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ABSTRACT 

Main aim of this project is to investigate the application of parallel processing 

techniques to digital image compression. Digital image compression is used to reduce 

the number of bits required to store an image in computer memory and/or transmit it 

over a communication link. Over the past decade advancements in technology have 

spawned many applications of digital imaging, such as photo videotex, desktop 

publishing, graphics arts, colour facsimile, newspaper wirephoto transmission, medical 

imaging. For many other contemporary applications, such as distributed multimedia 

systems rapid transmission of images is necessary. Dollar cost as well as time cost of 

transmission and storage tend to be directly proportional to the volume of data. 

Therefore, application of digital image compression techniques become necessary to 

minimise costs. 

A number of digital image compression algorithms have been developed and 

standardised. With the success of these algorithms, research effort is now directed 

towards improving implementation techniques. Joint Photographic Experts Group 

(JPEG) and Motion Photographic Experts Group (MPEG) are international 

organisations which have developed digital image compression standards. Hardware 

(VLSI chips) which implement the JPEG image compression algorithm are available. 

Such hardware is specific to image compression only and can not be used for other 

image processing applications. A flexible means of implementing digital image 

compression algorithms is still required. An obvious method of processing different 

imaging applications on general purpose hardware platforms is to develop software 

implementations. 



JPEG uses an 8 X 8 block of image samples as the basic element for compression. 

These blocks are processed sequentially. There is always a possibility of having similar 

blocks in a given image. If similar blocks in an image is located, then repeated 

compression of these blocks is not necessary. By locating similar blocks in the image, 

speed of compression can be increased and the size of compressed image can be 

reduced. Based on this concept an enhancement to the JPEG algorithm is proposed, 

called Block Comparator Technique (BCT). 

Most of the current implementation of JPEG and MPEG compression methods are in 

sequential form. Parallel processors are becoming more affordable and are likely to be 

used quite extensively in the near future. Therefore various options for implementing 

digital image compression algorithms were investigated on parallel computer 

architectures. 
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Abstract 

This chapter gives an introduction to the existing digital image compression techniques, 

parallel processing techniques, the research problem and investigation procedures 

described in this thesis. 

A literature survey was undertaken to study the existing digital image 

compression techniques, performance improvement techniques, and parallel processing 

techniques. The Joint Photographic Experts Group (JPEG) algorithm was selected for 

this research. At present JPEG standard compression process is done block-by-block in 

a sequential manner. An enhancement to the current JPEG compression technique is 

proposed. The aim of this enhancement is to speedup the operation and reduce the 

compressed image size. Implementation of the JPEG algorithm on parallel computers, 

to further speedup compression operations, has also been studied. 
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1.1 Introduction 

Digital image compression is used to reduce the number of bits required to store an 

image in computer memory and/or transmit it over a communication link [Jain, 89]. 

Image compression prior to transmission should reduce the amount of information to be 

transmitted, thus lowering the bandwidth requirements and cost. The main focus of this 

research is to enhance the performance of the current digital image compression 

method. Details of the research problem are given in section 1.2. 

A literature review of existing digital image compression standards, and 

techniques to improve compression parameters such as quality, speedup and 

compression ratio are discussed in section 1.3. 

Research objectives are explained in section 1.4. Outline of thesis chapters is 

given in section 1.5. 

1.2 Problem Statement 

Transmission of image data using simple techniques requires a bit rate that is too large 

for many communications links or storage devices. Digitisation may be desirable for 

security and/or reliability, but it can cause bandwidth explosion. Hence data 

compression is required to use the available bandwidth as effectively as possible. 

Over the past decade advancements in technology have spawned many 

applications of digital imaging, such as photo videotex, desktop publishing, graphics 

arts, colour facsimile, newspaper wirephoto transmission, medical imaging. For many 

other contemporary applications, such as distributed multimedia systems rapid 

transmission of images is necessary. Images are used in multimedia for browsing, 

retrieval, storage and slide show. Research challenge includes developing real-time 

compression algorithms and guaranteed Quality of Service in multimedia applications 

[Furht, 94] [Furht, 95]. Dollar cost as well as time cost of transmission and storage 

tend to be directly proportional to the volume of data. Therefore, application of digital 

image compression techniques become necessary to minimise these costs. 

A number of digital image compression algorithms have been developed 

[Aravind, 89] and standardised, such as the JPEG, the MPEG and PX64 standards. 

Most of the current implementations of JPEG and MPEG compression methods are in 

sequential form. Parallel processors are becoming more affordable and are likely to be 

used quite extensively in the near fumre. Thus techniques for parallel processing of 

image compression can deliver substantial dividends. In this thesis an improvement to 
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the JPEG algorithm and a study of techniques for parallel implementation of image 

compression is presented. 

1.3 Literature Review 

Literature survey covered similar work reported in journals and conference proceedings. 

To provide an overview of previous work and to provide a basic theoretical 

understanding of the subject, the papers presented by various authors are reviewed and 

quoted in this chapter. The areas covered in the literature survey are: digital image 

compression techniques, standards such as JPEG, MPEG, PX64, parallel 

implementations, performance analysis issues. 

Digital image compression techniques are discussed in section 1.3.1. Image 

compression algorithms include optimisation of parameters, such as quality, complexity, 

compression ratio and speedup of operation. Techniques employed to improve these 

parameters are discussed in section 1.3.2. 

L3.1 Digital Image Compression Techniques 

Various digital image compression techniques, hardware, and software are discussed in 

this section. 

Borko Furht has presented a classification of digital image compression technique 

in p'urht, 92]. Digital image compression techniques can be broadly classified into still 

image compression and motion image compression techniques. Still image compression 

techniques can be further classified into lossy compression and lossless compression 

techniques. Lossless compression techniques are used to recover the original image 

representation perfectly, whereas a lossy compression technique is used to output image 

similar to the original one. Lossy compression provides higher compression ratio. 

Lossless digital image compression techniques can be classified based on encoding 

technique such as Huffinan coding. Arithmetic decomposition, Lempel Ziv, and Run 

length. Lossy compression techniques are classified into prediction based technique, 

fi^equency oriented techniques, importance oriented techniques, and hybrid techniques 

[Furht, 95]. Prediction based techniques predict subsequent values by observing previous 

values. Frequency oriented technique apply the Discrete Cosine Transform (DCT). 

Importance oriented techniques use some important characteristics of images as the basis 

for compression. The hybrid compression techniques, such as JPEG, MPEG and PX64 

use several approaches such as DCT, Vector Quantisation, prediction technique. 
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Digital image compression techniques can also be classified based on the 

algorithms used such as Wavelet transform. Fractal image, Vector Quantisation and 

DCT. The Wavelet transform algorithm is based on basis functions [Koomwinder, 93]. 

Fractal images are based on Iterated Function Systems (IFS) [Bamsley, 93]. Vector 

Quantisation is based on vector representation of the image and based on code book 

design [Cosman, 96] [Gersho, 92]. The JPEG algorithm is based on Differential Pulse 

Code Modulation (DPCM) and the DCT [Pennebaker, 93]. 

Wavelet transform can also be used with the JPEG standard in the video industry 

for on-line editing [Cornell, 93]. The VQ method is complicated by the need for code 

design. Therefore, coding with Vector Quantisation is slow as compared to coding with 

the JPEG algorithm. VQ is more efficient when it is combined with other techniques. 

The JPEG standard is widely used for still imaging applications. The JPEG algorithm is 

used in the standard developed by the Motion Pictures Expert Group (MPEG), for 

compressing moving pictures as well. Therefore, the JPEG algorithm was chosen for 

this research purpose. 

Aravind has described a number of digital image compression algorithms and 

standards, such as the JPEG, the MPEG and PX64 [Aravind, 89]. The JPEG standard is 

described in sufficient detail in [Nelson, 92a], [Pennebaker, 93] and [Wallace, 92]. A 

very succinct description of the various techniques used in the JPEG standard is given 

by William Pennebaker in [Pennebaker, 93]. The MPEG standard is described in [Gall, 

91] and [Draft, 90]. The PX64 compression algorithm for video telecommunications is 

described in [Liou, 91]. PX64 algorithm consists of DCT-based intraframe compression, 

which is similar to JPEG algorithm and predictive interframe coding based on 

Differential Pulse Code Modulation (DPCM) and motion estimation. Therefore all these 

standards use the DCT-based method of compression as a basic step. 

Two prominent image compression techniques are predictive technique and 

DCT-based technique [Pennebaker, 93]. The JPEG was working on still image 

compression using both techniques. The predictive technique is a lossless compression 

technique while the DCT - based technique is a lossy technique. The DCT-based 

method of compression is widely used, as it is suitable for a large number of 

applications, and also, it is expected that DCT-based technique developed for 

implementing the JPEG standard can be applied to compressing motion picmres as well; 

because the MPEG standard is also based on the DCT . 

Some of the hardware chips for digital image compression in VLSI 

implementation are Toshiba's VLSI processor T9506 [Sugai, 87], C-Cube's JPEG 

CL550 chipset, SGS-Thomson's STl 140 CMOS chip [Leonard, 91], and Intel's Digital 

Video Interactive (DVI) chip [Vaaben, 91] 1750 video processor [Harney, 91]. 
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1.3.2 Performance Improvement 

In developing digital coders many parameters need to be considered, such as bit rate, 

quality of output image, complexity of the algorithm, compression ratio, quality of 

service and speed of operation. Reduced bit rate reduces quality, unless complexity of 

the coding technique is increased. Complexity raises cost, and in many coding 

techniques it increases the processing delay as well. 

The JPEG algorithm compresses the image based upon a user specified quality 

factor, where for higher quality of output image lower compression ratio can be 

achieved and vice verse. In the JPEG compressed data structure block numbers are not 

specified. If any block is lost during transmission then the output image is not the same 

as the input image. 

Papathanassiadis T. [Papathanassiadis, 92] discussed compressed image data 

structure with block numbers. This has the potential of improving the quality of service. 

But, by including block numbers the compression ratio gets reduced. 

Roberto Rinaldo [Rinaldo, 95] has discussed block matching technique for 

fractal image coding technique. The proposed coding scheme consists of predicting 

blocks in one subimage from blocks in lower resolution subbands with the same 

orientation. This block prediction scheme is simpler than the iterative scheme adopted 

in standard fractal block coders and visual quality is better than the other schemes. A 

drawback of Rinold's scheme is the larger encoding time required in comparison to the 

time required in coding techniques like JPEG. 

The DCT-based methods work on each block of image independently, therefore, 

the JPEG algorithm can be parallelised by processing each image block on a separate 

processor. The JPEG algorithm can thus be implemented on parallel computer 

architectures. 

Rapid advances in electronics technology throughout the 1980s has allowed 

more complex, yet relatively inexpensive computational devices with greatly increased 

throughput to be developed. New concurrent (or parallel) techniques using fast 

sequential processing devices, and multi-processing devices are now being applied to 

digital data compression. Existing parallel implementations of digital image 

compression are discussed below. 

The Digital Video Interactive (DVI) algorithm was implemented on the MEiKO 

and the iPSC/2 parallel architectures [Tinker, 89]. The MEiKO computer is based on the 

T414 transputer. It comprises 65 transputers, and the software is written in OCCAM and 

C programming language. The iPSC/2 is a hypercube parallel computer based on Intel's 

i80386 microprocessor. The compression algorithm on a 64 node MEiKO computer 

took 13.85 sec/frame and on a 64 node iPSC/2 computer it took 9.05 sec/frame. 
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Therefore, on the 64 node MEiKO or the iPSC/2 computers compression algorithm 

could not achieve real-time compression. Even if the number of processors is increased 

in the iPSC/2 computer, the minimum compression time that could be obtained is nearly 

2 sec/fi-ame [Tmker, 89]. 

Compact Disc-Interactive (CD-I) fliU motion video encoding algorithm was 

implemented on Parallel Object Oriented Machine (POOMA). This system was 

developed at the Philips research laboratories. It is based on the Motorola MC68020 

with a loosely coupled MIMD architecture and consists of 100 nodes. Compression 

algorithm took less than 2 sec/fi-ame on 100-processor nodes [Sijstermans, 91]. For the 

parallel algorithm used, saturation will occur if more than 100 processors are used. Thus, 

for real-time applications even this system is not quite adequate. 

The HDTV Codec is based on a motion-adaptive DCT algorithm. It consists of a 

parallel signal processing architecture and LSI gate array [Kinoshita, 92]. This hardware 

compresses the motion picture at the bit rate of 130 Mb/s, that is, in real-time. This 

hardware is specific to motion image compression. 

S. Srinivasan [Srinivasan, 93] describes the design of a real time image 

processing system using DSP 56000/96000 family of processors. This system can be 

used for a variety of image processing and graphic applications which require transform 

computations. However, it is found that the system is not very eflBcient for coding and 

decoding part of the image compression algorithm. 

John Elliott [Elliott, 89] describes simulation of image compression algorithm on 

a supercomputer based on the Transputer processor along with the architecture of the 

Edinberg Concurrent supercomputer. The parallel algorithm used on this supercomputer 

can process 6 - 7 frames/sec by optimising the code. But for real-time image 

compression a speed of at least 18-20 fi-ames /sec is required. 

M. N. Chong [Chong, 90] describes implementation of the adaptive transform 

coding technique on a transputer based quadtree architecture. There is a limitation to the 

degree of parallelism that can be achieved in this implementation. The results obtained on 

the quadtree structure for various sized networks are given in this paper. The least 

execution time of 1.538 sec. is obtained on 16 processors. This execution time is higher 

than that required for real-time image compression. 

R. Aravind [Aravind, 89] explains implementation of the DCT-based JPEG 

decompression algorithm on a Digital Signal Processor (DSP)-based system. This 

decoder is capable of processing in real-time, at approximately 15 fi-ames/sec with a 

fi-ame size of 128 x 96. 

Srinath Ramaswamy [Ramaswamy, 93] describes a parallel pipehned DSP-based 

architecture for implementing the DCT-based JPEG algorithm with arithmetic coding. 

He has given the experimental results of executing the JPEG algorithm on a DSP-based 
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architecture for a 256 x 256 pixel monochrome still image. The execution time varies 

firom 0.61 sec. to 0.12 sec as the number of processors is increased firom one to six. For 

a large image size, image compression can be achieved in close to real-time by increasing 

the number of DSP processors in the network. 

Peter Monnes and Borko Furht [Monnes, 94] explain analysis of parallel JPEG 
algorithm on Intel i80286 and i80386 processors. The parallel technique used in this 
paper uses parallelisation only for DCT and quantisation part of the JPEG algorithm. The 
encoding part is done serially. Therefore there is still opportunity for parallelisation of 
JPEG algorithm. 

Placement of blocks of image data on different parallel architectures is one of the 

many issues that was explored and investigated fiirther. Papathanassiadis T. 

[Papathanassiadis, 92] discussed various image partitioning strategies. There are two 

main methods used for image partitioning: with interblock dependency and without 

interblock dependency. Chung-Ta King [Chung-Ta King, 91] discussed strategies for 

partitioning and processing images with interblock dependency on distributed memory 

multi-computers. Browne [Browne, 89] discussed the various options of image 

processing mapping methods onto Transputer networks. 

1.4 Research Objectives 

JPEG is one of the most widely used image compression standard. This research is 

focused on improving the performance of this standard, and its implementation on 

parallel architectures. Hardware (VLSI chips) which implement the JPEG image 

compression algorithm are available. Such hardware is specific to image compression 

only and can not be used for other image processing applications. A flexible means of 

implementing digital image compression algorithms is still required. An obvious method 

of processing different imaging applications on general purpose hardware platforms is to 

develop software implementations. 

JPEG uses an 8 x 8 block of image samples as the basic element for compression. 

These blocks are processed sequentially. There is always a possibility of having similar 

blocks in a given image. If the similar blocks in an image are located, then repeated 

compression of these blocks is not necessary. By locating similar blocks in the image, 

speed of compression can be increased and the size of compressed image can be reduced. 

Based on this concept an enhancement to the JPEG algorithm, called the Block 

Comparator Technique (BCT) is proposed. For many applications rapid transmission of 

unages in real-time and good quality of service is required. Various options for 
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enhancing the current JPEG standard is investigated, to reduce the compressed image 

size and to improve the speed of compression. 

One of the primary objectives of this research project was to develop techniques 

for exploitmg parallel processing systems for real-time image compression and 

decompression. It is expected that such parallel processing technique will not only 

reduce the execution time, but will also accomplish other significant performance 

improvements such as improved quality of compressed image, improved reliability and 

availability of the system, and better scalability. Therefore various options are 

investigated for implementing digital image compression algorithms on parallel 

architectures. 

Some of the implementation options were studied by simulating these on 

computer models. A simulation package called NETWORK n.5 was used for building 

the computer model and running the required experiments on the same. Simulation 

results were used to determine speedup, scaleup and efficiency of the techniques 

developed. 

1.5 Thesis Outline 

This section gives a brief description of each of the following chapters. 

Chapter 2 Digital image compression techniques: In this chapter different digital 

image compression techniques, and the JPEG image compression standard are described. 

Digital image compression techniques are based on algorithms such as Wavelet 

transform, Fractal images, Vector Quantisation and Discrete Cosine Transform. Digital 

image compression technique developed by the Joint Photographic Experts Group is 

based on the Discrete Cosine Transform. 

The JPEG technique is applicable to a wide variety of applications and is one of 

the most widely used technique. Therefore, JPEG technique is chosen as the main focus 

for our research. Present JPEG compression process is done block-by-block in a 

sequential manner. An enhancement to the current JPEG compression technique is 

proposed, to speedup the operation and reduce the compressed image size. 

Chapter 3 Parallel processing plans for digital image compression techniques: This 

chapter describes methods used for parallel processing of digital image compression 

algorithms. Types of parallel computers and parallel processing 'Plans' for digital image 

compression are described. Parallel computers are classified based on memory access 

technique, network topology and some other issues. 
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Digital image compression can be performed on parallel computers in a variety of 

ways. Each uniquely identifiable way of implementation is called a Plan. Each Plan can 

be specified as a 6-tuple consisting of image compression technique, block dependency, 

image partitioning method, memory architecture, network topology and the number of 

processors. Some of these Plans were implemented on available parallel computers and 

other Plans were simulated using the Network n.5 simulation package. 

Model building and simulation involves ten steps, viz. problem formulation, 

model building, data collection, model translation, model verification, model validation, 

experiment planning, experimentation, analysis of results, and documentation. Each of 

these steps are described briefly in this chapter. 

Chapter 4 Implementation of the JPEG algorithm on parallel computers: This 

chapter describes the hardware architecture and methods used for the implementation of 

the JPEG algorithm on parallel computer systems such as Mercury, Shiva and Param. 

The Mercury system has a distributed memory architecture. Shiva system has a shared 

memory architecture, and the Param system uses hybrid memory architecture. 

JPEG algorithm was implemented on these three parallel computers with 

different image sizes and on various sized networks. This chapter describes 

implementation of the JPEG algorithm on three parallel computer systems and it gives 

the experimental results obtained on the same. 

Chapter 5 Simulation of digital image compression techniques: This chapter 

describes modelling and simulation methods used for investigating parallel processing of 

image compression techniques, using the Network II.5 simulation package. Image 

compression Plans have been modelled for different parallel computer architectures using 

the Network II. 5 simulation package. This chapter describes details of the model 

building process and the process of running simulation experiments for various Plans. 

Simulation results for these Plans are compiled to evaluate the performance of these 

Plans. 

Speedup, scaleup and efficiency obtained for each Plan is given and the 

performance of different Plans are compared. 

Chapter 6 Conclusions and future research: This chapter gives the conclusions and 

directions for fijture research. The Block Comparator Technique as well as parallel 

implementation aspects are discussed. 
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Abstract 

This chapter describes digital image compression techniques, and the JPEG image 

compression standard. Digital image compression techniques are based on algorithms 

such as the Wavelet transform. Fractal images. Vector Quantisation and Discrete Cosine 

Transform (DCT). The digital image compression technique developed by the Joint 

Photographic Experts Group (JPEG) is mainly based on the quantisation of the DCT. 

The JPEG technique is applicable to a wide variety of applications and is one of 

the most widely used technique. Therefore, the JPEG technique is chosen as the main 

focus for this research. Presently, JPEG compression process is done block by block in a 

sequential manner. An enhancement to the current JPEG compression technique is 

proposed. The aim of this enhancement is to speedup the operation and reduce the 

compressed image size. 

The JPEG algorithm can be implemented on parallel computers to further 

speedup the compression and decompression operations. 
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2.1 Introduction 

Digital image compression techniques can be broadly classified into still image 

compression and motion image compression techniques. Still image compression 

techniques can be fiirther classified based on the algorithm used for compressing the 

image such as Wavelet transform. Fractal images. Vector Quantisation (VQ) and the 

Discrete Cosine Transform (DCT). These digital hnage compression algorithms are 

described in section 2.2. 

The JPEG standard is widely used for still imaging appUcations. The JPEG 

algorithm is used in the standard developed by the Motion Pictures Expert Group 

(MPEG), for compressing moving pictures as well. Therefore, The JPEG algorithm was 

chosen for our research. Section 2.3 describes the JPEG algorithm in detail. 

JPEG uses an 8 x 8 block of image samples as the basic element for compression. 

These blocks are processed sequentially. There is always a possibility of having similar 

blocks in a given image. If similar blocks are located in an image, then repeated 

compression of these blocks is not necessary. By locating similar blocks in an image, 

speed of compression can be increased and the size of compressed image can be reduced. 

The technique used to enhance the JPEG algorithm is called Block Comparator 

Technique in this thesis. This Block Comparator Technique (BCT) is described in section 

2.4. 

2.2 Digital Image Compression Techniques 

By using mathematical methods such as Fourier transform, it is possible to represent a 

given image in terms of a few basis fiinctions [Hunt, 93]. Recently, mathematicians, 

scientists and engineers have been active in seeking new methods for representing signals 

or data in terms of basis fijnctions. Because these fijnctions can be analysed, understood 

and characterised in a succinct maimer, these methods can be applied to digital image 

compression and many other applications. 

Based on the mathematical methods used in digital image compression, still 

image compression techniques can be classified as lossy compression techniques or 

lossless compression techniques. A classification tree for digital image compression 

techniques is shown in figure 2.1. Lossy compression techniques can compress the image 

down to 50 : 1 ratio, where-as lossless compression techniques can compress the image 

only upto a ratio of 3:1. The lossy compression technique can be fiirther classified based 

on the algorithm used such as JPEG algorithm (DCT-based technique), Wavelet 

transform, Fractal images. Vector Quantisation and DCT. Lossless compression 
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technique include the Joint Bi-level Image Experts Group (JBIG) algorithm and the 

JPEG algorithm (predictive technique) [Pennebaker, 93]. Lossy compression techniques 

are used in applications such as colour facsimile, newspaper wire-photo transmission, 

medical imaging, graphics arts, photovideotex, desktop publishing, and many other still 

imaging applications. 

Digital Image Compression Techniques 

Lossless Compression Technique Lossy Compression Technique 

JPEG (Predictive J B I G JPEG (DCT-based Fractal VQ DCT 
Technique) Technique) Wavelet 

Figure 2.1 Digital image compression techniques 

The Wavelet transform algorithm is based on basis fiinctions; these are described 

in section 2.2.1. Fractal images are based on Iterated Function Systems (IFS); these are 

described in section 2.2.2. Vector Quantisation is based on vector representation of the 

image and code book design; this is described in section 2.2.3. The JPEG algorithm is 

based on the DCT and Differential Pulse Code Modulation (DPCM). The DCT-based 

method is described in section 2.2.4. 

2.2.1 Wavelet Transform 

There are two types of Wavelet Transforms ie. Continuous Wavelet Transform and 

Discrete Wavelet Transform. The Continuous Wavelet Transform was first presented by 

Grossmann and Morlet in 1984. Thereafi;er it was developed by others, including 

Holschneider (1988), Ameo'odo et al. (1989), Forge (1992). Daubechies (1986 and 88) 

was one of the first to work on Discrete Wavelet Transform. Wavelet transformation has 

a number of applications in signal processing and data compression. 

Wavelet transform breaks the signal into a number of wave pulses (wavelets) that 

can be dilated and translated in two or more dimensions; and if the wavelet is 

anisotropic, it can also be rotated. These wave pulses are represented in terms of an 

amplitude fimction and can be analysed using scale and position of a signal [Hunt, 93]. 

By choosing an appropriate wavelet one can look at the properties of a signal, such as, 

amplitude and time scale of the original signal. 
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Wavelet basis functions are orthonormal. Therefore, these transformations can 

be used to remove redundant signals from the original signal, this leads to compression 

of the original signal. 

In Wavelet compression the original multi-resolution image is decomposed into 

a low resolution signal and a difference signal [Nacken, 93] [Koomwinder, 93]. The low 

resolution signal is an average of the low frequency signals and is calculated by applying 

low pass filtering, followed by subsampling. The low resolution signal can be described 

by a smaller number of samples than the original image. The difference signal is the 

difference between the low resolution image and the actual image. The difference signal 

can be coded with a smaller number of bits per pixel. Thus the total number of bits 

required to encode the image is smaller than the original image. 

2.2.2 Fractal Image Compression 

Fractal image compression is based on Iterated Function System (IFS) theory and the 

Collage theorem. Fractal image compression can be achieved via the IFS compression 

algorithm, which is an interactive image modelling method based on the Collage 

theorem. 

IFS fractals can be obtained through suitable transformation of the image 

[Bamsley, 93]. Such fractals can be used as approximates for real world images. Real 

world image is one of many basic shapes, such as a leaf or a letter of the alphabet, or a 

black and white fem, or a black cat sitting in a field of snow, etc. These fractals have the 

property that they are themselves models for real world images, and at the same time 

can be defined by finite strings of zeros and ones. This makes them suitable for image 

compression. 

The Collage theorem says that "to find an IFS whose attractor is close to looks 

like a given set, one must try to find a set of transformations, contraction mappings on a 

suitable space within which the given set lies, such that the union, or collage, of the 

images of the given set under the transformations is close to or looks like the given set" 

[Bamsley, 93]. The degree to which two images look alike is measured using the 

Hausdorff metric. 

2.2.3 Vector Quantisation 

In the Vector Quantisation (VQ) technique image signals are represented by vectors of 

samples. Vector Quantisation can be viewed as a form of pattem recognition where an 

input pattem is approximated by one of a predetermined set of standard pattems. That is, 

the input signal is vector quantised in such a way that the input pattem is matched with 
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one of a stored set of templates or codewords. In this way the complicated image signal 

can be replaced by a series of simple table lookups. 

The following theorem shows that VQ can at least match the performance of any 

arbitrarily given coding system that operates on a vector of signal samples or 

parameters. Theorem is as follows. " For any given coding system that maps a signal 

vector into one of N binary words and reconstructs the approximate vector from the 

binary word, there exists a vector quantiser with codebook size N that gives exactly the 

same performance, ie. for any input vector it produces the same reproduction as the 

given coding system" [Gersho, 92]. 

Pattem matching with set of codebooks is done in several ways, such as nearest 

neighbour quantiser and exhaustic search algorithm [Gersho, 92]. In the nearest 

neighbour quantiser search algorithm, a vector is represented by the nearest vector 

stored in the codebook. An advantage of such an encoder is that the encoding process 

does not require any explicit storage of the geometrical description of the cells. In 

exhaustic search algorithm, the search is performed sequentially on every code vector in 

the codebook, keeping track of the "best so far" and continuing until every code vector 

was tested. This method of pattem matching requires more time but the resulting 

compression is better than the nearest neighbour quantiser method. 

2.2.4 Discrete Cosine Transform 

Discrete Cosine Transform is widely used for many digital image compression 

techniques. Digital image compression technique developed by the Joint Photographic 

Experts Group (JPEG) is based on the DCT and predictive algorithm. The Consultative 

Committee for Intemational Telegraph and Telephone (CCITT, now called Intemational 

Telephone Union - ITU) and Intemational Standard Organisation (ISO) formed this 

committee to develop compression standards for still and motion pictures [Wallace, 92]. 

In the JPEG algorithm there are mainly two image compression methods viz. 

predictive method which is carried out in the spatial (data) domain, and the transform 

method which is performed in the frequency domain [Leger, 91]. The predictive method 

is a lossless compression technique while the DCT-based method is a lossy compression 

technique. DCT-based method of compression is widely used as it is easier to 

implement and is suitable for a large number of applications including motion picmre 

compression. 

JPEG algorithm is applicable to a wide variety of applications. In most of the 

applications the JPEG algorithm is used as a library function. For example, NeXTStep is 

the standard operating environment on the NeXT computers and designed to support a 

wide range of applications. NeXTStep uses Tag Image File Format (TIFF). The JPEG 
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algorithm is added to support TIFF file reading and writing facilities [Cockroft, 91]. 

JPEG is also used for Picmre Archiving and Communication Systems (PACS) in 

medical imaging field [Kajiwara, 92]. A detail description of the JPEG standard is given 

in the next section. 

2.3 JPEG Standard 

There are three intemational standards available for image compression for different 

applications, viz. JPEG, MPEG, and P*64 [Quinnell, 93]. JPEG is intended for 

continuous-tone still images, MPEG is intended for video images, and P*64 is for video 

telephony. In this section the JPEG standard is described. 

The first step in the JPEG algorithm is to locate data redundancy in the image 

pixel values. This is done by using the Discrete Cosine Transform, which is similar to 

the Fourier Transform but includes only the Cosine part of the function. Wavelet 

transforms can also be used with the JPEG standard in the video industry for on-line 

editing [Comell, 93]. The Vector Quantisation (VQ) method is complicated by the need 

for code design. Therefore, coding with Vector Quantisation is slow as compared to 

coding with the JPEG algorithm. Vector Quantisation is more efficient when it is 

combined with other techniques. Therefore, the JPEG algorithm was chosen for our 

research purpose. The JPEG algorithm can be implemented in hardware as well as in 

software [Baran, 90]. 

Details of the DCT-based JPEG algorithm are given in section 2.3.1. The 

available hardware chips in VLSI implementation include the C-Cube Micro system's 

CL550 chipset, the SGS-Thomson's STl 140 CMOS chip [Leonard, 91], and Intel's 

Digital Video Interactive (DVI) chip [Vaaben, 91]. Section 2.3.2 describes the CL550 

chip in brief. 

JPEG has developed software implementation that can be used on general 

purpose machines and can be modified easily according to the application requirement. 

Section 2.3.3 describes the version-4 of modified JPEG software. 

JPEG compressed file stmcture is described in section 2.3.4. 

2.3.1 DCT-Based JPEG Algorithm 

In the JPEG algorithm the source image is stmctured as follows [Wallace, 92]. A source 

image consists of 1 to 255 image components (depending upon resolution of the 

image). These components are sometimes called colours, spectral bands or channels. A 

colour image can be represented in many colour systems viz.. Red Green Blue (RGB), 
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YUV ( Y for luminance or brightness, U and V for colour difference signals Y-R and Y-

B respectively), Cyan Magenta Yellow and Black (CMYK) [Ang, 91]. Each component 

consists of a rectangular array of samples. A sample is defined to be an unsigned 

integer with the range [0, 2? -1] or signed integer with the range [-2? , 2?-!], where p is 

sample precision in bits. The JPEG standard has defined the concept of a "data unit". A 

data unit is an 8 x 8 block of samples in DCT-based codecs. Generally, data units of 

image components are ordered from left-to-right and top-to-bottom. 

Components of an image can be stored in one of two possible formats, namely 

interleaved format and non-interleaved format. If an image component is stored in the 

non-interleaved format, the data units are ordered in a pure raster scan sequence as 

shown in figure 2.2. 

Top 

IL . - . . _ . _ _ . _ _ . .^Data Units 

Left 
Right 

Bottom 

Figure 2.2 Non-interleaved data ordering 

If the image has two or more colour components each one of these may be stored 

in an interleaved format. Each component Ci is partitioned into rectangular regions of 

Hi X Vi data units, as shown in the generalised example of figure 2.3. Regions within a 

component are ordered from left-to-right and top-to-bottom. Within a region also, data 

units are ordered from left-to-right and top-to-bottom. 

2,3.1.1 DCT-based Compression Steps 

Modified JPEG algorithm involves colour space conversion. Minimum Coded Unit 

(MCU) extraction, DCT, quantisation and encoding steps as shown in figure 2.4. Each 

of these step are described below. 

1. Get the source file header information such as image format, image width, image 

height. Get the user specified parameters and generate quantisation table and 

Huffman encoding tables and initialise the JPEG output file header and marker. 
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2. Conversion from input image format to a standard internal format (either RGB 

or grayscale). Colour space conversion (eg. RGB to YCbCr). This is a null step 

for grayscale images. 

1 

2 

3 

C is Colour component 

C1:H1=2,V1=2 

0 1 2 3 

Z^ 
r^l 

^ ^ 

"y: 

C2: H2=2, V2=l 

Data unit 

^—Region 

C3: H3=1,V3=2 

0 1 2 3 

Vl±1. 
rWi 

C4: H4=l, V4=l 

o—^o—^o^̂ ^o 

Figure 2.3 Interleaved image data ordering 

The following steps (3 to 8) are performed once for each scan of a complete 

image, i.e. once if making a non-interleaved file, and more than once for an interleaved 

file. 

3. Minimum Coded Unit (MCU) extraction, i.e. creation of a single sequence of 

8 x 8 sample blocks. 

4. Edge expansion. This step operates independently on each colour component. 

5. DCT transformation of each 8 x 8 block. 

6. Quantisation, scaling and zigzag reordering of the elements in each 8 x 8 block. 

7. Huffman (or arithmetic) encoding of the transformed block sequence. 

8. Output the JPEG file with required headers/markers. 



Chapter 2 18 

1. Get Source Image Header 
Information and user Specified 

Parameters 

L 
Initialise Output File 

1 
2. Colour Space 

Conversion 

I 
3. MCU Extraction 

I 
4. Edge Expansion 

HZ-n 
5. DCT 

I 
6. Quantisation 

I 
7. Huffman Encoding 

/ 

rr^ 

Baseline JPEG 
algorithm 

8. Output 
File 

Figure 2.4 Modified JPEG algorithm 
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2.3.1.1a Input File and Parameters 

The input image file to be compressed by the JPEG algorithm can be in either of the 

following formats: PPM (Pulse Pixel Map), GIF (Graphics Literchange Format), RLE 

(provided by Utah Raster Toolkit). Details of these formats differ but the type of 

information included in each of these is similar. In general, an input file contains 

information about the format used, image width, image height, maximum value of the 

sample, and the image data. 

Parameters such as quality factor, smoothing factor, and sampling ratio are input 

by the user. For any unspecified parameters the default value is used by the software. 

Quantisation tables are generated by taking into account the specified quality 

factor. AC and DC Huffman tables are also generated as part of the algorithm execution. 

Currently, the values generated are fixed by the JPEG standard. Though, it is possible to 

vary these tables to get compressed images of different compression ratios. The output 

file includes appropriate header along with the quantisation tables and Huffman tables. 

The subsequent step, colour space conversion, is explained in the next section. 

2.3.1.1b Colour Space Conversion 

The JPEG source image is divided into groups of rows. The number of rows in each 

group is equal to the maximum sampling factor. Each source image group (GrpSrcImg) 

is subjected to Colour Space Conversion (ClrSpcCnv) step. This step converts the input 

colour space of any format to the YCbCr format. The YCbCr format is defined by the 

CCIR 601-1 standard. For example, if the input image is in the RGB colour format, then 

the values of the Y, Cb, and Cr components can be calculated by the following 

formulae: 

Y = 0.299900 * R + 0.58700 * G + 0.11400 * B 

Cb = -0.016874 * R - 0.33126 * G + 0.50000 * B + MAXJSAMPLE/2 

Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + MAXJS AMPLE/2. 

Here MAXJSAMPLE is maximum value of sample in a source image. For 

example, in an 8-bit image, MAXJSAMPLE is 255. 

2.3.1.Ic MCU Extraction 

Before applying the DCT function the input image is converted to a standard format and 

divided into 8 x 8 sample blocks. 
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The JPEG proposal defines the term "data unit" as a block of 8 x 8 samples and 

MCU to be the smallest group of interleaved data units. MCU extraction is used for 

better organisation of data units for interleaved image data. MCU is a group of data 

units taken from the same region of all image components. 

A maximum of four components can be interleaved. And a maximum of ten data 

units are allowed in an MCU. Because of this restriction, not every combination of four 

components which can be represented in non-interleaved order within JPEG compressed 

image is allowed to be interleaved. The JPEG proposal allows some components to be 

interleaved and some to be non-interleaved within the same compressed image. 

In the JPEG algorithm, the blocks of 8 x 8 samples and image components are 

processed sequentially; even though it is also possible to process image components 

simultaneously. In the non-interleaved format image components are independent of 

each other; whereas, in the interleaved format image components are dependent upon 

each other. In the interleaved format a maximum of four image components can be used 

in a single MCU. Thus, up to four image components can be processed at a time. 

2.3.1.Id Edge Expansion 

Edge expansion is used to make the number of samples in a block, a multiple of the 

MCU dimension. This is done by duplicating the right-most column and/or bottom-most 

row of pixels. 

2.3.Lie Discrete Cosine Transform (DCT) 

The Discrete Cosine Transform (DCT) is calculated for each block of the MCU. Output 

of the DCT F(u, v) gives orthogonal basis signals given by 

F(u.v) = 1 C(u)C(v)[ I i f ( x , y ) * c o s - ( 2 ^ * c o s - ( ? ^ ] (2.1) 
4 x=Oy=0 ^^ ^° 

where C(u), C(v) J = l / V 2 u,v = 0 
[= 1 otherwise, 

and F(u,v) = Discrete cosine transformed signal. 

Output of the DCT step for an 8 x 8 block of samples gives 64 coefficients. The 

zero frequency coefficient is called the DC coefficient and the remaining 63 coefficients 

are known as the AC coefficients. The DC coefficient is a measure of the average value 

of the 64 image samples. 
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2.3.1. If Quantisation 

Quantisation is achieved by dividing each DCT coefficient by its corresponding 

quantiser step size and rounding off to the nearest integer value, so that 

Quantised value Q(u,v) = Integer Round ( DCT coefficient / Quantiser step size). (2.2) 

Quantiser step size is calculated with respect to the desired quality of the output 

image. This step is performed to achieve compression by representing DCT coefficients 

with no greater precision than is necessary to achieve a desired image quality. On 

performing quantisation, visually insignificant values are discarded. 

2.3.1.Ig Huffman Encoding 

The first value to be encoded in a block is the DC coefficient. This DC coefficient is 

encoded.as the difference between the DC term of this block and that of the previous 

block, in the encoding order shown in figure 2.5. 

DC(i-1) DC(i) 

DIFF = DC(i) -

Figure 2.5 Encoding the DC coefficient 

Coefficients other than the first one are called AC coefficients. These AC 

quantised coefficients are ordered in a "zig-zag" sequence, as shown in figure 2.6. 

Huffman encoding is done with a zig-zag ordering of the samples. This helps in placing 

the low frequency coefficients before the high frequency coefficients. Encoding requires 

one or more sets of Huffman code tables specified by the application or generated 

during the process of compression. 
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Sample 

Figure 2.6 Zig-zag encoding order 

2.3.1.1h JPEG Compressed File 

The compressed image file contains a header, quantisation table, Huffman tables, and 

compressed data. The detailed stmcture of a compressed image file is described in 

section 2.3.4. 

2.3.2 JPEG Hardware 

The JPEG algorithm was implemented in hardware as a single VLSI chip [Ogawa, 92]. 

In this section the working and limitations of one such hardware implementation are 

briefly described. 

C-Cube Microsystem has developed the CL550 chip for implementation of the 

JPEG algorithm. A block diagram of the CL550 chip is shown in figure 2.7. This chip 

consists of input buffer, output buffer, three functional-units and a sequence controller 

unit. Functional-unit-1 is connected to a colour-space converter (RGB to YUV 

converter) and performs the functions of sub-sampling and level shifting. Functional-

unit-2 is connected to the quantisation table unit and performs DCT and quantisation. 

Functional-unit-3 is connected to AC and DC Huffman tables, and performs Huffman 

encoding and generates output compressed file with header and marker. 

The sequence controller unit controls all the functional-units by giving 

instmctions for execution in accordance with the values set by an intemal register. 
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Functlonal-unit-1 Functional-unit-2 Functional-unit-3 
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Figure 2.7 JPEG compressor chip (CL550) 

Advantages of hardware implementation: 

• Hardware implementation is faster than software based implementation. 

• The chip design is tested extensively before fabrication. 

• Operates at 30 MHz which is sufficient to compress and decompress real-time CCIR 

601 format video [Ruetz, 93]. 

Disadvantages of hardware implementation: 

• Output quality is limited, as only four tables are used in the chip. 

• Huffman encoding tables are fixed. In software implementation it is possible to vary 

these tables to get compressed images of different compression ratios. 

• The range of available subsampling ratios is limited, due to limited real-estate of the 

chip. 

• Low flexibility of compression vis-a-vis quality and compression ratio. 

Many of the limitations of hardware implementation can be overcome in 

software based implementations. Main advantages of software based implementation 

are: 

Flexibility, for variation of parameters such as quality of output image. 

User specified quantisation table and sampling ratio etc. 

Can be implemented on general purpose machines. 

Can be implemented on a variety of parallel computer architectures. 
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2.3.3 DCT-based JPEG Software 

JPEG software packages are available from organisations such as C-Cube Microsystems 

and Kodak. JPEG software is available in many versions. The VER-4 of the software 

was used. The VER-4 software includes routines for down-sampling in addition to the 

standard JPEG steps shown in figure 2.8. 

Execution of the JPEG compression software is initiated by the user command 

"CJPEG". This command is followed by a list of parameters such as quality factor, 

sampling factor, smoothing factor, input file name and output file name. The software 

generates quantisation table form the user specified quality factor and stores it in a 

buffer. This table is used in the quantisation step, and is also stored in the output file. 

The JPEG software takes information such as image format, image-width, 

image-height and maximum value of the sample from the input file header. Number of 

data units and the number of MCUs is calculated from the image-width and image-

height. Then the software reads a group of image rows equal to the maximum horizontal 

sampling factor. Each group is subjected to colour space conversion and downsampling 

steps. The colour space conversion process depends upon the image format. 

Smoothing operation is performed on the image to clean up a dithered input file. 

The smoothing factor (SF) determines the level of smoothing performed. User can 

specify the smoothing factor ranging from 1 to 100. Each input pixel P is replaced by P' 

a weighted sum of itself and its eight neighbours as given in the following formula, 

P = ((Sum of eight neighbouring samples) * SF + P(1-8*SF)) / 9 

where SF=Sf/1024 

Sf = User specified Smoothing factor. 

In the next step smoothed data units are subjected to down-sampling. Down-

sampling is used to reduce the total number of samples. For example, a 2 x 2 array of 

blocks may be reduced to a single block by replacing groups of four samples by their 

average value. 

Down-sampled data units are subjected to edge expansion. MCUs are extracted 

from the edge expanded rows. DCT and quantisation is performed on each data unit of 

the MCU. Quantised MCU is then subjected to a Huffman encoding step. The encoded 

image data is stored initially in a buffer and then in an output file. 
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Figure 2.8 JPEG software routines 
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2.3.4 Compressed JPEG Data Structure 

This section describes the JPEG compressed data file stmcture. JPEG algorithm consists 

of non-interleaved and interleaved data ordering as described in section 2.3.1. In this 

section the non-interleaved data ordering is considered for grey scale images. JPEG 

compressed data stmcture for non-interleaved, greyscale image is as follows 

[Pennabaker, 93]. 

Each compressed data file consists of a header, followed by the compressed 
image data, and terminated by an End of Image (EOI) marker, as shown in table 2.1. 

Table 2.1 JPEG compressed data file structure. 

JHI JPEG Header Information 

Compressed Data Blocks 

EOI End Of Image Marker 

The JPEG header contains four groups of information: quantisation table, frame 
header, Huffman table, and scan header. This JPEG header is followed by blocks of 
compressed image data, and EOI as shown in table 2.2. 

Table 2.2 JPEG compressed data structure for non-interleaved greyscale 

SOI 
DQT, length, quantisation table definition(s) 
SOFn, length, frame parameters 
DHT, length, Huffman table definition 
SOS, length, scan parameters 

Compressed Block 1 data 
Compressed Block2 Data 
Compressed Block3 Data 
Compressed Block4 Data 

etc 
Compressed Blockn Data 

EOI 

SOI-Start OF Image marker 
DQT- Digital Quantisation Table 
SOF-Start Of Frame 
DHT-Digital Huffinan Table 
SOS-Start Of Scan 

EOI-End Of Image marker 

A more detailed description of each component of the compressed file is given 

in the following section. 

2.3.4.1 Quantisation Table Specification 

The quantisation table is included in the compressed data file. This table determines the 

quality of the output image and is determined by the parameters following the DQT 
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marker shown in table 2.3. In this structure Pq specifies the precision of the quantisation 

table elements (0 for 8-bit precision, 1 for 16-bit precision). Tq is the quantisation table 

identifier and may have values from 0 to 3. Qk is the quantisation table elements. It may 

have values from 1 to the maximum value permitted for the specified precision 

[Pennebaker, 93]. 

Table 2.3 Quantisation data segment structure in the JPEG algorithm: 

Parameter 

Marker (X'FFDE') 
Quantisation table definition length 
For each quantisation table: 

Quantisation table element precision 
Quantisation table identifier 
Quantisation table element (k=0, 1, 2, 63) 

2.3.4.2 Huffman Table Specification 

The DHT marker segment provides a mechanism for specifying the Huffman code 

tables as shown in table 2.4. In this structure, the table class Tc, is 0 for DC and lossless 

coding, whereas Tc is 1 for AC code tables. Th is the code table identifier, it may have 

values from 0 to 3. The Huffman table is specified by identifying the number of codes of 

each length from 1 to 16. Huffman code of each length is specified by Vij. 

Table 2.4 Huffman data structure 

Symbol 

DQT 
Lq 

Pq 
Tq 
Qk 

Size 
(bits) 
16 
16 

4 
4 
8 or 16 

Parameter 

Marker (X'FFC4') 

Huffman table definition length 

For each Huffman table: 

Table Class 

Huffman table identifier 

Number of Huffman codes of length i 

fori = 1, , 16 

Value associated with each Huffman code 

fori = 1,..., 16;j = 1,... ,Li 

Symbol 

DHT 

Lh 

Tc 

Th 

Li 

Vij 

Size (bits) 

16 

16 

4 

4 

8 

8 
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2.3.4.3 Frame Header 

The JPEG algorithm divides the image into a number of frames and scans. For non-

interleaved data ordering, a single frame is used, whereas in interleaved data ordering, a 

sequence of frames are used for encoding. The mode of encoding is represented by 

frame header structure in compressed data strucmre as shown in table 2.5. 

Table 2.5 Frame header data structure 

Parameter 

Marker (X'FFCO-3, 5-7, 9-B, D-F') 

Frame header length 

Sample precision 

Number of lines 

Number of samples/line 

Number of components in frame 

Frame component specification (i=l, . 

Component identifier 

Horizontal sampling factor 

Vertical sampling factor 

..,Nf) 

Quantisation table destination selector 

Symbol 

SOFn 

Lf 

P 

Y 

X 

Nf 

Ci 

Hi 

Vi 

Tqi 

Size 

(bits) 

16 

16 

8 

16 

16 

8 

8 

4 

4 

8 

The frame header length Lf gives the length in bytes of the frame parameters. 

Sample precision P gives the precision of sample in bits. Available values for sample 

precision are 8-bit, 12-bit or 16-bit. Number of lines Y represents the number of raster 

lines after the edge expansion step. X specifies the number of samples per raster line in 

a frame. Nf specifies the number of components in a single frame; it can range from 1 to 

255. Each frame can be specified by its component identifier, horizontal and vertical 

sampling factor for MCU extraction, and quantisation table used for encoding the 

component. 

2.3.4.4 Scan Header 

Each frame may have a number of scans, and the scan header information is included in 

a compressed data structure as shown in table 2.6. The number of components in a scan 

depends upon the mode of image scanning (non-interleaved and interleaved). In non-
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interleaved mode of scanning a scan has only one data unit, and in interleaved mode of 

scanning a scan has more than one data units. 

Table 2.6 Scan header data structure 

Parameter 

Marker (X'FFDA') 

Scan header length 

Number of components in scan 

Scan component specification(k=l,...,Ns) 

Scan component selector 

DC entropy coding table selector 

AC entropy coding table selector 

Start of spectral selection or predictor selection 

End of spectral selection 

Successive approximation bit position high 

Successive approximation bit position low or point transform 

Symbol 

SOS 

Ls 

Ns 

Csk 

Tdk 

Tak 

Ss 

Se 

Ah 

Al 

Size 

(bits) 

16 

16 

8 

8 

4 

4 

8 

8 

4 

4 

Ls gives the length of scan header in bytes. Ns specifies the number of 

components in a scan, it ranges from 1 to 4. Each component in a scan is specified by 

scan component selector Csk and entropy coding table selectors Tdk and Tak. 

Scanning takes each data unit from the band of MCU coefficients in zig-zag order. The 

start of scan selection Ss identifies starting index of this band. Se, the end of scan 

selection identifies the index of the last coefficient in the spectral band. 

2.4 Block Comparator Enhancement to the JPEG Algorithm 

In the JPEG algorithm all image blocks are processed individually. These blocks of 

compressed image are stored sequentially as shown in figure 2.9. 

The JPEG algorithm divides the input image into a number of blocks. These 

blocks are arranged in i rows and j columns. These blocks are processed sequentially 

from Block-1 to Block-n from left to right and top to bottom [Papathanassiadis, 92]. 

Compressed data blocks are stored sequentially, as shown in the compressed data file 

structure of figure 2.9. The compressed image file begins with a header, and an End of 

Image (EOI) marker is placed at the end of this file. 
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In many types of images, there is the possibility of having one or more similar 

blocks in the image. Improvement in performance of the compression algorithm can be 

achieved by locating similar blocks in the image. The Block Comparator Technique is 

proposed to enhance the performance of the JPEG algorithm. An overview of the Block 

Comparator Technique is given in this section. 

The logic of the Block Comparator Technique is shown in figure 2.10. The input 

file is divided into the required number of blocks, and each block is identified by a 

block number. Then all blocks are passed through the block comparator. 

The block comparator algorithm is shown as a flow chart figure 2.11. Structure 

of the compressed data file is shown in figure 2.12. Similar blocks are identified by 

maintaining a Match List and a Reference List (figure 2.12). Each unique block is given 

a Unique Block Number. This Unique Block Number is stored in the Reference List 

along with the (original) Block Number. The Match List matches each non-Unique 

Block Number to the Number of the Unique Block that is similar. 

In the block comparator step, first block is taken as Unique Block Number 1. 

Each block is compared to the existing unique blocks. If there is a match found, the 

Block Number is store in the Match List followed by the Unique Block Number. If there 

is no match found, that block is identified with a new Unique Block Number and stored 

in the Reference List. This process is repeated for all blocks. The Match List matches 

each block to similar unique blocks. Reference List is the list of all unique blocks. 

Compression is performed only on the unique blocks, and compressed image blocks are 

stored in the Compressed Image File after the Reference List as shown in figure 2.12. 

Image header and EOI marker are placed at the beginning and the end of the file 

respectively. 
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Figure 2.12 Compressed data file structure in Block Comparator Technique 

The Block Comparator Technique improves the speed of the compression and 

reduces the size of the compressed data file. These two factors are discussed in the 

following sections. 

2.4.1 Comparison of the JPEG Algorithm and Block Comparator Technique 

Execution Times 

In this section the execution time of the JPEG algorithm is calculated with and without 

the proposed Block Comparator Technique. The computation time is calculated in terms 

of number of the arithmetic operations such as additions, subtractions, multiplications, 

divisions, and comparisons. Each arithmetic operation is equated to a number of Base 

Operations. The number of equivalent Base Operations for each arithmetic operation 

can be determined for specific processors. Transputer IMS T805 processor is chosen for 

calculating the number of Base Operations. For 64-bit floating point operation, 

Transputer IMS T805 processor takes 7 cycles for addition and subtraction, 20 cycles 

for multiplication, 32 cycles for division, and 7 cycles for comparison [SGS-Thomson, 

91]. Let us assume one Base Operation is equal to 7 cycles. Therefore, The number of 
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Base Operations required for addition, subtraction, and comparison is equal to 1, for 

multiplication it is nearly equal to 3, and for division it is nearly equal to 5. 

Computation time for the JPEG algorithm is given in section 2.4.1.1. 

Computation time for the Block Comparator Technique is given in section 2.4.1.2. A 

comparison of the computation time for the JPEG and the Block Comparator Technique 

is given in section 2.4.1.3. 

2.4.1.1 Computation Time for the JPEG Algorithm 

In this section the total number of Base Operations required is calculated for 

compressing a complete image using the JPEG algorithm. In this section the DCT, 

quantisation, and encoding steps of JPEG algorithm were considered as main steps to 

calculate the computation time, as these required higher computation time in 

compression operation. 

Let TjpEG be the total number of Base Operations taken by the JPEG algorithm. 

Then TjpgG is the sum of the number of Base Operations required for DCT, 

quantisation and encoding and so, 

TjPEG = NB * ( T D C T + '^Qa^n+ Tfinco) (2-3) 

where, 

"^DCT ~ Total number of Base Operations required for DCT step for one 8 x 8 block, 

"^Quan ~ Total number of Base Operations required for Quantisation step for one 8 x 8 block, 

''"Enco ~ Total number of Base Operations required for Huffman Encoding for one block, 

NB = Number of Blocks. 

Discrete Cosine Transform step: DCT step consists of two operations. First operation 

is subtraction of each sample from half of the maximum sample value. The second 

operation is the DCT function itself. Therefore, the total number of Base Operations 

required for the DCT step can be calculated as 

T D C T = Tcs + T^ct (2.4) 

where, 

T(3S = Total number of Base Operations required for subtraction operation for one 

8 x 8 block 

= 64 Subtractions 

= 64 Base Operations, 

^dct - Total number of Base Operations required for DCT function for one 8 x 8 block. 
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The Independent JPEG Group (UG) source code uses 12 multiplications and 32 

additions to perform DCT function for a one dimension (1-D) DCT. A 2-D DCT in UG 

software is done by performing 1-D DCT on each row followed by 1-D DCT on each 

column. Therefore, we need 16 1-D DCTs to perform 2-D 8 x 8 DCT as given in 

equation 2.5, 

Tdct = 16 (12 multiplications+ 32 additions) (2.5) 

= 192 multiplications-I- 512 additions 

= 3 * 192 + 512 Base Operations 

= 1088 Base Operations. 

By substituting the value of Tcs and T^ct into equation 2.4 we get the total 

number of Base Operations for DCT step as 1152 Base Operations, as 

T D C X = 64 + 1088 (2.6) 

= 1152 Base Operations. 

Quantisation: Quantisation step involves the division of each sample by its quantiser 

step. An 8 x 8 block, quantisation takes 64 division, thus, 

TQuan = 64 Divisions (2.7) 

= 64 * 5 Base Operations 

= 320 Base Operations. 

Huffman encoding: For the DCT and the quantisation steps the required number of 

Base Operations could easily specify. Huffman encoding requires many arithmetic and 

logic operations such as multiplication, increments, shift operations, subtractions. 

Therefore it is difficult to specify the exact number of arithmetic operations for the 

Huffman encoding step. The experimental results showed that the total time required for 

Huffman encoding is about 60% of the compression time. The remaining 40% of the 

compression time is required for DCT and quantisation. From these experimental 

results, the number of Base Operations required are calculated for Huffman encoding 

step as, 

TDCT'^TQuajj 
T E n c o = 6 0 M 40^^—) (2-8) 

= 60*(ii52±320) 

= 2208BaseOperations. 
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By combining equations 2.6, 2.7 and 2.8 relating the total number of base 

operations for one block, the total number of Base Operations required for the JPEG 

algorithm can be calculated as, 

TjpEG = NB * ( T D C T + TQuan+ Tgnco) (2.9) 

= N B * [ ( T d c t + T c s ) + T Q , 3 „ + T E „ , o ] 

= NB * [1152 +320-H2208] 

= NB * [3680] Base Operations. 

The JPEG algorithm takes 3680 Base Operations to perform compression 

operation on one block. The complete image consists of NB number of blocks. 

Therefore NB x 3680 Base Operations are required for compressing a complete image. 

2.4.1.2 Computation Time Taken for Block Comparator Algorithm 

In this section the total number of arithmetic operations required are calculated for 

compressing a complete image using the Block Comparator Technique. The number of 

arithmetic operations required for the Block Comparator algorithm is the sum of the 

number of arithmetic operations required for Comparison and the number of arithmetic 

operations required for Compression, and so, 

T B C T = T B C + Tjp^Q ^2.10) 

where, 

T B C ~ Total number of Base Operations required for (Block) Comparison, 

TjPEG ~ Total number of Base Operations required for Compression. 

The number of Base Operations required for the Compression step TjpgQ can be 

calculated from equation 2.3 by replacing the Number of Blocks (NB) by the Number of 

Unique Blocks (NUB). 

The number of Base Operations required for the Block Comparator step are 

calculated in this section. Block Comparison step consists of following three main steps, 

1. Summation of sample intensity value in each block 

2. Block intensity comparison 

3. Sample-by-sample comparison of blocks 
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The additional steps required in the Block Comparator Technique are shown in 

figure 2.13. The number of Base Operations required for Block Comparison, Tgc is 

given by, 

T B C ~ ''̂ sum ^ Tintcomp "*" Tsampcomp (2.11) 

where, 

TfiC 

Tsum 

Tintcomp 

T 
^ sampcomp 

= Total number of Base Operations for Block Comparison, 

= Total number of Base Operations for summation of samples in all image 

blocks, 

= Total number of Base Operations for block intensity value comparison, 

= Total number of Base Operations for comparing samples of a block with 

those of existing Unique Blocks. 

Sample 
Intensity 

Sunmiation 
& 

Block Intensity 
Comparison 8, 

Sample-by-Sample 
Comparison 

Figure 2.13 Additional steps required in the Block Comparator Technique 

Sample intensity summation: Algorithm for summation of samples is shown in the 

flow chart of figure 2.14. In the summation step, the first block is called Block-1. 

Sample values of this block are summed sample-by-sample, and the summation result is 

stored in a Block Intensity List (BIL) as the Block Intensity Value-1 (BIV-1). This 

process continues for all blocks. Block Intensity List consists of Block Intensity Values 

for all blocks. 

The total number of arithmetic operations required for summation process, Tgum 

is given by. 

Tsum ~ NB * Tg^jjpgujjj 

= NB*64add 

= NB * 64 Base Operations 

(2.12) 

where, 

T 
^ sampsum 

= Total number of Base Operations required for the summation of sample values in 

any image block. 
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Figure 2.14 Flow chart for summation step 

Block intensity comparison: In the Block Intensity Comparison step each Block 

Intensity Value (BIV) is taken from the Block Intensity List. This BIV is compared to 

each of the existing Unique Block Intensity Value (UBIV). If the BIV is equal to any of 

the UBIVs, then this BIV is stored in an Equal Intensity List (EIL). If this BIV is not 

equal to any of the UBIVs for the unique blocks stored in the Reference List then this 

block number is stored in the Reference List and the BIV is stored in the UBIV List. The 

Flowchart for Block Intensity Comparison is shown in figure 2.15. 
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Figure 2.15 Flowchart for block intensity comparison step 

Block comparison can be done either on a list of sorted values or on a list of 

unsorted values. The sorted list is used for comparison because it helps in grouping 

equal intensity values. There are many sorting techniques. The Selection Sort and the 

Divide and Conquer sort methods were chosen in this chapter [Kruse, 94]. These two 

sort methods are explained in the following sections. 

Selection Sort: This method is illustrated in figure 2.16, which shows steps needed to 

sort a list of five BIVs. 
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Figure 2.16 Selection Sort example 

First stage is to find the largest number in the list, i.e. 128. Exchange this 

number with the number stored in the last position. Repeat this process on the shorter 

list obtained by omitting the last entry. The sorted list is obtained as shown in the last 

list. 

For worst case the number of comparisons required for a Selection Sort is given 

by [Kruse, 94], 

Tintcomp 

where, 

NB 

NB * (NB-1) / 2 Comparisons, 

NB * (NB-1) / 2 Base Operations, 

Number of Blocks in an image. 

(2.13) 

Divide and Conquer Sort method: This method is illustrated in figure 2.17, which 

shows steps needed to sort a list of five BIVs. 

The step of sort is to chop the list into two sublists of sizes as nearly equal as 

possible. Here the number of elements are five. So chop the list into two sublists 

consists of three elements in sublist-1 and two elements in a sublist-2 as shown in figure 

2.18. 

Again divide first sublist-1 into two sublists one of 75 and 54, other sublist of 

128. Then sort the sublists: 

54,75 

128 

12,62 

Then merge the sorted sublists. First merge the sublist-1 and sublist-2 and sort it. 

54, 75, 128 > 54, 75, 128 

Merge this list with sublist-3. 

54,75, 128 and 12, 68 > 12, 54, 68, 75, 128 
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Figure 2.17 Divide and Conquer Sort example 

The- worst case number of comparisons required for Divide and Conquer sort 

method is given by [Kruse, 94], 

^mtcomp 

where, 

NB 

NB Ig NB Comparisons 

NB Ig NB Base Operations, 

Number of Blocks in an image. 

(2.14) 

Sample-by-Sample comparison: Algorithm for sample-by-sample comparison of two 

blocks is shown in the flow chart of figure 2.18, A Block is picked from the Equal 

Intensity List (EIL) and compared with the Unique Block sample-by-sample. The two 

blocks are said to 'match' if and only if all samples in one block have exactly the same 

values as the corresponding samples in the other block. If the block being compared 

matches with any of the unique blocks identified, it is placed in the Match List, else it is 

entered in the Reference List. This process continues for all the blocks. 

For some type of images closely matching blocks may be acceptable. But, in the 

current investigation it is not looked into this possibility. 

The total number of arithmetic operations required for the sample comparison 

step is given by, 

Tsampcomp = Ng^IL * ^ Tgampblock ^ 2̂ 15 ) 

where, 

N B E I L ~ Number of blocks in Equal Intensity List (EQL), 

Tsampblock ~ Total number of Base Operations required for sample-by-sample comparison of one 

block, 

= 64 comparisons (Maximum), 

= 64 Base Operations (Maximum). 
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Figure 2.18 Flowchart for Sample-by-Sample Comparison step 

Total number of base operations for the Block Comparator Technique: 

By substituting equation 2.11 in equation 2.10, we get 

T B C T - Tsum + Tj^jj,ojjjp + Tgaĵ p̂ ôĵ jp + Tjp^Q (2.16) 

By substituting the equation (2.12), (2.13) and (2.15) in equation (2.16), we get 

the equation (2.17) for T g c j , using Selection Sort method. 



Chapter 2 43 

T_^^ = NB * 64 -I-(NB*(NB-1))/2 -I-NBEIL * 64-1-NUB * 3680 (2.17) 
BCT 

By substituting the equation (2.12), (2.14) and (2.15) in equation (2.16), we get 

the equation (2.18) for TgcT using Divide and Conquer sort method. 

T ^ _ =NB * 64 -l-(NB*lgNB) -(-NBEIL * 64 +NUB *3680 (2.18) 
BCT 

2.4.1.3 Comparison of Computation Time for the Non-Block Comparator Technique 

and the Block Comparator Technique 

The JPEG algorithm is called as Non-Block Comparator Technique (NBCT) in this 

thesis. The Block Comparator Technique (BCT) using Selection Sort method for 

intensity comparison is called as Selection Sort method and BCT using Divide and 

Conquer Sort method is called as Divide and Conquer Sort method in this section. 

The speed improvement obtained by the Block Comparator Technique over the 

Non-Block Comparator Technique can be represented by a factor called the Speed 

Improvement Factor (SIF). SIF is defined as the ratio of total number of Base 

Operations required for the Non-Block Comparator Technique (NBCT) to the total 

number of Base Operations required for the Block Comparator Technique (BCT), as 

given by 

SIF-ZNBCT 
^"^- r^ (2.19) 

^ B C T . 

Values of SIF using the Selection Sort method are given in table 2.7. For the 

Divide and Conquer Sort method SIF values are given in table 2.8. SIF values obtained 

by using the direct Sample-by-Sample comparison method are given in table 2.9. In each 

of these tables the SIF values are calculated for three image sizes, viz. NB = 256, 4266, 

and 15594. For each image size SIF values are calculated for Number of Similar Blocks 

(NSB) in the image equal to 0%, 10%, 30%, 50%, 75%, 85%, 90%, 95% and 100%. 

Graph of SIF versus NSB using the Selection Sort method, is shown in figure 2.19. The 

graph for the Divide and Conquer Sort method is shown in figure 2.20, and graph for the 

block comparison using direct Sample-by-Sample Comparison method is shown in 

figure 2.21. 

Conclusions are derived by comparing SIF values obtained for the three different 

methods, and also by comparing SIF values for each method individually. These 

conclusions are given in the following sections. 
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Common conclusions for all methods: The Speed Improvement Factor (SIF) is less 

than one for a zero number of similar blocks irrespective of the method used and the 

image size. This result is expected, as there is no speed improvement when there are no 

similar blocks; because there is additional computation time required for the block 

comparison step. Therefore, the Block Comparator Technique will add unwanted 

computational overhead if there are no similar blocks in an image. 

SIF values for all image sizes increase monotonically with increase in the value 

of NSB. For most of the methods studied SIF is greater than one for NSB >= 10%. This 

indicates that the Block Comparator Technique delivers dividends even for a small 

number of similar blocks. The maximum SIF was obtained for 100%, that indicates 

image is a blank paper. 

Conclusion for the BCT using the Selection Sort method: SIF values for NB = 256 is 

greater than one for NSB in the range of 10% to 100%. Whereas, for NB = 4266 SIF is 

less than one even upto 50% similar blocks. On the other hand for NB = 15594 SIF is 

less than one for all values of NSB. This indicates that there is no benefit in using the 

Block Comparator Technique in conjuction with the Selection Sort method for large 

images. Selection Sort method is suitable only for small image size. 

Conclusion for the BCT using the Divide and Conquer Sort method: SIF is greater 

than one for NSB >= 10% and increases monotonically. SIF is almost equal for all 

image sizes for the same values of NSB. Therefore, the Divide and Conquer method is 

suitable for all image sizes. 

Conclusion for the BCT using the direct Sample-by-Sample Comparison method: 

The SIF values for all image sizes and values of NSB are almost equal to the SIF values 

for the Divide and Conquer method, except for NSB=100. For NSB=100, SIF is greater 

for the Sample-by-Sample comparison method than that for the Divide and Conquer 

Sort method. 

Divide and Conquer Sort versus Sample-by-Sample Comparison: Block comparison 

using Divide and Conquer Sort method is used to sort the image blocks according to the 

intensities of these blocks. This helps to group blocks with equal intensities. Equal 

intensity blocks can then be distributed on a parallel computer so as to balance the work 

load on all processors. This increases the improvement in the speedup of parallel 

processing. This aspect of work load balancing is discussed in more detail in chapter 3. 

The Block Comparison Technique using Sample-by-Sample comparison method 

cannot be used for grouping of blocks with equal intensity values. Therefore, we can say 

that the Block Comparator Technique using Divide and Conquer method is more 

suitable for parallel processing. 
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Table 2.7 SIF table for the Selection Sort method 

b. 

Number 
of 

Blocks 
in an 
image 
(NB) 

256 

4266 

15594 

% of 
Number of 

Similar 
Blocks 
(NSB) 

0 

10% 

30% 

50% 

75% 

85% 

90% 

95% 

100% 

0 

10% 

30% 

50% 

75% 

85% 

90% 

95% 

100% 

0 

10% 

30% 

50% 

75% 

85% 

90% 

95% 

100% 

Number of 
Blocks in 

Match List 

0 

26 

77 

128 

192 

218 

230 

244 

256 

0 

427 

1280 

2133 

3200 

3626 

3839 

4053 

4266 

0 

1560 

4679 

7797 

11696 

13255 

14034 

14815 

15594 

Number of 
Unique 

Blocks in 
Reference 

List 

256 

230 

179 

128 

64 

38 

26 

12 

1 

4266 

3839 

2986 

2133 

1066 

640 

427 

213 

1 

15594 

14034 

10915 

7797 

3898 

2339 

1560 

779 

1 

Total number of 
Base Operations 
for Non-Block 
Comparator 
Technique 
(TNBCT) 

942080 

942080 

942080 

942080 

942080 

942080 

942080 

942080 

942080 

15698880 

15698880 

15698880 

15698880 

15698880 

15698880 

15698880 

15698880 

15698880 

57385920 

57385920 

57385920 

57385920 

57385920 

57385920 

57385920 

57385920 

57385920 

Number of Base 
Operations for 

Block 
Comparator 
Technique 

(TBCT) 

991104 

897088 

712672 

528256 

296832 

202816 

159424 

108800 

69088 

25069149 

23525117 

20440669 

17356221 

13497949 

11957533 

11187325 

10413501 

9646973 

1.8E+08 

1.74E-K)8 

1.63E+08 

1.52E+08 

1.38E+08 

1.32E-1-08 

1.29E+08 

1.26E+08 

1.24E-I-08 

Speed 
Improvement 
Factor (SIF) 

0.951 

1.050 

1.322 

1.783 

3.174 

4.645 

5.909 

8.659 

13.636 

0.626 

0.667 

0.768 

0.905 

1.163 

1.313 

1.403 

1.508 

1.627 

0.319 

0.329 

0.352 

0.378 

0.417 

0.435 

0.444 

0.454 

0.464 
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Table 2.8 SIF table for the Divide and Conquer Sort method 

Number 

of Blocks 

in an 

image 

(NB) 

256 

4266 

15594 

%of 
Number of 
SimOar 
Blocks 
(NSB) 

0 

10% 

30% 

50% 

75% 

85% 

90% 

95% 

100% 

0 

10% 

30% 

50% 

75% 

85% 

90% 

95% 

100% 

0 

10% 

30% 

50% 

75% 

85% 

90% 

95% 

100% 

Number oi 
Blocks in 

Match 

List 

0 

26 

77 

128 

192 

218 

230 

244 

256 

0 

427 

1280 

2133 

3200 

3626 

3839 

4053 

4266 

0 

1560 

4679 

7797 

11696 

13255 

14034 

14815 

15594 

Number of 

Unique 

Blocks in 

Reference 

List 

256 

230 

179 

128 

64 

38 

26 

12 

1 

4266 

3839 

2986 

2133 

1066 

640 

427 

213 

1 

15594 

14034 

10915 

7797 

3898 

2339 

1560 

779 

1 

Total number of 

Base Operations 

for Non-Block 

Comparator 

Technique 

(TNBCT) 

942080 

942080 

942080 

942080 

942080 

942080 

942080 

942080 

942080 

15698880 

15698880 

15698880 

15698880 

15698880 

15698880 

15698880 

15698880 

15698880 

57385920 

57385920 

57385920 

57385920 

57385920 

57385920 

57385920 

57385920 

57385920 

Number of Base 
Operations for 

Block 

Comparator 

Technique 

(TBCT) 

960512 

866496 

682080 

497664 

266240 

172224 

128832 

78208 

38496 

16023346 

14479311 

11394863 

8310415 

4452143 

2894416 

2124208 

1350384 

601170 

58601129 

52960180 

41681876 

30407188 

16308404 

10578608 

. 7761744 

4937648 

2216905 

Speed 

Improvement 

Factor (SIF) 

0.981 

1.087 

1.381 

1.893 

3.538 

5.470 

7.312 

12.046 

24.472 

0.980 

1.084 

1.378 

1.889 

3.526 

5.424 

7.390 

11.625 

26.114 

0.979 

1.084 

1.377 

1.887 

3.519 

5.425 

7.393 

11.622 

25.886 
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Table 2.9 SIF table for the SampIe-by-Sample comparison method 

Number 
of Blocks 

in an 
image 
(NB) 

256 

4266 

15594 

%of 
Number of 

Similar 
Blocks 
(NSB) 

0 

10% 

30% 

50% 

75% 

85% 

90% 

95% 

100% 

0 

10% 

30% 

50% 

75% 

85% 

90% 

95% 

100% 

0 

10% 

30% 

50% 

75% 

85% 

90% 

95% 

100% 

Number 
of Blocks 
in Match 

List 

0 

26 

77 

128 

192 

218 

230 

244 

256 

0 

427 

1280 

2133 

3200 

3626 

3839 

4053 

4266 

0 

1560 

4679 

7797 

11696 

13255 

14034 

14815 

15594 

Number of 
Unique 

Blocks in 
Reference 

List 

256 

230 

179 

128 

64 

38 

26 

12 

1 

4266 

3839 

2986 

2133 

1066 

640 

427 

213 

1 

15594 

14034 

10915 

7797 

3898 

2339 

1560 

779 

1 

Total number of 
Base Operations 
for Non-Block 
Comparator 
Technique 

(TNBCT) 

942080 

942080 

942080 

942080 

942080 

942080 

942080 

942080 

942080 

15698880 

15698880 

15698880 

15698880 

15698880 

15698880 

15698880 

15698880 

15698880 

57385920 

57385920 

57385920, 

57385920 

57385920 

57385920 

57385920 

57385920 

57385920 

Number of Base 
Operations for 

Block Comparator 
Technique 

(TBCT) 

958464 

862784 

675104 

487424 

251904 

156224 

112064 

60544 

20064 

15971904 

14400544 

11261504 

8122464 

4195904 

2628224 

1844384 

1056864 

276704 

5.84E+07 

5.26E+07 

4.12E+07 

2.97E+07 

1.53E+07 

9605536 

6738816 

3864736 

l.OOE+06 

Speed 
Improvement 
Factor (SIF) 

0.983 

1.092 

1.395 

1.933 

3.740 

6.030 

8.407 

15.560 

46.954 

0.983 

1.090 

1.394 

1.933 

3.741 

5.973 

8.512 

14.854 

56.735 

0.983 

1.090 

1.394 

1.933 

3.740 

5.974 

8.516 

14.849 

57.289 
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NB=15594 

NB=4266 

NB=256 
50 

% of NSB 
75 100 

Figure 2.19 SIF Vs NSB for the Selection Sort method 

NB=15594 

NB=5266 

NB=256 

% of NSB 100 

Figure 2.20 SIF Vs NSB for the Divide and Conquer Sort method 

s u 
B 
> o CO 

•a i2 

on 

Figure 2.21 SIF Vs NSB for the Sample-by-Sample Comparison method 
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2.4.2 Comparison of the Non-Block Comparator Technique and Block 

Comparator Technique Image Compression Ratio 

In this section the Image Compression Ratio obtained for the Digital Image 

Compression Techniques are calculated with and without the proposed Block 

Comparator Technique. Image Compression Ratio (ICR) is defined as the ratio of 

original image data size to the compressed image data size as given by, 

Srcimg 

Compimg 

where. 

ICR 

^Srcimg 

^Compimg 

= 

= 

= 

Image Compression Ratio, 

Source image data size in Bytes, 

Compressed image data size in Bytes. 

(2.20) 

Image Compression Ratio for the Non-Block Comparator Technique is given in 

section 2.4.2.1. Image Compression Ratio for the Block Comparator Technique is given 

in section 2.4.2.2. A comparison of the Image Compression Ratios obtained by these 

techniques is given in section 2.4.2.3. 

2.4.2.1 Image Compression Ratio for the Non-Block Comparator Technique 

In this section the formula is given for the Image Compression Ratio for the Non-Block 

Comparator Technique. With the standard Non-Block Comparator Technique, the 

compressed image data stmcture can be represented in the following format, as 

discussed in section 2.3.4. 

JHI JPEG Header Information 

Compressed Data Blocks 

EOI End Of Image Marker 

The Image Compression Ratio (ICR) for the Non-Block Comparator Technique 

(NBCT) can be represented by, 

^^^NBCT ' S^BCT (2.21) 

where, 
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I C R N B C T = 

^Srcimg ~ 

SNBCT 

Image Compression Ratio (ICR) for the Non-Block Comparator 

Technique, 

Source image size in Bytes, 

NBCT Compressed image size in Bytes. 

SjsfBCT ^^^ ^^ expanded further, as given in equation 2.22. Compressed block 

data size can be represented by the ratio of original image block size and the Block 

Compression Factor (BCF). Compression factor depends on the quality of compressed 

image, specified by the user. 

Blk 
^ N B C T - S j H I ' ^ ^ ^ * Br-ic "^^ BCF 

EOI 
(2.22) 

where, 

SNBCT 

SjHI 

NB 

Sfllk 

BCF 

SEOI 

NBCT Compressed image size in Bytes, 

Size of JPEG Header Information in Bytes, 

Number of Blocks in the image. 

Size of one block in Bytes, 

Block Compression Factor, 

Size of End Of Image marker. 

2.4.2.2 Image Compression Ratio for the Block Comparator Technique 

In this section the formula is given for the Image Compression Ratio using the Block 

Comparator Technique (BCT). The Image Compression Ratio for Block Comparator 

Technique is given by. 

Srcimg 
^^^BCT -

where. 

ICRBCT 

S Srcimg 

SECT 

^BCT 

= 

= 

(2.23) 

Image Compression Ratio for Block Comparator Technique, 

Source image size in Bytes, 

BCT Compressed image size in Bytes. 

For the Block Comparator Technique, the Compressed Image Data Structure can 

be represented in many formats. Three different structures were selected for the analysis. 

The Compressed image size for these Compressed Image Data Structures are given in 

the following sections. 
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In all of these storage formats the compressed image blocks are stored in two 

distinct groups. The first group consists of blocks that match with a unique block. This 

group is called as the Similar Block Group (SBG). 

The second group consists of all the unique blocks. This group is called as the 

Unique Block Group (UBG). Then the data structure for the compressed image will be 

as follows: 

JHI JPEG Header Information 

SBG Similar Block Group 

UBG Unique Block Group 

EOI End Of Image marker 

Compressed image size for Compressed Image Data structure-1: For the Block 

Comparator Technique, the Compressed Image Data Structure-1 (CIDS-1) is given in 

table 2.10. The JPEG Header Information (JHI) is the first item for the Non-Block 

Comparator Technique. Following the header the Similar Block Group is stored. The 

first component of this block is stored following the Similar Block Marker. In this group 

each block is stored as an ordered pair comprising; Block Number followed by the 

matching Unique Block Number. After the Similar Block Group comes the Unique 

Block Group, where the first component is the Unique Block Marker. In the Unique 

Block Group all unique blocks are stored in the correct sequence. The original block 

number for each Unique Block can be identified by looking up the missing block 

numbers in the Similar Block Group. The first block is always taken as Unique Block-1. 

If it turns out that Block-2 and Block-3 match with Block-1 then these will be stored in 

the Similar Block Group. If Block-4 is the next unique block then this block will be the 

second block stored in the Unique Block Group and Block-4 will be missing from the 

Similar Block Group. The End Of Image (EOI) marker is stored at the end of the file. 

The size of the JPEG information header and the EOI marker are same as in the 

JPEG compressed image. The size of block number is taken as sixteen bits because in 

large images the number of blocks are more than 256. Size for various markers is taken 

as eight bits. The size of the Compressed Image Data Structure-1 for the Block 

Comparator Technique can be written as, 

SRPT^I = S T H T + S + N S B * ( S + S ) + S + N U B * - 2 ^ + SpnT (2.24) 
BCTl JHI SBM BNF UBNF UBM BCF 

where, 

%CT1 - BCT Compressed image size for CIDS-1 in Bytes, 

%HI - Size of the JPEG Header Information in Bytes, 
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^SBM - ^^^^ °^ ̂ ® Similar Block Marker, 

NSB = Number of Similar Blocks, 

^BNF ~ ^^^^ ^^ ^® Block Number Field, 

^UBNF - '̂̂ ® °^ ̂ ® Unique Block Number Field, 

^UBM - ^^^^ ^^ *® Unique Block Marker, 

NUB = Number of Unique Blocks, 

^Blk ~ '̂ ^̂ ® °^ °"® block in Bytes, 

BCF = Block Compression Factor, 

^EOI ~ ^^^^ °f ^^ E"'^ Of Image marker. 

Table 2.10 Compressed Image Data Structure-1 

Component 

JHI 

SBG 

UBG 

EOI 

Parameter 

JPEG Information Header 

Similar Block Marker 

Block Number, Unique Block No 

Block Number, Unique Block No 

Unique Block Marker 

Unique Block Compressed data 

End of Image marker 

Symbol 

JHI 

SBM 

BN.UBN 

BN, UBN 

UBM 

UBCD 

EOI 

Size 

(Bytes) 

1 

2 + 2 

2 + 2 

1 

SRIV /rv 

1 

Compressed image size for Compressed Image Data Structure-2: For the Block 

Comparator Technique, the Compressed Image Data Structure-2 (CIDS-2) is given in 

table 2.11. The CIDS-2 is similar to the CIDS-1 except for the storage format of the 

compressed data in the Unique Block Group. In CIDS-2 the compressed data for each 

Unique Block is also stored as an ordered pair: Unique Block Number followed by the 

Unique Block Compressed Data. 

The size of each field is the same as in the Compressed Image Data Structure-1. 

Size of the Unique Block Number Field is taken as sixteen bits. The size of CIDS-2 for 

the Block Comparator Technique can be written as, 

'Blk 
S R P T ^ = S T H T + S + N S B * ( S + S ) + S +NUB*(S, ,^^+-^^^) + Spr.r (2.25) 

D C I Z JHI QRM RNT7 TTPJMP'^ MR\A U B N F BCF SBM BNF UBNF UBM 

where. 

^BCT2 ~ ^ ^ ^ Compressed image size for CIDS-2 in Bytes, 
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^JHI ~ Size of JPEG Header Information in Bytes, 

•̂ SBM ~ ^̂ ®̂ °f Similar Block Marker, 

NSB = Number of Similar Blocks, 

^BN - ^̂ ^® °f *^ Block Number Field, 

•̂ UBN ~ '̂̂ ® °f ^^^ Unique Block Number Field, 

^UBM - "̂ ^̂ ^ °f *® Unique Block Marker, 

NUB = Number of Unique Blocks, 

•̂ Blk ~ '̂̂ ® °^ °"^ block in Bytes, 

BCF = Block Compression Factor, 

^EOI ~ ^^^^ °f ^^^ End Of Image marker. 

Table 2.11 Compressed Image Data Structure-2 

Component 

JHI 

SBG 

UBG 

EOI 

Parameter 

JPEG Information Header 

Similar Block Marker 

Block Number, Unique Block No 

Block Number, Unique Block No 

Unique Block Marker 

Unique Block Number, Block Compressed data 

Unique Block Number, Block Compressed data 

End of Image marker 

Symbol 

JHI 

SBM 

BN,UBN 

BN,UBN 

UBM 

UBN, BCD 

UBN, BCD 

EOI 

Size 

(Bytes) 

1 

2 + 2 

2 + 2 

1 

2, SRIV ICP 

2, SRIV ICV 

1 

Compressed image size for Compressed Image Data Structure-3: The Compressed 

Image Data Structure-3 (CIDS-3) is given in table 2.12. In CIDS-3 the JPEG Header 

Information, Unique Block Group (UBG) and EOI marker are the same as for CIDS-1. 

Following the header the Similar Block Group (SBG) is stored. The SBG consists a 

number of Similar Block Lists (SBL). Each SBL starts with a Similar Block Marker and 

a Unique Block Number followed by the list of similar Block Numbers. The Similar 

Block Marker at the head of the next Similar Block list also marks the end of the 

previous Similar Block list. 

The size of CIDS-3 for Block Comparator Technique can be written as. 

SBCr3=SjHi+NL*(S +S 
SBM 

+ nl*S )+S 
UBNF BNF UBM 

+ N U B * ^ ^ + S 
BCF EOI (2.26) 
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where, 

S B ( 3 J 3 = BCT Compressed image size for CIDS-3 in Bytes, 

•̂ JHI ~ '̂̂ ® °^ ^® JPEG Header Information in Bytes, 

NL = Number of Similar Block Lists in SBG, 

nl = Number of Block Numbers, followed in each Unique Block list, 

^SBM ~ ^^'^ °^ '^^ Similar Block Marker, 

•^UBNF ~ '̂•^^ °^ ^^ Unique Block Number Field, 

•̂ UBM ~ ^̂ ^® '^^ ̂ ® Unique Block Marker, 

NUB = Number of Unique Blocks, 

•̂ Blk ~ ^'^^ °^ °"® block in Bytes, 

•̂ EOI ~ '̂̂ ® °^ ^̂ ^ -E"^ ^^ Image marker. 

Table 2.12 Compressed Image Data Structure-3 

Component 

JHI 

SBG 

UBG 

EOI 

Parameter 

JPEG Information Header 

Similar Block Marker 

Unique Block Number, Block No, Block No, Block No,.... 

Similar Block Marker 

Unique Block Number, Block No, Block No, Block No,.... 

Unique Block Marker 

Unique Block Compressed data 

End of Image marker 

Symbol 

JHI 

SBM 

UBN, BN, BN ... 

SBM 

UBN, BN, BN ... 

UBM 

UBCD 

EOI 

Size (Bytes) 

1 

2 + 2 + 2... 

1 

2 + 2 + 2... 

1 

SRIV / P F 

1 

2.4.2.3 Comparison of Image Compression Ratios 

Image Compression Ratio (ICR) for Non-Block Comparator Technique is given in table 

2.13 and graph of the same is shown in figure 2.22. Image Compression Ratio for Block 

Comparator Technique for three Compressed Image Data Structures (CIDS-1, ClDS-2 

and CIDS-3) are given in tables 2.14, 2.15, 2.16 and 2.17. In each of these tables, the 

values of Image Compression Ratio are calculated for three image sizes, viz. 125 x 125, 

625 X 423, and 1100 x 900. For each image size, the values of ICR are calculated for 

different output image qualities, viz. 100, 75, 50 and 25 percent. For CID-3, the graph of 

ICR Vs % quality for NSB = 10%, 30%, 50%, and 75% are shown in figure 2.23, 2.24, 

2.25 and 2.26 respectively. 
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Conclusions are derived by comparing ICR values from all Compressed Image 

Data Structures (CIDS) and by comparing ICR values from each CIDS separately. The 

conclusions derived are given in the following sections. 

Conclusions from all CIDS: From tables 2.13 to 2.17 we can see that the ICRs increase 

as the image size increases irrespective of the quality of the output image. For each 

image size the ICR increases with decrease in quality of the output image. 

Conclusion for CIDS-1: From table 2.13 and tables 2.14 to 2.17 we can see that for the 

CIDS-1 and quality = 100 Image Compression Ratio is slightly greater than the same for 

the Non-Block Comparator Technique. For quality = 75 Image Compression Ratio is 

almost equal to the same for Non-Block Comparator Technique. For quality = 50 and 25 

Image Compression Ratio values are less compared to the same for the Non-Block 

Comparator Technique. This indicates that the size of the compressed image using 

Compressed Image Data Structure-1 for Block Comparator Technique is beneficial for 

image quality greater than 75% only. 

Conclusions for CIDS-2: By comparing the ICR values of CIDS-2 and CIDS-1, we can 

see that ICR values for CIDS-2 are less than those for CIDS-1 for all image sizes. This 

is because the Unique Block Number is stored in the Unique Block Group. This data 

structure is more robust than the CIDS-1 data structure, because all the blocks numbers 

are included in the data structure. 

By comparing Image Compression Ratio values of CIDS-2 and Non-Block 

Comparator Technique, we can see that the Image Compression Ratio values of CIDS-2 

for quality = 100 are almost equal to that of Non-Block Comparator Technique. For 

quality less than 100, Image Compression Ratio values are less than the same for Non-

Block Comparator Technique. 

Conclusions for CIDS-3: By comparing Image Compression Ratio values of CIDS-3 

with those for the other two data structures, we can see that the ICR values for CIDS-3 

are greater in all cases. 

By comparing CIDS-3 with Non-Block Comparator Technique, we can see that 

the Image Compression Ratio values for CIDS-3 for quality = 100 and 75 are greater 

than the same for Non-Block Comparator Technique. For quality = 50 the values are 

almost equal. This indicates that the CIDS-3 data structure is better than the others for 

quality greater than 50. 
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By comparing all three Compressed Image Data Structures, we can say that 

CIDS-3 is the best of these three. Therefore, CIDS-3 data structure is chosen to measure 

the improvement over the Non-Block Comparator Technique. 

Image Compression Ratio Improvement Factor (ICRIF): The improvement in the 

compression ratio is represented by a factor called the Image Compression Ratio 

Improvement Factor (ICRIF). ICRIF can be defined as the ratio of Image Compression 

Ratio for Block Comparator Technique to the Image Compression Ratio for Non-Block 

Comparator Technique, as given by, 

^*^^NBCT (2.27) 

where, 

ICRg(3'j' = Image Compression Ratio for the Block Comparator Technique, 

ICRj^(2T= Image Compression Ratio for the Non-Block Comparator Technique. 

Table 2.18 shows the ICRIF for CIDS-3 using NSB = 75 graph of ICRIF versus 

quality is shown in figure 2.27. From table we can see that the Image Compression 

Ratio Improvement Factor (ICRIF) is almost equal for all image sizes irrespective of the 

quality of output image. There is no benefit in using the Block Comparator Technique 

for images with less than 50% quality. By using the Block Comparator Technique we 

can get an improvement of 2.8 times over the Non-Block Comparator Technique for 

quality = 100. 
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Table 2.13 Image Compression Ratio for Non-Block Comparator Technique 

Number of Blocks 

NB 

256 

4266 

15594 

Quality 

% 

100 

75 

50 

25 

100 

75 

50 

25 

100 

75 

50 

25 

Compressed image size 

for NBCT: S N B C T 

3450 

993 

642 

501 

54778 

13825 

7974 

5634 

199777 

50074 

28688 

20134 

Image Compression Ratio 

for NBCT: I C R N B C T 

4.529 

15.735 

24.338 

31.188 

4.895 

19.394 

33.625 

47.591 

4.956 

19.771 

34.509 

49.171 

15594 

Number of Blocks • 
NB 

50 
% Quality 

Figure 2.22 ICR Vs quality for NBCT 
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Table 2.14 Image Compression Ratio for Block Comparator Technique using three 
Compressed Image Data Structures for Number of Similar Block = 
10% 

Number 

of 

Blocks 

NB 

256 

4266 

15594 

Quality 

% 

100 

75 

50 

25 

100 

75 

50 

25 

100 

75 

50 

25 

Compressed 

image size 

for cros-1 

(SBCTI) 

3224 

1016 

700 

574 

51023 

14168 

8903 

6797 

186051 

51324 

32078 

24379 

Image 

Compression 

Ratio for CffiS-l 

( ICRBCTI ) 

4.846 

15.379 

22.321 

27.221 

5.255 

18.925 

30.116 

39.448 

5.321 

19.289 

30.862 

40.609 

Compressed 

image size for 

CIDS.2 

(SBCT2) 

3684 

1476 

1160 

1034 

58701 

21846 

16581 

14475 

214119 

79392 

60146 

52447 

Image 

Compression 

Ratio for CIDS-2 

(ICRBCT2) 

4.241 

10.586 

13.470 

15.111 

4.568 

12.273 

16.171 

18.523 

4.624 

12.470 

16.460 

18.876 

Compressed 

image size 

for CIDS-3 

(SBCT3) 

3176 

968 

648 

522 

50179 

13324 

8051 

5945 

182939 

48212 

28966 

21267 

Image 

Compression 

Ratio for CIDS-3 

aCRBCT3) 

4.920 

16.142 

24.113 

29.933 

5.343 

20.123 

33.303 

45.101 

5.412 

20.534 

34.178 

46.551 

c 
JO 
w 
V) tr |i 
io 
CD 
<S 

E 

15594 

4266 

Number of Blocks' 
NB 

50 
% Quality 

Figure 2.23 ICR Vs quality for CIDS-3 (NSB = 10%) 
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Table 2.15 Image Compression Ratio for Block Comparator Technique using three 
Compressed Image Data Structures for Number of Similar Block = 
30% 

Number 

of 

Blocks 

NB 

256 

4266 

15594 

Quality 

% 

100 

75 

50 

25 

100 

75 

50 

25 

100 

75 

50 

25 

Compressed 

image size 

for CIDS-1 

(SBCTI) 

2775 

1056 

811 

713 

43516 

14851 

10756 

9118 

158612 

53819 

38848 

32860 

Image 

Compression 

Ratio for CIDS-1 

aCRfiCTl) 

5.631 

14.796 

19.266 

21.914 

6.162 

18.054 

24.928 

29.406 

6.242 

18.395 

25.484 

30.128 

Compressed 

image size 

for CIDS-2 

(SBCT2) 

3133 

1414 

1169 

1071 

49488 

20823 

16728 

15090 

180444 

75651 

60680 

54692 

Image 

Compression 

Ratio for CIDS-2 

aCRBCT2) 

4.987 

11.050 

13.366 

14.589 

5.418 

12.876 

16.029 

17.768 

5.486 

13.086 

16.315 

18.101 

Compressed 

image size 

for CIDS-3 

(SBCT3) 

2635 

916 

671 

573 

40964 

12299 

8196 

6558 

149268 

44475 

29504 

23516 

Image 

Compression 

Ratio for CIDS-

3 (ICRBCT3) 

5.930 

17.058 

23.286 

27.269 

6.545 

21.801 

32.714 

40.885 

6.632 

22.260 

33.555 

42.099 

_o 
M 

ii 
O) 
(0 

E 

15594 

Number of Blocks' 
NB 

50 
% Quality 

Figure 2.24 ICR Vs quality for CIDS-3 (NSB = 30%) 
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Table 2.16 Image Compression Ratio for Block Comparator Technique using three 

Compressed Image Data Structures for Number of Similar Block = 

50% 

Number 

of 

Blocks 

NB 

256 

4266 

15594 

Quality 

% 

100 

75 

50 

25 

100 

75 

50 

25 

100 

75 

50 

25 

Compressed 

image size 

for CIDS-1 

(SBCTI) 

2326 

1097 

922 

851 

36010 

15533 

12608 

11438 

131165 

56314 

45621 

41344 

Image 

Compression 

Ratio for CIDS-1 

aCRfiCTl) 

6.718 

14.243 

16.947 

18.361 

7.446 

17.262 

21.266 

23.442 

7.548 

17.580 

21.701 

23.945 

Compressed 

image size 

for CIDS-2 

(SBCT2) 

2582 

1353 

1178 

1107 

40276 

19799 

16874 

15704 

146759 

71908 

61215 

56938 

Image 

Compression 

Ratio for CIDS-

2 (ICRBCT2) 

6.052 

11.548 

13.264 

14.115 

6.657 

13.542 

15.890 

17.074 

6.746 

13.768 

16.173 

17.387 

Compressed 

image size 

for CIDS-3 

(SBCT3) 

2078 

849 

674 

603 

31758 

11281 

8348 

7178 

115585 

40734 

30041 

25764 

Image 

Compression 

Ratio for CIDS-

3 (ICRBCT3) 

7.519 

18.404 

23.182 

25.912 

8.443 

23.768 

32.118 

37.354 

8.565 

24.304 

32.955 

38.426 

15594 

4266 

Number of Blocks • 
NB 

50 
% Quality 

Figure 2.25 ICR Vs quality for CIDS-3 (NSB = 50%) 
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Table 2.17 Image Compression Ratio for Block Comparator Technique using three 
Compressed Image Data Structures for Number of Similar Block = 

75% 

Number 

of 

Blocks 

NB 

256 

4266 

15594 

Quality 

% 

100 

75 

50 

25 

100 

75 

50 

25 

100 

75 

50 

25 

Compressed 

image size 

for CIDS-1 

(SBCTI) 

1763 

1148 

1061 

1025 

26620 

16387 

14925 

14340 

96854 

59433 

54087 

51949 

Image 

Compression 

Ratio for CIDS-1 

( I C R B C T I ) 

8.863 

13.611 

14.727 

15.244 

10.072 

16.362 

17.965 

18.698 

10.222 

16.657 

18.304 

19.057 

Compressed 

image size 

for CIDS-2 

(SfiCTl) 

1891 

1276 

1189 

1153 

28752 

18519 

17057 

16472 

104650 

67229 

61883 

59745 

Image 

Compression 

Ratio for CIDS-2 

(ICRBCT2) 

8.263 

12.245 

13.141 

13.552 

9.325 

14.478 

15.719 

16.278 

9.460 

14.726 

15.998 

16.570 

Compressed 

image size 

for CIDS-3 
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Figure 2.26 ICR Vs quality for CIDS-3 (NSB = 75%) 
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Table 2.18 ICRIF for the BCT usmg the Compressed Image Data Structures-3 for 
NSB = 75% 
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Figure 2.27 ICRIF Vs quality 
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2.5 Summary 

Various digital image compression techniques such as Vector Quantisation (VQ), 

fractal, wavelet and JPEG were explained in this chapter. The JPEG technique is used in 

many applications. Therefore the JPEG algorithm is chosen for our research purpose. 

The JPEG algorithm can be implemented in hardware as well as software. Many 

of the limitations of hardware implementation can be overcome in software based 

implementations. 

In the JPEG algorithm all image blocks are processed individually. These blocks 

of compressed image are stored sequentially. In many types of images, there is the 

possibility of having one or more similar blocks in the image. Improvement in 

performance of the compression algorithm can be achieved by locating similar blocks in 

the image. The Block Comparator Technique was proposed to enhance the performance 

of the JPEG algorithm. An overview of the Block Comparator Technique was given in 

this chapter. 

The Block Comparator Technique improves the speed of the compression and 

decompression operations and reduces the size of the compressed data file. These two 

factors have been discussed in this chapter. Improvement in the speed of Block 

Comparator Technique is expressed in terms of Speed Improvement Factor. Using 

analytical methods, the Speed Improvement Factor for the Block Comparator Technique 

using Divide and Conquer method was found to be suitable for all image sizes. 

Three types of Image Data Structures were introduced for the Block Comparator 

Technique. By comparing the three Image Data Structures, it was concluded that the 

Image Data Stmcture-3 is more suitable for all image sizes. The Image Compression 

Ratio improvement Factor of Image Data Structure-3 = 2.8. This indicates that the 

compressed image size for CIDS-3 is 2.8 times less than the compressed image size of 

the Non-Block Comparator Technique. 

From these speed and compressed image size comparisons we can conclude that 

the Block Comparator Technique is a useful technique to enhance the JPEG 

compression algorithm. This Block Comparator Technique can be implemented on 

parallel computers to speedup the operation further. This is explained in the next 

chapter. 
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Chapter 3 
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Abstract 

This chapter describes methods used for parallel processing of digital image 

compression algorithms. Various types of parallel computers and parallel processing 

Plans for digital image compression are described. 

Parallel computers can be classified based on memory access technique, network 

topology and some other issues. Three parallel computers were chosen for the 

experimentation, each with a different memory access architectures, viz. the Mercury 

system with a distributed memory architecture, the Shiva system with a shared memory 

and the Param system with a hybrid memory architecture. 

Digital image compression can be implemented in a variety of ways on parallel 

computers. Each uniquely identifiable way of implementation is called as a 'Plan'. Some 

of these Plans were implemented on available parallel computers and other Plans were 

simulated using the Network n.5 simulation package. Performance of these Plans can be 

evaluated in terms of speedup, scaleup, and efficiency. 
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3.1 Introduction 

Parallel processing is often used to increase the computation speed of a task by dividing 

the task into several sub-tasks and allocating multiple processors to execute multiple 

sub-tasks simultaneously. A wide variety of parallel computers are used for parallel 

processing. Section 3.2 briefly describes the various parallel computer architectures and 

parallel programming languages. 

Digital image compression can be implemented on parallel computers in a 

variety of ways. Each way of performing image compression is called as a 'Plan' in this 

thesis. Each Plan used for digital image compression on a parallel computer can be 

specified by a 6-tuple consisting of the image compression technique, block 

dependency, image partitioning method, memory architecture, memory organisation / 

network topology and the number of processors. Section 3.3 describes these Plans in 

detail. Some of these Plans were implemented on available parallel computers such as 

Mercury, Shiva and Param systems. Section 3.4.1 describes the implementation detail 

on these parallel computers. Other Plans were simulated using the Network n.5 

simulation package. Simulation models for these Plans are described in section 3.4.2. 

These plans were evaluated in terms of speedup, scaleup, and efficiency. These 

terms are defined in section 3.5. 

3.2 Parallel Computer Architectures 

One of the main aims of this research project was to investigate the application of 

parallel computers architectures to speedup digital image compression operations. 

Parallel computer architectures can be classified based on factors described below 

[Krishnamurthy, 89]. 

1 Granularity: The number of processors used in a system is a measure of its 

granularity. Granularity can be classified as fine grain, medium grain, and coarse 

grain. In a fine grained parallel computer several thousand processors are used. In a 

medium grained parallel computer a few tens to several hundred processors may be 

used. Whereas, in a coarse grained parallel computer only a few processors are 

used. 

2 Interconnection topology: The processors can be interconnected to form a 

network with topologies such as Ring, Array, Mesh, Tree, Cube, Pyramid etc. 

3 Task allocation: Task allocation on any architecture is a mapping of the program 

onto the available machine resources. This can be done statically or dynamically. 
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In a static mapping all the tasks are allocated prior to program execution, based on 

the system topology. In dynamic allocation, the tasks may be migrated from one 

processor to another to balance the work load. 

One of the most widely used taxonomy for parallel architecture was proposed by 

Flynn. In this taxonomy singularity or multiplicity of instruction stream and data stream 

is the basis for classification. This gives us four possible classes of parallel computers, 

namely [ Krishnamurthy, 89], 

1 Single Instruction stream Single Data stream (SISD) machines, 

2 Single Instruction stream Multiple Data stream (SIMD) machines, 

3 Multiple Instruction stream Single Data stream (MISD) machines, 

4 Multiple Instruction stream Multiple Data stream (MIMD) machines. 

A SIMD machine is a computer system consisting of a single control unit, N 

processors, M memory modules, and an interconnections network. The instructions are 

broadcast from the control unit to all the processors and processors execute the same 

instructions at the same time [Siegel, 85]. 

MIMD architectures operate in parallel in an asynchronous manner and generally 

share data either through a common memory or by passing data over communication 

channels. Some of the commercially available MIMD computers are CM-5, NCUBE, 

iWarp, iPSC, Paragon, Meiko computing system, Teradata etc. [Hord, 93]. 

Based on memory architecture parallel computers are classified as shared 

memory, distributed memory, and hybrid memory architectures. These are explained in 

the following sections. 

3.2.1 Shared Memory Architecture 

In a shared memory architecture the processors use a shared memory space for passing 

data and messages. Shared memory architecture is further divided into global memory 

architecture and global-plus-local memory organisation. In the global memory 

organisation, there is a only one main memory module and all processors access the 

same global memory. Whereas, in a global-plus-local memory organisation each 

processor has its own local memory, and can also access the main global memory. 

These two types of architectures are shown in figure 3.1. 
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Figure 3.1 Shared Memory Architectures 

a) with global memory organisation 

b) with global-plus-local memory organisation 

3.2.2 Distributed Memory Architecture 

In the distributed memory architecture all processors have only their own local memory. 

Processors can be connected in many different interconnection topologies. Based upon 

the interconnection topology, distributed memory architectures can be classified as Tree, 

Mesh, Cube, and Pyramid architectures. These topologies with various number of 

processors are shown in figure 3.2, 3.3, 3.4 and 3.5. These figures show the 

interconnection schemes with each processor having upto four links. It is easy to 

construct these configurations in a Transputer based system, since each Transputer T805 

has got four links. 

Figure 3.2 shows the interconnection schemes using Tree topologies with three 

processors, nine processors, fifteen processors and twenty seven processors. In all these 

topologies, the host processor is connected to two other processors. The host processor 
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is mainly used for allocating tasks and collating the information from all other 

processors. Slave processors are named as PE. These slave processors are used for 

processing the sub-tasks. In Tree topology all slaves are not interconnected. This type of 

topology is suitable for applications with non-interdependent tasks. 

^ r 

PEl 

w 
w 

Host 
Processor 

.M 

^ 

^ r 

PE2 

(a) 

1 
\ 

PE3 

^ 
1 r 

PEl 

% 

PE4 

^ 
w 

Host 
Processor 

^ 

^ r 

PES 

y 

^ 

r 
PE6 

- • 

^ r 

PE2 

A 

PET PE8 

(b) 

r 

PE3 

% 
PE9 

; ' 
• 

> PE1 

% 
PE4 

* 
PE10 

Host 
Processor ^ 1 

^ ^ 1 
^ 1 

PES 

* 
PE11 

^ r 
PE6 

i 
PE12 

T 

PE2 

T 
PE7 

% 

PE13 

4 1 

1 
PES 

• 
T 

PE14 

(c) 

r^ 

•4 

Host 
Processo 

PEl 

PE9 

PE3 

T̂  PE21 

• PE4 

PEIO 

^ 

PE22 

PE2 < 

PES 

PEll 

PE15 PE16 

PE6 

PE23 PE12 

PE17 

n 
IT 
• 

> PE7 

PE24 PE3 

PE18 

PE25 

> PES 

PE20 

PE19 

PE20 

PE14 

(d) 
Figure 3.2 Tree topologies with 

(a) three processors 
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Figure 3.3 shows the interconnection schemes using Mesh topologies with five 

processors, ten processors, and seventeen processors. The host processor in these 
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topologies is connected to two slave processors. All slave processors are interconnected 

in A Mesh structure. This type of Mesh topology is mainly used for applications which 

have interdependent tasks. The Mesh topology can easily be converted into a Torus 

topology. In Torus topology last column processors are connected to the first column 

processors and last row processors are connected to first row processors. Torus topology 

is often used in image processing applications. 

Figure 3.4 shows the interconnection schemes using Pyramid topology with five 

processors and twenty one processors. In this topology, the host processor is connected 

to four slave processors. The twenty one processors topology is similar to a Quad-Tree 

topology where each processor is connected to four other processors. This topology is 

suitable for applications with both interdependent and non-interdependent task. 
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Figure 3.5 shows the 3-dimensional Cube architecture with nine processors, 

where host processor is connected to four slave processors. 

Interconnection schemes described above are only indicative of the manner in 

which various topologies can be constructed. Different sets of interconnection schemes 

can be generated by varying the number of connection available of the processing 

elements. 
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3.2.3 Parallel Programming Languages 

Parallel programming languages can be classified into Procedure Oriented, Message 

Oriented and Operation Oriented languages [Fleming, 88]. Procedure Oriented 

Languages are best suited to uni-processors and are used when data is passed through 

shared variables. In a Message Oriented Languages data can be passed with or without 

shared memory. Operation Oriented languages are suitable for programming on 

distributed memory architectures. 

Some of the commonly used parallel programming languages are Fortran, 

OCCAM, C-H-, C. The C programming language was chosen for the implementation, 

because C code can be easily ported to other parallel computers and it is supported by 

most of the operating systems. 
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3.3 Parallel Processing Plans for Digital Image Compression 
Techniques 

Digital image compression technique can be implemented on parallel computers in 

many different ways. A specific way of implementation is called as a 'Plan'. Each Plan 

used for digital image compression on a parallel computer can be specified by a 6-tuple 

consisting of Image Compression Technique (ICT), Block Dependency (BD), Image 

Partitioning Method (IPM), Memory Architecture (MA), Memory Organisation / 

Network Topology (NT) and the Number of Processors (NP). Plan (P) thus can be 

represented as; 

P(ICT, BD, IPM, MA, MO/NT, NP) 

where, P is Plan for implementation, 

ICT is the Image Compression Technique used for image processing, 

BD is Block Dependency used for image processing, 

IPM is Image Partitioning Method used for image processing, 

MA is Memory Architecture used for parallel processor, 

MO/NT is Memory Organisation / Network Topology used for parallel processor, 

NP is Number of Processors. 

These factors are explained in the following sections. 

3.3.1 Image Compression Technique (ICT) 

Image Compression Technique can be classified into conventional image compression 

technique and block comparator enhancement to the JPEG technique. The conventional 

image compression technique is based on the JPEG algorithm without any block 

comparisons. The conventional technique is called as the Non-Block Comparator 

Technique (NBCT) in this thesis. The block comparator enhancement to the JPEG 

algorithm, based on block comparison and the JPEG algorithm, was explained in 

section 2.4. This technique is called as the Block Comparator Technique (BCT) in this 

thesis. The structure of classification of image compression technique is shown in figure 

3.6. 

Image Compression 
Technique (ICT) 

W-
Non-Block Comparator 

Technique (NBCT) 

Block Comparator 
Technique (BCT) 

Figure 3.6 Classification of Image Compression Technique 
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3.3.2 Block Dependency (BD) 

Most of the digital image compression algorithms use a block of 8 x 8 samples. To 

obtain a smoothing effect, the value of the neighbouring samples for each sample need 

to be considered. When the value of neighbouring samples are utilised the processor 

processing an image block, needs access to the edge samples in its neighbouring blocks. 

This is called Inter-Block Dependency (IBD) method. If smoothing effect is not required 

then samples in neighbouring blocks need not be accessed. This method is called as 

Non-Inter-Block Dependency (NIBD) method in this thesis. 

On parallel computers, task allocation can be done in two ways in the Inter-

Block Dependency method. In this method the basic blocks are called the Root Objects 

and edge sample of neighbouring blocks are called Leaf Objects. One way of allocating 

compression tasks is to allocate the task with only the Root Objects transmitted to the 

respective processors. Then the Leaf Objects (neighbouring samples) can be accessed 

from neighbouring processors. Since it requires run-time communication between 

processors it is called Inter-Processor Communication (IPC) method. The second way of 

task allocation is to allocate task with the Root Object along with the Leaf Objects. In 

this method there is no need of accessing neighbouring samples from other processors at 

run-time, ehminating the need for inter-processor communication. This method is called 

Non-Inter-Processors Communication (NIPC) method. 

Classification of Block Dependency on parallel computers is shown in figure 

3.7. 

Block Dependency (BD)" 

Inter-Block Dependeny (IBD)" 

Non-Inter-Block Dependency (NIB) 

^Inter-Processor Communication 
r iPd 

Non-Inter-Processor 
•Communication 
(NIPC) 

Figure 3.7 Classification of Block Dependency 

3.3.3 Image Partitioning Method (IPM) 

Most of the digital image compression algorithms use a block of 8 x 8 samples. Choice 

of an Image Partitioning Method based on blocks of an image is an important step, 
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because it determines system efficiency, processing workload balance and the amount of 

usable parallelism. 

hnage Partitioning can be done in two ways. One method is to divide the 

complete image into a number of blocks. These blocks can be grouped into tasks equal 

to the number of processors. This method is called Block Based Image Partitioning 

(BBIP). 

Second method of Image Partitioning can be done by dividing the complete 

image into a number of blocks such that each block is weighted in terms of intensity. 

The blocks can be grouped into a tasks which consists of equal intensity values. This 

method is called Balanced Workload Image Partitioning (BWIP). 

Classification of Image Partitioning Method is shown in figure 3.8. 

- • Block Based Image Partitioning 
Partitioning 

Method CPM^ 
• Balanced Workload Image Partitioning (BWIP) 

Figure 3.8 Classification of Image Partitioning Method 

3.3.4 Memory Architecture (MA) 

Based on memory access parallel computers are broadly classified as shared memory 

architecture, distributed memory architecture, and hybrid memory architecture as 

discussed in section 3.2. In this research shared and distributed memory architectures 

are primarily used. Classification structure of Memory Architecture is shown in figure 

3.9. 

Shared Memory 
Architecture (SMA) 

Memory Architecture 
(MA) W-

W-

Distributed Memory 
Architecture (DMA) 

Hybrid Memory 
Architecture (HMA) 

Figure 3.9 Classification of Memory Architecture 
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3.3.5 Memory Organisation / Network Topology (NT) 

Processors can be connected in many different interconnection topologies. Based upon 

the interconnection topologies, shared memory architecture can be classified as global 

memory organisation and global-plus-local memory organisation. Distributed memory 

architectures can be classified as Tree, Mesh, Cube, and Pyramid architecmres. 

Classification structure of Memory Organisation / Network Topology is shown in figure 

3.10. 

- • Shared Memory Architecture with Global Memory (SGM) 

-W Shared Memory Architecture with Local-Plus-Global Memory (SLgM) 

-W Distributed Memory Architecmre with Tree Totology (DTrT) Memory 
Organisation / 

Network Topology 
(MO/NT) Distributed Memory Architecmre with Torus Topology (DToT) 

Distributed Memory Architecmre with Cube Topology (DCuT) 

Distributed Memory Architecmre with Pyramid Topology (DPyT) 

Figure 3.10 Classification of Memory Organisation / Network Topology 

3.3.6 Number of processors (NP) 

In a shared memory architecture, memory organisation can be constructed with any 

number of processors from one to N. 

In distributed memory architecture number of processors are fixed for a 

symmetrical topology. For example symmetrical tree topology can be constructed with 

3, 9, 15, or 27 processors. Symmetrical torus topology can be constructed with 5, 9, and 

17, symmetrical cube topology may have 5 or 28 processors, whereas symmetrical 

pyramid topology can have 5, 9, or 21 processors. The number of processors used in 

different symmetrical network topologies is shown in figure 3.11. 

__^ SGM 2, 4, 6, 10, 15, 20 

Number of 
Processors (NP) 

SLgM 2,4, 6, 10, 15, 

DTrT 3, 9, 15, 

DToT 5, 9, 17 

DCuT 5, 

DPyT 5, 9, 

Figure 3.11 Classification of Number of Processors 
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3.4 Implementation of Plans on Parallel Computer Architectures 

Some of the digital image compression Plans were implemented on parallel computers, 

while many others were simulated using the Network n.5 package. A brief introduction 

to the computers used for implementing some of the Plans is given in section 3.4.1. 

Simulation steps used for modelling and simulating other Plans are given in section 

3.4.2. 

3.4.1 Implementation of Digital Image Compression Plans on Parallel Computers 

Plans for Non-Block Comparator Technique (NBCT) were implemented on parallel 

computers such as. Mercury system, Shiva system, and Param system. These computers 

are course grained and are described in the following sections. 

Mercury system: The Mercury system was designed and developed by the 

Collaborative Information of Technology and Research Institute (CITRI), Melbourne 

[Bevinakoppa, 92]. It is a message passing parallel computer. Mercury system 

comprises four T800 transputers and sixteen T805 transputers and operates as back-end 

processor to a 386 based host processor. The JPEG algorithm was implemented on 

various number of processors on Mesh topology distributed memory architecture using 

the Plan, 

Mercury Plans := P(NBCT, NIPC, BBIP, DMA, DToT, NP) 

where, 

NP = 1 I 2 1 3 I 5 I 9 I 17, 

Image Size = 125 x 125 I 228 x 231 I 625 x 423. 

This Plan was implemented on the Mercury system with NP = 1, 2, 3, 5, 9, and 

17 for three different three image sizes. Thus a total of eighteen (6 x 3) Plans were 

implemented. The implementation procedure of these Plans on the Mercury system is 

explained in detail in section 4.2. 

Shiva system: The Shiva system was developed at Defence Science and Technology 

Organisation (DSTO) Australia [Nelson, 92b]. This system is a multiprocessor designed 

with shared memory architecture. It can accommodate upto eighteen Intel's i860 

processor boards. The JPEG algorithm was implemented on this global-plus-local 

memory architecture machine using the following Shiva Plans. Details of 

implementation of these nine Plans are given in section 4.3. 
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Shiva Plans := P(NBCT, NIPC, BBIP, SMA, SLgM, NP) 

where, 

NP=1I2I3 

Image Size = 125 x 125 1 228 x 2311 625 x 423. 

Param system: The Param system was designed and developed by the Centre for 

Development of Advanced Computing (C-DAC), India [Bhatkar, 94]. Param is a 

multiprocessor system that uses message passing, as well as shared memory parallel 

programming. Each node of the Param system contain four Transputers and one i860 

processor. The JPEG algorithm was implemented on this hybrid architecmre with 

various number of processor connected in Mesh topology. Plans used on this 

architecture may be represented by, 

Param Plans := P(NBCT, NIPC, BBIP, DMA, DToT, NP) 

where, 

NP=II2I3, 

Image Size = 125 x 125 I 228 x 2311 625 x 423. 

The Detail of these nine implementations are explained in section 4.4. 

These three machine were used to implement a total of twenty six Plans. More 

than two hundred other Plans were simulated using the Network n.5 simulation 

package. 

3.4.2 Simulation of Parallel Processing Plans for Image Compression 

Simulation allows the assessment of potential performance before operating newly 

designed systems. It permits the comparison of various operating strategies of a system 

when the real system is not available. It allows measurement of parameters such as the 

time taken for various operations, utilisation of various components and system 

efficiency. 

Network n.5 package was used to model the operation of various Plans for 

parallel processing of the JPEG algorithm. The execution times of these Plans were 

obtained by running various simulations on the Network n.5 models. Simulation results 

are given in chapter 5. The procedure adopted for developing the models, and running 

the simulations is explained in this section. 

Model building and simulation involves ten steps, viz. problem formulation, 

model building, data collection, model translation, model verification, model validation. 
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experiment planning, experimentation, analysis of results, and documentation [Sharda, 

95]. Each of these steps are described briefly in the following sections. 

3.4.2.1 Problem Formulation 

The first step in building a model is to make a clear statement of the problem. This 

includes stating the objectives of the modelling and simulation project. An accurate and 

precise problem statement is very essential for a systematic and smooth operation of the 

simulating process. 

The main aim of our simulation work is to test the operation of image 

compression algorithms on different parallel computer architectures. To systematise the 

modelling and simulation work the idea of a Plan was introduced, in section 3.3. Each 

Plan was translated into a model using the Network n.5 package. Performance figures 

for these Plans were obtained by running simulations on these models. 

3.4.2.2 Model Building 

There can be many different types of models such as descriptive models, physical 

models, mathematical models, flow charts, schematics and computer based models. The 

computer based models was chosen for discrete event simulation. 

The criteria used in selecting the best type of model are [Leigh, 83]: 

• Design a model that could be used for different applications with some variations in 

the model [Reitman, 81]. 

• Simulation models may work for some specific real systems and may not work for 

other systems. Because, hidden critical assumptions may cause the model to diverge 

from reality. Therefore, it is a better idea to design a model for a specific problem 

with all the required parameters. 

• The model output should be close to the expected output value. If not, the above 

steps need to be followed again from the beginning. 

The various Plans, mentioned in section 3.3, were modelled for parallel 

processing of the JPEG algorithm. The following steps were followed for each of the 

models built. 

3.4.2.3 Data Collection 

Data for various parameters of the model e.g. that of a parallel computer system can be 

collected from various sources. Data, such as values of various parameters of the model. 
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may either have a single value or a range of values. These values can be collected 

through literature survey and/or initial experimental results. 

Data required for modelling the execution of Digital Image Compression 

techniques on parallel computers comprises data related to different compression 

techniques, and data required for modelling parallel computers. For the Non-Block 

Comparator technique data was collected from the existing JPEG algorithm described in 

the current literature. For the Block Comparator technique data was obtained from the 

experimental results, by running the block comparison step on Sparc n processor several 

times. From the experimental results it was found that parameters, such as execution 

time, followed Normal Distribution. 

Distributed, shared, and hybrid memory architectures were used for modelling 

some of the Plans. The parameters required for modelling these architectures were taken 

from the manufacturer's specification for the three parallel machine (Mercury, Shiva, 

and Param) described in section 5.2. 

3.4.2.4 Model Translation 

Next step is to translate the model into a form which can be processed on a computer. 

Model translation can be done in two ways, either by using a suitable computer 

language, or by using a simulation package. 

Simulation programs can be written in high level programming languages such 

as Fortran or Pascal. Some languages are designed specifically for simulation, such as 

SimSript, GPSS, Simula [Bratley, 83] [Naylor, 68]. A special simulation language such 

as Continuous System Simulation Language (CSSL) or Modified Integration Digital 

Analogue Simulator (MIDAS) is extremely easy to use [Stephenson, 71]. 

Some simulation packages target towards specific application areas are also 

available. For example Network n.5, COMNET n.5 and SIMLAN H can be used to 

model computer networks. Network n.5 simulation package was chosen for simulation 

of digital image compression techniques on parallel computers. Network n.5 is 

described in the following section. 

Network II.5 simulation package: Network n.5 is a simulation package which takes in 

the description of the computer hardware and software and gives reports on measures 

such as hardware utihsation, software execution, times taken for message dehvery, 

contention of memory, total system performance etc [CACI, 94]. It has an interactive 

graphical interface and can generate diagrams of the computer, storage devices, and 

transfer devices. Network n.5 models the interactions between all the devices in the 

system. 
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Network n.5 package has three main functions, viz., system description, system 

simulation and system analysis. In system description, all the devices or components are 

represented by graphical icons and their attributes can also be specified via a graphical 

interface. Simulation results can be analysed after running various experiments on the 

models. Network n.5 facilitates this analysis through animation, plot of device status 

and reports. 

There are two categories of entities in Network n.5; hardware and software. 

These are described in following sections. 

Hardware description on Network II.5: Hardware devices are modelled as one of the 

three building blocks available in Network n.5; these are. Processing Element (PE), 

Transfer Device (TD), and Storage Device (SD), depending on the function of the 

device being modelled. 

The Processing Element building block can be used to simulate any intelligent 

hardware devices such as bus controller, display controller, and Central Processing Unit 

(CPU). A PE is characterised by parameters such as basic cycle time, message list size, 

I/O setup time, time slice, interrupt overhead, input controller, and instruction 

repertoire. The instruction repertoire is classified into four groups of instructions; 

processing instructions, read/write instructions, message instructions and semaphore 

instructions. 

Transfer Devices are the links between Processing Elements and Storage 

Devices or between two Processing Elements. Transfer Devices are characterised by 

parameters such as transfer speed, transfer overhead, number of words, number of 

blocks and protocol definition. A message instruction is used to move the data between 

two PEs and read/write instructions are used to move the data between PE and storage 

device. Network n.5 automatically computes the actual time to send the data, and 

organises the data transfer according to the specified transfer protocol. The transfer 

protocol attribute may be set to model First Come First Serve (FCFS), collision, token 

ring, token bus, priority, aloha, and other protocols. 

A Storage Device (SD) can be connected to more than one Processing Elements. 

Storage Devices are used to store data in files. The capacity of these is measured in bits. 

Read / write instructions are used to read the data from file and write the data to a 

specified file. If a specified file does not exist. Network n.5 gives a warning message at 

mn time. Only a portion of the data can be accessed at any time. If the file structure is 

yet to be determined or is not significant to the simulation, files can be read from, or 

write to, a general storage (GS). The general storage keeps track of the number of bits 

stored. 
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Software description on Network 11.5: In a Network n.5 based simulation, algorithm 

(software) is modelled in the form of software modules. Each module contains a list of 

PEs on which it may execute, a description of when it may run i.e. module 

preconditions, what it is to do when running i.e. instruction list, and which other 

modules to start upon completion i.e. successors. Each module goes through four cycles, 

these are; 

1. Check preconditions 

2. Once all preconditions are met queue up for PEs 

3. When the PE becomes available execute instructions from its instruction list. 

4. After the module has issued the last instruction in its instruction list, choose its 

successor modules, if any. 

3.4.2.5 Model Verification 

The purpose of the verification step is to ensure that the model behaves as planned and 

that it is a true representation of the system being modelled [Roberts, 83]. 

Network n.5 facilitates verification by providing graphical output for the 

hardware and software components of the model. The complete (hardware plus 

software) model can be verified by running animation. This enables visualisation of the 

modelled system in operation. The operation of each implementation can be seen 

visually and can be compared against the planned model. The animation operation can 

be performed as a step-by-step operation or as a continuous operation. 

3.4.2.6 Model Validation 

A model can be validated by proving that the model is a correct representation of the 

real system. There are various techniques for validation ie. mathematical technique, 

experimental, or statistical. The best way to validate a model is to compare the results of 

the simulation with results produced by the real system operating under the same 

conditions. If the compared result is within +/- 10% of the predicted value then the 

model is said to be validated. 

In our research some of the Plans were implemented on real systems such as 

Mercury system, Shiva system, and Param system. The same Plans were simulated on 

Network n.5 package. Validation for our system was done by comparing the 

experimental results obtained on the real systems with the results obtained from the 

Network n.5 based modules. 



Chapter 3 82 

3.4.2.7 Experiment Planning 

To run a series of experiments we must plan for the values over which the variables 

would be varied; because only a finite number of experiments can be ran on each model. 

To draw a useful conclusion, for some system we may be able to plan the experiment 

before the simulation starts. For complex systems, the later experiments have to be 

planned based on experience from the initial experimental results. 

For our simulation, various Plans were simulated. For each Plan the Number of 

Processors parameter was varied from low values to high values till the speedup started 

decreasing. From these series of experiments the speedup and scaleup performance 

measures were determined. 

3.4.2.8 Experimentation 

A total of ten Plans were modelled, and, on an average, thirty experiments were run for 

each Plan. Therefore, a total of three hundred experiments were run on the Network n.5 

based models. 

3.4.2.9 Analysis of Results 

A vast volume of data is generated from the large number of experiments carried out. 

This data is plotted in a series of graphs to be able to study this data. These graphs are 

then analysed to derive conclusions. 

3.4.2.10 Documentation 

The output data produced by these experiments must be well documented. 

Documentation is essential for reuse and maintenance of the model. 

In our system all the Plans which are represented in graphical objects were 

documented, and were stored on a computer disk using ABC flow chart. The 

experimental results obtained for all the Plans were maintained on disk using Excel 

spreadsheet. Speedup were calculated using the spreadsheet software and graphs of each 

Plan were drawn using Microsoft Draw. 
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3.5 Performance IVIeasures 

Parallel processing performance is measured in terms of speedup, scaleup and efficiency 

of the system. These terms are defined in the following sections. 

Speedup of a parallel processor: Speedup for N processors is defined as the time taken 
by a single processor divided by the time taken by N processors [Kumar, 94]. Speedup 
(Sjsf) of parallel processor is given by, 

S N 

where, 

S N 

Tl 

T N 

T I / T N 

Speedup for N processors, 

Time taken by a single processor. 

Time taken by N processors. 

(3.1) 

Speedup curves can be of one of three types: superlinear, linear or sublinear as 

shown in figure 3.12. 

Linear speedup is obtained when the improvement in performance is 

proportional to the number of processing elements in the system. Superlinear speedup is 

obtained when the speedup curve is above the linear curve. But, in most of the real 

implementations, linear or superlinear speedups cannot be obtained due to 

communication overhead. When the speedup curve lies below the linear curve sublinear 

speedup is obtained. 

Superlinear Speedup 

Speedup-S 

Linear 
Speedup 

Sublinear Speedup 

Number of Processors-NP 

Figure 3.12 Speedup graph 

Scaleup: For sublinear speedup, initially the speedup increases as the number of 

processors in the system increases, and at some point the speedup starts decreasing with 

further increase in the number of processors, as shown in figure 3.13. Scaleup of a 
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parallel architecture is a function of the maximum number of processors at which the 

speedup starts decreasing. For brevity, scaleup is defined as the number of processors at 

the point of maximum speedup. 

Speedup-S 

Scaleup 

Figure 3.13 Speedup graph showing scaleup 

Efficiency: Efficiency (T|) is defined the average speedup of each processor in a parallel 

processor, and is given by, 

where: 

S N 

N 

S N / N , 

Efficiency, 

Speedup of the parallel processor. 

Number of processors. 

(3.6) 

3.6 Summary 

Digital image compression can be implemented on parallel computers to speedup the 

operation. This chapter explained the different types of parallel computers and parallel 

programming languages. Various Plans for digital image compression on parallel 

computers were given. Some of these Plans were implemented on available parallel 

computers such as, Mercury, Shiva and Param systems. Some other Plans were 

simulated using Network II.5 simulation package. 

Performance measures such as speedup, scaleup, and efficiency for parallel 

architectures were defined. These performance measures will be used in chapter 5 to 

evaluate the performance of various Plans for the parallel processing of JPEG algorithm. 
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Chapter 4 

IMPLEMENTATION OF THE JPEG ALGORITHM 
ON THREE PARALLEL COMPUTERS 
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Abstract 

This chapter explains the hardware architecture and implementation of the JPEG 

algorithm on the parallel computer systems; Mercury, Shiva and Param. 

The Mercury system uses a message passing distributed memory architecmre. 

The Shiva system is a shared memory parallel architecture and has a torus 

interconnection topology. The Param system has a hybrid architecture, with distributed 

as well as shared memory. 

The JPEG algorithm was implemented on the three above mentioned parallel 

computers with different image sizes on various sized networks. This chapter describes 

the implementation procedure and the experimental results obtained on each of these 

systems. 
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4.1 Introduction 

This chapter describes the implementation of the JPEG algorithm on three parallel 

computers namely; Mercury system, Shiva system and Param system. 

The Mercury system was designed and developed by the Collaborative 

Information Technology and Research Institute (CITRI), Melbourne. It is a distributed 

memory, message passing parallel computer. The Mercury system comprises of twenty 

transputers and is used as a back-end processor to a personal computer. 

The Shiva system was developed at the Defence Science and Technology 

Organisation (DSTO), Australia. It uses shared memory architecture and is used as a 

back-end system to a Sparc station. Shiva comprises of one Master unit and multiple 

Slave units. Slave units may be of any type, viz. Intel i860 based processors or a special 

purpose processor. 

The Param system was designed and developed by the Centre for Development 

of Advanced Computing (C-DAC), India. It is a multiprocessor system that uses 

message passing as well as shared memory parallel programming. Param systems are 

available in three series, viz. Param 8000, Param 8600 and Param 9000. The Param 

8600 is based on Intel's i860 processor. The i860 based Param 8600 was selected for 

this research. 

The JPEG algorithm was implemented on the above mentioned three systems. 

Section 4.2 describes the hardware architecture, operating system and implementation of 

the JPEG algorithm on the Mercury system. Section 4.3 describes the hardware, parallel 

programming environment and implementation of the JPEG algorithm on the Shiva 

system. Section 4.4 describes the hardware architecture of Param 8600, Paras parallel 

programming environment and implementation of the JPEG algorithm on the Param 

system. Performance comparison of these three parallel computers is given in section 

4.5. 

4.2 Implementation of the JPEG Algorithm on the IMercury System 

The JPEG algorithm was implemented on the transputer based Mercury system using 

the Hehos operating system. 

Section 4.2.1 describes the Mercury system and its parallel progranmiing 

environment. Section 4.2.2 describes implementation of the JPEG algorithm on 

Mercury system. The JPEG algorithm was implemented on various sized network 

topologies and with different image sizes. Experimental results are given in section 

4.2.3. 
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4.2.1 Mercury System Architecture 

This section describes the Mercury system. Mercury system is a multi-user scalable 

Multiple Instruction Multiple Data (MIMD) parallel computer, with primary aggregate 

memory of 100 MByte, and twenty processors. It consists of four T800 transputers and 

sixteen T805 transputers. 

4.2.1.1 Hardware Architecture 

A 80386 based PC was used as the front-end to the transputer based Mercury system. It 

consists of twenty Transputers, four of which are T800s and sixteen transputers are 

T805s. Four transputers are connected in a ring topology and named as Tl, T2, T3 and 

T4, as shown in figure 4.1. Sixteen transputers are connected in a torus topology, and 

named as N1,N2,N3...N16. 

The INMOS transputer family is a range of system components each of which 

combines processing, memory and serial interconnection interfaces in a single VLSI 

chip, with a design based on the Reduced Instruction Set Computer (RISC) technology 

[INMOS, 89]. The first member of the family, the T414, a 32-bit transputer, was 

introduced in September 1985. Transputer architecture has inherent concurrency that 

can be applied to a wide variety of applications such as simulation, robot control, image 

synthesis, and digital signal processing. These numerically intensive applications can 

exploit large arrays of transputers in a single system. The following series of transputers 

are available; T800, T805, T9000 and Alpha. The overall performance of a transputer 

based system is dependent on the number of transputers, the speed of inter-transputer 

communication and the floating point performance of each transputer. The following 

section describes the characteristics of the T805 transputer. 

T805 transputer architecture: The T805 has a floating Point Unit (FPU), a CPU, 4 

KBytes of local memory, four communication links and a timer as shown in figure 4.2. 

INMOS T805 provides a peak computing power of 3.5 MFLOPS at 20 MHz. The 

Transputer has an intemal memory of 4KByte, which is too small to run most 

applications. Thus external transputer Modules (TRAMS), which consist of 32 KBytes -

2 MBytes of memory are often used. Communication links are Direct Memory Access 

(DMA) based bi-directional links that can be used to connect many transputers in a 

multiprocessor system [Mitchell, 90]. The peak conmiunication speed between two 

T800 or T805 transputers is 20 Mbits/sec. 
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4.2.1.2 Helios Parallel Programming Environment 

The Helios operating system was used on the Mercury system. Helios is a distributed 

operating system developed by Perihelion Software Limited and runs on a wide range of 

workstations. Helios is capable of expanding into the available set of processors and of 
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sharing the workload among them. Such processor clusters may themselves be 

interconnected in a local network to allow the sharing of data and expensive devices 

such as high capacity discs and laser printers [Ian, 92] [Hemery, 91]. 

Helios provides four levels of communication between processors. The lowest 

level is used by the nucleus: PutMsgO and GetMsgO are the Message Passing Primitives 

(MPP) that provide the basis of all Helios communication. The level above this is 

provided by the system library functions Read() and Write(). These calls operate on 

streams and have time outs associated with each requested transaction. At the next level 

is the, Portable Operating Set of Instruction Codes (POSIC), read() and write() 

functions. Calls to the POSIC functions are based on POSIC file descriptors. The 

highest level of communication is at the language level, which depends upon the 

programming language used. 

The POSIC communication routines is used most often because of the following 

factors. 

1. This communication mechanism assures some degree of reliability and fault 

tolerance. That is, it provides error detection and recovery from failure and there is a 

guarantee that messages will arrive at their respective destinations. 

2. It offers greater functionality than lower level libraries. 

3. Most importantly, POSIC library can also be used on other parallel architectures, 

thereby giving portable code. 

MPP as well as POSIC conmiunication routines were used to compare their 

effect on the execution times. In these two levels of communication, inter-processor 

message transmission times over transputer links are characterised by a relationship of 

the form: 

Ttotal = ^overhead + ^init + ^-kx 
126.120129+ 0.562684.N for MPP 

1461.421142 + 0.567642.N for POSIC 

where, 

Ttotal ~ message transmission time, 

^overhead ~ ^°^P overhead on each test iteration, 

tjjjjt = message initialisation time, 

N = number of bytes in a message, 

t̂ x = transmission time for one byte. 

Some of the most useful facilities in the POSIC communication protocols are: 

• openO is used to open a stream to a named file or server and it returns the file descriptor that can be 

used by other routines. 

• linkO is used to create a symbolic link, in other words an entry in the naming tree that actually refers 

to some other object elsewhere in the naming tree. 



Chapter 4 90 

• close() terminates a stream connection to a file or server that was produced by open(). 

• read() attempts to obtain data from an open file or server. The read statement is written as: 

read(file descriptor, address of the buffer, length of the buffer). 

• writeO attempts to send data to an open file or server. The write statement is written as: 

write(file descriptor, address of the buffer, length of the buffer). 

4.2.1.3 Component Distribution Language (CDL) 

CDL is the language that facilitates parallel programming under Helios. The purpose of 

CDL is to provide a high level approach to parallel programming. It allows Helios to 

take care of the actual distribution of the program components over the available 

physical resources. 

An example of CDL script is shown below. In CDL script the sentence followed 

by # is a comment. The script consists of two parts, viz. component declaration(s) and 

task force definition. 

The purpose of the component declaration is to specify relevant details of the 

hardware component to the Helios operating system. The task force definition is a 

specification of the network topology, and is used by the Helios operating system. 

• This is a CDL script example Conmient 

component master {memory 20000; puid /Cluster/Tl; } Component declaration 

master I slave 1 <> slave2 Task force definition 

The component declaration part describes the requirements of particular 

components in the task force. A component can be declared in terms of memory size, 

path of the processor location, and name of the processor, as shown in the above 

example. 

The task force definition part describes the interaction of the task force with the 

components. The CDL language defines four parallel constructors, i.e. I pipeline 

constructor, o bi-directional constructor, ^^ parallel constructor, and III interleave 

constructor. 

4.2.1.4 Parallel Programming Languages 

Transputer based systems support OCCAM, C, and C+-i- programming languages 

[Ungerer, 91], The transputer was designed to execute the OCCAM parallel 

prograimning model efficiently. OCCAM programs can be operated on four 

independent channels in parallel [Fountain, 87]. 
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4.2.2 Implementation of the JPEG Algorithm on the Mercury System 

The JPEG algorithm was implemented on the Mercury system using the C programming 

language under the Helios operating system. It was implemented on various number of 

processors on Mesh topology distributed memory architecture using the Plan, 

Mercury Plans := P(NBCT, NIPC, BBIP, DMA, DToT, NP) 

where, 

P is Plan for implementation, 

NBCT is the Non-Block Comparator Technique used for image processing, 

NIPC is Block Dependency with Non-Inter-Processor Conmiunication, 

BBIP is Block Based Image Partitioning method, 

DMA is Distributed Memory Architecture, 

DToT is Distributed Memory Architecture with Torus Topology, 

NP is Number of Processors = II 2 I 3 15 I 9 113 I 17. 

Image Size = 125 x 125 I 228 x 23II 625 x 423. 

This Plan was implemented on the Mercury system with NP = 1, 2, 3, 5, 9, and 

17 for three different three image sizes. Thus a total of eighteen (6 x 3) Plans were 

implemented. This section explains the implementation procedure of parallel JPEG 

implementation on the Mercury system. 

The implementation procedure used on the Mercury system is shown in figure 

4.3 as a flow diagram [Sharda, 93]. The source image is initially stored on the host 

processor Tl . The Image is transferred to the T4 node processor through the T3 node 

processor. The node processors (Nl to N16) wait for components of the source image to 

be down loaded. The T4 processor partitions the image into two parts and sends each 

part along with the required header information to node processors Nl and N4. For 

image partitioning a block of 8x8 samples is used as an atomic component. The Nl 

node processor further divides the image into eight parts and sends seven of these parts 

to node processors N13, N5 and N2. One sixteenth of the image is retained on the Nl 

node processor. This distribution of image parts continues as shown in the path graph 

given in figure 4.4. Thus, each node processor has 1/16th of full image. The Image 

distribution is followed by performing encoding on each processor in parallel. The 

encoded image is composed using a reverse procedure with respect to the procedure 

used for image distribution. 

The above described procedure was used for distributing the image onto 

seventeen processors. Experiments were carried out to determine the execution time on 

fewer processors as well. For each experiment the image was distributed as evenly as 

possible on the set of processors being used. 
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4.2.3 Experimental Results 

The JPEG algorithm was implemented on the Mercury system for different numbers of 

processors, such as 1, 2, 3, 5, 9, 13, and 17. Experimentation was done for output 

quality as 75%. Different level of conmiunication primitives (MPP and POSIC) were 

used for each of the three image sizes investigated. The results obtained from these 

experiments are given in tables 4.1 and 4.2. 

The minimum execution time obtained with POSIC communication routines for 
a 125x125 is 0.89 seconds, for a 228x231 image size it is 2.88 seconds, for a 625x423 
image size it is 10.64 seconds on a system with nine node processors. 

Table 4.1 Execution times obtained with POSIC communication routines 

Number of 

Processors - NP 

1 

2 

3 

5 

9 

13 

17 

Execution time in seconds 

For 125x125 image 

4.35 

2.27 

1.53 

0.97 

0.89 

1.19 

2.26 

For 228x231 image 

14.14 

7.33 

4.89 

3.13 

2.88 

3.52 

6.73 

For 625x423 image 

55.86 

28.65 

19.13 

12.17 

10.64 

12.96 

19.33 

Table 4.2 Execution times obtained with MPP communication routines 

Number of 

Processors - NP 

1 

2 

3 

5 

9 

13 

17 

Execution time in seconds 

For 125x125 image 

4.35 

2.25 

1.51 

0.94 

0.69 

0.83 

1.22 

For 228x231 image 

14.14 

7.25 

4.86 

3.04 

2.09 

2.38 

2.97 

For 625x423 image 

55.86 

28.35 

18.87 

11.86 

7.66 

8.85 

10.27 
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4.3 Implementation of the JPEG Algorithm on the Shiva System 

Around 1990, the Defence Science and Technology Organisation (DSTO), Australia 

undertook a research project on a heterogeneous, parallel multiprocessor named as the 

Shiva system [Yakovleff, 91]. The aim of the project was to enhance overall 

performance by incorporating several data paths in the architecture in order to achieve 

efficient and balanced processor utilisation. It incorporated performance enhancing 

techniques, such as multiplicity, heterogeneity, and reconfigurability. 

4.3.1 Shiva System Architecture 

Shiva is a heterogeneous, shared memory, multiprocessor parallel architecture. It is 

designed to exploit the I/O and operating system features of existing computers. It is 

intended to supply its parent system with enhanced performance over a wide range of 

applications without the need of any special parallel programming on the part of the user 

[Anderson, 90]. It can act as a Multiple Instruction Multiple Data (MIMD) computer, or 

as a pseudo Single Instruction Multiple Data (SIMD) computer. 

4.3.1.1 Hardware Architecture 

The Shiva system has eighteen processor units. The processor unit has Intel 180860 

processor. The first processor unit is called the Master unit and the others are called the 

Slave units. Each processor unit has its own processing element (PE) and 16 MBytes of 

local memory [ Kamak, 92a]. Local memory can be accessed either directly by the 

resident processor via a hotline or through a bus to which each processor has access as 

shown in figure 4.5. The Master unit contains the following elements: 

Co-ordinator, 

Memory unit, 

SBus interface, 

Subsystems such as Bootstrap EPROM, real-time clock, serial interface, registers. 

Bus arbitor. 

The control signals to and from the i860 are handled by a co-ordinator which 

includes address/parameter FIFOs to make use of the processor's pipelining capabilities. 

The co-ordinator maps requests from the i860 to the various devices (local memory, 

SBus or subsystem) or to the arbitrator if any of the other memory units is to be 

accessed. 

'Shiva is the Hindu God of creation. 
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The Slave units contain devices, such as co-ordinator, memory unit, data 

pipeline. All Slave units need not be of the same type, implying the possibility of a 

heterogenous architecture as shown in figure 4.6. Slaves may be special purpose boards 

such as a Neural Accelerator Board (NAB) and Parallel Transformation board (ParaT) 

and Intel i860 based processors [Anderson, 92] [Nelson, 92b]. NAB is used for 

graphical simulation in real-time [Nelson, 93b]. ParaT system is used for performing 

stereoscopic terrain visualisation application [Yakovleff, 94] [Nelson, 92b]. 
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Intel i80860 architecture: The Intel i860 was designed for numerical and vector 

intensive applications [Margulis, 90]. Many of the design principles used have been 

adopted from supercomputer technology enabling the i860 to deliver a peak arithmetic 

performance of 80 MFLOPS (single precision) and 60 MFLOPS (double precision) in 

conjunction with a peak integer performance of 40 MIPS. In particular, its high 

throughput is achieved from a combination of RISC design techniques, pipelined 

processing units, wide data paths, and large on-chip caches. On a single chip, the 

architecture supports the following facilities, as shown in figure 4.7: 

Integer operations, 

Floating point operations. 

Graphical operations, 

Memory-Management support. 

Data Cache and Instruction Cache. 

Instr Addr 

Dest 

Srcl 

Src2 

Instruction 
Cache 

I 
Data Addr 

N • 

£ FP Instr 

Integer Unit 

Adder Unit 

Data Cache 

s 
Floating Point 

Unit 

64 Bit 

I 

Address Path 

Multiplier Unit 

Figure 4.7 Intel i860 processor architecture 

The i860 microprocessor has a number of instructions designed to perform 

operations specific to graphics, such as scan-line rendering, Z-buffering and 4x4 

transforms used for perspective projections [Intel, 90]. In addition these instructions 

make use of the 64-bit wide data path to perform operations on several pixels 

simultaneously, depending on the size of their representation. This makes the Shiva 

system suitable for image compression applications. 



Chapter 4 97 

4.3.1.2 Communication Links 

The host and the master units are interfaced via an RS232 and an SBus interface as 

shown in figure 4.8. The RS232 is a serial interface on the master unit based on the Intel 

M82510 Asynchronous Serial Controller. It is used to provide a console port to the 

Shiva via which the operator can control and monitor system operation. Transfers of 

program binaries and large data blocks is done through the higher bandwidth SBus 

interface [Kamak, 92b]. The SBus card is located in the Sparc station. The data path is 

32-bits wide [Sun, 90]. Several types of transfers can be carried out over the SBus, from 

single Byte to 64-Byte block transfers. 

Master processor unit 

Slaye processor unit 

Host machine 
(SUN spare 

Station) 

SRI IS intprfarp rnnnprf inn 

^ 

^ 

ipeline connection 
Serial connection 

Figure 4.8 Shiva system organisation 

Communication is often the limiting factor in achieving high performance and 

processor efficiency on processor networks. Often, the rate of computation is 

significantly higher than that of communication. Communication is consequently a 

potential performance bottle-neck. It is therefore important that the overhead imposed 

by an operating system on communications performance be kept to a minimum. 

On the Shiva system the peak shared memory access speed is 80 MBytes/sec. 

However, this figure is not so critical as the i860 contains instruction and data caches. 

The present version of Shiva compiler uses the simplest protocol (4-byte read and write 

operations only) which can achieve roughly a contention free 5 MBytes/sec transfer rate 

over the SBus. Table 4.3 shows the data transmission times (ttotal ) ^^'^ ^^^ rates with 

respect to message sizes (N) [Bevinakoppa, 94b], where, 

N = Message size (bytes) 

Ttotal = transmission time (microseconds) 

R = Rate of transmission (KBytes/sec) 
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The rate of transmission with respect to the message size is plotted in a graph 

shown in figure 4,9. From this graph, it can be seen that transmission of a short message 

is inefficient. It is more efficient to transmit a single large message than a number of 

small ones. Transmission rate can be increased by implementing the burst mode 

transfer. 

Table 4.3 Total time (Ttotal) ^^^ transmission rate (R) on the SBus interface for 
various message sizes 

N (bytes) 

1 

4 

16 

64 

256 

1024 

4096 

16384 

65535 

T^nfai (mlcrosec) 

1.886 

4.78 

12.4 

32.4 

96.6 

296 

947.76 

3373 

13133 

R (KBytes/sec) 

530 

836 

1287 

1970 

2648 

3450 

4322 

4856 

4990 

5000 

16 64 256 1024 

Number of Bytes 

4096 16384 65535 

Figure 4.9 Rates of data transfer with respect to message size 

One of the more novel aspects of the Shiva architecture is the inter-slave data 

pipeline. The pipeline and the shared bus, provide two mechanisms for inter-processor 

communication. Unlike the bus, the data pipeline is contention free. That is, all of the 
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Slave units can write to their data pipeline simultaneously. The pipeline is 64-bits wide 

and can support a write (and a read) every 4 clock cycles. This implies a peak bandwidth 

of 80MBytes/sec., which is the same as the peak memory and bus bandwidth. There are 

two modes of access for the pipeline: blocking and non-blocking. With a blocking 

access the requesting processor will be suspended if it attempts to read from an empty 

FIFO buffer or write to a full FIFO buffer. A non-blocking access will not suspend on a 

read from an empty buffer or a write to a full buffer. An attempt to write to a full buffer 

will result in the write data being lost and an attempt to read from an empty buffer will 

result in undefined data being retomed. It is upto the controlling software to determine 

when it is appropriate to perform blocking or non-blocking pipeline operations. 

4.3.1.3 Shiva Programming Environment 

Most of the users are not interested in having to examine and modify their programs to 

take advantage of architectural features. Rather, users would prefer that the compiler 

and system software make the best use of machine's features. DSTO developed a pre­

processor named Shiva compiler which can manipulate programs, so that parallelism 

may be extracted and control statements inserted to take advantage of Shiva's parallel 

processing features [Maurer, 88] [Nelson, 93a]. 

Programs on the Shiva system were divided into host files and Shiva files. Host 

files were compiled using a GNU C Compiler, that includes communication routines 

[Bums, 89]. Some of the communication routines are: 

shiva_open: which opens the connection between host and Shiva system ie. initiaUses SBus 

card and serial cable. 

shiva_start: initialises the Master and Slave processors. 

write(): send the data through the serial cable. 

read(): receive the data through the serial cable. 

shiva_write: send a file through the SBus card. 

shiva_read: receive a file through the SBus card. 

Shiva files ware divided into master and slave files, e.g. master.c, slavel.c, 

slave2.c etc. These files were cross-compiled on the host using the Shiva compiler and 

downloaded to the Master processor using a shiva.out program. It has many 

functionalities such as communication routines, shared and local variable declarations, 

header files. Some of the communication routines available in the Shiva compiler are: 

ser_gets(): get the data serially through the serial cable. 

ser_putc(): put a character through the serial cable. 

sbus_read(): receive a file through the SBus card 
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sbus_write(); send a file through the SBus card. 

sem_send(): send semaphore to the Slaves. 

sem_wait(): wait for the semaphores fi-om the Slaves. 

4.3.2 Implementation of the JPEG Algorithm on the Shiva System 

Depending on the application, the programming stmcture can operate as a pure 

message-passing system with distributed memory, or a hybrid system comprising 

distributed clusters of processors with shared memory [Yakovleff,91]. A Shiva system 

based on three processors was used for experimentation. The JPEG algorithm was 

implemented on the globai-plus-local memory architecture machine using the following 

Shiva Plans, 

Shiva Plans := P(NBCT, NIPC, BBIP, SMA, SLgM, NP) 

where, 

P is Plan for implementation, 

NBCT is the Non-Block Comparator Technique used for image processing, 

NIPC is Block Dependency with Non-Inter-Processor Communication, 

BBIP is Block Based Image Partitioning method, 

SMA is Shared Memory Architecture, 

SLgM is Shared Memory Architecture with Local-plus-global Memory topology, 

NP is Number of Processors =11213, 

Image Size = 125 x 125 I 228 x 231 I 625 x 423. 

This section explains the implementation procedure of parallel JPEG 

implementation on the Shiva system. 

The implementation procedure used on the Shiva system is shown in figure 4.10 

as a flow diagram. In this flow diagram light boxes representing tasks are shown within 

dark boxes representing processors on which the tasks are executed. After initialisation, 

the Master processor waits for the source image to be sent by the front end. When the 

Master receives the image data from the host it sends a start signal to the Slaves 

indicating that the image is ready for compression. The Master and the Slaves 

processors start DCT, quantisation and encoding (compression) steps and store the 

compressed data in shared memory. The Master processor waits for the Slaves to finish 

compression, then it sends compressed image data to the host machine through the 

SBus. The host combines the data received from all processors and stores into the JPEG 

output file. 
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Figure 4.10 Implementation procedure of the JPEG algorithm on the three 

processor Shiva system 
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4.3.3 Experimental Results 

The JPEG algorithm was implemented on the Shiva system on three processors for 

different image sizes and the results obtained on these are given in table 4.4. The results 

for four to seventeen processors were estimated by using the Gantt chart [Lewis, 92]. 

The procedure used for estimating the execution time obtained on three processors is as 

follows [Bevinakoppa, 94a]. 

Master Processor 

CTl, 0.02 

Slave -1 

PTl, 1.07 
CT2, 0.02 

.^/L. 

PT2, 0.98 

CT3, 0.009 

PT3, 0.98 Slave - 2 

-^ PT4, 0.02 e CT4, 0.009 

Master Processor 

Figure 4.11 Task graph for three processors 

The task graph for three processors is shown in figure 4.11. The JPEG algorithm 

is divided into four tasks as shown in the task graph of figure 4.11. In this task graph 

each processor represents a processing task. Inside each processor a task is represented 

as the ordered pair PTn, t(PTn) where PTn is the processing task number and t(PTn) is 

the processing time of that task. Arcs joining the processors represent communication 

tasks. A communication task is represented by the ordered pair CTn, t(CTn) where CTn 

is the communication task number and t(CTn) is its communication time. All times are 

in seconds (sec). The processor on which a task is executed is specified adjacent to the 

task processor in the task graph. The values given below were obtained by using 

experimental results obtained on single i860 processor. 

In this example 228 x 231 image was taken. Functions performed by the 

processing and communication tasks are as follows: 
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Task Function Execution time 

in sec. 

PTl Source image is divided on Master processor into three parts. Each part 1.07 

of the unage contains 228 x 77 x 3 samples. First part of the image is 

transferred firom the Master processor to Slave-1 processor. The 

Master processor performs DCT, quantisation and encoding steps on 

third part of the source image. 

CTl Conununication time for transferring 228 x 77 x 3 samples from the 0.02 

Master processor to the Slave-1 processor. 

CT2 Communication time for transferring 228 x 77 x 3 samples from the 0.02 

Master processor to the Slave-2 processor. 

PT2&3 DCT, quantisation and encoding steps of JPEG algorithm are carried 0.98 

out on the Slave processors. 

CT3&4 After performing each task on image parts, encoded image is 0.009 

transferred back to the Master processor. Communication time taken to 

transfer encoded samples from the Slave processor to the Master 

processor. 

PT4 The Master processor collects encoded samples from Slave-1 and 0.02 

Slave-2 processors and transfers it into an output JPEG file with 

appropriate header/marker. 

The execution schedule of the JPEG algorithm on three processors is shown in 

the form of Gantt chart in figure 4.12. A Gantt chart essentially shows the scheduling of 

various tasks on the time axis. 

VTA Computation time 

I I Commutiication time 

TASKS 

PT4 
CT4 
CT3 
PT3 
PT2 
PTl 
CT2 
CTl 

&-msm=£=m=m£s / 

0.25 0.50 0.75 1.00 1.25 

Time taken for the task in seconds 

Figure 4.12 Gantt chart of JPEG algorithm on a three transputer network 

From figure 4.12 it can be seen that the total time taken by the three Nodes 

T3 = t(CT 1) -t- t(CT2) H- t(PT 1) + t(CT3) + t(CT4) -i- t(PT4) 

0.02 -H 0.02 -t-1.07 -I- 0.009 -H 0.009 -f- 0.02 

1.148 = 1.15 sec. 
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The estimated execution time on a three node processors is nearly equal to 1.15 

sec. which is the same as the execution time obtained from the actual implementation. 

The execution times for four to seventeen processors were estimated from the 

computation time and communication time obtained on a single node processor. These 

results are tabulated in table 4.4. 

The minimum execution times obtained for a 125x125 image size is 0.12 
seconds, on a system with thirteen node processors. Whereas, for 228x231 and 625x423 
image sizes are 0.53 seconds and 1.32 seconds respectively, on a system with nine node 
processors. 

Table 4.4 Execution times of the JPEG algorithm on the Shiva system 

Number of 

Processors - NP 

1 

2 

3 

5 

7 

9 

13 

17 

Execution times in seconds 

For 125x125 image 

0.6 

0.32 

0.28 

0.15 

0.13 

0.13 

0.12 

0.20 

For 228x231 image 

2.63 

1.34 

1.15 

0.60 

0.55 

0.53 

0.60 

0.91 

For 625x423 image 

7.02 

3.55 

2.41 

1.52 

1.39 

1.32 

1.60 

2.58 

4.4 Implementation of the JPEG Algorithm on the Param System 

The Param^ system is a distributed memory, message passing parallel computer 

developed by the Centre for Development of Advanced Computing (C-DAC), India 

[Bhatkar, 91], [Tulshibagwale, 94]. Param works as a back-end compute engine to hosts 

such as PCs, SUN workstations, Micro VAX machines and U6000 Unix machines. The 

Param architecture can accommodate heterogeneous nodes such as disk I/O nodes, 

graphics nodes, transputer nodes, vector nodes based on the Intel i860, and DSP nodes 

based on the Zoran 34325. Param is available in three series of configurations. The 

Param 8000 series is a replicate scalar processor machine based on the T805 transputer, 

which can be configured with 16, 32, 64, 128 or 256 nodes, and if required with more 

than 1024 nodes. The Param 8600 series is equipped with vector processing capabilities 

and is based on the Intel i860 processor. The Param 9000 is based on the SPARC 11 

• Param is an acronym for PARAlIel Machine, and in Sanskrit it means Supreme. 
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processing nodes. Since most of the digital image compression techniques are DCT 

based, the i860 based Param 8600 was chosen for this study. 

Section 4.4.1 describes the Param system architecture. The JPEG algorithm was 

implemented on the Param system using the Paras parallel programming environment. 

Section 4.4.2 describes the implementation procedure employed on the Param system. 

Experimental results were obtained on a three node Param system. Section 6.4 gives the 

results obtained for different image sizes on various sized networks. 

4.4.1 Param System Architecture 

This section describes the Param 8600 system architecture. Param is a multi-user 

scalable Multiple Instruction Multiple Data (MIMD) parallel computer capable of 

exceeding 1 Gflops of peak performance, with primary aggregate memory of 1 GByte 

and auxiliary storage of 20 GByte on a system with sixteen node processors [Eknath, 

91]. Intel's i860 provides a peak computing power of 80 MFLOPS, but sustained 

computing power is less than 5MFL0PS [Murthy, 91]. 

4.4.1.1 Param 8600 Hardware Architecture 

Each node of the Param 8600 comprises one i860 processor and four transputers. 

Sixteen such nodes are interconnected to form one cluster of the Param system as shown 

in figure 4.13. Param nodes in a cluster are connected through 96 x 96 cross point 

switches. Four such Param clusters can be connected through 64 x 64 way cross point 

switches. Therefore, a fully configured Param system can have as many as 64 nodes. 

Figure 4.14 shows the architecture of a Param system node. In Param 8600, each 

node is equipped with four transputers T805, one i860, and a local memory. Serial 

communication links between two processors are called CSP (Communication 

Sequential Processor) channels [Ram, 91]. The communication speed of each CSP 

channel is 60 MBytes/sec. An important feature of this architecture is its very low 

interprocessor communication overhead. Another communication path between the four 

transputers and the i860 co-processors is the 32-bit high speed bus shown in figure 4.14. 

A shared bus can reduce the effective data transfer bandwidth and eventually the system 

performance. To avoid this bus bottleneck, C-DAC has developed an alternative scheme 

for data transfer. The Intel i860 co-processor and the transputers have independent 

memories and data is exchanged between these through the CSP channels. The i860 is 

treated as a computational resource for the four transputers. These four transputers can 

also participate in computation, but are used primarily as communication engines. 
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Each processor node is configured with an i860 processor, an i960CA 

superscalar processor, 4 - 1 6 MBytes of main memory, an I/O node and a Multibus II 

interface as shown in figure 4.15. 

Apart from the local storage memory, Param is equipped with a Mass Storage 

System (MSS). A Disk cluster is the basic mass storage unit in the Param system. The 

MSS [Eknath, 91] provides high VO bandwidth and large secondary storage capacity. 

The MSS consists of an array of disk drives and a number of FO nodes with SCSI 

interfaces to these drives. Up to four high capacity disks are attached to each VO node. 

In addition, one tape cartridge unit is provided per I/O node. 

4.4.1.2 The Paras Parallel Programming Environment 

Paras is a comprehensive parallel programming environment that was developed for the 

Param system, and similar class of message passing parallel computers. It provides a 

range of services to enable application software developers to utilise the hardware in a 

straight forward and easy to use manner. Its main components are: 

• Development tools, such as compilers (for C and Fortran), linkers, debugger, 

librarian. It provides a rich and powerful runtime environment to the executing 

programs [Geetha, 91]. 

• Library environments such as, PARUL (PARallel User Library), for distributed 

memory multiprocessor systems [Kumar, 92], imagePRO for image processing 

[Udpikar, 91]. 

• Application kernels such as MTIC/860 [Rao, 91]. These kernels support page-level 

protection, and provide call interface to user applications for performing various 

operations such as create, terminate, suspend, and resume. 

• Interprocessor communication software PRESHAK relieves the application 

developers from designing and developing the communication layer for their parallel 

algorithms [Srivastava, 91]. 

• Routines for creating and managing a distributed file system. 

Paras includes a configuration language which is written in the C programming 

language. Configuration files are named with the extension .cfs. A configuration file has 

three parts: hardware specification, task specification, placement of tasks on the 

declared processors and connectivity of the processors [Rashinker, 91]. Hardware is 

defined in terms of processor name and its memory. A task is specified in terms of 

stacksize and heapsize required for the application to run on the processor. Connectivity 

is specified through the links on a processor. Some of the most useful routines in the 

Paras programming environment are: 

index_port_locate(): locate the port address to send the data. 
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index_port_create(): create port address to receive the data. 

sync_send(): transfer the data synchronously. 

block_receive(): receive the data in chunks of blocks. 

get_nodeid(): get the node processor identification number. 
sem_wait(): wait for the semaphore status. 
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Figure 4.14 Architecture of a Param 8600 node 
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4.4.2 Implementation of the JPEG Algorithm on the Param System 

The JPEG algorithm was implemented on a three node Param system [Bevinakoppa, 

95]. Plans used on this architecture was represented by, 

Param Plans := P(NBCT, NIPC, BBIP, DMA, DToT, NP) 

where, 

NP=1I2I3, 

Image Size = 125 x 125 I 228 x 2311 625 x 423. 

This section explains the implementation procedure and the program structure 

employed in implementing the JPEG algorithm on the Param system. 

A Personal Computer (PC) with a transputer was used as the front-end to the 

Param system. A single transputer plugged into the front-end PC served as the host 

processor for the processing nodes on the i860 based back-end Param system. Three 

nodes on a single cluster were connected in a tree topology, as shown in figure 4.16. 

The implementation procedure used on the three node Param system is shown in figure 

4.17 as a flow diagram. In this figure, the transputer on the PC is taken as the host 

processor and Nl, N2 processors as the processing nodes. 

The source image is initially stored on the host processor. Node processors wait 

for components of the source image to be down loaded. The host processor partitions 

the image into two parts and sends each part along with the required header information 

to node processors Nl and N2. For image partitioning a block of 8x8 samples is used as 

an atomic component. One third of the image is retained on the host node processor. 

The distribution of image parts is shown in figure 4.18 in the form of a path 

graph. Image compression is performed on each processor in parallel. The encoded 

image is composed using a reverse procedure with respect to the procedure used for 

image distribution. 

Front end 1 
Nl 

k 
^ Host ^ 

^ i 
N2 

Figure 4.16 Three nodes connection in Tree topology 
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4.4.3 Experimental Results 

Table 4.5 tabulates the time taken for compressing eight-bit resolution images of 

different sizes on the Param system for different number of node processors. Execution 

times on a system with one to three nodes were obtained by actual implementation, 

whereas execution times on four to sixteen processors were calculated with the help of 

Gantt charts by using execution and conmiunication times obtained on the system with 

three processors. 

The minimum execution times obtained for 125x125 and 228x231 image sizes 

are 0.038 seconds and 0.073 seconds respectively, on a system with nine node 

processors. Whereas, for a 625x423 image size the minimum execution time obtained is 

0.327 seconds on a thirteen node Param system. 

Table 4.5 Execution times of the JPEG algorithm on the Param system 

Number of 

Processors - NP 

1 

2 

3 

5 

7 

9 

13 

17 

Execution time in seconds 

For 125x125 image 

0.309 

0.158 

0.108 

0.065 

0.048 

0.038 

0.044 

0.05 

For 228x231 image 

0.6 

0.308 

0.208 

0.124 

0.09 

0.073 

0.079 

0.083 

For 625x423 image 

2.93 

1.503 

1.01 

0.602 

0.43 

0.34 

0.327 

0.369 

4.5 Performance Comparison of Parallel Computers 

The performance of a parallel algorithm can be analysed in terms of speedup, 

scalability, and efficiency as explained in chapter 2. Section 4.5.1 gives the speedup and 

efficiency of the JPEG algorithm on the Mercury system. Section 4.5.2 gives the 

speedup and efficiency obtained on the Shiva system, and section 4.5.3 gives the 

speedup and efficiency for the Param system. 

4.5.1 Speedup and Efficiency of the JPEG Algorithm on the Mercury System 

Speedup and efficiency obtained on the Mercury system using POSIC communication 

routines and MPP communication routines is given in tables 4.6 and 4.7 respectively. 



Chapter 4 112 

Graphs of speedup and efficiency of the JPEG algorithm on the Mercury system are 

shown in figure 4.19 and 4.20. Speedup and Efficiency were defined in section 3.4 as, 

S = T I / T N , 

Ti = S /N, 

where, 

S = Speedup, 

Tj = Time taken on single processor, 

T N = Time taken on N number of processor, 

T| = Efficiency, 

N = Number of Processors. 

From speedup graphs for the POSIC routines (figure 4.19a) and MPP routines 

(figure 4.20a), we can see that the scalability for all image sizes is close to 9. The 

efficiency graph for POSIC (figure 4.19b) and MPP routines (figure 4.20b) shows that 

efficiency of 90% or higher was obtained for up to five processors. This implies that 

even though there is increasing speedup values for upto nine processors, the marginal 

cost of adding more than five processors is rather high. In other words, from cost-

benefit analysis point of view a five processor system would be most cost effective. 

Table 4.6a Speedup on the Mercury system using POSIC communication routines 

Number of 

processors - NP 

1 

2 

3 

5 

9 

13 

! n 

For 125x125 image 

1 

1.92 

2.84 

4.48 

4.89 

3.65 

1.92 

Speedup - S 

For 228x231 image 

1 

1.93 

2.89 

4.52 

4.91 

4.02 

2.1 

For 625x423 image 

1 

1.95 

2.92 

4.59 

5.25 
— 

4.31 

2.89 
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Table 4.6b Efficiency on the Mercury system using POSIC conmiunication 

routines 

Number of 

processors - NP 

1 

2 

3 

5 

9 

13 

17 

Efficiency - r\ 

For 125x125 image 

1.00 

0.96 

0.95 

0.90 

0.54 

0.28 

0.11 

For 228x231 image 

1.00 

0.97 

0.96 

0,90 

0.55 

0.31 

0.12 

For 625x423 image 

1.00 

0.98 

0.97 

0.92 

0.58 

0.33 

0.17 

625 X 423 
228 X 231 
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Size 

125x125 

Number of 
Processors - NP 

Figure 4.19a Graph of speedup on the Mercury system using POSIC 
communication routines 
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Figure 4.19b Graph of efficiency on the Mercury system using POSIC 
communication routines 
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Table 4.7a Speedup on the Mercury system using MPP communication routines 

Number of 

processors - NP 

1 

2 

3 

5 

9 

13 

17 

Speedup - S 

For 125x125 image 

1 

1.93 

2.88 

4.63 

6.3 

5.21 

3.57 

For 228x231 image 

1 

1.95 

2.91 

4.65 

6.77 

5.95 

4.76 

For 625x423 image 

1 

1.97 

2.96 

4.71 

7.29 

6.31 

5.44 

Table 4.7b Efficiency on the Mercury system using MPP communication routines 

Number of 

processors - NP 

1 

2 

3 

5 

9 

13 

17 

Efficiency - T| 

For 125x125 image 

1.00 

0.97 

0.96 

0.93 

0.70 

0.40 

0.21 

For 228x231 image 

1.00 

0.98 

0.97 

0.93 

0.75 

0.46 

0.28 

For 625x423 image 

1.00 

0.99 

0.99 

0.94 

0.81 

0.49 

0.32 

625 X 423 
228 X 231 

Image 
Size 

125x125 

Number of 
Processors -NP 

Figure 4.20a Graph of speedup on the Mercury system using MPP 

communication routines 
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17 

Figure 4.20b Graph of efficiency on the Mercury system using MPP 

communication routines 

Comparison of speedup and efficiency values obtained using the POSIC and the 

MPP communication routines for image size 625x423 are given in table 4.8 and the 

graphs of the same are given in figure 4.21. From the speedup graph we can see that 

speedup obtained using the MPP communication routines is higher than the speedup 

obtained by using the POSIC communication routines. Though the scaleup obtained in 

both cases is close to 9. The efficiency graph (figure 21b) we can see that higher 

efficiency can be obtained using the MPP communication routines. 

Table 4.8a The speedup comparison between POSIC and MPP communication 

routines 

Number of 

Processors - NP 

1 

2 

3 

5 

9 

13 

17 

Speet 

For POSIC 

communication routines 

1 

1.95 

2.92 

4.59 

5.25 

4.31 

2.89 

u p - S 

For MPP 

conununication routines 

1 

1.97 

2.96 

4.71 

7.29 

6.31 

5.44 
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Table 4.8b Efficiency comparison between POSIC and MPP communication 

routines 

Number of 

Processors - NP 

1 

2 

3 

5 

9 

13 

17 

Efficiency - TJ 

For POSIC 

conununication routines 

1.00 

0.98 

0.97 

0.92 

0.58 

0.33 

0.17 

For MPP 

communication routines 

1.00 

0.99 

0.99 

0.94 

0.81 

0.49 

0.32 

Number of Processors - NP 

Figure 4.21a A comparison of speedup obtained on the Mercury system using the 

POSIC and the MPP communication routines 

u c .£ 
ti 

UJ 

Number of Processors-NP 

Figure 4.21b A comparison of efficiency obtained on the Mercury system using the 

POSIC and the MPP communication routines 
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4.5.2 Speedup and Eflficiency of the JPEG Algorithm on the Shiva System 

Speedup and efficiency values obtained on the Shiva system are given in tables 4.9a and 

4.9b respectively and the graphs of the same are shown in figure 4.22a and 4.22b 

respectively. From the speedup graph we can see that the speedup increases as the image 

size increases for number of processors < 3. Whereas, the speedup decreases as the 

image size increases for number of processors > 3. Because in a shared memory 

architecture memory contention increases with an increase in the number of processors. 

Scaleup for all image sizes is 9. From the efficiency graph we can see that efficiency is 

higher than 50% for upto nine processors. Whereas, for upto five processors it is higher 

than 80%. Once again we can conclude that a system with five processors would be 

most cost effective. 

Table 4.9a Speedup of the JPEG algorithm on the Shiva system 

Number of 

Processors - NP 

1 

2 

3 

5 

7 

9 

13 

17 

Speedup - S 

For 125x125 image 

1 

1.86 

2.54 

3.89 

4.67 

4.8 

4.79 

3.06 

For 228x231 image 

1 

1.96 

2.69 

3.98 

4.82 

4.96 

4.35 

2.89 

For 625x423 image 

1 

1.98 

2.91 

4.61 

5.06 

5.31 

4.4 

2.72 

Table 4.9b Efficiency of the JPEG algorithm on the Shiva system 

Number of 

processors - NP 

1 

2 

3 

5 

7 

9 

13 

17 

Efficiency - Tj 

For 125x125 image 

1.00 

0.93 

0.85 

0.80 

0.67 

0.53 

0.37 

0.18 

For 228x231 image 

1.00 

0.98 

0.90 

0.88 

0.69 

0.55 

0.33 

0.17 

For 625x423 image 

1.00 

0.99 

0.97 

0.92 

0.72 

0.59 

0.34 

0.16 
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625 X 423 
228 X 231 

125x125 
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Size 

7 9 
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Figure 4.22a Graph of speedup on the Shiva System 
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Figure 4.22b Graph of efficiency on the Shiva System 

4.5.3 Speedup and Efficiency of the JPEG Algorithm on the Param System 

The speedup and efficiency values obtained on the Param system are given in tables 

4.10a and 4.10b respectively and the graphs of the same are shown in figures 4.23a and 

4.23b respectively. Speedup depends mainly on computation time with respect to 

processors and communication time between processors. Conmiunication time can be 

reduced by transferring more number of bits in a single frame, thereby reducing the 

conmiunication overhead. Therefore, as we can see in figure 4.23a, speedup increases 

with increase in image size. Scalability for 125 x 125 and 228 x 243 image size is nearly 

9, where as for a 625 x 423 image it is nearly 13. From the efficiency graph (figure 

4.23b), we can see that the efficiency is higher than 50% for upto thirteen processors for 

125 X 125 and 228 x 243 image sizes, and for 625 x 423 image size it is seventeen 

processors. Whereas, for upto nine processors it is higher than 80%. From this we can 

conclude that a system with nine processors would be cost effective. 
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Table 4.10a Speedup of the JPEG algorithm on the Param system 

Number of 

processors - NP 

1 

2 

3 

5 

7 

9 

13 

17 

Speedup - S 

For 125x125 image 

1 

1.95 

2.86 

4.75 

6.5 

7.93 

7.1 

6.34 

For 228x231 image 

1 

1.95 

2.88 

4.82 

6.64 

8.17 

7.58 

7.21 

For 625x423 image 

1 

1.95 

2.90 

4.87 

6.81 

8.63 

8.97 

7.93 

Table 4.10b Efficiency of the JPEG algorithm on the Param system 

Number of 

processors - NP 

1 

2 

3 

5 

7 

9 

13 

17 

Efficiency - Tl 

For 125x125 image 

1.00 

0.98 

0.95 

0.95 

0.93 

0.88 

0.55 

0.37 

For 228x231 image 

1.00 

0.98 

0.96 

0.96 

0.95 

0,91 

0.58 

0.42 

For 625x423 image 

1.00 

0.98 

0.97 

0.97 

0.97 

0.96 

0.69 

0.47 

625 X 423 
228 X 231 

125x125 
Image 
Size 

, 3 5 ^ ^ ' ^ " 
2 Number of 

Processors - NP 

Figure 4.23a Graph of speedup on the Param system 
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Figure 4.23b Graph of efficiency on the Param system 

4.5.4 Performance Comparison 

This section gives the performance comparison in terms of execution time, speedup, 

scaleup and efficiency. 

Execution times obtained on the three parallel computers for the 625 x 423 

image size are given in table 4.11. From this table we can see that the execution time on 

the Mercury system are much higher as compared to those obtained on the Shiva and the 

Param systems. The execution times obtained on the Param system are the lowest. 

Table 4.11 Execution times of the JPEG algorithm on the three parallel 

computers 

Number of 

processors NP 

1 

2 

3 

5 

9 

13 

17 

For Mercury System 

55.86 

28.65 

19.13 

12.17 

10.64 

12.96 

19.33 

ilxecution times in Seconds 

For Shiva System 

7.02 

3.54 

2.41 

2.98 

2.26 

2.96 

2.58 

For Param System 

2.93 

1.503 

1.01 

0.60 

0.34 

0.327 

0.369 

The speedup and efficiency values obtained on the three parallel computers for 

the 625 X 423 image size is tabulated in tables 4.12a and 4.12b respectively and the 

graphs of the same are shown in figures 4.24a and 4.24b respectively. From the speedup 

graph we can see that the speedup values obtained on all three parallel computers are 

very similar for NP < 3. The speedup for NP > 3 on the Mercury system is lower as 

compared to the other two architectures. For NP = 17 the speedup is lowest on the Shiva 
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system. From this we can conclude that the addition of processors lead to increased bus 

contention and reduction in the speedup obtained on the Shiva system. The speedup for 

the Param system is higher as compared to other architectures. Scaleup for Mercury 

system and for Shiva system is 9, and for the Param system it is equal to 13. 

From the efficiency graph (figure 4.24b) we can see that the efficiency is higher 

than 50% for upto nine processors on Mercury and Shiva systems and on Param system 

the efficiency is higher than 50% for upto thirteen processors. Whereas, for upto five 

processors it is higher than 90% on Mercury and Shiva systems and for upto nine 

processors the efficiency is higher than 90% on Param system. From this we can 

concluded that Param system with nine processors would be most cost effective. 

From speedup, efficiency and scaleup figures discussed above we can conclude 

that the JPEG algorithm performs better on a hybrid memory architecture. 

Table 4.12a Speedup of the JPEG algorithm on the three parallel computers 

Number of 

processors - NP 

1 

2 

3 

5 

9 

13 

17 

Speedup - S 

For Mercury System 

1 

1.95 

2.92 

4.59 

5.25 

4.31 

2.89 

For Shiva System 

1 

1.98 

2.91 

4.61 

5.31 

4.4 

2.72 

For Param System 

1 

1.95 

2.90 

4.87 

8.62 

8.96 

7.94 

Table 4.12b Efficiency of the JPEG algorithm on the three parallel computers 

Number of 

processors - NP 

1 

2 

3 

5 

9 

13 

17 

Efficiency - T| 

For Mercury System 

1.00 

0.98 

0.97 

0.92 

0.58 

0.33 

0.17 

For Shiva System 

1.00 

0.99 

0.97 

0.92 

0.59 

0.34 

0.16 

For Param System 

1.00 

0.98 

0.97 

0.97 

0.96 

0.69 

0.47 
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Figure 4.24a Speedup graph for three parallel computers 
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Figure 4.24b Efficiency graph for three parallel computers 

4.6 Summary 

This chapter described the hardware architecture and implementation of the JPEG 

algorithm on three parallel architectures. Experimental results, speedup and efficiency 

graphs were given in this chapter. Speedup depends mainly on computation time on the 

processors and the communication time between the processors. The communication 

time can be reduced by transferring more bits in a single frame, thereby reducing the 

communication overhead. Therefore, in all speedup graphs, speedup increases with 

increase in image size. 

On the Mercury system, a comparison of POSIC and MPP based communication 

shows that the speedup and efficiency obtained with the MPP communication routines 

is higher than that obtained with the POSIC communication routines. But, the POSIC 

communication routines provide greater functionalities than the MPP communication 

routines. 

A comparison of the three architectures showed that the hybrid memory 

architecture, such as the Param system, gives the best performance in terms of speedup, 

scaleup and efficiency. 
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Chapter 5 

SIMULATION OF DIGITAL IMAGE 

COMPRESSION TECHNIQUES 
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Abstract 

This chapter describes modelling and simulation methods used for simulating parallel 

processing of image compression techniques using the Network n.5 simulation package. 

Model building and simulation involves ten steps, viz. problem formulation, 

model building, data collection, model translation, model verification, model validation, 

experiment planning, experimentation, analysis of results, and documentation. Each of 

these steps were described briefly in the third chapter. Image compression Plans on 

different parallel computer architectures have been modelled using the Network n.5 

simulation package. Details of the model building process and the process of running 

simulation experiments for various Plans are given. Simulation results are compiled to 

evaluate the performance of these Plans. 

Speedup, scaleup and efficiency of each Plan is given, and the performance of 

different Plans is compared in terms of speedup, efficiency and scaleup. 
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5.1 Introduction 

Predicting the performance of digital image compression algorithms on different 

parallel architectures is a complex problem; simulation techniques can therefore assist 

in the evaluation process. 

To systematise the modelling and simulation work the idea of a Plan is 

introduced, in section 3.3. Each Plan was translated into a model using the Network n.5 

package. The procedure adopted for developing the models, and running the simulations 

is explained in section 5.2. 

Performance figures for the various Plans were obtained by running simulations 

on their respective models. Performance figures are derived from the execution times 

obtained from the simulation experiments. Execution times of the various models are 

given in section 5.3. Performance of these models, in terms of speedup, scaleup and 

efficiency is discussed in section 5.4. 

5.2 Simulation Procedure 

This section describes the model building and simulation procedure for image 

compression techniques on parallel computers using the Network n.5 simulation 

package. Procedure for model building and simulation includes problem statement, 

model building, system simulation, system analysis and validation. These steps are 

described in the following sections. 

5.2.1 Problem Statement 

The first step in building a model is to make a clear statement of the problem. In this 

research the main issue is to study the various options for implementing digital image 

compression techniques on parallel computers. This involves the study of digital image 

compression techniques as well as parallel computer architectures. There are various 

options for implementing digital image compression on parallel computers. Each 

possible implementation is described as a Plan in this thesis. 

Model building and simulation on the Network n.5 simulation package is 

described in this section by taking the Plan given in equation 5.1 as an example. In this 

Plan three Processing Elements are connected in a tree topology. Thus taking, 

PI = P(BCT, NIPC, BWIP, DMA, DTrT, 3) (5.1) 
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where, 

P is the Plan for implementation, 

BCT is the Block Comparator Technique used for image compression, 

NIPC is Non-Inter-Processor Communication method used in conjuction with Block 

Dependency, 

BWIP is Balanced Workload Image Partitioning method, 

DMA is Distributed Memory Architecture, 

DTrT is Distributed memory architecture using Tree Topology, 

NP - Number of Processors = 3. 

5.2.2 Model Building 

The steps involved in model building are: create network topology, define system 

operations and model verification. These steps are described in the following sections. 

5.2.2.1 Create Network Topology 

The first step in model building is to create the network topology. In Network n.5 the 

hardware model can be represented graphically as a collection of devices such as 

Processing Elements (PE), Transfer Devices (TD), and Storage Devices (SD) as 

explained in chapter 3. 

For Plan PI given in equation 5.1, three Processing Elements (PE), one Storage 

Device (SD) and three Transfer Devices (TD) are required as shown in figure 5.1. In this 

figure Storage Device SD-1 is connected to the Host Processor through the TD-1 

Transfer Device. The Host Processor is connected to PE-1 through TD-2, and to PE-2 

through TD-3. 

TD-2 

TD-1 

' & 

TD-3 

PE^ 

Figure 5.1 Graphical representation of Plan Pj 
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5.2.2.2 Define System Operation 

The steps involved in defining the system operations are: 

1. Specify the characteristics of each hardware devices. 

2. Define instructions for each PE. 

3. Construct the software modules. 

These three steps are described in the following sections. 

Specify the characteristics of hardware devices: Each hardware component is 

specified by a set of parameters. The parameters selected for Processing Elements, 

Transfer Devices, and Storage Devices are as follows. In this section Intel's i860 

processor was used as the CPU being modelled, because the i860 based Shiva machine 

was used as one of the parallel processors for implementing the JPEG algorithm. 

• PE specification: A PE is characterised by its Basic Cycle Time, Instruction 

Repertoire, Message List Size, and Overheads. Three PEs are named as Host 

Processor, PE-1 and PE-2. Screen outputs showing the details of the Host Processor 

and PE-1 are shown in figure 5.2. The Basic Cycle Time for these three PEs were 

specified as one micro second. The computation time for instructions defined for 

each PE are taken from the experimental results. Basic Cycle Time is the basic time 

unit on which the execution time of all processing instructions of a PE are built. 

Host Processor, PE-1, PE-2: 

Basic Cycle Time = 1 MIC^ (Micro Seconds) 

• TD specification: TDs are the links connecting PEs and SDs to move the data either 

between two PEs or between a PE and an SD. Data is moved between two PEs by a 

message instruction and between a PE and an SD, as the result of a read/write 

instruction. 

TD can be specified in terms of protocol, cycle time, bits/cycle, cycle/word, 

word/block etc. as shown in figure 5.3. Protocol defines the method of resolving 

contention between PEs for a single TD. Protocols are of types; First Come First 

Serve (FCFS), collision, priority, token ring, crossbar etc. FCFS protocol was used 

for TD-1, TD-2 and TD-3. In this protocol, requests are served in the order in which 

they arrive. 

MIC is the abbreviation used for microseconds in the NETWORK n.5 system. 
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?r!i 

IH05TPROCE5SOR 

i H Comment 

RECEIl^EIMG FROM SD 

SEND COMPIMG TO SD 
SEND IM6PRRT-1 TO PE-1 
SEND IMGPflRT-2 TO PE-2 
PARTITION IMAGE 

PROCESS IM6BL0CK 
BLOCK CGMPRRISON 

START TIME 

1̂ 

^ 

Figure 5.2a Host processor specification form 

Figure 5.2b PE-1 specification form 
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Two TD types were used in this Plan. The first type of TD was used to connect 

the SD to the Host Processor. The specification form for TD of the first type is 

shown in figure 5.3a. TD of the second type, TD-2, was used to connect the two 

PEs. TD-2 specification form is shown in figure 5.3b. Specified parameters for these 

TD are as follows. 

TD-1: TD between SD and Host Processor: 

Protocol = FCFS 

Cycle time = 0.5 MIC 

Bits / Cycle = 64 

Cycle / word = 1 

Word / block = 1 

TD-2 and TD-3: TDs between two PEs: 

Protocol 

Cycle Time 

Bits / cycle 

Cycle / word 

Word / block 

Block overhead 

= 

= 

= 

= 

= 

= 

FCFS 

IMIC 

64 

1 

1 

0.05 MIC 

• SD Specification: Storage devices contain user named files and unstructured 

storage. In our case, SD-1 contains two files named as Source Image File and 

Compressed Image File. Read and write instructions are used to access these files. 

When a read instruction references an SD, it checks for the Source Image File to see 

if the requested file is available. If it is available, the file is read into the PE. 

When write instruction attempts to put a file into an SD, it checks to see if there 

is enough space available. If required space is available it accepts the file. If 

adequate space is not available, a warning message is issued to the user. 

Files are read or written analogous to the way real storage devices work. Storage 

devices automatically decompose all file reads and writes into words and blocks. 

Every SD can be specified by attributes such as Name, Read access time, Write 

access time. Read word overhead time. Write overhead time, bits/word, number of 

ports, word / block, file list, as shown in figure 5.4. Following are the some of the 

attributes used for SD-1. 
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Figure 5.3a TD-1 specification form 

Figure 5.3b TD-2 specification form 
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SD-1: 
Capacity: Total number of bits that SD can hold = 1 GBits 

Bits/word = 64 

Number of Ports = 1 

Word/block = 1 

File List = 2 (Source Image File, Compressed Image File) 

^^^^BS^^^^^^^^^^^^^^^^^^^^^^^^^^^^B 
1 Comment ^ ^ H 

Figure 5.4 SD-1 specification form 

Define instructions for each PE: The next step of model building is to define the 

instructions for each PE. The Instruction Repertoire consists of four types of 

instructions. That is, processing instructions, read/write instructions, message 

instructions and semaphore instructions. Instructions for a Plan are divided as 

instructions on the Host Processor, and instructions on PE-1 and PE-2. These 

instructions are described in the following sections. 

For Plan PI image size was taken as the 1100 x 900 samples. Number of Similar 

Blocks (NSB) = 10%. From this data the parameters are calculated as follows. 

Image Size = 1100 x 900 samples 

= 1100 X 900 bits (For monochrome image @ 1 bit / sample) 
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Number of Blocks (NB) = ^ ^ * ^ = 15594 

Number of Similar Blocks (NSB) = 10% of NB = 10 % of 15594 = 1560 

Instructions on the host processor are shown in figure 5.2a and are explained below. 

Host Processor Instructions: 

• Start Time: This is a semaphore instruction to set the 'Start Time' semaphore. This semaphore is 

used to measure the execution time for each experiment. It is set at the beginning of the experiment 

and reset at the end. Thus the execution time is simply the length of time for which this semaphore 

stays set. 

• Receive Img from SD: This is a read instruction. This instruction reads the source image file from 

the SD. Time taken to receive the image file from SD depends on the number of bits to be received. 

The number of bits received from SD for Plan PI = 1100 x 900 = 990000 bits. 

• Block Comparison: This is a processing instruction where the number of cycles were specified to 

process block comparison operations. Time taken for block comparison was taken from experimental 

results and it depends upon the image size. For the 125 x 125 image size time taken for Block 

Comparison = 7300 MIC, for a 625 x 423 image size it is = 28000 MIC, for a 1100 x 900 image 

size it is = 390000 MIC. For Plan PI the number of cycles = 390000 for the 1100 x 900 image size. 

• Partition Image: This is a process instruction. Partitioning time is quite small, about 50 MIC. The 

partition step partitions the image blocks into three parts. Here the Balanced Workload Image 

Partitioning (BWIP) method was used. In this step, for Plan PI, the Number of Unique Blocks was 

taken as 15594 - 1560 = 14034. Therefore, all three processors get 14034 / 3 = 4678 blocks for 

processing, assuming that all blocks are of equal intensity value. 

• Send Imgpart-1 to PE-1: This is a message instruction. The time taken to transmit part of the image 

from the host processor to PE-1 depends upon the number of bits in image part-1. In this example 

NIPC method was used for Block Dependency method. Therefore the number of bits to be 

transmitted to PEs includes part of the image and the neighbouring samples. Part of the image 

consists of number of blocks x number of bits in one image block. Therefore, the number of bits 

transmitted = Number of Blocks x bits/ image block + neighbouring samples = 4678 x 8 + 2200 = 

37424 + 2200 = 39624 bits. 

• Send Imgpart-2 to PE-2: Details of this instruction are similar to those of the Send Imgpart-1 to 

PE-1 instruction. 

• Process Image Block: This is a processing instruction. It represents the compression operation 

carried out on each image block. The time taken for processing a complete image (Tpjocimg) ^̂  equal 

to number of blocks x time taken for processing one block as given in the following equation as, 

Tprocimg = Number of Blocks (NB) x Tp^cblock (5.2) 

where, Tpj-Qĉ iQ -̂jf is the time taken for processing one image block. 
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The number of cycles for processing one image block is defined as a normal statistical 

distribution function (SDF). The upper limit for this normal distribution = 425 MIC, the lower limit = 

475 MIC, the Standard Deviation = 18.074, and the Mean = 450 MIC. The parameters for this SDF 

were obtained from experimental results. 

• Send Complmg to SD: This is a Write instruction. It represents the operation in which after 

completion of compression process, compressed image data is sent to the SD. The Compressed Data 

Structure -3 was considered to calculate the number of bits transmitted as given in equation 5.3. 

Details of this equation were explained in section 2.4.2. The definition of which is repeated here as, 

S„pT,, =Sn4T+NL*(S +S +nl*S ) + S +NUB*-Si^ + SpnT 
BCT3 JHI SBM UBNF BNF UBM gCF (5.3) 

where, 

^BCT3 ~ BCT Compressed image size for CIDS-3 in Bytes, 

Sjjji = Size of the JPEG Header Information in Bytes = 173 bytes, 

NL = Number of Similar Block Lists in SBG = I, 

nl = Number of Block Numbers in each Unique Block list = 1560, 

^SBM - ^'^^ °^ ̂ ®̂ Similar Block Marker = 1 byte, 

•^UBNF ~ '̂ '̂ ® °^ ^^ Unique Block Number Field = 2 bytes, 

'̂ UBM ~ ^^^^ °^ ^^^ Unique Block Marker = 1 bytes, 

NUB = Number of Unique Blocks = 14034, 

•̂ Blk ~ ^^^^ °^ °"® block in Bytes = 1, 

SgQj = Size of the End Of Image marker = 1 byte, 

BCF = Block Compression Factor = 6, 

S B C T 3 = 173 + 1 * ( 1 + 2 + 1560 * 2 ) + 1 + 14034 * 8 / 6 + 1 

22011 bytes 

22011*8 = 176088 bits. 

• End Time: This instruction resets the 'Start Time' semaphore. Network II.5 determines the active 

duration of the 'Start Time' semaphore from set and reset condition. 

Figure 5.2b shows the instruction list for PE-1. histructions on PE-2 are the same as 

the instructions on PE-1. These instructions are as follows. 

PE-1 and PE-2 instructions: 

• Process Image Block: This is a processing instruction. The number of cycles for this instruction is 

the same as for the Host Processor. 

• Send Complmg to Host: This is a message instruction. It represents the operation in which 

compressed image is sent to the Host Processing Element. 

The number of bits specified = 4678 * 8 / 6 = 6238 bits. 
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Construct modules: Tasks to be performed by PEs are specified as modules. Module 

description consists of four parts, these are: scheduling conditions, processing element 

options, a list of instructions to execute and a list of modules to execute when this 

module completes. A module constantly checks its preconditions to see if the user 

defined scheduling criteria are met. Once all preconditions have been met the module 

takes the Hst of PEs on which it will run. A module begins execution by issuing 

instructions from its instruction list. Once all instructions have executed successfully it 

choses its successor module. 

There are three modules defined for the example Plan PI, these are Processlmg 

on Host module, Processlmg on PE-1 / 2 module and Send Complmg to SD 

module. These three modules are shown in figures 5.5, 5.6 and 5.7 respectively. 

From figure 5.5 we can see that the precondition for Processlmg on Host 

module is start time = 0 MIC. Therefore, this module starts execution as soon as 

simulation begins. Then it issues instructions from the instruction list, one by one. First 

instruction in the list sets the Start Time semaphore. The second instruction carries out 

Block Comparison. Next, the image is partitioned into three parts, and the Host 

Processor sends Image Part-1 to PE-1 and Image Part-2 to PE-2. Then compression on 

image blocks takes place. The number of blocks to be compressed is defined by the 

iteration list. In this case number of iterations were defined for the Processlmg Block 

instruction as 4678. This means that the Process Image Block instruction executes 

4678 times. (In the module form, shown in figure 5.5 and 5.6, only the first three digits 

for the number of iterations can be seen.) Then this module chooses its successor. The 

successor module is Send Complmg to SD module. 

The next module to execute is Send Complmg to SD as shown in figure 5.7. 

In this module the precondition is that messages Complmg Part-l and Complmg Part-2 

should have been received. 

When Processlmg on Host module executes, the Processlmg on PE-1 / 2 

module also executes parallelly. Processlmg on PE-1 / 2 module waits for the 

message Imgpart. When Processlmg on Host module sends Imgpart message, the 

Processlmg on PE-1 / 2 module takes PE-1 and PE-2 from the processor list to 

execute the instructions on these PEs. The first instruction in this module is Process 

ImgBlock as shown in figure 5.6. This instruction executes 4678 times because the 

number of iterations were defined as 4678. Then these two PEs send their respective 

Complmg Parts to the Host by executing SendCompimg Host instruction, with 

Complmg Part-1 and Complmg Part-2 as the message names. 
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Figure 5.5 Module 1: "Processlmg on Host" 

Figure 5.6 Module 2: "Processlmg on PE' 
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Figure 5.7 Module 3: "Send Complmg to SD" 

As soon as the Send Complmg to SD module receives these two messages, 

instructions on the Host Processor start executing. This module has anded predecessors 

as Host Processor. Because Host processor has successor as Send Compimg to SD 

module. The first instruction in this module is Send Complmg to SD as shown in 

figure 5.7. It send the compressed image to the SD. Then it resets the Start Time 

semaphore by executing the End Time instruction. 

5.2.2.3 Model Verification 

Model verification is assisted by the module diagram generated by Network n.5. In this 

display, modules are represented in a flow chart format as shown in figure 5.8. The 

name of the module is written inside the box. Preconditions are displayed on the right 

upper comer of the box. The instructions for this module are listed on the right side of 

the box. Output of the instructions or the messages are indicated on the right bottom 

comer of the box. The successor is indicated by a down arrow leading to the other box. 



Chapter 5 136 

Processimg on 
Host 

ANDED 
Predecessor 

Send 
Complmg to 

SD 

Start Tune: 0 

Host Processor 

Start Time 

Receive Img from SD 
Partition Image 
Send ImgPart-1 to PE -1 
Send ImgPart-2 to PE-2 
Process ImgBlock 

M; Imgpart 
S+: Start Time 

. M: Complmg 

M: Imgpart 

Processimg on 
PE 

PE 

Process ImgBlock 
Send Complmg to Host 

SendCompimg toSD 
End Time 

;^M: Complmg Part-1 
M: Complmg Part-2 

"4 
R: Start Time 

Figure 5.8 Modules diagram 

Figure 5.8 shows that the precondition for Processlmg on Host module is 

Start Time = 0 MIC. This module executes on the Host Processor, indicated below the 

precondition. The instruction list is given below the name of the processor. For 

Processlmg on Host module the instructions are Start Time, Receive Img from SD, 
Partition Image, Send ImgPart-1 to PE-1, Send ImgPart-2 to PE-2, and Process 
ImgBlock. The output of this module is ImgPart message and the Start Time 
Semaphore being set. These are displayed in the bottom right comer of the module box. 

The Anded successor module is Send Complmg to SD module. 

For the Send Complmg to SD module the precondition is Complmg Part-1 

and Complmg Part-2. The instructions for these modules are Send Complmg to SD 
and End Time. Output of this module is to reset the Start Time semaphore. 

For the Processlmg on PE-1 / 2 module the precondition is ImgPart. The 

instructions are Processlmg Block and Send Complmg to Host. The output of this 

module is Complmg Part-1 and Complmg Part-2. 
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5.2.3 System Simulation 

After Verification, the model is subjected to a series of simulation mns. The steps 

involved in system simulation are, specify the ran parameters, and run simulation. These 

are described in the following sections. 

5.2.3.1 Specify Run Parameters 

Simulation is mn after specifying parameters such as Run length, Periodic Reports, 

Final reports, Trace etc. Parameters are specified in the Run Parameters form shown in 

figure 5.9a. These are described below: 

• Run length: The run length represents the simulated time for which Network n.5 

should run the simulation. Specified here as 6 Seconds. 

• Periodic reports: The number of Periodic Reports were specified as 4. This gives 

four reports while the simulation is ranning. Required Periodic Reports are specified 

in the Periodic Reports list given at the right bottom comer of the menu. Reports for 

Processlmg on Host module, Processlmg on PE-1 / 2 module. Send 

Complmg to SD module and TD status were specified. 

• Final reports: These are the reports included in the final set of reports at the end of 

the simulation. In these simulation the final reports for the Host processor and PE-1 

were observed. 

5.2.3.2 Run Simulation 

A simulation experiment can be run on a model after specifying the simulation run 

parameters. After running the simulation experiment following facilities can be 

accessed. 

• Runtime reports: This gives the utilisation graph, runtime warnings and summary 

reports. 

• Utilisation graph: The utilisation graph measures the percentage of time during an 

interval that a PE, TD, or SD was busy. For this simulation utilisation graphs was 

asked for the Host Processor and Processing Element-1. Utilisation graphs for the 

Host Processor and PE-1 are shown in figure 5.9b. 

• Trace reports: The runtime trace reports allow the user to monitor the progress of 

the simulation experiment. 

• Runtime warnings: Runtime wamings notify potential errors as these occur during 

the simulation mn. 

• Summary reports: The summary reports contain the simulation statistics for model 

entities. These statistics encompass the period of activity between the start of the 

simulation and the reset time. 
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Figure 5.9b Utilisation graph of the host processor and the PE-1 at run time 
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5.2.4 System Analysis 

In Network n.5 the operation of a model can be analysed by observing the animation 

screens. During an animation, model hardware elements are highlighted as they become 

active. Icons are displayed at the beginning and at the end of data transmission, moving 

first from source to TD and then from TD to destination. The procedure for creating and 

mnning animation screens is as follows. 

5.2.4.1 Animation 

Animation consists of three steps, namely, set animation parameters, start the animation 

and observe the animation. These are described in the following sections. 

Set animation parameters: Animation parameters can be set in the animation menu as 

shown in figure 5.10. This figure indicates that the animation will be done in the single 

step model, animation is displayed by event, and the delay time from each event is 1 sec, 

start time = 0 MIC. 

Start animation: After specifying the animation parameters, animation is started by 

clicking the OK button. Network n.5 starts the animation by displaying all the elements 

in gray colour initially, then a red icon starts moving through, as the operation 

progresses. 

Observe the animation: As the model's hardware elements become active, they are 

displayed with their characteristic colour. When a module runs on a PE, the name of the 

module is displayed in place of the PE name. If PE transmits a message over a TD, the 

PE is highlighted with its characteristic colour, the TD colour changes to the source PE 

colour, the message is displayed near the TD and the TD connection to the destination 

PE changes to the source PE's colour. Therefore, animation helps in visualising the 

operation of the model and locating any errors in the model's operation. 

5.2.4.2 Plotting 

Network n.5 simulation package provides the facility to generate utilisation and 

timeline status plots for PEs, TDs, SDs, modules and semaphores. Plotting consists of 

two steps: set the plot parameters, and plot the required data. 

Set plot parameters: Prior to starting a plot the required parameters have to set as 

shown in figure 5.11, by entering the plot type as 'Time-Line', the list of items to plot as 

PEs and semaphores, and plotting Time-Span by specifying start at 0 second and end at 

2.6 seconds. 
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Figure 5.10 Animation parameter specification menu 
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Figure 5.11 Plot parameter specification menu 
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Plot: Two types of plots can be produced in Network n.5: Time-Line status plots and 

utilisation plots. These are explained in the following sections. 

1. Time-line status plots: The Time-Line stams plot measures each device's pattem of 

activity during the competed simulation as a function of time. These plots can be 

used to compare the time spent on communication and computation. Figure 5.12 

shows the Time-Line status plot for modules, PEs, TDs, and Semaphore. From this 

plot we can clearly see the idle time of PE-1 and PE-2 in the beginning. 

2. Utilisation plots: The utilisation plot is a histogram which measures a device's 

percentage utilisation during a completed simulation as a function of time. Figure 

5.13 shows the utilisation of the Host Processor, PE-1, and PE-2. 

5.2.5 Validation 

A model can be validated by comparing the simulation results with the implementation 

results. The execution times obtained from simulation experiments and those obtained 

by real-time implementation are given in table 5.1. Match between the real-time and 

simulation results is expressed as a Match Ratio defined in the following equation. 

Match Ratio = Execution Time (simulation) / Execution Time (implementation) * 100. (5.4) 

Table 5.1 Comparison of execution times obtained from simulation and 

implementation for Plan PI 

Number of 
Processors-NP 

1 

2 

3 

Execution Time in 
Sec. (Simulation) 

6.3828 

3.315629 

2.52244 

Execution Time in 
Sec. 

(Implementation) 

6.7 

3.5 

2.71 

Match Ratio % 

95.26 

94.73 

93.08 

From table 5.1 we can see that the values obtained from simulation are within 

90% of the values obtained from experimentation. Therefore, we can say that the model 

for Plan PI is a valid model. A validated model can be used for modelling Plans. 
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5.3 Simulation Results of Digital Image Compression Techniques 

Digital image compression techniques can be implemented on parallel computers in 

many different ways. A specific way of implementation is called a 'Plan'. The specific 

Plans selected for modelling and simulation are described in section 5.3.1. Simulation 

results for the selected Plans are discussed in section 5.3.2. Tables giving the execution 

times for the various simulated Plans are given in appendix A; table A.l to A.15. 

Speedup values calculated from the execution time values are also given in appendix A; 

tables A.21 to A.35. Speedup and efficiency graphs are plotted next to each speedup 

table; figures A.l to A.15. Comparisons of the results obtained for the different Plans 

are given in section 5.3.2. 

5.3.1 Plans Selected for Simulation 

A Plan (Px) can be represented as a 6-tuple given in equation 5.5. Thus, 

Px = P(ICT, BD, IPM, MA, MO/NT, NP) (5.5) 

where, 

Px is Plan-x for implementation, 

ICT is the Image Compression Technique used for image processing, 

BD is Block Dependency method used for image processing, 

IPM is Image Partitioning Method used for image processing, 

MA is Memory Architecture of the parallel processor used, 

MO/NT is Memory Organisation / Network Topology of the parallel processor used, 

NP is Number of Processors used. 

The options for each of the parameters listed above were described in section 

3.3. A cross product of all parameter options will give a very large set of Plans, hi this 

project a total of fifteen Plans were modelled. These Plans are divided into two set: a set 

of twelve Plans for Non-hiter-Processor Communication (NIPC) method and a set of 

three Plans for hiter-Processor Communication (IPC) method; as described in the 

following sections. 

5.3.1.1 Plans for Non-Inter-Processor Communication (NIPC) Method 

The JPEG algorithm is called as the Non-Block Comparator Technique (NBCT) and the 

proposed enhancement to the JPEG algorithm is called as the Block Comparator 

Technique (BCT) in this thesis. A total of twelve Plans were selected for modelling and 
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simulation of image compression for the Non-hiter-Processor Communication method. 

These Plans can be classified as Plans for the Non-Block Comparator Technique 

(NBCT) and Plans for the Block Comparator Technique (BCT). These Plans are: 

Selected Plans using the Non-Block Comparator Technique; 

P2 = P(NBCT, NIPC, BWIP, SMA, SGM, NP), 

P3 = P(NBCT, NIPC, BWIP, SMA, SLgM, NP), 

P4 = P(NBCT, NIPC, BWIP, DMA, DTrT, NP), 

P5 = P(NBCT, NIPC, BWIP, DMA, DToT, NP), 

P6 = P(NBCT, NIPC, BWIP, DMA, DPyT, NP), 

P7 = P(NBCT, NIPC, BWIP, DMA, DCuT, NP), 

and selected Plans using the Block Comparator Technique; 

P1 = P(BCT, NIPC, BWIP, DMA, DTrT, NP), 

P8 = P(BCT, NIPC, BWIP, SMA, SGM, NP), 

P9 = P(BCT, NIPC, BWIP, SMA, SLgM, NP), 

PIO = P(BCT, NIPC, BWIP, DMA,DToT, NP), 

PI 1 = P(BCT, NIPC, BWIP, DMA, DPyT, NP), 

P12 = P(BCT, NIPC, BWIP, DMA, DCuT, NP). 

In these Plans the Non-Inter-Processor Communication (NIPC) method was 

selected for the Block Dependency parameter and Balanced Workload Image 

Partitioning (BWIP) method for Image Partitioning Method. All of these Plans are 

simulated for various number of processors. 

The example Plan PI given in equation 5.1 is based on the Non-Inter-Processor 

Communication method, because the neighbouring samples are transmitted along with 

the main image block. This can be seen in the Send ImgPart instmction on the Host 

Processor. If the Inter-Processor Communication method is used for transferring 

neighbouring samples the communication time leads to increase in total execution time 

compared to that for the Non-Inter-Processor Communication method. Therefore, the 

Non-Inter-Processor Communication (NIPC) method was chosen. 

Block Comparison using Divide and Conquer sort method was used for the 

Block Comparator Technique. This method is also convenient for grouping the blocks 

that have equal intensity values, for the Balanced Workload Image Partitioning (BWIP) 

method. In the Balanced Workload Image Partitioning (BWIP), time for which 

processors are idle can be minimised. Therefore, the Balanced Workload Image 

Partitioning method was selected for the simulation. 
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The total number of simulation models developed for the Non-Inter-Processor 

Communication method are as follows, 

Total Number of Models for the NIPC Plans 

= Number of Models for the NBCT + Number of Models for the BCT. 

Number of Models for NBCT 

= Number of Models for Shared Memory Architecture + Number of Models for 

Distributed Memory Architecture 

NMSMG + NMSMGL + NMDMTr + NMDMTo + NMDMPy + NMDMCu 

= 9 x 3 + 8 x 3 + 8 x 3 + 8 x 3 + 6 x 3 + 5 x 3 = 134 Models, 

where, 

NMSMG = Number of Models for Shared Memory Architecture with Global Memory 

organisation, 

NMSMGL = Number of Models for Shared Memory Architecture with Local-plus-Global 

Memory organisation, 

NMDMTr = Number of Models for Distributed Memory Architecture with Tree Topology, 

NMDMTo = Number of Models for Distributed Memory Architecture with Torus Topology, 

NMDMPy = Number of Models for Distributed Memory Architecture with Pyramid 

Topology, 

NMDMCu = Number of Models for Distributed Memory Architecture with Cube Topology. 

Number of Models for the Block Comparator Technique (BCT) is almost equal 

to the number of Models for the Non-Block Comparator Technique (NBCT). Therefore 

nearly two hundred and sixty eight Models were simulated, and the results obtained 

from these models are given in the section 5.3.2. 

5.3.1.2 Plans for the Inter-Processor Communication (IPC) Method 

A total of three Plans were selected for modelling and simulation of image compression 

for the Inter-Processor Communication (IPC) method. The representation of these Plans 

for the Block Comparator Technique are: 

Selected Plans for the Block Comparator Technique with the Inter-Processor 

Communication (IPC) method; 

PI3 = P(BCT, IPC, BWIP, SMA, SlgM, NP), 

P14 = P(BCT, IPC, BWIP, DMA, DToT. NP), 

P15 = P(BCT, IPC, BWIP, DMA, DPyT, NP). 
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For these Plans the Block Comparator Technique (BCT) was selected for Image 

Compression Technique parameter. For the Inter-Processor Communication method. 

Plans for Shared Memory Architecture with Global Memory organisation and 

Distributed Memory Architecture with Toms and Pyramid topologies were simulated. 

This helps to compare the execution times with NIPC Plans. 

The total number of simulation models developed for the Inter-Processor 

Communication (IPC) method are as follows: 

Total Number of Models for the IPC Plans 

= Number of Models for Shared Memory Architecture + Number of Models for 

Distributed Memory Architecture 

NMSMGL + NMDMTo + NMDMPy 

= 9 x 3 + 8 x 3 + 8 x 3 = 75 Models, 

where, 

NMSMGL = Number of Models for Shared Memory Architecture with Local-plus-Global 

Memory organisation, 

NMDMTo = Number of Models for Distributed Memory Architecture with Torus Topology, 

NMDMPy = Number of Models for Distributed Memory Architecture with Pyramid 

Topology. 

Therefore, nearly seventy five models were simulated for the IPC Plans, and 

results obtained from these models are given in the section 5.3.2. 

5.3.2 Execution Times Obtained 

The execution times obtained from simulation experiments are given in appendix A. 

Tables A.l to A.15 show the execution times for the Plans mentioned above for various 

number of processors and for three different image sizes. The image sizes considered 

are 125 x 125 samples, 625 x 425 samples and 1100 x 900 samples; as these are the 

most widely used image sizes in the industry. From all the tables it can be seen that the 

execution time increases with the increase in image size, and the execution time 

decreases with the increase in Number of Processors (NP) till some point, then it starts 

increasing with NP. The point at which the least execution time is obtained gives the 

scaleup for that specific Plan. 

Execution times for the Non-Block Comparator (NBCT) using the Non-Inter-

Processor Communication (NIPC) method are given in tables A.l to A.6. The execution 

times for the Block Comparator Technique (BCT) using the NIPC method are given in 

tables A.7 to A.12. The Number of Similar Blocks (NSB) is 10% for tables A.7 to A.12 
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NSB = 10%. The execution times for the Block Comparator Technique (BCT) using 

hiter-Processor Communication (IPC) method are given in tables A.13 to A.15; in these 

tables also the Number of Similar Blocks (NSB) is 10 %. The least execution time in all 

these tables are indicated in bold letters. 

Comparison of execution times obtained for the NIPC Plans is given in section 

5.3.2.1. Execution time comparison for the IPC Plans is given in section 5.3.2.2. 

Execution time comparison between the NIPC and the IPC Plans is given in section 

5.3.2.3. 

5.3.2.1 Comparison of Execution Times for the NIPC Plans 

In this section a comparison of execution times for the Non-Inter-Processor 

Communication (NIPC) Plans is given. The execution times are tabulated in tables A. 1 

to A.6. From these tables the least execution time values obtained for the different Plans 

are extracted, tabulated and compared in this section. 

A comparison of execution times obtained from simulation is more meaningful 

than a comparison of execution times obtained on real systems, such as the three 

systems discussed in chapter 4. Because the processing power of the CPUs used on 

different real systems can be quite different. Whereas, the processing power of the 

different CPUs used in simulation are the same. The simulation models discussed in this 

thesis are based on the Intel i860 CPU. 

Section 5.3.2.1a gives the execution times comparison for the NBCT Plans, and 

execution times comparison for the BCT Plans is given in section 5.3.2.1b. Comparison 

of these two techniques, based on the Speed Improvement Factor is given in section 

5.3.2.1c. 

5.3.2.1a Comparison of Execution Times for the NBCT Plans 

Table 5.2 gives the least execution times extracted from the tables A.l to A.6, which are 

based on the NBCT Plans. By comparing the least execution times obtained on Plans P2 

and P3, it can be seen that the least execution time on Shared Memory Architecture 

with Local-plus-Global Memory organisation is lower. 

By comparing Plans for Distributed Memory Architecture, we can see that the 

least execution time for the 125 x 125 image size on Plan P5 is the lowest, and for the 

other image sizes the least execution time for P6 is the lowest. Therefore, we can say 

that the least execution time can be obtained for small image size on Distributed 

Memory with Toms Topology and for medium and large image sizes lowest execution 

time can be obtained on Distributed Memory Architecture with Pyramid Topology. 
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By comparing all Plans we can see that the least execution time for the Non-

Block Comparator Technique (NBCT) can be obtained on the Shared Memory 

Architecture with Local-plus-Global Memory organisation with twenty processors. 

Table 5.2 Least execution times for the NBCT Plans 

Plan 

P2 

P3 

P4 

P5 

P6 

P7 

Memory 

Architecture 

Shared Memory 

Architecture 

Distributed Memory 

Architecture 

Memory 

organisation / 

topology 

Global 

Global & Local 

Tree 

Torus 

Pyramid 

Cube 

Execution times in msec. 

NP 

16 

20 

27 

21 

37 

28 

For 125 X 125 
image 

17.82 

10.47 

15.49 

11.69 

13.43 

16.30 

NP 

25 

20 

27 

21 

37 

28 

For 625 x 
429 image 

235.49 

194.96 

267.72 

262.58 

224.55 

277.49 

NP 

25 

20 

27 

21 

37 

28 

For 1100 X 
900 image 

869.13 

732.21 

981.38 

959.29 

812.04 

959.14 

5.3.2.1b Comparison of Execution Times for the BCT Plans 

Table 5.3 gives the least execution times for all the Plans based on the BCT. By 

comparing the least execution times for P8 and P9 Plans, we can see that the least 

execution time on the Shared Memory Architecture with Local-plus-Global Memory 

organisation is lower as compared to that on the Shared Memory Architecture with 

Global Memory organisation. 

By comparing the Plans for Distributed Memory Architecture, we can see that 

the least execution time for all image sizes is the lowest on Plan P l l . Therefore, we can 

say that the least execution time can be obtained on Distributed Memory Architecture 

with Pyramid Topology. 

Table 5.3 Least execution times for selected Plans using the Block Comparator 

Technique 

Plan 

P8 

P9 

PI 

PIO 

Pl l 

P12 

Memory 

Architecture 

Shared Memory 

Architecture 

Distributed Memory 

Architecture 

Memory 

organisation / 
topology 

Global 

Global & Local 

Tree 

Torus 

Pyramid 

Cube 

Execution times in msec. 

NP 

16 

20 

15 

9 

21 

9 

For 125 x125 
image 

16.62 

10.73 

15.96 

21.33 

13.59 

19.26 

NP 

16 

20 

15 

9 

21 

9 

For 625 x 
429 image 

275.64 

200.42 

259.58 

348.42 

226.41 

318.53 

NP 

16 

20 

15 

13 

21 

9 

For 1100 x 
900 image 

1005.15 

733.24 

1030.67 

1173.70 

833.01 

1165.69 



Chapter 5 150 

By comparing all Plans we can see that the least execution time for the Block 

Comparator Technique (BCT) can be obtained on Shared Memory Architecture with 

Local-plus-Global Memory organisation. 

5.3.2.1c Speed Improvement Factor 

This section presents a comparison of the BCT and the NBCT Plans based on the Speed 

Improvement Factor. The speed improvement obtained by the Block Comparator 

Technique over the Non-Block Comparator Technique can be represented by a factor 

called the Speed Improvement Factor (SIF), defined in chapter 2. SIF is defined as the 

ratio of execution time obtained for the Non-Block Comparator Technique (NBCT) to 

the execution time obtained for the Block Comparator Technique (BCT), as given by 

SiF = 3mCT 
"̂ BCT 

SIF values for Shared Memory Architecture with Global Memory organisation 

are obtained by comparing the execution times obtained for Plans P2 and PS; these are 

given in table 5.4, and plotted in figure 5.14 for NSB =10%. 

Table 5.4 SIF values for the NBCT Plan P2 and the BCT Plan P8 

(on a Shared Memory Architecture with Global Memory organisation ) 

Number of 

Processors-NP 

1 

3 

5 

7 

11 

16 

20 

Speed Improvement Factor - SIF 

For 125 X 125 image 

1.07 

1.03 

1.11 

1.06 

1.11 

1.07 

0.99 

For 625 x 429 image 

1.07 

1.07 

1.05 

1.00 

1.02 

0.97 

0.83 

For 1100 X 900 image 

1.07 

1.17 

1.06 

1.06 

1.03 

1.01 

0.84 
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Figure 5.14 SIF graph for Plans P2 and P8 

The SIF values of 1.07 obtained from simulation, for NP = 1, is close to the SIF 

value of 1.08 obtained by analytical means; given in table 2.8. From table 5.4 it can be 

seen that SIF value is greater than one upto some Number of Processors and then it falls 

below one. The highest Number of Processors at which SIF is greater than one is called 

as the Speed Improvement Cutoff Point (SICP) in this thesis. In appendix A tables A. 16 

to A.20 give the SIF values for the various architectures. From these tables the SICP 

values are extracted and tabulated in table 5.5. 

Table 5.5 SIF values for various Plans 

Memory 

Architecture 

Shared Memory 

Architecture 

Distributed Memory 

Architecture 

Memory 

organisation / 
topology 

Global 

Global & Local 

Tree 

Torus 

Pyramid 

Cube 

Speed Improvement Cutoff Point (SICP) 

For 125 X125 
image 

16 

7 

15 

5 

21 

9 

For 625 x 429 
image 

11 

11 

15 

5 

21 

9 

For 1000 X 900 
image 

16 

11 

15 

13 

21 

9 

From the table 5.5 we can see that the highest value of SICP is obtained for the 

Pyramid Topology. Of the two Shared Memory Architectures the Global Memory 

organisation gives a higher value for the SICP. From the above discussion it can be 

concluded that the Block Comparator Technique fails to be effective on a large Number 

of Processors. The reason for this is explained below. 
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In this chapter the divide and conquer method was used, as outlined in the 

chapter 2, for comparing blocks in an image. In all of the techniques discussed in this 

chapter the block comparison step takes place on the host processor and leads to 

sequential processing of the block comparison process. This leads to the fact that the 

time taken for the Block Comparator Technique is higher than that for the Non Block 

Comparator Technique as the number of processors increases. Thus execution time can 

be further reduced by parallelising the block comparison step as well [Kumar, 94] 

[Zomaya, 96]. 

5.3.2.2 Comparison of Execution Times for the IPC Plans 

The execution times obtained for the IPC Plans P13 to P15 are given in the appendix 

tables A.13 to A.15 respectively. The least execution times for the IPC Plans are given 

in table 5.6. By comparing the three Inter-Processor Communication based Plans, we 

can observe that the Distributed Memory Architecmre with Pyramid Topology gives the 

least execution time. 

Table 5.6 Least execution times for the IPC Plans Plans using the Block 

Comparator Technique 

Plan 

P13 

P14 

P15 

Memory 

Architecture 

Shared Memory 

Architecture 

Distributed Memory 

Architecture 

Memory 

organisation / 

topology 

Global & Local 

Torus 

Pyramid 

Execution times in msec. 

NP 

13 

13 

21 

For 125 X 125 
image 

20.09 

18.80 

12.03 

NP 

13 

13 

21 

For 625 x 
429 image 

299.42 

295.36 

220.21 

NP 

13 

13 

21 

For 1100 X 
900 image 

1092.95 

1069.14 

830.27 

The execution time obtained on the Shared Memory Architecture with Local-

plus-Global Memory organisation is higher due to contention over the transfer device. 

In the Distributed Memory Architecture communication takes place over the various 

transfer devices in parallel. This can be seen by comparing utilisation graphs of Transfer 

Devices given in figures 5.15 and 5.16. 
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5.3.2.3 Comparison of Execution Times for Different Block Dependency Method 

(NIPC and IPC) 

By comparing Plans for the Non-Inter-Processor Communication (NIPC) method and 

the Inter-Processor Communication (IPC) method using the Block Comparator 

Technique, the following conclusions are derived. 

Comparing Plan P9 and P13: Execution times for Plan PI3 (BCT on a Shared 

Memory Architecture with Global Memory organisation for Inter Processor 

Communication) are higher than that for Plan P9 (BCT on a Shared Memory 

Architecture with Local-plus-Global Memory organisation for Non-Inter Processor 

Communication), because of memory contention problem on a shared bus. 

Comparing Plans PIO and P14, Plans P l l and P15. The execution times for Plan P14 

(BCT on a Distributed Memory Architecmre with Toms Topology for the IPC) and P15 

(BCT for Distributed Memory Architecture with Pyramid Topology for the IPC) are 

higher than those for Plans PIO (BCT on a Distributed Memory Architecture with Toms 

Topology for the NIPC) and P l l (BCT on a Distributed Memory Architecmre with 

Pyramid Topology for the NIPC) respectively for Number of Processors < 5. For 

Number of Processors > 5 the execution times for Plans P14 and PI5 are lower than 

those for Plans PIO and PI 1 respectively. 

From this we can conclude that the IPC is efficient for lower Number of 

Processors. Because the communication time for lower Number of Processors for inter­

communication among processors is less as compared to the NIPC. As the increase in 

NP, the communication time taken for transferring neighbouring samples among 

processors at mn time increases. This leads to increase in execution time. 

5.3.2.4 Comparison of Execution Times for Plan Pll with Different NSB 

In the BCT Plans discussed in section 5.3.2.1, the Number of Similar Blocks (NSB) in 

an image was taken as 10%. From the execution times comparison of these Plans, the 

Pyramid topology was found to be the best. Therefore, to compare the execution times 

for different values of NSB, the Pyramid Topology is selected for simulation. 

The execution times obtained on the Pyramid Topology architecture for the 

NBCT Plan P6 and sequential processing of block comparison in Plan P l l for 625 x 

423 image size, using NSB = 10%, 30%, 50% and 75% are given in table 5.7. SIF 

values derived from the data given in table 5.7 are given in table 5.8. From the 

execution times table it can be seen that the least execution time is obtained on 21 
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processors. SIF values shows that the maximum SIF value can be obtained on 21 

processors. After that the SIF value decreases, because the communication time is 

considerably higher as compared to NBCT on higher Number of Processors. From table 

5.8, we can see that the SIF value of 1.07 for NSB = 10%, 1.38 for NSB = 30%, 1.86 for 

NSB = 50%, and 3.44 for NSB = 75% obtained from simulation, for NP = 1, is close to 

the SIF value of 1.08, 1.377, 1.889, 3.526 respectively obtained by analytical means; 

given in table 2.8. 

Table 5.7 Execution times for NBCT Plan P6 and sequential block comparison 

with Plan Pll 

Number of 

Processors-NP 

1 

5 

9 

21 

37 

Execution times in msec. 

NBCT 

1871.81 

386.07 

359.84 

309.03 

224.55 

10% NSB 

1745.62 

373.23 

318.53 

226.41 

239.29 

30% NSB 

1356.37 

283.17 

240.92 

186.31 

196.86 

50% NSB 

1006.35 

213.66 

181.32 

145.43 

176.55 

75% NSB 

544.14 

116.02 

100.77 

79.21 

103.45 

Table 5.8 SIF values for Plan P6 and Plan Pll 

Number of 

Processors-NP 

1 

5 

9 

21 

37 

Speed Improvement Factor - SIF 

10% NSB 

1.07 

1.03 

1.13 

1.36 

0.94 

30% NSB 

1.38 

1.36 

1.49 

1.66 

1.14 

50% NSB 

1.86 

1.81 

1.99 

2.12 

1.27 

75% NSB 

3.44 

3.33 

3.57 

3.90 

2.17 

5.4 Performance Comparison of Parallel Architectures 

Performance of parallel computer architectures can be measured in terms of speedup, 

scaleup and efficiency. Tables A.21 to A.35 give the speedup for the simulated Plans for 

various Number of Processors and for three different image sizes and speedup graph of 

the same are shown in figure A.la to A. 15a respectively. From these tables and graphs 

we can see that the speedup increases with the increase in Number of Processors (NP) 
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and at some point it starts decreasing with the increase in Number of Processors. The 

point at which the speedup starts decreasing is defined as the scaleup for the Plan. 

Speedups for the Non-Block Comparator Technique Plans with Non-Inter-

Processor Communication (NIPC) are given in tables A.21 to A.26. Tables A.27 to A.32 

gives the speedup for the Block Comparator Technique Plans with Non-Inter-Processor 

Communication (NIPC) in which Number of Similar Blocks (NSB) = 10%. Speedup 

obtained for the Inter-Processor Communication Plans for the Block Comparator 

Technique is given in tables A.33 to A.35. Comparison of speedup values obtained for 

different Plans are discussed in the following sections. 

5.4.1 Comparison of Speedup 

Speedup for NP processors was defined in chapter 3, as the time taken by a single 

processor divided by the time taken by NP processors. Speedup (S) of parallel processor 

is given by, 

S = Tl / TNP 

where, 

S = Speedup for N processors, 

Tl = Time taken by a single processor, 

Tj^p = Time taken by NP processors. 

Comparison of speedup obtained for the NIPC Plans is given in section 5.4.1.1. 

Comparison of speedup obtained for the IPC Plans is given in section 5.4.1.2. Section 

5.4.1.3 gives the comparison of speedup obtained for different values of NSB. 

5.4.1.1 Comparison of Speedup for the NIPC Plans 

This section gives the comparison of speedup for the NIPC Plans. Comparison of 

maximum speedup for the NBCT Plans is discussed in section 5.4.1.1a and that for the 

BCT Plans is discussed in section 5.4.1.1b. Comparison of maximum speedup of NBCT 

and BCT Plans is given in section 5.4.1.1c. 

5.4.1.1a Comparison of Maximum Speedup for the NBCT Plans 

Table 5.9 shows a comparison of the maximum speedup for the various NBCT Plans, 

which are extracted from the appendix A; tables A.21 to A.26. From these tables the 

following conclusions can be derived: 
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1. For the Non-Block Comparator Technique the higher values of speedup can be 

obtained on the Shared Memory Architecture with Local-plus-Global Memory 

organisation. 

2. Of the various Distributed Memory Architecmres, highest values of speedup can be 

obtained on the Toras Topology for the 125 x 125 image size, the Pyramid 

Topology gives higher values of speedup for the other two image sizes. 

3. Of the two different Shared Memory Architectures, higher value of speedup can be 

obtained on the Shared Memory Architecmre with Local-plus-Global Memory 

organisation for all image sizes. 

Table 5.9 Maximum speedup comparison for the NBCT Plans 

Plan 

P2 

P3 

P4 

P5 

P6 

P7 

Memory 

Architecture 

Shared Memory 

Architecture 

Distributed Memory 

Architecture 

Memory 

organisation / 

topology 

Global 

Global & Local 

Tree 

Torus 

Pyramid 

Cube 

Speedup-S 

NP 

16 

20 

27 

21 

37 

28 

For 125 X 125 
image 

6.30 

10.73 

7.25 

9.61 

8.36 

6.89 

NP 

25 

20 

27 

21 

37 

28 

For 625 x 
429 image 

7.95 

9.60 

6.99 

7.13 

8.34 

6.75 

NP 

25 

20 

27 

21 

37 

28 

For 1100 X 
900 image 

7.87 

9.35 

6.97 

7.13 

8.42 

7.14 

5.4.1.1b Comparison of Maximum Speedup for the BCT Plans 

Table 5.10 shows a comparison of the maximum speedup values obtained for the 

various BCT Plans, which are extracted from the appendix tables A.27 to A.32. From 

this table we can arrive at the following conclusions: 

1. Of the two Shared Memory Architectures, the higher values of speedup can be 

obtained on the Shared Memory Architecture with Local-plus-Global Memory 

organisation. 

2. Of the various Distributed Memory Architectures, highest value of speedup can be 

obtained on the Pyramid Topology for all image sizes. 

3. Of the two different Architectures for the Non-Block Comparator Technique the 

higher values of speedup can be obtained on the Shared Memory Architecture with 

Local-plus-Global Memory organisation. 
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Table 5.10 Maximum speedup comparison for the BCT Plans 

Plan 

P8 

P9 

PI 

PIO 

Pl l 

P12 

Memory 

Architecture 

Shared Memory 

Architecture 

Distributed Memory 

Architecture 

Memory 

organisation / 

topology 

Global 

Global & Local 

Tree 

Torus 

Pyramid 

Cube 

Speedup-S 

NP 

16 

20 

15 

9 

21 

9 

For 125 x 125 
image 

6.30 

9.75 

6.56 

4.91 

7.70 

5.43 

NP 

16 

20 

15 

9 

21 

9 

For 625 x 
429 image 

6.33 

8.71 

6.72 

5.01 

7.71 

5.48 

NP 

16 

20 

15 

13 

21 

9 

For 1100 X 
900 image 

6.35 

8.70 

6.19 

5.44 

7.66 

5.48 

5.4.1.1c Comparison of Speedup for the NBCT and BCT Plans 

Table 5.11 gives a comparison of the maximum speedups obtained for the NBCT Plan 

and the BCT Plans. From this table we can see that the maximum speedups for the 

NBCT Plan are higher as compared to the same for the BCT Plans. 

Table 5.11 Maximum speedup comparison for the NBCT and the BCT Plans 

Memory 

Architecture 

Shared Memory 

Architecture 

Distributed Memory 

Architecture 

Memory 

organisation / 
topology 

Global 

Global & Local 

Tree 

Torus 

Pyramid 

Cube 

Speedup-S 

For 125 X 125 
image 

NBCT 

6.30 

10.73 

7.25 

9.61 

8.36 

6.89 

BCT 

6.30 

9.75 

6.56 

4.91 

7.70 

5.43 

For 625 x 429 
image 

NBCT 

7.95 

9.60 

6.99 

7.13 

8.34 

6.75 

BCT 

6.33 

8.71 

6.72 

5.01 

7.71 

5.48 

For 1100 X 900 
image 

NBCT 

7.87 

9.35 

6.97 

7.13 

8.42 

7.14 

BCT 

6.35 

8.70 

6.19 

5.44 

7.66 

5.48 

5.4.1.2 Comparison of Speedup for the IPC Plans 

Table 5.12 gives the speedup comparison of the Shared Memory and the Distributed 

Memory Architecmre. Comparing these two architectures we can see that, 

• The speedup values obtained for the Pyramid Topology (Plan 15) is higher than that 

for the other two. 
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Table 5.12 Speedup comparison of two architectures 

Plan 

P13 

P14 

P15 

Memory 

Architecture 

Shared Memory 

Architecture 

Distributed Memory 

Architecture 

Memory 

organisation / 

topology 

Global & Local 

Torus 

Pyramid 

Speedup-S 

NP 

13 

13 

21 

For 125 X 125 
image 

5.21 

5.57 

8.70 

NP 

13 

13 

21 

For 625 x 
429 image 

5.83 

5.91 

7.93 

NP 

13 

13 

21 

For 100 X 
900 image 

5.84 

5.97 

7.69 

5.4.1.3 Comparison of Speedup for Different NSB 

Table 5.13 gives the speedup on the Pyramid Topology with 625 x 429 image size for 

NSB = 10%, 30%, 50%, and 75% and speedup graphs of the same are shown in figure 

5.17. From this table the following conclusions can be derived: 

• Speedup values for the BCT are higher those for the NBCT for NP < 21. For NP = 

37 the NBCT gives higher speedup as compared to the BCT. 

• By comparing the speedup values obtained for NSB = 10% and 30%, it can be seen 

that speedup for NSB = 30% is higher than that of for NSB = 10% for NP < 9. 

• By comparing the speedup values obtained for NSB = 30%, 50% and 75%, it can be 

seen that the speedup decreases as NSB increases for all values of NP. This indicates 

that as NSB increases, the computation time for block comparison is significantly 

higher than the computation time for comparing the image on the parallel processor. 

Table 5.13 Speedup for the NBCT Plan P6 and the BCT Plan P l l with different 

NSB 

Number of 

Processors-NP 

1 

5 

9 

21 

37 

Speedup - S 

NBCT 

1 

4.65 

5.2 

6.06 

8.34 

NSB=10% 

1 

4.68 

5.48 

7.71 

7.29 

NSB=30% 

1 

4.79 

5.63 

7.28 

6.89 

NSB=50% 

1 

4.71 

5.55 

6.92 

5.7 

NSB=75% 

1 

4.69 

5.4 

6.87 

5.26 
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Figure 5.17 Speedup graph for Plans P6 and P l l for different NSB values 

5.4.2 Comparison of Scaleup 

Scaleup of a parallel architecture is a function of the maximum number of processors at 

which the speedup starts decreasing. Scaleup was defined in chapter 3, as the number of 

processors at the point of maximum speedup. Section 5.4.2.1 gives a comparison of the 

scaleup values obtained for the NIPC Plans and section 5.4.2.2 gives a comparison of 

scaleup values obtained for the IPC Plans. 

5.4.2.1 Scaleup Comparison for the NIPC Plans 

A comparison of scaleup obtained for the Non-Block Comparator Technique (NBCT) is 

given in section 5.4.2.1a and the same for the Block Comparator Technique (BCT) in 

section 5.4.2.1b. Comparison of the two techniques is given in section 5.4.1.1c. 

5.4.2.1a Scaleup Comparison for the NBCT Plans 

Table 5.14 shows a comparison of the scaleup obtained for the NBCT Plans. From this 

table the following conclusions can derived: 

1. For the Shared Memory Architectures the hybrid memory organisation (Plan P3) 

gives higher scaleup than a purely Global Memory organisation for 125 x 125 

(small) image size. For the medium and the large image sizes the Global Memory 

organisation (Plan P2) gives higher values of scaleup. 



Chapter 5 161 

2. The Distributed Memory Architectures give highest values of scaleup as compared 

to the Shared Memory Architectures. 

3. Pyramid Topology (Plan P6) gives the best values for scaleup. 

Table 5.14 Scaleup comparison for the NBCT Plans 

Memory 

Architecture 

Shared Memory 

Architecture 

Distributed Memory 

Architecture 

Plan 

P2 

P3 

P4 

P5 

P6 

P7 

Scaleup-S 

For 125 X 125 image 

16 

20 

27 

21 

37 

28 

For 625 x 429 image 

25 

20 

27 

21 

37 

28 

For 1100 x 900 imagt 

25 

20 

27 

21 

37 

28 

5.4.2.1b Scaleup Comparison of the BCT Plans 

Table 5.15 shows a comparison of the scaleup values obtained for the BCT Plans. From 

this table the following conclusions can be derived: 

1. The hybrid memory organisation (Plan P9) gives higher scaleup than a purely Global 

Memory organisation for all image sizes. 

2. The Distributed Memory Architectures give higher values of scaleup as compared to 

the Shared Memory Architectures. 

3. Pyramid topology (Plan P l l ) gives the best values for scaleup. 

Table 5.15 Scaleup comparison for the BCT Plans 

Memory 

Architecture 

Shared Memory 

Architecture 

Distributed Memory 

Architecture 

Plan 

P8 

P9 

PI 

PIO 

Pll 

P12 

Scaleup-S 

For 125 X 125 
image 

16 

20 

15 

9 

21 

9 

For 625 x 429 
image 

16 

20 

15 

9 

21 

9 

For 1100x900 
image 

16 

20 

15 

13 

21 

9 
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5.4.2.1c Scaleup Comparison of the NBCT and the BCT Plans 

This section gives a comparison of scaleup values obtained for the BCT and the NBCT 

Plans. Table 5.16 is derived from the tables 5.14 and 5.15. The following conclusions 

can be derived from table 5.16: 

1. For the Shared Memory Architectures, the scaleup values obtained for the NBCT are 

either higher or the same as those obtained for the BCT. 

2. For the Distributed Memory Architectures, the scaleup values obtained for the 

NBCT is higher than that obtained for the BCT. 

Thus, the Block Comparator Technique does not scaleup as well as the Non-

Block Comparator Technique. 

Table 5.16 Scaleup comparison for the NBCT and the BCT Plans 

Memory 

Architecture 

Shared Memory 

Architecture 

Distributed Memory 

Architecture 

Memory 

organisation / 
topology 

Global 

Global & Local 

Tree 

Torus 

Pyramid 

Cube 

Scaleup 

For 125 X 125 
image 

NBCT 

16 

20 

27 

21 

37 

28 

BCT 

16 

20 

15 

9 

21 

9 

For 625 x 429 
image 

NBCT 

25 

20 

27 

21 

37 

28 

BCT 

16 

20 

15 

9 

21 

9 

For 1100 X 900 
image 

NBCT 

25 

20 

27 

21 

37 

28 

BCT 

16 

20 

15 

9 

21 

9 

5.4.2.2 Scaleup Comparison of the IPC Plans 

Table 5.17 gives a comparison of the scaleup values obtained for the Shared Memory 

and the Distributed Memory Architectures. By comparing these two architectures it can 

be seen that, 

• Scaleup for the Pyramid Topology is the highest. 
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Table 5.17 Scaleup comparison of two architectures 

Plan 

P13 

P14 

P15 

Memory 

Architecture 

Shared Memory 

Architecture 

Distributed Memory 

Architecture 

Memory 

organisation / 
topology 

Global & Local 

Torus 

Pyramid 

Scaleup-S 

For 125 X 125 
image 

13 

13 

21 

For 625 x 429 image 

13 

13 

21 

For 1000 X 900 
image 

13 

13 

21 

5.4.3 Comparison of Efficiency 

Efficiency (r|) was defined in chapter 3, as the average speedup of each processor in a 

parallel processor, and is given by. 

T l 

where: 

S 

NP 

S/NP, 

Efficiency, 

Speedup of the parallel processor, 

Number of Processors. 

The efficiency graphs for Plans PI to P15 are shown in appendix A, figures A.lb 

to A. 15b respectively. From these figures we can see that the efficiency of 50% or 

higher was obtained for some Number of Processors. The highest NP at which 

efficiency is greater than 50% is called as Efficiency Cutoff Point (ECP) in this thesis. 

In other words, from cost-benefit analysis point of view a parallel processor with NP = 

ECP would be most cost effective. 

Section 5.4.2.1 gives the efficiency comparison of the NIPC Plans, and section 

5.4.2.2 gives the efficiency comparison of the IPC Plans. 

5.4.3.1 Efficiency Comparison of the NIPC Plans 

Efficiency graphs for the NBCT Plans are shown in appendix A, figures A.lb to A.6b, 

and these for the BCT Plans are shown in figures A.7b to A. 12b. The ECP values are 

extracted from these figures and are tabulated in table 5.18. From this table, we can 

conclude that, 

1. Of the different Architectures, the ECP value is the highest on the Shared Memory 

Architecture with Local-plus-Global Memory organisation. 
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2. Of the two Shared Memory Architectures, the ECP value is higher on a Shared 

Memory Architecture with Local-plus-Global Memory organisation. 

3. Of the various Distributed Memory Architectures, the ECP value is almost same for 

all topologies. 

Table 5.18 Efficiency Cutoff Point for the NIPC Plans 

Memory 

Architecture 

Shared Memory 

Architecture 

Distributed Memory 

Architecture 

Memory 

organisation / 
topology 

Global 

Global & Local 

Tree 

Torus 

Pyramid 

Cube 

Efficiency Cutoff Point - ECP 

For 125 X 125 
image 

NBCT 

7 

11 

9 

9 

9 

9 

BCT 

7 

11 

9 

5 

9 

9 
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11 

11 

9 

9 
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9 
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7 

11 

9 

5 

9 
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16 
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9 

9 

9 

9 
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7 

11 

9 

5 

9 

9 

5.4.3.2 Efficiency Comparison of the IPC Plans 

Efficiency graphs for the BCT Plans are shown in appendix A, figures A. 13b to A. 15b. 

The ECP values are extracted from these figures and are tabulated in table 5.19. From 

this table, we can conclude that, 

1. Of the various architectures, the ECP value is higher on Distributed Memory 

Architectures. 

2. Of the two Distributed Memory Architectures, the ECP values is same for Pyramid 

Topology and Toms Topology. 

Table 5.19 Efficiency Cutoff Point for the IPC Plans 

Plan 

P13 

P14 

P15 

Memory 

Architecture 

Shared Memory 

Architecture 

Distributed Memory 

Architecture 

Memory 

organisation / 
topology 

Global & Local 

Torus 

Pyramid 

Efficiency Cutoff Point -ECP 

For 125 X 125 
image 

7 

9 

9 

For 625 x 429 image 

9 

9 

9 

For 1000 x 900 
image 

9 

9 

9 
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5.5 Summary 

Analytical modelling alone is not sufficient to evaluate the behaviour of parallel 

algorithms. Therefore the Network n.5, a discrete event simulation package, was chosen 

for the simulation of Digital Image Compression technique. 

Simulation of techniques for implementing Digital Image Compression on 

parallel computers involve developing the models, modelling, validation and 

experimentation with the models. This chapter explained all of these aspect of the 

simulation done with the help of the Network II.5 simulation package. 

Execution times obtained for the simulation experiments were tabulated for each 

model. Experimental results confirmed that the Pyramid architecture performed the best 

in terms of speedup, scaleup and efficiency. 

Simulation times obtained for different values of NSB were also tabulated. From 

speedup figures it could be determined that the scaleup of twentyone and Efficiency 

Cutoff Point of about nine can be obtained. This implies that even though there is 

increasing speedup values for upto twenty one processors, the marginal cost of adding 

more than nine processors is rather high. In other words, from cost-benefit analysis 

point of view a nine processor system would be most cost effective. 

In this chapter the divide and conquer method was used for comparing blocks in 

an image, and the block comparison step took place on the host processor. Compression 

time can be further reduced by parallelising the block comparison step as well. 
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Abstract 

This chapter gives the main conclusions derived from the research work presented in 

this thesis and some directions for future research. 

The DCT-based JPEG algorithm was chosen for this research because it is one 

of the most widely used image compression algorithms, and because the results could be 

applied to the MPEG algorithm as well. An enhancement to the JPEG algorithm, called 

the Block Comparator Technique was introduced. It was shown that the Block 

Comparator Technique increases the speed of compression operation and improves the 

compression ratio. 

To study the effectiveness of parallel processing, the JPEG algorithm was 

implemented on three parallel computer architectures, viz., the Mercury system, the 

Shiva system and the Param system. From the experimental results obtained on these 

three architectures, it was shown that the system with hybrid memory architecture, gives 

the best performance in terms of speedup, scaleup and efficiency. 

A number of parallel processing Plans were simulated using the Network n.5 

simulation package. From the results obtained for different options, it was shown that 

the execution time obtained for the Non-Block Comparator Technique is the least on the 

shared memory architecture with global and local memory, and scaleup on the pyramid 

topology is higher than that for other architectures. 
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6.1 Introduction 

With the widespread application of multimedia systems and increasing data traffic due 

to the transmission of still and moving pictures, compression of image data has become 

very important. The main aim of this project was to investigate techniques for 

improving the performance of the DCT-based JPEG algorithm. There are three main 

components of this research project, namely: 

1) An enhancement to the JPEG algorithm was proposed. This enhancement is called 

the Block Comparator Technique. The Block Comparator Technique was analysed and 

the improvements in the performance of the JPEG algorithm were investigated. 

2) The JPEG algorithm was implemented on three different parallel machines. 

Improvement in the performance of the JPEG algorithm on the various architecmres was 

studied. 

3) A more detailed study of parallel processing of the JPEG algorithm was carried out 

by using discrete event simulation. 

The different methods involved in the Block Comparator Technique and the 

conclusions derived from these methods are discussed in section 6.2. The conclusions 

derived from the experimental results obtained on the three parallel systems are given in 

section 6.3. A number of important implementation options were simulated using the 

Network n.5 simulation package. The conclusions derived for the simulation results are 

discussed in section 6.4. Section 6.5 gives some directions for future research. 

6.2 Block Comparator Technique Enhancement to the JPEG 
Algorithm 

Based on the algorithm used, digital image compression techniques can be broadly 

classified as Vector Quantisation (VQ), Fractal, Wavelet and Discrete Cosine Transform 

(DCT) techniques. The digital image compression technique developed by the Joint 

Photographic Experts Group (JPEG) is based on the Discrete Cosine Transform. JPEG 

technique is widely used in a large variety of applications. Therefore, the JPEG 

algorithm was chosen for this research purpose. 

In the JPEG algorithm all image blocks are processed individually. These blocks 

of compressed image are stored sequentially. In many types of images, there is the 

possibility of having one or more similar blocks in the image. Improvement in 

performance of the compression algorithm can be achieved by locating similar blocks in 

the image. The Block Comparator Technique was developed to enhance the 

performance of the JPEG algorithm. 
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With the help of mathematical analysis it was shown that the Block Comparator 

Technique improves the speed of compression and reduces the size of the compressed 

data file. Conclusions derived for the speed of operation are given in section 6.2.1. 

Conclusions derived for image compression are given in section 6.2.2. 

6.2.1 Speed of Operation 

There are many methods for implementing the Block Comparator Technique operation. 

Two options for the block comparison step were selected. The first method involves 

direct sample-by-sample comparison of all the blocks in an image. The second method 

consists of sample summation, intensity comparison and sample-by-sample comparison 

steps. Execution time of the JPEG algorithm was calculated in terms of the number of 

arithmetic operations such as additions, subtractions, multiplications, divisions, and 

comparisons. Each arithmetic operation was equated to a number of Base Operations. 

The number of equivalent Base Operations for each arithmetic operation can be 

determined for specific processors. Transputer IMS T805 processor was selected for 

calculating the number of Base Operations. 

Improvement in the speed of Block Comparator Technique over the JPEG 

algorithm (called as Non-Block Comparator - NBCT in this thesis) was expressed in 

terms of Speed Improvement Factor (SIF). Conclusions are derived by comparing SIF 

values obtained for the two methods, and also by comparing SIF values for each method 

individually. These conclusions are given in the following sections. 

Common conclusions for the two methods: The Speed Improvement Factor (SIF) is 

less than one for zero number of similar blocks (NSB) irrespective of the method used 

and the image size. This result is expected, as there is no speed improvement when there 

are no similar blocks; because there is additional computation time required for the 

block comparison step. Therefore, the Block Comparator Technique (BCT) will add 

unwanted computational overhead if there are no similar blocks in an image. 

SIF values for all image sizes increase monotonically with increase in the value 

of NSB. For most of the methods studied SIF is greater than one for NSB >= 10%. This 

indicates that the Block Comparator Technique delivers dividends even for a small 

number of similar blocks. 

Conclusions for the Selection Sort method: For the Selection Sort method SIF values 

for Number of Blocks (NB) = 256 is greater than one, for NSB in the range of 10% to 

100%. Whereas, for NB = 4266 SIF is less than one even upto 50% similar blocks. On 

the other hand for NB = 15594 SIF is less than one for all values of NSB. This indicates 
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that there is no benefit in using the Block Comparator Technique in conjuction with the 

Selection Sort method for large images. Selection Sort method is suitable only for small 

image size. 

Conclusion for the Divide and Conquer Sort method: For the Divide and Conquer 

sort method SIF is greater than one for NSB >= 10% and increases monotonically with 

NSB. SIF is almost equal for all image sizes for the same values of NSB. Therefore, the 

Divide and Conquer method is suitable for all image sizes. 

Conclusion for the Sample-by-Sample Comparison method: When similar blocks 

are matched using sample-by-sample comparison, the SIF values for all image sizes and 

values of NSB are almost equal to the SIF values for the Divide and Conquer method, 

except for NSB = 100%. For NSB = 100%, SIF is greater for the Sample-by-Sample 

comparison method than that for the Divide and Conquer Sort method. 

Divide and Conquer Sort versus Sample-by-Sample Comparison: Block comparison 

using Divide and Conquer Sort method is used to sort the image blocks according to the 

intensities of these blocks. This helps in grouping the blocks of equal intensities. Equal 

intensity blocks can then be distributed on a parallel computer equally to all the CPUs 

to balance the work load on all processors. This improves the speedup obtained by 

parallel processing. 

The Block Comparison Technique using Sample-by-Sample comparison method 

cannot be used for grouping of blocks with equal intensity values. Therefore, we can say 

that the Block Comparator Technique using Divide and Conquer method is more 

suitable for parallel processing. 

6.2.2 Image Compression Ratio 

The Image Compression Ratio (ICR) was calculated for Digital Image Compression 

Techniques with and without the proposed Block Comparator Technique. For the Block 

Comparator Technique, the Compressed Image Data Stmcture can be represented in 

many formats. Three different stmctures were selected for the analysis: Compressed 

Image Data Stmchire -1 (CIDS-1), CIDS-2 and CIDS-3. 

The conclusions derived by comparing ICR values from all Compressed Image 

Data Stmctures and by comparing ICR values from each CIDS separately are given in 

the following sections. 
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Conclusions for all CIDSs: ICR increases as the image size increases irrespective of 

the quality of a output image for all CIDSs. For each image size the ICR increases with 

a decrease in the quality of the output image. 

Conclusion for CIDS-1: For the CIDS-1 and quality = 100% ICR is slightly greater 

than the same for the Non-Block Comparator Technique. For quality = 75% ICR is 

almost equal to that for the Non-Block Comparator Technique. For quality = 50% and 

25% ICR values are less compared to the same for the Non-Block Comparator 

Technique. This indicates that the size of the compressed image using Compressed 

Image Data Stmcture-1 for the Block Comparator Technique is reduced only for image 

quality greater than 75%. 

Conclusions for CIDS-2: By comparing the ICR values of Cn)S-2 and CIDS-1, ICR 

values for CIDS-2 are less than those for CIDS-1 for all image sizes. This is because all 

Unique Block Numbers are stored in the Unique Block Group. This data stmcmre is 

more robust than the CIDS-1 data stmcture, because all the blocks numbers are included 

in the data structure. 

By comparing ICR values of CIDS-2 and the Non-Block Comparator Technique, 

it was shown that the ICR values of CIDS-2 for quality = 100% are almost equal to that 

of the Non-Block Comparator Technique. For quality less than 100%, ICR values are 

less than the same for the Non-Block Comparator Technique. 

Conclusions for CIDS-3: By comparing ICR values of CIDS-3 with those for the other 

two data stmctures, the ICR values for CIDS-3 are greater in all cases. 

By comparing ClDS-3 with the Non-Block Comparator Technique, we can see 

that the Image Compression Ratio values for CIDS-3 for quality = 100% and 75% are 

greater than the same for the Non-Block Comparator Technique. For quality = 50% the 

values are almost equal. This indicates that the CIDS-3 data stmcture is better than the 

others for quality greater than 50%. 

By comparing all three Compressed Image Data Stmctures, we can say that 

CIDS-3 is the best of the three data stmctures in terms of compression ratio. Therefore, 

the CIDS-3 data stmcture was chosen to measure the speed improvement over the Non-

Block Comparator Technique. Though CIDS-2 is more robust than either of the other 

two data stmctures. 

Image Compression Ratio Improvement Factor (ICRIF): The improvement in the 

compression ratio can be represented by the Image Compression Ratio Improvement 

Factor (ICRIF). 
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From the ICRIF graph for CIDS-3 using NSB = 75%, we can see that the ICRIF 

is almost equal for all image sizes irrespective of the quality of the output image. There 

is no benefit in using the Block Comparator Technique for images with less than 50% 

quality. By using the Block Comparator Technique we can get an improvement of 2.8 

times over the Non-Block Comparator Technique for quality = 100%. 

From these speed and compressed image size comparisons we can say that the 

Block Comparator Technique is a useful addition to enhance the JPEG compression 

algorithm. The same Block Comparator Technique can be implemented on parallel 

computers to speedup the operation even further. 

6.3 Implementation of the Digital Image Compression Algorithm 

The JPEG digital image compression algorithm was implemented in a variety of ways 

on three parallel computers. Each uniquely identifiable way of implementation is called 

a 'Plan' in this thesis. Each Plan is specified as a 6-tuple consisting of image 

compression technique, block dependency, image partitioning method, memory 

architecture, network topology and the number of processors. Some of these Plans were 

implemented on available parallel computers and other Plans were simulated using the 

Network n.5 simulation package. Performance of these Plans was evaluated in terms of 

speedup, scaleup, and efficiency. 

Parallel computers can be classified based on memory access technique, network 

topology and some other issues. Three parallel computers were selected each with a 

different memory architectures, viz. Mercury system with a distributed memory 

architecture, Shiva system with a shared memory architecture and Param system with a 

hybrid memory architecture. Non-Block Comparator Technique was implemented on 

various number of processors on above three systems and the conclusions derived from 

the experimental results are given in following section. 

6.3.1 Performance Comparison of Digital Image Compression on Three Parallel 

Computer Architectures 

On the Mercury system the Helios Operating system was used as the parallel 

programming environment. Helios has four levels of communication routines. JPEG 

algorithm was implemented using two of these, namely, POSIC (Portable Operating Set 

Instmction Codes) and MPP (Message Passing Primitives). By comparing POSIC and 

MPP communication routines, we concluded that the speedup for MPP communication 

routines is higher than that for the POSIC communication routines. But the POSIC 



Chapter 6 172 

communication routines have greater functionality than the MPP communication 

routines. 

The JPEG algorithm was implemented on the Shiva and Param systems each 

with three processors. The execution times for four processor to seventeen processor 

systems were estimated by extrapolating the results, obtained on a single processor 

system, with the help of Gantt charts. 

By comparing the results obtained we concluded that the hybrid memory 

architecture based Param system gave the best results in terms of execution time, 

speedup, scaleup and efficiency. Nonetheless, the JPEG algorithm is suitable for 

implementation on distributed as well as shared memory systems. 

6.4 Simulation of Digital Image Compression Techniques 

Network n.5 simulation package was used for the simulation of digital image 

compression techniques on parallel architectures. 

A total of more than four hundred models were simulated. The execution times 

obtained from the simulation are tabulated for each model in Appendix A. Each 

simulated model was examined with respect to execution time, and its derivatives, 

namely, speedup, scaleup and efficiency. The knowledge gained from these models 

enabled a comparison of the performance of digital image compression algorithm on 

parallel computers. 

The conclusions derived from the execution times obtained are discussed in 

section 6.4.1. Performance comparison in terms of speedup, scaleup and efficiency is 

discussed in section 6.4.2. 

6.4.1 Execution Times 

The simulation models were first divided into two sets based on the block dependency 

method, namely, Non-Inter-Processor Communication (NIPC) method and Inter-

Processor Communication (IPC) method. The conclusion derived from the NIPC Plans 

are given in section 6.4.1.1. Conclusions derived from the IPC Plans are given in section 

6.4.1.2. A total of twenty models were simulated for the BCT Plans using Number of 

Similar Block (NSB) = 10%, 30%, 50%, and 75%. The conclusion derived from the 

execution times obtained for these Plans are given in section 6.4.1.3. 
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6.4.1.1 Execution Times Obtained for Non-Inter-Processor Communication Plans 

By comparing the execution times obtained for the NBCT Plans and the BCT Plans, we 

can see that the execution time for the BCT Plans is less compared to the execution 

times for the NBCT Plans upto some Number of Processors (NP), after that the 

execution time is higher for the BCT Plans. This indicates that the BCT fails to be 

effective on a large number of processors. The reason for this is explained below. 

In the simulation models, the divide and conquer method was used for 

comparing blocks in an image. In all of the Plans the block comparison step took place 

on the host processor leading to sequential processing of the block comparison process. 

Thus, the time taken for the BCT is higher than that for the NBCT as the number of 

processors increases. 

The least execution time was obtained for the NBCT and the BCT Plans on a 

shared memory architecmre with local-plus-global memory organisation. 

6.4.1.2 Execution Times for Inter-Processor Communication Plans 

By comparing three Inter-Processor Communication Plans it was shown that the 

execution times obtained on the Distributed Memory Architecture with the Pyramid 

topology is the lowest. 

By comparing the execution times obtained for the NIPC Plans and the IPC 

Plans on a distributed memory architectures, it can be seen that the IPC method is more 

efficient for low number of processors whereas the NIPC method becomes more 

efficient for higher number of processors. Because as the number of processors 

increases, the communication time taken for transferring neighbouring samples among 

processors increases for the IPC method. This leads to increase in overall execution 

time. 

6.4.1.3 Execution Times for the BCT with Different NSB values 

The Block Comparator Technique was simulated for Number of Similar Blocks = 10%, 

30%, 50% and 75%. By comparing execution times obtained for these Plans it was 

shown that speed improves with an increase in the NSBs. The speed improvement 

figures obtained for the simulation experiments, for the various NSB values, matched 

closely to the analytically obtained values. 

Highest speed improvement was obtained on twenty one processors connected in 

a Pyramid topology. 
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6.4.2 Performance Comparison 

Performance of parallel computer architectures was measured in terms of speedup, 

scaleup and efficiency. Section 6.4.2.1 gives the conclusions derived from speedup 

comparison. Scaleup comparison is given in section 6.4.2.2 and efficiency comparison is 

given in section 6.4.2.3. 

6.4.2.1 Speedup Comparison 

• On the shared memory architecture higher speedup is obtained with local-plus-

global memory organisation for all image sizes. 

• The highest speedup is achieved on a distributed memory architecmre with the 

Pyramid topology. 

• Higher number of similar blocks in a image lead to higher speedup. 

6.4.2.2 Scaleup Comparison 

• Scaleup also is the highest on the Pyramid topology. This indicates that both 

techniques (NBCT and BCT) scaleup well on the pyramid topology. 

• The scaleups values for the Block Comparator Technique for all image sizes are 

lower as compared to the scaleup values for the Non-Block Comparator Technique. 

Thus, the Block Comparator Technique does not scaleup as well as the Non-Block 

Comparator Technique. 

6.4.2.3 Efficiency Comparison 

The highest number of processors at which efficiency is greater than 50% is called as 

Efficiency Cutoff Point (ECP) in this thesis. In other words, from cost-benefit analysis 

point of view a parallel processor with the 'number of processors' = ECP would be the 

most cost effective. 

• The ECP value is the highest on the shared memory architecture with local-plus-

global memory organisation for the NIPC method. 

• The ECP value for the Pyramid topology is the highest for the IPC method. 
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6.5 Directions for Future Research 

When this project was initiated a few years ago, low cost hardware implementations of 

the JPEG and the MPEG standards were not readily available. At the present time JPEG 

and MPEG chips/cards are readily available at reasonably low cost. But these hardware 

devices are fixed for a specific standard. With rapid advancement in compression 

technology a flexible image compression scheme is required. In such a flexible scheme 

the two ends can negotiate the standard, and the parameters to be used for image 

compression. For this scheme to work image compression and decompression must be 

performed in software. To be able to perform real-time motion picture compression and 

decompression in software parallel processing can be employed. 

The research work carried out in this project can be extended to include motion 

picture compression. Some more specific directions for future work are presented 

below. 

1. Speed of Operation 

The Selection Sort and the Divide and Conquer methods were used for the block 

comparison step in the Block Comparator Technique. By comparing the Speed 

Improvement Factors it was found that the Divide and Conquer method is better than the 

Selection Sort method. But, there may be other sort methods that perform better than the 

Divide and Conquer sort method for this application. Therefore, future research can 

explore other sorting methods which may be faster than the Divide and Conquer sort 

method, especially for parallel processing. 

2. Quality of Service 

Three Compressed Image Data Stmcture were used for the Block Comparator 

Technique. From these Image Data Stmctures, the CIDS-2 was found to be most robust, 

though the compressed image is slightly larger as compared to one of the other 

stmctures (CIDS-3). This robustness is desirable for providing good quality of service in 

many applications such as video-on-demand. Future research can explore ways of 

reducing the compressed image size of CIDS-2. 

In the CIDS-2 all blocks include the block numbers. This helps to identify lost 

blocks. If any of the blocks is missing, this block is replaced by an empty block. This 

leads to blockiness in the image. Future research can focus on recovery of missing 

blocks during decompression operation to reduce this blockiness effect, so that the 

decompressed image can be of better quality. 
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3. Reliability 
In this research all processors in the parallel system were considered to be operational. 

But there is a chance of breakdown of one or more of the processors during task 

allocation, compression and collection of compressed data. Future research can include 

development of reliable parallel processing techniques specifically for image 

compression. 

4. Parallel Block Comparison 

In our study the block comparison step took place on the host processor leading to 

sequential processing of the same. This leads to the fact that the time taken for the Block 

Comparator Technique is higher on a large number of processors as compared to the 

Non-Block Comparator Technique. Execution time can be reduced further by 

parallelising the block comparison step. 
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Appendix A A.1 

APPENDIX A 

Table A.l Execution times for NIPC Plan P2 

(NBCT on a Shared Memory Architecture with Global Memory ) 

Number of 

Processors-NP 

1 

3 

5 

7 

11 

16 

20 

25 

27 

Execution times in msec. 

For 125 X 125 
image 

112.32 

47.15 

33.29 

25.84 

21.12 

17.82 

18.00 

For 625 x 429 
image 

1871.81 

768.68 

525.58 

409.43 

328.39 

267.73 

251.81 

235.49 

235.72 

For 1100 X 900 
image 

6844.12 

3315.63 

1931.63 

1574.19 

1213.44 

1018.32 

929.77 

869.13 

869.43 

Table A.2 Execution times for NIPC Plan P3 

(NBCT on a Shared Memory Architecture with Local-plus-Global Memory ) 

Number of 

Processors-NP 

1 

3 

5 

7 

11 

16 

20 

25 

Execution times in msec. 

For 125 X 125 
image 

112.32 

41.40 

27.69 

21.85 

15.12 

10.93 

10.47 

10.67 

For 625 x 429 
image 

1871.81 

699.07 

476.79 

380.42 

278.39 

226.78 

194.96 

195.44 

For 1100 X 900 
image 

6844.12 

2557.27 

1748.24 

1397.12 

1026.73 

870.31 

732.21 

734.62 



Appendix A A.2 

Table A.3 Execution times for NIPC Plan P4 

(NBCT on a Distributed Memory Architecmre with Tree Topology) 

Number of 

Processors-NP 

1 

3 

5 

9 

15 

21 

27 

33 

Execution times in msec. 

For 125 X 125 
image 

112.32 

41.40 

32.82 

24.96 

18.77 

16.63 

15.49 

16.09 

For 625 x 429 
image 

1871.81 

719.30 

529.36 

410.74 

315.96 

280.89 

267.72 

279.42 

For 1100 X 900 
image 

6844.12 

2631.21 

1941.19 

1503.83 

1155.50 

1034.26 

981.38 

993.62 

Table A.4 Execution times for NIPC Plan P5 
(NBCT on a Distributed Memory Architecture with Toms Topology) 

Number of 

Processors-NP 

1 

3 

5 

9 

13 

17 

21 

26 

Execution times in msec. 

For 125 X 125 
image 

112.32 

41.40 

32.82 

20.75 

19.60 

16.16 

11.69 

16.09 

For 625 x 429 
image 

1871.81 

719.30 

529.36 

342.29 

323.03 

271.72 

262.58 

266.42 

For 1100 x 900 
image 

6844.12 

2631.21 

1941.19 

1234.28 

1180.84 

995.82 

959.29 

976.67 



Appendix A A.3 

Table A.5 Execution tunes for NIPC Plan P6 

(NBCT on a Distributed Memory Architecmre with Pyramid Topology) 

Number of 

Processors-NP 

1 

5 

9 

21 

37 

53 

Execution times in msec. 

For 125 X 125 
image 

112.32 

23.36 

21.85 

18.15 

13.43 

14.61 

For 625 x 429 
image 

1871.81 

386.07 

359.84 

309.03 

224.55 

239.86 

For 1100 X 900 
image 

6844.12 

1412.65 

1317.72 

1128.46 

812.04 

876.50 

Table A.6 Execution times for NIPC Plan P7 
(NBCT on a Distributed Memory Architecture with Cube Topology) 

Number of 

Processors-NP 

1 

5 

9 

28 

49 

Execution times in msec. 

For 125 X 125 
image 

112.32 

23.36 

21.85 

16.30 

29.38 

For 625 x 429 
image 

1871.81 

386.07 

359.84 

277.49 

387.65 

For 1100 X 900 
image 

6844.12 

1412.65 

1317.72 

959.14 

1398.27 



Appendix A A.4 

Table A.7 Execution times for NIPC Plan P8 (NSB = 10%) 
(BCT on a Shared Memory Architecture with Global Memory) 

Number of 

Processors-NP 

1 

3 

5 

7 

11 

16 

20 

Execution times in msec. 

For 125 x 125 
image 

104.65 

47.62 

30.01 

24.41 

18.97 

16.62 

18.22 

For 625 x 429 
image 

1745.62 

717.63 

500.03 

414.76 

322.38 

275.64 

303.42 

For 1100 X 900 
image 

6382.80 

2625.94 

1830.35 

1483.08 

1179.25 

1005.15 

1109.62 

Table A.8 Execution times for NIPC Plan P9 (NSB = 10%) 
(BCT on a Shared Memory Architecmre with Local-plus-Global Memory) 

Number of 

Processors-NP 

1 

3 

5 

7 

11 

16 

20 

25 

Execution times in msec. 

For 125 X 125 
image 

104.65 

39.30 

26.43 

20.82 

15.28 

12.76 

10.73 

10.75 

For 625 x 429 
image 

1745.62 

659.82 

440.38 

351.72 

260.90 

229.10 

200.42 

217.98 

For 1100x900 
image 

6382.80 

2414.62 

1631.05 

1264.48 

954.54 

800.43 

733.24 

818.73 



Appendix A A.5 

Table A.9 Execution times for NIPC Plan PI (NSB = 10%) 

(BCT on a Distributed Memory Architecmre with Tree Topology) 

Number of 

Processors-NP 

1 

3 

5 

9 

15 

21 

Execution times in msec. 

For 125 X 125 
image 

104.65 

41.07 

25.41 

19.93 

15.96 

16.84 

For 625 x 429 
image 

1745.62 

689.33 

449.13 

329.57 

259.58 

281.22 

For 1100 X 900 
image 

6382.80 

2522.44 

1644.43 

1310.62 

1030.67 

1109.22 

Table A.IO Execution times for NIPC Plan PIG (NSB = 10%) 

(BCT on a Distributed Memory Architecture with Toms Topology) 

Number of 

Processors-NP 

1 

3 

5 

9 

13 

17 

Execution times in msec. 

For 125 X 125 
image 

104.65 

41.07 

25.41 

21.33 

23.80 

For 625 x 429 
image 

1745.62 

689.33 

449.13 

348.42 

400.83 

For 1100 X 900 
image 

6382.80 

2522.44 

1644.43 

1373.29 

1173.70 

1325.98 

Table A.llExecution times for NIPC Plan P l l (NSB = 10%) 
(BCT on a Distributed Memory Architecture with Pyramid Topology) 

Number of 

Processors-NP 

1 

5 

9 

21 

37 

Execution times in msec. 

For 125 X 125 
image 

104.65 

22.28 

19.26 

13.59 

13.96 

For 625 x 429 
image 

1745.62 

373.23 

318.53 

226.41 

239.29 

For 1100 X 900 
image 

6382.80 

1366.00 

1165.69 

833.01 

876.25 



Appendix A A.6 

Table A.12Execution times for NIPC Plan P12 (NSB = 10%) 
(BCT on a Distributed Memory Architecture with Cube Topology) 

Number of 

Processors-NP 

1 

5 

9 

28 

Execution times in msec. 

For 125 X 125 
image 

104.65 

22.28 

19.26 

19.94 

For 625 x 429 
image 

1745.62 

373.23 

318.53 

334.80 

For 1100 X 900 
image 

6382.80 

1366.00 

1165.69 

1186.99 

Table A.13Execution times for IPC Plan P13 (NSB = 10%) 
(BCT on a Shared Memory Architecture with Global Memory) 

Number of 

Processors-NP 

1 

5 

7 

9 

13 

17 

Execution times in msec. 

For 125 X 125 
image 

104.65 

42.54 

25.96 

22.94 

20.09 

21.62 

For 625 x 429 
image 

1745.62 

449.90 

363.67 

329.36 

299.42 

310.06 

For 1100 X 900 
image 

6382.8 

1653.58 

1294.69 

1164.74 

1092.95 

1125.71 

Table A.14Execution times for IPC Plan P14 (NSB = 10%) 
(BCT on a Distributed Memory Architecture with Toms Topology) 

Number of 

Processors-NP 

1 

3 

5 

9 

13 

17 

Execution times in msec. 

For 125 X 125 
image 

104.65 

42.36 

30.33 

20.81 

18.80 

19.49 

For 625 x 429 
image 

1745.62 

695.46 

439.70 

328.12 

295.36 

308.95 

For 1100 X 900 
image 

6382.8 

2542.94 

1628.26 

1143.87 

1069.14 

1123.73 



Appendix A A.7 

Table A.lSExecution times for IPC Plan P15 (NSB = 10%) 

(BCT on a Distributed Memory Architecture with Pyramid Topology) 

Number of 

Processors-NP 

1 

5 

9 

21 

37 

Execution times in msec. 

For 125 X 125 
image 

104.65 

28.39 

20.15 

12.03 

12.47 

For 625 x 429 
image 

1745.62 

453.26 

324.59 

220.21 

226.38 

For 1100 x 900 
image 

6382.80 

1648.53 

1062.56 

830.27 

865.21 

Table A.16 SIF values for NBCT Plan P3 and BCT Plan P9 

(on a Shared Memory Architecmre with Local-plus-Global Memory) 

Number of 

Processors-NP 

1 

3 

5 

7 

11 

16 

20 

25 

Speed Improvement Factor 

For 125 X 125 
image 

1.07 

1.05 

1.05 

1.05 

0.99 

0.98 

0.98 

0.91 

For 625 x 429 
image 

1.07 

1.06 

1.08 

1.08 

1.07 

0.99 

0.97 

0.90 

-SIF 

For 1100 x 900 
image 

1.07 

1.06 

1.07 

1.10 

1.08 

1.09 

1.00 

0.90 

Table A.17 SIF values for NBCT Plan P4 and BCT Plan PI 

(on a Distributed Memory Architecmre with Tree Topology) 

Number of 

Processors-NP 

1 

3 

5 

9 

15 

21 

Speed Improvement Factor 

For 125 X 125 
image 

1.07 

1.01 

1.29 

1.25 

1.18 

0.99 

For 625 x 429 
image 

1.07 

1.04 

1.18 

1.25 

1.22 

1.00 

-SIF 

For 1100 X 900 
image 

1.07 

1.04 

1.18 

1.15 

1.12 

0.93 
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Table A.18 SIF values for NBCT Plan PS and BCT Plan PIG 
(on a Distributed Memory Architecmre with Toms Topology) 

Number of 

Processors-NP 

1 

3 

5 

9 

13 

17 

Speed Improvement Factor - SIF 

For 125 X 125 
image 

1.07 

1.01 

1.29 

0.97 

0.82 

For 625 x 429 
image 

1.07 

1.04 

1.18 

0.98 

0.81 

For 1100 X 900 
image 

1.07 

1.04 

1.18 

1.09 

1.01 

0.75 

Table A.19 SIF values for NBCT Plan P6 and BCT Plan Pll 
(on a Distributed Memory Architecture with Pyramid Topology) 

Number of 

Processors-NP 

1 

5 

9 

21 

37 

Speed Improvement Factor - SIF 

For 125 X 125 
image 

1.07 

1.05 

1.13 

1.34 

0.96 

For 625 x 429 
image 

1.07 

1.03 

1.13 

1.36 

0.94 

For 1100 X 900 
image 

1.07 

1.03 

1.13 

1.35 

0.93 

Table A.20 SIF values for NBCT Plan P7 and BCT Plan P12 
(on a Distributed Memory Architecture with Cube Topology) 

Number of 

Processors-NP 

1 

5 

9 

28 

Speed Improvement Factor - SIF 

For 125 X 125 
image 

1.07 

1.05 

1.13 

0.82 

For 625 x 429 
image 

1.07 

1.03 

1.13 

0.83 

For 1100 X 900 
image 

1.07 

1.03 

1.13 

0.81 
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Table A.ll Speedup for NIPC Plan P2 
(NBCT on a Shared Memory Architecmre with Global Memory ) 

Number of 

Processors-NP 

1 

3 

5 

7 

11 

16 

20 

25 

27 

Speedup-S 

For 125 X 125 
image 

1 

2.38 

3.37 

4.35 

5.32 

6.30 

6.24 

For 625 x 429 
image 

1 

2.44 

3.56 

4.57 

5.70 

6.99 

7.43 

7.95 

7.94 

For 1100 X 900 
image 

1 

2.06 

3.54 

4.35 

5.64 

6.72 

7.36 

7.87 

7.86 

1100x900 
625 X 429 

125x125 
Image 

Size 
Number of Processors - NP 

Figure A.la Speedup graph for Plan P2 
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Figure A.lb Efficiency graph for Plan P2 
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Table A.22Speedup for NIPC Plan P3 

(NBCT on a Shared Memory Architecmre with Local-plus-Global Memory ) 

Number of 

Processors-NP 

1 

3 

5 

7 

11 

16 

20 

25 

Speedup-S 

For 125 X 125 
image 

1 

2.71 

4.06 

5.14 

7.43 

10.28 

10.73 

10.53 

For 625 x 429 
image 

1 

2.68 

3.93 

4.92 

6.72 

8.25 

9.60 

9.58 

For 1100 X 900 
image 

1 

2.68 

3.91 

4.90 

6.67 

7.86 

9.35 

9.32 

1100x900 
625 x 429 

Image Size i25x125 

Number of Processors - NP 

Figure A.2a Speedup graph for Plan P3 
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Figure A.2b Efficiency graph for Plan P3 
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Table A.23Speedup for NIPC Plan P4 
(NBCT on a Distributed Memory Architecmre with Tree Topology) 

Number of 

Processors-NP 

1 

3 

5 

9 

15 

21 

27 

33 

Speedup-S 

For 125 X 125 
image 

1 

2.71 

3.42 

4.50 

5.98 

6.75 

7.25 

6.98 

For 625 x 429 
image 

1 

2.60 

3.54 

4.56 

5.92 

6.66 

6.99 

6.70 , 

For 1100 X 900 
image 

1 

2.60 

3.53 

4.55 

5.92 

6.62 

6.97 

6.89 

1100x900 
625 X 429 

Image Size ^25x125 

Number of Processors - NP 

>> 
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Ul 

Figure A.3a Speedup graph for Plan P4 
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Figure A.3b Efficiency graph for Plan P4 
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Table A.24 Speedup for NIPC Plan P5 
(NBCT on a Distributed Memory Architecmre with Toms Topology) 

Number of 

Processors-NP 

1 

3 

5 

9 

13 

17 

21 

26 

Speedup-S 

For 125 X 125 
image 

1 

2.71 

3.42 

5.41 

5.73 

6.95 

9.61 

6.98 

For 625 x 429 
image 

1 

2.60 

3.54 

5.47 

5.79 

6.89 

7.13 

7.03 

For 1100 x 900 
image 

1 

2.60 

3.53 

5.55 

5.80 

6.87 

7.13 

7.01 

1100x900 
625 X 429 

Image Size i25x125 

Number of Processors - NP 

Figure A.4a Speedup graph for Plan P5 

ic
ie

nc
y 

- r
| 

Ul 

5^ 

lOO-f 

80-

60-

40-

20-

0 
1 3 5 9 13 17 21 

Number of Processors -
26 

NP 

y'^ 1100x900 
/ 6 2 5 X 429 
125x125 ""«g«S.ze 

Figure A.4b Efficiency graph for Plan P5 
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Table A.25Speedup for NIPC Plan P6 
(NBCT on a Distributed Memory Architecmre with Pyramid Topology) 

Number of 

Processors-NP 

1 

5 

9 

21 

37 

53 

Speedup-S 

For 125 X 125 
image 

1 

4.81 

5.14 

6.19 

8.36 

7.69 

For 625 x 429 
image 

1 

4.85 

5.20 

6.06 

8.34 

7.80 

For 1100 X 900 
image 

1 

4.84 

5.19 

6.07 

8.43 

7.81 

1100x900 

625 X 429 
Image Size 

125x125 

« 
TJ 
(D 
(D a c 
•a 

I 

Number of Processors - NP 

u 
c 
.2 
'o 
£ 
Ul 

Figure A.5a Speedup Graph for Plan P6 

1100x900 

625 x 429 

125x125 
Image Size 

Number of Processors - NP 

Figure A.5b Efficiency Graph for Plan P6 
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Table A.26Speedup for NIPC Plan P7 
(NBCT on a Distributed Memory Architecmre with Cube Topology) 

Number of 

Processors-NP 

1 

5 

9 

28 

49 

Speedup-S 

For 125 X 125 
image 

1 

4.81 

5.14 

6.89 

3.82 

For 625 x 429 
image 

1 

4.85 

5.20 

6.75 

4.83 

For 1100 X 900 
image 

1 

4.84 

5.19 

7.14 

4.89 

1100 x 900 

625 x429 
Image Size 
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Figure A.6a Speedup graph for Plan P7 
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Figure A.6b Efficiency graph for Plan P7 
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Table A.27Speedup for NIPC Plan P8 (NSB = 1G%) 
(BCT on a Shared Memory Architecmre with Global Memory) 

Number of 

Processors-NP 

1 

3 

5 

7 

11 

16 

20 

Speedup-S 

For 125 X 125 
image 

1 

2.20 

3.49 

4.29 

5.52 

6.30 

5.74 

For 625 x 429 
image 

1 

2.43 

3.49 

4.21 

5.41 

6.33 

5.75 

For 1100 x 900 
image 

1 

2.43 

3.49 

4.30 

5.41 

6.35 

5.75 

1100x900 
625 X 

Image Size ., 

-a 
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NP 

Figure A.7a Speedup graph for Plan P8 
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Figure A.7b Efficiency graph for Plan P8 
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Table A.28Speedup for NIPC Plan P9 (NSB = 1G%) 
(BCT on a Shared Memory Architecmre with Local-plus-Global Memory) 

Number of 

Processors-NP 

1 

3 

5 

7 

11 

16 

20 

25 

Speedup-S 

For 125 X 125 
image 

1 

2.66 

3.96 

5.03 

6.85 

8.20 

9.75 

9.73 

For 625 x 429 
image 

1 

2.65 

3.96 

4.96 

6.69 

7.62 

8.71 

8.01 

For 1100 X 900 
image 

1 

2.64 

3.91 

5.05 

6.69 

7.97 

8.70 

7.80 

1100x900 
625 X 429 

image Size ^25x125 

Number of Processors - NP 

Figure A.8a Speedup graph for Plan P9 
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Figure A.8b Efficiency graph for Plan P9 
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Table A.29 Speedup for NIPC Plan PI (NSB = 1G%) 
(BCT on a Distributed Memory Architecmre with Tree Topology) 

Number of 

Processors-NP 

1 

3 

5 

9 

15 

21 

Speedup-S 

For 125 X 125 
image 

1 

2.55 

4.12 

5.25 

6.56 

6.21 

For 625 x 429 
image 

1 

2.53 

3.89 

5.30 

6.72 

6.21 

For 1100 X 900 
image 

1 

2.53 

3.88 

4.87 

6.19 

5.75 

1100x900 

625 X 429 
Image Size 

125x125 

Number of Processors - NP 

Figure A.9a Speedup graph for Plan PI 
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Figure A.9b Efficiency graph for Plan PI 
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Table A.3GSpeedup for NIPC Plan PIG (NSB = 10%) 
(BCT on a Distributed Memory Architecture with Toms Topology) 

Number of 

Processors-NP 

1 

3 

5 

9 

13 

17 

Speedup-S 

For 125 X 125 
image 

1 

2.55 

4.12 

4.91 

4.40 

For 625 x 429 
image 

1 

2.53 

3.89 

5.01 

4.36 

For 1100 X 900 
image 

1 

2.53 

3.88 

4.65 

5.44 

4.81 

1100x900 
625 

Image Size 

Number of Processors - NP 

Figure A.lGa Speedup graph for Plan PIG 
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Table A.31 Speedup for NIPC Plan Pl l (NSB = 10%) 
(BCT on a Distributed Memory Architecmre with Pyramid Topology) 

Number of 

Processors-NP 

1 

5 

9 

21 

37 

For 125 X 125 
image 

1 

4.70 

5.43 

7.70 

7.50 

Speedup-S 

For 625 x 429 
image 

1 

4.68 

5.48 

7.71 

7.29 

For 1100 X 900 
image 

1 

4.67 

5.48 

7.66 

7.28 
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Figure A. 11a Speedup graph for Plan Pll 
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Figure A.llb Efficiency graph for Plan Pll 
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Table A.32Speedup for NIPC Plan P12 (NSB = 10%) 
(BCT on a Distributed Memory Architecmre with Cube Topology) 

Number of 

Processors-NP 

1 

5 

9 

28 

Speedup-S 

For 125 X 125 
image 

1 

4.70 

5.43 

5.25 

For 625 x 429 
image 

1 

4.68 

5.48 

5.21 

For 1100 X 900 
image 

1 

4.67 

5.48 

5.38 

Image ̂ ilfiP 

Number of 
Processors - NP 

Figure A.12a Speedup graph for Plan P12 
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Figure A.12b Efficiency graph for Plan P12 
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Table A.33Speedup for IPC Plan P13 (NSB = 10%) 
(BCT on a Shared Memory Architecture with Global Memory) 

Number of 

Processors-NP 

1 

5 

7 

9 

13 

17 

Speedup-S 

For 125 X 125 
image 

1 

2.46 

4.03 

4.56 

5.21 

4.84 

For 625 x 429 
image 

1 

3.88 

4.80 

5.30 

5.83 

5.63 

For 1100 X 900 
image 

1 

3.86 

4.93 

5.48 

5.84 

5.67 

1100x900 

625 
Image Size 

Number of Processors - NP 

Figure A.13a Speedup graph for Plan P13 
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Figure A.13b Efficiency graph for Plan P13 
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Table A.34Speedup for IPC Plan P14 (NSB = 10%) 
(BCT on a Distributed Memory Architecmre with Toras Topology) 

Number of 

Processors-NP 

1 

3 

5 

9 

13 

17 

Speedup-S 

For 125 X 125 
image 

1 

2.47 

3.45 

5.03 

5.57 

5.37 

For 625 x 429 
image 

1 

2.51 

3.97 

5.32 

5.91 

5.65 

For 1100 X 900 
image 

1 

2.51 

3.92 

5.58 

5.97 

5.68 

1100x900 

625 X 429 
Image Size 

125x125 

Number of Processors • 

Figure A.14a Speedup graph for Plan P14 
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Figure A.14b Efficiency graph for Plan P14 
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Table A.35Speedup for IPC Plan P15 (NSB = 10%) 
(BCT on Distributed Memory Architecture with Pyramid Topology) 

Number of 

Processors-NP 

1 

5 

9 

21 

37 

Speedup-S 

For 125 X 125 
image 

1 

3.69 

5.19 

8.70 

8.39 

For 625 x 429 
image 

1 

3.85 

5.38 

7.93 

7.71 

For 1100 x 900 
image 

1 

3.87 

6.01 

7.69 

7.38 
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Figure A.15a Speedup graph for Plan P15 
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Figure A.lSb Efficiency graph for Plan P15 










