

DIGITAL IMAGE COMPRESSION
ON PARALLEL COMPUTER

ARCHITECTURES

SAVITRIDEVI BEVINAKOPPA

A thesis submitted in fulfillment of the requirements for the

Degree of Doctor of Philosophy in Science

VICTORIA °
UNIVERSITY /^^"''o^^

^ f - LiaRAr.Y ;•

\ ^ r • y

° \'^'^ .^"./
-^

Department of Computer and Mathematical Sciences

Faculty of Science

Victoria University of Technology

Melbourne

1996

FTS THESIS
006.42 BEV
30001005117116 .
Bevinakoppa. Savitndevi G
Digital image compression on
parallel computer
architectures

CERTIFICATE

Certified that the dissertation entitled "Digital Image Compression on

Parallel Computer Architectures", which is being submitted by Savitridevi

Bevinakoppa in fulfilment for the award of the Degree of Doctor of

Philosophy in Science of the Victoria University of Technology, is a

record of the student's own work carried out by her under our joint

supervision and guidance. The matter embodied in this dissertation has not

been submitted for the award of any other Degree or Diploma.

Principal Supervisor
Nalin K. Sharda
Victoria University of Technology

Co-supervisor
Hemlata Sharda
R. M. I. T. University

ABSTRACT

Main aim of this project is to investigate the application of parallel processing

techniques to digital image compression. Digital image compression is used to reduce

the number of bits required to store an image in computer memory and/or transmit it

over a communication link. Over the past decade advancements in technology have

spawned many applications of digital imaging, such as photo videotex, desktop

publishing, graphics arts, colour facsimile, newspaper wirephoto transmission, medical

imaging. For many other contemporary applications, such as distributed multimedia

systems rapid transmission of images is necessary. Dollar cost as well as time cost of

transmission and storage tend to be directly proportional to the volume of data.

Therefore, application of digital image compression techniques become necessary to

minimise costs.

A number of digital image compression algorithms have been developed and

standardised. With the success of these algorithms, research effort is now directed

towards improving implementation techniques. Joint Photographic Experts Group

(JPEG) and Motion Photographic Experts Group (MPEG) are international

organisations which have developed digital image compression standards. Hardware

(VLSI chips) which implement the JPEG image compression algorithm are available.

Such hardware is specific to image compression only and can not be used for other

image processing applications. A flexible means of implementing digital image

compression algorithms is still required. An obvious method of processing different

imaging applications on general purpose hardware platforms is to develop software

implementations.

JPEG uses an 8 X 8 block of image samples as the basic element for compression.

These blocks are processed sequentially. There is always a possibility of having similar

blocks in a given image. If similar blocks in an image is located, then repeated

compression of these blocks is not necessary. By locating similar blocks in the image,

speed of compression can be increased and the size of compressed image can be

reduced. Based on this concept an enhancement to the JPEG algorithm is proposed,

called Block Comparator Technique (BCT).

Most of the current implementation of JPEG and MPEG compression methods are in

sequential form. Parallel processors are becoming more affordable and are likely to be

used quite extensively in the near future. Therefore various options for implementing

digital image compression algorithms were investigated on parallel computer

architectures.

m

ACKNOWLEDGMENTS

First and foremost I would like to express my appreciation and my sincere gratitude to my

supervisors Dr. Nalin K. Sharda and Dr. Hema Sharda, without whose constant support and

help this thesis could not have been completed. Their inspiration, enthusiasm and

encouragement have made this research successfiil.

I wish to thank my husband Gangadhar and my daughters Megha and Manisha for their love

and support over the years. My special thanks to my father V. B. Nandi who encouraged me

to undertake this research which was both challenging and rewarding.

I would like to thank the Department of Computer System Engineering, RMIT, Melbourne

for providing the Mercury system, Defence Science and Technology Organisation (DSTO),

Adelaide for their contribution to the Shiva system installed in the Department of Computer

and Mathematical Sciences, Victoria University of Technology. I would also like to thank

Dr. Vijay Bhatkar, Sampath, Suhas and other staff members at Centre of Development of

Advanced Technology (C-DAC), Pune, India for their support and assistance carrying out

the comparitive studies on the Param supercomputer.

This thesis would not have been possible without the support of all my friends at Victoria

University of Technology with whom I spent long hours in the research room. I would like

to extend my sincere thanks to Ass. Prof Dr. Peter Cerone and my collegues, who proof

read this manuscript and made useful corrections. I specially thank Reyflil Fatri, Simon So,

Kevin Lue, Philip, David, Ivan Jutrisa, Umesh and Chandrakant.

IV

CONTENTS - BRIEF

Abstract i
Acknowledgement iii
List of Figures xi
List of Tables xvi
List of Notations xxi

1 INTRODUCTION

1.1 Introduction 2
1.2 Problem Statement 2
1.3 Literature Review 3
1.4 Research Objectives 7
1.5 Thesis Outline 8

2 DIGITAL IMAGE COMPRESSION TECHNIQUES

2.1 Introduction 11
2.2 Digital Image Compression Techniques 11
2.3 JPEG Standard 15
2.4 Block Comparator Enhancement to the JPEG Algorithm 29
2.5 Summary 63

3 PARALLEL PROCESSING PLANS FOR DIGITAL IMAGE
COMPRESSION TECHNIQUES

3.1 Introduction 65
3.2 Parallel Computer Architectures 65
3.3 Parallel Processing Plans for Digital Image Compression Techniques 72
3.4 Implementation of Plans on Parallel Computer Architectures 76
3.5 Performance Measures 83
3.6 Summary 84

4 IMPLEMENTATION OF JPEG ALGORITHM ON PARALLEL
COMPUTERS

4.1 Introduction 86
4.2 Implementation of the JPEG Algorithm on the Mercury System 86
4.3 Implementation of the JPEG Algorithm on the Shiva System 94
4.4 Implementation of the JPEG Algorithm on the Param System 104
4.5 Performance Comparison of Parallel Computers I l l
4.6 Summary 122

5 SIMULATION OF DIGITAL IMAGE COMPRESSION
TECHNIQUES

5.1 Introduction 124
5.2 Simulation Procedure 124
5.3 Simulation Results of Digital Image Compression Techniques 144
5.4 Performance Comparison of Parallel Architectures 155
5.5 Summary 165

6 CONCLUSIONS

6.1 Introduction 167
6.2 Block Comparator Technique Enhancement to the JPEG Algorithm 167
6.3 Implementation of the Digital Image Compression Algorithm 171
6.4 Simulation of Digital Image Compression 172
6.5 Directions for Future Research 175

REFERENCES 177

APPENDIX A A.1

VI

CONTENTS - DETAILED

Abstract i
Acknowledgement iii
List of Figures xi
List of Tables xvi
List of Notations xxi

1 INTRODUCTION

1.1 Introduction 2
1.2 Problem Statement 2
1.3 Literature Review 3

1.3.1 Digital Image Compression Techniques 3
1.3.2 Performance Improvement 5

1.4 Research Objectives 7
1.5 Thesis Outline 8

2 DIGITAL IMAGE COMPRESSION TECHNIQUES

2.1 Introduction 11

2.2 Digital Image Compression Techniques 11

2.2.1 Wavelet Transform 12

2.2.2 Fractal Image Compression 13

2.2.3 Vector Quantisation 13

2.2.4 Discrete Cosine Transform 14

2.3 JPEG Standard 15

2.3.1 DCT-Based JPEG Algorithm 15

2.3.1.1 DCT-based Compression Steps 16

2.3.1.1a Input File and Parameters 19

2.3.1.1b Colour Space Conversion 19

2.3.1.1c MCU Extraction 19

2.3.1. Id Edge Expansion 20

2.3.Lie Discrete Cosine Transform (DCT) 21

2.3.1.If Quantisation 21

2.3.1.1g Huffman Encoding 21

2.3.1.1h JPEG Compressed File 22

2.3.2 JPEG Hardware 22

2.3.3 DCT-based JPEG Software 24

2.3.4 Compressed JPEG Data Structure 26

2.3.4.1 Quantisation Table Specification 26

2.3.4.2 Huffman Table Specification 27

Vll

2.3.4.3 Frame Header 28

2.3.4.4 Scan Header 28

2.4 Block Comparator Enhancement to the JPEG Algorithm 29

2.4.1 Comparison of the JPEG Algorithm and Block Comparator

Technique Execution Times 33

2.4.1.1 Computation Time for the JPEG Algorithm 34

2.4.1.2 Computation Time Taken for Block Comparator

Algorithm 36

2.4.1.3 Comparison of Computation Time for the Non-Block

Comparator Technique and the Block Comparator

Technique 43

2.4.2 Comparison of the Non-Block Comparator Technique and Block

Comparator Technique Image Compression Ratio 49

2.4.2.1 Image Compression Ratio for the Non-Block Comparator

Technique 49

2.4.2.2 Image Compression Ratio for the Block Comparator

Technique 50

2.4.2.3 Comparison of Image Compression Ratios 54
2.5 Summary 63

3 PARALLEL PROCESSING PLANS FOR DIGITAL IMAGE
COMPRESSION TECHNIQUES

3.1 Introduction 65

3.2 Parallel Computer Architectures 65

3.2.1 Shared Memory Architecture 66

3.2.2 Distributed Memory Architecture 67

3.2.3 Parallel Programming Languages 71

3.3 Parallel Processing Plans for Digital Image Compression Techniques 72

3.3.1 Image Compression Technique (ICT) 72

3.3.2 Block Dependency (BD) 73

3.3.3 Image Partitioning Method (IPM) 73

3.3.4 Memory Architecture (MA) 74

3.3.5 Memory Organisation / Network Topology (NT) 75

3.3.6 Number of processors (NP) 75

3.4 Implementation of Plans on Parallel Computer Architectures 76

3.4.1 Implementation of Digital Image Compression Plans on Parallel

Computers 76

3.4.2 Simulation of Parallel Processing Plans for Image Compression 77

3.4.2.1 Problem Formulation 78

via

3.4.2.2 Model Building 78

3.4.2.3 Data Collection 78

3.4.2.4 Model Translation 79

3.4.2.5 Model Verification 81

3.4.2.6 Model Validation 81

3.4.2.7 Experiment Planning 82

3.4.2.8 Experimentation 82

3.4.2.9 Analysis of Results 82

3.4.2.10 Documentation 82
3.5 Performance Measures 83
3.6 Summary 84

4 IMPLEMENTATION OF JPEG ALGORITHM ON PARALLEL
COMPUTERS

4.1 Introduction 86

4.2 Implementation of the JPEG Algorithm on the Mercury System 86

4.2.1 Mercury System Architecture 87

4.2.1.1 Hardware Architecture 87

4.2.1.2 Helios Parallel Programming Environment 88

4.2.1.3 Component Distribution Language (CDL) 90

4.2.1.4 Parallel Programming Languages 90

4.2.2 Implementation of the JPEG Algorithm on the Mercury System 91

4.2.3 Experimental Results 93

4.3 Implementation of the JPEG Algorithm on the Shiva System 94

4.3.1 Shiva System Architecture 94

4.3.1.1 Hardware Architecture 94

4.3.1.2 Communication Links 97

4.3.1.3 Shiva Programming Environment 99

4.3.2 Implementation of the JPEG Algorithm on the Shiva System 100

4.3.3 Experimental Results 102

4.4 Implementation of the JPEG Algorithm on the Param System 104

4.4.1 Param System Architecture 105

4.4.1.1 Param 8600 Hardware Architecture 105

4.4.1.2 The Paras Parallel Programming Environment 107

4.4.2 Implementation of the JPEG Algorithm on the Param System 109

4.4.3 Experimental Results 111

4.5 Performance Comparison of Parallel Computers I l l

4.5.1 Speedup and Efficiency of the JPEG Algorithm on the Mercury

System I l l

IX

4.5.2 Speedup and Efficiency of the JPEG Algorithm on the Shiva

System 117

4.5.3 Speedup and Efficiency of the JPEG Algorithm on the Param

System 118

4.5.4 Performance Comparison 120
4.6 Summary 122

5 SIMULATION OF DIGITAL IMAGE COMPRESSION
TECHNIQUES

5.1 Introduction 124

5.2 Simulation Procedure 124

5.2.1 Problem Statement 124

5.2.2 Model Building 125

5.2.2.1 Create Network Topology 125

5.2.2.2 Define System Operation 126

5.2.2.3 Model Verification 135

5.2.3 System Simulation 137

5.2.3.1 Specify Run Parameters 137

5.2.3.2 Run Simulation 137

5.2.4 System Analysis 139

5.2.4.1 Animation 139

5.2.4.2 Plotting 139

5.2.5 Validation 141

5.3 Simulation Results of Digital Image Compression Techniques 144

5.3.1 Plans Selected for Simulation 144

5.3.1.1 Plans for Non-Liter-Processor Communication (NIPC)

Method 144

5.3.1.2 Plans for the Inter-Processor Communication (IPC)

Method 146

5.3.2 Execution Times Obtained 147

5.3.2.1 Comparison of Execution Times for the NIPC Plans 148

5.3.2.1a Comparison of Execution Times for the NBCT Plans 148

5.3.2.1b Comparison of Execution Times for the BCT Plans 149

5.3.2.1c Speed Improvement Factor 150

5.3.2.2 Comparison of Execution Times for the IPC Plans 152

5.3.2.3 Comparison of Execution Times for Different Block

Dependency Method (NIPC and IPC) 154

5.3.2.4 Comparison of Execution Times for Plan P l l with

Different NSB 154

5.4 Performance Comparison of Parallel Architecmres 155

5.4.1 Comparison of Speedup 156

5.4.1.1 Comparison of Speedup for the NCPC Plans 156

5.4.1.1a Comparison of Maximum Speedup for the NBCT Plans 156

5.4.1.1b Comparison of Maximum Speedup for the BCT Plans 157

5.4.1.1c Comparison of Speedup for the NBCT and BCT Plans 158

5.4.1.2 Comparison of Speedup for the IPC Plans 158

5.4.1.3 Comparison of Speedup for Different NSB 159

5.4.2 Comparison of Scaleup 160

5.4.2.1 Scaleup Comparison for the NIPC Plans 160

5.4.2. la Scaleup Comparison for the NBCT Plans 160

5.4.2. lb Scaleup Comparison of the BCT Plans 161

5.4.2.1c Scaleup Comparison of the NBCT and the BCT Plans 162

5.4.2.2 Scaleup Comparison of the IPC Plans 162

5.4.3 Comparison of Efficiency 163

5.4.3.1 Efficiency Comparison of the NIPC Plans 163

5.4.3.2 Efficiency Comparison of the IPC Plans 164
5.5 Summary 165

6 CONCLUSIONS
6.1 Introduction 167

6.2 Block Comparator Technique Enhancement to the JPEG Algorithm 167

6.2.1 Speed of Operation 168

6.2.2 Image Compression Ratio 169

6.3 Implementation of the Digital Image Compression Algorithm 171

6.3.1 Performance Comparison of Digital Image Compression on Three

Parallel Computer Architectures 171

6.4 Simulation of Digital Image Compression 172

6.4.1 Execution Times 172

6.4.1.1 Execution Times Obtained for Non-Inter-Processor

Communication 173

6.4.1.2 Execution Times for Inter-Processor Communication 173

6.4.1.3 Execution Times for the BCT with Different NSB values 173

6.4.2 Performance Comparison 174

6.4.2.1 Speedup Comparison 174

6.4.2.2 Scaleup Comparison 174

6.4.2.3 Efficiency Comparison 174

6.5 Directions for Future Research 175
References 177
Appendix A A.l

XI

LIST OF FIGURES

Figure No. Description Page No.

Figure 2.1 Digital image compression techniques 12

Figure 2.2 Non-interleaved data ordering 16

Figure 2.3 Interleaved image data ordering 17

Figure 2.4 Modified JPEG algorithm 18

Figure 2.5 Encoding the DC coefficient 21

Figure 2.6 Zig-zag encoding order 22

Figure 2.7 JPEG compressor chip (CL550) 23

Figure 2.8 JPEG software routines 25

Figure 2.9 Sequential processing and storage of image blocks in the JPEG

compression standard 31

Figure 2.10 Block comparator enhancement to the JPEG compression algorithm 31

Figure 2.11 Flow chart of Block Comparator Technique 32

Figure 2.12 Compressed data file structure in Block Comparator Technique 33

Figure 2.13 Additional steps required in the Block Comparator Technique 37

Figure 2.14 Flow chart for summation step 38

Figure 2.15 Flowchart for block intensity comparison step ,39

Figure 2.16 Selection Sort example 40

Figure 2.17 Divide and Conquer Sort example 41

Figure 2.18 Flowchart for Sample-by-Sample Comparison step 42

Figure 2.19 SIF Vs NSB for the Selection Sort method 48

Figure 2.20 SIF Vs NSB for the Divide and Conquer Sort method 48

Figure 2.21 SIF Vs NSB for the Sample-by-Sample Comparison method 48

Figure 2.22 ICR Vs quality for NBCT 57

Figure 2.23 ICR Vs quality for CIDS-3 (NSB = 10%) 58

Figure 2.24 ICR Vs quality for CIDS-3 (NSB = 30%) 59

Figure 2.25 ICR Vs quality for CIDS-3 (NSB = 50%) 60

Figure 2.26 ICR Vs quality for CIDS-3 (NSB = 75%) 61

Figure 2.27 ICRIF Vs quality 62

Figure 3.1 Shared Memory Architectures 67

Xll

Figure 3.2 Tree topologies 69

Figure 3.3 Mesh topologies 69

Figure 3.4 Pyramid topologies 70

Figure 3.5 Cube topology architecture 71

Figure 3.6 Classification of Image Compression Technique 72

Figure 3.7 Classification of Block Dependency 73

Figure 3.8 Classification of Image Partitioning Method 74

Figure 3.9 Classification of Memory Architecture 74

Figure 3.10 Classification of Memory Organisation / Network Topology 75

Figure 3.11 Classification of Number of Processors 75

Figure 3.12 Speedup graph 83

Figure 3.13 Speedup graph showing scaleup 83

Figure 4.1 Interconnection topology of the Mercury system 88

Figure 4.2 (T805) Transputer architecture 88

Figure 4.3 Flow diagram of implementation procedure on the Mercury system 92

Figure 4.4 Path graph for distribution and composition of image parts 92

Figure 4.5 Master and Slave units and datapaths 95

Figure 4.6 Shiva system with ParaT or NAB Slave units 95

Figure 4.7 Intel i860 processor architecture 96

Figure 4.8 Shiva system organisation 97

Figure 4.9 Rates of data transfer with respect to message size 98

Figure 4.10 Implementation procedure of the JPEG algorithm on the three processor

Shiva system 101

Figure 4.11 Task graph for three processors 102

Figure 4.12 Gantt chart of JPEG algorithm on a three transputer network 103

Figure 4.13 Param system architecture 106

Figure 4.14 Architecture of a Param 8600 node 108

Figure 4.15 i860 node architecture 108

Figure 4.16 Three nodes connection in Tree topology 109

Figure 4.17 Flow diagram of implementation procedure on the Param system 110

Figure 4.18 Path graph for distribution and composition of image parts 110

xm

Figure 4.19a Graph of speedup on the Mercury system using POSIC communication

routines 113

Figure 4.19b Graph of efficiency on the Mercury system using POSIC communication

routines 113

Figure 4.20a Graph of speedup on the Mercury system using MPP communication

routines 114

Figure 4.20b Graph of efficiency on the Mercury system using MPP communication

routines 115

Figure 4.21a A comparison of speedup obtained on the Mercury system using the

POSIC and the MPP communication routines 116

Figure 4.21b A comparison of efficiency obtained on the Mercury system using the

POSIC and the MPP communication routines 116

Figure 4.22a Graph of speedup on the Shiva System 118

Figure 4.22b Graph of efficiency on the Shiva System 118

Figure 4.23a Graph of speedup on the Param system 119

Figure 4.23b Graph of efficiency on the Param system 120

Figure 4.24a Speedup graph for three parallel computers 122

Figure 4.24b Efficiency graph for three parallel computers 122

Figure 5.1 Graphical representation of Plan Pj 125

Figure 5.2a Host processor specification form 127

Figure 5.2b PE-1 specification form 127

Figure 5.3a TD-1 specification form 129

Figure 5.3b TD-2 specification form 129

Figure 5.4 SD-1 specification form 130

Figure 5.5 Module 1: "Processlmg on Host" 134

Figure 5.6 Module 2: "Processlmg on PE" 134

Figure 5.7 Module 3: "Send Complmg to SD" 135

Figure 5.8 Modules Diagram 136

Figure 5.9a Run parameter form 138

Figure 5.9b Utilisation graph of the host processor and the PE-1 at run time 138

Figure 5.10 Animation parameter specification menu 140

Figure 5.11 Plot parameter specification menu 140

XIV

Figure 5.12 Time-line status graph 142

Figure 5.13 aUtilisation graph of host processor 142

Figure 5.13 bUtilisation graph of PE-1 143

Figure 5.13 c Utilisation graph of PE-2 143

Figure 5.14 SIF graph for Plans P2 and P8 151

Figure 5.15 Utilisation of TD-1 in Shared Memory Architecture 152

Figure 5.16 Utilisation of transfer devices on Distributed Memory Architecture with

Pyramid Topology 152

Figure 5.17 Speedup graph for Plans P6 and P11 for different NSB values 160

Figure A. la Speedup graph for Plan P2 A.9

Figure A.lb Efficiency graph for Plan P2 A.9

Figure A.2a Speedup graph for Plan P3 A. 10

Figure A.2b Efficiency graph for Plan P3 A.IO

Figure A.3a Speedup graph for Plan P4 A. 11

Figure A.3b Efficiency graph for Plan P4 A. 11

Figure A.4a Speedup graph for Plan P5 A.12

Figure A.4b Efficiency graph for Plan P5 A.12

Figure A.5a Speedup Graph for Plan P6 A.13

Figure A.5b Efficiency Graph for Plan P6 A.13

Figure A.6a Speedup graph for Plan P7 A.14

Figure A.6b Efficiency graph for Plan P7 A.14

Figure A.7a Speedup graph for Plan P8 A.15

Figure A.7b Efficiency graph for Plan P8 A.15

Figure A.8a Speedup graph for Plan P9 A.16

Figure A.8b Efficiency graph for Plan P9 A.16

Figure A.9a Speedup graph for Plan PI A.17

Figure A.9b Efficiency graph for Plan PI A.17

Figure A. 10a Speedup graph for Plan PI0 A. 18

Figure A. 10bEfficiency graph for Plan PIO A.18

Figure A.l la Speedup graph for Plan P l l A. 19

Figure A. l ib Efficiency graph for Plan P l l A.19

Figure A.12a Speedup graph for Plan PI2 A.20

XV

Figure A.12b Efficiency graph for Plan P12 A.20

Figure A.13a Speedup graph for Plan PI3 A.21

Figure A. 13b Efficiency graph for Plan PI3 A.21

Figure A. 14a Speedup graph for Plan P14 A.22

Figure A. 14b Efficiency graph for Plan P14 A.22

Figure A.15a Speedup graph for Plan P15 A.23

Figure A.15b Efficiency graph for Plan P15 A.23

xvn

Table 4.3 Total time (Ttotal) ^ d transmission rate (R) on the SBus interface for

various message sizes 98

Table 4.4 Execution times of the JPEG algorithm on the Shiva system 104

Table 4.5 Execution times of the JPEG algorithm on the Param system 111

Table 4.6a Speedup on the Mercury system using POSIC communication routines... 112

Table 4.6b Efficiency on the Mercury system using POSIC corranunication

routines 112

Table 4.7a Speedup on the Mercury system using MPP communication routines 114

Table 4.7b Efficiency on the Mercury system using MPP communication routines ... 114

Table 4.8a The speedup comparison between POSIC and MPP communication

routines 115

Table 4.8b Efficiency comparison between POSIC and MPP communication

routines 116

Table 4.9a Speedup of the JPEG algorithm on the Shiva system 117

Table 4.9b Efficiency of the JPEG algorithm on the Shiva system 117

Table 4.10aSpeedup of the JPEG algorithm on the Param system 119

Table 4.10bEfficiency of the JPEG algorithm on the Param system 119

Table 4.11 Execution times of the JPEG algorithm on the three parallel

computers 120

Table 4.12aSpeedup of the JPEG algorithm on the three parallel computers 121

Table 4.12bEfficiency of the JPEG algorithm on the three parallel computers 121

Table 5.1 Comparison of execution times obtained from simulation and

implementation for Plan PI 141

Table 5.2 Least execution times for the NBCT Plans 149

Table 5.3 Least execution times for selected Plans using the Block Comparator

Technique 149

Table 5.4 SIF values for the NBCT Plan P2 and the BCT Plan P8 (on a Shared

Memory Architecture with Global Memory organisation) 150

Table 5.5 SIF values for various Plans 151

Table 5.6 Least execution times for the IPC Plans Plans using the Block

Comparator Technique 152

Table 5.7 Execution times for NBCT Plan P6 and sequential block comparison

with Plan P l l 155

xvin

Table 5.8 SIF values for Plan P6 and Plan PI 1 155

Table 5.9 Maximum speedup comparison for the NBCT Plans 157

Table 5.10 Maximum speedup comparison for the BCT Plans 158

Table 5.11 Maximum speedup comparison for the NBCT and the BCT Plans 158

Table 5.12 Speedup comparison of two architectures 159

Table 5.13 Speedup for the NBCT Plan P6 and the BCT Plan PI 1 with different

NSB 159

Table 5.14 Scaleup comparison for the NBCT Plans 161

Table 5.15 Scaleup comparison for the BCT Plans 161

Table 5.16 Scaleup comparison for the NBCT and the BCT Plans 162

Table 5.17 Scaleup comparison of two architectures 163

Table 5.18 Efficiency Cutoff Point for the NIPC Plans 164

Table 5.19 Efficiency Cutoff Point for the IPC Plans 164

Table A. 1 Execution times for NIPC Plan P2 (NBCT on a Shared Memory

Architecture with Global Memory) A.l

Table A.2 Execution times for NIPC Plan P3 (NBCT on a Shared Memory

Architecture with Local-plus-Global Memory) A.l

Table A.3 Execution times for NIPC Plan P4 (NBCT on a Distributed

Memory Architecture with Tree Topology) A.2

Table A.4 Execution times for NIPC Plan P5 (NBCT on a Distributed Memory

Architecture with Torus Topology) A.2

Table A.5 Execution times for NIPC Plan P6 (NBCT on a Distributed Memory

Architecture with Pyramid Topology) A.3

Table A.6 Execution times for NIPC Plan P7 (NBCT on a Distributed Memory

Architecmre with Cube Topology) A.3

Table A.7 Execution times for NIPC Plan P8 (NSB = 10%) (BCT on a Shared

Memory Architecture with Global Memory) A.4

Table A.8 Execution times for NIPC Plan P9 (NSB = 10%) (BCT on a Shared

Memory Architecture with Local-plus-Global Memory) A.4

Table A.9 Execution times for NIPC Plan PI (NSB = 10%) (BCT on a

Distributed Memory Architecture with Tree Topology) A. 5

Table A.IO Execution times for NIPC Plan PIO (NSB = 10%) (BCT on a

Distributed Memory Architecture with Toms Topology) A.5

XIX

Table A.l 1 Execution times for NIPC Plan PI 1 (NSB = 10%) (BCT on a

Distributed Memory Architecmre with Pyramid Topology) A.5

Table A.12 Execution times for NIPC Plan P12 (NSB = 10%) (BCT on a

Distributed Memory Architecture with Cube Topology) A.6

Table A.13 Execution times for IPC Plan P13 (NSB = 10%) (BCT on a Shared

Memory Architecture with Global Memory) A.6

Table A.14 Execution times for IPC Plan P14 (NSB = 10%) (BCT on a

Distributed Memory Architecture with Torus Topology) A.6

Table A.15 Execution times for IPC Plan PI5 (NSB = 10%) (BCT on a

Distributed Memory Architecture with Pyramid Topology) A.7

Table A.16 SIF values for NBCT Plan P3 and BCT Plan P9 (on a Shared

Memory Architecture with Local-plus-Global Memory) A.7

Table A.17 SIF values for NBCT Plan P4 and BCT Plan PI (on a Distributed

Memory Architecture with Tree Topology) A.7

Table A.18 SIF values for NBCT Plan P5 and BCT Plan PIO (on a Distributed

Memory Architecture with Toms Topology) A.8

Table A.19 SIF values for NBCT Plan P6 and BCT Plan PI 1 (on a Distributed

Memory Architecture with Pyramid Topology) A.8

Table A.20 SIF values for NBCT Plan P7 and BCT Plan P12 (on a Distributed

Memory Architecture with Cube Topology) A.8

Table A.21 Speedup for NIPC Plan P2 (NBCT on a Shared Memory Architecmre

with Global Memory) A.9

Table A.22 Speedup for NIPC Plan P3 (NBCT on a Shared Memory Architecmre

with Local-plus-Global Memory) A.IO

Table A.23 Speedup for NIPC Plan P4 (NBCT on a Distributed Memory

Architecture with Tree Topology) A.l l

Table A.24 Speedup for NIPC Plan P5 (NBCT on a Distributed Memory

Architecture with Toms Topology) A.12

Table A.25 Speedup for NIPC Plan P6 (NBCT on a Distributed Memory

Architecture with Pyramid Topology) A.13

Table A.26 Speedup for NIPC Plan P7 (NBCT on a Distributed Memory

Architecture with Cube Topology) A.14

XX

Table A.27 Speedup for NIPC Plan P8 (NSB = 10%) (BCT on a Shared Memory

Architecture with Global Memory) A.15

Table A.28 Speedup for NIPC Plan P9 (NSB = 10%) (BCT on a Shared Memory

Architecture with Local-plus-Global Memory) A.16

Table A.29 Speedup for NIPC Plan PI (NSB = 10%) (BCT on a Distributed

Memory Architecture with Tree Topology) A.17

Table A.30 Speedup for NIPC Plan PIO (NSB = 10%) (BCT on a Distributed

Memory Architecture with Toms Topology) A.18

Table A.31 Speedup for NIPC Plan PI 1 (NSB = 10%) (BCT on a Distributed

Memory Architecture with Pyramid Topology) A.19

Table A.32 Speedup for NIPC Plan PI2 (NSB = 10%) (BCT on a Distributed

Memory Architecture with Cube Topology) A.20

Table A.33 Speedup for IPC Plan P13 (NSB = 10%) (BCT on a Shared Memory

Architecture with Global Memory) A.21

Table A.34 Speedup for IPC Plan P14 (NSB = 10%) (BCT on a Distributed

Memory Architecmre with Toms Topology) A.22

Table A.35 Speedup for IPC Plan P15 (NSB = 10%) (BCT on Distributed

Memory Architecture with Pyramid Topology) A.23

XXI

LIST OF NOTATIONS

Notations Description

T| Efficiency

BBIP Block Based Image Partitioning

BCF Block Compression Factor

BCT Block Comparator Technique

BD Block Dependency

BIV Block Intensity Value

BN Block Number

BWIP Balanced Workload Image Partitioning

CDL Component Distribution Language

CIDS Compressed Image Data Stmcture

DCT Discrete Cosine Transform

DCuT Distributed Memory Architecture with Cube Topology

DMA Distributed Memory Architecture

DPyT Distributed Memory Architecture with Pyramid Topology

DToT Distributed Memory Architecture with Toms Topology

DTrT Distributed Memory Architecture with Tree Topology

EIL Equal Intensity List

EOI End Of Image Marker

HMA Hybrid Memory Architecmre

IBD Inter-Block Dependency

ICR Image Compression Ratio

I C R B C T Image Compression Ratio for Block Comparator Technique

ICRDF Image Compression Ratio Improvement Factor

ICRjsfBCT Image Compression Ratio (ICR) for Non-Block Comparator

Technique

ICT Image Compression Technique used for image processing

IPC Inter-Processor Communication

IPM Image Partitioning Method

JPEG Joint Photographic Experts Group

MA Memory Architecture

MCU Minimum Coded Unit

ML Match List

XXll

MO Memory Organisation

MPEG Motion Photographic Experts Group

MPP Message Passing Primitives

NB Number of Blocks

NBCT Non-Block Comparator Technique

NBEEL Number of blocks in Equal Intensity List

NIBD Non-Inter-Block Dependency

NIPC Non-Inter-Processors Communication

NL Number of Similar Block Lists in SBG

nl Number of Block Numbers in each Unique Block list

NP Number of processors

NSB Number of Similar Blocks

NT Network Topology

NUB Number of Unique Blocks

Px Plan-x for implementation

PI P(BCT, NIPC, BWIP, DMA, DTrT, NP)

P2 P(NBCT, NIPC, BWIP, SMA, SGM, NP)

P3 P(NBCT, NIPC, BWIP, SMA, SLgM, NP)

P4 P(NBCT, NIPC, BWIP, DMA, DTrT, NP)

P5 P(NBCT, NIPC, BWIP, DMA, DToT, NP)

P6 P(NBCT, NIPC, BWIP, DMA, DPyT, NP)

P7 P(NBCT, NIPC, BWIP, DMA, DCuT, NP)

P8 P(BCT, NIPC, BWIP, SMA, SGM, NP)

P9 P(BCT, NIPC, BWIP, SMA, SLgM, NP)

PIO P(BCT, NIPC, BWIP, DMA,DToT, NP)

PI 1 P(BCT, NIPC, BWIP, DMA, DPyT, NP)

P12 P(BCT, NIPC, BWIP, DMA, DCuT, NP)

PI3 P(BCT, IPC, BWIP, SMA, SlgM, NP)

P14 P(BCT, IPC, BWIP, DMA, DToT, NP)

P15 P(BCT, IPC, BWIP, DMA, DPyT, NP)

PE Processing Element

POSIC Portable Operating Set of Instraction Codes

RL Reference List

S Speedup for NP processors

SgcT BCT Compressed image size in Bytes

^BCTl ^ ^ ^ Compressed image size for CIDS-1 in Bytes

SBG Similar Block Group

SBL Similar Block Lists

xxin

SBlk

S B N F

^Comoime
SD

S E O I

SIF

SJHI
SLgM

SGM

SMA

S N B C T

SOF

SOI

SOS

SSBM

^Srcime

SUBM

SUBNF

Tl

T B C

TCS

TD

T D C T

Tdct

^Enco

^Intcomn

TjPEG

T N

^Ouan

^samoblock

Size of one block in Bytes

Size of the Block Number Field

Compressed image data size in Bytes

Storage Device

Size of End Of Image marker

Speed Improvement Factor

Size of JPEG Header Information in Bytes

Shared Memory Architecture with Local-Plus-Global Memory

organisation

Shared Memory Architecture with Global Memory organisation

Shared Memory Architecture

NBCT Compressed image size in Bytes

Start Of Frame

Start Of Image marker

Start Of Scan

Size of the Similar Block Marker

Source image data size in Bytes

Size of the Unique Block Marker

Size of the Unique Block Number Field

Time taken by a single processor

Total number of Base Operations required for Block Comparison

Total number of Base operations required for subtraction operation

for one 8 x 8 block

Transfer Device

Total number of Base Operations required for DCT step for one 8

X 8 block

Total number of Base operations required for DCT function for

one 8 x 8 block

Total number of Base Operations required for Huffman Encoding

for one block

Total number of Base Operations for block intensity value

comparison

Total number of Base Operations taken by the JPEG algorithm

Time taken by N processors

Total number of Base Operations required for Quantisation step

for one 8 x 8 block

Total number of Base Operations required for sample-by-sample

comparison of one block

XXIV

samocomo

samosum

T

T

^sum

UBG

UBFV

UBN

VQ

Total number of Base Operations for comparing samples of a

block with those of existing Unique Blocks

Total number of Base Operations required for the summation of

sample values in any image block

Total number of Base Operations for summation of samples in all

image blocks

Unique Block Group

Unique Block Intensity Value

Unique Block Number

Vector quantisation

Chapter 1

Chapter 1

INTRODUCTION

Contents

1.1 Introduction 2

1.2 Problem Statement 2

1.3 Literature Re view 3

1.4 Research Objectives 7

1.5 Thesis Outline 8

Abstract

This chapter gives an introduction to the existing digital image compression techniques,

parallel processing techniques, the research problem and investigation procedures

described in this thesis.

A literature survey was undertaken to study the existing digital image

compression techniques, performance improvement techniques, and parallel processing

techniques. The Joint Photographic Experts Group (JPEG) algorithm was selected for

this research. At present JPEG standard compression process is done block-by-block in

a sequential manner. An enhancement to the current JPEG compression technique is

proposed. The aim of this enhancement is to speedup the operation and reduce the

compressed image size. Implementation of the JPEG algorithm on parallel computers,

to further speedup compression operations, has also been studied.

Chapter 1

1.1 Introduction

Digital image compression is used to reduce the number of bits required to store an

image in computer memory and/or transmit it over a communication link [Jain, 89].

Image compression prior to transmission should reduce the amount of information to be

transmitted, thus lowering the bandwidth requirements and cost. The main focus of this

research is to enhance the performance of the current digital image compression

method. Details of the research problem are given in section 1.2.

A literature review of existing digital image compression standards, and

techniques to improve compression parameters such as quality, speedup and

compression ratio are discussed in section 1.3.

Research objectives are explained in section 1.4. Outline of thesis chapters is

given in section 1.5.

1.2 Problem Statement

Transmission of image data using simple techniques requires a bit rate that is too large

for many communications links or storage devices. Digitisation may be desirable for

security and/or reliability, but it can cause bandwidth explosion. Hence data

compression is required to use the available bandwidth as effectively as possible.

Over the past decade advancements in technology have spawned many

applications of digital imaging, such as photo videotex, desktop publishing, graphics

arts, colour facsimile, newspaper wirephoto transmission, medical imaging. For many

other contemporary applications, such as distributed multimedia systems rapid

transmission of images is necessary. Images are used in multimedia for browsing,

retrieval, storage and slide show. Research challenge includes developing real-time

compression algorithms and guaranteed Quality of Service in multimedia applications

[Furht, 94] [Furht, 95]. Dollar cost as well as time cost of transmission and storage

tend to be directly proportional to the volume of data. Therefore, application of digital

image compression techniques become necessary to minimise these costs.

A number of digital image compression algorithms have been developed

[Aravind, 89] and standardised, such as the JPEG, the MPEG and PX64 standards.

Most of the current implementations of JPEG and MPEG compression methods are in

sequential form. Parallel processors are becoming more affordable and are likely to be

used quite extensively in the near fumre. Thus techniques for parallel processing of

image compression can deliver substantial dividends. In this thesis an improvement to

Chapter 1

the JPEG algorithm and a study of techniques for parallel implementation of image

compression is presented.

1.3 Literature Review

Literature survey covered similar work reported in journals and conference proceedings.

To provide an overview of previous work and to provide a basic theoretical

understanding of the subject, the papers presented by various authors are reviewed and

quoted in this chapter. The areas covered in the literature survey are: digital image

compression techniques, standards such as JPEG, MPEG, PX64, parallel

implementations, performance analysis issues.

Digital image compression techniques are discussed in section 1.3.1. Image

compression algorithms include optimisation of parameters, such as quality, complexity,

compression ratio and speedup of operation. Techniques employed to improve these

parameters are discussed in section 1.3.2.

L3.1 Digital Image Compression Techniques

Various digital image compression techniques, hardware, and software are discussed in

this section.

Borko Furht has presented a classification of digital image compression technique

in p'urht, 92]. Digital image compression techniques can be broadly classified into still

image compression and motion image compression techniques. Still image compression

techniques can be further classified into lossy compression and lossless compression

techniques. Lossless compression techniques are used to recover the original image

representation perfectly, whereas a lossy compression technique is used to output image

similar to the original one. Lossy compression provides higher compression ratio.

Lossless digital image compression techniques can be classified based on encoding

technique such as Huffinan coding. Arithmetic decomposition, Lempel Ziv, and Run

length. Lossy compression techniques are classified into prediction based technique,

fi^equency oriented techniques, importance oriented techniques, and hybrid techniques

[Furht, 95]. Prediction based techniques predict subsequent values by observing previous

values. Frequency oriented technique apply the Discrete Cosine Transform (DCT).

Importance oriented techniques use some important characteristics of images as the basis

for compression. The hybrid compression techniques, such as JPEG, MPEG and PX64

use several approaches such as DCT, Vector Quantisation, prediction technique.

Chapter 1

Digital image compression techniques can also be classified based on the

algorithms used such as Wavelet transform. Fractal image, Vector Quantisation and

DCT. The Wavelet transform algorithm is based on basis functions [Koomwinder, 93].

Fractal images are based on Iterated Function Systems (IFS) [Bamsley, 93]. Vector

Quantisation is based on vector representation of the image and based on code book

design [Cosman, 96] [Gersho, 92]. The JPEG algorithm is based on Differential Pulse

Code Modulation (DPCM) and the DCT [Pennebaker, 93].

Wavelet transform can also be used with the JPEG standard in the video industry

for on-line editing [Cornell, 93]. The VQ method is complicated by the need for code

design. Therefore, coding with Vector Quantisation is slow as compared to coding with

the JPEG algorithm. VQ is more efficient when it is combined with other techniques.

The JPEG standard is widely used for still imaging applications. The JPEG algorithm is

used in the standard developed by the Motion Pictures Expert Group (MPEG), for

compressing moving pictures as well. Therefore, the JPEG algorithm was chosen for

this research purpose.

Aravind has described a number of digital image compression algorithms and

standards, such as the JPEG, the MPEG and PX64 [Aravind, 89]. The JPEG standard is

described in sufficient detail in [Nelson, 92a], [Pennebaker, 93] and [Wallace, 92]. A

very succinct description of the various techniques used in the JPEG standard is given

by William Pennebaker in [Pennebaker, 93]. The MPEG standard is described in [Gall,

91] and [Draft, 90]. The PX64 compression algorithm for video telecommunications is

described in [Liou, 91]. PX64 algorithm consists of DCT-based intraframe compression,

which is similar to JPEG algorithm and predictive interframe coding based on

Differential Pulse Code Modulation (DPCM) and motion estimation. Therefore all these

standards use the DCT-based method of compression as a basic step.

Two prominent image compression techniques are predictive technique and

DCT-based technique [Pennebaker, 93]. The JPEG was working on still image

compression using both techniques. The predictive technique is a lossless compression

technique while the DCT - based technique is a lossy technique. The DCT-based

method of compression is widely used, as it is suitable for a large number of

applications, and also, it is expected that DCT-based technique developed for

implementing the JPEG standard can be applied to compressing motion picmres as well;

because the MPEG standard is also based on the DCT .

Some of the hardware chips for digital image compression in VLSI

implementation are Toshiba's VLSI processor T9506 [Sugai, 87], C-Cube's JPEG

CL550 chipset, SGS-Thomson's STl 140 CMOS chip [Leonard, 91], and Intel's Digital

Video Interactive (DVI) chip [Vaaben, 91] 1750 video processor [Harney, 91].

Chapter 1

1.3.2 Performance Improvement

In developing digital coders many parameters need to be considered, such as bit rate,

quality of output image, complexity of the algorithm, compression ratio, quality of

service and speed of operation. Reduced bit rate reduces quality, unless complexity of

the coding technique is increased. Complexity raises cost, and in many coding

techniques it increases the processing delay as well.

The JPEG algorithm compresses the image based upon a user specified quality

factor, where for higher quality of output image lower compression ratio can be

achieved and vice verse. In the JPEG compressed data structure block numbers are not

specified. If any block is lost during transmission then the output image is not the same

as the input image.

Papathanassiadis T. [Papathanassiadis, 92] discussed compressed image data

structure with block numbers. This has the potential of improving the quality of service.

But, by including block numbers the compression ratio gets reduced.

Roberto Rinaldo [Rinaldo, 95] has discussed block matching technique for

fractal image coding technique. The proposed coding scheme consists of predicting

blocks in one subimage from blocks in lower resolution subbands with the same

orientation. This block prediction scheme is simpler than the iterative scheme adopted

in standard fractal block coders and visual quality is better than the other schemes. A

drawback of Rinold's scheme is the larger encoding time required in comparison to the

time required in coding techniques like JPEG.

The DCT-based methods work on each block of image independently, therefore,

the JPEG algorithm can be parallelised by processing each image block on a separate

processor. The JPEG algorithm can thus be implemented on parallel computer

architectures.

Rapid advances in electronics technology throughout the 1980s has allowed

more complex, yet relatively inexpensive computational devices with greatly increased

throughput to be developed. New concurrent (or parallel) techniques using fast

sequential processing devices, and multi-processing devices are now being applied to

digital data compression. Existing parallel implementations of digital image

compression are discussed below.

The Digital Video Interactive (DVI) algorithm was implemented on the MEiKO

and the iPSC/2 parallel architectures [Tinker, 89]. The MEiKO computer is based on the

T414 transputer. It comprises 65 transputers, and the software is written in OCCAM and

C programming language. The iPSC/2 is a hypercube parallel computer based on Intel's

i80386 microprocessor. The compression algorithm on a 64 node MEiKO computer

took 13.85 sec/frame and on a 64 node iPSC/2 computer it took 9.05 sec/frame.

Ch^ter 1 (

Therefore, on the 64 node MEiKO or the iPSC/2 computers compression algorithm

could not achieve real-time compression. Even if the number of processors is increased

in the iPSC/2 computer, the minimum compression time that could be obtained is nearly

2 sec/fi-ame [Tmker, 89].

Compact Disc-Interactive (CD-I) fliU motion video encoding algorithm was

implemented on Parallel Object Oriented Machine (POOMA). This system was

developed at the Philips research laboratories. It is based on the Motorola MC68020

with a loosely coupled MIMD architecture and consists of 100 nodes. Compression

algorithm took less than 2 sec/fi-ame on 100-processor nodes [Sijstermans, 91]. For the

parallel algorithm used, saturation will occur if more than 100 processors are used. Thus,

for real-time applications even this system is not quite adequate.

The HDTV Codec is based on a motion-adaptive DCT algorithm. It consists of a

parallel signal processing architecture and LSI gate array [Kinoshita, 92]. This hardware

compresses the motion picture at the bit rate of 130 Mb/s, that is, in real-time. This

hardware is specific to motion image compression.

S. Srinivasan [Srinivasan, 93] describes the design of a real time image

processing system using DSP 56000/96000 family of processors. This system can be

used for a variety of image processing and graphic applications which require transform

computations. However, it is found that the system is not very eflBcient for coding and

decoding part of the image compression algorithm.

John Elliott [Elliott, 89] describes simulation of image compression algorithm on

a supercomputer based on the Transputer processor along with the architecture of the

Edinberg Concurrent supercomputer. The parallel algorithm used on this supercomputer

can process 6 - 7 frames/sec by optimising the code. But for real-time image

compression a speed of at least 18-20 fi-ames /sec is required.

M. N. Chong [Chong, 90] describes implementation of the adaptive transform

coding technique on a transputer based quadtree architecture. There is a limitation to the

degree of parallelism that can be achieved in this implementation. The results obtained on

the quadtree structure for various sized networks are given in this paper. The least

execution time of 1.538 sec. is obtained on 16 processors. This execution time is higher

than that required for real-time image compression.

R. Aravind [Aravind, 89] explains implementation of the DCT-based JPEG

decompression algorithm on a Digital Signal Processor (DSP)-based system. This

decoder is capable of processing in real-time, at approximately 15 fi-ames/sec with a

fi-ame size of 128 x 96.

Srinath Ramaswamy [Ramaswamy, 93] describes a parallel pipehned DSP-based

architecture for implementing the DCT-based JPEG algorithm with arithmetic coding.

He has given the experimental results of executing the JPEG algorithm on a DSP-based

Chapter 1

architecture for a 256 x 256 pixel monochrome still image. The execution time varies

firom 0.61 sec. to 0.12 sec as the number of processors is increased firom one to six. For

a large image size, image compression can be achieved in close to real-time by increasing

the number of DSP processors in the network.

Peter Monnes and Borko Furht [Monnes, 94] explain analysis of parallel JPEG
algorithm on Intel i80286 and i80386 processors. The parallel technique used in this
paper uses parallelisation only for DCT and quantisation part of the JPEG algorithm. The
encoding part is done serially. Therefore there is still opportunity for parallelisation of
JPEG algorithm.

Placement of blocks of image data on different parallel architectures is one of the

many issues that was explored and investigated fiirther. Papathanassiadis T.

[Papathanassiadis, 92] discussed various image partitioning strategies. There are two

main methods used for image partitioning: with interblock dependency and without

interblock dependency. Chung-Ta King [Chung-Ta King, 91] discussed strategies for

partitioning and processing images with interblock dependency on distributed memory

multi-computers. Browne [Browne, 89] discussed the various options of image

processing mapping methods onto Transputer networks.

1.4 Research Objectives

JPEG is one of the most widely used image compression standard. This research is

focused on improving the performance of this standard, and its implementation on

parallel architectures. Hardware (VLSI chips) which implement the JPEG image

compression algorithm are available. Such hardware is specific to image compression

only and can not be used for other image processing applications. A flexible means of

implementing digital image compression algorithms is still required. An obvious method

of processing different imaging applications on general purpose hardware platforms is to

develop software implementations.

JPEG uses an 8 x 8 block of image samples as the basic element for compression.

These blocks are processed sequentially. There is always a possibility of having similar

blocks in a given image. If the similar blocks in an image are located, then repeated

compression of these blocks is not necessary. By locating similar blocks in the image,

speed of compression can be increased and the size of compressed image can be reduced.

Based on this concept an enhancement to the JPEG algorithm, called the Block

Comparator Technique (BCT) is proposed. For many applications rapid transmission of

unages in real-time and good quality of service is required. Various options for

Chapter 1 :

enhancing the current JPEG standard is investigated, to reduce the compressed image

size and to improve the speed of compression.

One of the primary objectives of this research project was to develop techniques

for exploitmg parallel processing systems for real-time image compression and

decompression. It is expected that such parallel processing technique will not only

reduce the execution time, but will also accomplish other significant performance

improvements such as improved quality of compressed image, improved reliability and

availability of the system, and better scalability. Therefore various options are

investigated for implementing digital image compression algorithms on parallel

architectures.

Some of the implementation options were studied by simulating these on

computer models. A simulation package called NETWORK n.5 was used for building

the computer model and running the required experiments on the same. Simulation

results were used to determine speedup, scaleup and efficiency of the techniques

developed.

1.5 Thesis Outline

This section gives a brief description of each of the following chapters.

Chapter 2 Digital image compression techniques: In this chapter different digital

image compression techniques, and the JPEG image compression standard are described.

Digital image compression techniques are based on algorithms such as Wavelet

transform, Fractal images, Vector Quantisation and Discrete Cosine Transform. Digital

image compression technique developed by the Joint Photographic Experts Group is

based on the Discrete Cosine Transform.

The JPEG technique is applicable to a wide variety of applications and is one of

the most widely used technique. Therefore, JPEG technique is chosen as the main focus

for our research. Present JPEG compression process is done block-by-block in a

sequential manner. An enhancement to the current JPEG compression technique is

proposed, to speedup the operation and reduce the compressed image size.

Chapter 3 Parallel processing plans for digital image compression techniques: This

chapter describes methods used for parallel processing of digital image compression

algorithms. Types of parallel computers and parallel processing 'Plans' for digital image

compression are described. Parallel computers are classified based on memory access

technique, network topology and some other issues.

Chapter 1 S

Digital image compression can be performed on parallel computers in a variety of

ways. Each uniquely identifiable way of implementation is called a Plan. Each Plan can

be specified as a 6-tuple consisting of image compression technique, block dependency,

image partitioning method, memory architecture, network topology and the number of

processors. Some of these Plans were implemented on available parallel computers and

other Plans were simulated using the Network n.5 simulation package.

Model building and simulation involves ten steps, viz. problem formulation,

model building, data collection, model translation, model verification, model validation,

experiment planning, experimentation, analysis of results, and documentation. Each of

these steps are described briefly in this chapter.

Chapter 4 Implementation of the JPEG algorithm on parallel computers: This

chapter describes the hardware architecture and methods used for the implementation of

the JPEG algorithm on parallel computer systems such as Mercury, Shiva and Param.

The Mercury system has a distributed memory architecture. Shiva system has a shared

memory architecture, and the Param system uses hybrid memory architecture.

JPEG algorithm was implemented on these three parallel computers with

different image sizes and on various sized networks. This chapter describes

implementation of the JPEG algorithm on three parallel computer systems and it gives

the experimental results obtained on the same.

Chapter 5 Simulation of digital image compression techniques: This chapter

describes modelling and simulation methods used for investigating parallel processing of

image compression techniques, using the Network II.5 simulation package. Image

compression Plans have been modelled for different parallel computer architectures using

the Network II. 5 simulation package. This chapter describes details of the model

building process and the process of running simulation experiments for various Plans.

Simulation results for these Plans are compiled to evaluate the performance of these

Plans.

Speedup, scaleup and efficiency obtained for each Plan is given and the

performance of different Plans are compared.

Chapter 6 Conclusions and future research: This chapter gives the conclusions and

directions for fijture research. The Block Comparator Technique as well as parallel

implementation aspects are discussed.

Chapter 2 10

Chapter 2

DIGITAL IMAGE COMPRESSION TECHNIQUES

Contents

2.1 Introduction U

2.2 Digital Image Compression Techniques 11

2.3 JPEG Standard 15

2.4 Block Comparator Enhancement to the JPEG Algorithm 29

2.5 Summary 63

Abstract

This chapter describes digital image compression techniques, and the JPEG image

compression standard. Digital image compression techniques are based on algorithms

such as the Wavelet transform. Fractal images. Vector Quantisation and Discrete Cosine

Transform (DCT). The digital image compression technique developed by the Joint

Photographic Experts Group (JPEG) is mainly based on the quantisation of the DCT.

The JPEG technique is applicable to a wide variety of applications and is one of

the most widely used technique. Therefore, the JPEG technique is chosen as the main

focus for this research. Presently, JPEG compression process is done block by block in a

sequential manner. An enhancement to the current JPEG compression technique is

proposed. The aim of this enhancement is to speedup the operation and reduce the

compressed image size.

The JPEG algorithm can be implemented on parallel computers to further

speedup the compression and decompression operations.

Chapter 2 11

2.1 Introduction

Digital image compression techniques can be broadly classified into still image

compression and motion image compression techniques. Still image compression

techniques can be fiirther classified based on the algorithm used for compressing the

image such as Wavelet transform. Fractal images. Vector Quantisation (VQ) and the

Discrete Cosine Transform (DCT). These digital hnage compression algorithms are

described in section 2.2.

The JPEG standard is widely used for still imaging appUcations. The JPEG

algorithm is used in the standard developed by the Motion Pictures Expert Group

(MPEG), for compressing moving pictures as well. Therefore, The JPEG algorithm was

chosen for our research. Section 2.3 describes the JPEG algorithm in detail.

JPEG uses an 8 x 8 block of image samples as the basic element for compression.

These blocks are processed sequentially. There is always a possibility of having similar

blocks in a given image. If similar blocks are located in an image, then repeated

compression of these blocks is not necessary. By locating similar blocks in an image,

speed of compression can be increased and the size of compressed image can be reduced.

The technique used to enhance the JPEG algorithm is called Block Comparator

Technique in this thesis. This Block Comparator Technique (BCT) is described in section

2.4.

2.2 Digital Image Compression Techniques

By using mathematical methods such as Fourier transform, it is possible to represent a

given image in terms of a few basis fiinctions [Hunt, 93]. Recently, mathematicians,

scientists and engineers have been active in seeking new methods for representing signals

or data in terms of basis fijnctions. Because these fijnctions can be analysed, understood

and characterised in a succinct maimer, these methods can be applied to digital image

compression and many other applications.

Based on the mathematical methods used in digital image compression, still

image compression techniques can be classified as lossy compression techniques or

lossless compression techniques. A classification tree for digital image compression

techniques is shown in figure 2.1. Lossy compression techniques can compress the image

down to 50 : 1 ratio, where-as lossless compression techniques can compress the image

only upto a ratio of 3:1. The lossy compression technique can be fiirther classified based

on the algorithm used such as JPEG algorithm (DCT-based technique), Wavelet

transform, Fractal images. Vector Quantisation and DCT. Lossless compression

Chapter 2 12

technique include the Joint Bi-level Image Experts Group (JBIG) algorithm and the

JPEG algorithm (predictive technique) [Pennebaker, 93]. Lossy compression techniques

are used in applications such as colour facsimile, newspaper wire-photo transmission,

medical imaging, graphics arts, photovideotex, desktop publishing, and many other still

imaging applications.

Digital Image Compression Techniques

Lossless Compression Technique Lossy Compression Technique

JPEG (Predictive J B I G JPEG (DCT-based Fractal VQ DCT
Technique) Technique) Wavelet

Figure 2.1 Digital image compression techniques

The Wavelet transform algorithm is based on basis fiinctions; these are described

in section 2.2.1. Fractal images are based on Iterated Function Systems (IFS); these are

described in section 2.2.2. Vector Quantisation is based on vector representation of the

image and code book design; this is described in section 2.2.3. The JPEG algorithm is

based on the DCT and Differential Pulse Code Modulation (DPCM). The DCT-based

method is described in section 2.2.4.

2.2.1 Wavelet Transform

There are two types of Wavelet Transforms ie. Continuous Wavelet Transform and

Discrete Wavelet Transform. The Continuous Wavelet Transform was first presented by

Grossmann and Morlet in 1984. Thereafi;er it was developed by others, including

Holschneider (1988), Ameo'odo et al. (1989), Forge (1992). Daubechies (1986 and 88)

was one of the first to work on Discrete Wavelet Transform. Wavelet transformation has

a number of applications in signal processing and data compression.

Wavelet transform breaks the signal into a number of wave pulses (wavelets) that

can be dilated and translated in two or more dimensions; and if the wavelet is

anisotropic, it can also be rotated. These wave pulses are represented in terms of an

amplitude fimction and can be analysed using scale and position of a signal [Hunt, 93].

By choosing an appropriate wavelet one can look at the properties of a signal, such as,

amplitude and time scale of the original signal.

Chapter 2 13

Wavelet basis functions are orthonormal. Therefore, these transformations can

be used to remove redundant signals from the original signal, this leads to compression

of the original signal.

In Wavelet compression the original multi-resolution image is decomposed into

a low resolution signal and a difference signal [Nacken, 93] [Koomwinder, 93]. The low

resolution signal is an average of the low frequency signals and is calculated by applying

low pass filtering, followed by subsampling. The low resolution signal can be described

by a smaller number of samples than the original image. The difference signal is the

difference between the low resolution image and the actual image. The difference signal

can be coded with a smaller number of bits per pixel. Thus the total number of bits

required to encode the image is smaller than the original image.

2.2.2 Fractal Image Compression

Fractal image compression is based on Iterated Function System (IFS) theory and the

Collage theorem. Fractal image compression can be achieved via the IFS compression

algorithm, which is an interactive image modelling method based on the Collage

theorem.

IFS fractals can be obtained through suitable transformation of the image

[Bamsley, 93]. Such fractals can be used as approximates for real world images. Real

world image is one of many basic shapes, such as a leaf or a letter of the alphabet, or a

black and white fem, or a black cat sitting in a field of snow, etc. These fractals have the

property that they are themselves models for real world images, and at the same time

can be defined by finite strings of zeros and ones. This makes them suitable for image

compression.

The Collage theorem says that "to find an IFS whose attractor is close to looks

like a given set, one must try to find a set of transformations, contraction mappings on a

suitable space within which the given set lies, such that the union, or collage, of the

images of the given set under the transformations is close to or looks like the given set"

[Bamsley, 93]. The degree to which two images look alike is measured using the

Hausdorff metric.

2.2.3 Vector Quantisation

In the Vector Quantisation (VQ) technique image signals are represented by vectors of

samples. Vector Quantisation can be viewed as a form of pattem recognition where an

input pattem is approximated by one of a predetermined set of standard pattems. That is,

the input signal is vector quantised in such a way that the input pattem is matched with

Chapter 2 14

one of a stored set of templates or codewords. In this way the complicated image signal

can be replaced by a series of simple table lookups.

The following theorem shows that VQ can at least match the performance of any

arbitrarily given coding system that operates on a vector of signal samples or

parameters. Theorem is as follows. " For any given coding system that maps a signal

vector into one of N binary words and reconstructs the approximate vector from the

binary word, there exists a vector quantiser with codebook size N that gives exactly the

same performance, ie. for any input vector it produces the same reproduction as the

given coding system" [Gersho, 92].

Pattem matching with set of codebooks is done in several ways, such as nearest

neighbour quantiser and exhaustic search algorithm [Gersho, 92]. In the nearest

neighbour quantiser search algorithm, a vector is represented by the nearest vector

stored in the codebook. An advantage of such an encoder is that the encoding process

does not require any explicit storage of the geometrical description of the cells. In

exhaustic search algorithm, the search is performed sequentially on every code vector in

the codebook, keeping track of the "best so far" and continuing until every code vector

was tested. This method of pattem matching requires more time but the resulting

compression is better than the nearest neighbour quantiser method.

2.2.4 Discrete Cosine Transform

Discrete Cosine Transform is widely used for many digital image compression

techniques. Digital image compression technique developed by the Joint Photographic

Experts Group (JPEG) is based on the DCT and predictive algorithm. The Consultative

Committee for Intemational Telegraph and Telephone (CCITT, now called Intemational

Telephone Union - ITU) and Intemational Standard Organisation (ISO) formed this

committee to develop compression standards for still and motion pictures [Wallace, 92].

In the JPEG algorithm there are mainly two image compression methods viz.

predictive method which is carried out in the spatial (data) domain, and the transform

method which is performed in the frequency domain [Leger, 91]. The predictive method

is a lossless compression technique while the DCT-based method is a lossy compression

technique. DCT-based method of compression is widely used as it is easier to

implement and is suitable for a large number of applications including motion picmre

compression.

JPEG algorithm is applicable to a wide variety of applications. In most of the

applications the JPEG algorithm is used as a library function. For example, NeXTStep is

the standard operating environment on the NeXT computers and designed to support a

wide range of applications. NeXTStep uses Tag Image File Format (TIFF). The JPEG

Chapter 2 15

algorithm is added to support TIFF file reading and writing facilities [Cockroft, 91].

JPEG is also used for Picmre Archiving and Communication Systems (PACS) in

medical imaging field [Kajiwara, 92]. A detail description of the JPEG standard is given

in the next section.

2.3 JPEG Standard

There are three intemational standards available for image compression for different

applications, viz. JPEG, MPEG, and P*64 [Quinnell, 93]. JPEG is intended for

continuous-tone still images, MPEG is intended for video images, and P*64 is for video

telephony. In this section the JPEG standard is described.

The first step in the JPEG algorithm is to locate data redundancy in the image

pixel values. This is done by using the Discrete Cosine Transform, which is similar to

the Fourier Transform but includes only the Cosine part of the function. Wavelet

transforms can also be used with the JPEG standard in the video industry for on-line

editing [Comell, 93]. The Vector Quantisation (VQ) method is complicated by the need

for code design. Therefore, coding with Vector Quantisation is slow as compared to

coding with the JPEG algorithm. Vector Quantisation is more efficient when it is

combined with other techniques. Therefore, the JPEG algorithm was chosen for our

research purpose. The JPEG algorithm can be implemented in hardware as well as in

software [Baran, 90].

Details of the DCT-based JPEG algorithm are given in section 2.3.1. The

available hardware chips in VLSI implementation include the C-Cube Micro system's

CL550 chipset, the SGS-Thomson's STl 140 CMOS chip [Leonard, 91], and Intel's

Digital Video Interactive (DVI) chip [Vaaben, 91]. Section 2.3.2 describes the CL550

chip in brief.

JPEG has developed software implementation that can be used on general

purpose machines and can be modified easily according to the application requirement.

Section 2.3.3 describes the version-4 of modified JPEG software.

JPEG compressed file stmcture is described in section 2.3.4.

2.3.1 DCT-Based JPEG Algorithm

In the JPEG algorithm the source image is stmctured as follows [Wallace, 92]. A source

image consists of 1 to 255 image components (depending upon resolution of the

image). These components are sometimes called colours, spectral bands or channels. A

colour image can be represented in many colour systems viz.. Red Green Blue (RGB),

Chapter 2 16

YUV (Y for luminance or brightness, U and V for colour difference signals Y-R and Y-

B respectively), Cyan Magenta Yellow and Black (CMYK) [Ang, 91]. Each component

consists of a rectangular array of samples. A sample is defined to be an unsigned

integer with the range [0, 2? -1] or signed integer with the range [-2? , 2?-!], where p is

sample precision in bits. The JPEG standard has defined the concept of a "data unit". A

data unit is an 8 x 8 block of samples in DCT-based codecs. Generally, data units of

image components are ordered from left-to-right and top-to-bottom.

Components of an image can be stored in one of two possible formats, namely

interleaved format and non-interleaved format. If an image component is stored in the

non-interleaved format, the data units are ordered in a pure raster scan sequence as

shown in figure 2.2.

Top

IL . - . . _ . _ _ . _ _ . .^Data Units

Left
Right

Bottom

Figure 2.2 Non-interleaved data ordering

If the image has two or more colour components each one of these may be stored

in an interleaved format. Each component Ci is partitioned into rectangular regions of

Hi X Vi data units, as shown in the generalised example of figure 2.3. Regions within a

component are ordered from left-to-right and top-to-bottom. Within a region also, data

units are ordered from left-to-right and top-to-bottom.

2,3.1.1 DCT-based Compression Steps

Modified JPEG algorithm involves colour space conversion. Minimum Coded Unit

(MCU) extraction, DCT, quantisation and encoding steps as shown in figure 2.4. Each

of these step are described below.

1. Get the source file header information such as image format, image width, image

height. Get the user specified parameters and generate quantisation table and

Huffman encoding tables and initialise the JPEG output file header and marker.

Chapter 2 17

2. Conversion from input image format to a standard internal format (either RGB

or grayscale). Colour space conversion (eg. RGB to YCbCr). This is a null step

for grayscale images.

1

2

3

C is Colour component

C1:H1=2,V1=2

0 1 2 3

Z^
r^l

^ ^

"y:

C2: H2=2, V2=l

Data unit

^—Region

C3: H3=1,V3=2

0 1 2 3

Vl±1.
rWi

C4: H4=l, V4=l

o—^o—^o^̂ ^o

Figure 2.3 Interleaved image data ordering

The following steps (3 to 8) are performed once for each scan of a complete

image, i.e. once if making a non-interleaved file, and more than once for an interleaved

file.

3. Minimum Coded Unit (MCU) extraction, i.e. creation of a single sequence of

8 x 8 sample blocks.

4. Edge expansion. This step operates independently on each colour component.

5. DCT transformation of each 8 x 8 block.

6. Quantisation, scaling and zigzag reordering of the elements in each 8 x 8 block.

7. Huffman (or arithmetic) encoding of the transformed block sequence.

8. Output the JPEG file with required headers/markers.

Chapter 2 18

1. Get Source Image Header
Information and user Specified

Parameters

L
Initialise Output File

1
2. Colour Space

Conversion

I
3. MCU Extraction

I
4. Edge Expansion

HZ-n
5. DCT

I
6. Quantisation

I
7. Huffman Encoding

/

rr^

Baseline JPEG
algorithm

8. Output
File

Figure 2.4 Modified JPEG algorithm

Chapter 2 19

2.3.1.1a Input File and Parameters

The input image file to be compressed by the JPEG algorithm can be in either of the

following formats: PPM (Pulse Pixel Map), GIF (Graphics Literchange Format), RLE

(provided by Utah Raster Toolkit). Details of these formats differ but the type of

information included in each of these is similar. In general, an input file contains

information about the format used, image width, image height, maximum value of the

sample, and the image data.

Parameters such as quality factor, smoothing factor, and sampling ratio are input

by the user. For any unspecified parameters the default value is used by the software.

Quantisation tables are generated by taking into account the specified quality

factor. AC and DC Huffman tables are also generated as part of the algorithm execution.

Currently, the values generated are fixed by the JPEG standard. Though, it is possible to

vary these tables to get compressed images of different compression ratios. The output

file includes appropriate header along with the quantisation tables and Huffman tables.

The subsequent step, colour space conversion, is explained in the next section.

2.3.1.1b Colour Space Conversion

The JPEG source image is divided into groups of rows. The number of rows in each

group is equal to the maximum sampling factor. Each source image group (GrpSrcImg)

is subjected to Colour Space Conversion (ClrSpcCnv) step. This step converts the input

colour space of any format to the YCbCr format. The YCbCr format is defined by the

CCIR 601-1 standard. For example, if the input image is in the RGB colour format, then

the values of the Y, Cb, and Cr components can be calculated by the following

formulae:

Y = 0.299900 * R + 0.58700 * G + 0.11400 * B

Cb = -0.016874 * R - 0.33126 * G + 0.50000 * B + MAXJSAMPLE/2

Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + MAXJS AMPLE/2.

Here MAXJSAMPLE is maximum value of sample in a source image. For

example, in an 8-bit image, MAXJSAMPLE is 255.

2.3.1.Ic MCU Extraction

Before applying the DCT function the input image is converted to a standard format and

divided into 8 x 8 sample blocks.

Chapter 2 20

The JPEG proposal defines the term "data unit" as a block of 8 x 8 samples and

MCU to be the smallest group of interleaved data units. MCU extraction is used for

better organisation of data units for interleaved image data. MCU is a group of data

units taken from the same region of all image components.

A maximum of four components can be interleaved. And a maximum of ten data

units are allowed in an MCU. Because of this restriction, not every combination of four

components which can be represented in non-interleaved order within JPEG compressed

image is allowed to be interleaved. The JPEG proposal allows some components to be

interleaved and some to be non-interleaved within the same compressed image.

In the JPEG algorithm, the blocks of 8 x 8 samples and image components are

processed sequentially; even though it is also possible to process image components

simultaneously. In the non-interleaved format image components are independent of

each other; whereas, in the interleaved format image components are dependent upon

each other. In the interleaved format a maximum of four image components can be used

in a single MCU. Thus, up to four image components can be processed at a time.

2.3.1.Id Edge Expansion

Edge expansion is used to make the number of samples in a block, a multiple of the

MCU dimension. This is done by duplicating the right-most column and/or bottom-most

row of pixels.

2.3.Lie Discrete Cosine Transform (DCT)

The Discrete Cosine Transform (DCT) is calculated for each block of the MCU. Output

of the DCT F(u, v) gives orthogonal basis signals given by

F(u.v) = 1 C(u)C(v)[I i f (x , y) * c o s - (2 ^ * c o s - (? ^] (2.1)
4 x=Oy=0 ^^ ^°

where C(u), C(v) J = l / V 2 u,v = 0
[= 1 otherwise,

and F(u,v) = Discrete cosine transformed signal.

Output of the DCT step for an 8 x 8 block of samples gives 64 coefficients. The

zero frequency coefficient is called the DC coefficient and the remaining 63 coefficients

are known as the AC coefficients. The DC coefficient is a measure of the average value

of the 64 image samples.

Chapter 2 21

2.3.1. If Quantisation

Quantisation is achieved by dividing each DCT coefficient by its corresponding

quantiser step size and rounding off to the nearest integer value, so that

Quantised value Q(u,v) = Integer Round (DCT coefficient / Quantiser step size). (2.2)

Quantiser step size is calculated with respect to the desired quality of the output

image. This step is performed to achieve compression by representing DCT coefficients

with no greater precision than is necessary to achieve a desired image quality. On

performing quantisation, visually insignificant values are discarded.

2.3.1.Ig Huffman Encoding

The first value to be encoded in a block is the DC coefficient. This DC coefficient is

encoded.as the difference between the DC term of this block and that of the previous

block, in the encoding order shown in figure 2.5.

DC(i-1) DC(i)

DIFF = DC(i) -

Figure 2.5 Encoding the DC coefficient

Coefficients other than the first one are called AC coefficients. These AC

quantised coefficients are ordered in a "zig-zag" sequence, as shown in figure 2.6.

Huffman encoding is done with a zig-zag ordering of the samples. This helps in placing

the low frequency coefficients before the high frequency coefficients. Encoding requires

one or more sets of Huffman code tables specified by the application or generated

during the process of compression.

Chapter 2 22

Sample

Figure 2.6 Zig-zag encoding order

2.3.1.1h JPEG Compressed File

The compressed image file contains a header, quantisation table, Huffman tables, and

compressed data. The detailed stmcture of a compressed image file is described in

section 2.3.4.

2.3.2 JPEG Hardware

The JPEG algorithm was implemented in hardware as a single VLSI chip [Ogawa, 92].

In this section the working and limitations of one such hardware implementation are

briefly described.

C-Cube Microsystem has developed the CL550 chip for implementation of the

JPEG algorithm. A block diagram of the CL550 chip is shown in figure 2.7. This chip

consists of input buffer, output buffer, three functional-units and a sequence controller

unit. Functional-unit-1 is connected to a colour-space converter (RGB to YUV

converter) and performs the functions of sub-sampling and level shifting. Functional-

unit-2 is connected to the quantisation table unit and performs DCT and quantisation.

Functional-unit-3 is connected to AC and DC Huffman tables, and performs Huffman

encoding and generates output compressed file with header and marker.

The sequence controller unit controls all the functional-units by giving

instmctions for execution in accordance with the values set by an intemal register.

Chapter 2 23

Functlonal-unit-1 Functional-unit-2 Functional-unit-3

Subsampler
and Level

Shifter

RGBA'UV
Converter

DCT and
Quantiser

QTbl

Huffman and
^ n Marker

Handler
< — •

I
DC AC

Huffman Tables

Central Control Unit (Sequence Controller)

Figure 2.7 JPEG compressor chip (CL550)

Advantages of hardware implementation:

• Hardware implementation is faster than software based implementation.

• The chip design is tested extensively before fabrication.

• Operates at 30 MHz which is sufficient to compress and decompress real-time CCIR

601 format video [Ruetz, 93].

Disadvantages of hardware implementation:

• Output quality is limited, as only four tables are used in the chip.

• Huffman encoding tables are fixed. In software implementation it is possible to vary

these tables to get compressed images of different compression ratios.

• The range of available subsampling ratios is limited, due to limited real-estate of the

chip.

• Low flexibility of compression vis-a-vis quality and compression ratio.

Many of the limitations of hardware implementation can be overcome in

software based implementations. Main advantages of software based implementation

are:

Flexibility, for variation of parameters such as quality of output image.

User specified quantisation table and sampling ratio etc.

Can be implemented on general purpose machines.

Can be implemented on a variety of parallel computer architectures.

Chapter 2 24

2.3.3 DCT-based JPEG Software

JPEG software packages are available from organisations such as C-Cube Microsystems

and Kodak. JPEG software is available in many versions. The VER-4 of the software

was used. The VER-4 software includes routines for down-sampling in addition to the

standard JPEG steps shown in figure 2.8.

Execution of the JPEG compression software is initiated by the user command

"CJPEG". This command is followed by a list of parameters such as quality factor,

sampling factor, smoothing factor, input file name and output file name. The software

generates quantisation table form the user specified quality factor and stores it in a

buffer. This table is used in the quantisation step, and is also stored in the output file.

The JPEG software takes information such as image format, image-width,

image-height and maximum value of the sample from the input file header. Number of

data units and the number of MCUs is calculated from the image-width and image-

height. Then the software reads a group of image rows equal to the maximum horizontal

sampling factor. Each group is subjected to colour space conversion and downsampling

steps. The colour space conversion process depends upon the image format.

Smoothing operation is performed on the image to clean up a dithered input file.

The smoothing factor (SF) determines the level of smoothing performed. User can

specify the smoothing factor ranging from 1 to 100. Each input pixel P is replaced by P'

a weighted sum of itself and its eight neighbours as given in the following formula,

P = ((Sum of eight neighbouring samples) * SF + P(1-8*SF)) / 9

where SF=Sf/1024

Sf = User specified Smoothing factor.

In the next step smoothed data units are subjected to down-sampling. Down-

sampling is used to reduce the total number of samples. For example, a 2 x 2 array of

blocks may be reduced to a single block by replacing groups of four samples by their

average value.

Down-sampled data units are subjected to edge expansion. MCUs are extracted

from the edge expanded rows. DCT and quantisation is performed on each data unit of

the MCU. Quantised MCU is then subjected to a Huffman encoding step. The encoded

image data is stored initially in a buffer and then in an output file.

Chapter 2 25

Start

Iii
Get Input File Information and

User Specified Parameters

I
Initialisation and store

JPEG header

J^Read Group of Image Rows

fe/outputFUe

Figure 2.8 JPEG software routines

Chapter 2 26

2.3.4 Compressed JPEG Data Structure

This section describes the JPEG compressed data file stmcture. JPEG algorithm consists

of non-interleaved and interleaved data ordering as described in section 2.3.1. In this

section the non-interleaved data ordering is considered for grey scale images. JPEG

compressed data stmcture for non-interleaved, greyscale image is as follows

[Pennabaker, 93].

Each compressed data file consists of a header, followed by the compressed
image data, and terminated by an End of Image (EOI) marker, as shown in table 2.1.

Table 2.1 JPEG compressed data file structure.

JHI JPEG Header Information

Compressed Data Blocks

EOI End Of Image Marker

The JPEG header contains four groups of information: quantisation table, frame
header, Huffman table, and scan header. This JPEG header is followed by blocks of
compressed image data, and EOI as shown in table 2.2.

Table 2.2 JPEG compressed data structure for non-interleaved greyscale

SOI
DQT, length, quantisation table definition(s)
SOFn, length, frame parameters
DHT, length, Huffman table definition
SOS, length, scan parameters

Compressed Block 1 data
Compressed Block2 Data
Compressed Block3 Data
Compressed Block4 Data

etc
Compressed Blockn Data

EOI

SOI-Start OF Image marker
DQT- Digital Quantisation Table
SOF-Start Of Frame
DHT-Digital Huffinan Table
SOS-Start Of Scan

EOI-End Of Image marker

A more detailed description of each component of the compressed file is given

in the following section.

2.3.4.1 Quantisation Table Specification

The quantisation table is included in the compressed data file. This table determines the

quality of the output image and is determined by the parameters following the DQT

Chapter 2 27

marker shown in table 2.3. In this structure Pq specifies the precision of the quantisation

table elements (0 for 8-bit precision, 1 for 16-bit precision). Tq is the quantisation table

identifier and may have values from 0 to 3. Qk is the quantisation table elements. It may

have values from 1 to the maximum value permitted for the specified precision

[Pennebaker, 93].

Table 2.3 Quantisation data segment structure in the JPEG algorithm:

Parameter

Marker (X'FFDE')
Quantisation table definition length
For each quantisation table:

Quantisation table element precision
Quantisation table identifier
Quantisation table element (k=0, 1, 2, 63)

2.3.4.2 Huffman Table Specification

The DHT marker segment provides a mechanism for specifying the Huffman code

tables as shown in table 2.4. In this structure, the table class Tc, is 0 for DC and lossless

coding, whereas Tc is 1 for AC code tables. Th is the code table identifier, it may have

values from 0 to 3. The Huffman table is specified by identifying the number of codes of

each length from 1 to 16. Huffman code of each length is specified by Vij.

Table 2.4 Huffman data structure

Symbol

DQT
Lq

Pq
Tq
Qk

Size
(bits)
16
16

4
4
8 or 16

Parameter

Marker (X'FFC4')

Huffman table definition length

For each Huffman table:

Table Class

Huffman table identifier

Number of Huffman codes of length i

fori = 1, , 16

Value associated with each Huffman code

fori = 1,..., 16;j = 1,... ,Li

Symbol

DHT

Lh

Tc

Th

Li

Vij

Size (bits)

16

16

4

4

8

8

Chapter 2 28

2.3.4.3 Frame Header

The JPEG algorithm divides the image into a number of frames and scans. For non-

interleaved data ordering, a single frame is used, whereas in interleaved data ordering, a

sequence of frames are used for encoding. The mode of encoding is represented by

frame header structure in compressed data strucmre as shown in table 2.5.

Table 2.5 Frame header data structure

Parameter

Marker (X'FFCO-3, 5-7, 9-B, D-F')

Frame header length

Sample precision

Number of lines

Number of samples/line

Number of components in frame

Frame component specification (i=l, .

Component identifier

Horizontal sampling factor

Vertical sampling factor

..,Nf)

Quantisation table destination selector

Symbol

SOFn

Lf

P

Y

X

Nf

Ci

Hi

Vi

Tqi

Size

(bits)

16

16

8

16

16

8

8

4

4

8

The frame header length Lf gives the length in bytes of the frame parameters.

Sample precision P gives the precision of sample in bits. Available values for sample

precision are 8-bit, 12-bit or 16-bit. Number of lines Y represents the number of raster

lines after the edge expansion step. X specifies the number of samples per raster line in

a frame. Nf specifies the number of components in a single frame; it can range from 1 to

255. Each frame can be specified by its component identifier, horizontal and vertical

sampling factor for MCU extraction, and quantisation table used for encoding the

component.

2.3.4.4 Scan Header

Each frame may have a number of scans, and the scan header information is included in

a compressed data structure as shown in table 2.6. The number of components in a scan

depends upon the mode of image scanning (non-interleaved and interleaved). In non-

Chapter 2 29

interleaved mode of scanning a scan has only one data unit, and in interleaved mode of

scanning a scan has more than one data units.

Table 2.6 Scan header data structure

Parameter

Marker (X'FFDA')

Scan header length

Number of components in scan

Scan component specification(k=l,...,Ns)

Scan component selector

DC entropy coding table selector

AC entropy coding table selector

Start of spectral selection or predictor selection

End of spectral selection

Successive approximation bit position high

Successive approximation bit position low or point transform

Symbol

SOS

Ls

Ns

Csk

Tdk

Tak

Ss

Se

Ah

Al

Size

(bits)

16

16

8

8

4

4

8

8

4

4

Ls gives the length of scan header in bytes. Ns specifies the number of

components in a scan, it ranges from 1 to 4. Each component in a scan is specified by

scan component selector Csk and entropy coding table selectors Tdk and Tak.

Scanning takes each data unit from the band of MCU coefficients in zig-zag order. The

start of scan selection Ss identifies starting index of this band. Se, the end of scan

selection identifies the index of the last coefficient in the spectral band.

2.4 Block Comparator Enhancement to the JPEG Algorithm

In the JPEG algorithm all image blocks are processed individually. These blocks of

compressed image are stored sequentially as shown in figure 2.9.

The JPEG algorithm divides the input image into a number of blocks. These

blocks are arranged in i rows and j columns. These blocks are processed sequentially

from Block-1 to Block-n from left to right and top to bottom [Papathanassiadis, 92].

Compressed data blocks are stored sequentially, as shown in the compressed data file

structure of figure 2.9. The compressed image file begins with a header, and an End of

Image (EOI) marker is placed at the end of this file.

Chapter 2 30

In many types of images, there is the possibility of having one or more similar

blocks in the image. Improvement in performance of the compression algorithm can be

achieved by locating similar blocks in the image. The Block Comparator Technique is

proposed to enhance the performance of the JPEG algorithm. An overview of the Block

Comparator Technique is given in this section.

The logic of the Block Comparator Technique is shown in figure 2.10. The input

file is divided into the required number of blocks, and each block is identified by a

block number. Then all blocks are passed through the block comparator.

The block comparator algorithm is shown as a flow chart figure 2.11. Structure

of the compressed data file is shown in figure 2.12. Similar blocks are identified by

maintaining a Match List and a Reference List (figure 2.12). Each unique block is given

a Unique Block Number. This Unique Block Number is stored in the Reference List

along with the (original) Block Number. The Match List matches each non-Unique

Block Number to the Number of the Unique Block that is similar.

In the block comparator step, first block is taken as Unique Block Number 1.

Each block is compared to the existing unique blocks. If there is a match found, the

Block Number is store in the Match List followed by the Unique Block Number. If there

is no match found, that block is identified with a new Unique Block Number and stored

in the Reference List. This process is repeated for all blocks. The Match List matches

each block to similar unique blocks. Reference List is the list of all unique blocks.

Compression is performed only on the unique blocks, and compressed image blocks are

stored in the Compressed Image File after the Reference List as shown in figure 2.12.

Image header and EOI marker are placed at the beginning and the end of the file

respectively.

Chapter 2 31

Data unit

i = Number
of Rows

Input Image

j = Number of Colomns

Compressed Image File

1

j+1

((i-1)j+1)

2

j+2

'^

J

2j

n=ij

JPEG Compressor

n=ij

Image header

Compressed
Block-1 Data

Compressed
Block-2 Data

Compressed
Block-n Data

End Of Image
Marker

JPEG Compressed Data
File Structure

Figure 2.9 Sequential processing and storage of image blocks in the JPEG
compression standard

Input Image

j = Number of Columns

Compressed Image File

i = Number
of Rows

1

i+1

((i-l)j+l)

2

j+2 2j

n=ij

JPEG Compressor

Unique blocks
Similar blocks

Block
Comparator }

Image header

Match List

Reference List

Compressed Data

EOI

JPEG Compressed Data
File Structure

Figure 2.10 Block comparator enhancement to the JPEG compression algorithm

Chapter 2 32

Start

Initialisation of
Image Header and

Intensity Summation

No Match Found

Assign a Unique Block
Identifier and store in

Reference List

Increment Block
Counter

Store Match List and
Reference List in the
Compressed data File

I
Compress Unique

Blocks

I
Store Compressed

Data in File

I
Place EOI Marker

Store In the Match
List

No

Figure 2.11 Flow chart of Block Comparator Technique

Chapter 2 33

Match List

Block No. Unique Block No.

Compressed Data File Structure Reference List

Unique Block No. Block No.

1

Image Header

Match List

12 4

25 1

Reference List

Unique Block-1,
Compressed Data

Unique Block-2,
Compressed Data

Unique Block-3,
Compressed Data

1

2

3

4

5

6

7

8

1

4

5

8

11

15

19

23

[

k 56

Unique Block-k,
Compressed Data

EOI

Figure 2.12 Compressed data file structure in Block Comparator Technique

The Block Comparator Technique improves the speed of the compression and

reduces the size of the compressed data file. These two factors are discussed in the

following sections.

2.4.1 Comparison of the JPEG Algorithm and Block Comparator Technique

Execution Times

In this section the execution time of the JPEG algorithm is calculated with and without

the proposed Block Comparator Technique. The computation time is calculated in terms

of number of the arithmetic operations such as additions, subtractions, multiplications,

divisions, and comparisons. Each arithmetic operation is equated to a number of Base

Operations. The number of equivalent Base Operations for each arithmetic operation

can be determined for specific processors. Transputer IMS T805 processor is chosen for

calculating the number of Base Operations. For 64-bit floating point operation,

Transputer IMS T805 processor takes 7 cycles for addition and subtraction, 20 cycles

for multiplication, 32 cycles for division, and 7 cycles for comparison [SGS-Thomson,

91]. Let us assume one Base Operation is equal to 7 cycles. Therefore, The number of

Chapter 2 34

Base Operations required for addition, subtraction, and comparison is equal to 1, for

multiplication it is nearly equal to 3, and for division it is nearly equal to 5.

Computation time for the JPEG algorithm is given in section 2.4.1.1.

Computation time for the Block Comparator Technique is given in section 2.4.1.2. A

comparison of the computation time for the JPEG and the Block Comparator Technique

is given in section 2.4.1.3.

2.4.1.1 Computation Time for the JPEG Algorithm

In this section the total number of Base Operations required is calculated for

compressing a complete image using the JPEG algorithm. In this section the DCT,

quantisation, and encoding steps of JPEG algorithm were considered as main steps to

calculate the computation time, as these required higher computation time in

compression operation.

Let TjpEG be the total number of Base Operations taken by the JPEG algorithm.

Then TjpgG is the sum of the number of Base Operations required for DCT,

quantisation and encoding and so,

TjPEG = NB * (T D C T + '^Qa^n+ Tfinco) (2-3)

where,

"^DCT ~ Total number of Base Operations required for DCT step for one 8 x 8 block,

"^Quan ~ Total number of Base Operations required for Quantisation step for one 8 x 8 block,

''"Enco ~ Total number of Base Operations required for Huffman Encoding for one block,

NB = Number of Blocks.

Discrete Cosine Transform step: DCT step consists of two operations. First operation

is subtraction of each sample from half of the maximum sample value. The second

operation is the DCT function itself. Therefore, the total number of Base Operations

required for the DCT step can be calculated as

T D C T = Tcs + T^ct (2.4)

where,

T(3S = Total number of Base Operations required for subtraction operation for one

8 x 8 block

= 64 Subtractions

= 64 Base Operations,

^dct - Total number of Base Operations required for DCT function for one 8 x 8 block.

Chapter 2 35

The Independent JPEG Group (UG) source code uses 12 multiplications and 32

additions to perform DCT function for a one dimension (1-D) DCT. A 2-D DCT in UG

software is done by performing 1-D DCT on each row followed by 1-D DCT on each

column. Therefore, we need 16 1-D DCTs to perform 2-D 8 x 8 DCT as given in

equation 2.5,

Tdct = 16 (12 multiplications+ 32 additions) (2.5)

= 192 multiplications-I- 512 additions

= 3 * 192 + 512 Base Operations

= 1088 Base Operations.

By substituting the value of Tcs and T^ct into equation 2.4 we get the total

number of Base Operations for DCT step as 1152 Base Operations, as

T D C X = 64 + 1088 (2.6)

= 1152 Base Operations.

Quantisation: Quantisation step involves the division of each sample by its quantiser

step. An 8 x 8 block, quantisation takes 64 division, thus,

TQuan = 64 Divisions (2.7)

= 64 * 5 Base Operations

= 320 Base Operations.

Huffman encoding: For the DCT and the quantisation steps the required number of

Base Operations could easily specify. Huffman encoding requires many arithmetic and

logic operations such as multiplication, increments, shift operations, subtractions.

Therefore it is difficult to specify the exact number of arithmetic operations for the

Huffman encoding step. The experimental results showed that the total time required for

Huffman encoding is about 60% of the compression time. The remaining 40% of the

compression time is required for DCT and quantisation. From these experimental

results, the number of Base Operations required are calculated for Huffman encoding

step as,

TDCT'^TQuajj
T E n c o = 6 0 M 40^^—) (2-8)

= 60*(ii52±320)

= 2208BaseOperations.

Chapter 2 36

By combining equations 2.6, 2.7 and 2.8 relating the total number of base

operations for one block, the total number of Base Operations required for the JPEG

algorithm can be calculated as,

TjpEG = NB * (T D C T + TQuan+ Tgnco) (2.9)

= N B * [(T d c t + T c s) + T Q , 3 „ + T E „ , o]

= NB * [1152 +320-H2208]

= NB * [3680] Base Operations.

The JPEG algorithm takes 3680 Base Operations to perform compression

operation on one block. The complete image consists of NB number of blocks.

Therefore NB x 3680 Base Operations are required for compressing a complete image.

2.4.1.2 Computation Time Taken for Block Comparator Algorithm

In this section the total number of arithmetic operations required are calculated for

compressing a complete image using the Block Comparator Technique. The number of

arithmetic operations required for the Block Comparator algorithm is the sum of the

number of arithmetic operations required for Comparison and the number of arithmetic

operations required for Compression, and so,

T B C T = T B C + Tjp^Q ^2.10)

where,

T B C ~ Total number of Base Operations required for (Block) Comparison,

TjPEG ~ Total number of Base Operations required for Compression.

The number of Base Operations required for the Compression step TjpgQ can be

calculated from equation 2.3 by replacing the Number of Blocks (NB) by the Number of

Unique Blocks (NUB).

The number of Base Operations required for the Block Comparator step are

calculated in this section. Block Comparison step consists of following three main steps,

1. Summation of sample intensity value in each block

2. Block intensity comparison

3. Sample-by-sample comparison of blocks

Chapter 2 37

The additional steps required in the Block Comparator Technique are shown in

figure 2.13. The number of Base Operations required for Block Comparison, Tgc is

given by,

T B C ~ ''̂ sum ^ Tintcomp "*" Tsampcomp (2.11)

where,

TfiC

Tsum

Tintcomp

T
^ sampcomp

= Total number of Base Operations for Block Comparison,

= Total number of Base Operations for summation of samples in all image

blocks,

= Total number of Base Operations for block intensity value comparison,

= Total number of Base Operations for comparing samples of a block with

those of existing Unique Blocks.

Sample
Intensity

Sunmiation
&

Block Intensity
Comparison 8,

Sample-by-Sample
Comparison

Figure 2.13 Additional steps required in the Block Comparator Technique

Sample intensity summation: Algorithm for summation of samples is shown in the

flow chart of figure 2.14. In the summation step, the first block is called Block-1.

Sample values of this block are summed sample-by-sample, and the summation result is

stored in a Block Intensity List (BIL) as the Block Intensity Value-1 (BIV-1). This

process continues for all blocks. Block Intensity List consists of Block Intensity Values

for all blocks.

The total number of arithmetic operations required for summation process, Tgum

is given by.

Tsum ~ NB * Tg^jjpgujjj

= NB*64add

= NB * 64 Base Operations

(2.12)

where,

T
^ sampsum

= Total number of Base Operations required for the summation of sample values in

any image block.

Chapter 2 38

No

f Start J

Get a New
Block

I
Add Sample

Place in
Block-Intensity-List

No

Go To Block
Intensity

Comparison Step

Figure 2.14 Flow chart for summation step

Block intensity comparison: In the Block Intensity Comparison step each Block

Intensity Value (BIV) is taken from the Block Intensity List. This BIV is compared to

each of the existing Unique Block Intensity Value (UBIV). If the BIV is equal to any of

the UBIVs, then this BIV is stored in an Equal Intensity List (EIL). If this BIV is not

equal to any of the UBIVs for the unique blocks stored in the Reference List then this

block number is stored in the Reference List and the BIV is stored in the UBIV List. The

Flowchart for Block Intensity Comparison is shown in figure 2.15.

Chapter 2 39

No

Place in Reference
List

Start

I
Get a New Block From

Block Intensity List

Compare Block Intensity
Value with Unique Block

Intensity Value

Place in Equal
Intensity List

No

Go To
Sample-by-Sample

Comparison Step

Figure 2.15 Flowchart for block intensity comparison step

Block comparison can be done either on a list of sorted values or on a list of

unsorted values. The sorted list is used for comparison because it helps in grouping

equal intensity values. There are many sorting techniques. The Selection Sort and the

Divide and Conquer sort methods were chosen in this chapter [Kruse, 94]. These two

sort methods are explained in the following sections.

Selection Sort: This method is illustrated in figure 2.16, which shows steps needed to

sort a list of five BIVs.

Chapter 2 40

Unsorted List Sorted List

75

54

128

62

12
X

75

54

12

62

128

> <

62

54

12

75

128

X
12

54

62

75

128

Figure 2.16 Selection Sort example

First stage is to find the largest number in the list, i.e. 128. Exchange this

number with the number stored in the last position. Repeat this process on the shorter

list obtained by omitting the last entry. The sorted list is obtained as shown in the last

list.

For worst case the number of comparisons required for a Selection Sort is given

by [Kruse, 94],

Tintcomp

where,

NB

NB * (NB-1) / 2 Comparisons,

NB * (NB-1) / 2 Base Operations,

Number of Blocks in an image.

(2.13)

Divide and Conquer Sort method: This method is illustrated in figure 2.17, which

shows steps needed to sort a list of five BIVs.

The step of sort is to chop the list into two sublists of sizes as nearly equal as

possible. Here the number of elements are five. So chop the list into two sublists

consists of three elements in sublist-1 and two elements in a sublist-2 as shown in figure

2.18.

Again divide first sublist-1 into two sublists one of 75 and 54, other sublist of

128. Then sort the sublists:

54,75

128

12,62

Then merge the sorted sublists. First merge the sublist-1 and sublist-2 and sort it.

54, 75, 128 > 54, 75, 128

Merge this list with sublist-3.

54,75, 128 and 12, 68 > 12, 54, 68, 75, 128

Chapter 2 41

Unsorted

Subhst

75

54

128

62

12

I — n 75

54

128

62

12

Unsorted

SubUst

r 75

54

Sublist

128

Sublist

62

12

Sorted
Subhst

Sorted

Figure 2.17 Divide and Conquer Sort example

The- worst case number of comparisons required for Divide and Conquer sort

method is given by [Kruse, 94],

^mtcomp

where,

NB

NB Ig NB Comparisons

NB Ig NB Base Operations,

Number of Blocks in an image.

(2.14)

Sample-by-Sample comparison: Algorithm for sample-by-sample comparison of two

blocks is shown in the flow chart of figure 2.18, A Block is picked from the Equal

Intensity List (EIL) and compared with the Unique Block sample-by-sample. The two

blocks are said to 'match' if and only if all samples in one block have exactly the same

values as the corresponding samples in the other block. If the block being compared

matches with any of the unique blocks identified, it is placed in the Match List, else it is

entered in the Reference List. This process continues for all the blocks.

For some type of images closely matching blocks may be acceptable. But, in the

current investigation it is not looked into this possibility.

The total number of arithmetic operations required for the sample comparison

step is given by,

Tsampcomp = Ng^IL * ^ Tgampblock ^ 2̂ 15)

where,

N B E I L ~ Number of blocks in Equal Intensity List (EQL),

Tsampblock ~ Total number of Base Operations required for sample-by-sample comparison of one

block,

= 64 comparisons (Maximum),

= 64 Base Operations (Maximum).

Chapter 2 42

No

Place New Block in
the Reference List

r Start j

Get a New Block From
EILand an corresponding

Unique Block from the UBL

I
Compare the Sample

Values for Corresponding
Samples in the New Block

and the Unique Block

Place New Block in
the Match List

No

End

Figure 2.18 Flowchart for Sample-by-Sample Comparison step

Total number of base operations for the Block Comparator Technique:

By substituting equation 2.11 in equation 2.10, we get

T B C T - Tsum + Tj^jj,ojjjp + Tgaĵ p̂ ôĵ jp + Tjp^Q (2.16)

By substituting the equation (2.12), (2.13) and (2.15) in equation (2.16), we get

the equation (2.17) for T g c j , using Selection Sort method.

Chapter 2 43

T_^^ = NB * 64 -I-(NB*(NB-1))/2 -I-NBEIL * 64-1-NUB * 3680 (2.17)
BCT

By substituting the equation (2.12), (2.14) and (2.15) in equation (2.16), we get

the equation (2.18) for TgcT using Divide and Conquer sort method.

T ^ _ =NB * 64 -l-(NB*lgNB) -(-NBEIL * 64 +NUB *3680 (2.18)
BCT

2.4.1.3 Comparison of Computation Time for the Non-Block Comparator Technique

and the Block Comparator Technique

The JPEG algorithm is called as Non-Block Comparator Technique (NBCT) in this

thesis. The Block Comparator Technique (BCT) using Selection Sort method for

intensity comparison is called as Selection Sort method and BCT using Divide and

Conquer Sort method is called as Divide and Conquer Sort method in this section.

The speed improvement obtained by the Block Comparator Technique over the

Non-Block Comparator Technique can be represented by a factor called the Speed

Improvement Factor (SIF). SIF is defined as the ratio of total number of Base

Operations required for the Non-Block Comparator Technique (NBCT) to the total

number of Base Operations required for the Block Comparator Technique (BCT), as

given by

SIF-ZNBCT
^"^- r^ (2.19)

^ B C T .

Values of SIF using the Selection Sort method are given in table 2.7. For the

Divide and Conquer Sort method SIF values are given in table 2.8. SIF values obtained

by using the direct Sample-by-Sample comparison method are given in table 2.9. In each

of these tables the SIF values are calculated for three image sizes, viz. NB = 256, 4266,

and 15594. For each image size SIF values are calculated for Number of Similar Blocks

(NSB) in the image equal to 0%, 10%, 30%, 50%, 75%, 85%, 90%, 95% and 100%.

Graph of SIF versus NSB using the Selection Sort method, is shown in figure 2.19. The

graph for the Divide and Conquer Sort method is shown in figure 2.20, and graph for the

block comparison using direct Sample-by-Sample Comparison method is shown in

figure 2.21.

Conclusions are derived by comparing SIF values obtained for the three different

methods, and also by comparing SIF values for each method individually. These

conclusions are given in the following sections.

Chapter 2 44

Common conclusions for all methods: The Speed Improvement Factor (SIF) is less

than one for a zero number of similar blocks irrespective of the method used and the

image size. This result is expected, as there is no speed improvement when there are no

similar blocks; because there is additional computation time required for the block

comparison step. Therefore, the Block Comparator Technique will add unwanted

computational overhead if there are no similar blocks in an image.

SIF values for all image sizes increase monotonically with increase in the value

of NSB. For most of the methods studied SIF is greater than one for NSB >= 10%. This

indicates that the Block Comparator Technique delivers dividends even for a small

number of similar blocks. The maximum SIF was obtained for 100%, that indicates

image is a blank paper.

Conclusion for the BCT using the Selection Sort method: SIF values for NB = 256 is

greater than one for NSB in the range of 10% to 100%. Whereas, for NB = 4266 SIF is

less than one even upto 50% similar blocks. On the other hand for NB = 15594 SIF is

less than one for all values of NSB. This indicates that there is no benefit in using the

Block Comparator Technique in conjuction with the Selection Sort method for large

images. Selection Sort method is suitable only for small image size.

Conclusion for the BCT using the Divide and Conquer Sort method: SIF is greater

than one for NSB >= 10% and increases monotonically. SIF is almost equal for all

image sizes for the same values of NSB. Therefore, the Divide and Conquer method is

suitable for all image sizes.

Conclusion for the BCT using the direct Sample-by-Sample Comparison method:

The SIF values for all image sizes and values of NSB are almost equal to the SIF values

for the Divide and Conquer method, except for NSB=100. For NSB=100, SIF is greater

for the Sample-by-Sample comparison method than that for the Divide and Conquer

Sort method.

Divide and Conquer Sort versus Sample-by-Sample Comparison: Block comparison

using Divide and Conquer Sort method is used to sort the image blocks according to the

intensities of these blocks. This helps to group blocks with equal intensities. Equal

intensity blocks can then be distributed on a parallel computer so as to balance the work

load on all processors. This increases the improvement in the speedup of parallel

processing. This aspect of work load balancing is discussed in more detail in chapter 3.

The Block Comparison Technique using Sample-by-Sample comparison method

cannot be used for grouping of blocks with equal intensity values. Therefore, we can say

that the Block Comparator Technique using Divide and Conquer method is more

suitable for parallel processing.

Chapter 2 45

Table 2.7 SIF table for the Selection Sort method

b.

Number
of

Blocks
in an
image
(NB)

256

4266

15594

% of
Number of

Similar
Blocks
(NSB)

0

10%

30%

50%

75%

85%

90%

95%

100%

0

10%

30%

50%

75%

85%

90%

95%

100%

0

10%

30%

50%

75%

85%

90%

95%

100%

Number of
Blocks in

Match List

0

26

77

128

192

218

230

244

256

0

427

1280

2133

3200

3626

3839

4053

4266

0

1560

4679

7797

11696

13255

14034

14815

15594

Number of
Unique

Blocks in
Reference

List

256

230

179

128

64

38

26

12

1

4266

3839

2986

2133

1066

640

427

213

1

15594

14034

10915

7797

3898

2339

1560

779

1

Total number of
Base Operations
for Non-Block
Comparator
Technique
(TNBCT)

942080

942080

942080

942080

942080

942080

942080

942080

942080

15698880

15698880

15698880

15698880

15698880

15698880

15698880

15698880

15698880

57385920

57385920

57385920

57385920

57385920

57385920

57385920

57385920

57385920

Number of Base
Operations for

Block
Comparator
Technique

(TBCT)

991104

897088

712672

528256

296832

202816

159424

108800

69088

25069149

23525117

20440669

17356221

13497949

11957533

11187325

10413501

9646973

1.8E+08

1.74E-K)8

1.63E+08

1.52E+08

1.38E+08

1.32E-1-08

1.29E+08

1.26E+08

1.24E-I-08

Speed
Improvement
Factor (SIF)

0.951

1.050

1.322

1.783

3.174

4.645

5.909

8.659

13.636

0.626

0.667

0.768

0.905

1.163

1.313

1.403

1.508

1.627

0.319

0.329

0.352

0.378

0.417

0.435

0.444

0.454

0.464

Chapter 2 46

Table 2.8 SIF table for the Divide and Conquer Sort method

Number

of Blocks

in an

image

(NB)

256

4266

15594

%of
Number of
SimOar
Blocks
(NSB)

0

10%

30%

50%

75%

85%

90%

95%

100%

0

10%

30%

50%

75%

85%

90%

95%

100%

0

10%

30%

50%

75%

85%

90%

95%

100%

Number oi
Blocks in

Match

List

0

26

77

128

192

218

230

244

256

0

427

1280

2133

3200

3626

3839

4053

4266

0

1560

4679

7797

11696

13255

14034

14815

15594

Number of

Unique

Blocks in

Reference

List

256

230

179

128

64

38

26

12

1

4266

3839

2986

2133

1066

640

427

213

1

15594

14034

10915

7797

3898

2339

1560

779

1

Total number of

Base Operations

for Non-Block

Comparator

Technique

(TNBCT)

942080

942080

942080

942080

942080

942080

942080

942080

942080

15698880

15698880

15698880

15698880

15698880

15698880

15698880

15698880

15698880

57385920

57385920

57385920

57385920

57385920

57385920

57385920

57385920

57385920

Number of Base
Operations for

Block

Comparator

Technique

(TBCT)

960512

866496

682080

497664

266240

172224

128832

78208

38496

16023346

14479311

11394863

8310415

4452143

2894416

2124208

1350384

601170

58601129

52960180

41681876

30407188

16308404

10578608

. 7761744

4937648

2216905

Speed

Improvement

Factor (SIF)

0.981

1.087

1.381

1.893

3.538

5.470

7.312

12.046

24.472

0.980

1.084

1.378

1.889

3.526

5.424

7.390

11.625

26.114

0.979

1.084

1.377

1.887

3.519

5.425

7.393

11.622

25.886

Chapter 2 47

Table 2.9 SIF table for the SampIe-by-Sample comparison method

Number
of Blocks

in an
image
(NB)

256

4266

15594

%of
Number of

Similar
Blocks
(NSB)

0

10%

30%

50%

75%

85%

90%

95%

100%

0

10%

30%

50%

75%

85%

90%

95%

100%

0

10%

30%

50%

75%

85%

90%

95%

100%

Number
of Blocks
in Match

List

0

26

77

128

192

218

230

244

256

0

427

1280

2133

3200

3626

3839

4053

4266

0

1560

4679

7797

11696

13255

14034

14815

15594

Number of
Unique

Blocks in
Reference

List

256

230

179

128

64

38

26

12

1

4266

3839

2986

2133

1066

640

427

213

1

15594

14034

10915

7797

3898

2339

1560

779

1

Total number of
Base Operations
for Non-Block
Comparator
Technique

(TNBCT)

942080

942080

942080

942080

942080

942080

942080

942080

942080

15698880

15698880

15698880

15698880

15698880

15698880

15698880

15698880

15698880

57385920

57385920

57385920,

57385920

57385920

57385920

57385920

57385920

57385920

Number of Base
Operations for

Block Comparator
Technique

(TBCT)

958464

862784

675104

487424

251904

156224

112064

60544

20064

15971904

14400544

11261504

8122464

4195904

2628224

1844384

1056864

276704

5.84E+07

5.26E+07

4.12E+07

2.97E+07

1.53E+07

9605536

6738816

3864736

l.OOE+06

Speed
Improvement
Factor (SIF)

0.983

1.092

1.395

1.933

3.740

6.030

8.407

15.560

46.954

0.983

1.090

1.394

1.933

3.741

5.973

8.512

14.854

56.735

0.983

1.090

1.394

1.933

3.740

5.974

8.516

14.849

57.289

Chapter 2
48

NB=15594

NB=4266

NB=256
50

% of NSB
75 100

Figure 2.19 SIF Vs NSB for the Selection Sort method

NB=15594

NB=5266

NB=256

% of NSB 100

Figure 2.20 SIF Vs NSB for the Divide and Conquer Sort method

s u
B
> o CO

•a i2

on

Figure 2.21 SIF Vs NSB for the Sample-by-Sample Comparison method

Chapter 2 49

2.4.2 Comparison of the Non-Block Comparator Technique and Block

Comparator Technique Image Compression Ratio

In this section the Image Compression Ratio obtained for the Digital Image

Compression Techniques are calculated with and without the proposed Block

Comparator Technique. Image Compression Ratio (ICR) is defined as the ratio of

original image data size to the compressed image data size as given by,

Srcimg

Compimg

where.

ICR

^Srcimg

^Compimg

=

=

=

Image Compression Ratio,

Source image data size in Bytes,

Compressed image data size in Bytes.

(2.20)

Image Compression Ratio for the Non-Block Comparator Technique is given in

section 2.4.2.1. Image Compression Ratio for the Block Comparator Technique is given

in section 2.4.2.2. A comparison of the Image Compression Ratios obtained by these

techniques is given in section 2.4.2.3.

2.4.2.1 Image Compression Ratio for the Non-Block Comparator Technique

In this section the formula is given for the Image Compression Ratio for the Non-Block

Comparator Technique. With the standard Non-Block Comparator Technique, the

compressed image data stmcture can be represented in the following format, as

discussed in section 2.3.4.

JHI JPEG Header Information

Compressed Data Blocks

EOI End Of Image Marker

The Image Compression Ratio (ICR) for the Non-Block Comparator Technique

(NBCT) can be represented by,

^^^NBCT ' S^BCT (2.21)

where,

Chapter 2 50

I C R N B C T =

^Srcimg ~

SNBCT

Image Compression Ratio (ICR) for the Non-Block Comparator

Technique,

Source image size in Bytes,

NBCT Compressed image size in Bytes.

SjsfBCT ^^^ ^^ expanded further, as given in equation 2.22. Compressed block

data size can be represented by the ratio of original image block size and the Block

Compression Factor (BCF). Compression factor depends on the quality of compressed

image, specified by the user.

Blk
^ N B C T - S j H I ' ^ ^ ^ * Br-ic "^^ BCF

EOI
(2.22)

where,

SNBCT

SjHI

NB

Sfllk

BCF

SEOI

NBCT Compressed image size in Bytes,

Size of JPEG Header Information in Bytes,

Number of Blocks in the image.

Size of one block in Bytes,

Block Compression Factor,

Size of End Of Image marker.

2.4.2.2 Image Compression Ratio for the Block Comparator Technique

In this section the formula is given for the Image Compression Ratio using the Block

Comparator Technique (BCT). The Image Compression Ratio for Block Comparator

Technique is given by.

Srcimg
^^^BCT -

where.

ICRBCT

S Srcimg

SECT

^BCT

=

=

(2.23)

Image Compression Ratio for Block Comparator Technique,

Source image size in Bytes,

BCT Compressed image size in Bytes.

For the Block Comparator Technique, the Compressed Image Data Structure can

be represented in many formats. Three different structures were selected for the analysis.

The Compressed image size for these Compressed Image Data Structures are given in

the following sections.

Chapter 2 51

In all of these storage formats the compressed image blocks are stored in two

distinct groups. The first group consists of blocks that match with a unique block. This

group is called as the Similar Block Group (SBG).

The second group consists of all the unique blocks. This group is called as the

Unique Block Group (UBG). Then the data structure for the compressed image will be

as follows:

JHI JPEG Header Information

SBG Similar Block Group

UBG Unique Block Group

EOI End Of Image marker

Compressed image size for Compressed Image Data structure-1: For the Block

Comparator Technique, the Compressed Image Data Structure-1 (CIDS-1) is given in

table 2.10. The JPEG Header Information (JHI) is the first item for the Non-Block

Comparator Technique. Following the header the Similar Block Group is stored. The

first component of this block is stored following the Similar Block Marker. In this group

each block is stored as an ordered pair comprising; Block Number followed by the

matching Unique Block Number. After the Similar Block Group comes the Unique

Block Group, where the first component is the Unique Block Marker. In the Unique

Block Group all unique blocks are stored in the correct sequence. The original block

number for each Unique Block can be identified by looking up the missing block

numbers in the Similar Block Group. The first block is always taken as Unique Block-1.

If it turns out that Block-2 and Block-3 match with Block-1 then these will be stored in

the Similar Block Group. If Block-4 is the next unique block then this block will be the

second block stored in the Unique Block Group and Block-4 will be missing from the

Similar Block Group. The End Of Image (EOI) marker is stored at the end of the file.

The size of the JPEG information header and the EOI marker are same as in the

JPEG compressed image. The size of block number is taken as sixteen bits because in

large images the number of blocks are more than 256. Size for various markers is taken

as eight bits. The size of the Compressed Image Data Structure-1 for the Block

Comparator Technique can be written as,

SRPT^I = S T H T + S + N S B * (S + S) + S + N U B * - 2 ^ + SpnT (2.24)
BCTl JHI SBM BNF UBNF UBM BCF

where,

%CT1 - BCT Compressed image size for CIDS-1 in Bytes,

%HI - Size of the JPEG Header Information in Bytes,

Chapter 2 52

^SBM - ^^^^ °^ ̂ ® Similar Block Marker,

NSB = Number of Similar Blocks,

^BNF ~ ^^^^ ^^ ^® Block Number Field,

^UBNF - '̂̂ ® °^ ̂ ® Unique Block Number Field,

^UBM - ^^^^ ^^ *® Unique Block Marker,

NUB = Number of Unique Blocks,

^Blk ~ '̂ ^̂ ® °^ °"® block in Bytes,

BCF = Block Compression Factor,

^EOI ~ ^^^^ °f ^^ E"'^ Of Image marker.

Table 2.10 Compressed Image Data Structure-1

Component

JHI

SBG

UBG

EOI

Parameter

JPEG Information Header

Similar Block Marker

Block Number, Unique Block No

Block Number, Unique Block No

Unique Block Marker

Unique Block Compressed data

End of Image marker

Symbol

JHI

SBM

BN.UBN

BN, UBN

UBM

UBCD

EOI

Size

(Bytes)

1

2 + 2

2 + 2

1

SRIV /rv

1

Compressed image size for Compressed Image Data Structure-2: For the Block

Comparator Technique, the Compressed Image Data Structure-2 (CIDS-2) is given in

table 2.11. The CIDS-2 is similar to the CIDS-1 except for the storage format of the

compressed data in the Unique Block Group. In CIDS-2 the compressed data for each

Unique Block is also stored as an ordered pair: Unique Block Number followed by the

Unique Block Compressed Data.

The size of each field is the same as in the Compressed Image Data Structure-1.

Size of the Unique Block Number Field is taken as sixteen bits. The size of CIDS-2 for

the Block Comparator Technique can be written as,

'Blk
S R P T ^ = S T H T + S + N S B * (S + S) + S +NUB*(S, ,^^+-^^^) + Spr.r (2.25)

D C I Z JHI QRM RNT7 TTPJMP'^ MR\A U B N F BCF SBM BNF UBNF UBM

where.

^BCT2 ~ ^ ^ ^ Compressed image size for CIDS-2 in Bytes,

Chapter 2 53

^JHI ~ Size of JPEG Header Information in Bytes,

•̂ SBM ~ ^̂ ®̂ °f Similar Block Marker,

NSB = Number of Similar Blocks,

^BN - ^̂ ^® °f *^ Block Number Field,

•̂ UBN ~ '̂̂ ® °f ^^^ Unique Block Number Field,

^UBM - "̂ ^̂ ^ °f *® Unique Block Marker,

NUB = Number of Unique Blocks,

•̂ Blk ~ '̂̂ ® °^ °"^ block in Bytes,

BCF = Block Compression Factor,

^EOI ~ ^^^^ °f ^^^ End Of Image marker.

Table 2.11 Compressed Image Data Structure-2

Component

JHI

SBG

UBG

EOI

Parameter

JPEG Information Header

Similar Block Marker

Block Number, Unique Block No

Block Number, Unique Block No

Unique Block Marker

Unique Block Number, Block Compressed data

Unique Block Number, Block Compressed data

End of Image marker

Symbol

JHI

SBM

BN,UBN

BN,UBN

UBM

UBN, BCD

UBN, BCD

EOI

Size

(Bytes)

1

2 + 2

2 + 2

1

2, SRIV ICP

2, SRIV ICV

1

Compressed image size for Compressed Image Data Structure-3: The Compressed

Image Data Structure-3 (CIDS-3) is given in table 2.12. In CIDS-3 the JPEG Header

Information, Unique Block Group (UBG) and EOI marker are the same as for CIDS-1.

Following the header the Similar Block Group (SBG) is stored. The SBG consists a

number of Similar Block Lists (SBL). Each SBL starts with a Similar Block Marker and

a Unique Block Number followed by the list of similar Block Numbers. The Similar

Block Marker at the head of the next Similar Block list also marks the end of the

previous Similar Block list.

The size of CIDS-3 for Block Comparator Technique can be written as.

SBCr3=SjHi+NL*(S +S
SBM

+ nl*S)+S
UBNF BNF UBM

+ N U B * ^ ^ + S
BCF EOI (2.26)

Chapter 2 54

where,

S B (3 J 3 = BCT Compressed image size for CIDS-3 in Bytes,

•̂ JHI ~ '̂̂ ® °^ ^® JPEG Header Information in Bytes,

NL = Number of Similar Block Lists in SBG,

nl = Number of Block Numbers, followed in each Unique Block list,

^SBM ~ ^^'^ °^ '^^ Similar Block Marker,

•^UBNF ~ '̂•^^ °^ ^^ Unique Block Number Field,

•̂ UBM ~ ^̂ ^® '^^ ̂ ® Unique Block Marker,

NUB = Number of Unique Blocks,

•̂ Blk ~ ^'^^ °^ °"® block in Bytes,

•̂ EOI ~ '̂̂ ® °^ ^̂ ^ -E"^ ^^ Image marker.

Table 2.12 Compressed Image Data Structure-3

Component

JHI

SBG

UBG

EOI

Parameter

JPEG Information Header

Similar Block Marker

Unique Block Number, Block No, Block No, Block No,....

Similar Block Marker

Unique Block Number, Block No, Block No, Block No,....

Unique Block Marker

Unique Block Compressed data

End of Image marker

Symbol

JHI

SBM

UBN, BN, BN ...

SBM

UBN, BN, BN ...

UBM

UBCD

EOI

Size (Bytes)

1

2 + 2 + 2...

1

2 + 2 + 2...

1

SRIV / P F

1

2.4.2.3 Comparison of Image Compression Ratios

Image Compression Ratio (ICR) for Non-Block Comparator Technique is given in table

2.13 and graph of the same is shown in figure 2.22. Image Compression Ratio for Block

Comparator Technique for three Compressed Image Data Structures (CIDS-1, ClDS-2

and CIDS-3) are given in tables 2.14, 2.15, 2.16 and 2.17. In each of these tables, the

values of Image Compression Ratio are calculated for three image sizes, viz. 125 x 125,

625 X 423, and 1100 x 900. For each image size, the values of ICR are calculated for

different output image qualities, viz. 100, 75, 50 and 25 percent. For CID-3, the graph of

ICR Vs % quality for NSB = 10%, 30%, 50%, and 75% are shown in figure 2.23, 2.24,

2.25 and 2.26 respectively.

Chapter 2 55

Conclusions are derived by comparing ICR values from all Compressed Image

Data Structures (CIDS) and by comparing ICR values from each CIDS separately. The

conclusions derived are given in the following sections.

Conclusions from all CIDS: From tables 2.13 to 2.17 we can see that the ICRs increase

as the image size increases irrespective of the quality of the output image. For each

image size the ICR increases with decrease in quality of the output image.

Conclusion for CIDS-1: From table 2.13 and tables 2.14 to 2.17 we can see that for the

CIDS-1 and quality = 100 Image Compression Ratio is slightly greater than the same for

the Non-Block Comparator Technique. For quality = 75 Image Compression Ratio is

almost equal to the same for Non-Block Comparator Technique. For quality = 50 and 25

Image Compression Ratio values are less compared to the same for the Non-Block

Comparator Technique. This indicates that the size of the compressed image using

Compressed Image Data Structure-1 for Block Comparator Technique is beneficial for

image quality greater than 75% only.

Conclusions for CIDS-2: By comparing the ICR values of CIDS-2 and CIDS-1, we can

see that ICR values for CIDS-2 are less than those for CIDS-1 for all image sizes. This

is because the Unique Block Number is stored in the Unique Block Group. This data

structure is more robust than the CIDS-1 data structure, because all the blocks numbers

are included in the data structure.

By comparing Image Compression Ratio values of CIDS-2 and Non-Block

Comparator Technique, we can see that the Image Compression Ratio values of CIDS-2

for quality = 100 are almost equal to that of Non-Block Comparator Technique. For

quality less than 100, Image Compression Ratio values are less than the same for Non-

Block Comparator Technique.

Conclusions for CIDS-3: By comparing Image Compression Ratio values of CIDS-3

with those for the other two data structures, we can see that the ICR values for CIDS-3

are greater in all cases.

By comparing CIDS-3 with Non-Block Comparator Technique, we can see that

the Image Compression Ratio values for CIDS-3 for quality = 100 and 75 are greater

than the same for Non-Block Comparator Technique. For quality = 50 the values are

almost equal. This indicates that the CIDS-3 data structure is better than the others for

quality greater than 50.

Chapter 2 56

By comparing all three Compressed Image Data Structures, we can say that

CIDS-3 is the best of these three. Therefore, CIDS-3 data structure is chosen to measure

the improvement over the Non-Block Comparator Technique.

Image Compression Ratio Improvement Factor (ICRIF): The improvement in the

compression ratio is represented by a factor called the Image Compression Ratio

Improvement Factor (ICRIF). ICRIF can be defined as the ratio of Image Compression

Ratio for Block Comparator Technique to the Image Compression Ratio for Non-Block

Comparator Technique, as given by,

^*^^NBCT (2.27)

where,

ICRg(3'j' = Image Compression Ratio for the Block Comparator Technique,

ICRj^(2T= Image Compression Ratio for the Non-Block Comparator Technique.

Table 2.18 shows the ICRIF for CIDS-3 using NSB = 75 graph of ICRIF versus

quality is shown in figure 2.27. From table we can see that the Image Compression

Ratio Improvement Factor (ICRIF) is almost equal for all image sizes irrespective of the

quality of output image. There is no benefit in using the Block Comparator Technique

for images with less than 50% quality. By using the Block Comparator Technique we

can get an improvement of 2.8 times over the Non-Block Comparator Technique for

quality = 100.

Chapter 2 57

Table 2.13 Image Compression Ratio for Non-Block Comparator Technique

Number of Blocks

NB

256

4266

15594

Quality

%

100

75

50

25

100

75

50

25

100

75

50

25

Compressed image size

for NBCT: S N B C T

3450

993

642

501

54778

13825

7974

5634

199777

50074

28688

20134

Image Compression Ratio

for NBCT: I C R N B C T

4.529

15.735

24.338

31.188

4.895

19.394

33.625

47.591

4.956

19.771

34.509

49.171

15594

Number of Blocks •
NB

50
% Quality

Figure 2.22 ICR Vs quality for NBCT

Chapter 2 58

Table 2.14 Image Compression Ratio for Block Comparator Technique using three
Compressed Image Data Structures for Number of Similar Block =
10%

Number

of

Blocks

NB

256

4266

15594

Quality

%

100

75

50

25

100

75

50

25

100

75

50

25

Compressed

image size

for cros-1

(SBCTI)

3224

1016

700

574

51023

14168

8903

6797

186051

51324

32078

24379

Image

Compression

Ratio for CffiS-l

(ICRBCTI)

4.846

15.379

22.321

27.221

5.255

18.925

30.116

39.448

5.321

19.289

30.862

40.609

Compressed

image size for

CIDS.2

(SBCT2)

3684

1476

1160

1034

58701

21846

16581

14475

214119

79392

60146

52447

Image

Compression

Ratio for CIDS-2

(ICRBCT2)

4.241

10.586

13.470

15.111

4.568

12.273

16.171

18.523

4.624

12.470

16.460

18.876

Compressed

image size

for CIDS-3

(SBCT3)

3176

968

648

522

50179

13324

8051

5945

182939

48212

28966

21267

Image

Compression

Ratio for CIDS-3

aCRBCT3)

4.920

16.142

24.113

29.933

5.343

20.123

33.303

45.101

5.412

20.534

34.178

46.551

c
JO
w
V) tr |i
io
CD
<S

E

15594

4266

Number of Blocks'
NB

50
% Quality

Figure 2.23 ICR Vs quality for CIDS-3 (NSB = 10%)

Chapter 2 59

Table 2.15 Image Compression Ratio for Block Comparator Technique using three
Compressed Image Data Structures for Number of Similar Block =
30%

Number

of

Blocks

NB

256

4266

15594

Quality

%

100

75

50

25

100

75

50

25

100

75

50

25

Compressed

image size

for CIDS-1

(SBCTI)

2775

1056

811

713

43516

14851

10756

9118

158612

53819

38848

32860

Image

Compression

Ratio for CIDS-1

aCRfiCTl)

5.631

14.796

19.266

21.914

6.162

18.054

24.928

29.406

6.242

18.395

25.484

30.128

Compressed

image size

for CIDS-2

(SBCT2)

3133

1414

1169

1071

49488

20823

16728

15090

180444

75651

60680

54692

Image

Compression

Ratio for CIDS-2

aCRBCT2)

4.987

11.050

13.366

14.589

5.418

12.876

16.029

17.768

5.486

13.086

16.315

18.101

Compressed

image size

for CIDS-3

(SBCT3)

2635

916

671

573

40964

12299

8196

6558

149268

44475

29504

23516

Image

Compression

Ratio for CIDS-

3 (ICRBCT3)

5.930

17.058

23.286

27.269

6.545

21.801

32.714

40.885

6.632

22.260

33.555

42.099

_o
M

ii
O)
(0

E

15594

Number of Blocks'
NB

50
% Quality

Figure 2.24 ICR Vs quality for CIDS-3 (NSB = 30%)

Chapter 2 60

Table 2.16 Image Compression Ratio for Block Comparator Technique using three

Compressed Image Data Structures for Number of Similar Block =

50%

Number

of

Blocks

NB

256

4266

15594

Quality

%

100

75

50

25

100

75

50

25

100

75

50

25

Compressed

image size

for CIDS-1

(SBCTI)

2326

1097

922

851

36010

15533

12608

11438

131165

56314

45621

41344

Image

Compression

Ratio for CIDS-1

aCRfiCTl)

6.718

14.243

16.947

18.361

7.446

17.262

21.266

23.442

7.548

17.580

21.701

23.945

Compressed

image size

for CIDS-2

(SBCT2)

2582

1353

1178

1107

40276

19799

16874

15704

146759

71908

61215

56938

Image

Compression

Ratio for CIDS-

2 (ICRBCT2)

6.052

11.548

13.264

14.115

6.657

13.542

15.890

17.074

6.746

13.768

16.173

17.387

Compressed

image size

for CIDS-3

(SBCT3)

2078

849

674

603

31758

11281

8348

7178

115585

40734

30041

25764

Image

Compression

Ratio for CIDS-

3 (ICRBCT3)

7.519

18.404

23.182

25.912

8.443

23.768

32.118

37.354

8.565

24.304

32.955

38.426

15594

4266

Number of Blocks •
NB

50
% Quality

Figure 2.25 ICR Vs quality for CIDS-3 (NSB = 50%)

Chapter 2 61

Table 2.17 Image Compression Ratio for Block Comparator Technique using three
Compressed Image Data Structures for Number of Similar Block =

75%

Number

of

Blocks

NB

256

4266

15594

Quality

%

100

75

50

25

100

75

50

25

100

75

50

25

Compressed

image size

for CIDS-1

(SBCTI)

1763

1148

1061

1025

26620

16387

14925

14340

96854

59433

54087

51949

Image

Compression

Ratio for CIDS-1

(I C R B C T I)

8.863

13.611

14.727

15.244

10.072

16.362

17.965

18.698

10.222

16.657

18.304

19.057

Compressed

image size

for CIDS-2

(SfiCTl)

1891

1276

1189

1153

28752

18519

17057

16472

104650

67229

61883

59745

Image

Compression

Ratio for CIDS-2

(ICRBCT2)

8.263

12.245

13.141

13.552

9.325

14.478

15.719

16.278

9.460

14.726

15.998

16.570

Compressed

image size

for CIDS-3

(SBCT3)

1387

772

685

649

20228

9995

8525

7940

73470

36049

30703

28565

Image

Compression

Ratio for CIDS-3

(ICRBCT3)

11.265

20.240

22.810

24.076

13.255

26.826

31.452

33.769

13.475

27.463

32.244

34.658

15594

4266

Number of Blocks -
NB

50
% Quality

Figure 2.26 ICR Vs quality for CIDS-3 (NSB = 75%)

Chapter 2 62

Table 2.18 ICRIF for the BCT usmg the Compressed Image Data Structures-3 for
NSB = 75%

Number

of Blocks

NB

256

4266

15594

Quality

%

100

75

50

25

100

75

50

25

100

75

50

25

Image Compression

Ratio for NBCT

(I C R N B C T)

4.529

15.735

24.338

31.188

4.895

19.394

33.625

47.591

4.956

19.771

34.509

49.171

Image Compression

Ratio for CIDS-S

(ICRBCT3)

11.265

20.240

22.810

24.076

13.255

26.826

31.452

33.769

13.475

27.463

32.244

34.658

Image Compression

Ratio Improvement

Factor ICRIF

2.487

1.286

0.937

0.772

2.708

1.383

0.935

0.710

2.719

1.389

0.934

0.705

S
o

NB=256

NBs4266

NB=15594

100

Figure 2.27 ICRIF Vs quality

Chapter 2 63

2.5 Summary

Various digital image compression techniques such as Vector Quantisation (VQ),

fractal, wavelet and JPEG were explained in this chapter. The JPEG technique is used in

many applications. Therefore the JPEG algorithm is chosen for our research purpose.

The JPEG algorithm can be implemented in hardware as well as software. Many

of the limitations of hardware implementation can be overcome in software based

implementations.

In the JPEG algorithm all image blocks are processed individually. These blocks

of compressed image are stored sequentially. In many types of images, there is the

possibility of having one or more similar blocks in the image. Improvement in

performance of the compression algorithm can be achieved by locating similar blocks in

the image. The Block Comparator Technique was proposed to enhance the performance

of the JPEG algorithm. An overview of the Block Comparator Technique was given in

this chapter.

The Block Comparator Technique improves the speed of the compression and

decompression operations and reduces the size of the compressed data file. These two

factors have been discussed in this chapter. Improvement in the speed of Block

Comparator Technique is expressed in terms of Speed Improvement Factor. Using

analytical methods, the Speed Improvement Factor for the Block Comparator Technique

using Divide and Conquer method was found to be suitable for all image sizes.

Three types of Image Data Structures were introduced for the Block Comparator

Technique. By comparing the three Image Data Structures, it was concluded that the

Image Data Stmcture-3 is more suitable for all image sizes. The Image Compression

Ratio improvement Factor of Image Data Structure-3 = 2.8. This indicates that the

compressed image size for CIDS-3 is 2.8 times less than the compressed image size of

the Non-Block Comparator Technique.

From these speed and compressed image size comparisons we can conclude that

the Block Comparator Technique is a useful technique to enhance the JPEG

compression algorithm. This Block Comparator Technique can be implemented on

parallel computers to speedup the operation further. This is explained in the next

chapter.

Chapter 3 64

Chapter 3

PARALLEL PROCESSING PLANS FOR DIGITAL
IMAGE COMPRESSION TECHNIQUES

Contents

3.1 Introduction 65

3.2 Parallel Computer Architectures 65

3.3 Parallel Processing Plans for Digital Image Compression Techniques 72

3.4 Implementation of Plans on Parallel Computer Architectures 76

3.5 Performance Measures 83

3.6 Summary 84

Abstract

This chapter describes methods used for parallel processing of digital image

compression algorithms. Various types of parallel computers and parallel processing

Plans for digital image compression are described.

Parallel computers can be classified based on memory access technique, network

topology and some other issues. Three parallel computers were chosen for the

experimentation, each with a different memory access architectures, viz. the Mercury

system with a distributed memory architecture, the Shiva system with a shared memory

and the Param system with a hybrid memory architecture.

Digital image compression can be implemented in a variety of ways on parallel

computers. Each uniquely identifiable way of implementation is called as a 'Plan'. Some

of these Plans were implemented on available parallel computers and other Plans were

simulated using the Network n.5 simulation package. Performance of these Plans can be

evaluated in terms of speedup, scaleup, and efficiency.

Chapter 3 65

3.1 Introduction

Parallel processing is often used to increase the computation speed of a task by dividing

the task into several sub-tasks and allocating multiple processors to execute multiple

sub-tasks simultaneously. A wide variety of parallel computers are used for parallel

processing. Section 3.2 briefly describes the various parallel computer architectures and

parallel programming languages.

Digital image compression can be implemented on parallel computers in a

variety of ways. Each way of performing image compression is called as a 'Plan' in this

thesis. Each Plan used for digital image compression on a parallel computer can be

specified by a 6-tuple consisting of the image compression technique, block

dependency, image partitioning method, memory architecture, memory organisation /

network topology and the number of processors. Section 3.3 describes these Plans in

detail. Some of these Plans were implemented on available parallel computers such as

Mercury, Shiva and Param systems. Section 3.4.1 describes the implementation detail

on these parallel computers. Other Plans were simulated using the Network n.5

simulation package. Simulation models for these Plans are described in section 3.4.2.

These plans were evaluated in terms of speedup, scaleup, and efficiency. These

terms are defined in section 3.5.

3.2 Parallel Computer Architectures

One of the main aims of this research project was to investigate the application of

parallel computers architectures to speedup digital image compression operations.

Parallel computer architectures can be classified based on factors described below

[Krishnamurthy, 89].

1 Granularity: The number of processors used in a system is a measure of its

granularity. Granularity can be classified as fine grain, medium grain, and coarse

grain. In a fine grained parallel computer several thousand processors are used. In a

medium grained parallel computer a few tens to several hundred processors may be

used. Whereas, in a coarse grained parallel computer only a few processors are

used.

2 Interconnection topology: The processors can be interconnected to form a

network with topologies such as Ring, Array, Mesh, Tree, Cube, Pyramid etc.

3 Task allocation: Task allocation on any architecture is a mapping of the program

onto the available machine resources. This can be done statically or dynamically.

Chapter 3 66

In a static mapping all the tasks are allocated prior to program execution, based on

the system topology. In dynamic allocation, the tasks may be migrated from one

processor to another to balance the work load.

One of the most widely used taxonomy for parallel architecture was proposed by

Flynn. In this taxonomy singularity or multiplicity of instruction stream and data stream

is the basis for classification. This gives us four possible classes of parallel computers,

namely [Krishnamurthy, 89],

1 Single Instruction stream Single Data stream (SISD) machines,

2 Single Instruction stream Multiple Data stream (SIMD) machines,

3 Multiple Instruction stream Single Data stream (MISD) machines,

4 Multiple Instruction stream Multiple Data stream (MIMD) machines.

A SIMD machine is a computer system consisting of a single control unit, N

processors, M memory modules, and an interconnections network. The instructions are

broadcast from the control unit to all the processors and processors execute the same

instructions at the same time [Siegel, 85].

MIMD architectures operate in parallel in an asynchronous manner and generally

share data either through a common memory or by passing data over communication

channels. Some of the commercially available MIMD computers are CM-5, NCUBE,

iWarp, iPSC, Paragon, Meiko computing system, Teradata etc. [Hord, 93].

Based on memory architecture parallel computers are classified as shared

memory, distributed memory, and hybrid memory architectures. These are explained in

the following sections.

3.2.1 Shared Memory Architecture

In a shared memory architecture the processors use a shared memory space for passing

data and messages. Shared memory architecture is further divided into global memory

architecture and global-plus-local memory organisation. In the global memory

organisation, there is a only one main memory module and all processors access the

same global memory. Whereas, in a global-plus-local memory organisation each

processor has its own local memory, and can also access the main global memory.

These two types of architectures are shown in figure 3.1.

Chapter 3 67

(a)

Main Global Memory

SHARED BUS

I
PEl

I
I
I

PE2

Local Memory

I
Local Memory

I
PEn

I
Local Memory

(b)
Figure 3.1 Shared Memory Architectures

a) with global memory organisation

b) with global-plus-local memory organisation

3.2.2 Distributed Memory Architecture

In the distributed memory architecture all processors have only their own local memory.

Processors can be connected in many different interconnection topologies. Based upon

the interconnection topology, distributed memory architectures can be classified as Tree,

Mesh, Cube, and Pyramid architectures. These topologies with various number of

processors are shown in figure 3.2, 3.3, 3.4 and 3.5. These figures show the

interconnection schemes with each processor having upto four links. It is easy to

construct these configurations in a Transputer based system, since each Transputer T805

has got four links.

Figure 3.2 shows the interconnection schemes using Tree topologies with three

processors, nine processors, fifteen processors and twenty seven processors. In all these

topologies, the host processor is connected to two other processors. The host processor

Chapter 3 68

is mainly used for allocating tasks and collating the information from all other

processors. Slave processors are named as PE. These slave processors are used for

processing the sub-tasks. In Tree topology all slaves are not interconnected. This type of

topology is suitable for applications with non-interdependent tasks.

^ r

PEl

w
w

Host
Processor

.M

^

^ r

PE2

(a)

1
\

PE3

^
1 r

PEl

%

PE4

^
w

Host
Processor

^

^ r

PES

y

^

r
PE6

- •

^ r

PE2

A

PET PE8

(b)

r

PE3

%
PE9

; '
•

> PE1

%
PE4

*
PE10

Host
Processor ^ 1

^ ^ 1
^ 1

PES

*
PE11

^ r
PE6

i
PE12

T

PE2

T
PE7

%

PE13

4 1

1
PES

•
T

PE14

(c)

r^

•4

Host
Processo

PEl

PE9

PE3

T̂ PE21

• PE4

PEIO

^

PE22

PE2 <

PES

PEll

PE15 PE16

PE6

PE23 PE12

PE17

n
IT
•

> PE7

PE24 PE3

PE18

PE25

> PES

PE20

PE19

PE20

PE14

(d)
Figure 3.2 Tree topologies with

(a) three processors
(b) nine processors
(c) fifteen processors
(d) twenty seven processors

Chapter 3 69

I i
Host

Processor n
PEl

I
PE2

PE3

I
PE4

(a)

Host
Processor

PEl PE2 PE5

L X 1
FE3 PE4

r j[
PE6

PE7 PES

i
PE9

(b)

"̂

w
w

r

PE1 w—•

1 Host
Processor

PE2

^
^

PES WW

y r

PE10

L X X J
PE7 PES PE9 PE12

(c)

Figure 3.3 Mesh topologies with

(a) five processors

(b) ten processors

(c) seventeen processors

Figure 3.3 shows the interconnection schemes using Mesh topologies with five

processors, ten processors, and seventeen processors. The host processor in these

Chapter 3 70

topologies is connected to two slave processors. All slave processors are interconnected

in A Mesh structure. This type of Mesh topology is mainly used for applications which

have interdependent tasks. The Mesh topology can easily be converted into a Torus

topology. In Torus topology last column processors are connected to the first column

processors and last row processors are connected to first row processors. Torus topology

is often used in image processing applications.

Figure 3.4 shows the interconnection schemes using Pyramid topology with five

processors and twenty one processors. In this topology, the host processor is connected

to four slave processors. The twenty one processors topology is similar to a Quad-Tree

topology where each processor is connected to four other processors. This topology is

suitable for applications with both interdependent and non-interdependent task.

r
PEl

t
PE3

i

. 1 V
J
^

Host
Processor

\ \
L r

^

PE2

J
PE4

(a)

PE5

PE7

Host
Processor

PEIO

PE13

PE15

PEl] PE12

PE17 W— • PE18

- 4 J PE4 "^""'''^ T
I ^ |W W k ^ ^ ^ I

PE19 W • PE20

(b)
Figure 3.4 Pyramid topologies with

(a) five processors
(b) twenty one processors

Chapter 3 71

Figure 3.5 shows the 3-dimensional Cube architecture with nine processors,

where host processor is connected to four slave processors.

Interconnection schemes described above are only indicative of the manner in

which various topologies can be constructed. Different sets of interconnection schemes

can be generated by varying the number of connection available of the processing

elements.

^

^
w

r/^
PE1

i

^

k

^

Host
Processor

t
• PES

ik
^

r
PCQ

4/

^
^

^

^ ^ ^
^

^
^

w

^

' PF7

y f

PE2

w

V

PE6

'^ 1
*— t- - ^ ^

w
DT'<
r

w

w—^

PES

Figure 3.5 Cube topology

3.2.3 Parallel Programming Languages

Parallel programming languages can be classified into Procedure Oriented, Message

Oriented and Operation Oriented languages [Fleming, 88]. Procedure Oriented

Languages are best suited to uni-processors and are used when data is passed through

shared variables. In a Message Oriented Languages data can be passed with or without

shared memory. Operation Oriented languages are suitable for programming on

distributed memory architectures.

Some of the commonly used parallel programming languages are Fortran,

OCCAM, C-H-, C. The C programming language was chosen for the implementation,

because C code can be easily ported to other parallel computers and it is supported by

most of the operating systems.

Chapter 3 -72

3.3 Parallel Processing Plans for Digital Image Compression
Techniques

Digital image compression technique can be implemented on parallel computers in

many different ways. A specific way of implementation is called as a 'Plan'. Each Plan

used for digital image compression on a parallel computer can be specified by a 6-tuple

consisting of Image Compression Technique (ICT), Block Dependency (BD), Image

Partitioning Method (IPM), Memory Architecture (MA), Memory Organisation /

Network Topology (NT) and the Number of Processors (NP). Plan (P) thus can be

represented as;

P(ICT, BD, IPM, MA, MO/NT, NP)

where, P is Plan for implementation,

ICT is the Image Compression Technique used for image processing,

BD is Block Dependency used for image processing,

IPM is Image Partitioning Method used for image processing,

MA is Memory Architecture used for parallel processor,

MO/NT is Memory Organisation / Network Topology used for parallel processor,

NP is Number of Processors.

These factors are explained in the following sections.

3.3.1 Image Compression Technique (ICT)

Image Compression Technique can be classified into conventional image compression

technique and block comparator enhancement to the JPEG technique. The conventional

image compression technique is based on the JPEG algorithm without any block

comparisons. The conventional technique is called as the Non-Block Comparator

Technique (NBCT) in this thesis. The block comparator enhancement to the JPEG

algorithm, based on block comparison and the JPEG algorithm, was explained in

section 2.4. This technique is called as the Block Comparator Technique (BCT) in this

thesis. The structure of classification of image compression technique is shown in figure

3.6.

Image Compression
Technique (ICT)

W-
Non-Block Comparator

Technique (NBCT)

Block Comparator
Technique (BCT)

Figure 3.6 Classification of Image Compression Technique

Chapter 3 73

3.3.2 Block Dependency (BD)

Most of the digital image compression algorithms use a block of 8 x 8 samples. To

obtain a smoothing effect, the value of the neighbouring samples for each sample need

to be considered. When the value of neighbouring samples are utilised the processor

processing an image block, needs access to the edge samples in its neighbouring blocks.

This is called Inter-Block Dependency (IBD) method. If smoothing effect is not required

then samples in neighbouring blocks need not be accessed. This method is called as

Non-Inter-Block Dependency (NIBD) method in this thesis.

On parallel computers, task allocation can be done in two ways in the Inter-

Block Dependency method. In this method the basic blocks are called the Root Objects

and edge sample of neighbouring blocks are called Leaf Objects. One way of allocating

compression tasks is to allocate the task with only the Root Objects transmitted to the

respective processors. Then the Leaf Objects (neighbouring samples) can be accessed

from neighbouring processors. Since it requires run-time communication between

processors it is called Inter-Processor Communication (IPC) method. The second way of

task allocation is to allocate task with the Root Object along with the Leaf Objects. In

this method there is no need of accessing neighbouring samples from other processors at

run-time, ehminating the need for inter-processor communication. This method is called

Non-Inter-Processors Communication (NIPC) method.

Classification of Block Dependency on parallel computers is shown in figure

3.7.

Block Dependency (BD)"

Inter-Block Dependeny (IBD)"

Non-Inter-Block Dependency (NIB)

^Inter-Processor Communication
r iPd

Non-Inter-Processor
•Communication
(NIPC)

Figure 3.7 Classification of Block Dependency

3.3.3 Image Partitioning Method (IPM)

Most of the digital image compression algorithms use a block of 8 x 8 samples. Choice

of an Image Partitioning Method based on blocks of an image is an important step,

Chapter 3 74

because it determines system efficiency, processing workload balance and the amount of

usable parallelism.

hnage Partitioning can be done in two ways. One method is to divide the

complete image into a number of blocks. These blocks can be grouped into tasks equal

to the number of processors. This method is called Block Based Image Partitioning

(BBIP).

Second method of Image Partitioning can be done by dividing the complete

image into a number of blocks such that each block is weighted in terms of intensity.

The blocks can be grouped into a tasks which consists of equal intensity values. This

method is called Balanced Workload Image Partitioning (BWIP).

Classification of Image Partitioning Method is shown in figure 3.8.

- • Block Based Image Partitioning
Partitioning

Method CPM^
• Balanced Workload Image Partitioning (BWIP)

Figure 3.8 Classification of Image Partitioning Method

3.3.4 Memory Architecture (MA)

Based on memory access parallel computers are broadly classified as shared memory

architecture, distributed memory architecture, and hybrid memory architecture as

discussed in section 3.2. In this research shared and distributed memory architectures

are primarily used. Classification structure of Memory Architecture is shown in figure

3.9.

Shared Memory
Architecture (SMA)

Memory Architecture
(MA) W-

W-

Distributed Memory
Architecture (DMA)

Hybrid Memory
Architecture (HMA)

Figure 3.9 Classification of Memory Architecture

Chapter 3 75

3.3.5 Memory Organisation / Network Topology (NT)

Processors can be connected in many different interconnection topologies. Based upon

the interconnection topologies, shared memory architecture can be classified as global

memory organisation and global-plus-local memory organisation. Distributed memory

architectures can be classified as Tree, Mesh, Cube, and Pyramid architecmres.

Classification structure of Memory Organisation / Network Topology is shown in figure

3.10.

- • Shared Memory Architecture with Global Memory (SGM)

-W Shared Memory Architecture with Local-Plus-Global Memory (SLgM)

-W Distributed Memory Architecmre with Tree Totology (DTrT) Memory
Organisation /

Network Topology
(MO/NT) Distributed Memory Architecmre with Torus Topology (DToT)

Distributed Memory Architecmre with Cube Topology (DCuT)

Distributed Memory Architecmre with Pyramid Topology (DPyT)

Figure 3.10 Classification of Memory Organisation / Network Topology

3.3.6 Number of processors (NP)

In a shared memory architecture, memory organisation can be constructed with any

number of processors from one to N.

In distributed memory architecture number of processors are fixed for a

symmetrical topology. For example symmetrical tree topology can be constructed with

3, 9, 15, or 27 processors. Symmetrical torus topology can be constructed with 5, 9, and

17, symmetrical cube topology may have 5 or 28 processors, whereas symmetrical

pyramid topology can have 5, 9, or 21 processors. The number of processors used in

different symmetrical network topologies is shown in figure 3.11.

__^ SGM 2, 4, 6, 10, 15, 20

Number of
Processors (NP)

SLgM 2,4, 6, 10, 15,

DTrT 3, 9, 15,

DToT 5, 9, 17

DCuT 5,

DPyT 5, 9,

Figure 3.11 Classification of Number of Processors

Chapter 3 yg

3.4 Implementation of Plans on Parallel Computer Architectures

Some of the digital image compression Plans were implemented on parallel computers,

while many others were simulated using the Network n.5 package. A brief introduction

to the computers used for implementing some of the Plans is given in section 3.4.1.

Simulation steps used for modelling and simulating other Plans are given in section

3.4.2.

3.4.1 Implementation of Digital Image Compression Plans on Parallel Computers

Plans for Non-Block Comparator Technique (NBCT) were implemented on parallel

computers such as. Mercury system, Shiva system, and Param system. These computers

are course grained and are described in the following sections.

Mercury system: The Mercury system was designed and developed by the

Collaborative Information of Technology and Research Institute (CITRI), Melbourne

[Bevinakoppa, 92]. It is a message passing parallel computer. Mercury system

comprises four T800 transputers and sixteen T805 transputers and operates as back-end

processor to a 386 based host processor. The JPEG algorithm was implemented on

various number of processors on Mesh topology distributed memory architecture using

the Plan,

Mercury Plans := P(NBCT, NIPC, BBIP, DMA, DToT, NP)

where,

NP = 1 I 2 1 3 I 5 I 9 I 17,

Image Size = 125 x 125 I 228 x 231 I 625 x 423.

This Plan was implemented on the Mercury system with NP = 1, 2, 3, 5, 9, and

17 for three different three image sizes. Thus a total of eighteen (6 x 3) Plans were

implemented. The implementation procedure of these Plans on the Mercury system is

explained in detail in section 4.2.

Shiva system: The Shiva system was developed at Defence Science and Technology

Organisation (DSTO) Australia [Nelson, 92b]. This system is a multiprocessor designed

with shared memory architecture. It can accommodate upto eighteen Intel's i860

processor boards. The JPEG algorithm was implemented on this global-plus-local

memory architecture machine using the following Shiva Plans. Details of

implementation of these nine Plans are given in section 4.3.

Chapter 3 77

Shiva Plans := P(NBCT, NIPC, BBIP, SMA, SLgM, NP)

where,

NP=1I2I3

Image Size = 125 x 125 1 228 x 2311 625 x 423.

Param system: The Param system was designed and developed by the Centre for

Development of Advanced Computing (C-DAC), India [Bhatkar, 94]. Param is a

multiprocessor system that uses message passing, as well as shared memory parallel

programming. Each node of the Param system contain four Transputers and one i860

processor. The JPEG algorithm was implemented on this hybrid architecmre with

various number of processor connected in Mesh topology. Plans used on this

architecture may be represented by,

Param Plans := P(NBCT, NIPC, BBIP, DMA, DToT, NP)

where,

NP=II2I3,

Image Size = 125 x 125 I 228 x 2311 625 x 423.

The Detail of these nine implementations are explained in section 4.4.

These three machine were used to implement a total of twenty six Plans. More

than two hundred other Plans were simulated using the Network n.5 simulation

package.

3.4.2 Simulation of Parallel Processing Plans for Image Compression

Simulation allows the assessment of potential performance before operating newly

designed systems. It permits the comparison of various operating strategies of a system

when the real system is not available. It allows measurement of parameters such as the

time taken for various operations, utilisation of various components and system

efficiency.

Network n.5 package was used to model the operation of various Plans for

parallel processing of the JPEG algorithm. The execution times of these Plans were

obtained by running various simulations on the Network n.5 models. Simulation results

are given in chapter 5. The procedure adopted for developing the models, and running

the simulations is explained in this section.

Model building and simulation involves ten steps, viz. problem formulation,

model building, data collection, model translation, model verification, model validation.

Chapter 3 78

experiment planning, experimentation, analysis of results, and documentation [Sharda,

95]. Each of these steps are described briefly in the following sections.

3.4.2.1 Problem Formulation

The first step in building a model is to make a clear statement of the problem. This

includes stating the objectives of the modelling and simulation project. An accurate and

precise problem statement is very essential for a systematic and smooth operation of the

simulating process.

The main aim of our simulation work is to test the operation of image

compression algorithms on different parallel computer architectures. To systematise the

modelling and simulation work the idea of a Plan was introduced, in section 3.3. Each

Plan was translated into a model using the Network n.5 package. Performance figures

for these Plans were obtained by running simulations on these models.

3.4.2.2 Model Building

There can be many different types of models such as descriptive models, physical

models, mathematical models, flow charts, schematics and computer based models. The

computer based models was chosen for discrete event simulation.

The criteria used in selecting the best type of model are [Leigh, 83]:

• Design a model that could be used for different applications with some variations in

the model [Reitman, 81].

• Simulation models may work for some specific real systems and may not work for

other systems. Because, hidden critical assumptions may cause the model to diverge

from reality. Therefore, it is a better idea to design a model for a specific problem

with all the required parameters.

• The model output should be close to the expected output value. If not, the above

steps need to be followed again from the beginning.

The various Plans, mentioned in section 3.3, were modelled for parallel

processing of the JPEG algorithm. The following steps were followed for each of the

models built.

3.4.2.3 Data Collection

Data for various parameters of the model e.g. that of a parallel computer system can be

collected from various sources. Data, such as values of various parameters of the model.

Chapter 3 79

may either have a single value or a range of values. These values can be collected

through literature survey and/or initial experimental results.

Data required for modelling the execution of Digital Image Compression

techniques on parallel computers comprises data related to different compression

techniques, and data required for modelling parallel computers. For the Non-Block

Comparator technique data was collected from the existing JPEG algorithm described in

the current literature. For the Block Comparator technique data was obtained from the

experimental results, by running the block comparison step on Sparc n processor several

times. From the experimental results it was found that parameters, such as execution

time, followed Normal Distribution.

Distributed, shared, and hybrid memory architectures were used for modelling

some of the Plans. The parameters required for modelling these architectures were taken

from the manufacturer's specification for the three parallel machine (Mercury, Shiva,

and Param) described in section 5.2.

3.4.2.4 Model Translation

Next step is to translate the model into a form which can be processed on a computer.

Model translation can be done in two ways, either by using a suitable computer

language, or by using a simulation package.

Simulation programs can be written in high level programming languages such

as Fortran or Pascal. Some languages are designed specifically for simulation, such as

SimSript, GPSS, Simula [Bratley, 83] [Naylor, 68]. A special simulation language such

as Continuous System Simulation Language (CSSL) or Modified Integration Digital

Analogue Simulator (MIDAS) is extremely easy to use [Stephenson, 71].

Some simulation packages target towards specific application areas are also

available. For example Network n.5, COMNET n.5 and SIMLAN H can be used to

model computer networks. Network n.5 simulation package was chosen for simulation

of digital image compression techniques on parallel computers. Network n.5 is

described in the following section.

Network II.5 simulation package: Network n.5 is a simulation package which takes in

the description of the computer hardware and software and gives reports on measures

such as hardware utihsation, software execution, times taken for message dehvery,

contention of memory, total system performance etc [CACI, 94]. It has an interactive

graphical interface and can generate diagrams of the computer, storage devices, and

transfer devices. Network n.5 models the interactions between all the devices in the

system.

Chapter 3 80

Network n.5 package has three main functions, viz., system description, system

simulation and system analysis. In system description, all the devices or components are

represented by graphical icons and their attributes can also be specified via a graphical

interface. Simulation results can be analysed after running various experiments on the

models. Network n.5 facilitates this analysis through animation, plot of device status

and reports.

There are two categories of entities in Network n.5; hardware and software.

These are described in following sections.

Hardware description on Network II.5: Hardware devices are modelled as one of the

three building blocks available in Network n.5; these are. Processing Element (PE),

Transfer Device (TD), and Storage Device (SD), depending on the function of the

device being modelled.

The Processing Element building block can be used to simulate any intelligent

hardware devices such as bus controller, display controller, and Central Processing Unit

(CPU). A PE is characterised by parameters such as basic cycle time, message list size,

I/O setup time, time slice, interrupt overhead, input controller, and instruction

repertoire. The instruction repertoire is classified into four groups of instructions;

processing instructions, read/write instructions, message instructions and semaphore

instructions.

Transfer Devices are the links between Processing Elements and Storage

Devices or between two Processing Elements. Transfer Devices are characterised by

parameters such as transfer speed, transfer overhead, number of words, number of

blocks and protocol definition. A message instruction is used to move the data between

two PEs and read/write instructions are used to move the data between PE and storage

device. Network n.5 automatically computes the actual time to send the data, and

organises the data transfer according to the specified transfer protocol. The transfer

protocol attribute may be set to model First Come First Serve (FCFS), collision, token

ring, token bus, priority, aloha, and other protocols.

A Storage Device (SD) can be connected to more than one Processing Elements.

Storage Devices are used to store data in files. The capacity of these is measured in bits.

Read / write instructions are used to read the data from file and write the data to a

specified file. If a specified file does not exist. Network n.5 gives a warning message at

mn time. Only a portion of the data can be accessed at any time. If the file structure is

yet to be determined or is not significant to the simulation, files can be read from, or

write to, a general storage (GS). The general storage keeps track of the number of bits

stored.

Chapter 3 81

Software description on Network 11.5: In a Network n.5 based simulation, algorithm

(software) is modelled in the form of software modules. Each module contains a list of

PEs on which it may execute, a description of when it may run i.e. module

preconditions, what it is to do when running i.e. instruction list, and which other

modules to start upon completion i.e. successors. Each module goes through four cycles,

these are;

1. Check preconditions

2. Once all preconditions are met queue up for PEs

3. When the PE becomes available execute instructions from its instruction list.

4. After the module has issued the last instruction in its instruction list, choose its

successor modules, if any.

3.4.2.5 Model Verification

The purpose of the verification step is to ensure that the model behaves as planned and

that it is a true representation of the system being modelled [Roberts, 83].

Network n.5 facilitates verification by providing graphical output for the

hardware and software components of the model. The complete (hardware plus

software) model can be verified by running animation. This enables visualisation of the

modelled system in operation. The operation of each implementation can be seen

visually and can be compared against the planned model. The animation operation can

be performed as a step-by-step operation or as a continuous operation.

3.4.2.6 Model Validation

A model can be validated by proving that the model is a correct representation of the

real system. There are various techniques for validation ie. mathematical technique,

experimental, or statistical. The best way to validate a model is to compare the results of

the simulation with results produced by the real system operating under the same

conditions. If the compared result is within +/- 10% of the predicted value then the

model is said to be validated.

In our research some of the Plans were implemented on real systems such as

Mercury system, Shiva system, and Param system. The same Plans were simulated on

Network n.5 package. Validation for our system was done by comparing the

experimental results obtained on the real systems with the results obtained from the

Network n.5 based modules.

Chapter 3 82

3.4.2.7 Experiment Planning

To run a series of experiments we must plan for the values over which the variables

would be varied; because only a finite number of experiments can be ran on each model.

To draw a useful conclusion, for some system we may be able to plan the experiment

before the simulation starts. For complex systems, the later experiments have to be

planned based on experience from the initial experimental results.

For our simulation, various Plans were simulated. For each Plan the Number of

Processors parameter was varied from low values to high values till the speedup started

decreasing. From these series of experiments the speedup and scaleup performance

measures were determined.

3.4.2.8 Experimentation

A total of ten Plans were modelled, and, on an average, thirty experiments were run for

each Plan. Therefore, a total of three hundred experiments were run on the Network n.5

based models.

3.4.2.9 Analysis of Results

A vast volume of data is generated from the large number of experiments carried out.

This data is plotted in a series of graphs to be able to study this data. These graphs are

then analysed to derive conclusions.

3.4.2.10 Documentation

The output data produced by these experiments must be well documented.

Documentation is essential for reuse and maintenance of the model.

In our system all the Plans which are represented in graphical objects were

documented, and were stored on a computer disk using ABC flow chart. The

experimental results obtained for all the Plans were maintained on disk using Excel

spreadsheet. Speedup were calculated using the spreadsheet software and graphs of each

Plan were drawn using Microsoft Draw.

Chapter 3 83

3.5 Performance IVIeasures

Parallel processing performance is measured in terms of speedup, scaleup and efficiency

of the system. These terms are defined in the following sections.

Speedup of a parallel processor: Speedup for N processors is defined as the time taken
by a single processor divided by the time taken by N processors [Kumar, 94]. Speedup
(Sjsf) of parallel processor is given by,

S N

where,

S N

Tl

T N

T I / T N

Speedup for N processors,

Time taken by a single processor.

Time taken by N processors.

(3.1)

Speedup curves can be of one of three types: superlinear, linear or sublinear as

shown in figure 3.12.

Linear speedup is obtained when the improvement in performance is

proportional to the number of processing elements in the system. Superlinear speedup is

obtained when the speedup curve is above the linear curve. But, in most of the real

implementations, linear or superlinear speedups cannot be obtained due to

communication overhead. When the speedup curve lies below the linear curve sublinear

speedup is obtained.

Superlinear Speedup

Speedup-S

Linear
Speedup

Sublinear Speedup

Number of Processors-NP

Figure 3.12 Speedup graph

Scaleup: For sublinear speedup, initially the speedup increases as the number of

processors in the system increases, and at some point the speedup starts decreasing with

further increase in the number of processors, as shown in figure 3.13. Scaleup of a

Chapter 3 84

parallel architecture is a function of the maximum number of processors at which the

speedup starts decreasing. For brevity, scaleup is defined as the number of processors at

the point of maximum speedup.

Speedup-S

Scaleup

Figure 3.13 Speedup graph showing scaleup

Efficiency: Efficiency (T|) is defined the average speedup of each processor in a parallel

processor, and is given by,

where:

S N

N

S N / N ,

Efficiency,

Speedup of the parallel processor.

Number of processors.

(3.6)

3.6 Summary

Digital image compression can be implemented on parallel computers to speedup the

operation. This chapter explained the different types of parallel computers and parallel

programming languages. Various Plans for digital image compression on parallel

computers were given. Some of these Plans were implemented on available parallel

computers such as, Mercury, Shiva and Param systems. Some other Plans were

simulated using Network II.5 simulation package.

Performance measures such as speedup, scaleup, and efficiency for parallel

architectures were defined. These performance measures will be used in chapter 5 to

evaluate the performance of various Plans for the parallel processing of JPEG algorithm.

Chapter 4 85

Chapter 4

IMPLEMENTATION OF THE JPEG ALGORITHM
ON THREE PARALLEL COMPUTERS

Contents

4.1 Introduction 86

4.2 Implementation of the JPEG Algorithm on the Mercury System 86

4.3 Implementation of the JPEG Algorithm on the Shiva System 94

4.4 Implementation of the JPEG Algorithm on the Param System 104

4.5 Performance Comparison of Parallel Computers I l l

4.6 Summary 122

Abstract

This chapter explains the hardware architecture and implementation of the JPEG

algorithm on the parallel computer systems; Mercury, Shiva and Param.

The Mercury system uses a message passing distributed memory architecmre.

The Shiva system is a shared memory parallel architecture and has a torus

interconnection topology. The Param system has a hybrid architecture, with distributed

as well as shared memory.

The JPEG algorithm was implemented on the three above mentioned parallel

computers with different image sizes on various sized networks. This chapter describes

the implementation procedure and the experimental results obtained on each of these

systems.

Chapter 4 gg

4.1 Introduction

This chapter describes the implementation of the JPEG algorithm on three parallel

computers namely; Mercury system, Shiva system and Param system.

The Mercury system was designed and developed by the Collaborative

Information Technology and Research Institute (CITRI), Melbourne. It is a distributed

memory, message passing parallel computer. The Mercury system comprises of twenty

transputers and is used as a back-end processor to a personal computer.

The Shiva system was developed at the Defence Science and Technology

Organisation (DSTO), Australia. It uses shared memory architecture and is used as a

back-end system to a Sparc station. Shiva comprises of one Master unit and multiple

Slave units. Slave units may be of any type, viz. Intel i860 based processors or a special

purpose processor.

The Param system was designed and developed by the Centre for Development

of Advanced Computing (C-DAC), India. It is a multiprocessor system that uses

message passing as well as shared memory parallel programming. Param systems are

available in three series, viz. Param 8000, Param 8600 and Param 9000. The Param

8600 is based on Intel's i860 processor. The i860 based Param 8600 was selected for

this research.

The JPEG algorithm was implemented on the above mentioned three systems.

Section 4.2 describes the hardware architecture, operating system and implementation of

the JPEG algorithm on the Mercury system. Section 4.3 describes the hardware, parallel

programming environment and implementation of the JPEG algorithm on the Shiva

system. Section 4.4 describes the hardware architecture of Param 8600, Paras parallel

programming environment and implementation of the JPEG algorithm on the Param

system. Performance comparison of these three parallel computers is given in section

4.5.

4.2 Implementation of the JPEG Algorithm on the IMercury System

The JPEG algorithm was implemented on the transputer based Mercury system using

the Hehos operating system.

Section 4.2.1 describes the Mercury system and its parallel progranmiing

environment. Section 4.2.2 describes implementation of the JPEG algorithm on

Mercury system. The JPEG algorithm was implemented on various sized network

topologies and with different image sizes. Experimental results are given in section

4.2.3.

Chapter 4 87

4.2.1 Mercury System Architecture

This section describes the Mercury system. Mercury system is a multi-user scalable

Multiple Instruction Multiple Data (MIMD) parallel computer, with primary aggregate

memory of 100 MByte, and twenty processors. It consists of four T800 transputers and

sixteen T805 transputers.

4.2.1.1 Hardware Architecture

A 80386 based PC was used as the front-end to the transputer based Mercury system. It

consists of twenty Transputers, four of which are T800s and sixteen transputers are

T805s. Four transputers are connected in a ring topology and named as Tl, T2, T3 and

T4, as shown in figure 4.1. Sixteen transputers are connected in a torus topology, and

named as N1,N2,N3...N16.

The INMOS transputer family is a range of system components each of which

combines processing, memory and serial interconnection interfaces in a single VLSI

chip, with a design based on the Reduced Instruction Set Computer (RISC) technology

[INMOS, 89]. The first member of the family, the T414, a 32-bit transputer, was

introduced in September 1985. Transputer architecture has inherent concurrency that

can be applied to a wide variety of applications such as simulation, robot control, image

synthesis, and digital signal processing. These numerically intensive applications can

exploit large arrays of transputers in a single system. The following series of transputers

are available; T800, T805, T9000 and Alpha. The overall performance of a transputer

based system is dependent on the number of transputers, the speed of inter-transputer

communication and the floating point performance of each transputer. The following

section describes the characteristics of the T805 transputer.

T805 transputer architecture: The T805 has a floating Point Unit (FPU), a CPU, 4

KBytes of local memory, four communication links and a timer as shown in figure 4.2.

INMOS T805 provides a peak computing power of 3.5 MFLOPS at 20 MHz. The

Transputer has an intemal memory of 4KByte, which is too small to run most

applications. Thus external transputer Modules (TRAMS), which consist of 32 KBytes -

2 MBytes of memory are often used. Communication links are Direct Memory Access

(DMA) based bi-directional links that can be used to connect many transputers in a

multiprocessor system [Mitchell, 90]. The peak conmiunication speed between two

T800 or T805 transputers is 20 Mbits/sec.

Chapter 4 88

a
Front end

Tl

T2 T3

T4

Nl N2
M^rcuryprojcessiilg

N5

i
N9 H

| - J N13 4-J

N6

NIO

i
N14

N3
nodes H

N7

1
Nil

±
N15

N4

N8

N12

N16

Figure 4.1 Interconnection topology of the Mercury system

vcc
GND

Analyse
Reset

— •

^

System
Services

Linkln
• LinkOut

Application Specific Interface

Figure 4.2 (T805) Transputer architecture

4.2.1.2 Helios Parallel Programming Environment

The Helios operating system was used on the Mercury system. Helios is a distributed

operating system developed by Perihelion Software Limited and runs on a wide range of

workstations. Helios is capable of expanding into the available set of processors and of

Chapter 4 89

sharing the workload among them. Such processor clusters may themselves be

interconnected in a local network to allow the sharing of data and expensive devices

such as high capacity discs and laser printers [Ian, 92] [Hemery, 91].

Helios provides four levels of communication between processors. The lowest

level is used by the nucleus: PutMsgO and GetMsgO are the Message Passing Primitives

(MPP) that provide the basis of all Helios communication. The level above this is

provided by the system library functions Read() and Write(). These calls operate on

streams and have time outs associated with each requested transaction. At the next level

is the, Portable Operating Set of Instruction Codes (POSIC), read() and write()

functions. Calls to the POSIC functions are based on POSIC file descriptors. The

highest level of communication is at the language level, which depends upon the

programming language used.

The POSIC communication routines is used most often because of the following

factors.

1. This communication mechanism assures some degree of reliability and fault

tolerance. That is, it provides error detection and recovery from failure and there is a

guarantee that messages will arrive at their respective destinations.

2. It offers greater functionality than lower level libraries.

3. Most importantly, POSIC library can also be used on other parallel architectures,

thereby giving portable code.

MPP as well as POSIC conmiunication routines were used to compare their

effect on the execution times. In these two levels of communication, inter-processor

message transmission times over transputer links are characterised by a relationship of

the form:

Ttotal = ^overhead + ^init + ^-kx
126.120129+ 0.562684.N for MPP

1461.421142 + 0.567642.N for POSIC

where,

Ttotal ~ message transmission time,

^overhead ~ ^°^P overhead on each test iteration,

tjjjjt = message initialisation time,

N = number of bytes in a message,

t̂ x = transmission time for one byte.

Some of the most useful facilities in the POSIC communication protocols are:

• openO is used to open a stream to a named file or server and it returns the file descriptor that can be

used by other routines.

• linkO is used to create a symbolic link, in other words an entry in the naming tree that actually refers

to some other object elsewhere in the naming tree.

Chapter 4 90

• close() terminates a stream connection to a file or server that was produced by open().

• read() attempts to obtain data from an open file or server. The read statement is written as:

read(file descriptor, address of the buffer, length of the buffer).

• writeO attempts to send data to an open file or server. The write statement is written as:

write(file descriptor, address of the buffer, length of the buffer).

4.2.1.3 Component Distribution Language (CDL)

CDL is the language that facilitates parallel programming under Helios. The purpose of

CDL is to provide a high level approach to parallel programming. It allows Helios to

take care of the actual distribution of the program components over the available

physical resources.

An example of CDL script is shown below. In CDL script the sentence followed

by # is a comment. The script consists of two parts, viz. component declaration(s) and

task force definition.

The purpose of the component declaration is to specify relevant details of the

hardware component to the Helios operating system. The task force definition is a

specification of the network topology, and is used by the Helios operating system.

• This is a CDL script example Conmient

component master {memory 20000; puid /Cluster/Tl; } Component declaration

master I slave 1 <> slave2 Task force definition

The component declaration part describes the requirements of particular

components in the task force. A component can be declared in terms of memory size,

path of the processor location, and name of the processor, as shown in the above

example.

The task force definition part describes the interaction of the task force with the

components. The CDL language defines four parallel constructors, i.e. I pipeline

constructor, o bi-directional constructor, ^^ parallel constructor, and III interleave

constructor.

4.2.1.4 Parallel Programming Languages

Transputer based systems support OCCAM, C, and C+-i- programming languages

[Ungerer, 91], The transputer was designed to execute the OCCAM parallel

prograimning model efficiently. OCCAM programs can be operated on four

independent channels in parallel [Fountain, 87].

Chapter 4 gj

4.2.2 Implementation of the JPEG Algorithm on the Mercury System

The JPEG algorithm was implemented on the Mercury system using the C programming

language under the Helios operating system. It was implemented on various number of

processors on Mesh topology distributed memory architecture using the Plan,

Mercury Plans := P(NBCT, NIPC, BBIP, DMA, DToT, NP)

where,

P is Plan for implementation,

NBCT is the Non-Block Comparator Technique used for image processing,

NIPC is Block Dependency with Non-Inter-Processor Conmiunication,

BBIP is Block Based Image Partitioning method,

DMA is Distributed Memory Architecture,

DToT is Distributed Memory Architecture with Torus Topology,

NP is Number of Processors = II 2 I 3 15 I 9 113 I 17.

Image Size = 125 x 125 I 228 x 23II 625 x 423.

This Plan was implemented on the Mercury system with NP = 1, 2, 3, 5, 9, and

17 for three different three image sizes. Thus a total of eighteen (6 x 3) Plans were

implemented. This section explains the implementation procedure of parallel JPEG

implementation on the Mercury system.

The implementation procedure used on the Mercury system is shown in figure

4.3 as a flow diagram [Sharda, 93]. The source image is initially stored on the host

processor Tl . The Image is transferred to the T4 node processor through the T3 node

processor. The node processors (Nl to N16) wait for components of the source image to

be down loaded. The T4 processor partitions the image into two parts and sends each

part along with the required header information to node processors Nl and N4. For

image partitioning a block of 8x8 samples is used as an atomic component. The Nl

node processor further divides the image into eight parts and sends seven of these parts

to node processors N13, N5 and N2. One sixteenth of the image is retained on the Nl

node processor. This distribution of image parts continues as shown in the path graph

given in figure 4.4. Thus, each node processor has 1/16th of full image. The Image

distribution is followed by performing encoding on each processor in parallel. The

encoded image is composed using a reverse procedure with respect to the procedure

used for image distribution.

The above described procedure was used for distributing the image onto

seventeen processors. Experiments were carried out to determine the execution time on

fewer processors as well. For each experiment the image was distributed as evenly as

possible on the set of processors being used.

Chapter 4 92

Nl processor

N13

t

N5

Receive image from
master

I
Divide image into 8

parts

Transfer image to
N13,N5,N2

I
Compress 1/16

image

T
Receive

compressed image
fromN13,N5,N2

Transfer
compressed 1/2
image to master

START

Tl processor

•N2

Transfer image to
T4

Divide image into
2parts

Transfer image to
N1&N2

Initialise JPEG o/p
file

Receive
compressed imgage

fromNl,N2

N4 processor

Store compressed
image on Host

N3-

Reveive image from
master

Divide image into i
parts

I
Transfer image to

N16,N8,N3

I
Compress 1/16

image

I
Receive

compressed image
fromN16,N8,N3

I
Transfer

compressed 1/2
image to master

N16
A

N8

Figure 4.3 Flow diagram of implementation procedure on the Mercury system

^
Nl

- • T4 <-

]
». "• •* 1 ^ m -i ,

N13 N5 N2 N16 N8 N3

N14 N14

t
NIO

$ $ t t t
N9 N6 N15 N12 N7

t
Nil

Figure 4.4 Path graph for distribution and composition of image parts

Chapter 4 93

4.2.3 Experimental Results

The JPEG algorithm was implemented on the Mercury system for different numbers of

processors, such as 1, 2, 3, 5, 9, 13, and 17. Experimentation was done for output

quality as 75%. Different level of conmiunication primitives (MPP and POSIC) were

used for each of the three image sizes investigated. The results obtained from these

experiments are given in tables 4.1 and 4.2.

The minimum execution time obtained with POSIC communication routines for
a 125x125 is 0.89 seconds, for a 228x231 image size it is 2.88 seconds, for a 625x423
image size it is 10.64 seconds on a system with nine node processors.

Table 4.1 Execution times obtained with POSIC communication routines

Number of

Processors - NP

1

2

3

5

9

13

17

Execution time in seconds

For 125x125 image

4.35

2.27

1.53

0.97

0.89

1.19

2.26

For 228x231 image

14.14

7.33

4.89

3.13

2.88

3.52

6.73

For 625x423 image

55.86

28.65

19.13

12.17

10.64

12.96

19.33

Table 4.2 Execution times obtained with MPP communication routines

Number of

Processors - NP

1

2

3

5

9

13

17

Execution time in seconds

For 125x125 image

4.35

2.25

1.51

0.94

0.69

0.83

1.22

For 228x231 image

14.14

7.25

4.86

3.04

2.09

2.38

2.97

For 625x423 image

55.86

28.35

18.87

11.86

7.66

8.85

10.27

Chapter 4 94

4.3 Implementation of the JPEG Algorithm on the Shiva System

Around 1990, the Defence Science and Technology Organisation (DSTO), Australia

undertook a research project on a heterogeneous, parallel multiprocessor named as the

Shiva system [Yakovleff, 91]. The aim of the project was to enhance overall

performance by incorporating several data paths in the architecture in order to achieve

efficient and balanced processor utilisation. It incorporated performance enhancing

techniques, such as multiplicity, heterogeneity, and reconfigurability.

4.3.1 Shiva System Architecture

Shiva is a heterogeneous, shared memory, multiprocessor parallel architecture. It is

designed to exploit the I/O and operating system features of existing computers. It is

intended to supply its parent system with enhanced performance over a wide range of

applications without the need of any special parallel programming on the part of the user

[Anderson, 90]. It can act as a Multiple Instruction Multiple Data (MIMD) computer, or

as a pseudo Single Instruction Multiple Data (SIMD) computer.

4.3.1.1 Hardware Architecture

The Shiva system has eighteen processor units. The processor unit has Intel 180860

processor. The first processor unit is called the Master unit and the others are called the

Slave units. Each processor unit has its own processing element (PE) and 16 MBytes of

local memory [Kamak, 92a]. Local memory can be accessed either directly by the

resident processor via a hotline or through a bus to which each processor has access as

shown in figure 4.5. The Master unit contains the following elements:

Co-ordinator,

Memory unit,

SBus interface,

Subsystems such as Bootstrap EPROM, real-time clock, serial interface, registers.

Bus arbitor.

The control signals to and from the i860 are handled by a co-ordinator which

includes address/parameter FIFOs to make use of the processor's pipelining capabilities.

The co-ordinator maps requests from the i860 to the various devices (local memory,

SBus or subsystem) or to the arbitrator if any of the other memory units is to be

accessed.

'Shiva is the Hindu God of creation.

Chapter 4 95

The Slave units contain devices, such as co-ordinator, memory unit, data

pipeline. All Slave units need not be of the same type, implying the possibility of a

heterogenous architecture as shown in figure 4.6. Slaves may be special purpose boards

such as a Neural Accelerator Board (NAB) and Parallel Transformation board (ParaT)

and Intel i860 based processors [Anderson, 92] [Nelson, 92b]. NAB is used for

graphical simulation in real-time [Nelson, 93b]. ParaT system is used for performing

stereoscopic terrain visualisation application [Yakovleff, 94] [Nelson, 92b].

j^gstgf Pipeline Connection

, 1860

g '
f^"

LJ Sub .
• System'

• ; FIFO •

Memory •
Unit '

i

r y

r •

r

Slave 1

' i

- >

i860 '
i . . - . .

' Memory .
! Unit

i

r 1

L

r

Slave 2

• i860 •
• A - - : . . . ,

—w
^ - - ^

Memory •
Unit ;

iL

\r \r

Slave 3

' i
—1»

i860 •

k
^ FIFO —•!

' Memory .
Unit •

n

^r yr ^

System Bus

Figure 4.5 Master and Slave units and data paths

Pipeline

i860

i860

FIFO

M X

Memory
Unit

Master

I Memory
. Unit

i860 . • I/O

ParaT or
NAR Slpivp i860

i860

System Bus

Non i860 Slave
Unit

I

Sparc Station

Figure 4.6 Shiva system with ParaT or NAB Slave units

Chapter 4 96

Intel i80860 architecture: The Intel i860 was designed for numerical and vector

intensive applications [Margulis, 90]. Many of the design principles used have been

adopted from supercomputer technology enabling the i860 to deliver a peak arithmetic

performance of 80 MFLOPS (single precision) and 60 MFLOPS (double precision) in

conjunction with a peak integer performance of 40 MIPS. In particular, its high

throughput is achieved from a combination of RISC design techniques, pipelined

processing units, wide data paths, and large on-chip caches. On a single chip, the

architecture supports the following facilities, as shown in figure 4.7:

Integer operations,

Floating point operations.

Graphical operations,

Memory-Management support.

Data Cache and Instruction Cache.

Instr Addr

Dest

Srcl

Src2

Instruction
Cache

I
Data Addr

N •

£ FP Instr

Integer Unit

Adder Unit

Data Cache

s
Floating Point

Unit

64 Bit

I

Address Path

Multiplier Unit

Figure 4.7 Intel i860 processor architecture

The i860 microprocessor has a number of instructions designed to perform

operations specific to graphics, such as scan-line rendering, Z-buffering and 4x4

transforms used for perspective projections [Intel, 90]. In addition these instructions

make use of the 64-bit wide data path to perform operations on several pixels

simultaneously, depending on the size of their representation. This makes the Shiva

system suitable for image compression applications.

Chapter 4 97

4.3.1.2 Communication Links

The host and the master units are interfaced via an RS232 and an SBus interface as

shown in figure 4.8. The RS232 is a serial interface on the master unit based on the Intel

M82510 Asynchronous Serial Controller. It is used to provide a console port to the

Shiva via which the operator can control and monitor system operation. Transfers of

program binaries and large data blocks is done through the higher bandwidth SBus

interface [Kamak, 92b]. The SBus card is located in the Sparc station. The data path is

32-bits wide [Sun, 90]. Several types of transfers can be carried out over the SBus, from

single Byte to 64-Byte block transfers.

Master processor unit

Slaye processor unit

Host machine
(SUN spare

Station)

SRI IS intprfarp rnnnprf inn

^

^

ipeline connection
Serial connection

Figure 4.8 Shiva system organisation

Communication is often the limiting factor in achieving high performance and

processor efficiency on processor networks. Often, the rate of computation is

significantly higher than that of communication. Communication is consequently a

potential performance bottle-neck. It is therefore important that the overhead imposed

by an operating system on communications performance be kept to a minimum.

On the Shiva system the peak shared memory access speed is 80 MBytes/sec.

However, this figure is not so critical as the i860 contains instruction and data caches.

The present version of Shiva compiler uses the simplest protocol (4-byte read and write

operations only) which can achieve roughly a contention free 5 MBytes/sec transfer rate

over the SBus. Table 4.3 shows the data transmission times (ttotal) ^^'^ ^^^ rates with

respect to message sizes (N) [Bevinakoppa, 94b], where,

N = Message size (bytes)

Ttotal = transmission time (microseconds)

R = Rate of transmission (KBytes/sec)

Chapter 4 98

The rate of transmission with respect to the message size is plotted in a graph

shown in figure 4,9. From this graph, it can be seen that transmission of a short message

is inefficient. It is more efficient to transmit a single large message than a number of

small ones. Transmission rate can be increased by implementing the burst mode

transfer.

Table 4.3 Total time (Ttotal) ^^^ transmission rate (R) on the SBus interface for
various message sizes

N (bytes)

1

4

16

64

256

1024

4096

16384

65535

T^nfai (mlcrosec)

1.886

4.78

12.4

32.4

96.6

296

947.76

3373

13133

R (KBytes/sec)

530

836

1287

1970

2648

3450

4322

4856

4990

5000

16 64 256 1024

Number of Bytes

4096 16384 65535

Figure 4.9 Rates of data transfer with respect to message size

One of the more novel aspects of the Shiva architecture is the inter-slave data

pipeline. The pipeline and the shared bus, provide two mechanisms for inter-processor

communication. Unlike the bus, the data pipeline is contention free. That is, all of the

Chapter 4 99

Slave units can write to their data pipeline simultaneously. The pipeline is 64-bits wide

and can support a write (and a read) every 4 clock cycles. This implies a peak bandwidth

of 80MBytes/sec., which is the same as the peak memory and bus bandwidth. There are

two modes of access for the pipeline: blocking and non-blocking. With a blocking

access the requesting processor will be suspended if it attempts to read from an empty

FIFO buffer or write to a full FIFO buffer. A non-blocking access will not suspend on a

read from an empty buffer or a write to a full buffer. An attempt to write to a full buffer

will result in the write data being lost and an attempt to read from an empty buffer will

result in undefined data being retomed. It is upto the controlling software to determine

when it is appropriate to perform blocking or non-blocking pipeline operations.

4.3.1.3 Shiva Programming Environment

Most of the users are not interested in having to examine and modify their programs to

take advantage of architectural features. Rather, users would prefer that the compiler

and system software make the best use of machine's features. DSTO developed a pre­

processor named Shiva compiler which can manipulate programs, so that parallelism

may be extracted and control statements inserted to take advantage of Shiva's parallel

processing features [Maurer, 88] [Nelson, 93a].

Programs on the Shiva system were divided into host files and Shiva files. Host

files were compiled using a GNU C Compiler, that includes communication routines

[Bums, 89]. Some of the communication routines are:

shiva_open: which opens the connection between host and Shiva system ie. initiaUses SBus

card and serial cable.

shiva_start: initialises the Master and Slave processors.

write(): send the data through the serial cable.

read(): receive the data through the serial cable.

shiva_write: send a file through the SBus card.

shiva_read: receive a file through the SBus card.

Shiva files ware divided into master and slave files, e.g. master.c, slavel.c,

slave2.c etc. These files were cross-compiled on the host using the Shiva compiler and

downloaded to the Master processor using a shiva.out program. It has many

functionalities such as communication routines, shared and local variable declarations,

header files. Some of the communication routines available in the Shiva compiler are:

ser_gets(): get the data serially through the serial cable.

ser_putc(): put a character through the serial cable.

sbus_read(): receive a file through the SBus card

Chapter 4 100

sbus_write(); send a file through the SBus card.

sem_send(): send semaphore to the Slaves.

sem_wait(): wait for the semaphores fi-om the Slaves.

4.3.2 Implementation of the JPEG Algorithm on the Shiva System

Depending on the application, the programming stmcture can operate as a pure

message-passing system with distributed memory, or a hybrid system comprising

distributed clusters of processors with shared memory [Yakovleff,91]. A Shiva system

based on three processors was used for experimentation. The JPEG algorithm was

implemented on the globai-plus-local memory architecture machine using the following

Shiva Plans,

Shiva Plans := P(NBCT, NIPC, BBIP, SMA, SLgM, NP)

where,

P is Plan for implementation,

NBCT is the Non-Block Comparator Technique used for image processing,

NIPC is Block Dependency with Non-Inter-Processor Communication,

BBIP is Block Based Image Partitioning method,

SMA is Shared Memory Architecture,

SLgM is Shared Memory Architecture with Local-plus-global Memory topology,

NP is Number of Processors =11213,

Image Size = 125 x 125 I 228 x 231 I 625 x 423.

This section explains the implementation procedure of parallel JPEG

implementation on the Shiva system.

The implementation procedure used on the Shiva system is shown in figure 4.10

as a flow diagram. In this flow diagram light boxes representing tasks are shown within

dark boxes representing processors on which the tasks are executed. After initialisation,

the Master processor waits for the source image to be sent by the front end. When the

Master receives the image data from the host it sends a start signal to the Slaves

indicating that the image is ready for compression. The Master and the Slaves

processors start DCT, quantisation and encoding (compression) steps and store the

compressed data in shared memory. The Master processor waits for the Slaves to finish

compression, then it sends compressed image data to the host machine through the

SBus. The host combines the data received from all processors and stores into the JPEG

output file.

Chapter 4 101

Sun sparcstation

HOST

Transfer image to
master processor

Initialise JPEG output
file

Receive compressed
image data from

master

SLAVE-1

Wait for start signal
from master

Compression on part2
image

I
Send finish signal to

master

SHIVA MASTER

Initialise Shiva

I
^' Receive image from host

Send start signal to slaves

Compression on parti image

I
Wait for slaves to finish

I
Send compressed image

SLAVE-2

Wait for start signal
from master

Compression on part3
image

I
Send finish signal to

master

Figure 4.10 Implementation procedure of the JPEG algorithm on the three

processor Shiva system

Chapter 4 102

4.3.3 Experimental Results

The JPEG algorithm was implemented on the Shiva system on three processors for

different image sizes and the results obtained on these are given in table 4.4. The results

for four to seventeen processors were estimated by using the Gantt chart [Lewis, 92].

The procedure used for estimating the execution time obtained on three processors is as

follows [Bevinakoppa, 94a].

Master Processor

CTl, 0.02

Slave -1

PTl, 1.07
CT2, 0.02

.^/L.

PT2, 0.98

CT3, 0.009

PT3, 0.98 Slave - 2

-^ PT4, 0.02 e CT4, 0.009

Master Processor

Figure 4.11 Task graph for three processors

The task graph for three processors is shown in figure 4.11. The JPEG algorithm

is divided into four tasks as shown in the task graph of figure 4.11. In this task graph

each processor represents a processing task. Inside each processor a task is represented

as the ordered pair PTn, t(PTn) where PTn is the processing task number and t(PTn) is

the processing time of that task. Arcs joining the processors represent communication

tasks. A communication task is represented by the ordered pair CTn, t(CTn) where CTn

is the communication task number and t(CTn) is its communication time. All times are

in seconds (sec). The processor on which a task is executed is specified adjacent to the

task processor in the task graph. The values given below were obtained by using

experimental results obtained on single i860 processor.

In this example 228 x 231 image was taken. Functions performed by the

processing and communication tasks are as follows:

Chapter 4 J03

Task Function Execution time

in sec.

PTl Source image is divided on Master processor into three parts. Each part 1.07

of the unage contains 228 x 77 x 3 samples. First part of the image is

transferred firom the Master processor to Slave-1 processor. The

Master processor performs DCT, quantisation and encoding steps on

third part of the source image.

CTl Conununication time for transferring 228 x 77 x 3 samples from the 0.02

Master processor to the Slave-1 processor.

CT2 Communication time for transferring 228 x 77 x 3 samples from the 0.02

Master processor to the Slave-2 processor.

PT2&3 DCT, quantisation and encoding steps of JPEG algorithm are carried 0.98

out on the Slave processors.

CT3&4 After performing each task on image parts, encoded image is 0.009

transferred back to the Master processor. Communication time taken to

transfer encoded samples from the Slave processor to the Master

processor.

PT4 The Master processor collects encoded samples from Slave-1 and 0.02

Slave-2 processors and transfers it into an output JPEG file with

appropriate header/marker.

The execution schedule of the JPEG algorithm on three processors is shown in

the form of Gantt chart in figure 4.12. A Gantt chart essentially shows the scheduling of

various tasks on the time axis.

VTA Computation time

I I Commutiication time

TASKS

PT4
CT4
CT3
PT3
PT2
PTl
CT2
CTl

&-msm=£=m=m£s /

0.25 0.50 0.75 1.00 1.25

Time taken for the task in seconds

Figure 4.12 Gantt chart of JPEG algorithm on a three transputer network

From figure 4.12 it can be seen that the total time taken by the three Nodes

T3 = t(CT 1) -t- t(CT2) H- t(PT 1) + t(CT3) + t(CT4) -i- t(PT4)

0.02 -H 0.02 -t-1.07 -I- 0.009 -H 0.009 -f- 0.02

1.148 = 1.15 sec.

Chapter 4 104

The estimated execution time on a three node processors is nearly equal to 1.15

sec. which is the same as the execution time obtained from the actual implementation.

The execution times for four to seventeen processors were estimated from the

computation time and communication time obtained on a single node processor. These

results are tabulated in table 4.4.

The minimum execution times obtained for a 125x125 image size is 0.12
seconds, on a system with thirteen node processors. Whereas, for 228x231 and 625x423
image sizes are 0.53 seconds and 1.32 seconds respectively, on a system with nine node
processors.

Table 4.4 Execution times of the JPEG algorithm on the Shiva system

Number of

Processors - NP

1

2

3

5

7

9

13

17

Execution times in seconds

For 125x125 image

0.6

0.32

0.28

0.15

0.13

0.13

0.12

0.20

For 228x231 image

2.63

1.34

1.15

0.60

0.55

0.53

0.60

0.91

For 625x423 image

7.02

3.55

2.41

1.52

1.39

1.32

1.60

2.58

4.4 Implementation of the JPEG Algorithm on the Param System

The Param^ system is a distributed memory, message passing parallel computer

developed by the Centre for Development of Advanced Computing (C-DAC), India

[Bhatkar, 91], [Tulshibagwale, 94]. Param works as a back-end compute engine to hosts

such as PCs, SUN workstations, Micro VAX machines and U6000 Unix machines. The

Param architecture can accommodate heterogeneous nodes such as disk I/O nodes,

graphics nodes, transputer nodes, vector nodes based on the Intel i860, and DSP nodes

based on the Zoran 34325. Param is available in three series of configurations. The

Param 8000 series is a replicate scalar processor machine based on the T805 transputer,

which can be configured with 16, 32, 64, 128 or 256 nodes, and if required with more

than 1024 nodes. The Param 8600 series is equipped with vector processing capabilities

and is based on the Intel i860 processor. The Param 9000 is based on the SPARC 11

• Param is an acronym for PARAlIel Machine, and in Sanskrit it means Supreme.

Chapter 4 JQ5

processing nodes. Since most of the digital image compression techniques are DCT

based, the i860 based Param 8600 was chosen for this study.

Section 4.4.1 describes the Param system architecture. The JPEG algorithm was

implemented on the Param system using the Paras parallel programming environment.

Section 4.4.2 describes the implementation procedure employed on the Param system.

Experimental results were obtained on a three node Param system. Section 6.4 gives the

results obtained for different image sizes on various sized networks.

4.4.1 Param System Architecture

This section describes the Param 8600 system architecture. Param is a multi-user

scalable Multiple Instruction Multiple Data (MIMD) parallel computer capable of

exceeding 1 Gflops of peak performance, with primary aggregate memory of 1 GByte

and auxiliary storage of 20 GByte on a system with sixteen node processors [Eknath,

91]. Intel's i860 provides a peak computing power of 80 MFLOPS, but sustained

computing power is less than 5MFL0PS [Murthy, 91].

4.4.1.1 Param 8600 Hardware Architecture

Each node of the Param 8600 comprises one i860 processor and four transputers.

Sixteen such nodes are interconnected to form one cluster of the Param system as shown

in figure 4.13. Param nodes in a cluster are connected through 96 x 96 cross point

switches. Four such Param clusters can be connected through 64 x 64 way cross point

switches. Therefore, a fully configured Param system can have as many as 64 nodes.

Figure 4.14 shows the architecture of a Param system node. In Param 8600, each

node is equipped with four transputers T805, one i860, and a local memory. Serial

communication links between two processors are called CSP (Communication

Sequential Processor) channels [Ram, 91]. The communication speed of each CSP

channel is 60 MBytes/sec. An important feature of this architecture is its very low

interprocessor communication overhead. Another communication path between the four

transputers and the i860 co-processors is the 32-bit high speed bus shown in figure 4.14.

A shared bus can reduce the effective data transfer bandwidth and eventually the system

performance. To avoid this bus bottleneck, C-DAC has developed an alternative scheme

for data transfer. The Intel i860 co-processor and the transputers have independent

memories and data is exchanged between these through the CSP channels. The i860 is

treated as a computational resource for the four transputers. These four transputers can

also participate in computation, but are used primarily as communication engines.

Chapter 4 106

N
E
T
W
O
R
K

A
N
A
G
E
M
E
N

*Br
niii;;e;QNT;RiO;Ei;B;tJg

''~^ -̂

• N 0 D E 1 NODE 2 NODE 3

I
NODE 16

CROSS-POINT SWITCH

Front-end A Front-end B Front-end P

Figure 4.13a Param cluster architecture

Host

Tl •

Node
Param Cluster

Figure 4.13b Fully configured Param system

Figure 4.13 Param system architecture

Chapter 4 107

Each processor node is configured with an i860 processor, an i960CA

superscalar processor, 4 - 1 6 MBytes of main memory, an I/O node and a Multibus II

interface as shown in figure 4.15.

Apart from the local storage memory, Param is equipped with a Mass Storage

System (MSS). A Disk cluster is the basic mass storage unit in the Param system. The

MSS [Eknath, 91] provides high VO bandwidth and large secondary storage capacity.

The MSS consists of an array of disk drives and a number of FO nodes with SCSI

interfaces to these drives. Up to four high capacity disks are attached to each VO node.

In addition, one tape cartridge unit is provided per I/O node.

4.4.1.2 The Paras Parallel Programming Environment

Paras is a comprehensive parallel programming environment that was developed for the

Param system, and similar class of message passing parallel computers. It provides a

range of services to enable application software developers to utilise the hardware in a

straight forward and easy to use manner. Its main components are:

• Development tools, such as compilers (for C and Fortran), linkers, debugger,

librarian. It provides a rich and powerful runtime environment to the executing

programs [Geetha, 91].

• Library environments such as, PARUL (PARallel User Library), for distributed

memory multiprocessor systems [Kumar, 92], imagePRO for image processing

[Udpikar, 91].

• Application kernels such as MTIC/860 [Rao, 91]. These kernels support page-level

protection, and provide call interface to user applications for performing various

operations such as create, terminate, suspend, and resume.

• Interprocessor communication software PRESHAK relieves the application

developers from designing and developing the communication layer for their parallel

algorithms [Srivastava, 91].

• Routines for creating and managing a distributed file system.

Paras includes a configuration language which is written in the C programming

language. Configuration files are named with the extension .cfs. A configuration file has

three parts: hardware specification, task specification, placement of tasks on the

declared processors and connectivity of the processors [Rashinker, 91]. Hardware is

defined in terms of processor name and its memory. A task is specified in terms of

stacksize and heapsize required for the application to run on the processor. Connectivity

is specified through the links on a processor. Some of the most useful routines in the

Paras programming environment are:

index_port_locate(): locate the port address to send the data.

Chapter 4 108

index_port_create(): create port address to receive the data.

sync_send(): transfer the data synchronously.

block_receive(): receive the data in chunks of blocks.

get_nodeid(): get the node processor identification number.
sem_wait(): wait for the semaphore status.

• • , • . ' • • • • • ' • ' ' • ' • ^ ^ • ' • • • • ' • ' • r ' M / i

• ,1 1̂ Data '"H-^
|,",f''"l Restructured ' i ' ' ! Interface
* J I'l Enaine ' Engine

'.' ' . I ••'!.'' T i l ' - 'j^
"t

Memory ' H . M K f i i J h a n n e f
„ , J ''Af- ('

•>,

Figure 4.14 Architecture of a Param 8600 node

>>7T;/y'^J^VAV.V/'•7^^,v:^V^'^'/V.^/V.^/'•'J.^t^;.^V/>y.^>.VVv^'•'^>>^

i860

>MMMMX!^M!MMii^!M^^ryMa Memory p | | | l i ^ | | t i l l i l

'-•\V\'-^'j\'..\'..\'--%Vi

\̂̂ .̂ ''.',̂ W v ^ ; \ W "*i^.\^;V^\^ '̂̂ • '̂̂ V \̂'.•''•.'l.'•.̂ ^^VO

•*'?*'^*'T*'H^ .* '.* . I ' ' . * ! Memory | ^

Buffer

m i960 co-processor p (| | | | | | | g | ^ | j | ^ p g j ^ ^ ^

I/O Node i i i i W i i i

Figure 4.15 i860 node architecture

I

Chapter 4 109

4.4.2 Implementation of the JPEG Algorithm on the Param System

The JPEG algorithm was implemented on a three node Param system [Bevinakoppa,

95]. Plans used on this architecture was represented by,

Param Plans := P(NBCT, NIPC, BBIP, DMA, DToT, NP)

where,

NP=1I2I3,

Image Size = 125 x 125 I 228 x 2311 625 x 423.

This section explains the implementation procedure and the program structure

employed in implementing the JPEG algorithm on the Param system.

A Personal Computer (PC) with a transputer was used as the front-end to the

Param system. A single transputer plugged into the front-end PC served as the host

processor for the processing nodes on the i860 based back-end Param system. Three

nodes on a single cluster were connected in a tree topology, as shown in figure 4.16.

The implementation procedure used on the three node Param system is shown in figure

4.17 as a flow diagram. In this figure, the transputer on the PC is taken as the host

processor and Nl, N2 processors as the processing nodes.

The source image is initially stored on the host processor. Node processors wait

for components of the source image to be down loaded. The host processor partitions

the image into two parts and sends each part along with the required header information

to node processors Nl and N2. For image partitioning a block of 8x8 samples is used as

an atomic component. One third of the image is retained on the host node processor.

The distribution of image parts is shown in figure 4.18 in the form of a path

graph. Image compression is performed on each processor in parallel. The encoded

image is composed using a reverse procedure with respect to the procedure used for

image distribution.

Front end 1
Nl

k
^ Host ^

^ i
N2

Figure 4.16 Three nodes connection in Tree topology

Chapter 4 110

START

Host Processor

Nl node processor

Receive image from
master

I
Compress 1/3 image

i
Transfer compressed

image to master

^
^

1
1

Divide image into 3
parts

A
Trasfer image to N1&

N2

1
Initialise JPEG o/p file

and compress 1/3
image

i
Receive compressed

• migage from Nl, N2 ^

^ r

Store compressed
image in output file

1
1

11A i i u u c |Jiuv;csaui

- ^
Reveive image from

master

V

Compress 1/3 image

V

Transfer compressed
image to master

Figure 4.17 Flow diagram of implementation procedure on the Param system

Host H
N1 N2

Figure 4.18 Path graph for distribution and composition of image parts

Chapter 4 111

4.4.3 Experimental Results

Table 4.5 tabulates the time taken for compressing eight-bit resolution images of

different sizes on the Param system for different number of node processors. Execution

times on a system with one to three nodes were obtained by actual implementation,

whereas execution times on four to sixteen processors were calculated with the help of

Gantt charts by using execution and conmiunication times obtained on the system with

three processors.

The minimum execution times obtained for 125x125 and 228x231 image sizes

are 0.038 seconds and 0.073 seconds respectively, on a system with nine node

processors. Whereas, for a 625x423 image size the minimum execution time obtained is

0.327 seconds on a thirteen node Param system.

Table 4.5 Execution times of the JPEG algorithm on the Param system

Number of

Processors - NP

1

2

3

5

7

9

13

17

Execution time in seconds

For 125x125 image

0.309

0.158

0.108

0.065

0.048

0.038

0.044

0.05

For 228x231 image

0.6

0.308

0.208

0.124

0.09

0.073

0.079

0.083

For 625x423 image

2.93

1.503

1.01

0.602

0.43

0.34

0.327

0.369

4.5 Performance Comparison of Parallel Computers

The performance of a parallel algorithm can be analysed in terms of speedup,

scalability, and efficiency as explained in chapter 2. Section 4.5.1 gives the speedup and

efficiency of the JPEG algorithm on the Mercury system. Section 4.5.2 gives the

speedup and efficiency obtained on the Shiva system, and section 4.5.3 gives the

speedup and efficiency for the Param system.

4.5.1 Speedup and Efficiency of the JPEG Algorithm on the Mercury System

Speedup and efficiency obtained on the Mercury system using POSIC communication

routines and MPP communication routines is given in tables 4.6 and 4.7 respectively.

Chapter 4 112

Graphs of speedup and efficiency of the JPEG algorithm on the Mercury system are

shown in figure 4.19 and 4.20. Speedup and Efficiency were defined in section 3.4 as,

S = T I / T N ,

Ti = S /N,

where,

S = Speedup,

Tj = Time taken on single processor,

T N = Time taken on N number of processor,

T| = Efficiency,

N = Number of Processors.

From speedup graphs for the POSIC routines (figure 4.19a) and MPP routines

(figure 4.20a), we can see that the scalability for all image sizes is close to 9. The

efficiency graph for POSIC (figure 4.19b) and MPP routines (figure 4.20b) shows that

efficiency of 90% or higher was obtained for up to five processors. This implies that

even though there is increasing speedup values for upto nine processors, the marginal

cost of adding more than five processors is rather high. In other words, from cost-

benefit analysis point of view a five processor system would be most cost effective.

Table 4.6a Speedup on the Mercury system using POSIC communication routines

Number of

processors - NP

1

2

3

5

9

13

! n

For 125x125 image

1

1.92

2.84

4.48

4.89

3.65

1.92

Speedup - S

For 228x231 image

1

1.93

2.89

4.52

4.91

4.02

2.1

For 625x423 image

1

1.95

2.92

4.59

5.25
—

4.31

2.89

Chapter 4 113

Table 4.6b Efficiency on the Mercury system using POSIC conmiunication

routines

Number of

processors - NP

1

2

3

5

9

13

17

Efficiency - r\

For 125x125 image

1.00

0.96

0.95

0.90

0.54

0.28

0.11

For 228x231 image

1.00

0.97

0.96

0,90

0.55

0.31

0.12

For 625x423 image

1.00

0.98

0.97

0.92

0.58

0.33

0.17

625 X 423
228 X 231

Image
Size

125x125

Number of
Processors - NP

Figure 4.19a Graph of speedup on the Mercury system using POSIC
communication routines

Ul

9 13

N u m b e r of Processors-NP
17

625x423

228x231

125x125
l inage Size

Figure 4.19b Graph of efficiency on the Mercury system using POSIC
communication routines

Chapter 4 114

Table 4.7a Speedup on the Mercury system using MPP communication routines

Number of

processors - NP

1

2

3

5

9

13

17

Speedup - S

For 125x125 image

1

1.93

2.88

4.63

6.3

5.21

3.57

For 228x231 image

1

1.95

2.91

4.65

6.77

5.95

4.76

For 625x423 image

1

1.97

2.96

4.71

7.29

6.31

5.44

Table 4.7b Efficiency on the Mercury system using MPP communication routines

Number of

processors - NP

1

2

3

5

9

13

17

Efficiency - T|

For 125x125 image

1.00

0.97

0.96

0.93

0.70

0.40

0.21

For 228x231 image

1.00

0.98

0.97

0.93

0.75

0.46

0.28

For 625x423 image

1.00

0.99

0.99

0.94

0.81

0.49

0.32

625 X 423
228 X 231

Image
Size

125x125

Number of
Processors -NP

Figure 4.20a Graph of speedup on the Mercury system using MPP

communication routines

Chapter 4 115

u
c
£
X:
lU

625x423

228x231

125x125
Image Size

Number of Processors-NP
17

Figure 4.20b Graph of efficiency on the Mercury system using MPP

communication routines

Comparison of speedup and efficiency values obtained using the POSIC and the

MPP communication routines for image size 625x423 are given in table 4.8 and the

graphs of the same are given in figure 4.21. From the speedup graph we can see that

speedup obtained using the MPP communication routines is higher than the speedup

obtained by using the POSIC communication routines. Though the scaleup obtained in

both cases is close to 9. The efficiency graph (figure 21b) we can see that higher

efficiency can be obtained using the MPP communication routines.

Table 4.8a The speedup comparison between POSIC and MPP communication

routines

Number of

Processors - NP

1

2

3

5

9

13

17

Speet

For POSIC

communication routines

1

1.95

2.92

4.59

5.25

4.31

2.89

u p - S

For MPP

conununication routines

1

1.97

2.96

4.71

7.29

6.31

5.44

Chapter 4 116

Table 4.8b Efficiency comparison between POSIC and MPP communication

routines

Number of

Processors - NP

1

2

3

5

9

13

17

Efficiency - TJ

For POSIC

conununication routines

1.00

0.98

0.97

0.92

0.58

0.33

0.17

For MPP

communication routines

1.00

0.99

0.99

0.94

0.81

0.49

0.32

Number of Processors - NP

Figure 4.21a A comparison of speedup obtained on the Mercury system using the

POSIC and the MPP communication routines

u c .£
ti

UJ

Number of Processors-NP

Figure 4.21b A comparison of efficiency obtained on the Mercury system using the

POSIC and the MPP communication routines

Chapter 4 117

4.5.2 Speedup and Eflficiency of the JPEG Algorithm on the Shiva System

Speedup and efficiency values obtained on the Shiva system are given in tables 4.9a and

4.9b respectively and the graphs of the same are shown in figure 4.22a and 4.22b

respectively. From the speedup graph we can see that the speedup increases as the image

size increases for number of processors < 3. Whereas, the speedup decreases as the

image size increases for number of processors > 3. Because in a shared memory

architecture memory contention increases with an increase in the number of processors.

Scaleup for all image sizes is 9. From the efficiency graph we can see that efficiency is

higher than 50% for upto nine processors. Whereas, for upto five processors it is higher

than 80%. Once again we can conclude that a system with five processors would be

most cost effective.

Table 4.9a Speedup of the JPEG algorithm on the Shiva system

Number of

Processors - NP

1

2

3

5

7

9

13

17

Speedup - S

For 125x125 image

1

1.86

2.54

3.89

4.67

4.8

4.79

3.06

For 228x231 image

1

1.96

2.69

3.98

4.82

4.96

4.35

2.89

For 625x423 image

1

1.98

2.91

4.61

5.06

5.31

4.4

2.72

Table 4.9b Efficiency of the JPEG algorithm on the Shiva system

Number of

processors - NP

1

2

3

5

7

9

13

17

Efficiency - Tj

For 125x125 image

1.00

0.93

0.85

0.80

0.67

0.53

0.37

0.18

For 228x231 image

1.00

0.98

0.90

0.88

0.69

0.55

0.33

0.17

For 625x423 image

1.00

0.99

0.97

0.92

0.72

0.59

0.34

0.16

Chapter 4 118

625 X 423
228 X 231

125x125
Image
Size

7 9
Number of

Processors - NP

Figure 4.22a Graph of speedup on the Shiva System

>> u c o
'o
£
UJ

625x423
228x231

125x125
Image Size

' 9 13

Number of Processors-NP
17

Figure 4.22b Graph of efficiency on the Shiva System

4.5.3 Speedup and Efficiency of the JPEG Algorithm on the Param System

The speedup and efficiency values obtained on the Param system are given in tables

4.10a and 4.10b respectively and the graphs of the same are shown in figures 4.23a and

4.23b respectively. Speedup depends mainly on computation time with respect to

processors and communication time between processors. Conmiunication time can be

reduced by transferring more number of bits in a single frame, thereby reducing the

conmiunication overhead. Therefore, as we can see in figure 4.23a, speedup increases

with increase in image size. Scalability for 125 x 125 and 228 x 243 image size is nearly

9, where as for a 625 x 423 image it is nearly 13. From the efficiency graph (figure

4.23b), we can see that the efficiency is higher than 50% for upto thirteen processors for

125 X 125 and 228 x 243 image sizes, and for 625 x 423 image size it is seventeen

processors. Whereas, for upto nine processors it is higher than 80%. From this we can

conclude that a system with nine processors would be cost effective.

Chapter 4 119

Table 4.10a Speedup of the JPEG algorithm on the Param system

Number of

processors - NP

1

2

3

5

7

9

13

17

Speedup - S

For 125x125 image

1

1.95

2.86

4.75

6.5

7.93

7.1

6.34

For 228x231 image

1

1.95

2.88

4.82

6.64

8.17

7.58

7.21

For 625x423 image

1

1.95

2.90

4.87

6.81

8.63

8.97

7.93

Table 4.10b Efficiency of the JPEG algorithm on the Param system

Number of

processors - NP

1

2

3

5

7

9

13

17

Efficiency - Tl

For 125x125 image

1.00

0.98

0.95

0.95

0.93

0.88

0.55

0.37

For 228x231 image

1.00

0.98

0.96

0.96

0.95

0,91

0.58

0.42

For 625x423 image

1.00

0.98

0.97

0.97

0.97

0.96

0.69

0.47

625 X 423
228 X 231

125x125
Image
Size

, 3 5 ^ ^ ' ^ "
2 Number of

Processors - NP

Figure 4.23a Graph of speedup on the Param system

Chapter 4 120

>. u c
JO
u

£
lU

625x423
228x231,

25x125
Image Size

' 9 13

Number of Processors-NP
17

Figure 4.23b Graph of efficiency on the Param system

4.5.4 Performance Comparison

This section gives the performance comparison in terms of execution time, speedup,

scaleup and efficiency.

Execution times obtained on the three parallel computers for the 625 x 423

image size are given in table 4.11. From this table we can see that the execution time on

the Mercury system are much higher as compared to those obtained on the Shiva and the

Param systems. The execution times obtained on the Param system are the lowest.

Table 4.11 Execution times of the JPEG algorithm on the three parallel

computers

Number of

processors NP

1

2

3

5

9

13

17

For Mercury System

55.86

28.65

19.13

12.17

10.64

12.96

19.33

ilxecution times in Seconds

For Shiva System

7.02

3.54

2.41

2.98

2.26

2.96

2.58

For Param System

2.93

1.503

1.01

0.60

0.34

0.327

0.369

The speedup and efficiency values obtained on the three parallel computers for

the 625 X 423 image size is tabulated in tables 4.12a and 4.12b respectively and the

graphs of the same are shown in figures 4.24a and 4.24b respectively. From the speedup

graph we can see that the speedup values obtained on all three parallel computers are

very similar for NP < 3. The speedup for NP > 3 on the Mercury system is lower as

compared to the other two architectures. For NP = 17 the speedup is lowest on the Shiva

Chapter 4 121

system. From this we can conclude that the addition of processors lead to increased bus

contention and reduction in the speedup obtained on the Shiva system. The speedup for

the Param system is higher as compared to other architectures. Scaleup for Mercury

system and for Shiva system is 9, and for the Param system it is equal to 13.

From the efficiency graph (figure 4.24b) we can see that the efficiency is higher

than 50% for upto nine processors on Mercury and Shiva systems and on Param system

the efficiency is higher than 50% for upto thirteen processors. Whereas, for upto five

processors it is higher than 90% on Mercury and Shiva systems and for upto nine

processors the efficiency is higher than 90% on Param system. From this we can

concluded that Param system with nine processors would be most cost effective.

From speedup, efficiency and scaleup figures discussed above we can conclude

that the JPEG algorithm performs better on a hybrid memory architecture.

Table 4.12a Speedup of the JPEG algorithm on the three parallel computers

Number of

processors - NP

1

2

3

5

9

13

17

Speedup - S

For Mercury System

1

1.95

2.92

4.59

5.25

4.31

2.89

For Shiva System

1

1.98

2.91

4.61

5.31

4.4

2.72

For Param System

1

1.95

2.90

4.87

8.62

8.96

7.94

Table 4.12b Efficiency of the JPEG algorithm on the three parallel computers

Number of

processors - NP

1

2

3

5

9

13

17

Efficiency - T|

For Mercury System

1.00

0.98

0.97

0.92

0.58

0.33

0.17

For Shiva System

1.00

0.99

0.97

0.92

0.59

0.34

0.16

For Param System

1.00

0.98

0.97

0.97

0.96

0.69

0.47

Chapter 4 122

Param System \ C ^ ^
Shiva System \ . <

Mercury System

'— ^ 1 0

fa •&
« ^ ^ 16 S

w^^^r ^^v^ 1 CO

2 "̂
^ Number of

Processors - NP

Figure 4.24a Speedup graph for three parallel computers

o
c

Param System

Shiva System

Mercury System

Number of Processors-NP

Figure 4.24b Efficiency graph for three parallel computers

4.6 Summary

This chapter described the hardware architecture and implementation of the JPEG

algorithm on three parallel architectures. Experimental results, speedup and efficiency

graphs were given in this chapter. Speedup depends mainly on computation time on the

processors and the communication time between the processors. The communication

time can be reduced by transferring more bits in a single frame, thereby reducing the

communication overhead. Therefore, in all speedup graphs, speedup increases with

increase in image size.

On the Mercury system, a comparison of POSIC and MPP based communication

shows that the speedup and efficiency obtained with the MPP communication routines

is higher than that obtained with the POSIC communication routines. But, the POSIC

communication routines provide greater functionalities than the MPP communication

routines.

A comparison of the three architectures showed that the hybrid memory

architecture, such as the Param system, gives the best performance in terms of speedup,

scaleup and efficiency.

Chapters 123

Chapter 5

SIMULATION OF DIGITAL IMAGE

COMPRESSION TECHNIQUES

Contents

5.1 Introduction 124

5.2 Simulation Procedure 124

5.3 Simulation Results of Digital Image Compression Techniques 144

5.4 Performance Comparison of Parallel Architectures 155

5.5 Summary 165

Abstract

This chapter describes modelling and simulation methods used for simulating parallel

processing of image compression techniques using the Network n.5 simulation package.

Model building and simulation involves ten steps, viz. problem formulation,

model building, data collection, model translation, model verification, model validation,

experiment planning, experimentation, analysis of results, and documentation. Each of

these steps were described briefly in the third chapter. Image compression Plans on

different parallel computer architectures have been modelled using the Network n.5

simulation package. Details of the model building process and the process of running

simulation experiments for various Plans are given. Simulation results are compiled to

evaluate the performance of these Plans.

Speedup, scaleup and efficiency of each Plan is given, and the performance of

different Plans is compared in terms of speedup, efficiency and scaleup.

Chapter 5 124

5.1 Introduction

Predicting the performance of digital image compression algorithms on different

parallel architectures is a complex problem; simulation techniques can therefore assist

in the evaluation process.

To systematise the modelling and simulation work the idea of a Plan is

introduced, in section 3.3. Each Plan was translated into a model using the Network n.5

package. The procedure adopted for developing the models, and running the simulations

is explained in section 5.2.

Performance figures for the various Plans were obtained by running simulations

on their respective models. Performance figures are derived from the execution times

obtained from the simulation experiments. Execution times of the various models are

given in section 5.3. Performance of these models, in terms of speedup, scaleup and

efficiency is discussed in section 5.4.

5.2 Simulation Procedure

This section describes the model building and simulation procedure for image

compression techniques on parallel computers using the Network n.5 simulation

package. Procedure for model building and simulation includes problem statement,

model building, system simulation, system analysis and validation. These steps are

described in the following sections.

5.2.1 Problem Statement

The first step in building a model is to make a clear statement of the problem. In this

research the main issue is to study the various options for implementing digital image

compression techniques on parallel computers. This involves the study of digital image

compression techniques as well as parallel computer architectures. There are various

options for implementing digital image compression on parallel computers. Each

possible implementation is described as a Plan in this thesis.

Model building and simulation on the Network n.5 simulation package is

described in this section by taking the Plan given in equation 5.1 as an example. In this

Plan three Processing Elements are connected in a tree topology. Thus taking,

PI = P(BCT, NIPC, BWIP, DMA, DTrT, 3) (5.1)

Chapter 5 125

where,

P is the Plan for implementation,

BCT is the Block Comparator Technique used for image compression,

NIPC is Non-Inter-Processor Communication method used in conjuction with Block

Dependency,

BWIP is Balanced Workload Image Partitioning method,

DMA is Distributed Memory Architecture,

DTrT is Distributed memory architecture using Tree Topology,

NP - Number of Processors = 3.

5.2.2 Model Building

The steps involved in model building are: create network topology, define system

operations and model verification. These steps are described in the following sections.

5.2.2.1 Create Network Topology

The first step in model building is to create the network topology. In Network n.5 the

hardware model can be represented graphically as a collection of devices such as

Processing Elements (PE), Transfer Devices (TD), and Storage Devices (SD) as

explained in chapter 3.

For Plan PI given in equation 5.1, three Processing Elements (PE), one Storage

Device (SD) and three Transfer Devices (TD) are required as shown in figure 5.1. In this

figure Storage Device SD-1 is connected to the Host Processor through the TD-1

Transfer Device. The Host Processor is connected to PE-1 through TD-2, and to PE-2

through TD-3.

TD-2

TD-1

' &

TD-3

PE^

Figure 5.1 Graphical representation of Plan Pj

Chapters 126

5.2.2.2 Define System Operation

The steps involved in defining the system operations are:

1. Specify the characteristics of each hardware devices.

2. Define instructions for each PE.

3. Construct the software modules.

These three steps are described in the following sections.

Specify the characteristics of hardware devices: Each hardware component is

specified by a set of parameters. The parameters selected for Processing Elements,

Transfer Devices, and Storage Devices are as follows. In this section Intel's i860

processor was used as the CPU being modelled, because the i860 based Shiva machine

was used as one of the parallel processors for implementing the JPEG algorithm.

• PE specification: A PE is characterised by its Basic Cycle Time, Instruction

Repertoire, Message List Size, and Overheads. Three PEs are named as Host

Processor, PE-1 and PE-2. Screen outputs showing the details of the Host Processor

and PE-1 are shown in figure 5.2. The Basic Cycle Time for these three PEs were

specified as one micro second. The computation time for instructions defined for

each PE are taken from the experimental results. Basic Cycle Time is the basic time

unit on which the execution time of all processing instructions of a PE are built.

Host Processor, PE-1, PE-2:

Basic Cycle Time = 1 MIC^ (Micro Seconds)

• TD specification: TDs are the links connecting PEs and SDs to move the data either

between two PEs or between a PE and an SD. Data is moved between two PEs by a

message instruction and between a PE and an SD, as the result of a read/write

instruction.

TD can be specified in terms of protocol, cycle time, bits/cycle, cycle/word,

word/block etc. as shown in figure 5.3. Protocol defines the method of resolving

contention between PEs for a single TD. Protocols are of types; First Come First

Serve (FCFS), collision, priority, token ring, crossbar etc. FCFS protocol was used

for TD-1, TD-2 and TD-3. In this protocol, requests are served in the order in which

they arrive.

MIC is the abbreviation used for microseconds in the NETWORK n.5 system.

Chapter 5 127

?r!i

IH05TPROCE5SOR

i H Comment

RECEIl^EIMG FROM SD

SEND COMPIMG TO SD
SEND IM6PRRT-1 TO PE-1
SEND IMGPflRT-2 TO PE-2
PARTITION IMAGE

PROCESS IM6BL0CK
BLOCK CGMPRRISON

START TIME

1̂

^

Figure 5.2a Host processor specification form

Figure 5.2b PE-1 specification form

Chapter 5 228

Two TD types were used in this Plan. The first type of TD was used to connect

the SD to the Host Processor. The specification form for TD of the first type is

shown in figure 5.3a. TD of the second type, TD-2, was used to connect the two

PEs. TD-2 specification form is shown in figure 5.3b. Specified parameters for these

TD are as follows.

TD-1: TD between SD and Host Processor:

Protocol = FCFS

Cycle time = 0.5 MIC

Bits / Cycle = 64

Cycle / word = 1

Word / block = 1

TD-2 and TD-3: TDs between two PEs:

Protocol

Cycle Time

Bits / cycle

Cycle / word

Word / block

Block overhead

=

=

=

=

=

=

FCFS

IMIC

64

1

1

0.05 MIC

• SD Specification: Storage devices contain user named files and unstructured

storage. In our case, SD-1 contains two files named as Source Image File and

Compressed Image File. Read and write instructions are used to access these files.

When a read instruction references an SD, it checks for the Source Image File to see

if the requested file is available. If it is available, the file is read into the PE.

When write instruction attempts to put a file into an SD, it checks to see if there

is enough space available. If required space is available it accepts the file. If

adequate space is not available, a warning message is issued to the user.

Files are read or written analogous to the way real storage devices work. Storage

devices automatically decompose all file reads and writes into words and blocks.

Every SD can be specified by attributes such as Name, Read access time, Write

access time. Read word overhead time. Write overhead time, bits/word, number of

ports, word / block, file list, as shown in figure 5.4. Following are the some of the

attributes used for SD-1.

Chapter 5 129

Figure 5.3a TD-1 specification form

Figure 5.3b TD-2 specification form

Chapter 5 130

SD-1:
Capacity: Total number of bits that SD can hold = 1 GBits

Bits/word = 64

Number of Ports = 1

Word/block = 1

File List = 2 (Source Image File, Compressed Image File)

^^^^BS^^^^^^^^^^^^^^^^^^^^^^^^^^^^B
1 Comment ^ ^ H

Figure 5.4 SD-1 specification form

Define instructions for each PE: The next step of model building is to define the

instructions for each PE. The Instruction Repertoire consists of four types of

instructions. That is, processing instructions, read/write instructions, message

instructions and semaphore instructions. Instructions for a Plan are divided as

instructions on the Host Processor, and instructions on PE-1 and PE-2. These

instructions are described in the following sections.

For Plan PI image size was taken as the 1100 x 900 samples. Number of Similar

Blocks (NSB) = 10%. From this data the parameters are calculated as follows.

Image Size = 1100 x 900 samples

= 1100 X 900 bits (For monochrome image @ 1 bit / sample)

Chapter 5 131

Number of Blocks (NB) = ^ ^ * ^ = 15594

Number of Similar Blocks (NSB) = 10% of NB = 10 % of 15594 = 1560

Instructions on the host processor are shown in figure 5.2a and are explained below.

Host Processor Instructions:

• Start Time: This is a semaphore instruction to set the 'Start Time' semaphore. This semaphore is

used to measure the execution time for each experiment. It is set at the beginning of the experiment

and reset at the end. Thus the execution time is simply the length of time for which this semaphore

stays set.

• Receive Img from SD: This is a read instruction. This instruction reads the source image file from

the SD. Time taken to receive the image file from SD depends on the number of bits to be received.

The number of bits received from SD for Plan PI = 1100 x 900 = 990000 bits.

• Block Comparison: This is a processing instruction where the number of cycles were specified to

process block comparison operations. Time taken for block comparison was taken from experimental

results and it depends upon the image size. For the 125 x 125 image size time taken for Block

Comparison = 7300 MIC, for a 625 x 423 image size it is = 28000 MIC, for a 1100 x 900 image

size it is = 390000 MIC. For Plan PI the number of cycles = 390000 for the 1100 x 900 image size.

• Partition Image: This is a process instruction. Partitioning time is quite small, about 50 MIC. The

partition step partitions the image blocks into three parts. Here the Balanced Workload Image

Partitioning (BWIP) method was used. In this step, for Plan PI, the Number of Unique Blocks was

taken as 15594 - 1560 = 14034. Therefore, all three processors get 14034 / 3 = 4678 blocks for

processing, assuming that all blocks are of equal intensity value.

• Send Imgpart-1 to PE-1: This is a message instruction. The time taken to transmit part of the image

from the host processor to PE-1 depends upon the number of bits in image part-1. In this example

NIPC method was used for Block Dependency method. Therefore the number of bits to be

transmitted to PEs includes part of the image and the neighbouring samples. Part of the image

consists of number of blocks x number of bits in one image block. Therefore, the number of bits

transmitted = Number of Blocks x bits/ image block + neighbouring samples = 4678 x 8 + 2200 =

37424 + 2200 = 39624 bits.

• Send Imgpart-2 to PE-2: Details of this instruction are similar to those of the Send Imgpart-1 to

PE-1 instruction.

• Process Image Block: This is a processing instruction. It represents the compression operation

carried out on each image block. The time taken for processing a complete image (Tpjocimg) ^̂ equal

to number of blocks x time taken for processing one block as given in the following equation as,

Tprocimg = Number of Blocks (NB) x Tp^cblock (5.2)

where, Tpj-Qĉ iQ -̂jf is the time taken for processing one image block.

Chapter 5 132

The number of cycles for processing one image block is defined as a normal statistical

distribution function (SDF). The upper limit for this normal distribution = 425 MIC, the lower limit =

475 MIC, the Standard Deviation = 18.074, and the Mean = 450 MIC. The parameters for this SDF

were obtained from experimental results.

• Send Complmg to SD: This is a Write instruction. It represents the operation in which after

completion of compression process, compressed image data is sent to the SD. The Compressed Data

Structure -3 was considered to calculate the number of bits transmitted as given in equation 5.3.

Details of this equation were explained in section 2.4.2. The definition of which is repeated here as,

S„pT,, =Sn4T+NL*(S +S +nl*S) + S +NUB*-Si^ + SpnT
BCT3 JHI SBM UBNF BNF UBM gCF (5.3)

where,

^BCT3 ~ BCT Compressed image size for CIDS-3 in Bytes,

Sjjji = Size of the JPEG Header Information in Bytes = 173 bytes,

NL = Number of Similar Block Lists in SBG = I,

nl = Number of Block Numbers in each Unique Block list = 1560,

^SBM - ^'^^ °^ ̂ ®̂ Similar Block Marker = 1 byte,

•^UBNF ~ '̂ '̂ ® °^ ^^ Unique Block Number Field = 2 bytes,

'̂ UBM ~ ^^^^ °^ ^^^ Unique Block Marker = 1 bytes,

NUB = Number of Unique Blocks = 14034,

•̂ Blk ~ ^^^^ °^ °"® block in Bytes = 1,

SgQj = Size of the End Of Image marker = 1 byte,

BCF = Block Compression Factor = 6,

S B C T 3 = 173 + 1 * (1 + 2 + 1560 * 2) + 1 + 14034 * 8 / 6 + 1

22011 bytes

22011*8 = 176088 bits.

• End Time: This instruction resets the 'Start Time' semaphore. Network II.5 determines the active

duration of the 'Start Time' semaphore from set and reset condition.

Figure 5.2b shows the instruction list for PE-1. histructions on PE-2 are the same as

the instructions on PE-1. These instructions are as follows.

PE-1 and PE-2 instructions:

• Process Image Block: This is a processing instruction. The number of cycles for this instruction is

the same as for the Host Processor.

• Send Complmg to Host: This is a message instruction. It represents the operation in which

compressed image is sent to the Host Processing Element.

The number of bits specified = 4678 * 8 / 6 = 6238 bits.

Chapters 133

Construct modules: Tasks to be performed by PEs are specified as modules. Module

description consists of four parts, these are: scheduling conditions, processing element

options, a list of instructions to execute and a list of modules to execute when this

module completes. A module constantly checks its preconditions to see if the user

defined scheduling criteria are met. Once all preconditions have been met the module

takes the Hst of PEs on which it will run. A module begins execution by issuing

instructions from its instruction list. Once all instructions have executed successfully it

choses its successor module.

There are three modules defined for the example Plan PI, these are Processlmg

on Host module, Processlmg on PE-1 / 2 module and Send Complmg to SD

module. These three modules are shown in figures 5.5, 5.6 and 5.7 respectively.

From figure 5.5 we can see that the precondition for Processlmg on Host

module is start time = 0 MIC. Therefore, this module starts execution as soon as

simulation begins. Then it issues instructions from the instruction list, one by one. First

instruction in the list sets the Start Time semaphore. The second instruction carries out

Block Comparison. Next, the image is partitioned into three parts, and the Host

Processor sends Image Part-1 to PE-1 and Image Part-2 to PE-2. Then compression on

image blocks takes place. The number of blocks to be compressed is defined by the

iteration list. In this case number of iterations were defined for the Processlmg Block

instruction as 4678. This means that the Process Image Block instruction executes

4678 times. (In the module form, shown in figure 5.5 and 5.6, only the first three digits

for the number of iterations can be seen.) Then this module chooses its successor. The

successor module is Send Complmg to SD module.

The next module to execute is Send Complmg to SD as shown in figure 5.7.

In this module the precondition is that messages Complmg Part-l and Complmg Part-2

should have been received.

When Processlmg on Host module executes, the Processlmg on PE-1 / 2

module also executes parallelly. Processlmg on PE-1 / 2 module waits for the

message Imgpart. When Processlmg on Host module sends Imgpart message, the

Processlmg on PE-1 / 2 module takes PE-1 and PE-2 from the processor list to

execute the instructions on these PEs. The first instruction in this module is Process

ImgBlock as shown in figure 5.6. This instruction executes 4678 times because the

number of iterations were defined as 4678. Then these two PEs send their respective

Complmg Parts to the Host by executing SendCompimg Host instruction, with

Complmg Part-1 and Complmg Part-2 as the message names.

Chapter 5 134

Figure 5.5 Module 1: "Processlmg on Host"

Figure 5.6 Module 2: "Processlmg on PE'

Chapter 5 135

Figure 5.7 Module 3: "Send Complmg to SD"

As soon as the Send Complmg to SD module receives these two messages,

instructions on the Host Processor start executing. This module has anded predecessors

as Host Processor. Because Host processor has successor as Send Compimg to SD

module. The first instruction in this module is Send Complmg to SD as shown in

figure 5.7. It send the compressed image to the SD. Then it resets the Start Time

semaphore by executing the End Time instruction.

5.2.2.3 Model Verification

Model verification is assisted by the module diagram generated by Network n.5. In this

display, modules are represented in a flow chart format as shown in figure 5.8. The

name of the module is written inside the box. Preconditions are displayed on the right

upper comer of the box. The instructions for this module are listed on the right side of

the box. Output of the instructions or the messages are indicated on the right bottom

comer of the box. The successor is indicated by a down arrow leading to the other box.

Chapter 5 136

Processimg on
Host

ANDED
Predecessor

Send
Complmg to

SD

Start Tune: 0

Host Processor

Start Time

Receive Img from SD
Partition Image
Send ImgPart-1 to PE -1
Send ImgPart-2 to PE-2
Process ImgBlock

M; Imgpart
S+: Start Time

. M: Complmg

M: Imgpart

Processimg on
PE

PE

Process ImgBlock
Send Complmg to Host

SendCompimg toSD
End Time

;^M: Complmg Part-1
M: Complmg Part-2

"4
R: Start Time

Figure 5.8 Modules diagram

Figure 5.8 shows that the precondition for Processlmg on Host module is

Start Time = 0 MIC. This module executes on the Host Processor, indicated below the

precondition. The instruction list is given below the name of the processor. For

Processlmg on Host module the instructions are Start Time, Receive Img from SD,
Partition Image, Send ImgPart-1 to PE-1, Send ImgPart-2 to PE-2, and Process
ImgBlock. The output of this module is ImgPart message and the Start Time
Semaphore being set. These are displayed in the bottom right comer of the module box.

The Anded successor module is Send Complmg to SD module.

For the Send Complmg to SD module the precondition is Complmg Part-1

and Complmg Part-2. The instructions for these modules are Send Complmg to SD
and End Time. Output of this module is to reset the Start Time semaphore.

For the Processlmg on PE-1 / 2 module the precondition is ImgPart. The

instructions are Processlmg Block and Send Complmg to Host. The output of this

module is Complmg Part-1 and Complmg Part-2.

Chapter 5 I37

5.2.3 System Simulation

After Verification, the model is subjected to a series of simulation mns. The steps

involved in system simulation are, specify the ran parameters, and run simulation. These

are described in the following sections.

5.2.3.1 Specify Run Parameters

Simulation is mn after specifying parameters such as Run length, Periodic Reports,

Final reports, Trace etc. Parameters are specified in the Run Parameters form shown in

figure 5.9a. These are described below:

• Run length: The run length represents the simulated time for which Network n.5

should run the simulation. Specified here as 6 Seconds.

• Periodic reports: The number of Periodic Reports were specified as 4. This gives

four reports while the simulation is ranning. Required Periodic Reports are specified

in the Periodic Reports list given at the right bottom comer of the menu. Reports for

Processlmg on Host module, Processlmg on PE-1 / 2 module. Send

Complmg to SD module and TD status were specified.

• Final reports: These are the reports included in the final set of reports at the end of

the simulation. In these simulation the final reports for the Host processor and PE-1

were observed.

5.2.3.2 Run Simulation

A simulation experiment can be run on a model after specifying the simulation run

parameters. After running the simulation experiment following facilities can be

accessed.

• Runtime reports: This gives the utilisation graph, runtime warnings and summary

reports.

• Utilisation graph: The utilisation graph measures the percentage of time during an

interval that a PE, TD, or SD was busy. For this simulation utilisation graphs was

asked for the Host Processor and Processing Element-1. Utilisation graphs for the

Host Processor and PE-1 are shown in figure 5.9b.

• Trace reports: The runtime trace reports allow the user to monitor the progress of

the simulation experiment.

• Runtime warnings: Runtime wamings notify potential errors as these occur during

the simulation mn.

• Summary reports: The summary reports contain the simulation statistics for model

entities. These statistics encompass the period of activity between the start of the

simulation and the reset time.

Chapter 5 138

"̂̂ TST.'-r-.i yj^^t^^nfisrci^issi^-

F i g u r e 5.9a R u n p a r a m e t e r f o r m

»n<:'= '̂y*>'̂ T '̂5S.:-iS ?̂.•:?•;»:->'•': '\'^r.^'^A-'~-'f:simGnvSf!Ssm'?^rs^'' •''•:=T?73?:-:!

49 5B
PE-1

90 100

a 10 Z0 30 40 50 G0 70 80 90 100
Percent of B. SEC Complete

Figure 5.9b Utilisation graph of the host processor and the PE-1 at run time

Chapters 139

5.2.4 System Analysis

In Network n.5 the operation of a model can be analysed by observing the animation

screens. During an animation, model hardware elements are highlighted as they become

active. Icons are displayed at the beginning and at the end of data transmission, moving

first from source to TD and then from TD to destination. The procedure for creating and

mnning animation screens is as follows.

5.2.4.1 Animation

Animation consists of three steps, namely, set animation parameters, start the animation

and observe the animation. These are described in the following sections.

Set animation parameters: Animation parameters can be set in the animation menu as

shown in figure 5.10. This figure indicates that the animation will be done in the single

step model, animation is displayed by event, and the delay time from each event is 1 sec,

start time = 0 MIC.

Start animation: After specifying the animation parameters, animation is started by

clicking the OK button. Network n.5 starts the animation by displaying all the elements

in gray colour initially, then a red icon starts moving through, as the operation

progresses.

Observe the animation: As the model's hardware elements become active, they are

displayed with their characteristic colour. When a module runs on a PE, the name of the

module is displayed in place of the PE name. If PE transmits a message over a TD, the

PE is highlighted with its characteristic colour, the TD colour changes to the source PE

colour, the message is displayed near the TD and the TD connection to the destination

PE changes to the source PE's colour. Therefore, animation helps in visualising the

operation of the model and locating any errors in the model's operation.

5.2.4.2 Plotting

Network n.5 simulation package provides the facility to generate utilisation and

timeline status plots for PEs, TDs, SDs, modules and semaphores. Plotting consists of

two steps: set the plot parameters, and plot the required data.

Set plot parameters: Prior to starting a plot the required parameters have to set as

shown in figure 5.11, by entering the plot type as 'Time-Line', the list of items to plot as

PEs and semaphores, and plotting Time-Span by specifying start at 0 second and end at

2.6 seconds.

Chapter 5 140

Figure 5.10 Animation parameter specification menu

•-;:^s^g^^m^?^m

I

1

o

• _..,. _

Plot f i l e

[ThresholdJ

i''tfc<i^|?Sl|?

covers 0. to 6. SEC

•

B.000|

2 . G 0 B |

iBB.aaB'l

fsEC^^^H

^ ^ H
1 Percent ^ ^ ^ ^ J

Figure 5.11 Plot parameter specification menu

Chapter 5 141

Plot: Two types of plots can be produced in Network n.5: Time-Line status plots and

utilisation plots. These are explained in the following sections.

1. Time-line status plots: The Time-Line stams plot measures each device's pattem of

activity during the competed simulation as a function of time. These plots can be

used to compare the time spent on communication and computation. Figure 5.12

shows the Time-Line status plot for modules, PEs, TDs, and Semaphore. From this

plot we can clearly see the idle time of PE-1 and PE-2 in the beginning.

2. Utilisation plots: The utilisation plot is a histogram which measures a device's

percentage utilisation during a completed simulation as a function of time. Figure

5.13 shows the utilisation of the Host Processor, PE-1, and PE-2.

5.2.5 Validation

A model can be validated by comparing the simulation results with the implementation

results. The execution times obtained from simulation experiments and those obtained

by real-time implementation are given in table 5.1. Match between the real-time and

simulation results is expressed as a Match Ratio defined in the following equation.

Match Ratio = Execution Time (simulation) / Execution Time (implementation) * 100. (5.4)

Table 5.1 Comparison of execution times obtained from simulation and

implementation for Plan PI

Number of
Processors-NP

1

2

3

Execution Time in
Sec. (Simulation)

6.3828

3.315629

2.52244

Execution Time in
Sec.

(Implementation)

6.7

3.5

2.71

Match Ratio %

95.26

94.73

93.08

From table 5.1 we can see that the values obtained from simulation are within

90% of the values obtained from experimentation. Therefore, we can say that the model

for Plan PI is a valid model. A validated model can be used for modelling Plans.

Chapter 5 142

^^7m^nBgSphii57^:s< ••

pe

pe

pe

td

td

td

sem

H05TPROCESS0R

PE-1 i

PE-2

TD-1

TD-2

TD-3

TOTAL SIMULATION
TIME

Threshold: g
10B.B Percent

.52 1.84 1.56 2.88
Time in SECONDS (increments oF ,52)

Figure 5.12 Time-line status graph

180,

30,

88,

§ 70

5 60

u

a

50

40

30

28

IB

0

0-]

0 -

0-

0 -

0 -

0 -

0-

0 -

8 - ^

pe

0H

0

t f i
*i r'

i ••
if f

I

I

I

1
T

I

1 '
I

I

u
I '

t { .

. L

HOSTPROCESSOR

- » » ' 1 ' t
T n i • • - t

•4 * f I ? .± t , -
i '. : 'r I r 1

. i I ; '••: IT ? t
- t t" * . f t

r 1. 1
; - II
* I l '
t + »

I r

INTERUflL

i ' r
i

If .
I

i I

.5

4.' i

t

}

(

M ̂

» T I I

1 !• • •

' ' t

.i X I ;

t
I I

O i

- i t . 1 : »

• i X 'I.

} . * I '

.} i J .
! f iS

I

' I
I •

(•
• t

\ -*
i' rt
I

J

: :1

• t -

t -

i i '

i t

i .

1 I

8 1,0 1.3
TIME IN SECONDS

1,6 1,8

Figure 5.13 a Utilisation graph of host processor

Chapter 5 143

100,0-1

30.0-

80.0-

+j -

5 G0.0-

^ 50.0-

g 40.0-

g 30.0-1

pe PE-1 INTERUflLi .6 SEC

28.0

10.0-1

0.
0

Urn..*'..As.Jf, :r.. M.pi^^ljt* . „1* .LJ*Lj |L^J i i ,

,5 ,8 1.8 1.3 1,6 l.e
TIME IN SECONDS

Figure 5.13 b Utilisation graph of PE-1

2 1 2,3

100,0-|

33,0-

80,0

Q 70.0-

N 60.0-

^ 50.0-

t 40.0-
a

g, 30,0

20,0-

10,0-
e.

pe PE-2 INTERUflLi .e SEC

a

M 'i k
•|i t^l

' L

:8 110 1,3
TIME IN SECONDS

Figure 5.13 c Utilisation graph of PE-2

Chapter 5 144

5.3 Simulation Results of Digital Image Compression Techniques

Digital image compression techniques can be implemented on parallel computers in

many different ways. A specific way of implementation is called a 'Plan'. The specific

Plans selected for modelling and simulation are described in section 5.3.1. Simulation

results for the selected Plans are discussed in section 5.3.2. Tables giving the execution

times for the various simulated Plans are given in appendix A; table A.l to A.15.

Speedup values calculated from the execution time values are also given in appendix A;

tables A.21 to A.35. Speedup and efficiency graphs are plotted next to each speedup

table; figures A.l to A.15. Comparisons of the results obtained for the different Plans

are given in section 5.3.2.

5.3.1 Plans Selected for Simulation

A Plan (Px) can be represented as a 6-tuple given in equation 5.5. Thus,

Px = P(ICT, BD, IPM, MA, MO/NT, NP) (5.5)

where,

Px is Plan-x for implementation,

ICT is the Image Compression Technique used for image processing,

BD is Block Dependency method used for image processing,

IPM is Image Partitioning Method used for image processing,

MA is Memory Architecture of the parallel processor used,

MO/NT is Memory Organisation / Network Topology of the parallel processor used,

NP is Number of Processors used.

The options for each of the parameters listed above were described in section

3.3. A cross product of all parameter options will give a very large set of Plans, hi this

project a total of fifteen Plans were modelled. These Plans are divided into two set: a set

of twelve Plans for Non-hiter-Processor Communication (NIPC) method and a set of

three Plans for hiter-Processor Communication (IPC) method; as described in the

following sections.

5.3.1.1 Plans for Non-Inter-Processor Communication (NIPC) Method

The JPEG algorithm is called as the Non-Block Comparator Technique (NBCT) and the

proposed enhancement to the JPEG algorithm is called as the Block Comparator

Technique (BCT) in this thesis. A total of twelve Plans were selected for modelling and

Chapter 5 I45

simulation of image compression for the Non-hiter-Processor Communication method.

These Plans can be classified as Plans for the Non-Block Comparator Technique

(NBCT) and Plans for the Block Comparator Technique (BCT). These Plans are:

Selected Plans using the Non-Block Comparator Technique;

P2 = P(NBCT, NIPC, BWIP, SMA, SGM, NP),

P3 = P(NBCT, NIPC, BWIP, SMA, SLgM, NP),

P4 = P(NBCT, NIPC, BWIP, DMA, DTrT, NP),

P5 = P(NBCT, NIPC, BWIP, DMA, DToT, NP),

P6 = P(NBCT, NIPC, BWIP, DMA, DPyT, NP),

P7 = P(NBCT, NIPC, BWIP, DMA, DCuT, NP),

and selected Plans using the Block Comparator Technique;

P1 = P(BCT, NIPC, BWIP, DMA, DTrT, NP),

P8 = P(BCT, NIPC, BWIP, SMA, SGM, NP),

P9 = P(BCT, NIPC, BWIP, SMA, SLgM, NP),

PIO = P(BCT, NIPC, BWIP, DMA,DToT, NP),

PI 1 = P(BCT, NIPC, BWIP, DMA, DPyT, NP),

P12 = P(BCT, NIPC, BWIP, DMA, DCuT, NP).

In these Plans the Non-Inter-Processor Communication (NIPC) method was

selected for the Block Dependency parameter and Balanced Workload Image

Partitioning (BWIP) method for Image Partitioning Method. All of these Plans are

simulated for various number of processors.

The example Plan PI given in equation 5.1 is based on the Non-Inter-Processor

Communication method, because the neighbouring samples are transmitted along with

the main image block. This can be seen in the Send ImgPart instmction on the Host

Processor. If the Inter-Processor Communication method is used for transferring

neighbouring samples the communication time leads to increase in total execution time

compared to that for the Non-Inter-Processor Communication method. Therefore, the

Non-Inter-Processor Communication (NIPC) method was chosen.

Block Comparison using Divide and Conquer sort method was used for the

Block Comparator Technique. This method is also convenient for grouping the blocks

that have equal intensity values, for the Balanced Workload Image Partitioning (BWIP)

method. In the Balanced Workload Image Partitioning (BWIP), time for which

processors are idle can be minimised. Therefore, the Balanced Workload Image

Partitioning method was selected for the simulation.

Chapter 5 I45

The total number of simulation models developed for the Non-Inter-Processor

Communication method are as follows,

Total Number of Models for the NIPC Plans

= Number of Models for the NBCT + Number of Models for the BCT.

Number of Models for NBCT

= Number of Models for Shared Memory Architecture + Number of Models for

Distributed Memory Architecture

NMSMG + NMSMGL + NMDMTr + NMDMTo + NMDMPy + NMDMCu

= 9 x 3 + 8 x 3 + 8 x 3 + 8 x 3 + 6 x 3 + 5 x 3 = 134 Models,

where,

NMSMG = Number of Models for Shared Memory Architecture with Global Memory

organisation,

NMSMGL = Number of Models for Shared Memory Architecture with Local-plus-Global

Memory organisation,

NMDMTr = Number of Models for Distributed Memory Architecture with Tree Topology,

NMDMTo = Number of Models for Distributed Memory Architecture with Torus Topology,

NMDMPy = Number of Models for Distributed Memory Architecture with Pyramid

Topology,

NMDMCu = Number of Models for Distributed Memory Architecture with Cube Topology.

Number of Models for the Block Comparator Technique (BCT) is almost equal

to the number of Models for the Non-Block Comparator Technique (NBCT). Therefore

nearly two hundred and sixty eight Models were simulated, and the results obtained

from these models are given in the section 5.3.2.

5.3.1.2 Plans for the Inter-Processor Communication (IPC) Method

A total of three Plans were selected for modelling and simulation of image compression

for the Inter-Processor Communication (IPC) method. The representation of these Plans

for the Block Comparator Technique are:

Selected Plans for the Block Comparator Technique with the Inter-Processor

Communication (IPC) method;

PI3 = P(BCT, IPC, BWIP, SMA, SlgM, NP),

P14 = P(BCT, IPC, BWIP, DMA, DToT. NP),

P15 = P(BCT, IPC, BWIP, DMA, DPyT, NP).

Chapter 5 24-7

For these Plans the Block Comparator Technique (BCT) was selected for Image

Compression Technique parameter. For the Inter-Processor Communication method.

Plans for Shared Memory Architecture with Global Memory organisation and

Distributed Memory Architecture with Toms and Pyramid topologies were simulated.

This helps to compare the execution times with NIPC Plans.

The total number of simulation models developed for the Inter-Processor

Communication (IPC) method are as follows:

Total Number of Models for the IPC Plans

= Number of Models for Shared Memory Architecture + Number of Models for

Distributed Memory Architecture

NMSMGL + NMDMTo + NMDMPy

= 9 x 3 + 8 x 3 + 8 x 3 = 75 Models,

where,

NMSMGL = Number of Models for Shared Memory Architecture with Local-plus-Global

Memory organisation,

NMDMTo = Number of Models for Distributed Memory Architecture with Torus Topology,

NMDMPy = Number of Models for Distributed Memory Architecture with Pyramid

Topology.

Therefore, nearly seventy five models were simulated for the IPC Plans, and

results obtained from these models are given in the section 5.3.2.

5.3.2 Execution Times Obtained

The execution times obtained from simulation experiments are given in appendix A.

Tables A.l to A.15 show the execution times for the Plans mentioned above for various

number of processors and for three different image sizes. The image sizes considered

are 125 x 125 samples, 625 x 425 samples and 1100 x 900 samples; as these are the

most widely used image sizes in the industry. From all the tables it can be seen that the

execution time increases with the increase in image size, and the execution time

decreases with the increase in Number of Processors (NP) till some point, then it starts

increasing with NP. The point at which the least execution time is obtained gives the

scaleup for that specific Plan.

Execution times for the Non-Block Comparator (NBCT) using the Non-Inter-

Processor Communication (NIPC) method are given in tables A.l to A.6. The execution

times for the Block Comparator Technique (BCT) using the NIPC method are given in

tables A.7 to A.12. The Number of Similar Blocks (NSB) is 10% for tables A.7 to A.12

Chapter 5 I4g

NSB = 10%. The execution times for the Block Comparator Technique (BCT) using

hiter-Processor Communication (IPC) method are given in tables A.13 to A.15; in these

tables also the Number of Similar Blocks (NSB) is 10 %. The least execution time in all

these tables are indicated in bold letters.

Comparison of execution times obtained for the NIPC Plans is given in section

5.3.2.1. Execution time comparison for the IPC Plans is given in section 5.3.2.2.

Execution time comparison between the NIPC and the IPC Plans is given in section

5.3.2.3.

5.3.2.1 Comparison of Execution Times for the NIPC Plans

In this section a comparison of execution times for the Non-Inter-Processor

Communication (NIPC) Plans is given. The execution times are tabulated in tables A. 1

to A.6. From these tables the least execution time values obtained for the different Plans

are extracted, tabulated and compared in this section.

A comparison of execution times obtained from simulation is more meaningful

than a comparison of execution times obtained on real systems, such as the three

systems discussed in chapter 4. Because the processing power of the CPUs used on

different real systems can be quite different. Whereas, the processing power of the

different CPUs used in simulation are the same. The simulation models discussed in this

thesis are based on the Intel i860 CPU.

Section 5.3.2.1a gives the execution times comparison for the NBCT Plans, and

execution times comparison for the BCT Plans is given in section 5.3.2.1b. Comparison

of these two techniques, based on the Speed Improvement Factor is given in section

5.3.2.1c.

5.3.2.1a Comparison of Execution Times for the NBCT Plans

Table 5.2 gives the least execution times extracted from the tables A.l to A.6, which are

based on the NBCT Plans. By comparing the least execution times obtained on Plans P2

and P3, it can be seen that the least execution time on Shared Memory Architecture

with Local-plus-Global Memory organisation is lower.

By comparing Plans for Distributed Memory Architecture, we can see that the

least execution time for the 125 x 125 image size on Plan P5 is the lowest, and for the

other image sizes the least execution time for P6 is the lowest. Therefore, we can say

that the least execution time can be obtained for small image size on Distributed

Memory with Toms Topology and for medium and large image sizes lowest execution

time can be obtained on Distributed Memory Architecture with Pyramid Topology.

Chapter 5 149

By comparing all Plans we can see that the least execution time for the Non-

Block Comparator Technique (NBCT) can be obtained on the Shared Memory

Architecture with Local-plus-Global Memory organisation with twenty processors.

Table 5.2 Least execution times for the NBCT Plans

Plan

P2

P3

P4

P5

P6

P7

Memory

Architecture

Shared Memory

Architecture

Distributed Memory

Architecture

Memory

organisation /

topology

Global

Global & Local

Tree

Torus

Pyramid

Cube

Execution times in msec.

NP

16

20

27

21

37

28

For 125 X 125
image

17.82

10.47

15.49

11.69

13.43

16.30

NP

25

20

27

21

37

28

For 625 x
429 image

235.49

194.96

267.72

262.58

224.55

277.49

NP

25

20

27

21

37

28

For 1100 X
900 image

869.13

732.21

981.38

959.29

812.04

959.14

5.3.2.1b Comparison of Execution Times for the BCT Plans

Table 5.3 gives the least execution times for all the Plans based on the BCT. By

comparing the least execution times for P8 and P9 Plans, we can see that the least

execution time on the Shared Memory Architecture with Local-plus-Global Memory

organisation is lower as compared to that on the Shared Memory Architecture with

Global Memory organisation.

By comparing the Plans for Distributed Memory Architecture, we can see that

the least execution time for all image sizes is the lowest on Plan P l l . Therefore, we can

say that the least execution time can be obtained on Distributed Memory Architecture

with Pyramid Topology.

Table 5.3 Least execution times for selected Plans using the Block Comparator

Technique

Plan

P8

P9

PI

PIO

Pl l

P12

Memory

Architecture

Shared Memory

Architecture

Distributed Memory

Architecture

Memory

organisation /
topology

Global

Global & Local

Tree

Torus

Pyramid

Cube

Execution times in msec.

NP

16

20

15

9

21

9

For 125 x125
image

16.62

10.73

15.96

21.33

13.59

19.26

NP

16

20

15

9

21

9

For 625 x
429 image

275.64

200.42

259.58

348.42

226.41

318.53

NP

16

20

15

13

21

9

For 1100 x
900 image

1005.15

733.24

1030.67

1173.70

833.01

1165.69

Chapter 5 150

By comparing all Plans we can see that the least execution time for the Block

Comparator Technique (BCT) can be obtained on Shared Memory Architecture with

Local-plus-Global Memory organisation.

5.3.2.1c Speed Improvement Factor

This section presents a comparison of the BCT and the NBCT Plans based on the Speed

Improvement Factor. The speed improvement obtained by the Block Comparator

Technique over the Non-Block Comparator Technique can be represented by a factor

called the Speed Improvement Factor (SIF), defined in chapter 2. SIF is defined as the

ratio of execution time obtained for the Non-Block Comparator Technique (NBCT) to

the execution time obtained for the Block Comparator Technique (BCT), as given by

SiF = 3mCT
"̂ BCT

SIF values for Shared Memory Architecture with Global Memory organisation

are obtained by comparing the execution times obtained for Plans P2 and PS; these are

given in table 5.4, and plotted in figure 5.14 for NSB =10%.

Table 5.4 SIF values for the NBCT Plan P2 and the BCT Plan P8

(on a Shared Memory Architecture with Global Memory organisation)

Number of

Processors-NP

1

3

5

7

11

16

20

Speed Improvement Factor - SIF

For 125 X 125 image

1.07

1.03

1.11

1.06

1.11

1.07

0.99

For 625 x 429 image

1.07

1.07

1.05

1.00

1.02

0.97

0.83

For 1100 X 900 image

1.07

1.17

1.06

1.06

1.03

1.01

0.84

Chapter 5 151

o

Is
— u
« u.
o
Q.
Oi

1100x900

625 X 429 i^ag^ Size
125x125

Number of Processors - NP

Figure 5.14 SIF graph for Plans P2 and P8

The SIF values of 1.07 obtained from simulation, for NP = 1, is close to the SIF

value of 1.08 obtained by analytical means; given in table 2.8. From table 5.4 it can be

seen that SIF value is greater than one upto some Number of Processors and then it falls

below one. The highest Number of Processors at which SIF is greater than one is called

as the Speed Improvement Cutoff Point (SICP) in this thesis. In appendix A tables A. 16

to A.20 give the SIF values for the various architectures. From these tables the SICP

values are extracted and tabulated in table 5.5.

Table 5.5 SIF values for various Plans

Memory

Architecture

Shared Memory

Architecture

Distributed Memory

Architecture

Memory

organisation /
topology

Global

Global & Local

Tree

Torus

Pyramid

Cube

Speed Improvement Cutoff Point (SICP)

For 125 X125
image

16

7

15

5

21

9

For 625 x 429
image

11

11

15

5

21

9

For 1000 X 900
image

16

11

15

13

21

9

From the table 5.5 we can see that the highest value of SICP is obtained for the

Pyramid Topology. Of the two Shared Memory Architectures the Global Memory

organisation gives a higher value for the SICP. From the above discussion it can be

concluded that the Block Comparator Technique fails to be effective on a large Number

of Processors. The reason for this is explained below.

Chapter 5 152

In this chapter the divide and conquer method was used, as outlined in the

chapter 2, for comparing blocks in an image. In all of the techniques discussed in this

chapter the block comparison step takes place on the host processor and leads to

sequential processing of the block comparison process. This leads to the fact that the

time taken for the Block Comparator Technique is higher than that for the Non Block

Comparator Technique as the number of processors increases. Thus execution time can

be further reduced by parallelising the block comparison step as well [Kumar, 94]

[Zomaya, 96].

5.3.2.2 Comparison of Execution Times for the IPC Plans

The execution times obtained for the IPC Plans P13 to P15 are given in the appendix

tables A.13 to A.15 respectively. The least execution times for the IPC Plans are given

in table 5.6. By comparing the three Inter-Processor Communication based Plans, we

can observe that the Distributed Memory Architecmre with Pyramid Topology gives the

least execution time.

Table 5.6 Least execution times for the IPC Plans Plans using the Block

Comparator Technique

Plan

P13

P14

P15

Memory

Architecture

Shared Memory

Architecture

Distributed Memory

Architecture

Memory

organisation /

topology

Global & Local

Torus

Pyramid

Execution times in msec.

NP

13

13

21

For 125 X 125
image

20.09

18.80

12.03

NP

13

13

21

For 625 x
429 image

299.42

295.36

220.21

NP

13

13

21

For 1100 X
900 image

1092.95

1069.14

830.27

The execution time obtained on the Shared Memory Architecture with Local-

plus-Global Memory organisation is higher due to contention over the transfer device.

In the Distributed Memory Architecture communication takes place over the various

transfer devices in parallel. This can be seen by comparing utilisation graphs of Transfer

Devices given in figures 5.15 and 5.16.

Chapter 5 153

td

Threshold!
100.Q Percent

0. M .12 .18 .24
rime In SECONDS (increments of .06)

Figure 5.15 Utilisation of TD-1 in Shared Memory Architecture

td

td

td

td.

td

td .

td

td

td

Threshold!
108,0 Percent

BUSl

TOl

TDZ

TD3

TD4

TDl.l

TD2.1

TD3,1

TD4.1

^^L 1
.H

A_
.

1 :

H L
• •

1

1
1 1 1 —

•

— 1 1 —
9. .2 .4 .G

Time in SECONDS (increments of .2)

Figure 5.16 Utilisation of transfer devices on Distributed Memory Architecture
with Pyramid Topology

Chapter 5 I54

5.3.2.3 Comparison of Execution Times for Different Block Dependency Method

(NIPC and IPC)

By comparing Plans for the Non-Inter-Processor Communication (NIPC) method and

the Inter-Processor Communication (IPC) method using the Block Comparator

Technique, the following conclusions are derived.

Comparing Plan P9 and P13: Execution times for Plan PI3 (BCT on a Shared

Memory Architecture with Global Memory organisation for Inter Processor

Communication) are higher than that for Plan P9 (BCT on a Shared Memory

Architecture with Local-plus-Global Memory organisation for Non-Inter Processor

Communication), because of memory contention problem on a shared bus.

Comparing Plans PIO and P14, Plans P l l and P15. The execution times for Plan P14

(BCT on a Distributed Memory Architecmre with Toms Topology for the IPC) and P15

(BCT for Distributed Memory Architecture with Pyramid Topology for the IPC) are

higher than those for Plans PIO (BCT on a Distributed Memory Architecture with Toms

Topology for the NIPC) and P l l (BCT on a Distributed Memory Architecmre with

Pyramid Topology for the NIPC) respectively for Number of Processors < 5. For

Number of Processors > 5 the execution times for Plans P14 and PI5 are lower than

those for Plans PIO and PI 1 respectively.

From this we can conclude that the IPC is efficient for lower Number of

Processors. Because the communication time for lower Number of Processors for inter­

communication among processors is less as compared to the NIPC. As the increase in

NP, the communication time taken for transferring neighbouring samples among

processors at mn time increases. This leads to increase in execution time.

5.3.2.4 Comparison of Execution Times for Plan Pll with Different NSB

In the BCT Plans discussed in section 5.3.2.1, the Number of Similar Blocks (NSB) in

an image was taken as 10%. From the execution times comparison of these Plans, the

Pyramid topology was found to be the best. Therefore, to compare the execution times

for different values of NSB, the Pyramid Topology is selected for simulation.

The execution times obtained on the Pyramid Topology architecture for the

NBCT Plan P6 and sequential processing of block comparison in Plan P l l for 625 x

423 image size, using NSB = 10%, 30%, 50% and 75% are given in table 5.7. SIF

values derived from the data given in table 5.7 are given in table 5.8. From the

execution times table it can be seen that the least execution time is obtained on 21

Chapter 5 155

processors. SIF values shows that the maximum SIF value can be obtained on 21

processors. After that the SIF value decreases, because the communication time is

considerably higher as compared to NBCT on higher Number of Processors. From table

5.8, we can see that the SIF value of 1.07 for NSB = 10%, 1.38 for NSB = 30%, 1.86 for

NSB = 50%, and 3.44 for NSB = 75% obtained from simulation, for NP = 1, is close to

the SIF value of 1.08, 1.377, 1.889, 3.526 respectively obtained by analytical means;

given in table 2.8.

Table 5.7 Execution times for NBCT Plan P6 and sequential block comparison

with Plan Pll

Number of

Processors-NP

1

5

9

21

37

Execution times in msec.

NBCT

1871.81

386.07

359.84

309.03

224.55

10% NSB

1745.62

373.23

318.53

226.41

239.29

30% NSB

1356.37

283.17

240.92

186.31

196.86

50% NSB

1006.35

213.66

181.32

145.43

176.55

75% NSB

544.14

116.02

100.77

79.21

103.45

Table 5.8 SIF values for Plan P6 and Plan Pll

Number of

Processors-NP

1

5

9

21

37

Speed Improvement Factor - SIF

10% NSB

1.07

1.03

1.13

1.36

0.94

30% NSB

1.38

1.36

1.49

1.66

1.14

50% NSB

1.86

1.81

1.99

2.12

1.27

75% NSB

3.44

3.33

3.57

3.90

2.17

5.4 Performance Comparison of Parallel Architectures

Performance of parallel computer architectures can be measured in terms of speedup,

scaleup and efficiency. Tables A.21 to A.35 give the speedup for the simulated Plans for

various Number of Processors and for three different image sizes and speedup graph of

the same are shown in figure A.la to A. 15a respectively. From these tables and graphs

we can see that the speedup increases with the increase in Number of Processors (NP)

Chapter 5 156

and at some point it starts decreasing with the increase in Number of Processors. The

point at which the speedup starts decreasing is defined as the scaleup for the Plan.

Speedups for the Non-Block Comparator Technique Plans with Non-Inter-

Processor Communication (NIPC) are given in tables A.21 to A.26. Tables A.27 to A.32

gives the speedup for the Block Comparator Technique Plans with Non-Inter-Processor

Communication (NIPC) in which Number of Similar Blocks (NSB) = 10%. Speedup

obtained for the Inter-Processor Communication Plans for the Block Comparator

Technique is given in tables A.33 to A.35. Comparison of speedup values obtained for

different Plans are discussed in the following sections.

5.4.1 Comparison of Speedup

Speedup for NP processors was defined in chapter 3, as the time taken by a single

processor divided by the time taken by NP processors. Speedup (S) of parallel processor

is given by,

S = Tl / TNP

where,

S = Speedup for N processors,

Tl = Time taken by a single processor,

Tj^p = Time taken by NP processors.

Comparison of speedup obtained for the NIPC Plans is given in section 5.4.1.1.

Comparison of speedup obtained for the IPC Plans is given in section 5.4.1.2. Section

5.4.1.3 gives the comparison of speedup obtained for different values of NSB.

5.4.1.1 Comparison of Speedup for the NIPC Plans

This section gives the comparison of speedup for the NIPC Plans. Comparison of

maximum speedup for the NBCT Plans is discussed in section 5.4.1.1a and that for the

BCT Plans is discussed in section 5.4.1.1b. Comparison of maximum speedup of NBCT

and BCT Plans is given in section 5.4.1.1c.

5.4.1.1a Comparison of Maximum Speedup for the NBCT Plans

Table 5.9 shows a comparison of the maximum speedup for the various NBCT Plans,

which are extracted from the appendix A; tables A.21 to A.26. From these tables the

following conclusions can be derived:

Chapter 5 157

1. For the Non-Block Comparator Technique the higher values of speedup can be

obtained on the Shared Memory Architecture with Local-plus-Global Memory

organisation.

2. Of the various Distributed Memory Architecmres, highest values of speedup can be

obtained on the Toras Topology for the 125 x 125 image size, the Pyramid

Topology gives higher values of speedup for the other two image sizes.

3. Of the two different Shared Memory Architectures, higher value of speedup can be

obtained on the Shared Memory Architecmre with Local-plus-Global Memory

organisation for all image sizes.

Table 5.9 Maximum speedup comparison for the NBCT Plans

Plan

P2

P3

P4

P5

P6

P7

Memory

Architecture

Shared Memory

Architecture

Distributed Memory

Architecture

Memory

organisation /

topology

Global

Global & Local

Tree

Torus

Pyramid

Cube

Speedup-S

NP

16

20

27

21

37

28

For 125 X 125
image

6.30

10.73

7.25

9.61

8.36

6.89

NP

25

20

27

21

37

28

For 625 x
429 image

7.95

9.60

6.99

7.13

8.34

6.75

NP

25

20

27

21

37

28

For 1100 X
900 image

7.87

9.35

6.97

7.13

8.42

7.14

5.4.1.1b Comparison of Maximum Speedup for the BCT Plans

Table 5.10 shows a comparison of the maximum speedup values obtained for the

various BCT Plans, which are extracted from the appendix tables A.27 to A.32. From

this table we can arrive at the following conclusions:

1. Of the two Shared Memory Architectures, the higher values of speedup can be

obtained on the Shared Memory Architecture with Local-plus-Global Memory

organisation.

2. Of the various Distributed Memory Architectures, highest value of speedup can be

obtained on the Pyramid Topology for all image sizes.

3. Of the two different Architectures for the Non-Block Comparator Technique the

higher values of speedup can be obtained on the Shared Memory Architecture with

Local-plus-Global Memory organisation.

Chapter 5 158

Table 5.10 Maximum speedup comparison for the BCT Plans

Plan

P8

P9

PI

PIO

Pl l

P12

Memory

Architecture

Shared Memory

Architecture

Distributed Memory

Architecture

Memory

organisation /

topology

Global

Global & Local

Tree

Torus

Pyramid

Cube

Speedup-S

NP

16

20

15

9

21

9

For 125 x 125
image

6.30

9.75

6.56

4.91

7.70

5.43

NP

16

20

15

9

21

9

For 625 x
429 image

6.33

8.71

6.72

5.01

7.71

5.48

NP

16

20

15

13

21

9

For 1100 X
900 image

6.35

8.70

6.19

5.44

7.66

5.48

5.4.1.1c Comparison of Speedup for the NBCT and BCT Plans

Table 5.11 gives a comparison of the maximum speedups obtained for the NBCT Plan

and the BCT Plans. From this table we can see that the maximum speedups for the

NBCT Plan are higher as compared to the same for the BCT Plans.

Table 5.11 Maximum speedup comparison for the NBCT and the BCT Plans

Memory

Architecture

Shared Memory

Architecture

Distributed Memory

Architecture

Memory

organisation /
topology

Global

Global & Local

Tree

Torus

Pyramid

Cube

Speedup-S

For 125 X 125
image

NBCT

6.30

10.73

7.25

9.61

8.36

6.89

BCT

6.30

9.75

6.56

4.91

7.70

5.43

For 625 x 429
image

NBCT

7.95

9.60

6.99

7.13

8.34

6.75

BCT

6.33

8.71

6.72

5.01

7.71

5.48

For 1100 X 900
image

NBCT

7.87

9.35

6.97

7.13

8.42

7.14

BCT

6.35

8.70

6.19

5.44

7.66

5.48

5.4.1.2 Comparison of Speedup for the IPC Plans

Table 5.12 gives the speedup comparison of the Shared Memory and the Distributed

Memory Architecmre. Comparing these two architectures we can see that,

• The speedup values obtained for the Pyramid Topology (Plan 15) is higher than that

for the other two.

Chapter 5 159

Table 5.12 Speedup comparison of two architectures

Plan

P13

P14

P15

Memory

Architecture

Shared Memory

Architecture

Distributed Memory

Architecture

Memory

organisation /

topology

Global & Local

Torus

Pyramid

Speedup-S

NP

13

13

21

For 125 X 125
image

5.21

5.57

8.70

NP

13

13

21

For 625 x
429 image

5.83

5.91

7.93

NP

13

13

21

For 100 X
900 image

5.84

5.97

7.69

5.4.1.3 Comparison of Speedup for Different NSB

Table 5.13 gives the speedup on the Pyramid Topology with 625 x 429 image size for

NSB = 10%, 30%, 50%, and 75% and speedup graphs of the same are shown in figure

5.17. From this table the following conclusions can be derived:

• Speedup values for the BCT are higher those for the NBCT for NP < 21. For NP =

37 the NBCT gives higher speedup as compared to the BCT.

• By comparing the speedup values obtained for NSB = 10% and 30%, it can be seen

that speedup for NSB = 30% is higher than that of for NSB = 10% for NP < 9.

• By comparing the speedup values obtained for NSB = 30%, 50% and 75%, it can be

seen that the speedup decreases as NSB increases for all values of NP. This indicates

that as NSB increases, the computation time for block comparison is significantly

higher than the computation time for comparing the image on the parallel processor.

Table 5.13 Speedup for the NBCT Plan P6 and the BCT Plan P l l with different

NSB

Number of

Processors-NP

1

5

9

21

37

Speedup - S

NBCT

1

4.65

5.2

6.06

8.34

NSB=10%

1

4.68

5.48

7.71

7.29

NSB=30%

1

4.79

5.63

7.28

6.89

NSB=50%

1

4.71

5.55

6.92

5.7

NSB=75%

1

4.69

5.4

6.87

5.26

Chapter 5 160

Image Compression
Technique

Number of
Processors - NP

en
•o
(D
(D a c

T3
I

CO

Figure 5.17 Speedup graph for Plans P6 and P l l for different NSB values

5.4.2 Comparison of Scaleup

Scaleup of a parallel architecture is a function of the maximum number of processors at

which the speedup starts decreasing. Scaleup was defined in chapter 3, as the number of

processors at the point of maximum speedup. Section 5.4.2.1 gives a comparison of the

scaleup values obtained for the NIPC Plans and section 5.4.2.2 gives a comparison of

scaleup values obtained for the IPC Plans.

5.4.2.1 Scaleup Comparison for the NIPC Plans

A comparison of scaleup obtained for the Non-Block Comparator Technique (NBCT) is

given in section 5.4.2.1a and the same for the Block Comparator Technique (BCT) in

section 5.4.2.1b. Comparison of the two techniques is given in section 5.4.1.1c.

5.4.2.1a Scaleup Comparison for the NBCT Plans

Table 5.14 shows a comparison of the scaleup obtained for the NBCT Plans. From this

table the following conclusions can derived:

1. For the Shared Memory Architectures the hybrid memory organisation (Plan P3)

gives higher scaleup than a purely Global Memory organisation for 125 x 125

(small) image size. For the medium and the large image sizes the Global Memory

organisation (Plan P2) gives higher values of scaleup.

Chapter 5 161

2. The Distributed Memory Architectures give highest values of scaleup as compared

to the Shared Memory Architectures.

3. Pyramid Topology (Plan P6) gives the best values for scaleup.

Table 5.14 Scaleup comparison for the NBCT Plans

Memory

Architecture

Shared Memory

Architecture

Distributed Memory

Architecture

Plan

P2

P3

P4

P5

P6

P7

Scaleup-S

For 125 X 125 image

16

20

27

21

37

28

For 625 x 429 image

25

20

27

21

37

28

For 1100 x 900 imagt

25

20

27

21

37

28

5.4.2.1b Scaleup Comparison of the BCT Plans

Table 5.15 shows a comparison of the scaleup values obtained for the BCT Plans. From

this table the following conclusions can be derived:

1. The hybrid memory organisation (Plan P9) gives higher scaleup than a purely Global

Memory organisation for all image sizes.

2. The Distributed Memory Architectures give higher values of scaleup as compared to

the Shared Memory Architectures.

3. Pyramid topology (Plan P l l) gives the best values for scaleup.

Table 5.15 Scaleup comparison for the BCT Plans

Memory

Architecture

Shared Memory

Architecture

Distributed Memory

Architecture

Plan

P8

P9

PI

PIO

Pll

P12

Scaleup-S

For 125 X 125
image

16

20

15

9

21

9

For 625 x 429
image

16

20

15

9

21

9

For 1100x900
image

16

20

15

13

21

9

Chapter 5 162

5.4.2.1c Scaleup Comparison of the NBCT and the BCT Plans

This section gives a comparison of scaleup values obtained for the BCT and the NBCT

Plans. Table 5.16 is derived from the tables 5.14 and 5.15. The following conclusions

can be derived from table 5.16:

1. For the Shared Memory Architectures, the scaleup values obtained for the NBCT are

either higher or the same as those obtained for the BCT.

2. For the Distributed Memory Architectures, the scaleup values obtained for the

NBCT is higher than that obtained for the BCT.

Thus, the Block Comparator Technique does not scaleup as well as the Non-

Block Comparator Technique.

Table 5.16 Scaleup comparison for the NBCT and the BCT Plans

Memory

Architecture

Shared Memory

Architecture

Distributed Memory

Architecture

Memory

organisation /
topology

Global

Global & Local

Tree

Torus

Pyramid

Cube

Scaleup

For 125 X 125
image

NBCT

16

20

27

21

37

28

BCT

16

20

15

9

21

9

For 625 x 429
image

NBCT

25

20

27

21

37

28

BCT

16

20

15

9

21

9

For 1100 X 900
image

NBCT

25

20

27

21

37

28

BCT

16

20

15

9

21

9

5.4.2.2 Scaleup Comparison of the IPC Plans

Table 5.17 gives a comparison of the scaleup values obtained for the Shared Memory

and the Distributed Memory Architectures. By comparing these two architectures it can

be seen that,

• Scaleup for the Pyramid Topology is the highest.

Chapter 5 163

Table 5.17 Scaleup comparison of two architectures

Plan

P13

P14

P15

Memory

Architecture

Shared Memory

Architecture

Distributed Memory

Architecture

Memory

organisation /
topology

Global & Local

Torus

Pyramid

Scaleup-S

For 125 X 125
image

13

13

21

For 625 x 429 image

13

13

21

For 1000 X 900
image

13

13

21

5.4.3 Comparison of Efficiency

Efficiency (r|) was defined in chapter 3, as the average speedup of each processor in a

parallel processor, and is given by.

T l

where:

S

NP

S/NP,

Efficiency,

Speedup of the parallel processor,

Number of Processors.

The efficiency graphs for Plans PI to P15 are shown in appendix A, figures A.lb

to A. 15b respectively. From these figures we can see that the efficiency of 50% or

higher was obtained for some Number of Processors. The highest NP at which

efficiency is greater than 50% is called as Efficiency Cutoff Point (ECP) in this thesis.

In other words, from cost-benefit analysis point of view a parallel processor with NP =

ECP would be most cost effective.

Section 5.4.2.1 gives the efficiency comparison of the NIPC Plans, and section

5.4.2.2 gives the efficiency comparison of the IPC Plans.

5.4.3.1 Efficiency Comparison of the NIPC Plans

Efficiency graphs for the NBCT Plans are shown in appendix A, figures A.lb to A.6b,

and these for the BCT Plans are shown in figures A.7b to A. 12b. The ECP values are

extracted from these figures and are tabulated in table 5.18. From this table, we can

conclude that,

1. Of the different Architectures, the ECP value is the highest on the Shared Memory

Architecture with Local-plus-Global Memory organisation.

Chapter 5 164

2. Of the two Shared Memory Architectures, the ECP value is higher on a Shared

Memory Architecture with Local-plus-Global Memory organisation.

3. Of the various Distributed Memory Architectures, the ECP value is almost same for

all topologies.

Table 5.18 Efficiency Cutoff Point for the NIPC Plans

Memory

Architecture

Shared Memory

Architecture

Distributed Memory

Architecture

Memory

organisation /
topology

Global

Global & Local

Tree

Torus

Pyramid

Cube

Efficiency Cutoff Point - ECP

For 125 X 125
image

NBCT

7

11

9

9

9

9

BCT

7

11

9

5

9

9

For 625 x 429
image

NBCT

11

11

9

9

9

9

BCT

7

11

9

5

9

9

For 1100 X 900
image

NBCT

16

16

9

9

9

9

BCT

7

11

9

5

9

9

5.4.3.2 Efficiency Comparison of the IPC Plans

Efficiency graphs for the BCT Plans are shown in appendix A, figures A. 13b to A. 15b.

The ECP values are extracted from these figures and are tabulated in table 5.19. From

this table, we can conclude that,

1. Of the various architectures, the ECP value is higher on Distributed Memory

Architectures.

2. Of the two Distributed Memory Architectures, the ECP values is same for Pyramid

Topology and Toms Topology.

Table 5.19 Efficiency Cutoff Point for the IPC Plans

Plan

P13

P14

P15

Memory

Architecture

Shared Memory

Architecture

Distributed Memory

Architecture

Memory

organisation /
topology

Global & Local

Torus

Pyramid

Efficiency Cutoff Point -ECP

For 125 X 125
image

7

9

9

For 625 x 429 image

9

9

9

For 1000 x 900
image

9

9

9

Chapter 5 165

5.5 Summary

Analytical modelling alone is not sufficient to evaluate the behaviour of parallel

algorithms. Therefore the Network n.5, a discrete event simulation package, was chosen

for the simulation of Digital Image Compression technique.

Simulation of techniques for implementing Digital Image Compression on

parallel computers involve developing the models, modelling, validation and

experimentation with the models. This chapter explained all of these aspect of the

simulation done with the help of the Network II.5 simulation package.

Execution times obtained for the simulation experiments were tabulated for each

model. Experimental results confirmed that the Pyramid architecture performed the best

in terms of speedup, scaleup and efficiency.

Simulation times obtained for different values of NSB were also tabulated. From

speedup figures it could be determined that the scaleup of twentyone and Efficiency

Cutoff Point of about nine can be obtained. This implies that even though there is

increasing speedup values for upto twenty one processors, the marginal cost of adding

more than nine processors is rather high. In other words, from cost-benefit analysis

point of view a nine processor system would be most cost effective.

In this chapter the divide and conquer method was used for comparing blocks in

an image, and the block comparison step took place on the host processor. Compression

time can be further reduced by parallelising the block comparison step as well.

Chapter 6 166

Chapter 6

CONCLUSIONS AND FUTURE RESEARCH

Contents

6.1 Introduction 167

6.2 Block Comparator Technique Enhancement to the JPEG Algorithm 167

6.3 Implementation of the Digital Image Compression Algorithm 171

6.4 Simulation of Digital Image Compression Techniques 172

6.5 Directions for Future Research 175

Abstract

This chapter gives the main conclusions derived from the research work presented in

this thesis and some directions for future research.

The DCT-based JPEG algorithm was chosen for this research because it is one

of the most widely used image compression algorithms, and because the results could be

applied to the MPEG algorithm as well. An enhancement to the JPEG algorithm, called

the Block Comparator Technique was introduced. It was shown that the Block

Comparator Technique increases the speed of compression operation and improves the

compression ratio.

To study the effectiveness of parallel processing, the JPEG algorithm was

implemented on three parallel computer architectures, viz., the Mercury system, the

Shiva system and the Param system. From the experimental results obtained on these

three architectures, it was shown that the system with hybrid memory architecture, gives

the best performance in terms of speedup, scaleup and efficiency.

A number of parallel processing Plans were simulated using the Network n.5

simulation package. From the results obtained for different options, it was shown that

the execution time obtained for the Non-Block Comparator Technique is the least on the

shared memory architecture with global and local memory, and scaleup on the pyramid

topology is higher than that for other architectures.

Chapter 6 167

6.1 Introduction

With the widespread application of multimedia systems and increasing data traffic due

to the transmission of still and moving pictures, compression of image data has become

very important. The main aim of this project was to investigate techniques for

improving the performance of the DCT-based JPEG algorithm. There are three main

components of this research project, namely:

1) An enhancement to the JPEG algorithm was proposed. This enhancement is called

the Block Comparator Technique. The Block Comparator Technique was analysed and

the improvements in the performance of the JPEG algorithm were investigated.

2) The JPEG algorithm was implemented on three different parallel machines.

Improvement in the performance of the JPEG algorithm on the various architecmres was

studied.

3) A more detailed study of parallel processing of the JPEG algorithm was carried out

by using discrete event simulation.

The different methods involved in the Block Comparator Technique and the

conclusions derived from these methods are discussed in section 6.2. The conclusions

derived from the experimental results obtained on the three parallel systems are given in

section 6.3. A number of important implementation options were simulated using the

Network n.5 simulation package. The conclusions derived for the simulation results are

discussed in section 6.4. Section 6.5 gives some directions for future research.

6.2 Block Comparator Technique Enhancement to the JPEG
Algorithm

Based on the algorithm used, digital image compression techniques can be broadly

classified as Vector Quantisation (VQ), Fractal, Wavelet and Discrete Cosine Transform

(DCT) techniques. The digital image compression technique developed by the Joint

Photographic Experts Group (JPEG) is based on the Discrete Cosine Transform. JPEG

technique is widely used in a large variety of applications. Therefore, the JPEG

algorithm was chosen for this research purpose.

In the JPEG algorithm all image blocks are processed individually. These blocks

of compressed image are stored sequentially. In many types of images, there is the

possibility of having one or more similar blocks in the image. Improvement in

performance of the compression algorithm can be achieved by locating similar blocks in

the image. The Block Comparator Technique was developed to enhance the

performance of the JPEG algorithm.

Chapter 6 16g

With the help of mathematical analysis it was shown that the Block Comparator

Technique improves the speed of compression and reduces the size of the compressed

data file. Conclusions derived for the speed of operation are given in section 6.2.1.

Conclusions derived for image compression are given in section 6.2.2.

6.2.1 Speed of Operation

There are many methods for implementing the Block Comparator Technique operation.

Two options for the block comparison step were selected. The first method involves

direct sample-by-sample comparison of all the blocks in an image. The second method

consists of sample summation, intensity comparison and sample-by-sample comparison

steps. Execution time of the JPEG algorithm was calculated in terms of the number of

arithmetic operations such as additions, subtractions, multiplications, divisions, and

comparisons. Each arithmetic operation was equated to a number of Base Operations.

The number of equivalent Base Operations for each arithmetic operation can be

determined for specific processors. Transputer IMS T805 processor was selected for

calculating the number of Base Operations.

Improvement in the speed of Block Comparator Technique over the JPEG

algorithm (called as Non-Block Comparator - NBCT in this thesis) was expressed in

terms of Speed Improvement Factor (SIF). Conclusions are derived by comparing SIF

values obtained for the two methods, and also by comparing SIF values for each method

individually. These conclusions are given in the following sections.

Common conclusions for the two methods: The Speed Improvement Factor (SIF) is

less than one for zero number of similar blocks (NSB) irrespective of the method used

and the image size. This result is expected, as there is no speed improvement when there

are no similar blocks; because there is additional computation time required for the

block comparison step. Therefore, the Block Comparator Technique (BCT) will add

unwanted computational overhead if there are no similar blocks in an image.

SIF values for all image sizes increase monotonically with increase in the value

of NSB. For most of the methods studied SIF is greater than one for NSB >= 10%. This

indicates that the Block Comparator Technique delivers dividends even for a small

number of similar blocks.

Conclusions for the Selection Sort method: For the Selection Sort method SIF values

for Number of Blocks (NB) = 256 is greater than one, for NSB in the range of 10% to

100%. Whereas, for NB = 4266 SIF is less than one even upto 50% similar blocks. On

the other hand for NB = 15594 SIF is less than one for all values of NSB. This indicates

Chapter 6 169

that there is no benefit in using the Block Comparator Technique in conjuction with the

Selection Sort method for large images. Selection Sort method is suitable only for small

image size.

Conclusion for the Divide and Conquer Sort method: For the Divide and Conquer

sort method SIF is greater than one for NSB >= 10% and increases monotonically with

NSB. SIF is almost equal for all image sizes for the same values of NSB. Therefore, the

Divide and Conquer method is suitable for all image sizes.

Conclusion for the Sample-by-Sample Comparison method: When similar blocks

are matched using sample-by-sample comparison, the SIF values for all image sizes and

values of NSB are almost equal to the SIF values for the Divide and Conquer method,

except for NSB = 100%. For NSB = 100%, SIF is greater for the Sample-by-Sample

comparison method than that for the Divide and Conquer Sort method.

Divide and Conquer Sort versus Sample-by-Sample Comparison: Block comparison

using Divide and Conquer Sort method is used to sort the image blocks according to the

intensities of these blocks. This helps in grouping the blocks of equal intensities. Equal

intensity blocks can then be distributed on a parallel computer equally to all the CPUs

to balance the work load on all processors. This improves the speedup obtained by

parallel processing.

The Block Comparison Technique using Sample-by-Sample comparison method

cannot be used for grouping of blocks with equal intensity values. Therefore, we can say

that the Block Comparator Technique using Divide and Conquer method is more

suitable for parallel processing.

6.2.2 Image Compression Ratio

The Image Compression Ratio (ICR) was calculated for Digital Image Compression

Techniques with and without the proposed Block Comparator Technique. For the Block

Comparator Technique, the Compressed Image Data Stmcture can be represented in

many formats. Three different stmctures were selected for the analysis: Compressed

Image Data Stmchire -1 (CIDS-1), CIDS-2 and CIDS-3.

The conclusions derived by comparing ICR values from all Compressed Image

Data Stmctures and by comparing ICR values from each CIDS separately are given in

the following sections.

Chapter 6 170

Conclusions for all CIDSs: ICR increases as the image size increases irrespective of

the quality of a output image for all CIDSs. For each image size the ICR increases with

a decrease in the quality of the output image.

Conclusion for CIDS-1: For the CIDS-1 and quality = 100% ICR is slightly greater

than the same for the Non-Block Comparator Technique. For quality = 75% ICR is

almost equal to that for the Non-Block Comparator Technique. For quality = 50% and

25% ICR values are less compared to the same for the Non-Block Comparator

Technique. This indicates that the size of the compressed image using Compressed

Image Data Stmcture-1 for the Block Comparator Technique is reduced only for image

quality greater than 75%.

Conclusions for CIDS-2: By comparing the ICR values of Cn)S-2 and CIDS-1, ICR

values for CIDS-2 are less than those for CIDS-1 for all image sizes. This is because all

Unique Block Numbers are stored in the Unique Block Group. This data stmcmre is

more robust than the CIDS-1 data stmcture, because all the blocks numbers are included

in the data structure.

By comparing ICR values of CIDS-2 and the Non-Block Comparator Technique,

it was shown that the ICR values of CIDS-2 for quality = 100% are almost equal to that

of the Non-Block Comparator Technique. For quality less than 100%, ICR values are

less than the same for the Non-Block Comparator Technique.

Conclusions for CIDS-3: By comparing ICR values of CIDS-3 with those for the other

two data stmctures, the ICR values for CIDS-3 are greater in all cases.

By comparing ClDS-3 with the Non-Block Comparator Technique, we can see

that the Image Compression Ratio values for CIDS-3 for quality = 100% and 75% are

greater than the same for the Non-Block Comparator Technique. For quality = 50% the

values are almost equal. This indicates that the CIDS-3 data stmcture is better than the

others for quality greater than 50%.

By comparing all three Compressed Image Data Stmctures, we can say that

CIDS-3 is the best of the three data stmctures in terms of compression ratio. Therefore,

the CIDS-3 data stmcture was chosen to measure the speed improvement over the Non-

Block Comparator Technique. Though CIDS-2 is more robust than either of the other

two data stmctures.

Image Compression Ratio Improvement Factor (ICRIF): The improvement in the

compression ratio can be represented by the Image Compression Ratio Improvement

Factor (ICRIF).

Chapter 6 171

From the ICRIF graph for CIDS-3 using NSB = 75%, we can see that the ICRIF

is almost equal for all image sizes irrespective of the quality of the output image. There

is no benefit in using the Block Comparator Technique for images with less than 50%

quality. By using the Block Comparator Technique we can get an improvement of 2.8

times over the Non-Block Comparator Technique for quality = 100%.

From these speed and compressed image size comparisons we can say that the

Block Comparator Technique is a useful addition to enhance the JPEG compression

algorithm. The same Block Comparator Technique can be implemented on parallel

computers to speedup the operation even further.

6.3 Implementation of the Digital Image Compression Algorithm

The JPEG digital image compression algorithm was implemented in a variety of ways

on three parallel computers. Each uniquely identifiable way of implementation is called

a 'Plan' in this thesis. Each Plan is specified as a 6-tuple consisting of image

compression technique, block dependency, image partitioning method, memory

architecture, network topology and the number of processors. Some of these Plans were

implemented on available parallel computers and other Plans were simulated using the

Network n.5 simulation package. Performance of these Plans was evaluated in terms of

speedup, scaleup, and efficiency.

Parallel computers can be classified based on memory access technique, network

topology and some other issues. Three parallel computers were selected each with a

different memory architectures, viz. Mercury system with a distributed memory

architecture, Shiva system with a shared memory architecture and Param system with a

hybrid memory architecture. Non-Block Comparator Technique was implemented on

various number of processors on above three systems and the conclusions derived from

the experimental results are given in following section.

6.3.1 Performance Comparison of Digital Image Compression on Three Parallel

Computer Architectures

On the Mercury system the Helios Operating system was used as the parallel

programming environment. Helios has four levels of communication routines. JPEG

algorithm was implemented using two of these, namely, POSIC (Portable Operating Set

Instmction Codes) and MPP (Message Passing Primitives). By comparing POSIC and

MPP communication routines, we concluded that the speedup for MPP communication

routines is higher than that for the POSIC communication routines. But the POSIC

Chapter 6 172

communication routines have greater functionality than the MPP communication

routines.

The JPEG algorithm was implemented on the Shiva and Param systems each

with three processors. The execution times for four processor to seventeen processor

systems were estimated by extrapolating the results, obtained on a single processor

system, with the help of Gantt charts.

By comparing the results obtained we concluded that the hybrid memory

architecture based Param system gave the best results in terms of execution time,

speedup, scaleup and efficiency. Nonetheless, the JPEG algorithm is suitable for

implementation on distributed as well as shared memory systems.

6.4 Simulation of Digital Image Compression Techniques

Network n.5 simulation package was used for the simulation of digital image

compression techniques on parallel architectures.

A total of more than four hundred models were simulated. The execution times

obtained from the simulation are tabulated for each model in Appendix A. Each

simulated model was examined with respect to execution time, and its derivatives,

namely, speedup, scaleup and efficiency. The knowledge gained from these models

enabled a comparison of the performance of digital image compression algorithm on

parallel computers.

The conclusions derived from the execution times obtained are discussed in

section 6.4.1. Performance comparison in terms of speedup, scaleup and efficiency is

discussed in section 6.4.2.

6.4.1 Execution Times

The simulation models were first divided into two sets based on the block dependency

method, namely, Non-Inter-Processor Communication (NIPC) method and Inter-

Processor Communication (IPC) method. The conclusion derived from the NIPC Plans

are given in section 6.4.1.1. Conclusions derived from the IPC Plans are given in section

6.4.1.2. A total of twenty models were simulated for the BCT Plans using Number of

Similar Block (NSB) = 10%, 30%, 50%, and 75%. The conclusion derived from the

execution times obtained for these Plans are given in section 6.4.1.3.

Chapter 6 173

6.4.1.1 Execution Times Obtained for Non-Inter-Processor Communication Plans

By comparing the execution times obtained for the NBCT Plans and the BCT Plans, we

can see that the execution time for the BCT Plans is less compared to the execution

times for the NBCT Plans upto some Number of Processors (NP), after that the

execution time is higher for the BCT Plans. This indicates that the BCT fails to be

effective on a large number of processors. The reason for this is explained below.

In the simulation models, the divide and conquer method was used for

comparing blocks in an image. In all of the Plans the block comparison step took place

on the host processor leading to sequential processing of the block comparison process.

Thus, the time taken for the BCT is higher than that for the NBCT as the number of

processors increases.

The least execution time was obtained for the NBCT and the BCT Plans on a

shared memory architecmre with local-plus-global memory organisation.

6.4.1.2 Execution Times for Inter-Processor Communication Plans

By comparing three Inter-Processor Communication Plans it was shown that the

execution times obtained on the Distributed Memory Architecture with the Pyramid

topology is the lowest.

By comparing the execution times obtained for the NIPC Plans and the IPC

Plans on a distributed memory architectures, it can be seen that the IPC method is more

efficient for low number of processors whereas the NIPC method becomes more

efficient for higher number of processors. Because as the number of processors

increases, the communication time taken for transferring neighbouring samples among

processors increases for the IPC method. This leads to increase in overall execution

time.

6.4.1.3 Execution Times for the BCT with Different NSB values

The Block Comparator Technique was simulated for Number of Similar Blocks = 10%,

30%, 50% and 75%. By comparing execution times obtained for these Plans it was

shown that speed improves with an increase in the NSBs. The speed improvement

figures obtained for the simulation experiments, for the various NSB values, matched

closely to the analytically obtained values.

Highest speed improvement was obtained on twenty one processors connected in

a Pyramid topology.

Chapter 6 I74

6.4.2 Performance Comparison

Performance of parallel computer architectures was measured in terms of speedup,

scaleup and efficiency. Section 6.4.2.1 gives the conclusions derived from speedup

comparison. Scaleup comparison is given in section 6.4.2.2 and efficiency comparison is

given in section 6.4.2.3.

6.4.2.1 Speedup Comparison

• On the shared memory architecture higher speedup is obtained with local-plus-

global memory organisation for all image sizes.

• The highest speedup is achieved on a distributed memory architecmre with the

Pyramid topology.

• Higher number of similar blocks in a image lead to higher speedup.

6.4.2.2 Scaleup Comparison

• Scaleup also is the highest on the Pyramid topology. This indicates that both

techniques (NBCT and BCT) scaleup well on the pyramid topology.

• The scaleups values for the Block Comparator Technique for all image sizes are

lower as compared to the scaleup values for the Non-Block Comparator Technique.

Thus, the Block Comparator Technique does not scaleup as well as the Non-Block

Comparator Technique.

6.4.2.3 Efficiency Comparison

The highest number of processors at which efficiency is greater than 50% is called as

Efficiency Cutoff Point (ECP) in this thesis. In other words, from cost-benefit analysis

point of view a parallel processor with the 'number of processors' = ECP would be the

most cost effective.

• The ECP value is the highest on the shared memory architecture with local-plus-

global memory organisation for the NIPC method.

• The ECP value for the Pyramid topology is the highest for the IPC method.

Chapter 6 175

6.5 Directions for Future Research

When this project was initiated a few years ago, low cost hardware implementations of

the JPEG and the MPEG standards were not readily available. At the present time JPEG

and MPEG chips/cards are readily available at reasonably low cost. But these hardware

devices are fixed for a specific standard. With rapid advancement in compression

technology a flexible image compression scheme is required. In such a flexible scheme

the two ends can negotiate the standard, and the parameters to be used for image

compression. For this scheme to work image compression and decompression must be

performed in software. To be able to perform real-time motion picture compression and

decompression in software parallel processing can be employed.

The research work carried out in this project can be extended to include motion

picture compression. Some more specific directions for future work are presented

below.

1. Speed of Operation

The Selection Sort and the Divide and Conquer methods were used for the block

comparison step in the Block Comparator Technique. By comparing the Speed

Improvement Factors it was found that the Divide and Conquer method is better than the

Selection Sort method. But, there may be other sort methods that perform better than the

Divide and Conquer sort method for this application. Therefore, future research can

explore other sorting methods which may be faster than the Divide and Conquer sort

method, especially for parallel processing.

2. Quality of Service

Three Compressed Image Data Stmcture were used for the Block Comparator

Technique. From these Image Data Stmctures, the CIDS-2 was found to be most robust,

though the compressed image is slightly larger as compared to one of the other

stmctures (CIDS-3). This robustness is desirable for providing good quality of service in

many applications such as video-on-demand. Future research can explore ways of

reducing the compressed image size of CIDS-2.

In the CIDS-2 all blocks include the block numbers. This helps to identify lost

blocks. If any of the blocks is missing, this block is replaced by an empty block. This

leads to blockiness in the image. Future research can focus on recovery of missing

blocks during decompression operation to reduce this blockiness effect, so that the

decompressed image can be of better quality.

Chapter 6 176

3. Reliability
In this research all processors in the parallel system were considered to be operational.

But there is a chance of breakdown of one or more of the processors during task

allocation, compression and collection of compressed data. Future research can include

development of reliable parallel processing techniques specifically for image

compression.

4. Parallel Block Comparison

In our study the block comparison step took place on the host processor leading to

sequential processing of the same. This leads to the fact that the time taken for the Block

Comparator Technique is higher on a large number of processors as compared to the

Non-Block Comparator Technique. Execution time can be reduced further by

parallelising the block comparison step.

References 177

References

[Anderson, 90]

[Anderson, 92]

[Ang, 91]

[Aravind, 89]

[Baran, 90]

[Bamsley, 93]

[Bevinakoppa,
92]

[Bevinakoppa,
94a]

[Bevinakoppa,
94b]

[Bevinakoppa,
95]

[Bhatkar, 91]

Anderson, M. S. ; Drewer, P. C , "Design Overview of the Shiva",
Proceedings of the IEEE TENCON'90: 1990 IEEE Region 10
Conference on Computer and Communication Systems, Hong
Kong, 24 - 27 Sept. 1990, Vol. 1, pp. 155 - 159.

Anderson, m. ; Yesberg, J. D. ; Yakovleff, A. J. et. al., "A
Heterogeneous Parallel Accelerator for Image Analysis and Radar
Signal Processing", Proceedings of the twenty fiveth Hawaii
Intemational Conference on System Sciences, Kauai, HI, USA, 7 -
10 Jan. 1992, Vol. 1, pp. 129 - 138.

Ang, P. H. ; Ruetz, P. A. ; Auld D., "Video Compression Makes
Big Gains", IEEE Spectmm, Oct. 1991, pp. 16 - 19.

Aravind, R. ; Cash, G. L. ; Worth, J. P., "On Implementing the
JPEG Still-Picture Compression Algorithm", SPIE Visual
Communications and Image Processing IV, Vol. 1199, 1989, pp.
799 - 808.

Baran, N., "Putting the Squeeze on Graphics", Byte, Dec. 1990,
pp. 289 - 294.

Bamsley, M. F. ; Hurd, L. P., "Fractal Image Compression", A. K.
Peters Ltd., Wellsley, 1993.

Bevinakoppa, S. G. ; Sharda, H. N. ; Hulskamp, J. ; Sharda, N. K.,
"Digital Image Compression on a Network of Transputers",
Transputers and Parallel Applications Conference, Melboume 4-5
Nov. 1992, pp 25-32.

Bevinakoppa, S. G. ; Sharda, N. K. ; Sharda, H. N., "Performance
Analysis of a Parallel JPEG Algorithm". PART'94: Australian
Workshop on Parallel and Real Time system, 7-8 July 1994,
Melboume, pp. 42 - 52,

Bevinakoppa, S. G. ; Sharda, N. K. ; Sharda, H. N.,
"Implementation of JPEG Algorithm on Shiva Parallel
Architecture", IWPP: First Intemational Workshop on Parallel
Processing, Bangalore, India, Dec. 27-31 1994, pp. 184-188.

Bevinakoppa, S. G. ; Sharda, N. K. ; Sharda, H. N., "Parallel
Implementation of DCT-based Digital Image Compression on a
Param System", PART'95: Australasian Workshop on Parallel and
Real Time system, 7-8 August 1995, Perth, pp. 401 - 407.

Bhatkar, V. P., "Advanced Computing: Proceedings of the Centre
for Development of Advanced Computing", Eds. Bhatkar, V. P.,
Joshi, A. v., Sharma, A. K., Tata Mc-Graw Hill Publishing
Corporation Ltd., New Delhi, India, August 1988 - July 1991.

References 178

[Bratley, 83]

[Browne, 89]

[Bums, 89]

[CACI, 94]

[Chong, 90]

[Chung-Ta King,
91]

[Cockrofl, 91]

[Comell, 93]

[Cosman, 96]

[Draft, 90]

[Eknath, 91]

[Elliott, 89]

[Fleming, 88]

[Furht, 94]

[Furht, 95a]

Bratley, P. ; Fox, B. L. ; Schrage, L. E., "A Guide to Simulation",
Springer-Verlag, Newyork, 1983.

Browne, R. F. ; Hodgson, R. M., " Mapping Image Processing
Operations onto Transputer Networks", 1989, Microprocessor and
Microsystems.

Bums, A. ; Wellings, A., "Real-time Systems and Their
Programming Languages", Addison-Welsy publishing company
1989.

CACI Products Company, "Network n.5 User's Manual", 1994.

Chong, M. N. ; Soraghan, J. J., " Transputer Based Quadtree Data
Stmcture for Adaptive Transform Coding". Signal Processing V:
Theroies and Applications, 1990, pp. 1563-1566.

Chung-Ta King, "Skewed Partition - Theory and Practice", 1991
IEEE Conference.

Cockroft, G. ; Hourwitz, L., "NEXTstep: Putting JPEG to
Multiple Uses", Communication of the ACM, April 1991, Vol. 34,
No. 4, pp. 45 and 116.

Comell, E. ; Kurz, P., "Wavelets and Improved JPEG Fuel New
Generation of Digital Video Engines, AV Video 1993, pp. 40 - 46.

Cosman, P. C. ; Gray, R. M. ; and Vetterli, M., "Vector
Quantisation of Image Subbands: A Survey", IEEE Transactions
on Image Processing, Feb. 1996, Vol. 5, No. 2, pp. 202 - 225.

"Coding of Moving Pictures and Associated Audio", Committee
Draft Standard - ISO 11172, ISO/MPEG 90/176 Dec. 1990.

Eknath, P. R. ; Bhasin, L. ; Degnekar, A. etl., "Param Parallel
Computer", Advanced Computing: Proceedings of the Centre for
Development of Advanced Computing, Eds. Bhatkar, V. P., Joshi,
A. v., Sharma, A. K., Tata Mc-Graw Hill Pubhshing Corporation
Ltd., New Delhi, India, August 1988 - July 1991, pp. 71 - 85.

Elliott, J. ; Beaumont, J. M. ; Grant, P. M. et. al., "Real Time
Videophone Image Algorithm on a Concurrent Supercomputer".
British Telecom Research Laboratories.

Fleming, P. I., "Parallel Processing in Control: the Transputer and
Other Architectures",Peter Peregrinus Ltd., London, United
Kingdom, 1988.

Furht, B., "Multimedia Systems: An Overview", IEEE Multimedia,
Vol.1, No.l, Spring 1994, pp. 47 - 59.

Furht, B., "A Guided Tour of Multimedia Systems and
AppUcations", IEEE Computer Society Press Lab, Alamitos,
California, 1995.

References 179

[Furht, 95b]

[Gall, 91]

[Geetha, 91]

[Gersho, 92]

[Harney, 91]

[Hemery, 91]

[Hord, 93]

[Hunt, 93]

[Ian, 92]

[INMOS, 89]

[Intel, 90]

[Jain, 89]

[Kajiwara, 92]

[Kamak, 92a]

[Kamak, 92b]

[Kinoshita, 92]

Furht, B. " A Survey of Multimedia Techniques and Standards-
JPEG Compression", Joumal of Real-Time Imaging, Vol. 1, No. 1
April 1995.

Gall, D., "MPEG: A Video Compression Standard for Multimedia
Applications", Communications of the ACM, April 1991, Vol. 34,
No. 4, pp. 47-58.

Geetha, S. ; Kumar, P. ; Sandya, V., "Parallel Programming with
Paras", C-DAC Report, pp. 1-19.

Gersho, A. ; Gray, R. M., "Vector Quantisation and Signal
Compression", Kluwer Academic Publishers, Boston, 1992.

Hamey, K. ; Keith, M. ; Lavelle, G. et. a;., "The 1750 Video
Processor: A Total Multunedia Solution", Communications of
ACM, Vol. 34, No.4, April 1991, pp. 65 - 79.

Hemery, F. ; Lazure, D. ; Delattre, E. et. al., " An Analysis of
Communication and Multiprogramming in the Helios Operating
System", Microprocessing and Microprogramming, 32, 1991, 137-
144.

Hord, R. M., "Parallel Supercomputing in MIMD Architectures",
CRC press, Florida, 1993.

Hunt, J. C. ; Kevlahan, N. K. ; Vassilicos, J. C. et. al., "Wavelets,
Fractals, and Fourier Transforms", Ed. Farge, M. ; Hunt, J. C. ;
Vassilicos, J. C , Clarendon Press, Oxford, 1993, pp. 1- 37.

Ian D., "Helios Operating System", Perihelion Software Limited,
1992.

INMOS ltd. "INMOS: Transputer Databook", 1989.

i860 Hardware Reference Manual, Intel, 1990.

Jain, A. K., "Fundamentals of Digital Image Processing", Prentice
Hall, 1989.

Kajiwara, K., "JPEG Compression for PACS", Computer Methods
and Programs in Biomedicine, No. 37, 1992, pp. 343-351.

Kamak, D. A. et. al., "Shiva Mark I - Detailed Hardware Design",
ITD Divisional Paper, Adelaide, 1992.

Kamak, D. A. ; Yakovleff, A. J. ; Yesberg, J. D. et. al., "Shiva
Mark II Hardware Architecture, Virsion 1", ITD Divisional Paper,
Adelaide, May 1992.

Kinoshita, T ; Nakahashi, T., "A 130 Mb/s Compact HDTV
CODEC Based on a Motion-Adaptive DCT Algorithm", IEEE
Joumal on Selected Areas in Communications, Vol. 10, No. 1, Jan.
1992, pp.122-129.

References 180

[Koomwinder,
93]

[Krishnamurthy,
89]

[Kmse, 94]

[Kumar, 92]

[Kumar, 94]

[Leger, 91]

[Leigh, 83]

[Leonard, 91]

[Lewis, 92]

[Liou, 91]

[Margulis,90]

[Maurer,88]

[Mitchell, 90]

[Monnes, 94]

[Murthy, 91]

Koomwinder, T. H., "Wavelets: An Elementary Treatment of
Theory and Applications", World Scientific Publishing Co. Pte.
Ltd, 1993.

Krishnamurthy, E. V., "Parallel Processing Principles and Practice",
Addison-Wesley Publishing Company, Singapore, 1989.

Kruse, R. L., "Data Stmctures and Program Design", Prentice Hall,
Englewood Cliffs, New Jersey, 1994.

Kumar, M. K. ; Kumar, P. S. ; Basu, A., "A Library Environment
for Distributed Memory Multiprocessors", Proceedings. Sixth
Intemational Parallel Processing, Beverly Hills, CA, USA, 23 - 26
Marchl992, pp. 483-486.

Kumar, V. et al., "Introduction to Parallel Computing: Design and
Analysis of Algorithms", Redwood City, California,
Benjamin/Cumming, Publishing Company, 1994.

Leger, A. ; Omachi, T. ; Wallace, G. K., "JPEG Still Picture
Compression Algorithm", Optical Engineering, July 1991, Vol. 30,
No. 7, pp.947 - 954.

Leigh, J. R., "Modelling and Simulation", Peter Peregrinus Ltd.,
London, UK, 1983.

Leonard, M., "IC Executes Still-Picture Compression Algorithms",
Electronic Design, May 23, 1991, pp. 49 - 53.

Lewis, T. G. ; El-Rewini, H., "Introduction to Parallel
Computing", Prentice Hall, 1992.

Liou, M., "Overview of the Px64 Kbits/s Video Coding Standard",
Comm. of the ACM, Vol. 34, No. 4, April 1991, pp. 59-63.

Margulis, N., i860 Microprocessor Architecture, Osborne, 1990.

Maurer, P. M., "The Dataflow Model of Computation in an
Enhanced Von Neumann Processor", IEEE Symposium on Parallel
Processing, 1988, pp. 235 - 239.

Mitchell, D. A. ; Thompson, J. A. ; Manson, G. A. et. al., "Inside
The Transputer", Backwell Scientific Publications, 1990.

Monnes, P. ; Furht, B., "Parallel JPEG Algorithm for Still Image
Compression", Proceedings of the 1994 IEEE SOUTHEASTCON
'94, 10 April 1994, pp. 375 - 379.

Murthy, T. S. ; Eknath, P. R., "Param Vector Facility", Advanced
Computing: Proceedmgs of the Centre for Development of
Advanced Computmg, Eds. Bhatkar, V. P., Joshi, A. V., Sharma,
A. K., Tata Mc-Graw Hill Publishing Corporation Ltd., New Delhi,
India, August 1988 - July 1991, pp. 86 - 89.

References 181

[Nacken, 93]

[Naylor, 68]

[Nelson, 92a]

[Nelson, 92b]

[Nelson, 93 a]

[Nelson, 93b]

[Ogawa, 92]

[Papathanassiadis
,92]

[Pennabaker, 93]

[Fountain, 87]

[Quinnell, 93]

[Ram, 91]

Nacken, P., "Image Compression Using Wavelets", Ed.
Koomwinder, T. H., in Wavelets: An Elementary Treatment of
Theory and Applications, Worid Scientific, Singapore, 1993.

Naylor, T. H. ; Balintfy, J. L. ; Burdick, D. S. et. al., "Computer
Simulation Techniques", John Wiley & Sons, Inc., New York,
1968.

Nelson, M., "The Data Compression Book: Featuring Fast,
Efi&cient Data Compression Techniques m C ", M&T Books, 1992.

Nelson, M. ; Cavaiuolo, M. ; Yakovleff, A., "An Architecture for
Real-Time 3D Graphical Simulation", Intemational Conference on
Automation, Robotics and Computer Vision, Singapore, Sept.
1992, pp. CV. 17.5.1 - CV. 17.5.5.

Nelson M. ; Yakovleff, A., "Shiva Programming Notes", Defence
Science Technology and Organisation Technical report, Adelaide,
27 Sept. 1993.

Nelson, M. ; Cavaiuolo, M. ; Yakovleff, A., "A Heterogeneous
Architecture for Stereoscopic Visualisation", First IEEE Virtual
Reality Anual Intemational Symposium Seattle, USA, SEP. 1993,
pp. 349-355.

Ogawa, K. ; Urano, T. ; Konda, K. et al., "A Single Chip
Compression/Decompression LSI Based on JPEG", IEEE
Transactions on Consumer Electronics, Vol. 38, No. 3, Aug. 1992,
pp. 703-710.

Papathanassiadis T. "Image Block Partitioning: A Compression
Technique Suitable for Parallel Processing", Conference
publication, Nov. 1992.

Pennabaker, W. B. ; Mitchell, J. L., "JPEG Image Data
Compression Standard", VanNostrand Reinhold, New York, 1993.

Fountain, D., "A Tutorial Introduction to OCCAM Programming",
InmosLtd., 1987.

Quinnell, R. A., "Image Compression Part2", EDN Design Feature,
March 4, 1993, pp. 120- 126.

Ram, N. M. ; Perianayagam, K. S. ; Morra, R. etl., "A High
Performance Parallel System Architecture", Advanced Computing:
Proceedings of the Centre for Development of Advanced
Computing, Eds. Bhatkar, V. P., Joshi, A. V., Sharma, A. K., Tata
Mc-Graw Hill Pubhshing Corporation Ltd., New Delhi, India,
August 1988 - July 1991, pp. 663 - 675.

References 182

[Ramaswamy, 93] Ramaswamy, S. V. ; Miller, G. D., "Multiprocessor DSP
Architecture that Implement the FCT Based JPEG Still Picture
Image Compression Algorithm with Arithmetic Coding", lEE
Transactions on Consumer Electronics, Vol.39, No.l, Feb. 1993,
pp. 1-5.

[Rao, 91]

[Rashinkar, 91]

[Rinaldo, 95]

[Reitman, 81]

[Roberts, 83]

[Ruetz, 93]

[SGS_Thomson,
91]

[Sharda, 93]

[Sharda, 95]

[Siegel, 85]

[Sijsterman, 91]

Rao, C. M. ; Ram, M. N. ; Perianayagam, K. S. etl., "MTK/860 - A
Multi Threading Kernel for the i860". Advanced Computing:
Proceedings of the Centre for Development of Advanced
Computing, Eds. Bhatkar, V. P., Joshi, A. V., Sharma, A. K., Tata
Mc-Graw Hill Pubhshing Corporation Ltd., New Delhi, India,
August 1988 - July 1991, pp. 676 - 682.

Rashinkar, P. ; Bhasin, L. ; Balachandran, S. etl., "Parallel
Processing Application Accelerators", Advanced Computing:
Proceedings of the Centre for Development of Advanced
Computing, Eds. Bhatkar, V. P., Joshi, A. V., Sharma, A. K., Tata
Mc-Graw Hill Pubhshing Corporation Ltd., New Delhi, India,
August 1988 - July 1991, pp. 90 - 95.

Rinaldo, R, ; Calvagno, G., "Image Coding by Block Prediction of
Multiresolution Subimages", IEEE Transactions on Image
Processing, Vol. 4, No. 7, July 1995, pp. 909 - 920.

Reitman, J., "Computer Simulation Applications", Robert E.
Krieger Pubhshing Company, Florida, 1981.

Roberts, N. ; Anderson, D. ; Deal, R. et. al., "Introduction to
Computer Simulation: A System Dynamics Modelling Approach",
Addison-Wesley Publishing Company, 1983.

Ruetz, P. A. ; Tong, P. ; Luthi, D. A. et al., " A Video Rate JPEG
Chip Set", Joumal of VLSI Signal Processing, Vol. 5, 1993, pp.
141 - 150.

SGS_Thomason, " The T9000 Transputer Products Overview
Manual", Inmos Ltd. 1991.

Sharda, N. K. ; Bevinakoppa, S. G. ; Sharda, H. N., "Parallel
Implementation of Digital Image Compression Based on the JPEG
Standard", Technical report 32 COMP 6, Department of Computer
and Mathematical Sciences, Victoria University of Technology,
Nov. 1993.

Sharda, N. K., "hiformation Networking", ACCT press, 1995.

Seigel, H. J., "Interconnection Networks for Large-Scale Parallel
Processing", McGraw-Hill Pubhshing Company, USA, 1985.

Sijstermans, F. ; Vander Meer, J., "CD-I Full-Motion Video
Encoding on a Parallel Computer", Communications of the ACM,
Vol.34, No. 4, April 1991, pp. 81 - 91.

References 183

[Srinivasan, 93]

[Srivastava,91]

[Stephenson, 71]

[Sugai, 87]

[Sun, 90]

[Tinker, 89]

[Tulshibagwale,
94]

[Udpikar, 91]

[Ungere, 91]

[Vaaben, 91]

[Wallace, 92]

[Yakovleff, 91]

Srinivasan, S. ; Monie, E. C. ; Prasad, G. V. K., "Design of a Real
Time Image Compression System Using Multiple DSP
56000/96000 Processors", Conference on Signals, Systems and
Computers, 1 - 3 Nov. 1993, Vol. 2, pp. 1632 -1636.

Srivastava, A. K. ; Kshetramade, S. C, "PRESHAK: a Generic
Tool to Implement Application Specific Message-Passing
Communication Kemels for Concurrent Machines," Proceedings.
The Fifth Intemational Parallel Processing, Symposium, Anaheim,
CA, USA, 30 April - 2 May 1991, pp. 626 - 629.

Stephenson, R. E., "Computer Shnulation for Engineers", Harcourt
Brace Jovanwich, USA, 1971.

Sugai, M. ; Kanuma, A. ; Suzuki, K. et. al., "VLSI Processor for
Image Processing", Proceedmgs of the IEEE, Vol, 75, No. 9, Sep.
1989, pp. 1160-1165.

Sun Microsystems, SBus Specification, 1990.

Tinker, M, "DVI Parallel Image Compression", Communications of
the ACM, Vol. 32, No.7, July 1989, pp. 844 -851.

Tulshibagwale, A. ; Parikh, S. ; Mahajan, S. etl., "The RISAM
Storage Manager for Parallel Architectures", Proceedings of the
Third Intemational Conference on Parallel and Distributed
Information Systems, Austin, TX, USA, 28-30 Sept. 1994, pp. 69
-70.

Udpikar, V. ; Singh, R. K. ; Madhasudan, b. N. etl., "ImagePRO:
Transputer Based Interactive Image Procesing Package",
Advanced Computing: Proceedings of the Centre for Development
of Advanced Computing, Eds. Bhatkar, V. P., Joshi, A. V.,
Sharma, A. K., Tata Mc-Graw Hill Publishing Corporation Ltd.,
New Delhi, India, August 1988 - July 1991, pp. 437 - 443.

Ungere, T., " Parallelising C++ Programs for Transputer Systems",
32, 1991, Microprocessing and Microprogramming, pp. 463-70.

Vaaben, J. ; Niss, B., "Compressing Images With JPEG",
Information Display 7 and 8, 1991, pp. 12 -13 and 59.

Wallace, G. K., "The JPEG Still Picture Compression Standard",
IEEE Transaction on Consumer Electronics, Vol. 38, No. 1, Feb.
1992, pp. xviii - xxviv.

Yakovleff, A. ; Yesberg, J. ; Kamak, D. et. al., "An Expandable
Supercomputer Architecture with Dynamic Reconfigurabihty
Properties", Fourth Australian Supercomputer Conference, Gold
Cost, Dec. 1991, pp. 175 - 83.

References 184

[Yakovleff, 94]

[Zomaya, 96]

Yakovleff, A. ; Cavaiuolo, M., "A Simulation Environment for
Very Large Neural Networks", IEEE Intemational Conference on
Aucoustics, Speech, and Signal Processing, Adelaide, Australia,
April 1994, Vol. 2, pp. 577 - 580.

Zomaya, A. Y., "Parallel Computing: Paradigms and AppUcations",
Intemational Thomson Computer Press, London, 1996.

Appendix A A.1

APPENDIX A

Table A.l Execution times for NIPC Plan P2

(NBCT on a Shared Memory Architecture with Global Memory)

Number of

Processors-NP

1

3

5

7

11

16

20

25

27

Execution times in msec.

For 125 X 125
image

112.32

47.15

33.29

25.84

21.12

17.82

18.00

For 625 x 429
image

1871.81

768.68

525.58

409.43

328.39

267.73

251.81

235.49

235.72

For 1100 X 900
image

6844.12

3315.63

1931.63

1574.19

1213.44

1018.32

929.77

869.13

869.43

Table A.2 Execution times for NIPC Plan P3

(NBCT on a Shared Memory Architecture with Local-plus-Global Memory)

Number of

Processors-NP

1

3

5

7

11

16

20

25

Execution times in msec.

For 125 X 125
image

112.32

41.40

27.69

21.85

15.12

10.93

10.47

10.67

For 625 x 429
image

1871.81

699.07

476.79

380.42

278.39

226.78

194.96

195.44

For 1100 X 900
image

6844.12

2557.27

1748.24

1397.12

1026.73

870.31

732.21

734.62

Appendix A A.2

Table A.3 Execution times for NIPC Plan P4

(NBCT on a Distributed Memory Architecmre with Tree Topology)

Number of

Processors-NP

1

3

5

9

15

21

27

33

Execution times in msec.

For 125 X 125
image

112.32

41.40

32.82

24.96

18.77

16.63

15.49

16.09

For 625 x 429
image

1871.81

719.30

529.36

410.74

315.96

280.89

267.72

279.42

For 1100 X 900
image

6844.12

2631.21

1941.19

1503.83

1155.50

1034.26

981.38

993.62

Table A.4 Execution times for NIPC Plan P5
(NBCT on a Distributed Memory Architecture with Toms Topology)

Number of

Processors-NP

1

3

5

9

13

17

21

26

Execution times in msec.

For 125 X 125
image

112.32

41.40

32.82

20.75

19.60

16.16

11.69

16.09

For 625 x 429
image

1871.81

719.30

529.36

342.29

323.03

271.72

262.58

266.42

For 1100 x 900
image

6844.12

2631.21

1941.19

1234.28

1180.84

995.82

959.29

976.67

Appendix A A.3

Table A.5 Execution tunes for NIPC Plan P6

(NBCT on a Distributed Memory Architecmre with Pyramid Topology)

Number of

Processors-NP

1

5

9

21

37

53

Execution times in msec.

For 125 X 125
image

112.32

23.36

21.85

18.15

13.43

14.61

For 625 x 429
image

1871.81

386.07

359.84

309.03

224.55

239.86

For 1100 X 900
image

6844.12

1412.65

1317.72

1128.46

812.04

876.50

Table A.6 Execution times for NIPC Plan P7
(NBCT on a Distributed Memory Architecture with Cube Topology)

Number of

Processors-NP

1

5

9

28

49

Execution times in msec.

For 125 X 125
image

112.32

23.36

21.85

16.30

29.38

For 625 x 429
image

1871.81

386.07

359.84

277.49

387.65

For 1100 X 900
image

6844.12

1412.65

1317.72

959.14

1398.27

Appendix A A.4

Table A.7 Execution times for NIPC Plan P8 (NSB = 10%)
(BCT on a Shared Memory Architecture with Global Memory)

Number of

Processors-NP

1

3

5

7

11

16

20

Execution times in msec.

For 125 x 125
image

104.65

47.62

30.01

24.41

18.97

16.62

18.22

For 625 x 429
image

1745.62

717.63

500.03

414.76

322.38

275.64

303.42

For 1100 X 900
image

6382.80

2625.94

1830.35

1483.08

1179.25

1005.15

1109.62

Table A.8 Execution times for NIPC Plan P9 (NSB = 10%)
(BCT on a Shared Memory Architecmre with Local-plus-Global Memory)

Number of

Processors-NP

1

3

5

7

11

16

20

25

Execution times in msec.

For 125 X 125
image

104.65

39.30

26.43

20.82

15.28

12.76

10.73

10.75

For 625 x 429
image

1745.62

659.82

440.38

351.72

260.90

229.10

200.42

217.98

For 1100x900
image

6382.80

2414.62

1631.05

1264.48

954.54

800.43

733.24

818.73

Appendix A A.5

Table A.9 Execution times for NIPC Plan PI (NSB = 10%)

(BCT on a Distributed Memory Architecmre with Tree Topology)

Number of

Processors-NP

1

3

5

9

15

21

Execution times in msec.

For 125 X 125
image

104.65

41.07

25.41

19.93

15.96

16.84

For 625 x 429
image

1745.62

689.33

449.13

329.57

259.58

281.22

For 1100 X 900
image

6382.80

2522.44

1644.43

1310.62

1030.67

1109.22

Table A.IO Execution times for NIPC Plan PIG (NSB = 10%)

(BCT on a Distributed Memory Architecture with Toms Topology)

Number of

Processors-NP

1

3

5

9

13

17

Execution times in msec.

For 125 X 125
image

104.65

41.07

25.41

21.33

23.80

For 625 x 429
image

1745.62

689.33

449.13

348.42

400.83

For 1100 X 900
image

6382.80

2522.44

1644.43

1373.29

1173.70

1325.98

Table A.llExecution times for NIPC Plan P l l (NSB = 10%)
(BCT on a Distributed Memory Architecture with Pyramid Topology)

Number of

Processors-NP

1

5

9

21

37

Execution times in msec.

For 125 X 125
image

104.65

22.28

19.26

13.59

13.96

For 625 x 429
image

1745.62

373.23

318.53

226.41

239.29

For 1100 X 900
image

6382.80

1366.00

1165.69

833.01

876.25

Appendix A A.6

Table A.12Execution times for NIPC Plan P12 (NSB = 10%)
(BCT on a Distributed Memory Architecture with Cube Topology)

Number of

Processors-NP

1

5

9

28

Execution times in msec.

For 125 X 125
image

104.65

22.28

19.26

19.94

For 625 x 429
image

1745.62

373.23

318.53

334.80

For 1100 X 900
image

6382.80

1366.00

1165.69

1186.99

Table A.13Execution times for IPC Plan P13 (NSB = 10%)
(BCT on a Shared Memory Architecture with Global Memory)

Number of

Processors-NP

1

5

7

9

13

17

Execution times in msec.

For 125 X 125
image

104.65

42.54

25.96

22.94

20.09

21.62

For 625 x 429
image

1745.62

449.90

363.67

329.36

299.42

310.06

For 1100 X 900
image

6382.8

1653.58

1294.69

1164.74

1092.95

1125.71

Table A.14Execution times for IPC Plan P14 (NSB = 10%)
(BCT on a Distributed Memory Architecture with Toms Topology)

Number of

Processors-NP

1

3

5

9

13

17

Execution times in msec.

For 125 X 125
image

104.65

42.36

30.33

20.81

18.80

19.49

For 625 x 429
image

1745.62

695.46

439.70

328.12

295.36

308.95

For 1100 X 900
image

6382.8

2542.94

1628.26

1143.87

1069.14

1123.73

Appendix A A.7

Table A.lSExecution times for IPC Plan P15 (NSB = 10%)

(BCT on a Distributed Memory Architecture with Pyramid Topology)

Number of

Processors-NP

1

5

9

21

37

Execution times in msec.

For 125 X 125
image

104.65

28.39

20.15

12.03

12.47

For 625 x 429
image

1745.62

453.26

324.59

220.21

226.38

For 1100 x 900
image

6382.80

1648.53

1062.56

830.27

865.21

Table A.16 SIF values for NBCT Plan P3 and BCT Plan P9

(on a Shared Memory Architecmre with Local-plus-Global Memory)

Number of

Processors-NP

1

3

5

7

11

16

20

25

Speed Improvement Factor

For 125 X 125
image

1.07

1.05

1.05

1.05

0.99

0.98

0.98

0.91

For 625 x 429
image

1.07

1.06

1.08

1.08

1.07

0.99

0.97

0.90

-SIF

For 1100 x 900
image

1.07

1.06

1.07

1.10

1.08

1.09

1.00

0.90

Table A.17 SIF values for NBCT Plan P4 and BCT Plan PI

(on a Distributed Memory Architecmre with Tree Topology)

Number of

Processors-NP

1

3

5

9

15

21

Speed Improvement Factor

For 125 X 125
image

1.07

1.01

1.29

1.25

1.18

0.99

For 625 x 429
image

1.07

1.04

1.18

1.25

1.22

1.00

-SIF

For 1100 X 900
image

1.07

1.04

1.18

1.15

1.12

0.93

Appendix A A.8

Table A.18 SIF values for NBCT Plan PS and BCT Plan PIG
(on a Distributed Memory Architecmre with Toms Topology)

Number of

Processors-NP

1

3

5

9

13

17

Speed Improvement Factor - SIF

For 125 X 125
image

1.07

1.01

1.29

0.97

0.82

For 625 x 429
image

1.07

1.04

1.18

0.98

0.81

For 1100 X 900
image

1.07

1.04

1.18

1.09

1.01

0.75

Table A.19 SIF values for NBCT Plan P6 and BCT Plan Pll
(on a Distributed Memory Architecture with Pyramid Topology)

Number of

Processors-NP

1

5

9

21

37

Speed Improvement Factor - SIF

For 125 X 125
image

1.07

1.05

1.13

1.34

0.96

For 625 x 429
image

1.07

1.03

1.13

1.36

0.94

For 1100 X 900
image

1.07

1.03

1.13

1.35

0.93

Table A.20 SIF values for NBCT Plan P7 and BCT Plan P12
(on a Distributed Memory Architecture with Cube Topology)

Number of

Processors-NP

1

5

9

28

Speed Improvement Factor - SIF

For 125 X 125
image

1.07

1.05

1.13

0.82

For 625 x 429
image

1.07

1.03

1.13

0.83

For 1100 X 900
image

1.07

1.03

1.13

0.81

Appendix A A.9

Table A.ll Speedup for NIPC Plan P2
(NBCT on a Shared Memory Architecmre with Global Memory)

Number of

Processors-NP

1

3

5

7

11

16

20

25

27

Speedup-S

For 125 X 125
image

1

2.38

3.37

4.35

5.32

6.30

6.24

For 625 x 429
image

1

2.44

3.56

4.57

5.70

6.99

7.43

7.95

7.94

For 1100 X 900
image

1

2.06

3.54

4.35

5.64

6.72

7.36

7.87

7.86

1100x900
625 X 429

125x125
Image

Size
Number of Processors - NP

Figure A.la Speedup graph for Plan P2

o
c
a>

U4

'^ 16 20 25 27

Number of Processors - NP

1100x900
625 X 429

125x125 '"lageSize

Figure A.lb Efficiency graph for Plan P2

Appendix A A.IO

Table A.22Speedup for NIPC Plan P3

(NBCT on a Shared Memory Architecmre with Local-plus-Global Memory)

Number of

Processors-NP

1

3

5

7

11

16

20

25

Speedup-S

For 125 X 125
image

1

2.71

4.06

5.14

7.43

10.28

10.73

10.53

For 625 x 429
image

1

2.68

3.93

4.92

6.72

8.25

9.60

9.58

For 1100 X 900
image

1

2.68

3.91

4.90

6.67

7.86

9.35

9.32

1100x900
625 x 429

Image Size i25x125

Number of Processors - NP

Figure A.2a Speedup graph for Plan P3

>>
u c
tt
u
£
Ul

1100x900
625 X 429

125x125
Image Size

'' 16 20 25

Number of Processors - NP

Figure A.2b Efficiency graph for Plan P3

Appendix A A.ll

Table A.23Speedup for NIPC Plan P4
(NBCT on a Distributed Memory Architecmre with Tree Topology)

Number of

Processors-NP

1

3

5

9

15

21

27

33

Speedup-S

For 125 X 125
image

1

2.71

3.42

4.50

5.98

6.75

7.25

6.98

For 625 x 429
image

1

2.60

3.54

4.56

5.92

6.66

6.99

6.70 ,

For 1100 X 900
image

1

2.60

3.53

4.55

5.92

6.62

6.97

6.89

1100x900
625 X 429

Image Size ^25x125

Number of Processors - NP

>>
u
c
.*
S:
Ul

Figure A.3a Speedup graph for Plan P4

15 21 27 33
Number of Processors - NP

1100x900
625 X 429

125X125 ""ag«Si^e

Figure A.3b Efficiency graph for Plan P4

Appendix A A.12

Table A.24 Speedup for NIPC Plan P5
(NBCT on a Distributed Memory Architecmre with Toms Topology)

Number of

Processors-NP

1

3

5

9

13

17

21

26

Speedup-S

For 125 X 125
image

1

2.71

3.42

5.41

5.73

6.95

9.61

6.98

For 625 x 429
image

1

2.60

3.54

5.47

5.79

6.89

7.13

7.03

For 1100 x 900
image

1

2.60

3.53

5.55

5.80

6.87

7.13

7.01

1100x900
625 X 429

Image Size i25x125

Number of Processors - NP

Figure A.4a Speedup graph for Plan P5

ic
ie

nc
y

- r
|

Ul

5^

lOO-f

80-

60-

40-

20-

0
1 3 5 9 13 17 21

Number of Processors -
26

NP

y'^ 1100x900
/ 6 2 5 X 429
125x125 ""«g«S.ze

Figure A.4b Efficiency graph for Plan P5

Appendix A A.13

Table A.25Speedup for NIPC Plan P6
(NBCT on a Distributed Memory Architecmre with Pyramid Topology)

Number of

Processors-NP

1

5

9

21

37

53

Speedup-S

For 125 X 125
image

1

4.81

5.14

6.19

8.36

7.69

For 625 x 429
image

1

4.85

5.20

6.06

8.34

7.80

For 1100 X 900
image

1

4.84

5.19

6.07

8.43

7.81

1100x900

625 X 429
Image Size

125x125

«
TJ
(D
(D a c
•a

I

Number of Processors - NP

u
c
.2
'o
£
Ul

Figure A.5a Speedup Graph for Plan P6

1100x900

625 x 429

125x125
Image Size

Number of Processors - NP

Figure A.5b Efficiency Graph for Plan P6

Appendix A A.14

Table A.26Speedup for NIPC Plan P7
(NBCT on a Distributed Memory Architecmre with Cube Topology)

Number of

Processors-NP

1

5

9

28

49

Speedup-S

For 125 X 125
image

1

4.81

5.14

6.89

3.82

For 625 x 429
image

1

4.85

5.20

6.75

4.83

For 1100 X 900
image

1

4.84

5.19

7.14

4.89

1100 x 900

625 x429
Image Size

125 X125

w
•a
(D
(S a.
c

•a
CO

Number of
Processors - NP

>>
o
c
.2
'o
£
Ul

Figure A.6a Speedup graph for Plan P7

49
Number of Processors -

NP

1100x900

625 X 429

125x125
Image Size

Figure A.6b Efficiency graph for Plan P7

Appendix A A.15

Table A.27Speedup for NIPC Plan P8 (NSB = 1G%)
(BCT on a Shared Memory Architecmre with Global Memory)

Number of

Processors-NP

1

3

5

7

11

16

20

Speedup-S

For 125 X 125
image

1

2.20

3.49

4.29

5.52

6.30

5.74

For 625 x 429
image

1

2.43

3.49

4.21

5.41

6.33

5.75

For 1100 x 900
image

1

2.43

3.49

4.30

5.41

6.35

5.75

1100x900
625 X

Image Size .,

-a
<D
(D
O.
C

•D
I

CO

Number of Processors
NP

Figure A.7a Speedup graph for Plan P8

>> o c
o
IE
Ul

16 20

Number of Processors • NP

1100x900
625 x 429

125x125
Image Size

Figure A.7b Efficiency graph for Plan P8

Appendix A A.16

Table A.28Speedup for NIPC Plan P9 (NSB = 1G%)
(BCT on a Shared Memory Architecmre with Local-plus-Global Memory)

Number of

Processors-NP

1

3

5

7

11

16

20

25

Speedup-S

For 125 X 125
image

1

2.66

3.96

5.03

6.85

8.20

9.75

9.73

For 625 x 429
image

1

2.65

3.96

4.96

6.69

7.62

8.71

8.01

For 1100 X 900
image

1

2.64

3.91

5.05

6.69

7.97

8.70

7.80

1100x900
625 X 429

image Size ^25x125

Number of Processors - NP

Figure A.8a Speedup graph for Plan P9

ic
ie

nc
y

- r
\

Ul

100-r

80-

60

40-

20

0

"• 3 5 Z ' ~^-—1 /

Number of Processors - NP

"~~/ 1100x900
/ 625 X 429
.^^ .^r- Image Size
125x125 ^

Figure A.8b Efficiency graph for Plan P9

Appendix A A.17

Table A.29 Speedup for NIPC Plan PI (NSB = 1G%)
(BCT on a Distributed Memory Architecmre with Tree Topology)

Number of

Processors-NP

1

3

5

9

15

21

Speedup-S

For 125 X 125
image

1

2.55

4.12

5.25

6.56

6.21

For 625 x 429
image

1

2.53

3.89

5.30

6.72

6.21

For 1100 X 900
image

1

2.53

3.88

4.87

6.19

5.75

1100x900

625 X 429
Image Size

125x125

Number of Processors - NP

Figure A.9a Speedup graph for Plan PI

u
c
o

15 21

Number of Processors - NP

1100x900

625 X 429

125x125
Image Size

Figure A.9b Efficiency graph for Plan PI

Appendix A A.18

Table A.3GSpeedup for NIPC Plan PIG (NSB = 10%)
(BCT on a Distributed Memory Architecture with Toms Topology)

Number of

Processors-NP

1

3

5

9

13

17

Speedup-S

For 125 X 125
image

1

2.55

4.12

4.91

4.40

For 625 x 429
image

1

2.53

3.89

5.01

4.36

For 1100 X 900
image

1

2.53

3.88

4.65

5.44

4.81

1100x900
625

Image Size

Number of Processors - NP

Figure A.lGa Speedup graph for Plan PIG

>.
o
c
a>
'o
ic
Ul

00^

80-̂

60-

40-

20-

0-r '— T——__ / 125>

1100x900

25 X 429
Image Size

[125

Number of Processors - NP

Figure A.lOb Efficiency graph for Plan PIO

Appendix A A.I9

Table A.31 Speedup for NIPC Plan Pl l (NSB = 10%)
(BCT on a Distributed Memory Architecmre with Pyramid Topology)

Number of

Processors-NP

1

5

9

21

37

For 125 X 125
image

1

4.70

5.43

7.70

7.50

Speedup-S

For 625 x 429
image

1

4.68

5.48

7.71

7.29

For 1100 X 900
image

1

4.67

5.48

7.66

7.28

1100 X 900 ^"^xf ^ ^ i
625 X 4 2 9 ^ \ 4

" " ^ 9 " ^ ' " 1 2 5 x 1 2 5 ^

1
5

1-8

• 6

•4

CNl

Number of
Processors -NP

CO
•o
(D a c

TJ
I

V)

o
c
0)

'5
£
Ul

Figure A. 11a Speedup graph for Plan Pll

1100x900

625 x 429

125x125
Image Size

Number of Processors -
NP

Figure A.llb Efficiency graph for Plan Pll

Appendix A A.20

Table A.32Speedup for NIPC Plan P12 (NSB = 10%)
(BCT on a Distributed Memory Architecmre with Cube Topology)

Number of

Processors-NP

1

5

9

28

Speedup-S

For 125 X 125
image

1

4.70

5.43

5.25

For 625 x 429
image

1

4.68

5.48

5.21

For 1100 X 900
image

1

4.67

5.48

5.38

Image ̂ ilfiP

Number of
Processors - NP

Figure A.12a Speedup graph for Plan P12

>.
u
c
S.
o
ic
Ul

00^
^ - - " ^

80 J

60

40-

20'

0-

' 5

^'iSOv. ^ ^ ^ ^ ^ . ^

'•w J

^ 28
Number of Processors -

NP

^ ^ / ^ 1 1 0 0 x 9 0 0

k / 625x429
/ Image Size

125x125

Figure A.12b Efficiency graph for Plan P12

Appendix A A.21

Table A.33Speedup for IPC Plan P13 (NSB = 10%)
(BCT on a Shared Memory Architecture with Global Memory)

Number of

Processors-NP

1

5

7

9

13

17

Speedup-S

For 125 X 125
image

1

2.46

4.03

4.56

5.21

4.84

For 625 x 429
image

1

3.88

4.80

5.30

5.83

5.63

For 1100 X 900
image

1

3.86

4.93

5.48

5.84

5.67

1100x900

625
Image Size

Number of Processors - NP

Figure A.13a Speedup graph for Plan P13

u
c
u
E
Ul

13 17

Number of Processors - NP

1100x900

625 X 429

125x125
Image Size

Figure A.13b Efficiency graph for Plan P13

Appendix A A.22

Table A.34Speedup for IPC Plan P14 (NSB = 10%)
(BCT on a Distributed Memory Architecmre with Toras Topology)

Number of

Processors-NP

1

3

5

9

13

17

Speedup-S

For 125 X 125
image

1

2.47

3.45

5.03

5.57

5.37

For 625 x 429
image

1

2.51

3.97

5.32

5.91

5.65

For 1100 X 900
image

1

2.51

3.92

5.58

5.97

5.68

1100x900

625 X 429
Image Size

125x125

Number of Processors •

Figure A.14a Speedup graph for Plan P14

>.
u
c

_g»
o
it
Ul

1100x900

625 X 429

125x125
Image Size

13 17

Number of Processors - NP

Figure A.14b Efficiency graph for Plan P14

Appendix A A.23

Table A.35Speedup for IPC Plan P15 (NSB = 10%)
(BCT on Distributed Memory Architecture with Pyramid Topology)

Number of

Processors-NP

1

5

9

21

37

Speedup-S

For 125 X 125
image

1

3.69

5.19

8.70

8.39

For 625 x 429
image

1

3.85

5.38

7.93

7.71

For 1100 x 900
image

1

3.87

6.01

7.69

7.38

1100x900
625 x

Image Size

CA
• o o
(D a c •o
I

w

Number of
Processors - NP

Figure A.15a Speedup graph for Plan P15

u
c £ u

00-f

80-

60

40-

20-

0-C:——r—
1 5 9 21

Number of Processors -
NP

37

^r~/•\^oox90o
/ 625x429

/ Image Size
125x125

Figure A.lSb Efficiency graph for Plan P15

