

VICTORIA UNIVERSITY

ACCESS CONTROL MODEL AND LABELLING

SCHEME FOR EFFICIENT QUERYING AND

UPDATING XML DATA

A Thesis Submitted by

MAGGIE DUONG

BSc. (Hons), Melbourne

For the degree of

Doctor of Philosophy

2010

School of Computer Science & Mathematics

VICTORIA UNIVERSITY

Abstract

As XML continues to be utilised in various fields of information technology,

an urgent need for managing XML documents is being felt. Considering

day-to-day operations such as updating, accessing and/or querying XML

documents, these tasks need to be accurate, quick to carry out, easy to use

and more importantly safe from unauthorized accesses. This requires an

integrated scheme that can facilitate query processing and determine what

kind and/or part of information can be displayed, updated and/or modified

by different types of users.

In order to facilitate query processing for XML data, several path indexing,

labelling, and numbering schemes have been proposed. However, if there is

frequent demand for XML data to be updated, most of these approaches will

need to re-compute existing labels, which is rather time consuming. Some

other existing approaches tried to solve this problem by reserving spaces or

reserving codes to minimize the cost of re-labelling. However, when all

reserved spaces or reserved codes are used up, re-labelling will undoubtedly

be required. Likewise, many existing access controls use node filtering or

querying rewriting techniques. These techniques require rather time-

ii

consuming processes such as parsing, labelling, pruning and/or rewriting

queries into safe ones each time a user requests a query or takes an action.

In this thesis, we make two major contributions that help the tasks of

querying, updating, and managing XML data become quick and safe. First,

we propose a new labelling scheme for dynamic XML data that supports the

representation of the ancestor – descendant relationship and sibling

relationship between nodes. Our unique way of labelling codes can also help

users easily determine the depth (level) of the XML tree. Moreover, it also

supports the process of updating XML data without the need of re-labelling

existing labels, hence facilitating fast update. Some experimental works have

been conducted to show its effectiveness.

Secondly, for XML security purposes, we propose a fine-grained access

control model, named SecureX, which supports read and write privileges.

With our novel access control concept, various access types are introduced,

including those for determining if a user has the right to change XML

structure. SecureX ensures that, crucial information will be accessible only to

authorized entities. Furthermore, SecureX can be integrated well with a

dynamic labelling scheme to eliminate repetitive labelling and pruning

processes when determining a user view. This brings about advantages of

speeding up searching and querying processes.

iii

When comparing to a traditional node filtering technique, our integrated

access control model takes less processing steps. Experiments have shown

effectiveness of our approach.

Keywords: Access control, XML query, XML update, labelling scheme, path

index, query processing.

iv

PUBLICATION

Duong, M. and Zhang, Y. (2008): Dynamic Labelling for XML Data

Processing. To be appeared in the Proceedings of the 7th International

Conference on Ontologies, DataBases, and Applications of Semantics.

(ODBASE’08), 2008.

Maggie Duong and Yanchun Zhang (2008). An Integrated Access Control for

Securely Querying and Updating XML. In Proceedings of the Nineteenth

Australasian Database Conference (ADC2008), Wollongong, Australia.

Conferences in Research and Practice in Information Technology, Vol. 75.

Maggie Duong and Yanchun Zhang (2005). LSDX: A New Labelling Scheme

for Dynamically Updating XML Data. In Proceedings of the 16th

Australasian Database Conference, Jan 31 – Feb 3, 2005, Newcastle,

Australia. Conferences in Research and Practice in Information Technology,

Vol. 39.

v

CERTIFICATION OF RESEARCH

I, Maggie Duong, declare that the PhD thesis entitled “Access Control Model

and Labelling Scheme for Efficient Querying and Updating Xml Data” is no

more than 100,000 words in length including quotes and exclusive of tables,

figures, appendices, bibliography, references and footnotes. This thesis

contains no material that has been submitted previously, in whole or in part,

for the award of any other academic degree or diploma. Except where

otherwise indicated, this thesis is my own work.

__________________________ _____________________

Signature Date

vi

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Professor Yanchun Zhang for his

guidance, help and great encouragement during the course of my PhD. His

patience, constructive criticism, professional guidance and the ability to

draw the best results out of his students have been integral to the success of

this work and to my education as a researcher.

 I also would like to thank many anonymous referees for their

comments on our papers which are the basics of this thesis.

 I am grateful to the School of Computer Science and Mathematics for

providing the finance support to travel to conferences and for offering me a

research scholarship. Thanks also go to Postgraduate Research Office for

giving me a scholarship to do PhD degree and Faculty of Health,

Engineering and Science for giving me an extended scholarship.

Finally, I would like to express gratitude to my husband, Danh, for

his support and encouragement throughout the course of my study. To him,

I dedicate this thesis.

vii

Table of Contents

LIST OF FIGURES . x

LIST OF TABLES . . . xiv

1. Introduction . 1

1.1 Overview and Motivation . 1

1.2 Claims of the Thesis . 11

1.3 Outline of the Thesis 15

2. XML Background . 18

2.1 XML Overview . 19

2.2 How Indexing Works. 25

2.3 XPath Overview . 30

2.4 XQuery Overview . 34

3. XML Labelling and Access Control . 40

3.1 Existing Approaches in XML Access Control 40

3.2 Existing Approaches in Labelling Scheme 56

3.2.1 Path indexing . 57

3.2.2 Prefix-Based Labelling . 63

3.2.3 Region-Based Numbering . 72

3.2.4 Complete k-ary tree-based numbering 76

3.3 Summary . 80

viii

4 Dynamic Labelling Schemes . 82

4.1 Introduction to Dynamic Labelling . 82

4.2 Overview of LSDX Labelling Scheme 83

4.3 LSDX and Its Solutions . 85

4.4 LSDX Updating Support . 86

4.5 Ancestor - Descendant Relationship . 95

4.6 Depth of Tree. 96

4.7 Experiments . . 97

4.7.1 Length of Labels . 99

4.7.2 Time Used to Generate Labels 100

4.7.3 Insertion and Deletion Time 101

4.8 Summary . 103

5 Com-D labelling Scheme . 105

5.1 Introduction to Com-D . 105

5.2 Updating . 113

5.2.1 Insert Before . 114

5.2.2 Insert After 116

5.3 Order – Sensitive Queries . 117

5.4 Experiments . 119

5.4.1 Storage Requirement . 121

5.4.2 Query Performance . 122

5.4.3 Update Performance . 123

ix

5.5 Summary . 124

6 XML Access Control . 125

6.1 Introduction to Secure Access Control 125

6.2 Integrated with XML Labelling . 131

6.3 Process Analysis 139

6.4 XML Update Control . 141

6.4.1 Update Control Concepts . 143

6.5 Integrate Write Privilege with XML Labelling 149

6.6 Dealing with Conflict or Undefined Rule 150

6.7 Experiments . 153

6.7.1 Node Scan Observation . 157

6.7.2 Response Time . 159

6.8 Summary . 161

7 Conclusion . 163

Possible Future Work 166

Bibliography. 168

x

List of Figures

1.1 Staff XML document . 3

1.2 Pruning example . 7

2.1 XML data with the new element added 19

2.2 An example of a tree 22

2.3 An example of in-order traversal . 23

2.4 An example of pre-order traversal . 24

2.5 An example of post-order traversal . 25

2.6 An example of indexing technique . 27

2.7 Path lexicon based on Figure 2.1 . 28

2.8 Updating problem . 30

3.1 Execution steps of the Compute-view algorithm 44

3.2 The Infrastructure of the Query Rewriting System 46

3.3 Lee et al. 2003 AC model . 47

3.4 Yokoyama et al. 2005, prefix-labelling to identify user 48

3.5 Yokoyama et al. 2005 Access rules . 48

3.6(a) Example of a Schema . 52

3.6(b) The corresponding annotated Schema 52

3.7(a) Labelling based on Access Authorization for Public view . . 54

3.7(b) Example of pruning process 55

xi

3.8(a) Data tree based on (b).-XML data . 58

3.9 Labels use <pre-order, post-order> traversal 59

3.10(a) Updated XML data . 62

3.10(b) Grust’s of updating problem . 63

3.11. ImprovedBinary Scheme . 65

3.12(a) Dewey prefix-based by Tatarinov Et Al, 2002 68

3.12(b) A running example of Updated XML data 69

3.12(c) Dewey Prefix-Based Updating Problem 69

3.13(a) P-PBiTree by Yu, Luo, Meng and Lu 2004 70

3.13(b) P-PBiTree Updating Problem . 71

3.14 Dietz’s Numbering Scheme . 73

3.15 Numbering Scheme by Li and Moon 74

3.16 An example of PBiTree . 77

4.1(a) An example of our LSDX . 84

4.1(b) Path lexicon for Figure 4.1(a) . 84

4.2 An example to illustrate Rule for Generating Labels 87

4.3(a) Inserting Before . 88

4.3(b) Another example of Inserting Before 89

4.3(c) An example for inserting sub tree . 90

4.3(d) Another example of Inserting Before 91

4.4(a) Inserting After . 91

4.4(b) Example of Inserting After . 92

xii

4.4(c) Another example of Inserting After . 93

4.4(d) An example of inserting a sub tree . 94

4.5 Deleting . 94

4.6 Updating . 95

4.7 A Java application tool used for experiment works 98

4.8 Total length of labels . 100

4.9 Time used to insert nodes . 102

4.10 Time used to delete nodes . 103

5.1 A query process using Com-D labelling scheme 107

5.2 Insert a node before a given node . 114

5.3 Insert a node before a given node . 115

5.4 Example of inserting a node after a given node 116

5.5 Inserting a sub tree after a given node 117

5.6 Order-sensitive updates – Adding new elements 118

5.7 Total lengths of labels . 120

5.8 Space requirements for each labelling scheme 121

5.9 Numbers of nodes need re-labelling 123

6.1(a) XAA . 126

6.1(b) XAG. - (c)Updated XAG . 127

6.2 XML Access Control Model . 129

6.3 Generating access & label codes for each XML Data 133

6.4 Query processing with Integrated SecureX model 133

xiii

6.5 Dynamic labelling scheme . 134

6.6 Access rules associated with a labelling scheme 136

6.7(a) Updated XAA with Write privileges 146

6.7(b) Associate XAG . 147

6.8 The Department DTD . 155

6.9 Number of Node Scanned . 158

6.10 Queries Response Time . 160

xiv

List of Tables

3.1 Example of Damiani et al. 2002 Access authorizations 42

4.1 Total length of labels . 99

4.2 Time used to generate labels using LSDX 104

5.1 Document used in experiments . 119

5.2 Query performance . 122

6.1 Possible accessibility symbols . 130

6.2 Comparison of processes taken upon a user's request 140

6.3 Update Types . 144

6.4 Characteristics of Used Queries. 156

6.5 Number of node retrieved vs. number of node scan 159

6.6 Queries results . 161

Chapter 1 - Introduction

1

1
Introduction

1.1 Overview and Motivation

With the advanced characteristics of XML, more and more XML documents

have been used to display and exchange information on the web. XML

(eXtensible Mark-up Language) is used to describe and to store information

in such a way that data can be exchanged easily over the internet. Since data

is stored in various computer systems and in different, incompatible

formats, exchanging these data over the Internet can take a great deal of

time. XML is a perfect answer for this problem. A significant characteristic of

XML is platform independent. It does not make any difference if users use

Windows, Macintosh or UNIX. Data written in XML can be exchanged

among computers without having any problem. Information written in XML

can also be transmitted regardless of software and hardware used.

As XML continues to be utilized in various fields of information technology,

an urgent need for managing XML documents is being felt. Considering day

to day operations such as updating, accessing and/or querying XML data,

Chapter 1 - Introduction

2

these tasks need to be accurate, quick to carry out, easy to use and more

importantly safe from unauthorized accesses. For instance, electronic

commerce transactions require clarity and enforcement of security controls,

ensuring that crucial information will be accessible only to authorized

entities. This requires a method to determine what kind and/or part of

information can be displayed, updated and/or modified by different types

of users. Another good example to illustrate the importance of this topic is to

think about an organization in which sensitive information should only be

accessed by authorized people.

<employee>

<dept name="CompSci">

 <staff>

<name>

 <lastname>Wilkinson</lastname>

 <firstname>John</firstname>

</name>

<address>12 Lynn Marree St</address>

<DOB>24 May 1966</DOB>

<h_phone>98664356</h_phone>

<office>D544</office>

<extension>4566</extension>

<email>Wilkinson.John@vu.edu.au</email>

Chapter 1 - Introduction

3

<job_title>Assoc. Professor</job_title>

<salary>59300</salary>

 </staff>

 <staff>

<name>

 <lastname>Bestor</lastname>

 <firstname>Angela</firstname>

</name>

<address>188 Princess St</address>

<DOB>24 May 1954</DOB>

<h_phone>98664444</h_phone>

<office>D644</office>

<extension>4522</extension>

<email>Bestor.Angela@vu.edu.au</email>

<position>Lecturer</position>

<salary>42500</salary>

 </staff>

</dept>

…

</employee>

Figure 1.1. Staff.xml

Chapter 1 - Introduction

4

Let us consider a University staff database, (see Figure 1.1), where general

information such as name, office, email, etc are available to public.

Home address, home phone and DOB are confidential information and

should only be available to administrators. Salary is a protected field and

only available to authorized people.

Now considering two users, a student and an administrator with access

levels public and private respectively. When searching for staff details,

these two users will have different views.

Student’s view:

<staff>

<name>

<lastname>Wilkinson</lastname>

 <firstname>John</firstname>

</name>

<office>D544</office>

<extension>4566</extension>

<email>Wilkinson.John@vu.edu.au</email>

<position> Assoc. Professor </position>

</staff>

<staff>

Chapter 1 - Introduction

5

</staff>

Administrator’s view:

<staff>

<name>

<lastname>Wilkinson</lastname>

<firstname>John</firstname>

</name>

<address>12 Lynne Maree St</address>

<DOB>24 May 1966</DOB>

<h_phone>98664356</h_phone>

<office>D544</office>

<extension>4566</extension>

<email>Wilkinson.John@vu.edu.au</email>

<position> Assoc. Professor </position>

</staff>

<staff>

</staff>

A student should only receive general information of staff but not home

phone, home address etc. Similarly, an administrator can obtain general

information of a staff, as a student does, plus other private information.

Chapter 1 - Introduction

6

However, the administrator is unable to view salary due to possessing

insufficient access level.

Considering when a staff has changed his/her name after a marriage or

moving to a new place, this information needs to be updated. Clearly, public

and private fields like name, address, phone, email etc should be

able to be updated by that staff or by an administrator. Of course, s/he

cannot alter protected fields like salary. If staffs have access to private

fields, then, there will be an issue emerging. It is conceptually right that one

can access his/her private information. However, no staff would want other

colleagues seeing their confidential information. Thus, an explicit rule is

needed to state that one can access one's own confidential details but not

those of others.

To defend confidentiality for XML data, several access control models have

been proposed. For instance, De Capitani di Vimercati, Marrara, and

Samarati (2005), Yokoyama, Ohta, Katayama and Ishikawa (2005), Lee, Lee

and Liu (2003), Yu, Srivastava, Lakshmanan, and Jagadish (2002), Fan, Chan

and Garofalakis (2004), Bertino and Ferrari (2002), Damiani, De Capitani di

Vimercati, Paraboschi and Samarati (2001), Bertino, Castano and Ferrari

(2001), Damiani, De Capitani di Vimercati, Paraboschi and Samarati (2000)

support read privileges.

Chapter 1 - Introduction

7

Damiani, Fansi, Gabillon and Marrara (2007, 2008), Gabillon (2004),

Damiani, De Capitani di Vimercati, Paraboschi and Samarati (2002), Kudo

and Hada (2000) support both read and write privileges. However, these

models cannot explicitly define access rules for the above issue. On the other

hand, models that support write privileges do not consider or define clear

rules in which XML structure and DTD may be changed due to updating

operations.

+

+

-

+

+

+
+

Figure 1.2 Pruning example

In general, these approaches either use node filtering and/or query

rewriting techniques. These require repetitive node labelling, then pruning

processes and/or rewriting query each time a user sending a query to

determine a user view. This degrades the query performance. Examples of

node labelling and pruning can be found at Figure 1.2. [Bertino, Castano and

Ferrari 2001]. Access authorizations are determined by labelling tree nodes

Chapter 1 - Introduction

8

with a permission (+), or a denial (-) then pruning trees are based on

associated signs.

Since queries navigate XML data via path expressions, indexes can be used

to accelerate queries. A well constructed index will allow a query to bypass

the need of scanning the entire table for results. Although, there are a

number of indexing methods which have been proposed to facilitate query

processing, these methods do not consider data confidentiality. Likewise,

existing XML access controls have not been developed to integrate with

existing indexing methods to speed up the search.

To the best of our knowledge, Yu, Srivastava, Lakshmanan and Jagadish

(2002) use a compressed accessibility map to quickly determine if a user has

the right to access an XML data item. However, drawbacks of this work are

that it only supports a single user and an access type at a time; it is space

inefficient due to separate Compressed Accessibility Map (CAM) is needed

for each user and access type; and it only supports read action.

There have been lots of works focused on XML query processing; some

other works developed labelling schemes which play an important role in

speeding up query processing. These techniques vary from path indexing to

numbering schemes. (Details of these techniques will be discussed in

Chapter 1 - Introduction

9

Related Works). For instance, the works by O’Neil, O'Neil, Pal, Cseri,

Schaller and Westbury (2004), Amato, Debole, Rabitti and Zezula (2003),

Grust (2002), Cooper, Sample, Franklin, Hjaltason, Shadmon (2001), Meuss

and Strohmaier (1999) used path indexing for searching XML data.

Two other approaches are employed in Numbering Schemes. One is called

region-based numbering scheme [Wu, Lee and Hsu (2004), Amagasa,

Yoshikawa and Uemura (2003), Li and Moon (2001), etc] and the other one is

prefix-based numbering scheme [Li and Ling (2005), Cohen, Kaplan and Milo

(2002), Tatarinov, Viglas, Beyer, Shanmugasundaram, Shekita and Zhang

(2002), and Kaplan, Milo and Shabo, etc]. However, most of proposed

labelling schemes are costly due to the need of re-calculating or re-labelling

existing nodes whenever XML documents being updated.

The major problem:

If deletion and/or insertion occur regularly in the XML data, these

techniques would need expensive re-computing of affected labels. (Details of

these approaches will be discussed in chapter 3).

In our view, an effective labelling scheme needs to be:

(i) Compact; total lengths of labels are as small as possible.

Chapter 1 - Introduction

10

(ii) Dynamic, being able to update XML data dynamically without re-

labelling or re-calculating value of existing nodes.

(iii) Last but not least, facilitating the identification of various

relationships between nodes.

Remark:

Prior to querying the database, another significant issue must be considered,

i.e. security. Certain data sets in any database need to be protected so that

these data can only be accessed by authorised people. This is a challenging

research problem. The focus of current schemes is either to facilitate query

performance or to control access to XML documents. As far as accessing

control concerns, these schemes are not practical. It is because when an XML

document is queried, it is necessary to determine if that particular user has

access authorisation for the XML document being queried. The access rules

may vary for different users, different XML files in the database, and/or

different levels, nodes/elements in the XML documents.

Although one can use one scheme on top of the other, however, every time a

user sends a query, access authorization has to be checked first (from

accessing rules store in a file or a scheme). Once access is allowed, an

index/labelling scheme is used to execute the query process and return the

result. A bottleneck in the system performance is created if these steps are

Chapter 1 - Introduction

11

repeated every time a user sending a query. As a result, a perfect scheme is

needed to manage dynamic XML documents effectively. For this purpose,

we considered the following features in our design:

• An index algorithm that facilitates XML query processing.

• A static labelling scheme – There is no need to re-label even if the

XML document needs to be updated.

• Updating actions can be carried out in an effective manner which

reduces computation cost and querying response time, hence

facilitating fast update actions, including add, modify, and delete.

• Controlling accessing to XML document - sensitive information

shall be protected and could only be accessed by authorised

people.

• Improve query performance – The query performance shall be

improved by combining indexing algorithm and accessing rules of

an XML document in one labelling scheme. This combined

labelling scheme will help query optimiser to bypass the tasks of

verifying access rule and searching for result in two different files

or even two difference places every time a user sends a query.

1.2 Claims of the Thesis

Frequently re-computing large amount of elements each time XML data is

updated will take time and will reduce performance. It will also raise the

Chapter 1 - Introduction

12

cost of renumbering. Although, there are a number of indexing methods

which have been proposed to facilitate query processing, these methods do

not consider data confidentiality. Likewise, existing XML access controls

have not been developed to integrate with existing indexing methods to

speed up the search.

This thesis covers and makes these major contributions to the research

community as describe in the following areas.

First, we propose a labelling scheme called LSDX that supports updating

XML data dynamically without the need of re-labelling existing nodes,

hence facilitating fast update. This dynamic labelling scheme supports all

important axes in XPath such as parent, child, ancestor, descendant,

previous – sibling, following – sibling, previous nodes, following nodes.

Secondly, we proposed an improved version of LSDX, namely Com-D

labelling scheme. In this labelling scheme, we develop a new technique to

label XML tree to make it small and more compact. The total lengths of

labels are reduced significantly comparing with existing dynamic labelling

schemes. Moreover, it does not matter where new nodes should be inserted

or how many of new nodes are added. It is guaranteed that none of existing

Chapter 1 - Introduction

13

nodes needs to be re-labelled and no re-calculation is required. These will

facilitate fast update as well as enhancing query processing.

Thirdly, we propose a fine-grained access control model, which supports

read and write privileges. Our model supports various access types. Cases

such as user's information is available to self-access only is also managed

sensibly, thus, the task of defining access rules can be done judiciously. We

also consider update-types that help to determine if a user has the right to

change XML structure. In addition, our access control model can be

integrated well with an indexing or labelling scheme to eliminate the

repetitive labelling and pruning processes when determining a user view.

This brings about the advantage of speeding up searching and querying

processes.

To demonstrate, we integrate our access control model with a dynamic

labelling scheme and compare its processing steps with a traditional access

control model. We show by analysis that, our model requires less processing

steps and provides a shortcut for the task of evaluating if a node is accessible

for a particular user. Our experiments show that, our model is superior in

term of query performance when comparing with exiting works that use

node filtering techniques.

Chapter 1 - Introduction

14

In details, our contributions to web-based applications and web users are

effective indexing algorithms that provide following advantages:

• Space efficient – Indexing storage space is relatively small.

• Control access to XML documents – Sensitive information shall be

protected and only be accessed by authorised entities.

• Support dynamic XML documents – In term of both querying and

controlling access to XML documents.

• Speed up updating actions (add, update, delete) can be carried out

in an effective manner, which shall reduce computation cost and

querying response time, hence facilitating fast update, by

eliminating the need of re-indexing even if the XML document

needs to be updated.

• Improve query performance – By combining index algorithm and

access rules in one labelling scheme, it will be the help for query

optimiser to bypass the need of checking for access rule and search

for result in two difference files or even two difference places every

time a user sends a query.

Summary:

In summary, we have developed innovative labelling schemes for managing

dynamic XML documents that makes the tasks of accessing/querying and

updating XML data faster, and safe from unauthorized access.

Chapter 1 - Introduction

15

- Our labelling schemes will control access to XML documents; sensitive

information shall be protected and only be accessed by authorised entities.

- Support dynamic XML documents. There is no need to re-label even if the

XML document needs to be updated. Thus, it will be in the help of speeding

up updating actions.

- Add, update, delete operations can be carried out in an effective manner,

which shall reduce computation cost and querying response time, hence

facilitating fast update.

- Last but not least, it improves query performance. The utilisation of

indexing algorithm and accessibility rules in one labelling scheme helps

query optimiser bypassing the need of scanning the entire table for results.

1.3 Outline of the Thesis

The rest of the thesis is organized as follows. Chapter 2 presents the basic

concept necessary for understanding XML, how indexing works and how it

can facilitate query processing. Overview of XML, XPath and XQuery are

also presented in the subsections.

Chapter 1 - Introduction

16

In chapter 3, we shall briefly discuss about some techniques that have

recently been developed by a number of researchers. Those techniques vary

from access controls for XML data, path indexing, numbering schemes, etc.

We shall examine how they work and identify existing problems. The first

part, section 3.1 discusses about related works in XML access control. The

second part, section 3.2 discusses about related works in labelling schemes.

Chapter 4 provides an overview of our proposed labelling scheme, the

LSDX. How its labelling technique works and how it supports the

representation of ancestor – descendant relationships and sibling

relationships between nodes. In this chapter, we will also describe how our

LSDX can determine the depth (level) of the data tree. Finally, experiments

for LSDX labelling scheme is presented.

Chapter 5 provides an overview of our compact labelling scheme, the Com –

D and its advantages overs the existing dynamic labelling schemes.

Experiments for Com-D labelling scheme is then followed. Experiments

works were carried out in terms of label length, storage size,

querying/insertion/updating performance, and re-labelling and response

time.

Chapter 1 - Introduction

17

Chapter 6 presents our access control model, SecureX for XML data. We

shall demonstrate how it can be integrated with an XML labelling scheme.

Then, our analysis will show how our access control can be better off

comparing to traditional node filtering techniques. In section 6.3, we

introduce write privileges of our access control model. Section 6.5 deals with

conflict or undefined rules. Finally, in section 6.7, experimental works for

SecureX, the access control for XML is presented. Experiments on queries

performances, number of node scan versus number of node retrieved,

response time, etc are also carried out.

Finally, Chapter 7 presents the conclusions and possible future work.

Chapter 2 – XML Background

18

2
XML Background

In this chapter, we give a brief overview of XML, how indexing works and

how it can facilitate XML query processing. In later subsections, we describe

the basic concept necessary for understanding XML, XPath and XQuery.

<?xml version="1.0" encoding="UTF-8"?>

<Student_List>

 <Student>

 <Stud_Id>1234567</Stud_Id>

 <Name>Jennifer Fall</Name>

 <Address>123 Footscray Rd</Address>

 <Phone>98765432</Phone>

 <Year>2008</Year>

 <Course>

 <Course_Code>ABC4</Course_Code>

 <Course_Title>Bachelor of Science</Course_Title>

 </Course>

 </Student>

Chapter 2 – XML Background

19

 <Student>

 <Stud_Id>2345678</Stud_Id>

 <Name>Matt Yang</Name>

 <Address>123 Spencer Rd</Address>

 <Phone>96894321</Phone>

 <Year>2008</Year>

 <Course>

 <Course_Code>ABC4</Course_Code>

 <Course_Title>Bachelor of Science</Course_Title>

 </Course>

 </Student>

</Student_List>

Figure 2.1. An XML data - newly added elements in shade.

2.1 XML Overview

XML stands for eXtensible Mark-up Language. It is a meta-mark-up

language, similar to HTML (Hyper-Text Mark-up Language). Nevertheless,

XML and HTML were designed for different purposes. “XML was designed

to describe data and to focus on what data is while HTML was designed to

display data and to focus on how data looks.” -W3Schools, XML Tutorial.

Chapter 2 – XML Background

20

XML is used to describe, to structure and to store information in such a way

that data can be exchanged easily over the internet. In XML, tags are not

predefined. XML allows users to create their own tags and to structure their

own data in their preferred ways.

Since data is stored in various computer systems and in different,

incompatible formats, exchanging these data over the Internet can be timed

consuming and costly. XML is a perfect answer for this problem. Significant

characteristics of XML can be described as follows:

• It is platform independent. It does not make any difference if users

use Windows, Macintosh or UNIX. Data written in XML can be

exchanged without having any problem.

• Information written in XML can also be transmitted regardless of

software and hardware used.

XML documents use a self-describing and simple syntax. An example is

shown in Figure 2.1.

Chapter 2 – XML Background

21

In XML, all elements must have an opening tag and a closing tag. However,

empty element is an exception which can end with “/>”. Elements must be

properly nested within each other. An example for this is given below.

<Name>Matt Yang</Name>

All elements can have sub elements (child elements). Sub elements must be

correctly nested within their parent element:

<Course>

 <Course_Code>ABC4</Course_Code>

 <Course_Title>Bachelor of Science</Course_Title>

</Course>

The correct nesting of XML data is an aspect of well-formedness. However,

well - formedness does not mean that data is correct. For instance, consider

the following XML fragment:

<Student>

 <Stud_Id>2345678</Stud_Id>

</Student>

<Name>Matt Yang</Name>

Chapter 2 – XML Background

22

Although the above XML data fragment has the correct XML syntax and is

well - formed, it is incorrect. <Name> should belong to a particular

<Student>. Thus, it should be nested inside <Student> element to describe

its meaning correctly.

2.1.1 Tree Terminology

Figure 2.2. An example of a tree.

Figure 2.2 above is used to illustrate the tree terminology. Explanations are

as follows:

• A is the root node (in XML known as document element).

• B is the parent of D, E and F.

• C is following sibling of B.

• D is preceding sibling of E.

• D, E and F are children of B.

Chapter 2 – XML Background

23

• D, E, G, H, I and J are external nodes or leaves (has no children).

• A, B, C and F are internal nodes or non-leaves (has child/ren).

• The depth (level) of C is 1, H is 2.

• Height of tree is 3 (maximum depth).

a. In-order Traversal

In-order traversal is illustrated in Figure 2.3. Rule for in-order traversal can

be described as follows:

• First visit left sub tree.

• Then visit root node.

• Then visit right sub tree.

Figure 2.3. An example of in-order traversal

b. Pre-order Traversal

Chapter 2 – XML Background

24

Pre-order traversal is illustrated in Figure 2.4. Rule for pre-order traversal

can be described as follows:

• First visit root node.

• Then visit left sub tree.

• Then visit right sub tree.

Figure 2.4. An example of pre-order traversal

c. Post-order Traversal

Post-order traversal is illustrated in Figure 2.5. Rule for post-order traversal

can be described as follows:

• First visit left sub tree.

• Then visit right sub tree.

• Then visit root node.

Chapter 2 – XML Background

25

Figure 2.5. An example of post-order traversal

2.2 How Indexing Works

The traditional and most beneficial way to improve query performance

requires the creation of an effective indexing scheme. A well - constructed

index will allow a query to bypass the need of scanning the entire table for

results. –[Kaelin, (2004)]. To make this possible, a unique label is assigned

for each node in an XML tree. It is also quite essential to label nodes in such

a way that can clearly show relationship between any two given nodes (such

as ancestor – descendant relationship or sibling relationship). Once this is

done, structural queries can be answered by only using the developed index.

There is no need to access the actual documents. –[Lu and Ling (2004)].

Since queries navigate XML data via path expressions, it can be accelerated

using an index. For this reason, many researchers have been trying to

Chapter 2 – XML Background

26

develop the most efficient way to index XML data. Next, we show an

example that requires the presence of an effective index.

In Figure 2.1, we have an XML document that stores details of students.

(Ignore for the shaded elements for now). Each Student element represents

a student. Every Student contains Stud_Id which corresponds to student

ID, Name is student name, Address is address of the student, Year is

enrolment year and Course, Course_Code, Course_Title represent

course details.

If we want to get names of all students, the simple ways we will need to do

is just using XPath expression and specifying the path of the element we

want to retrieve. In this case, we can use the following XPath expression:

/Student_List/Student/Name

Nevertheless, if this document stores thousands of student records, it will

take a great deal of time to traverse all elements in this document to find

what we are looking for. Thus, indexing is extremely useful to bypass all

unnecessary elements. We could directly access to those elements that we

need.

Chapter 2 – XML Background

27

Figure 2.6. An example of indexing technique based on an XML in Figure 2.1 -

Amato, Debole, Rabitti and Zezula (2003)

To demonstrate how indexing works for the above example, we use the

indexing method from Amato, Debole, Rabitti and Zezula (2003) to label

each element in our XML document. They assign ‘1’ for the first element, ‘2’

for second element, ‘3’ for the third element and keep increasing ‘number’

when adding new element in that order. Figure 2.6 shows how this indexing

method is represented in the data tree.

/Student_List-> {1}

/Student_List/Student-> {2, 16}

/Student_List/Student/Stud_Id-> {3, 17}

Chapter 2 – XML Background

28

/Student_List/Student/Name-> {5, 19}

/Student_List/Student/Address-> {7, 21}

/Student_List/Student/Year-> {9, 23}

/Student_List/Student/Course-> {11, 25}

/Student_List/Student/Course/Course_Code-> {12, 26}

/Student_List/Student/Course/Course_Title-> {14, 28}

Figure 2.7. Path lexicon based on Figure 2.1

Based on the above indexing, we can have a Path lexicon as Figure 2.7.

This path lexicon table shows that all name elements are labelled as node ‘5’

and node ‘19’. Student’s course elements are labelled as node ‘11’ and node

‘25’. Student’s course titles are labelled as node ‘14’ and ‘28’. When we

want to access to any element of the XML document, we can go directly to

the labelled node using this indexing. Thus, we shall reduce the time needed

to traverse all unnecessary nodes in the XML document, hence facilitate

query processing.

Remark:

While the above indexing technique can facilitate query processing,

problems still exist. XML data have an intrinsic order. That means XML data

Chapter 2 – XML Background

29

orders its nodes corresponding to the order in which a sequential read of the

textual XML would encounter the nodes. – [Grust, (2002)]. Let us take an

example to highlight one of problems of the mentioned indexing technique.

Suppose that our student details need to be updated, for example, school

now wants to store student’s contact number. This means we need to add a

new element in our student data file for each student. To ensure that the

newly added element is correctly described, we must add it inside the

<Student> element.

At this point, problem emerges because children and/or siblings nodes of

the <Student> element will need to be re-indexed. In particular, if we add

it after the <Address> element and before the <Year> element, all elements

from the first <Year> element downward need to be reindexed.

Now considering Figure 2.1 with the updated XML data, newly added

elements are shaded. An updating problem is presented in a data tree shown

in Figure 2.8. Newly added element is represented as dot lines. All nodes

that need to be reindexed are marked with a cross.

Chapter 2 – XML Background

30

Figure 2.8. Updating problem

The above problem occurs quite often because data usually need to be

updated. A query optimiser may use various techniques such as indexing,

numbering or labelling schemes to improve query processing. However, if

these techniques are not designed with the advantage of being capable of

dynamically updating XML data in mind, when XML data need to be

updated frequently, reindexing or relabelling will probably have to be done.

This is a challenge for researchers who want to solve this problem.

2.3 An Overview of XPath

XML has emerged as a universal format for data representation and

exchanging information on the web. Naturally, XML requires a query

Chapter 2 – XML Background

31

language so that users can extract, convert and maintain XML data.

A few years ago, the World Wide Web Consortium developed a query

language for XML documents called XPath. XPath is a declarative query

language for XML. It provides a simple syntax for addressing parts of an

XML document. XPath provides a decent selection capability.

XPath is a set of syntax rules used to define parts of an XML document. It

helps to address and/or to navigate to those parts. XPath is a W3C Standard.

Current version is 2.0. XPath uses path expressions to identify nodes in an

XML document. These path expressions look like traditional file paths in a

computer file system. An absolute location path starts with a forward slash

(/). It denotes the document element (root node). A relative path does not

start with any slash. In both cases, the location path consists of one or more

location steps. Each location step is separated by a slash.

The XPath expression below is an absolute path. It will select all the Student

elements of the Student_List element.

/Student_List

Chapter 2 – XML Background

32

An example of a relative path is given below. It will return all students

contact number.

Student/Contact_No

As XML content is stored in a hierarchy structure, XPath is employed to

locate various parts of this hierarchy when needed. The way in which XPath

operates requires users to specify a context node, e.g., Student node in the

example above. From the context node, it proceeds in one of several

directions in the hierarchy. These directions are called axes. It gets to desired

node through a number of location steps.

The XPath expression below selects all the Name elements of all the Student

elements of the Student_List element:

/Student_List/Student/Name

XPath defines a library of standard functions for working with strings,

numbers and Boolean expressions. The XPath expression below selects all

the Student elements that enrolled in the Year 2008:

/Student_List/Student[Year=“2008”]

Chapter 2 – XML Background

33

A path beginning with two slashes (//) means all elements in the document

that meet a specified criteria will be selected even if they are at different

levels in the XML tree. Consider the following XPath expression:

//Student

This will select all Student elements in the document.

Wildcard (*) can be used to select unspecified XML elements. For example,

the following XPath expression selects all the child elements of all the

Student elements of the Student_List element:

/Student_List/Student/*

However, XPath only supports Boolean, String, and Numeric data types and

does not work effectively with case-insensitive strings or regular

expressions. One cannot select part of a node or combine different results to

produce new nodes. Finally, XPath does not provide the ability to build new

data. –[Esposito et al. 2001].

Chapter 2 – XML Background

34

To overcome these limitations, the World Wide Web Consortium then

proposed a more refined version of XPath, which is called XQuery. XQuery

is built on XPath expressions. XQuery improves on XPath's selection

capabilities by adding support for more data types and by adding the ability

to consider externally linked documents as a sub-tree of the existing

document. –[Esposito et al. 2001].

2.4 An Overview of XQuery

XQuery is a query language developed by World Wide Web Consortium

group for querying XML data. The current version of XQuery is 1.0. XQuery

is built on XPath expressions. XQuery 1.0 and XPath 2.0 share much of the

same expression syntax, the same data model and the same functions.

Originally, XQuery is derived from an XML query language called Quilt. As

its name suggests, Quilt borrowed features from several other languages,

including XPath 1.0, XQL, XML-QL, SQL, and OQL. –[Boag, Chamberlin,

Fernández, Florescu, Robie and Siméon (2004)]. XQuery attempts to utilise

strength from several query languages and to take full advantage of their

versatility. –[Robie, Chamberlin and Florescu (2000)].

In general, XML Query Language's ability is superior to XPath. XQuery

improves on XPath's selection capabilities by adding support for more data.

XQuery also provides a set of predefined namespace prefixes that can be

Chapter 2 – XML Background

35

used in any query without an explicit declaration. For example, there is

distinct syntax for XML Query, the syntax FLOWR:

• This name comes from the five principal instructions that are used:

FOR, LET, ORDER-BY, WHERE and RETURN.

XML Query is intended to make such a query easier to work with, and to

produce simple node-set, text, and data results on the spot.

Let us introduce some examples of XQuery to illustrate how it works. The

following examples will use XML data shown in Figure 2.1. This XML data

will be saved with the name: “StudentList.xml”.

• Example 1: XQuery uses XPath node paths to extract data from XML

documents.

The following query:

doc("StudentList.xml")/Student_List/Student/Name

Will return all student names:

<Name>Jennifer Fall</Name>

Chapter 2 – XML Background

36

<Name>Matt Yang</Name>

In the example above, the function doc ("StudentList.xml") is used to open

the XML document. The XPath node path

/Student_List/Student/Name is used to extract all the Name elements.

(/Name selects the Name element, /Student selects all the Student

elements under the Student_List).

Recall on XPath, the above location path

(/Student_List/Student/Name) can be rewritten as //Name to select

all student names.

Next, we will use FLOWR syntax to query XML data.

• Example 2: We want to select all students enrolled in 2008, display

their names and course titles.

The query for this example will be:

FOR $stud IN doc(StudentList.xml)//Student,

 $course IN $stud/Course

WHERE $stud/Year = “2008”

Chapter 2 – XML Background

37

RETURN

 <Student>

<Name>{$stud/Name}</Name>

<Course_Title>{$course/Course_Title}</Course_Title>

 </Student>

In the above example, the FOR clause generates a list of bindings in which

$stud is bound to individual Student elements in the document found at the

given URL; $course is bound to individual Course elements that are

descendants of $stud. The WHERE clause retains only those records in

which Year = “2008”, and the RETURN clause generates the result of the

query operation and returns a set of XML nodes. The following is the result

of this query:

<Student>

 <Name>Jennifer Fall</Name>

 <Course_Title>Bachelor of Science</Course_Title>

</Student>

<Student>

 <Name>Matt Yang</Name>

 <Course_Title>Bachelor of Science</Course_Title>

</Student>

Chapter 2 – XML Background

38

• Example 3: We want to select all student names that have student ID

greater than 1000000. Names will be ordered ascendingly.

FOR $stud IN doc(StudentList.xml)//Student

WHERE $stud/Stud_Id > 1000000

ORDER BY $stud/Name

RETURN $stud/Name

The above query will return the following nodes:

<Name>Jennifer Fall</Name>

<Name>Matt Yang</Name>

In the example above, the FOR clause selects all Student nodes into a

variable called $stud. The WHERE clause selects only the $stud nodes

(Student nodes) with Stud_Id elements have value greater than 1000000.

The ORDER BY clause orders the $stud nodes (Student nodes) by Name

elements (Name nodes). The RETURN clause returns the Name nodes.

In general, XQuery attempts to utilise strength from several query languages

and take full advantage of their versatility. XPath and XQuery are both

Chapter 2 – XML Background

39

strongly typed as declarative queries. They use path expressions to traverse

XML data irregularly.

Chapter 3 – Related Works

40

333
XML Labelling and Access Control

In this chapter, we shall discuss about some existing approaches that have

recently been developed in XML Access Control and XML Labelling Scheme.

Techniques such as Node Filtering, Query rewriting for XML access controls,

to path indexing, numbering/labelling schemes to facilitate query

processing, etc. We shall examine how they work and identify existing

problems. Section 3.1 discusses about related works in XML access control.

Section 3.2 will discuss about related works in XML labelling scheme.

3.1 Existing Approaches in XML Access Control

A number of different approaches have been proposed to secure XML

information in a Web system [Damiani, Fansi, Gabillon and Marrara (2007,

2008), Mohan, Sengupta, Wu and Klinginsmith (2005), Wang and Osborn

(2004), Lee, Lee and Liu (2003), Damiani, De Capitani di Vimercati,

Paraboschi and Samarati (2002), Kudo and Hada (2000), etc]. For instance,

Damiani, De Capitani di Vimercati, Paraboschi and Samarati (2000)

proposed an access control model based on structure and content of XML

Chapter 3 – Related Works

41

documents. Authorizations can be specified on a single XML document or

on the DTD. Signs of authorization can be either positive (+) for permission

or negative (-) for denial.

The limitation of this model is that it does not provide access control modes

specific to XML documents, but only provides the read access mode. This

work was then extended by Damiani et al. 2002 by enriching the

authorization types supported by the model, providing a complete

description of the specification and enforcement mechanism. Presented in a

five-tuple of the form: {subject, object, action, sign, type}, where:

• subject: is the subject to whom the authorization is granted.

• object: is either a URI in Obj or is of the form URI:PE, where PE is a

path expression on the tree of document URI.

• action = read is the action being authorized or forbidden.

• sign {+, -} is the sign of the authorization, which can be positive

(allow access) or negative (forbid access).

• type {LDH, RDH, L, R, LD, RD, LS, RS} is the type of the

authorization (Local DTD Hard, Recursive DTD Hard, Local,

Recursive, Local DTD, Recursive DTD, Local Soft, and Recursive Soft,

respectively).

Chapter 3 – Related Works

42

Table 3.1 Example of Damiani et al. 2002 Access authorizations.

Subject

user/group,IP,domain

Object (path expression) Action Sign Type

Public, * ,* /department/@name Read + L

Public, * ,* /department/division Read + L

Administrative, *,

*.hospital.com

/department//name

Read + LDH

Administrative, *,

*.hospital.com

/department//address Read + RDH

Administrative,

159.101.80.5, *

/department/medical

staff//salary

Read + LDH

Administrative,

159.101.80.5, *

/department/patient//cost Read + LDH

Public, *, * /department/medical_staff/

/salary

Read - LDH

Public, *, * /department/patient//cost Read - LDH

Public, *, * /department[./@name="medi

cine"]/medical_staff

Read + R

Public, *, * /department[./@name="medi

cine"]/medical_staff//addres

s

Read - R

Chapter 3 – Related Works

43

Public, *, * /department[./@name="medi

cine"]/medical_staff//salary

Read - L

PhyC, *, * /department[./@name="medi

cine" and

./division="cardiology"]/pati

ent

Read + R

Public, *, * /department[./@name="medi

cine" and

./division="cardiology"]/pati

ent

Read - R

MedicalStaff, *, * /department[./@name="medi

cine"]/research

Read + R

Public, *, * /department[./@name="medi

cine"]/research

Read - R

PhyC, 159.*, * /department/research/projec

t[./@type="private"]

Read + R

*, *, * /department/research/projec

t[./@type="private"]

Read - R

NurseC, *, * /department/patient//illnes

s

Read + LS

NurseC, *, * /department/patient//name Read + L

Chapter 3 – Related Works

44

NurseC, *, * /department/patient//drug Read + R

NurseC, *, * /department/patient/room Read + R

Soft authorizations are authorizations that apply to the document unless

otherwise stated at the DTD level (intuitively, a department can state that its

documents can/cannot be accessed unless the organization states

otherwise). Hard authorizations allow an organization to specify

authorizations that must be enforced in all instances of a DTD, no

exceptions. A similar framework was implemented in the Author-X project

[Bertino, Castano and Ferrari (2001)].

Figure 3.1 – Execution steps of the Compute-view algorithm.- Damiani et al. 2002.

Then work from Damiani et al. 2000 and Damiani et al. 2002 were further

developed by De Capitani di Vimercati, Marrara and Samarati (2005) to

Initial Label Set Label

Get Final Label Prune

User

requests

XML

User’s view

<+,є, +,є,-,+,->

<+,+,-, є,-,+,+,-,->

<-,+ ,є,-,+,-,->

+

- +

+

+

Chapter 3 – Related Works

45

define access control rules at the schema level. This model requires query-

rewriting technique and view computation for each user/query. This

computation process consists of four steps: initial labelling, conflict

resolution, propagation, and pruning.

Fan, Chan and Garofalakis (2004) enforced access control polices based on

the notion of security views. Access specifications are enforced during the

process of deriving the security view, which is based on the user view DTD

and a function defined via XPath queries. To avoid the overheads of view

materialization, they also employ query-rewriting technique and query

optimization, which transform a query over a security view to an equivalent

query over the original document, and prune query nodes by using the

structural properties of the DTD in conjunction with approximate XPath

containment tests.

Mohan, Sengupta, Wu and Klinginsmith (2005) introduce a Security

Specification Language for XML (SSX) in the form of a set of primitives. Each

primitive takes an XML schema tree as input, and outputs an XML schema

tree.

Together with a set of rules to rewrite user queries to enforce security

constraints, SSX is used to produce a security view schema for each user.

Chapter 3 – Related Works

46

The annotation algorithm takes a schema and a SSX sequence as input

(dealing with one operator at a time), and creates a Security Annotated

Schema which can be used for rewriting user queries.

Figure 3.2: The Infrastructure of the Query Rewriting System. –Mohan et al. 2005.

The main drawback of this work is in the SSX, because using primitives such

as copy or delete are inefficient for a large-scale access control policy

specification. As shown in its experiments, on average, the approach has a

similar performance comparing to materialized views.

Security View
Construction

Schema
Derivation

Query Rewrite

Original
Schema

Security
Annotated
Schema (SAS)

Rewrite Query
(XQuery)

Security View
Specification

User Query
(XPath)

Security View
Schema

Chapter 3 – Related Works

47

Lee, Lee and Liu (2003) proposed a model for securing XML documents by

enforcing XML data into an underlying relational database. This requires

XML data slices into the relational table. As stated by Fundulaki and Marx

(2004), since relational data greatly differs from XML data, access control for

XML also differs from existing approaches in relational databases, which

only support table or column level access controls. One cannot control an

access to a row or cell in relational database.

<AllDepts>
 <Dept dname=�CS�>

 <Manager e id=�m10�>
<Name>Tom</Name>
<Addr>110 Foster Ave.</Addr>
<Salary>70K</Salary>

</Manager>
<Staff e id=�e10�>

<Name>Jane</Name>
<Addr>]54 Union St .</Addr>
<Salary>45K</Salary>

</Staff>
<Proj pname=�XML��>

<Year>2003</Year>
<Budget>100K</Budget>

</Proj>
<Proj pname=�Stream�>

<Year>2002</Year>
<Budget>300K</Budget>

</Proj>
 </Dept> . . .
</AllDepts>

Figure 3.3 Lee et al. 2003 AC model

Yokoyama, Ohta, Katayama and Ishikawa (2005) proposed a wrapper

program for the XML repository system, namely, SAXOPHONE, which used

a prefixed labelling scheme to identify user accounts. (See Figure 3.4). With

Chapter 3 – Related Works

48

only two access policies: Denial (access is prohibited) and Annotation

(descendant and user local annotation) and five Events: Start element,

Attribute, Text, End element, and NULL event.

Figure 3.4 Yokoyama et al. 2005 uses prefix-labelling to identify account user

<Kiosk>

 <Cigarettes>

 <Name>Peter Jackson</Name>

 <Cost>7.40</Cost>

 <Price>14.95</Price>

 </Cigarettes>

 <Drink>

 <Name>Orange juice</Name>

 <Cost>0.80</Cost>

 <Price>2.20</Price>

 </Drink>

 �

</Kiosk>

Figure 3.5 Yokoyama et al. 2005 Access rules

Chapter 3 – Related Works

49

This system uses relational databases for XML document storage. Since

authorization is managed by the relational database management system,

XML data has to be translated and stored in relational tables. Similarly, XML

queries have to be translated into SQL statements.

Nevertheless, relational data greatly differ from XML data; access control for

XML also differs from existing approaches in relational databases for a

number of reasons [Fundulaki and Marx, 2004]:

• The hierarchical nature of XML.

• The semi-structured nature of XML documents - In relational

tables, the structure is known ahead of time.

• The dependence of a node to its ancestors - Relational tables exist

as stand-alone entities, where an XML node stay alive with respect

to its ancestors and its children are dependent on the node itself.

Yu, Srivastava, Lakshmanan and Jagadish (2002) proposed an access control

model that employs compressed accessibility map (CAM). Data items that

have the same accessibility are grouped on a per-user basis in a CAM. A

benefit of this is, given a user and a concerned XML data item, this model

can quickly determine if the user has the right to access that data item.

Chapter 3 – Related Works

50

However, there are a few drawbacks. It restricts to a single user and an

access type at a time; it requires more storage spaces due to the fact that

separate compressed accessibility map is needed for each user and access

type; and it only supports read action.

For write privilege, Gabillon (2004) proposed an approach based on

Xupdate, a non-standard XML update language developed by Laux and

Martin (2000). A new position privilege is used to acknowledge the existence

of a node regardless of its content. Nodes tagged with a position privilege

are shown with a restricted label.

Bertino and Ferrari (2002) and Bertino, Castano, Ferrari and Mesiti (2000)

supports browsing (read) and authoring (write) privileges. Authorizations

can be specified at the DTD - level or at the instance - level. Propagation

options are specified along with authorizations and may propagate to all the

indirect and/or direct sub-elements or not propagate at all. In Bertino and

Ferrari (2002), their model supports information push, which is used for

massive distribution of data to subscribers. It is also capable of describing

various protection granularity levels, content-based access control and

conflict resolution issues. A rule is declared in a tuple of the form: (subject,

object, privilege and propagation).

Chapter 3 – Related Works

51

Another model considering write privilege was proposed by Kudo and

Hada (2000). This model allows provisional authorization, which indicates

an action that a user has to perform before obtaining a given privilege. This

model supports several access modes: read, write, create, delete. Three types

of propagation policy are employed, no propagation, propagation up and

propagation down. Propagation up refers to an access authorization of an

element is propagated to all its parent elements. Similarly, propagation

down refers to an authorization is propagated to all its sub elements.

<?xml version="1.0"?>

 <schema

xmlns="http://www.w3.org//2001/XMLSche

ma">

 <element name="showroom">

 <complexType>

 <sequence>

 <element name="vehicles"

maxOccurs="unbounded" minOccurs="1" >

 <complexType>

 <sequence>

 <element name="available"

maxOccurs="unbounded" >

 <complexType>

 <sequence>

 <element name="model"

type="string"/>

 <element name="color"

type="string"/>

 <element name="price"

type="string"/>

 <element name="accessory"

maxOccurs="unbounded">

 <complexType>

 <sequence>

 <element name="description"

type="string"/>

 <element name="price"

type="string"/>

 </sequence>

 </complexType>

 </element>

 </sequence>

 </complexType>

 </element>

<element name="sold"

maxOccurs="unbounded" >

<?xml version="1.0"?>

<schema

xmlns="http://www.w3.org//2001/XMLSche

ma">

 <element name="showroom"

access="allow" dirty="true">

 <complexType>

 <sequence>

 <element name="vehicles"

maxOccurs="unbounded" minOccurs="1"

access="allow" dirty="true" >

 <complexType>

 <sequence>

 <element name="available"

maxOccurs="unbounded"

access="allow" dirty="true"

condition="C">

 <complexType>

 <sequence>

 <element name="model"

type="string" access="allow"/>

 <element name="color"

type="string" access="allow"/>

 <element name="price"

type="string" access="allow"/>

 <element name="accessory"

maxOccurs="unbounded"

access="allow" condition="C1">

 <complexType>

 <sequence>

 <element name="description"

type="string" access="allow"/>

 <element name="price"

type="string" access="allow"/>

 </sequence>

 </complexType>

 </element>

Chapter 3 – Related Works

52

 <complexType>

 <sequence>

 <element name="model"

type="string"/>

 <element name="color"

type="string"/>

 <element name="price"

type="string"/>

 <element name="buyer"

maxOccurs="unbounded">

 <complexType>

 <sequence>

 <element name="name"

type="string"/>

 <element name="address"

type="string"/>

 <element name="city"

type="string"/>

 </sequence>

...

 </sequence>

 <attribute name="city" type="string"

use="required"/>

 </complexType>

 </element>

</schema>

(a)

 </sequence>

 </complexType>

 </element>

 <element name="sold"

maxOccurs="unbounded" access="deny">

 <complexType>

 <sequence>

 <element name="model"

type="string"/>

 <element name="color"

type="string"/>

 <element name="price"

type="string"/>

 <element name="buyer"

maxOccurs="unbounded">

 <complexType>

 <sequence>

 <element name="name"

type="string"/>

 <element name="address"

type="string"/>

 <element name="city"

type="string"/>

 </sequence>

...

 </sequence>

 <attribute name="city"

type="string" use="required"/>

 </complexType>

 </element>

</schema>

(b)

Figure 3.6. Example of a Schema (a) and the corresponding annotated Schema (b).

- Damaiani et al. 2007, 2008.

Damiani, Fansi, Gabillon and Marrara (2007, 2008) proposed an access

control model for querying and updating XML data. The presenting access

control model is an extended and combined version of previous works. The

purpose of this combination is to unite two common techniques in XML

security, which are node filtering and query rewriting techniques. It then

Chapter 3 – Related Works

53

adds a query-rewriting rule based on Finite State Automata and uses XPath -

-, a subset of the XPath to rewrite unsafe queries into safe ones.

In general, the rewriting procedure consists of the following three steps:

• The annotated XML schema is transformed according to the policy that

applies to each role. According to the user’s role, the user is provided

with the view of the schema (in short Sv) that s/he is entitled to see.

Then, s/he can write his/her query using information available on Sv.

Henceforth, unless stated otherwise, the term ‘view’ will refer to the

view of the schema and not to the view of a source document.

• The annotated schema is translated into an automaton which represents

the structure of Sv. Each state within Sv contains some security

attributes that will further serve us while rewriting the user request.

• The user query is rewritten using the finite state automaton.

For query rewriting technique, to make it simple, let us consider this

example. A user, Carolyn makes a query such as:

//vehicles/*

Chapter 3 – Related Works

54

Her request is to view all vehicle details, such as model, colour, price,

description, etc. This is considered an unsafe query, because she does not

have permission to view all vehicle details. Information about cars that has

been sold and all related information about the car owners are private. Thus,

they are not available for public viewing. Hence, her query will be rewritten

as:

/showroom/vehicles

except (/showroom/vehicles/sold

Union /showroom/vehicles/

available[not(C)] Union /showroom/vehicles/available[C]/

accessory [not(C1)])

Figure 3.7(a). Example of labelling based on Access Authorization for Public

view. (‘+’ for permission, ‘-‘for denial)

Chapter 3 – Related Works

55

Nevertheless, coming to that safe query involves many stages of evaluations,

rules and analysis steps. It needs to be checked against Access Authorization

or Annotated Schema (see the one in Figure 3.6(b)). Furthermore, these steps

need to be repeated for every query that a user requests.

In general, existing approaches either use node filtering and/or query

rewriting. In node filtering, access authorizations are determined by

labelling tree nodes with a permission (+), or a denial (-) then pruning trees

are based on associated signs. Examples of node labelling and pruning can

be found at Figure 3.7 (a) and 3.7(b). The drawbacks of the node filtering

technique are that it requires repetitive node labelling, then pruning

processes to determine a user view.

Figure 3.7(b). After pruning process, only node labelled with ‘+’ is shown.

Chapter 3 – Related Works

56

Similarly, in query rewriting technique, every time a user sending a query, it

needs to rewrite unsafe queries into safe ones to ensure it returns only

accessible elements. This degrades the query performance because costly

run-time security checking is still required for unsafe queries. Besides, rules

of existing proposals are not well defined for cases in which all users are

allowed to access specific fields of their own information but not those of

others. Likewise, rules of existing proposals for write privileges are not well

defined and do not consider cases of violating DTD and changing XML

structure when updating operations occur.

3.2 Existing Approaches in Labelling Scheme

The traditional and most beneficial technique for increasing query

performance is the creation of an effective indexing. A well - constructed

index will allow a query to bypass the need of scanning the entire table for

results. (Kaelin, 2004). To make this possible, a unique label is assigned for

each node in the XML trees in such a way that can clearly show relationship

between any two given nodes (such as ancestor – descendant relationship or

sibling relationship). Once this is done, structural queries can be answered

by only using the index. There is no need to access the actual documents.

(Lu and Ling, 2004).

Chapter 3 – Related Works

57

In term of facilitating query processing for XML data, there have been

several proposed approaches such as path indexing, tree labelling and

numbering schemes. For example, the works by Amato, Debole, Rabitti and

Zezula (2003), Grust (2002), Cooper, Sample, Franklin, Hjaltason, and

Shadmon (2001), Meuss and Strohmaier (1999) used path indexing for

quicker searching XML data.

Moreover, the works by Li, Ling and Hu (2006), Li and Ling (2005), Yu, Luo,

Meng and Lu (2005) and Cohen, Kaplan and Milo (2002) used prefix-based

labelling schemes. On the other hand, the works by Tatarinov, Viglas, Beyer,

Shanmugasundaram, Shekita and Zhang (2002) used Dewey prefix-based

numbering scheme. In addition to that, the works by Li and Moon (2001),

Yoshikawa and Amagasa (2001) used region-based numbering scheme.

In this section, we shall discuss each of these techniques in more details.

Firstly, in section 3.2.1, we will use a different example to illustrate Path

Indexing technique. Next, in section 3.2.2, we shall discuss about Prefix-Based

labelling scheme. Then in section 3.2.3, we shall give an overview of Region-

Based labelling scheme. Finally, details of complete k-ary tree-based numbering

scheme shall be discussed in section 3.2.4.

3.2.1 Path indexing

Chapter 3 – Related Works

58

In chapter 2.1, we discussed indexing technique by Amato, Debole, Rabitti

and Zezula (2003). Now, we shall examine Grust (2002)’s indexing method.

< a >

< b >

< c >

< d > < / d >

< e > < / e >

< / c >

< / b >

< f >

< g > < / g >

< h >

< i > < / i >

< j > < / j >

< / h >

< / f >

< / a >

Figure 3.8(a). Data tree based on (b).-XML data

Suppose we have an XML data like the one shown in Figure 3.8(b) and its

data tree is represented in Figure 3.8(a). The inner nodes: a, b, c, f, g,

h represent XML element nodes. The leaf nodes: d, e, g, i and j

represent either element nodes or attribute nodes.

The idea of Grust (2002)’s work is to find an index structure which

guarantees that, for any given context node, one can “determine the set of

nodes in the four document partitions specified by the major axes. The

further XPath axes (parent, child, descendant-or-self, ancestor-or-self,

Chapter 3 – Related Works

59

following-sibling, and preceding-sibling) determine specific supersets or

subsets of these node sets, which are easy to characterize.” –[Grust (2002)].

Figure 3.9. Data tree Labelled by <pre-order, post-order> traversal. - Grust 2002.

The concept of this work is to use pre-order traversal and post-order

traversal of the data tree (For more information on tree terminology and

different orders of tree traversal, please refer to Chapter 2.2) to label nodes.

It is developed because XML data orders its nodes corresponding to the

order in which a sequential read of the textual XML would encounter the

nodes. –[Grust (2002)]. This order is determined by a pre-order traversal of

the data tree. In a pre-order traversal, a tree node v is visited and assigned its

pre-order rank, pre(v) before its children being recursively traversed from

Chapter 3 – Related Works

60

left to right. For the example shown in Figure 3.8(a), the document order is

as follows:

a < b < c < d < e < f < g < h < i < j

Therefore:

pre(a) = 0, pre(b) = 1 , pre(j) = 9

In pre-order traversal, 0 – 9 are the codes that are used to label ten elements

appeared in Figure 3.8(b).

A post-order traversal is the dual of pre-order traversal, a node v is assigned

its post-order rank, post(v) after all its children have been traversed from

left to right. Again, with the above example, it gets:

post(d) = 0, post(e) = 1 post(a) = 9

Based on the above concept, a theory emerges that:

v' is a descendant of v

Chapter 3 – Related Works

61

If pre(v) < pre(v') ^ post(v') < post(v)

This may be explained as follows: During a sequential read of the XML

data, we first see the opening tag <v> before <v'> and the closing tag

</v'> before </v>. In other words, the element corresponding to v' is

contained in the element corresponding to v.

In general, based on pre-order: pre(v) and post-order traversals: post(v)

of the data tree, all four major axes relationships between nodes can be

determined.

Remark on re-indexing costs:

Indexing based on the traversal order [Grust, (2002)] of the data tree or

techniques such as the work of Amato, Debole, Rabitti and Zezula, (2003)

still require re-indexing when the XML data is updated. It is because they

assign the code for each node in the order where the XML data is entered,

(post-order is reversed). Thus, once the XML data is changed, all the codes of

related nodes also need to be changed.

An example of this problem is illustrated in Figures 3.10 (a) and 3.10(b).

Figure 3.10(a) is an updated XML data. Updated fields are shaded. Figure

3.10(b) shows updating problems where dot lines are.

Chapter 3 – Related Works

62

<employee>

 <person>

 <name>Lisa McCathy</name>

 <phone>98765432</phone>

 </person>

 <person>

 <name>Michael Kain</name>

 <address>12 Moon Street</address>

 <phone>98765332</phone>

 </person>

 <person>

 <name>Jennifer Fall</name>

 <phone>93729898</phone>

 </person>

</employee>

Figure 3.10(a). Updated XML data

Chapter 3 – Related Works

63

Figure 3.10(b). Example of updating problem. –Labelling Scheme by Grust, 2002.

3.2.2 Prefix-Based Labelling

Prefix-based labelling schemes differ from other schemes as it gives the label

of the parent node to the child nodes thus we called it prefixed label. To

make it simple, the string before the delimiter, usually is a dot “.” or a

commas “,” is called a prefix-label, the string after the delimiter is called a

self - label.

Li, Ling and Hu (2006) and Li and Ling (2005) proposed prefix labelling

schemes, which uses binary string to label nodes. In general, it works as

follows.

The root node is labelled with an empty string. The self-label of the first (left)

Chapter 3 – Related Works

64

child node is “01”. The self-label of the last (right) child node is “011”. The

purpose of choosing to use “01” and “011” as the first and last sibling self-

labels is because they want to insert nodes before the first sibling and after

the last sibling. Moreover, in the expectation of dynamically supporting

XML update without re-labelling any existing nodes. Nevertheless, there is a

conflict in labelling nodes here. Let’s look at its labelling rule first.

Once they have assigned the left and right self-labels, they label the middle

self - label using these two rules:

Case (a): IF left self-label size ≤ right self-label size.

When adding the middle self – label, they change the last character of

the right self - label to “0” and concatenate one more “1”.

Case (b): IF left self-label size > right self-label size.

They directly concatenate one more “1” after the left self label.

Thus, they label the middle child node, which is the third child, i.e. [(1 +

5) / 2] = 3. The size of the 1st (left) self-label (“01”) is 2 and the size

of the 5th (right) self label (“011”) is 3 which satisfies Case (a), thus the self

label of the third child node is “0101”. (“011” � “010” � “0101”).

Chapter 3 – Related Works

65

Next, they label the two middle child nodes between “01” and “0101”, and

between “0101” and “011”. For the middle node between “01” (left self-

label) and “0101” (right self-label), i.e. the second child node [(1 + 3)

/ 2] = 2, the left self-label size 2 is smaller than the right self label size 4

which satisfies Case (a), thus the self label of the second child is “01001”.

(“0101” � “0100” � “01001”).

Figure 3.11 ImprovedBinary Scheme

For the middle node between “0101” (left self-label) and “011” (right self-

label), i.e. the fourth child [(3 + 5) / 2] = 4, the left self-label size 4

is larger than the right self-label size 3 which satisfies Case (b), thus the self

label of the fourth child is “01011”. (“0101” + “1” � “01011”).

This prefix labelling scheme uses following theorems:

Chapter 3 – Related Works

66

• The sibling self-labels of ImprovedBinary are lexically ordered.

• The labels (prefix-label + delimiter + self-label) of ImprovedBinary are

lexically ordered when comparing the labels component by component.

For example, self-labels of the five child nodes of the root in Figure 3.11 are

lexically ordered, i.e. “01” < “01001” < “0101” < “01011” <

“011” lexically. Similarly, “0101.011” < “011.01” lexically.

Let us try to add some more nodes to the existing nodes, say we want to add

a child node to the node “01”, as it is the first (left) child node, the code for

the new node is “01.01”. It looks fine. Then if we add further child node to

this node, the code of the new node will be “0101.01”. This causes a

conflict with the existing node.

O’Neil, O'Neil, Pal, Cseri, Schaller and Westbury (2004) uses Dewey-like

numbering scheme (ORDPaths) to label each nodes. The difference is that it

starts with the odd numbers for initial load. Such as 1.1, 1.3, 1.5,

1.3.1, 1.3.3 etc. When new nodes are inserted, it uses even "careting-in"

between sibling nodes without re-labelling. However, when comparing sizes

of labels with our Com-D labelling scheme, result of ours is much smaller

and more compact than theirs.

Chapter 3 – Related Works

67

Cohen, Kaplan and Milo (2002) proposed two prefix-based labelling schemes

to assign a specific code to each child of a node v. The first approach is one-

bit growth. For instance, the first child’s code of the root is “0” which is

labelled as L(v).0. The second child’s code of root is “10” which is

L(v).10. The third child’s code is “110” which is L(v).110. Hence, the ith

child’s code is repeated with “1” for each child’s code that ends with “1”,

together with a “0” attached at the end.

The second approach is double-bit growth. Given that ui‘s code is

L(v).L’(ui) where L(v) is its direct parent code. It assigns its children as

L’(u1) = 0, L’(u2) = 10, L’(u3) = 1100, L’(u4) = 1101,

L’(u5) = 1110, L’(u6) = 11110000, etc. In general, it increases the

binary code represented by L’(ui) by 1, that means to assign L’(ui + 1).

However, if the representation of L’(ui) + 1 consists of all ones, it

doubles its length by adding a sequence of zeros.

Similar technique is used by Tatarinov, Viglas, Beyer, Shanmugasundaram,

Shekita and Zhang (2002). It uses Dewey prefix-based numbering scheme,

which is presented as follows:

Given n children of a node ν, coded as L(ν), u1, u2,

u3, ... un . The code of ui is L(ui) = L(v).i.

Chapter 3 – Related Works

68

An example of this technique is given in Figure 3.12(a).

Figure 3.12(a). Dewey Prefix-Based by Tatarinov et al. 2002.

Figure 3.12(b) shown below is the XML document of the mentioned example

above. It also contains updated elements, which are shaded. If we use Dewey

prefix-based numbering scheme by Tatarinov, Viglas, Beyer,

Shanmugasundaram, Shekita and Zhang (2002) to label this XML data, we

will have problems with updating represented by dot lines shown in Figure

3.12(c).

<catalog>

 <cd>

 <isbn>43222111</isbn>

 <title>Empire Burlesque</title>

 <artist>Bob Dylan</artist>

Chapter 3 – Related Works

69

 <price>10.90</price>

 </cd>

 <cd>

 <title>Hide your heart</title>

 </cd>

 <cd>

 <title>Something here</title>

 </cd>

</catalog>

Figure 3.12(b). A running example of XML data. Updated fields are shaded.

Figure 3.12(c). Dewey Prefix-Based Updating Problem

Chapter 3 – Related Works

70

It came to our knowledge that the work by Yu, Luo, Meng and Lu (2005)

dynamically supports updating XML data. It proposes a prefix-based PBi Tree

scheme, which uses preserved codes between every two-child nodes to

reduce the possibility of renumbering all siblings and their descendants

when updating is needed. This technique works as follows:

Suppose a node v has n child nodes, u1, u2, u3 ... un. A unique

child code is assigned to ui using m-bits such that 2
m-1 < n <= 2m,

indicated L’(ui). Let the parent node v’s code be L(v), then the code

of ui is L(ui) = L(v).L’(ui) where “.” is concatenation operator.

An example of this technique is given in Figure 3.13(a).

Figure 3.13(a). P-PBiTree by Yu, Luo, Meng and Lu 2005

Chapter 3 – Related Works

71

Although this approach supports updating XML data, this technique is not

flexible because codes must be reserved before hand. Moreover, when all

reserved codes are used up, renumbering has to be done again. See Figure

3.13(b).

Figure 3.13(b). P-PBiTree Updating Problem

Remark on re-labelling costs:

In prefix based numbering scheme, due to the ways it assigns bits as a prefix

to a node, sometimes renumbering is still required. For instance, when a new

node v is added as the ith position, the code for those nodes originally at vi

and vi+1, vi+2 … vn need to be reallocated by one position. Therefore, all

nodes in the sub trees rooted at vi, vi+1, vi+2 …vn need to be

renumbered.

Chapter 3 – Related Works

72

3.2.3 Region-Based Numbering

In Li and Moon (2001)’s work, the authors discovered the benefit from

Dietz’s numbering scheme in which the ancestor-descendant relationship

between any pair of tree nodes can be determined by examining the pre-

order and post-order numbers of tree nodes. However, the authors realised

the limitation of this inflexibility approach which is “the pre-order and post-

order may need to be recomputed for many tree nodes, when a new node is

inserted”.

To get around this problem, they proposed a new numbering scheme that

still uses pre-order and a range of descendants to reserve additional number

space for future insertions. The proposed numbering scheme associates each

node with a pair of numbers <order, size> that can be described as

follows:

• Given that a tree node y and its parent x, then order(x) <

order(y) and order(y) + size(y) <= order(x) +

size(x). In other words, interval [order(y), order(y) +

size(y)] is contained in interval [order(x), order(x) +

size(x)].

Chapter 3 – Related Works

73

• For two sibling nodes x and y, if x is the predecessor of y in pre-order

traversal, then order(x) + size(x) < order(y).

Figure 3.14. Dietz’s Numbering Scheme using Pre-order and Post-order

The way in which it reserves space for future inserted elements can be

described as follows:

For a tree node x, size(x) ≥ ∑y size(y) for all y’s

that are a direct child of x.

Thus, size(x) can be an arbitrary integer larger than the total number of

the current descendants of x. This would accommodate future insertions.

In Figure 3.15, each node is labelled by a <order, size> pair that defines

an interval. The interval of a node is appropriately contained in the interval

Chapter 3 – Related Works

74

of its parent node. For instance, a node (25, 5) is contained in both (10,

30) and (1, 100). Therefore, the node with order 25 is a descendant of

nodes with order 10 and 1.

Figure 3.15. Numbering Scheme using <order, size> pair by Li and Moon

A similar technique is used by Amagasa, Yoshikawa and Uemura (2003), in

which nodes are labelled with <start> and <end> of the interval by using

floating point values. When a new node is inserted, this technique may not

need to re-label existing nodes due to the available values between two

floating point numbers. However, there is finite number of values between

any two floating point numbers. When all the available values are used up,

re-labelling has to be done. Thus, this technique can not quite solve the

problem.

Wu, Lee and Hsu (2004) use Prime numbers to label XML nodes. The label of

Chapter 3 – Related Works

75

a node is the product of its parent label (a prime number) and its self label

(the next available prime number). Ancestor – descendant relationship

between two nodes is determined if one can exactly divide the other. Such as

node u is ancestor of node v if and only if label(v) mod label(u) = 0.

In order to maintain document order, Prime employs a table of

Simultaneous Congruence (SC) values to keep order for each element. Thus,

the order of a node is calculated by SC mod self-label. For instance, the

document order of the node labelled as '5' is 3, which is calculated by 29243

(a SC value) mod 5.

Prime does not need to re-label any existing nodes when new nodes are

inserted in XML tree. However, it needs to re-calculate the SC value to keep

the new ordering of the nodes. Furthermore, Prime has to skip a lot of

numbers to obtain a prime number, as the result, products of primes can

become quite big. Additionally, re-calculating Simultaneous Congruence

values every time a new node is inserted is quite time consuming.

Remark on re-numbering costs:

Comparing to Dietz’s scheme, Li and Moon (2001) numbering scheme is

more flexible and can somehow deal with the issue of dynamic updating

XML data. This can be possible because extra spaces are reserved before

Chapter 3 – Related Works

76

hand. Nevertheless, when all the reserved spaces are used up, renumbering

affected nodes shall be required. On the other hand, Wu, Lee and Hsu (2004)

needs to re-calculate values of affected nodes when order-sensitive nodes

are updated.

3.2.4 Complete k-ary Tree-Based Numbering

PBiTree is proposed by Wang, Jiang, Lu and Yu (2003). PBiTree is a

numbering scheme called Perfect Binary Tree. As its name suggests, the

perfect binary tree contains internal nodes (non-leaf nodes) and external

nodes (leaf nodes). Each internal node has two children. An external node

has no children and all of external nodes are at the same level. Each node is

encoded with a number (of the in-order of traversal of the tree) which is

called the code of that node. PBiTree is supported by two properties, which

can be summarised as follows:

• For a given node ni of a perfect binary tree, its ancestor nj at a given

height hj can be directly calculated by F(ni, hj) = 2hj+1. |_

ni / 2
hj+1

_| + 2
hj
.

• Given the code of a node n, its height height(n) is the position of

the rightmost ‘1’ bit in its binary representation. The level of a node,

therefore, can be obtained by H - height(n) - 1.

Chapter 3 – Related Works

77

Figure 3.16. An example of PBiTree

Figure 3.16 shows how nodes are coded in PBiTree. The height of the tree, H,

is 4. Height of leaf level nodes is equal to 0. The level of root is 0. For

instance, in Figure 3.15, a node that coded as 10 is at height 1, its level shall

be 4 – 1 – 1 = 2. This result is obtained by using the formula described

in the second properties: (H - height(n) – 1).

Based on the two properties above, the following lemmas are given:

• Given two nodes ni and nj in a PBiTree, ni is an ancestor of nj if and

only if ni = F(nj, height(ni)).

Chapter 3 – Related Works

78

• For any node n in the PBiTree, let l be the level of n and ∂ be the

zero-based position index of element nodes from left to right, i.e. α

ε [0, 2l - 1], then n.Code = Ģ(α, l), where Ģ (α,

l),) = (1 + 2α) * 2H–l-1.

• Given a node n, let H be the height of the PBiTree and h be the height

of n, i.e., h = height(n), (n - (2h - 1), n + (2h -

1)) can serve as the region code of n in the form of (Start, End).

• Given a node n, let H be the height of the PBi-Tree and h be the

height of n, i.e., h = height(n), the binary representation of n

>> h can serve as the prefix code of n (>> is the right shift operator).

However, the tree-structured data shown in Figure 3.16 is usually not

modelled as a perfect binary tree. To make use of the properties of perfect

binary trees, they embed the original data into a corresponding PBiTree.

They call the process of embedding a data tree in a PBiTree as binarization.

The PBiTree code for each data tree node can be obtained during the

binarization process. The relationship between the PBiTree and the original

data tree can be described using an injective function h, such that:

• h(ui) = h(uj) if and only if ui = uj.

Chapter 3 – Related Works

79

• h(ui) is an ancestor of h(uj) in the PBiTree if and only if ui is an

ancestor of uj in the original data tree.

As reviewed and revealed by Yu, Luo, Meng, and Lu (2004), disadvantages

of this work are: PBiTree needs to use virtual nodes which do not exist in

original data tree and need “to binarize XML trees in an extra pre-processing

step”. –[Yu et al (2004)].

Lee, Yoo and Yoon (1996) proposed a k-ary complete tree scheme, which

assigns each element according to the level-order tree traversal to determine

the ancestor-descendant relationship between nodes in the data tree. The

problem of this approach is identified by Li and Moon (2001):

“When the arity and height of the complete tree are getting large, the

identifier may be a huge number. For example, for a 10-ary complete

tree with a height of 10, the total node number will be around 11

billion, which is too large to store in a four-byte word integer. This

makes the approach unrealistic for large XML documents.” –[Li et al

(2001)].

Chapter 3 – Related Works

80

Lu, Ling, Chan and Chen (2006)‘s work is not suitable for the update because

the labels of all nodes and the finite state transducer must be reconstructed

after data insertions. Similar problem exists in Catania, Ooi, Wang and

Wang (2005)’s work, when new insertions occur, the global position and the

length of each segment must be relabelled.

3.3 Summary

In general, those above mentioned path indexing and labelling scheme can

facilitate query processing to a great extent. However, eliminating the

problem of re-computing existing labels when XML data need to be updated

remains a challenge. Furthermore, these schemes do not consider data

confidentiality. Likewise, existing XML access controls have not been

developed to integrate with existing indexing methods to speed up the

search.

In the next chapter, we will present our new labelling schemes that will

support updating for dynamic XML data without the pain of re-labelling,

hence facilitating fast update. It does not matter where new nodes should be

inserted or how many of new nodes are added. It is guaranteed that none of

existing nodes needs to be re-labelled and no re-calculation is required.

Chapter 3 – Related Works

81

Moreover, as proved in our experiments, the total lengths of labels of our

Com-D labelling scheme is space efficient, more compact than other

labelling schemes. In addition, our new labelling schemes can help ones

easily determine the ancestor - descendant relationships and sibling

relationships between nodes. The depth of the tree is also represented in our

labelling scheme.

Chapter 4 – Dynamic Labelling Scheme

82

4
Dynamic Labelling Schemes

In this chapter, we shall discuss about XML labelling schemes and what

makes a labelling a persistent/dynamic labelling scheme. We then introduce

our first labelling scheme, LSDX; how it works and its advantages over other

static labelling schemes. Finally, our experimental works is presented to

show its effectiveness.

4.1 Introduction to Dynamic Labelling

A persistent labelling scheme differs from all other labelling schemes

because it supports updating XML data dynamically without the need of re-

labelling existing nodes. It is also known as dynamic labelling scheme.

We will present two persistent labelling schemes that will efficiently support

updating XML data. It does not matter where new nodes shall be; there is no

need to re-label existing nodes. Our labelling schemes also support the

representation of the ancestor - descendant relationships and sibling

relationships between nodes, such as parent, child, ancestor, descendant,

Chapter 4 – Dynamic Labelling Scheme

83

previous – sibling, following – sibling, previous and following.

In the following subsections, we will introduce the primitive persistent

labelling scheme. The improved one will be presented in the next chapter.

We call the primitive scheme a loose LSDX labelling scheme and the

improved one, a compressed labelling scheme.

4.2 Overview of LSDX Labelling Scheme

Instead of using numbers, letters, or binary string like Li, Ling and Hu

(2006), Li and Ling (2005), Silberstein, He, Yi and Yang (2005), Yu, Luo,

Meng and Lu (2005), O’Neil, O’Neil, Pal, Cseri, Schaller and Westbury

(2004), Yu, Luo, Meng and Lu (2004) or using letters like Wang, Jiang, Lu

and Yu (2003) to label each node, we combine numbers and letters in our

labelling scheme to label XML trees. This combination makes our new

labelling scheme persistent and brings about the following advantages:

a. When XML data is required for updating, there is no need to re-label

affected nodes, hence facilitating fast update.

b. It supports the representation of the ancestor-descendant

relationships and sibling relationships between nodes.

c. In addition, LSDX also indicates the depth of the tree.

Chapter 4 – Dynamic Labelling Scheme

84

d. Its unique way of labelling will be of help for quick insert, delete,

update and capable of easily gaining access to any arbitrary node.

These operations can be implemented using TreeMap in Java which

algorithms are adapted from red-black tree developed by Cormen, Leiserson,

Rivest and Stein (2001). In brief, a red-black tree is a binary search tree which

inserts and removes nodes wisely, ensuring the tree is reasonably balanced.

This shall guarantee that these basic operations (search, insert, delete) take

log(n) time in the worst case, where n is total number of elements in the tree.

Figure 4.1(a) shown below shall give an overview of our LSDX.

Figure 4.1(a). An example of our LSDX

/employee -> 0a

/employee/person -> 1a.b, 1a.c

Chapter 4 – Dynamic Labelling Scheme

85

/employee/name -> 2ab.b, 2ac.b

/employee/phone -> 2ab.c, 2ac.c

Figure 4.1(b). Path lexicon of the above example

4.3 LSDX and Its Solutions

The loose labelling scheme is demonstrated in Figure 4.1(a) shown above.

Let us start with the document element (employee). We first give it an “a”.

As there is no parent node for the document element, we assign “0” at the

front of that “a”. “0a” is the unique code for the document element

(employee). For the children nodes of “0a”, we continue with the next level

of the XML tree which is “1” then the code of its parent node which is “a”

and a concatenation “.”. We then add a letter “b” for the first child, letter

“c” for the second child, “d” for the third child and so on. Unique codes for

children nodes of “0a” shall be “1a.b” for the first child, “1a.c” for the

second child, and “1a.d” for the third child, etc

From level 1 of the XML tree and downwards, we choose to use letter “b”

rather than “a” for the first child of the document element because we want

to save codes for any InsertBefore operation that might be required in the

future. The concatenation “.” is employed to help users figure out

relationship between ancestor and descendant nodes. For example, just by

Chapter 4 – Dynamic Labelling Scheme

86

looking at node “1a.b”, one will realize that it is a descendant of node

“0a”.

There is a little difference in using the concatenation “.” at the third (level

2) and other lower levels of the XML tree. As shown in Figure 4.1 the unique

code for the first child of node “1a.b” is “2ab.b” rather than “1a.b.b”.

We intentionally decide to name it that way because we do not want to

confuse users with too many “.” In general, it works as follows:

Given a node v with n child nodes: u1, u2, u3 ... un, a unique code

for u1 is a combination of its level + code of its parent node + “.” +

“b”. The unique code for u2 is its level + code of its parent node + “.”

+ “c”. The unique code for u3 is the code of its parent node + “.” +

“d”. The labelling continues for the rest of child nodes in alphabetical

order. When it gets to “z”, attaches “b” at the end and continues as

mentioned above.

4.4 LSDX Updating Support

For updating and future node insertions, Li and Moon (2001) reserve extra

number spaces and Yu, Luo, Meng and Lu (2004) preserve codes. These

techniques work well. However, when all reserved spaces and reserved

codes are used up and the need for updating continues to arise, affected

Chapter 4 – Dynamic Labelling Scheme

87

nodes will need to be recomputed. To overcome this problem, we use a

combination of numbers and letters to create unique codes for XML data.

The concept of using letters is similar with Figure 2.1(b). Using letters from a

to z to label from the root to the child nodes shall keep order and shall give a

faster and easy access to a specific node. The difference is the flexible way

we use to generate unique codes for every existing node and new nodes,

which shall be needed for future updating. The rule for generating unique

codes for new nodes is described below.

Figure 4.2. An example to illustrate Rule for Generating Labels

Chapter 4 – Dynamic Labelling Scheme

88

Rule for generating labels for new nodes: If there is no node standing

before the place that a new node shall be added, get the code of the node

standing after the new node and insert “a” after the “.”. Otherwise,

keep counting from the code standing before it so that the code for the

new node will be greater than the code of its preceding sibling and less

than the code of its following sibling (if have) in alphabetical order. If the

code of its preceding node ends with “z”, attach “b” at the end.

Figure 4.2 shows an illustration of our Rule for Generating Labels for New

Nodes. Generated labels for new nodes are represented with dot lines.

LSDX supports four operations used for updating XML data. These

operations are InsertBefore, InsertAfter, Delete, and Update. More details on

these operations are described below.

Figure 4.3(a). Inserting Before

Chapter 4 – Dynamic Labelling Scheme

89

• InsertBefore (ST, N). Insert a node/sub tree “ST” into an existing

XML tree before the node “N”. See Figure 4.3(a) – (d).

With InsertBefore operation, one can insert a node or a sub tree before any

given node. For instance, Figure 4.3(a) - (d) shows inserted nodes with dot

lines. If we want to add a node before the node “1a.b”, we will just follow

the rule for generating labels for new nodes to do this. In this case, there is

no node before “1a.b” thus we get the code of this node, then add “a”

after the “.”. Thus, the code for the new node shall be “1a.ab”. See Figure

4.3(a).

Figure 4.3(b). Another example of Inserting Before

Chapter 4 – Dynamic Labelling Scheme

90

If there is a node standing before the place that we want to insert the new

node. See Figure 4.3(b). Apply the rule to generate labels for new nodes. In

this case, we keep counting from the preceding code, which is “1a.ab” to

generate the new code which shall be greater than “1a.ab” and less than

the code of its following sibling “1a.b” in alphabetical order. Thus, the

code for the new node will be “1a.ac”.

Figure 4.3(c). An example for inserting sub tree

If this is a case of inserting a sub tree, all children of the new node will have

“2aab.” attached at front then a letter “b” for the first child, “c” for

second child, “d” for the third child and so on. See Figure 4.3(c).

The need for future insertions might continue to arise. For example, if we

need to insert another new node before the node “1a.ab”, the unique code

Chapter 4 – Dynamic Labelling Scheme

91

for the new node will be “1a.aab”. See Figure 4.3(d). Nodes from

“1a.aab” to “1a.aaz” can be used when more insertions are needed. This

technique can be utilized over and over again.

Figure 4.3(d). Another example of Inserting Before

Figure 4.4(a). Inserting After

Chapter 4 – Dynamic Labelling Scheme

92

• InsertAfter (ST, N). Insert a node/sub tree “ST” into an existing XML

tree after the node “N”. See Figure 4.4(a) – (d).

Figure 4.4(b). Example of Inserting After

With the same spirit as InsertBefore operation, InsertAfter operation can be

used to insert a node or a sub tree after any given node. Example is given in

Figure 4.4(a) with dot lines. If we want to add a new node after the node

“1a.c”, we just follow the Rule for generating labels for new nodes to generate

the unique code for it. In this case, the preceding node is “1a.c”. There is

no following node. Thus, we need to continue counting from “1a.c” to

generate a code, which shall be greater than “1a.c” in alphabetical order.

The code for the new node will be “1a.d”. If another new node is needed

Chapter 4 – Dynamic Labelling Scheme

93

for insertion after “1a.d”, its code will be “1a.e” and shall continue up to

“1a.z”, “1a.zb” to “1a.zz”, etc.

Figures 4.4(b) and 4.4(c) provide some more examples for InsertAfter

operation.

Figure 4.4(c). Another example of Inserting After

Inserting a sub tree after a given node is done in a similar way and

demonstrated in Figure 4.4(d) shown below.

Chapter 4 – Dynamic Labelling Scheme

94

Figure 4.4(d). An example of inserting a sub tree

• Delete (ST). Delete a node/sub tree “ST” from the existing XML tree.

See Figure 4.5.

Figure 4.5. Deleting

This operation can be used to delete a node or a sub tree from the existing

XML tree. Deleting node/sub tree is quite simple comparing to inserting

Chapter 4 – Dynamic Labelling Scheme

95

node/sub tree because generating code/s is not needed. Code/s of deleting

node/sub tree can be used again when a new node/sub tree is inserted in its

place.

• Update (V, N). Update the content of the node “N” with the value

“V”. See Figure 4.6.

The content of a node can be updated using this Update operation. An

example of this is shown in Figure 4.6 for changing the surname. This

operation does not require the need for generating labels.

Figure 4.6. Updating

4.5 Ancestor - Descendant Relationship

Chapter 4 – Dynamic Labelling Scheme

96

By adding codes of the parent nodes to the codes of child nodes, it helps us

to determine the ancestor – descendant relationships and the sibling

relationship between nodes. For instance, in Figure 4.6, by knowing a node

called “1a.b”, we can understand that its parent is “0a” and all the nodes

beginning with “1a.” are its siblings.

Precisely, for all other nodes that start with “1a.” and the remaining letters

of their codes (after the “.”) is less than “b” in alphabetical order, those

nodes are preceding - siblings of node “1a.b”. If the remaining letters of

their codes are greater than “b” in alphabetical order, they will be

following-siblings of node “1a.b”. All children nodes of node “1a.b” shall

have “2ab.” attached at front.

4.6 Depth of Tree

Another helpful feature in our new labelling scheme is that it can show the

depth (level) of the tree. This can be possible because we attach the level

number as the first character when we assign unique codes for each node.

For example, if we want to find out the level of node “1a.b”, we only need

to look at the first character of its unique code which is “1”. Thus, we can

say that the level of node “1a.b” is 1. In other words, the first character of

the unique code of a node always tells the level of that node in the data tree.

Chapter 4 – Dynamic Labelling Scheme

97

Moreover, when this labelling scheme is implemented, using level numbers

as explained shall help one quickly gain access to a specific level. Similarly,

using our unique codes shall help one easily get to a specific node.

Therefore, our labelling scheme will help to reduce the number of nodes that

would otherwise need to be accessed to carry out tasks such as retrieving,

inserting, deleting or updating XML data. Consequently, these advantages

shall make those tasks a lot easier and help to save time.

4.7 LSDX Experiments

We have implemented our proposed first LSDX labelling scheme in Java and

used SAX from Sun Microsystems as the XML parser. For the database, we

used XMark datasets [Schmidt, Waas, Kersten, Carey, Manolescu and Busse

(2002)] to generate XML documents. We used various scaling factors (0.005 –

0.5) to create from 100KB to 57000KB of data. We chose XMark dataset as it

generates a standard, balanced XML document and it is typically

encountered in real-world scenarios.

An advantage of our proposed labelling scheme is that it supports updating

XML data dynamically without the need of re-labelling existing labels. We

ran some experimental works and compared our works with the works by

Chapter 4 – Dynamic Labelling Scheme

98

Lu and Ling (2004) and Cohen, Kaplan and Milo (2002) whose labelling

techniques are known to support dynamic XML data. Our experiments were

performed on the Pentium IV 2.4G with 512MB of RAM running on

windows XP with 25G hard disk.

Below is our java program developed for testing our experiment work. In

the future, this program will be extended to work as an XQuery tool, which

applies our new labelling scheme to facilitate query processing.

Figure 4.7. A Java application tool used for experiment works

Chapter 4 – Dynamic Labelling Scheme

99

Table 4.1. Total length of labels - A comparison between our LSDX, GRP and

SP labelling schemes

Total length of labels (MB) XML Doc

(MB)

No of

Nodes (K) LSDX GRP scheme
(Lu, 2004)

SP One bit
(Cohen, 2002)

1.2 17 0.17 0.64 0.72

2.3 33 0.41 1.20 1.46

3.4 50 0.76 2.00 2.27

4.7 68 1.17 2.72 3.12

5.6 84 1.63 3.44 3.86

6.9 100 2.21 4.24 4.66

8.0 118 2.91 5.04 5.54

9.2 134 3.60 5.92 6.32

10.3 151 4.43 6.80 7.1

11.4 167 5.29 7.60 7.91

4.7.1 Length of Labels

The first experiment for our LSDX labelling scheme was carried out to

compare sizes of our proposed labels to those of some other researchers. We

studied the experiments of GRP by Lu and Ling (2004) and SP by Cohen,

Kaplan and Milo (2002), which support dynamic XML data. In this

experiment, we used XMark to generate ten XML documents based on

scaling factors (0.01 – 0.1), same as those used by Lu and Ling (2004). We

Chapter 4 – Dynamic Labelling Scheme

100

used SAX to parse different sizes of those ten XML documents. We then

generated unique codes for every node in each XML documents and saved

them to the file. Eventually, we made comparisons in term of total length of

labels. See Figure 4.8. We discovered that our LSDX labelling scheme could

be two times smaller compared to GRP and SP schemes. Detailed figures are

presented in the Table 4.1.

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10

XML Document

T
o

t
a

l
L

e
n

g
th

 o
f

L

a
b

e
l
s

(
M

b
)

LSDX GRP SP One Bit

Figure 4.8. Total Length of Labels

4.7.2 Time Used to Generate Labels

Our second experiment was to test how long it takes to generate labels for

various datasets that were generated above. We passed each XML document

in our Java program, using SAX as a parser, and then concurrently

generated labels for it. We noticed that time needed for generating labels

varies from 1 second for 1.2MB of data to 28 seconds for 50MB of data.

Chapter 4 – Dynamic Labelling Scheme

101

Approximately, it will take one minute to generate 100MB of data. Some

results of this experiment are displayed in Table 4.2.

Table 4.2. Time used to generate labels using LSDX

Scaling
Factor

XML Doc
(MB)

of Nodes
(K)

Time
(Sec)

0.01 1.2 17 1.09

0.02 2.3 33 1.56

0.03 3.4 50 2.25

0.04 4.7 68 2.79

0.05 5.6 84 3.28

0.06 6.9 100 3.90

0.07 8.0 118 4.54

0.08 9.2 134 5.09

0.09 10.3 151 5.59

0.1 11.4 167 6.18

4.7.3 Insertion and Deletion Time

We did some experiments on inserting single nodes and inserting sub trees

to the mentioned above XML documents. In this experiment, we first

generated a unique label for each of the nodes, and added it to the XML tree.

We then updated the XML document by saving changes to the file

Chapter 4 – Dynamic Labelling Scheme

102

immediately. While committing all the changes can be done at last to save a

great deal of time, we chose to save each change individually merely for the

purpose of finding out how much time is needed to commit inserting

node/s and sub tree/s operation to the database. Results of time used are

shown in Figure 4.9.

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

XML Document

R
u

n
n
in

g

T

im
e

(
s
e
c

)

single node sub tree

Figure 4.9. Time used to insert nodes.

The performance of inserting single nodes is spectacularly quick. Inserting

sub trees took a little bit longer compared to inserting single nodes. A

comparison of time used for these two operations is shown in Figure 4.9.

We also did some experiments on deleting single nodes and deleting sub

trees from the XML documents above. We first removed the node/s from

the XML tree and then updated the XML file so that it is permanently

Chapter 4 – Dynamic Labelling Scheme

103

removed. The running time for deleting a single node and deleting a sub tree

are not of much difference. Results are shown in Figure 4.10.

As mentioned previously, we are only interested in finding out actual time

taken to permanently remove nodes. For that reason, we did the commit

straight away so that deleting nodes will be immediately removed. Our

experiments show that deleting nodes/sub trees took less time than

inserting nodes/sub trees because generating labels is not required for this

operation.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

1 2 3 4 5 6 7 8 9 10

XML Document

R
u
n

n
in

g

T

im
e

(
s

e
c
)

Figure 4.10. Time used to delete nodes

4.8 Summary

Loose LSDX labelling scheme is a dynamic labelling scheme. When XML

data is required for updating, there is no need for LSDX to re-label affected

nodes, hence facilitating fast update. It can also identify all important axes in

Chapter 4 – Dynamic Labelling Scheme

104

XQuery and XPath, such as ancestor – descendant relationships, sibling

relationships between nodes. However, regarding to the length of labels,

there’s room for improvement for this labelling to become more compact

and space efficient. We will discuss this in the next chapter.

Chapter 5 – Com-D Labelling Scheme

105

5
Com-D Labelling Scheme

In this chapter, we shall introduce another dynamic labelling scheme, the

Com-D labelling. We will show how it works and discuss about how it can

be better off comparing to existing dynamic labelling schemes. It does not

matter where new nodes should be inserted or how many of new nodes are

added, with Com-D labelling scheme, there is no need to re-label or re-

calculate existing nodes. Then, we will demonstrate how Com-D labelling

supports order-sensitive queries. Finally, our experimental work is

presented to show its effectiveness.

5.1 Introduction to Com-D

We develop a new technique to label XML tree to make them smaller and

more compact. We name our improved version of the loose LSDX as a

compressed dynamic labelling scheme or Com-D for short. In brief, Com-D

is superior to LSDX in term of its compact labels. Section 5.4 shows the

experimental results when comparing these two schemes.

Chapter 5 – Com-D Labelling Scheme

106

The basic concept for adding new nodes of our Com-D scheme works

similarly to the primitive scheme. However, there are slight differences in

this technique to make this scheme more compact, space efficient than the

primitive version.

Let’s consider a large XML document with a big fan-out tree, which may

contain hundreds of siblings in a level. There are chances that some part of

the node label will be repeated. For example, for a node labelled

“0101010111”, “01” is repeated four times, for node “0110110011”,

“011” is repeated two times. Node “bcbcbc” contains 3(bc). Similarly,

nodes “bbbc”, “abcabcddd” and “bacbacbacee” all have repetitive

labels.

Therefore, we can make our loose labelling more compact by rewriting these

labels using the following technique. Below are some of the examples that

labels can be rewritten.

Example 1. “aaaaabbbcdde” → “5a3bc2de”

Example 2. “aaabbcddddddddee” → “3a2bc8d2e”

Example 3. “kkkkkkkkkkokkkkkkkkkkobbbbb” → “2(10ko)5b”

Chapter 5 – Com-D Labelling Scheme

107

Example 4. “eaabcbcbcaabcbcbcx” → “e2a3(bc)2a3(bc)x” → “e2(2a3(bc))x”

Example 5. “eeebbbbcbbbbcbbbbcbbbbcbbbbcbbbbcbbbbc” → “3e7(4bc)”

Figure 5.1. A query process using Com-D labelling scheme.

We start with empty string “0” for the root document. For the children of

the root document, we start with its tree level + “,” + a letter “b” for the

first child, letter “c” for the second child, “d” for the third child and so on.

Unique codes for children nodes of root document shall be “1,b”, “1,c”,

and shall continue up to “1,z”, “1,zb” to “1,zz”. Since there are

repetitive letters, “zz”, we can replace them by number of occurrence of

“z” and the letter “z” itself. That means “zz” shall be replace by “2z”. It

can be continued with “2zb” to “3z”. Repetitive letter is not counted if the

Process
Query

XML
Documents

User

Query

Result
s

Com-D
Labelling
Scheme

Chapter 5 – Com-D Labelling Scheme

108

concatenation “.” stand in middle. For example, “b.bc” is considered as

having no repetitive letter.

Similarly, for all child nodes of node “b”, the unique code for the first child

is its tree level + “,” + code of its parent node concatenating with the

“.” and a letter “b” for the first child, letter “c” for the second child, “d”

for the third child and so on. For instance, the first child of node “b” is

”1,b.b”, the second child of “b” is “1,b.c”, and the third child of “b” is

“1,b.d” and so on.

It is important to keep in mind that when generating unique code for child

nodes, the “.” from the code of parent node shall be removed. This is done

to minimize the number of “.” needed while maintaining its advantage in

showing relationship between nodes. In general, generating unique codes

works as follows:

Suppose node u is the first child of node v. Rule for generating unique code

for node u will consist of the following three steps:

1. Get the code of node v, remove “.” if have, and check for

repetitive letters. If any letter appears more than once, it shall be

Chapter 5 – Com-D Labelling Scheme

109

accumulated and replaced by number of its occurrence + the letter

itself.

2. Add concatenation dot “.”

3. Add “b” if it is the first child of node v. Add “c” for the second

child and add “d” for the third child of node v. The labelling

continues for the rest of child nodes in alphabetical order. If any

repetitive letter occurs again, it shall be replaced by number of its

occurrence + the letter itself.

Algorithm 1 below shows how to generate a unique label for each node.

There are three separate functions for three different situations. Function

generateLabel() is called first to generate code for each node. This function

will only process codes for root document and the first child of the root

document. If this is not the case, it will determine and call other functions

such as firstChildNode()to generate label if parent code is known with no

previous sibling present. Alternatively, if previous sibling node is present,

function getLabel() will be called to continue calculating label from previous

sibling code.

Algorithm 1

Method: generateLabel

Parameter: parent code, previous sibling

Chapter 5 – Com-D Labelling Scheme

110

Return: Unique code for each node

generateLabel (parent code, previous sibling){

if (parent code == null)

return “”;// dummy root

else if (parent code == "" AND previous sibling ==

null)

return "b"; //this is first child of root

else if (previous sibling == null)

return firstChildNode(parent code);

else

return getLabel(previous sibling);

end if

}

End function

Method: firstChildNode

Parameter: parent code

Return: Unique code for every first child node

firstChildNode(parent code){

temp []← parent code.split(".");

parent Code ← temp[0];

node label ← parent code + ".b";

return node label;

}

Chapter 5 – Com-D Labelling Scheme

111

End function

Method: getLabel continue calculate code from previous

node

Parameter: previous sibling

Return: Unique code for each node

getLabel(previous sibling){

char[]temp ← label.toCharArray();

char last ← temp[temp.length-1];

if (last == 'z')

label ← label.concat("b");

else{

temp[temp.length-1] ← ++last;

label ← String.valueOf(temp);

}

end if

return label;

}

End function

Algorithm 2 below shows how to compact label of each node for the first

round. By just using a few programming lines, a shorter, more compact code

can be assigned for each node.

Chapter 5 – Com-D Labelling Scheme

112

Algorithm 2

count: number of repetitive letter

curChar: current character

nextChar: next character

label: uncompressed label code

finalLabel: compressed label code

count ← 0, curChar ← null, nextChar ← null, finalLabel

← null

while(label != null)

 outer:

 for (i ← 0; i < label.length(); i++)

 curChar ← label.charAt(i)

 count++

 if ((label.length()-2) ≥ i)

 if (curChar == line.charAt(i+1))

 continue outer;

 end if

 switch (count)

 case 0:

 case 1:

 finalLabel ← finalLabel + curChar

 break

 default :

Chapter 5 – Com-D Labelling Scheme

113

 finalLabel ← finalLabel + count + curChar

 end switch

 count ← 0

 end for

end while

5.2 Updating

For updating XML data, our labelling scheme can generate unique code for

every new node without re-labelling existing nodes. It does not matter

where new nodes shall be added. The rule for generating unique codes for

new nodes is described below.

Updating rule: If there is no node standing before the place that a new

node shall be added, unique code of new node is the code of its

following sibling node minus one value from the last letter. If the last

letter of the code of the new node is “a”, attach “b” at the end.

Otherwise, keep counting from the code of its preceding sibling so

that the code for the new node will be greater than the code of its

preceding sibling and less than the code of its following sibling (if

have) in alphabetical order. If the code of its preceding node ends

with “z”, attach “b” at the end.

Chapter 5 – Com-D Labelling Scheme

114

To get into more details of this compact labelling, let us use some insertions

to show how it works. We categorize two insertion situations, one is to insert

a new node that has no preceding-sibling and the other, has preceding-

sibling. We call these two situations as Insert Before and Insert After

operations respectively.

Figure 5.2. Insert a node before a given node.

5.2.1 Insert Before

Insert before is inserting a node/sub tree before any given node which have

no preceding - sibling. For instance, Figure 5.1 shows inserted node with dot

lines. If we want to add a node before the node “b”, we will just follow the

updating rule. In this case, there is no node standing before the node “1,b”,

thus we get code “b” minus one value, which is “a”. As our rule said, if the

Chapter 5 – Com-D Labelling Scheme

115

last letter is “a”, attach “b” at the end. Thus, the code for the new node shall

be “1,ab”. See Figure 5.2.

All children of the new node of “1,ab” will have “2,ab.” attached at

front, then a letter “b” for the first child, “c” for second child, “d” for the

third child and so on. See Figure 5.3.

Figure 5.3. Insert a sub tree before a given node.

The need for more insertions might continue to arise in the future. Just

simply apply updating rules to generate unique label for each new node. For

example, if we need to insert another new node before the node “1,ab”, the

unique code for the new node will be “1,aab”, or “1,2ab” after

compression. Nodes from “2ab” to “2az” can be used when more

insertions are needed. This technique can be utilized repeatedly.

Chapter 5 – Com-D Labelling Scheme

116

Figure 5.4 Example of inserting a node after a given node.

5.2.2 Insert After

Insert After is inserting a new node after any given node. Insert after differs

from insert before because there must be a preceding node before the space

that is intended for Insert After operation. However, there might be no

following sibling at all. Example is given in Figure 5.4 with dot lines.

If we want to add a new node after the node “1,c”, in this case, the

preceding node is “c”. There is no following node. Thus, we need to

continue counting from “c” to generate a code, which shall be greater than

“c” in alphabetical order. The code for the new node will be “d”. If another

new node is needed for insertion after “d”, its code will be “e” and shall

Chapter 5 – Com-D Labelling Scheme

117

continue up to “z”, “zb” to “2z”, etc.

Figure 5.5 Inserting a sub tree after a given node.

Suppose now we want to store two more fields, price and cost of each

book in our database. These new two fields are intrinsic ordered, say after

the Title and before the Author node. Using our rules for adding new

nodes, unique codes can be generated for the two new elements without re-

labelling enormous nodes already existing in data file and still maintain the

order of data. Figure 5.6 illustrates this situation.

5.3 Order-Sensitive Queries

Com-D labelling scheme can be used in all kinds of ordered queries.

Ordered queries like Position = n, Preceding, Following, Preceding - sibling

and Following-sibling can be answered by evaluating labels of nodes. For

Chapter 5 – Com-D Labelling Scheme

118

instance, the query “/play/act[3]” can be retrieved by first selecting all act

nodes that are descendants of “play”, followed by returning the third act.

Figure 5.6 Order-sensitive updates – Adding new elements.

Preceding and Following queries like “/play/act[3]/preceding::*” or

“following::*” can be answered by comparing the order of all node labels

occur before or after with the act[3] node label respectively, descendants of

act[3] are ignored.

Preceding-sibling and Following-sibling queries such as

“/play/act[3]/following-sibling::act” or “preceding-sibling::act” retrieve all

acts that are sibling of act[3] and then output all nodes after act[3] or before

act[3] respectively in document order.

Chapter 5 – Com-D Labelling Scheme

119

5.4 Experiments

We have conducted experimental works to compare our proposed Com-D

labelling scheme with some other labelling schemes such as ORDPaths,

Dewey, LSDX, GRP, SP Double bit and SP single bit schemes to observe its

performance. All of our experiments are performed on the Pentium IV 2.4G

with 512MB of RAM running on windows XP with 25G hard disk.

Table 5.1 - Documents used in experiments.

Doc File Size

(MB)

Total Number of

Nodes

D1 1.2 17132

D2 2.3 33140

D3 3.4 50266

D4 4.7 67902

D5 5.6 83533

D6 6.9 100337

D7 8.0 118670

D8 9.2 134831

D9 10.3 151289

D10 11.4 167865

D11 22.8 336244

D12 34.0 501498

We use Java and SAX from Sun Microsystems as the XML parser. For the

database, Schmidt, Waas, Kersten, Carey, Manolescu and Busse (2002)

provides a balanced XML document which usually comes across in real -

Chapter 5 – Com-D Labelling Scheme

120

world situations. We use XMark datasets to create various sizes of data for

experimental purposes. Table 5.1 above shows the size of the XML data files

and the total numbers of nodes in each file that were used for the

experiment.

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10

L
e

n
g

t
h

o

f
L

a
b

e
l
 (

K
b

)

Loose Labeling GRP SP Double

Com-D Dewey ORDPaths

Figure 5.7. Comparison of length of labels among

Com-D Labelling, Loose Labelling, GRP, Dewey, SP double bit and ORDPath.

To start with, we ran an experiment to compare code length between

ORDPaths, Dewey, LSDX, GRP, SP Double bit and Com-D schemes using

those XML files in Table 5.1. The result of this experiment is shown in Figure

5.7. Among these six schemes, Com-D and ORDPath have shortest code

length while GRP and SP double bit have longest code length.

Chapter 5 – Com-D Labelling Scheme

121

To follow, we carry out three sets of experiments to evaluate the

performance of six labelling schemes. The first set compares the storage

requirements of four schemes. The second set examines the query

performance and the last set investigates the order-sensitive update and

study the numbers of nodes, which might require re-labelling.

22

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12

T
h

o
u

s
a

n
d

s

14

L
e

n
g

th
 o

f
L

a
b

e
l (

K
b

)

Com-D Dewey ORDPaths SP Double

Figure 5.8 Space requirements for each labelling scheme

5.4.1 Storage requirement

Our next experiment is to compare storage space of labels with some other

labelling schemes such as ORDPaths, Dewey and SP double bit growth

labelling. These experiments indicate that our Com-D labelling scheme is

superior to all ORDPaths, SP one bit and double bit growth, GRP, LSDX and

Dewey labelling. Results of these experiments are showed in Figure 5.8. To

Chapter 5 – Com-D Labelling Scheme

122

avoid graph clustering, SP one bit, GRP and LSDX results are not included

in this graph.

Table 5.2. Query performance

Test Queries

Number of
nodes

returned

Response
Time
(ms)

Q1 /play/act[5] 185 16

Q2 /play/act/scene[2]preceding::scene 855 15

Q3 /play/act 925 0

Q4 /play/act/scene/speech[4] 3545 250

Q5 /play/act/scene 3740 0

Q6

/play/act/scene/speech[3]preceding-

sibling::speech 7280 266

Q7 /play/act/scene/speech/line[2] 85445 1343

Q8

/play/act/scene/speech[2]following-

sibling::speech 147275 412

Q9 /play/act/scene/speech 154665 110

Q10 /play/act/scene/speech/line 534410 422

5.4.2 Query Performance

In this experiment, we test the query performance using our new labelling

scheme. We use Shakespeare's play dataset from Niagara Project for this

Chapter 5 – Com-D Labelling Scheme

123

purpose. In order to see its real performance on huge XML data, we increase

the Shakespeare's play dataset 5 times. Ten queries used in this experiment

are shown in Table 5.2 with number of nodes returned by these queries and

theirs response time.

5.4.3 Update Performance

For this experiment, we run several updates to an XML file to measure

order-sensitive update performance among several labelling schemes. We

use the Dream XML file in Shakespeare's play since all elements in the file

are order-sensitive. Dream contains 5 acts; we add a new act before and

between existing acts. We then calculate number of nodes that need to be re-

labelled for each case. Figure 5.9 shows the number of nodes that require re-

labelling.

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5

N
u

m
 o

f
n

o
d

e
s
 r

e
q

u
ir

e
 r

e
-

la
b

e
l

Dew ey / SP Com-D / ORDPath

Figure 5.9 Numbers of nodes need re-labelling

Chapter 5 – Com-D Labelling Scheme

124

In all 5 cases, Com-D and ORDPaths labelling schemes need not to re-label

any existing nodes. Dewey and SP schemes need to re-label a huge amount

of nodes. Figure 5.9 shows the result of this experiment.

For Prime labelling scheme, there is no node that needs to be re-labelled,

however, in order to maintain the order-sensitive of XML nodes, there is a

number of nodes required to recalculate SC value. Since the performance of

Prime is reported in Wu, Lee and Hsu (2004), we omit it in this experiment.

5.5 Summary

The advantages of our Com-D labelling scheme over the existing labelling

schemes is that it is a dynamic labelling scheme for XML data and it is

compact. It does not matter where new nodes will be inserted or how many

of new nodes are added, as it guarantees that none of existing nodes needs

to be re-labelled and no re-calculation is required. These will facilitate fast

update as well as enhancing query processing. In addition to those

advantages, our Com-D labelling scheme also supports the representation of

the ancestor - descendant relationships and sibling relationships between

nodes.

Chapter 6 – XML Access Control

125

6
XML Access Control

In this chapter, we shall introduce SecureX, our XML Access Control model.

SecureX supports both read and write privileges. We will show how SecureX

can be integrated with a dynamic labelling scheme to speed up searching

and querying processes. We then will analyse and compare processing steps

between our access control model with traditional node filtering techniques.

Finally, experimental results are shown to prove the effectiveness of our

approach.

6.1 Introduction to SecureX

Many existing access controls use node filtering or querying rewriting

techniques. These techniques require rather time-consuming processes such

as parsing, labelling, pruning and/or rewriting queries into safe ones each

time a user requests a query or takes an action. In the next section, we

present our access control model for read privilege. Write privilege will be

presented in the following section. For clarity, we use XML Access

Authorization (XAA) file to declare access level details for each element in

Chapter 6 – XML Access Control

126

XML data. XML Schema Authorization (XSA) file states access control if

rules are declared in schema level for a set of documents. XML Group

Authorization (XGA) file is used to define the access authorization for

individual user or a group of users. We make an assumption that, the person

who creates XML files will also have the right to create access rules for those

files.

<XAA doc="Employee.xml">

....

<rule object="//name" access="+" type="R"/>

<rule object="//address" access="-" />

<rule object="//DOB" access="-" />

<rule object="//h_phone" access="-" />

<rule object="//office" access="+" />

<rule object="//extension" access="+" />

<rule object="//email" access="+" />

<rule object="//position" access="+" />

<rule object="//salary" access="#" />

</XAA>

(a)

Figure 6.1 (a)XAA

Chapter 6 – XML Access Control

127

Considering a staff database of a University that stores all staff information,

such as name, office, extension, home address etc. Suppose this university

has three levels of access policy defined as public, private and protected

levels, denoted as '+', '-' and '\#' respectively. Therefore, its access

rules are defined in XAA in Figure 6.1(a).

<XAG doc="Employee.xml">

....

<group entity="student" access-type="+" />

<group entity="staff" access-type="+" />

<group entity="admin" access-type="-" />

<group entity="CEO" access-type="#" />

....

</XAG>

(b)

.....

<group entity="staff" access-type="$,+" />

<group entity="admin" access-type="$, -" />

.....

(c)

Figure 6.1(b)XGA. - (c)Updated XGA.

Chapter 6 – XML Access Control

128

Our access control model requires the specification of subject, object, access

type, action, and propagation type to determine whether an authorization

access is allowed. Subject is group/individual identifier; object is URI or

XPath expression; access type states access level of a user; action is action on

which authorization is defined, propagation type defines how the

permissions is propagated, such as local or recursive. Default is local. Group

can be a single user. Group and access type are determined after a user logs

on. This is described in XGA file in Figure 6.1(b).

Case 1: Imagine that John belongs to a staff group. He has a request to

view all staff details. Based on rules described in Figure 6.1(b), his access

level denoted as "+", thus he can access to all public fields such as name,

office, email, etc. of all staff including his own information. However,

due to the limitation of his access level, he cannot view private information

and salary of other staff. Surprisingly, he cannot even view his private

information. This does not seem right because one should be able to view

his/her own information for clarity checking or updating purposes. The

concept is as simple as you cannot read email of other people but you can

read yours.

Chapter 6 – XML Access Control

129

Figure 6.2 XML Access Control Model

To meet this requirement, we introduce a new policy for self access, denoted

as '$'. For staff group, their access type now is '$, +'. See Figure 6.1(c).

This is a twofold access rule, which stands for self and public access levels.

Conceptually, this rule can be read as this person can access his or her own

information and public information of others.

In fact, the above access levels are formed hierarchically. Who has a right to

access at a higher level type could obviously access all information of lower

levels. For example, user A holds an access right of a protected level, he/she

can access all public and private information levels. The rule is public <

private < protected.

Access
Evaluator

Query
Processor

User’s View
Process

Account DB /
Group Access

Access Control
Policy DB

Target XML

<group

entity="student"

access-type="+" />

<group

<rule

object="//name"

access="+" type="R"

/>

<rule

<name>

<lastname>Wilkinson

</lastname>

<firstname>John</fi

rstname>

<lastname

>Wilkinso

n</lastna

me>

<firstnam

User

Access
Controller

Chapter 6 – XML Access Control

130

Table 6.1. Possible accessibility symbols.

Symbol Accessibility

+ Public/External viewers

* All staffs

$ Self information

- Administrators

& Managerial staffs

@ Other

% Other

CEO/Top secret

It is worth to mention that, in this case, we only introduce three access levels.

These access levels can easily be extended to meet different needs of each

organization, see Table 6.1 for a list of possible accessibility levels. For

instance, organization A sets five security levels for their database, such as

level 1 for public view, level 2 for staffs, level 3 for administrators, level 4 for

managerial staffs and finally level 5 is top secret which can only be accessed

by CEO. Without having any difficulty, this can be implemented using our

approach, denoted as "+, *, -, &, #" respectively. Moreover, our

concepts are flexible to define mix rules for any special case. Examples of

these cases are discussed in next sessions.

Chapter 6 – XML Access Control

131

Case 2: Get back to our University example, considering Lisa is the head of

Computer Science Department. Her access level is protected. Obviously,

with this access level she can access all information of all staff in all

departments in the University. In practice, this is insecure, since she has

nothing to do with other staff’s private information in other departments. To

make it right, she can access to all information of staff of Computer Science

Department but only public information of staff of other departments.

Therefore, to reflex this circumstance, her access level can be declared as

follows.

<group entity= "Lisa" access-type= "+">

<rule object="//dept[@name='CompSci']" access-

type="#" type="R" />

</group>

6.2 Integrated with XML Labelling

As discussed in Chapter 1, existing access controls mostly focus on node

filtering and query rewriting techniques. For query rewriting approach,

access control rules are not defined for the XML data. Unsafe queries of a

user are translated into safe ones and are evaluated against the original XML

dataset. In general, processes of node filtering require parsing XML data to

get a DOM tree. Then, based on access right for this user, it labels each node

Chapter 6 – XML Access Control

132

in the DOM tree with a permission, normally denoted as '+' if accepted or

'-' if denied. Finally, pruning is done from the DOM tree. Nodes labelled

as denial (-) are removed and nodes labelled with permission (+) are

shown to users.

Clearly, these techniques require repetitive parsing and labelling processes

for every user. Moreover, if a user requests other actions, these steps will

need to be repeated again for the same user. These are time consuming and

take a lot of resource for XML parsing, labelling and tree searching. In

addition, they do not take advantages of indexing/labelling schemes, which

have been developed by many researchers to facilitate query processing.

In this section, we will integrate our access control model with our dynamic

labelling scheme, the Com-D. The framework of this integration between

these two schemes is demonstrated in Figure 6.3 and Figure 6.4. Figure 6.3

shows initial steps that are needed to carry out before user sending a query.

In fact, this process only needs to be carried out once. It generates access

authorization and label code for each node in XML data and stores them in

an index file. Figure 6.4 shows processes when a user sends a query.

Comparing to other approaches, our model makes less

processing/preparing steps and interact with less resources to return a

user’s view.

Chapter 6 – XML Access Control

133

Figure 6.3. Generating access & label codes for each XML Data.

Figure 6.4. Query processing with Integrated SecureX model.

In fact, our SecureX can be integrated well with any indexing/numbering

scheme or dynamic labelling scheme that support XML update such as

Duong and Zhang (2005), O’Neil, O'Neil, Pal, Cseri, Schaller and Westbury

(2004) or Wu, Lee and Hsu (2004), etc. We choose Com-D labelling scheme

Access
Authorization
(XAA)

XML
Documents

Com-D/
SecureX
Scheme

Generate
Access
Authorization
& Label

Process
Query

User

Query

Result
s

Group
Authorization
(XAG)

Com-D/
SecureX
Scheme

Chapter 6 – XML Access Control

134

because it is superior to all of the above dynamic schemes either in term of

shortening label length or no need to relabelling or recalculate values for

existing nodes when updating or inserting order sensitive nodes. Moreover,

it also supports the representation of the ancestor descendant relationships

and sibling relationships between nodes. In general, it works as follows.

Figure 6.5. Dynamic labelling scheme, dot lines present newly inserted nodes.

 Start with tree level "0" for the root document. Children of the root

document will be its tree level + letter "b" for the first child, letter "c" for

the second child, "d" for the third child and so on. Thus, unique codes for

children nodes of root document shall be "1,b", "1,c", and shall

continue up to "1,z", "1,zb" to "1,zz". Since there are repetitive

letters, "zz", we can replace them by number of occurrence of "z" and the

letter "z" itself. That means "zz" shall be replace by "z2". It can be

continued with "z2b" to "z3". Repetitive letter is not counted if the

Chapter 6 – XML Access Control

135

concatenation "." stand in middle. For example, "1,b.bc" is considered as

having no repetitive letter.

Similarly for all child nodes of node "1,b", the unique code for the first

child is the code of parent node concatenating with the "." and a letter "b"

for the first child, letter "c" for the second child, "d" for the third child and

so on. For instance, the first child of node "1,b" is "2,b.b", the second

child of "1,b" is "2,b.c", and the third child of "1,b" is "2,b.d" and so

on. Likewise, child nodes of “1,c” are "2,c.b", "2,c.c", "2,c.d"

and so on. The first numeric value is changing according to the tree level.

Inserting new node(s) can be done using the following rules: If there is no

node standing before the place that a new node shall be added, unique code

of the new node is the code of its following sibling node minus one value

from the last letter. If the last letter of the code of the new node is "a", attach

"b" at the end. For example, inserting a node before node "2,b.b", minus

one value from the last letter ("b"), we get "a", then attach "b" at the end,

thus we have "2,b.ab" as the code for the inserting node. Similarly, to

insert a new node before node "2,b.ab", minus 1 from "b", we get "a",

because of "a", we need to attach "b" at the end, thus we have "2,b.aab"

or "2,b.a2b" as the code for the new inserting node. See Figure 6.5.

Chapter 6 – XML Access Control

136

To insert a new node between exiting nodes, add 1 value from the code of its

preceding sibling node, ensuring that the code for the new node will be

greater than the code of its preceding sibling node and less than the code of

its following sibling node in alphabetical order. If the value of the new node

equals to the code of its next sibling, attach "b" instead.

If the code of its preceding node ends with "z", attach "b" at the end. For

example, inserting a new node after node "1,c", we can not add 1 value to

"c" because its following sibling is "1,d". In this case, we attach "b" at the

end, thus we have "1,cb" for the new node. On the other hand, code for the

new node after "1,cb" will get "1,cc" because it does not violate the rule.

However, when the last value of the code of its following sibling is "b",

"a" can be used as a special case.

Figure 6.6. Access rules associated with a labelling scheme.

Chapter 6 – XML Access Control

137

Figure 6.6 shows an example of how our access control integrates with Com-

D labelling scheme. This integration will help to bypass the need of

repetitive labelling and pruning processes to determine what users can

actually view. Furthermore, there is no need to rewrite queries.

Case 3: Suppose that a user belongs to student group, and he/she has a

public access level. He/she requests all staff details, such as //staff/*.

Normally, with existing node filtering approach, this requires an access

controller to do schema verification and labelling (with permission or denial)

processes to determine what this user can view then pruning tree to display

the result.

Imagine when more than one user requesting access to XML data, access

controller has to repeat all the same processes for each individual user. This

could take enormous times and memory for parsing and searching XML

data.

With our hybrid access control model, these unnecessary steps can be

eliminated. In the above query, we will look at all staff details, which are

ready in our indexes. Only fields that are marked with public access denoted

as "+" are returned to this user. Thus, all private and protected fields are

hidden from this user.

Chapter 6 – XML Access Control

138

Case 4: Now, considering Julia, an administrator who has access right as

private level. She requests to view all staff salary such as

//staff//salary. This obviously fails. Keep in mind that access

controller is always behind the indexes to determine a user view. When

query processor looks for salary, this field requires a protected access level

(#). Because Julia does not have sufficient access right, her request is not

allowed. In contrast, if the field she requests is private, then she could

successfully access to those fields.

It is worth to mention that, because all staff can read all of their own details,

when Lisa sends a query to view all of her own details, she is granted access

provided that the condition WHERE staff-id = "her-staff-id" is

met. It is the task of access controller to validate access authorization, which

cannot be enforced by the query processor.

Case 5: Let us consider another special case where our access controller

interactively works with our indexes. The case in the above subsection states

that, Lisa is the head of Computer Science Department. She has the right to

access protected fields of Computer Science Department and public fields of

other departments. The query processor will first look for indexes of each

department. If department is Computer Science, all protected level fields

Chapter 6 – XML Access Control

139

and those below this level are returned (e.g. those marked with +, - and

#). On the contrary, for other department, only fields marked with public

(+) are returned.

6.3 Process Analysis

To demonstrate how our integrated access control model can be better off

comparing to a traditional node filtering technique such as [Damiani, Fansi,

Gabillon and Marrara (2007), De Capitani di Vimercati, Marrara and

Samarati (2005), Damiani, De Capitani di Vimercati, Paraboschi and

Samarati (2002, 2000)]. We set up a list of required processing steps when

dealing with a user request. See Table 6.2.

To determine a user view, processing steps such as identifying user,

checking access authorization, determining user views are required by both

SecureX and node filtering technique. For SecureX, the last step is retrieving

data using our indexes, and then result will be returned to user. For node

filtering technique, more steps need to be done here. Parsing XML step is

required next, then creating and labelling the DOM tree with permission

"+" or denial "-" are followed.

Furthermore, pruning process will be carried out to remove all nodes that

are labelled by "-". Finally, the DOM tree with all "+" is shown to user.

Chapter 6 – XML Access Control

140

Regretfully, these processes are repeated for every user and every action a

user takes. On the contrary, in our model, these timing processes are not

necessary and can be bypassed. Consequently, this will speed up the search

and query processes.

Table 6.2. Comparison of processes taken upon a user's request

Process Steps Node Filtering SecureX

Query executor 1. Checking request

2. Identify user

1. Checking request

2. Identify user

Determine access

right of user

3. Check Authorization

Schema

4. Check Authorization

Document

3. Check access group

Process query

based on user's

view

5. Parsing XML

6. Tree labelling (with

permission "+" or denial "-")

4. Filtering data from

index

Prepare user's view 7. Pruning process

Returning result 8. Display user view 5. Display user view

In addition, Node Filtering technique [Damiani, Fansi, Gabillon and Marrara

(2007), De Capitani di Vimercati, Marrara and Samarati (2005), Damiani, De

Chapter 6 – XML Access Control

141

Capitani di Vimercati, Paraboschi and Samarati (2002, 2000)], cannot

explicitly define a rule in which all users are allowed to access their own

information but not those of others.

6.4 XML Update Control

Currently, sending queries to request updating XML data is not yet allowed

to users and is still a research issue. However, with a strong development of

XML updating languages, e.g., Chamberlin, Florescu and Robie (2006),

Tatarinov, Yves, Halevy and Weld (2001), Laux and Martin (2000), updating

XML will soon be available to users and become standardized.

Consequently, the need for managing XML update emerges.

Among XML updating languages, an update facility from W3C (Chamberlin

et al. 2006) which is still in working draft, is the one that extends the XML

Query language to make persistent changes to instances of the XQuery 1.0

and XPath 2.0 Data Model. Some operations provided by XQuery Update

Facility are insertion, deletion of a node, modification of a node by changing

some of its properties etc. Complete description can be found at (Chamberlin

et al. 2006).

Chapter 6 – XML Access Control

142

In our update control model, we make use of update operation types from

(Chamberlin et al. 2006) and redefine them as four write privileges: Update,

Insert, Rename and Delete. Details of these actions are described as follows.

• Update allows the content of a node to be changed.

• Insert operation inserts one or more nodes into a chosen position with

respect to a target node. Detail actions of insert operation are as follows:

o Insert before or after: the inserted nodes become the preceding

(or following) siblings of the target node.

o Insert first or last: the inserted nodes become the first (or last)

child of the target node.

• Rename replaces a name property with a new qualified name.

• Delete operation deletes one or more nodes.

Now imagine if a staff sends queries such as delete

/company/customers//* to request deletion of all customers' details of

his/her company, or s/he accesses to the payroll to increase all staffs salary

by twenty percent. This is insecure. There must be a rule controlling who can

insert, update or delete particular information in a system. This is about data

security and data integrity. We have discussed data security in the above

section. In the next subsection, we will introduce our XML update control

concepts that can deal with the above issues.

Chapter 6 – XML Access Control

143

6.4.1 Update Control Concepts

Four write privileges mentioned above are described as follows.

• If a user holds an Update privilege on a node u, he/she is allowed to

update the content of node u.

• If a user holds an Insert privilege on a node u, he/she is allowed to

insert a new node or sub-tree which is a child of node u.

• If a user holds a Rename privilege on a node u, he/she is allowed to

rename node u.

• If a user holds a Delete privilege on a node u, he/she is allowed to

remove node u and its sub trees.

When updating is allowed, the structure of XML document may be changed.

For example, a sale representative, Tom has read and insert privileges on a

list of customers. Instead of adding only required details such as name,

address and contact number, he inserts additional details such as

vacation-address, emergency contact, which for him are

important. This violates existing DTD and alters XML structure. There must

be a more specific rule to determine who can update and/or change XML

structure.

Chapter 6 – XML Access Control

144

In practice, we believe that, the task of changing the structure of database

should only be assigned to the owner of data or people whose positions are

at the managerial level. Other users can update information but not the

structure of data. Should the XML structure needs to be modified, for

example, a new field is required to store in database, such action should only

be taken by the owner or executives. They first need to update DTD and

then defining a new access authorization rule for the new field.

Table 6.3 Update Types

Operation Update

Type

Description

Update U Update content of node, no structure change

Insert SI

I

Insert new node, Structure change allowed

Insert new node, structure change is NOT

allowed

Rename SR

R

Rename node, structure change allowed

Rename node, structure change is NOT allowed

Delete SD

D

Delete node, structure change allowed

Delete node, structure change is NOT allowed

In our write privileges, update operation only allows updating content of

nodes, thus, XML structure remains the same. Insert, rename and delete

Chapter 6 – XML Access Control

145

operations may or may not require structure changed. In order to identify

who can update data and who can change the structure of XML data, we

introduce seven update-types for write privilege in our model. Table 6.3

shows details of these update authorization rules and its description.

Case 6: In case 1 of the above section, John can access all of his information

and public information of others. If he moves to a new address, could he

update his information by himself or should an authorized person be

needed to do this job. This is up to the policy of his organization. Suppose

his organization allows staff to update their own details. Then, John needs a

write privilege to update his own information.

Although fields like name, address, phone, email etc. can be updated by

staff, salary and job position are not allowed for staff to update. To express

this circumstance, we now classify update authorization for each field. In

XAA, Figure 6.7(a), we can see that, although position is a public field and

all users can read it, not everyone is allowed to update it, even for the staff.

This is because one cannot promote (or demote) oneself prior to getting the

approval from the boss.

In XAG, see Figure 6.7(b), the new update type for each user group is

specified. With the updated access rules, apart from having read privilege

Chapter 6 – XML Access Control

146

(self and public information), staff can now update his/her self private

information. Note that, position and salary are protected information, see

Figure 6.7(a). Staffs are not allowed to update these details. Thus, we do not

need to state this rule again.

<XAA doc="Employee.xml">

<rule object="//name" access="+" update= "-" type="R"/>

<rule object="//address" access="-" update= "-" />

<rule object="//DOB" access="-" update= "-"/>

<rule object="//h_phone" access="-" update= "-" />

<rule object="//office" access="+" update= "-"/>

<rule object="//extension" access="+" update= "-" />

<rule object="//email" access="+" update= "-" />

<rule object="//position" access="+" update= "#"/>

<rule object="//salary" access="#" update= "#"/>

......

</XAA>

(a)

Figure 6.7(a). Updated XAA with Write privileges.

<XAG doc="Employee.xml">

Chapter 6 – XML Access Control

147

<group entity="student" access-type="+" update-

type="denial" />

<group entity="staff" access-type="$, +" update-

type="U$-" /group>

<group entity="admin" access-type="$, -" update-type="U-

, I-" />

<group entity="executive" access-type="#" update-

type="U#, SI, SR, SD" />

…

</XAG>

(b)

Figure 6.7(b). Associate XAG.

Case 7: Let us consider Ian, the middle level administrative officer of

Computer Science department, who has read privilege to all protected fields

in his department. For write privilege, security officer states that he can

update protected fields (position and salary) for employees in his

department, however, he cannot update protected information of the head

of school. Below is the rule setting up for him.

<group entity="Ian">

Chapter 6 – XML Access Control

148

<rule object="//dept[@name='CompSci']" access-

type="#" update-type="U#" type="R" />

<rule object="//staff/position |//staff/salary

[//staff/position='Head of School']" update-

type="denial" />

</group>

Case 8: Let consider another special case, where a user has an insert

privilege such as update-type= "I#", therefore, he/she is allowed to

insert protected details of a new staff such as name, address, phone,

email, salary etc.

Note that these fields must correspond to existing DTD. If he/she inserts a

field such as personal-interest, the operation will be rejected because

he/she is not allowed to violate DTD and change XML structure. Similarly,

if he/she inserts an authorized field but not in a right order as in DTD, the

operation will also be rejected.

In contrast, imagine a user who is at the managerial level and has an insert

privilege such as update-type= "SI". When he/she inserts a new node

such as biography, this operation is allowed because he/she is allowed to

change the structure of XML data. Certainly, updating to DTD is then

required and access authorization rule needs to be defined.

Chapter 6 – XML Access Control

149

6.5 Integrate Write Privilege with XML Labelling

In this subsection, we discuss how to integrate write privilege with a

labelling scheme. Similar to read privilege, with an XML data and an

associated XAA file, we can create an index for this XML to classify update

level of each element. Although both read and write privileges can integrate

with a labelling scheme by using <read-privilege>, <node label>,

<write-privilege> format. For a clarity reason, we only show labels

with write privilege in this subsection.

Let us consider a low-level administrator with update authorization is "U-"

sending a request to update address of John. The system will first look and

retrieve all addresses in the index which are labelled such as {"-b.c", "-

c.c", "-d.c"} then check these nodes for the address that belongs to

John. For example, it returns node "-b.c" which is the address of John.

Then, the operation is allowed and updating is done. In contrast, if this user

requests to update position of John, which labelled such as "#b.d", the

system can then determine that this is a protected field, because the update

right of this user is private only, "U-", access controller will reject the

operation due to insufficient authorization level.

Chapter 6 – XML Access Control

150

The advantage of combining indexing or labelling scheme with access

authorization rule can obviously facilitate query processing. It helps to

bypass the need of scanning the whole table to search for result. Searching

processes are reduced and frequent checking for access rules from XAA file

is not necessary. Furthermore, when a node is inserted, label of the newly

inserted node and its associated access rule can be generated on the spot

without the need of parsing XML document or relabel existing nodes.

6.6 Dealing with Conflict or Undefined Rule

In our model, we make assumption that access policy exists for every XML

file, whoever creates the XML file also creates the access policy for that file.

If there is no access rule associated with a particular file, for the security

reason, we will consider this file as uncompleted XML data and this file will

not be available for users. This prevents the XML owner from forgetting to

load the XAC together with the XML file. To make the XML file entirely

public, rule can be defined in the XAC file as:

<rule object="*" access="+">

Similarly, if there is no access rule associated to a field, that field will not be

available for users in our model. This is designed to avoid missing rules for

private or protected fields.

Chapter 6 – XML Access Control

151

There could be a case in which multiple or different access rules apply for

one subject/object. To solve this conflict, we assign that the most specific

subject takes precedence and denials take precedence principles. Our chain

of command rule, deny < public < private < protected is also

implemented.

Finally yet importantly, we would like to bring up an issue from other

works that still left open. Consider Anne who requests a deletion of node u.

When she deletes node u, she also deletes its sub-tree. The problem states,

some of the nodes, which belong to that sub-tree, are not accessible by Anne.

A question is then raised; shall the operation be rejected if some nodes of the

deleted sub-tree do not belong to the user's view? This is a typical issue

between data confidentiality and data integrity. Existing decisions are based

on whether they emphasize the confidentiality or integrity. For those who

emphasize on data confidentiality, then delete operation is accepted.

Here, we believe that, this dilemma is caused by inconsistent access

authorization rules, and is avoidable. Consider this scenario, Mike asks a

gardener to prune his citrus tree. He says that the gardener can prune off

branch A and branch B etc. When the gardener finishes the job, Mike realizes

that, he did not want to cut a sub branch of branch A. This clearly shows

Chapter 6 – XML Access Control

152

that, if Mike wanted to keep a sub branch of branch A, he should have not

allowed the gardener to cut branch A.

Similarly, Leanne is a receptionist, who does general duties in an office. One

day, her boss asked her to shred confidential documents. Without a doubt,

she could view all confidential information of the company that normally

she would not be able to see.

In order to keep away from this dilemma, we look at several aspects and

employ unambiguous update types when defining access authorization for

users.

• We carefully consider their levels in the organization and the

confidentiality and integrity of XML data.

• Whether or not the deletion of data is more important than keeping the

data. E.g. For a staff/customer who is no longer with company, a low-

level administrative should better make inactive remarks rather than

removing associated nodes from the system. Should the deletion is

required; it should then be done by someone who is at a higher level

and has access to the node and its sub tree. It is because delete action

may cause changes to XML structure.

Chapter 6 – XML Access Control

153

• While update and insert new nodes are needed more often and usually

can be done by low level administrative people, rename, delete

operations or other operations that could change XML structure should

only be done by someone who belongs to high level of managerial. Our

update types can clearly state these situations. For example, "I" for

Insert operation with no structure change allowed. "SI", the insert

operation with structure change allowed. Similarly, "D" and "SD" for

delete operations, etc. Access right of each user is specified in a simple

way yet totally applicable for day-to-day operations.

6.7 Experiments

We implemented our proposed SecureX access control, which integrates

with a dynamic labelling scheme Com-D and a typical Node-Filtering

technique in Damiani, Fansi, Gabillon and Marrara (2008, 2007), De Capitani

di Vimercati, Marrara and Samarati (2005), Damiani, De Capitani di

Vimercati, Paraboschi and Samarati (2002, 2000) to observe its query

performance. Experiments were carried out on a Pentium IV 2.4G with

512MB of RAM running on windows XP with 25G hard disk. We used Java

and SAX from Sun Microsystems as the XML parser.

Chapter 6 – XML Access Control

154

For the database, we obtained the Department dataset from Niagara Project.

(http://www.cs.wisc.edu/niagara/data). In lieu of a larger sized data, we

replicated the Department dataset 10 times.

We created a set of query and applied these queries against SecureX and

Node-Filtering technique. For each query, we compared number of nodes

needed to be scanned to get the result and its responded time.

<?xml version="1.0"?>

<!ELEMENT department (deptname, (gradstudent | staff |

faculty | undergradstudent)*)>

<!ELEMENT gradstudent (name, phone, email, address,

office?, url?, gpa)>

<!ELEMENT staff (name, phone, email, office?)>

<!ELEMENT faculty (name, phone, email, office)>

<!ELEMENT undergradstudent (name, phone, email, address,

gpa)>

<!ELEMENT name (lastname?,firstname)>

<!ELEMENT address (city, state, zip)>

<!ELEMENT deptname (#PCDATA)>

<!ELEMENT city (#PCDATA)>

<!ELEMENT state (#PCDATA)>

<!ELEMENT zip (#PCDATA)>

Chapter 6 – XML Access Control

155

<!ELEMENT office (#PCDATA)>

<!ELEMENT phone (#PCDATA)>

<!ELEMENT lastname (#PCDATA)>

<!ELEMENT firstname (#PCDATA)>

<!ELEMENT url (#PCDATA)>

<!ELEMENT gpa (#PCDATA)>

<!ELEMENT email (#PCDATA)>

Figure 6.8 The Department DTD

Access rules for this dataset are assumed as follow. Department,

Deptname, Faculty and Staff nodes are publicly available; they can

be accessed by any users. Children of Staff and Faculty are also public.

Gradstudent, Undergradstudent and their details (all child nodes) are

private fields thus can only be accessed by authorized people such as staff or

administrators etc.

Furthermore, staff and faculty can access to private fields (graduate and

undergraduate students) in their department only. Students can access to

public fields and their own information. They cannot access information of

other students. The characteristics of queries used in this experiment can be

found in Table 6.4.

Chapter 6 – XML Access Control

156

Table 6.4.Characteristics of Used Queries

 Query Access

Level

Description

Q1 //* Public Only public information will be

returned

Q2 //* Admin All public and private

information are returned

Q3 //* CS Staff All public info and only private

info in Comp Sci department

are returned. Since staff can

only view private info in their

own department.

Q4 //* Student Only public and student self

information are returned

Q5 /department/gradstudent

//*

Public Insufficient access level, thus

query is rejected.

Q6 /department/gradstudent

//*

Admin All graduate students are

returned

Q7 /department[./deptname

= "afr"]/staff/phone/

Student All phone of staff of African

Studies dept are returned

Q8 /department/

undergradstudent//*

Admin All undergraduate students are

returned

Chapter 6 – XML Access Control

157

Q9 /department/faculty/pho

ne/

Staff All faculty's phone are returned

Q10 /department[./deptname

= "cs"]/faculty/email/

Staff All email of faculty of Comp Sci

dept are returned

Q11 /department/ungradstud

ent/ email/

Admin All undergraduate students

email are returned

In term of measuring query performance, we are only interested in

processing time. For example, given a user with an access level and a request

query, we will determine the time needed to answer that request and

number of nodes that needed to be scanned against number of nodes

retrieved. Note that, the pre-checking steps such as validating users are

assumed done.

6.7.1 Node Scan Observation

Figure 6.9 represents a comparison between SecureX and a Node-Filtering

technique for the total number of nodes needed to be scanned for each

query. From this experiment, we found that, Node Filtering technique

would have to scan excessive nodes when users with high access levels

request little information.

Chapter 6 – XML Access Control

158

0

100

200

300

400

500

600

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
1
0

Q
1
1

N
u

m
 o

f
N

o
d

e
 S

c
a
n

n
e
d

(K
)

SecureX NodeFiltering

Figure 6.9. Number of Node Scanned

For instance, Q6 and Q11 are requested by an administrator. When Node

Filtering technique is used, all information that he/she can access are made

available. Even after the tree is pruned, a huge amount of node becoming

accessible to this user. However, he/she might only be interested in a piece

of information such as students email. To get the result for this simple

request, the system has to search the pruned tree excessively for that piece of

information. The fact is the larger of the pruned tree, the more nodes the

system has to scan.

In contrast, SecureX is very effective in term of searching for result. This

achievement is gained because SecureX is designed to integrate with a

labelling scheme, thus, unnecessary nodes can be skipped.

Chapter 6 – XML Access Control

159

On the other hand, when it comes to a query such as Q1 and Q2, which users

request to see all nodes, Node Filtering technique works as good as SecureX

because the number of scanned nodes and the number of retrieved nodes are

identical.

Table 6.5 Number of node retrieved vs. number of node scan

of Node Scanned Query # of Node

Retrieved SecureX Node-Filtering

Q1 24330 24786 24330

Q2 485420 485420 485420

Q3 27710 28142 27710

Q4 24343 24788 24343

Q5 0 0 24332

Q6 140000 140000 485420

Q7 120 120 24330

Q8 321090 321090 485420

Q9 1750 11290 24330

Q10 100 100 24330

Q11 29190 29190 485420

6.7.2 Response Time

Chapter 6 – XML Access Control

160

Results of this experiment shown in Figure 6.10. Again, SecureX shows its

effectiveness comparing to a Node Filtering technique. With a closer

observation, for the fastest processes, SecureX took near 0 millisecond in Q5

and Q10 while Node Filtering technique took at least 41000 milliseconds to

answer these queries.

0

10

20

30

40

50

60

70

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
1
0

Q
1
1

R
e
s
p

o
n

s
e
 T

im
e
 (

s
e
c
)

SecureX NodeFiltering

Figure 6.10. Queries Response Time.

In Q2, SecureX took 516 milliseconds while Node Filtering took 52000

milliseconds to answer this query. As analysed in Session 6.3, when a new

user sending a request, Node Filtering technique needs to repeat all parsing,

labelling then tree pruning processes. This is time consuming. In contrast,

SecureX can take advantage of an indexing/labelling scheme to produce

quick, yet secured results.

Chapter 6 – XML Access Control

161

Table 6.6 Queries results.

of Node Scanned Response time (ms) Query # of Node

Retrieved
SecureX Node

Filtering

SecureX Node

Filtering

Q1 24330 24786 24330 47 59422

Q2 485420 485420 485420 516 51157

Q3 27710 28142 27710 47 50890

Q4 24343 24788 24343 62 44577

Q5 0 0 24332 0 41798

Q6 140000 140000 485420 110 44406

Q7 120 120 24330 0 44094

Q8 321090 321090 485420 266 44188

Q9 1750 11290 24330 16 45032

Q10 100 100 24330 0 44312

Q11 29190 29190 485420 47 44953

6.8 Summary

Many existing access controls use node filtering or querying rewriting

techniques. These techniques require rather time-consuming processes such

as parsing, labelling, pruning and/or rewriting queries into safe ones each

time a user requests a query or takes an action. In this chapter, we have

proposed a fine-grained access control model, named SecureX, which

Chapter 6 – XML Access Control

162

supports read and write privileges. With our novel access control concept,

various access types are introduced, including those for determining if a

user has the right to change XML structure.

Furthermore, SecureX can be integrated well with a dynamic labelling

scheme to eliminate repetitive labelling and pruning processes when

determining a user view. This brings about advantages of speeding up

searching and querying processes. When comparing to a traditional node

filtering technique, our integrated access control model takes less processing

steps. Experiments have shown effectiveness of our approach.

Chapter 7 – Conclusion

163

7
Conclusion

In this thesis, after examining advantages and disadvantages of some related

works on access control, indexing, numbering and labelling techniques for

XML data, we have proposed two dynamic labelling schemes and a fine-

grained access control model, SecureX, for securely querying and updating

XML data.

With our dynamic labelling schemes, LSDX and Com-D, they are both

support updating XML data dynamically without the need of re-labelling

existing nodes, hence facilitating fast update. LSDX also supports the

representation of the ancestor – descendant relationships and sibling

relationships between nodes. Moreover, our LSDX is capable of showing the

depth of the data tree.

In addition to that, when these labelling schemes are implemented, its

unique way of labelling nodes shall help one quickly gain access to a specific

level and a specific node. As a result, when retrieving, inserting, deleting

Chapter 7 – Conclusion

164

and updating XML data are required, our labelling schemes will help to

reduce the number of nodes that would otherwise need to be accessed to

carry out those tasks. Consequently, these advantages shall make those tasks

a lot easier and help to save time.

Our experiments show that in term of total length of labels, our LSDX

labelling scheme is about two times shorter comparing to GRP (Lu and Ling,

2004) and about 7 - 18 times shorter comparing to SP scheme (Cohen, Kaplan

and Milo, 2002). Generating labels for XML documents vary from 1 second

for 1.2MB of data to one minute for 100MB of data. In term of permanently

storing individual changes in the files, time used for insertion and deletion

are considered spectacularly quick. This will be useful when two or more

programs need to use the same XML data concurrently.

Furthermore, our Com-D labelling scheme also supports updating XML data

dynamically without the need of re-labelling existing nodes, hence

facilitating fast update. Moreover, our proposed Com-D labelling scheme is

more compact than existing ones. Our experimental works show that, Com-

D labelling scheme is superior to all ORDPaths, GRP, Dewey, SP one bit and

double bit schemes.

Com-D labelling scheme also supports all important axes in XPath such as

Chapter 7 – Conclusion

165

parent, child, ancestor, descendant, previous – sibling, following – sibling,

previous, following.

In addition to those advantages, using our dynamic labelling schemes as an

index structure shall reduce the number of nodes that would otherwise need

to be accessed for searching or querying purposes.

We have also proposed a fine-grained access control model, SecureX, for

securely querying and updating XML data. With our novel access control

model, we can define access authorization rules for users explicitly. Case

such as information of a user, which is available to self access only, is also

managed sensibly. Moreover, we have considered update operations made

by users and introduce seven update types to determine if a particular user

has the right to change XML structure.

In addition, SecureX can easily be integrated with any numbering/labelling

scheme to take the advantage of speeding up the search and query

processes. We have illustrated how our access control model integrates with

a dynamic labelling scheme and performed comparison between SecureX

and typical Node Filtering techniques. Our analysis shows that, our

proposed model requires less processing steps. Our experiments have

Chapter 7 – Conclusion

166

proved its effectiveness. We have also pointed out a shortcut to determine if

a node is accessible to a particular user.

Chapter 7 – Conclusion

167

Possible Future Work

Some possible means of extending the research presented in this thesis are

given below:

• Considering update operations for XML documents, which may

not have DTD for verification � May need to investigate and

improve update processes by eliminating unnecessary

verification steps caused by update operations as possible.

• Conducting more comprehensive experimental works regarding

to order - sensitive queries and update performances of the Com-

D labelling scheme and compare results with other existing

labelling schemes.

• As Com-D labelling scheme has the potential to facilitate query

processing, we also hope to develop a query tool for XQuery

based on this labelling scheme.

Bibliography

168

Bibliography

Abitboul, S., Quass, D., McHugh, J., Widom, J. and Wiener, J. The Query

Language for Semistructured Data.

Ait-Kaci, H., Boyer, R., Lincoln, P. and Nasr, R. (1989): Efficient

implementation of lattice operations, ACM Transactions on

Programming Languages and Systems, 11(1):115-146, 1989.

Alstrup, S. and Rauhe, T. (2002): Improved Labelling Scheme for Ancestor

Queries. In proceedings of the 13th annual ACM-SIAM Symposium on

Discrete Algorithm, 2002.

Amagasa, T., Yoshikawa, M. and Uemura. S. (2003): QRS: A Robust

Numbering Scheme for XML Documents, ICDE, 2003.

Amato, G., Debole, F., Rabitti, F. and Zezula, P. (2003): Yet Another Path Index

for XML Searching, in Proceedings of ECDL 2003. Research and

Advanced Technology for Digital Libraries, 7th European

Conference, Trondheim, Norway, 2003.

Bertino, E. and Ferrari, E. (2002): Secure and selective dissemination of xml

documents. ACM TISSEC, 5(3):795--825290--331, 2002.

Bertino, E., Castano S. and Ferrari, E. (2001): Securing xml documents with

author-x. IEEE Internet Computing, 5(3):21--31, 2001.

Bibliography

169

Bertino, E., Castano S., Ferrari, E. and Mesiti, M. (2000): Specifying and

enforcing access control policies for xml document sources. World Wide

Web Journal, 3(3):139--151, 2000.

Boag, S., Chamberlin, D., Fernández, M., Florescu, D., Robie, J. and Siméon,

J. (2007): XQuery 1.0: An XML Query Language. W3C

Recommendation. http://www.w3.org/TR/xquery/, 2007

Bonifati, A. and Ceri, S. (2000): Comparative Analysis of the Most Representative

XML Query Languages, Dec 2000.

Catania, B., Ooi, B., Wang, W. and Wang, X. (2005): Lazy XML Updates:

Laziness as a Virtue of Update and Structural Join Eciency. In Proc. of the

ACM SIGMOD 2005.

Chamberlin, D., Florescu, D., Melton, J., Robie, J. and Siméon, J. (2008):

Xquery update facility. http://www.w3.org/TR/xquery-update-10/,

2008.

Chamberlin, D., Robie, J. and Florescu, D. Quilt: An XML Query Language for

Heterogeneous Data Sources”.

Chen, Y., Mihaila, G., Bordawekar, R. and Padmanabhan, S. L-Tree: a

Dynamic Labelling Strucutre for Ordered XML Data.

Cohen, E., Kaplan, H. and Milo, T. (2002): Labelling dynamic XML trees, in

Proceedings of PODS 2002.

Connolly and Begg. Database Systems, 3rd Edition Ch 15, Ch 29.

Bibliography

170

Cooper, F. B., Sample, N., Franklin, J. M., Hjaltason, R. G., and Shadmon, M.

(2001): A Fast Index for Semistructured Data, in Proceedings of VLDB

Conference, 2001.

Cormen, H. T., Leiserson, E. C., Rivest, R. L. and Stein, C. (2001) Introduction

to Algorithms. Ch 13, Second Edition 2001.

Damiani, E., Fansi, M., Gabillon, A. and Marrara, S., (2008): A general

approach to securely querying XML. Computer Standard & Interfaces

vol 30 (2008) p 379-389.

Damiani, E., Fansi, M., Gabillon, A. and Marrara, S. (2007): Securely querying

and updating xml. Submitted to ICDE 07, 2007.

Damiani, E., Fansi, M. Gabillon, A. and Marrara, S. (2007): A General

Approach to Securely Querying XML. Proc. of the 5th International

Workshop on Security in Information Systems (WOSIS 2007). 12-13

June, 2007 - Funchal, Madeira - Portugal. p 115-122.

Damiani, E., De Capitani di Vimercati, S., Paraboschi,S. and Samarati, P.

(2002): A fine-grained access control system for xml documents. ACM

TISSEC, 5(2):169--202, 2002.

Damiani, E., De Capitani di Vimercati, S., Paraboschi, S. and Samarati. P.

(2000): Design and implementation of an access control processor for xml

documents. Computer Networks, 33(1-6):59--75, 2000.

Damiani, E., De Capitani di Vimercati, S., Paraboschi,S. and Samarati, P.

(2000): Securing xml documents. In Proceedings of the 2000

Bibliography

171

International Conference on Extending Database Technology, EDBT

2000, Konstanz, Germany, March 2000.

Damiani, E., De Capitani di Vimercati, S., Paraboschi, S. and Samarati. P. (

2001): Controlling access to xml documents. IEEE Internet Computing,

5(6):18--28, 2001.

De Capitani di Vimercati, S. Marrara, S. and Samarati, P. (2005): An access

control for querying xml data. In Proceedings of SWS05 Workshop,

2005.

Derksen, E., Fankhauser, P., Howland, E., Huck, G., Macherius, I.,

Murata, M., Resnick, M. and Schöning, H. (1999): XQL (XML

Query Language). http://metalab.unc.edu/xql/xql-proposal.xml

Deutsch, A., Fernandez, M., Florescu, D., Levy, A., and Suciu, D.

(1998): XML-QL: A Query Language for XML.

http://www.w3.org/TR/NOTE-xml-ql/

Deutsch, A., Fernandez, M., Florescu, D., Levy, A., and Suciu, D. A Query

Language for XML. See

http://www.research.att.com/~mff/files/final.html

Dietz, P. (1982): Maintaining order in a linked list, in Proceedings of the 14th

Annual ACM Symposium on Theory of Computing, p122–127, San

Francisco, California, May 1982.

Draper, D., Fankhauser, P., Fernández, M., Malhotra, A., Rose, K., Rys, M,

Siméon, J.and Wadler, P. (2007): XQuery 1.0 and XPath 2.0 Formal

Bibliography

172

Semantics. W3C Recommendation. http://www.w3.org/TR/xquery-

semantics/, 2007.

Duong, M. and Zhang, Y. (2008): Dynamic Labelling for XML Data

Processing. In Proceedings of the 7th International Conference on

Ontologies, DataBases, and Applications of Semantics (ODBASE’08),

2008.

Duong, M. and Zhang, Y. (2008): An Integrated Access Control for Securely

Querying and Updating XML Data. In 19th Australasian Database

Conference (ADC2008), Wollongong, Australia. Conferences in

Research and Practice in Information Technology, Vol. 75.

Duong, M. and Zhang, Y. (2005): Lsdx: A new labelling scheme for

dynamically updating xml data. In 16th Australasian Database

Conference, Vol 39, Newcastle, Australia. pages 185--193, 2005.

Elmasri and Navathe. The fundamental of Database Systems, 4th Edition Ch 12,

Ch 15.

El-Sayed, M., Dimitrova, K. and Rundensteiner, E. (2003): Efficiently

Supporting Order in XML Query Processing, WIDM’03, November 7-8,

2003, New Orleans, Louisiana, USA.

Esposito, D. (2001): The XML Query Language, Available at

http://www.winnetmag.com/SQLServer/Article/ArticleID/19958/

SQLServer_19958.html

Bibliography

173

Fan, W., Chan, C. and Garofalakis, M. (2004): Secure XML with security views.

In Proceedings of ACM SIGMOD 2004, June 13-18, 2004, Paris,

France, 2004.

Fisher, D., Lam, F. and Wong, R. (2004): Algebraic Transformation and

Optimization for XQuery,APWeb 2004, LNCS 3007, pp 201-210, 2004.

Florescu, D. and Manolescu, L. Integrating Keyword Search into XML Query

Processing. See http://www9.org/w9cdrom/324/324.html

Fundulaki, I., and Marx, M. (2004): Specifying access control policies for xml

documents with xpath. In SACMAT'04, June 2-4 2004.

Gabillon, A. (2004): An authorization model for xml databases. In ACM

Workshop on Secure Web Services, October 29, 2004, Fairfax VA,

USA, 2004.

Grust, T. (2002): Accelerating XPath Location Steps, in Proceedings of the 2002

ACM SIGMOD International Conference on Management of Data,

Madison, Wisconsin, ACM 2002.

Hou, J., Zhang, Y. and Kambayashi, Y. (2001): Object-Oriented Representation

for XML Data, Proceedings of the 3rd International Symposium on

Cooperative Database Systems for Advanced Applications

(CODAS'2001), April 23-24, 2001 in Beijing, China, IEEE CS Press.

Kaelin, M. (2004): Database Optimization: Increase query performance with

indexes and statistics. TechRepublic,

Bibliography

174

http://techrepublic.com.com/5100-6313_11-

5146588.html?tag=search.

Kaplan, H., Milo, T. and Shabo, R: A Comparison of Labelling Schemes for

Ancestor Queries.

http://www.math.tau.ac.il/~haimk/papers/comparison.ps

Krall, A., Vitek, J., and Horspoo, N. (1997): Near optimal hierarchical encoding

of types, in the European Conference on Object Oriented

Programming, ECOOP’97. P 128-145, Finland.

Kudo, M. and Hada, S. (2000): Xml document security based on provisional

authorization. In Proceedings of the 7th ACM Conference on Computer

and Communications Security, Nov. 2000.

Laux, A. and Martin, L. (2000): Xml update (xupdate) language. Technical

report, XML: DB working draft, September 2000.

Lee, D., Lee, W. and Liu, P. (2003): Supporting xml security models using

relational data-bases: A vision. In XSym 2003, LNCS 2824, 2003, pages

267--281, 2003.

Lee, K.Y., Yoo, S. J. and Yoon, K. (1996): Index structures for structured

documents, in ACM First International Conference on Digital

Libraries, p 91-99, Bethesda, Maryland, March 1996.

Li, C., Ling, W. T. and Hu, M. (2006): Efficient processing of updates in dynamic

xml data. In International Conference on Data Engineering, ICDE

2006.

Bibliography

175

Li, C. and Ling, W. T. (2005): An Improved Prefix Labeling Scheme: A Binary

String Approach for Dynamic Ordered XML. DASFAA 2005, Beijing, 17-

20 April 2005.pages 125-137.

Li, Q. and Moon, B. (2001): Indexing and Querying XML Data for Regular Path

Expressions, in Proceedings of VLDB 2001.

Lu, J., Ling, T., Chan, C. and Chen, T.(2005): From Region Encoding To

Extended Dewey: On Efficient Processing of XML Twig Pattern Matching.

Proc. of the VLDB 2005.

Lu, J. and Ling, W. T. (2004): Labelling and Querying Dynamic XML Trees, in

Proceedings of 6th Asia Pacific Web Conference, APWeb 2004, China.

Meuss, H. and Strohmaier, M. C. (1999): Improving Index Structures for

Structured Document Retrieval. In 21st BCS IRSG Colloquium on IR,

Glasgow, 1999.

Milo, T. and Suciu, D. (1999): Index Structures for Path Expression. In

proceedings of 7th International Conference on Database Theory,

1999.

Mohan, S., Sengupta, A., Wu, Y. and Klinginsmith, J. (2005): Access Control

for XML - a dynamic query rewriting approach. In Proceeding of VLDB

2005 Conference, 2005.

Niagara Project. http://www.cs.wisc.edu/niagara/

Bibliography

176

O'Neil, P., O'Neil, E., Pal, S., Cseri, S., Schaller, G. and Westbury, N. (2004):

Ordpaths: Insert-friendly xml node labels. In proceedings of the 2004

ACM SIGMOD, Paris, France, 2004.

Robie, J., Chamberlin, D. and Florescu, D. (2000): Quilt: An XML Query

Language, Mar 2000. Available at

http://www.almaden.ibm.com/cs/people/chamberlin/quilt_euro.h

tml

Schmidt, A., Waas, F., Kersten, M., Carey, J. M., Manolescu, I. and Busse, R.

(2002): XMark: A Benchmark for XML Data Management, in Proceedings

of VLDB 2002.

Silberstein, A., He, H., Yi, K. and Yang, J. (2005): BOXes: Efficient maintenance

of order-based labeling for dynamic XML data. In the 21st International

Conference on Data Engineering (ICDE), 2005.

Sheth, S. and Miller, A. J. (1999): Query Languages and Tools for XML

Documents and Databases, July 1999.

Tatarinov, I., Viglas, S., Beyer, K., Shanmugasundaram, J., Shekita, E. and

Zhang, C. (2002): Storing and Querying Ordered XML Using a Relational

Database System, in Proceedings of SIGMOD 2002.

Tatarinov, I., Yves, Z., Halevy, A. and Weld, D. (2001): Updating xml. In

ACM SIGMOD, 2001.

Bibliography

177

Wang, J. and Osborn, S. (2004). A role-based approach to access control for xml

databases. In SACMAT'04, Yorktown Heights, New York, USA, June

2-4, 2004.

Wang, W., Jiang, H., Lu, H. and Yu, X. J. (2003): PBiTree Coding and Efficient

Processing of Containment Joins. In 19th International Conference on

Data Engineering, 2003 Bangalore, India.

World Wide Web Schools. XML, XPath, XQuery, DTD and WAP Tutorial

Available at http://www.w3schools.com/

Wu, X., Lee, M. and Hsu, W. (2004): A prime number labeling scheme for

dynamic ordered xml trees. In proceedings of the 20th International

Conference on Data Engineering (ICDE'04), 2004.

Yokoyama, S., Ohta, M., Katayama, K. and Ishikawa, H. (2005): An access

control method based on the prefix labeling scheme for xml repositories. In

16th Australasian Database Conference. Vol 39, Jan 31 - Feb 3,

Newcastle, Australia. Pages 105--113, 2005.

Yoshikawa, M. and Amagasa, T. (2001): XRel: A Path-Based Approach to

Storage and Retrieval of XML Documents using Relational Databases,

ACM 2001.

Yu, T., Srivastava, D., Lakshmanan, L. and Jagadish, H. (2002): Compressed

accessibility map: Efficient access control for xml. In Proc of 28th VLDB

Conference, Hong Kong, 2002.

Bibliography

178

Yu, X. J., Luo, D., Meng, X. and Lu, H. (2005): Dynamically Updating XML

Data: Numbering Scheme Revisited. In World Wide Web: Internet and

Web Information System, Vol 8, No 1, 2005.

