

EFFICIENT STORAGE AND RETRIEVAL

METHODS FOR MULTIMEDIA

INFORMATION

Kwok Chung Tse

'̂- LIBRARY A

V • • - i ^ : y -

This thesis is presented in fulfilment of
the requirements of the degree of

Doctor of Philosophy

School of Communications and Informatics

Victoria University

Australia

1999

: / ̂ 1 5 - 1

FTS THESIS
006.7 TSE
30001006994869
Tse, Kwok Chung
Efficient storage and
retrieval methods for
multimedia information

Declaration

This thesis contains no materials that have been accepted for the award of any

other degree or diploma in any university. The materials presented in this thesis

are the product of the author's own independent research under the supervision of

Professor Clement Leung.

Philip Kwok Chung Tse

August, 1999

Abstract

The input/output performance has always been the bottleneck problem of

computer systems, and with multimedia applications, the problem has been

intensified. Hierarchical storage systems provide extensive storage capacity for

multimedia data at very economical cost, but the long access latency of tertiary

storage devices makes them not attractive for multimedia systems. In this thesis,

we present new storage and retrieval methods to handle multimedia data on

hierarchical storage systems efficiently. First, we create a novel hierarchical

storage organization to increase the storage system throughput. Second, we

enhance the data migration method to reduce the multimedia stream response

time. Third, we design a new bandwidth based placement method to store

heterogeneous objects. Fourth, we demonstrate that disk performance is

significantly enhanced using constant density recording disks. We have

quantitatively analysed and compared the performance of magnetic disks and

hierarchical storage systems in serving multimedia streams of requests. We have

also earned out empirical studies which confirm our findings. Our new storage

and retrieval methods are able to offer significant advantages and flexibility over

existing methods.

Acknowledgment

1 am deeply indebted to my supervisor. Professor Clement Leung, for his

guidance, constant direction, and countless hours of time. 1 thank him for his

patience and trust that allow me perform at full potential. I also appreciate his

encouragement and support through the darkest days. 1 have benefited

immeasurably from his tutelage.

I gratefully acknowledge Associate Professor Neil Barnett, Head of the

School of Communications and Informatics, for his approvals to the generous

scholarship and financial support. I would like to thank other staff of the School of

Communications and Informatics for being supportive and cooperative. 1 would

like to thank my friends, Simon So, David Taniar, Dwi Sutanto, Tony Sahama,

and Raymond Summit for many hours of technical discussions.

I deeply owe my appreciation to my wife, Peky, for her consistent support

with trust and love in these years that I was able to do this research. I miss the

moments that I could otherwise spend with my two sons, Joshua and Jonah, who

understand their father's reason for returning home late. I also thank my parents

who provide me with education and direction since I was very young.

Last but not least, 1 praise GOD for leading me to pursue this dream,

answering all my prayers, and fulfilling all my needs during this study.

i l l

List of External Publications

1. Philip K. C. Tse and Clement H. C. Leung, "Improving Multimedia

Systems Performance Using Constant Density Recording Disks", ACM

Multimedia Systems Journal, Springer-Verlag, Volume 8, Number 1, pages

47-56, 2000.

2. Clement H. C. Leung, Simon W. W. So, Audrey Tam, Dwi Sutanto, and

Philip K. C. Tse, "Visual Information Indexing for Content-Based Search

and Retrieval", to appear in Michael Lew (Ed.), Multimedia Search: State

of the Art.

3. David Taniar, Simon W. W. So, Philip K. C. Tse, and Clement H. C.

Leung, "Parallel Content-Based Image Retrieval: A Case of Inter-Image

Parallelism vs. Intra-Image Parallelism", Proceedings of the sixth Annual

Australasian Conference on Parallel And Real-Time Systems (PART '99),

pages 273-283, 29* Nov. to I'^Dec, 1999.

4. Philip K. C. Tse, Audrey Tam, Clement H. C. Leung, and W. W. S. So,

"Efficient Storage Organization for the Execution of Visual Queries in

Large Object Databases", SPIE Vol. 3846, Proceedings of Multimedia

Storage and Archiving Systems IV Conference, Boston, MA, pages 351-

359, 19* to 22"''Sep., 1999.

iv

List of External Publications

5. Clement H. C. Leung and Philip K. C. Tse, "Storage Organization and

Performance for Multimedia Data", Handbook of Multimedia Computing,

CRC Press, Chapter 24, pages 507-524, 1999.

6. PhiUp K. C. Tse and Clement H. C. Leung, "A low latency hierarchical

storage system for Multimedia Data", lAPR International Workshop on

Multimedia Information Analysis and Retrieval, Springer-Verlag Lecture

Notes in Computer Science 1464, pages 181-194, August, 1998.

7. Simon W. W. So, Philip K. C. Tse, and Clement H. C. Leung, "A

Comparative Evaluation of Algorithms Using Compressed Data for Image

Indexing and Retrieval", Proceedings of International Conference on

Computational Intelligence and Multimedia Applications, pages 866-872,

February, 1998.

8. Philip K. C. Tse, "Tertiary Storage for Multimedia Systems", Proceedings

of CSPSC Conference, RMIT, Australia, pages 174-183, 10* to 11*

December, 1996.

Table of Contents

Declaration /

Abstract ii

Acknowledgment Hi

List of External Publications iv

Table of Contents vi

List of Figures xii

List of Tables xvi

1. Introduction 1

1.1 Objectives 1

1.2 Scope of Research 3

1.3 Contributions 5

1.4 Thesis Organization 7

2. Multimedia Storage Systems Performance Characteristics 8

2.1 Introduction 8

2.2 Problems of Existing Storage Systems 9

2.3 Characteristics of Storage Devices 11

2.3.1 Random Access Storage Device 11

2.3.2 Sequential Access Storage Device 12

2.3.3 Direct Access Storage Device 13

vi

Table of Contents

2.3.4 Disk Scheduling 22

2.3.5 Disk Arrays 23

2.3.6 Hierarchical Storage System 26

2.3.7 Data Migration 30

2.4 Multimedia Storage Systems Characteristics 32

2.4.1 Multimedia Data..... 32

2.4.2 Display Modes 37

2.4.3 Access Pattern of Multimedia Data Requests 39

2.5 Storage Organizations on Disks 47

2.5.1 Naive Placement 49

2.5.2 Contiguous Placement 49

2.5.3 Log Structure Placement 50

2.5.4 Statistical Placement 50

2.5.5 FauU Tolerant 52

2.5.6 Data Replication 53

2.5.7 Striping 55

2.5.8 Constraint Allocation 58

2.6 Hierarchical Storage Systems 65

2.6.1 System Cost 66

2.6.2 Tertiary Storage Organizations 68

2.6.3 Data Migration Methods 73

2.6.4 Cache Replacement Methods 78

2.7 Other Related Works 82

2.8 Discussion 83

2.9 Chapter Summary 88

Vll

Table of Contents

3. New Efficient Storage Organizations for Multimedia Data 90

3.1 System Performance Measures 90

3.2 System Architecture 95

3.2.1 Primary Storage Level 96

3.2.2 Secondary Storage Level 96

3.2.3 Tertiary Storage Level 97

3.3 Data Striping on Tertiary Storage 99

3.3.1 First Level 99

3.3.2 SecondLevel 102

3.4 Data Placement on Tertiary Storage 104

3.4.1 High Concurrency Placement 105

3.4.2 Low Latency Placement I l l

3.5 Data Placement on Disks 113

3.6 Multimedia Data Migration Methods 116

3.6.1 Concurrent Streaming for High Concurrency Placement... 116

3.6.2 Segment Based Pipelining 123

3.7 Discussions 126

3.8 Chapter Summary 131

4. Disk Storage Structure Analysis 132

4.1 Introduction 132

4.2 Performance Model of Disk Requests 133

4.2.1 Seek time 135

4.2.2 Rotation latency 137

4.2.3 Data Transfer Time 138

4.2.4 Data Transfer Time in Bandwidth Based Placement

Strategy 139

viu

Table of Contents

4.2.5 Waiting Time in Queue 140

4.3 Analysis of Request Service Time 142

4.3.1 Data Block Size 143

4.3.2 I/O Time Distribution 144

4.3.3 Data Stream Size 146

4.3.4 Disk Size 148

4.3.5 Seek Start/stop Time 149

4.3.6 Arm Moving Speed 150

4.3.7 Number of Disk Platters 151

4.3.8 Rotation Speed 152

4.3.9 Recording Density 153

4.3.10 Bandwidth Based Placement 154

4.4 Contention Analysis 156

4.4.1 Disk Utihzation 156

4.4.2 Request Waiting Time 158

4.4.3 Request Response Time 160

4.4.4 Queue Length 162

4.4.5 Number of Requests 163

4.5 Disk Storage Structure Simulations 164

4.5.1 Hardware Parameters 165

4.5.2 Data Access Time 166

4.5.3 Throughput of Partitioned Disk 167

4.5.4 Disk Utilization 168

4.5.5 Mean Waiting Time 169

4.5.6 Mean Response Time 170

4.5.7 Mean Queue Length 171

IX

Table of Contents

4.5.8 Mean Number of Requests 172

4.6 Chapter Summary 173

5. Analysis of Hierarchical Storage Organizations 175

5.1 Introduction 175

5.2 Feasibility of Accepting Concurrent Streams 177

5.2.1 Homogeneous Streams 178

5.2.2 Heterogeneous Streams 180

5.2.3 Multiple Devices 183

5.2.4 Application on Storage Devices 186

5.2.5 Optimization of Probability Model 188

5.3 Performance Model of Large Multimedia Storage Systems 189

5.3.1 Assumptions and Notations 189

5.3.2 Arrival Pattern 190

5.3.3 State Transitions of Concurrent Streams 197

5.3.4 Service Times 201

5.3.5 System Throughput 212

5.3.6 Stream Response Time 214

5.3.7 Buffer Size 220

5.4 Segment Based Pipelining 222

5.4.1 Assumptions 223

5.4.2 Continuous display requirement 224

5.4.3 Number of Data Stripes and Size of the Last Data Stripe.. 225

5.4.4 Number of Segments and Segment Size 227

5.4.5 Stream Start Up Latency 229

5.5 Analysis of Large Multimedia Storage Systems 232

5.5.1 Group ServiceTime 233

Table of Contents

5.5.2 Concurrent Retrieving Streams 234

5.5.3 Maximum System Throughput 235

5.5.4 Mean Stream Response Time 236

5.5.5 Buffer Size 238

5.6 Performance of Data Migration Methods 240

5.6.1 Disk Space and User Latency 241

5.6.2 Data Stripes and Segments 243

5.6.3 Object Size 245

5.6.4 Disk Bandwidth 245

5.6.5 Display Bandwidth 247

5.7 Large Multimedia Storage Server Simulations 248

5.7.1 Simulation Parameters 251

5.7.2 Number of Concurrent Streams 252

5.7.3 Maximum System Throughput 253

5.7.4 Mean Stream Response Time 254

5.7.5 Buffer Size Per Stream 256

5.8 Chapter Summary 258

6. Conclusion 260

6.1 Summary of Research Results 260

6.2 Extensions and Future Research 266

Bibliography 268

Appendix A Simulation Measurements 289

XI

List of Figures

1.1 Contributions within scopes of research 6

2.1 Variable density recording 15

2.2 Constant linear velocity format 16

2.3 Zoned disk layout 18

2.4 Hierarchical storage system 27

2.5 Composite multimedia object 45

2.6 Frequency based placement 51

2.7 Data replication 54

2.8 Simple striping 56

2.9 Staggered striping 57

2.10 Interleaved contiguous placement 60

2.11 Phase constraint allocation 62

3.1 Typical storage system architecture 95

3.2 Low temporal resolution data segments 100

3.3 Length cuts 101

3.4 Second level data striping 102

3.5 Media unit partitioning 105

3.6 Reorder data segments in high concurrency placement 107

Xll

List of Figures

3.7 Placing data segments among media units 108

3.8 Placing data segments within media units 110

3.9 Reorder data stripes in low latency placement 111

3.10 Bandwidth based placement 114

3.11 Concurrent streams management 118

3.12 Request service order 120

4.1 Area of track of radius x 134

4.2 Seek distance 135

4.3 Disk service time vs data block size 144

4.4 I/O time distribution of CDR disk requests 145

4.5 Throughput vs data stream size 146

4.6 Reduction in access time vs data stream size 147

4.7 Throughput vs disk size 149

4.8 Data access time vs seek start/stop Time 149

4.9 Data access time vs arm moving speed 150

4.10 Throughput vs number of platters 151

4.11 Throughput vs rotation speed 152

4.12 Throughput vs recording density 153

4.13 Throughput of zone groups 155

4.14 Disk utilization vs request arrival rate 157

4.15 Mean waiting time vs request arrival rate 158

4.16 Mean response time vs request arrival rate 160

4.17 Mean queue length vs request arrival rate 162

4.18 Mean number of requests vs request arrival rate 163

4.19 Data access time (5.25 inch disk) 166

xiu

List of Figures

4.20 Throughput of zone groups 167

4.21 Disk utilization 168

4.22 Mean waiting time 169

4.23 Mean response time 170

4.24 Mean queue length 171

4.25 Mean number of requests 172

5.1 Model of streams 191

5.2 Model of request arrival 192

5.3 Model of request queueing with feedback 195

5.4 Arrival times of streams and requests 196

5.5 State transition diagram of large multimedia storage system 198

5.6 Exchange request queue model 203

5.7 Model of single drive with feedback queue 214

5.8 Model of multiple drives 216

5.9 Components of stream response time 218

5.25 Individual group service time and mean stream service time vs

number of concurrent streams 233

5.11 Maximum number of concurrent streams vs segment length 234

5.12 Maximum system throughput vs segment length 235

5.13 Mean stream response time vs stream arrival rate 237

5.14 Mean stream response time vs media units per drive 238

5.15 Buffer size per stream vs stream arrival rate 239

5.16 Disk space required vs tertiary bandwidth 241

5.17 User latency vs tertiary bandwidth 242

5.18 Reposition latency vs tertiary bandwidth 243

XIV

List of Figures

5.25 Start up data stripe size and data stnpes per segment vs

tertiary bandwidth 244

5.20 Segment size and number of segments vs tertiary bandwidth 244

5.21 User latency vs object size 245

5.22 Disk space required vs disk bandwidth 246

5.23 Reposition latency vs disk bandwidth 246

5.24 Reposition latency vs display bandwidth 247

5.25 Starving requests percentage vs number of accepted concurrent

streams for 1 to 4 drives 252

5.26 Measured maximum system throughput 253

5.27 Mean stream response time 255

5.28 Measured buffer size per stream 257

XV

List of Tables

2.1 Some specifications of CD andDVD disk 17

2.2 Comparison of types of storage devices 27

2.3 Typical exchange service times (seconds) 30

2.4 Zipf distribution of 1000 objects in groups of 100 41

4.1 Notations in disk performance model 133

5.1 Notations in feasibility conditions 177

5.2 Notations m LMSS performance model 190

5.3 Notations used in segment based pipelining model 222

5.4 List of parameter values in LMSS performance analysis 232

5.5 Parameters values in data migration analysis 240

5.6 Parameters for multimedia storage server simulations 251

A.l Data access time 290

A.2 Throughput of a CDR disk being partitioned into two zone groups 291

A.3 Disk utihzation 291

A.4 Mean waiting time 292

A.5 Mean response time 292

A.6 Mean queue length 293

xvi

List of Tables

A.7 Mean number of requests 293

A.8 Maximum system throughput 294

A.9 Mean stream response time 295

A.IO Buffer size 296

xvii

Chapter 1

Introduction

1.1 Objectives

Advanced technology in recent years increases the availability of video and audio

information for computers. This trend leads to the merging of the computer and

entertainment industries for the purpose of efficiently handling multimedia

information in computer applications. This capability is able to support many new

multimedia applications, such as video-on-demand systems, interactive television,

and video conferencing.

The main objective of this research is to discover new knowledge and

techniques in building storage systems for managing multimedia data. Efficient

techniques to store, retrieve, and migrate multimedia data will be designed and

evaluated in this thesis.

The storage and retrieval characteristics of multimedia data are very

different from those of traditional data, and multimedia data place significantly

heavier demand on all components of computer systems. In particular, multimedia

data require high capacity, fast access time and high transfer rates from the storage

and memory. Data compression techniques using international standards such as

Introduction Chapter 1

JPEG, MPEG, have helped to reduce the storage size and bandwidth, but new data

placement techniques are necessary to meet the continuous retrieval requirements

of multimedia data.

Although secondary storage devices can provide some storage capability

for multimedia data, however, their size limitation and cost constraints present a

significant obstacle for their large scale adoption. Tertiary storage devices are

necessary to provide permanent storage for multimedia data. However, the

performance of the current generation of tertiary storage devices is highly

inadequate. It is widely felt that tertiary storage devices in combination with

hierarchical storage management will provide the most workable approach. New

knowledge on hierarchical storage systems will need to be found to make them

efficient for storing multimedia data.

Multimedia data require large bulky storage space so that tertiary storage is

inevitable in many large systems. Traditional storage organizations of tertiary

storage devices are tailored for sequential data access and are inefficient in

accessing multimedia data. Performance of these storage devices will degrade by

the high switching overheads and latency of tertiary storage devices. We provide

the design of a new storage organization for tertiary storage device to enhance

their performance for multimedia data retrievals.

Traditional data migration methods are inefficient for multimedia data.

Although the pipelining method minimizes the response time, it also limits the

display options. We shall present a new pipelining method, which minimizes the

response time but at the same time is able to support various user functions.

Introduction Chapter I

There is a recent trend to use disks based on constant density recording

(CDR) structure, which have different storage formats and performance

characteristics. The performance of multimedia requests on CDR disks so far has

not been studied in detail. We provide a detailed analysis of CDR disks in

handling multimedia data, present a new efficient method to place heterogeneous

multimedia objects on these disks.

1.2 Scope of Research

Research studies in computer storage system performance is often divided into the

following areas.

1. the architecture of the computer system,

2. the storage organizations, and

3. the data retrieval mechanisms.

In this thesis, we shall focus on the storage organizations aspects while taking

consideration the other two aspects.

• System Architecture Design

A computer system is built by connecting CPU, system bus, memory, disks,

keyboard, and CRT display together. It may also be connected to networks,

storage libraries, and other electronic peripherals. Since the storage system is often

the slowest but frequently accessed part of a computer system, the overall

performance of these systems is constrained by the performance of the storage

system. Hence, the choice of storage devices is critical to system performance.

Introduction ^ ^ Chapter 1

We shall investigate the impact on the performance of multimedia requests

when disks based on constant density organization are used in place of traditional

organizations. The result of this analysis will have a direct bearing on future

multimedia system design.

• Storage Organizations

Storage organizations determine the physical location of data placed at the storage

devices. Since most overheads in storage devices are spent in moving to the

physical locations of the accessed data, the storage organization is critical in

determining the system performance. We develop two new storage organizations

for multimedia data based on constant density recording structure and tertiary

storage systems.

• Data Retrieval Mechanism

The data retrieval mechanism, in particular the scheduling algorithm, is often

ignored in designing high performance systems design. However, retrieval

overheads in some devices may be reduced when several requests are being served

together using appropriate scheduling algorithms. Data migration forms part of the

data retrieval mechanism that moves data across storage systems. We present a

new pipelining method that will enable efficient migration of multimedia

information across different levels of the storage hierarchy.

Introduction Chapter I

1.3 Contributions

This thesis makes four principal contributions. The relationships between our

contributions and the scope of research are shown in Figure 1.1.

• New Bandwidth Based Placement

We design a novel bandwidth based placement method to store heterogeneous

multimedia objects on constant density recording disks. This method of placement

has the advantage of maintaining the balance between the space and bandwidth of

disk zones to secure high bandwidth zones for high bandwidth objects.

• New High Concurrency Placement

We design a novel storage organization for the efficient execution of multimedia

data requests on tertiary storage systems. This novel high concurrency placement

method allows the overheads of concurrent multimedia data requests to be shared

out, and increases the system throughput by means of data migration. Since the

tertiary storage system performance is enhanced by application of the high

concurrency placement method, large multimedia systems can be made more

efficient through this new storage organization.

• New Segment Based Pipelining

We also design a new segment based pipelining method that moves data between

storage hierarchy. This pipelining method reduces the response time in serving

interactive user functions and it also allows data previewing prior to display.

Introduction Chapter 1

• Performance Model and Analysis

We analytically demonstrate that constant density recording structures are superior

to traditional disks in serving multimedia data requests. We also provide insight to

the design of these storage structures.

data retrieval mechanism segment based
pipelining

storage organization
bandwidth
based
placement

high
concurrency
placement

system architecure

r ^
performance model
and analysis

Figure 1.1. Contributions within scopes of research

Introduction Chapter 1

1.4 Thesis Organization

The organization of this thesis is as follows. In Chapter 2 we review and evaluate

the design requirements of multimedia storage systems and data storage

organizations. In Chapter 3 we present our new hierarchical storage organization

design. In Chapter 4 we analyse the performance characteristics of CDR disks, and

we study the disk request service behaviour for multimedia data accesses. In

Chapter 5 we prove the feasibility of accepting and processing multimedia

heterogeneous streams, and present our performance model of tertiary storage

systems and data migration methods. We also analyse and compare the tertiary

storage system performance in large multimedia storage servers. Chapter 6

provides the conclusion to this thesis.

Chapter 2

Multimedia Storage Systems

Performance Characteristics

2.1 Introduction

Multimedia systems are required to store and manipulate a variety of media types.

The types of media include text, graphics, images, sound, audio and video.

Because of the types of media being handled, multimedia information systems are

able to produce striking visual and audio impact on the user. Applications, such as

video-on-demand systems, interactive television, and video conferencing, are

expected to be widely available.

The storage components of multimedia systems may comprise video

servers, audio servers, and image servers [10, 28], where each server tends to be

optimized to retrieve one particular type of data. A collection of multimedia

servers will need to balance the load of various types of media data in order to

deliver an acceptable level of performance.

Multimedia Storage Systems Performance Characteristics Chapter 2

2.2 Problems of Existing Storage Systems

There is a substantial performance gap between storage systems and other parts of

the computer system. Main memory access time is of the order of 10"̂ second,

current disks support an access time of 10'̂ second, and tertiary storage devices

takes minutes to access data. Such performance gap already exists for

conventional structured data and text based applications, but they are widened in

multimedia applications. Conventional databases mainly focus on Online

Transaction Processing (OLTP) applications and these typically require no more

than a handful of rows from a relational table. Online Analytic Processing

(OLAP), data warehouses, decision support applications, and data mining

admittedly require a higher level of data intensity, but their performance constraint

is much less stringent than that for real-time multimedia applications.

A multimedia file system needs to store a pool of multimedia objects, and

is different from a conventional file system due to the support required for

continuous retrieval of the multimedia streams and for efficient browsing and

indexing of the data [135]. A multimedia object can consist of data from several

media streams such as audio and video. Stored information of a multimedia object

may consist of compressed media streams, lengths of data blocks, the inter-media

synchronization information, the real-time access bandwidth, the display

bandwidth, and the resolution of the objects. All these information must be

maintained by the file system [88].

Traditional storage organizations are tailored for small transfers on

magnetic disks. With the advent of the new multimedia age, these storage

organizations become inefficient in accessing multimedia data. It remains a

Multimedia Storage Systems Performance Characteristics Chapter 2

significant research area to improve the performance of multimedia storage

systems.

Two approaches are commonly found in designing multimedia disk

storage. In the first approach, the file organization is highly structured and

optimized for storing audio and video files [99, 115, 142]. Some storage

organizations have been proposed for multimedia data on magnetic disks: disk

arrays provide large storage capacity; staggered striping reduces disk contentions;

constraint allocations lower seek overheads to meet continuous display

requirement; interleaving allocation supports concurrent streams. In the second

approach, disk scheduling algorithms are specialized for accessing multimedia

data efficiently [2, 55, 122, 142]. Both approaches aim to reduce the overheads of

accessing multimedia data from disks.

Unfortunately, these storage methods that works well in magnetic disks are

not directly applicable to tertiary storage in large multimedia systems. Current

works on tertiary storage are also inadequate for accessing multimedia objects,

resulting in low throughput and long response time. New storage organizations

and data migration methods that provide efficient multimedia data retrievals from

tertiary storage devices are an important research areas.

Multimedia data require large bulky storage space that the use of tertiary

storage is inevitable in many large systems. Traditional storage organizations on

tertiary storage devices are tailored for sequential data access and are inefficient in

accessing multimedia data. Performance of these storage devices is degraded by

the high switching overheads and latency of tertiary storage devices. It remains an

10

Multimedia Storage Systems Performance Characteristics Chapter 2

important research problem to create new storage organizations on tertiary storage

for efficient multimedia data retrievals.

Traditional data migration methods are inefficient for multimedia data. The

pipelining method minimizes the response time, but it also limits the display

options. Hence, the pipelining method should be enhanced to increase flexibility.

2.3 Characteristics of Storage Devices

Computers access data from memory, magnetic disks, optical disks, optical

jukeboxes, and magnetic tape libraries. Storage devices are often classified by the

access mechanism into three types: random access, direct access, and sequential

access [102, 119].

2.3.1 Random Access Storage Device

Random access storage devices are memories that any particular location of small

size (either a bit or a byte) has a unique, physically wired-in addressing

mechanism. These memory chips are mounted permanently on the mother boards

of the computer.

Random access memory (RAM) and read only memory (ROM) are two

most commonly used random access storage devices. However, RAM and ROM

are also the most expensive storage devices and their storage capacities are the

smallest. Data on RAM would also be lost when the power is gone. Therefore,

random access storage devices are suitable for storing data that are small,

transient, temporary, dynamic, and recoverable.

11

Multimedia Storage Systems Performance Characteristics Chapter 2

Since all stored locations are physically wired, data on these memories can

be read and written without any mechanical movements. Time to access any given

location is the same for all locations. Since the data access time is of the order of

o

10" seconds and this is much faster than other storage devices, we assume that the

bandwidth of random access storage devices are unbounded in this thesis.

2.3.2 Sequential Access Storage Device

Sequential access storage device are memories that all the storage locations can

only be accessed sequentially. Magnetic tapes, optical tapes and tape-like storage

devices belong to this category.

The major advantage to sequential access storage device is their low media

cost. The reason for such low cost is the separation of media surface from the

heads assembly. All the array wirings in random access storage devices are

eliminated and replaced with only one assembly of read/write heads to access the

entire media surface.

The second advantage to sequential access storage device is their large

storage capacity per physical volume. Since the storage surface is concealed by

wrapping around a reel, whereas the platter surfaces are exposed in disks. The

storage capacity per physical volume of a tape is larger than that of a disk. Thus,

tapes provide one order of magnitude larger in storage capacity per volume than

disks.

The complete separation of media surface from the heads assembly also

allows for the most flexible choice in the number of head assemblies. When low

data bandwidth is already enough, only one drive can be used. When higher data

12

Multimedia Storage Systems Performance Characteristics Chapter 2

bandwidth is necessary, more drives can be added. The necessary bandwidth can

easily be multiplied by the number of heads assembly being used.

Unfortunately, tape drives have a much greater price range starting from

several hundred dollars to hundreds of thousand dollars though tape storage are

cheaper than disk storage. The high end tape drives are very expensive, and a few

drives are often used for a large number of tapes. This price factor makes tapes

mainly used for storing large amount of low activity data. Thus, tapes are used in

many write-once and seldom read type of applications, like archival of data. Since

its introduction, magnetic tape has been used as the medium for mass storage.

Due to the long access latency and high transfer rate, the tape drive

throughput is low for random access but high for sequential access. Hence, tapes

are often used in sequential data access type of applications, such as data archival

and merging of sorted records.

2.3.3 Direct Access Storage Device

Direct access storage devices (DASD) are memories that require both a direct

operation and a sequential operation in accessing data. The direct operation goes

directly to one area of the total storage and the sequential operation moves over a

smaller portion of the storage area [95, 102, 119].

Magnetic hard disks, floppy disks, compact disks (CD), and magneto-

optical disks are common DASD. The digital versatile disks (DVD) emerge as the

new storage medium for multimedia data. Floppy disks, CD, DVD, and magneto-

optical disks are often exchangeable. Magnetic hard disks are often fixed inside

the computers though some exchange boxes are commercially available.

13

Multimedia Storage Systems Performance Characteristics Chapter 2

Magnetic disks contain several circular platters connected together at the

centre spindle. Data are recorded on the surface on the platters. The read/write

heads are mounted on arms that move in parallel to the surface of the platters. The

disk motor rotates the spindle and the platters at a fixed rotation speed. Each

read/write head then hovers at a circular track above the surface of the platter.

Each track is then divided into a number of sectors. The tracks on all platters are

grouped together to form a cylinder.

(a) Disk Formats

Magnetic disks can be classified according to the recording density divided into

Variable Density Recording (VDR) disks and Constant Density Recording (CDR)

disks.

Traditionally, the same amount of data are recorded in each track of the

disk no matter the track is close to or far from the centre. Since the outer tracks are

longer than the inner tracks, data are packed together at inner tracks and spaced

apart at outer tracks. The recording densities of inner tracks are then higher than

the recording density of outer tracks (Figure 2.1). As the recording density is not

uniform, these traditional disks are also called Variable Density Recording (VDR)

disks.

14

Multimedia Storage Systems Performance Characteristics Chapter 2

outer longer track

inner sliorter track

Figure 2.1. Variable density recording

VDR disks use simple fixed motor speed and fixed linear recording speed.

However, the maximum amount of data that can be recorded on each track are

limited by the length and recording density at the innermost track. As the longer

outer tracks can store more data using the same recording density as the innermost

track, storage capacities of the outer tracks are somewhat wasted. Hence, these

disks suffer from low recording density and low storage efficiency at outer tracks.

As the need for disk storage capacity increases, a method in disk design

now gaining wide acceptance is Constant Density Recording (CDR). The

recording density of these CDR disks is maintained to be uniform across the disk

surface [83]. This is achieved using either the Constant Angular Velocity (CAV)

or the Constant Linear Velocity (CLV) approach.

15

Multimedia Storage Systems Performance Characteristics Chapter 2

Spiral Track

Sectors

Figure 2.2. Constant linear velocity format

• Constant Linear Velocity Approach

Optical disks, such as CD and DVD, use the CLV approach. When the read/write

heads move towards the centre of the disks, the drive motor accelerates to a higher

speed. When the read/write heads move away from the centre, the drive motor

slows down. The read/write heads are then maintained at a fixed linear velocity

above the disk track. Data are written on the sectors of a long continuous spiral

track on each side of the disk surfaces (Figure 2.2). As the read/write heads

traverse the disk surface at a fixed linear speed, the same amount of data are then

transferred in a fixed period of time. Hence, their data transfer rates on different

tracks are the same whereas their track capacities vary [132].

A DVD may have one or two layers on each side of the disk. Each layer

has one spiral track running from the inside to the outer rim of the disk. A single

layer DVD can store up to 4.7 gigabytes of data on each side. A dual layer DVD

has two spiral tracks on each side of the disk, one on each layer. The track on the

16

Multimedia Storage Systems Performance Characteristics Chapter 2

second layer is running in parallel or in opposite directions with that on the first

layer. The opposite running spiral tracks are used to provide seamless jump and

reverse play features in video access.

The performance and capacity of optical disks are increasing rapidly [113].

DVD disks can provide 7 to 26 times the capacity of CD (Table 2.1). A two-hour

movie can be stored on a single side single layer disk, and their standard data

transfer rate is comparable to that of a 9X CD-ROM. These characteristics make

DVD very suitable for storing multimedia data, such as video.

Table 2.1. Some specifications of CD and DVD disk

Layers

Sides

Capacity (gigabytes)

User data rate (10*̂ bits/sec)

CD

1

1

0.65

0.15

DVD-5

1

1

4.7

11.08

DVD-9

2

1

8.4

11.08

DVD-10

1

2

9.5

11.08

DVD-17

2

2

17

11.08

• Constant Angular Velocity Approach

The CAV approach is often used in magnetic disks. Each disk surface is divided

into several concentric zones by grouping tracks of similar radii together. The

same number of sectors are written to each track within the same zone [83]. As

outer zones have longer perimeters, they contain more bits and sectors than inner

zones (Figure 2.3).

17

Multimedia Storage Systems Performance Characteristics Chapter 2

Outer Zone
(Long tracks) Inner Zone

(Short tracks)

Figure 2.3. Zoned disk layout

Recording densities in each zone are optimized and are nearly equal. These

disks are also called zoned disks. The disk platters rotate at a fixed speed and the

read/write heads traverse data faster in the outer zones than in the inner zones.

Hence, the data transfer rate is higher in the outer zones.

(b) Disk Drive Mechanism

The disk drive serves data requests using many steps. A simple model is to add the

time components of the mechanical movements, including seek time, rotational

latency and data transfer time, together as the disk request service time. Although

more detailed model may include head switching time, channel waiting time and

others [126], we do not include them since they are rather fixed and small.

18

Multimedia Storage Systems Performance Characteristics Chapter 2

• Seek Time

When the disk receives a SEEK command from the disk controller, it moves the

arms and the read^write heads to the required cylinder. The seek action consists of

the following components:

1. The arm is accelerated until it reaches the maximum speed.

2. The arm is travelling at the maximum speed.

3. The arm is decelerated until it stops.

4. The read/write heads are settled on the required track.

The heads will then stay on this track until the disk receives another SEEK

command. The distance that the read/write heads travel in a seek action is

commonly referred to as the seek distance. If all the seek destinations are random

on VDR disks, the mean seek distance is {b-a)/3, where a and b are the radii of the

innermost and outermost tracks respectively [95].

Seek time is the time required for the seek action and it depends on the

seek distance. Frequently, the seek time is taken to be a linear function of the seek

distance. The relationship between seek time and seek distance is generally non­

linear. When the seek distance is short and the arm starts to decelerate before it

reaches the maximum travelling speed, the seek time is proportional to the square

root of the seek distance. When the seek distance is long and the arm needs to

travel at the maximum speed, the seek time increases proportionately with the

increase in seek distance [119]. The seek time s is shown in [126] to be

s =i rj , / ' (2-1)
[aj +a^^d, d <a^

where d is the seek distance, and a^,a2,a^,a^,a^ are fixed parameters.

19

Multimedia Storage Systems Performance Characteristics Chapter 2

• Rotational Latency

After the disk completes the seek action, it waits for the required data block to

rotate under the read/write head. Rotational Latency is the time required for the

starting position of the required data block to rotate under the read/write head. In

most cases, rotational latency is assumed to be uniformly distributed and it is

estimated as half of a disk revolution time. Letting T be the disk revolution time

and / be the rotational latency, we have

/ = | . (2.2)

However, this is inaccurate for two reasons.

First, the rotational latency for fixed block size is not uniformly distributed

because data transfer can only begin at fixed block starting positions and fixed

angular positions. The sum of seek time plus rotational latency, hence, must

necessarily be in integral multiples of basic block duration for consecutive

accesses under busy conditions [93].

Second, some disks use Rotational Positional Sensing (RPS) to detect the

rotational position of the disk platters. RPS gives an early warning when the data

will rotate under the read/write heads. The I/O controller then looks for a free path

from the disk to the memory. If such a path cannot be established within the

available time, an RPS miss occurs. When this happens, it will need to wait for

another full rotation before data transfer can start. The rotational latency is then

increased by a full disk revolution.

20

Multimedia Storage Systems Performance Characteristics Chapter 2

• Transfer Time

After the 1/0 path is established and the desired data come under the read/write

head, the head starts to transfer data. The read/write head sends data over a bit-

serial wire to the I/O controller. The speed of transferring data must be the same as

the speed of data coming under the head. Hence, the speed of data transfer is

directly proportional to the recording density and rotation speed of the disk.

Data transfer time is the time required for the required data to be read. The

data transfer time, T, to transfer a data block of size D from a VDR disk can easily

be shown to be

T =J^lL, (2.3)
27ia-e

where T is the disk revolution time, a and e are the radius and recording density of

the innermost track respectively. Therefore, the data transfer rate, p, is

p = 2m-e _ (2.4)
T

• Disk Throughput

Many researchers use the term disk throughput or disk bandwidth to indicate the

disk performance. Disk throughput is often defined as the speed of accessing data

from the disks. The disk throughput, ^, is given by

)8 = — ^ (2.5)
S + l + T

or

)8 = \ (2.6)
(s + l) I

+ —
D p

21

Multimedia Storage Systems Performance Characteristics Chapter 2

We can see from Equation (2.6) that disk throughput increases with increase in

data block size D. Unfortunately, increasing data block size would also increase

the buffer size. It is a tradeoff between disk throughput and available memory.

Very often, the block size used in traditional disks ranges from half to a few

kilobytes.

2.3.4 Disk Scheduling

Traditionally, requests are served in First-In-First-Out (FIFO) or First-Come-First-

Serve (FCFS) orders. When requests arrive at the disk, they are placed in a waiting

queue. When the disk is free, the request that arrives earliest is served. The disk

often serves each request in an n on-preemptive way without interruption from

other requests.

The request that requires the shortest service time is served first in the

Shortest Job First (SJF) method. Since a long request increases the waiting time of

all waiting requests more than a short request, SJF scheduling chooses the shortest

request in the waiting queue to be served. The total waiting time of all waiting

requests is then minimized. However, long requests may wait indefinitely long

when the disk is very busy.

Round-robin scheduling method places requests to priority queues. One or

a few requests are served from each queue. This scheduling method tries to strike

a balance between request priority and service arrival time.

The requests are served in the sequence of data location on the disk surface

in SCAN scheduling or elevator scheduling algorithms. When disk requests are

served, the service time of each request depends on the seek distance from the

22

Multimedia Storage Systems Performance Characteristics Chapter 2

previous request. The disk heads traverse across the disk surface and serve

requests that accesses data on its way. This scheduling method efficiently reduces

the total seek distance in serving a number of requests. The complexity of the

SCAN algorithm is also low.

2.3.5 Disk Arrays

In order to store more data on a system, multiple disks can be used. The disks may

serve requests in parallel or independently. When multiple disks are used as a disk

array, data are striped across the disks. When data are accessed, each disk is issued

a request. All the requests are then served simultaneously. Each request retrieves a

fraction of the data block using shorter data transfer time. Hence, large data

transfers are served efficiently.

Unfortunately, the mean time to disk failure shortens when many disks are

used. In order to be able to recover data after disk failure, redundant data are

encoded and stored. Data on the failed disks can then be recovered from data on

other disks. This arrangement of disks forms a redundant disk array.

Redundant array of inexpensive disks (RAID) is an array of low capacity

disks that store encoded redundant data to increase data reliability and data

security. When a single disk fails, data on the failed disk are recovered from data

on the remaining disks. There are at least six RAID levels [24, 63, 80].

RAID 1: Mirrored disks. The disks are arranged in pairs and each disk in the

pair contains the same data. Only half of the available disk capacity is

utilized for data storage and this is the most expensive option.

23

Multimedia Storage Systems Performance Characteristics Chapter 2

RAID 2: Bit interleaved array. Several correction disks are added to the group

of data disks in a way similar to RAM chips. A single parity disk can

detect a single error, but at least three disks are needed to correct an

error. Larger group sizes yield a reduced overhead for fault tolerance,

but smaller group means less I/O events per second. Since the whole

group must be accessed to validate the correction codes, this is

inefficient for small transfers.

RAID 3: Parity disk. Data are interleaved bit-wisely or byte-wisely across the

data disks. Disk controller can detect the failed bit position and a parity

disk contains the parity of the data disks. It is possible to recover data

on any single lost disk by reading the contents of the surviving disks,

and re-computing the parity. The disk array performance is similar to a

RA1D2 with a single correction disk.

RAID 4: Block interleaved. Every individual block is stored on a single disk. As

the data are interleaved between disks at the block level instead of the

bit level or byte level. The new parity is calculated as new parity (= old

data xor new data xor old parity). A small write uses two disks to

perform four accesses. Since all writes access the parity disk,

contentions at the parity disk would suffer.

RAID 5: Rotated Parity. Parity blocks are interleaved among the disks in a

rotating manner called Left-Symmetric. Two writes can take place in

parallel as long as the data and parity blocks use different disks. This

disk array performs better for small and large transfers, making it the

most widely accepted level for transaction processing workloads [89].

24

Multimedia Storage Systems Performance Characteristics Chapter 2

RAID5 tolerates single disk failure in each parity group of disks. Data

are lost only when multiple disks in the same group of disks fail. Gibson

used Mean-Time-To-Data-Loss to measure the reliability of disk arrays

and showed that RAID5 can increase data reliability [63].

RAID 6: Two dimensional parity. The disks are arranged into a 2-dimensional

array and a parity disk is added to each row and each column of the

array. This disk array can survive any loss of two disks and many losses

of three disks. The only exception for three loss disks is that the data

disk and both the parity disk and the column disk of this data disk fail at

the same time. Since every logical write needs three disks and six

accesses, the impacts on I/O performance are significant. Hence, this

disk array is only acceptable for very highly fault-tolerant applications.

In most data storage on disks, data are not differentiated into read-write or read­

only type. Read-only data are static and cannot be modified by the applications.

Read-write data are dynamic and are frequently modified by the application. Read­

only data are easily recoverable from elsewhere, such as tertiary storage. RAID

addresses the problem of losing data under the conditions of disk failures. Under

the condition that read-only data are recoverable easily, these redundant

information could waste storage capacity and bandwidth.

25

Multimedia Storage Systems Performance Characteristics Chapter 2

2.3.6 Hierarchical Storage System

Hierarchical Storage Systems (HSS) are storage systems such that their storage

devices are grouped into at least two hierarchical levels. The lower level of storage

devices provide fast data retrieval at higher media storage cost whereas the higher

level of storage devices provide cheap media storage at a slower data retrieval

rate. In general, any two types of storage devices may form a storage hierarchy.

Typical storage hierarchies include cache memory/RAM, RAM/magnetic disk,

magnetic disk/optical jukebox, and magnetic disk/tape library. When more than

two levels of storage hierarchy are used together, the storage devices are divided

into primary, secondary, and tertiary storage devices.

A hierarchical storage system often refers to a storage system that uses

RAM, magnetic disks, and a robotic storage library to form its storage hierarchy

(Figure 2.4). The robotic storage library often consists of a magnetic tape library

or an optical jukebox that exchanges tapes and optical disks automatically.

When data exhibit the spatial locality reference property, data in the

neighbourhood of recently accessed data have a higher chance of being accessed.

Hence, data are accessed in blocks of appropriate size in order that the consecutive

accesses can be served together. When data exhibit the temporal locality reference

property, data being accessed recently are likely to be accessed again. Data in the

lower level should contain the data that are recently accessed to reduce the number

of necessary accesses to the higher level. Therefore, the lower level storage

devices are often used as cache of the higher level storage devices in order to

provide an efficient hierarchical storage system.

26

Multimedia Storage Systems Performance Characteristics Chapter 2

Figure 2.4. Hierarchical storage system

In order to be useful, each level of storage devices differs from the next

level of storage devices by at least one order of magnitude in storage capacity,

media cost, and access latency. The media cost, unit capacity and access latency of

different types of storage devices are compared in Table 2.2 [72]. These values

only show the order of magnitude instead of the actual range of current values.

Table 2.2. Comparison of types of storage devices

Storage device Media cost Unit capacity Access time

random access memory lO' to 10^ $/MB lO' to 10^ MB 10"̂ sec

magnetic disks 10̂ to 10^ $/GB lO' to lO' GB 10"̂ sec

optical jukebox 10° to lO' $/GB 10° to 10̂ GB lO' sec

magnetic tape library 10° to lO' $/GB 10° to 10̂ GB 10^ sec

27

Multimedia Storage Systems Performance Characteristics Chapter 2

In order to provide sufficiently large storage capacity in tertiary storage

libraries, data are stored on removable media units, such as tape cassettes or

optical disks. The media units can be exchanged automatically using robot arms or

motor driven handling units.

(a) Removable Media Units

A reason that tertiary storage libraries can provide huge capacity is that some

media units are not directly accessible at the drives. Since each drive can retrieve

data on only one media unit at a time, it exchanges and loads the media unit before

data on the required media unit can be accessed.

The tape cells in magnetic tape libraries are often arranged in a two

dimensional grid or cylindrical manner. Optical disks in jukeboxes are often

arranged in a stack. CD changers arrange disks in a round table manner. Although

each CD changer can access only a few disks, an array of CD changers may access

data from many media units.

(b) Exchange Mechanism

Exchange devices in typical tertiary storage libraries include robotic arms of tape

libraries, exchange devices of optical jukeboxes, and turntables of CD changers.

When data on a particular media unit are required, four steps are performed:

1. The new media unit is moved from the cell containing it to the drive.

2. The old media unit in the drive is ejected or unloaded.

3. The new media unit is loaded at the drive.

4. The old media unit is moved to an empty cell.

28

Multimedia Storage Systems Performance Characteristics Chapter 2

Exchange devices can be dedicated to a drive or shared among drives.

Magnetic tape library often uses only one or two robot arm for all drives. One

exchange device is often shared among several optical drives in jukeboxes,

whereas one exchange device is dedicated to each drive in a CD changer.

When the exchange device is a dedicated one, all drives can exchange

media units concurrently. When an exchange device is shared among several

drives, some drives may request for exchange while other drives are exchanging

media. At this moment, the drive that issues new exchange requests need to wait

for the exchange device becomes free. Since the drive cannot serve any requests

while waiting for exchange, this contention for exchange device wastes substantial

drive throughput.

(c) Time to Exchange Media

Media exchange time is the time required for the media unit to be exchanged. The

exchange devices and the drives execute several mechanical movements. It takes

time for the exchange device to fetch and move the media units, and for the drive

to unload the old media unit and load the new media unit.

A plausible model is to add the time components of the mechanical

movements together. We do not include other time components since they are

much smaller than these mechanical movements. Typical times to perform

exchange requests are shown in Table 2.3. The HP jukebox is the HP SureStore

Optical Jukebox [75] and other columns are tape libraries [39, 67].

29

Multimedia Storage Systems Performance Characteristics Chapter 2

Table 2.3. Typical exchange service times (seconds)

Movement

mean rewind time

drive eject time

robot exchange

drive load time

exchange service time

Exabyte

75

17

21-H22

65

200

StorageTek

30

5

15-f-15

7

72

Ampex

13

4

<20

5

42

HP Jukebox

-

3.0

10

5.5

18.5

2.3.7 Data Migration

Random access latency on tapes is three to four orders of magnitude slower than

that on disks. Hillyer and Silberschatz studied I/O scheduling methods on

serpentine tapes. They proposed the LOSS (a greedy algorithm for asymmetric

travelling salesman) algorithm which performs better than other scheduling

methods except the NP-hard optimal algorithm [72].

Although data migration requests can be scheduled using disk scheduling

methods, their performance may become worse off due to the presence of large

media exchange overheads. Therefore, data migration methods on tertiary storage

devices are studied separately.

Less data on a storage level reduce the storage cost, but more requests are

directed to the higher levels where requests are served slowly. Conversely, more

data on a storage level allow more requests to be satisfied at that level, but storage

cost is inevitably raised. Because of these conflicting requirements for inexpensive

storage and high performance retrieval, efficient techniques are needed to control

the migration of data between storage levels. This is viewed as a file migration

problem or a multilevel cache management problem [73].

30

Multimedia Storage Systems Performance Characteristics Chapter 2

When data are placed on a storage hierarchy, tertiary storage devices

provide permanent storage of all files at the lowest cost. Using a process of

staging in traditional systems, files are copied to the disks when required; these

data on disks become accessible to users and can be deleted later.

Traditional tertiary storage libraries migrate files across the storage

hierarchy by the following steps:

1. (Start of stage one) Data are copied from tertiary storage devices to

primary memory.

2. Old data are erased from disk cache to reclaim space if necessary, data are

copied from primary memory to disk cache, and data are erased from

primary memory to free primary memory for other use.

3. (Start of stage two) Data are copied from disks to primary memory.

4. Data are consumed from primary memory.

Since data are available in memory after stage one, the materialization time is the

earliest time when data become accessible. The materialization time or time to

complete stage one is given as

^ + X+^, (2.7)

where w is the queuing time for free drive, x is the sum of media exchange and

reposition time, O is the object size, and (j) is the data transfer rate [42].

31

Multimedia Storage Systems Performance Characteristics Chapter 2

2.4 Multimedia Storage Systems Characteristics

Optimization of system performance should consider the particular characteristics

of the running application in order to deliver an efficient system. Application

characteristics that are related to data storage include the data characteristics,

access pattern of data requests, and specific requirements for the type of

application. The file sizes directly affect the amount of time to transfer data from

the storage systems. Request arrival patterns affect the contention of requests for

storage devices. The application requirements limit the choices among methods

that exhibit different performance characteristics.

Multimedia applications have many different requirements from traditional

computer applications [9, 47, 69, 70, 71, 82]. New multimedia applications,

including digital library, video-on-demand system, multimedia process control

system, visual information system, multimedia information systems, and others,

require to store multimedia data on multimedia storage systems. Multimedia

storage systems are different from traditional computer storage systems in several

aspects [49, 132, 143, 145].

2.4.1 Multimedia Data

The storage requirements of many applications are huge and most data kept in

these applications are multimedia data. For example, the Thomas Jefferson

National Accelerator Facility is expected to generate roughly 250 terabytes (250 x

lO'^ bytes) of raw and experimental data each year. A total of one petabyte (10

bytes) will be stored on-line by the year 2000 [13]. Researchers in NASA have

projected their storage requirements to be 2 petabytes in 1999 [127]. The only

32

Multimedia Storage Systems Performance Characteristics Chapter 2

practicable and economical solution to store these multimedia data is to use

tertiary storage devices. We first describe the multimedia objects and their data

sizes in part (a).

Multimedia objects should always be compressed and kept in the

compressed format because of their large object size. Many methods are already

available to compress multimedia data. Lossless compression techniques, such as

Hoffman encoding, LZW, and wavelet, can reduce images data to one third of

original data size. Lossy compression standards like JPEG (Joint Photographic

Experts Group) and MPEG (Motion Picture Experts Group) standards can

compress multimedia data to a much smaller size without much noticeable effects

on novice users. Typically, the JPEG standard can compress images in the ratio of

15:1 [49]. We briefly describe the MPEG compression standards for video in part

(b).

Even though compressions can reduce the original size by one to two

orders of magnitude, multimedia objects are still too bulky to be handled in its

entirety. Hence, they should be partitioned into smaller units. Multimedia data can

be striped while keeping either the display time or data size constant. These two

approaches to perform data striping are compared in part (c).

(a) Data Size

Image object size increases linearly with each dimension of the image resolutions

and the colour depth. High resolution images are much larger than low resolution

images. A full screen colour image may require 1024x864x24 bits or 2,654,208

bytes to represent.

33

Multimedia Storage Systems Performance Characteristics Chapter 2

Audio objects store the information of recorded sound waves. The size of

an audio object is proportional to the resolution, the frequency, and the duration of

the object. A 60-minutes of 16-bit stereo audio is represented with

60x60x44100x2x16 bits or 605 MB.

Video objects are composed of a series of image frames displaying at a

fixed rate. Each frame contains an image object and the frame size depends on the

image resolution and the colour depth. The video object size also depends on the

frame rate and the display duration. A two-hour colour PAL video may be

represented with 576x384x24x25x60x60x2 bits or 119,439,360,000 bytes.

Since the data requirement increases linearly with each dimension of the

resolutions, high resolution objects require many times more data storage space

than the low resolution and preview objects.

(b) Compression

Since the amount of data to represent multimedia objects are so large,

compression is inevitable in all levels of processing multimedia data. In MPEG

compression, an object is organized as a video sequence. A video sequence

consists of a sequence header followed by a number of Group of Pictures (GOP).

Each GOP is composed of a GOP header followed by a number of pictures. Each

picture can be an intra-frame (I-frame), a predicted frame (P-frame) or a bi­

directional predicted frame (B-frame).

An I-frame is actually the discrete cosine transform (DCT) based

compressed image of the picture. A P-frame contains the motion compensation

vectors that predict their values from the previous I-frame or P-frame. A B-frame

34

Multimedia Storage Systems Performance Characteristics Chapter 2

contains the vectors that predict its value from both the previous and the following

I-frame or P-frame. Hence, a B-frame is always placed after the previous and the

following I-frame and P-frame within the coded stream [49]. If the ratio of I:P:B

frames is 1:3:8, then this sequence has one I-frame, three P-frames, and eight B-

frames in every 12 frames. Since P-frames and B-frames contain motion

compensation vectors that show only changes in the image content, the P-frames

and B-frames are often smaller in size than the I-frames. The video data can be

compressed by factors of 30:1 to 200:1 and audio data can be compressed by

factors of 5:1 to 10:1 using MPEG compression [49].

Other video compression methods, such as H.261 and the new XYZ

compression, could also reduce the data storage requirement by one to two orders

of magnitude [51].

Compression techniques definitely can reduce the size of multimedia

objects. Despite multimedia objects can be compressed to two orders of

magnitude lower than that of its original size, the compressed objects are still very

large. Their storage requirements in primary, secondary, and tertiary memories are

vast, necessitating huge storage capacity on all storage devices [13, 49, 71, 127].

Multimedia data have the characteristics that portions of data are required

at a later times during retrieval. This is commonly known in sequences of video

and audio. It is also exhibited in compression methods such as, progressive JPEG

and multi-resolution video, that progressively increase the object resolutions [43,

121].

35

Multimedia Storage Systems Performance Characteristics Chapter 2

In the progressive compression technique, the system initially displays a

low resolution image. It then displays a higher resolution object and the image

resolution keeps increasing until the full resolution object is displayed.

(c) Data Striping

As compressed multimedia objects are still large, each object is often partitioned

into smaller units called segments before they can be handled efficiently. Each

segment is further subdivided into smaller units called data stripes. Each data

stripe is accessed by one data requests. Data striping can be applied using two

approaches, the Constant Data Length (CDL) approach or the Constant Time

Length (CTL) approach [17].

If the CDL approach is used to create fixed length data stripes, it is

difficult to predict the display time of each data stripe. The fixed data stripe size

does not always form a multiple of the atomic unit for consumption, such as a

frame. If an atomic unit spans several data stripes, data consumption may only

start after all data stripes of the unit are transferred.

If the CTL approach is used, the display time of every data stripe is fixed.

Each request is separated from the previous request of the same stream with a

fixed unit of time. Since the access latency already fluctuates from request to

request, it is not worse off to vary the data size and transfer time as well. Since the

variable data stripe size is an atomic unit for display, the display can always

proceed after a data stnpe is retrieved. Although this variable data rate property

increases the maximum buffer size, the buffer size can still be averaged out by

sharing with other streams. Therefore, the CTL approach is more preferable.

36

Multimedia Storage Systems Performance Characteristics Chapter 2

When the display duration of a data segment is long, more data stripes are

created. The sizes of each data stripe vary from kilobytes to megabytes. If each

MPEG frame forms one data stripe, the size of data stripes fluctuates depending

on the type of frame. If each data stripe contain one GOP, the size of each data

stripe depends on the amount of movements within that GOP. Hence, the size of

data stripes can be more steady when data stripes are larger [87].

2.4.2 Display Modes

Multimedia applications often provide an interface to control the presentation of

multimedia data over the time dimension like a Video Cassette Recorder (VCR).

Hence, multimedia applications provide functions, such as play, fast forward, fast

reverse, pause, stop, and slow, like a VCR. We shall describe how our design can

support these display modes in Chapter 3.

(a) VCR like functions

When users display multimedia objects in normal mode, data of the object are

consumed in a fixed rate. Consecutive data stripes of the object are consumed one

after another. This speed in displaying data is normally the same as the speed in

recording data. When a user displays multimedia objects in the fast forward mode,

he skips certain parts of the data object to search the start of the desired part of the

object in a short time. Sometimes, the user may not be sure of how far is the

desired part from the current displaying position. He displays data in a fast mode

so that he can pause or stop displaying the object near the desired position. In

order to support fast forward mode, data are supplied in one of the ways below.

37

Multimedia Storage Systems Performance Characteristics Chapter 2

1. The data object is supplied in a faster speed. This requires higher

bandwidth in accessing the object.

2. A fast forward object is retrieved instead of the normal data object. This

would require extra data storage space.

3. A low temporal resolution part of the object is accessed. This low temporal

resolution part is displayed in a normal speed. Multi-resolution

compression methods provide this low temporal resolution objects as part

of the compressed objects.

No matter which method is chosen, the user can search the object and resume

display at the desired position.

After the user has finished searching data using either fast modes, the user

would resume to normal display mode. In some designs such as pipelining, there

is a delay in resuming back to the normal mode if only part of the object has been

transferred. This resume latency can be similar in magnitude to the latency of

pipelining the object.

If the user wishes to skip to an earlier part of the object, he displays data in

a fast reverse mode. If data can be retrieved in an reverse sequence, the fast

reverse mode can be handled in a way similar to the fast forward mode.

Otherwise, a reverse object has to be created and stored.

Since the pause and stop functions can be served without additional data

from the storage system, we assume that they can be handled by the operating

system alone. Other VCR functions, such as slow motion and frame advance

functions, consume data at a slower rate than that in the normal mode, it is

38

Multimedia Storage Systems Performance Characteristics Chapter 2

reasonable to assume that these display modes can also be supported with data

buffering.

(b) Browsing Interface Functions

Many multimedia applications need to provide a browse mode for users to have a

brief view before watching the details [41, 114]. This browse mode could reduce

the workload on the storage system by skipping unnecessary details.

For continuous media, the beginning part is often played as a preview of

the object. This method can only give the user a very rough idea of the object

contents. When many objects begin with similar contents, the preview data does

not provide enough distinguishable information. Alternatively, a preview method

with some data from the content of the object is more informative. Multi-

resolution compressed objects can provide such preview with their low temporal

resolution segments without much additional data [43].

After the user has browsed the multimedia object, he may select one of the

low resolution segments for displaying. The system should then display the high

resolution objects beginning at the selected segment. In this situation, the storage

system needs to jump to and retrieve data beginning at the appropriate location.

2.4.3 Access Pattern of Multimedia Data Requests

Multimedia data are accessed differently from traditional computer data. Since

storage system throughput depends heavily on the data access pattern, the access

pattern of multimedia request streams should be investigated before system

performance can be optimized.

39

Multimedia Storage Systems Performance Characteristics Chapter 2

(a) Access Frequency

Several studies characterized user access pattern on video-on-demand systems

according to the Zipf's Law [28]. Contrary to these research results, Griwodz et al.

showed that the access probabilities of multimedia objects are sometimes less

skewed [68]. Nevertheless, Zipf's distribution is still the most popular way to

model multimedia object access frequencies.

In Zipf's Law, the probability of choosing the nth most popular of M

objects is taken to be Cln where C is a constant. We list the Zipf distribution for

1000 objects grouped by 100 objects in Table 2.4. The skew column shows the

ratio between the lowest to the highest probability within each group. Although

the probabilities of the first 100 objects are highly skewed, the probabilities for the

last 800 objects at the tail of the Zipf distribution are much less skewed. If the first

200 objects are resident on disks, then requests for only the last 800 objects are

directed to the tertiary storage. Thus, access probabilities of objects in the tertiary

storage are less skewed.

Multimedia objects are commonly divided according to the frequency of

access into hot, warm, and cold objects. Hot objects are frequently accessed by a

number of users. Hot objects are likely to be accessed again by new users before it

is completely displayed to existing users. Warm objects are accessed less

frequently. They are less likely to be accessed again before its display duration.

Cold objects are seldom accessed. Griwodz et al. showed that data temperature of

movies increases quickly at the time of release and drops slowly over an extended

period of time [68].

40

Multimedia Storage Systems Performance Characteristics Chapter:

Table 2.4. Zipf distribution of 1000 objects in groups of 100

Group

1 to 100

101 to 200

201 to 300

301 to 400

401 to 500

501 to 600

601 to 700

701 to 800

801 to 900

901 to 1000

Highest

13.3592%

0.1323%

0.0665%

0.0444%

0.0333%

0.0267%

0.0222%

0.0191%

0.0167%

0.0148%

Lowest

0.1336%

0.0668%

0.0445%

0.0334%

0.0267%

0.0223%

0.0191%

0.0167%

0.0148%

0.0134%

Skew

0.0100

0.5050

0.6700

0.7525

0.8020

0.8350

0.8586

0.8763

0.8900

0.9010

• Read/Write Frequency

Multimedia objects are commonly created by specific equipments such as video

camera and audio recorder. Before multimedia objects are presentable, clips of the

objects are cut and pasted together to produce the final product. While

professional expertise is often required in the post-production process, novice

users may retrieve objects. Thus, more users would retrieve multimedia objects

whereas fewer users would modify them. While only read operation is required in

displaying objects, both read and write operations are required in modifying

objects. Multimedia objects are hence more often being read than being written.

Once data are placed on the storage devices, performance of all object

retrievals is affected by the efficiency of the storage system. Therefore, efficiency

of retrieving multimedia objects is more important than that of modifying them in

many applications.

41

Multimedia Storage Systems Performance Characteristics Chapter 2

(b) Stream of Requests

In traditional computer systems, data requests are discrete and discontinuous, and

requests are normally independent of each other. On the contrary, multimedia data

requests appear like an aperiodic stream. When a multimedia object is requested to

display, a new stream is created. The stream generates new data requests that often

access adjacent data stripes of the object.

• Real Time Constraints

Multimedia requests are bounded by real time constraints. Since multimedia data

are displayed continuously to users, the supply of data should be continuous. If

data are fed slower than the consumption rate, starving will occur and jitters will

appear. If data supply is too fast, buffer may overflow. If data supply is

discontinued, the display freezes. These artifacts undesirably affect the quality of

service to users.

In particular, the execution time of requests is hence limited by the

continuous display requirement such that the retrieval of a data request should

complete before the previous data stripe is displayed. Let s be the seek time, I be

the latency, M be the media block size, p be the data transfer rate, N be the number

of disks in an array, and d be the display bandwidth. In order to support real-time

continuous display of the media stream from disks, the retrieval time of one media

block from each disk must be less than the display time of N media blocks. The

continuous display constraint for N disks to support a single stream is

s + l-hMp<NS. (2.8)

42

Multimedia Storage Systems Performance Characteristics Chapter 2

If the maximum seek time and the maximum latency are used, this constraint

provides a hard guarantee for the streams; i.e. the data retrieval time is 100%

guaranteed against starving.

• Read-ahead buffering

A mechanism to handle variations of data retrieval time called read-ahead

buffering is proposed in [36]. A number of read-ahead buffers are first filled

before display or consumption begins. If k read-ahead buffers are used, then

buffers for A-i-̂ 4-1 data stripes would be required. Increasing the number of read-

ahead buffers per stream enables the system to absorb higher variability in disk

response time. The same study showed that triple buffering is already sufficient to

achieve the best cost-performance.

• Requests are separated evenly

Since each stream issues request periodically, consecutive requests are separated

evenly from each other. Hence, the arrival pattern of requests is more regular than

the random arrival pattern.

The Poisson distribution is often used to describe the random arrival

pattern in traditional systems. Unfortunately, it becomes a less accurate model for

multimedia systems. Although the streams arrival pattern is random and can be

described by the Poisson distribution, the request arrivals are more regular than

the random arrivals. Since there are no accurate models available, we still use the

Poisson distribution for request arrivals to find a plausible waiting time.

43

Multimedia Storage Systems Performance Characteristics Chapter 2

• Access neighbouring data

When data are displayed in the normal mode, data stripes are accessed according

to the temporal dimension. Consecutive requests of the same stream access

adjacent data stripes of the same object. They may access data stripes with a fixed

time gap from each other when data are displayed in the fast mode. The storage

location for neighbouring data stripes of an object is hence considered by many

researchers to create highly structured storage organizations.

• Continuous over an extended period of time

A stream may issue requests over an extended period of time. Short video streams

may be 5 to 10 minutes in length. Long video streams, such as movies, can be

over two hours. Security video cameras may even record data continuously with

indefinite length. Requests that access images being compressed using progressive

compression techniques are also issued continuously over a short period of time.

(c) Streams Synchronization

Multimedia composite objects are made up of several component objects [21, 111,

112]. Each component object may belong to a different media type. An example is

given in Figure 2.5. These media components are separate at input and arrive at

the storage devices as different media streams. They are usually retrieved from the

storage devices at similar times and merged prior to consumption.

The request streams for the component objects need to be synchronized

before display. Otherwise, artifacts such as video of a talking person without lip

44

Multimedia Storage Systems Performance Characteristics Chapter.

synchronization may result. Thus, the storage system that can handle multiple

streams are more suitable for multimedia composite objects.

When synchronized objects are stored on storage system, the data stripes

can be placed in an interleaving manner. Each stream can still be served

independently. When several objects are retrieved at the same time, the retrieval

efficiency is increased by merging the streams of requests. The feasibility of

merging streams on optical disks is studied in [122, 151].

When synchronized objects are accessed in parallel, the objects can be

retrieved in shorter total time by optimizing performance of accessing multiple

objects together. [5, 57]. Since some buffers may already be required to perform

synchronization, no additional buffers would be required to access them in

parallel. Hence, parallel retrievals may not use much additional resources in

accessing synchronized objects.

Figure 2.5. Composite multimedia object

45

Multimedia Storage Systems Performance Characteristics Chapter 2

• Requests Scheduling

Instead of providing hard guarantee that limits disk throughput by the maximum

seek, some researchers provide soft guarantee for multimedia streams. The

requests are queued for disk accesses, and the waiting request is chosen according

to a scheduling policy that is aware of the deadline of the waiting requests. The

disks may achieve higher throughput, but the quality of streams can sometimes be

lowered.

The Earliest Deadline First (EDF) algorithm serves the request with the

earliest deadline first in order to satisfy its real-time constraint. Since requests may

arrive in any order, seek overheads are significant. The SCAN-EDF algorithm

combines seek optimization techniques and EDF together. Requests with the

earliest deadline are served first. Requests that have the same deadline are served

according to their track locations on the disk following the SCAN algorithm [123,

124].

The Group Sweeping Scheduling (GSS) algorithm partitions each round of

requests into groups and each stream is assigned to one group. The groups are

served in a fixed sequence within each round. The requests within each group are

served according to the SCAN algorithm. The round length is hence traded off

with the latency of successive stream retrievals by optimally deriving the number

ofgroups[18, 22, 55].

Some researchers proposed the piggyback technique to merge request

streams for the same object. They use slow drifting to merge requests that arrive at

slightly different times. The earlier request is slowed down and the latter request is

speeded up until both requests are served together. Using this method, the

46

Multimedia Storage Systems Performance Characteristics Chapter 2

workload on the storage system can be reduced [1, 66]. This piggyback merging

technique is hence suitable for merging concurrent streams on the hot objects.

2.5 Storage Organizations on Disks

Many intelligent storage organizations, or data placement methods, have been

designed for traditional data files and database systems. Traditional file placement

methods are grouped into the following strategies [90]:

1. NaYve placement: Each data file is split into blocks and the file blocks are

randomly placed on any storage location. This is the simplest strategy to

handle random accesses to file blocks.

2. Contiguous placement: Each data file is stored to contiguous physical

locations. This strategy performs best when the entire file is accessed by

consecutive requests. However, fragmentation prohibits the placement of

large files.

3. Type based placement: Files containing the same type of data are

grouped to the same category. Files of the same category are placed close

to each other. This strategy trades off the seek distance of consecutive

requests on data of the same type with that on data of different types.

4. Frequency based placement: Files are sorted according to their stationary

probabilities and placed in an organ-pipe manner with the most frequently

accessed files in the middle of the tracks. This strategy needs to record the

access frequency of files in order to reorganize the data files.

47

Multimedia Storage Systems Performance Characteristics Chapter 2

5. Markovian Placement: Data files with the highest transition probabilities

are stored to consecutive locations. This strategy optimizes the seek

distance of requests according to the access history.

Many storage organizations and data placement methods that are

specifically designed for multimedia data can be found in the literature. We also

group them into the following strategies.

1. Naive placement: Data stripes are stored randomly. This simple method is

used for comparison only.

2. Contiguous placement: Objects are physically stored to consecutive

physical locations.

3. Log structure placement: All write operations are appended to the end of

a log file.

4. Statistical placement: Objects are stored according to the stationary or

transition probabilities.

5. Fault tolerant: Redundant codes are encoded and stored to increase data

reliability and security.

6. Replication: Objects are fully or partially replicated to increase

availability of data.

7. Striping: Objects are partitioned to allow round robin or parallel

retrievals.

8. Constraint Allocations: The physical storage locations are limited to

reduce the maximum overheads in serving consecutive requests.

These data placement methods are described in the following sections.

48

Multimedia Storage Systems Performance Characteristics Chapter 2

2.5.1 Naive Placement

This placement method places data blocks to random locations on disks. The only

benefit of this method is simple. The system can find any empty space to store the

data blocks. However, each request's response time can be very long and the

system throughput can be very low.

2.5.2 Contiguous Placement

Some researchers placed multimedia objects contiguously on disks. Since the

entire object can be accessed with only one seek action, the overheads in data

access time are very low when objects are accessed in its entirety [2, 26].

Unfortunately, the disk becomes fragmented after deletions and insertions.

New objects cannot be inserted due to lack of contiguous disk space. Data need to

be reorganized to create sufficiently long contiguous empty space. If objects are

modified, extra copying of unmodified portions is required. The copying overhead

erodes disk throughput when multimedia objects are modified [99]. Also,

multimedia objects are large and bulky. If the object is accessed in its entirety, the

memory buffer must be very large in order to store the entire object. Each request

also takes a long time to finish and may create long queues of short requests. If

requests of concurrent streams are served in an interleaving manner, the disk

heads would move to-and-fro between physical locations of the objects and

excessive seek overheads are incurred.

49

Multimedia Storage Systems Performance Characteristics Chapter 2

2.5.3 Log Structure Placement

Some researchers store multimedia objects using log structure files. The disk

layout consists of an index table and an append-only log table. The index table

stores management information describing the log table status that is composed of

a log head pointer and a logical log address pointing to physical disk block map

table. Each log file is organized as a simple list of data blocks written

contiguously to disk [99].

Since the log structure files are stored contiguously on disks, the seek

overheads in writing them are low. Unfortunately, this placement method cannot

guarantee performance on reading modified data blocks. Since all modified data

blocks are appended to the tail of the log table, they require extra seek time

overheads during retrieval. Therefore, this placement method is limited to

multimedia applications without much editing.

2.5.4 Statistical Placement

In order to reduce the average seek time of disk requests, access probabilities have

been considered in designing optimal file locations [45, 138]. Since the access

frequencies or data temperatures of multimedia data can be obtained from

prediction or access history, some researchers distribute movie data among disks

following the access frequencies [98]. Some researchers store multimedia data

objects on constant density recording disks according to the access frequencies

[27, 136, 147].

The hottest object is placed at the optimal position that has the minimum

random access time from all positions on the disk. The next hottest objects are

50

Multimedia Storage Systems Performance Characteristics Chapter 2

then placed at the next optimal position available. The objects are stored following

a skewed organ-pipe pattern (Figure 2.6). When all objects are independently

accessed and in its entirety, the mean data access time is minimal.

If the access frequencies of objects are obtained from access history, extra

disk storage space is required to store the access history. Fortunately, the data

temperatures of objects in some multimedia applications can be predicted.

However, their data temperature dynamically changes over time whereas the

placement methods are static [68]. In order to maintain the optimal condition, data

need to be reorganized frequently.

This strategy assumes that objects are independendy accessed. However, a

stream of requests sequentially accesses data stripes of the same multimedia

object. When there are several concurrent streams, the disk heads traverse to-and-

fro between storage locations of objects. Therefore, this strategy should be refined

to a finer granularity in order to handle concurrent multimedia streams.

When multimedia objects are not accessed independently, the transition

probabilities must be considered. The Markov chain is used to model the access

patterns for browsing graphs with low connectivity. A heuristic algorithm has

been proposed to place the objects [20]. The running time of the proposed

heuristic algorithm is O(n^).

zon

VsV.V, 1 V3V„Vj V.Vs VsV,o Vn V,.

e l 2 3 4 5 6

<
increase in radius

Figure 2.6. Frequency based placement

51

Multimedia Storage Systems Performance Characteristics Chapter 2

When objects are stored on tertiary storage and temporarily placed on

staging buffers, the objects are written once and then read back once. After these

two data accesses, the objects can be deleted to release disk space. The number of

data accesses of each object on the disk is hence different from the object

temperature in the placement. Moreover, the individual access frequency of these

objects may be very low, but the staged buffers are accessed more frequently than

other resident objects. If these buffers are allocated at the two ends of the disk, the

mean seek distance would be very long. Therefore, these placement methods need

to be refined for finding the optimal locations of staging buffers.

Similar to frequency based placement, extra storage space is also required

to store the access history. The presence of concurrent streams and the continuous

display requirement render that these statistical placement methods should be

enhanced to handle streams of requests for multimedia data.

2.5.5 Fault Tolerant

Some researchers investigated the storage of redundant information on disks to

cater for data recovery after disk crash [32, 137]. RAID is widely accepted in

recent years and some researchers proposed the Streaming RAID to serve

multimedia streams. In Streaming RAID, every data block is split into a number of

data stripes and each stripe is stored to consecutive physical locations on one disk.

The Segmented Information Dispersal method adds check data to the data contents

of the disks to reduce the impact on disk performance during data recovery.

52

Multimedia Storage Systems Performance Characteristics Chapter 2

A limitation of RAID is its lack of control on the placement of multimedia

data in storage. Hence, the data bandwidth cannot be effectively controlled and

large variations in data bandwidth require more read-ahead buffer.

Storing redundant information obviously increases the secunty of data

during disk failure. Although the security of multimedia data should not be

neglected, proper backing up and archiving data can also achieve the data security.

Since most multimedia data are not frequently modified and storing the redundant

information would reduce the data bandwidth, redundant codes can be considered

when surplus bandwidth is available or other means to provide data security are

not available.

2.5.6 Data Replication

Several researchers replicate data to achieve better disk performance. In the

Lancaster continuous media storage server, object files are replicated according to

their distance from the originating site [100]. Ghandeharizadeh et al. proposed to

migrate request with data replication across disk clusters in order to reduce start

up latency [60]. Chang and Molina replicated the leaders of multimedia objects on

a separate disk to reduce start up latency in constraint allocation methods [19].

Korst proposed to duplicate objects on randomly selected disks according to the

access frequency of the objects [86].

Ghandeharizadeh and Ramos also proposed data replication to avoid disk

multitasking that could reduce disk throughput [57]. When multimedia objects are

declustered across a group of disks, all the disks in the group must be accessed

simultaneously in order to retrieve the objects in real-time. In order to maintain the

53

Multimedia Storage Systems Performance Characteristics Chapter

disk retrieval throughput at the desired level, the number of disks to decluster each

multimedia object is limited. Due to the limitation of disk throughput, each disk

can only support a limited number of streams. The contention of streams for disk

bandwidth could reduce the throughput. In [57], data are replicated in other disks

to reduce this contention. An example is given in Figure 2.7.

A general requirement of all data replication methods is that extra storage

space is used. When the disk array is bandwidth bound, the usage of vacant space

to raise throughput is possible. This strategy is however limited by the amount of

free space available.

Unfortunately, multiple data copies should be synchronized while they are

modified. The synchronization of multiple data copies on disks increases program

complexity and workloads. The selection of data to replicate and the selection of

disks to place the replica should be optimized to achieve the sufficient gain against

the extra workloads.

object X: X, Xj X3 X,

object Y: Y, Y, Y3 Y, Y5 Ye

f=^ ^
Xi X2

disk 1

Y,

disk 2 disk 3 disk 4

3~^?T^^fc^
disk 5 disk 6

user A

Figure 2.7. Data replication

54

Multimedia Storage Systems Performance Characteristics Chapter 2

2.5.7 Striping

Since each stream needs continuous data supply, the aggregate data bandwidth of

many streams imposes very high demand on bandwidth of multimedia storage

servers. A strategy to provide higher disk throughput is to store data stripes across

multiple disks and access them back in parallel. This disk striping or data striping

technique is similar to data striping in RAID except that no redundant data are

stored [31, 76]. When an object is striped across N disks, the first data stripe is

placed on disk 1, the second data stripe is placed on disk 2, and so on. In general,

the ith data stripe is placed on disk 1 -i- (i-l) mod N (Figure 2.8).

When the data stripes are accessed, one disk request is sent to every disk in

the cluster at the same time. While the first disk is repositioning its read/write

heads to the desired location, the second to the last disks are also repositioning

their read/write heads to the desired locations. One data stripe is then transferred

back from each disk to the memory buffers. Hence, the time required to retrieve N

data stripe from N identical disks takes about the same amount of time as

retrieving one data stripe from only one disk. In this way, the throughputs of all N

disks are combined together to provide high data bandwidth. Letting P be the

throughput of each single disk and N be the number of disks, the overall

throughput of the disk array is Nfi.

The amount of display buffers increases with the number of disks. In order

to retrieve a data stream from the disks, minimum buffer for A-i-1 data stripes are

required. Initially, N data stripes are fetched from the disks to the N buffers. The

(A-i-l)th buffer is started to fill from disk while data in the first buffer is being

consumed. After the first buffer is exhausted, the (A-i-2)th data stnpe is started to

55

Multimedia Storage Systems Performance Characteristics Chapter 2

fill and the second stripe is consumed. After the ;th data stripe is exhausted, the

(A-t-;)th data stripe is retrieved while the (j+l)th data stripe is consumed. Thus, the

whole stream can be retrieved using A-i-1 buffers and the time to fill N buffers is

the initial start up latency.

object X:

object Y:

Xi X.

Yi

X,

Xs

Y,
Y.

^

X3

Y2

X2

X,

Y.

Yo

^

X4 X5

Y3

x«

Y4

X3
X,

Y3

<ZD

X, Xs

Y5

X4

Xs

Y4

C_j2p

Ye

disk 1 disk 2 disk 3 disk 4

Figure 2.8. Simple striping

(a) Staggered Striping

Berson et al. proposed a staggered striping method to generalize the simple

striping method across disk clusters [5]. It removes the constraint that two

consecutive sub-objects must be assigned on non-overlapping disks. It can

accommodate objects of heterogeneous display bandwidth with little loss of disk

throughput.

A multimedia object is partitioned into a number of sub-object X,. Each

sub-objects X, are then placed to a cluster of k disks. The number of disks in a

cluster is chosen in a way that it can support the required bandwidth of X. The

next cluster of disks is selected as the next k disks being shifted by r disks, where

56

Multimedia Storage Systems Performance Characteristics Chapter 2

r is called the stride. The sub-object X,+i is then placed in the next disk cluster

(Figure 2.9).

While an object is being retrieved in parallel, the cluster of disks in use

changes from time to time. Hence, each disk becomes free periodically. As long as

a new stream can be served within the time gap, another object can be retrieved

within the time gaps.

The staggered striping method provides effective support for multiple

streams accessing different objects from a group of striped disks, and it

automatically balances the loading among disks. However, it suffers from several

problems. Since continuous disk bandwidth must be obtained, the disk bandwidth

can become fragmented and rejects new streams. This problem may be alleviated

by efficient scheduling methods that alter the service order of requests.

object X:

object Y:

Xn Xi2 Xi3 X^i X22 X23 X3] X32 X33

Yj! Yi2 Y2, Y22 Y3, Y32

d i s k l

Y,

disk 2

Y,.

d i sks

Y„

disk 4

Figure 2.9. Staggered striping

57

Multimedia Storage Systems Performance Characteristics Chapter 2

Although data on tertiary storage devices may also mismatch the staggered

striping arrangement on disks, data on tertiary storage can be pre-arranged to

alleviate this problem. Unfortunately, the objects are not always presented in the

normal display rate. When an object is presented in fast forward mode or rewind

mode, data are retrieved in a different rate from the cluster of disks. Berson et al.

suggested to create replica to support objects retrieved at abnormal rates.

However, each rate would require an extra replica and the system is obviously

limited to a small number of display rates.

2.5.8 Constraint Allocation

Most existing storage servers store data stripes on random disk tracks. Separations

between data stripes of an object are not constrained enough to guarantee bounds

on access and latency times of consecutive stripes of an object. Constraint

allocation maintains the distance in separation between consecutive data stripes to

bound the access time within media playback requirements.

The interleaved contiguous placement in part (a) provides the constraint

requirement for merging objects on optical disks. When many streams access the

same hot object, the phase based constraint allocation in part (b) supports more

streams with less seek actions. Since the data access time depends on the distance

between data stripes, the region based allocation in part (c) limits the longest seek

distance among requests of the same stream.

58

Multimedia Storage Systems Performance Characteristics Chapter 2

(a) Interleaved Contiguous Placement

Since multimedia objects are recorded and retrieved using request streams with

real-time media playback requirements, they can be stored with gaps between data

stripes. The total storage space of several objects is reduced if some objects can be

stored at the gaps of others. Some researchers proposed the interleaved contiguous

placement to place data stripes of multimedia objects on CLV disks in an

interleaving manner [122, 142, 151].

Each stream is characterized by a storage pattern composing of two

parameters M and G, where M is the number of data blocks of each data stripe,

and G is the number of gap blocks between two consecutive data stripes. A

storage pattern can satisfy the continuous display requirement if

M+G ^

<5, (2.9)

P

where p is the disk retrieval bandwidth and 5 is the display time for each data

stripe. That is, the time to skip over the gap and retrieve the next successive data

stripe is less than the time to display a data stripe. Since the left hand side of the

inequality is the time to skip over a gap and read the next media block from the

device, and this is less than the display time of one media block, there is sufficient

time to retrieve the next successive media block while the current media block is

displayed. Continuing likewise, the whole data stream can be served and displayed

without delay.

59

Multimedia Storage Systems Performance Characteristics Chapter 2

M, G, M, G| M, G, M, G,

stream

stream 2

ill M liii iir
M. G, M. G, M2 G. M. G.

'11 " lllllll " •III " • I I
M, M2 G|2 M, M2 G,2 M, M, G|2 M, M. G,.

merged stream iilllll—MlilllllillJilll—pillll m I ill I l i i H liillll ILJIIII

Figure 2.10. Interleaved contiguous placement

Two or more data streams may be placed together by a process of merging

(Figure 2.10). Let M, be the number of data blocks in the ith data stream and G, be

the number of space blocks in the ith data stream. They considered whether data

streams (Mi, Gi), (M2, G2), , (Mk, Gk) can be merged while maintaining the

continuous display requirement.

Two policies, the Storage Pattern Preserving Policy (SPP policy) and the

Storage Pattern Altering Policy (SPA policy) have been studied to decide the

feasibility conditions of merging. The SPP policy maintains the storage pattern of

each data stream unchanged after merging. The SPA policy maintains the average

storage pattern during the merging process.

Yu et al. considered the possibility of merging two objects while

maintaining their original storage patterns [151]. Two media streams can be

merged if and only if their greatest common divisor satisfies the condition:

M I - H M 2 < G C D (M I - I - G I , M 2 + G2), (2-10)

where GCD denotes the greatest common divisor of the list of numbers enclosed

in brackets.

60

Multimedia Storage Systems Performance Characteristics Chapter 2

The SPP policy maintains the continuous retrieval conditions with both

memory buffer and retrieval time for every component media stream unaltered by

the merging process. However, the merged stream may not fulfil the regular media

and gap requirements of the original individual media stream. Thus, the feasibility

condition for merging more than two streams cannot be easily generalized.

Rangan and Vin allow the storage pattern to alter in the SPA policy [122].

They maintained the average gap size over a number of media blocks and store

extra data blocks in read-ahead buffers. Although this policy requires more

memory buffers to maintain the continuous display requirements, the merging of

streams can be generalized. Two streams that cannot be merged under the SPP

policy may now be merged under the SPA policy.

The number of streams that can be merged can now be generalized from

only two streams to k streams. It is shown that data streams (Mi, Gi), (M2, G2), ...

, (Mk, Gk) can be merged if and only if

Ml M2 Mk .^ . . .
+ + ... + < 1 . (2.11) Mi-i-Gi M2 + G2 ' Mk + Gk

When several interleaving objects are retrieved, the disk can retrieve the

objects at higher throughput since all the interleaving data stripes can be accessed

using sequential reads without extra seek actions. Hence, this placement method is

very suitable for composite objects whose component objects must always be

synchronized. If the probability of several objects being concurrently served is

high, then interleaving these objects could also raise the disk throughput. We shall

switch the interleaving from the space domain to the temporal domain to allow for

the feasibility condition to be used on general storage organizations in Chapter 5.

61

Multimedia Storage Systems Performance Characteristics Chapter 2

(b) Phase Constraint Allocation

Since the access pattern of multimedia objects are very much skewed in some

applications, many users may request one object at slightly different times,

particularly in near video-on-demand applications. Ozden et al. proposed the

phase-constraint allocation to serve multiple streams synchronously on the same

hot object [116, 117].

Each multimedia object is organized as a (m x n) matrix of data stripes and

these stripes are placed on m disks. Consecutive stripes are ordered sequentially

from disk 1 to disk m and so on. Each column of n stripes are stored contiguously

on a disk. All the streams on the object are divided into n phases with each phase

of streams being separated from the previous phase at a fixed time period. All

streams of the same phase are merged together and the retrieved data are broadcast

to all streams of the same phase. With only one disk seek action, all n phases of

streams on the same object are served (Figure 2.11).

object X: Xn

X41

X12

X42

Xl3

X43

X21

X5 .

X22

X52

X23

Xfis

X31

Xfii

X32

X62

X33

Xfis

one disk read

user phase 1
user phase 2
user phase 3
user phase 4
user phase 5
user phase 6

d i sk l disk 2 disk 3

Figure 2.11. Phase constraint allocation

62

Multimedia Storage Systems Performance Characteristics Chapter

The advantage of this placement method is that several streams on the

same object can be served with only one seek action. The maximum bandwidth

requirement on any object is then limited by the number of phases instead of the

number of streams. This could alleviate the disk bandwidth contention on the

hottest multimedia objects.

Unfortunately, the start up latency is being traded off. Since there is a gap

between the start of any two phases, new streams must wait for the beginning of

the next phase before they are served. On average, new streams wait for half of the

phase period. Keeping the first data stripe of every hot object from each disk

resident on memory may alleviate this start up latency problem.

(c) Region Constraint Allocation

The region based allocation technique partitions each disk into several regions

similar to zones in constant density recording disks. One data stripe is stored to

one region of the disks. The next data stripe is stored to the next region and so on.

The disk requests are served by the SCAN scheduling [59, 101, 115]. Since one

data stripe is placed in each region, the maximum distance between any two

consecutive data stripes of the same object is bounded. The seek distance of the

first seek within each region is bounded above by twice of the region size whereas

other seeks in the region are bounded above by the region size. An upper bound is

then imposed on the worst case seek time on all the seek actions.

This technique provides an upper bound on the maximum seek distance of

disk requests to limit the retrieval time of each requests below the displaying time.

63

Multimedia Storage Systems Performance Characteristics Chapter 2

The seek time overheads are bounded; more concurrent streams are acceptable;

and the system throughput is raised.

Although new streams may only start when the region containing the first

data stripe is being scanned, the maximum start up latency of new streams is

limited to the period of traversing all regions once. Since the start up latency is

proportional to the number of regions, Chang and Molina proposed to replicate

data to reduce this start up latency [19]. This constraint allocation method is

particularly suitable for multimedia objects on disks.

64

Multimedia Storage Systems Performance Characteristics Chapter 2

2.6 Hierarchical Storage Systems

There are two approaches to managing data on tertiary storage devices. The

traditional approach is to use a Hierarchical Storage Manager. Such systems

usually operate at the granularity of a file. The whole file is a unit of migration

from tertiary storage to disks or memory.

The new approach is to embed the tertiary storage devices into the database

system. The tertiary storage device thus forms a part of the database system, and

data are moved between layers of the storage hierarchy within the process of

executing a query. Myllymaki and Livny studied the tradeoffs between memory

and disk requirements and the execution time of a join [105]. Sarawagi and

Stonebraker exploit dynamic reordering to match execution order to the optimal

data fetch order [128, 129]. The performance of the query optimizer is enhanced

using information caching, query optimization, and query scheduling in [128,

152]. Issac describes a prototype that integrates a database management system

with a storage management, allowing the storage of database on hierarchical

storage systems [77]. Chen et al. investigate an algorithm to partition datasets

based on data access patterns and storage device characteristics [25]. These

tertiary databases include multimedia data together with other binary and textual

data. Our design would be similar but not restricted to this new approach.

Several issues must be considered in designing hierarchical storage

systems. These include

1. the total cost of the storage system,

2. the tertiary storage organizations,

65

Multimedia Storage Systems Performance Characteristics Chapter 2

3. the data migration methods, and

4. the cache replacement methods.

If it is possible to store all required objects on disks at lower system cost, there is

no need to use a hierarchical storage system. Storage space usage can be divided

according to the duration of data occupancy into resident storage and temporary

buffers. While performance of accessing resident data is mainly affected by the

storage organizations, performance of accessing data in temporary buffers is

mainly influenced by the cache replacement methods. Since the access latency of

tertiary storage is high, the stream response time is mainly determined by the data

migration methods.

2.6.1 System Cost

The storage system cost consists of the data storage cost and the bandwidth cost. If

only magnetic disks are used, the system cost can be prohibitively high for large

multimedia systems. Tertiary storage is an essential component of large

multimedia servers due to its low media cost and large storage capacity. Despite

the low cost of storage, the bandwidth cost of tertiary drives are high. Some

researchers found that the bandwidth of tertiary storage libraries is inadequate for

online multimedia data accesses in some applications [28]. Fortunately, the

bandwidth cost can be reduced in several ways.

Firstly, increasing the number of subsystems in a distributed environment

can reduce the cost per stream. A multimedia storage server can then be built more

cost effectively by coupling several smaller subsystems together [37]. Ford et al.

coupled multiple small tertiary libraries together to create large tertiary storage

66

Multimedia Storage Systems Performance Characteristics Chapter 2

systems following the popular RAID method. This RAIL method achieves better

cost/performance ratio than conventional tertiary storage systems [46].

Secondly, playing multimedia streams directly from higher storage level

may reduce the cost per stream of low bandwidth tertiary drives. Staging or

pipelining can be chosen dynamically based on the relative load on the tertiary

versus secondary storage device [81, 118].

Thirdly, storage hierarchy becomes more economical by sharing bandwidth

among multimedia streams in the placement strategy. Whether storage hierarchy

should be used or not depends on the storage devices cost/bandwidth and

cost/capacity ratios [92].

Fourthly, efficient cache replacement methods can increase the hit ratio on

disk cache. This would reduce the workload on the tertiary storage; resulting in

more efficient use of tertiary storage bandwidth and disk cache size. Therefore,

efficient cache replacement method can also reduce the system cost.

It is found that the choice of data on the different levels depends on the

fraction of time when a stream of an object is active. It is suggested in [81] that

objects having an active stream less than a third of the time should reside on

tertiary storage. Since large multimedia systems may require vast data storage, the

use of hierarchical storage systems becomes inevitable.

67

Multimedia Storage Systems Performance Characteristics Chapter 2

2.6.2 Tertiary Storage Organizations

Despite the vast amount of researches on disk based placement methods, only a

few data placement methods that are proposed for tertiary storage can be found in

the literature. We group them into five strategies.

1. Contiguous: Whole object is stored to consecutive physical locations.

2. Log Structure: All writing operations are appended to a large log.

3. Frequency Based: Objects are stored following the access frequencies.

4. Striping: Data are divided into stripes and retrieved in parallel.

5. Resident Leaders: The starting parts of each objects are resident on disks.

We discuss these storage organizations in the following paragraphs.

(a) Contiguous Placement

In traditional systems, tertiary storage libraries store each file to consecutive

physical blocks. When the same strategy is applied to multimedia objects, each

object is stored like a file. The drive throughput is high since the whole file or

object is retrieved with only one media exchange overhead followed by one search

operation.

Triantafillou and Papadakis changed the sequence of data stripes on

tertiary storage devices according to the number of data stripes that can be

retrieved within the display time of one data stripes [139]. The whole object is still

stored contiguously on the media units. The data stripes that can be displayed from

memory directly after retrieval are interleaved with the data stripes that are staged

to disks, resulting in less staging data and lower disk bandwidth.

68

Multimedia Storage Systems Performance Characteristics Chapter 2

(b) Log Structured Placement

Kohl et al. developed a hierarchical storage system using the log-structured file

system. The access ranges within a file is tracked to determine whether a file is

often accessed sequentially or randomly. Sequential files are stored contiguously

and randomly accessed files are stored to many locations [85]. Log structured files

are optimized for writing data, instead of reading data. This method is efficient in

some applications where data are more often being modified than retrieved.

(c) Frequency Based Placement

Christodoulakis et al. used the frequency based placement method to minimize the

average access time in tertiary storage libraries. Placing as many hot objects as

possible together on one media unit minimizes the number of media exchanges.

Placing the objects in an organ-pipe manner minimizes the tape reposition

distance [30].

Unfortunately, there is a potential problem associated with grouping all hot

objects on one media unit. If too many requests are directed to only one media unit

and handled by the loaded drive, the drive becomes a bottleneck. If the requests

are not served fast enough, the long queue can grow indefinitely on one drive. In

the extreme case when all requests are waiting for service at only one drive, the

requests are served serially. If the hot objects are distributed across more media

units, the requests can then be served by multiple drives in parallel. Therefore, the

two level view of the placement method delivers only local optimal solutions.

69

Multimedia Storage Systems Performance Characteristics Chapter 2

Nemoto et al. use foreground and background migrations of media units to

balance the loading among tertiary storage libraries. A wagon is used to move

media units across the libraries. The desired locations of media units are

dynamically adjusted according to the current access frequency and drive

workload [107].

Similar frequency based strategy can be applied to placing media units

within cells. Since media units may be placed in cells close to or far from the

drives, the cell arrangement can be optimized according to the frequency of

access. More frequently accessed media can be placed nearer to the drive which

should be placed near the center of all media cells. Although we have not found

any researches on this application, we intuitively assume that the strategy is

applicable in similar way as other frequency based placement methods.

(d) Striping

Striping data over multiple media units allows several drives to perform I/O in

parallel. The times to retrieve data from multiple media units are then overlapped

to reduce the response time of each request. Hence, requests are served with

shorter data transfer time.

Drapeau and Katz investigated the benefits and disadvantages in applying

parallel striping in tape arrays. For a small library composed of many tapes, a few

drives and a single robot arm, contention for the small number of drives limits the

value of striping under heavy workload. For a large library with fast robots and

high throughput drives, the exchange time predominates and penalizes striped

systems for all but the largest accesses at very light workload. Striped systems

70

Multimedia Storage Systems Performance Characteristics Chapter 2

generate more cartridge switches than non-striped systems. Striping increases

contention for drives, resulting in an artificial increase in resource utilization [39,

40].

Golubchik et al. studied the impact of stripe width on striped tape arrays

and showed that the optimal stripe width is dependent on the system's workload

[67]. However, it is difficult to choose an optimal stripe width that can vary

according to the dynamically changing system workload.

Chiueh proposed the triangular striping technique that stores data stripes

following the order of media exchange. When several drives simultaneously

exchange media using only one robot arm, the media units are exchanged to one

drive at a time. Some data stripes are retrieved from the already exchanged drives

while other drives are still pending for exchange. All the drives are arranged to

complete the data retrieval at the same time. The data retrieval time is hence

overlapped with robot exchange time to reduce request service time [29].

Since striping methods separate objects to several media units that are

accessed by multiple drives, they increase the number of media exchanges to

access each object. Although several drives may access one object in parallel to

reduce response time under light workload, the throughput of tertiary drives drops

and the response time increases under medium to heavy workload. Hence, new

methods that can share the media exchange overheads under medium to heavy

workload becomes a necessity for striping to succeed on tertiary storage.

Although parallel striping can increase the chance that some requests may

share a media exchange, this is unlikely with the low access probability of each

media unit. In addition, the worst case condition must be assumed in multimedia

71

Multimedia Storage Systems Performance Characteristics Chapter 2

system to provide guarantee on the continuous display requirement. Hence, the

parallel striping methods cannot deliver a higher throughput than the non-striping

method under heavy loads.

Instead of considering parallel striping method for general data, we focus

on striping of only multimedia data in this research. Instead of parallel striping to

only a few media units, we striped the objects across all media units so that all

concurrent streams can definitely share the media exchange overheads. We also

remove the synchronization of drive exchanges to avoid contentions at the robot

arm.

(e) Resident Leaders Placement

The resident leaders placement methods store multimedia objects partially on

disks and partially on tertiary storage. They place the initial part of each object,

called leader, on disks and the rest of the object, called tail, on tertiary storage.

The two parts are connected together via data buffering. When an object is

accessed, the object is started to display leaders from the disks while the tail are

being copied from tertiary storage. Data are alternatively supplied from both disks

and tertiary storage [110, 133, 138].

Nishimura et al. retrieved data synchronously from magnetic disks and

optical jukeboxes. One fixed size data stripe is transferred to each user within a

fixed period of time. The leaders are kept resident on magnetic disks to reduce the

start up latency of cold objects [110].

Similarly, each object is divided into fixed time units in multiple readout

method. Each time unit is further split into one leader and one tail. Leaders of all

72

Multimedia Storage Systems Performance Characteristics Chapter 2

objects are resident on magnetic disks. The tails are stored within one media unit.

While the leaders of m concurrent streams are displaying, the tails are being

retrieved from m media units to magnetic disks [133].

These resident leader methods are useful only when the multimedia

streams are retrieved using the pipelining method. If the whole object is retrieved

prior to display, the copying time is only reduced slightly. These methods

significantly reduce the maximum start up latency in displaying multimedia

objects from the hierarchical storage system.

Unfortunately, keeping data resident on disks increases the disk buffer size.

Since the number of retrieving streams is much less than the number of objects on

tertiary storage, more disk space is required. As the leaders are resident on disks,

we compose them in the way that can provide an overview of the multimedia

object. Leaders can hence facilitate browsing and searching the objects without

any extra preview file.

2.6.3 Data Migration Methods

Multimedia objects can be stored and staged across the storage hierarchy similar

to traditional files. After objects are materialized on disks, they can be accessed

randomly from disks to support any user display modes. The tertiary drives are

totally free from any references to the objects while the objects are staying on

disks. Frequently accessed objects may also stay longer for repeated references. If

objects are scheduled in advance, the objects can be staged to disks prior to the

presentation time [10, 125].

73

Multimedia Storage Systems Performance Characteristics Chapter 2

Unfortunately, the staging method is inefficient in response time and disk

space consumption. Firstly, users have to wait for a long time of copying the entire

object to view it. Since the system responds after the completion of the first stage

and the transfer time of large objects is long, the user needs to wait for a long time

even when he is only previewing the objects.

Secondly, the disk buffer space to contain the entire object is reserved for a

long time. While the object is staged, the disk buffer size grows slowly to the full

object size during the first stage. If the entire object stays on disk buffer for

consumption until the object is no longer required, the full object size is reserved

during the entire consumption period. Hence, the staging buffer size is large

during both the staging and consumption period.

(a) Time-Slice Scheduling

Lau et al. proposed the time-slice scheduling method to reduce response time of

concurrent streams. Instead of staging an object in its entirety, an object is

retrieved as multiple slices. New waiting streams may start earlier if the streams

can be served concurrently. The average response time is hence reduced [91].

Unfortunately, exchange overheads are increased and they undesirably lower the

drive throughput. They increase the waiting time and response time under heavier

workload. Therefore, the time-slice scheduling is efficient under very light

workloads only.

74

Multimedia Storage Systems Performance Characteristics Chapter 2

(b) Pipelining

For certain applications such as on-demand systems, users can only view

multimedia objects from beginning to end. Since the time to stage objects from

tertiary store to disks are very long, the system may start to display the data to

users before the entire object is completely copied to disks. Ghandeharizadeh and

Shahabi investigated this pipelining technique to minimize the response time of

multimedia streams [58, 146].

The pipelining technique groups the data blocks of X into s logical slices

{X\, X2, ... , Xs) such that the display time of X\ is longer than the retrieval time of

X2, the display time of (Xi + X2) is longer than the retrieval time of (X2 + X3) and

so on. The Production Consumption Ratio, PCR, is defined as

P C R = ^ , (2.12)

o

where 7 is the tertiary bandwidth and 5 is the display bandwidth. If PCR < 1, then

the waiting time is minimal when the last slice consist of a single block. In this

case, the size of the first slice is

(9-L PCR (0 - 1) J, (2.13)

where O is the object size.

Intuitively, this result is applicable to any contiguous segments of

multimedia objects. A multimedia stream pipeline on a segment of multimedia

object can be set up if the same fraction of the segment is already copied to or

resident on disks. We shall use this result to access segments continuously from

tertiary storage.

Since the disk buffer filling and consumption periods overlap with each

other, the duration of a slice staying on disk buffer is reduced. Some slices may

75

Multimedia Storage Systems Performance Characteristics Chapter 2

even be played directly from the memory without being copied to disks when the

time of retrieval and time to display are close together. As a result, smaller disk

buffer space for each object is required in pipelining than staging.

Wang et al. proposed to use a circular buffer to reduce the buffer space.

The leaders or the first sbces are cached to disks and the tails are loaded on

demand. A circular buffer is used to retrieve and display the tail portion. This

circular buffer shrinks when the size of the slices decrease [146]. The disk buffer

space is maximized when it contains the first two slices. Hence, the required disk

buffer space for an object of size O is estimated as

(l -PCR^)a (2.14)

Unfortunately, the pipelining methods limit the user display options. Users

are prevented from freely referencing other locations within the object as in the

staging method. Objects can either be displayed in normal mode or be rewound to

previously displayed locations. When the user displays in fast mode or jumps

behind the current location, another leader needs to be retrieved before display can

resume. The user waits for this latency until sufficient data are copied to disks.

Tavanapong et al. studied the choice of blocks to be transferred over a low

bandwidth network during the start up time of the pipelining method. An object is

split into many fixed sized fragments in the Two Phase Service Model (2PSM).

The leaders of all fragments are transferred in the first phase. After all the leaders

are transferred, the user can start to preview or display the object. The tails of any

fragment are transferred while the user is viewing the object. User may also

preview the leaders of the object to interrupt the transfer of the object [134].

76

Multimedia Storage Systems Performance Characteristics Chapter 2

Tavanapong et al. provided three strategies, linear, spreading, and binary-tree, to

select the leaders of fragments.

These strategies are good at improving preview quality over longer start up

time. The fragments are uniform in size and easy to be analysed. His method also

reduces the latency in supporting VCR-like functions. Unfortunately, some short

scenes may not be present in the leaders. Fast forward, fast reverse, and searching

from only the leaders could miss some important contents.

We have performed independent studies prior to the publication of

Tavanapong's paper. Our method differs from their method in several ways. First,

we perform logical segmentation prior to data striping. The logical segments

contain the low temporal resolution segments to provide sufficient preview

information. Second, we divide each logical segment into data stripes with

decreasing sizes instead of just one fixed size. Hence, the data retrieval time after

fast forward and fast reverse operations overlaps with the displaying time using

the pipelining techniques. Third, we include the media exchange time and disk

bandwidth so that our method can be applied to more realistic and practical

situations, and the continuous display requirement can always be guaranteed. Our

method is described with details in Chapter 3.

Kienzle et al. stated that the choice of whether staging or pipelining for

minimal storage system cost should base on the ratio of tertiary storage throughput

and display bandwidth [81]. Pang used a dynamic retrieval algorithm to choose

between staging and pipelining methods based on the relative load on the tertiary

versus secondary storage device [118]. Hence, pipelining methods will inevitably

be used in future multimedia systems.

77

Multimedia Storage Systems Performance Characteristics Chapter 2

2.6.4 Cache Replacement Methods

Tertiary storage devices provide lower storage cost but higher bandwidth cost than

disks. Increasing the number of streams from the tertiary storage raises the disk

cache cost, resulting in higher total system cost [37]. After data are copied from

tertiary storage to disks, they should be kept in disk cache as long as possible for

repeated accesses to minimize the number of streams to tertiary storage.

Therefore, objects should be removed from disk cache only when storage capacity

is required.

Traditionally, the selection of objects to be deleted is based on the access

history and the frequency of access. Simple algorithms, such as Least Recently

Used (LRU) algorithm, have been used for many years to manage memory cache.

Data of multimedia objects are consumed sequentially. Removing the leaders of

cold objects increases the variance of start up latency, while removing the tails of

hot objects can reduce the cache hit ratio. Hence, efficient cache replacement

methods are required to select multimedia data objects to remain on cache under

the constraint of these conflicting requirements.

(a) Frequency Based Cache Replacement

When more data requests are served at the lower storage level, fewer requests are

directed to the higher storage level. When a small amount of material is heavily

accessed and used, this skew is then exploited by using a storage hierarchy that

stores the less frequently used data in lower cost tertiary storage and the more

frequently used data in higher cost secondary storage. As hot objects are

frequently accessed, placing them on the lower level reduces many more requests

78

Multimedia Storage Systems Performance Characteristics Chapter 2

to the higher level than placing cold objects on the lower level. Hence, many

studies use the access frequencies to select the objects to stay in the lower storage

level [10, 28, 37, 42, 81, 133, 140].

Some researchers proposed a cache management algorithm that uses a

priority mechanism. The priority value is determined by the expected time to next

requests on the object. These priority values may vary with time and they are

evaluated periodically. Low priority objects are replaced with high priority objects

until only the highest priority objects are in the disk caches [10, 42, 125]. In this

system, detailed access statistics are stored to determine the access frequency of

objects and all user requests must be scheduled in advance.

While data placement methods are static for resident data objects, cache

replacement methods can dynamically determine the objects that remain on the

disk buffers. Hence, cache replacement methods can adjust itself dynamically to

suit changes. If some animated objects may have higher access frequency at

different times of the day, then these objects may have different priorities that

depend on the current time.

Unfortunately, cold objects that are resident on the tertiary storage are less

skewed since their access frequencies belong to the tail of the Zipf distribution. If

all accesses are highly skewed, storing the most frequently accessed objects on

disks can significantly reduce the number of accesses to the tertiary storage.

Otherwise, recently accessed objects are overwritten well before they are accessed

again. Hence, the frequency based cache replacement methods are less useful for

cold objects on tertiary storage.

79

Multimedia Storage Systems Performance Characteristics Chapter 2

When a large cold object is placed on a light loading disk, there is little

disk space left to store other objects. This would erode disk bandwidth due to

limitations on the disk space constraint. Likewise, when a small hot object is

placed on a heavy loading disk, there is little bandwidth left to serve other objects.

This would then erode disk space due to the limitations on the disk bandwidth

constraint. Some researchers proposed a cache replacement method that balances

the space and bandwidth of objects on disks [35].

Brubeck and Rowe proposed a selection algorithm that chooses the disks

with minimum load [10]. The available load, L, on a video file server is defined as

L = Lcache ^stream ^net a n d 0 < L < 1, (2 .15)

where Lcache is the cache load, Lstream is the stream load, and Lnet is the network

load. The disks with the minimum load and sufficient storage is chosen to store

the object. Similarly, Dan and Sitaram proposed to use the bandwidth-to-space

ratio to select the staging disk. The disk with the lowest bandwidth to space ratio

is chosen to store a staged object [35]. These methods can only balance disk

loading on an object level since an object is either placed to a disk or to another

disk.

80

Multimedia Storage Systems Performance Characteristics Chapter 2

(b) Latency Based Cache Replacement

Some researchers proposed to delete only partial objects according to the impact

on the variance of response time. The leaders are often given higher priority than

the tails of each object [104, 110, 133]. Ghandeharizadeh and Shahabi designed a

Partial Replacement Technique (PIRATE) to delete partial objects from the disk

cache in order to maintain the start up latency low when any objects are accessed

again. The leaders of cold objects may stay while tails of hotter objects are

removed from the disk cache [8, 58].

These methods use the position of the data stripe from the start of the

object to choose the data for removal. Although more requests would

unfavourably be directed to tertiary storage than the frequency based methods, the

maximum response time of any streams is bounded.

Unfortunately, these latency based methods undesirably lower the cache hit

ratio and increase the number of requests to tertiary drives. When more requests

are served, drive contentions occur more frequently. The waiting time for free

drives can significantly increase the response time of requests. Hence, the average

response time is traded off with the variance of response time. Ghandeharizadeh

and Shahabi provided a parameter to tune the relative importance of average

response time and variance of response time [58].

81

Multimedia Storage Systems Performance Characteristics Chapter 2

2.7 Other Related Works

The access speed of the tertiary storage devices is often considered as the

bottleneck of hierarchical storage systems [25]. Chan and Tobagi performed

sensitivity analysis of various system parameters on the start up latency. The

analysis are based on contiguous object placement, staging method, and LRU

cache replacement algorithm. The disk bandwidth, the disk capacity, the number

of tertiary drives, the tertiary drive bandwidth, and the tertiary drive exchange

latency are adjusted to reveal their influence on the waiting time [16]. This model

analyses only on the staging method and its results cannot apply directly to the

pipelining method.

In [79], a query model is developed for accessing files from tertiary storage

devices. The model caters for batches of file requests that behave differently from

multimedia data request streams.

In [65], a method that provides preemptive tape drive unloads is studied.

Gniewek shows that robot service time can be reduced under some application

conditions. Parallel striping methods become more attractive when the robot

service time is shorter.

82

Multimedia Storage Systems Performance Characteristics Chapter 2

2.8 Discussion

• storage Device Characteristics

Traditional disks under-utilize recordable surface area on outer tracks and waste

disk bandwidth. Constant density recording uses recordable surface area more

efficiently. Constant linear velocity approach, however, wastes the data transfer

rate by reducing the revolution speed at outer tracks and increases the overheads in

changing motor speed. Intuitively, using a constant angular velocity approach on

constant density recording disks is the most efficient in supporting random

accesses on both storage capacity and data bandwidth.

Disk array provides large storage capacity and high storage system

throughput. RAID encodes redundant data to increase data reliability and security.

The SCAN scheduling methods can reduce seek overheads on random requests

according to the data access locations on disk surface.

• Multimedia Storage System Characteristics

Large multimedia systems that require data storage of the order of petabytes make

the inexpensive magnetic disks neither economical nor practical. Hierarchical

storage systems utilizing the large capacity of tertiary storage devices could be

considered to meet the size demand in such systems. The media exchange time of

hierarchical storage systems is so long that it significantly lowers the performance

of these systems. Traditional data migration methods also delay the response time

significantly.

Multimedia storage systems differ from traditional storage systems in

many aspects. Large multimedia objects should be maintained in compressed

83

Multimedia Storage Systems Performance Characteristics Chapter 2

format for as long as possible. Progressive and multi-resolution compression

techniques allow coarse views using partial objects. Bulky multimedia objects

should be partitioned into data stripes for efficient retrieval using the constant time

length approach.

User may view multimedia objects in various display modes. VCR-like

functions change the sequences and deadlines in accessing data stripes. Some data

stripes may be skipped over in fast modes. User may browse and search

multimedia objects. The storage system should support at least these types of data

retrieval patterns.

Access frequencies of multimedia objects are often predicted with the Zipf

distribution and multimedia objects are more often retrieved than modified.

Multimedia streams generate requests periodically and continuously over an

extended period of time. Requests of the same stream that access neighbouring

data in the object are separated evenly. Each request should finish within a real­

time deadline, and variations in request response time can be absorbed using read-

ahead buffers. Composite multimedia objects need to synchronize the retrieval

time of their component streams prior to display. These multimedia data access

patterns make multimedia storage systems behave very differently from traditional

computer storage systems.

The SCAN-EDF and GSS algorithms are the disk scheduling currently

tailored for multimedia streams. However, they can only provide soft guarantee

that may reduce the quality of service. When multiple streams on the same object

are served, they may merge using the piggyback technique.

84

Multimedia Storage Systems Performance Characteristics Chapter 2

• Storage Organizations on Disks

Traditional intelligent file placement methods are not designed to serve

multimedia request streams. The random placement can only be used as a

reference for comparison. The contiguous placement strategy is optimized for

object based retrieval. Fragmentation, copying overheads, and the presence of

concurrent streams, however, reduce the successful application of this technique.

The log structure placement strategy removes the overheads on consecutive

write operations, but it does not guarantee performance on accessing modified

data blocks. The statistical placement strategy minimizes the average response

time of requests. The object based methods would place each object contiguously

since they always have the same probabilities. This strategy should be refined to a

finer granularity to optimize the performance of concurrent streams. Redundant

codes increase data reliability and data security. Unfortunately, the updating and

retrieving redundant codes increase the system workload. Multimedia data are less

volatile and are usually recoverable from other sources. Data replication strategy

increases the availability of data by using alternative storage devices. The need for

extra storage space yet lowers the effectiveness of this strategy. Data striping

strategy partitions bulky multimedia object for efficient data retrievals. Staggered

striping removes the contentions on hot disks and balances the disk load

automatically. Constraint allocation strategy effectively guarantees the continuous

display requirement of streams at the small expense of start up latency. Phase

constraint allocation is mainly suitable for very hot objects in near-video-on-

demand environment, but its benefits may be replaceable with the more dynamic

piggyback merging method. Region based constraint allocation bounds the

85

Multimedia Storage Systems Performance Characteristics Chapter 2

maximum seek overheads of consecutive requests and interleaving contiguous

placement handles heterogeneous streams on optical disks effectively. These

methods should be extended to heterogeneous streams on other storage devices,

such as magnetic disks, tapes, and multiple storage devices. We shall establish the

feasibility condition for accepting concurrent streams by multiple independent

devices in Chapter 5.

• Tertiary Storage Organizations

Traditional hierarchical storage managers operate at the granularity of a file. The

new approach migrates data automatically across the storage hierarchy in the

database system. Large multimedia systems may require storage capacity so huge

that magnetic disks are not practical. Smaller multimedia systems that place data

according to access frequency also have a large number of less skewed and cold

objects that are best stored on tertiary storage. Although tertiary bandwidth cost is

more expensive than disk bandwidth cost, storage hierarchy can be more

economical in some systems.

Contiguous placement strategy stores objects on the fewest media units.

Log structure placement strategy is suitable for storage systems that are bounded

by write operations. Frequency based strategy is applied on several placement

problems to minimize the average retrieval time. This strategy is also applied to

migrate media units among libraries. These methods are efficient for object based

retrieval, but multimedia objects are too bulky to be accessed in its entirety.

Unlike striping on disks, parallel striping methods on tertiary storage are

less successful. The presence of long media exchange time erodes the tertiary

86

Multimedia Storage Systems Performance Characteristics Chapter 2

bandwidth for small objects under heavy workload. The optimal stnpe width is

bounded by the number of drives. Triangular placement helps to reduce half of the

waste on synchronized robot exchange period. We suggest two ways to reduce the

overheads:

First, media exchanges at the tertiary drives should be asynchronous,

instead of synchronized, to avoid robot contentions. Second, the media exchange

time should be shared among concurrent streams to reduce average overheads per

stream. These are described in Chapter 3.

A typical method to store multimedia objects using storage hierarchy

follows the frequency based placement strategy with resident leaders. Multimedia

data are ranked according to their access frequencies, or object temperatures. Hot

multimedia data are disk resident. Very cold data are entirely stored on tertiary

storage devices. Warm multimedia data are divided into leaders and tails; the

leaders are resident on disks whereas the tails are retrieved from tertiary storage on

demand.

Traditional staging methods are not optimized for materializing

multimedia objects across the storage hierarchy. Time-slice scheduling is

applicable under very light load conditions. The simple pipelining methods

optimize the start up latency in new streams, but they also limit the user display

options. Tavanapong et al. extended the pipelining methods to provide preview

operation over low bandwidth networks. Independently, we extend the pipelining

methods differently to minimize the latency in supporting VCR-like, browsing,

and previewing functions.

87

Multimedia Storage Systems Performance Characteristics Chapter 2

Frequency based cache replacement methods optimize the cache hit ratio to

reduce the average response time. Latency based cache replacement methods

maintain the presence of leaders in cache to minimize the variance of the response

time at the expense of the average response time.

2.9 Chapter Summary

We have evaluated the characteristics of multimedia storage systems in this

chapter, and highlighted the issues that need to be resolved, which will be

addressed in the remainder of this thesis.

Traditional storage devices are tailored for small amount of data retrieved

by discrete random requests. Random access memory is expensive and small,

though data can be accessed instantly. Sequential access storage device provide

large storage capacity at very low cost, but data can only be retrieved after very

long exchange latency. Direct access storage devices provide inexpensive storage

at fixed storage capacity to bandwidth ratio. With the emergence of the new

multimedia age, these storage devices become inefficient in accessing multimedia

data. It remains a significant research challenge to improve the performance of

multimedia storage systems.

There is a recent trend to use constant density recording disks. These disks

have different storage formats and access performance characteristics. The

performance of multimedia requests on CDR disks needs to be investigated with

suitable models so that their performance can be analysed quantitatively. Requests

to different zones in CDR disks perform differently. Higher throughput is

expected from the outer zones. This variable throughput should be considered in

88

Multimedia Storage Systems Performance Characteristics Chapter 2

efficient data storage organizations. New placement methods are hence required in

placing data on CDR disks.

Many storage organizations have been proposed for multimedia data on

magnetic disks. Disks array provides large storage capacity. Staggered stnpmg

reduces disk contentions. Constraint allocations lower seek overheads to meet

continuous display requirement. Interleaving allocation supports concurrent

streams. These placement methods are efficient on direct access storage devices.

The requirements of multimedia data storage in new applications are in the

order of hundred terabytes to petabytes. Disk only systems would waste valuable

bandwidth in storing large amount of infrequently accessed data. Even though the

cost of disks can be considered inexpensive, the only practicable and economical

solution to store these multimedia data would be to use tertiary storage devices.

Although some researches show that storage hierarchy may not reduce the

total system cost, it has been found that storage hierarchy can be more economical

by sharing bandwidth among multimedia streams. It is also discovered that

playing multimedia streams directly from higher storage level could also reduce

the cost per stream. Therefore, new efficient storage and retrieval methods for

multimedia data on hierarchical storage systems are required in order that large

multimedia systems may become more economical and practical. While the

pipelining method minimizes the response time, it also limits the display options.

Hence, the pipelining technique needs to be enhanced to minimize the delays in

supporting interactive functions.

89

Chapter 3

New Efficient Storage Organizations

for Multimedia Data

We have shown in the previous chapter that new efficient storage organizations

are required for multimedia data, we present our novel storage organizations in

this chapter. We first consider performance measures on multimedia storage

system.

3.1 System Performance Measures

In order to compare the efficiency of different storage and retrieval methods, it is

necessary to measure the amount of resources being used. Quantitative measures,

including system throughput, request response time, and buffer size, are

commonly used in traditional computer storage systems. The criteria to measure

performance are different in multimedia storage systems. We consider a

multimedia storage system to be efficient if:

1. the continuous display requirement is guaranteed,

2. the system throughput is high.

90

New Efficient Storage Organizations for Multimedia Data Chapter 3

3. the response time of new streams is short, and

4. the necessary buffers are small.

(a) Continuous display requirement

When the storage system continuously supplies data at a faster rate than the

display rate, the display buffer overflows. This problem can sometimes be

rectified by suspending the streams of data requests until some data are displayed

from the buffer. When the storage system supplies data at a slower rate than the

display rate, the display stream starves. Artifacts, such as jitters and hiccups, will

then occur and they adversely affect the quality of service. Therefore, the

continuous display requirement must be guaranteed in designing multimedia

storage systems [53].

(b) Throughput

Throughput of most storage systems are determined by their data access speed. It

increases in proportion to the rate of requests being served. When requests are

served quickly with a corresponding effect on the waiting queue, the request

service time significantly affects the storage system throughput.

Multimedia storage systems only accept new streams if they can serve the

streams without violating the continuous display requirement. The number of

concurrent streams is hence limited by the performance of storage devices. When

more concurrent streams are accepted, the system can serve more streams

concurrently to quickly reduce the waiting queues. Hence, throughput of

91

New Efficient Storage Organizations for Multimedia Data Chapter 3

multimedia storage systems determines the storage system's capacity in accepting

new streams.

When system load is heavy, new arriving streams experience long waiting

time in queue to be accepted. The response time of the new streams could be

increased indefinitely by this long waiting time. Unless some streams are served,

the waiting streams cannot be served. This waiting time, hence, depends very

much on the throughput of the system. The system should quickly complete the

service of the accepted streams so that waiting streams can be started. Hence,

higher system throughput reduces the waiting time and response time under heavy

loads. Therefore, storage methods that deliver high throughput under heavy loads

are desirable.

(c) Response Time

When user starts a multimedia stream, the response time that appears to the user is

the response time of the new stream instead of the response time of individual

requests. Hence, stream response time is the external characteristics that manifest

the performance of the multimedia storage system to users. New streams should

respond fast in efficient systems. Hence, the stream response time provides a

measure of the quality of service to interactive users.

The response time of new streams consists of the following delays:

1. the waiting time of the stream for acceptance,

2. the copying time if data are migrated from tertiary storage devices,

3. the network delays if data are accessed from remote sites, and

4. the initial start up latency to fill the read-ahead and display buffers.

92

New Efficient Storage Organizations for Multimedia Data Chapter 3

These delays may overlap with each other during processing. For example, some

data may be migrated from tertiary storage devices for waiting requests if the

tertiary storage devices are free. These delays significantly affect the stream

response time under light loads.

If the system load is light, the system is free to accept new arriving

streams. The new stream does not have to wait and its response time is

significantly influenced by the start up latency. The system should serve the

accepted streams with short start up latency so that the streams can respond

quickly. Therefore, storage methods that respond quickly under light loads are

desirable.

(d) Buffers

Buffers on RAM and disks are used in multimedia systems. When data are

accessed from disks, a display buffer is required on RAM to keep temporary data

prior to display. A few read-ahead buffers may also be required on RAM to cater

for variations in disk throughput. When data are retrieved from tertiary storage, an

additional staging buffer is required on disks. The staging buffer keeps the

intermediate data to prevent from overflowing the display buffer or suspending

requests to tertiary storage [55]. Large buffers will raise the storage cost of the

system. Hence, buffer size measures the amount of resources being used in the

storage system and efficient storage systems should use small buffers.

93

New Efficient Storage Organizations for Multimedia Data Chapter 3

To summarize this Section, a multimedia storage system is considered

efficient if this storage system can store and retrieve data at high throughput

without violating the continuous display requirement and it can respond quickly to

new streams while utilizing small buffer space.

94

New Efficient Storage Organizations for Multimedia Data Chapter 3

3.2 System Architecture

The architectures of storage systems being considered in this research are

multimedia systems that store multimedia data using a storage hierarchy (Figure

3.1). One or more tertiary storage library may be used. The tertiary storage library

consists of a media exchange device, several tertiary drives, and many media

units.

Data are transferred through the system bus among various storage devices.

As the system bus bandwidth is often over four times the data bandwidth from the

tertiary storage level, the system bus is assumed to be of sufficient bandwidth in

this thesis.

memory

system bus

robotic
arm

u

GI
Q

as disks

• •

G) 0 Q © tape drives

GI

GI

GI

GI

GI

GI

GI

GI

GI

GI

GI

GI

GI

GI

GI

GI

GI

GI

GI

GI

Cfl-

• *

GI

GI

1 —

1 —

tapes

cells

Figure 3.1. Typical storage system architecture

95

New Efficient Storage Organizations for Multimedia Data Chapter 3

Multimedia data are stored at three levels in the hierarchical storage

system. The primary storage level acts as cache for data in the secondary storage

level and the secondary storage level acts as cache for data in the tertiary storage

level. All data migrated between the secondary and tertiary storage levels should

also go through the primary storage level.

3.2.1 Primary Storage Level

Random access memories should be used in the primary storage level. Apart form

acting as cache for data in the secondary storage level, all data from disks and

tertiary storage are directly transferred to the memory. The memory would also

keep working data and running programs. We assume that the bandwidth of the

random access memory is sufficiently large that it is considered as infinite in this

thesis. The access latency of data from random access memory is so small that it is

negbgible.

3.2.2 Secondary Storage Level

One or several magnetic disks should be used at the secondary storage level.

Magnetic disks act as cache for objects that are retrieved from the tertiary storage

devices. They also store the low temporal resolution part and the leaders of objects

that are resident on tertiary storage.

As Constant density recording disks can store more data than traditional

VDR disks of the same size, CDR disks at constant angular velocity must be used.

This is necessary for multimedia data which are large in size. Apart from having

more data in outer zones, there is also a skew in the access probability of the

96

New Efficient Storage Organizations for Multimedia Data Chapter 3

zones. As the tracks in the outer zones are longer in size, these tracks have a

higher chance of being accessed. The read/write heads hence have a higher

probability of staying around the outer zones. Intuitively, the expected seek

distance of random accesses are shorter than that of the VDR disks.

When CDR disks at fixed angular velocity are used, more data pass under

the read/write heads of CDR disks than that of VDR disks. Hence, CDR disks

transfer data at a faster rate. We therefore expect CDR disks to retrieve bulky

multimedia data quickly. Although CDR disks retrieve data at variable data

transfer rates and increase the difficulty in buffering data from different zones, this

variation in disk throughput can easily be controlled by using read-ahead buffers.

Multiple disks can be used together to provide large storage space that is

needed for multimedia data. The disks can be accessed in parallel using striping

techniques to achieve high disk throughput. We assume that the disk throughput is

many times higher than the tertiary storage devices throughput.

3.2.3 Tertiary Storage Level

Optical jukeboxes, robotic tape libraries or array of DVD changers can be used as

the tertiary storage servers. All multimedia objects are permanently stored at the

tertiary storage level. We consider to use tertiary storage devices for the following

reasons:

1. Large storage systems need to store petabytes of data and most of the data

stored in these systems are multimedia data such as images, audio and

video. Tertiary storage devices are the only practical devices that can

97

New Efficient Storage Organizations for Multimedia Data Chapter 3

provide such huge storage capacity. Hence, tertiary storage devices are

inevitably used in large multimedia storage systems.

2. Before any system designs can become commercially successful, the

system cost must be considered. Although the bandwidth cost of tertiary

storage devices is high, some multimedia systems have large amounts of

cold data that can be more economically stored on tertiary storage devices

than on magnetic disks.

3. Tertiary storage devices may be required to create copies on exchangeable

media units for purposes such as updating, backup, archival, and

distribution of data. It is reasonable to utilize already available resources to

increase data bandwidth from the storage system.

Tertiary storage devices may be used to access distributed multimedia data in a

single user environment. They may also be used to concurrently supply

multimedia data from large multimedia storage servers to a number of users.

98

New Efficient Storage Organizations for Multimedia Data Chapter 3

3.3 Data Striping on Tertiary Storage

Large contiguous multimedia objects are too bulky to be accessed from the tertiary

storage as a whole. They should be partitioned into shorter data stripes in order

that they can be handled efficiently. We investigate the method that divides the

multimedia objects into stripes and places these data stripes on secondary and

tertiary storage devices in this Section.

Each multimedia object consists of a number of media blocks such that

each media block is a unit for display and retrieval. The multimedia objects are

partitioned using a two level data striping method. The first level of data striping

in Section 3.3.1 divides objects into logical segments of limited length. The

second level of data striping in Section 3.3.2 further divides logical segments into

shorter data stripes.

Data can be striped using either the data length or the time length

approach. Since other components of data access time already vary from request to

request, it is not worse off to vary the data stripe size and transfer time as well.

Therefore, we choose the time length approach since the display time of each data

stripe is fixed and it is simpler to meet the continuous display requirement.

3.3.1 First Level

The first level of data striping divides objects into logical segments using two

steps. In the first step, a number of low resolution data segments are found. In the

second step, long logical segments are divided into short ones.

The low temporal resolution data segments of a multimedia object are

composed of the rough view of the object in the time dimension. For example, all

99

New Efficient Storage Organizations for Multimedia Data Chapter 3

ten-second clips in the beginning of every 5 minute video may form the low

temporal resolution data segments of an two-hour video. In the first step, the low

temporal resolution data segments are first identified from the object. 3D-wavelet

and multi-resolution video compression methods already exist to provide low

temporal resolution data. The R-frames for MPEG compressed objects can also be

used as the low temporal resolution data. These low temporal resolution data are

interleaved with the high temporal resolution data in the object. Hence, the object

when viewed as a number of continuous data blocks is already divided by the low

resolution data into logical segments at the change cut positions.

If the data compression method cannot provide low temporal resolution

data, automatic data segmentation methods that divide objects into data segments

have already been studied by many researchers. If automatic methods are also not

available, the whole object can be treated as one long logical segment in this step.

The low temporal resolution data segments provide a temporal preview of

the content of the object. The size of these low temporal resolution data is

assumed to be much smaller than the object size. The low temporal resolution data

segments divides an object X into (Xj, X2, ... , X^) as shown in Figure 3.2.

low res. low res.
ofX, ofX,

Object X

low res.
ofX,

high res.
ofX,

high res.
ofX,

1
high res.

ofX,

low res.
ofX,„

1
X,

1
^2

;

1 ^ 3 1
1

^m

t
high res.

ofX„,

Figure 3.2. Low temporal resolution data segments

100

New Efficient Storage Organizations for Multimedia Data Chapter 3

In the second step, a number of length cuts are found from the logical

segments. The length cuts are the logical positions to split long logical segments

exceeding a certain length into shorter ones.

The list of change cuts and the list of length cuts are then merged to form a

list of logical positions to split the object. An object is then split into logical

segments at these positions. Letting c be the number of low resolution data

segments, s be the number of length cuts, we have the number of logical segments,

m, is equal to

m = s •¥ c. (3.1)

Additional logical segments are created from long segments at length cuts in

Figure 3.3. Without finding the low temporal resolution data segments, the low

resolution data may miss out important information. Without using the length

cuts, some logical segments may be too lengthy that jumps to the middle of the

logical segments are desired. Therefore, the merged list provides a list of logical

and reasonably spaced positions to start presenting any logical segments. This first

level data striping method divides data logically so that the user access pattern of

multimedia data can be handled efficiently.

first second third fourth
segment segment segment segment
< X X X •

last
segment
< •

Object X ^1

- 1 • • - 1 •

^ 2 1 -^3 I -^4 ^ 5 • • • ^m

A
I

A
I

length cuts

Figure 3.3. Length cuts

101

New Efficient Storage Organizations for Multimedia Data Chapter 3

3.3.2 Second Level

In the second level of data striping, each logical segment is split into a number of

data stripes while maintaining the continuous display requirement. It requires that

the display time of any data stripe is not less than the retrieval time of the next

data stripe. That is, the display time of a data stripe in any segment is not shorter

than the retrieval time of the next data stripe in the same segment. Also, the

display time of the last data stripe in each segment is not shorter than the retrieval

time of the first data stripe of the next segment.

The logical segments of an object X is divided into data stripes X,̂ in

Figure 3.4. Since the length of each logical segment is bounded by the length cuts,

the number of data stripes, n, is also bounded above. Each logical segment of an

object X is then split into n data stripes. The first data stripe is also called the start

up data stripe.

first logical
segment, X,

second logical
segment, X̂

last logical
segment, X,„

first
stripe

second
->"<— stripe

logical
segment

t t
low res. of start up

stripe

third
stripe-

last
.stripe •

X,, ^, . .
... ^ , , „

X,. X., . . .
^ 2 . , 7

1 K.^. K. . . .
'^m.n

Figure 3.4. Second level data striping

102

New Efficient Storage Organizations for Multimedia Data Chapter 3

We divide the logical segments into data stripes in order that the data

retrieval time of each segment overlaps with the displaying time of the segment

itself Each data stripe should contain an integral number of media blocks. For

example, a frame in MPEG compression can always be displayed, a data stripe

may contain an integral number of frames. The size of the last data stripe in each

logical segment, X,,„, should also occupy at least one media block.

After the start up data stripe of each segment is retrieved from tertiary

storage, the second data stripe can be retrieved while the start up data stripe is

being consumed. While a data stripe is being consumed, the next data stripe is

retrieved and so on. The data stripes of each segment are accessed sequentially in

a fixed sequence only, such as Xi,3 after Xi,2, 1̂1,4 after yi,3, and Z2,2 after Z2,i. If an

object is accessed in the reverse sequence, then a reverse object needs to be

created.

If the tertiary bandwidth is lower than the display bandwidth of the stream,

then the time length of the data stripes should reduce gradually. The time length of

each data stripe is equal to a fraction of the time length of the previous data stripe.

This fraction is equal to the ratio of tertiary bandwidth to display bandwidth.

If the tertiary bandwidth is higher than or equal to the display bandwidth of

the stream, then the data stripes should be divided in constant time length. After

the first data stripe of each segment is retrieved from tertiary storage, other data

stripes can be retrieved while their previous data stripe is being consumed.

103

New Efficient Storage Organizations for Multimedia Data Chapter 3

3.4 Data Placement on Tertiary Storage

We consider placing data stripes on media units using two methods, a high

concurrency placement method and a low latency placement method. The choice

between these two placement methods depends on the tertiary drives being used.

When high end tertiary drives are used, multiple streams can be served

concurrently to reduce average response time. The high concurtency placement

method should be employed to raise the system throughput for large number of

concurrent streams. We present this placement method in Section 3.4.1.

When low end tertiary drives that can serve only one stream at a time are

used, the low latency placement method should be used to reduce the response

time of user interactive requests. The low latency placement method is described

in Section 3.4.2.

104

New Efficient Storage Organizations for Multimedia Data Chapter 3

3.4.1 High Concurrency Placement

The high concurrency placement method consists of three parts. Firstly, we

describe our approach to partitioning the media units in part (a). Next, we present

the sequence of placing data segments among media units in part (b). Lastly, we

elaborate the placement within each media unit in part (c).

(a) Media Units Partitioning

In order to store and retrieve data segments efficiently, we evenly partition and

assign the media units to the tertiary drives. Since the number of media units is

many times more than the number of drives, each drive should be assigned with

several media units. A few remaining media units may be left unused. Therefore,

we assume that each drive is assigned with the same number of media units. An

example to partition twelve media units among two tertiary drives is shown in

Figure 3.5.

media Y media Y media Y media Y media V media
unitAl A unit A3 A unit A5 A unitBl A unitB3 A unitB5

media Y media Y media Y media Y media Y media
unitA2 A unitA4 A unit A6 A unit B 2 A unitB4 A unit B 6

Figure 3.5. Media unit partitioning

105

New Efficient Storage Organizations for Multimedia Data Chapter 3

There are two reasons that lead us to consider dividing the media units

among the drives. First, an array of automatic disk changers or an array of libraries

may not be able to share media units between them so that our placement method

can be applied directly to these storage systems. Second, contention for a media

unit is avoided since each drive would access only the media units assigned to it.

If the times to exchange a media unit to any drive are the same, the media

units can be assigned randomly to the drives. Otherwise, the media units should be

assigned to the tertiary drive that can quickly access it. The following steps can be

used.

1. The media units are sequenced in descending order of average accessing

speed from all drives.

2. The first media unit is assigned to the nearest drive that can access this

media unit at the shortest time.

3. The next media unit is also assigned to the drive nearest to it.

4. If a drive is assigned with the maximum number of media units, this drive

is then removed from the list of drives to be assigned.

5. The above two steps are repeated until all the media units are assigned.

The above steps can distribute evenly the media units to the drive that access

them.

106

New Efficient Storage Organizations for Multimedia Data Chapter 3

low res.

object X

object Y

object Z

se
<-

gments
•

^ u ^ , . 2 ^ . . 3 ^ 1 . 4 ^2 .1 ^ 2 , 2 • • •
Y

m.n

^M >^1,2 ^ . . 3 ^2.1 >'2,2 . . . Y
m.n

A.l A.2 2l.3 Zl,4 A.I . . . z

Figure 3.6. Reorder data segments in high concurrency placement

(b) Placing data segments among media units

After an object is divided using the two level data striping method, the data

segments should be rearranged to reflect the sequence of data usage. If object

preview is required, all low temporal resolution data segments of each object

should be stored contiguously. This order reflects the sequence of data segments

during the retrieval mechanism. The original order of data segments in the object

can easily be restored using a simple linked list. An example of reordering data

segments of three multimedia objects, X, Y, and Z, is illustrated in Figure 3.6.

The data segments are then stored on all media units in a cyclic manner.

An example of placing data segments on six media units and two drives is shown

in Figure 3.7. The low temporal resolution data segment and the first data segment

are placed in media unit Ml for drive 1. The second data segment is then placed in

media unit M2 for drive 2 and so on. After a data segment is placed in the last

media unit M6, the next data segment is placed in media unit Ml again. This

process is repeated until the entire object is stored.

107

New Efficient Storage Organizations for Multimedia Data Chapter 3

X | , X-7, Xj3, Xjg J's^n ^\i ^\Q 1 ^\(,

X3, Xc,, Xj5, X2, Ys^Yxx Z5, Z] 2 , Z,g

X5, X] j , X j 7 YvYi Z2, Zg , Z,4

X2, Xg, X|4, X20 M ' MO Z5, Z , , , Z]7

X4, XjQ, Xjg, X22 î 6
Z^, Zq , Z,3

Xg, Xj2, Xjg Yi^Y, Z3, Z 9 , Z,5

Figure 3.7. Placing data segments among media units

When the number of data segments is more than the number of media units

in the tertiary storage library, the whole object is stored on all the media units.

More than one data segments belonging to the same object can be stored on the

same media unit.

When the number of data segments is less than the number of media units,

the object is stored on fewer media units. The media units being chosen to store an

object should be media units that are exchanged consecutively in a round,

otherwise there would be some gaps while retrieving the object.

When the data segments are placed among the media units, we can

distribute them using two strategies. In the first strategy, the first data segments of

every object are stored on the first media unit of the first drive. However, the

space in the first media unit of the first drive can easily be filled up. When this

happens, any long objects that contain large number of data segments cannot be

placed to this tertiary library. Short objects could be placed but not following the

108

New Efficient Storage Organizations for Multimedia Data Chapter 3

same strategy. This would quickly fill up the storage space of the tertiary library.

Therefore, we consider this strategy wastes storage space on media units.

In the second strategy, the data segments of all objects are distributed

evenly to the media units. The free storage space in each media unit are

maintained as even as possible. It would be easy to find consecutive media units to

store new objects. Therefore, this strategy that distribute data evenly is better than

the previous one.

When a number of objects are placed on the tertiary library, we use a

simple method to distribute the data segments evenly. The first data segment of

the first object may be placed in the first media unit. If the last data segment of

this object is placed in the media unit N, the first data segment of the next object is

then placed in the media unit N-\-l. Using this method, the number of data

segments in each media units would roughly be the same.

After some objects are deleted, the objects may no longer be distributed

evenly to the media units. Since the data segments are evenly distributed to the

media units at first, this problem should not significantly affect the performance.

Even when the problem becomes serious, it can simply be solved with data

reorganizations.

We place the data segments in this way in order that the requests of all

concurrent streams would retrieve data segments following a fixed sequence of

media units. After each media exchange, one request of every concurrent stream is

served. The media exchange is shared among all concurrent streams. Therefore,

the overhead of exchanging media is reduced to raise the throughput.

109

New Efficient Storage Organizations for Multimedia Data Chapter 3

(c) Placing data segments within media units

Each object should have all its data segments placed together within each media

unit so that the sequences of data segments belonging to the same object is

preserved on all media units. The data segments are placed according to the access

frequency of the object. The data segments of the hottest object should be placed

closest to the position after media exchange in the media unit (Figure 3.8). If

object X has the highest access frequency, then data segments of object X are

always placed before data segments of object Y and object Z on all media units.

For instance, on longitudinal tapes, data segments of hotter objects are

placed nearer the loading point after media exchange and data segments of colder

objects are placed far from the loading point.

Hence, hotter objects are accessed at a shorter distance from the loading

point. Since the access overheads increase monotonically with the travelled

distance, the access overheads of hotter streams are traded off with the access

overheads of colder streams. Therefore, the average access overheads using this

frequency based method are lower than that using the random placement method.

high •< access frequency • low

Ml ^1-^7^13-^19 Y,Y, Z4ZJ0Z15

t
loading point

Figure 3.8. Placing data segments within media units

110

New Efficient Storage Organizations for Multimedia Data Chapter 3

3.4.2 Low Latency Placement

When low end tertiary drives are used, the tertiary bandwidth may not be

sufficient to serve multiple streams. The low latency placement method should be

used to provide instant response to user interactive requests. The data stripes of an

object are arranged in a different sequence as follows.

All low temporal resolution data segments of the object are first kept

together. The start up stripe of all logical segments follows the low resolution data

segments. The other data stripes are then placed at the end of the object. This

order reflects the sequence that data stripes are retrieved. The original order of

data stripes in the object can easily be restored using linked lists. An example of

reordering data stripes for three multimedia objects X, Y, and Z is shown in Figure

3.9.

If the low resolution segments and start up stripes are pre-loaded to the

disks during initialization, the low resolution data segments and the start up stripes

of all objects are stored contiguously on a few media units to minimize the time to

pre-load these data from tertiary storage. Other data stripes of each object are

stored together on one media unit to reduce the need for extra media exchange.

object X

object Y

object Z

F

low res. all start up
segments stripes
< >^ •

^i , i ^1.2 ^ 1 , 3 ^ 1 , 4 ^ 2 . 2 ^ 2 . 3 • • •

Y-o Yl.2 Yu ^2,2 Y2.3 • • • Y
m.n

Zu Z,,2 A.: 5 ^1.4 A.l . . . z
m.n

igure 3.9. Reorder data stripes in low latency placement

Y
m.n

111

New Efficient Storage Organizations for Multimedia Data Chapter 3

If only the low resolution segments are pre-loaded, then the low resolution

segments of all objects are stored contiguously on a few media units. Other data

stripes of each object are stored together on one media unit.

If there is no pre-loading and any object is loaded on demand, then the

entire object is stored contiguously. The low resolution data stripes of all logical

segments should first be stored in front. The start up data stripes of all logical

segments are then stored next. After that, other data stripes are stored at the end.

The data stripes are stored in these ways in order that the smallest number

of media exchanges is required during the system initialization and objects

retrieval. This sequence reflects the earliest time that the data stripes would be

requested by users.

112

New Efficient Storage Organizations for Multimedia Data Chapter 3

3.5 Data Placement on Disks

In this Section, we present our novel Bandwidth Based Placement method to place

heterogeneous multimedia objects together with binary and textual data on

constant density recording disks.

In our tertiary storage organizations, some data are kept resident on disks

whereas other data are loaded on demand and cached on the disks. Hence,

multimedia data may be stored as resident data or cache data on disks.

Different multimedia objects may have different bandwidth requirements.

High bandwidth multimedia objects, such as video, may require more data per

second than low bandwidth multimedia objects, such as voice. In order to meet the

continuous display requirement of data streams, high bandwidth streams should be

served with higher data rates than low bandwidth streams.

Apart from the multimedia objects, binary and textual data are also stored

on the same set of disks. These binary and textual data files are accessed using

discrete requests as in traditional computer systems. Hence, these requests can be

served with arbitrary data rates.

Since the same amount of data are transferred in less time from outer zones

than from inner zones of CDR disks, the throughput of accessing data from

different zones varies. This variation in data transfer rate is being considered to

place the multimedia objects in our bandwidth placement method as follows.

First, the multimedia objects to be stored on disks are grouped according to

the bandwidth requirement of the object. Binary and textual data are grouped as an

arbitrary bandwidth group. The number of bandwidth groups is found as the

113

New Efficient Storage Organizations for Multimedia Data Chapter 3

number of groups with different bandwidth requirements. The bandwidth groups

are then sorted from the highest to the lowest bandwidth.

Next, each CDR disk is divided into the same number of zone groups as

the number of bandwidth groups. Objects belonging to the highest bandwidth

group are stored at the outermost zone group on all disks. Objects belonging to the

next highest bandwidth group are stored at the next outermost zone group on all

disks and so on. After the objects in all bandwidth groups are stored, the binary

and textual data are stored at the innermost zone group. A bandwidth based object

placement dividing a CDR disk into four zone groups is illustrated in Figure 3.10.

Using this method, multimedia objects are stored together with traditional

data files on the same set of disks. Objects with higher bandwidth requirements

are stored at zone groups outside objects with lower bandwidth requirements.

Binary and textual data are stored at the innermost zones.

high
bandwidth
objects

medium
bandwidth
objects

binary and
textual data

low
bandwidth
objects

Figure 3.10. Bandwidth based placement

114

New Efficient Storage Organizations for Multimedia Data Chapter 3

Since high bandwidth data are stored at outer zones than low bandwidth

data, the transfer rate of higher bandwidth data are always higher. This would

reduce the data transfer time in accessing high bandwidth objects at the expense of

longer data transfer time in accessing low bandwidth objects. Therefore, the

access time to high bandwidth objects is reduced at the expense of longer access

time to low bandwidth objects.

In fact, nothing is lost for the requests on binary and textual data. Since

these data are normally accessed in small blocks as in traditional computer

systems, only a few kilobytes of data are often sufficient to satisfy each request

and disk performance is often measured in number of I/Os per second. The

requests on textual or binary data still enjoy a similar number of I/Os per second

and they are not worse off.

115

New Efficient Storage Organizations for Multimedia Data Chapter 3

3.6 Multimedia Data Migration Methods

We consider migrating multimedia data over the storage hierarchy using two

methods: the concurrent streams management and the segment based pipelining

method.

The concurrent streams management in Section 3.6.1 is designed for the

high concurrency placement method. It manages the acceptance of new arriving

streams, the scheduling of data requests, and the scheduling of exchange requests.

Pipelining methods overlap the retrieval time with the display time.

Systems that use pipelining methods respond to new streams at the shortest start

up latency. When low latency placement method is used, multimedia data are

pipelined according to the user's requests for logical segments of objects. We

describe this segment based pipelining in Section 3.6.2.

3.6.1 Concurrent Streaming for High Concurrency Placement

When multimedia objects are required from the storage system, the user program

initiates new streams to access multimedia data objects. The system first checks if

there is sufficient disk bandwidth to serve the stream or not. If disk bandwidth is

insufficient, then the stream is rejected. Otherwise, the system checks whether the

entire object is cached to disks or not. If the whole object is accessible from disks

alone, the stream is accepted and the object is accessed from the disks. Service of

request streams from disks alone can be controlled by the Group Sweeping

Scheduling (GSS) method that is already described in Section 2.4.3 and is not

discussed any further.

116

New Efficient Storage Organizations for Multimedia Data Chapter 3

If part of the object is not cached on disks, data have to be migrated from

tertiary storage. The new stream is acceptable only if the continuous display

requirement is not violated for any concurrent streams. That is, the stream is

accepted if

5, + M, S2 + M2 S„ + M„
' + \ +•••+ " <D. (3.2)

where 5, are the retrieval overhead times, M, are the data transfer time, and 5, are

the data display times, n is the number of streams, and D is the number of tertiary

drives. We shall prove this feasibility condition to accept heterogeneous streams

over multiple devices in Chapter 5.

If a new stream is not accepted, it is placed in a stream queue of the

Parallel Stream Controller (Figure 3.11). New streams waiting in the queue are

served according to the order of the media unit that contains the first data segment.

Since the data segment being accessed by the first request may reside on any

media unit, this method does not discriminate against any streams.

Once accepted, the Parallel Stream Controller creates the new stream

object. The new stream sends two requests to every tertiary dnve and waits. After

a drive finishes a request, it sends an access notification back to the stream. The

stream then sends the next request to the same drive. In this way, requests are

served by all tertiary drives in parallel.

117

New Efficient Storage Organizations for Multimedia Data Chapter 3

retrieve data
requests ^

exchange
requests

queue

^ data flow

— . - w request &
notification

Figure 3.11. Concurrent streams management

An accepted stream starts to display data at the completion of at least one

cycle from every tertiary drive. While the first data segment is being displayed, the

stream checks to see if the next data segment has been retrieved or not. If the next

data segment has been retrieved, the stream then displays the next data segment.

Otherwise, the stream starves and waits until the next data segment has been

retrieved from tertiary storage.

Only a few data segments are kept in memory. If the number of retrieved

data segments is more than a threshold, then the latest retrieved data segments are

flushed to disks. This threshold may be adjusted according to the amount of

available memory. Before a data segment is consumed, the stream checks to see if

the next data segment is present in memory. If the next data segment was retrieved

118

New Efficient Storage Organizations for Multimedia Data Chapter 3

but flushed to disks, then the stream sends a disk request to access the next data

segment back from the disks.

After a stream finishes displaying all data segments, a notification is sent

back to the parallel stream controller. If the stream is aborted by the user, it stops

sending new data requests to the tertiary drive and data migration will stop

eventually.

Since the drives are shared by all the streams to migrate data segments, the

scheduling algorithm has an influence on the performance of the requests. We

describe how the tertiary drives serve data requests asynchronously in part (a) and

how the exchange device serves exchange requests in part (b).

(a) Tertiary Drive Serves Data Requests Asynchronously

Each tertiary drive keeps the waiting requests in two queues. The first queue keeps

waiting requests that access data segments on the current media unit and the

second queue keeps requests that access data from other media units. After the

tertiary drive serves all requests from the first queue, it moves requests for the

next media unit from the second queue to the first one and serves them. This

process is repeated until both queues are empty.

Since every accepted stream sends two requests to every tertiary drive, the

request for data on the next media unit waits in the second drive queue. When the

drive accesses the next media unit, there is one outstanding request per stream to

be served. The outstanding requests allow queue scheduling to be optimized.

When a new stream arrives at an idle tertiary drive, the drive exchanges the

first media unit and retrieves data segment of the first request on this media unit.

119

New Efficient Storage Organizations for Multimedia Data Chapter 3

After one request per stream is served on the current media unit, the drive

exchanges media and serves the next request of each stream on the next media

unit. After one request per stream is served for data on the last media unit, the

drive then serves requests on the first media unit again. This process is repeated

until there is no more outstanding requests (Figure 3.12). Hence, the tertiary drives

access the media units cyclically in a round robin manner.

When a drive needs a new media unit, it sends an exchange request to the

exchange queue and waits. After the required media unit is exchanged, the drive

then serves one request per streams for data on this media unit.

After each media exchange, the tertiary drive moves the read/write heads

to the required data position of the first request and starts to transfer data. After

that, it moves to the required data position of the next request and starts to transfer

data and so on.

round

cycle
"t •
Ml M3 M5 Ml

stream Y finished

M3 M5

Drivel y\. ^13-^7-^i /\^ ^^iS'^P'^s y\^ X,7, y,,,Z5 ^^X^g,Z^ ^ ^ X21 ^ ^ ^23

Drive 2 ^ \ ^ ^14' ^8' ^ ^ \ ^ ^16' ^10' ^4 y\^ Xjg, K12, Zg ^ ^ X20 ^ ^ ^22 yC ^24

M2 M4 M6 M2

m robot exchanges media unit

M4 M6

^/C ^i' ^p ^k data strips of X are retrieved before Y
and Z from all media units

stream Z aborted

Figure 3.12. Request service order

120

New Efficient Storage Organizations for Multimedia Data Chapter 3

The SCAN, FCFS, or GSS scheduling methods may be used to schedule

the requests on each media unit. The FCFS method maintains the start up latency

of new streams short. However, the system throughput is low since excessive

search overheads are involved in retrieving data randomly on the media unit. The

SCAN scheduling method is an efficient method that achieves near-optimal

throughput with low complexity. The GSS method tradeoffs the start up latency

with system throughput. We assume that the SCAN scheduling method is used

because it achieves the highest system throughput.

(b) Media Exchange Request Service

When the tertiary drives need a different media unit, they send exchange requests

to the exchange queue and wait. The exchange device serves the exchange

requests in this exchange queue. After it exchanges the media unit on the first

drive, it looks for any exchange requests on the second drive waiting in the

exchange queue. If a request is found, it serves this exchange request. Otherwise,

it serves the first exchange request in the queue.

If one exchange device is dedicated to each drive, the exchange device is

idle while its dedicated drive is not exchanging media. The exchange requests,

hence, never need to wait and no contention for media exchange will ever occur.

If several drives share one exchange device, there may be several

outstanding exchange requests in the exchange queue. The exchange device

selects one exchange request from the queue following a modified round robin

scheduling policy.

121

New Efficient Storage Organizations for Multimedia Data Chapter 3

We modify the round robin policy in order that the exchanger device

would perform the similar number of exchanges for each tertiary drive. We

assumed that requests from the least served drive have the least slack time from its

deadline. The exchange request from the drive with the least number of served

exchange requests is chosen to be served first. After this exchange request is

served, another exchange request is selected similarly from the remaining requests

in the queue. Therefore, late exchange requests are served with higher priority to

catch up with the display deadline.

122

New Efficient Storage Organizations for Multimedia Data Chapter 3

3.6.2 Segment Based Pipehning

In our low latency placement method, data stripes of the object are reordered. All

the low temporal resolution data segments are stored in front of other data stripes.

The start up data stripes of all logical segments are stored in front of the rest of the

object. The low resolution data segments and the start up data stripes can be

downloaded from tertiary storage during system initialization. Other data stripes

are downloaded on demand.

When multimedia objects are required from the tertiary storage, the user

program initiates a new stream to access a multimedia object. Since the low

latency placement method is designed for single stream, each tertiary drive serves

only one stream at a time.

When the tertiary drive serves a stream, the system checks to see whether

the low resolution data and the start up data stripes of all logical segments are

downloaded to disks or not. If these data stripes are not found on disks, then the

low resolution data are first downloaded. After the low resolution data are

downloaded, preview is allowed on the load resolution data segment and the start

up data stripes of all logical segments are downloaded. After the start up data

stripes are downloaded, data consumption begins as in other pipelining methods.

Since different parts of the multimedia object are required in different

presentation modes, we describe how the segment based pipelining supports

various presentation modes in the following two parts. The VCR-like functions

are described in part (a). The browsing interface functions are shown in part (b).

123

New Efficient Storage Organizations for Multimedia Data Chapter 3

(a) VCR-like Functions

When user plays a multimedia object in normal mode from the beginning to end,

the start up data stripe of the first logical segment is firstly retrieved from disk.

While this start up data stripe is being displayed, the tertiary drive exchanges

media and retrieves the second data stripe to disks. Before the start up data stripe

is completely displayed, the second data stripe has already been retrieved. While

the second data stripe is being displayed, the third data stripe is being retrieved

and so on.

While the last data stripe of the first segment is being displayed, the start

up data stripe of the second segment is retrieved from disks. Since data are

retrieved directly from either tertiary storage or disks to primary memory and the

start up data stripes can be much larger than the last data stripes of a logical

segment, the retrieval time of start up data stripe from disks can be comparable to

the display time of the last data stripes.

This pipeline process continues until the entire object is displayed. Thus,

the user only waits for a short time while the disks are retrieving the start up data

stripe of the first logical segment before display begins.

When the user previews an object, the low temporal resolution data of all

logical segments are retrieved from disks and displayed in normal speed. After all

the start up data stripes are retrieved to disks, resume to normal model is allowed.

When the user resumes normal mode at any position of the low temporal

resolution data, the tertiary drive then searches for the corresponding logical

segment. The start up data stripe of the corresponding logical segment is retrieved

from disks for display. While this start up data stripe is being displayed, the

124

New Efficient Storage Organizations for Multimedia Data Chapter 3

tertiary dnve retrieves the second data stripe of this logical segment. Pipelining

then continues on this logical segment as in normal mode.

Fast reverse display mode is served similariy. The low temporal resolution

data are displayed m the reverse order. The start up data stripe belonging to a

previous logical segment is retrieved from disks. The tertiary drive searches to a

previous logical segment on the media unit but the data stripes of this logical

segment may have already been cached on disks.

(b) Browsing Interface Functions

When the user browses a multimedia object, the low temporal resolution data

segments are retrieved from disks and presented to the user. After the user selects

to start displaying the object at full resolution beginning at a logical segment, the

start up data stripe and the second data stripe of the corresponding logical segment

are retrieved from disks and the media unit respectively. Hence, the user only

waits while the disks are retrieving the start up data stripe of the required logical

segment from disks.

These are the display modes of multimedia data as we have described in

Chapter 2, our segment based pipelining method provides short latency in

supporting interactive user functions.

125

New Efficient Storage Organizations for Multimedia Data Chapter 3

3.7 Discussions

Retrieving objects from tertiary storage incur long access latency. Stonng data on

disks alone waste large storage space of higher media cost. Placement on a storage

hierarchy trades off access latency with media cost. Large amount of data can be

stored on tertiary storage devices with lower media cost. Small amount of start up

data can be retrieved from disks with low latency. Pipelining multimedia data

from tertiary storage can hide the long access latency of retrieving data from

tertiary storage. Hence, placing multimedia data at both levels in a storage

hierarchy and retrieving them using pipelining technique is desirable.

• High Concurrency Placement and Concurrent Streaming

When objects are stored using non-striping method on the media units, the number

of objects that can be stored together on one media unit is limited. Since many

media units may exist in the storage library, the probability that consecutive

streams access objects from the same media unit is low. Although this probability

can be raised using frequency based placement, the increase is mild since access

frequencies on multimedia objects are less skewed on tertiary storage and the

access frequency of each object is low. Even when requests for objects on the

same media units are served consecutively, the gain is little unless the waiting

queue is deep.

When objects are stored using parallel striping method, the segments are

striped to a few media units such that the stripe width does not exceed the number

of drives. All the drives serve one stream at a time. The entire object is retrieved

by all drives in parallel. The service time of each stream is reduced by sharing

126

New Efficient Storage Organizations for Multimedia Data Chapter 3

among the drives. Since each object resides on several media units, several media

units are exchanged at the start of the stream. The drives becomes idle while

waiting for exchange, this artificial contention of exchange requests degrades the

system throughput.

Although the parallel striping method increases the number of objects that

share the space on one media unit, the probability that two requests can share a

media exchange overhead is low. Intuitively, this probability is inversely

proportional to the number of media units per drive.

Our high concurrency placement method stripes multimedia objects across

all media units. In doing so, each object occupies only a fraction of its data on

each media unit. Since multimedia objects are large, each object can be striped

across many media units. Although the capacities of the media units are limited,

each media unit can still store one or more segments of every object.

Since each media unit contains segments belonging to every object, each

stream accesses data from every media unit. When more streams are concurrent,

the media exchange overheads are shared among more streams. This shared media

exchange time per stream can be reduced to less than the time for one media

exchange when the number of concurrent streams is sufficiently large. Hence, our

new method could reduce the media exchange overheads for a large number of

concurrent streams.

When an object is accessed, all the media units are accessed. The system

throughput can be wasted by the artificial media exchange overheads. This method

seems to be undesirable if only a small number of streams are concurrent.

Fortunately, the multimedia data objects are consumed slowly. When data are

127

New Efficient Storage Organizations for Multimedia Data Chapter 3

retrieved too quickly from tertiary storage, excessive data are copied to disks to

save memory space, resulting in large staging disk buffers. When only an adequate

amount of data are supplied in time, data are consumed almost directly from

memory. Therefore, the reduction in system throughput does not produce much

adverse impact on the system performance.

One obvious drawback of our high concurrency placement method is the

long start up latency of new streams. Since the tertiary drives access media units in

a cycle, they do not immediately respond to new streams that need media units

different from the current media units on the tertiary drives. We have attempted to

solve this problem in two ways. First, if plenty of tertiary storage space is

available, the first round of data can be made available through data replication.

Some drives are reserved to access the first round data from these replicated media

units. The start up latency for media unit is then reduced. New streams can then be

immediately added to the concurrent streams and start to display. Unfortunately,

this hybrid method undesirably lowers the system throughput by the reserved

drives that access the replicated data. Hence, the hybrid method is not studied any

further.

Second, data to be retrieved in the first round are kept resident permanently

on the disks. Since the display time for all data in the first round is sufficient for a

full round time, new accepted streams can be initiated with disk latency. This

resident leader method trades off disk storage with start up latency. Unless the

objects are so large that they are retrieved in many rounds, the benefit of this

method is minimal.

128

New Efficient Storage Organizations for Multimedia Data Chapter 3

Thus, our remaining option is to let new streams to wait. This would not be

a problem for requests that are scheduled in advance. Even for ad hoc streams, the

start up latency is bounded above.

Unfortunately, data segments must be accessed in a fixed sequence in the

high concurrency placement method. Although preview is allowed on low

temporal resolution data on disks, any interactive user functions can only be

supported after the entire object is completely copied to disks.

• Low Latency Placement and Segment Based Pipelining

Our low latency placement and segment based pipelining method ensures that user

enjoy the shortest latency on interactive operations even though partial objects are

retrieved from tertiary storage.

In pipelining methods, the size of the first slice is proportional to the size

of the object. In our segment based pipelining, the total size of the logical

segments is equal to the size of the object; the aggregate size of start up data stripe

of all logical segments is hence comparable to the size of first slice of the object in

other pipelining methods. When the tertiary bandwidth is the same, the time to

download the start up data stripes of all logical segments in our method is then

comparable to the time to download the first slice of the object in other pipelining

methods.

The only limitation of the segment based pipelining method is that data

must start to display at the beginning of logical segments. User may jump to any

logical segment and data stripes can then be displayed continuously.

129

New Efficient Storage Organizations for Multimedia Data Chapter 3

When the start up data stripes are kept resident on disks, storage space for

a fraction of all objects is required on the disks. Since the number of objects is

expected to be much more than the number of streams, the total resident disk

space is larger than the disk buffer size.

When the segment based pipelining is used, the hierarchical storage system

can respond to user requests at disk latency. Since the access latency of magnetic

disks is at least an order of magnitude shorter than the access latency of tertiary

drives, this method of using storage hierarchy is able to respond to interactive

operations much faster than other methods.

• Bandwidth Based Placement

The bandwidth based placement approach reduces the variance of request service

time by trading off the service time of requests on high bandwidth objects with

that on low bandwidth objects.

Requests for data on different zones in CDR disks are served with different

transfer rates. The transfer rate at inner zones may be too slow to support the

bandwidth requirement of some objects to meet their continuous display

requirement. If the high transfer rate storage area at the outer zones is filled with

low bandwidth objects, the high bandwidth objects consequently cannot be stored

on the disk, and the disk space is then eroded. Therefore, bandwidth is an

important concern in placing heterogeneous multimedia objects on CDR disks.

130

New Efficient Storage Organizations for Multimedia Data Chapter 3

Unlike the temperature of objects, data bandwidth is static and is intrinsic

to the multimedia object. Once the objects are placed on the disks, they can stay at

the same location since their bandwidths never change. Data re-organization is not

required until some objects are replaced with those of different bandwidth.

3.8 Chapter Summary

We have presented our novel storage and retrieval methods for multimedia data on

hierarchical storage systems, and we have proposed a two level data striping

method to partition multimedia object. When a multimedia storage system needs

to support a large number of users, the high concurrency placement method should

be used to share the overheads in serving concurrent streams. This storage

organization has the ability to share out the media exchange overheads with all

concurrent streams. When a multimedia storage system only needs to serve one

stream at a time, the segment based pipelining method should be used to reduce

the user latency.

We have also established a placement strategy whereby heterogeneous

multimedia data on constant density recording disks are placed according to their

bandwidth requirement. This bandwidth based placement approach helps to

balance the transfer rate with the bandwidth requirement of the objects.

131

Chapter 4

Disk Storage Structure Analysis

4.1 Introduction

As we have seen in the previous chapter, the timing and type of system demand

and usage cannot usually be predicted exactly in advance, therefore probabilistic

techniques will need to be employed for predicting and accessing system

behaviour and performance. With multiple streams of data requests, there will

invariably be resource contention on different components of the system. With

probabilistic demands, queueing analysis is the most suitable technique to employ,

and contention models based on queueing theory are hence developed to analyse

the system performance. This will allow the response time, waiting time, delay

and utilization measures to be quantitatively evaluated.

A detailed disk storage model, which is not available before, is developed

in this chapter. It is able to predict with a high degree of accuracy the behaviour of

multimedia data requests on constant density structures and it is also able to

predict the data transfer time for the bandwidth based placement strategy. We use

the disk performance model to analyse the service delay of disk requests and to

compare the performance of CDR disk requests with VDR disk requests. The

132

Disk Storage Structure Analysis Chapter 4

impacts of various disk parameters and the bandwidth based placement method on

the request service time are also studied.

4.2 Performance Model of Disk Requests

As we saw in Chapter 2, in a CDR storage structure, the recording density is

constant throughout the entire disk and the rotation speed of the disk is fixed.

Here, we study their performance using a continuous model, which is customarily

used in such analysis [95]. We also assume that the starting positions of data

retrieval requests are randomly distributed throughout the disk surface. We adopt

the notations given in Table 4.1 for this model.

Table 4.1. Notations in disk performance model

Parameter Meaning

a radius of the innermost track

b radius of the outermost track

s seek time

D seek distance

/ rotational latency

T disk revolution time

T data transfer time

k recording density in bytes per unit length

R number of bytes to be transferred

133

Disk Storage Structure Analysis Chapter 4

Let P^dx be the probability of having the required data located in track of

radii between x and x-i-dx. This probability can be approximated by the probability

of having the data within the area of a ring with radii bounded by x and x-i-obc

(Figure 4.1). Hence, we have

P^ =
Area of ring of radii x and x + dx

Total disk surface area

When dx tends to zero, the area of ring of radii x and x-i-dx can be approximated

with Inxdx. Since the total surface area for data storage is 7i{b' -a) , we have

„ J 2xdjc
F y d X = T-

^ (b^-a^)
(4.1)

Area of ring
of radii x an
x-tdx

Figure 4.1. Area of track of radius x

134

Disk Storage Structure Analysis Chapter 4

4.2.1 Seek time

The time that disk heads spent in seeking the destination track depends on the

location of the two tracks in consecutive requests. Seek distance from the starting

track x to the ending track y is | y-x \ as shown in Figure 4.2.

Let Fjc'^ t)^ ^^^ probability of data in track of radii x to x-t-dx and Pydy be

the probability of data in track of radii y to y+dy. The mean seek distance is given

as P^P \y-x\dy dx . We substitute fV and P^ from Equation (4.1) to obtain

the mean seek distance, D , as

— cb rb 2x 2y

^•'"(b^ -a^){b^ -a^)
\y - X dydx,

which implies

^ ={b^-a^)^wl'^^''~y'^^^^^l'^^^~''^^^r'

Starting
track X

Ending
track y

Figure 4.2. Seek distance

135

Disk Storage Structure Analysis Chapter 4

After simplification, this yields

- 4{b-a)(a^ +3ab-\-b^)
D = ^ ^. (4.2)

I5{a+b)^

The variance of seek distance is given by = J J F^P^ \\y - x\] dydx - (D) ' .

We substitute the mean seek distance from Equation (4.2), P^ and Py from

Equation (4.1), and we obtain the variance of seek distance, Var[D], as

rb rb 2x2y{y - x)^dydx Var[D]^ff;^^^^^y^^^
JnJa (b^ - a^)(b^ - a^)

4(b-a)(a' +3ab + b^)

\5{a + bf

After simplification, we obtain

{b-af{?>a''+Uab + 2>b^){2>a^+Aab + 2>b'-)

225{a -h b)

We note that the mean and variance of the seek distance is quite different

from a conventional disks structure which are

— (b-a)
D = ^ y ^ ' (4.4)

and

V a r [D] = ^ - ^ ^ . (4.5)

The seek time, s, can hence be found using

5 =

a, + ^ 2 ^ ' D> a^

a.+a.^D, D<a.
(4.6)

••3 I " 4

where a^,a.^,a^,a^,a^ are fixed parameters [126].

136

Disk Storage Structure Analysis Chapter 4

4.2.2 Rotation latency

Since the starting positions of the data blocks for CDR disks are not fixed relative

to the angular position of the disk, it is difficult to predict the starting position of

the block relative to the angular position. The rotational latency is often taken to

be uniformly distributed from 0 to T.

Let Qf dt be the probability that the rotation latency is between time t and

t+dt, where 0 < / < T, and dt tends to zero. The mean rotational latency is given by

I tQ,dt. As the disk is rotating at fixed angular speed,

a=f. (4.7)

We have for the mean rotation latency,

7 = r ^ = i . (4.8)

Jo 7 2

The variance of rotational latency is given by Var[Z] = J t^Q,dt-\l) . We

substitute Qf from Equation (4.7) and we obtain

0̂ r \2 12

137

Disk Storage Structure Analysis Chapter 4

4.2.3 Data Transfer Time

Data transfer time is the time for all required data in the current track to be read.

When the required data are on a track of radius x , the amount of data in this track

is given by 27ixk . In one disk revolution, all the data on this track will pass under

the head, hence the data transfer time required for R bytes at a track of radius x is

TR
given by . As the probability of required data in track of radius x is given by

27txk

rb TR
Py-dx, the mean data transfer time is P dx, we substitute P^ from

Equation (4.1) to get the mean data transfer time,

^" 2Ttxk{b -a) kn{a+b)

" TR J-b
P,

a

d x - r ' . We
27ixk

substitute Px from Equation (4.1) and the mean data transfer time from Equation

(4.10), and we obtain, after simplification,

]n{bla) 1
Var(T) =

j,2j^2

2„2 k'n 2{b^-a^) (a-^by
(4.11)

138

Disk Storage Structure Analysis Chapter 4

4.2.4 Data Transfer Time in Bandwidth Based Placement

Strategy

Let the CDR disk be partitioned into n zone groups and number 1 to n starting

from the innermost zone group. Let zi be the inner radius of the ith zone group, for

/ = 1,2,..., n. Let r, be the data transfer time of the zth zone group.

We use Equation (4.10) to find the data transfer time in each zone group by

substituting the inner radius and outer radius of the disks with those of the zone

group. Hence, we obtain

TR
f, = , wheref=l, 2, ...,n-l, (4.12)

kn{Zi + Zi^x)

and
TR

T = -^ . (4.13)
kn{Zr,+b)

Since 0 < a = zi < Z2 < —• < z„ < ^ , we have

0 < T„ < < T2 < T, (4 14)

Hence, the mean data transfer time of data from the outer zone group are always

smaller than the data transfer time of the same amount of data from the inner zone

group.

139

Disk Storage Structure Analysis Chapter 4

4.2.5 Waiting Time in Queue

When multiple requests arrive at the disk, only one of them can be served while

other requests are waiting in the queue. Average arrival rate of streams of requests

can easily be found, but the variance of arrival time is however unknown.

Intuitively, streams of request should arrive more regularly than random requests.

We have not found in the literature any distribution functions that sufficiently

describe the arrival patterns of multimedia requests in streams. In addition, a disk

may serve requests that access binary and textual data. These binary and textual

data requests are random requests and they are mixed together with the

multimedia requests in the disk queue. In order to simplify our analysis, we

assume that requests arrive randomly to the disks in this model. A Poisson

distribution with a fixed rate X can thus describe their arrival pattern.

The service time of requests is represented by the sum of the seek time,

rotational latency, and data transfer time of each request. The mean and variance

of these time components are already analyzed in Sections 4.2.1 to Section 4.2.4.

We are interested in conservative systems in which no requests are created

or destroyed. Although some multimedia requests can be discarded without too

much impact on the system, the quality of service is adversely affected. Hence, we

assume all requests are served.

We assume the non-preempfive scheduling condition that each request

must wait for outstanding incomplete requests to finish. We also assume the First-

In-First-Out (FIFO) scheduling rule, which is most commonly used in traditional

systems. Although multimedia requests can also be served according to Earliest-

Deadline-First (EDF), SCAN, or Group Sweeping Scheduling (GSS) scheduling

140

Disk Storage Structure Analysis Chapter 4

rules, the request performance using these rules depends on the storage

organization in use.

We then use the Pollaczek-Khintchine formulae to analyse the

performance of streams of data requests [95]. Using these formulae, request

waiting time, request response time, queue length and number of acceptable

streams are found.

141

Disk Storage Structure Analysis Chapter 4

4.3 Analysis of Request Service Time

We directly apply the performance model to find the data access time and disk

throughput. The performance model shows us that data access time, and hence

disk throughput, depend on a number of parameters. These parameters include

innermost diameter, disk size, seek start/stop time, read/write arm moving speed,

number of platters, rotation speed, and recording density. The impacts of varying

these parameters on the request service time are analyzed below.

We analyze the disk performance using the specifications of five disks

with diameters 10.88 inches, 5.25 inches, 3.50 inches, 2.50 inches and 1.90 inches

[119]. These disks rotate at 3600 revolutions per minute (rpm) except the 3.50

inches disk that rotates at 4318 rpm. Large disks have higher recording density

except the 3.50 inches disk that has a higher recording density than the 5.25 inches

disk. We use, as default values, an innermost track diameter of one inch, 20 tracks

per cylinder, 10 msec seek start/stop time, and 0.1 inch per msec arms moving

speed. We use a block size of 100 kilobytes unless otherwise indicated. We

assume that a separate seek is done if more than one cylinder of data is accessed.

We present the impact of various data block size in Section 4.3.1. The

relative magnitude of various time components in the total request service time is

shown in Section 4.3.2. The influence of data stream size or continuous data

chunk size on the throughput is investigated in Section 4.3.3. We analyze the

system throughput against various physical disk sizes in Section 4.3.4. The

influence of seek start/stop time and arm moving speed on data access time is

described in Section 4.3.5 and Section 4.3.6. After that, the influence of the

number of disk platters, rotation speed, and recording density is investigated in

142

Disk Storage Structure Analysis Chapter 4

Section 4.3.7, Section 4.3.8 and Section 4.3.9 respectively. Lastly, we analyze the

throughput of bandwidth based placement method in Section 4.3.10.

4.3.1 Data Block Size

In storage systems, the method of using a large block size to access a large amount

of sequential data is often advantageous. Since we obtain more data from the disk

each time, we save on the number of data accesses and access overheads. The data

access time and the response time hence depend on the block size. We evaluate

the effect of block size on disk service time for a continuous stream of requests on

a multimedia object of 16 MB. When a small block size is used, multiple requests

of the same stream would incur excessive overheads and hence increase the disk

service time (Figure 4.3). A logarithm scale is used in the figure because of the

large variation in service time. When the block size is above a threshold, the

service time becomes almost level and varies only slightly.

However, there are two tradeoffs for using large block size. The first

tradeoff is that more memory is required to buffer the data from the disk. The

second tradeoff is that the start up latency is longer. Although we can save on the

number of I/O's, we also increase the response time of each request. The start up

latency of the multimedia data stream is hence adversely affected. Therefore, the

smallest block size that can deliver the data in the required time is desirable.

143

Disk Storage Structure Analysis Chapter 4

seconds

1000.00

Disk Service Time

Block Size (KB)

VDR •CDR

Figure 4.3. Disk service time vs data block size

4.3.2 I/O Time Distribution

The percentage of I/O time distribution of CDR disks is shown in Figure 4.4. The

FO time distribution of VDR disks is similar. When data are accessed by 10 KB or

less, most of the time is spent in seeking and rotational latency. Less than 5% of

time is spent in transferring data. Both seek time and rotational latency are,

however, overheads in accessing data from the disk. When more data are accessed

each time, the data transfer time component becomes more prominent.

As the recording density of the outer zones in CDR disks is kept at

maximum recording density, up to one whole track of data can be read or written

within the same disk revolution. Therefore, a full track block can deliver better

performance for large sequential access in multimedia systems. However, the

amounts of data stored in each track of CDR disks are different. A full track block

for CDR disks requires a variable buffer size that may not make the most efficient

use of memory.

144

Disk Storage Structure Analysis Chapter 4

I/O time distribution of CDR disk requests

90%.
80% -
70%.
60%
50% -
40%
30% -

20%
10% -

• -

..

• "

: : : ;

' ' ""

• - - -

—

'^^S

-.-.̂ •̂...

. . . .

—
, i ^ ^ B —
• " * * * * 1 —

. . .

—

^H"'^^B'

^ ^ ^ 1 ' ' ' ^ ^ ^ H '

^^^H . - . ^^^^H. -

^̂ 1' - - -̂ B̂- -
^ ^ -

• Data Transfer

DLatency

DSeek

1 10 100 1000 10000

Data access size (KB)

Figure 4.4. I/O time distribution of CDR disk requests

When more data are required, better performance can be achieved by

storing consecutive multimedia data in the same cylinder. Some overheads,

including rotational latency and head switching time, are still involved, but the

seek time is removed. Rotational latency may be eliminated by carefully placing

data on the tracks on different platters in the same cylinder. A gap can be used to

separate the beginning and end of each track so that the revolution time to pass

this gap is longer than the head switching time. In this way, all data on the same

cylinder can be retrieved continuously with minimum delay.

145

Disk Storage Structure Analysis Chapter 4

4.3.3 Data Stream Size

In traditional computer systems, the required amount of contiguous data is usually

small. It is not worth retrieving too much data in one request. However,

multimedia data, such as video and audio data, are very large and the same stream

of requests very often retrieves them sequentially. The amount of sequential data

required can be as large as gigabytes.

The data stream size has dramatic influence on the disk throughput. Data

stream size may be reduced through segmentation methods. The disk throughput

increases in proportion with the data stream size and saturates slowly to the

maximum throughput (Figure 4.5). Throughput of the disks saturates at size of one

cylinder of the disks. Hence, the segmentation should only be performed to the

size of one cylinder in order to maintain the maximum disk throughput. Although

this may vary on disks with different formats, CDR disks always have a larger

cylinder size than VDR disks. Hence, larger segments can be used on CDR disks

than VDR disks.

MB/sec
12.00
10.00 -
8.00 -
6.00
4.00 -
2.00 -
0.00

Disk Throughput

16 64 256 1257 3927 16384 65536

data stream size (KB)

VDR •CDR

Figure 4.5. Throughput vs data stream size

146

Disk Storage Structure Analysis Chapter 4

The throughput of a disk begins to increase when the data stream size

increases above 16 KB. A VDR disk can deliver up to 167 MB per minute

whereas a similar CDR disk can deliver up to 456 MB per minute. Therefore, the

maximum throughput is two times higher by using CDR technology. High

resolution images may require more than 2 MB of storage. Thus, for large image

databases, CDR disks have considerable performance advantage over VDR disks.

The percentage of reduction in access time varies from 3% to 68%

depending on the data stream size (Figure 4.6). For small data stream size and

small discrete data accesses, the data access time is reduced by only 3%, mainly

due to shorter mean seek distance. For large stream size, a much higher percentage

of data access time is reduced mainly due to reduction in data transfer time

involved. For very large data stream size, over 80% of time is spent in transferring

data when the maximum throughput is achieved. Therefore, CDR disks perform

significanfly better for multimedia data streams than for traditional data requests.

70%
60%
50%
40%

Reduction in access time

16 256

data stream size (KB)

3927 65536

Figure 4.6. Reduction in access time vs data stream size

147

Disk Storage Structure Analysis Chapter 4

4.3.4 Disk Size

For VDR disks, the disk capacity, C, is given by f 2mz/̂ dx . Hence,
Ja

C = 2nka(b - a),

which implies

dC

-— =2nk(b-2a). (4.15)
da

When a = bl2, — = 0, and
da

nkb^
C = - ^ . (4.16)

When a = bl2 ± 8, where 5is small,

_ nkb^ ^ , „2 TT^̂ ^ . . , ^ .
C = 2nk5 < . (4.17)

2 2

Hence, the disk capacity is maximized when the innermost diameter is half of the

disk diameter. Therefore, half of the disk size is often chosen as the diameter size

of the innermost track in VDR disks.

When the size of VDR disks increases, the mean seek distance, and hence

the data access time, also increase (Figure 4.7). When the size of CDR disks

increases, the mean seek distance increases proportionately, but the data transfer

time decreases. The disk throughput hence rises at small disk size but falls back at

larger disk size. Therefore, an optimal disk size exists for CDR disks but not for

VDR disks.

148

Disk Storage Structure Analysis Chapter 4

MB/sec Disk Throughput

4.00

3.00 -

2.00 f

1.00

0.00

1.90 2.50 3.50 5.25

disk size (inch)

10.88

VDR •CDR

Figure 4.7. Throughput vs disk size

4.3.5 Seek Start/stop Time

The data access time is shown against the seek start/stop time and arm moving

speed in Figure 4.8. The seek start/stop time is an overhead in every seek action.

Both VDR and CDR disks behave similarly. The seek time increases in proportion

to the start/stop time in moving the read/write heads. Hence, the data access time

increases linearly as the seek start/stop time.

Data Access Time

10 15 20
seek start/stop time (msec)

25

VDR •CDR

Figure 4.8. Data access time vs seek start/stop Time

149

Disk Storage Structure Analysis Chapter 4

4.3.6 Arm IVIoving Speed

The disk arm moves the read/write heads to the required track of data. As the arm

moving speed is increased, the time to reach the required track is reduced (Figure

4.9). Hence, the data access time varies inversely with the arm moving speed.

Both VDR disks and CDR disks behave similarly.

msec
60 -f^i^
50
40
30
20
10
0

Data Access Time

0.05

4- 4-

0.10 0.20 0.40
arm moving speed (inch/msec)

VDR •CDR

0.80

Figure 4.9, Data access time vs arm moving speed

150

Disk Storage Structure Analysis Chapter 4

4.3.7 Number of Disk Platters

The number of disk platters determines the size of each cylinder. This applies to

both CDR disks and VDR disks. When more data are placed in one cylinder, more

data can be retrieved with only one seek action. This does not make any difference

when the amount of data being accessed is less than one track. When the amount

of data exceeds the size of one track, disk throughput can be increased by

accessing more data from different platters (Figure 4.10). Hence, the throughput

increases in a stepwise manner. Therefore, more platters allow more data to be

stored in each cylinder to avoid extra seek actions in each access.

Disk Throughput

number of platters

VDR •CDR

Figure 4.10. Throughput vs number of platters

151

Disk Storage Structure Analysis Chapter 4

4.3.8 Rotation Speed

When the disks rotate faster, both the rotational latency and data transfer time are

reduced proportionately (Figure 4.11). Since both rotational latency and data

transfer time are inversely proportional to the rotation speed, the disk throughput

increases linearly. Both VDR disks and CDR disks have similar vanations

although the throughput of CDR disks is significantly higher.

MB/sec

j.VV

4.00 -

3.00 -

2.00 -

1.00 -

0.00 -

24

Disk Throughput

_ _ . , - — ' ' "^

1 1 1
1 1 1

00 3600 5400 7200

disk rotation speed (rev/min)

-VDR LDR

10000

Figure 4.11. Throughput vs rotation speed

152

Disk Storage Structure Analysis Chapter 4

4.3.9 Recording Density

Recording density increased at the compound rate of approximately 30% per year

in the past. New disks that use Magneto-Resistive heads have increased the

recording density substantially and accelerate the rate of increase in recording

density. When the recording density of the magnetic disks increases, the data

transfer rate and the disk throughput increase proportionately (Figure 4.12).

MB/sec
4.00

3.00

2.00 +

1.00

0.00

Disk Throughput

+ 4-

10 15 20
recording density (KB/inch)

25

VDR •CDR

Figure 4.12. Throughput vs recording density

153

Disk Storage Structure Analysis Chapter 4

4.3.10 Bandwidth Based Placement

We study a case of partitioning the CDR disks into two zone groups to analyze the

benefits of our new bandwidth based placement method. The outer zone group

stores multimedia data which are continuous media data such as video and audio.

The inner zone group stores traditional data, such as textual data and binary data.

The data transfer rate of multimedia data is always higher than the data transfer

rate of traditional data.

On the one hand, the multimedia data enjoys a higher throughput on the

outer zone group. The large amount of data being retrieved by the same access can

support a longer data consumption period. Hence, the throughput of the

multimedia data being accessed from the disk access is increased. It may seem that

the throughput of multimedia data in the outer zone group is raised at the expense

of the throughput of traditional data in the inner zone group. In fact, nothing is lost

for the traditional data access, since the access pattern of textual and binary data is

normally small and random as in traditional computer systems, and only a few

kilobytes of data are often sufficient in each access. From the I/O time distribution

in Figure 4.4, we clearly see that most data access time for these access sizes are

spent in the overheads. Disk performance is often measured in number of I/Os per

second. The textual or binary data still enjoy the same number of I/Os per second

and are not worse off.

154

Disk Storage Structure Analysis Chapter 4

MB/sec

16.0
14.0
12.0
10.0
8.0
6.0
4.0
2.0 ^
0.0

Throughput of Zone Groups

0% 20% 40% 60% 80%

% of data in inner zone group
100%

'Outer zone group Inner zone group

Figure 4.13. Throughput of zone groups

The throughput of the multimedia data in outer zone group and traditional

data in inner zone group are found by directly applying the disk performance

model (Figure 4.13). The average throughput of the multimedia data ranges from 7

MB/sec to 12 MB/sec. The average throughput of the traditional data ranges from

3 MB/sec to 7 MB/sec. This is particularly suitable for situations when both

multimedia data and traditional data are placed in the same CDR disk.

When multiple disks are used, the total storage capacity is large and the

aggregate throughput is high. It becomes very useful to partition the disks into

several zone groups so that each zone group can have sufficient storage space to

contain data that require a similar bandwidth. By choosing the appropriate zone

group to store the data, the disk throughput can be adjusted to match the necessary

object bandwidth.

155

Disk Storage Structure Analysis Chapter 4

4.4 Contention Analysis

The request response time is composed of waiting time in queue and request

service time. The waiting time in queue depends on the disk utilization. We first

describe the disk utilization in Section 4.4.1. Next, the request waiting time in

queue is analyzed in Section 4.4.2. The request response time is then presented in

Section 4.4.3. The number of requests waiting in queue is then studied in Section

4.4.4. Lastly, we present the number of outstanding requests in the system in

Section 4.4.5.

4.4.1 Disk Utilization

The disk utilization is direcdy proportional to the request arrival rate (Figure

4.14). The utilization is linked to the probability of finding the system busy [95],

and for a given workload, a better performing system is one that gives the lower

utilization. When data are accessed from CDR disks, disk utilization is reduced by

over 60%. As the disk utilization is reduced, the disks have spare capacity to

handle more request streams. The CDR disks become fully utilized until the

requests arrive at three times the rate.

156

Disk Storage Structure Analysis Chapter 4

Disk utihzation

100 200 300 400
request arrival rate (per min)

500

VDR •CDR

Figure 4.14. Disk utilization vs request arrival rate

In multimedia systems, the number of acceptable streams is controlled by

the admission control routines in the operating system to guarantee system

performance. The number of acceptable streams should be bounded by the

maximum request arrival rate; otherwise the waiting queue is long and requests

have a high chance of being discarded. It should also be chosen just below this

limit to achieve high utilization and throughput. Hence, CDR disks can accept

three times more streams than VDR disks.

157

Disk Storage Structure Analysis Chapter 4

4.4.2 Request Waiting Time

Each request to a disk must wait for the existing incomplete I/O request and other

requests in the queue. When the request arrival rate is very low, the disk is usually

free and there is no waiting required. The waiting time is hence close to zero

(Figure 4.15).

When the request arrival rate is between 40 and 120 requests per minute,

the queue for VDR disk builds up, and the VDR disk has more time in busy state.

The requests for VDR disk spend some time in waiting while the requests for

CDR disk can be served almost immediately. The waiting time of requests for

CDR disks is less than 20% of that for VDR disks. Hence, the difference in

waiting time lies between 80% and 100%.

seconds

2.0

1.5

1.0

0.5 -

0.0

Mean Waiting Time

-^—^—X—^—^—)<-

• + — K

o o o o t ^ o o o o o o o
• ^ O O t N ^ O O - i + O O C N O O T j -

Request Rate (lOOOKB/min)

• CDR VDR —^— % Waiting Time Reduced

Figure 4.15. Mean waiting time vs request arrival rate

158

Disk Storage Structure Analysis Chapter 4

When the request arrival rate increases above 120 requests per minute, the

queue for VDR disk builds up quickly, and the VDR disk is seldom free. The

waiting time of requests for VDR disks increases sharply to 4000 seconds (not

shown) whereas the waiting time of requests for CDR disks is still below l/5th of

a second.

When the request arrival rate increases beyond 167 requests per minute,

the VDR disk is always busy. Unless some requests are discarded, the request

queue grows indefinitely. The waiting time of the CDR disk remains below one

second until it approaches 440 requests per minute. When the request arrival rate

increases beyond 440 requests per minute, the waiting queue grows indefinitely in

a similar way to the VDR disk at 167 requests per minute.

159

Disk Storage Structure Analysis Chapter 4

4.4.3 Request Response Time

Each request to a disk must wait for the existing incomplete VO request and other

requests in the queue. The response time is the sum of queue waiting time and

disk service time for a request. When the request arrival rate is very low, both

VDR disk and CDR disk respond within a tenth of a second because the disks are

normally free and the waiting time is close to zero (Figure 4.16). The response

time of requests to CDR disks is 60% faster than similar requests to VDR disks

due to the higher throughput of CDR disks.

When the request arrival rate is below 120 requests per minute, the queue

for VDR disk builds up, and the disk has more time in busy state. The waiting

time for VDR disk increases and it delays the response. Hence, the difference in

response time increases from 60% to 80%.

IVLean Response Time

o o o o r - o o o o o o o
T j - O O C N V D O - ^ O O C N ^ O - ^

Request Arrival Rate (per min)

•CDR VDR —^—% Response Time Reduced

Figure 4.16. Mean response time vs request arrival rate

160

Disk Storage Structure Analysis Chapter 4

When the request arrival rate increases beyond 120 requests per minute,

the queue for VDR disk builds up quickly, and the VDR disk is seldom free. The

waiting time dominates the response time. The response time of VDR disks

increases sharply to 4000 seconds (not shown) whereas the CDR disks can still

finish requests within 0.17 second. Nearly the whole response time is wasted in

waiting for the VDR disk to become free.

When the request arrival rate increases beyond 167 requests per minute,

the VDR disk is always busy. Unless some requests are discarded, the requests

queue grows indefinitely. The response time of the CDR disk remains below one

second until it approaches 440 requests per minute. When the request arrival rate

increases beyond 440 requests per minute, the waiting queue of CDR disk also

grows indefinitely. We have seen that the mean response time of requests to CDR

disks is always lower than that of requests to VDR disks.

161

Disk Storage Structure Analysis Chapter 4

4.4.4 Queue Length

In multimedia systems, some requests that cannot be finished within guaranteed

time may be discarded. This will cause missing frames in video data or pops in

audio data and will adversely affect the quality of service. However, some requests

are still allowed to wait for the service of the disk. These requests are placed in a

queue and more memory is necessary for longer waiting queues.

When the request arrival rate is high, the mean queue length is long. When

the request arrival rate approaches 167 requests per minute, the queue length in

VDR disk increases sharply (Figure 4.17). Under similar conditions, the CDR disk

maintains a short queue of mean length 0.1 requests. Therefore, smaller memory is

required for the waiting queues by using CDR disks.

20

15

10

5 +

Tvlean Queue Length

1 ,
' /

\—h-=-4—\—1 1 1 1 1 1 —
o o o o r - o o o o o o o

Request arrival rate (per min)

VDR •CDR

Figure 4.17. Mean queue length vs request arrival rate

162

Disk Storage Structure Analysis Chapter 4

4.4.5 Number of Requests

When the request arrival rate is high, more requests are kept in the system. When

the request arrival rate approaches 167 requests per minute, the number of

requests in VDR disk increases abruptly (Figure 4.18). Under similar conditions,

the CDR disk maintains a small number of requests. Therefore, less outstanding

requests are present in the system by using CDR disks.

Mean Number of Requests

10

6

4 +
2

0 I 'T I I \ \ h
o o o o r - o o o o o o o o

T j - o o c N ' O O ' ^ o o c N ^ O - ^ o o

Request arrival rate (per min)

VDR •CDR

Figure 4.18. Mean number of requests vs request arrival rate

163

Disk Storage Structure Analysis Chapter 4

4.5 Disk Storage Structure Simulations

In studying complex systems, it is usually inadequate to use only analytic models,

as these may not be able to provide all the numerical measures needed for

meaningful performance evaluation. In contention analysis, even single server

queues do not admit closed-form solutions under most conditions. Simulation will

allow all relevant measures to be obtained numerically by incorporating a model

of the system within the simulation program and is a technique used extensively in

the study of non-deterministic systems. In addition, simulations can demonstrate

the validity of theoretical models, allowing a flexible choice of traffic conditions

and parameters. A significant number of simulations have been performed to

empirically measure the behaviour of different disk storage structures.

A disk structure simulation program is created which allows the user to

simulate the behaviour of either a VDR disk or a CDR disk, using different disk

parameters. These disk parameters include the innermost track diameter, disk size,

the seek start/stop time, the arm moving speed, the tracks per cylinder, the number

of cylinders, the rotation speed, and the disk recording density. The simulation

program runs on a Pentium personal computer to generate the multimedia data

requests and record their service times. No extra simulation tools are used.

The disk seek time is specified as two functions that depend on whether

the seek boundary is exceeded or not. When the seek distance is less than the seek

boundary, the seek time uses the short seek function that increases linearly with

the square root of seek distance. When the seek boundary is exceeded, the seek

time uses the long seek function that increases linearly with the seek distance.

164

Disk Storage Structure Analysis Chapter 4

The simulation keeps track of the current positions of the read/write heads,

the disk status, and the simulation time. The current head position is composed of

the cylinder number, the track number, and the angular position. The disk status

can be free, seek, latency, or transfer.

A number of data requests are generated at the specified data access rate.

Each request accesses an object of a particular size from a random data position

on the disk. When requests are initiated to access data from the disk, they are

placed in a waiting queue. The requests are then retrieved from the waiting queue

based on a First-Come-First-Serve scheduling policy.

The seek distance is measured on consecutive data requests. The seek time

is evaluated as a function of the measured seek distance. The rotational latency is

measured against the time being spent in waiting for the required data to come

under the heads. The data transfer time is measured against the time necessary for

all required data to pass under the read/write heads.

The program also keeps track of the waiting time in queue. The mean

waiting time, mean data access time, mean response time, and mean queue length

are all measured and stored in a relational database.

4.5.1 Hardware Parameters

We perform simulations on five disks with diameters 10.88 inches, 5.25 inches,

3.50 inches, 2.50 inches and 1.90 inches [119]. These disks rotate at 3600 rpm

except the 3.50 inches disk that rotates at 4318 rpm. Large disks have higher

recording density except the 3.50 inches disk that has a higher recording density

than the 5.25 inches disk. We assume that all of them have an innermost diameter

165

Disk Storage Structure Analysis Chapter 4

of one inch, 20 tracks per cybnder, 10 msec seek start/stop time, and 0.1

inch/msec arms moving speed. Since multimedia data are accessed in large blocks,

we use a block size of 100 kilobytes unless otherwise indicated.

4.5.2 Data Access Time

We plot the mean data access time being measured in simulations in Figure 4.19.

A log scale is used to clearly show the curve due to the large variation in data

access times. The predicted and measured values of five different disks are listed

in Table A.l of the Appendix. We have observed that the measured data access

times fall exactly on our predicted curves. The simulation results verify that the

mean data access times being predicted in our model are sufficiently accurate.

msec

10000

1000

100 +

10

Data Access Time

1

ii..-.^^-^^^--^--'- • - _ - - ^ -

1KB 10 KB 100KB 1000 KB

data access size

10000 KB

VDR (predicted)

• CDR (predicted)

o VDR (measured)

X CDR (measured)

Figure 4.19. Data access time (5.25 inch disk)

166

Disk Storage Structure Analysis Chapter 4

4.5.3 Throughput of Partitioned Disk

We have simulated a disk being partitioned into two zone groups. The system

throughput of each zone group is measured and plotted in Figure 4.20. The

predicted and measured values are listed in Table A.2 of the Appendix. Most of

the measurements m the inner zone groups are within the range of 10% of our

predictions. All the measurements in the outer zone groups are within 20% below

our predicted values. Since the system throughput of the outer zone group is

significantly higher than that of the inner zone group, our model is sufficiently

accurate in predicting the system throughput of different zone groups in a

partitioned disk.

The measured values agree with our model that the inner zone group

delivers data at a range of throughput that is lower than the outer zone group,

confirming that constant density recording disks can be partitioned into zone

groups so that high bandwidth objects on the outer zone group are accessed at a

higher throughput than low bandwidth objects on the inner zone group.

MB/sec

16.0
14.0
12.0
10.0
8.0
6.0
4.0
2.0
0.0

sec

'x X

. - O -

Throughput

'"'"' X X
X ^

• - X? •

- r - • •' 1

of Zone

X

• • • o

1—

Groups

X

r

— — — —

X):

0% 20% 40% 60% 80%

% of data in inner zone group

100%

inner zone group (predicted) o inner zone group (measured)

• outer zone group (predicted) x outer zone group (measured)

Figure 4.20. Throughput of zone groups

167

Disk Storage Structure Analysis Chapter 4

4.5.4 Disk Utilization

We plot in Figure 4.21 the disk utilization being measured. We have found that all

the measured values fall on the utilization curves. The simulation results verify

that our model is accurate in predicting the utilization of the disks. In addition, the

measured disk utilization values also show that utilization of CDR disks is around

one-third of the utilization of VDR disks. Thus, the simulation results confirm that

CDR disks can accept three times more concurrent streams than VDR disks.

The predicted and measured values are also listed in Table A.3 of the

Appendix. Since the queue will tend to be unstable when the utilization

approaches 100%, we focus on utilization values up to around 80%. For values

approaching 100%, the error tends to diverge as expected.

100%

80%

60%

40%

20%

Disk Utilization

-X-
--*<

-.x-'
; ^

-x-

-x-
0% *"

0
+ +

100 200 300 400
request arrival rate (per min)

VDR (predicted)
CDR (predicted)

o VDR (measured)
X CDR (measured)

-X-

500

Figure 4.21. Disk utilization

168

Disk Storage Structure Analysis Chapter 4

4.5.5 Mean Waiting Time

We have measured the mean waiting times in simulations and plot them in Figure

4.22. We have observed that most measured values fall closely to the predicted

curves. The values are also listed in Table A.4 of the Appendix. Since an unstable

waiting queue can amplify to a large variation in waiting time when the utilization

value is large, the error rate is expected to be high when the system is highly

utilized. We focus on stable queues when the utilization values are up to around

80%. The measurements verify that our performance model is reasonably accurate

in predicting the mean waiting time. Therefore, the simulation results confirm that

the waiting time is significantly reduced when constant density recording disks are

used in place of variable density recording disks.

seconds

0.5

0.4

0.3 -

0.2 -

0.1 -

0.0

Mean Waiting Time

*
/o

t

t
t

0
*

,r-'^-^r^--
_X- _x--

- H —

>
O * - "

, ^ '

^ —

-7tr
t

1
1

/
/

/
• X

f

(

100 200 300 400

Request Rate (lOOOKB/min)

500

VDR (predicted)

• CDR (predicted)

o VDR (measured)

X CDR (measured)

Figure 4.22. Mean waiting time

169

Disk Storage Structure Analysis Chapter 4

4.5.6 Mean Response Time

We present in Figure 4.23 the mean response time being measured in simulations.

The predicted and measured values are also listed in Table A.5 of the Appendix.

We have observed that most of the measured values fall on the predicted curves.

Based on the same reason as in the previous Section, we only consider stable

queues when the utilization values are up to around 80%. The measurements

verify that our model is reasonably accurate in predicting the request response

time in the same way as the request waiting time. Thus, the simulation confirms

that the mean response time is also significantly reduced when constant density

recording disks are used in place of variable density recording disks.

seconds

2.0

1.5 -

1.0

0.5

Mean Response Time

- -^- *
X . - X - - X - - X -
• •*"'°' V, x - x

X . - X - - X - - X - - X
0.0 i h H h H \ h

o o o o r ^ o o o o o o o o
T i - o o t N v O O - ^ o o c N v O O - ^ o o

Request Arrival Rate (per min)

VDR (predicted)
•CDR (predicted)

O VDR (measured)
X CDR (measured)

Figure 4.23. Mean response time

170

Disk Storage Structure Analysis Chapter 4

4.5.7 Mean Queue Length

We have measured the mean queue lengths in simulations and plot them in Figure

4.24. The values are also listed in Table A.6 of the Appendix. We have observed

that most measured values below the 80% utilization fall closely on the prediction

curves as in the two previous Sections. Thus, the simulations verify that our

performance model is also accurate in predicting the mean queue length.

Since the disk utilization of constant density recording disks reaches 100%

at a much faster arrival rate than that of variable density recording disks, the queue

starts to grow at much faster arrival rates. This confirms that waiting queues are

shorter when constant density recording disks are used in place of the variable

density recording disks.

Mean Queue Length
2.0

1.5 --

1.0 -

0.5 -

0.0

;) 1
: /

/
'k

i /

/ . ' ^

n •%' y - ' - y " ' 1 \ \ \ \ \ 1 \
O O O O l ^ O O O O O O O

Request arrival rate (per min)

VDR (predicted)
CDR (predicted)

o VDR (measured)
X CDR (measured)

Figure 4.24. Mean queue length

171

Disk Storage Structure Analysis Chapter 4

4.5.8 Mean Number of Requests

We have ploUed in Figure 4.25 the mean number of requests being measured

during simulations. The predicted and measured values are also listed in Table A.7

of the Appendix. We have observed that the measurements fall closely to the

curve. Hence, the simulation results have also verified that the mean number of

requests being predicted in our model is reasonably accurate.

5

4

3

2

1

0

Mean Number of Requests

.•6

-o X-_x _-x=-
^^--'

)it...-4-'--¥--f— \ ^ H 1- H h
o o o o r - o o o o o o o o

• ^ t O O t N V O O T j - O O t N O O - ^ O O

request arrival rate (per min)

VDR (predicted)
• CDR (predicted)

o VDR (measured)
X CDR (measured)

Figure 4.25. Mean number of requests

172

Disk Storage Structure Analysis Chapter 4

4.6 Chapter Summary

We have presented a mathematical model of the performance of constant density

recording disks. In this model, we have obtained closed form solutions to data

access time. This model is used to compare quantitatively the performance of

constant density recording disks with that of traditional variable density recording

disks.

We have also analyzed the impact of different disk parameters on request

service time. The minimum block size that can deliver necessary throughput

should be chosen to reduce memory buffer and start up latency. Data stream size

can be reduced through segmentation methods to an extent that high disk

throughput is still maintained.

We have also analyzed the data transfer time of our new bandwidth based

placement method. We then use this model to study the impact on system

throughput of various zone groups. We have shown that our new method can

increase throughput for multimedia data requests while maintaining similar I/O

rate for binary and textual data requests.

For individual data access, CDR disks reduce the data access time by over

60%. For streams of continuous media requests, CDR disks can significanfly

increase the number of acceptable streams, reduce request response time, and

reduce queue length. These results indicate that a storage structure based on CDR

significantly outperforms that based on traditional VDR for both multimedia data

and traditional data.

173

Disk Storage Structure Analysis Chapter 4

The simulation results verify that the mean data access times and the disk

utilization being predicted in our model are accurate. This confirms that the

bandwidth based placement method performs better than the random placement

method for multimedia data requests on constant density recording disks. The

simulation results also verify that our predicted waiting time, response time, queue

length, and number of requests are sufficiently accurate. These results confirm that

performance is significantly enhanced when constant density recording disks are

used in place of variable density recording disks.

174

Chapter 5

Analysis of Hierarchical

Storage Organizations

5.1 Introduction

In order to analyse performance of storage systems, mathematical models are used.

We have developed a new model to quantify the performance of multimedia data

streams on the tertiary storage system.

We first present the feasibility of accepting homogeneous and

heterogeneous streams to a storage system while maintaining the continuous

display requirement. We prove these feasibility conditions in Section 5.2.

A performance model for processing streams of homogeneous multimedia

streams on tertiary storage systems is developed. This model can predict the

performance of multimedia data streams in tertiary storage systems. In addition, it

allows the comparison and assessment of efficiencies of different storage

organizations. This new Queueing model that contains feedback requests and a

nested queue is presented in Section 5.3.

175

Analysis of Hierarchical Storage Organizations Chapter 5

When the tertiary bandwidth is low, the segment based pipelining should

be used to minimize latency in retrieving objects from tertiary storage. The latency

that respond to user interactive functions depends on the size of logical segments.

The logical segment size and data stripe size should also be kept within

constraints to meet the continuous display requirement of multimedia streams. We

present the mathematical model to find these bounds on the latency and segment

size in Section 5.4.

We use the performance model to investigate performance of concurrent

streams of requests on the tertiary storage system and to compare the performance

of our high concurrency placement method, the non-striping method, and the

parallel striping method in Section 5.5.

We then analyse the user latency of requests that migrate data from low

end tertiary drives in Section 5.6. The latency of our segment based pipelining is

compared with that of other data migration methods. The latency is also analysed

with respect to changes in tertiary and disk bandwidth. Since the user latency

model is rather straight forward, we consider that simulations are not required and

can be skipped.

Simulations allow relevant measures to be obtained numerically by

incorporating a model of the system within the simulation program and is a

technique used extensively in the study of non-deterministic systems. A number of

simulations have been performed to validate our theoretical models, and the

behaviour of large multimedia storage servers in supporting concurrent streams is

empirically measured. The simulation results are presented in Section 5.7.

176

Analysis of Hierarchical Storage Organizations Chapter 5

5.2 Feasibility of Accepting Concurrent Streams

Rangan and Vin investigated feasibility to interleave data blocks of multimedia

streams using the Storage Pattern Altering (SPA) policy [122]. They consider only

fixed transfer rate over both the media and gap blocks to interieave data in optical

disks.

Since magnetic disks and tapes use a format different from optical disks,

their performances are different as well. Data on magnetic disks are stored in

tracks. Disk heads move across the tracks at a speed that varies according to the

seek distance. Gap blocks on tapes are skipped over at higher than reading speed,

typically six to ten times faster. Hence, data on storage devices are skipped over at

a different rate from data reading or writing.

This is a generalization of their interleaving placement method. We switch

from interleaving heterogeneous streams over the space domain to interleaving

them over the temporal domain. This allows for the feasibility condition to be

used on general storage organizations and arbitrary scheduling methods. We

generalize from fixed transfer rate to variable transfer rate over the gaps so that

performance characteristics of general storage devices can be included. The

parameters in Table 5.1 are used in this model.

Table 5.1. Notations in feasibiUty conditions

Parameter

S

M

G

5

Meaning

access overheads

transfer time

gap time

display time

177

Analysis of Hierarchical Storage Organizations Chapter 5

We assume that each stream seeks with an overhead of S seconds and

transfers a data stripe using M seconds. After that, the stream suspends data

retrieval for G seconds. Each data stripe can display for S seconds. A multimedia

stream (M, $) is acceptable if and only if it satisfies the continuous display

requirement.

S + M<6. (5.1)

This continuous display requirement must be maintained over a finite period of

time. The requirement can temporarily be violated by satisfying requests in

advance and keeping the retrieved data in read-ahead buffers. The average ratio of

transfer time to display time must however be maintained over a finite period of

time.

5.2.1 Homogeneous Streams

Multimedia streams are considered as homogeneous if all streams have the same

display time period S. Let n streams be characterized by (Mi, S), (M2, S), to (Mn,

5). Let Si be the access overhead time in serving each stream and G, be the time

gap of the ith stream, for / = 1 to n. By definition of the time gap, we have

Si-tMi + Gi<5. (5.2)

Corollary 1: n streams can be concurrently displayed if and only if

Si-i-Mi-\-S2 + M2+ ...+Sn + Mn<S. (5.3)

Proof: In order to be able to accept n concurrent streams, request of any stream is

served during the time gap of other streams. The continuous display requirement

necessitates that k requests are served within a continuous time period k5 for

finite value of k.

178

Analysis of Hierarchical Storage Organizations Chapter 5

If n streams are concurrent, then n streams are served in turn over a finite

time period k5 such that k requests of each streams are served within the time gap

of other stream. Hence, we have

i k[s. + M\<kGi, /=1,2, ...,n,

which implies

i {Sj + M\<Gi, i=\,2,...,n. (5.4)
;=l,y*i ^ '

Summing Equation (5.4) for all streams, we have

t t {Sj^M\<tG,,
i=\i=\,j*i^ ' ' i=X

which implies

(n - l) i (5 , + M ,) < i G , .
j = C ^ ^' i=\

Substituting G, from Equation (5.2), this becomes

(n - l) i k + M j < E ((5 - S , - M ,) ,
7 = 1 ^ •' ^ , = 1 ^

which implies

(«-l)Sf5, .+ M ,) < « 5 - S f e + M ,) . (5.5)
7=1^ ' ,=\

Changing the subscript of the left hand side in Equation (5.5) fromj to i, we have

(« - l) i (5 , +M.) <«(5-E(5, +M.),
1=1 i = l

which implies

«S(5,+M,) <n8.

179

Analysis of Hierarchical Storage Organizations Chapter 5

Therefore, we have

SX+M1+S2+M2 + ... +Sn+Mn<S,

which is the necessary condition. Conversely, we have

5i-I-Ml-H 52 + M2+ ... + 5 „ - H M „ < 5.

Since all terms are positive, we have

Si+M.<5, i=l,2,...,n.

Hence, the continuous display requirement of all streams is fulfilled. Therefore,

the n streams can be concurrent. •

5.2.2 Heterogeneous Streams

Multimedia streams are considered as heterogeneous when their cycle periods are

different. Let n streams be characterized by (Mi, <5i), (M2, 82), to (M„, S„) such that

not all 8i are the same. Let S\ to 5„ be the access overhead time in serving each

stream.

Corollary 2: n streams can be concurrent if and only if

5, + Ml 5, + M2 S„ + M„
' + ' +•••+ " <1- (5.6)

1̂ 82 8„

Proof: If n streams are concurrent, then there exists a finite time period 8 that kj

requests of thejth streams are served. By the continuous display requirement, this

time period does not exceed the display time of each stream. We have

S<kj8j, j= 1,2, ...,n,

which implies

180

Analysis of Hierarchical Storage Organizations Chapter 5

1 , ^ .
~^-Y' 7=1 ,2 , . . . , / ! . (5.7)

Since the time period 8 is the retrieval time of all requests, we have,

tkj{s,+Mj) = 8,
7=1

which implies

L r. ^ = 1 . (5.8)
7 = 1 8

1 k^
Substituting — < — , we obtain

8j 8

n (5,.+ M.)

which is the necessary condition. Conversely, we let

8 = 8\ 82... 8n

and let kj 6 R such that

^ j = — , j=\,2,...,n.

which gives

kj 1
^ ^ ^ , j=l,2,...,n. (5.9)
8 8^

From the necessary condition, we have

S, + M,S2 + M, ^„+M„

This implies

^(V^^j
=. 5.

181

Analysis of Hierarchical Storage Organizations Chapter 5

1
Substituting — from Equation (5.9), we obtain

7 = 1 8

which implies

1 ^ , (5 , + M ^) < < 5 .

Hence, we obtain

^ , (5 ,+M,)+ i kj[Sj + Mj)<k^8^, i=l,2,...,n. (5.10)
7=1.;*'

Since all terms are positive, we can take away the term 2I1 ^jiSj + M J from
j=ij*'

the left hand side of the inequality. Hence, we have

k.(s,-^M,)<k,8., i=l,2,...,n,

which impUes

5,.+ M,.<(5., / = 1 , 2 , ...,n.

The continuous display requirement of each stream is fulfilled over a finite penod

of time. Hence, the n streams can be concurrent. •

182

Analysis of Hierarchical Storage Organizations Chapter 5

5.2.3 Multiple Devices

When multiple devices are available, the devices may serve the streams

independently or in parallel. When the streams are served in parallel, the above

inequality for a single drive with different access overheads and transfer rate can

be used. When the streams are served independently, one request is served by one

device each time. We assume that the requests can be distributed evenly to p

devices, otherwise some devices can be overloaded while others are under

utilized.

Corollary 3: n streams can be concurrent on p independent devices if and only if

S^^S^^J_^^^ (5.11)
Ox 82 8„

Proof: If n streams are concurrently served by p devices, then there exist a finite

time period 8 such that kj requests of the 7th streams are served by p devices. By

the continuous display requirement, this time period should not exceed the display

time of each stream. We have

8<kj8j, j=l,2,...,n,

which implies

- 1 < ^ , j=l,2,...,n. (5.12)
8j 8

Since the total retrieval time of all requests must be less than the service time of

the p devices over the time period 8, we have,

tkj[Sj + Mj)<p8,

which implies

183

Analysis of Hierarchical Storage Organizations Chapter 5

S -g <P. (5.13)

1 *,
Substitutrng — < — from Equation (5.12), we obtain

d, 5

Hence, the necessary part is proved. Conversely, we let

8 = 8^8^...8„

and let kj G R such that

_ A K; — , J — l, 2, ..., n,

which implies

kj 1
^ = — , 7=1 ,2 , ...,n. (5.14)
8 8^

1
Substituting — from Equation (5.14) to the necessity condition, we have

L 7 ^P,
7=1 8

which implies

tkj{Sj + M^)<p8. (5.15)

Since all terms are positive, we can take away all except the ith term from

XkjiSj + Mjj. Hence, we obtain

k.{s. + M,)<pki8i, i=l,2,...,n,

which implies

184

Analysis of Hierarchical Storage Organizations Chapter 5

(5,+ M,.)<p(5,-, / = 1 , 2 , ...,n. (5.16)

That is, requests of the rth stream can be served within time period 5, hy p devices.

As long as the requests are distributed evenly to the devices, the continuous

display requirements of all streams are fulfilled. Therefore, the n streams can be

accepted to be served concurrently. •

185

Analysis of Hierarchical Storage Organizations Chapter 5

5.2.4 Application on Storage Devices

The access overhead time, 5, is a function that depends on the storage devices, the

storage organizations, and the presence of other concurrent streams. We shall

consider the following three typical types of overhead functions:

1. fixed value function,

2. linear value function, and

3. monotonically increasing function.

These three types of overhead time functions and their combinations would cover

most data access overheads of storage devices.

(a) Fixed Overhead Function

When media units are exchanged, the exchange time is considered as uniformly

distributed over a fixed value. Hence, the fixed value function can be used. In

effect, the overhead is considered as

S=S. (5.17)

where S is the average overhead time.

(b) Linear Overhead Function

When data on magnetic tapes are skipped over, the time to skip over data is

proportional to the amount of data being skipped over. Hence, the overhead time

is linearly related with the distance being travelled. Therefore, we have

S(d) = ai-i-a2 d, (5.18)

where a\, a2 are fixed parameters and d is the travelled distance.

186

Analysis of Hierarchical Storage Organizations Chapter 5

We can see that the fixed value function is, in fact, a particular case of the

linear overhead function with ^2 = 0. The CLV disk format is also a special case of

the linear overhead function with ai = 0 and a2 = data transfer rate.

(c) Monotonically Increasing Overhead Function

When data on magnetic disks are accessed, the seek time function, as explained in

Chapter 2, is characterized as

a, + a.^d, d > a^
S{d) = r- ' (5.19)

a-^+a^^d, d <a^

where d is the seek distance, and a^,a2,a^,a^,a^ are fixed parameters. We can

easily see that the linear overhead function is a particular case of the

monotonically increasing overhead function with as = 0.

Based on the motion dynamics of the disk heads, the time to travel a

distance in one direction increases monotonically with the length of the distance.

According to Equation (5.19), the seek time function increases with seek distance

and the parameters being used in [126] for current disks, it is plausible to say that

disk seek time is a monotonically increasing function of the seek distance.

From the characteristics of magnetic disks, the seek time for a long seek

cannot exceed the sum of seek time of its component seeks. The sum of seek time

for two seek actions is maximized when the two seek actions are equal in distance

[59]. That is

S{dx+d2)<S{dx)-tS{d2), (5.20)

and

S{di)-i-S{d2)<2*S{ ' t ') • (5-21)

187

Analysis of Hierarchical Storage Organizations Chapter 5

We can easily generalize the above result for n requests to get

S(dx-\-d2-i-...-i-dn) < S(dx) + S{d2) +...+ S(dn) (5.22)

and

S(dx) + S(d2) +...+ S{dn)< n^S{ ^ ' + ^ 2 + - + ^ „ ^ ^3 23)

n

That is, the seek time for a long seek cannot exceed the sum of seek time of all its

component seeks. The sum of seek time for n seek actions is maximized when all

n seek actions are equal in distance.

5.2.5 Optimization of Probability Model

Since the throughput performance of a storage organization depends on the

concurrent streams being accepted to the system, the system throughput is optimal

by accepting the most concurrent streams.

Let Prob(Mi, M2, ... , M„) be the probability that Mi, M2, ... , M„ are

concurrent. An efficient method should maximize the probability that the

feasibility condition,

Sx+M,S2 + M2 S„+M„

Sx 82 - ^ <5„ - '

can be achieved. That is to say, an efficient storage and retrieval method should

reduce

EPr(M,,M2,...,Mj
S,+M, S2 + M2 \ + M„̂

1̂ O2 - , y 1̂ 5, 8,

in order to accept the most concurrent streams.

(5.24)

188

Analysis of Hierarchical Storage Organizations Chapter 5

5.3 Performance Model of Large Multimedia Storage

Systems

In this Section, we develop the performance model of large multimedia storage

systems (LMSS) utilizing various tertiary storage organizations, including high

concurrency placement method, the non-striping method, and the parallel striping

method. The non-striping method (using contiguous placement) and the parallel

striping method are described in part (a) and part (d) of Section 2.6.2 respectively.

The assumptions and notations of the model are first described in Section 5.3.1.

Next, we show the arrival pattern of streams and the generation of requests in

Section 5.3.2. We present the transition states of concurtent streams in Section

5.3.3. The service times of high concurrency placement method are given in

Section 5.3.4. In Section 5.3.5 the system throughput is modelled, and we

determine the expected stream response time in Section 5.3.6. Lastly, the

necessary size of the staging buffer is found in Section 5.3.7.

5.3.1 Assumptions and Notations

We use a queueing model to analyse the service time and the queue contention of

the tertiary storage system. We assume a conservative system in which no requests

are created or destroyed. We also assume the non-preemptive scheduling

condition in which each requests must finish before another request can be served.

The notations in Table 5.2 are adopted in this model.

189

Analysis of Hierarchical Storage Organizations Chapter 5

Table 5.2. Notations in LMSS performance model

Parameter
A
p
Pj

P
r

D
I
h
A
J
R
X
B

s
S
CO

w

X
a
CCs

Y
L
T

T
Z

0
K
8

Meaning
arrival rate of new streams
stream service rate
stream departure rate at 7 streams
utilization
number of requests per stream
number of tertiary drives
combined input rate
input rate to the exchange queue
inter-stream arrival time
inter-request arrival time
request response time
request service time
concurrent group service time
number of concurrent streams
maximum number of concurtent streams
media exchange time
exchange waiting time
exchange service time
total reposition time in a group
reposition time of a request in a group
total reposition distance in a group
length of media unit
transfer time of each request
total transfer time in a batch
segment size
data transfer rate
number of media units per drive
display bandwidth

5.3.2 Arrival Pattern

New streams arrive randomly at the system. We shall describe the stream arrival

pattern in part (a). Since these streams may generate the requests at different

times, the expected inter-request arrival time is explained in part (b). We then

describe the variance of inter-request arrival time under three different conditions.

The variance of inter-request arrival time when requests arrive independently is

presented in part (c). The variance of inter-request arrival time when all requests

190

Analysis of Hierarchical Storage Organizations Chapter 5

are generated on arrival is described in part (d). The variance of inter-request

arrival time for our concurrent streaming method in which two requests are

generated on arrival is described in part (e).

(a) Stream Arrival Pattern

We assumed that new streams arrive randomly to the tertiary storage system. The

stream arrival pattern can suitably be described with the Poisson distribution at a

fixed rate A (Figure 5.1).

When the arrival pattern of the streams is Poisson distributed with a fixed

rate X, the mean time between stream arrivals is 1/A and the variance of time

between stream arrivals is 1/A .

(b) Inter-Request Arrival Time

In general, every new stream sends r requests to the tertiary storage system. These

r requests are distributed to D drives and each drive receives on average rlD

requests from each stream. After all the requests of a stream are served, the

finished stream exits the system (Figure 5.2).

new stream finished stream

Figure 5.1. Model of streams

191

Analysis of Hierarchical Storage Organizations Chapter 5

1st request

2nd request

7th request

finished
streams

rth request

Figure 5.2. Model of request arrival

All these requests are served by the tertiary storage system. The arriving

pattern of the requests would be the same as merging the arriving requests. Since

the arrival rate of all requests is equal to the arrival rate of the streams multiplied

by the number of requests per stream, the arrival rate of all requests to the tertiary

storage system is rX, where r is the number of requests in each stream.

Let A be the random variable for inter-stream arrival time, and J be the

random variable for inter-request arrival time. If we consider any period of time t

such that there is the same number of request at the start and end of the time

period, there is an average of Xt arriving streams. If each stream generates r

requests, then it is obvious that there is an average of rXt new requests over the

same period of time t. Therefore, we have the mean time between arriving

requests, J, is

/
rX

(5.25)

192

Analysis of Hierarchical Storage Organizations Chapter 5

(c) Independent Requests

Every new stream generates a fixed number of requests to each queue of the

tertiary drives. Since new streams are Poisson distributed, the arrival pattern of the

first request of stream is also Poisson distributed. Likewise, the arrival pattern of

the 7th request of the streams is also Poisson distributed. Hence, we have a number

of arriving requests that are all Poisson distributed. If the requests are independent

of each other, then the arrival pattern of the merged Poisson streams would also be

Poisson distributed. In which case, the arrival pattern of the requests is Poisson

distributed.

If all requests arrive randomly, then the request arrival time is Poisson

1
distributed and the variance of request amval time is - — r j .

[rX)

Since the standard deviation of Poisson distribution is the same in value as

1
the mean value, the variance of stream arrival time is —7-. As the second moment

A

is equal to the sum of the variance and the square of mean value, we have

2 2
E[A'] =JY.

The second moment is given as E[A^] = j P{t)t^dt, where P(.) is the probability

density of streams arrival time. Thus, the variance of the inter-requests arrival time

is

Var[7] = — ^ - (̂ -̂ ^^
{rXf

193

Analysis of Hierarchical Storage Organizations Chapter 5

(d) All Requests Are Generated On Arrival

If all requests are generated by the stream immediately, then the requests arrival

time would be zero for r-1 requests and 1/A for one request. Therefore, the second

moment of the request arrival time is

E[J^] =-\p{t)t^dt + ^^^lp(t)-Odt,

which implies

2 1
E [/] = - E [A ']

r

Hence, we obtain

E[/] =4^. (5.27)
rX

Therefore, the variance of the request arrival time is equal to

Var[/| =
rX

f—1
^rX)

2r-l

(rA) 2 •
(5.28)

Since r > 1, we have

2 r - l 1
> (5.29)

[rX Y {rX f •

Therefore, the variance of request anival time when all requests are generated at

stream arrival is greater than the variance of request arrival time when the requests

arrive randomly.

194

Analysis of Hierarchical Storage Organizations Chapter 5

(e) Two Requests Are Generated On Arrival

Every new stream generates a fixed number of requests to each queue of the

tertiary drives. The initial requests of each stream are generated immediately after

the stream is accepted for service. This tertiary storage system is modelled as a

queueing network with feedback as in Figure 5.3.

more requests

initial requests last requests

Figure 5.3. Model of request queueing with feedback

Within this system, the initial requests of each stream will arrive externally

and the last requests of each stream will depart the system. When other requests

are served, they will initiate another requests of the same stream. If the service

times of two streams do not overlap with each other, the inter-request arrival time

can be found as follows.

195

Analysis of Hierarchical Storage Organizations Chapter 5

stream i

<

stream i-\-l

time t

J
< •

J
< •

J J
< H

J
< H

^ (, 1 , Ri,3 Ri.'i

Ri,2

Ri,r Ri-i-hl, ^(+1,3 ^1+1 ,4

^ ,+1 ,2

Rij represents 7th request of stream /

Figure 5.4. Arrival times of streams and requests

If only the first two requests are generated by the stream immediately and

other requests are generated at request completion per our concurtent stream

management, then the third to the last request arrive at a time that is equal to the

request service time (Figure 5.4). Since the first two requests arrive at the same

time, the requests inter-arrival time is

J =

A--

0

J_
r(jL

r-2

rp
for the first request,

for the second request, and

for other requests.

2

Therefore, the second moment of the request arrival time, E[J], is

E[/] = - J P{A)
r-2

rp

r-2 r 1
dt + P(A) — dt,

r •' rp,

which implies

E[7'] = - E [A -] - - ^ ^ ^ E[A] +

r r rp.

r-2

rp +
r-2

196

Analysis of Hierarchical Storage Organizations Chapter 5

Substituting the first and second moments of A, we obtain

^rj2. _ 2 2{r-2) {r~2){r + p-2)
E[yj -—^-—r~T—+ ^—^ • (5.30)

rX r pX r'p '

Therefore, the variance of the request arrival time is

V rn 2 2 (r - 2) {r~2)(r + p-2) (l^
Var[/| =—rT-—r~T- + ^ ^ " " T

rX r pX r p \rXj

2

(5.31)

Unfortunately, new streams often arrive while some requests of other

existing streams are being served. Hence, the inter-requests arrival pattern is

unknown in general. Instead of pursuing further on the request arrival patterns, we

switch to use the transition probabilities for the number of streams at steady state

and the group service time to model the performance of the storage system.

5.3.3 State Transitions of Concurrent Streams

We shall describe the state transition probability for the unlimited concurrency

condition in part (a) and the limited concurtency condition m part (b).

(a) Unlimited Concurrency

We denote the status of the tertiary storage system by an infinite number of states.

The system is said to be in state 7 if 7 streams are being served concurtently or

waiting in queue, where 7 varies from 0 to 00. We focus on a time interval, h,

which is small enough that the system can only change by one stream at a time.

Letting Pj be the probability that 7 streams are concurtent. A, be the arrival rate of

197

Analysis of Hierarchical Storage Organizations Chapter 5

new streams at j concurrent streams and Pj he the departure rate at j concurtent

streams, we have

Prob (HSS changes from state7 to state 7+1) = XJiPj,

Prob (HSS changes from state7 to state7-I) = PjhPj, and

Prob (HSS stays in stated) = {1-Xjh- Pjh)Pj,

ioTj =1 ,2 , and so on. The transition states are shown in Figure 5.5.

At steady state, the probability of the system changing above any state 7

should be equal to the probability of changing below state 7-1-1. Therefore, we have

^ijhPj = Xj.xhPj.x, 7 = 1 , 2 , . . . ,

which implies

^ . - 1

M, ; - i '
7 = 1 , 2 , (5.32)

When 7= 1, we have

A

Ml
^ 0 -

Expanding Equation (5.32) repeatedly from7 to 1, we have

A j_i--.X I A Q

M y - i " 2 / ^
Po^ (5.33)

for7 =1 ,2 , and so on.

Figure 5.5. State transition diagram of large multimedia storage system

198

Analysis of Hierarchical Storage Organizations Chapter 5

(b) Limited Concurrency

Let S be the maximum number of acceptable concurtent streams to the storage

system. Each group may serve 0 to 5 concurtent streams. Since the number of

streams being served concurrently cannot exceed S , the departure rate at all states

above S are equal to the departure rate at S . Since the arrival rate is independent

of the number of concurtent streams, all A, are the same. Let A be the stream

arrival rate, we have

A
Pj =—Pj..i, foTJ>S. (5.34)

^s

Expanding this from/ = 5 -i-l, we have

PJ ={—)^-'P^, forj>S. (5.35)
Ms

A
If — > 1, the system cannot serve streams fast enough and it becomes unsteady

^s

when the maximum number of concurtent streams is reached. Hence, we assume

that — < 1 for a stable system. By summing all P, terms for) >5 , we have

tPj=-\- (5-36)
7=5 l _

Since the sum of all Pj terms where 7 > 0 must be equal to 1, we have

7=0

which implies

s - i •»

1PJ+1PJ=^-
J=0 j=S

199

Analysis of Hierarchical Storage Organizations Chapter 5

Substituting X Pj from Equation (5.36), we have
J=s

s-i p
lPj + ^ = h

1 - —

which implies

^ ' A^ 1 A^
PO + ZJ ^̂ 0+ 1 n = l .

^My-MiMi (j_A)Ms---M2Mi

Mi

Hence, we obtain

Po = I-, . , ' 7 1 • <5-"^

i + E n - + — ^ - ^
Mi ;=i

The probability of j present streams can then be found by substituting PQ into

Equation (5.33).

200

Analysis of Hierarchical Storage Organizations Chapter 5

5.3.4 Service Times

The service time of each group of requests is divided into three parts: media

exchange time, reposition time, and data transfer time. Other service time

components are much smaller and hence not included in our model.

Media units are accessed in a round robin like manner. A media exchange

is required with a certain probability. If an exchange is required, it is performed

within a range of exchange service time. We describe the media exchange time for

each group of requests in part (a).

A reposition is always required for each request. In order to achieve high

throughput, the SCAN scheduling rule is used to serve requests. Requests for data

on the same media unit are served in the relative order of their data location on the

media units. We assumed that the head resides on the starting position of the

media unit after exchange. The request for data nearest to the starting position is

first served. Then the request for data next nearest to the starting position is served

next and so on. In this way, the full reposition time is shared among the requests.

We explain the reposition time for each group of requests in part (b).

A data transfer time is always required for every request. Since we use a

constant time length approach to store the segments, the segment size varies. We

assume that the segment sizes vary randomly within a fixed range. We also

assume that the rate of transfer is fixed. The transfer time is, hence, directly

proportional to the segment size. We present the data transfer time for each group

of requests in part (c).

Lastly, we describe the individual group service time and mean group

service time in part (d) and part (e) respectively.

201

Analysis of Hierarchical Storage Organizations Chapter 5

(a) Media Exchange Time

The first component of the group service time is the media exchange time. The

media exchange time is composed of the exchange device waiting time and the

exchange request service time. We use the exchange request service time to find

the exchange device waiting time as follows.

• Exchange Request Service Time

When each drive has its own exchange device, the exchange requests may be

served immediately, and no waiting is required. We assume that the exchange

service time varies uniformly within a range of variation which is around 10% of

the exchange time.

Let X be the time to perform an exchange and 2a be the range of variation.

Then, the exchange times are uniformly distributed between X-^ and ;|f + cr

2 f / t+C 2 ^

with density function tpl^). By definition, E[;|f] = J-_ t (p{t)dt. Since (p{.) = —

for uniform distribution, we have

2cr •'x-'^

which implies

E[;t̂] = 0 ' + y - (^-^S)

Hence, we have

2

Var[;t:] = - — . (5.39)

202

Analysis of Hierarchical Storage Organizations Chapter 5

• Exchange Waiting Time

When the tertiary drives share an exchange device, a new exchange request wait

for the completion of all prior exchange requests before it can be served. Using the

same notations, we have CL> = vif -\- x, where co is the media exchange time and w is

the waiting time in queue. We now have a nested queue whose model is shown in

Figure 5.6.

We assume that this queueing system is also conservative. We also assume

the non-preemptive scheduling condition that incomplete requests are not

intertupted. We shall investigate the waiting time and response time for the

popular FCFS scheduling. We assume that the exchange requests arrive randomly

to the queue. Using the queueing notations in [95], we have a M/G/1 queue of the

exchange requests.

The mean request arrival rate to each drive is

/ =
rX_

D
(5.40)

where r is the number of requests per stream and D is the number of tertiary

drives.

Drive 1

Drive D

exchange request

exchange request

Exchange
Queue

Figure 5.6. Exchange request queue model

203

Analysis of Hierarchical Storage Organizations Chapter 5

Since one of the S requests in the group sends an exchange request to the

exchange device, the combined arrival rate to the exchange queue, h, is

1 rX rX
2= D-{—) = —

S^D^ S
(5.41)

We apply the Pollaczek-Khintchine formula [95] to find the media exchange

waiting time at S concurtent streams, Es[w], as

/ . - X r

Es[w] =

rX_X
X 1 +

-ix

rXx

which implies

Es[w]
rX[l>x"+cj')

6{S - rX'i)
(5.42)

Given w = w -i- ;t, we obtain the mean media exchange time at S streams, Es[<y], as

rX[l>x^+o^\ _

6(5 - rXx)
(5.43)

By definition, E[y^] = \-^"t ^(p(t)dt. Since (p{t) = -— for uniform distnbution.

we have

E[f] =x{x'+(y')- (5.44)

Using Takacs recurtence formula [84], we find the second moment of the waiting

time, Es[w], as

Es[>v] =2(E3[w]) + 3 (i _ , E [; ,]) '

which implies

204

Analysis of Hierarchical Storage Organizations Chapter 5

Es[w1 =2
rX(3/+cj'-)

6(S - rX^) +
rXx[x' +0-)

3(5 - rX'i)
(5.45)

The second moment of the media exchange time can hence be found [84] using

Es[a)2] =Es[w2]-H2Es[w]E[;t:]-HE[/]. (5.46)

We assume that each media unit has the same probability, —, of being
K

accessed by a stream. The media exchange time of the non-striping placement

(. n
1 - —

K
Similarly, the method can be found similarly using the arrival rate of A

media exchange time of the parallel striping placement method can be found using

(
the arrival rate of XD

K
J

(b) Reposition Time

The second component of the group service time is the reposition time. We shall

determine the reposition time when the SCAN policy is used. We assume that the

data positions are uniformly distributed among the length of the media. We need

to find the data positions of S requests in the full length, L, of a media unit. The

probability that one data position resides within the range y to y+dy in a uniform

distribution is

L
(5.47)

Hence, the probability that the data position falls within a distance y from the

beginning of a media unit is

Prob(7,<y) = y (5.48)

205

Analysis of Hierarchical Storage Organizations Chapter 5

The probability that all S requests fall within a distance y from the beginning of a

media unit is

ProKF] <y, Y2<y, ..., Y,,<y) = (A ^ (5.49)

Let F(y) be the distribution function of the probability that the longest

reposition distance of S requests. When the SCAN policy is used for S requests,

this is the same as the total reposition distance of S requests. We have

F(y)={j-)\ (5.50)

Let fiy) be the probability of the longest reposition distance from the

beginning of the media unit is between y and y+dy, where dy tends to 0. Now,y(y)

can be found from the first derivative of the above distribution function. Hence,

we have

M=^dy. (5.51)

Let Fs be the reposition distance of each request, then SYs is the total reposition

distance in a group of S streams. We have

Sy'-' ^
Prob (5Fs< y)=^^dy.

which implies

L f^ S-l

E[57s] =\y^dy
0 V

After simplifications, we obtain

Also, we have

^[SYs\ =
SL

S + \

206

Analysis of Hierarchical Storage Organizations Chapter 5

Sy s-\
Prob (SYs <y)= ~~-dy ,

which implies

' 2Sy'-' . f SLY
VsiT[SYs] = jy'-^dy-

v5 + ly

Therefore, we obtain

Su
Var[5rs] = 2

(5 + l) ' (5 + 2)

(5.52)

Let as he the reposition time of a request inside a group of S requests. Since the

reposition time of magnetic tapes is in proportionate to the reposition distance, the

reposition time of a request inside a group of S requests is

as = « + bYs,

where a, b are constants. Let a be the total reposition time of the group and Es[ci;]

be the expected total reposition time for S requests, we have

a = aS+bSYs,

which implies

L ^ S-l

Es[a] =j{aS+by)-^dy,
V

giving

Es[a] =aS + bL
5 + 1

(5.53)

Also, we have

Es[c^] =\{aS+byY-^dy

This gives

207

Analysis of Hierarchical Storage Organizations Chapter 5

Es[a'] -^a^S'-+2abL-^ + b^L'-^. (5.54)

5 + 1 5 + 2

The reposition time of the non-striping placement method and the parallel

striping method can be found similarly with the reposition time being shared
, r

among r and — requests respectively.

(c) Data Transfer Time

The third component of the group service time is the data transfer time. Let Z be

the random variable of the segment size. We assume that Z is uniformly

distributed between (Z-C,, Z+^ and the rate of transfer, (/), is fixed. Letting rbe the

transfer time of each request, we have

E[T] = - (5.55)

and

Var[T] = \ - . (5.56)

Letting T be the total time of a group of 5 requests spent in transferring data, we

have

T =ST,

giving

Es[r] = ^ , (5.57)

and

E S [T '] =

—\ 2

5 ' . (5.58)
'Z]

. 0 .

208

Analysis of Hierarchical Storage Organizations Chapter 5

Similarly, the data transfer time for r requests of the non-striping

placement method and the data transfer time for — requests of the parallel
D

striping placement method can be obtained.

(d) Individual Group Service Time

The requests on the same media unit are served in parallel as a concurtent group

of requests. The concurtent group of requests are served using the following

operations:

1. Exchange media unit,

2. Reposition to the start of the first request,

3. Transfer data for the first request, and

4. Repeat steps 2 and 3 for all requests in the group.

The group service time is hence the sum of media exchange time, reposition time,

and the transfer time. Letting Bs be the service time for a group of 5 concurtently

serving requests, we have

Bs= (O + a + T,

Substituting expected values of the media exchange time from Equation (5.43),

reposition time from Equation (5.53) and data transfer time Equation (5.57), we

can get the mean group service time at 5 streams, B^ or Es[5], using

T, = Es[ft;] + Es[a] + Es[r] . (5.59)

Since B^ = (co +a+7)^ and the service times are independent, we have

Es[B^] = E3 [« '] + Es [a '] + Es [r '] +

209

Analysis of Hierarchical Storage Organizations Chapter 5

2Es [a]Es [CD] + 2Es [a]E^ [T] + 2Es [co]E^ [T]. (5.60)

Substituting the first and second moments of the media exchange time, reposition

time, and data transfer time, we can obtain the second moment and the variance of

group service time at 5 streams.

(e) Mean Group Service Time

Since a stream finishes when all its r requests are served, each one of D drive

r
serves —: groups of requests to finish a stream, where 7" is the number of requests

rTj
per group. The mean stream service time is then equal to . Hence, the

Dj

departure rate at7 streams, p-j, is

M.= ^ - (5-61)
rBj

Substituting Pj into Equation (5.33) and Equation (5.37) and we obtain

1
Po =

us64n^^ ''''
DSp^)i '

Pj=i^y^\{Bk^ 7 = 1 , 2 , . . . , 5 - 1 ,
D' 7' *:=1

and

^)=(^v(^)"'^rt^- >̂ -̂D S 5! k=i

210

Analysis of Hierarchical Storage Organizations Chapter 5

Therefore, the mean number of concurtently serving streams can be found from

i-i

^[S]=J,jPj+J,SP^. (5.62)
;=o 7=i

i-i

Using E[5] = ZjPj^j +^^s^j ^ ^^ can find the mean service time for
v=o 7=i

concurtent groups of requests using Equation (5.59). Similariy, we can find the

second moment of the group service time using

i - i =o

E[B^] =J,PjEj[B'] + ^E-[B']P^
7=0 7=i

and Equation (5.60). The variance of the group service time is hence found using

Var[5] = E[B^] - {E[B])\

Therefore, the mean stream service time, E[G], is obtained as

E[G] = ^ E [B] .

The stream service time for r requests of the non-striping placement

method and the stream service time for — requests of the parallel striping

placement method are both found as sum of media exchange time, reposition time,

and data transfer time.

Since there is no solution available for this M/G/m queue, we approximate

the waiting time with that of a M/G/1 queue. We apply Pollaczek-Khintchine

formula again to get the mean stream waiting time.

211

Analysis of Hierarchical Storage Organizations Chapter 5

5.3.5 System Throughput

In order to display the streams without starvation, the storage system must retrieve

each segment before it is due for display. That is, a segment can start to display

only after the segment is retrieved.

In order to achieve high system throughput, the SCAN scheduling

algorithm is used to serve requests on the same media unit. Since the data can be

stored anywhere on the media unit, the maximum number of requests between two

consecutive requests of the same stream is 25 - 2 , where 5 is the maximum

number of concurtent streams in each group. If we use this finishing time

difference between any two consecutive requests as an upper bound on the

segment retrieval time, then we have

DX . Z
- ^ > w + (2 5 - l) (a 5 + -) ,

8 0

which X is the request service time, 8 is the display bandwidth, Z is the segment

size, and (/»is the data transfer rate. This is equivalent to

n v
^ > E , , _ , [B] . (5.63)

Alternatively, an accepted stream may start to display after all the requests

on a media unit are served. The deadline to any request is the end of each cycle.

Hence, we have the continuous display requirement as

DX . Z^
—^>a) + S{as +—), r

which is equivalent to

DX
>EAB]. (5.64)

212

Analysis of Hierarchical Storage Organizations Chapter 5

When more streams are concurrently served, the group service time is longer.

Hence, Ej[B] increases with 7. Thus, the upper bound on the number of concurrent

streams as given in Equation (5.64) is higher than that in Equation (5.63). We can

find the maximum number of streams, 5 , such that

E-[B]<^<E,JB]. (5.65)

Therefore, the continuous display requirement is guaranteed for any number of

concurtent streams that is less than the maximum number of concurtent streams.

In the high concurtency placement, one segment is retrieved for each

stream after each media exchange. If D drives are serving 5 streams, then DS

stripes are retrieved every cycle. Therefore, we have for the system throughput

D5Z

From Equation (5.66), we can see that the system throughput increases when

larger segments are used.

Also, the system throughput is maximized when the maximum number of

concurtent streams are served. Therefore, the maximum system throughput is

D5Z

E,[B]
(5.67)

Intuitively, the number of requests being retrieved from each media unit is

increased when more streams are concurtent. When the segments being retrieved

from one media unit are more than the size of each object, the average media

exchanges per stream is reduced. However, the number of repositions within a

media unit is also increased when more streams are concurtent. Fortunately, the

reposition time can be shared among all requests by the SCAN scheduling

213

Analysis of Hierarchical Storage Organizations Chapter 5

method. Hence, it is possible to increase the system throughput by serving more

streams concurtently.

The system throughput of the non-striping placement method is found as

the number of drives times the object size divided by the stream service time, and

the system throughput of the parallel stnpmg placement method is found as the

data stripe size divided by the stream service time.

5.3.6 Stream Response Time

We describe the stream response time in three typical conditions. The response

time of a single drive and multiple drives with exponential service time are

described in part (a) and part (b) respectively. After that, the response time of

multiple drives with concurtent group service time is shown in part (c).

(a) Single Drive with Exponential Service Time

We first consider a simple case when there is only one tertiary drive, the service

rate is exponentially distributed, and the requests are served in the FIFO order.

The model of a single drive queue with feedback requests is shown in Figure 5.7.

more requests

first 2 requests

q = l

last 2 requests

Figure 5.7. Model of single drive with feedback queue

214

Analysis of Hierarchical Storage Organizations Chapter 5

Since the first two requests of each new stream are generated from extemal

input and the last two requests of each new stream will exit, we have extemal

input rate = 2A. Let / be the combined input rate and we apply the Jackson's

theorem [84] to get

/ = 2A + ^ / ,

which implies

r-2^
2X = / ,

giving

/ = rX. (5.68)

This is intuitively the same as r requests of each stream arriving at the tertiary

storage system. Letting ji he the service rate, we have for the system utilization, p,

as

/ rX
p = - = — . (5.69)

M M

Since the service pattern of the requests is assumed to be exponentially

distributed, the coefficient of variation equal to unity. We apply the Pollaczek-

IChintchine formula to find the mean request waiting time, w, as

ich gives

w

r/

_ M

2|

î(i.i)
M

I M ;

rXY^
(l-rAx)

215

Analysis of Hierarchical Storage Organizations Chapter 5

(b) Multiple Drives with Exponential Service Time

We extend the above case for multiple tertiary drives with exponential service

time. Let D be the number of tertiary drive and D > 1. We still assume that the

service time of requests are exponentially distributed. Each new stream generates

two requests to each drive immediately after it is accepted. The extemal input rate

of requests to each drive is then 2A. At each drive, the first two requests of each

stream will arrive externally and the last two requests of each stream will depart

the system (Figure 5.8).

As each stream has r requests, the probability, p, of departing from the

2D
system is p = . The probability, q, of generating more requests is

q= 1-/2= 1 - 2D (5.71)

Letting / be the combined input rate to each drive, we apply the Jackson's theorem

again to find the request arrival rate.

, r-2D
1= 2X + qI = 2A + / ,

which implies

/ =
D

(5.72)

first 2D requests

more requests

q = l
2D

last 2D requests^

2D
P = —

Figure 5.8. Model of multiple drives

216

Analysis of Hierarchical Storage Organizations Chapter 5

Letting p be the service rate, we obtain the system utilization, p, as

/ rX
P = - = r—• (5.73)

p Dp

We apply the Pollaczek-Khintchine formula again to find the mean request

waiting time, w, as

rX 1

— Du u
w = ——-

(1+1)

2 (1 - / ^
V Dp

which gives

DrXX
w =-7 = ^ . (5.74)

[D-rXXj

(c) Multiple Drives with Concurrent Group Service Time

A new stream first waits for acceptance to the storage system. On acceptance, it

sends two requests to each drive's queue. The first request at each drive then waits

for the group that accesses the required media unit being served. The first request

is then served within the concurtent group. The details stream response time is

illustrated in Figure 5.9.

The concurtent group service time is composed of the media exchange

time and the request service time for all the requests in the group. Each media

exchange time is composed of waiting time for the exchange device and the time

to perform an exchange. The request service time of each request consists of

waiting for concurtent requests to be served, the request's reposition time, and the

request's data transfer time.

217

Analysis of Hierarchical Storage Organizations Chapter 5

stream response time

waiting
to be

accepted

waiting for
the

required
concurtent

group

concurtent group service time

media exchange time

waiting for
exchange
contention

exchange
request
service

time

concurtent
requests
service
time

request
service time

search
time

data
transfer

time

waiting times service times

Figure 5.9. Components of stream response time

The waiting time is the time that a new stream spends in the queue before

its first request is served. The waiting time is unbounded if the system is busy. The

start up latency is the time that an accepted stream waits before it starts to display.

Unfortunately, the high concurtency placement method introduces two new

latency times to the stream response time. The two latency times are the waiting

time for other concurtent groups and the concurtent requests service time.

Fortunately, both latency times are bounded above.

Since the tertiary drives serve requests according to the fixed sequence of

media units in the high concurtency placement method, they cannot immediately

respond to new streams that need media units different from the curtent one on the

tertiary drives. The waiting time for concurtent group is bounded by the round

218

Analysis of Hierarchical Storage Organizations Chapter 5

time. If new streams arrive randomly, then the expected stream start up latency is

half of the round time. Hence, the expected new stream start up latency is —E[B].

Since a number of requests are served concurtendy on the same media

unit, the tertiary drives serve requests according to data locations on the media

units. The concurrent request service time is bounded by the group service time.

Hence, the concurtent request service time is found as E[B]. Therefore, we have

for the new expected stream response time, E[Rs], as

E[RA = Ws +
2

E[B], (5.75)

where Ws is the new stream waiting time.

Since each drive serves all r requests of each stream together in the non-

striping method, the new stream response time, E[7?J, is found as

E[Rs] = Ws-h E[co] + - (E[a] + E[T]). (5.76)
r

Similarly, each drive serves rlD requests of each stream together in the parallel

striping method, the new stream response time, E[7?,v], is found as

E[Rs] = Ws+ E[co] + — (E[a] + E[T]). (5.77)
r

219

Analysis of Hierarchical Storage Organizations Chapter 5

5.3.7 Buffer Size

When data are retrieved from tertiary storage, they are first kept in memory

buffers. Data can then be consumed from the buffers at the display bandwidth.

Since the supply of data may not match exactiy with the display bandwidth, some

data are then written to staging buffers on disks to release memory temporarily.

Hence, the staging buffer size depends on the data retrieval rate and the data

consumption rate.

We calculate the staging buffer size to store data that are retrieved from

tertiary storage faster than they are consumed. Since the time that the tertiary

drives spend in serving each group of concurtent requests is E[B], the mean time

to retrieve one segment for a stream is also E[B]. Since the tertiary drives retrieve

DZ blocks in one group for each stream, the time to display the data being

DZ
retrieved from one group for each stream is . The amount of extra time to

<5
display the data in buffer is

^-ElBl
8

Since the display bandwidth is 8, the amount of extra data in each cycle is

DZ
8{^-E[B]).

8

This buffer size becomes the largest when the entire object has just been retrieved.

Since there are r requests sent to D drives by each stream, the largest buffer size is

!:l^£l-E[B]).
D 8

220

Analysis of Hierarchical Storage Organizations Chapter 5

Therefore, the staging buffer size per stream for the high concurtency placement

method is

r Z - — E [5] . (5.78)

Similarly, the staging buffer size per stream for the non-striping method and

parallel striping method is

rZ-8(E[G]), (5.79)

where E[G] is the expected stream service time.

221

Analysis of Hierarchical Storage Organizations Chapter 5

5.4 Segment Based Pipelining

We describe the model to study the segment based pipelining method in this

Section. First, we explain our assumptions for this model in Section 5.4.1. If these

assumptions can be met, this model can provide closed form solutions to the

maximum user latency and the amount of resident disk space. We adopt the

notations in Table 5.3 for this segment based pipelining model.

We shall elaborate the continuous display requirements in Section 5.4.2. In

Section 5.4.3, we determine the upper bound on the number of data stripes per

segment. The upper bound on the logical segment size and the minimum storage

space for the start up data stripes are obtained in Section 5.4.4. We then derive the

upper bound on the reposition latency and start up latency in Section 5.4.5.

Table 5.3. Notations used in segment based pipelining model

Parameter
ft)

a

0
8
P
m
n

n
0
Z

%

ZQ
M

Meaning
media exchange time
reposition time
data transfer rate
display bandwidth
disk bandwidth
number of segments per object
number of data stripes per segment
number of data stripes in a segment
object size
mean logical segment size
mean size of the 7th data stripe in segments

size of 7th data stripe of ith segment
media block size

222

Analysis of Hierarchical Storage Organizations Chapter 5

5.4.1 Assumptions

With curtent technology, the secondary bandwidth of a single disk is around

lOMB/s, the tertiary bandwidth of low end tertiary storage devices is of the order

of 100 KB/s, and the display bandwidth of MPEG-2 compressed video is around

1.5 MB/s. Therefore, it is reasonable to make the following assumptions for our

tertiary storage systems:

1. The secondary bandwidth is high enough to support many concurtent

displaying streams.

2. The tertiary bandwidth is lower than the display bandwidth. Otherwise, all

data stripes on tertiary store could be of one media block in size.

3. The number of concurtent streams directed to the tertiary storage is not

more than the number of tertiary drives so that there is not much queue

contention for the tertiary drives.

4. There is no contention for exchange device. This is suitable for low end

drives with dedicated exchange devices such as automatic CD changers.

Contention is also unlikely when the utilization of the drives is low.

5. Each segment is stored contiguously on only one media unit to avoid

media exchange or reposition during the pipelining process. Large objects

may have its segments stored on a few media units.

223

Analysis of Hierarchical Storage Organizations Chapter 5

5.4.2 Continuous display requirement

In order to provide instant response to user requests, the display time of the start

up data stripe should be longer than the media exchange time plus the time to

retrieve the second data stripe. Hence, we have

A.i ^ Zu
— >ft) + a + - — , l < i < m - l . (5.80)

where Z,̂ is the size of the 7th data stripe in the ith segment, oi is the media

exchange time, a is the reposition time, and 0 is the data transfer rate. In order to

display the object continuously, the display time of each data stripe should be at

least the retrieval time of the successive data stripe. Therefore, we have

Z Z
-j->^^, 2<j<n-l,l<i<m, (5.81)

and

% > % ^ , l < / < m - l . (5.82)
8 p

Since the segment sizes and data stripe sizes can be very different, we find

it useful to use the mean segment size and the mean data stripe size. Variations in

data stripe size and segment size can be handled by read-ahead buffers. Hence, we

have

Z = —. (5.83)
m

Hence, we have

1 m

Zj=-'£z,j. (5.84)

mtt ''

Applying the mean to Equation (5.80), Equation (5.81), and Equation (5.82), we

obtain

224

Analysis of Hierarchical Storage Organizations Chapter 5

A ^ z,
8 (j)

(5.85)

Z Z

8 ~ (p ' 2<j<n-l, (5.86)

and

s - P
(5.87)

5.4.3 Number of Data Stripes and Size of the Last Data Stripe

The pipelining method is more efficient when more data stripes are created in each

segment because the ratio of the first data stripe to segment size is reduced when

more overlapping is achieved. However, the continuous display requirements

impose limitations on the retrieval times of the data stripes. We evaluate the

number of data stripes in each segment below.

Applying Equation (5.86) recursively, we obtain

Z „ < ^ Z „ _ , < S{^) Z.2,

which implies

- fsT'
Z ; ^

0j
Z „ , 2<7<n-l. (5.88)

From Equation (5.85), we have

Z/1 Z^2

—->ft> + a + 0

giving

Zi >(ft} + a)5 + | -1
0.

n-l

(5.89)

225

Analysis of Hierarchical Storage Organizations Chapter 5

From Equation (5.87) and Equation (5.89), we obtain lower and upper bounds on

the start up data stripe

{a) + a)8 + '^T- - P-
~] Z < Z <—7

which gives

Z„ >
{co + a)8

Pl8-(8l(l)) n-l (5.90)

As both {co + a)8 and Z„ must be greater than zero, we have

P S X
— >(-)
8 ^-^ (5.91)

This implies

log(P IS)
" ^ l o g (5 / 0) ^ '

(5.92)

In order to achieve the maximum pipeline efficiency, we may use the maximum

number of data stripes. Hence, we have

n =
\og{l3/8)

log(5 / 0)
+ 1, (5.93)

We have used the floor function because n is an integer. The actual number of data

stripes in short segments can be less.

Unfortunately, the size of the data stripes could become very large when

1(8}"''
8 U ; is small. In such a condition, only a few segments are created. The

size of the start up data stripe is large, and the user latency is high. Only a few

logical segments could be created and hence making the first level data striping

226

Analysis of Hierarchical Storage Organizations Chapter 5

not useful. Therefore, the maximum number of data stripes per segment should

not be used when — I
\(l>j

is small.

If we have sufficient secondary bandwidth such that B > — , it is
M

desirable to use slightly less data stripes in each segment. We keep the size of the

last data stripe fixed at one media block size. Since the size of each data stripe

should be at least one media block, we have Zj > M . Thus, we have

(o) + a)8
M ^

pi8-(8i(j>y'''

which implies

log (P l8-{co + a)8l M)
77 =

log (5 / 0)
+ 1. (5.94)

5.4.4 Number of Segments and Segment Size

If the length of each segment is too short, less overlapping is achieved by

pipelining. More disk space is then required to store the start up data stripes. If the

length of each segment is too long, the start up data stripes are widely spaced

apart. User can start to display from only a few locations. In order to use minimum

disk space and to provide sufficient display start up locations, the segment size

should be minimized.

We substitute Z. from Equation (5.88), and the smallest mean segment

size, Z , should be

_ n

j=i

227

Analysis of Hierarchical Storage Organizations Chapter 5

which implies

Z>(ft) + a)(5 + X(^)^"Z^.

Hence, we obtain

-'»-)-f^^- (5.95)

This is the lower bound on the segment size when 77 data stripes are used.

Substituting Z into Equation (5.83), we obtain the maximum number of logical

segments

m<
O

t ^^ {8l^)'^-\^
(co + a)8 + ,^ . , ,—-Z„

(5.96)

(8l^)-l

Since the start up data stripe of all segments should reside in disks

permanently, the total size of start up data stripes of all segments, mZ^ , is

mZ, = m
L -̂=2

Substituting Zj from Equation (5.88), the required disk space is then bounded by

mZi < m
O --1
m T^

7=2

^8Y' —
K<1>J

which implies

(5 / 0) ' - ' - i _
(5.97)

228

Analysis of Hierarchical Storage Organizations Chapter 5

5.4.5 Stream Start Up Latency

We describe the time spent in loading data segments in part (a) and part (b).

Afterward, we describe the user start up latency in the part (c).

(a) Loading Low Temporal Resolution Segments

If the low temporal resolution segments are not downloaded beforehand, time is

required to load them on demand. Let Zo be the size of the low temporal resolution

data segments. Since they are stored contiguously on tertiary storage, the time to

download the low temporal resolution data segments is

mZn
ft) + a + -. (5.98)

0

If the low temporal resolution segments are downloaded to disks, the time to load

these segments from disks is

^ . (5.99)

(b) Loading Start Up Data Stripes

If the start up data stripes are not resident on disks, then time is required to load

them on demand. If all start up data stripes are stored together with the low

resolution segments, the additional latency to load start up data stripes is

« + ̂ . (5.100)

If the start up data stripes are already resident on disks, only the start up data stripe

of the first segment needs to be loaded prior to usage. Since the disk bandwidth is

229

Analysis of Hierarchical Storage Organizations Chapter 5

much higher than the display bandwidth, the start up data stripes of other segments

can be loaded just prior to its usage. Hence, the start up latency is

^ . i

~P~' (5.101)

when the ith segment is consumed.

(c) User Start Up Latency

If the start up data stripes and low temporal resolution segments are not resident

on disks, the system can only respond after they are downloaded from tertiary

storage. Hence, the start up latency of a new stream, R, is

m{Z(. + Z,)
i?=ft) + 2a + '-—-. (5.102)

If the low temporal resolution segments are resident on disks but the start up data

stripes are not resident on disks, the system can respond after the start up data

stripe are downloaded. Hence, the start up latency of a new stream, R, is

mZ,
R= (0-\-a-h—-^. (5.103)

0

If the start up data stripes and low temporal resolution segments are resident on

disks, the system responds to the new stream after the start up data stripe of the

required segment is retrieved from disks. Hence, the start up latency of new

stream, R, is

P=^- (5104)

230

Analysis of Hierarchical Storage Organizations Chapter 5

In a situation when — -
8

'-1
.0.

n-l . . - 2
{a) + a)8

IS small and p > , the size of the last
M

data stripe of each segment is set to M. Since the size of the start up data stripe is

bounded in Equation (5.87), the start up latency is bounded by

M
i?< — . (5.105)

o

Hence, the start up latency in this situation is bounded by the display time

of only one media block.

231

Analysis of Hierarchical Storage Organizations Chapter 5

5.5 Analysis of Large Multimedia Storage Systems

We present in this Section our analysis on the behaviour of large multimedia

storage servers (LMSS) using our perfomiance model. We assume that each

multimedia object is a two-hour video of MPEG frames. Each frame contains 576

x 384 24-bit colour pixels being displayed at 15 frames per second. The videos are

MPEG compressed at 30:1 ratio. Therefore, the size of each object is 2278 MB

and the display bandwidth is 0.316 MB/sec. The tertiary drive parameters similar

to the Ampex tape library are used [39]. Other parameters are listed in Table 5.4.

Table 5.4. List of parameter values in LMSS performance analysis

Parameters

stream arrival rate

number of tertiary drives

mean media exchange time

reposition start up time

reposition rate

maximum reposition length

mean segment length

media units per drive

transfer rate

secondary bandwidth

Default Value

5 to 60 streams/hour

3

55 seconds

1 second

0.06 sec/inch

2000 inches

5 to 20 minutes

4

14.5 MB/sec

20 MB/sec

232

Analysis of Hierarchical Storage Organizations Chapter 5

5.5.1 Group Service Time

When more requests are served in each group, the total reposition time increases

slightly and the data transfer time increases proportionately. Hence, the individual

group service time increases proportionately with the number of concurtent

streams (Figure 5.10).

Service times

20 40 60 80 100

•mean stream service tune • individual group service time

Figure 5.10. Individual group service time and mean stream service

time vs number of concurrent streams

When more requests are served in each group, more streams would share

the media exchange and reposition overheads. The overhead time per stream is

inversely related to the number of concurtent streams. The data transfer time per

stream is however unaffected. Therefore, the mean stream service time varies

inversely to the number of concurrent streams. It levels down to the data transfer

time when the concurtent streams is sufficiently many.

233

Analysis of Hierarchical Storage Organizations Chapter 5

5.5.2 Concurrent Retrieving Streams

If only a few streams are accepted, then the system is under-utilized. If too many

streams are accepted, starving would occur. Hence, the maximum number of

acceptable streams should maintain below the limit according to the continuous

display requirement m order that system is fully utilized without starving.

When longer segments are used, fewer requests are issued to retrieve each

object. Less media exchange and reposition overheads are involved; resulting in

more concurtent streams can be accepted (Figure 5.11).

100 -

50 -

0 -

Maximum concurrent streams

1 1
1 1

5 10 15

segment length (minutes)

2 0

Figure 5.11. Maximum number of concurrent streams vs segment length

234

Analysis of Hierarchical Storage Organizations Chapter 5

5.5.3 Maximum System Throughput

The maximum system throughput shows the ability in clearing requests from

waiting queues. We can see from Figure 5.12 that the maximum throughput of the

high concurtency placement is always higher than that of the parallel striping

method. It is also significantly higher than the non-striping method by over 30%

when data segments are longer than 3 minutes.

MB/sec]yiaximum system throughput

30-

20 ^

10 -

\j 1 1

5 10 15 20
segment length (minutes)

n II 1 • • TT- I /-•
y

Figure 5.12. Maximum system throughput vs segment length

The system throughput of the methods increase when data segments are

longer for two reasons: First, more data are retrieved per media exchange. Each

stream performs less media exchanges and reposition. Thus, less overheads are

involved. Second, longer data segments are displayed for a longer time, more

streams can be served concurtently. More requests are then served per media

exchange. Hence, the same media exchange overhead is shared among more

requests. In addition, the full length of reposition is also shared in SCAN

235

Analysis of Hierarchical Storage Organizations Chapter 5

scheduling among more requests. Therefore, the system throughput is raised by

using longer data segments.

Since our high concurtency placement method achieves the highest system

throughput, this makes our new method very suitable for scheduled streams and

burst of streams. Under these stream arrival patiems, the system should serve

streams quickly to reduce the waiting queues. Hence, system throughput is the

major concern and our method is the best choice for systems that exhibits these

characteristics.

5.5.4 IMean Stream Response Time

The stream response time indicates the quality of service to users. We model the

stream response time as the earliest time that a stream can start to display using a

pipelining method. The mean stream response time is shown against the stream

arrival rate in Figure 5.13. The stream response time is the sum of the queue

waiting time and the start up latency. It is dominated by the start up latency at low

stream arrival rate, but it is dominated by the queue waiting time at high stream

arrival rate.

For parallel striping method, the response time is short when the arrival

rate is very low. Above this arrival rate, the media exchange device becomes

highly utilized and each request experiences very long exchange waiting time.

This exchange waiting time abruptly raises the stream service time and the system

utilization. Hence, the drives suddenly become fully utilized with most time spent

on waiting for the exchange device. Therefore, the stream response time increase

indefinitely due to a long waiting queue.

236

Analysis of Hierarchical Storage Organizations Chapter 5

seconds

3600

1800

Mean stream response time

10 20 30 40
stream arrival rate (per hour)

50

— — Non striping •Parallel striping •High Concurrency

Figure 5.13. Mean stream response time vs stream arrival rate

At arrival rate under 30 streams per hour, the non-striping method

responds faster than the high concurtency placement method. This is because our

method has a longer start up latency. Hence, it responds slowly under a light load

environment.

At higher stream arrival rate, the high concurtency placement responds

faster than other methods. As the queue of the non-striping method grows, the

response time increases rapidly. Since the high concurtency placement method

achieves higher system throughput, it serves streams faster. Therefore, stream

response time under heavy load is reduced using this new method.

Since the drives serve media units in rounds in high concurtency

placement, the number of media units has an influence on the mean stream

response time. This is because new streams would experience a longer response

time for more groups per round (Figure 5.14).

237

Analysis of Hierarchical Storage Organizations Chapter 5

seconds Mean stream response time
5000

r-) o ON (N IT) OO

media units per drive

H 1-

(N Ol o

Figure 5.14. Mean stream response time vs media units per drive

5.5.5 Buffer Size

The buffer size provides an indication of the amount of resources required by each

method. We can see from Figure 5.15 that all methods use the similar buffer size

when the stream arrival rate is very low. Nearly the entire object is kept in staging

buffer for display. The buffer sizes of both traditional methods are not affected by

the stream arrival rate.

The situation is different for the high concurtency placement method.

When more streams are concurrent with faster stream arrival rate, the individual

group service time increases (as shown in Figure 5.10), but the same amount of

data are retrieved per stream in each group. Hence, data are retrieved slowly for

each stream. Even though the system data rate is raised, the data rate per stream is

reduced; resulting in smaller buffer size per stream. Since the total buffer size is

the sum of buffer size for all concurtent streams, the total buffer space

requirement can hence be constrained by a smaller total buffer size. Therefore, our

new method requires less total buffer space than other existing methods.

238

Analysis of Hierarchical Storage Organizations Chapter 5

MB

2400

Buffer size per stream

10 20 30 40
stream arrival rate (per hour)

50

— — Nonstriping - Parallel striping "High Concurrency

Figure 5.15. Buffer size per stream vs stream arrival rate

239

Analysis of Hierarchical Storage Organizations Chapter 5

5.6 Performance of Data Migration Methods

We analyse the performance of various data migration methods in this Section.

The performance of our segment based pipelining method is compared with the

performance of simple pipelining methods and Two Phase Service Model (2PSM)

which are described in Section 2.6.3. We use the parameters in Table 5.5 to study

the performance of data migration methods using the performance model in

Section 5.4. We varied only one parameter in each case using values in the range

column; other parameters will use the default value unless otherwise stated.

Table 5.5. Parameters values in data migration analysis

Parameter Range Default value

Tertiary

bandwidth

Object size

Disk

bandwidth

Display

bandwidth

Media

exchange

overheads

Media

block size

0.4 to 1.30 0.9 MB/s. This is the bandwidth of retrieving

MB/s one media block consecutively from a 24X CD-

ROM drive. The tertiary bandwidth can be very

low when repositioning is required in tapes or it

may be higher when an artay of optical drives

is used.

20 to 200 two hours of video at 30 frames/second.

minutes

20 to 110 80 MB/s. This is the aggregate bandwidth of

MB/s about 8 curtent disks.

1.35 to 2.25 1.35 MB/s. This is the data bandwidth of

MB/s MPEG-2 compressed SVGA video.

5 to 15 seconds 10 seconds. This is the media exchange time of

optical jukeboxes. Automatic CD changers can

exchange media faster at around 5 seconds.

Not varied 30 SVGA frames compressed at the ratio of 50

t o l .

240

Analysis of Hierarchical Storage Organizations Chapter 5

We first analyse the disk space and user latency in Section 5.6.1. The number and

size of data stripes and segments are then investigated in Section 5.6.2. After that,

the influence of object size on the user latency is descrtbed in Section 5.6.3.

Lastly, the impact of disk bandwidth and display bandwidth are analysed in

Section 5.6.4 and Section 5.6.5 respectively.

5.6.1 Disk Space and User Latency

When low temporal resolution segments and start up data stripes are kept

resident in disks, the amount of disk space required in our method is compared

with the size of the first slice in the pipeline method (Figure 5.16). In general, the

amount of necessary disk space drops linearly when the tertiary bandwidth

increases. Our method uses slightly extra disk space to cater for the media

exchange time that is not considered by other studies. This media exchange time is

necessary when an object spans across several media units.

MB
8000

Disk space

0 — \ \ \ \ \ 1 \ 1 —

0.4 0.5 0.6 07 0.8 0.9 1.0 1.1 1.2 1.3
tertiary bandwidth (MB/s)

• segment based pipeling simple pipelining

Figure 5.16. Disk space required vs tertiary bandwidth

241

Analysis of Hierarchical Storage Organizations Chapter 5

seconds

20000 -

15000

10000 -

5000 -

0

User Latency

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

tertiary bandwidth (MB/s)

"simple pipelining •segment based pipelining;

Figure 5.17. User latency vs tertiary bandwidth

When user requests for an object, start up latency is involved in the

pipelining methods to load the start up data stripe or the first slice from tertiary

storage. This start up latency is minimized in our method by keeping all the start

up data stripes resident on disks (Figure 5.17).

Since the first slices in the pipelining method is comparable to the start up

data stripes in the segment based pipelining, they can be loaded in roughly the

same time using consecutive requests. As start up latency that significantly affects

the response time under light loads is a key concern of users, it is a worthwhile

tradeoff to reduce user latency with some disk space.

When user begins normal display after previewing, the system may need to

retrieve some data before it can resume display. This reposition latency is

compared with the fast forward resumption latency of 2PSM in Figure 5.18. It can

be seen that our method responds significantly faster. It can usually respond in one

second whereas the 2PSM takes much longer to respond. This is important to

achieve smooth transition back to normal display. When tertiary bandwidth is

almost the same as the display bandwidth, the 2PSM requires over 30 seconds to

242

Analysis of Hierarchical Storage Organizations Chapter

resume normal display (not shown). Our method is also more tolerant to changes

in tertiary bandwidth.

seconds

6.00
5.00 -
4.00
3.00 -
2.00 -

1.00 -
0.00 -

Reposition latency

-~, -—

/"
y

y
- - - » - - -

~~ ^ - ~ . - , . - . ^ " ".

0.4 0.5 0.6 0.7 0.8 0.9

tertiary bandwidth (MB/s)
, .

segment based pipeliimig

1.0 1.1

- -2PSM

Figure 5.18. Reposition latency vs tertiary bandwidth

5.6.2 Data Stripes and Segments

When the tertiary bandwidth is low, only a few data stripes are created in each

segment (Figure 5.19), and the size of the start up data stripe is small. When the

tertiary bandwidth is very close to the display bandwidth, many data stripes exist

in each segment. The start up data stripe becomes very large and the pipelining

method is efficient at the expense of much less preview data and longer reposition

latency.

243

Analysis of Hierarchical Storage Organizations Chapter 5

MB

300 1

250

200

150 j

100

50 f

Data Stripes

0

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

Tertiary bandwidth (MB/s)

start up data stripes •data stripes per segment

Figure 5.19. Start up data stripe size and data stripes per

segment vs tertiary bandwidth

When the tertiary bandwidth is low, a large number of small segments are

created (Figure 5.20). When the tertiary bandwidth is high and close to the display

bandwidth, the segment size increases rapidly and the number of logical segments

hence decreases. The number of segments also affects the amount of preview data

during fast forward display.

MB

2000

1500

1000

500

0

Segments

- ^̂ **N.

1 1 1 1 1 1—

i

/__
/

/
^.....

^--'
1 1 •-

200

150

100

50

0

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

tertiary bandwidth (MB/s)

Segment size •No. of segments

Figure 5.20. Segment size and number of segments vs

tertiary bandwidth

244

Analysis of Hierarchical Storage Organizations Chapter 5

5.6.3 Object Size

Large and medium sized multimedia objects may both be stored in the same

storage system. User latency of the pipelining method increases linearly but our

method responds consistently to requests for objects of various sizes (Figure 5.21).

This is because we keep sufficient data on disks to enable normal display to start

before any data are actually retrieved on demand from tertiary storage.

seconds

8000 -

6000 -

4000 -

n i

User latency

_,̂ ^ ' - " ^

— — •"'' ""^
^, -^ "^

1620 4860 8100 11340

object size (MB)

^ , - ,- -

14580

simple pipelining

Figure 5.21. User latency vs object size

5.6.4 Disk Bandwidth

When the disk bandwidth is insufficient (Figure 5.22), the retrieval time of the

start up data stripes limits the number of data stripes in each segment. Extra disk

space is then required to store more start up data stripes. When the disk bandwidth

is sufficient, the start up data stripes are smaller in size. It is therefore desirable to

use multiple disks to provide sufficient disk bandwidth as well as disk space. The

disk bandwidth only affects the reposition latency slightly (Figure 5.23) because

we create bigger start up data stripes when the disk bandwidth is higher.

245

Analysis of Hierarchical Storage Organizations Chapter 5

MB

8000 1

6000 -

4000 ~

2000 n

A _

Disk space

1 1 > , 1 1 . . i

\j 1 1 1 1 1 1 : : 1

20 30 40 50 60 70 80 90 100 110

disk bandwidth (MB/s)

segmeiil based pipelimiig • simple pipelining

Figure 5.22. Disk space required vs disk bandwidth

seconds Resposition latency

H 1 \ h H h

20 30 40 50 60 70 80 90 100 110
disk bandwidth (MB/s)

•segment based pipelining 2PSM

Figure 5.23. Reposition latency vs disk bandwidth

246

Analysis of Hierarchical Storage Organizations Chapter 5

5.6.5 Display Bandwidth

When higher quality multimedia data are retrieved, the display bandwidth

increases. Shorter segments should be created and more disk space is required.

Although the pipeline efficiency drops, the reposition latency is also reduced

(Figure 5.24). Our method also responds consistendy faster than the 2PSM.

seconds

4.00 -

3.00

2.00

1.00

Reposition latency

0.00 H 1- -+
1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3

display bandwidth (MB/s)

Reposition Latency • 2PSM FF latency

Figure 5.24. Reposition latency vs display bandwidth

247

Analysis of Hierarchical Storage Organizations Chapter 5

5.7 Large Multimedia Storage Server Simulations

A storage server program that measures the performance of multimedia streams of

requests is created. Each stream retrieves a multimedia object that is stored using

the parallel striping, non-striping, or high concurtency placement method. The

simulation program runs on a Pentium personal computer to generate the

multimedia data request streams. No other simulation tools are used.

The non-striping method stores each object on only one media unit. Hence,

only one media exchange is normally required to retrieve an object. Since each

segment may reside at a different location on the media unit, the reposition time is

shared according to the SCAN scheduling algorithm.

The parallel striping method stores segments on a few media units. We use

the stripe width same as the number of drives. Since the drives serve one stream in

parallel, one media exchange is performed on every drive. The reposition times

are also shared among requests on the same object.

The simulation program accepts values in specifying the drive parameters.

The drive parameters includes the number of drives, the mean and variation of

media exchange time, the reposition start up time, the reposition speed, the tertiary

transfer rate, the full length of each media unit, and the number of media units per

drive. The disk bandwidth can also be specified.

The multimedia objects are specified using the number of horizontal

pixels, the number of vertical pixels, the bytes per pixel, the frame rate, the

compression ratio, the display duration, the media block size, and segment length.

The display bandwidth and object size are calculated accordingly.

248

Analysis of Hierarchical Storage Organizations Chapter 5

A number of streams can be generated randomly at a specified stream rate.

New streams are inserted to an event list. The program keeps track of the

simulation time. When the simulation time reaches the event time, new stream is

inserted to the stream waiting queue.

Streams in the waiting queue are accepted when they can be served without

violating the continuous display requirement. Accepted streams are placed in the

list of concurtent streams. Each accepted stream then sends two initial requests to

each simulated drive to retrieve data.

Each drive keeps track of its curtent status which is either free,

exchanging, repositioning, or transferring data. Each drive keeps requests in two

queues. The first queue keeps the requests for data on the curtent media unit. The

second queue keeps requests for data on other media units. After requests for data

on the curtent media unit are served, requests are selected to move from the

second queue to the first one. The waiting time is measured as the time in queue

before a request is served.

A media exchange request is generated if a request needs a media unit

different from the curtent one. This exchange request is then placed in the

exchange request queue. The exchange device serves requests from this exchange

request queue. Requests on the drive that has the least number of served requests

are chosen to be served prior to other requests. The exchange service time is

randomly generated according to a uniform distribution within ±10% deviations

from the mean exchange time.

Data locations of requests are generated randomly within the total media

length. The reposition time is then calculated as a function of the distance being

249

Analysis of Hierarchical Storage Organizations Chapter 5

travelled. The segment length is generated randomly according to a uniform

distribution within ±10% deviations from the mean segment length. The data

transfer time is calculated as the segment length divided by the data transfer rate.

After a request is served at a drive, the stream sends the next requests to

the same drive. The stream starts to display the first segment of the object after the

first cycle of request is served by all the drives. It then waits for the display period

of the segment. If the request for the next segment has returned before the display

time expires, it then displays the next segment. Otherwise, the stream starves.

After all segments are displayed, the stream exits the system.

The program measures all the time components of requests and streams

and stores them in a relational database. The number of starving requests in each

stream, the mean stream response time, the mean and maximum system

throughput, and maximum buffer size are also summarized and stored.

250

Analysis of Hierarchical Storage Organizations Chapter 5

5.7.1 Simulation Parameters

We have perfonned simulations using the drive characteristics similar to the

Ampex robotic tape library in Table 5.6 [39]. We randomly generate the streams

at specified stream arrival rate and measure their performance.

Table 5.6. Parameters for multimedia storage server simulations

Parameters

Number of simulated streams

Stream arrival rate

Number of tertiary drives

Mean media exchange time

Reposition start up time

Reposition rate

Maximum reposition length

Segment length

Media units per drive

Transfer rate

Secondary bandwidth

Default value

200

5 to 60 streams/hour

3

55 seconds

1 second

0.06 sec/inch

2000 inches

10 minutes

4

14.5 MB/sec

20 MB/sec

251

Analysis of Hierarchical Storage Organizations Chapter 5

5.7.2 Number of Concurrent Streams

We have measured the number of starving requests by varying the maximum

number of concurtent streams as shown in Figure 5.25. The starving requests were

measured for one to four drives. If the maximum number of concurtent streams is

maintained below the limit being imposed by the continuous display requirement,

starving rarely occurs. Otherwise, some streams would starve and the number of

starving requests accelerates rapidly. This is in agreement with the maximum

number of acceptable concurtent streams predicted in our model.

Starving requests percentage
5%

4%

3%

2%

1%

0%

t

t
f

0
H—^

20

V \\ \ b
40 60 80 100

concurtent streams

120 140

— - - 1 drive 2 drives 3 drives • 4 drives

Figure 5.25. Starving requests percentage vs number of

accepted concurrent streams for 1 to 4 drives

252

Analysis of Hierarchical Storage Organizations Chapter 5

5.7.3 Maximum System Throughput

We have generated the streams at 100 streams per hour, and we have measured the

maximum system throughput being achieved during the simulations. The

maximum system throughput being measured is plotted on the curve as shown in

Figure 5.26. The measured values are also listed in Table A.8 in Appendix A. We

have observed that all the measured values are close to the predicted curves. This

verifies that our performance model is sufficiently accurate in predicting the

maximum system throughput for all three storage methods.

MB/sec Maximum system throughput

9 11
segment length (minutes)

13 15

--parallel striping (predicted) o parallel striping (measured)

-non-striping (predicted) A non-striping (measured)

— high concurrency (predicted) x high concurrency (measured)

Figure 5.26. Measured maximum system throughput

253

Analysis of Hierarchical Storage Organizations Chapter 5

We have observed that the maximum system throughput of the parallel

striping method is lower than that of the non-striping method which is also lower

than that of the high concurtency placement method. It is clear that the high

concurtency placement method achieves higher maximum system throughput than

other existing methods. This confirms that our new method is the best storage

organization for multimedia storage system that requires high system throughput.

5.7.4 Mean Stream Response Time

We have generated the streams for 10 minute segments at 5 to 60 streams per

hour, and we have measured the mean response time of 2000 streams for the non-

striping method and the high concurtency placement method. We have simulated

the streams at 1 to 15 streams per hour on the parallel striping method since its

maximum system throughput is low. We assume that the simple pipelining

method is employed on the two traditional methods to start new streams as early

as possible. The mean stream response time being measured are plotted on the

predicted curve in Figure 5.27. The measured values are also listed in Table A.9.

We have observed that most of the measured values fall on the predicted

curves. Since an unstable queue can amplify to a large variation in waiting time

when the utilization value is large, the ertor rate is expected to be high when the

system is highly utilized. We focus on stable queues when the utilization values

are up to around 80%. The measurements verify that our model is reasonably

accurate in predicting the mean stream response time.

254

Analysis of Hierarchical Storage Organizations Chapter 5

The measured mean stream response time also shows that the high

concurtency placement method performs best under heavy load. Intuitively, this is

because the high concurtency placement method achieves higher system

throughput than other methods especially when large number of concurtent

streams are present.

seconds

3600

Mean stream response time

1800
i>

»

OOCO^f^-A ir--

— X -

1

1
1

1
1 A

/
' X -— X ^

•^ A

\

^ X ' '

— \ —

- ^ X

\

X

10.0 20.0 30.0 40.0
stream arrival rate (per hour)

50.0 60.0

parallel striping (predicted) o parallel striping (measured)

•non-striping (predicted) A non-striping (measured)

- high concurrency (predicted) x high concurrency (measured)

Figure 5.27. Mean stream response time

255

Analysis of Hierarchical Storage Organizations Chapter 5

5.7.5 Buffer Size Per Stream

We have also measured the buffer size on the simulations for 10 minute segments

at 5 to 60 streams per hour. During these simulations, we measure the maximum

number of segments in each stream that are retrieved but not yet displayed. These

data segments must be kept in buffers which is either in memory or on disks. We

plot in Figure 5.28 the buffer size being measured in simulations. The predicted

and measured values are also listed in Table A.IO in Appendix A.

The measured values of the non-striping method and parallel striping

method are consistently within 10% below our predictions. The measured buffer

size per stream of the high concurtency placement method is close to the predicted

curve when the streams arrival rate is low. When the stream arrival rate is high,

the measured buffer size per stream is higher than our prediction. The

measurements verify that the buffer sizes per stream being predicted in our model

are reasonably accurate for the traditional methods and it is also accurate for the

new method when the arrival rate is low.

256

Analysis of Hierarchical Storage Organizations Chapter 5

MB

2400

Buffer size per stream

10 20 30 40
stream arrival rate (per hour)

50 60

parallel striping (predicted) o parallel striping (measured)
•non-striping (predicted) A non-striping (measured)
•high concurrency (predicted) x high concurrency (measured)

Figure 5.28. Measured buffer size per stream

We have also observed that the measured buffer size per stream of both

traditional methods is unaltered by variations in the stream arrival rates. This

confirms that the same buffer size is required for traditional methods under

various stream arrival rates. Nevertheless, the measured buffer size per stream

agrees with our prediction that the buffer size of the high concurtency placement

method reduces gradually when the stream arrive rate increases. Hence, the buffer

size can significandy be smaller when the stream arrival rate is high. These

simulation results confirm that smaller buffer size is required when more streams

are concurrently served in the high concurtency placement method than other

traditional methods.

257

Analysis of Hierarchical Storage Organizations Chapter 5

5.8 Chapter Summary

We have established the feasibility condition for accepting concurtent multimedia

heterogeneous streams on multiple servers, which is applicable to general storage

organizations and arbitrary scheduling policies. This feasibility condition is

applicable to different storage systems in their optimization of the performance of

multimedia streams.

We have developed a mathematical model based on a feedback queueing

network to analyze the performance of large multimedia storage system, where

request streams are represented as feedback queues to the tertiary drives. Using

this model, closed form solutions are obtained for various components of the

stream service time. System throughput, mean stream response time, and staging

buffer size of various tertiary storage organizations are analysed and compared

quantitatively.

We have compared the performance of large multimedia storage servers

using various tertiary storage organizations. It is found that the high concurtency

placement method is able to achieve the highest system throughput per stream

among all methods. The stream response time can also be maintained at a low

level under heavy loads. The buffer size per stream reduces gradually and is the

smallest among all methods.

We have also presented a performance model for the segment based

pipelining method, and have established the conditions for which continuous

display can be guaranteed. We have optimized the data stripe sizes to achieve the

shortest user latency while maintaining the most preview data. Closed form

258

Analysis of Hierarchical Storage Organizations Chapter 5

solutions are obtained for the maximum number of data stripes per segment,

minimum segment size, and the necessary amount of resident disk space.

We have compared the start up latency in different data migration methods,

and have found that the segment based pipelining method responds quickly to

browsing, fast forward, fast reverse functions faster than other pipelining methods.

We have also quantitatively analysed the storage system behaviour against

changes in tertiary bandwidth, secondary bandwidth, display bandwidth, and

object size.

We have also presented our simulations on large multimedia storage

servers. The measurements agree with our calculated limits on the maximum

number of concurtent streams. The simulation results have verified our model in

predicting the performance behaviour of the high concurtency placement method.

The simulation results confirm that our high concurtency placement is superior to

other existing methods in terms of the maximum system throughput, response

time under heavy loads, and necessary buffer size.

259

Chapter 6

Conclusion

6.1 Summary of Research Results

We have presented novel and efficient storage and retrieval methods for

multimedia objects, and we have used a two level data striping method to partition

multimedia object prior to storage. We have designed the high concurtency

placement and the segment based pipelining method to store and retrieve

multimedia data on tertiary storage. The bandwidth based placement method is

designed to efficiently store heterogeneous multimedia data on CDR disks. We

have enhanced the pipelining method to migrate multimedia data from tertiary

storage. The performance of CDR disks and large multimedia storage systems

using these novel storage organizations have been analysed, and simulations have

been performed to test and validate our results. The specific research results are

summarized as follows.

260

Conclusion Chapter 6

• New High Concurrency Placement

The use of tertiary storage devices for large multimedia databases will be

inevitable in future systems. The main concerns in using these systems is

their relatively poor response characteristics and large resource

consumption in terms of buffer requirements. We address these problems

by making use of a novel high concurtency placement method to

efficiendy serve concurtent multimedia streams on tertiary storage

systems.

A new storage organization for the efficient execution of

multimedia data requests is designed. This high concurtency placement

method has several advantages. The first advantage is that it increases the

system throughput for storing data to and retrieving data from tertiary

storage. This system throughput can be adjusted by varying the segment

length according to the system requirements. This method is hence very

suitable for scheduled requests of which system throughput is the pnmary

concern.

The second advantage is that new streams can respond much faster

under heavy load conditions which are very often the practical concern in

multimedia databases. This new method is hence very suitable for

multimedia databases where bursts of streams are expected to respond in

the shortest possible time.

The third advantage is that smaller staging buffers are used. When

the system is bounded by the staging buffer size, this method can serve

more streams than other methods while utilizing the same amount of

261

Conclusion Chapter 6

buffers. Our new method hence uses less resource than traditional

methods, making it suitable for systems that are hungry on staging space.

These advantages make the high concurtency placement method

the most efficient storage organization for multimedia data storage on

tertiary storage systems.

Since we have enhanced the tertiary storage system performance by

the efficient high concurtency placement method, the tertiary storage

bandwidth cost is hence lowered. Therefore, large multimedia systems

become more economic and practical than before.

We have presented our model for the performance of large

multimedia storage system using a feedback queueing network. We then

use this model to analyse and compare the system performance using

various tertiary storage organizations.

We have analysed the performance of high concurtency placement

method, non-striping method, and parallel striping method. We have

quantitatively compared their maximum system throughput, mean stream

response time, and buffer size per stream. We have shown that the high

concurtency placement method achieves the highest system throughput

without violating the continuous display requirement. It also achieves the

shortest response time under heavy loads while utilizing the smallest

buffer space.

262

C""^'"^'"" _ ^ ^ _ ^ ^ Chapter 6

• New Segment Based Pipelining

We have also presented a novel data migration method to retneve

multimedia data from our hierarchical storage systems. This hierarchical

storage organization is able to respond to multimedia data access at disk

latency. Although tertiary storage devices are used to store data, this

becomes transparent to users in terms of access latency. Hence, multimedia

data can be stored on the more economical tertiary storage devices without

much performance drawbacks.

We have compared the start up latency in various data migration

methods. We have shown that the segment based pipelining method can

respond quickly to browsing, fast forward, fast reverse operations faster

than other pipelining methods.

Our performance analysis enables us to determine the conditions

under which continuous display can be guaranteed. Our model is

optimized to achieve the minimum resident disk space, the shortest user

latency, and the most amount of preview data. Closed form solutions are

obtained for the maximum number of data stripes per segment, the

minimum segment size, and the necessary amount of resident disk space.

We have also analysed the hierarchical storage system performance

against changes in tertiary bandwidth, secondary bandwidth, display

bandwidth, and object size. These results allow valuable insights to be

gained on multimedia database operations and permit the tuning and

optimization of performance parameters in different situations.

263

Conclusion Chapter 6

• New Bandwidth Based Placement

We have also presented a novel bandwidth based placement method to

store heterogeneous multimedia objects on constant density recording disk

storage structures. Bandwidth based placement has the advantages of

maintaining the balance between the space and bandwidth of disk zones to

secure high bandwidth zones for high bandwidth objects. High bandwidth

data can enjoy higher throughput of the outer zone groups. Low bandwidth

data can still enjoy the same VO rate in the inner zone groups.

We have also analysed the data transfer time of our bandwidth

based placement method. We have then studied the impact on system

throughput of various zone groups when our placement method is used.

We have shown that the bandwidth based placement performs better than

the random placement for multimedia data requests on constant density

recording disks. Hence, we have increased the disk throughput for

multimedia data requests.

264

Conclusion r-u . i. Chapter 6

• Performance Analysis of Constant Density Recording

Structure

We have presented a detailed mathematical model of the perfortnance of

CDR disks. In this model, we have obtained closed fonn solutions to data

access time on CDR disk. By comparing quantitatively the performance

between CDR disk and VDR disk, we have shown that CDR disks always

perform significantly better than VDR disks with similar parameters. Not

only can we have more bytes per inch by using constant density recording

technique, we also have more bytes per second.

We have used this model to study the impact of various disk

parameters on disk performance. We have found that the minimum block

size that can deliver necessary throughput should be chosen to reduce

memory buffer and start up latency. Data stream size may be reduced

through segmentation methods to an extent that maximum disk throughput

is maintained.

We have also shown that CDR disks provide more significant

performance advantage particularly on large multimedia data access

compared to small traditional data access. For individual data access, over

60% of data access time is reduced. For streams of continuous media

requests, CDR disk can significantly increase the number of acceptable

streams, reduce response time, and reduce queue length.

265

Conclusion Chapter 6

A key obstacle in the building of large scale multimedia information

systems is the relative inefficiency of the storage system in managing and

retrieving multimedia data. In this thesis, we have discovered new techniques in

building efficient storage systems for managing multimedia information. Our

research results show that multimedia storage systems become more efficient in

serving multimedia requests by using either high concurtent placement method or

segment based pipelining together with bandwidth based placement on constant

density recording storage structure.

6.2 Extensions and Future Research

Many theoretical and practical researches are possible in the future. Some of these

are listed below.

• Storage organizations. Bandwidth based placement can be extended to

place interleaving data stripes on constant density recording disks. The

stationary and transition probability of objects can also be considered in

the placement of data stripes to optimize the overheads in data retrieval.

Optimal disk size can be found for CDR disks to achieve the best

throughput.

• Tertiary storage organizations. The ordering of media units can be

optimized to reduce the media exchange service time. The object

bandwidth, transition probability, and interieaving gaps may be considered

in the placement of objects on the media units. Parallel staggered striping

can be investigated for multiple segments on each media unit.

266

Conclusion Chapter 6

• Start up latency. Since new streams are accepted only when the maximum

number of concurtent streams is not reached, the first few data stripes are

stored contiguously and retrieved consecutively with only one disk seek

action to quickly fill the read-ahead buffers. Methods to efficiendy utilize

the gap time to increase the amount of data retrieved in each round in

filling up the read-ahead buffers will likely to bring benefits.

• Variations in buffer replacement policies. The choice of buffer

replacement policy would affect the performance of VCR type operations,

such as fast forward, fast backward, jump to a new position. It would be

interesting to investigate the impact of buffer replacement policies on these

operations and choose the most suitable buffer replacement policy.

• Efficiency and reliability in objects modification. When multimedia

objects are being modified, the efficiency in maintaining the hierarchical

storage organization. Also, there would be a need for reliable operations.

These can be investigated in future researches.

267

Bibliography

1. C. Aggarwal, J. Wolf, and P. S. Yu, "On Optimal Piggyback Merging

Policies for Video-On-Demand Systems", Proceedings of the ACM

SIGMETRICS Conference, pages 200-209, 1996.

2. D. P. Anderson, Y. Osawa, and R. Govindan, "A File System for

Continuous Media", ACM Transactions on Computer Systems, volume 10,

number 4, pages311-337, November 1992.

3. P. C. Amett and D. Lam, "Software Channel Approach to Data Binding",

IEEE Transactions on Magnetics, volume 26, number 5, pages 2324-2326,

September 1990.

4. B. Beizer, Micro-Analysis of Computer System Performance, Van

Nostrand Reinhold Company, 1978.

5. S. Berson, S. Ghandeharizadeh, R. Muntz, and X. Ju, "Staggered Striping

in Multimedia Information Systems", Proceedings of the ACM SIGMOD

Conference, pages 79-90, May 1994.

6. S. Berson and R. Muntz, "Just-in-time Scheduling for Video-on-Demand

Storage Servers", Technical Report, University of California, Los Angeles,

1995.

268

Bibliography

7. Y. Birk, "Deterministic Load-Balancing Schemes for Disk-Based Video-

On-Demand Storage Servers", Proceedings of the Fourteenth IEEE

Symposium on Mass Storage Systems, pages 17-22, 1995.

8. J. Boulos and K. Ono, "VOD Data Storage in Multimedia Environments",

Special Issue on Multimedia Communications in Heterogeneous Network

Environments, lEICE Trans. Commun., volume E81-B, number 8, pages

1656-1665, August 1998.

9. J. Brown, "The US Army lETM One year Later", Proceedings of IEEE

Systems Readiness Technology Conference AUTOTESTCON'94, pages

157-165, 1994.

10. D.W. Brubeck and L.A. Rowe, "Hierarchical storage management in a

distributed VOD system", IEEE Multimedia, volume 3, number 3, pages

37-47, 1996.

11. N. Bui, M. K. Sundareshan, and H. S. Tharp, "Seek Reliability

Enhancement in Optical and Magneto-Optical Disk Data Storage

Devices", IEEE Transactions on Magnetics, volume 29, number 6, pages

3802-3804, November 1993.

12. M. J. Carey, L. M. Haas, and M. Livny, "Tapes Hold Data, Too:

Challenges of Tuples on Tertiary Store", Proceedings of the ACM

SIGMOD Conference, pages 413-417, 1993.

13. R. Chambers and M. Davis, "Petabyte class storage at Jefferson Lab

(CEBAF)", Proceedings of the Fifth NASA Goddard Conference on Mass

Storage Systems and Technologies, pages 77-90, September 1996.

269

Bibliography

14. K. Y. Chan, K. K. Lee, P. C. Leong, N. Sriskanthan, and S. C. Hui,

"ParaServe: A Parallel Mass Storage Server", Proceedings of 1994 IEEE

Region 10's Ninth Annual International Conference, volume 1, pages 486-

490, 1994.

15. S. H. G. Chan and F. A. Togabi, "Hierarchical storage systems for on-

demand video servers". Proceedings of SPIE, volume 2604, High Density

Data Recording and Retrieval Technologies, pages 103-120, 1996.

16. S. H. G. Chan and F. A. Togabi, "Hierarchical storage systems for

Interactive Video-on-demand", Technical Report CSL-TR-97-723,

Stanford University, 1997.

17. E. Chang and A. Zakhor, "Variable Bit Rate MPEG Video Storage on

Parallel Disk Artays", Proceedings of the First International Workshop on

Community Networking Integrated Multimedia Services to the Home,

pages 127-137, 1994.

18. E. Chang and H. G. Molina, "BubbleUp: Low Latency Fast-Scan for

Media Servers", Proceedings of the ACM Multimedia Conference, pages

87-98, 1997.

19. E. Chang and H. G. Molina, "Reducing Initial Latency in Media Servers",

IEEE Multimedia, volume 4, number 3, pages 50-61, 1997.

20. Y. T. Chen, R. L. Kashyap, and A. Ghafoor, "Physical Storage

Management for Interactive Multimedia Information Systems",

Proceedings of IEEE International Conference on Systems, Man, and

Cybernetics, volume 1, pages 1-6, 1992.

270

Bibliography

21. C. Y. R. Chen, K. C. Nwosu, and P. B. Berta, "Multimedia Object

Modelling and Storage Allocation Strategies for Heterogeneous Parallel

Access Storage Devices in Real Time Multimedia Computing Systems",

Proceedings of the Seventeenth Annual International Computer Software

and Applications Conference, pages 216-223, 1993.

22. M. S. Chen, D. D. Kandlur, and P. Yu, "Optimization of the Grouped

Sweeping Scheduling (GSS) with Heterogeneous Multimedia Streams",

Proceedings of the ACM Multimedia Conference, pages 235-241, 1993.

23. P. M. Chen and D. A. Patterson, "Storage Performance-Metrics and

Benchmarks", Proceedings of the IEEE, volume 81, number 8, pages

1151-1165, August 1993.

24. P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson,

"RAID: High-Performance, Reliable Secondary Storage", ACM

Computing Surveys, volume 26, number 2, pages 145-185, June 1994.

25. L. T. Chen, D. Rotem, A. Shoshani, B. Drach, M. Keating, and S. Louis,

"Optimizing Tertiary Storage Organization and Access for Spatio-

Temporal Datasets", Proceedings of the Fourth NASA Goddard

Conference on Mass Storage Systems and Technologies, http://esdis-

it. gsfc. nasa. gov/MSST/confl 995/B4_l .html, 1995.

26. H. J. Chen and T. D. C. Little, "Storage Allocation Policies for Time-

Dependent Multimedia Data", IEEE Transactions on Knowledge and Data

Engineering, volume 8, number 5, pages 855-864, October 1996.

271

http://esdisit
http://esdisit

Bibliography

27. S. Chen and M. Thapar, "Zone-bit-recording-enhanced video data layout

strategies", Proceedings of the IEEE MASCOTS Conference, pages 29-35,

1996.

28. A. L. Chervenak, D. A. Patterson, and R. H. Katz, "Storage systems for

movies-on-demand video servers". Proceedings of the Fourteenth IEEE

Symposium on Mass Storage Systems, pages 246-256, 1995.

29. T. C. Chiueh, "Performance Optimization for Parallel Tape Artays",

Proceedings of the 9' ACM International Conference on Supercomputing,

pages 375-384, 1995.

30. S. Christodoulakis, P. Triantafillou, and F.A. Zioga, "Principles of

Optimally Placing Data in Tertiary Storage Libraries", Proceedings of the

23"^ VLDB Conference, pages 236-245, 1997.

31. T. S. Chua, J. Li, B. C. Ooi, and K. L. Tan, "Disk striping strategies for

large video-on-demand servers", Proceedings of the ACM Multimedia

Conference, pages 297-306, 1996.

32. A. Cohen and W. A. Burkhard, "Segmented Information Dispersal (SID)

for Efficient Reconstruction in Fault-Tolerant Video Servers",

Proceedings of the ACM Multimedia Conference, pages 277-286, 1996.

33. R. A. Coyne and H. Hulen, "An Introduction to the Mass Storage System

Reference Model, Version 5", Proceedings of the Twelfth IEEE

Symposium on Mass Storage Systems, pages 47-53, 1993.

34. R. Cununings, "System Architectures Using Fibre Channel", Proceedings

of the Twelfth IEEE Symposium on Mass Storage Systems, pages 251-256,

1993.

272

Bibliography

35. A. Dan and D. Sitaram, "An online video placement policy based on

bandwidth to space ratio (BSR)", Proceedings of the ACM SIGMOD

Conference, pages 376-385, 1995.

36. A. Dan, D. M. Dias, R. Mukherjee, D. Sitaram, and R. Tewari, "Buffering

and Caching in Large-Scale Video Servers", Proceedings of IEEE

International Computer Conference, pages 217-224, 1995.

37. Y. N. Doganata and A. N. Tantawi, "A cost/performance study of video

servers with hierarchical storage". Proceedings of the IEEE Conference on

Multimedia Computing and Systems, pages 393-402, 1994.

38. R. Drach, S. W. Hyer, A. Shoshani, D. Rotem, A. Segev, S. Seshadri, H.

Samet, and P. Bogdanovich, "Optimizing Mass Storage Organization and

Access for Multi-Dimensional Scientific Data", Proceedings of the Twelfth

IEEE Symposium on Mass Storage Systems, pages 215-219, 1993.

39. A. L. Drapeau and R. H. Katz, "Striped Tape Artays", Proceedings of the

Twelfth IEEE Symposium on Mass Storage Systems, pages 257-265, April

1993.

40. A. L. Drapeau and R. H. Katz, "Striping in Large Tape Libraries",

Proceedings of the Conference on Supercomputing'93, pages 378-387,

1993.

41. C. Drummond, D. lonescu, and R. Holte, "Intelligent Browsing for

Multimedia Applications", Proceedings of the IEEE Multimedia

Conference, pages 386-389, 1996.

273

Bibliography

42. C. Federighi and L. A. Rowe, "A Distributed Hierarchical Storage

Manager For A Video-on-demand System", Proceedings of SPIE, volume

2185, Conference on Storage and Retrieval for Image and Video

Databases II, pages 185-195, 1994.

43. A. Finkelstein, C. E. Jacobs, and D. H. Salesin, "Multiresolution Video".

Proceedings of the ACM SIGGRAPH Conference on Computer Graphics,

pages 281-290, 1996.

44. M. FHckner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M.

Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker, "Query

by Image and Video Content: The QBIC System", IEEE Computer,

volume 28, number 9, pages 23-32, September 1995.

45. D. A. Ford and S. Christodoulakis, "Optimal Placement of High-

Probability Randomly Retrieved Blocks on CLV Optical Discs", ACM

Transactions on Information Systems, Volume 9, Number 1, pages 1-30,

1991.

46. D. A. Ford, R. J. T. Morris, and A. E. Bell, "Redundant Artays of

Independent Libraries (RAIL): A Tertiary Storage System", Proceedings of

COMPCON'96, pages 280-285, 1996.

47. S. Franchi, M. Imperato, and F. Prampolini, "Multimedia Perspectives for

Next Generation PAC Systems", Proceedings of the Fifth Annual IEEE

Symposium on Computer-Based Medical Systems, pages 156-159, 1992.

48. C. S. Freedman and D. J. DeWitt, "The SPUTT Scalable Video-on-

Demand System", Proceedings of ACM SIGMOD International

Conference on Management of Data, pages 352-363, 1995.

274

Bibliography

49. B. Furht, "MulfiMedia Systems: An Overview", IEEE MultiMedia,

volume 1, number 1, pages 47-59, 1994.

50. B. Furht and M. Milenkovic, A Guided Tour of Multimedia Systems and

Applications, IEEE Computer Society Press, 1995.

51. B. Furht and R. Westwater, "Video Presentation and Compression," in

Handbook of Multimedia Computing, B. Furht (Ed.), CRC Press, 1999.

52. T. Furukawa, K. Nakane, R. Aral, "High Density Recording Method for

Magneto-Optical Disk", IEEE Transactions on Magnetics, volume 24,

number 6, pages 2536-2538, November 1988.

53. D. J. Gemmell and S. Christodoulakis, "Principles of Delay-Sensitive

Multimedia Data Storage and Retrieval", ACM Transactions on

Information Systems, volume 10, number 1, pages 51-90, 1992.

54. D. J. Gemmell, J. Han, R. J. Beaton, and S. Christodoulakis, "Delay-

Sensitive Multimedia on Disks", IEEE Multimedia, volume 1, number 3,

pages 56-67, 1994.

55. D. J. Gemmell, H. M. Vin, D. D. Kandlur, P. V. Rangan, and L. A. Rowe,

"Multimedia Storage Servers: A Tutorial", IEEE Computer, volume 28,

number 5, pages 40-49, May 1995.

56. B. A. Gennart and R. D. Hersch, "Multimedia Performance Behaviour of

the GigaView Parallel Image Server", Proceedings of Thirteenth IEEE

Symposium on Mass Storage Systems, pages 90-98, 1994.

57. S. Ghandeharizadeh and L. Ramos, "Continuous retrieval of multimedia

data using parallelism", IEEE Transactions on Knowledge and Data

Engineering, volume 5, number 4, pages 658-669, 1993.

275

Bibliography

58. S. Ghandeharizadeh and C. Shahabi, "On Multimedia Repositortes,

Personal Computers, and Hierarchical Storage Systems", Proceedings of

the ACM Multimedia Conference, pages 407-416, 1994.

59. S. Ghandeharizadeh, S.H. Kim, and C. Shahabi, "On Configuring a Single

Disk Continuous Media Server", Proceedings of the ACM Multimedia

Conference, pages 37-46, 1995.

60. S. Ghandeharizadeh, S.H. Kim, W. Shi, and R. Zimmermann, "On

Minimizing Startup Latency in Scalable Continuous Media Servers",

Proceedings of SPIE, volume 3020, Multimedia Computing and

Networking Conference, pages 144-155, 1997.

61. S. Ghandeharizadeh, S. H. Kim, and C. Shahabi, "On Disk Scheduling and

Data Placement for Video Servers", Technical Report 97-650, University

of Southern California, 1997.

62. G. A. Gibson, R. H. Patterson, and M. Satyanarayanan, "Disk Reads with

DRAM Latency", Proceedings of the Third Workshop on Workstation

Operating Systems, pages 126-131, 1992.

63. G. A. Gibson, Redundant Disk Arrays Reliable, Parallel Secondary

Storage, ACM 1991 Distinguished Dissertation, The MIT Press, 1992.

64. J. J. Gniewek and S. M. Vogel, "Influence of Technology on Magnetic

Tape Storage Device Characteristics", Proceedings of Fourth NASA

Goddard Conference on Mass Storage Systems and Technologies, pages

237-251, 1995.

276

Bibliography

65. J. J. Gniewek, "Evolving Requirements for Magnetic Tape Data Storage

Systems", Proceedings of Fifth NASA Goddard Conference on Mass

Storage Systems and Technologies, pages 477-492, September 1996.

66. L. Golubchik, J. C. S. Lui, and R. Muntz, "Reducing 1/0 Demand in

Video-On-Demand Storage Servers", Proceedings of ACM SIGMETRICS

Conference, pages 25-36, 1995.

67. L. Golubchik, R. R. Muntz, and R. W. Watson, "Analysis of Striping

Techniques in Robotic Storage Libraries", Proceedings of the Fourteenth

IEEE Symposium on Mass Storage Systems, pages 225-238, 1995.

68. C. Griwodz, M. Bar, and L. C. Wolf, "Long-term Movie Popularity

Models in Video-on-Demand Systems", Proceedings of the ACM

Multimedia Conference, pages 349-357, 1997.

69. R. Grossman, X. Qin, W. Xu, H. Hulen, and T. Tyler, "An Architecture for

a Scalable, High-Performance Digital Library", Proceedings of the

Fourteenth IEEE Symposium on Mass Storage Systems, pages 89-98,

1995.

70. A. Guha, A. Pavan, J. C. L. Liu, and B. A. Roberts, "Controlling the

Process with Distributed Multimedia", IEEE Multimedia, volume 2,

number 2, pages 20-29, 1995.

71. W. B. Hanlon, E. F. Fener, and J. W. Downs, "Data Storage and

Management Requirements for the Multimedia Computer-Based Patient

Medical Record", Proceedings of the Fourteenth IEEE Symposium on

Mass Storage Systems, pages 11-16, 1995.

277

Bibliography

72. B. K. Hillyer and A. Silberschatz, "Random VO Scheduling in Online

Tertiary Storage Systems", Proceedings of ACM SIGMOD International

Conference on Management of Data, pages 195-204, 1996.

73. B. K. Hillyer and A. Silberschatz, "Storage Technology: Status, Issues, and

Opportunities", http://www.bell-labs.com/user/hillyer/papers, 1996.

74. B. K. Hillyer and A. Silberschatz, "On the Modeling and Performance

Characteristics of a Serpentine Tape Drive", Proceedings of ACM

SIGMETRICS Conference on Measurement and Modeling of Computer

Systems,pages 170-179, 1996.

75. "HP SureStore 330/600 fx Optical Jukebox Product Details",

http://www.hp-optical.com/ProductCatalog/330fxDetailsSection.htm.

76. J. Hsieh, M. Lin, J. C. L. Liu, D. H. C. Du, and T. M. Ruwart,

"Performance of a mass storage system for video-on-demand".

Proceedings of Fourteenth Annual Joint Conference of the IEEE

Computer and Communications Societies INFOCOM'95, volume 2, pages

11\-11?>, 1995.

77. D. Isaac, "Hierarchical Storage Management for Relational Databases",

Proceedings of the Twelfth IEEE Symposium on Mass Storage Systems,

pages 139-144, 1993.

78. M. A. Jabbar, "Some Novel Ideas for Disk Drive Spindle Motors",

Proceedings of IEEE Asia-Pacific Workshop on Advances in Motion

Controhpages 171-176, 1993.

278

http://www.bell-labs.com/user/hillyer/papers
http://www.hp-optical.com/ProductCatalog/330fxDetailsSection.htm

Bibliography

79. T. Johnson, "Queuing Models of Tertiary Storage", Proceedings of the

Fifth NASA Goddard Conference on Mass Storage Systems and

Technologies, volume 2, pages 529-552, September 1996.

80. R. H. Katz, G. A. Gibson, and D. A. Patterson, "Disk System Architectures

for High Performance Computing", Proceedings of the IEEE, volume 77,

number 12, pages 1842-1858, December 1989.

81. M. G. Kienzle, A. Dan, D. Sitaram, and W. Tetzlaff, "Using Tertiary

Storage in Video-on-Demand Servers", Proceedings of IEEE COMECON,

pages 225-233, March 1995.

82. M. Y. Kim, "A Multimedia Information System for Home Health-Care

Support", IEEE Multimedia, volume 2, number 4, pages 83-87, 1995.

83. R. Kirk, T. Christianson, and D. Faizullabhoy, "Embedded Intelligence",

Byte, volume 17, number 3, pages 195-203, March 1992.

84. L. Kleinrock, Queueing Systems, Volume I: Theory, John Wiley & Sons,

1975.

85. J. Kohl, M. Stonebraker, and C. Staelin, "HighLight: A File System for

Tertiary Storage", Proceedings of the Twelfth IEEE Symposium on Mass

Storage Systems, pagesl57-161, 1993.

86. J. Korst, "Random Duplicated Assignment: An Alternative to Striping in

Video Servers", Proceedings of the ACM Multimedia Conference, pages

219-226, 1997.

87. M. Krunz and H. Hughes, "A Traffic Model for MPEG-Coded VBR

Streams", Proceedings of the ACM SIGMETRICS Conference, pages 47-

55, 1995.

279

Bibliography

88. T. L. Kunii, Y. Shinagawa, R. M. Paul, M. F. Khan, and A. A. Khokhar,

"Issues in storage and retrieval of multimedia data", Multimedia Systems.

volume 3, pages 298-304, 1995.

89. A. Kuratti and W. H. Sanders, "Peri^onnance Analysis of the RAID 5 Disk

Artay", Proceedings of IEEE International Computer Performance and

Dependability Symposium IPDS'95, pages 236-245, 1995.

90. L. Kuvayev, C. L. Giles, J. Philbin, and H. Cejtin, "Intelligent Methods for

File System Optimization", Proceedings of the Fourteenth National

Conference on Artificial Intelligence and Ninth Innovative Applications of

Artificial Intelligence Conference, pages 528-533, 1997.

91. S. W. Lau, J. C. S. Lui, and P. C. Wong, "A Cost-effective Near-line

Storage Server for Multimedia System", Proceedings of IEEE Conference

on Data Engineering, pages 449-456, 1995.

92. M. H. Lee, C. H. Wen, C. Y. Cheng, F. C. Wang, and Y. J. Oyang,

"Storage Hierarchy Design in Video-On-Demand Servers", Proceedings of

SPIE, volume 2670, Storage and Retrieval for still image and video

databases IV, pages 300-307, 1996.

93. C. H. C. Leung and Q. H. Choo, "The effect of fixed-length record

implementation on file system response", Acta Informatica, volume 17,

pages 399-409, 1982.

94. C. H. C. Leung (Ed.), Visual Information Systems, LNCS 1304, Springer-

Veriag, 1997.

95. C. H. C. Leung, Quantitative Analysis of Computer Systems, John Wiley &

Sons, 1988.

280

Bibliography

96. M. Y. Y. Leung, J. C. S. Lui, and L. Golubchik, "Buffer and FO Resource

Pre-allocation for Implementing Batching and Buffering Techniques for

Video-on-Demand Systems", Technical Report CS-TR-96-03, The

Chinese University of Hong Kong, April 1996.

97. D. Lignos, "Digital Linear Tape (DLT) Technology and Product Family

Overview", Proceedings of Fourth NASA Goddard Confererice on Mass

Storage Systems and Technologies, http.V/esdis-

it. gsfc. nasa. gov/MSST/confl 995/B l_l.html, 1995.

98. T. D. C. Litde and D. Venkatesh, "Popularity-based assignment of movies

to storage devices in a video-on-demand system". Proceedings of ACM

Multimedia Systems, volume 2, pages 280-287, 1995.

99. P. Lougher and D. Shepherd, "The design of a storage server for

continuous media". The Computer Journal, volume 36, number 1, pages

32-42, 1993.

100. P. Lougher, D. Shepherd, and D. Pegler, "The Impact of Digital Audio and

Video on High-Speed Storage", Proceedings of the Thirteenth IEEE

Symposium on Mass Storage Systems, pages 84-89, 1994.

101. G. K. Ma, C. S. Wu, M. C. Liu, and B. S. P. Lin, "Efficient Real-time Data

Retrieval Through Scalable Multimedia Storage", Proceedings of ACM

International Multimedia Conference, pages 165-172, November 1997.

102. R. E. Matick, Computer Storage Systems and Technology, John Wiley &

Sons, Inc., 1977.

281

http://http.V/esdisit
http://http.V/esdisit

Bibliography

103. J. A. McCormick, The New Optical Storage Technology Including

Multimedia, CD-ROM, and Optical Drives, Second Edition, b^in

Professional Publishing, 1994.

104. T. Mori, H. Suzuki, K. Nishimura, and H. Nakano, "Playback Techniques

for a Video-on-Demand System Using an Optical Mass Storage System",

Japanese Journal of Applied Physics, volume 35, part 1, number IB, pages

495-499, 1996.

105. J. Myllymaki and M. Livny, "Disk-Tape Joins: Synchronizing Disk and

Tape Access", Proceedings of ACM SIGMETRICS'95, pages 279-290,

1995.

106. T. Nakagomi, M. Holzbach, R. V. Meter IE, and S. Ranade, "Refining the

Storage Hierarchy: An Ultra-Fast Magneto-Optical Disk Drive",

Proceedings of the Twelfth IEEE Symposium on Mass Storage Systems,

pages 267-274, 1993.

107. T. Nemoto, M. Kitsuregawa, and M. Takagi, "Design and implementation

of scaleable tape archiver". Proceedings of the Fifth NASA Goddard

Conference on Mass Storage Systems and Technologies, pages 229-238,

September 1996.

108. S. W. Ng, "Improving Disk Performance Via Latency Reduction", IEEE

Transactions on Computers, volume 40, number 1, pages 22-34, January

1991.

109. S. W. Ng, "Latency Reduction for CD-ROM and CLV Disks",

Proceedings of the 25''' Hawaii International Conference on System

Sciences, volume 1, pages 100-108, 1991.

282

Bibliography

110. K. Nishimura, T. Mori, Y. Ishibashi, and N. Sakurai, "System Architecture

for Digital Video-on-Demand Services", Proceedings of the Secor^d IEEE

International Conference on Image Processing, pages 602-606, 1992.

111. K. C. Nwosu, C. Y. R. Chen, and P. B. Berta, "Multimedia Object

Modeling and Storage Allocation Strategies", Journal of Intelligent

Information Systems, volume 3, pages 357-391, 1994.

112. K. C. Nwosu, P. Bobbie, and B. Thuraisingham, "Data Allocation and

Spatio-Temporal Implications for Video-On-Demand Systems",

Proceedings of the 1995 IEEE Fourteenth Annual International Phoenix

Conference on Computers and Communications, pages 629-635, 1995.

113. W. S. Oakley, "Progress toward demonstrating a high performance optical

tape recording technology". Proceedings of the Fifth NASA Goddard

Conference on Mass Storage Systems and Technologies, pages 571-582,

September 1996.

114. V. E. Ogle and M. Stonebraker, "Chabot: Retrieval from a Relational

Database of Images", IEEE Computer, volume 28, number 9, pages 40-48,

September 1995.

115. Y. J. Oyang, M. H. Lee, C. H. Wen, and C. Y. Cheng, "Design of

multimedia storage systems for on-demand playback", Proceedings of the

Eleventh International Conference on Data Engineering, pages 457-465,

1995.

283

r/i

Bibliography

116. B. Ozden, A. Biliris, R. Rastogi, and A. Silberschatz, "A low-cost storage

server for movie on demand databases", Proceedings of the 2(f'

International Conference on Very Large Data Bases, pages 594-605,

September 1994.

117. B. Ozden, R. Rastogi, and A. Silberschatz, "On the design of a low-cost

video-on-demand storage system". Multimedia Systems, volume 4, pages

40-54, 1996.

118. H. H. Pang, "Tertiary storage in multimedia systems: staging or direct

access ?", Multimedia Systems, volume 5, pages 386-399, 1997.

119. D. A. Patterson and J. L. Hennessy, Computer Organization and Design

The Hardware/Software Interface, Morgan Kaufmann Publishers, 1994.

120. R. H. Patterson and G. A. Gibson, "Exposing VO Concurtency with

Informed Prefetching", Proceedings of the Third International Conference

on Parallel and Distributed Information Systems, pages 7-16, 1994.

121. W. B. Pennebaker and J. L. Mitchell, JPEG Still Image Compression

Standard, Van Nostrand Reinhold Publisher, 1993.

122. P. V. Rangan and H. M. Vin, "Efficient storage techniques for digital

continuous multimedia", IEEE Transactions on Knowledge and Data

Engineering, volume 5, number 4, pages 564-573, August 1993.

123. A. L. N. Reddy and J. C. Wyllie, "Disk scheduling in a multimedia VO

system". Proceedings of First ACM Conference on Multimedia, pages 225-

233,1993.

124. A. L. N. Reddy and J. C. Wyllie, "I/O Issues in a Multimedia System",

IEEE Computer, volume 27, number 3, pages 69-74, March 1994.

284

Bibliography

125. L. A. Rowe, J. S. Boreczky, and D. A. Berger, "A distributed hierarchical

video-on-demand system". Proceedings of IEEE Conference on Image

Processing, pages 334-337, 1995.

126. C. Ruemmler and J. Wilkes, "An introduction to disk drive modeling",

IEEE Computer, volume 27, number 3, pages 17-28, March 1994.

127. E. Salmon, "Storage and network bandwidth requirements through the year

2000 for the NASA center for computational sciences", Proceedings of the

Fifth NASA Goddard Conference on Mass Storage Systems and

Technologies, pages 273-286, September 1996.

128. S. Sarawagi, "Database Systems for Efficient Access to Tertiary Memory",

Proceedings of the Fourteenth IEEE Symposium on Mass Storage Systems,

pages 120-126, 1995.

129. S. Sarawagi and M. Stonebraker, "Reordering Query Execution in Tertiary

Memory Databases", Proceedings of the 2T Very Large Database

Conference, pages 156-167, 1996.

130. D. E. Speliotis, "High Density Recording on Particulate and Thin Film

Rigid Disks", IEEE Transactions on Magnetics, volume 25, number 5,

pages 4048-4050, September 1989.

131. S. G. Stan and J. L. Bakx, "Adaptive-Speed Algorithms for CD-ROM

Systems", IEEE Transactions on Consumer Electronics, volume 42,

number 1, pages 43-51, February 1996.

132. R. Steinmetz, "Analyzing the multimedia operating system", IEEE

Multimedia, volume 2, number 1, pages 68-84, 1995.

285

Bibliography

133. H. Suzuki, K. Nishimura, A. Uemori, and H. Sakamoto, "Storage

hierarchy for video-on-demand systems". Proceedings of SPIE. volume

2185, Storage and Retrieval for Image and Video Databases II, pages 198-

207, 1994.

134. W. Tavanapong, K. A. Hua, and J. Z. Wang, "A framework for supporting

previewing and VCR operations in a low bandwidth environment".

Proceedings of the ACM Multimedia Conference, pages 303-312, 1997.

135. D. B. Terry, and D. C. Swinehart, "Managing stored voice in the

etherphone system", ACM Transactions on Computer Systems, volume 6,

number 1, pages 3-27, 1988.

136. R. Tewari, R. King, D. Kandlur, and D. M. Dias, "Placement of

Multimedia Blocks on Zoned Disks", Proceedings of SPIE, volume 2667,

Multimedia Computing and Networking 1996, pages 360-367, 1996.

137. F. A. Tobagi, J. Pang, R. Baird, and M. Gang, "Streaming RAID-a disk

artay management system for video files", Proceedings of First ACM

Conference on Multimedia, pages 393-400, 1993.

138. P. Triantafillou, S. Christodoulakis, and C. Georgiadis, "Optimal Data

Placement on Disks: A Comprehensive Solution for Different

Technologies", Technical Report, Technical University of Crete, 1996.

139. P. Triantafillou and T. Papadakis, "On-Demand Data Elevation in a

Hierarchical Multimedia Storage Server", Proceedings of the 23' VLDB

Conference, pages 1-10, 1997.

286

Bibliography

140. C. Vassilakis, M. Paterakis, and P. Trtantafillou, "Video Placement and

Configuration of Distributed Video-On-Demand Systems", Technical

Report, Technical University of Crete, 1997.

141. M. Vemick, C. Venkatramani, and T. C. Chiueh, "Adventures in Building

the Stony Brook Video Server", Proceedings of ACM Multimedia'96,

pages 287-295, 1996.

142. H. M. Vin and P. V. Rangan, "Designing a Multiuser HDTV Storage

Server", IEEE Journal On Selected Areas In Communications, volume 11,

number 1, pages 153-164, January 1993.

143. A. Vina, J. L. Lerida, A. Molano, and D. del Val, "Real-Time Multimedia

Systems", Proceedings of the Thirteenth IEEE Symposium on Mass

Storage Systems, pages 77-83, 1994.

144. VIS96, Proceedings of the First International Conference on Visual

Information Systems, 1996.

145. A. Vogel, B. Kerherve, G. V. Bochmann, and J. Gecsei, "Distributed

Multimedia and QOS: A Survey", IEEE MultiMedia, volume 2, number 2,

pages 10-19, 1995.

146. J. Z. Wang, K. A. Hua, and H. C. Young, "SEP: a space efficient technique

for managing disk buffers in multimedia servers", Proceedings of IEEE

Multimedia Computing and Systems Conference, pages 598-607, 1996.

147. Y. C. Wang, S. L. Tsao, R. Y. Chang, M. C. Chen, J. M. Ho, and M. T.

Ko, "A Fast Data Placement Scheme for Video Server with Zoned-Disks",

Proceedings of SPIE, volume 3229, Conference on Multimedia Storage

and Archiving Systems, pages 92-102, 1997.

287

Bibliography

148. E. W. Williams, The CD-ROM and Optical Disc Recording Systems,

Oxford University Press, 1994.

149. J. L. Wolf, P. S. Yu, and H. Shachnai, "DASD Dancing: A Disk Load

Balancing Optimization Scheme for Video-on-Demand Computer

Systems", Proceedings of ACM SIGMETRICS'95, pages 157-166, 1995.

150. I. Yamada, M. Saito, A. Watabe, and K. Itao, "Automated Optical Mass

Storage System with 3-Beam Magneto-Optical Disk Drives", IEEE

Transactions on Magnetics, volume 29, number 3, pages 2172-2176, July

1993.

151. C. Yu, W. Sun, D. Bitton, Q. Yang, R. Bruno, and J. Tullis, "Efficient

placement of audio data on optical disks for real-time applications",

Communications of ACM, volume 32, number 7, pages 862-871, 1989.

152. J. B. Yu and D. J. Dewitt, "Processing satellite images on tertiary storage:

a study of the impact of tile size on performance", Proceedings of the Fifth

NASA Goddard Conference on Mass Storage Systems and Technologies,

pages 460-476, September 1996.

153. P. C. Yue and C. K. Wong, "On the Optimality of the Probabihty Ranking

Scheme in Storage Applications", Journal of the ACM, volume 20, number

4, pages 624-633, 1973.

154. R. Zimmermann and S. Ghandeharizadeh, "Continuous Display Using

Heterogeneous Disk-Subsystems", Proceedings of ACM Multimedia 97,

pages 227-238, 1997.

288

Appendix A

Simulation Measurements

Simulation Measurements Appendix A

Table A.l . Data access time

10.88 inch disk

access size

1 KB

10 KB

100KB

1000 KB

10000 KB

5.25 inch disk

access size

1 KB

10 KB

100KB

1000 KB

10000 KB

3.5 inch disk

access size

1 KB

10 KB

100KB

1000 KB

10000 KB

2.5 inch disk

access size

1 KB

10 KB

100KB

1000 KB

10000 KB

1.8 inch disk

access size

1KB

10 KB

100KB

1000 KB

10000 KB

VDR disk

predicted

35.0

37.2

58.6

272.9

2659.5

measured

33.9

36.3

58.9

272.5

2531.7

% error

3.3%

2.4%

0.5%

0.1%

4.8%

VDR disk

predicted

25.7

28.7

58.7

358.7

3586.6

measured

25.8

28.9

57.1

357.5

3505.4

% error

0.3%

0.4%

2.7%

0.3%

2.3%

VDR disk

predicted

21.4

23.6

46.1

271.1

2690.3

measured

20.3

25.3

45.7

271.4

2631.6

% error

4.8%

7.2%

0.8%

0.1%

2.2%

VDR disk

predicted

21.3

25.2

64.3

476.5

4640.2

measured

20.0

24.8

66.7

468.0

45837

% error

6.0%

1.6%

37%

1.8%

1.2%

VDR disk

predicted

20.2

24.9

72.3

565.6

5577.7

measured

18.8

24.8

67.0

566.6

5533.3

% error

6.9%

0.6%

7.3%

0.2%

0.8%

CDR disk

predicted

32.6

32.9

36.5

72.6

465.9

measured

32.5

33.4

36.6

73.2

480.1

% error

0.1%

1.5%

0.1%

0.8%

3.07f

CDR disk

predicted

24.9

25.8

35.4

131.4

1165.4

measured

24.9

24.8

36.5

130.1

1155.9

% error

0.3%

3.9%

2.9%

1.0%

0.8%

CDR disk

predicted

21.0

22.0

32.0

132.0

1194.7

measured

20.7

20.7

32.6

126.6

1181.3

% error

1.1%

5.9%

1.9%

4.1%

1.1%

CDR disk

predicted

21.0

23.2

45.6

269.2

2650.8

measured

19.9

21.9

47.5

277.9

2682.5

% error

5.0%

5.8%

4.1%

3.2%

1.2%

CDR disk

predicted

20.0

23.4

57.2

415.2

3995.1

measured

19.6

21.4

57.3

407.9

3873.9

% error

1.9%

8.6%

0.1%

1.8%

3.0%

290

Simulation Measurements Appendix .A

Table A.2. Throughput of a CDR disk being partitioned into two zone groups

% of inner

partition

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Inner zone group

predicted

2.79

3.39

3.98

4.57

5.17

5.76

6.35

6.95

7.54

8.13

8.73

measured

2.86

3.35

4.09

4.51

4.86

5.55

5.85

6.29

6.85

7.22

7.06

% error

2%

1%

3%

1%

6%

4%

8%

9%

9%

11%

19%

Outer zone group

predicted

8.73

9.32

9.91

10.51

11.10

11.69

12.29

12.88

13.47

14.07

14.66

measured

7.06

8.20

8.73

8.77

9.34

9.93

10.36

10.76

11.58

12.03

12.01

% error

19%

12%

12%

17%

16%

15%

16%

16%

14%

15%

18%

Table A.3. Disk utilization

Arrival rate

(requests/min)

40

80

120

167

200

240

280

320

360

400

440

VDR disk

predicted

24%

48%

72%

100%

measured

23.89%

47.82%

71.51%

99.48%

% error

0.10%

0.03%

0.33%

0.51%

CDR disk

predicted

8.76%

17.52%

26.29%

36.63%

43.81%

52.57%

61.33%

70.10%

78.86%

87.62%

96.38%

measured

8.71%

17.30%

26.26%

36.75%

43.74%

52.67%

61.51%

70.22%

77.40%

87.24%

95.18%

% error

0.61%

1.27%

0.10%

0.30%

0.17%

0.18%

0.29%

0.18%

1.85%

0.43%

1.25%

291

Simulation Measurements Appendix .A

Table A.4. Mean waiting time

Arrival rate

40

80

120

167

200

240

280

320

360

400

440

VDR disk

predicted

0.056

0.165

0.456

4062

measured

0.055

0.169

0.402

6.428

% error

2.09%

2.59%

11.87%

99.84%

CDR disk

predicted

0.006

0.014

0.023

0.038

0.051

0.073

0.105

0.154

0.246

0.466

1.755

measured

0.008

0.015

0.021

0.045

0.065

0.080

0.112

0.166

0.221

0.499

1.245

% error

25.11%

9.89%

9.10%

18.68%

27.23%

9.92%

7.48%

7.40%

9.94%

6.96%

29.07%

Table A.5. Mean response time

Arrival rate

40

80

120

167

200

240

280

320

360

400

VDR disk

predicted

0.42

0.52

0.81

measured

0.41

0.53

0.76

% error

0.41%

0.83%

6.77%

CDR disk

predicted

0.14

0.15

0.15

0.17

0.18

0.20

0.24

0.29

0.38

0.60

measured

0.14

0.14

0.15

0.18

0.20

0.21

0.24

0.30

0.35

0.63

% error

0.49%

0.36%

1.42%

4.43%

7.59%

373%

3.61%

4.07%

7.10%

5.36%

292

Simulation Measurements Appendix .A

Table A.6. Mean queue length

Arrival rate

40

80

120

167

200

240

280

320

360

400

440

VDR disk

predicted

0.04

0.22

0.91

11324

measured

0.04

0.22

0.80

17.86

% error

2.04%

2.54%

11.91%

99.84%

CDR disk

predicted

0.00

0.02

0.05

0.11

0.17

0.29

0.49

0.82

1.47

3.11

12.87

measured

0.01

0.02

0.04

0.13

0.22

0.32

0.52

0.88

1.33

3.32

9.00

% error

25.22%

10.09%

9.15%

18.69%

27.137r

9.80%

7.23%

7.43%

9.99%

6.85%

30.06%

Table A.7. Mean number of requests

Arrival rate

40

80

120

167

200

240

280

320

360

400

VDR disk

predicted

0.28

0.70

1.63

measured

0.28

0.70

1.52

% error

0.35%

0.78%

6.81%

CDR disk

predicted

0.09

0.19

0.31

0.47

0.61

0.82

1.10

1.52

2.26

3.99

measured

0.09

0.19

0.31

0.49

0.66

0.85

1.14

1.59

2.10

4.19

% error

0.58%

0.17%

1.47%

4.44%

7.51%

3.62%

3.37%

4.10%

7.16%

5.25%

293

Simulation Measurements Appendix A

Table A.8. Maximum system throughput

segment

length

5

6

7

8

9

10

11

12

13

14

15

segment

length

5

6

7

8

9

10

11

12

13

14

15

segment

length

5

6

7

8

9

10

11

12

13

14

15

non-striping

predicted

20.25

20.55

20.23

20.97

20.57

21.28

21.31

21.53

20.68

21.14

21.83

measured

20.15

20.94

21.41

21.29

21.38

20.89

21.84

21.57

21.66

22.99

22.84

% error

0.5%

1.9%

5.9%

1.5%

3.9%

1.8%

2.5%

0.2%

4.8%

8.7%

4.6%

parallel striping

predicted

13.6

13.9

13.9

14.5

14.4

15.0

15.1

15.4

15.0

15.4

16.0

measured

12.38

13.15

14.30

14.44

13.57

15.96

16.63

16.05

15.81

17.99

17.25

% error

9.2%

57%

2.9%

0.2%

5.6%

6.7%

10.0%

4.3%

5.7%

16.9%

7.8%'

high concurrency placement

predicted

28.61

31.00

31.16

33.99

33.36

35.86

36.21

37.08

34.68

36.16

38.34

measured

30.05

30.46

33.07

34.25

35.17

36.15

36.13

36.89

37.78

38.22

38.38

% error

5.0%

1.7%

6.1%

0.8%

5.4%

0.8%

0.2%

0.5%

9.0%

57%

0.1%

294

Simulation Measurements .Appendix .A

Table A.9. Mean stream response time

stream arrival

rate

5.00

10.00

15.00

20.00

25.00

30.00

stream arrival

rate

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

stream arrival

rate

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

non-striping

predicted

138

158

193

264

465

3123

measured

128

134

159

202

299

1526

% error

7.0%

15.3%

17.6%

23.7%

35.7%

51.1%

high concurrency placement

predicted

214

229

250

283

339

372

453

442

508

611

792

1184

2661

measured

173

189

203

215

230

263

301

332

423

445

718

990

2057

% error

19.2%

17.3%

18.6%

24.0%

32.2%

29.5%

33.6%

24.9%

16.9%

27.2%

9.3%

16.3%

22.7%

high concurrency placement

predicted

385

497

581

628

677

804

966

1191

1531

2111

3269

measured

419

517

595

660

732

827

989

1170

1416

1948

2533

% error

9.0%

4.1%

2.3%

5.1%

8.2%

3.0%

2.3%

1.8%

7.5%

77%

22.5%

295

Simulation Measurements Appendix .A

Table A.IO. Buffer size

stream arrival

rate

5.00

10.00

15.00

20.00

25.00

30.00

stream arrival

rate

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

stream arrival

rate

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

non-striping

predicted

2172

2171

2170

2170

2169

2168

measured

2088

2088

2088

2088

2088

2088

% error

3.8%

3.87o

3.8%

3.7%

3.7%

3.7%

parallel striping

predicted

2211.1

2209.2

2206.3

2201.8

2195.1

2195.1

2195.1

2195.1

2195.1

2195.1

2195.1

2195.1

2195.1

measured

2088

2088

2088

2088

2088

2088

2088

2088

2088

2088

2088

2088

2088

% error

5.6%

5.5%

5.4%

5.2%

4.9%

4.9%

4.9%

4.9%

4.9%

4.9%

4.9%

4.9%

4.9%

high concurrency placement

predicted

2083

2027

1984

1960

1936

1871

1789

1675

1503

1209

625

#N/A

measured

2073

2048

2041

2023

1997

1978

1930

1886

1798

1639

1480

853

% error

0.5%

1.1%

2.9%

3.2%

3.2%

5.7%

7.9%

12.6%

19.6%

35.5%

1367%

#N/A

296

) \ L L 6 0 0 K B I N 0 E R |

91RYEDALER0AD
A WEST RYDE 2114 d

