap

instanceVariableNames:
'bitmapHandle bitmaplnfo archive '

ClassVariableNames:
'AuxillaryDC OldMemoryContext MemoryContext DefaultBitmap

BitmapHandleTable '
poolDictionaries:

'WinConstants ' !

!Bitmap class methods !

No class methods has been add in in this project.

'Bitmap methods !

center
"Prvite: Answer a Point, the center of the receiver."

"((self width)0(self height)//2)!

complement
" To reverse the receiver image."

self pen copyBitmap: self
from: (0 0 0 extent: ((self width) 0 (self height)))
at: 0 0 0
rule:Dstinvert.

"self!

Appendices A20

difference:imageR
" Answer an image that containing the difference between

original image and referrence image."

"(((self complement) union:imageR) complement)!

extractColor:aColorl by:bitmapR rColor:aColor2
" Extract a color by a reference bitmap (bitmapR) on a specified

color."

l a b e l

a := OrderedCollection new.
a:= self getPoints: aColorl. " Original image "
b:= bitmapR getPoints: aColor2. " Refference image "
a isEmpty ifTrue:[" self].
b isEmpty ifTrue:[" self].
c := bitmapR center.
1 to: a size do:[:i|

1 to: b size do:[:jI
self setPixelAt: ((a at: i) + ((b at: j)- c))

withColor: aColorl
]

].
"self!

getPixel:aPoint
" Answer a color value at point (x ,y)"

"GraphicsTool rgbToPalette:
(GDILibrary getPixel: self pen handle

x: aPoint x
y: aPoint y)!

getPoints:aColor
" Get the points of aColor from a bitmap. Answer an ordered

collection which contained the co-ordinate of this points."

I result center I

center:=self center,
result := OrderedCollection new.
0 to: ((self height) - 1) do:[:h|

0 to:((self width) - 1) do:[:w|
(self getPixel:(w0h)) = aColor ifTrue:[

result add:((w0h)- center)]
]

].
"result!

isBitmap
"Answer true if receiver is an instance of class Bitmap or

one of its subclasses, else answer false."

"true!

labell: aColor

Appendices A21

"This is the method for labeling specified color blobs(the V/win
version. Based on Algorithm 5.1: Blob Coloring. Dana H.Ballard &
Christopher M.Brown Computer Vision, 621.380 414 BAL pp.151. The
Author made some improvement."

I label n row column!
n:=l.
row:=self height.
column:=self width.
label:=Matrix new:row with:column.
0 to: (row- 1) do:[:j|

0 to: (column- 1) do:[:i|

i:=i+l. j:=j+l.

((self getPixel:{(i- l)0(j- 1)))= aColor) ifTrue:[

(((label wNbr:j at:i)=0)and:[(label nNbr:j at:i)=0]) ifTrue:[

].

ifTrue:[

ifTrue:[

ifTrue:[

color

non-zero

label at:j at:i put:n.
n:=n+l. "New color"

(((label wNbr:j at:i)~=0)and:[(label nNbr:j at:i)=0])

label at:j at:i put:(label wNbr:j at:i).].
"Has left neighbour, but no upper neighbour"

(((label wNbr:j at:i)=0)and:[(label nNbr:j at:i)~=0])

label at:j at:i put:(label nNbr:j at:i).
label nUp:j at:i].
"Has upper neighbour, but no left neighbour"

(((label wNbr:j at:i)~=0)and:[(label nNbr:j at:i)~=0])

label at:j at:i put:(label nNbr:j at:i).
label westNorth:j at:i].

"Has both upper and left neighbour, set three

same as upper neighbour color and fill all

left value same as upper neighbour."

] ifFalse:[
label at:j at:i put:0.].

i:=i- 1. j:=j- 1.

]]•

"label!

outputToFile: aFileName
"Output the receiver in DIB format to aFileName."

I file fileHeader colors bitmapHeader bits |
bits := self getDIBits.
bits isNil ifTrue: ["self].
fileHeader := WinBitmapFileHeader new.
fileHeader bfType: 'BM';

bfSize: 14 + bitmaplnfo contents size + bits size;
reservedl: 0;

Appendices A22

reserved2: 0;
offBits: 14 + bitmaplnfo contents size,

file := (File pathName: aFileName) asByteFileStream.
file nextPutAll: fileHeader contents,
bitmaplnfo contents do: [: aByte |

file nextPut: aByte asCharacter].
bits do: [: aByte |

file nextPut: aByte asCharacter].
file close!

outputToPrinter
"Print the receiver on the system printer."

I printer |
CursorManager execute change,
printer := Printer new.
printer startPrintJob.
printer pen copyBitmap: self

from: self boundingBox
to: (self boundingBox scaleBy: (

(printer pen width // Display width) min:
printer pen height // Display height))).

printer endPrintJob.
CursorManager normal change!

reflectReal
" Answer a bitmap which containing the reflected referrence

bitmap."

I bits rBits size |

bits := self getDIBits.
size := bits size.
rBits := ByteArray new: (size) .
0 to: (size- 1) do:[:each|

rBits at:(each+1) put:((bits at:(size - each)) reverse)].
self setDIBits: rBits.
"self!

release
"Delete the receiver from the device context. Freeing up all

system storage associated with the receiver."

self handle isNil ifTrue: ["self].
deviceContext = MemoryContext

ifTrue: [self deselect]
ifFalse: [graphicsTool deleteDC].

GDILibrary deleteObject: bitmapHandle.
BitmapHandleTable removeKey: bitmapHandle ifAbsent: [].
graphicsTool := nil.
bitmapHandle := nil!

setPixelAt:aPoint withColor:aColor
" Set a color value at point (x ,y) with color aColor"

"GDILibrary setPixel: self pen handle
x: aPoint x
y: aPoint y

color: aColor!

Appendices A23

symmetricDiff:imageR
" Answer an image that containing the symmetric difference

between original image and referrence image."

I a b c|

c := Bitmap width: self width
height: self height

planes: self planes
bitCount: self bitCount .

imageR displayAt:000 with:c pen.

a := Bitmap width: self width
height: self height

planes: self planes
bitCount: self bitCount .

b := Bitmap width: self width
height: self height

planes: self planes
bitCount: self bitCount .

a pen copyBitmap: self

0 (self height)))

a difference:c,
b pen copyBitmap: self

0 (self height)))

c difference:b.
a union:c.
self pen copyBitmap: a

0 (a height)))

from: (0 0 0 extent: ((self width)

at: 0 0 0
rule:Srccopy.

from: (0 0 0 extent: ((self width)

at: 0 0 0
rule:Srccopy.

from: (0 0 0 extent: ((a width)

at: 0 0 0
rule:Srccopy.

a release,
b release,
c release,
"self!

union: aBitmap

" To union two bitmaps the receiver and aBitmap. Use raster
operation Srcpaint."

self pen copyBitmap: aBitmap
from: (0 0 0 extent: ((self width)

0 (self height)))
at: 0 0 0

rule:Srcpaint.
"self! !

Bitmap subclass: #Image
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries:

'WinConstants ' !

Appendices A24

!Image class methods !

fromBitmap: siBitmap
" Answer an Image that is copied from a bitmap.

I b I
b := Image width: aBitmap width

height: aBitmap height
planes: aBitmap planes

bitCount: aBitmap bitCount
aBitmap displayAt: 000 with:b pen.
"b! !

!Image methods !

built4N
" To built the structure element, anser an OrderedCollection

that contains the coordinate sets of I's in a structure element. A
cross, 4-connected neighbour."

I anOc I
anOc:=OrderedCollection new.
anOc add:000.
anOc add:001.
anOc add:100.
anOc add:00-1.
anOc add:-ISO.
"anOc!

builtSN
" To built the structure element, anser an OrderedCollection

that contains the coordinate sets of I's in a structure element. A
3 by 3 square, 8-connected neighbour."

I anOc I
anOc:=self built4N.
anOc add:101.
anOc add:-101.
anOc add:10-1.
anOc add:-10-1.
"anOc!

builtCap
" To built the structure element, anser an OrderedCollection

that contains the coordinate sets of I's in a structure element. A
cross, 4-connected neighbour."

I anOc I
anOc:=OrderedCollection new.
anOc add:-301.
anOc add:-10-1.
anOc add:-200.
anOc add:00-2.
anOc add:3@l.
anOc add:200.
anOc add:10-1.
"anOc!

Appendices A25

builtE:aninteger
" To built the structure element, anser an OrderedCollection

that contains the coordinate sets of I's in a structure element. To
EAST direction."

I anOc I
anOc:=OrderedCollection new.
0 to: aninteger do:[:i|

anOc add:(100)].
"anOc!

builtH:aninteger
" To built the structure element, anser an OrderedCollection

that contains the coordinate sets of I's in a structure element.
Horizontal direction."

I anOc I
anOc:=OrderedCollection new.
(aninteger negated) to: aninteger do:[:i|

anOc add:(i@0)].
"anOc!

builtLD: ajilnteger
" To built the structure element, anser an OrderedCollection

that contains the coordinate sets of I's in a structure element.
Left Diagonal direction."

I anOc I
anOc:=OrderedCollection new.
(aninteger negated) to: aninteger do:[:i|

anOc add:(i0i)].
"anOc!

builtN:aninteger
" To built the structure element, anser an OrderedCollection

that contains the coordinate sets of I's in a structure element. To
NORTH direction."

I anOc I
anOc:=OrderedCollection new.
0 to: aninteger do:[:i|

anOc add:(00(i negated))].
"anOc!

builtNE:aninteger
" To built the structure element, anser an OrderedCollection

that contains the coordinate sets of I's in a structure element. To
NORTH EAST direction."

I anOc 1
anOc:=OrderedCollection new.
0 to: aninteger do:[:i|

anOc add:(10(i negated))],
"anOc!

Appendices A26

builtNW:aninteger
" To built the structure element, anser an OrderedCollection

that contains the coordinate sets of I's in a structure element. To
NORTH WEST direction."

I anOc I
anOc:=OrderedCollection new.
0 to: aninteger do:[:i|

anOc add:((i negated)@(i negated))].
"anOc!

builtRD:aninteger
" To built the structure element, anser an OrderedCollection

that contains the coordinate sets of I's in a structure element.
Right Diagonal direction."

I anOc I
anOc:=OrderedCollection new.
(aninteger negated) to: aninteger do:[:i|

anOc add:((i negated)0i)].
"anOc!

builtS:aninteger
" To built the structure element, anser an OrderedCollection

that contains the coordinate sets of I's in a structure element. To
SOUTH direction."

I anOc I
anOc:=OrderedCollection new.
0 to: aninteger do:[:i|

anOc add:(001)].
"anOc!

builtSW:aninteger
" To built the structure element, anser an OrderedCollection

that contains the coordinate sets of I's in a structure element. To
SOUTH WEST direction."

I anOc I
anOc:=OrderedCollection new.
0 to: aninteger do:[:i|

anOc add:((i negated)0i)].
"anOc!

bui1tTriangle
" To built the structure element, anser an OrderedCollection

that contains the coordinate sets of I's in a structure element."

I anOc I
anOc:=self built4N.
anOc add:101.
anOc add:-101.
anOc add:-201.
anOc add:201.
"anOc!

Appendices A27

builtV:aninteger
" To built the structure element, anser an OrderedCollection

that contains the coordinate sets of I's in a structure element.
Vertical direction."

I anOc I
anOc:=OrderedCollection new.
(aninteger negated) to: aninteger do:[:i|

anOc add:(O0i)].
"anOc!

builtW:aninteger
" To built the structure element, anser an OrderedCollection

that contains the coordinate sets of I's in a structure element. To
WEST direction."

I anOc I
anOc:=OrderedCollection new.
0 to: aninteger do:[:i|

anOc add:((i negated)00)].
"anOc!

closingBy:anOc
" Answer an image that containing the opening between

original image and referrence image."

"((self dilationBy: anOc) erosionBy: anOc)!

convexHull:aninteger
" Answer the convex hull of an image."

I a b c d I
a := Image width: self width

height: self height
planes: self planes

bitCount: self bitCount .
self displayAt:000 with: a pen.
b := Image width: self width

height: self height
planes: self planes

bitCount: self bitCount .
self displayAt:000 with: b pen.
c := Image width: self width

height: self height
planes: self planes

bitCount: self bitCount .
self displayAt:000 with: c pen.
d := Image width: self width

height: self height
planes: self planes

bitCount: self bitCount .
self displayAt:000 with: d pen.
a dilationBy:(self builtH:aninteger).
b dilationBy:(self builtV:aninteger).
c dilationBy:(self builtLD:aninteger).
d dilationBy:(self builtRD:aninteger).
a intersection:b.
a intersection:c.
a intersection:d.
a displayAt:000 with: self pen.
a release.

Appendices A28

b release,
c release,
d release,
"self!

damond:aninteger
" Change the object in an image into a damond shape,

I c d I
c := Image width: self width

height: self height
planes: self planes

bitCount: self bitCount .
self displayAt:000 with: c pen.
d := Image width: self width

height: self height
planes: self planes

bitCount: self bitCount .
self displayAt:000 with: d pen.
c dilationBy:(self builtLD:aninteger).
d dilationBy:(self builtRD:aninteger).
c intersection:d.
c displayAt:000 with: self pen.
c release,
d release,
"self!

dilationBy:anOc
" Dilation an bitmap (bitmapX) by a set of points in an

OrderedCollection."

I b e I
b := Image width: self width

height: self height
planes: self planes

bitCount: self bitCount .
self displayAt: 000 with:b pen.
e := self extent.
1 to: anOc size do:[:i|

b pen copyBitmap: self
from: (000 extent: e)

at: ((anOc at:i))
rule: Srcpaint.

] .
b displayAt: 000 with:self pen.
b release,
"self!

edgeTraceBy:anOc
" Answer an image that containing the edge traced image,

I temp I

temp:= Image width: self width
height: self height

planes: self planes
bitCount: self bitCount.

self displayAt:000 with:temp pen.
self difference:(temp erosionBy:anOc).
temp release.
"self!

Appendices A29

erosionBy:anOc
Answer an image that containing the erosion between

original image and referrence image."

"(((self complement) dilationBy:(self ocReflect:anOc))
complement)!

gradientBy:anOc
" Answer an image that containing the gradient image."

I tempi I

tempi:= Image width: self width
height: self height

planes: self planes
bitCount: self bitCount.

self displayAt:000 with:tempi pen.
tempi erosionBy:anOc.
self dilationBy:anOc.
self difference:tempi.
tempi release,
"self!

hmtBy:anOcl and:anOc2

"The hit or miss transform(V/win version) of an image pair
R=(R1,R2) is used to match the shape (or template) defined by the
reference image pair R where Rl defines the for ground of the shape
and R2 defines the background of the shape."

I b I
b := Image width: self width

height: self height
planes: self planes

bitCount: self bitCount .
self displayAt:000 with: b pen.
b erosionBy:anOcl.
(self complement) erosionBy:anOc2.

self dilationBy:(self builtSW:2),
self intersection:b.
b release,
"self!

intersection:imageR

" Answer an image that containing the intersection between
original image and referrence image."

self pen copyBitmap: imageR
from: (0 0 0 extent: ((self width)

0 (self height)))
at: 0 0 0

rule:Srcand.
"self!

label:aninteger
"Another method to label the connected components. Given an

NXN image X which consists of k connected components(each with size

Appendices ^ 0

larger than M X M , M is larger than the bottom of the triangle
which is the forground pattn), label each connected component by a
single image point (the upper left image point of its damond)"

self damond:aninteger.
self dilationBy:(self builtW:l).
self hmtBy:(self builtTriangle) and:(self builtCap).!

ocReflect:anOc
"Answer the reflect of a set of points in an ordered

collection.
R = {(-X, -y) I (x,y) belong to R)."

I ocl I
ocl:=OrderedCollection new.
1 to: anOc size do:[:i| ocl add:((anOc at:i) negated)],
"ocl!

openingBy:anOc
" Answer an image that containing the opening between

original image and referrence image."

"((self erosionBy: anOc) dilationBy: anOc)!

rt:aninteger
" Answer the convex hull of an image."

I a b c d I
a := Image width: self width

height: self height
planes: self planes

bitCount: self bitCount .
self displayAt:000 with: a pen.
b := Image width: self width

height: self height
planes: self planes

bitCount: self bitCount .
self displayAt:000 with: b pen.
a dilationBy:(self builtH:aninteger).
b dilationBy:(self builtV:aninteger).
a intersection:b.
a displayAt:000 with: self pen.
a release,
b release,
"self!

thi ckeningBy:imageRl and:imageR2
"The thicking operation is extensive and increases the size by

filling the image points where the regions match the reference image
pair R = (R1,R2)."

I a I
a := Image width: self width

height: self height
planes: self planes

bitCount: self bitCount .
self displayAt:000 with: a pen.

a hmtBy:imageRl and:imageR2.
self union: a.
a release!

Appendices A31

thinningBy:imageRl and:imageR2
"The thinning operation is antiextensive and decreases the size

by removeing the central points of the regions which match the
reference image pair R = (R1,R2)."

I a I
a := Image width: self width

height: self height
planes: self planes

bitCount: self bitCount .
self displayAt:000 with: a pen.

a hmtBy:imageRl and:imageR2.
self difference: a.
a release! !

F.2 Methods in Class ImageLab

GraphLab subclass: #ImageLab
instanceVariableNames:

'image selmage fileName anOc '
ClassVariableNames: ''
poolDictionaries:

'ColorConstants WinConstants VirtualKeyConstants '

!ImageLab class methods !

mdiMenu
" Answer the standard MDI Window menu "

"MDIMenu new
appendltem: '&New Text Window' selector:#createDocuments

accelKey:$n accelBits: AfControl;
appendltem: 'SCascade Shift+F5' selector: #mdiCascade

accelKey: VkF5 accelBits: AfVirtualkey|AfShift ;
appendltem: 'STile Shift+F4' selector: #mdiTile accelKey: VkF4

accelBits: AfVirtualkey|AfShift ;
appendltem: 'Arrange Slcons' selector: #mdiArrange;
appendltem: 'Close &A11' selector: #mdiCloseAll;

title: 'SWindow'.! !

!ImageLab methods

aboutV
" Open the dialog box about Image Lab."

AboutlmageLabDialog new open!

activelmageProPane
" Answer current active ImageProPane."

la I

a:=self mainView mdiChildren.
1 to: (a size) do:[:i|

(a at:i) isActive ifTrue:[

Appendices.. A32

((a at:i) children at:l) isImageProPane ifTrue:[
"((a at:i) children at:l)]]].

MessageBox message:'Current window is not an Image
Workspace!!'.

"nil!

anaMenu
"Answer a menu with a list of image analysis operations."

"(MDIMenu
labels: 'SConvex Hull\&Label\&Hit Miss Trans.' withers
lines: #(1)
selectors: #(convexHull label hmt))
owner: self;
title: '&Analysis';
yourself!

blobSize
"Define the blob size."

I rect I
rect := Display rectangleFromUser.
rect isNil ifTrue: [rect := 0 0 0 extent: 4 0 4]
"(rect width max: rect height)!

childActivate:aPane
" Update the StatusPane, current working pane and its pen.

Shows the label of the active MDI document."

ImdiActive|
(mdiActive := self frame mdlGetActive) notNil ifTrue:[

(self StatusPane statusBoxAt: #status) contents: mdiActive
label].

pane:=mdiActive children at:l .
pen:=pane pen!

childClose:aPane
"Update the StatusPane. If there is no more document, erase

the StatusBox #status"

self frame mdlGetActive isNil ifTrue: [
(self StatusPane statusBoxAt: #status) contents: ' '] . !

close:aPane
" Close the receiver. "

I answer I
Smalltalk isRunTime

ifTrue:[
(MessageBox confirm: 'Are you sure you want to

exit?')
ifTrue:[self close.

(Bitmap alllnstances) do:[:ea|ea
become: String new].

"Smalltalk exit]
ifFalse:["self]]

ifFalse:[(Bitmap alllnstances) do:[:ea|ea
become: String new].

"self close]!

Appendices A33

closing
Opening the loaded image with selected structure element."

self imageCheck isNil ifTrue:["nil].
CursorManager execute change,
image closingBy:anOc.
CursorManager normal change,
self display:image!

complement
" Answer the complement of original image."

image isNil ifTrue:[MessageBox message:'Open an image or
select from screen!!'.

"nil].
image complement.
self display:image!

convexHull
" Answer the convex hull of image."

I blobSize |
blobSize:=self blobSize.
self imageCheck isNil ifTrue:["nil],
CursorManager execute change,
image convexHull:blobSize.
CursorManager normal change,
self display:image!

copyGraph
"Copy a portion of the receiver's contents to the

clipboard."

I bitmap |
bitmap := Bitmap fromUser.
bitmap isNil ifTrue:["nil].
image:= Image fromBitmap:bitmap.
Clipboard setBitmap: image.!

createDocTiments
" Create the MDI documents"

I buffer winaddress pathName |
buffer:=String new: 160.
winaddress:=WinAddress copyToNonSmalltalkMemory: buffer.
KernelLibrary getWindowsDirectory:winaddress asParameter

length:buffer size.
pathName:=String fromAddress:winaddress.
winaddress unlockAndFree.

ILTextWindow new
frame:self frame;
label:'untitled.txt';
icon:(Icon fromModule:self resourceDLLFile

id:'TextWindow');
openOn:''.!

Appendices A34

c r o s s

d o : [: i I

" P r i v i t e - - Answer a 3X3 c r o s s b i t m a p . "

I a B y t e A r r a y i n d e x |
CursorManager e x e c u t e c h a n g e ,
i n d e x : = 1 .
a B y t e A r r a y : = B y t e A r r a y new: 124 .

(0
0
0 0 0 0 0 0 0 0 0 1 0 0 0 3 128 0 0 1 0 0 0 0 0
0

0 0)

a B y t e A r r a y a t : i n d e x p u t : i .
i n d e x : = i n d e x + l] .

s e lmage := Image new w i d t h : 3 1

a n 0 c : = s e l m a g e b u i l t 4 N .
CursorManager normal change ,
s e l f d i s p l a y : s e l m a g e .

' s e l m a g e !

height:31
bits:aByteArray.

differ
" Answer the difference of two images."

self imageCheck isNil ifTrue:["nil].
image difference:selmage.
self display:image.!

dilation
" Dilate the loaded image with selected structure element."

I answer I
self imageCheck isNil ifTrue:["nil].
answer := Prompter prompt: 'How many times?' default:'!'.
(answer = nil) ifTrue:[answer:='1'].
CursorManager execute change.
1 to: (answer aslnteger) do:[:i|
image dilationBy:anOc].
CursorManager normal change.
self display:image.!

disk

" Answer a 6X6 disk bitmap."

I aByteArray index |

CursorManager execute change.
index:=1.
aByteArray:=ByteArray new: 128 .
#(0

7 224 0 0 31 240
0 0 63 252 0 0 127 254 0 0 255 255 0 0 255 255 0 1 255

255 128 1 255
255 128 1 255 255 128 1 255 255 128 1 255 255 128 1 255

255 128 1 255

Appendices ^ 5

255 128 0 255 255 0 0 255 255 0 0 127 254 0 0 63 252 0 0
31 248 0 0 7

224 0)
do:[:iI

aByteArray at:index put:i.
index:=index+l].

selmage notNil ifTrue:[selmage release].
selmage:=Bitmap new width:31

height:31
bits:aByteArray.

anOc:= selmage getPoints:ClrWhite.
CursorManager normal change.
self display:selmage.
"selmage!

display:anlmage
" Display current working image on a user selected place."

I aPoint I
self activelmageProPane isNil ifTrue:["nil].
aPoint := (Display

pointFromUser: anlmage boundingBox
offset: (anlmage extent // 2))
mapScreenToClient: pane.

aPoint := aPoint dpToLp: pane pen handle.
anlmage displayAt: aPoint with:self pane pen.
anlmage displayAt: (self backupRelative: aPoint)

with:pane backup pen.!

edgeTrace
" Trace the edge of the loaded image with selected structure

element."

self imageCheck isNil ifTrue:["nil].
CursorManager execute change,
image edgeTraceBy:anOc.
CursorManager normal change,
self display:image.!

erosion
" Erode the loaded image with selected structure element,"

I answer |
self imageCheck isNil ifTrue:["nil].

answer := Prompter prompt: 'How many times?' default:'!'.

(answer = nil) ifTrue:[answer:='1'].
CursorManager execute change.
1 to: (answer aslnteger) do:[:i|

image erosionBy:anOc].
CursorManager normal change,
self display:image.!

exit
" Close all the documents and close the frame"

self close: self mainView.!

Appendices A36

fil^ienu
" Answer the receiver's fileMenu"

"Menu new
appendltem: 'Ope&n an image workspace' selector: #imagePane;
appendltem: 'Open a text &workspace' selector:

#createDocuments;
appendltem: 'Open a text Sfile' selector: #openTextWindow;
appendSeparator ;
appendltem: '&About Image Lab' selector: #aboutV ;
appendltem: 'SExit' selector: #exit ;
title: '&Open'.!

gradient
" Gradient the loaded image with selected structure

element."

self imageCheck isNil ifTrue:["nil].
CursorManager execute change,
image gradientBy:anOc.
CursorManager normal change,
self display:image.!

grayScalePal

"Change the system palette in 256 gray scale for the pseudo
gray scale operation."

I bM handle hdc hPalette hPrevious bA logPalette colorTab |

colorTab := ByteArray new: 1024.
(0 to: 255) do: [:i 1

(1 to: 4) do: [:j |
colorTab at: 4*1 + j put: i

]].
(0 to: 255) do: [:i | colorTab at: (4*i + 4) put: 0].

hdc := UserLibrary getDC: nil.

GDILibrary setSystemPaletteUse: hdc wUsage:SyspalNostatic.
GDILibrary unrealizeObject: hdc .

logPalette := WinStructure new: (256 * 4 + 4).
logPalette uShortAtOffset: 0 put: 16r300;
uShortAtOffset: 2 put: (1 bitShift: 8).
logPalette contents

replaceFrom: 5
to: logPalette size

with: colorTab.
bA:=GDILibrary createPalette: logPalette asParameter.

bA

hPrevious := UserLibrary selectPalette: hdc
with:

forceBackground: true.
UserLibrary realizePalette: hdc.

UserLibrary selectPalette: hdc
with: hPrevious

forceBackground: false.

Appendices A37

GDILibrary deleteObject: bA .
UserLibrary releaseDC: nil with: hdc.!

gsInvert

" Change the system palette in invert form of 256 gray scale
for the pseudo gray scale operation."

I bM handle hdc hPalette hPrevious bA logPalette colorTab 1

colorTab := ByteArray new: 1024.
(0 to: 255) do: [:i |

(1 to: 4) do: [:j |
colorTab at: 4*i + j put: (255- i)

]].
(0 to: 255) do: [:i | colorTab at: (4*i + 4) put: 0].

hdc := UserLibrary getDC: nil.

GDILibrary setSystemPaletteUse: hdc wUsage:SyspalNostatic.
GDILibrary unrealizeObject: hdc .

logPalette := WinStructure new: (256 * 4 + 4).
logPalette uShortAtOffset: 0 put: 16r300;
UShortAtOffset: 2 put: (1 bitShift: 8).
logPalette contents

replaceFrom: 5
to: logPalette size

with: colorTab.
bA:=GDILibrary createPalette: logPalette asParameter.

bA

hPrevious := UserLibrary selectPalette: hdc
with:

forceBackground: true.
UserLibrary realizePalette: hdc.

UserLibrary selectPalette: hdc
with: hPrevious

forceBackground: false.
GDILibrary deleteObject: bA .

UserLibrary releaseDC: nil with: hdc.!

hmt
" Using the Hit or Missing transform to locate the objects

defined by its forground and background in an image."

I anOcl anOc2 a |
fileName := (FileDialog new openlmage:'Open Forground Image')

file.
fileName isNil ifTrue:["nil].
CursorManager execute change.
a:=Bitmap fromFile:fileName.
anOcl:=a getPoints:ClrWhite.
CursorManager normal change,
self display:a.

fileName:= (FileDialog new openlmage:'Open Background Image')
file.

fileName isNil ifTrue:["nil].
CursorManager execute change.

Appendices A38

a:=Bitmap fromFile:fileName.
anOc2:=a getPoints:ClrWhite.
self display:a.

image hmtBy:anOcl and:anOc2.
CursorManager normal change.
self display:image!

image
" Answer current working image."

"image!

imageCheck

"answer nil if no image or referrence image loaded."

image isNil ifTrue: [MessageBox message:'Please load an
image or copy from screen!!'.

"nil].
selmage isNil ifTrue:[MessageBox message:'Please select a

SE!!'.
"nil].

"self!

imag^lenu
"Answer a menu with a list of image I/O operations."

"(MDIMenu
labels: '&Open...\S&ave\Save se&lect\&Print\Print

Par&tial\&View' withers
lines: #(1 3 5)
selectors: #(loadImage save saveSelect print printSelected

viewlmage))
owner: self;
title: '&Image';
yourself!

imagePane
" Open an MDI Child "

ImageWindow new
frame:self frame;
icon:(Icon fromModule:self resourceDLLFile

id:'WORKSPACE') ;
open.!

initWindowSi ze

" Initial window size as whole screen size."

"Display extent!

intersec
" Answer the intersection of two images."
I imageR aPoint |

self imageCheck isNil ifTrue:["nil].
image intersection:selmage.
self display:image.!

Appendices ^ 9

label
Labeling the connected components of image."

I blobSize 1
blobSize:=self blobSize.
self imageCheck isNil ifTrue:["nil].
CursorManager execute change.
image label:blobSize.
CursorManager normal change.
self display:image!

loadlmage
"Load the image from the disk to the receiver."

I aPoint bitmap I

fileName:= (FileDialog new openlmage:'Open Image') file,
fileName isNil ifTrue:["nil].
image notNil ifTrue:[image release].
CursorManager execute change.
bitmap:=Bitmap fromFile:fileName.
CursorManager normal change.
image:=Image fromBitmap:bitmap.
self display:image.
bitmap release!

loadRefImage
"Load the image from the disk to the receiver as reference

image."

I aPoint points|

fileName:= (FileDialog new openlmage:'Open Reference Image')
file.

fileName isNil ifTrue:["nil].
CursorManager execute change,
selmage:=Bitmap fromFile:fileName.
an0c:=selmage getPoints:ClrWhite.
CursorManager normal change.

self display:selmage.
"anOc!

maxTable
" Answer a 256 gray maxium table in current palette."

1 aPoint bM bA w h numBytes colTab|

CursorManager execute change,
w :=256.
h := 256.
numBytes := w*h.
bA := ByteArray new: numBytes.

(1 to: 256) do: [:i |
(1 to: 256) do: [:j|

bA at:((i- 1)*256 + j) put:{(j- 1) max:(i -
1))]]

image isNil ifTrue:[
MessageBox message:'Please load an image!!'

Appendices A40

"nil]
ifFalse:[

colTab:= image bitmaplnfo colorTable].
bM:=Bitmap new initPenWidth: w

height: h
planes: 1

bitCount: image
bitCount.

bM bitmaplnfo colorTable: colTab.
bM createBitmap: bA .
CursorManager normal change,
self display:bM.
bM release.!

mdiMenu:anMDIFrame
" Create the menuBar for the frame"

anMDIFrame mdiMenuWindow addMenu:self imageMenu owner:self.
anMDIFrame mdiMenuWindow addMenu:self morphMenu owner:self.
anMDIFrame mdiMenuWindow addMenu:self anaMenu owner:self.
anMDIFrame mdiMenuWindow addMenu:self optionsMenu owner:self.
anMDIFrame mdiMenuWindow addMenu:self paletteMenu owner:self.
anMDIFrame mdiMenuWindow addMenu: (

MDIMenu colorMenu: self selector: #colorSelected:)
owner:self.

anMDIFrame mdiMenuWindow addMenu:self class mdiMenu owner:self.!

menu: anMDIFrame
" Build the file menu"

anMDIFrame menuWindow addMenu: self fileMenu owner:self.!

morphMenu
"Answer a menu with a list of morphlogy operations."

I aMenu |

aMenu:= (MDIMenu
labels: 'SCross 3X3\&Square 3X3\&Disk \From

F&ile...\From SUser' withers
lines: #(2)
selectors: #(cross square disk loadRefImage

seFromUser))
title:'SSelect SE' ;
owner:self.

"(MDIMenu
labels: '&View SE\&Dilation\&Erosion\&Opening\&Closing\Edge

&Trace\&Gradient' withers
lines: #(1 4 6)
selectors: #(viewSE dilation erosion opening closing

edgeTrace gradient))
owner: self;
title: 'SMorph';
appendSubMenu: (self otherMenu);
appendSubMenu: aMenu;
yourself!

open
'Open a Image Process ing window."

s e l f

file:///From
file:///From

))

Appendices A41

addView: (self frame:(
MDIFrame new

owner:self;
labelWithoutPrefix: 'Image Lab' ;
icon: (Icon fromModule: self resourceDLLFile

id:'face');
when: #mdiMenuBuilt perform: #mdiMenu:;
when: #childClose perform: #childClose:;
when: #toggleKey perform:#toggleKey:;
when: #close perform: #close:;
when: ^validated perform: #startTimer:;
when: #timer perform:#timer:;
when: #childActivate perform: #childActivate:;
when: #menuBuilt perform: #menu:

self
addSubpane:(

ToolPane new
owner: self;
height: 27;
when: #getContents perform:#toolPane:).

self
addSubpane:(

StatusPane new
owner:self;
when:#getContents perform: #statusPane:).

self openWindow.
self menuWindow

removeMenu: (self menuWindow menuTitled: 'SColor')!

opening
" Opening the loaded image with selected structure"

self imageCheck isNil ifTrue:["nil].
CursorManager execute change,
image openingBy:anOc.
CursorManager normal change,
self display:image.!

openTextWindow
" Open a TexWindow application as an MDI document"

I file I
fileName:= (FileDialog new openFile) file.
fileName isNil ifTrue:["nil].
file := File pathName:fileName.
(self StatusPane statusBoxAt: #status) contents: fileName .
ILTextWindow new

frame:self frame;
icon:(Icon fromModule:self resourceDLLFile

id:'TextWindow');
openOnFile: file,

file close.!

optionsMenu
"Answer a menu with a list of miscellaneous operations."

"(MDIMenu
labels: 'Clear\Copy\Paste\Fonts...\Pen size\BitEdit\Tool

Bar\Status Bar' withers
lines: #(4)

Appendices A42

selectors: #(clear copyGraph pasteGraph changeFont
changeSize bitEdit toggleToolPane toggleStatusPane))

owner: self;
title: 'soptions';
checkltem: #toggleToolPane;
checkltem: #toggleStatusPane;
yourself!

orTable
" Answer a 256 gray or table in current palette."

I bM bA w h numBytes colTab|
CursorManager execute change,
w :=256.
h := 256.
numBytes := w*h.
bA := ByteArray new: numBytes.

(1 to: 256) do: [:i |
(1 to: 256) do: [:j|

bA at:((i- 1)*256 + j) put:((j- 1) bitOr:(i
- 1))]] .

image isNil ifTrue:[
MessageBox message:'Please load an image!!'.

"nil]
ifFalse:[

colTab:= image bitmaplnfo colorTable].
bM:=Bitmap new initPenWidth: w

height: h
planes: 1

bitCount: image
bitCount.

bM bitmaplnfo colorTable: colTab.
bM createBitmap: bA .
CursorManager normal change,
self display:bM.
bM release.!

othei^enu
"Answer a menu with a list of other morphlogy operations."

" (MDIMenu

labels:'Complement\Reflect\Union...\Difference...\Intersection...
\Symetric Difference...\Thinning...\Thicking...\' withers

lines: #(2 5)
selectors: #(complement reflectReal union differ

intersec symeDif thin thick))
title:'&Others';
owner:self.!

paletteMenu
"Answer a menu with a list of palette changing operations."

"(MDIMenu
labels: 'System\Gray Scale(256)\GSInvert\Spectrum\Or

Table\Max Table' withers
lines: #(1 3)
selectors: #(sysPal grayScalePal gslnvert spectrum orTable

maxTable))
owner: self;

file:///Intersection
file:///Symetric
file:///Thinning
file:///Thicking
file:///GSInvert/Spectrum/Or

Appendices A43

title: 'SPalette';
yourself!

pane

" Answer current image pane."

"pane!

pasteGraph
"Paste the graphics from the clipboard to the receiver."

1 bitmap]
(bitmap := Clipboard getBitmap) isNil

i f T r u e : [" s e l f] .
self display:bitmap.!

print
" Output image to print. Output loaded image or it operat

result."

image isNil ifTrue:[Prompter prompt:'No image loaded'

default:'Chose Print select'.
"nil].

image outputToPrinter!

printSelected
" Print selected area from screen."

I temp I
temp:= Bitmap fromUser.
temp isNil ifTrue:["nil].
temp outputToPrinter .
temp release!

reflectReal
" Answer the reflection of original image."

image isNil ifTrue:[MessageBox message:'Open an image or
select from screen!! ! !'.

"nil].
image reflectReal.
self display:image.!

resourceDLLFile
" Answer the DLL filename for resources, tool bar bitmaps

and icons."

"'imagelab.dll'!

save
" Output image to file. Output loaded image or it operat

result."

image isNil ifTrue:[Prompter prompt:'No image loaded'

Appendices A44

default:'Chose Save select'.
"nil],

fileName:= (FileDialog new savelmage:'Save Image'
fileName;

fileName) file.
fileName isNil ifTrue: ["nil].
CursorManager normal change,
image outputToFile:fileName.

CursorManager normal change!

saveSelect
" Save select area from screen."

I image1 j
imagel:= Bitmap fromUser.
imagel isNil ifTrue:["nil].
fileName:= (FileDialog new saveTitle:'Save Image'

fileName;
fileName) file.

fileName isNil ifTrue: ["nil].
imagel outputToFile:fileName.
imagel release!

seFromUser
"Copy a portion of the receiver's contents as structure

element."

I bitmap |
bitmap := Bitmap fromUser.
selmage:=bitmap.
CursorManager execute change.
anOc:= selmage getPoints:ClrWhite.
CursorManager normal change.!

spectrum
" Answer a 256 gray shade spectrum in current palette."

I bM bA w h numBytes colTab|
w :=256.
h := 32.
numBytes := w*h.
bA := ByteArray new: numBytes.

(1 to: numBytes) do: [:i 1 bA at: i put: (i- 1)\\256].
image isNil ifTrue:[

MessageBox message:'Please load an image!!'.
"nil]

ifFalse:[
colTab:= image bitmaplnfo colorTable].

bM:=Bitmap new initPenWidth: w
height: h

planes: 1
bitCount: image

bitCount.
bM bitmaplnfo colorTable: colTab.
bM createBitmap: bA .

self display:bM.
bM release. !

Appendices A45

square
" P r i v i t e — Answer a 3X3 s u q a r e b i t m a p . "

1 a B y t e A r r a y i n d e x 1
CursorManager e x e c u t e change ,
i n d e x : = 1 .
a B y t e A r r a y : = B y t e A r r a y new: 124 .

(0
0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 128 0 0 3 128 0 0 3
128 0 0 0 0 0 0 0 0 0

0
0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0) d o : [: i I
a B y t e A r r a y a t : i n d e x p u t : i .
i n d e x :=index4-l] .

s e lmage n o t N i l i f T r u e : [s e l m a g e r e l e a s e] ,
s e lmage := Image new w i d t h : 3 1

h e i g h t : 3 1
bits:aByteArray.

an0c:=selmage builtSN.
CursorManager normal change,
self display:selmage.
"selmage!

startTimer: aPane
" Change the system menu."

Time startTimer: 99 period: 100 forWindow: self mainView.

StatusPane:aStatusPane
" Set the StatusPane contents."

I statusBoxes |
statusBoxes := OrderedCollection new

add: (StatusBox new
space: aStatusPane font

width;
name: #status);

add: (StatusBox new
space: aStatusPane font

width;
width: (aStatusPane font

stringWidth: CursorManager cursorPosition printstring);
name: #posi);

add: (StatusBox new
space: aStatusPane font width;
width: (aStatusPane font stringWidth: Time

now printstring);

'CAPS');

name: #time);
add: (StatusBox new

space: aStatusPane font width;
width: (aStatusPane font stringWidth:

contents: 'CAPS';
name: #caps);

add: (StatusBox new
space: aStatusPane font width;
width: (aStatusPane font stringWidth: 'NUM');
contents: 'NUM';
name: #num);

Appendices A46

add: (StatusBox new
space: aStatusPane font width;
width: (aStatusPane font stringWidth: 'OVR');
contents: 'OVR';
name: #ovr);

yourself.

aStatusPane contents: statusBoxes.
(self StatusPane statusBoxAt: #status) contents: 'Ready'.!

statusPaneHelp:aKey
" Answer the hint text used by the StatusPane for the help

support."

"HelpImageLab at:aKey ifAbsent:["super statusPaneHelp:aKey].!

symeDif
" Answer the Symetric Difference of two images."

I imageR aPoint |
self imageCheck isNil ifTrue:["nil].
image symmetricDiff:selmage.
self display:image.!

sysPal

" Change system pallete into system palette."

I hdc I

hdc := UserLibrary getDC: nil.

GDILibrary setSystemPaletteUse: hdc wUsage:SyspalStatic.
GDILibrary unrealizeObject: hdc .

UserLibrary postMessage:16rFFFF
msg: WmSyscolorchange

wparam: 16rFFFF
Iparam: 1.

UserLibrary releaseDC: nil with: hdc.!

thick

MessageBox message:'Sorry, not available in this version!!!!'
"self!

thin

MessageBox message:'Sorry, not available in this version!!!!'
"self!

timer:aTopPane
" Update the time in the StatusPane."

(aTopPane statusPane statusBoxAt: #time) contents:Time now.
(aTopPane statusPane statusBoxAt: #posi)

contents:CursorManager cursorPosition.!

Appendices A47

toggleKey:aPane
" Update the StatusPane to display the state of the toggle

keys. The normal modes, such as Insert or non-Caps-lock mode, are
indicated in the status bar by the absence of the indicator for the
opposite mode. This is compliant with the Microsoft user Interface
Style Guide for Windows 3.1."

(aPane statusPane
isKeyToggled: VkCapital).

(aPane statusPane
IsKeyToggled: VkNumlock).

(aPane statusPane
isKeyToggled: Vklnsert) . !

StatusBoxAt;

StatusBoxAt;

StatusBoxAt;

#caps) show:

#niam) show:

#ovr) show:

(Notifier

(Notifier

(Notifier

toggleMenu: menuName item: itemName
" Toggle the selected menu item."

I theMenu aBooleanj
theMenu := self frame menuWindow menuTitled: menuName.
(aBoolean:=theMenu isChecked:itemName)

ifTrue: [self frame uncheckltem:itemName
forAllMDIChildMenus:menuName]

ifFalse: [self frame checkltem:itemName
forAllMDIChildMenus:menuName].

"aBoolean!

toggleStatusPane
" Show/Hide the StatusPane."

self toggleMenu: '&Options' item:#toggleStatusPane.
self statusPane show,
self mdiArrange.!

toggleToolPane
" Show/Hide the ToolPane."

self toggleMenu: '&Options' item:#toggleToolPane.
self toolPane show,
self mdiArrange.!

toolPane:aPane

" Set the toolPane contents."

IaToolCollection aTool|

aToolCollection:=Orderedeollection new.

aTool:=Tool fromModule:self resourceDLLFile id:'create'
aTool selector:#imagePane; owner:self; space:6.
aToolCollection add:aTool.

aTool:=Tool fromModule:self resourceDLLFile id:'filein'
aTool selector:#loadImage; owner:self; space:6.
aToolCollection add:aTool.

Appendices A48

aTool:=Tool fromModule:self resourceDLLFile id:'save'.
aTool selector:#save; owner:self.
aToolCollection add:aTool.

aTool:=Tool fromModule:self resourceDLLFile id:'saveimage'.
aTool selector:#saveSelect; owner:self.
aToolCollection add:aTool.

aTool:=Tool fromModule:self resourceDLLFile id:'cross_3X3'.
aTool selector:#cross;owner:self; space:6.
aToolCollection add:aTool.

aTool:=Tool fromModule:self resourceDLLFile id:'squre_3X3'.
aTool selector:#square;owner:self.
aToolCollection add:aTool.

aTool:=Tool fromModule:self resourceDLLFile id:'circle'.
aTool selector:#disk;owner:self.
aToolCollection add:aTool.

aTool:=Tool fromModule:self resourceDLLFile id:'dilation'.
aTool selector:#dilation; owner:self; space:6.
aToolCollection add:aTool.

aTool:=Tool fromModule:self resourceDLLFile id:'erosion'.
aTool selector:#erosion; owner:self.
aToolCollection add:aTool.

aTool:=Tool fromModule:self resourceDLLFile id:'opening'.
aTool selector:#opening; owner:self.
aToolCollection add:aTool.

aTool:=Tool fromModule:self resourceDLLFile id:'closing'.
aTool selector:#closing; owner:self.
aToolCollection add:aTool.

aTool:=Tool fromModule:self resourceDLLFile id:'edge_trace'.
aTool selector:#edgeTrace; owner:self.
aToolCollection add:aTool.

aTool:=Tool fromModule:self resourceDLLFile id:'copy'.
aTool selector:#copyGraph; owner:self; space:6.
aToolCollection add:aTool.

aTool:=Tool fromModule:self resourceDLLFile id:'paste'.
aTool selector:#pasteGraph; owner:self.
aToolCollection add:aTool.

aTool:=Tool fromModule:self resourceDLLFile id:'print'.
aTool selector:#print; owner:self.
aToolCollection add:aTool.

aTool:=Tool fromModule:self resourceDLLFile id:'inspectit'.
aTool selector:#bitEdit;owner:self;space:11.
aToolCollection add:aTool.

" aTool:=Tool fromModule:self resourceDLLFile id:'cut'.
aTool selector:#erase:;owner:self.
aToolCollection add:aTool. "

aPane contents: aToolCollection.

union

Appendices A49

Answer the union of two images"

1 imageR aPoint |
self imageCheck isNil ifTrue:["nil].
image union:selmage.
self display:image.!

viewlmage
"View current image."

image isNil ifTrue:[MessageBox message:'No image to view!!'.
"nil].

self display:image.!

viewSE
" View current structure element."

selmage isNil ifTrue:[MessageBox message:'No SE is
selected!!'.

"nil].
self display:selmage.! !

F.3 Methods in Class ILTextWin(dow

TextWindow subclass: #ILTextWindow
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries:

'ColorConstants ' !

!ILTextWindow class methods ! !

'ILTextWindow methods !

openOn: aString
"Open the receiver with aString as its initial contents."

file := aString.
self addSubpane:

(ILTextPane new
owner: self;
backColor:ClrCyan;
when: #getContents perform: #stringContents:;
when: #save perform: #saveString:;
framingBlock: [:box | box]),

self icon: (Icon fromModule: Icon defaultDLLFileName
id:'TextWindow').

self openWindow.
partial := false,
self menuWindow

removeMenu: (self menuWindow menuTitled: '&Image');
removeMenu: (self menuWindow menuTitled: '&Morph');
removeMenu: (self menuWindow menuTitled: 'SOptions');
removeMenu: (self menuWindow menuTitled: '&Palette');
removeMenu: (self menuWindow menuTitled: '&Color')!

openOnFile: aFile

Appendices A50

"Open the receiver with aFile as its contents."

file := aFile.
partial := file size > 10000.
self addSubpane:

(ILTextPane new
owner: self;
backColor:ClrCyan;
when: #getContents perform: #readFile:;
when: #save perform: #saveFile:;
framingBlock: [:box | box]).

self label: file pathName.
self icon: (Icon fromModule: Icon defaultDLLFileName

id:'TextWindow').
self openWindow.
partial ifTrue: [

self menuWindow addMenu: (Menu new
owner: self;
title: 'SPartial File';
appendltem: '&Read Entire File' selector:

#readEntireFile) .] .
self menuWindow

removeMenu: (self menuWindow menuTitled: '&Image');
removeMenu: (self menuWindow menuTitled: '&Morph');
removeMenu: (self menuWindow menuTitled: 'SOptions');
removeMenu: (self menuWindow menuTitled: '&Palette');
removeMenu: (self menuWindow menuTitled: '&Color')

" (self menuWindow menuTitled: '&File')
disableltem: #accept]. "!

readEntireFile
"Private - If a partial file was read, read it all now."

partial := false,
self changed: #readFile:.
self menuWindow removeMenu:

(self menuWindow menuTitled: 'SPartial File')! !

F.4 Methods in Class ImageWindow

GraphLab subclass: #ImageWindow
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries:

'WinConstants ' !

!ImageWindow class methods ! !

!ImageWindow methods !

drawinc^ode: aSymbol
"Set the state to aSymbol and have the menu reflect it."

(self frame menuWindow menus at: 2)
uncheckltem: state,

(self frame menuWindow menus at: 2)
checkltem: aSymbol.

Appendices A51

state := aSymbol!

open
" Open an MDI Child "

I child I
self addView: (child :=

MDIChild new
when: #activate perform: #activate:;
style: WsMaximizebox |

WsMinimizebox |
WsThickframe |
WsSysmenu |
WsCaption |
WsOverlapped)
WsClipsiblings |
WsClipchildren;

frame:self frame;
owner:self;
icon:(Icon fromModule:self resourceDLLFile

id:'IMAGE_WORKSPACE') ;
label:'Image Workspace';
yourself).

child addSubpane:(
pane := ImageProPane new

owner: self;
when: #getMenu perform: #modeMenu:;
when: #geteontents perform: #initPen:;
when: #buttonlDown perform: #mouseDown:;
yourself).

child openWindow!

pane

" Answer current working image pane."

"pane!

resourceDLLFile

"Private - Answer the DLL filename for resources, tool bar
bitmaps and icons."

"'imagelab.dll'! !

F.5 Methods in Class Matrix

Array variableSubclass: #Matrix
instanceVariableNames:

'rows columns pivotValue '
classVariableNames: ''
poolDictionaries:

'CharacterConstants ' !

'Matrix class methods !

new: row with: column
1 answer |

answer:=super new: row * column.

Appendices A52

answer rows: row.
answer columns: column,
'answer!

rows: row coltimns: column
I answer |
answer:=super new: row * column,
answer rows: row.
answer columns: column,

"answer! !

(Matrix methods !

* aMat
"Classical matrix multiplication."

I result vl v2 td |
result := self class new: self rows with: self columns.
1 to: self rows do:[:i|

1 to: aMat columns do: [:j |
td:=0.
1 to: self columns do:[:k |

td:= td + ((self at: i at: k) *(aMat at: k at:j)).]
result at: i at: j put: td.].].
"result!

at: i at: j
"Access matrix element in (i,j)."

I value I
(i <0 or: [i > self rows]) ifTrue: [" nil].
(j <0 or: [j > self columns]) ifTrue: ["nil]
value:= self loc: i with: j.
"(self at: value)!

at: i at: j put: k
"Assignment for matrices."

I value I
value:= self loc:i with:j.
self at: value put: k.
" self!

columns
"Answer the number of columns in matrix. "

"columns!

columns: anlnt
"Force new number of columns."

columns:= anlnt.!

eNbr:j at:i
"Answer the east neighbour of element (i,j)"

((i+1) > (self columns)) ifTrue:["0].
"(self at:j at:(i+1))!

Appendices A53

eNbr:j at:i put:k
"Replace the east neighbour of element (i,j) with k'

((i+1) > (self columns)) ifTrue:["0].
self at:j at:(i+1) put:k.
"self!

loc:i with:j
" Locate the (i,j) matrix element in Matrix "
" ((i- 1) * (self columns) + j)!

locate
"Locate the position of same value non-zero group in a

matrix.(first from left-top, related to left-top corner) Answer an
ordered collection Format:-(valuel, pointi, value2, point2, ...
valueX, pointX, count)"

I n e count|
n:= OrderedCollection new.
count:=0.
1 to: (self rows) do:[:i|

1 to: (self columns) do:[:jl
e:=self at:i at:j .
(e~=0) ifTrue:[

(n includes:e) ifFalse:[
count:=count+l.
n add:e.
n add:(j0i)]]

]].
n add:count,
"n!

nNbr:j at: i
"Answer the north neighbour of element (i,j)"

(j- 1) = 0 ifTrue:["0].
"(self at: (j- 1) at:i) !

nNbr:j at:i put:k
"Replace the north neighbour of element (i,j) with k"

(j- 1) = 0 ifTrue:["0].
self at:(j- 1) at:i put:k.
"self!

nl^: j at: i
"Fill the north neighbours with element at (j,i) untill zero

value is met."

I k m I
k:= self at:j at:i.
m:=j .
[(self nNbr:m at:i)~=0] whileTrue:[

self nNbr:m at:i put:k.
m:=m- 1.] .

"self!

Appendices A54

rows
"Answer the number of rows in matrix."

"rows!

rows: anlnt
"Force new number of rows."

rows:= anlnt.!

show

I sum I
sum := 0.
1 to: self rows do: [:i |

1 to: self columns do: [:j |
Transcript show:

(self at: i at: j) printstring, ' ' .] .
Transcript show: Lf printstring.
].!

sNbr:j at:i
"Answer the south neighbour of element (i,j)"

((j+1) >(self rows)) ifTrue:["0].
"(self at: (j+1) at:i) !

sNbr:j at:i put:k
"Replace the south neighbour of element (i,j) with k"

((j+1) >(self rows)) ifTrue:["0].
self at:(j+1) at:i put:k.
"self!

wBack:j at:i
"Fill the west neighbours with element at (j,i) untill zero value

is met."

I k m I
k:= self at:j at:i.
m:=i.
[(self wNbr:j at:m)~=0] whileTrue:[

self wNbr:j at:m put:k.
m:=m- 1.] .

"self!

westNorth:j at:i
"Fill the west neighbours and north neighbour's value untill zero

value is met."

I k m I
k:= self nNbr:j at:i.
m:=i.
[(self wNbr:j at:m)~=0] whileTrue:[

self wNbr:j at:m put:k.
self nUp:j at:m.

Appendices A55

m:=m- 1,
'self!

wNbr:j at: i
"Answer the west neighbour of element (i,j)"

(i- 1) = 0 ifTrue:["0].
"(self at:j at: (i- 1)) !

wNbr:j at:i put:k
"Replace the west neighbour of element (i,j) with k'

(i- 1) = 0 ifTrue:["0].
self at:j at:(i- 1) put:k.
"self! !

AboutDialog subclass: #AboutImageLabDialog
InstanceVariableNames: ''
classVariableNames: ''
poolDictionaries: '' !

'AboutlmageLabDialog class methods ! !

'AboutlmageLabDialog methods !

open
"Open a dialog box telling about ImageLab."

I lineHeight |
self

labelWithoutPrefix: 'About Image Lab'.

lineHeight := 8.
self addSubpane:

(StaticText new
centered;
contents: 'Image Lab Release 1.00';
framingBlock: [:box |

(box leftTop down: lineHeight)
extentFromLeftTop: box width 0 lineHeight]).

self addSubpane:
(StaticText new centered;

contents: 'By Fei Liu. May 1993';
framingBlock: [:box I (box leftTop down: lineHeight *

3)
extentFromLeftTop: box width 0 lineHeight]).

self addSubpane:
(StaticText new centered;

contents: 'All rights reserved';
framingBlock: [:box I (box leftTop down: lineHeight * 4)

extentFromLeftTop: box width 0 lineHeight]).

self addSubpane:
(StaticText new centered;

contents: 'PO Box 14428 MMC';
framingBlock: [:box I (box leftTop down: lineHeight * 6)

extentFromLeftTop: box width 0 lineHeight]).

Appendices A56

self addSubpane:
(StaticText new centered;

contents: 'Melbourne Victoria 3000';
framingBlock: [:box I (box leftTop down: lineHeight * 7)

extentFromLeftTop: box width @ lineHeight]).

self addSubpane:
(StaticText new centered;

contents: '(61) (03) 688-4854';
framingBlock: [:box I (box leftTop down: lineHeight * 8)

extentFromLeftTop: box width 0 lineHeight]).

self addSubpane:
(StaticText new centered;

contents: 'Image Lab is a research product';
framingBlock: [:box | (box leftTop down: lineHeight •*

12)

13)

2)

extentFromLeftTop: box width 0 lineHeight]).

self addSubpane:
(StaticText new centered;

contents: 'of Fei Liu at VUT';
framingBlock: [:box I (box leftTop down: lineHeight *

extentFromLeftTop: box width 0 lineHeight]).

self addSubpane:
(Button new defaultPushButton;

idOK;
contents: 'OK';
when: #clicked perform: #ok:;
framingBlock: [:box I (box leftTop rightAndDown:

(box width - 35) // 2 0 (lineHeight * 19 //

extentFromLeftTop: 35 0 (lineHeight * 2)]).

self openWindow! !

