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Abstract

This dissertation is an examination of methods for computing an option price using

a path integral framework. The framework, developed by Chiarella, El-Hassan and

Kucera, is based on the Black and Scholes paradigm. The path integral is backward

recursive with the payoff known at expiry and has no closed form solution. Three

specific financial derivatives are used in this dissertation, they are, European (call

and put), American put and a down and out call (Barrier type) option.

The work in this dissertation examines three methods to approximate the option

price. The first is a review of the spectral method offered by Chiarella et al. Their

method involves the use of a Fourier-Hermite series expansion which represents the

option value at each time step. The Hermite orthogonal polynomials and their as-

sociated properties are employed to create a set of recurrence relations so that a

final option pricing polynomial is formed. A similar approach using normalised Her-

mite orthogonal polynomials is also presented. Similar methods and techniques are

utilised to form a new set of recurrence relations. The accuracy obtained for both

types of orthogonal polynomials are of the same magnitude.

In the other approaches, the path integral is transformed from an infinite interval

integral to one of a finite interval with a bound on the resulting error. This is

achieved by using the weight (in the form of a Gaussian) within the integrand of the

path integral. Using an a-priori value, the tails of the Gaussian are eliminated to

form the finite interval. Two numerical methods are used to approximate the option

price namely, mathematical interpolation and various quadrature (Newton-

Cotes) rules.
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The interpolation approach takes a series of Hermite interpolation polynomials (of

order 2) to represent the option price at each time step. Since there is no closed

form solution of the path integral, converting the option price function to a series

of polynomials allows an approximation of the option price to be found. By dis-

cretizing the underlying, a series of integrations are evaluated for each time step.

Various discretization schemes are implemented including a fixed number of parti-

tions (equally spaced over each time step), equally spaced partitions (over each time

step) and an adaptive node distribution. In this final discretization scheme, the

partitions are formed so that the errors caused by interpolation are controlled. The

option price approximations are highly accurate with some discretization schemes

working better than others.

The final approach takes the finite interval path integral and uses various quadrature

(Newton-Cotes) rules. Endpoint, Midpoint, Trapezoidal and Simpson’s rules are

employed to approximate the option price. The underlying is discretized using a

fixed number of partitions, equally spaced over all time steps for each of the rules

implemented. The results obtained using the various rules are highly accurate for

the European option and the down and out call option but require a large number

of partitions to obtain the same accuracy as the other methods for the American

put option.
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Chapter 1

Introduction

The pricing of derivative securities, such as options, has in the past three decades,

encroached into the world of science. Many mathematicians, physicists and statisti-

cians have contributed their methodologies and techniques to the world of finance.

These methods, usually used in engineering and the physical sciences, have been

aptly adapted to problems in the financial world.

The major issue confronting investors is security of their assets or financial position.

A wheat grower may want to sell his/her crop in the future at a predetermined

price and not wait until the crop is ready to sell (at a price below expectation). An

investor would like to buy or sell shares in a company ABC for a predetermined

price in the future.

Given these issues, pricing of derivative securities is not so simple. With different

underlying assets to protect, the condition of financial markets changing from na-

tion to nation, investor sentiments differing due to human feelings and other factors

influencing security prices, mathematical modeling can be complex.

In creating a financial instrument involving the risk of an underlying asset, the

following aspects must be taken into consideration when modeling;

i. An understanding of the underlying asset,

ii. The volatility associated with the underlying asset,

1



CHAPTER 1. INTRODUCTION

iii. Other conditions involved in the markets where the financial instrument and

the underlying asset are traded. Examples of such conditions include trading

periods, transaction costs and interest rates.

Later in this chapter, an investigation is made into various methods and techniques

used to assist in the pricing of derivative securities. In an effort to combat the com-

plexities of models designed, many authors place conditions and constraints such

that solutions/approximations can be made.

The thesis will concentrate on the area of pricing using a path integral framework.

The use of path integrals has been commonplace in science for many years since

the creation of the path integral in Feynman (1942). Its application to finance, in

particular the pricing of derivative securities, has been less common. The thesis will

offer various alternative techniques to solve a particular path integral model. One of

the major advantages of the methods presented is the high accuracy achieved, very

efficiently and with relatively low computational effort.

The remainder of this introduction includes a section 1.1 of commonly used terms.

Section 1.2 gives a brief summary of the basic concepts used in the pricing of options.

An explanation of factors which affect Options and their pricing are also given. Sec-

tion 1.2 also gives a thorough review of the literature for non path integral modeling

of option pricing.

Section 1.3 reviews option price modeling with an emphasis on Path Integrals. It is

hoped that the review in section 1.2 and 1.3 will allow the reader to appreciate the

vastness of the topic at hand. We finally state the objectives and aims of this thesis

in Section 1.4.
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1.1 Common Terminology

The following section gives a very brief overview of the basic terms and concepts

involved in option pricing. If further understanding of the basic areas of financial

derivatives and the markets they trade in is required, then Hull (2006) and Wilmott

(1999) are excellent resources. Most of the terms and concepts within this section

are sourced from Atkinson (1989), Kreyszig (2006), Hull (2006) and Wilmott (1999).

The following is a list of commonly used terms within this thesis.

Commodities: Commodities are usually raw products such as precious metals, oil,

food products etc.

Forward Contract: A forward contract is an agreement where one party promises

to buy an asset from another party at some specified time in the future and at some

specified price.

Futures Contract: A futures contract is similar to a forward contract with the

only difference being that they are traded on an exchange and are marked to market.

Options: Gives one party the opportunity to buy or sell an asset from/to another

party at a prearranged price.

Call Options: The holder has the right to buy an asset by a certain date for a

certain pre-agreed price.

Put Options: The holder has the right to sell an asset by a certain date for a

certain pre-agreed price.

European Options: Options that can only be exercised at the expiration date.

American Options: Options that can be exercised at any time up to the expira-

tion date.

Barrier Options: Options of an exotic type, in which the payoff depends upon

the reaching or crossing of a barrier (predetermined price) by the underlying. These

options include call options and put options, and are similar to common options in

many respects. Barrier options become active/inactive when the underlying crosses

the barrier.
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Underlying: The financial instrument on which the derivative value depends. The

option payoff is defined as some function of the underlying asset at expiry.

Strike or Exercise Price: The amount at which the underlying can be bought

(call) or sold (put).

Expiration or Expiry Date: Date on which the derivative can be exercised or

date on which the option ceases to exist or give the holder any rights to act.

Intrinsic Value: The payoff that would be received if the underlying is at its cur-

rent level when the derivative expires.

In the Money: An option with positive intrinsic value.

Out of the Money: An option with no intrinsic value, only time value.

At the Money: A call or put with a strike that is close to the current asset value.

Hedging: A strategy to Establish a guaranteed future price of a commodity.

Speculating: Investors wishing to take a position in the market. Either they are

betting that the price will go up or they are betting that it will go down.

Arbitrage: Involves locking in a riskless profit by simultaneously entering into

transactions in two or more markets.

Volatility: Is the term given to represent the standard deviation of the instanta-

neous return of the underlying.

Fourier Analysis and Series: Fourier Analysis concerns the study of periodic

phenomena. Fourier Series is a series which represents complicated functions in

terms of simple periodic functions.

Mathematical Interpolation: Mathematical interpolation is the selection of a

function p(x) from a given class of functions satisfying some smoothness conditions

in such a way that the graph of y = p(x) passes through a finite set of given data

points.

Quadrature: The quadrature of a geometric figure is the determination of its area.

Gaussian (Distribution): Is another term used for the Normal Distribution.
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1.2 Options and Option Pricing

To appreciate the content of the following thesis, an introduction to some of the

basic concepts is worthwhile. The concepts covered in this section include aspects

of option pricing and the mathematics presented throughout the thesis. To a math-

ematician some of the methods used in the thesis are quite novel. But to understand

the problem at hand, an introduction to terms and concepts used in option pricing

may be required.

The term Risk Management is sometimes used to describe the security of invest-

ments. As people insure their valuable possessions such as houses, cars and boats,

investors need to secure their assets and/or financial position by using financial in-

struments such as options (contingent claims).

Within the financial world, there are various assets, and many variants that affect

the value of an asset. Some examples of assets that can be secured and the factors

that affect the value of them, include:

• Shares

• Commodities such as Wheat, Wool, Sheep, Electricity, etc

• Bonds

• Stock Exchange Indices

• Foreign Exchange

• Interest Rates

• Volatility.

Given the nature of assets and the variants, the pricing of financial instruments

such as options is sometimes complex and time consuming. Adams, Booth, Bowie

& Freeth (2003) states various factors that affect the pricing of options. The factors

include:
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• Exercise Price

• Underlying Asset Price

• Time to Expiry

• Volatility

• Interest Rates

• Incomes & Dividends.

Adams et al. (2003) briefly explains the meaning of each factor but also describes

how each factor affects the value of the option (Put and Call). In later chapters, we

explain and analyse the effects of these factors on the price of options.

Options are common financial instruments which allow one party to buy/sell assets

from another party for a particular price. As described, many factors influence the

value of the option. The remainder of this section will take a detailed look at the

modeling of options as well as the techniques used to determine the value of an

option.

Since the development of the pricing of derivative securities by Black & Scholes

(1973) and Merton (1973), the literature has become vast. This area of finance has

developed to the point where science has taken a grasp and influenced the creation

of various models and the techniques to solve them. With the Black, Scholes and

Merton developments of their formula to the development of models which incorpo-

rate Jump Diffusion parameters, science and especially mathematics, have been at

the forefront of pricing financial instruments (options).

The literature provides a variety of techniques to solve various option prices. Some

of the major methods used include (in no particular order):

1. Lattice Structures (Trees)

2. Monte Carlo Simulation
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3. Quadrature

4. Solutions to partial differential equations (PDE’s)

5. Martingales and other probabilistic methods.

With the development of the Black and Scholes partial differential equation (PDE)

and the analytic solution (formula), the mathematical/scientific world became in-

volved. The further development and extensions of the Black-Scholes PDE and

the creation of other types of options (that is, exotic, barrier and path dependent

options) has led to other mathematical methods for their modeling and analysis.

Chapter 2 gives a detailed presentation of the Black and Scholes paradigm and the

development of the PDE leading to the Black and Scholes formula.

Since Black & Scholes (1973) and Merton (1973), the literature for pricing derivative

securities has flourished. The techniques and methodologies employed are numer-

ous and varied. The most common techniques used include simulation, particularly

Monte Carlo and discretization methods like binomial and trinomial trees, and finite

differences. The varying techniques employed are dependent on the equations to be

solved. The most common form of equations used are differential equations. How-

ever, in recent times, the use of path integrals has increased and various techniques

to solve these integrals have been developed.

Other techniques are also employed due to the creation of other types of securities.

These securities are sometimes complex compared to the original warrants described

by Black, Scholes and Merton. However, some of these securities are based on the

Black and Scholes paradigm. They are based on similar assumptions and conditions

as described in Chapter 2.

This section will present the influential and relevant works in the option pricing

world. Some of the methods and techniques developed over the years have shown

the multitude of mathematical adaptations used to procure an option price. This

part of the review shows the vastness of the modeling, the techniques and the ad-
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vancement of option pricing.

The ground breaking and defining work by Black, Scholes and Merton, paved the

way for many changes in the management and modeling of risk. Many subsequent

authors have gone on to extend and modify the early work of Black, Scholes and

Merton. Along with these new works, has been the creation of new financial instru-

ments (and options) based on the models and theories of these authors.

Another influential paper is that of Cox, Ingersoll & Ross (1985) who present a

theory of the term structure of interest rates. This paper is of great importance to

the financial world, as it has led to other types of modeling in finance, not just those

related to Black, Scholes and Merton’s work. They explain the term structure of

interest rate as a relationship among the yields on default-free securities, that differ

only in their term to maturity. By offering a complete schedule of predicted interest

rates across time, the term structure embodies the markets’ anticipations of future

events.

The authors present a description of the previous works on the term structure of

interest rates. Cox, Ingersoll and Ross incorporate general equilibrium theory, in

combination with the previous studies to develop their term structure of interest

rates. It is worth mentioning the work of Maghsoodi (1996) who extends the Cox,

Ingersoll and Ross model to incorporate time-varying parameters. The work by

Cox, Ingersoll and Ross and related authors shows that not all risk management

and financial instrument modeling revolves around early methods and techniques

of Black, Scholes and Merton, and that there are other methods and techniques to

investigate and that model financial risk.

The rest of this section will describe the modeling of other authors who have based

their works mainly around that of Black and Scholes, and Merton. Most of the

modeling is based on extensions and alternatives of their basic models. Other mod-

els are described which include exotic options and American options. Also reviewed
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are some models with solutions to financial instruments using numerical methods,

especially for American options. In reviewing these extended and modified models,

the various types of methods and techniques used are clear. The authors presented

various differences to the earlier models. Popular methods included the relaxation of

assumptions, the introduction of real market occurrences and various differing meth-

ods and techniques to solve the old models. The following paragraphs are grouped

in such a way that these variations are made clear.

An appropriate extension/modification to the work of Black & Scholes (1973) was

devised by Hyland, McKee & Waddell (1999) to incorporate time-dependent interest

rates and volatility. The authors present some interest rate and volatility models to

illustrate their work. These models are very general time-dependent equations and

are not indicative of the typical interest rate and volatility structures.

Silverman (1999) and Garven (1986) present alternative methods to find a solution

to the Black and Scholes PDE, namely

∂V

∂t
+

1

2
σ2S2∂2V

∂S2
+ rS

∂V

∂S
− rV = 0. (1.1)

where V is the option price, t is time, σ is the volatility associated with the asset

which has a value S and r is the interest rate.

Silverman’s involves the use of Green’s function and Garven’s presentation is in

view of the risk neutrality arguments presented by both Cox & Ross (1976) and Ru-

binstein (1976). It is clear that there are alternative methods to solve (1.1) other

than the conversion to the heat transfer equation method used by Black and Scholes.

In the following paragraphs, a summary of various types of European option models

will be made. These descriptions will show the types of modifications and extensions

to option pricing models that have been performed over the years, with particular

reference to the Black-Scholes equation. These models present changes to the Black

and Scholes paradigm. Conditions are altered or dispensed with, with the objective
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of modeling options for real market scenarios. As stated previously, the advantage of

the Black, Scholes and Merton model is that the option price is easily found. Even

though these models are more realistic, they do require extensive computational

effort. In some cases, exact solutions are difficult to find.

Jennergren & Naslund (1996) and Merton (1976) present an extended Black-Scholes

model to incorporate a class of option with stochastic lives (options which may

be canceled but the underlying stock retain their value). This is an appropriate

modification, as options may cease to exist due to company mergers, bankruptcy,

and employee resignations (for an employee class option) as examples. The intro-

duction of arbitrage is a useful modification to the modeling of financial risk. Ilinski

(1999) allows the possibility of virtual arbitrage in his modified Black-Scholes model.

However, by allowing arbitrage possibilities, one would have to be realistic and have

to consider the cost(s) involved in obtaining such a riskless position. So, another

popular method of extending the Black-Scholes equation (or any other financial in-

strument model) is the introduction of transaction costs or fees. There have been

various modified models presented over the years to incorporate the effects of trans-

action costs. One of the first and most popular works in regards to transaction costs

was that of Hodges & Neuberger (1989). Later, Davis, Panas & Zariphopoulou

(1993) developed a model for European options with transaction costs, with Davis

& Zariphopoulou (1995) presenting a similar model for American options. Whalley

& Wilmott (1997) produced an efficient and simpler hedging strategy to be calcu-

lated. One of the main problems in analysing these types of models is, that they may

be too complex and the question as to whether there is a method to find a simpler

solution. Chao, Jing-Yang & Sheng-Hong (2007) use a Markov chain approximation

to compute Barrier option prices with transaction costs. Given new methodologies

and techniques, instead of finding a precise solution for a complex model, deter-

mining an imprecise result, together with an estimate of the imprecision, will allow

these real world models to be applied in practice.
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Another assumption that can be modified/manipulated is the structure of volatility.

The original Black and Scholes model used a constant volatility for the stock price,

which was used for the purpose of simplification. However, stock/asset volatilities

have complex structures and it would be appropriate to represent these complex

volatility structures (i.e. stochastic volatility) in the option pricing models. One of

the most popular models developed was by Heston (1993). The Heston Model is

used by many authors when comparing their own models and techniques involving

stochastic volatility. Heston shows there is a bias between volatility and the spot

asset price. Therefore, he incorporates this into his model. Finally, analytical forms

are found for the various PDE’s using characteristic functions which are easy to

compute.

Some other models presented to incorporate varying volatility structures worth men-

tioning include Chalupa (1997), Sircar & Papanicolaou (1998), Kurpiel & Roncalli

(1998) and Zuhlsdorff (2001). In recent times, Medvedev & Scaillet (2007) derive

implied volatilities for options under a two-factor jump-diffusion stochastic volatil-

ity. Hilber, Matache & Schwab (2005) offer a unique approach to solving option

prices under stochastic volatility. They offer an algorithm based on a sparse wavelet

space discretization.

Given the extensive works by the previous authors in modifying or extending the

work of Black and Scholes, and Merton, there have been presentations of other fi-

nancial instrument models (and in particular, other option pricing models). One of

these is the modeling of Exotic options. These options are non-standard options,

and have been examined extensively. This thesis will examine exotic (American and

Barrier types) along with the Vanilla (European type) options.

There have been numerous exotic option pricing models presented including that

of Carr, Ellis & Gupta (1998) who develop static hedges for several exotic options

using standard options. In this area, the work of Neuberger & Hodges (2000) in

which they devise a model for exotic options in the spirit of the Merton (1973)

11
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approach for rational bounds on the pricing of exotic options is worthy of exam-

ination. Penaud, Wilmott & Ahn (1998) extend a Vanilla Passport option to add

various exotic features to that option. The authors present seven different types of

exotic passport options, using the same assumptions as used in deriving the Black-

Scholes equation. Schoutens & Symens (2003) present a Monte Carlo simulation

method to price exotic options with stochastic volatility.

An interesting exotic option pricing model is proposed by Geman (2001). The au-

thor develops a technique to find the price of a type of exotic option called an Asian

option (there is also the development of a Barrier option). The technique offered

involves the use of Laplace transforms and of a time-changed squared Bessel pro-

cess. Geman presents some numerical work, comparing the author’s results to an

equivalent Monte Carlo simulation.

Finally, some of the more recent techniques used in approximating financial instru-

ment pricing models is via the use of Martingale methods and game theory. Musiela

& Rutkowski (1997) present numerous financial instrument models via the use of

Martingale Methods. Prigent, Renault & Scaillet (2004) also address the problem of

option pricing (with discrete re-balancing) using Martingale measures. Henderson

(2005) presents some Martingale measures to incomplete stochastic volatility mod-

els. The use of Martingale methods and game theory reiterates that the modeling of

financial instrument (option) pricing is open to various methods and techniques. Ols-

der (2000) develops a technique for the pricing of options using game theory. The

author offers one model for a two player system, with the players being nature and

the investor. The second model consists of three players, being nature, the investor

and the bank (whose presence forces the introduction of transaction costs).

So far the review has presented models for corporate liabilities, European options

and exotic options. One of the most common financial instruments (and option)

is the American option. These options allow the owner to buy or sell the underly-

ing asset at any time up to the maturity date. There has been a vast amount of

12
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literature in the mathematical modeling of American options, with the main issue

concerning when to exercise an option. This problem is known as the early exercise

option.

One of the first American option pricing models to be presented is that of Brennan

& Schwartz (1977). Their work has also been extended and modified over the years.

Another two relevant American option pricing models presented are by Geske &

Johnson (1984) and Kim (1990). The following paragraphs will summarise their

work.

Brennan & Schwartz (1977) confirms that the American put option obeys the Black-

Scholes equation. The authors then describe and state a numerical method to solve

the Black-Scholes equation for an American option. The solution for the American

option differs greatly to the European option, as an American option can be exer-

cised at any time up to the exercise date. Brennan and Schwartz apply their model

against some historical data. They compare the put result against the equivalent

Black-Scholes European put option. This comparison seems to be irrelevant, as a

European option can only be exercised on the exercise date. Cox, Ross & Rubinstein

(1979) offers a Binomial tree approach to various options, including an American

put. They argue that their alternative approach to Brennan & Schwartz (1977) is

simpler and in most cases computationally more efficient.

Geske & Johnson (1984) developed an analytical approximation for an American

put option. They argue that numerical solutions are expensive, which may have

been the case in the 70’s and 80’s. The analytical solution presented by Geske and

Johnson is

P = Xw2 − Sw1 (1.2)

where w1 and w2 may be represented as a Taylor series, X is the exercise price and

S is the stock price.
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In devising this solution, Geske and Johnson determine at each instant, dt, the put

will be exercised if, the put has not already been exercised and the payoff from exer-

cising the put equals or exceeds the value of the put if it is not exercised. The authors

go on to present formula evaluations and applications, comparing their results to

those of Parkinson (1977) and Cox & Rubinstein (1984). In comparing their results,

the authors state that the option values yielded are within one penny of each other.

They also note that the European value is close to the American value, where the

American option would be more valuable when the early exercise option is taken.

They also indicate that the analytical solution they offer is faster to compute by a

factor of 10 compared to the standard numerical methods. At the time of the model

presentation, the analytical approximation may have been faster. Analytical approx-

imations has its advantages as prices can be evaluated precisely and can be used to

compare against other methods and techniques. But with high-speed computers and

efficient numerical methods, the argument of analytical approximations being faster

to calculate is now out-dated, however analytic solutions do provide valuable insight.

Kim (1990) offers a differing analytical evaluation of an American put via the use

of numerical methods. Kim questions the Geske & Johnson (1984) solution, as Kim

states it is yet to be shown that an analytical solution to an American put value can

be obtained as the sum of an infinite series of functions.

The integral equation presented in Kim (1990) cannot be solved explicitly, however,

it can be solved numerically. In determining the optimal exercise boundary, B(s),

the computation of the American put value is achieved by straight forward numeri-

cal integrations. Some of the techniques offered in this thesis may be applied to the

integral equation presented in Kim (1990).

There has also been modeling of American options using various other methods and

techniques. Jaillet, Lamberton & Lapeyre (1990) verify the modeling of Brennan

& Schwartz (1977) with the use of variational inequalities. El Karoui & Karatzas

(1995) describe a model for an American put option using Martingale methods. Part

14



CHAPTER 1. INTRODUCTION

of their work is an extension of Bensoussan (1984). As discussed previously in this

review, Davis & Zariphopoulou (1995) present a model for American options with

transaction fees. Coleman, Li & Verma (1999) offer a Newton method for Ameri-

can option pricing. Their work is based around improving the work of Brennan &

Schwartz (1977). These models show that there are various mathematical methods

and techniques that can be applied to the pricing of American options.

Other models and solutions using numerical methods worth noting are Siddiqi, Man-

chanda & Kočvara (2000), who define an application of an efficient algorithm for a

numerical solution for American options. The solution, like that of many authors

previously, is based on the Black-Scholes equation. Stamicar, Ševčovič & Chadam

(1999) find a numerical approximation for an early exercise boundary for an Ameri-

can put option near expiry. Zhao, Davison & Corless (2007) design a compact finite

difference method for pricing American options. The authors offer three types of

finite difference methods and the results compare favourably to the existing Crank-

Nicolson methods.

Sullivan (2000) uses Gaussian quadrature to evaluate the price of an American put

option. Initially the author presents approximations for a European put option

using a Binomial Tree, Trapezoidal, Simpson’s and Gauss-Legendre methods, with

the Simpson and Gauss-Legendre methods working quite well. The Gauss-Legendre

quadrature is then applied to the American put option using Chebyshev approxi-

mations. Thorough analysis of convergence, accuracy and speed are presented and

comparisons to analytical methods are made. Some of the quadrature described

in Sullivan (2000) will be applied to a path integral representation of various types

of options in the thesis (Chapter 5 and 6).

In describing these models in the last couple of paragraphs, it is clear that the mod-

eling of American options is more complex than the modeling of European options

since American options can be exercised at any time up to the expiry date. Calcu-

lating the early exercise boundary (the point at which the American option should
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be exercised) is just as important as the value of the option itself.

In collating this review of pricing of financial instruments like options, it is clear that

financial instruments are becoming complex to model and to price. This review was

presented to give an overview of the changing landscape of option pricing. An area

that has not been presented thus far is the use of Path Integrals which is the main

emphasis of the thesis.

Path Integrals have been used in the area of science for many years. In the world

of option pricing it has only been in the last decade or so that the path integral has

been used to model the price of an option. The following section will give a review

of the literature presented so far. It is envisaged that the reader has some basic

knowledge and understanding of path integrals.

1.3 Option Pricing and Path Integrals

The use of path integrals has developed into a viable option pricing model represen-

tation in the past decade or so. Since the creation of the Black-Scholes PDE and the

various techniques to solve (1.1), authors have attempted to model vanilla and non

vanilla options in alternative forms. Path integrals has been one of the alternative

methods.

Path integrals have been used in various areas of science over the years, especially

in quantum physics. One of the advantages of using path integrals is the variety of

techniques used to solve them. From Monte Carlo simulation to various quadrature

methods, the techniques have been developed and applied to finance.

The following review will present the use of path integrals to model and the tech-

niques to evaluate option prices. One of the early uses of a path integral in derivative

security pricing was from Makivic (1994). The author presents a Monte Carlo ap-

proach (using the Metropolis algorithm) to price a security.
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Makivic also states that the main advantages of a path integral approach are:

(1) partial derivatives of the price with respect to all of the input parameters can

be computed in a single simulation,

(2) results for multiple sets of parameters can be computed in a single simulation,

and

(3) suitability for implementation on a parallel or distributed computing environ-

ment.

It must be said that his assertions are correct for a path integral approach using

Monte Carlo simulation to evaluate the price. The best results show errors of order

10−4.

Baaquie (1997) presents a path integral approach to option pricing with stochastic

volatility. Baaquie generalises the results of Hull & White (1987) for cases when

the stock price and volatility have non-zero correlation. Ingber (2000) also presents

a path integral approach to options with stochastic volatilities. The author uses an

Adaptive Simulated Annealing approach to determine the behaviour of diffusion.

This behaviour is determined by daily Eurodollar future prices and implied volatil-

ities. An algorithm called PATHINT is used to evaluate prices.

Linetsky (1998) offers a path integral approach to financial modeling and option

pricing. The author states that ”the path integral formalism constitutes a conve-

nient and intuitive language for stochastic modeling in finance”. Linetsky presents

various path integrals, including a framework for the Black-Scholes paradigm path

dependent options and multi-asset derivatives. The author finally develops evalu-

ations for various options using analytical approximations and numerical methods

(Monte Carlo simulation and/or discretization schemes).

Some authors have investigated the use of path integrals to model path dependent

options. Matacz (2000) uses a partial averaging method to price path dependent
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options (Asian options and occupation time derivatives). The method of partial

averaging reduces the dimension of the integral. The evaluation can be performed

by Monte Carlo simulation methods. Baaquie, Corianò & Srikant (2003) also offer a

path integral approach to solve for path dependent options. They build their model

using the Black-Scholes paradigm and then extend it to create more complex secu-

rities such as exotic and path dependent options. Baaquie et al. (2003) evaluate the

option prices by Monte-Carlo simulation. Bormetti, Montagna, Moreni & Nicrosini

(2006) also present a path integral framework to evaluate (via Monte Carlo simula-

tion) prices for various path dependent options.

An interesting application using a path integral approach is offered by Otto (1999).

The author presents a model to price interest rate derivatives. Path integrals for the

short term and bond option are developed. Otto suggests two techniques to solve

these derivatives, they are a lattice method or the use of Monte Carlo simulation.

Bennati, Rosa-Clot & Taddei (1999) develop a path integral approach for various

stochastic equations that best represent financial markets. The path integrals are

designed to cater for one and multi dimensional cases. The authors then present

some analytic results for various models such as Black-Scholes, Cox-Ingersoll-Ross

and others. Rosa-Clot & Taddei (2002) offer numerical methods to price some of

the derivative securities presented in Bennati et al. (1999). Rosa-Clot and Tad-

dei use two methods to evaluate prices, Monte Carlo simulation and deterministic

evaluations (quadrature rules). The deterministic evaluations has its advantages

in low dimensional problems but in high dimensions the technique has issues with

large matrix dimensions. Various options (European options , Zero-coupon bonds,

Caplets, American options and Bermudan swaptions) are priced.

Some authors have investigated the use and evaluation of path integrals to price op-

tions using unique and less common techniques. Kleinert (2002) presents a Natural

Martingale for non-Gaussian fluctuations of the underlying. Decamps, De Schepper

& Goovaerts (2006) develop a path integral approach to asset-liability manage-
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ment. Chiarella, El-Hassan & Kucera (1999) present an evaluation of a European

and American option in a path integral framework. The novel approach to the eval-

uation is the use of a Fourier-Hermite series. The technique takes into consideration

the form of the integrand of the path integral (1.3),

fk−1(ξk−1) =
e−rΔt

√
π

∫ ∞

−∞
e−(ξk−μ(ξk−1))2fk(

√
2Δt ξk) dξk. (1.3)

The Gaussian in the integrand is in the form of the weight of a Hermite orthogonal

polynomial. The price function, fk(ξk), is expanded into a Fourier-Hermite series.

This series is continuous and is a differentiable representation of the underlying.

Given the form of the Fourier-Hermite series, the Deltas are easily found as well as

the option price.

In Chapter 2 we present the development of the path integral (1.3). Chapter 3, in

this thesis, gives a thorough overview of the technique used to find the option price.

In this overview of the technique, errors were found in the formulation and in the

results presented. The path integral is formed using an application of Ito’s Lemma.

Chapter 4 offers a modification to the technique used to evaluate the option price.

The alternative method uses normalised Hermite orthogonal polynomials. The use

of the normalised polynomials has its advantages, especially when a large number

of basis functions are used.

An extension of the previous approach is offered by Chiarella, El-Hassan & Kucera

(2004) to incorporate the evaluation of point barrier option prices. The path integral

is very similar with the only difference being the integral domain. The path integral

(1.3) with a finite domain, namely,

fk−1(ξk−1) =
e−rΔt

√
π

∫ zk,u

zk,l

e−(ξk−μ(ξk−1))2fk(
√

2Δt ξk) dξk, (1.4)

where
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zk,l =
ln (bk,l)

σk

√
2Δtk

, and zk,u =
ln (bk,u)

σk

√
2Δtk

, (1.5)

for k = K−1, . . . , 1 with bk,l and bk,u being the lower and upper barriers respectively,

at time step k.

Chapters 5 and 6 offer alternative techniques to evaluate the same path integral

framework (1.3) and (1.4). Prices are approximated for European, American and

Barrier options. The techniques take into account the form of the integrand such

that interpolation polynomials and various quadrature rules can be used. The tech-

niques employed are highly accurate and very fast to compute.

Given the literature review presented in this thesis, it is clear that the methods

and techniques used in evaluating the option price are vast. From the early days of

Black, Scholes and Merton to the introduction of many scientific approaches, option

pricing is a growing area in both finance and mathematics. Path integrals in finance

is relatively new in comparison, with the last decade seeing an increase in activity.

Path integrals have been used in areas such as quantum physics for many years since

the initial work by Feynman (1942).
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1.4 Thesis Objectives

The thesis is based around the path integral framework offered by Chiarella et al.

(1999). In their method, the underlying is expanded into a Fourier-Hermite series.

At each time step, the coefficients of the series are determined in a backward recur-

sive manner, using recurrence relations. These relationships are formed utilising the

orthogonal properties of Hermite orthogonal polynomials. In Chapter 3, an anal-

ysis of the method described by Chiarella et al. is presented. This will assist in

understanding the remaining chapters and comparison of techniques used to solve

the same problem.

The first approach is similar to that offered by Chiarella et al. The main difference

being the use of normalised Hermite orthogonal polynomials. A set of recurrence

relations are formed, as with the previous method. The benefits of using the nor-

malised polynomials are the form of the recurrence relations as well as the speed to

find accurate results (especially for the European option). Some relations have one

less exponential term. Given this fact, the speed of computation should be improved

for a large number of basis functions.

The next approach, using the same path integral framework, also converts the un-

derlying price at each time step. The price is represented by a series of interpolation

polynomials. In this method, integration is performed only once, at the beginning

of the process. Using the result of the integration and the interpolation polynomial

coefficients found, the option price is evaluated. This process is repeated at each

time step. The method requires no transformations and is quite straight forward to

implement. The path integral framework is converted from an infinite interval to a

finite interval.

The major issues arising from this method include, the determination of the interval

of integration and the node point allocation. The problem of the interval of integra-

tion is solved via the properties of the Gaussian in the integral. Node allocation or
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distribution will vary depending on the derivative security being priced. Similar to

Chiarella et al., the resultant derivative security price is continuous and infinitely

differentiable allowing for fast and accurate evaluation of the hedge ratios (if re-

quired). The major advantage of this method is the very high accuracy obtained

and the easy adaptation for American and Barrier type options.

The final approach uses traditional quadrature rules such as the trapezoid and Simp-

son’s rule. Using a similar set up to that of the previous technique, a quadrature

scheme is formed to represent the derivative security price at each time step. The

rules used show that accurate results can be found in relatively quick time. Issues as

those that have arisen in the previous approach such as node allocation also exists

in this approach. The quadrature rules can also be easily applied to American and

Barrier type options.

The thesis is a numerical investigation of the path integral framework. The thesis will

emphasise the performance and accuracy of each of the methods for the framework

and particular parameters. Trade offs between accuracy and computational effort

are addressed. The ease of implementation (in the case of the European options)

allows an insight into the behaviour and performance of the method for the path

integral framework and more complex options like, American put and down and out

call options.
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Chapter 2

The Black and Scholes Paradigm

This chapter shows the evolution of the Black & Scholes (1973) paradigm. It begins

with the major assumptions in which a derivative security like an option is modeled

and priced. We present the formulation of the Black and Scholes equation (a partial

differential equation) using a replicating portfolio. In deriving the Black and Scholes

equation, a formula is presented for both a European Call and a Put option. Finally,

the development of the Chiarella et al. (1999) path integral is presented, which is

constructed based on the Black and Scholes paradigm.
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2.1 Introduction

Prior to presenting the path integral framework used in this thesis for option pric-

ing, an understanding of the Black & Scholes (1973) paradigm is required. Since

many option pricing models are based on this paradigm, the chapter will describe

the fundamentals of the assumptions, equations and the derivation of the formula.

We initially present the major assumptions on which a model using the paradigm

must satisfy. There are many assumptions which exist and continue to be used since

the creation of the Black and Scholes formula well over three decades ago.

Following the assumptions, we present a summary version of the creation of the Black

and Scholes equation (a partial differential equation) using a replicating portfolio.

The presented method is based on that in Wilmott (1999). The partial differential

equation (pde), is derived using a portfolio containing a long position in the option

and a short position in a quantity of the underlying. The portfolio is replicating

because it changes continuously with respect to time and a change in value of the

underlying. The pde is also derived using common financial principles of delta hedg-

ing and no arbitrage.

We finally present the formulation of the path integral framework based on Chiarella

et al. (1999). This is the framework which is central to this thesis. The framework

developed uses the assumptions and ideas described in this paradigm. The frame-

work is built based on the technique of path integrals in statistical physics.

2.2 The Black-Scholes Assumptions

Understanding of the modeling of an option price based on the Black and Scholes

paradigm, requires a list of assumptions and conditions to be followed. Since the

creation of the Black and Scholes formula over three decades ago, these assumptions

have extended to cater for the changing evolution of the financial world. Here are a
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list of the major assumptions in the Black and Scholes paradigm.

1. The underlying asset follows a log-normal random walk and the variance is

known and constant.

2. The risk-free interest rate is a known function of time.

3. The underlying pays no dividends and is fungible.

4. Options can only be exercised at Maturity (Vanilla Options).

5. There are no transaction costs.

6. There are no arbitrage opportunities.

7. An investor can borrow any amount of money to purchase the security, at the

short-term interest rate.

8. There is no credit risk.

There are other assumptions which can be included in the paradigm. Given these

assumptions, a Black and Scholes model can be created.

2.3 Replicating Portfolio

We can develop the Black and Scholes equation (a partial differential equation) by

creating a portfolio of one long position in the option and a short position in a

quantity of the underlying. If we denote the option price as V (S, t), the quantity Δ

of the underlying S, then the value of the portfolio is given by

Π = V (S, t) − ΔS, (2.1)

where S is the value of the underlying and t is time. If we assume that the underlying

follows a log-normal random walk
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dS = μSdt + σSdW, (2.2)

where μ is the drift parameter, σ is the volatility associated with the underlying

and W represents the Brownian motion. For a thorough investigation of Brownian

motion, we refer the reader to Chapter 3.3 in Ross (2003). A portfolio value therefore

changes with respect to time

dΠ = dV − ΔdS. (2.3)

We now introduce Ito’s Lemma, the reader is referred to Wilmott, Dewynne &

Howison (2000) for a thorough investigation of the Lemma (Chapter 2.3).

dV =
∂V

∂t
dt +

∂V

∂S
dS +

1

2
σ2S2∂2V

∂S2
dt (2.4)

and we substitute (2.4) into (2.3) so that the portfolio changes by

dΠ =
∂V

∂t
dt +

∂V

∂S
dS +

1

2
σ2S2∂2V

∂S2
dt − ΔdS. (2.5)

In (2.5) there are two terms which involve risk. They are
∂V

∂S
dS and ΔdS. To

eliminate this risk we let

Δ =
∂V

∂S
. (2.6)

This elimination is commonly known as Delta Hedging giving from (2.5) and (2.6)

dΠ =

(
∂V

∂t
+

1

2
σ2S2∂2V

∂S2

)
dt, (2.7)

where as a consequence of assumption (2.6), the change in the portfolio is now risk-

less.

Since the change in the portfolio value is risk free, it must earn the risk free rate of

interest otherwise riskless arbitrage opportunities would exists. Namely

dΠ = rΠdt. (2.8)

26



CHAPTER 2. THE BLACK AND SCHOLES PARADIGM

Therefore, substituting (2.8) into (2.7) and using (2.1) and (2.6) gives

(
∂V

∂t
+

1

2
σ2S2 ∂2V

∂S2

)
dt = rΠdt

= r
(
V − S

∂V

∂S

)
dt (2.9)

and with the rearrangement of (2.9) gives

∂V

∂t
+

1

2
σ2S2∂2V

∂S2
+ rS

∂V

∂S
− rV = 0. (2.10)

The partial differential equation (2.10) is the Black and Scholes equation that is

commonly referred to in the literature.

The pde (2.10) is of a parabolic form, which are usually called diffusion equations.

These equations have been used to model many areas of science. The simplest form

of the diffusion equation is

∂u

∂t
=

∂2u

∂x2
, (2.11)

which is the heat equation for the temperature in a bar. In (2.11), u is the tem-

perature, x is the spatial coordinate and t is time. This is achievable by changing

variables in (2.10) to reduce to the form of (2.11).

2.4 The Black-Scholes Formula

In this thesis, the techniques used, are initially applied to the European call and put

options and so, a presentation of how the Black and Scholes formula (for a European

call and put option) is derived from (2.10) follows. The boundary conditions will

determine the type of options to be considered. The derivation of the Black and

Scholes formula will also assist in the understanding of the derivation of the path
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integral of Chiarella et al. (1999).

Equation (2.10) is a backward equation since we are valuing an option for an un-

derlying with some future value at time T . Discounting for interest rate, r gives

V (S, t) = e−r(T−t)U(S, t) (2.12)

which upon substitution into (2.10) gives

∂U

∂t
+

1

2
σ2S2∂2U

∂S2
+ rS

∂U

∂S
= 0. (2.13)

With the substitutions,

τ = T − t, z = ln (S),
∂

∂S
= e−z ∂

∂z
and

∂2

∂S2
= e−2z ∂2

∂z2
− e−2z ∂

∂z
,

in (2.13) gives, after some algebra,

∂U

∂τ
=

1

2
σ2 ∂2U

∂z2
+ (r − 1

2
σ2)

∂U

∂z
. (2.14)

A final substitution

x = z + (r − 1

2
σ2)τ and U = W (x, t)

reduces the Black and Scholes equation (2.14) to,

∂W

∂τ
=

1

2
σ2∂2W

∂x2
. (2.15)

This simplified version of the Black and Scholes equation, is in a similar form to the

diffusion (heat) equation (2.11).

At this point we direct the reader to Wilmott (1999) for a step by step solution to

(2.15). The solution offered by Wilmott (1999) is,

V (S, t) =
e−r(T−t)

σ
√

2π(T − t)

∫ ∞

0

e−(ln ( S
S∗ )+(r− 1

2
σ2)(T−t))2/2σ2(T−t)P (S∗)

dS∗

S∗ (2.16)
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where S∗ is an arbitrary constant and P (S∗) is the payoff function for various op-

tions which can be applied in a fairly straight forward fashion. The payoff function

P (S∗), is the boundary condition, which varies depending on the type of option

being considered.

2.4.1 European Call and Put Option

For a European call option, Ec(S, t), with a payoff function

P (S) = (S − E, 0)+ = max(S − E, 0), (2.17)

where E is the strike price. Equation (2.16) is re-written as

Ec(S, t) =
e−r(T−t)

σ
√

2π(T − t)

∫ ∞

E

e−(ln ( S
S∗ )+(r− 1

2
σ2)(T−t))2/2σ2(T−t)(S∗ − E)

dS∗

S∗ , (2.18)

and using the change of variable x∗ = ln (S∗), (2.18) becomes

Ec(S, t) =
e−r(T−t)

σ
√

2π(T − t)

∫ ∞

ln (E)

e−(−x∗+ln (S)+(r− 1
2
σ2)(T−t))2/2σ2(T−t)(ex∗ − E)dx∗,

=
e−rΔt

σ
√

2πΔt

∫ ∞

ln (E)

e−(−x∗+ln (S)+(r− 1
2
σ2)Δt)2/2σ2Δtex∗

dx∗

− Ee−rΔt

σ
√

2πΔt

∫ ∞

ln (E)

e−(−x∗+ln (S)+(r− 1
2
σ2)Δt)2/2σ2Δtdx∗, (2.19)

where Δt = T − t. Since the two integrals in (2.19) are in the form

w√
2π

∫ ∞

d

e−
1
2
x2

dx, (2.20)

the European call option price can be written in terms of the cumulative distribution

frequency of the Normal Distribution, N(.). Namely,

Ec = SN(d1) − Ee−rΔtN(d2), (2.21)
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where

d1 =
ln ( S

E
) + (r + 1

2
σ2)Δt

σ
√

Δt
, (2.22)

and

d2 =
ln ( S

E
) + (r − 1

2
σ2)Δt

σ
√

Δt

= d1 − σ
√

Δt. (2.23)

The European put option, Ep(S, t), is similarly derived using the following payoff

function,

P (S) = (E − S, 0)+ = max(E − S, 0). (2.24)

Since the payoff for a European put is E − S, the above steps are used to find,

Ep = −SN(−d1) + Ee−rΔtN(−d2), (2.25)

where d1 and d2 are as given in (2.22) and (2.23).

So, this is the derivation of the Black and Scholes formula using the various assump-

tions and a partial differential equation formed using a replicating portfolio. To

finalise this chapter on the Black and Scholes paradigm, we will look at the pricing

problem in a path integral framework.

2.5 Path Integral Framework

So far in this chapter we have given a presentation of the Black and Scholes paradigm

and the development of their equation and formula. The investigation is a good step-

ping stone in understanding the motivation of the thesis. The proceeding chapters

present some of the previous work and introduce new techniques to the pricing of

options in a path integral framework. The path integral framework developed is
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based on the Black and Scholes paradigm and uses some of the ideas presented so

far in this chapter.

The path integral used in this thesis was developed by Chiarella et al. (1999). The

derivative security or option price f(x, t) is given by a Feynman-Kac formula

f(x0, t0) = e−r(T−t0)Et0 [g(xT )] (2.26)

where x is the log of the underlying, t is time, T is the expiry date, g(.) is the payoff

function and Et0 is the expectation at t0, generated by

dx = rdt + σdW (t) (2.27)

where W (t) is standard Brownian motion.

Since Et0 is the expectation with respect to the transition probability distribution

function from (x0, t0) to (x, T ), represented by π(x, T |x0, t0), (2.26) becomes

f(x0, t0) = e−r(T−t0)

∫
g(x)π(x, T |x0, t0)dx. (2.28)

The interval (t0, T ) can be subdivided into K intervals, t0, t1, . . . , tk−1, tk, . . . , tK , so

that (2.28) can be related to the option price over the subinterval tk−1 to tk, namely

f(xk−1, tk−1) = e−r(tk−tk−1)

∫
f(xk, tk)π(xk, tk|xk−1, tk−1)dxk. (2.29)

At this point Chiarella et al. (1999) observe that time has been discretized but the

price dependence is continuous and so (2.29) can be rewritten as

fk−1(xk−1) = e−r(tk−tk−1)

∫
fk(xk)π(xk, tk|xk−1, tk−1)dxk, (2.30)

with time dependence of f denoted by the superscript k. Since π(xk, tk|xk−1, tk−1)

satisfies the Chapman-Kolmogorov equation, a repeated Chapman-Kolmogorov equa-

tion is used in Chiarella et al. (1999) namely,

π(xn, tn|x1, t1) =

∫
π(xn, tn|x2, t2)π(x2, t2|x1, t1)dx2, (2.31)
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to formulate the expectation as a path integral. Therefore, (2.28) is transformed to

a path integral by multiple use of the Chapman-Kolmogorov equation. As stated

earlier, the time interval t0 to T is subdivided into K intervals of length Δt =

(T − t0)/K, with tk = t0 + kΔt and the transition probabilities become

π(xK , tK |x0, t0) =

∫
dxK−1

∫
dxK−2 . . .

∫
dxK−k . . .

∫
dx2

∫
dx1

× π(xK , tK |xK−1, tK−1) × π(xK−1, tK−1|xK−2, tK−2) . . .

× π(xK−k, tK−k|xK−(k+1), tK−(k+1)) . . .

× π(x2, t2|x1, t1) × π(x1, t1|x0, t0). (2.32)

For small time intervals, Δt, the transition probability density for (2.27) is approx-

imated by a normal density so that,

π(x, t + Δt|x∗, t) =
1√

2πσ2Δt
e−((x−x∗)−rΔt)2/2σ2Δt. (2.33)

Substituting (2.33) into (2.32) gives

π(xK , tK |x0, t0) =
1√

2πσ2Δt

∫
K−1

. . .

∫
e−((x1−x0)−rΔt)2/2σ2Δt

× e−λ

K−1∏
k=1

dxk√
2πσ2Δt

(2.34)

where,

λ = −
K−1∑
k=1

((xk+1 − xk) − rΔt)2/2σ2Δt.

Equation (2.34) becomes the path integral expression for π(xK , tK |x0, t0) as n → ∞
in the limit of finite dimensional integrals, therefore, the option pricing formula

becomes
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f(x0, t0) = e−r(tK−t0)

∫
g(xK)π(xK , tK |x0, t0)dxK

= e−r(tK−t0)

∫ ∫
. . .

∫
π(x1, t1|x0, t0) × π(x2, t2|x1, t1) . . .

× π(xK−1, tK−1|xK−2, tK−2) × π(xK , tK |xK−1, tK−1)

× g(xK)dxK , dxK−1 . . . dx2dx1. (2.35)

Integrating successively with respect to each xk, where k = K, K−1, . . . , 1, equation

(2.35), reduces to

fk−1(xk−1) = e−rΔt

∫ ∞

−∞
π(xk, tk|xk−1, tk−1)f

k(xk)dxk, (2.36)

where fk−1(xk−1) ≡ f(xk−1, tk−1) and fK(xK) denotes the payoff function g(xK).

Given that the underlying S follows a geometric Brownian motion represented by

dS = rSdt + σSdW (2.37)

for 0 ≤ t ≤ T and σ is a constant volatility, Chiarella et al. (1999) transforms (2.37)

to incorporate unit diffusion coefficient and an infinite interval.

Firstly, the underlying is normalised by the exercise price, namely S ≡ S/X and

with

ξ =

∫
1

σS
dS =

1

σ
ln (S). (2.38)

giving a representation of the underlying on an infinite interval. On applying Ito’s

Lemma,

dξ =
1

σ
(r − 1

2
σ2)dt + dW (t), (2.39)

ξ can now be written as a time dependent variable, namely

ξt = ξ0 +
1

σ
(r − 1

2
σ2)t + Wt, (2.40)
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from which we conclude that

ξt ∼ N(ξ0 +
1

σ
(r − 1

2
σ2)t, t). (2.41)

Using the fact that ξt is normally distributed, the transition probability density

function (2.34) becomes

π(ξT , T |ξt, t) =
1√

2π(T − t)
e−((ξT −

√
2(T−t)μ(ξt,T−t))2/2(T−t)), (2.42)

where

μ(ξt, T − t) =
1√

2(T − t)

[
ξt +

1

σ
(r − 1

2
σ2)(T − t)

]
.

So, substituting (2.42) into (2.36) gives (1.3) namely,

fk−1(ξk−1) =
e−rΔt

√
π

∫ ∞

−∞
e−(ξk−μ(ξk−1,Δt))2fk(

√
2Δtξk)dξk, (2.43)

where Δt = tk − tk−1 and μ(ξk−1, Δt) is given by (2.42).

This is the path integral that is going to be used throughout the thesis. The ex-

ponential in (2.43) is in a form very similar to properties associated with Hermite

orthogonal polynomials. The path integral (2.43), has only an analytical solution at

tK (the first time step), when the payoff function, fK(ξK) is known. All subsequent

time steps need to be solved using non-analytical methods.

As described in the previous chapter, Chiarella et al. (1999) use a Fourier-Hermite

series expansion to represent the option pricing function fk(ξk). Using the recursive

nature of this method, the option price, f 0(ξ0) is found by solving for the coeffi-

cients of the Fourier-Hermite series. Chapter 3 gives a presentation of the method

and chapter 4 details a normalised version of the same technique.

The subsequent chapters utilise the same path integral (2.43) using interpolation

polynomials and various quadrature rules. These methods offer an alternative to the
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Fourier-Hermite method. These new methods are applied to a European, American

and Barrier option.
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Chapter 3

Fourier-Hermite Series Evaluation

The approach used in this chapter closely follows and is a summary of the method

presented in Chiarella et al. (1999) which is crucial to the understanding of further

developments in the current work. This spectral method is based on the particular

form of the integrand of the appropriate path integral of the problem at hand. The

method links the function representing the underlying by using a Fourier-Hermite

series expansion, with the coefficients of the series from one time step linked to the

coefficients of the next time step. The process is repeated until the final time step,

at which stage the final option price is evaluated using a pricing polynomial.
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3.1 Introduction

A presentation and analysis of the method and techniques used by Chiarella et al.

(1999) is made in this chapter. The method presented involves the use of Hermite

orthogonal polynomials and Fourier series.

The first part of the integrand in the path integral (2.43) (a weight function in the

form of a Gaussian) is in a form appropriate to be applied to Hermite orthogonal

polynomials and the properties associated with these types of polynomials. The

aim of this method is to represent the underlying in a Fourier-Hermite series. As

with most Fourier series, the objective is to find the coefficients of the series. These

coefficients are determined by using the orthogonal properties of the Hermite poly-

nomials. A set of recurrence relations are formed which are in turn used to explicitly

evaluate the coefficients of the Fourier-Hermite series. The recurrence relations are

expressed so that the coefficients of the polynomial, at the final step, is used to

evaluate the option price.

One of the advantages of the method employed is that the underlying is represented

by a polynomial. This allows for a set of option prices to be found for a set of

model parameters. Most methods determine only a single option price whereas this

spectral method allows for multiple prices. Also, approximating the hedge ratios are

easily determined by differentiation, given the pricing polynomial approximation is

smooth.

Section 3.2 introduces the Fourier-Hermite series as a representation of the underly-

ing. With the use of various Hermite polynomial and their mathematical properties,

a link between the coefficients is formed from one time step to the next. The link,

in the form of a recurrence relation, is used to find the elements of a 2 dimensional

matrix. This upper triangular matrix is used to modify the coefficients from one

time step to the next, until the final option price can be evaluated.
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In sub-sections 3.2.1 and 3.2.2, the relationship built in the previous section is ap-

plied to evaluate a call and put option price respectively. The implementation of

both types of option prices differ due to the payoff function used at the expiry date

of the option. Since the path integral is backward recursive, the payoff function is

used firstly to allocate the first set of coefficients in the form of a vector. Given the

difference in payoff functions, the initial coefficients will differ but all subsequent

steps remain the same in the process of evaluating the option price.

Sub-section 3.2.3 will present a thorough analysis of the method applied to Euro-

pean options. The analysis will be based on the comparison of the Fourier-Hermite

series expansion method with the analytical solutions obtained by Black and Scholes

formula.

Section 3.3 investigates the same method applied to an American put option. The

major difference is the path integral set-up. Since an American option can be exer-

cised at any time during the life of the option, the integral is split into two parts.

The two parts represents whether or not the option is being exercised. So, one of the

issues in the evaluation of the option price is where do we exercise? In the imple-

mentation, the exercise component is derived using the payoff for a put option and

the non-exercise part is similar to the European put, with the interval of integration

being the difference. Sub-section 3.3.1 will present an analysis of the method applied

to an American put option. The analysis will compare the results obtained by this

method to those evaluated by a Binomial tree method. Some further results will

also be presented in chapters 5 and 6.

3.2 European Options

The first derivative security price to be evaluated is a European option. A European

option allows the holder the right (but not the obligation) to exercise the option at

the final expiry date. The European option price therefore is evaluated depending on
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the time to expiry, T , the volatility of the underlying, σ and the short-term interest

rate, r. The volatility and interest rate are constant throughout the life of the option.

The path integral, as presented in Chapter 2 for k = K, K − 1, . . . , 1, is given by

fk−1(ξk−1) =
e−rΔt

√
π

∫ ∞

−∞
e−(ξk−μ(ξk−1))2fk(

√
2Δt ξk) dξk, (3.1)

where

μ(ξk−1) =
ξk−1 + b√

2Δt
, (3.2)

and

b =
1

σ
(r − 1

2
σ2)Δt. (3.3)

The aim of this spectral approach is to represent fk−1(ξk−1) in a form that allows

its use in subsequent time steps. The appropriateness of this method is due to the

form of the exponential (Gaussian) in the integrand. Given the Gaussian form is

similar to the weighting function of Hermite polynomials, the properties associated

with these types of polynomials can be utilised.

Namely, the underlying, fk−1(ξk−1), may be represented by a Fourier series of Her-

mite polynomials, with αk−1
q being the coefficient of the Hermite polynomial term

Hq(ξk−1). The series is fixed to a finite number of basis functions N . This repre-

sentation, with the use of further substitutions and the properties of the Hermite

polynomial, will form a set of polynomial representations for the underlying. So,

the form of fk−1(ξk−1) can be expressed as,

fk−1(ξk−1) �
N∑

q=0

αk−1
q Hq(ξk−1). (3.4)

With the Hermite polynomial properties,

H0(t) = 1, H1(t) = 2t, (3.5)
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Hn(υt + b) = 2(υt + b)Hn−1(υt + b) − 2(n − 1)Hn−2(υt + b) for n > 1, (3.6)

d

dt
Hn(υt + b) = 2υnHn−1(υt + b), (3.7)

1√
π

∫ ∞

−∞
H0(t)e

−t2 dt = 1, (3.8)

1√
π

∫ ∞

−∞
H1(t)e

−t2 dt = 0, (3.9)

and

erfc(x) =
2√
π

∫ ∞

x

e−t2 dt = 1 − erf(x). (3.10)

The use of the Hermite polynomials and various properties associated with them,

allow an expression (recurrence relation) to be formed. This will enable the coeffi-

cients of one time step to be expressed in terms of the coefficients of the previous

time step. The process begins with the allocation of the coefficients at the first time

step. At this initial time step, the coefficients for fK−1(ξK−1) are evaluated, with

fK(ξK) being represented by the payoff function. The payoff function is in such a

form that there is an analytic solution to the path integral (3.1) at this time step.

In the proceeding steps, a Fourier-Hermite series expansion for fk(ξk) in (3.1) will

also be introduced to complete the expression. The coefficients found for fK−1(ξK−1)

are used to find the coefficients of the subsequent time steps until the coefficients of

f 0(ξ0) are evaluated. The polynomial formed for f 0(ξ0) is the representation of the

required option price. This polynomial can then be used to find any option price or

hedge ratio.

To begin the process of determining the coefficients, (3.4) is substituted into (3.1),

to produce,
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N∑
q=0

αk−1
q Hq(ξk−1) =

e−rΔt

√
π

∫ ∞

−∞
e−(ξk−μ(ξk−1))2fk(

√
2Δt ξk) dξk. (3.11)

The aim is to determine the coefficients αk−1
q in (3.11). Therefore, (3.11) needs

transformation taking into consideration the Hermite polynomial Hq(ξk−1) and the

form of the integrand.

To this end, the following orthogonality property of Hermite polynomials

m!2m
√

π

∫ ∞

−∞
e−t2Hm(t)Hn(t) dt = δm,n =

{
1, m = n

0, otherwise
, (3.12)

may be utilised to determine the coefficients αk−1
q . Thus, from (3.11) we have

1√
π

∫ ∞

−∞
e−ξ2

k−1Hm(ξk−1)
N∑

q=0

αk−1
q Hq(ξk−1) dξk−1

=
1√
π

∫ ∞

−∞
e−ξ2

k−1Hm(ξk−1)
e−rΔt

√
π

∫ ∞

−∞
e−(ξk−μ(ξk−1))2fk(

√
2Δt ξk) dξk dξk−1,

and so the left hand side is further simplified by using property (3.12) to give

αk−1
m =

e−rΔt

2mm!
√

π

∫ ∞

−∞

[
1√
π

∫ ∞

−∞
e−[(ξk−μ(ξk−1))2+ξ2

k−1]Hm(ξk−1) dξk−1

]
fk(

√
2Δt ξk) dξk,

=
e−rΔt

2mm!
√

π

∫ ∞

−∞
fk(

√
2Δt ξk)Im(ξk) dξk, (3.13)

where,

Proposition 3.2.1. The integrand term,

Im(ξk) =

√
2Δt e−(

√
2Δt ξk−b

υ
)2Hm(

√
2Δt ξk−b

υ
)

υm+1
(3.14)
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Proof. The analytical form (3.14) can be utilised so that the coefficients for the

(k − 1)th time step can be determined. This can be achieved by modifying (3.13),

using the analytical form (3.14) and introducing a Fourier-Hermite series for time

step k. This will create a relationship between the coefficients from one time step

to the next. Given,

Im(ξk) =
1√
π

∫ ∞

−∞
e−[(ξk−μ(ξk−1))2+ξ2

k−1]Hm(ξk−1) dξk−1. (3.15)

Finding the analytical form of (3.15) can be assisted by firstly completing the square

of the index of the exponential within the integrand in (3.14). The reason for

completing the square is to maintain the exponential within the integrand in a form

suitable for the use of Hermite polynomials and their properties. This is achieved

using some simple algebra (see A.1.1 for a step by step evaluation).

(ξk − μ(ξk−1))
2 + ξ2

k−1 =

[
υξk−1√

2Δt
−

√
2Δt ξk − b

υ
√

2Δt

]2

+

[√
2Δt ξk − b

υ

]2

, (3.16)

where μ(ξk−1) and b are as defined by (3.2) and (3.3) respectively and

υ =
√

1 + 2Δt. (3.17)

Therefore, substituting (3.16) into (3.14) and rearranging gives

Im(ξk) =
e−(

√
2Δt ξk−b

υ
)2

√
π

∫ ∞

−∞
e
−(

υξk−1√
2Δt

−
√

2Δt ξk−b

υ
√

2Δt
)2
Hm(ξk−1) dξk−1, (3.18)

where b is given by (3.3) and υ by (3.17).

To assist in obtaining an analytical form for Im, the following substitution is required,

y =
υ ξk−1√

2Δt
,

and (3.18) is evaluated analytically as follows,
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Im(ξk) =
e−(

√
2Δt ξk−b

υ
)2

√
π

∫ ∞

−∞
e
−(y−

√
2Δt ξk−b

υ
√

2Δt
)2
Hm(

y
√

2Δt

υ
)

√
2Δt

υ
dy,

=

√
2Δt e−(

√
2Δt ξk−b

υ
)2

υ
√

π

∫ ∞

−∞
e
−(y−

√
2Δt ξk−b

υ
√

2Δt
)2
Hm(

y
√

2Δt

υ
) dy,

=

√
2Δt e−(

√
2Δt ξk−b

υ
)2Hm(

√
2Δt ξk−b

υ
)

υm+1
, (3.19)

Since (3.14) is in an analytical form, (3.13) can be modified by substituting (3.14)

and replacing fk(ξk) with a Fourier-Hermite series. This will transform (3.13) so

that property (3.12) is applied, which allows in turn a recurrence relation to be

obtained with αk−1 expressed in terms of αk. Given,

αk−1
m =

e−rΔt

2mm!
√

π

∫ ∞

−∞

√
2Δt e−(

√
2Δt ξk−b

υ
)2Hm(

√
2Δt ξk−b

υ
)

υm+1
fk(

√
2Δt ξk) dξk, (3.20)

and by performing a further substitution,

z =

√
2Δt ξk − b

υ
,

(3.20) is simplified to,

αk−1
m =

e−rΔt

2mm!υm
√

π

∫ ∞

−∞
e−z2

Hm(z)fk(υz + b) dz. (3.21)

The final step required to obtain a recurrence relation between αk−1 and αk, is

to introduce a Fourier-Hermite series for fk(υz + b). This Fourier-Hermite series

is similar to (3.4), the major difference being the coefficients are for time step k.

Therefore,

fk(ξk) �
N∑

n=0

αk
nHn(ξk), (3.22)

and the Fourier-Hermite series (3.22) is substituted into (3.21). This will express

αk−1 in terms of αk,
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αk−1
m =

e−rΔt

2mm!υm
√

π

∫ ∞

−∞
e−z2

Hm(z)

N∑
n=0

αk
nHn(υz + b) dz,

=
e−rΔt

2mm!υm
√

π

N∑
n=0

αk
n

∫ ∞

−∞
e−z2

Hm(z)Hn(υz + b) dz. (3.23)

Proposition 3.2.2. The coefficients αk−1
m can be evaluated by the recurrence relation

αk−1
m = e−rΔt

N∑
n=0

αk
nAm,n, (3.24)

where,

Am,n =
1

2mm!υm
√

π

∫ ∞

−∞
e−z2

Hm(z)Hn(υz + b) dz, (3.25)

with the following relations define the elements Am,n,

A0,0 = 1 A0,1 = 2b,

A0,n = 2bA0,n−1 + 2(n − 1)(υ2 − 1)A0,n−2, for n = 2, 3, . . . , N

(3.26)

Am,n =
n

m
Am−1,n−1, for m = 1, 2, . . . , N and n = 2, 3, . . . , N,

Am,n = 0 for m > n.

Proof. Since (3.24) is an expression that links the α’s from time step k to k − 1, a

recurrence relation is built. This relationship is created by finding the elements of

the 2 dimensional matrix A from (3.25). The elements, Am,n are in a similar form

to (3.12).

To find the elements of matrix A, the initial elements are required. The matrix A

is used to modify the coefficients from one time step to the next. Therefore, the

coefficients αK−1 are multiplied by A to give, αK−2. This process is repeated for
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the proceeding time steps until α0 is found. So, prior to evaluating any coefficients,

the elements of matrix A require determination.

To start with, the element A0,0 is given by,

A0,0 =
1

200!υ0
√

π

∫ ∞

−∞
e−z2

H0(z)H0(υz + b) dz,

=
1√
π

∫ ∞

−∞
e−z2

dz,

and therefore using (3.8), A0,0 = 1 as given in (3.26).

Element A0,1 is given by,

A0,1 =
1

200!υ0
√

π

∫ ∞

−∞
e−z2

H0(z)H1(υz + b) dz,

=
1√
π

∫ ∞

−∞
e−z2

H1(υz + b) dz,

=
1√
π

∫ ∞

−∞
2ze−z2

dz +
2b√
π

∫ ∞

−∞
e−z2

dz, (3.27)

with the first integral in (3.27) being in the form of (3.9) and the second integral in

(3.27) is in the form of (3.8). So, A0,1 = 2b as given in (3.26).

Given the elements A0,0 and A0,1, the subsequent elements A0,n are evaluated by,

A0,n =
1

200!υ0
√

π

∫ ∞

−∞
e−z2

H0(z)Hn(υz + b) dz,

=
1√
π

∫ ∞

−∞
e−z2

[
2(υz + b)Hn−1(υz + b) − 2(n − 1)Hn−2(υz + b)

]
dz,

=
1√
π

∫ ∞

−∞
2υze−z2

Hn−1(υz + b) dz + 2bA0,n−1 − 2(n − 1)A0,n−2, (3.28)
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where we have used (3.6) to transform A0,n. The integral in (3.28) is evaluated using

the property (3.7) and integration by parts, to give,

A0,n =
1√
π

∫ ∞

−∞
υe−z2

2υ(n − 1)Hn−2(υz + b) dz + 2bA0,n−1 − 2(n − 1)A0,n−2,

= 2υ2(n − 1)A0,n−2 + 2bA0,n−1 − 2(n − 1)A0,n−2,

and so

A0,n = 2bA0,n−1 + 2(n − 1)(υ2 − 1)A0,n−2 for n = 2, 3, . . . , N. (3.29)

The solution to the elements Am,n are derived using the Hermite polynomial proper-

ties (3.6) and (3.7). Also, to assist in the evaluation of elements Am,n, the Hm(υz+b)

term in the integrand of (3.25) is replaced using (3.7). The reason for this replace-

ment is to complement the method (integration by parts) of evaluation of Am,n. A

proof for elements Am,n can be found in appendix A.1.2. So,

Am,n =
1

2mm!υm
√

π

∫ ∞

−∞
e−z2

Hm(z)

[
d

dz

1

υ

1

2(n + 1)
Hn+1(υz + b)

]
dz,

and using integration by parts, Am,n is transformed to,

Am,n =
1

2mm!υm

[
−1

υ

1

2(n + 1)

1√
π

∫ ∞

−∞
Hn+1(υz + b)

(
d

dz
e−z2

Hm(z)

)
dz

]
. (3.30)

The derivative in (3.30) can be solved using property (3.6) and the product rule.

Therefore,

(
d

dz
e−z2

Hm(z)

)
= 2me−z2

Hm−1(z) − 2ze−z2

Hm(z),

= e−z2[
2mHm−1(z) − 2zHm(z)

]
,

= e−z2[−Hm+1(z)
]
. (3.31)
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So, to evaluate the element Am,n, (3.31) is substituted into (3.30). Since (3.30) is

expressed in a forward manner, rearrangement is required so that Am,n is expressed

in terms of Am−1,n−1. Therefore,

Am,n =
1

2mm!υm

[
−1

υ

1

2(n + 1)

1√
π

∫ ∞

−∞
Hn+1(υz + b)e−z2

(
−Hm+1(z)

)
dz

]
,

=
1

2mm!υm

[
1

υ

1

2(n + 1)

1√
π

∫ ∞

−∞
e−z2

Hm+1(z)Hn+1(υz + b) dz

]
,

=
1

2m+1(m + 1)!υm+1

[
m + 1

n + 1

1√
π

∫ ∞

−∞
e−z2

Hm+1(z)Hn+1(υz + b) dz

]
,

=
m + 1

n + 1
Am+1,n+1,

and so

Am+1,n+1 =
n + 1

m + 1
Am,n,

giving

Am,n =
n

m
Am−1,n−1. (3.32)

It must be noted that when m > n elements Am,n = 0.

The expression for A0,n and Am,n in (3.26) are different to those presented in Chiarella

et al. (1999). Since there are no proofs in Chiarella et al. (1999) for the elements of

matrix A, it is difficult to ascertain where the differences have occurred.

The relation (3.25) gives the elements of an upper triangular matrix with leading

diagonal elements being one. For particular model attributes, the elements of the

Matrix A are evaluated by the relationships expressed. The next part of the process

is to firstly find the values of αK−1, since it is the first step in the backward recursive
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path integral framework. Using the values of the Matrix A and αK−1, a recurrence

relation can be found and as such, the value of a European call and put option price

can be evaluated.

For each particular type of European option (call or put), the values of α differ

because of the payoff function. Therefore, the αK−1
m values will require separate

evaluations. The next two sections will present the αK−1
m values for the call and put

option respectively. These option pricing solutions are obtained by the following

expression, which is derived from (3.24), and depending on the number of time

steps K,

α0 = e−r(K−1)ΔtAK−1αK−1. (3.33)

In implementing this method and taking into consideration the expression (3.33),

the two major issues to ponder are the values of the matrix A and αK−1. The

coefficients of the option price polynomial (α0) are determined by this matrix mul-

tiplication.

Since the elements of matrix A have been found in this section, the next two sections

will describe the relationships to find the coefficients for the first time step K − 1.

These coefficients are determined using the payoff functions for a call or put option.

Since the payoffs differ for each type of option, the coefficients are evaluated using

different fK and intervals of integration.

3.2.1 European Call Options

The next step in determining an option price using the spectral method, is to calcu-

late the coefficients of the final time step (α0). The values in α0 are the coefficients

of the option price polynomial (a Fourier-Hermite series). These coefficients are

evaluated by (3.33). Since the elements of matrix A can be found using the rela-

tionships (3.26) determined from the previous section, the final requirement is to
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find the vector αK−1.

To calculate the values of αK−1, consideration must be given to the payoff function

for the type of option being modeled. Therefore, for the first time step and recalling

(3.13), namely

αK−1
m =

e−rΔt

2mm!
√

π

∫ ∞

−∞
fK(

√
2Δt ξK)Im(ξK) dξK,

where the payoff function for a European Call option is given by

fK(ξK) = (eσξK − 1)+, (3.34)

then substituting the payoff function (3.34) into (3.13) gives

αK−1
m =

e−rΔt

2mm!
√

π

∫ ∞

0

(e
√

2Δt σξK − 1)Im(ξK) dξK , (3.35)

where Im(ξK) is as given in (3.18) and explicitly in (3.19).

The interval of integration in (3.35) is now over [0, +∞) since the payoff only occurs

for positive ξK . Given the form of (3.35), a recurrence relation will be created to

link the coefficients of the first time step. The integral in (3.35) using (3.19) may

be simplified to obtain an analytical form for the αK−1
m for m = 0 and 1. All other

subsequent values are derived by a recurrence relation linking αK−1
m to αK−1

m−1. So,

αK−1
m =

e−rΔt

2mm!
√

π

[∫ ∞

0

e
√

2Δt σξKIm(ξK)dξK −
∫ ∞

0

Im(ξK) dξK

]
,

=
e−rΔt

2mm!
√

π

√
2Δt

υm+1

[∫ ∞

0

e
√

2Δt σξK e−(
√

2Δt ξK−b

υ
)2Hm(

√
2Δt ξK − b

υ
) dξK

−
∫ ∞

0

e−(
√

2Δt ξK−b

υ
)2Hm(

√
2Δt ξK − b

υ
) dξK

]
.

To simplify the above, the following substitution is required,

z =

√
2Δt ξK − b

υ
,
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which gives,

αK−1
m =

e−rΔt

2mm!
√

π

√
2Δt

υm+1

[∫ ∞

− b
υ

eσ(υz+b)e−z2

Hm(z)
υ√
2Δt

dz

−
∫ ∞

− b
υ

e−z2

Hm(z)
υ√
2Δt

dz

]
,

=
e−rΔt

2mm!υm
√

π

[∫ ∞

− b
υ

eσ(υz+b)e−z2

Hm(z) dz −
∫ ∞

− b
υ

e−z2

Hm(z) dz

]
,

=
e−rΔt

2mm!υm
√

π

[
eσb

∫ ∞

− b
υ

eσυze−z2

Hm(z) dz −
∫ ∞

− b
υ

e−z2

Hm(z) dz

]
. (3.36)

To find the values of αK−1
m , redefining (3.36) to a neater form, with the following

expressions will assist in the process of finding these values,

Ψc
m(− b

υ
) =

1√
π

∫ ∞

− b
υ

eσυze−z2

Hm(z) dz,

=
e

1
4
σ2υ2

√
π

∫ ∞

− b
υ

e−(z−συ
2

)2Hm(z) dz, (3.37)

and

Ωc
m(− b

υ
) =

1√
π

∫ ∞

− b
υ

e−z2

Hm(z) dz. (3.38)

The derivation of Ψc
m(− b

υ
) can be found in A.1.3. Therefore, (3.36) is redefined by,

αK−1
m =

e−rΔt

2mm!υm

[
eσbΨc

m(− b

υ
) − Ωc

m(− b

υ
)

]
. (3.39)

To determine all the values of αK−1
m , a recurrence relationship for Ψc and Ωc is

built. In finding the relationships in Ψc and Ωc, the various Hermite polynomial

properties (3.5) - (3.10) described in the previous section are used. The relation-

ship requires that the initial values are found first. It is clear that the analytical

forms found for these initial terms are going to require attention when implemented.
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Since the complementary error function,

erfc(x) =
2√
π

∫ ∞

x

e−t2 dt (3.40)

is to be used, a suitable and accurate math library is needed. Computer algebra

packages like Maple and Matlab have an extensive math library including the com-

plementary error function. These packages also allows for very high accuracy. At

this point it must be stated that the use of these computer packages are sometimes

not the most efficient and quickest options in the implementation of this method.

These packages are excellent to use for testing and for the accuracy of math library

functions. However, due to the overheads associated with GUI and operating system

constraints, speed of processing is decreased.

An alternative to using a computer algebra package, is to implement the method

using a computer programming language like FORTRAN. This programming lan-

guage, like others, only allow for double precision (16 digit accuracy) for the com-

plementary error function (as well as various other math functions). Which means

that accuracy is forsaken but speed of processing is increased markedly, since GUI

is not as sophisticated.

Proposition 3.2.3. So, to find the coefficients, αK−1, the analytical form of Ψc and

Ωc are required. The proofs for Ψc and Ωc can be found in Appendix A.1.3 and A.1.4.

Since the Hermite polynomials are formed using a two term recurrence relation, Ψc
0

and Ωc
0 require evaluation. Namely, they are given by (A.9) and (A.15) as

Ψc
0(−

b

υ
) =

e
1
4
σ2υ2

√
π

∫ ∞

− b
υ

e−(z−συ
2

)2H0(z) dz =
e

1
4
σ2υ2

2
erfc

(− b

υ
− συ

2

)
, (3.41)

and

Ωc
0(−

b

υ
) =

1√
π

∫ ∞

− b
υ

e−z2

H0(z) dz =
1

2
erfc

(− b

υ

)
. (3.42)
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The analytical form of Ψc
1 and Ωc

1 are,

Ψc
1(−

b

υ
) = e

1
4
σ2υ2 συ

2
erfc

(− b

υ
− συ

2

)
+

1√
π

e−(( b
υ
)2+σb), (3.43)

and

Ωc
1(−

b

υ
) =

1√
π

∫ ∞

− b
υ

2ze−z2

dz =
1√
π

e−( b
υ
)2 . (3.44)

The proofs for Ψc
1(− b

υ
) and Ωc

1(− b
υ
) are in Appendix A.1.3 and A.1.4 and are given

by (A.13) and (A.17).

Finally, the general values Ψc
m(− b

υ
) and Ωc

m(− b
υ
) are evaluated, with proofs in Ap-

pendix A.1.3 and A.1.4 and given by (A.14) and (A.18) namely,

Ψc
m(− b

υ
) =

e
1
4
σ2υ2

√
π

∫ − b
υ

−∞
e−(z−συ

2
)2
[
2zHm−1(z) − 2(m − 1)Hm−2(z)

]
dz,

=

[
συΨc

m−1(−
b

υ
) − 1√

π
e−(( b

υ
)2+σb)Hm−1(− b

υ
)

]
, (3.45)

and

Ωc
m(− b

υ
) =

1√
π

∫ ∞

− b
υ

e−z2

[
2zHm−1(z) − 2(m − 1)Hm−2(z)

]
dz,

=
1√
π

e−( b
υ
)2Hm−1(− b

υ
). (3.46)

Proposition 3.2.4. Since we have solved the initial and general cases for Ψc and

Ωc, a recurrence relation for αK−1
m can be formed, namely

αK−1
m =

σ

2m

[
e−rΔt

2m−1(m − 1)!υm−1
√

π
e−( b

υ
)2Hm−2(− b

υ
) + αK−1

m−1

]
, (3.47)

with

αK−1
0 =

e−rΔt

2

[
eσb+ 1

4
σ2υ2

erfc(− b

υ
− συ

2
) − erfc(− b

υ
)

]
, (3.48)

52



CHAPTER 3. FOURIER-HERMITE SERIES EVALUATION

and

αK−1
1 =

σ

4
e−rΔt+σb+ 1

4
σ2υ2

erfc(− b

υ
− συ

2
). (3.49)

Proof. The elements αK−1
m with m = 1, 2, . . . , N can be formed from (3.39) and

using (3.45) and (3.46), viz

αK−1
m =

e−rΔt

2mm!υm

[
eσb

(
συΨc

m−1(−
b

υ
) +

1√
π

e−(( b
υ
)2+σb)Hm−1(− b

υ
)

)

− 1√
π

e−( b
υ
)2Hm−1(− b

υ
)

]
,

(3.50)

and so

αK−1
m =

e−rΔt

2mm!υm

[
συeσbΨc

m−1(−
b

υ
)

]
. (3.51)

The next step is to find a relationship between αK−1
m and αK−1

m−1. Given (3.39) for

coefficient m − 1,

αK−1
m−1 =

e−rΔt

2m−1(m − 1)!υm−1

[
eσbΨc

m−1(−
b

υ
) − Ωc

m−1(−
b

υ
)

]
,

therefore, rearranging αK−1
m−1 for,

eσbΨc
m−1(−

b

υ
) =

[
Ωc

m−1(−
b

υ
) + erΔt2m−1(m − 1)!υm−1αK−1

m−1

]
, (3.52)

and substituting (3.52) into (3.50) gives
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αK−1
m =

e−rΔt

2mm!υm

[
συ

(
Ωc

m−1(−
b

υ
) + erΔtυm−12m−1(m − 1)!αK−1

m−1

)]
,

=
e−rΔt

2mm!υm

[
συΩc

m−1(−
b

υ
) + συerΔt2m−1(m − 1)!υm−1αK−1

m−1

]
,

=σ

[
e−rΔt

2mm!υm−1
Ωc

m−1(−
b

υ
) +

αK−1
m−1

2m

]
,

=
σ

2m

[
e−rΔt

2m−1(m − 1)!υm−1
√

π
e−( b

υ
)2Hm−2(− b

υ
) + αK−1

m−1

]
, (3.53)

where (3.46) has been used in the final step. So, (3.53) achieves a relationship

between coefficient m and m − 1. The expression (3.53) are the αK−1 values for

m ≥ 2, with the following initial conditions,

αK−1
0 =e−rΔt

[
eσbΨc

0(−
b

υ
) − Ωc

0(−
b

υ
)

]

=
e−rΔt

2

[
eσb+ 1

4
σ2υ2

erfc(− b

υ
− συ

2
) − erfc(− b

υ
)

]
(3.54)

and

αK−1
1 =

e−rΔt

2υ

[
eσbΨc

1(−
b

υ
) − Ωc

1(−
b

υ
)

]
,

=
e−rΔt

2υ

[
eσb

(
e

1
4
σ2υ2 συ

2
erfc

(− b

υ
− συ

2

)
+

1√
π

e−
1
2
(( b

υ
)2+2σb)

)
,

− 1√
π

e−( b
υ
)2
]
,

=
σ

4
e−rΔt+σb+ 1

4
σ2υ2

erfc(− b

υ
− συ

2
). (3.55)

So, with all values for αK−1 determined, the European call option price can be

found. The price is evaluated by solving (3.33). Subsection 3.2.3 will analyse the
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call option prices taking into consideration the number of basis functions and time

steps used, along with the model parameters.

The next step is to evaluate the coefficients for a European put option.

3.2.2 European Put Options

To determine the recurrence relation for αK−1 for a European put option, the math-

ematics and process involved are similar to that of the European call. The major

difference is the payoff function for the put option namely,

fK(ξK) = (1 − eσξK )−. (3.56)

The expression (3.13) differs due to the different payoff function for a put option for

which the interval of integration is (−∞, 0]. Therefore,

αK−1
m =

e−rΔt

2mm!
√

π

∫ 0

−∞
(1 − e

√
2Δt σξK )Im(ξK) dξK . (3.57)

As with the European call option, substituting (3.19) into (3.57) gives

αK−1
m =

e−rΔt

2mm!υm
√

π

[∫ −∞

− b
υ

e−z2

Hm(z) dz − eσb

∫ − b
υ

−∞
eσυze−z2

Hm(z) dz

]
, (3.58)

and redefining (3.58) with

Ψp
m(− b

υ
) =

e
1
4
σ2υ2

√
π

∫ − b
υ

−∞
e−(z−συ

2
)2Hm(z) dz, (3.59)

and

Ωp
m(− b

υ
) =

1√
π

∫ − b
υ

−∞
e−z2

Hm(z) dz. (3.60)

where Ψp
m(− b

υ
) is in a similar form to Ψc

m(− b
υ
) in (3.37) and Ωp

m(− b
υ
) is similar to

Ωc
m(− b

υ
) in (3.38). Therefore, (3.58) is defined by,
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αK−1
m =

e−rΔt

2mm!υm

[
Ωp

m(− b

υ
) − eσbΨp

m(− b

υ
)

]
. (3.61)

Similarly to the European call option, a recurrence relation is required. The only

differences being the form of (3.61) and the interval of integration. The mathematics

applied is similar, with use of the same properties and techniques. An alternative

definition for the complementary function is also used in the evaluation of European

put options. Namely

erfc(x) =
2√
π

∫ ∞

x

e−t2 dt (3.62)

Proposition 3.2.5. The values of Ψp are,

Ψp
0(−

b

υ
) =

e
1
4
σ2υ2

2
erfc

( b

υ
+

συ

2

)
, (3.63)

Ψp
1(−

b

υ
) =

συe
1
4
σ2υ2

2
erfc

( b

υ
+

συ

2

) − 1√
π

e−(( b
υ
)2+σb), (3.64)

Ψp
m(− b

υ
) = συΨp

m−1(−
b

υ
) − 1√

π
e−(( b

υ
)2+σb)Hm−1(− b

υ
), (3.65)

where the proofs for Ψp are found in A.1.5.

Proposition 3.2.6. The values of Ωp,

Ωp
0(−

b

υ
) =

1

2
erfc

( b

υ

)
, (3.66)

Ωp
1(−

b

υ
) = − 1√

π
e−( b

υ
)2 , (3.67)

Ωp
m(− b

υ
) = − 1√

π
e−( b

υ
)2Hm−1(− b

υ
), (3.68)

where the proofs for Ωp are found in A.1.6.
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Since the initial and general cases for Ψp and Ωp have been solved, the following

recurrence for αK−1
m holds

αK−1
m =

σ

2m

[
e−rΔt

2m−1(m − 1)!υm−1
√

π
e−( b

υ
)2Hm−2(− b

υ
) + αK−1

m−1

]
(3.69)

for m = 2, 3, . . .N , with initial conditions,

αK−1
0 =

e−rΔt

2

[
erfc(

b

υ
) − eσb+ 1

4
σ2υ2

erfc(
b

υ
+

συ

2
)

]
, (3.70)

αK−1
1 = − σ

4
e−rΔt+σb+ 1

4
σ2τ2

erfc(
b

υ
+

συ

2
). (3.71)

Given the values for αK−1 and matrix A, the option price polynomial is formed

for both the put and call options. The following section will analyse the method.

Consideration will be given to the issues which affect the accuracy and speed of

evaluation of the option prices.

3.2.3 Results and Analysis

One of the advantages of the Fourier-Hermite expansion method is the explicit rep-

resentation of the underlying. Since the path integral is based on the Black-Scholes

paradigm, comparisons are easily evaluated. These comparisons can be made nu-

merically and graphically.

Due to the underlying being represented by a polynomial (Fourier-Hermite series),

the errors associated with this method will vary, due to the oscillatory nature of the

Fourier-Hermite series, for different asset values. Figure 3.1 represents the Black-

Scholes formula as a curve and the corresponding Fourier-Hermite expansion for a

set of model parameters.
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Figure 3.1: A Fourier-Hermite expansion (blue) and Black-Scholes formula (red)
for a European call with σ = 0.20, r = 0.08, T = 0.25 and strike price, X = $100.
The Fourier-Hermite expansion was derived for 4 time steps and 32 basis functions.

The vertical axis is the option price and the horizontal axis represents the trans-

formed variable ξ. Recalling that,

ξ =
1

σ
ln (S),

where S is the normalised asset price (i.e. S =
AssetV alue

StrikePrice
).

Figure 3.2 are the absolute errors when comparing the Fourier-Hermite expansion

result to the Black-Scholes formula for a European call option.
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Figure 3.2: The absolute error of a Fourier-Hermite expansion vs Black-Scholes
for a European call K = 4, N = 32, σ = 0.20, r = 0.08, T = 0.25 and strike price
of $100.

It is clear from figures 3.1 and 3.2 that as the asset price moves further away from

the strike price, the Fourier-Hermite expansion method deteriorates, as expected. It

must be also stated that the deterioration occurs for options that are rarely written.

Figure 3.2 also shows the oscillating nature of the Fourier-Hermite series. As can

be seen in figure 3.2, some asset values will give better approximations than others

(refer to −1.0 ≤ ξ ≤ −0.9, compare to ξ = 0).

Table 3.1 shows a numerical representation of the Fourier-Hermite expansion method

for a set of model parameters and 4 time steps. In the various tables presented in

this thesis, the absolute error is used to measure the accuracy of the methods. The

absolute error is calculated by evaluating the difference between the approximate

value compared to the so called exact value.
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Basis Asset Black- Fourier- Absolute
Functions Price ($) Scholes Hermite Error
8 80 0.069017900 0.10042273 3.14E−2
16 0.068409100 6.09E−4
32 0.069023763 5.86E−6
64 0.068723077 2.95E−4
128 1.1449292 1.08E0

90 1.0254530 1.0088962 1.66E−2
1.0248461 6.07E−4
1.0254590 6.00E−6
1.0254570 4.00E−6
1.0243229 1.13E−3

100 5.0169820 5.0308067 1.38E−2
5.0175159 5.34E−4
5.0169880 6.00E−6
5.0169860 4.00E−6
5.0169575 2.45E−5

110 12.620446 12.602872 1.76E−2
12.620203 2.43E−4
12.620456 1.00E−5
12.620452 6.00E−6
12.620058 3.88E−4

120 22.066563 22.092199 2.56E−2
22.066622 5.90E−5
22.066564 1.00E−6
22.066533 3.00E−5
21.817455 2.49E−1

Table 3.1: Fourier-Hermite - European call option for 4 time steps, σ = 0.20,
r = 0.08, T = 0.25, strike price of $100 and for various basis functions. Single
precision was used to calculate the values.

Given the model parameters (σ = 0.20, r = 0.08, T = 0.25, strike of $100) and

the number of time steps equal to 4, table 3.1 shows that approximately 32 to 64

basis functions gives the best results. Figure 3.3 shows the errors for three different

expansions (varying basis functions).
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Figure 3.3: The absolute error of a Fourier-Hermite expansion vs Black-Scholes
for a European call with K = 4, N = 16 (red), N = 32 (blue), N = 64 (yellow),
σ = 0.20, r = 0.08, T = 0.25 and strike of $100.

Figure 3.3 reinforces the earlier statement that as the asset price moves away from

the strike price, the errors associated with Fourier-Hermite expansion method gen-

erally increase. Figures 3.2 and 3.3 also demonstrates the oscillatory nature of the

series solution.

So far the analysis has looked at approximations using single precision (8 digits).

By increasing the precision to double precision (16 digits) and given the form of

the recurrence relations, a marked improvement is expected. Figure 3.4 shows the

absolute errors for a particular expansion compared to the Black-Scholes formula.

61



CHAPTER 3. FOURIER-HERMITE SERIES EVALUATION

0

1e–12

2e–12

3e–12

4e–12

–1.5 –1 –0.5 0.5 1 1.5

x

Figure 3.4: The absolute error of a Fourier-Hermite expansion vs Black-Scholes for
a European call K = 4, N = 64, σ = 0.20, r = 0.08, T = 0.25 and strike of $100.
The comparison is made with double precision accuracy.

The errors pictured in figure 3.4 have the expansion within 10−12 of the actual (Black-

Scholes) price. If we compare this to the data in table 3.1, there is an improvement

of the order of one million. This improvement is achieved by just increasing the

precision of the implementation. Figure 3.4 also shows the trend, as the asset price

drifts away from the strike price, the approximation deteriorates. The magnitude of

deterioration is relatively the same when comparing figures 3.2 and 3.4.

Table 3.2 presents some numerical results using the same model parameters as table

3.1, but is performed with double precision.
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Basis Asset Black- Fourier- Absolute
Functions Price ($) Scholes Hermite Error
8 80 0.06901773330119400 0.10041898548 3.14E−2
16 0.06840482653 6.13E−4
32 0.06901884376 1.11E−6
64 0.06901773314 1.56E−10
128 0.06901772269 1.06E−8

90 1.025453734133940 1.008891303993 1.66E−2
1.024841496754 6.12E−4
1.025454269903 5.36E−7
1.025453734209 7.60E−11
1.025453734141 8.02E−12

100 5.016980606262390 5.030800866969739 1.38E−2
5.017510042390387 5.29E−4
5.016982239341966 1.63E−6
5.016980606296171 3.38E−11
5.016980606262366 2.40E−14

110 12.62044850198304 12.602865397914 1.76E−2
12.620197548190 2.51E−4
12.620451132365 2.63E−6
12.620448501957 2.58E−11
12.620448501979 3.26E−12

120 22.06656020160710 22.09219252269 2.56E−2
22.06661688376 5.67E−5
22.06655832124 1.88E−6
22.06656020154 6.13E−11
22.06656020231 7.32E−10

Table 3.2: Fourier-Hermite - European call option for K = 4, σ = 0.20, r = 0.08,
T = 0.25, strike of $100 and for various basis functions. Double precision was used
to calculate the values.

Table 3.2 shows that the best results occur when 64 to 128 basis functions are used.

Since the precision of the implementation has increased, the time taken to evaluate

these prices increase. Also, the best prices in double precision seem to occur with

more basis functions, this means that further computation is required.

In table 3.1 the best results occurred when 32 or 64 basis functions were used. If we
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compare the results for 8, 16 and 32 basis functions in tables 3.1 and 3.2, the errors

obtained are slightly better in double precision. So, the question remains whether a

small improvement in the evaluation of the option price is worth the extra compu-

tational time caused by an increase in the precision of implementation. It is clear

though, with large number of basis function, that in double precision, prices are

evaluated much more precisely.

Figure 3.5 graphs the absolute errors for various time step expansions, with the

number of basis functions N fixed at 32.
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Figure 3.5: The absolute error of a Fourier-Hermite expansion vs Black-Scholes for
a European call with K = 4 (red), K = 8 (blue), K = 16 (green), K = 32 (yellow),
K = 64 (black), N = 32, σ = 0.20, r = 0.08, T = 0.25 and strike of $100. The
comparison is made with double precision accuracy.

Figure 3.5 shows that as the number of time steps increase, the errors tend to im-

prove. However, it must be stated that some of the improvements are minor. It is

also clear that as the number of time steps increase, so does the time taken to eval-

uate the option price. Therefore, one needs to determine whether the time required

to obtain certain accuracy is beneficial.
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Table 3.3 shows the prices for a European call with the strike price set to the asset

value of $100. The prices are for a varying number of time steps and 32 basis func-

tions were used.

Time Black- Fourier- Absolute
Steps Scholes Hermite Error

4 5.016980606262390 5.016982239341966 1.63E−6
8 5.016981241524321 6.35E−7

16 5.016980979787151 3.74E−7
32 5.016980887803363 2.82E−7
64 5.016980849554562 2.43E−7

128 5.016980832150103 2.26E−7
256 5.016980823852529 2.18E−7

Table 3.3: Fourier-Hermite - European call option for 32 basis functions, σ = 0.20,
r = 0.08, T = 0.25, asset price of $100, strike of $100 and for various time steps K.
Double precision was used to calculate the values.

The data in table 3.3 reiterates the point that after 32 time steps, the improvement

is marginal. Figure 3.6 also shows the absolute errors for various time step expan-

sions, with the number of basis functions fixed at 64.
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Figure 3.6: The absolute error of a Fourier-Hermite expansion vs Black-Scholes for
a European call with K = 4 (red), K = 8 (blue), K = 16 (green), K = 32 (yellow),
K = 64 (black), N = 64, σ = 0.20, r = 0.08, T = 0.25 and strike of $100. The
comparison is made with double precision accuracy.

Figure 3.6 shows similar patterns as those described previously. They include the

peaks and troughs in the errors and the deterioration of the approximations as the

asset prices move away from the strike price.

Table 3.4 shows the prices for a European call with the strike price set to the asset

value of $100. The prices are for varying number of time steps and 64 basis functions

were used.
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Time Black- Fourier- Absolute
Steps Scholes Hermite Error

4 5.016980606262390 5.016980606296171 3.38E−11
8 5.016980606267894 5.50E−12

16 5.016980606264234 1.84E−12
32 5.016980606263993 1.60E−12
64 5.016980606264063 1.67E−12

128 5.016980606262296 9.40E−14
256 5.016980606260944 1.45E−12

Table 3.4: Fourier-Hermite - European call option for 64 basis functions, σ = 0.20,
r = 0.08, T = 0.25, asset price of $100, strike of $100 and for various time steps K.
Double precision was used to calculate the values.

Figure 3.6 and table 3.4 also show that errors can improve with an increase in the

number of time steps. However, in the case of N = 64 when ξ is less than −0.7,

the absolute error for K = 16 is better than for K = 32 and K = 64. Table 3.4

shows small improvements as the number of time steps increase. The issue again

arises whether the time taken to evaluate the price for the minimal improvement is

worthwhile.

We now investigate the Fourier-Hermite expansion method for the evaluation of Eu-

ropean put option prices. Figure 3.7 shows the errors for an expansion with 4 time

steps and 64 basis functions.
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Figure 3.7: The absolute error of a Fourier-Hermite expansion vs Black-Scholes for
a European put K = 4, N = 64, σ = 0.20, r = 0.08, T = 0.25 and strike of $100.
The comparison is made with double precision accuracy.

Table 3.5 shows the prices and errors for expansions of 4 time steps and varying

number of basis functions.
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Basis Asset Black- Fourier- Absolute
Functions Price ($) Scholes Hermite Error
8 80 18.08888506397669 18.12028631642989 3.14E−2
16 18.08827215721178 6.13E−4
32 18.08888617444142 1.11E−6
64 18.08888506382045 1.56E−10
128 18.08888505394765 1.00E−8

90 9.045321064809460 9.028758634532931 1.66E−2
9.044708827429788 6.12E−4
9.045321600578635 5.36E−7
9.045321064885542 7.61E−11
9.045321064820661 1.12E−11

100 3.036847936937940 3.050668197707927 1.38E−2
3.037377373065952 5.29E−4
3.036849570017532 1.63E−6
3.036847936971743 3.38E−11
3.036847936937936 4.00E−15

110 0.6403158326585500 0.6227327286612299 1.76E−2
0.6400648788657842 2.51E−4
0.6403184630408953 2.63E−6
0.6403158326328689 2.57E−11
0.6403158326560198 2.53E−12

120 0.08642753228261400 0.1120598529337736 2.56E−2
0.08648421444485786 5.67E−5
0.08642565191656440 1.88E−6
0.08642753222133237 6.13E−11
0.08642753317810308 8.95E−10

Table 3.5: Fourier-Hermite - European put option for 4 time steps, σ = 0.20,
r = 0.08, T = 0.25, strike of $100 and for various basis functions. Double precision
was used to calculate the values.

The absolute errors for the European put options in table 3.5 are very similar to

the corresponding call option. There are some minor differences for prices evaluated

using 128 basis functions. The similarity can be justified by analysing the payoff

functions (3.34) and (3.56). Since the payoffs are similar in form, the only two dif-

ferences in the evaluation in αK−1
0 and αK−1

1 . The recurrence relations (3.53) and

(3.69) to find the other αK−1 values are the same for a call and put option. The
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matrix A is the same for a call and put and the coefficients for each option, α0 are

evaluated using (3.33).

3.3 American Put Options

The American put option differs greatly to the European options presented so far.

An American option allows the holder to exercise his/her right at any time during

the life of the option. The major issue with an American option is, when is the best

time to exercise?

In the path integral framework (3.1) presented previously, the interval of integration

was over an infinite domain. For the American put, (3.1) will need to be partitioned

to take into account the point (barrier) where the option is to be exercised. There-

fore, the path integral will be split into two, with the first integral representing

the payoff or early exercise area and the second being the non-exercise value of the

American put option.

To help to distinguish the difference between the American put and the European

option, (3.1) becomes

V k−1(ξk−1) =
e−rΔt

√
π

∫ ∞

−∞
e−(ξk−μ(ξk−1))2F k(

√
2Δt ξk) dξk, (3.72)

where V is the value of the American put option unexercised. If we denote F k−1

as the value of the option at time tk−1 and since an American put option can be

exercised at any time, ξ∗k−1 is introduced to denote the optimal exercise point, then

F k−1(ξk−1) =

{
V k−1(ξk−1), ξ∗k−1 < ξk−1 < ∞
1 − eσξk−1 , −∞ < ξk−1 < ξ∗k−1

, (3.73)

Since the American put option can be exercised at any time, the path integral (3.72)

is split into two parts,
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V k−1(ξk−1) = hk−1(ξk−1) +
e−rΔt

√
π

∫ ∞

ξ∗
k√

2Δt

e−(ξk−μ(ξk−1))2V k(
√

2Δt ξk) dξk, (3.74)

where

hk−1(ξk−1) =
e−rΔt

√
π

∫ ξ∗k√
2Δt

−∞
e−(ξk−μ(ξk−1))2(1 − eσ

√
2Δt ξk) dξk. (3.75)

The integral in (3.75) is the payoff or early exercise component of the path integral

(3.74). The early exercise point ξ∗k−1 is the value of ξ which solves

V k−1(ξ) = 1 − eσξ. (3.76)

Equation (3.76) is an important part of evaluating the American put option price.

At each time step the value of ξ is determined such that (3.76) is satisfied.

As with the path integral for European options, the following Fourier-Hermite series

expansions are introduced,

V k−1(ξk−1) �
N∑

q=0

αk−1
q Hq(ξk−1), (3.77)

and

hk−1(ξk−1) �
N∑

q=0

γk−1
q Hq(ξk−1). (3.78)

With the American put option, the most appropriate manner in evaluating V 0 is to

treat the two integrals separately. Once recurrence relations are determined for the

coefficients of the Fourier-Hermite series, the two parts are joined for final evaluation

of the American put option price. Therefore, substituting (3.77) into (3.74) gives

N∑
q=0

αk−1
q Hq(ξk−1) = hk−1(ξk−1)+

e−rΔt

√
π

∫ ∞

ξ∗
k√

2Δt

e−(xk−μ(xk−1))2V k(
√

2Δtξk)dxk, (3.79)

and substituting (3.78) into (3.75) gives
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N∑
q=0

γk−1
q Hq(ξk−1) =

e−rΔt

√
π

∫ ξ∗k√
2Δt

−∞
e−(xk−μ(xk−1))2(1 − eσ

√
2Δt ξk) dxk. (3.80)

So, (3.79) becomes

1√
π

∫ ∞

−∞
e−ξ2

k−1Hm(ξk−1)
N∑

q=0

αk−1
q Hq(ξk−1) dξk−1

=
1√
π

∫ ξ∗k√
2Δt

−∞
e−ξ2

k−1Hm(ξk−1)
e−rΔt

√
π

∫ ∞

−∞
e−(ξk−μ(ξk−1))2(1 − eσ

√
2Δt ξk) dξk dξk−1

+
1√
π

∫ ∞

ξ∗
k√

2Δt

e−ξ2
k−1Hm(ξk−1)

e−rΔt

√
π

∫ ∞

−∞
e−(ξk−μ(ξk−1))2V k(

√
2Δt ξk) dξk dξk−1,

(3.81)

Prior to forming the evaluation of αk−1, the coefficients of γk require generation.

The values of γk are found recursively, with γK−1 = 0 since the early exercise

boundary is at 0 at the first time step. To assist in the evaluation of the elements in

γk, the following Hermite polynomial and their mathematical properties are used,

H0(t) = 1, H1(t) = 2t, (3.82)

Hn(υt + b) = 2(υt + b)Hn−1(υt + b) − 2(n − 1)Hn−2(υt + b), for n > 1, (3.83)

d

dt
Hn(υt + b) = 2υnHn−1(υt + b), (3.84)

1√
π

∫ ∞

x

H1(t)e
−t2 dt =

e−x2

√
π

, (3.85)

1√
π

∫ x

−∞
H1(t)e

−t2 dt = −e−x2

√
π

, (3.86)

1√
π

∫ ∞

−∞
H0(t)e

−t2 dt = 1, (3.87)

and
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erfc(x) =
2√
π

∫ −x

−∞
e−t2 dt (3.88)

So,

1√
π

∫ ∞

−∞
e−ξ2

k−1Hm(ξk−1)
N∑

q=0

γk−1
q Hq(ξk−1) dξk−1

=
1√
π

∫ ξ∗k√
2Δt

−∞
e−ξ2

k−1Hm(ξk−1)
e−rΔt

√
π

∫ ∞

−∞
e−(ξk−μ(ξk−1))2(1 − eσ

√
2Δt ξk) dξk dξk−1,

which simplifies to

γk−1
m =

e−rΔt

2mm!
√

π

∫ ξ∗k√
2Δt

−∞

[
1√
π

∫ ∞

−∞
e−[(ξk−μ(ξk−1))2+ξ2

k−1]Hm(ξk−1) dξk−1

]
(1 − eσ

√
2Δt ξk) dξk,

=
e−rΔt

2mm!
√

π

∫ ξ∗k√
2Δt

−∞
Im(ξk)(1 − eσ

√
2Δt ξk) dξk, (3.89)

where,

Im(ξk) =
1√
π

∫ ∞

−∞
e−[(ξk−μ(ξk−1))2+ξ2

k−1]Hm(ξk−1) dξk−1. (3.90)

Using the analytical solution to Im(ξk) as presented in subsection 3.2 gives,

γk−1
m =

e−rΔt

2mm!
√

π

∫ ξ∗k√
2Δt

−∞

√
2Δt e−(

√
2Δt ξk−b

υ
)2Hm(

√
2Δt ξk−b

υ
)

υm+1
(1− eσ

√
2Δt ξk) dξk, (3.91)

and by performing a further substitution,

z =

√
2Δt ξk − b

υ
,

(3.91) is simplified to,
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γk−1
m =

e−rΔt

2mm!υm
√

π

∫ ξ∗k−b

υ

−∞
e−z2

Hm(z)(1 − eσυz+σb) dz

=
e−rΔt

2mm!υm
√

π

[∫ zk

−∞
e−z2

Hm(z) dz − eσb

∫ zk

−∞
e−z2+συzHm(z) dz

]
, (3.92)

and

zk =
ξ∗k − b

υ
. (3.93)

Given (3.92), the values of vector γk−1 can be evaluated. Beginning with m = 0,

γk−1
0 =

e−rΔt

200!υ0
√

π

[∫ zk

−∞
e−z2

H0(z) dz − eσb

∫ zk

−∞
e−z2+συzH0(z) dz

]
,

=
e−rΔt

√
π

[∫ zk

−∞
e−z2

dz − eσb

∫ zk

−∞
e−z2+συz dz

]
. (3.94)

Using property (3.88) and completing the square of the Gaussian in the right integral,

(3.94) becomes

γk−1
0 = e−rΔt

[
1

2
erfc(−zk) − eσb+ σ2υ2

4√
π

∫ zk

−∞
e−(z−συ

2
)2 dz

]
,

=
e−rΔt

2

[
erfc(−zk) − eσb+ σ2υ2

4 erfc

(
συ

2
− zk

)]
. (3.95)

For m = 1,

γk−1
1 =

e−rΔt

211!υ1
√

π

[∫ zk

−∞
e−z2

H1(z) dz − eσb

∫ zk

−∞
e−z2+συzH1(z) dz

]
,

=
e−rΔt

2υ
√

π

[∫ zk

−∞
2ze−z2

dz − eσb+ σ2υ2

4

∫ zk

−∞
2ze−(z−συ

2
)2 dz

]
. (3.96)

Using properties (3.86) and (3.88), (3.96) becomes
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γk−1
1 =

e−rΔt

2υ

[
− 1√

π
e−z2

k +
eσb−z2

k+συzk

√
π

− συeσb+ σ2υ2

4

2
erfc

(
συ

2
− zk

)]
. (3.97)

A proof of (3.97), can be found in appendix A.2.1.

For m = 2, 3, . . . , N ,

γk−1
m =

e−rΔt

2mm!υm

[
Θk−1

m − Φk−1
m

]
, (3.98)

where

Θk−1
m =

1√
π

∫ zk

−∞
e−z2

Hm(z) dz, (3.99)

and

Φk−1
m =

1√
π

∫ zk

−∞
e−z2+συzHm(z) dz. (3.100)

and using,

Hn(υt + b) = 2(υt + b)Hn−1(υt + b) − 2(n − 1)Hn−2(υt + b), for n > 1,

becomes

Θk−1
m =

1√
π

∫ zk

−∞
e−z2

(2zHm−1(z) − 2(m − 1)Hm−2(z)) dz, (3.101)

and

Φk−1
m =

eσb+ σ2υ2

4√
π

∫ zk

−∞
e−(z−συ

2
)2(2zHm−1(z) − 2(m − 1)Hm−2(z)) dz. (3.102)

An analytical form for (3.101) is determined using properties, (3.84) and (3.85), and

along with integration by parts gives

Θk−1
m = − 1√

π
e−z2

kHm−1(zk), (3.103)

where zk is given by (3.93). The proof for (3.103) can be found in Appendix A.2.2

leading to the evaluation (A.26). For Φ, a recurrence relation is built using proper-

ties, (3.84) and (3.85), and along with integration by parts gives
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Φk−1
m = −eσb+ σ2υ2

4√
π

e−(zk−συ
2

)2Hm−1(zk) + συeσb+ σ2υ2

4 Φk−1
m−1. (3.104)

The proof for (3.104) can also be found in Appendix A.2.3 leading to evaluation

(A.27). Therefore,

γk−1
m =

e−rΔt

2mm!υm

[
− 1√

π
e−z2

kHm−1(zk) +
eσb−z2

k+συzk

√
π

Hm−1(zk)

− συeσb+ σ2υ2

4 Φk−1
m−1

]
. (3.105)

To obtain a recurrence relation for γk−1
m , Φk−1

m−1 is replaced with γk−1
m−1 by rearranging

γk−1
m−1 =

e−rΔt

2m−1(m − 1)!υm−1

[
Θk−1

m−1 − Φk−1
m−1

]
, (3.106)

for Φk−1
m−1 and substituting into (3.105). Therefore, (3.105) becomes

γk−1
m =

σ

2m
γk−1

m−1 +
e−rΔt−z2

k

2mm!υm
√

π

[
Hm−1(zk)(e

σb+συzk − 1) + συHm−2(zk)

]
. (3.107)

The proof for (3.107) can be found in Appendix A.2.4 leading to the evaluation

(A.30).

Therefore, given (3.107), (3.81) becomes

1√
π

∫ ∞

−∞
e−ξ2

k−1Hm(ξk−1)

N∑
q=0

αk−1
q Hq(ξk−1) dξk−1 = γk−1

m

+
1√
π

∫ ∞

ξ∗
k√

2Δt

e−ξ2
k−1Hm(ξk−1)

e−rΔt

√
π

∫ ∞

−∞
e−(ξk−μ(ξk−1))2V k(

√
2Δt ξk) dξk dξk−1,

which simplifies to,
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αk−1
m =γk−1

m +
e−rΔt

2mm!
√

π

∫ ∞

ξ∗
k√

2Δt

[
1√
π

∫ ∞

−∞
e−[(ξk−μ(ξk−1))2+ξ2

k−1]Hm(ξk−1)dξk−1

]
V k(

√
2Δt ξk) dξk,

= γk−1
m +

e−rΔt

2mm!
√

π

∫ ∞

ξ∗
k√

2Δt

V k(
√

2Δt ξk)Im(ξk) dξk, (3.108)

where,

Im(ξk) =
1√
π

∫ ∞

−∞
e−[(ξk−μ(ξk−1))2+ξ2

k−1]Hm(ξk−1) dξk−1. (3.109)

Using the analytical solution to Im(ξk) as presented in sub-section 3.2 gives

αk−1
m = γk−1

m +
e−rΔt

2mm!
√

π

∫ ∞

ξ∗
k√

2Δt

√
2Δt e−(

√
2Δt ξk−b

υ
)2Hm(

√
2Δt ξk−b

υ
)

υm+1
V k(

√
2Δt ξk) dξk

(3.110)

and by performing a further substitution,

z =

√
2Δt ξk − b

υ
,

(3.110) is simplified to,

αk−1
m = γk−1

m +
e−rΔt

2mm!υm
√

π

∫ ∞

ξ∗
k
−b

υ

e−z2

Hm(z)V k(υz + b) dz. (3.111)

Finally, a Fourier-Hermite series is introduced for V k to complete the relationship

between αk−1 and αk,

V k(ξk) �
N∑

n=0

αk
nHn(ξk), (3.112)

and substituting (3.112) into (3.110) gives
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αk−1
m = γk−1

m +
e−rΔt

2mm!υm
√

π

∫ ∞

ξ∗
k
−b

υ

e−z2

Hm(z)

N∑
n=0

αk
nHn(υz + b) dz,

= γk−1
m +

e−rΔt

2mm!υm
√

π

N∑
n=0

αk
n

∫ ∞

ξ∗
k
−b

υ

e−z2

Hm(z)Hn(υz + b) dz. (3.113)

Proposition 3.3.1. The expression (3.113) can be rewritten into

αk−1
m = γk−1

m +
N∑

n=0

αk
nAk

m,n, (3.114)

where

Ak
m,n =

e−rΔt

2mm!υm
√

π

∫ ∞

zk

e−z2

Hm(z)Hn(υz + b) dz, (3.115)

and

zk =
ξ∗k − b

υ
. (3.116)

With the elements of Ak being

Ak
0,0 =

e−rΔt

2
erfc(zk), (3.117)

Ak
0,1 = e−rΔt

[
b erfc(zk) +

υ√
π

e−z2
k

]
, (3.118)

Ak
1,0 =

e−rΔt

2υ
√

π
e−z2

k , (3.119)

for m = 0 and n = 2, 3, . . . , N ,

Ak
0,n =

υe−rΔt

√
π

e−z2
kHn−1(υzk + b) + 2bAk

0,n−1 + 2(υ2 − 1)(n − 1)Ak
0,n−2, (3.120)

and for m > 1 and n = 0,

Ak
m,0 =

e−rΔt

2mm!υm
√

π
e−z2

kHm−1(zk). (3.121)
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For general m and n,

Ak
m,n =

n

m
Ak

m−1,n−1 +
e−rΔt

2mm!υm
√

π
e−z2

kHm−1(zk)Hn(υzk + b). (3.122)

Proof. As with the European options, the elements of matrix Ak require evaluation.

The major difference with the matrix Ak to the European option matrix is that

for each time step, the elements will change because the early exercise point, ξ∗k,

will differ. Therefore, for each time step, the coefficients, αk−1 are found. In the

European option, the coefficients of the option price series, α0, are evaluated by

using matrix A and αK−1 only.

So element Ak
0,0 is given by

Ak
0,0 =

e−rΔt

200!υ0
√

π

∫ ∞

zk

e−z2

H0(z)H0(υz + b) dz

=
e−rΔt

√
π

∫ ∞

zk

e−z2

dz, (3.123)

therefore using (3.88),

Ak
0,0 =

e−rΔt

2
erfc(zk). (3.124)

The next element Ak
0,1 is given by

Ak
0,1 =

e−rΔt

200!υ0
√

π

∫ ∞

zk

e−z2

H0(z)H1(υz + b) dz

=
e−rΔt

√
π

[
υ

∫ ∞

zk

2ze−z2

dz + 2b

∫ ∞

zk

e−z2

dz

]
. (3.125)

Using properties (3.85) and (3.88), (3.125) becomes,

Ak
0,1 = e−rΔt

[
b erfc(zk) +

υ√
π

e−z2
k

]
. (3.126)

For m = 0 and n = 2, 3, . . . , N ,
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Ak
0,n =

e−rΔt

200!υ0
√

π

∫ ∞

zk

e−z2

H0(z)Hn(υz + b) dz

=
e−rΔt

√
π

∫ ∞

zk

e−z2

Hn(υz + b) dz, (3.127)

and using property (3.83), (3.127) can be expressed as,

Ak
0,n =

e−rΔt

√
π

∫ ∞

zk

e−z2

[
2(υz + b)Hn−1(υz + b) − 2(n − 1)Hn−2(υz + b)

]
dz,

=
e−rΔt

√
π

∫ ∞

zk

2υze−z2

Hn−1(υzk + b) dz + 2bAk
0,n−1 − 2(n − 1)Ak

0,n−2,

=
υe−rΔt

√
π

e−z2
kHn−1(υzk + b) + 2bAk

0,n−1 + 2(υ2 − 1)(n − 1)Ak
0,n−2. (3.128)

The proof to (3.120) can be found in Appendix A.2.5 leading to evaluation (A.33).

For the value of m = 1 and n = 0,

Ak
1,0 =

e−rΔt

211!υ1
√

π

∫ ∞

zk

e−z2

H1(z)H0(υz + b) dz,

=
e−rΔt

2υ
√

π

∫ ∞

zk

2ze−z2

dz, (3.129)

and using property (3.85), (3.129) becomes

Ak
1,0 =

e−rΔt

2υ
√

π
e−z2

k . (3.130)

For m > 1 and n = 0 and using property (3.83) gives,
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Ak
m,0 =

e−rΔt

2mm!υm
√

π

∫ ∞

zk

e−z2

Hm(z)H0(υz + b) dz,

=
e−rΔt

2mm!υm
√

π

∫ ∞

zk

e−z2

[
2zHm−1(z) − 2(m − 1)Hm−2(z)

]
dz,

=
e−rΔt

2mm!υm
√

π

∫ ∞

zk

2ze−z2

Hm−1(z) dz − 2(m − 1)Ak
m−2,0. (3.131)

Using integration by parts, (3.131) reduces to,

Ak
m,0 =

e−rΔt

2mm!υm
√

π
e−z2

kHm−1(zk). (3.132)

For general m and n and using property (3.83) for Hm(z) gives,

Ak
m,n =

e−rΔt

2mm!υm
√

π

∫ ∞

zk

e−z2

Hm(z)Hn(υz + b) dz,

=
e−rΔt

2mm!υm
√

π

∫ ∞

zk

e−z2

Hn(υz + b)

[
2zHm−1(z) − 2(m − 1)Hm−2(z)

]
dz,

=
e−rΔt

2mm!υm
√

π

∫ ∞

zk

2ze−z2

Hm−1(z)Hn(υz + b) dz − 2(m − 1)Ak
m−2,n. (3.133)

Using integration by parts, (3.133) reduces to,

Ak
m,n =

n

m
Ak

m−1,n−1 +
e−rΔt

2mm!υm
√

π
e−z2

kHm−1(zk)Hn(υzk + b). (3.134)

Prior to finding all coefficients, as with the European options, the coefficients for the

first time step αK−1 are evaluated. Since the American put and European put at

the first time step are equivalent, the expression (3.69) and (3.70) are used. Namely,

αK−1
m =

σ

2m

[
e−rΔt

2m−1(m − 1)!υm−1
√

π
e−( b

υ
)2Hm−2(− b

υ
) + αK−1

m−1

]
(3.135)
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for m = 2, 3, . . .N , with initial conditions,

αK−1
0 =

e−rΔt

2

[
erfc(

b

υ
) − eσb+ 1

4
σ2υ2

erfc(
b

υ
+

συ

2
)

]
, (3.136)

αK−1
1 = − σ

4
e−rΔt+σb+ 1

4
σ2τ2

erfc(
b

υ
+

συ

2
). (3.137)

Therefore, the coefficients αk−1 are evaluated by,

αk−1
m = γk

m +
N∑

n=0

αk
nAk

m,n (k = K − 1, K − 2, . . . , 1), (3.138)

The recurrence relation (3.138) is evaluated similar to (3.33) in the European op-

tions section. The major difference being that for the American put, the coefficients

αk are evaluated for each time step since the early exercise point varies from one

time step to the next. So, (3.138) is used at each time step until k = 1.

3.3.1 Results and Analysis

In Chiarella et al. (1999), the results presented used a high number of time steps

for both the European and American options. As was presented in Section 3.2.3,

the number of time steps required to achieve an accurate result was not as large as

envisaged. However, initial investigation of the American put option showed that

large time steps were required to achieve some accurate results.

Initial investigations also show that the oscillating approximations shown in figures

3.2, 3.3 and 3.4 for the European options are typical and also apply for the Ameri-

can put case. Therefore, a parameter set (K,N) may be an optimal approximation

for one particular underlying asset value but may not give the same accuracy for

another underlying value. Table 3.6 shows some results for American puts when the

number of basis functions used is 40.
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Asset Binomial F-H F-H F-H
Price ($) Method 60 steps 80 Steps 100 Steps

80 20.000000 20.000000 20.000000 20.000000
90 10.037663 10.051996 10.062199 10.068956

100 3.224898 3.176885 3.194857 3.205842
110 0.665410 0.627337 0.637849 0.644346
120 0.088795 0.085086 0.088416 0.090615

Table 3.6: Fourier-Hermite - American put option for various time steps and 40
basis functions with σ = 0.20, r = 0.08, T = 0.25, strike of $100. Double pre-
cision was used to calculate the values. The Binomial Method prices are optimal
approximations (using various N) and were calculated based on Cox et al. (1979).

Table 3.6 shows that the optimal approximation will vary when the number of basis

functions is fixed. For instance, when the asset value is $90, the number of time

steps required to find the best approximation is less than 60. For an asset value of

$110, the number of times steps is greater than 100. Therefore the computational

effort required to find the optimal option price is greater for $110 than $90. In a

computer algebra package like Maple, this can be quite time consuming, even with

a search algorithm like a bi-section. An improvement could be made with an efficient

search algorithm. A bi-section was chosen because of the ease of implementation.

Table 3.7 shows the best number of time steps required for various underlying asset

values to give optimal approximations.

Asset Time Binomial F-H
Price ($) Steps Method 40 Basis Functions

90 43 10.037663 10.037439
100 172 3.224898 3.224875
110 363 0.665410 0.665417
120 83 0.088795 0.088800

Table 3.7: Fourier-Hermite - American put option for 40 basis functions and the
best number of time steps with σ = 0.20, r = 0.08, T = 0.25, strike of $100. Double
precision was used to calculate the values. The Binomial Method prices are optimal
approximations (using various N) and were calculated based on Cox et al. (1979).

Clearly there is a great discrepancy in results presented in Table 3.7. The oscillating

nature of the Fourier-Hermite expansion/series explains the differences between the
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number of time steps to find the optimal approximation. The issue arising from

the results present in this table is the time required to find the optimal result. As

we can see when the asset value is $110, the number of time steps required is 363.

As the number of time steps increases, so does the time and computational effort

required. Table 3.8 presents results for the number of basis functions required to

find the best approximation when the number of time steps are fixed to 100.

Asset Basis Binomial F-H
Price ($) Functions Method 40 steps

90 35 10.037663 10.037604
100 12 3.224898 3.254261
110 20 0.665410 0.631602
120 13 0.088795 0.089520

Table 3.8: Fourier-Hermite - American put option for 40 time steps and the best
basis functions with σ = 0.20, r = 0.08, T = 0.25, strike of $100. Double pre-
cision was used to calculate the values. The Binomial Method prices are optimal
approximations (using various N) and were calculated based on Cox et al. (1979).

Again the same issues arise as with table 3.7, as the number of basis functions (N)

or the number of time steps (K) increase, so does the computational effort required.

In the case of N increasing, the calculations of exponentials and factorials are an

issue. Luckily, technology allows as to evaluate these functions much faster today.

Further analysis of results will also be presented in Chapters 4, 5 and 6.

3.4 Conclusion

Chiarella et al. (1999) offer a unique approach to evaluate the price of an option

in a path integral framework. The use of a Fourier-Hermite series to represent the

underlying allows the final option price polynomial to be formed by using recurrence

relations. These relations allow the coefficients of the Fourier series (the price poly-

nomial) to be evaluated. The Fourier-Hermite series is used due to the form of the

Gaussian within the integrand of the path integral (3.1). The recurrence relations

are formed using the orthogonality properties of the Hermite polynomials, analytical
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integration methods and some algebra.

The results using this method are quite good, especially for the European options.

For the American put, precise results can be obtained. However the computational

effort to evaluate a good approximation can be long especially when using a computer

algebra package like Maple. Given the oscillatory nature of the Fourier-Hermite

series, the parameter set, K (the number of time steps) and N (the number of basis

functions), may be precise for certain asset values but not necessarily for others.

Therefore, to obtain accurate results for a particular asset value, a search such as

bi-section, may be required to find the best parameter set.

In investigating this method, it was clear that some of the equations/relations and

results were not accurately stated. The results obtained are quite different to those

presented in Chiarella et al. (1999). It must be said however that accurate results

are possible but require some computational effort. One of the main advantages of

this method is the fact that more than one option price may be calculated at any

given time. This was very advantageous for the European option. Due to the oscil-

latory nature of the Fourier-Hermite series, some option prices were more accurate

than others. In the case of the European option where errors were in a trough,

the errors were as low as 10−14. Even approximate prices where the errors peak,

using the same Fourier-Hermite series had errors in the order of 10−11, which is still

very accurate. For the American put option, the results were not as accurate and

therefore, as shown in section 3.3.1, one parameter set may give an accurate result

for a certain asset price but was not so accurate for another.

One of the issues with this method is the orthogonality property (3.12) of the Her-

mite polynomial. This property contains an exponential and factorial with respect

to N . So, even with sophisticated computing, the recurrence relations will require

time to compute for large values of N . To combat this problem, chapter 4 will

present a modified version of the Fourier-Hermite method. The modified method

uses normalised Hermite polynomials in a Fourier series expansion. The method
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is very similar to that presented in this Chapter, with the creation of recurrence

relations to find the coefficients of the Fourier series. The main advantage of the

modification is in that the orthogonality property for the normalised Hermite does

not have an exponential or factorial involved.
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Chapter 4

Normalised Fourier-Hermite Series
Evaluation

This chapter offers an alternative Fourier series method to the one presented in

Chapter 3. The alternative uses a normalised Fourier-Hermite series to represent

the underlying. The major difference in this method is the form of the Hermite

orthogonal polynomial and their mathematical properties. The method is similar

to that presented in the previous Chapter 3 with some of the recurrence relations

formed being identical.
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4.1 Introduction

In this chapter we offer a similar approach to the previous chapter with the major

difference being the use of normalised Hermite polynomials. The approach is simi-

lar, with the properties associated to the normalised polynomials being different to

those presented in Chapter 3.

The use of these normalised Hermite polynomials will offer an alternative to those

presented in Chapter 3. One of the advantages envisaged by using these normalised

polynomials is that the recurrence relations involving the coefficients αk−1 may

eliminate the use of the exponential (2m term). This is achieved because of the form

of the orthogonality property for the normalised Hermite polynomial, involving the

Kronecker δ function

√
2πn!

∫ ∞

−∞
e−

t2

2 H∗
m(t)H∗

n(t) dt = δm,n =

{
1, m = n

0, otherwise
. (4.1)

This δ function, (4.1), does not have an exponential term in its coefficient. It is

hoped that this will improve the efficiency and speed of evaluation of the options

being priced, especially for large N (the number of basis function). As described

in the previous chapter, an improvement to the use of Hermite polynomials was

required since as the number of basis functions increases, the evaluation of option

prices became inefficient. It turns out that using normalised Hermite polynomials

ameliorates this issue.

4.2 European Options

As with the Fourier-Hermite method, we firstly transform the path integral (3.1),

so that a recurrence relation can be built to link the coefficients of the normalised

Fourier-Hermite polynomials from one time step to the next. Recalling the path

integral,
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fk−1(ξk−1) =
e−rΔt

√
π

∫ ∞

−∞
e−(ξk−μ(ξk−1))2fk(

√
2Δt ξk) dξk, (4.2)

where

μ(ξk−1) =
ξk−1 + b√

2Δt
, (4.3)

and

b =
1

σ
(r − 1

2
σ2)Δt. (4.4)

Given the normalised Fourier-Hermite expansion,

fk−1(ξk−1) �
N∑

q=0

αk−1
q H∗

q (ξk−1), (4.5)

where H∗
q (ξk−1) is a normalised Hermite polynomial then, substituting (4.5) into

(4.2), the path integral is transformed to,

N∑
q=0

αk−1
q H∗

q (ξk−1) =
e−rΔt

√
π

∫ ∞

−∞
e−(ξk−μ(ξk−1))2fk(

√
2Δt ξk) dξk. (4.6)

Utilising the orthogonality property of normalised Hermite polynomials given by

(4.1) and following the method used for the non-normalised Fourier-Hermite of sec-

tion 3.2 produced upon simplification

αk−1
m =

e−rΔt

m!
√

π

∫ ∞

−∞
fk(

√
2Δt ξk)I

∗
m(ξk)dξk. (4.7)

where,

I∗
m(ξk) =

1√
2π

∫ ∞

−∞
e−

1
2
[2(ξk−μ(ξk−1))2+ξ2

k−1]H∗
m(ξk−1) dξk−1. (4.8)

We note that the exponential in the integrand of (4.8) has been modified to accom-

modate the use of normalised Hermite polynomials. Completing the square as with

the Fourier-Hermite method (see Appendix B.1.1 for a step by step evaluation) gives

2(ξk − μ(ξk−1))
2 + ξ2

k−1 =
[
(
ξk−1τ√

Δt
−

√
2Δt ξk − b

τ
√

Δt
)2 + (

√
2Δt ξk − b

τ
)2

]
, (4.9)

89



CHAPTER 4. NORMALISED FOURIER-HERMITE SERIES EVALUATION

where μ(ξk−1) and b are as defined in (4.3) and (4.4) respectively and

τ =
√

1 + Δt. (4.10)

Therefore, substituting (4.9) into (4.8) and rearranging to give

I∗
m(ξk) =

e−
1
2
(
√

2Δt ξk−b

τ
)2

√
2π

∫ ∞

−∞
e
− 1

2

[
(

τξk−1√
Δt

−
√

2Δt ξk−b

τ
√

Δt
)2
]
H∗

m(ξk−1) dξk−1, (4.11)

where b is given by (4.4) and τ by (4.10).

(4.11) is evaluated analytically,

I∗
m(ξk) =

√
Δt e−

1
2
(
√

2Δt ξk−b

τ
)2H∗

m(
√

2Δt ξk−b
τ

)

τm+1
. (4.12)

At this point we need to transform (4.7), so that a Fourier series for time step k can

be introduced. Therefore, substituting (4.12) into (4.7) produces

αk−1
m =

e−rΔt

m!
√

π

∫ ∞

−∞

√
Δt e−

1
2
(
√

2Δt ξk−b

τ
)2H∗

m(

√
2Δt ξk − b

τ
)

τm+1
fk(

√
2Δt ξk) dξk, (4.13)

and on making the substitution,

z =

√
2Δt ξk − b

τ
,

simplifies (4.13) to,

αk−1
m =

e−rΔt

m!τm
√

2π

∫ ∞

−∞
e−

z2

2 H∗
m(z)fk(τz + b) dz. (4.14)

The following normalised Fourier-Hermite series is introduced for fk(τz + b) to

complete the recurrence relationship between αk−1 and αk, therefore

fk(ξk) �
N∑

n=0

αk
nH∗

n(ξk) (4.15)

and the series (4.15) is substituted into (4.14) so that,
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αk−1
m =

e−rΔt

m!τm
√

2π

∫ ∞

−∞
e−

z2

2 H∗
m(z)

N∑
n=0

αk
nH∗

n(τz + b) dz

=
e−rΔt

m!τm
√

2π

N∑
n=0

αk
n

∫ ∞

−∞
e−

z2

2 H∗
m(z)H∗

n(τz + b) dz. (4.16)

The expression (4.16) can be rewritten into

αk−1
m = e−rΔt

N∑
n=0

αk
nA∗

m,n, (4.17)

where,

A∗
m,n =

1

m!τm
√

2π

∫ ∞

−∞
e−

z2

2 H∗
m(z)H∗

n(τz + b) dz. (4.18)

Since (4.17) is an expression that links the α′s from time step k to k − 1, a recur-

rence relation is built. This relationship is created by finding the elements of the 2

dimensional matrix A∗ from (4.18). These elements, A∗
m,n are found using the same

methods and similar properties to those in the Fourier-Hermite section 3.2.

To find the elements of matrix A∗, the initial elements are required. The following

normalised Hermite polynomial and mathematical properties are used to assist in

the evaluation of these elements.

H∗
0 (x) = 1, H∗

1 (x) = x, (4.19)

H∗
n(ax + b) = (ax + b)H∗

n−1(ax + b) − (n − 1) H∗
n−2(ax + b), (4.20)

d

dt
H∗

n(ax + b) = a n H∗
n−1(ax + b), (4.21)

1√
2π

∫ ∞

−∞
2te−

t2

2 dt = 0, (4.22)
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1√
2π

∫ ∞

−∞
e−

t2

2 dt = 1, (4.23)

and

erfc(x) =
2√
π

∫ ∞

x

e−t2 dt = 1 − erf(x). (4.24)

The first element A∗
0,0 is given by,

A∗
0,0 =

1

0!τ 0
√

2π

∫ ∞

−∞
e−

z2

2 H∗
0 (z)H∗

0 (τz + b)dz,

=
1√
2π

∫ ∞

−∞
e−

z2

2 dz, (4.25)

and so from (4.23) A∗
0,0 = 1.

Element A∗
0,1 is given by,

A∗
0,1 =

1

0!τ 0
√

2π

∫ ∞

−∞
e−

z2

2 H∗
0 (z)H∗

1 (τz + b)dz,

=
1√
2π

∫ ∞

−∞
e−

z2

2 H∗
1 (τz + b)dz,

=
1√
2π

∫ ∞

−∞
2ze−

z2

2 dz +
b√
2π

∫ ∞

−∞
e−

z2

2 dz, (4.26)

with the first integral in (4.26) being in the form of (4.22) and the second integral

in the form of (4.23) and A∗
0,1 = b.

Given the elements A∗
0,0 and A∗

0,1, the subsequent elements A∗
0,n are evaluated by,

A∗
0,n =

1

0!τ 0
√

2π

∫ ∞

−∞
e−

z2

2 H∗
0 (z)H∗

n(τz + b)dz,

=
1√
2π

∫ ∞

−∞
τze−

z2

2 H∗
n−1(τz + b)dz + b A∗

0,n−1 − (n − 1) A∗
0,n−2, (4.27)
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where we have used (4.20) to transform A∗
0,n. The integral in (4.27) is evaluated

using property (4.21) and integration by parts to give,

A∗
0,n =

1√
2π

∫ ∞

−∞
τ 2(n − 1)e−

z2

2 H∗
n−2(τz + b)dz + b A∗

0,n−1 − (n − 1) A∗
0,n−2,

= τ 2(n − 1) A∗
0,n−2 + b A∗

0,n−1 − (n − 1) A∗
0,n−2,

and so

A∗
0,n = b A∗

0,n−1 − (n − 1) (τ 2 − 1)A∗
0,n−2 for n = 2, 3, . . . , N. (4.28)

As with the derivation for Hermite polynomials, the normalised properties (4.20)

and (4.21) are used to evaluate elements A∗
m,n. Namely,

A∗
m,n =

1

m!τm
√

2π

∫ ∞

−∞
e

−z2

2 H∗
m(z)

[
d

dz

1

τ

1

n + 1
H∗

n+1(τz + b)

]
dz,

and using integration by parts, A∗
m,n is transformed to,

A∗
m,n =

1

m!τm

[
−1

τ

1

n + 1

1√
2π

∫ ∞

−∞
H∗

n+1(τz + b)

(
d

dz
e−

z2

2 H∗
m(z)

)
dz

]
. (4.29)

The derivative in (4.29) can be solved using property (4.20) and the product rule,

to produce

(
d

dz
e−

z2

2 H∗
m(z)

)
= me−

z2

2 H∗
m−1(z) − ze−

z2

2 H∗
m(z),

= e−
z2

2

[
m H∗

m−1(z) − zH∗
m(z)

]
,

= e−
z2

2

[−H∗
m+1(z)

]
. (4.30)

Substitution of (4.30) in (4.29) produces
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A∗
m,n =

1

m!τm

[
1

τ
.

1

n + 1

1√
2π

∫ ∞

−∞
e−

z2

2 [−H∗
m+1(z)]H∗

n+1(τz + b) dz

]
,

=
1

(m + 1)!τm+1

[
m + 1

n + 1

1√
2π

∫ ∞

−∞
e−

z2

2 H∗
m+1(z)H∗

n+1(τz + b) dz

]
,

(4.31)

and so from (4.18)

A∗
m,n =

m + 1

n + 1
A∗

m+1,n+1,

and so rearrangement produces

A∗
m,n =

n

m
A∗

m−1,n−1. (4.32)

It must be noted that when m > n element A∗
m,n = 0.

Therefore in summary

A∗
0,0 = 1,

A∗
0,1 = b,

A∗
0,n = b A∗

0,n−1 + (n − 1)(τ 2 − 1) A∗
0,n−2, n = 2, 3, . . . , N,

(4.33)

A∗
m,n =

n

m
A∗

m−1,n−1, m = 1, 2, . . . , N ; n = 1, 2, . . . , N,

A∗
m,n = 0 for m > n.
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We note that the term A∗
0,1 and recurrence relation A∗0,n differ by a multiple of 2 to

those presented in the non-normalised method. The A∗
0,0 term and A∗

m,n recurrence

relation being identical to the other method. It must said that the technique to find

the elements of A∗ were very similar to find as those in the non-normalised method.

The only difference being the mathematical identities and properties used for this

Gaussian.

Given the elements of A∗, the next step is to evaluate αK−1
m values for the call and

put option. Once the αK−1
m are found, as with the non-normalised method, the

following expression is used

α0 = e−r(K−1)ΔtA∗K−1αK−1. (4.34)

The α0 values are the coefficients of the option price polynomial. We derive the

values of α0 for the non-normalised Hermites next, using the techniques shown in

Chapter 3.

4.2.1 European Call Option Pricing

With a recurrence relations built to determine the elements of the Matrix A∗ from

(4.17), the values of α0 can now be determined for a European call option price.

Given the expression (4.34), a recurrence relationship is required to determine the

values of αK−1 such that the values of α0 are found and in doing so, evaluating the

European call option price.

Substituting the payoff function (3.34) into (4.7) gives

αK−1
m =

e−rΔt

m!τm
√

2π

[
eσb

∫ ∞

− b
τ

eστze−
z2

2 H∗
m(z) dz −

∫ ∞

− b
τ

e−
z2

2 H∗
m(z) dz

]
. (4.35)

Defining
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Ψ∗
m(− b

τ
) =

e
1
2
σ2τ2

√
2π

∫ ∞

− b
τ

e−
1
2
(z−στ)2H∗

m(z)dz,

and

Ω∗
m(− b

τ
) =

1√
2π

∫ ∞

− b
τ

e−
1
2
z2

H∗
m(z)dz,

gives (4.35) as

αK−1
m =

e−rΔt

τm

[
eσbΨ∗

m(− b

τ
) − Ω∗

m(− b

τ
)

]
.

The important values of Ψ∗ and Ω∗ are evaluated in Appendices B.1.2 and B.1.3

and are provided in terms of the well known erfc(.) function by the following rela-

tionships,

Ψ∗
0(−

b

τ
) =

e
1
2
σ2τ2

2
erfc

(− b√
2τ

− στ√
2

)
,

Ω∗
0(−

b

τ
) =

1

2
erfc

(− b√
2τ

)
,

Ψ∗
1(−

b

τ
) = e

1
2
σ2τ2 στ

2
erfc

(− b√
2τ

− στ√
2

)
+

1√
2π

e−
1
2
(( b

τ
)2+2σb),

Ω∗
1(−

b

τ
) =

1√
2π

e−
1
2
( b

τ
)2 ,

Ψ∗
m(− b

τ
) = στΨ∗

m−1(−
b

τ
) +

1√
2π

e−
1
2
(( b

τ
)2+2σb)H∗

m−1(−
b

τ
),

and

Ω∗
m(− b

τ
) =

1√
2π

e−
1
2
( b

τ
)2H∗

m−1(−
b

τ
). (4.36)
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Since we know the initial and general cases for Ψ∗ and Ω∗, a recurrence relation

for αK−1
m for m = 1, 2, . . . , N can be formed (and is evaluated in Appendix B.1.4),

namely

αK−1
m =

σ

m

[
e−rΔt

(m − 1)!τm−1
√

2π
e−

1
2
( b

τ
)2H∗

m−2(−
b

τ
) + αK−1

m−1

]
. (4.37)

The equation (4.37) are the αK−1 values for m = 2, 3, . . .N , with the following

initial conditions,

αK−1
0 =

e−rΔt

2

[
eσb+ 1

2
σ2τ2

erfc(− b√
2τ

− στ√
2
) − erfc(− b√

2τ
)

]
, (4.38)

and

αk−1
1 =

σ

2
e−rΔt+σb+ 1

2
σ2τ2

erfc(− b√
2τ

− στ√
2
). (4.39)

With recurrence relations built for A and αk−1, European call options can be eval-

uated.

4.2.2 European Put Option Pricing

With a recurrence relation built to determine the elements of the Matrix A∗ from

(4.17), the values of α0 can now be determined for a European Put option price.

Given the expression (4.34), a recurrence relationship is required to determine the

values of αK−1 such that the values of α0 are found and in doing so, evaluating the

European put option price.

Substituting the payoff function (3.56) into (4.7) gives

αK−1
m =

e−rΔt

m!τm
√

2π

[∫ − b
τ

−∞
e−

1
2
z2

H∗
m(z).dz − eσb

∫ − b
τ

∞
eστze−

1
2
z2

H∗
m(z)dz

]
. (4.40)
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Defining anew for the put option

Ψ̂∗
m(− b

τ
) =

e
1
2
σ2τ2

√
2π

∫ − b
τ

−∞
e−

1
2
(z−στ)2H∗

m(z)dz.

and

Ω̂∗
m(− b

τ
) =

1√
2π

∫ − b
τ

−∞
e−

1
2
z2

H∗
m(z)dz,

produces the expression from (4.40)

αK−1
m =

e−rΔt

m!τm

[
Ω̂∗

m(− b

τ
) − eσbΨ̂∗

m(− b

τ
)

]
.

The important values of Ψ̂∗ and Ω̂∗ are evaluated in Appendices B.1.5 and B.1.6

and are also provided in terms of the well known erfc(.) function by the following

relationships,

Ψ̂∗
0(−

b

τ
) =

e
1
2
σ2τ2

2
erfc

( b√
2τ

+
στ√

2

)
,

Ω̂∗
0(−

b

τ
) =

1

2
erfc

( b√
2τ

)
,

Ψ̂∗
1(−

b

τ
) = e

1
2
σ2τ2 στ

2
erfc

( b√
2τ

+
στ√

2

) − 1√
2π

e−
1
2
(( b

τ
)2+2σb),

Ω̂∗
1(−

b

τ
) = − 1√

2π
e(− b

τ
)2 ,

Ψ̂∗
m(− b

τ
) = στΨ̂∗

m−1(−
b

τ
) − 1√

2π
e−

1
2
(( b

τ
)2+2σb)H∗

m−1(z)

and

Ω̂∗
m(− b

τ
) = − 1√

2π
e−

1
2
( b

τ
)2H∗

m−1(−
b

τ
). (4.41)
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A recurrence relation for αK−1
m for m = 1, 2, . . . , N can be formed, namely

αK−1
m =

σ

m

[
αK−1

m−1 +
e−rΔt

(m − 1)!τm−1
√

2π
e−

1
2
( b

τ
)2H∗

m−2(−
b

τ
)

]
. (4.42)

The equation (4.42) are the αK−1 values for m = 2, 3, . . . , N , with the following

initial conditions,

αK−1
0 =

e−rΔt

2

[
erfc(

b√
2τ

) + eσb+ 1
2
σ2τ2

erfc(− b√
2τ

− στ√
2
)

]
, (4.43)

and

αK−1
1 = − σ

2
e−rΔt+σb+ 1

2
σ2τ2

erfc(
b√
2τ

+
στ√

2
). (4.44)

Now European put option prices can be evaluated.

4.2.3 Results and Analysis

The normalised Fourier-Hermite method has the same representation as the Fourier-

Hermite method. One of the differences in obtaining the polynomial form are the

form are the recurrence relations. The Delta function used in the normalised Fourier-

Hermite approach does not include the exponential (2m) function. Therefore, the

issue of large N (the number of basis functions) that arise in the previous method,

may be alleviated, to a certain extent, in the normalised approach.

As with the previous method, we can compare the normalised method against the

Black Scholes formula.
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Figure 4.1: A normalised Fourier-Hermite expansion (blue curve) and Black Sc-
holes formula (red curve) for a European call with σ = 0.20, r = 0.08, T = 0.25 and
strike price, X = $100. The normalised Fourier-Hermite expansion was derived for
4 time steps and 32 basis functions.

If we compare the figure 4.1 to the Fourier-Hermite figure 3.1, we see that the

normalised method is a better representation for asset values further away from

the strike price. If we take a closer look at the difference between the expansion

approximation and the Black-Scholes formula.
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Figure 4.2: The absolute error of a normalised Fourier-Hermite expansion vs Black
Scholes analytical solution for a European call K = 4, N = 32, σ = 0.20, r = 0.08,
T = 0.25 and strike price of $100.

Figures 4.1 and 4.2 shows the normalised method gives better results for asset values

further from the strike price. However, options with this strike price ($100) would

not be written for these asset values. Closer to the strike price, the non-normalised

method is better. Table 4.1 shows a numerical representation of the normalised

Fourier-Hermite expansion method for a set of model parameters and 4 time steps.

As with the non-normalised method, the absolute error is used to measure the

accuracy of the prices.
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Basis Asset Black- Fourier- Absolute
Functions Price ($) Scholes Hermite Error
8 80 0.069017900 −0.006431766 7.54E−2
16 0.088458600 1.94E−2
32 0.069881862 8.64E−4
64 0.069009754 8.15E−6
128 0.069296396 2.78E−4

90 1.0254530 0.97144092 5.40E−2
1.0069471 1.85E−2
1.0242163 1.24E−3
1.0254483 4.70E−6
1.0254531 1.00E−7

100 5.0169820 5.1595170 1.43E−1
5.0392292 2.22E−2
5.0180316 1.05E−3
5.0169829 9.00E−7
5.0169781 3.90E−6

110 12.620446 12.537716 8.27E−2
12.597114 2.33E−2
12.619442 1.00E−3
12.620449 3.00E−6
12.620442 4.00E−6

120 22.066563 21.945115 1.21E−1
22.076090 9.53E−3
22.067815 1.25E−3
22.066550 1.30E−5
22.066718 1.55E−4

Table 4.1: Normalised Fourier-Hermite - European call option for 4 time steps,
σ = 0.20, r = 0.08, T = 0.25, strike price of $100 and for various basis functions.
Single precision was used to calculate the values.

Table 4.1 shows that for asset values of $90 to $110 and the number of basis func-

tions used is approximately 64 to 128, the results for the normalised approach are

as good as, if not better, than those evaluated for the non-normalised method.

Table 4.2 presents some numerical results using the same model parameters as table

4.1, but is performed with double precision.
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Basis Asset Black- Fourier- Absolute
Functions Price ($) Scholes Hermite Error
8 80 0.069017900 7.54E−2
16 1.94E−2
32 8.64E−4
64 8.15E−6
128 2.78E−4

90 1.0254530 5.40E−2
1.85E−2
1.24E−3
4.70E−6
1.00E−7

100 5.0169820 1.43E−1
2.22E−2
1.05E−3
9.00E−7
3.90E−6

110 12.620446 8.27E−2
2.33E−2
1.00E−3
3.00E−6
4.00E−6

120 22.066563 1.21E−1
9.53E−3
1.25E−3
1.30E−5
1.55E−4

Table 4.2: Normalised Fourier-Hermite - European call option for 4 time steps,
σ = 0.20, r = 0.08, T = 0.25, strike price of $100 and for various basis functions.
Double precision was used to calculate the values.

The Table 4.3 shows the prices and errors for expansions of 4 time steps and varying

number of basis functions.
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Basis Asset Black- Fourier- Absolute
Functions Price ($) Scholes Hermite Error
8 80 18.08888506397669 18.01343751006435 7.54E−2
16 18.10832984562124 1.94E−2
32 18.08974907818617 8.64E−4
64 18.08887723039570 7.83E−6
128 18.08888506434852 3.72E−10

90 9.045321064809460 8.991311526733935 5.40E−2
9.026817995821769 1.85E−2
9.044085364654334 1.24E−3
9.045318182920060 2.88E−6
9.045321065259884 4.50E−10

100 3.036847936937940 3.179388674293241 1.43E−1
3.059099678525065 2.23E−2
3.037902053276338 1.05E−3
3.036853028959601 5.09E−6
3.036847937209272 2.71E−10

110 0.6403158326585500 0.5575876168848387 8.27E−2
0.6169841497201888 2.33E−2
0.6393131629084357 1.00E−3
0.6403188161068562 2.98E−6
0.6403158329955574 3.37E−10

120 0.08642753228261400 −0.0350119989905038 1.21E−1
0.09596066895079108 9.53E−3
0.08768541887430010 1.26E−3
0.08641956163094973 7.97E−6
0.08642753286933688 5.87E−10

Table 4.3: Normalised Fourier-Hermite - European put option for 4 time steps,
σ = 0.20, r = 0.08, T = 0.25, strike of $100 and for various basis functions. Double
precision was used to calculate the values.

The parameters used for the call option (table 4.2) are identical to those used for

the put option (table 4.3). For this parameter set, the normalised Fourier-Hermite

expansion approximations work better for most of the put options compared to the

call options. Varying the parameters have differing affects on the approximation

using both types of Fourier-Hermite expansion techniques. An ability to find the

optimal parameters would be advantageous.
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4.3 American Put Options

The path integral (3.72) and early exercise point for the normalised method is the

same, the difference being the Fourier set up which will incorporate normalised

Hermite polynomials. Therefore, re-presenting the path integral

V k−1(ξk−1) =
e−rΔt

√
π

∫ ∞

−∞
e−(ξk−μ(ξk−1))2V k(

√
2Δt ξk) dξk, (4.45)

where V is the value of the American put option unexercised. If we denote F k−1 as

the value of the option at time tk−1 and since an American option can be exercised

at any time, ξ∗k−1 is introduced to denote the optimal exercise point, then

F k−1(ξk−1) =

{
V k−1(ξk−1), ξ∗k−1 < ξk−1 < ∞
1 − eσξk−1 , −∞ < ξk−1 < ξ∗k−1

, (4.46)

Since the American put option can be exercised at any time, the path integral (4.45)

is split into two parts,

V k−1(ξk−1) = hk−1(ξk−1) +
e−rΔt

√
π

∫ ∞

ξ∗
k√

2Δt

e−(ξk−μ(ξk−1))2V k(
√

2Δt ξk) dξk, (4.47)

where

hk−1(ξk−1) =
e−rΔt

√
π

∫ ξ∗k√
2Δt

−∞
e−(ξk−μ(ξk−1))2(1 − eσ

√
2Δt ξk) dξk. (4.48)

The integral in (4.48) is the payoff or early exercise component of the path integral

(4.47). The early exercise point ξ∗k−1 is the value of ξ which solves

V k−1(ξ) = 1 − eσξ. (4.49)

So, the initial set up of the American Option is made, the following normalised

Fourier-Hermite series expansions are introduced

105



CHAPTER 4. NORMALISED FOURIER-HERMITE SERIES EVALUATION

V k−1(ξk−1) �
N∑

q=0

αk−1
q H∗

q (ξk−1), (4.50)

and

hk−1(ξk−1) �
N∑

q=0

γk−1
q H∗

q (ξk−1). (4.51)

As with the non normalised method, the most appropriate manner in evaluating V 0

is to treat the two integrals separately. Therefore, recurrence relations are formed

for the coefficients of the normalised Fourier-Hermite series, the two parts are joined

for final evaluation of the American put option price. Therefore, substituting (4.50)

into (4.47) gives

N∑
q=0

αk−1
q H∗

q (ξk−1) =
e−rΔt

√
π

∫ ∞

ξ∗
k√

2Δt

e−(xk−μ(xk−1))2V k(
√

2Δt ξk) dxk, (4.52)

and substituting (3.78) into (3.75) gives

N∑
q=0

γk−1
q H∗

q (ξk−1) =
e−rΔt

√
π

∫ ξ∗k√
2Δt

−∞
e−(xk−μ(xk−1))2(1 − eσ

√
2Δt ξk) dxk. (4.53)

Using the orthogonalisation property, (4.52) becomes

1√
π

∫ ∞

−∞
e−

1
2
ξ2
k−1H∗

m(ξk−1)

N∑
q=0

αk−1
q H∗

q (ξk−1) dξk−1

=
1√
π

∫ ξ∗k√
2Δt

−∞
e−ξ2

k−1H∗
m(ξk−1)

e−rΔt

√
2π

∫ ∞

−∞
e−(ξk−μ(ξk−1))2(1 − eσ

√
2Δt ξk) dξk dξk−1

+
1√
π

∫ ∞

ξ∗
k√

2Δt

e−
1
2
ξ2
k−1H∗

m(ξk−1)
e−rΔt

√
π

∫ ∞

−∞
e−(ξk−μ(ξk−1))2V k(

√
2Δt ξk) dξk dξk−1.

(4.54)

Prior to forming the evaluation of αk−1, the coefficients of γk require generation.

The values of γk are found recursively, with γK−1 = 0. To assist in the evaluation of

the elements in γk, the following Hermite polynomial and mathematical properties

are used,

H∗
0 (x) = 1, H∗

1 (x) = x, (4.55)
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H∗
n(ax + b) = (ax + b)H∗

n−1(ax + b) − (n − 1)H∗
n−2(ax + b), (4.56)

d

dt
H∗

n(ax + b) = a n H∗
n−1(ax + b), (4.57)

1√
2π

∫ ∞

−∞
2te−

t2

2 dt = 0, (4.58)

1√
2π

∫ ∞

−∞
e−

t2

2 dt = 1, (4.59)

1√
2π

∫ ∞

x

H∗
1 (t)e−

t2

2 dt =
e−

x2

2√
2π

, (4.60)

1√
2π

∫ x

−∞
H∗

1 (t)e−
t2

2 dt = −e−
x2

2√
2π

, (4.61)

and

erfc(x) =
2√
π

∫ ∞

x

e−t2 dt = 1 − erf(x). (4.62)

So,

1√
π

∫ ∞

−∞
e−

1
2
ξ2
k−1H∗

m(ξk−1)

N∑
q=0

γk−1
q H∗

q (ξk−1) dξk−1

=
1√
π

∫ ξ∗k√
2Δt

−∞
e−ξ2

k−1H∗
m(ξk−1)

e−rΔt

√
2π

∫ ∞

−∞
e−(ξk−μ(ξk−1))2(1 − eσ

√
2Δt ξk) dξk dξk−1,

which simplifies to

γk−1
m =

e−rΔt

√
π

∫ ξ∗k√
2Δt

−∞

[
1

m!
√

2π

∫ ∞

−∞
e−[(ξk−μ(ξk−1))2+ξ2

k−1]H∗
m(ξk−1) dξk−1

]
(1 − eσ

√
2Δt ξk) dξk,

=
e−rΔt

m!
√

π

∫ ξ∗k√
2Δt

−∞
I∗
m(ξk)(1 − eσ

√
2Δt ξk) dξk, (4.63)
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where,

I∗
m(ξk) =

1√
2π

∫ ∞

−∞
e−[(ξk−μ(ξk−1))2+ξ2

k−1]H∗
m(ξk−1) dξk−1. (4.64)

Using the analytical solution to Im(ξk) as presented in sub-section 3.2 gives,

γk−1
m =

e−rΔt

m!
√

π

∫ ξ∗k√
2Δt

−∞

√
2Δt e−

1
2
(
√

2Δt ξk−b

τ
)2H∗

m(
√

2Δt ξk−b
τ

)

τm+1
(1 − eσ

√
2Δt ξk) dξk, (4.65)

and by performing a further substitution,

z =

√
2Δt ξk − b

τ
,

(4.65) is simplified to,

γk−1
m =

e−rΔt

m!τm
√

2π

∫ ξ∗k−b

τ

−∞
e−

z2

2 H∗
m(z)(1 − eστz+σb) dz

=
e−rΔt

m!τm
√

2π

[∫ zk

−∞
e−

z2

2 H∗
m(z) dz − eσb

∫ zk

−∞
e−

z2

2
+στzH∗

m(z) dz

]
, (4.66)

and

zk =
ξ∗k − b

τ
. (4.67)

Given (4.66), the values of vector γk−1 can be evaluated. Beginning with m = 0,

γk−1
0 =

e−rΔt

0!τ 0
√

2π

[∫ zk

−∞
e−

z2

2 H∗
0 (z) dz − eσb

∫ zk

−∞
e−

z2

2
+στzH∗

0 (z) dz

]
,

=
e−rΔt

√
2π

[∫ zk

−∞
e−

z2

2 dz − eσb

∫ zk

−∞
e−

z2

2
+στz dz

]
. (4.68)

Using property (4.24) and completing the square of the Gaussian in the right integral,

(4.68) becomes
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γk−1
0 = e−rΔt

[
1

2
erfc(− zk√

2
) − eσb+ σ2τ2

2√
2π

∫ zk

−∞
e−

1
2
(z−στ)2 dz

]
,

=
e−rΔt

2

[
erfc(− zk√

2
) − eσb+ σ2τ2

2 erfc

(
− στ√

2
+

zk√
2

)]
. (4.69)

For m = 1,

γk−1
1 =

e−rΔt

1!τ 1
√

2π

[∫ zk

−∞
e−

z2

2 H∗
1 (z) dz − eσb

∫ zk

−∞
e−

z2

2
+στzH∗

1 (z) dz

]
,

=
e−rΔt

τ
√

2π

[∫ zk

−∞
ze−

z2

2 dz − eσb+ σ2τ2

2

∫ zk

−∞
ze−

1
2
(z−στ)2 dz

]
. (4.70)

Using properties (4.61) and (4.24), (4.70) becomes

γk−1
1 =

e−rΔt

τ

[
− 1√

2π
e−

z2
k
2 +

eσb− z2
k
2

+στzk

√
2π

+
στeσb+ σ2τ2

2

2
erfc

(
− στ√

2
− zk√

2

)]
. (4.71)

A proof of (4.71), can be found in appendix B.2.1.

For m = 2, 3, . . . , N ,

γk−1
m =

e−rΔt

τm

[
Θk−1

m − Φk−1
m

]
, (4.72)

where

Θk−1
m =

1√
2π

∫ zk

−∞
e−

z2

2 H∗
m(z) dz, (4.73)

and

Φk−1
m =

1√
2π

∫ zk

−∞
e−

z2

2
+στzH∗

m(z) dz. (4.74)

and using,

H∗
n(ax + b) = (ax + b)H∗

n−1(ax + b) − (n − 1)H∗
n−2(ax + b), forn > 1,

109



CHAPTER 4. NORMALISED FOURIER-HERMITE SERIES EVALUATION

becomes

Θk−1
m =

1√
2π

∫ zk

−∞
e−

z2

2 (zH∗
m−1(z) − (m − 1)H∗

m−2(z)) dz, (4.75)

and

Φk−1
m =

eσb+ σ2τ2

2√
2π

∫ zk

−∞
e−

1
2
(z−στ)2(zH∗

m−1(z) − (m − 1)H∗
m−2(z)) dz. (4.76)

An analytical form for (4.75) is determined using properties, (4.21) and (4.60), and

along with integration by parts gives

Θk−1
m = − 1√

2π
e−

z2
k
2 H∗

m−1(zk). (4.77)

where zk is given by (4.67). The proof for (4.77) can be found in Appendix B.2.2.

For Φ, a recurrence relation is built using properties, (4.21) and (4.60), and along

with integration by parts gives

Φk−1
m = −eσb+ σ2τ2

2√
2π

e−
1
2
(zk−στ)2H∗

m−1(zk) + στΦk−1
m−1. (4.78)

The proof for (4.78) can also be found in Appendix B.2.3 leading to the evaluation

(B.28). Therefore,

γk−1
m =

e−rΔt

m!τm

[
− 1√

2π
e−

z2
k
2 H∗

m−1(zk) +
eσb− z2

k
2

+στzk

√
2π

H∗
m−1(zk)

− στeσb+ σ2τ2

2 Φk−1
m−1

]
, (4.79)

To obtain a recurrence relation for γk−1
m , Φk−1

m−1 is replaced with γk−1
m−1 by rearranging

γk−1
m−1 =

e−rΔt

(m − 1)!τm−1

[
Θk−1

m−1 − Φk−1
m−1

]
, (4.80)

for Φk−1
m−1 and substituting into (4.79). Therefore, (4.79) becomes

γk−1
m =

σ

m
γk−1

m−1 +
e−rΔt− z2

k
2

m!τm
√

2π

[
H∗

m−1(zk)(e
σb+στzk − 1) + στH∗

m−2(zk)

]
. (4.81)
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The proof for (4.81) can be found in Appendix B.2.4.

Therefore, given (4.81), (4.54) becomes

1√
π

∫ ∞

−∞
e−

1
2
ξ2
k−1H∗

m(ξk−1)

N∑
q=0

αk−1
q H∗

q (ξk−1) dξk−1 = γk−1
m

+
1√
π

∫ ∞

ξ∗
k√

2Δt

e−
1
2
ξ2
k−1H∗

m(ξk−1)
e−rΔt

√
π

∫ ∞

−∞
e−(ξk−μ(ξk−1))2V k(

√
2Δt ξk) dξk dξk−1,

which simplifies to,

αk−1
m =γk−1

m +
e−rΔt

m!
√

π

∫ ∞

ξ∗
k√

2Δt

[
1√
2π

∫ ∞

−∞
e−

1
2
[2(ξk−μ(ξk−1))2+ξ2

k−1]H∗
m(ξk−1)dξk−1

]
V k(

√
2Δt ξk) dξk,

=
e−rΔt

m!
√

π

∫ ∞

ξ∗
k√

2Δt

V k(
√

2Δt ξk)I
∗
m(ξk) dξk, (4.82)

where,

I∗
m(ξk) =

1√
2π

∫ ∞

−∞
e−

1
2
[2(ξk−μ(ξk−1))2+ξ2

k−1]H∗
m(ξk−1) dξk−1. (4.83)

Using the analytical solution to I∗
m(ξk) as presented in sub-section 3.2 gives,

αk−1
m = γk−1

m +
e−rΔt

m!
√

π

∫ ∞

ξ∗
k√

2Δt

√
Δt e−

1
2
(
√

2Δt ξk−b

τ
)2H∗

m(
√

2Δt ξk−b
τ

)

τm+1
V k(

√
2Δt ξk) dξk,

(4.84)

and by performing a further substitution,

z =

√
2Δt ξk − b

τ
,

(4.84) is simplified to,

αk−1
m = γk−1

m +
e−rΔt

m!τm
√

2π

∫ ∞

ξ∗
k
−b

υ

e−
z2

2 H∗
m(z)V k(τz + b) dz. (4.85)
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Finally, a normalised Fourier-Hermite series is introduce for V k to complete the

relationship between αk−1 and αk,

V k(ξk) �
N∑

n=0

αk
nH∗

n(ξk), (4.86)

and substituting (4.86) into (4.84) gives

αk−1
m = γk−1

m +
e−rΔt

m!τm
√

2π

∫ ∞

ξ∗
k
−b

υ

e−
z2

2 H∗
m(z)

N∑
n=0

αk
nH∗

n(τz + b) dz,

= γk−1
m +

e−rΔt

m!τm
√

2π

N∑
n=0

αk
n

∫ ∞

ξ∗
k
−b

υ

e−
z2

2 H∗
m(z)H∗

n(τz + b) dz. (4.87)

The expression (4.87) can be rewritten into

αk−1
m = γk−1

m +
N∑

n=0

αk
nAk

m,n, (4.88)

where

Ak
m,n =

e−rΔt

m!τm
√

2π

∫ ∞

zk

e−
z2

2 H∗
m(z)H∗

n(τz + b) dz. (4.89)

and

zk =
ξ∗k − b

τ
. (4.90)

The elements of matrix Ak require evaluation with matrix Ak these elements chang-

ing for each time step because the optimal early exercise point, ξ∗k, will differ. There-

fore, for each time step, the coefficients, αk−1 are found.

So element Ak
0,0 is given by

Ak
0,0 =

e−rΔt

0!τ 0
√

2π

∫ ∞

zk

e−
z2

2 H∗
0 (z)H∗

0 (τz + b) dz

=
e−rΔt

√
2π

∫ ∞

zk

e−
z2

2 dz, (4.91)
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therefore using (4.62),

Ak
0,0 =

e−rΔt

2
erfc(

zk√
2
). (4.92)

The next element Ak
0,1 is given by,

Ak
0,1 =

e−rΔt

0!τ 0
√

2π

∫ ∞

zk

e−
z2

2 H∗
0 (z)H∗

1 (τz + b) dz

=
e−rΔt

√
2π

[
τ

∫ ∞

zk

ze−
z2

2 dz + b

∫ ∞

zk

e−
z2

2 dz

]
. (4.93)

Using properties (4.60) and (4.62), (4.93) becomes,

Ak
0,1 = e−rΔt

[
b

2
erfc(

zk√
2
) +

τ√
2π

e−
z2
k
2

]
. (4.94)

For m = 0 and n = 2, 3, . . . , N ,

Ak
0,n =

e−rΔt

0!τ 0
√

2π

∫ ∞

zk

e−
z2

2 H∗
0 (z)H∗

n(τz + b) dz

=
e−rΔt

√
2π

∫ ∞

zk

e−
z2

2 H∗
n(τz + b) dz, (4.95)

and using property (4.56), (4.95) can be expressed as,

Ak
0,n =

e−rΔt

√
2π

∫ ∞

zk

e−
z2

2

[
(τz + b)H∗

n−1(τz + b) − (n − 1)H∗
n−2(τz + b)

]
dz,

=
e−rΔt

√
2π

∫ ∞

zk

τze−
z2

2 dz + bAk
0,n−1 − (n − 1)Ak

0,n−2,

=
τe−rΔt

√
2π

e−
z2
k
2 H∗

n−1(τzk + b) + bAk
0,n−1 + (τ 2 − 1)(n − 1)Ak

0,n−2. (4.96)

For the value of m = 1 and n = 0,
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Ak
1,0 =

e−rΔt

1!τ 1
√

2π

∫ ∞

zk

e−
z2

2 H∗
1 (z)H∗

0 (τz + b) dz,

=
e−rΔt

τ
√

2π

∫ ∞

zk

ze−
z2

2 dz, (4.97)

and using property (4.60), (4.97) becomes

Ak
1,0 =

e−rΔt

τ
√

2π
e−

z2
k
2 . (4.98)

For m > 1 and n = 0 and using property (4.56) gives,

Ak
m,0 =

e−rΔt

m!τm
√

π

∫ ∞

zk

e−
z2

2 H∗
m(z)H∗

0 (τz + b) dz,

=
e−rΔt

m!τm
√

2π

∫ ∞

zk

e−
z2

2

[
zH∗

m−1(z) − (m − 1)H∗
m−2(z)

]
dz,

=
e−rΔt

m!τm
√

2π

∫ ∞

zk

ze−
z2

2 H∗
m−1(z) dz − (m − 1)Ak

m−2,0. (4.99)

Using integration by parts, (4.99) reduces to,

Ak
m,0 =

e−rΔt

m!τm
√

2π
e−

z2
k
2 H∗

m−1(zk). (4.100)

For general m and n and using property (4.56) for H∗
m(z) gives,

Ak
m,n =

e−rΔt

m!τm
√

2π

∫ ∞

zk

e−
z2

2 H∗
m(z)H∗

n(τz + b) dz,

=
e−rΔt

m!τm
√

2π

∫ ∞

zk

e−
z2

2 H∗
n(τz + b)

[
zH∗

m−1(z) − (m − 1)H∗
m−2(z)

]
dz,

=
e−rΔt

m!τm
√

2π

∫ ∞

zk

ze−
z2

2 H∗
m−1(z)H∗

n(τz + b) dz − (m − 1)Ak
m−2,n. (4.101)

Using integration by parts, (4.101) reduces to,
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Ak
m,n =

n

m
Ak

m−1,n−1 +
e−rΔt

m!τm
√

2π
e−

z2
k
2 H∗

m−1(zk)H
∗
n(τzk + b). (4.102)

Prior to finding all coefficients, as with the European options, the coefficients for the

first time step αK−1 are evaluated. Since the American put and European put at

the first time step are equivalent, the expression (4.42) and (4.43) are used. Namely,

αK−1
m =

σ√
m

[
αK−1

m−1 +
e−rΔt

τm−1
√

2π(m − 1)
e−

1
2
( b

τ
)2H∗

m−2(−
b

τ
)

]
. (4.103)

for m = 2, 3, . . .N , with initial conditions,

αK−1
0 =

e−rΔt

2

[
erfc(

b√
2τ

) + eσb+ 1
2
σ2τ2

erfc(− b√
2τ

− στ√
2
)

]
,

αK−1
1 = − σ

2
e−rΔt+σb+ 1

2
σ2τ2

erfc(
b√
2τ

+
στ√

2
). (4.104)

Therefore, we are able to evaluate various American put options using the expres-

sions and recurrence relations evaluated throughout this section.

4.3.1 Results and Analysis

Considering the normalised method realised similar recurrence relations and expres-

sions, it is fair to say that we would expect similar results to those presented for

the non-normalised examples. However, due to the oscillating nature of the two

methods, a different parameter set N (the number of basis functions) and K (the

number of time steps) may be required to achieve identical (or similar) prices. Table

4.4 shows some results for American put options when the number of basis functions

used is 40.
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Asset Binomial Norm F-H Norm F-H Norm F-H
Price ($) Method 60 steps 80 Steps 100 Steps

80 20.000000 20.000000 20.000000 20.000000
90 10.037663 10.098764 10.112576 10.122039

100 3.224898 3.184179 3.202324 3.213752
110 0.665410 0.654379 0.666875 0.674574
120 0.088795 0.064938 0.067110 0.068702

Table 4.4: Normalised Fourier-Hermite - American put option for various time
steps and 40 basis functions with σ = 0.20, r = 0.08, T = 0.25, strike of $100.
Double precision was used to calculate the values. The Binomial Method prices are
optimal approximations (using various N) and were calculated based on Cox et al.
(1979).

Table 4.4 are prices for various time steps given 40 basis functions. Table 4.5 presents

accurate prices for 40 basis functions and the optimal number of time steps used to

evaluate option price.

Asset Binomial F-H Norm F-H
Price ($) Method 40 Basis Functions 40 Basis Functions

90 10.037663 10.037439(43) 10.036482(25)
100 3.224898 3.224875(172) 3.225033(130)
110 0.665410 0.665417(363) 0.665395(77)
120 0.088795 0.088800(83) 0.079935(4)

Table 4.5: Comparison of the Fourier-Hermite expansion methods for various
American put option prices for 40 basis functions and the best number of time
steps with σ = 0.20, r = 0.08, T = 0.25, strike of $100. Double precision was
used to calculate the values. The number of time steps are in brackets after the
price. The Binomial Method prices are optimal approximations (using various N)
and were calculated based on Cox et al. (1979).

Table 4.6 presents American put option prices for 40 time steps using basis functions

which evaluate these prices accurately.
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Asset Binomial F-H Norm F-H
Price ($) Method 40 steps 40 steps

90 10.037663 10.037604(35) 10.047204(60)
100 3.224898 3.254261(12) 3.223757(23)
110 0.665410 0.631602(20) 0.630337(40)
120 0.088795 0.089520(13) 0.088798(30)

Table 4.6: Comparison of the Fourier-Hermite expansion methods for various
American put option prices for 40 time steps and the best basis functions with
σ = 0.20, r = 0.08, T = 0.25, strike of $100. Double precision was used to calcu-
late the values. The number of basis functions are in brackets after the price. The
Binomial Method prices are optimal approximations (using various N) and were
calculated based on Cox et al. (1979).

Tables 4.5 and 4.6 show that in some cases the normalised method evaluated better

prices than the non-normalised method. Also, some of the prices presented in these

tables were comparable to the Binomial method. However, in other cases, the prices

evaluated were not so accurate (refer to table 4.6, asset price $110).

4.4 Conclusion

The normalised Fourier-Hermite expansion presented in this chapter involves the

same approach offered in Chapter 3 with the difference being the use of normalised

Hermite orthogonal polynomials. These normalised polynomials have different prop-

erties to those of the non-normalised type. The Delta function for instance has only a

factorial coefficient whereas the non-normalised has a factorial and exponential term.

The recurrence relations and expressions formed to evaluate the prices of the Eu-

ropean and American put options had similarities to those presented in Chapter 3.

The differences occurring due to the nature of the properties associated with the

normalised Hermite polynomials (refer to (4.19) and (4.21)).

It is clear that both types of polynomials used lead to similar results, with one

not better than the other in most cases. Computation times are relatively the
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same. In both types of Hermite polynomials, the optimal approximation would vary

for differing N (basis functions) and K (number of time steps). So, it would be

advantageous if some a-prior knowledge of these parameters were known to give an

optimal approximation.
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Chapter 5

Interpolation Polynomials,
Quadrature Rules and European
Options

The approaches to be offered in this chapter involves the use of interpolation polyno-

mials and quadrature rules. This numerical method is an alternative to the spectral

method covered in Chapter 3 and the normalised Fourier expansion version as pre-

sented in Chapter 4 and those traditionally used such as Monte Carlo simulation,

finite differences and trees. The reason for the use of these methods for the path

integral framework is due to the fact that a closed form solution is not possible

at every time step. The approach being presented converts the path integral into

a sum of ”closed interval” integrals, which accurately prices options by utilising

interpolation polynomials and various quadrature (Newton-Cotes) rules.
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5.1 Introduction

The formulation of the path integral framework, as presented in Chapter 2, has no

closed form solution at each time step. Therefore, alternative (numerical) meth-

ods are required to find an approximate solution, in this case, an option price. As

elaborated in Chapter 1, the most common methods used in solving path integrals

involves the use of Monte Carlo simulation and spectral methods like those presented

in Chapters 3 and 4.

Interpolation polynomials have been used in many fields of mathematics and science.

The polynomials, created from a set of data points (nodes), are used to represent

a function that when manipulated in the context of the problem can give a closed

form solution. Issues which affect this method of interpolation include, the types of

polynomials to be used and grid allocations (discretization schemes).

Section 5.2 transforms the path integral into a form which allows for an efficient

approximation to be found. An investigation of the weight function (kernel) used in

the path integral framework is made. The weight function is used to transform the

interval of integration from an infinite to closed form.

Section 5.3 investigates the formulation and implementation of the interpolation.

Section 5.4 presents a thorough analysis of interpolating fk(xk) for European op-

tions. The analysis covers the effects of the model parameters on the method. That

is, how does changes in the Volatility, Interest Rates and Time to Expiry affect the

method and the results. Various node allocations are presented.

An alternative to using interpolation polynomials to solve the modified path inte-

gral are quadrature rules. Section 5.5 presents results for European options utilizing

various Newton-Cotes quadrature rules (endpoint, midpoint, trapezoidal and Simp-

son’s). It will shown that the Newton-Cotes rules are very accurate and fast to

compute (especially for the European options). Section 5.6 concludes the chapter,
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summarising the most important aspects of the approaches offered.

5.2 The Path Integral Framework

The path integral, as in Chapter 2 (equation (2.43)), is given by the following

expression for k = K, K − 1, . . . , 1,

fk−1(xk−1) = υ

∫ ∞

−∞
e−(xk−μ(xk−1))2fk(

√
2Δt xk) dxk, (5.1)

where

μ(xk−1) =
1√
2Δt

(xk−1 +
1

σ
(r − 1

2
σ2)Δt), υ =

e−rΔt

√
π

and

xj =
1

σ
ln (S), j = 0, 1, 2, . . . , K.

To assist in the implementation of this approach, a transformation of (5.1) is required

by replacing
√

2Δt xk with x∗
k and neglecting the ∗ for convenience, so that

fk−1(xk−1) = Ω

∫ ∞

−∞
e
−
(

xk√
2Δt

−μ(xk−1)
)2

fk(xk) dxk (5.2)

where

Ω =
e−rΔt

√
2Δtπ

.

The reason for the change of variable is to simplify the interpolation of fk and also

improve the efficiency of the interpolation process. There is no closed form solution

to the path integral (5.1) or (5.2), with the only exception being when k = K

namely,

fK−1(x
K−1) = Ω

∫ ∞

−∞
e
−(

xK√
2Δt

−μ(xK−1))
2

fK(x
K
) dx

K
, (5.3)

where fK(x
K
) is the payoff function. For a call option,
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fK(x
K
) =

{
eσxK − 1, xK > 0

0, x
K
≤ 0

(5.4)

and for a put option,

fK(x
K
) =

{
e−σxK − 1, x

K
< 0

0, xK ≥ 0.
(5.5)

Therefore, for a call option, the path integral fK−1(x
K−1) has a closed form, which

is derived by first substituting (5.4) into (5.3),

fK−1(x
K−1) = Ω

∫ ∞

0

e
−(

xK√
2Δt

−μ(xK−1))
2

(eσxK − 1) dx
K
. (5.6)

The integral (5.6) can be split into two parts and using basic index laws, transforms

(5.6) to,

fK−1(xK−1) = Ω

[∫ ∞

0

e
−(

xK√
2Δt

−μ(xK−1))
2+σxK dxK −

∫ ∞

0

e
−(

xK√
2Δt

−μ(xK−1))
2

dxK

]
, (5.7)

and by completing the square in the first integral of (5.7) gives,

fK−1(xK−1) = Ω

[
ω

∫ ∞

0

e−(xK−μ(xK−1)−
√

τ)2 dxK −
∫ ∞

0

e−(xK−μ(xK−1))2 dxK

]
, (5.8)

where

ω = e−rΔt+σμ(xK−1)
√

2Δt + τ , (5.9)

and

τ =
Δt

2
σ2. (5.10)

Therefore, the integrands in (5.8) take the form of a Gaussian function. With a

change of variables,

u1 = xK − μ(xK−1) −
√

τ

u2 = x
K
− μ(x

K−1) (5.11)
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equation (5.8) becomes

fK−1(x
K−1) = Ω

[
ω

∫ ∞

−μ(xK−1)−√
τ

e−u2
1 du1 −

∫ ∞

−μ(xK−1)

e−u2
2 du2

]
. (5.12)

Recalling

erfc(x) =
2√
π

∫ ∞

x

e−t2 dt = 1 − erf(x) (5.13)

(5.12) can be defined in terms of the error function,

fK−1(xK−1) = e−rΔt

[
ω

(
1

2
+

1

2
erf(μ(xK−1) +

√
τ)

)
− 1

2
− 1

2
erf(μ(xK−1))

]
, (5.14)

with ω and τ given by (5.9) and (5.10) respectively. For the put option,

fK−1(x
K−1) = Ω

∫ 0

−∞
e
−(

xK√
2Δt

−μ(xK−1))2
(e−σxK − 1) dx

K
. (5.15)

The integral (5.15) can be split into two parts as with the call option,

fK−1(x
K−1) = Ω

[∫ 0

−∞
e
−(

xK√
2Δt

−μ(xK−1))
2−σxK dx

K
−

∫ 0

−∞
e
− (xK√

2Δt
−μ(xK−1))

2

dx
K

]
. (5.16)

Again, completing the square in the first integral of (5.16) gives,

fK−1(xK−1) = Ω

[
ω

∫ 0

−∞
e−(xK−μ(xK−1)+

√
τ)2 dxK −

∫ 0

−∞
e−(xK−μ(xK−1))2 dxK

]
. (5.17)

Using the change of variable (5.11), (5.17) becomes

fK−1(x
K−1) = Ω

[
ω

∫ −μ(xK−1)+
√

τ

−∞
e−u2

1 du1 −
∫ −μ(xK−1)

−∞
e−u2

2 du2

]
. (5.18)

The equation (5.18) can be expressed in terms of the error function,

fK−1(x
K−1) = e−rΔt

[
1

2
− 1

2
erf(μ(x

K−1)) − ω(
1

2
− 1

2
erf(μ(x

K−1) +
√

τ))

]
, (5.19)

with ω and τ given by (5.9) and (5.10) respectively. Since we know fK−1(xK−1) for

both a put and call, it can be used for both a European or American style option.
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At this point it is worth noting that it is evident that a closed form solution for all

the subsequent integrals cannot be found due to the form of fK−1(x
K−1).

Therefore, fK−1(x
K−1) can be transformed/approximated which allows the path in-

tegral to have a closed form. Interpolating fK−1(xK−1) into many polynomials will

have the desired impact. Each subsequent fk(xk) is in turn interpolated until f 0(x0)

is found.

Due to the nature of path integrals, the errors associated with interpolation are

always carried forward to each subsequent time step. Therefore, the interpolation

method and the discretisation of nodes are very important. Minimising errors in

early time steps can only assist in achieving an accurate approximation.

A major issue that needs to be addressed prior to investigating the interpolation

method, is obtaining a closed interval for each integral step. An investigation of the

weight function is needed such that the integrals have a closed interval.

5.2.1 The Weight Function

In determining the most appropriate closed interval to interpolate over each time

step, a thorough investigation of the weight function is required. The weight function

in (5.2) is,

w(xk, xk−1) =
1√

2Δtπ
e
−
(

xk√
2Δt

−μ(xk−1)
)2

. (5.20)

Figure 5.1 is a graphical representation of (5.20).
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Lk−1 Rk−10
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Figure 5.1: A graphical representation of the weight function

Given the nature of the weight in (5.2), and by setting the area under the tails

to some a-priori bound, the infinite interval will convert to a closed interval with

an associated error in doing so. Since the weight is symmetrical around the mean,

the interval should take the form, (
√

2Δt (Lk−1 +μ(xk−1)),
√

2Δt (Rk−1 +μ(xk−1))),

where Lk−1 is the left and Rk−1 is the right side of the interval. The intervals formed

were derived based on the Gaussian in the path integral being of the standard form,

with a mean of 0 and a standard deviation of 1. Given the formulation of the closed

interval, the path integral (5.2) will take the form,

fk−1(xk−1) =Ψ(xk−1,−∞, β1(xk−1))

+ Ψ(xk−1, β1(xk−1), β2(xk−1))

+ Ψ(xk−1, β2(xk−1),∞) (5.21)

where

Ψ(xk−1, a, b) = Ω

∫ b

a

e
−(

xk√
2Δt

−μ(xk−1))2
fk(xk) dxk (5.22)

and
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β1(xk−1) =
√

2Δt (Lk−1 + μ(xk−1)),

β2(xk−1) =
√

2Δt (Rk−1 + μ(xk−1)). (5.23)

The path integral, Ψ(xk−1, β1(xk−1), β2(xk−1)), has a closed interval so that inter-

polation is possible. Since the interval consists of the variable xk−1, consideration

must be given to the allocation of the intervals of integration for each time step.

The path integral is backward recursive in nature, however, the optimal interval al-

location must occur in a forward manner (i.e. for k = 1, 2, . . . , K − 1). All intervals

are based on the value of the underlying x0 (i.e the value of the underlying at the

beginning of an options life). The value of the option is based on the payoff function

(i.e. the boundary condition) and is used as the starting point in the path integral

framework, with the option price calculated in a backward direction to f 0(x0).

To evaluate the option price f 0 for a certain underlying value, x0, the interval of its

integral and f 1(x1) is required. The interval of integration for f 0(x0), is dependent

on the value of x0. That is,

Ψ(x0, β1(x0), β2(x0)) = Ω

∫ β2(x0)

β1(x0)

e
−(

x1√
2Δt

−μ(x0))2
f 1(x1).dx1. (5.24)

The intervals of integration for f j(xj), where j = 1, 2, . . . , K − 2, and L0 = R0 = x0

being the value of the underlying, is determined by the pair of recursive equations,

β1(Lj) =
√

2Δt (Lj + μ(β1(Lj−1)))

β2(Rj) =
√

2Δt (Rj + μ(β2(Rj−1))). (5.25)

So, for each subsequent interval of integration, the previous interval values are used

to determine the next. Table 5.1 is an example of the intervals of integration required

when K = 4, with the value of the underlying, x0, the intervals for each time step

are given.
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k Function Left Side Right Side

3 f 2(x2) L3 = β1(L2) R3 = β2(R2)
2 f 1(x1) L2 = β1(L1) R2 = β2(R1)
1 f 0(x0) L1 = β1(L0) R1 = β2(R0)

Table 5.1: An example of the intervals of integration used for pricing an option
using 4 time steps.

Figure 5.2 is a graphical representation of the process involved in allocating the

intervals of integration at each time step.
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Figure 5.2: A graphical view point of the interval allocation for K = 4

So, starting with the underlying value x0, the upper and lower bounds (R1 and L1)

for the next time step are determined. The value of the upper bound (R1) is then

used to find the subsequent upper bound (R2) and this process continues for the

remaining time steps. The process is also performed for the lower bounds in the

same manner.

Prior to using the recursive equations (5.25), determination of each Lj and Rj is

required.

5.2.2 Closed Interval Allocation

Given the recursive equations (5.25), the optimal closed interval for each time step

is found satisfying the following conditions,
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Ψ(xk−1,−∞, β1(xk−1)) ≤
η

2

Ψ(xk−1, β2(xk−1),∞) ≤ η

2
. (5.26)

where η is an a-priori error set to a value close to zero.

Theoretically, the best option price possible is capped to the value of η. That is,

if η = 10−8 then the smallest error (difference between the approximated price and

the so-called exact price) possible is 10−8. However, this would only occur if the

path integral had a closed form solution at each time step. Since this is not possible,

errors associated with approximating the option price may vary from η.

The integrals (5.26), as (5.2), do not have a closed form solution. An approximation

of fk(xk) is required so that, firstly the integrals have a closed form solution and

secondly, that the approximation is an upper bound to the exact fk(xk).

From Black & Scholes (1973), any security price cannot be greater than the value

of the asset or underlying itself. The upper bound for a call option therefore takes

the following form,

fk(xk) < eσxk , (5.27)

and the upper bound for a put is

fk(xk) < e−σxk . (5.28)

Recalling (5.6) and (5.15) in Section 5.2, the integrals formed by using the upper

bounds (5.27) and (5.28) are very similar.

Ψc(xk−1,−∞, β1(xk−1)) <
e−rΔt

√
π

∫ ∞

0

e
−(

xk√
2Δt

−μ(xk−1))2
eσxk dxk (5.29)

and
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Ψp(xk−1, β2(xk−1),∞) <
e−rΔt

√
π

∫ ∞

0

e
−(

xk√
2Δt

−μ(xk−1))2
e−σxk dxk. (5.30)

By referring to the first integral in (5.6) and (5.15), we complete the square so, a

call takes the following form for the outer integrals,

Ψc(xk−1,−∞, β1(xk−1)) <
ω√

2Δtπ

∫ β1(xk−1)

−∞
e
−(

xk√
2Δt

−μ(xk−1)−√
τ)2

dxk, (5.31)

and

Ψc(xk−1, β2(xk−1),∞) <
ω√

2Δtπ

∫ ∞

β2(xk−1)

e
−(

xk√
2Δt

−μ(xk−1)−√
τ)2

dxk. (5.32)

For a put option,

Ψp(xk−1,−∞, β1(xk−1)) <
ω√

2Δtπ

∫ β1(xk−1)

−∞
e
−(

xk√
2Δt

−μ(xk−1)+
√

τ)2
dxk, (5.33)

and

Ψp(xk−1, β2(xk−1),∞) <
ω√

2Δtπ

∫ ∞

β2(xk−1)

e
−(

xk√
2Δt

−μ(xk−1)+
√

τ)2
dxk, (5.34)

with ω and τ given by (5.9) and (5.10) respectively. By performing a change of

variable as in section 5.2 and recalling (5.13), firstly (5.31) and (5.32) become,

Ψc(xk−1,−∞, β1(xk−1)) <
ω

2
(1 − erf(Lk−1 +

√
τ )) (5.35)

and

Ψc(xk−1, β2(xk−1),∞) <
ω

2
(1 − erf(Rk−1 −

√
τ)). (5.36)

For the put option, (5.33) and (5.34) become,

Ψp(xk−1,−∞, β1(xk−1)) <
ω

2
(1 − erf(Lk−1 −

√
τ )) (5.37)

and

Ψp(xk−1, β2(xk−1),∞) <
ω

2
(1 − erf(Rk−1 +

√
τ )). (5.38)
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Setting the outer integrals, (5.35), (5.36), (5.37) and (5.38) to an a-priori error

margin, η, that is, the area under the tails, then values for Lk−1 and Rk−1 can be

determined.

Using an asymptotic expansion given in Abramowitz & Stegun (1970),

1 − erf(x) ≈ e−x2

x
√

π

[
1 − 1

2x2
+ O(x−4)

]
. (5.39)

A general form for (5.35), (5.36),(5.37) and (5.38) is

ω

2
(1 − erf(X)) = η. (5.40)

Since X is assumed to be large, substituting the first term in (5.39) into (5.40) is

sufficient,

e−X2

X
√

π
=

2η

ω
, (5.41)

and with some simple algebra,

ln (
2η

√
π

ω
) = −X2 − ln (X). (5.42)

Since X is assumed to be large, (5.42) becomes,

ln (
2η

√
π

ω
) ≈ −X2, (5.43)

and therefore

X ≈
√
− ln (

2η
√

π

ω
). (5.44)

Substituting (5.44) into (5.42) and solving for X gives,

X =

√
− ln (

2η
√

π

ω
) − 1

2
ln (ln (

ω

2η
√

π
)), (5.45)

with ω is given by (5.9). Table 5.2 is an example of the intervals used for a particular

European call option.
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Asset η Step Lk−1 Rk−1

Price ($)
80 10−8 3 −5.25402180800974 3.28294451560886

2 −3.88650792296428 1.80435969849094
1 −2.50707574146733 0.338140259899832

10−16 3 −7.19311250452033 5.22312967391776
2 −5.17948762893245 3.09770361816799
1 −3.15369033280151 0.984754851234016

10−32 3 −9.90611842381887 7.93666498266998
2 −6.98829302802270 4.90668518241841
1 −4.05815984534679 1.88922436377929

Table 5.2: European call option intervals of integration for K = 4, σ = 0.20,
r = 0.08, T = 0.25 and strike of $100. Here η is the total error for the tails.

It is clear from Table 5.2, that the value of η has a significant influence on the inter-

vals of integration. A balance is required between the value of η and the interpolation

parameters. The wider the interval, the lower the accuracy of the interpolation. To

improve the interpolation, a better grid allocation is required. However, to achieve

this will lead to inefficiencies and greater computational effort.

5.3 Interpolation Polynomials

The objective of the interpolation is to convert the path integral (5.2), at each time

step, to a form for which a closed form solution can be obtained. For a review of

interpolation in general, we refer the reader to Atkinson (1989). de Boor (1978) gives

a more detailed account on interpolation and the use of splines.

Issues which influence the interpolation include the number of partitions to be used

(N) and the placement of nodes, the type of polynomials to be used and the sample

data (including end points). Also, the values of the model parameters σ, r, T and K

(time slicing) have their part to play. A change in any of these variables, invariably

changes the final price. For example, a change in K, will require either a change in
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the value of N or the positioning of the node points to obtain a similar price.

The most commonly used functions for interpolating are polynomials of order q, in

the form,

p(x) = α0 + α1x + α2x
2 + . . . + αq−1x

q−1 + αqx
q. (5.46)

To find the appropriate polynomials, discretization of the interval into N partitions

is required. For example, Figure 5.3 is the grid for equally spaced nodes, given

n = 1, 2, . . . , N − 1, N , takes the form (the grid allocation is an issue which is pur-

sued later in this chapter),

xk,0

a

xk,1 xk,2 · · · xk,N−2 xk,N−1 xk,N

b
| | | | | |

Figure 5.3: The discretization of xk

From this point, results and analysis presented in this chapter are for Hermite in-

terpolation polynomials (of order 4 (cubics)).

ck(x, n) = α0,n + α1,nx + α2,nx2 + α3,nx3, n = 0, . . . , N. (5.47)

This method involves the interpolation of the European option, fk(xk) (the Ameri-

can Put and a barrier option will be examined in the next chapter). By replacing the

fk(xk) with a series of polynomials (recalling that a closed form solution of fK(x
K
)

is obtained by using the payoff functions (2.17) and (2.24)), the path integral (5.2)

then becomes,

Ψ(xk−1, β1(xk−1), β2(xk−1)) = Ω

N∑
n=1

∫ xk,n

xk,n−1

e
−(

xk√
2Δt

−μ(xk−1))2
ck(xk, n) dxk (5.48)

where Ω is given in (5.2).
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Each component of the sum is an integral. Given the use of a Hermite interpolation

polynomials, the components of the sum take the form,

Ik−1
q (xk−1; a, b) =

3∑
q=0

αq

∫ b

a

e
−(

xk√
2Δt

−μ(xk−1))2
xq

k dxk, (5.49)

and from (5.48)

Ψ(xk−1, β1(xk−1), β2(xk−1)) = Ω

N∑
n=1

3∑
q=0

Ik−1
q (xk−1; xk,n−1, xk,n). (5.50)

Section 5.4 will present and analyse results with particular emphasis on the effects

of node allocation and the various closed intervals used.

5.4 Interpolation and European Options

European style options are one of the simplest financial instruments to solve. It is

wise to analyse thoroughly the affects of the method parameters such as N (number

of partitions) and η (the a-prior bound used to close the path integral interval) for

European options. Therefore, any findings from the analysis can easily be applied to

more complex financial instruments, such as American or barrier options. Changes

in the model parameters, such as K (time steps), σ (volatility), T (time to expiry)

and r (interest rates), also have an affect on the option price.

Table 5.3 is a summary of European option prices using the Black-Scholes formula.

These results are used when comparing the various approximations presented in later

sections of this chapter. The errors presented are an absolute difference between the

interpolation method (IPM) and Black-Scholes price.
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Asset Price ($) European Call Price ($) European Put Price ($)
80 0.06901773330119 18.0888850639767
90 1.02545373413394 9.04532094721139
100 5.01698060626241 3.03684781734310
110 12.6204485019830 0.64031578148717
120 22.0665602016071 0.08642752091237

Table 5.3: Black-Scholes - European option prices with, σ = 0.20, r = 0.08,
T = 0.25 and strike of $100.

The first part of the analysis involves the use of a fixed number of partitions, that are

equally spaced at each time step. Since this node allocation is simple to implement,

a thorough analysis of the model and method parameters are made.

5.4.1 Fixed Number of Partitions

In this node allocation, the number of nodes allocated at each time step are the

same and are equally spaced over the interval of integration. Therefore, as the time

step gets closer to k = 0, the distribution becomes denser (i.e the space between

nodes (partition length) is decreasing). This is due to the fact that the interval of

integration at the first time step is the widest and the last is the smallest (refer to

table 5.2). With the intermediate interval lengths gradually decreasing.

Table 5.4 contains some numerical approximations for European call options with

128 partitions used at each time step.
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Asset η IPM Result Error
Price ($)

80 10−8 0.0690076240325474 1.0109268638739191E − 05
10−16 0.0689726550385943 4.5078262591853688E − 05
10−32 0.0688259946315314 1.9173866965471135E − 04

90 10−8 1.0254550797608930 1.3456269492770345E − 06
10−16 1.0254601167095607 6.3825756169838543E − 06
10−32 1.0254811418688603 2.7407734916502779E − 05

100 10−8 5.0170051428601026 2.4536597691832140E − 05
10−16 5.0170889304529478 1.0832419053696807E − 04
10−32 5.0174346307412199 4.5402447880898977E − 04

110 10−8 12.6204467004580998 1.8015249403369182E − 06
10−16 12.6204414403296745 7.0616533648371060E − 06
10−32 12.6204199493163536 2.8552666686554318E − 05

120 10−8 22.0665498972233856 1.0304383724069055E − 05
10−16 22.0665161653561519 4.4036250959611500E − 05
10−32 22.0663757561983438 1.8444540876572102E − 04

Table 5.4: Interpolation method - European call option with 8 time steps, 128
partitions, σ = 0.20, r = 0.08, T = 0.25 and strike of $100. Here η is the total error
for the tails (refer to (5.26)). Double precision was used to calculate the values.

Table 5.5 presents European put option prices for the same settings as table 5.4.
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Asset η IPM Result Error
Price ($)

80 10−8 18.08629222663164 2.592837345063992E−3
10−16 18.08337631887139 5.508745105312074E−3
10−32 18.07740932173431 1.147574224239223E−2

90 10−8 9.042396439929282 2.924624880182303E−3
10−16 9.039159958455835 6.161106353629042E−3
10−32 9.032634269541020 1.268679526844341E−2

100 10−8 3.033601059225259 3.246877712677690E−3
10−16 3.030082741798865 6.765195139071117E−3
10−32 3.023154541128493 1.369339580944290E−2

110 10−8 0.6366952507974828 3.620581861078428E−3
10−16 0.6327273319993394 7.588500659221759E−3
10−32 0.6247034663400692 1.561236631849195E−2

120 10−8 0.08244929289049295 3.978239392127833E−3
10−16 0.07809231901426740 8.335213268353394E−3
10−32 0.06922013491199029 1.720739737063049E−2

Table 5.5: Interpolation method - European put option with 8 time steps, 128
partitions, σ = 0.20, r = 0.08, T = 0.25 and strike of $100. Here η is the total error
for the tails (refer to (5.26)). Double precision was used to calculate the values.

It is evident with this node distribution that as η decreases, the errors increase.

This trend is due to the fact that as η becomes smaller, the interval lengths for the

interpolation increase in size. The increase in interval lengths cause the partitions to

be less dense. With a sparser distribution, the interpolation errors increase, which

are then carried forward to proceeding time steps.
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x1,0

L1

x1,1 x1,2

· · ·

x1,N−2 x1,N−1 x1,N

R1

| | | | | |

x2,0

L2

x2,1 x2,2 · · · x2,N−2 x2,N−1 x2,N

R2

| | | | | |

x3,0

L3

x3,1 x3,2

· · ·
x3,N−2 x3,N−1 xk,N

R3

| | | | | |

Figure 5.4: The discretization of x for K = 4 with a fixed number of partitions,
equally spaced.

Figure 5.4 shows the discretization for each time step, given a fixed number of par-

titions that are equally spaced. As is illustrated in this figure, the densities of the

distribution of nodes change at each time step. It is clear that even though a smaller

η value theoretically gives a better approximation, this is countered by the decrease

in density of the distribution of nodes for a wider interval of integration.

It is also clear that the closer two nodes are together, the better the interpolation

becomes. However, too many interpolations can increase the error. Therefore, a

compromise is required between the value of η used and the number of nodes being

distributed throughout the interval of integration. In later sections, other distribu-

tions are used to alleviate the compromise between η and interpolation accuracy.

Prior to analysing these other distributions, an investigation of the effects of model

parameters on the option price using the IPM is required. Since this node distri-
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bution is quite simple to implement, it is worthwhile investing time in understand-

ing the effects of changing model parameter values have on the parameters of the

method. That is, how do changes in K, σ, T and r affect the approximate option

price, given certain values of N and η?

5.4.2 Parameter Analysis

Before investigating the method of interpolation in further detail, an in-depth anal-

ysis of model and method parameters is required. How do K, σ, T and r influence

N and η, and vice-versa?

The first parameter to be investigated is the value of η. Since η controls the interval

of integration, attempting to find an optimal η value is required. The plots presented

were produced for a European call option.

Errors for certain ç values

-7

-6

-5

-4

-3

-2

-1

0

1.E-04 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 1.E-10 1.E-11 1.E-12 1.E-13 1.E-14 1.E-15 1.E-16

ç

Lo
g

Er
ro

rs Asset Price $80

Asset Price $90

Asset Price $100

Asset Price $110

Asset Price $120

Figure 5.5: The effects of a changing η with K = 8, N = 128, σ = 0.20, r = 0.08,
T = 0.25 and strike of $100.
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Errors for certain ç values
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Figure 5.6: The effects of a changing η with K = 8, N = 64, σ = 0.20, r = 0.08,
T = 0.25 and strike of $100.
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Figure 5.7: The effects of a changing η with K = 8, N = 256, σ = 0.20, r = 0.08,
T = 0.25 and strike of $100.

From figure 5.5, the optimal value of η is in the range (10−6, 10−8) for the parameter

set K = 8, N = 128, σ = 0.20, r = 0.08, T = 0.25 and strike of $100. It is worth

noting that changes in this parameter set may change the optimal value of η.

Figure 5.6 shows an optimal η value in the range (10−5, 10−7). Figure 5.7 shows

an optimal η value in the range (10−7, 10−9). The change in the optimal value is

due to a change in the value of N . The change in the optimal range occurs due to

the change in the number of partitions being used in the allocation of nodes. This

means, for the case when N = 64, the interpolation is not as accurate. To com-
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pensate for the lack of accuracy, the value of η is increased. So, the node allocation

will become denser. Figure 5.8 shows the difference in allocations, where interval

(La, Ra) is for a larger η value compared to interval (Lb, Rb).

xa,0

La

xa,1 xa,2 · · · xa,62 xa,63 xa,64

Ra

| | | | | |

xb,0

Lb

xb,1 xb,2 · · · xb,62 xb,63 xb,64

Rb

| | | | | |

Figure 5.8: An example of the fixed number of nodes (equally spaced) discretization
for N = 64 for varying interval of integration.

Increasing the value of η also restricts the best approximation achieved. Remem-

bering the value of η is the point where the tails of the weight function are removed.

Therefore, a compromise between η and N is needed. As Figures 5.5, 5.6 and 5.7

show, decreasing N invariably requires an increase in η.

Figures 5.9 - 5.11 show the effect on η when changing K from 8 to 6.
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Figure 5.9: The effects of a changing η with K = 6, N = 128, σ = 0.20, r = 0.08,
T = 0.25 and strike of $100.
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Figure 5.10: The effects of a changing η with K = 6, N = 64, σ = 0.20, r = 0.08,
T = 0.25 and strike of $100.
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Figure 5.11: The effects of a changing η with K = 6, N = 256, σ = 0.20, r = 0.08,
T = 0.25 and strike of $100.

Comparing Figures 5.5 - 5.7 with Figures 5.9 - 5.11 shows a similar result in the

optimal values for η. The only difference is the error obtained for each of the ap-

proximations. Appendix C.1.1 show results for optimal η for various K values. In

analysing all these figures, it is clear that N has a major influence on the optimal η.

The model parameter K, in combination with N and η, influences the final price.

That is, given a certain N and η, there is a K which will give an improved approx-

imation.

The interest rate, r, is the discounting factor on the value of money. In the analysis
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of the interest rate, various interest rates between 2% and 40% were used.

Errors for Certain Interest Rates
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Figure 5.12: The effects of changing the Interest Rate with K = 8, N = 128,
σ = 0.20, T = 0.25, η = 10−7 and strike of $100.

From Figure 5.12, there exists an interest rate, in combination with a certain K, N

and η, such that the approximation is optimal. However, it must be stated that the

difference in approximations between all interest rates are similar.

The next parameter for analysis is σ, the volatility of the underlying. The volatili-

ties used are between 5% and 50%.

Errors for Certain Volatilities
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Figure 5.13: The effects of changing the Volatility with K = 8, N = 128, σ = 0.20,
T = 0.25, η = 10−7 and strike of $100.

The approximations, with volatility changes in Figure 5.13, behave similarly to those
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with interest rate changes. The only difference is that there may be more than one

volatility value which gives a better approximation for a set of values for K, N and

η. Therefore, it is possible for various local minimums to occur for a particular set

of K, N and η, with one of these minima being the global minimum.

The final parameter to analyse is the Time to Expiry, T . The times used in this

analysis include values between 0.1 year to 2 years.

Errors for Certain Times to Expiry
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Figure 5.14: The effects of changing the Time to Expiry with K = 8, N = 128,
σ = 0.20, T = 0.25, η = 10−7 and strike of $100.

The approximations, with Time to Expiry changes in Figure 5.14, behave similarly

to those with interest rate and volatility changes.

It is obvious to find the optimal approximation is a multi-dimensional problem. Fig-

ure 5.15 shows the nature of the problem at hand.
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Figure 5.15: Approximations for various K (right axis) and N (left axis) with
η = 10−7, σ = 0.20, T = 0.25, asset price = $100 and strike of $100.

From figure 5.15 it is evident that the optimal approximation occurs when K = 4

and N = 140. This plot also shows other patterns such as when the number of

time steps, K increases, to improve the approximation an increase in the number of

partitions used is also required.

5.4.3 Fixed Spaced Partitions

The allocation of equally spaced partitions is an alternative to a fixed number of

partitions. This distribution was not used with the intention to improve the results.

The distribution, having identical densities, could lead to simpler analysis of the

errors obtained. An obvious extension to this method would be to predict the best

approximation for a certain set of parameters (σ, T , r, the asset and strike price).

This extension could be achieved with most node distributions but should be easily

implemented if the partitions were equally spaced. The previous allocation type,

fixed number of partitions, which has varying densities from one time step to the

next, requires analysis of errors for each interpolation. These calculations would

require a greater computational effort.

As mentioned previously, theoretical error analysis is outside the scope of this thesis.
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However, this analysis may assist in predicting the optimal method parameters (N

and η) prior to approximating the option price. Table 5.6 contains European call

option prices for various node spacing between 0.01 and 0.1.

η Space IPM Result Error
(Total Partitions)

10−8 0.10 (173) 5.0170056697858438 2.5063523432372614E − 05
0.09 (192) 5.0169970139984361 1.6407736024709463E − 05
0.08 (216) 5.0169908039512894 1.0197688878055278E − 05
0.07 (246) 5.0169865302421375 5.9239797262078397E − 06
0.06 (288) 5.0169837421334647 3.1358710537998657E − 06
0.05 (345) 5.0169820480417426 1.4417793313403759E − 06
0.04 (431) 5.0169811159409443 5.0967853340577740E − 07
0.03 (574) 5.0169806737174278 6.7455016572459670E − 08
0.02 (861) 5.0169805093572686 9.6905142937808719E − 08
0.01 (1720) 5.0169804715224018 1.3474000942759190E − 07

10−16 0.10 (251) 5.0170058070948258 2.5200832414612462E − 05
0.09 (279) 5.0169971513073213 1.6545044909804796E − 05
0.08 (312) 5.0169909412589941 1.0334996582844758E − 05
0.07 (357) 5.0169866675485633 6.0612861521591732E − 06
0.06 (417) 5.0169838794404242 3.2731780133521404E − 06
0.05 (501) 5.0169821853506589 1.5790882476607315E − 06
0.04 (624) 5.0169812532524150 6.4699000393297901E − 07
0.03 (832) 5.0169808110206686 2.0475825757149124E − 07
0.02 (1247) 5.0169806466934990 4.0431087644510200E − 08
0.01 (2493) 5.0169806085350679 2.2726570625408726E − 09

10−32 0.10 (359) 5.0170058070942467 2.5200831835214821E − 05
0.09 (399) 5.0169971513067786 1.6545044367183293E − 05
0.08 (448) 5.0169909412581415 1.0334995730748586E − 05
0.07 (513) 5.0169866675484354 6.0612860244835254E − 06
0.06 (597) 5.0169838794412467 3.2731788356110680E − 06
0.05 (717) 5.0169821853609813 1.5790985699593030E − 06
0.04 (894) 5.0169812532574136 6.4699500271214738E − 07
0.03 (1193) 5.0169808110248049 2.0476239384614736E − 07
0.02 (1788) 5.0169806466714393 4.0409028206900288E − 08
0.01 (3576) 5.0169806090475753 2.7851644601728509E − 09

Table 5.6: Interpolation method - European call option price using fixed spaced
partitions for an asset price of $100 with 4 time steps, σ = 0.20, r = 0.08, T = 0.25
and strike of $100. Here η is the total error for the tails. The value in brackets,
represents the number of interpolations made to obtain the option price. Double
precision was used to calculate the values.

The errors are very similar for all three η values used. However, when the spacing
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is 0.01 and 0.02, the errors are significantly better for η values of 10−16 and 10−32.

A valid comparison between equally spaced partitions and fixed number of partitions

should be made when the total number of interpolations are identical (or approxi-

mately the same). In the results from the fixed number of partitions section (refer

to 5.4), the total number of partitions used were 384.

η Space Interpolations IPM Result Absolute Relative Error
Made

10−8 384 5.0170051428601026 2.4536597691832140E − 05
0.05 345 5.0169820480417426 1.4417793313403759E − 06

10−16 384 5.0170889304529478 1.0832419053696807E − 04
0.07 357 5.0169866675485633 6.0612861521591732E − 06

10−32 384 5.0174346307412199 4.5402447880898977E − 04
0.09 399 5.0169971513067786 1.6545044367183293E − 05

Table 5.7: Comparison of fixed number and fixed spaced partitions for a European
call option prices for an asset price of $100 with 4 time steps, σ = 0.20, r = 0.08,
T = 0.25 and strike of $100. Here η is the total error for the tails. The first line
represents the price using fixed number of nodes and the second being equally spaced
partitions.

From Table 5.7, it is clear that the equally spaced nodes will give better results.

The magnitude of improvement is emphasised when η = 10−16. Under the fixed

number of partitions, at each time step, fk(xk) is interpolated, and realises errors

for each interpolation. The interpolation errors from previous time steps are carried

to the subsequent time steps remaining, as previously mentioned. With the fixed

number of partition distribution, the density of the nodes is less in the early steps,

which incur greater interpolation errors. These errors carry forward to the final time

steps when the distribution is denser. That is a greater number of interpolations

are made, which propagates the errors of the earlier interpolation.

Using the equally spaced nodes has the advantage of using the nodes early. That

is, the errors from interpolation are less than those incurred in the fixed number of
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nodes distribution. In the final steps, the density is the same and actually less inter-

polations are made. For example, when η = 10−32, the nodes used are (199, 133, 67).

For the fixed number of partitions, 128 partitions are used at each time step. So,

the first two time steps give a better interpolation for equally spaced nodes and less

error being propagated to the final time step.

5.4.4 Adaptive Node Allocation

The adaptive node distribution is formed by controlling the errors of interpolation.

That is, the nodes are found which give a fixed interpolating error. The error bounds

used can vary as required. The results presented in this thesis, using the adaptive

node allocation, uses the error bound Φ, such that,

0.8ε ≤ Φ ≤ 1.2ε (5.51)

where ε is of the L1 (Lebesgue Norm) form, namely,

ε =

∫ xk,n+1

xk,n

|fk(xk) − ck(xk, n)| dxk. (5.52)

This alternative to the previous distributions is important in minimising (as well

as controlling) the error of interpolation to achieve better results. The minor dis-

advantage to this node distribution is the computational effort required to find the

optimal nodes.

Table 5.8 presents some results for ε = 10−9. Even though requiring a greater

computational effort to determine the node distribution, the effort is compensated

by the fact the number of interpolations made is much less than the previous two

distributions. A comparison of the results in table 5.7 with those in table 5.8, the

adaptive nodes approximation is comparable if not better than the previous node

distributions. Appendix C.1.3 contains further results for varying ε.
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Asset η Partitions IPM Result Error
Price ($) Used

80 10−8 122 0.0690146803463858 3.0529548003467750E − 06
10−16 150 0.0690146879852485 3.0453159376598454E − 06
10−32 184 0.0690147040815196 3.0292196664797634E − 06

90 10−8 135 1.0254525910199330 1.1431140107404092E − 06
10−16 163 1.0254529422904397 7.9184350396110936E − 07
10−32 196 1.0254528224019526 9.1173199111976855E − 07

100 10−8 142 5.0169825138271680 1.9075647568478349E − 06
10−16 169 5.0169824382954689 1.8320330578969202E − 06
10−32 204 5.0169824313320062 1.8250695947574780E − 06

110 10−8 147 12.6204468274334065 1.6745496322911890E − 06
10−16 176 12.6204468951690991 1.6068139402358739E − 06
10−32 213 12.6204469508081285 1.5511749107410822E − 06

120 10−8 146 22.0665570766488592 3.1249582504999651E − 06
10−16 178 22.0665570880606516 3.1135464595433149E − 06
10−32 221 22.0665570674505034 3.1341566064657655E − 06

Table 5.8: Interpolation method - European call option with adaptive node dis-
tribution with an interpolating error ε = 10−9 and with 4 time steps, σ = 0.20,
r = 0.08, T = 0.25 and strike of $100. Here η is the total error for the tails. Double
precision was used to calculate the values.

After analysing the node distributions for each of the time steps, it is evident that

the distributions are very similar. Figure 5.16 shows the densities of the node dis-

tribution for a specific European call option price for the first four time steps (for a

case where K = 8). It is clear from these bar charts that the node distribution in

each time step is very similar.
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Figure 5.16: Adaptive Node Distribution for the first 4 time steps when K = 8

To combat the computational effort required for allocating nodes at each time step,

nodes are distributed in the first time step only. This distribution is used in the

subsequent time steps to follow. Since the intervals decrease in size, the nodes

that are outside the interval are discarded and the endpoints are added (if not

already included in the original distribution). Table 5.9 are results for the alternative

adaptive node distribution.
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Asset η Partitions IPM Result Error
Price ($) Used

80 10−8 116 0.0689375959379025 8.0137363283629397E − 05
10−16 143 0.0689328220463222 8.4911254863971088E − 05
10−32 174 0.0689226935416872 9.5039759498958837E − 05

90 10−8 133 1.0254499221687041 3.8119652394710823E − 06
10−16 155 1.0254501539858176 3.5801481260491763E − 06
10−32 186 1.0254502190435195 3.5150904242886583E − 06

100 10−8 140 5.0169804761446732 1.3011773811189009E − 07
10−16 163 5.0169815587802802 9.5251786944028360E − 07
10−32 195 5.0169816476442266 1.0413818155030619E − 06

110 10−8 148 12.6204385958538357 9.9061292030411252E − 06
10−16 171 12.6204458862049833 2.6157780552704679E − 06
10−32 205 12.6204459271643668 2.5748186721630262E − 06

120 10−8 157 22.0665483741688604 1.1827438251010847E − 05
10−16 179 22.0665487395526547 1.1462054455568804E − 05
10−32 215 22.0665486133647271 1.1588242385118797E − 05

Table 5.9: Interpolation method - European call option with single adaptive node
distribution at the first time step with an interpolating error ε = 10−9 and with 4
time steps, σ = 0.20, r = 0.08, T = 0.25 and strike of $100. Here η is the total error
for the tails. Double precision was used to calculate the values.

Generally, this method of distribution, gives similar results to the other adaptive

distributions and in some cases, an improved result (refer to an asset price of $100).

The advantage of this method is, the reduced computational effort required to ob-

tain very accurate results. To obtain more accurate results than those presented in

Tables 5.8 and 5.9, it is advised that ε becomes smaller. However, a trade off for

accuracy, is the computational effort required and hence time. Though it must be

said that the method of allocating nodes at the fist time step alleviates this problem.

As stated previously, further results can be found in Appendix C.1.3.
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5.5 Traditional Quadrature Rules

An alternative to finding the European option price is the use of quadrature rules.

The use of quadrature is very common for integral equations which have no closed

form solution(s). Recalling the path integral,

fk−1(xk−1) = Ω

∫ ∞

−∞
e
−
(

xk√
2Δt

−μ(xk−1)
)2

fk(xk) dxk (5.53)

where

Ω =
e−rΔt

√
2Δtπ

.

For convenience, we denote that

g(xk, xk−1) = e
−
(

xk√
2Δt

−μ(xk−1)
)2

fk(xk). (5.54)

As with the interpolation approach in the previous sections, the path integral interval

has to be converted. We employ the same approach as previously so that,

fk−1(xk−1) =Ψ(xk−1,−∞, β1(xk−1))

+ Ψ(xk−1, β1(xk−1), β2(xk−1))

+ Ψ(xk−1, β2(xk−1),∞) (5.55)

where

Ψ(xk−1, a, b) = Ω

∫ b

a

g(xk, xk−1) dxk (5.56)

and

β1(xk−1) =
√

2Δt (Lk−1 + μ(xk−1))

β2(xk−1) =
√

2Δt (Rk−1 + μ(xk−1)).

Section 5.2.2 has an explanation on how the intervals are set.
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It is assumed in the quadrature rules that there are N + 1 sample points and that

the partitions are equally spaced. Figure 5.17 is an example of a grid for equally

spaced nodes, given n = 0, 1, 2, . . . , N − 1, N ,

xk,0

a

xk,1 xk,2 · · · xk,N−2 xk,N−1 xk,N

b
| | | | | |

Figure 5.17: The discretization of xk

The rest of this section will now investigate the most common quadrature rules (in-

cluding endpoint, midpoint, trapezoidal and a composite Simpson rule).

5.5.1 Left and Right Endpoint Approximation

The Endpoint Approximation is a method of approximating rectangular areas. The

sum of multiple rectangle areas (a Riemann Sum) are used to approximate the area

under a particular curve. The left or right side of the rectangles are used for the

height of the rectangle and the change in the x value is the width.

Clearly, this approximation is not overly accurate unless many rectangles are used.

As described in the previous sections, it is not necessarily a given to use as many rect-

angles (or interpolations) as possible. Time constraints must be considered when

using this approximation. Mathematically, the Left Endpoint approximation for

(5.53) is given by,

Ψ(xk−1, a, b) = Δx

N−1∑
i=0

g(xk,i, xk−1). (5.57)

Therefore, (5.57) breaks the area under (5.54) into N rectangles. Table 5.10 shows

results for 32 rectangles.
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Asset η Left End QR Error
Price ($)

80 10−8 0.06901764939587995 8.390530617519154E−8
10−16 0.06903104945227437 1.331615108823847E−5
10−32 0.06757412997851460 1.443603322671530E−3

90 10−8 1.025453345956308 3.881776360348255E−7
10−16 1.025687042770189 2.333086362453773E−4
10−32 1.044118566638236 1.866483250429263E−2

100 10−8 5.016980560499655 4.576275625112203E−8
10−16 5.017259560237605 2.789539751937298E−4
10−32 5.036957233365779 1.997662710336812E−2

110 10−8 12.62044807790149 4.240815449918500E−7
10−16 12.62046538268648 1.688070343952575E−5
10−32 12.68516174817051 6.471324618746621E−2

120 10−8 22.06655968365653 5.179505819796759E−7
10−16 22.06671664815568 1.564465485728306E−4
10−32 22.18405828892942 1.174980873223141E−1

Table 5.10: Left Endpoint - European call options with 4 time steps, 32 partitions,
σ = 0.20, r = 0.08, T = 0.25 and strike of $100. Here η is the total error for the
tails (refer to (5.26)).

The results from table 5.10 show that for small values of η, the approximation per-

forms poorly. The reason for this is quite logical; as η gets smaller, the intervals of

integration increase, meaning that the 32 rectangles must cover a larger area. Table

5.11 shows the optimal η for each asset price and same parameters as those used in

table 5.10.

Asset Optimal Left End QR Error
Price ($) η

80 10−10 0.06901775932364641 2.602246063077018E−8
90 10−8 1.025453457577973 2.765559710127263E−7
100 10−8 5.016980560499655 4.576275625112203E−8
110 10−8 12.62044807790149 4.240815449918500E−7
120 10−8 22.06656015698260 4.462449609832220E−8

Table 5.11: Left Endpoint - European call options with 4 time steps, 32 partitions,
σ = 0.20, r = 0.08, T = 0.25 and strike of $100. Here η is the total error for the
tails (refer to (5.26)).
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Recalling that η controls the overall approximation of the option price, increasing

the number of rectangles should improve the approximation. Table 5.12 are some

results for 256 rectangles.

Asset η Left End QR Error
Price ($)

80 10−8 0.06901768008684646 5.321433967087064E−8
10−16 0.06901773330119115 5.370703881624195E−15
10−32 0.06901773330119265 6.869504964868156E−15

90 10−8 1.025453625523113 1.086108305514699E−7
10−16 1.025453734133945 1.554312234475219E−15
10−32 1.025453734133948 4.218847493575595E−15

100 10−8 5.016980450514724 1.557476876357100E−7
10−16 5.016980606262407 4.440892098500626E−15
10−32 5.016980606262412 8.881784197001252E−16

110 10−8 12.62044830726072 1.947223218223826E−7
10−16 12.62044850198304 3.552713678800501E−15
10−32 12.62044850198304 3.552713678800501E−15

120 10−8 22.06655997202600 2.295811114549906E−7
10−16 22.06656020160712 1.776356839400250E−14
10−32 22.06656020160712 2.486899575160351E−14

Table 5.12: Left Endpoint - European call options with 4 time steps, 256 partitions,
σ = 0.20, r = 0.08, T = 0.25 and strike of $100. Here η is the total error for the
tails (refer to (5.26)).

The results from 5.12 show that with an increase in the number of rectangles, smaller

values of η can achieve better approximations. By increasing the number of rectan-

gles and decreasing η should improve the approximate option price. Table 5.13 shows

the optimal η for each asset price for the same parameters as those used in table 5.12.
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Asset Optimal Left End QR Error
Price ($) η

80 10−35 0.06901773330119051 4.732325642464730E−15
90 10−22 1.025453734133946 1.998401444325282E−15
100 10−23 5.016980606262410 8.881784197001252E−16
110 10−35 12.62044850198304 0.000000000000000E0
120 10−33 22.06656020160710 0.000000000000000E0

Table 5.13: Left Endpoint - European call options with 4 time steps, 256 partitions,
σ = 0.20, r = 0.08, T = 0.25 and strike of $100. Here η is the total error for the
tails (refer to (5.26)).

The increase in the number of rectangles in combination with a smaller η has pro-

duced excellent approximations. The method of Left Endpoint approximation is

easy to implement, with simple function calls made. The results achieved are very

accurate and are very fast to compute (less than 1 second).

The Right Endpoint approximation uses the right side of a rectangle to approximate

area. As with the Left Endpoint approximation, the height is taken from the right

side of the rectangle and width is the change in x. The Right Endpoint approxima-

tion for (5.53) is given by,

Ψ(xk−1, a, b) = Δx
N∑

i=1

g(xk,i, xk−1) (5.58)

Table 5.14 shows results for 32 rectangles.
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Asset η Right End QR Error
Price ($)

80 10−8 0.06901774109313175 7.791945616508755E−9
10−16 0.06903104945227856 1.331615109242956E−5
10−32 0.06757412997851460 1.443603322671530E−3

90 10−8 1.025453540167024 1.939669198591787E−7
10−16 1.025687042770195 2.333086362513725E−4
10−32 1.044118566638236 1.866483250429263E−2

100 10−8 5.016980843731448 2374690373230237E−7
10−16 5.017259560237612 2789539752008352E−4
10−32 5.036957233365779 1997662710336812E−2

110 10−8 12.62044843424046 6.774257599317934E−8
10−16 12.62046538268649 1.688070344840753E−5
10−32 12.68516174817051 6.471324618746621E−2

120 10−8 22.06656009480615 1.068009609639375E−7
10−16 22.06671664815569 1.564465485834887E−4
10−32 22.18405828892942 1.174980873223141E−1

Table 5.14: Right Endpoint - European call options with 4 time steps, 32 partitions,
σ = 0.20, r = 0.08, T = 0.25 and strike of $100. Here η is the total error for the
tails (refer to (5.26)).

Similarly to the Left Endpoint approximation, the Right End Point performs poorly

as η gets smaller for N = 32. The optimal approximations occur for η = 10−8 except

for an asset price of 120. For this asset value, η = 10−9 gives the optimal approxi-

mation. So, table 5.15 uses 256 rectangles and presents the best approximations.

Asset Optimal Right End QR Error
Price ($) η

80 10−35 0.06901773330119051 4.732325642464730E−15
90 10−29 1.025453734133945 1.776356839400250E−15
100 10−23 5.016980606262410 8.881784197001252E−16
110 10−16 12.62044850198304 0.000000000000000E0
120 10−33 22.06656020160710 0.000000000000000E0

Table 5.15: Right Endpoint - European call options with 4 time steps, 256 parti-
tions, σ = 0.20, r = 0.08, T = 0.25 and strike of $100. Here η is the total error for
the tails (refer to (5.26)).

The approximations in table 5.15 are very similar to those presented in table 5.13.

The only differences being for asset value of $90 (a slightly better approximation)
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and some of the η values differ.

Since the option price function for a call (fk−1(xk−1)) is convex and increasing in

nature for the interval of integration, the left endpoint approximation is a lower

bound for the function and the right endpoint approximation is an upper bound.

For the put option the situation is reversed.

5.5.2 Midpoint Approximation

An alternative to the Left and Right Endpoint approximation is to use the mid

point of the rectangles, this rule is commonly known as the midpoint quadrature rule.

Since the Left Endpoint underestimates the area and Right Endpoint overestimates,

the Midpoint attempts to strike a balance. Therefore, in theory, it is a better

approximation. The midpoint quadrature rule in terms of g(xk, xk−1) is

Ψ(xk−1, a, b) = Δx

N−1∑
i=0

g(
xk,i+1 + xk,i

2
, xk−1). (5.59)

Table 5.16 presents European call option prices with the number of partitions fixed

to 256.
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Asset η Mid Point QR Error
Price ($)

80 10−8 0.06901768615240528 4.71E−8
10−16 0.06901773330119071 4.58E−15
10−32 0.06901773330119207 5.94E−15

90 10−8 1.025453638403598 9.57E−8
10−16 1.025453734133945 1.78E−15
10−32 1.025453734133946 2.00E−15

100 10−8 5.016980469322782 1.37E−7
10−16 5.016980606262410 8.88E−16
10−32 5.016980606262409 1.78E−15

110 10−8 12.62044833094894 1.71E−7
10−16 12.62044850198305 5.33E−15
10−32 12.62044850198304 1.78E−15

120 10−8 22.06655999943769 2.02E−7
10−16 22.06656020160712 1.07E−14
10−32 22.06656020160711 3.55E−15

Table 5.16: Midpoint - European call options with 4 time steps, 256 partitions,
σ = 0.20, r = 0.08, T = 0.25 and strike of $100. Here η is the total error for the
tails (refer to (5.26)).

In most cases in table 5.16 the mid point rule approximation is better than the

end point rules (the midpoint rule being an average of the left and right endpoint

method). In the cases where the mid point rule is worse off, the differences are

minimal and considering the accuracy of the approximations, these differences are

negligible.

Table 5.17 presents some accurate results for similar options presented in table 5.16.
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Asset Optimal Mid Point QR Error
Price ($) η

80 10−15 0.06901773330118409 2.04E−15
90 10−15 1.025453734133945 1.78E−15
100 10−15 5.016980606262410 8.88E−16
110 10−16 12.62044850198304 0.00E0
120 10−28 22.06656020160711 3.55E−15

Table 5.17: Midpoint - European call options with 4 time steps, 256 partitions,
σ = 0.20, r = 0.08, T = 0.25 and strike of $100. Here η is the total error for the
tails (refer to (5.26)).

The prices in table 5.17 are just as accurate as the left and right end point approxi-

mation. The only difference is in the mid point approximation the optimal η is not

as small as those in the other rectangular quadrature rules.

5.5.3 Trapezoidal Rule

The trapezoidal rule is similar to the rectangular rules described previously, with

the major difference being that instead of using rectangles, the areas of trapeziums

are used. Since fk−1(xk−1) is convex in nature (increasing for a call option and de-

creasing for a put option), the approximation will be an upper bound of the analytic

solution.

The trapezoidal rule for the path integral takes the form,

Ψ(xk−1, a, b) = Δx

[
g(xk,0, xk−1)

2
+

N−1∑
i=1

g(xk,i, xk−1) +
g(xk,N , xk−1)

2

]
(5.60)

Table 5.18 presents the same options as those applied with the other quadrature

rules (with the use of 256 trapeziums).
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Asset η Trapezoidal QR Error
Price ($)

80 10−8 0.06901768581792513 4.75E−8
10−16 0.06901773330119140 5.27E−15
10−32 0.06901773330119265 6.52E−15

90 10−8 1.025453637661283 9.65E−8
10−16 1.025453734133945 1.33E−15
10−32 1.025453734133946 2.44E−15

100 10−8 5.016980468216713 1.38E−7
10−16 5.016980606262407 4.44E−15
10−32 5.016980606262413 1.78E−15

110 10−8 12.62044832953190 1.72E−7
10−16 12.62044850198304 3.55E−15
10−32 12.62044850198303 5.33E−15

120 10−8 22.06655999772285 2.04E−7
10−16 22.06656020160712 1.42E−14
10−32 22.06656020160712 1.07E−14

Table 5.18: Trapezoidal - European call options with 4 time steps, 256 partitions,
σ = 0.20, r = 0.08, T = 0.25 and strike of $100. Here η is the total error for the
tails (refer to (5.26)).

Table 5.19 presents some accurate results for similar options presented in 5.18.

Asset Optimal Trapezoidal QR Error
Price ($) η

80 10−15 0.06901773330118310 3.03E−15
90 10−29 1.025453734133945 1.11E−15
100 10−22 5.016980606262410 8.88E−16
110 10−21 12.62044850198304 0.00E0
120 10−25 22.06656020160711 3.55E−15

Table 5.19: Trapezoidal - European call options with 4 time steps, 256 partitions,
σ = 0.20, r = 0.08, T = 0.25 and strike of $100. Here η is the total error for the
tails (refer to (5.26)).

5.5.4 Composite Simpson Rule

The Simpson quadrature rule approximates the area under the curve using parabolic

functions. The composite Simpson rule, derived from the Simpson’s quadrature rule,

is similar in form to the endpoint rules, the major difference being the weights used.

The composite rule for the path integral takes the form,
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Ψ(xk−1, a, b) =
Δx

3

[
g(xk,0, xk−1)

+ 2

N/2−1∑
i=1

g(xk,2i, xk−1) + 4

N/2∑
j=1

g(xk,2j−1, xk−1) + g(xk,N , xk−1)

]
.

(5.61)

Table 5.20 and 5.21 presents option prices using the composite Simpson rule with

the number of partitions fixed to 256.

Asset η Composite Simpson’s QR Error
Price ($)

80 10−8 0.06901768177488442 5.15E−8
10−16 0.06901773330119121 5.08E−15
10−32 0.06901773330119260 6.47E−15

90 10−8 1.025453629075925 1.05E−7
10−16 1.025453734133945 1.33E−15
10−32 1.025453734133946 2.66E−15

100 10−8 5.016980455677901 1.51E−7
10−16 5.016980606262408 2.66E−15
10−32 5.016980606262408 2.66E−15

110 10−8 12.62044831366562 1.88E−7
10−16 12.62044850198305 7.11E−15
10−32 12.62044850198305 7.11E−15

120 10−8 22.06655997874159 2.23E−7
10−16 22.06656020160712 1.07E−14
10−32 22.06656020160712 1.42E−14

Table 5.20: Composite Simpson’s Rule - European call options with 4 time steps,
256 partitions, σ = 0.20, r = 0.08, T = 0.25 and strike of $100. Here η is the total
error for the tails (refer to (5.26)).

Table 5.21 presents some accurate results for similar options presented in 5.20.
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Asset Optimal Composite Simpson’s QR Error
Price ($) η

80 10−35 0.06901773330119064 4.51E−15
90 10−29 1.025453734133944 8.88E−16
100 10−18 5.016980606262412 8.88E−16
110 10−20 12.62044850198304 0.00E0
120 10−35 22.06656020160711 3.55E−15

Table 5.21: Composite Simpson’s Rule - European call options with 4 time steps,
256 partitions, σ = 0.20, r = 0.08, T = 0.25 and strike of $100. Here η is the total
error for the tails (refer to (5.26)).

The results presented for the composite Simpson’s rule are very similar to the re-

sults presented for the other rules. Computationally, the time taken to achieve these

results are very similar to the other quadrature rules. This was expected for the

composite Simpson’s rule.

5.6 Conclusion

The approaches in this chapter are commonly used mathematical methods. The

method of Mathematical interpolation and quadrature were applied to the pricing

of European options. Firstly, the path integral was modified so that the interval be-

came finite. This was achieved by using an upper bound of the underlying and the

form of the Gaussian in the integrand. Using the modified path integral, an inter-

polation method was implemented to analyse the model parameters (r, the interest

rate, σ, the volatility and T , the time to expiry). It showed that for a particular K

(discretization of time) and η (the parameter that controls the interval of integra-

tion), there existed an accurate option price.

Various discretization schemes of the underlying were used. These schemes were

formed to improve results and others used to improve computational effort and ef-

ficiency. A fixed number of nodes (equally spaced) were used since it was easy to

implement and quite fast to obtain results. Equally spaced nodes were used as a

scheme for future analysis of finding the most accurate result. One of the issues
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in the methods implemented in this chapter is knowing which parameters gives the

most accurate price. By having equivalent interval integrals may assist in achieving

this. The results for this scheme were better than those obtained in the fixed num-

ber allocation.

The final scheme used was an adaptive approach. Nodes were allocated based on

a fixed interpolation error. By controlling the error of interpolation, nodes were

distributed in a scheme most suitable. Nodes are placed in positions which allow

the interpolation error to be fixed to a particular band of values. It was found that

the distribution of nodes at each time step were very similar. So, to improve com-

putational efficiency and speed, nodes were distributed at the first time step and

then the scheme was used in the remaining time steps, with unused nodes being

eliminated.

Various quadrature (Newton-Cotes) rules were also used to obtain the option price.

The results obtained were highly accurate when compared to the Black-Scholes for-

mula. The results obtained using these rules were more precise than those obtained

using the interpolation method. A simple discretization scheme (fixed number of

equally spaced nodes) were used for each rule.

In both approaches, one of the main issues arising is knowing when the best result

can be obtained. Given a particular set of values for r, σ and T , what N (discretiza-

tion scheme), K (time steps) and η (interval length) will give the most accurate

result. A simple search technique, like a bi-section, was used in the data obtained

in this chapter. Other, more sophisticated, techniques would also improve the ap-

proaches presented in this chapter.

The next chapter uses the approaches of this chapter and applies them to more

complex options (American Put and Barrier down and out call options). One of the

advantages of the modification made to the path integral is, the form of the finite

interval is easily adaptable for options with barriers. Since the American put has
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a barrier for early exercise and the down and out call option ceases to exist at a

particular barrier value, one side of the interval can be fixed to the barrier point.

All discretization schemes are implemented using upper and lower interval values

(whichever way they are found). Option values in these cases are zero when outside

the barrier.
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Chapter 6

American Put and Barrier Options

This chapter applies the approaches of Chapter 5 to an American put option and

a Down and Out (European style) call option. Similar discretization schemes and

parameters are utilized as in Chapter 5. A particular emphasis on performance and

accuracy of the Interpolation and Quadrature methods are made. For these types

of options, consideration must be given to the barriers required and those already

formed by the finite interval evaluated.
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6.1 Introduction

In this chapter we will apply the methods presented in Chapter 5 to an American

put option and a Down and Out call option. Given the path integral has a finite

interval, this is equivalent to having two barriers. These barriers are evaluated so

that numerical methods like those in the previous chapter can be utilised to accu-

rately approximate the option price.

For the American put and Down and Out options, the barriers will vary depending

on the price required. If the option barrier is inside the finite interval, then the

path integral interval will change to cater for the option barrier. Therefore, these

numerical methods will require different parameters to those used for the European

options to achieve accurate results. The same discretization schemes will be applied

for these options.

Section 6.2 and 6.3 applies the interpolation method to the American put and Down

and Out call option respectively. Various discretization schemes, as described in

Chapter 5 are applied to the two options. Section 6.4 and 6.5 applies the various

Newton-Cotes rules for the American put and Down and Out call option. Section

6.6 concludes the chapter.

6.2 Interpolation Polynomials and American Put

Options

The interpolation techniques employed for the European option can also be applied

to the American put option. However, since the American put option contains a

barrier (denoted by B(xk−1)), the interval of integration Lj is fixed to this barrier

and Rj is obtained by solving (5.38).

Therefore, the option price at each time step is determined by the following expres-
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sion for k = 1, 2, . . . , K − 1,

fk−1(xk−1) =Ψ(xk−1,−∞, B(xk−1))

+ Ψ(xk−1, B(xk−1), β2(xk−1))

+ Ψ(xk−1, β2(xk−1),∞) (6.1)

where

Ψ(xk−1,−∞, B(xk−1)) = Ω

∫ B(xk−1)

−∞
e
−(

xk√
2Δt

−μ(xk−1))2
(1 − eσxk) dxk,

Ψ(xk−1, β2(xk−1),∞) ≤ η

2
. (6.2)

The barrier point B(xk) = x∗
k, is found such that, x∗

k is the solution to the following

expression

fk(xk) = 1 − eσxk (6.3)

and the middle integral in (6.1) is determined by using the interpolation method

presented earlier in Chapter 5.

6.2.1 Fixed Number of Partitions

We firstly apply the interpolation method to an American put option using a fixed

number of partitions (equally spaced) at each time step. Table 6.1 presents results

for a varying number of time steps and the number of partitions (N) used is fixed

to 100.
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Asset Binomial IPM IPM IPM
Price ($) Method 4 Steps 8 Steps 16 Steps
80 20.000000 20.000000 20.000000 20.000000
90 10.037663 9.824579 9.976936 10.406923
100 3.224899 3.182479 3.291575 3.638102
110 0.665410 0.654543 0.684210 0.778183
120 0.088796 0.084440 0.084569 0.092523

Table 6.1: Interpolation method - American put option for 100 partitions and
various time steps with σ = 0.20, r = 0.08, T = 0.25, η = 10−32 and strike of
$100. The values are calculated in this table are performed in double precision. The
Binomial Method prices are optimal approximations (using various N) and were
calculated based on Cox et al. (1979).

The results in table 6.1 show similar patterns to those presented in table 3.6. There-

fore, there should be an optimal number of time steps for 100 partitions.

Asset Time Binomial IPM
Price ($) Steps Method
90 10 10.037663 10.036710
100 6 3.224899 3.229790
110 6 0.665410 0.666986
120 13 0.088796 0.088617

Table 6.2: Interpolation method - American put option for 100 partitions and
optimal time steps with σ = 0.20, r = 0.08, T = 0.25, η = 10−32 and strike of
$100. The values are calculated in this table are performed in double precision. The
Binomial Method prices are optimal approximations (using various N) and were
calculated based on Cox et al. (1979).

The results in table 6.2 are not as precise as those in table 3.6. However, if we

increase the number of interpolations per time step to 200, we would envisage that

we should be able to obtain better results, especially for optimal K.

168



CHAPTER 6. AMERICAN PUT AND BARRIER OPTIONS

Asset Binomial IPM IPM IPM
Price ($) Method 4 Steps 8 Steps 16 Steps
80 20.000000 20.000000 20.000000 20.000000
90 10.037663 9.821295 9.948753 10.051384
100 3.224899 3.174616 3.220669 3.342221
110 0.665410 0.653157 0.664813 0.698396
120 0.088796 0.086430 0.086948 0.089930

Table 6.3: Interpolation method - American put option for 200 partitions and
various time steps with σ = 0.20, r = 0.08, T = 0.25, η = 10−32 and strike of
$100. The values are calculated in this table are performed in double precision. The
Binomial Method prices are optimal approximations (using various N) and were
calculated based on Cox et al. (1979).

Table 6.3 presents results for varying time steps and the number of partitions fixed

to 200. Table 6.4 presents results for the optimal time steps for 200 partitions.

Asset Time Binomial IPM
Price ($) Steps Method
90 15 10.037663 10.038215
100 8 3.224899 3.220669
110 8 0.665410 0.664813
120 14 0.088796 0.088955

Table 6.4: Interpolation method - American put option for 200 partitions and
optimal time steps with σ = 0.20, r = 0.08, T = 0.25, η = 10−32 and strike of
$100. The values are calculated in this table are performed in double precision. The
Binomial Method prices are optimal approximations (using various N) and were
calculated based on Cox et al. (1979).

Table 6.4 shows an improvement in the American put option price to those present

in table 6.2. We can also investigate the effect of varying the number of partitions for

a fixed number of time steps. Table 6.5 presents approximate prices for an American

put option with the number of time steps fixed to 8.
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Asset Binomial IPM IPM IPM IPM
Price ($) Method N = 32 N = 64 N = 128 N = 256
80 20.000000 20.000000 20.000000 20.000000 20.000000
90 10.037663 10.704074 10.045959 9.9617033 9.945430
100 3.224899 4.006660 3.426438 3.254724 3.211479
110 0.665410 0.881138 0.719538 0.674214 0.662247
120 0.088796 0.090384 0.079813 0.085813 0.087252

Table 6.5: Interpolation method - American put option for 8 time steps and various
node points with σ = 0.20, r = 0.08, T = 0.25, η = 10−32 and strike of $100. The
values are calculated in this table are performed in double precision. The Binomial
Method prices are optimal approximations (using various N) and were calculated
based on Cox et al. (1979).

As with the fixed number of partitions, we can find the optimal number of partitions

for a fixed number of time steps. Table 6.6 presents prices for the optimal number

of partitions when the number of time steps are fixed to 8.

Asset Nodes Binomial IPM
Price ($) Method
90 66 10.0376631 10.037994
100 184 3.224899 3.224953
110 191 0.665410 0.665446
120 32 0.088796 0.090384

Table 6.6: Interpolation method - American put option for 8 time steps and optimal
partitions with σ = 0.20, r = 0.08, T = 0.25, η = 10−32 and strike of $100. The
values are calculated in this table are performed in double precision. The Binomial
Method prices are optimal approximations (using various N) and were calculated
based on Cox et al. (1979).

As we can see in table 6.6, the results are quite accurate, except for an asset price

of $120. This could be due to the fact that when K = 8, there is no N which allows

for an accurate result (like those for the other asset prices). For this interpolation

method it may be advantageous to fix the number of time steps and vary the number

of partitions to find a precise approximation.
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6.2.2 Fixed Spaced Partitions

We can also apply the fixed spaced partitions distribution to the American put

option. Table 5.6 contains European call option prices for various partition spacing

between 0.01 and 0.1.

Binomial Space IPM Error
Method (Total Partitions)
3.224899 0.10 (619) 3.343134 1.182362E − 01

0.09 (686) 3.316435 9.153747E − 02
0.08 (770) 3.292111 6.721259E − 02
0.07 (879) 3.270316 4.541829E − 02
0.06 (1026) 3.251185 2.628746E − 02
0.05 (1228) 3.234828 9.930157E − 03
0.04 (1535) 3.221333 3.564979E − 03
0.03 (2046) 3.210769 1.412878E − 02
0.02 (3086) 3.203188 2.170986E − 02
0.01 (6129) 3.198623 2.627530E − 02

Table 6.7: Interpolation method - American put option price using fixed spaced
partitions for an asset price of $100 with 8 time steps, σ = 0.20, r = 0.08, T = 0.25
and strike of $100. Here η is the total error for the tails. The value in brackets,
represents the number of interpolations made to obtain the option price. Double
precision was used to calculate the values. The Binomial Method price is an optimal
approximation and was calculated based on Cox et al. (1979).

Table 6.7 shows that a good approximation occurs when the fixed partition space

is approximately 0.04. After this spacing the error increases again as the number

of partitions increase. So, as with the European option, a balance between spacing

and the number of interpolations needs to be achieved. Table 6.8 investigates the

length of space around 0.04 by adding an additional decimal place.
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Binomial Space IPM Error
Method (Total Partitions)
3.224899 0.049 (1254) 3.233349 8.450544E − 03

0.048 (1282) 3.231898 6.999583E − 03
0.047 (1308) 3.230476 5.577595E − 03
0.046 (1337) 3.229082 4.184343E − 03
0.045 (1365) 3.227718 2.820075E − 03
0.044 (1397) 3.226383 1.484753E − 03
0.043 (1429) 3.225058 1.600883E − 04
0.042 (1463) 3.223799 1.098535E − 03
0.041 (1499) 3.222552 2.346364E − 03

Table 6.8: Interpolation method - American put option price using fixed spaced
partitions (with an extra decimal place) for an asset price of $100 with 8 time steps,
σ = 0.20, r = 0.08, T = 0.25 and strike of $100. Here η = 10−32 is the total
error for the tails. The value in brackets, represents the number of interpolations
made to obtain the option price. Double precision was used to calculate the values.
The Binomial Method price is an optimal approximation and was calculated based
on Cox et al. (1979).

Table 6.8 presents improved results as expected. The optimal approximation occurs

between 0.042 and 0.043. Table 6.9 investigates this spacing interval.

Binomial Space IPM Error
Method (Total Partitions)
3.224899 0.0429 (1431) 3.224948 4.954533E − 05

0.0428 (1436) 3.224819 7.918370E − 05
0.0427 (1438) 3.224690 2.076232E − 04
0.0426 (1443) 3.224562 3.357855E − 04
0.0425 (1445) 3.224434 4.638370E − 04
0.0424 (1449) 3.224307 5.727084E − 04
0.0423 (1452) 3.224180 6.960137E − 04
0.0422 (1456) 3.224053 8.190258E − 04
0.0421 (1459) 3.223926 9.417471E − 04

Table 6.9: Interpolation method - American put option price using fixed spaced
partitions (with an extra decimal place) for an asset price of $100 with 8 time steps,
σ = 0.20, r = 0.08, T = 0.25 and strike of $100. Here η = 10−32 is the total
error for the tails. The value in brackets, represents the number of interpolations
made to obtain the option price. Double precision was used to calculate the values.
The Binomial Method price is an optimal approximation and was calculated based
on Cox et al. (1979).

Again improved results are shown in table 6.9, with the best approximation in the

spacing interval of 0.0428 and 0.0429. Table 6.10 investigates further.
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Binomial Space IPM Error
Method (Total Partitions)
3.224899 0.04289 (1431) 3.224935 3.552170E − 05

0.04288 (1431) 3.224922 2.303481E − 05
0.04287 (1433) 3.224909 1.029906E − 05
0.04286 (1433) 3.224896 1.942798E − 06
0.04285 (1434) 3.224883 1.439585E − 05
0.04284 (1434) 3.224870 2.685903E − 05
0.04283 (1434) 3.224857 3.933016E − 05
0.04282 (1434) 3.224845 5.178347E − 05
0.04281 (1436) 3.224832 6.425259E − 05

Table 6.10: Interpolation method - American put option price using fixed spaced
partitions (with an extra decimal place) for an asset price of $100 with 8 time steps,
σ = 0.20, r = 0.08, T = 0.25 and strike of $100. Here η = 10−32 is the total
error for the tails. The value in brackets, represents the number of interpolations
made to obtain the option price. Double precision was used to calculate the values.
The Binomial Method price is an optimal approximation and was calculated based
on Cox et al. (1979).

Table 6.10 shows that a spacing of 0.04286 is an excellent approximation of a Amer-

ican put option price. It must be said that further investigation is possible by

obtaining better spacing precision. However, considering that the Binomial method

obtained is to 6 digit accuracy, the price obtained for a spacing of 0.04286 in table

6.10 is very accurate compared to the Binomial method. Table 6.11 are optimal

results for various asset values.

Asset Space IPM Error
Price ($) (Total Partitions)

90 0.08876 (654) 10.037655 8.042291393950407E − 06
100 0.04286 (1433) 3.224896 1.942798209561975E − 06
110 0.05371 (1206) 0.665410 4.356533792569672E − 07
120 0.007 (9654) 0.087797 9.993420516646702E − 06

Table 6.11: Interpolation method - precise American put option price for an asset
price of $100 with K = 8, σ = 0.20, r = 0.08, T = 0.25 and strike of $100. Here
η = 10−32 is the total error for the tails. The value in brackets, represents the
number of interpolations made to obtain the option price. Double precision was
used to calculate the values.

Table 6.11 presents some highly accurate results for various asset prices. For asset

price $120, many partitions were required to achieve the evaluated result compared
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to the other asset values.

6.2.3 Adaptive Nodes

For the American put option, the adaptive nodes will need to be calculated at each

time step as the interval of integration will expand on the left hand side. With the

European option, the intervals of integration move inward from both sides, there-

fore the allocation could be sliced for either side. The American put option interval

differs because the barrier (or left side of the interval) tends to move out, while the

right side moves inward. Therefore, allocations at each time step is performed.

Table 6.12 shows some American put option prices for an adaptive node distribution

when the asset value is $100.

ε Binomial Method 4 time steps 8 time steps
10−1 3.224899 15.628738 24.023563
10−2 5.021539 8.322211
10−3 3.601882 4.234894
10−4 3.244270 3.415439
10−5 3.183102 3.232615
10−6 3.173328 3.203636

Table 6.12: Interpolation method - American put option (asset value of $100)
for adaptive node points and 4 time steps with η = 10−32, σ = 0.20, r = 0.08,
T = 0.25 and strike of $100. The values are calculated in this table are performed
in double precision. The Binomial Method price is an optimal approximation and
was calculated based on Cox et al. (1979).

When the number of time steps used is 4, the best ε is somewhere between 10−4 and

10−5. For 8 time steps the best ε is between 10−5 and 10−6. Table 6.13 will expand

on the results found in Table 6.12 by using a more precise ε (additional decimal

places).
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ε Binomial Method 4 time steps
9E−5 3.224899 3.240004
8E−5 3.236440
7E−5 3.228739
6E−5 3.221673
5E−5 3.216960
4E−5 3.209042
3E−5 3.201310
2E−5 3.191629

Table 6.13: Interpolation method - American put option (asset value of $100)
for adaptive node points and 4 time steps with η = 10−32, σ = 0.20, r = 0.08,
T = 0.25 and strike of $100. The values are calculated in this table are performed
in double precision. The Binomial Method price is an optimal approximation and
was calculated based on Cox et al. (1979).

Table 6.13 shows with a better ε value (more precision), an improved approximation

can be found. Table 6.14 adds another decimal place to ε.

ε Binomial Method 4 time steps
6.9E−5 3.224899 3.228715
6.8E−5 3.226489
6.7E−5 3.227012
6.6E−5 3.227030
6.5E−5 3.226771
6.4E−5 3.225582
6.3E−5 3.224506
6.2E−5 3.222634
6.1E−5 3.221698

Table 6.14: Interpolation method - American put option (asset value of $100)
for adaptive node points and 4 time steps with η = 10−32, σ = 0.20, r = 0.08,
T = 0.25 and strike of $100. The values are calculated in this table are performed
in double precision. The Binomial Method price is an optimal approximation and
was calculated based on Cox et al. (1979).

Clearly the best result is around ε = 6.3E−5. So, with further investigation in table

6.15, the best approximation was found to be at ε = 6.21E−5.
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ε Binomial Method 4 time steps
6.29E−5 3.224899 3.224506
6.28E−5 3.224506
6.27E−5 3.224498
6.26E−5 3.224498
6.25E−5 3.224498
6.24E−5 3.224498
6.23E−5 3.224574
6.22E−5 3.224574
6.21E−5 3.224574

Table 6.15: Interpolation method - American put option (asset value of $100)
for adaptive node points and 4 time steps with η = 10−32, σ = 0.20, r = 0.08,
T = 0.25 and strike of $100. The values are calculated in this table are performed
in double precision. The Binomial Method price is an optimal approximation and
was calculated based on Cox et al. (1979).

The results in table 6.15 can be similar for differing ε values because the node

distributions are the same. Therefore, when ε = 6.21E−5, 6.22E−5 and 6.23E−5,

the number of nodes and the distribution of such are identical, so the approximations

are the same. Table 6.16, 6.17 and 6.18 are results for 8 time steps with varying

values of ε.

ε Binomial Method 8 time steps
9E−6 3.224899 3.229158
8E−6 3.227386
7E−6 3.223595
6E−6 3.221340
5E−6 3.218585
4E−6 3.214595
3E−6 3.211248
2E−6 3.207711

Table 6.16: Interpolation method - American put option (asset value of $100)
for adaptive node points and 8 time steps with η = 10−32, σ = 0.20, r = 0.08,
T = 0.25 and strike of $100. The values are calculated in this table are performed
in double precision. The Binomial Method price is an optimal approximation and
was calculated based on Cox et al. (1979).
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ε Binomial Method 8 time steps
7.9E−6 3.224899 3.226953
7.8E−6 3.226481
7.7E−6 3.226008
7.6E−6 3.226185
7.5E−6 3.225254
7.4E−6 3.225483
7.3E−6 3.225154
7.2E−6 3.223834
7.1E−6 3.224639

Table 6.17: Interpolation method - American put option (asset value of $100)
for adaptive node points and 8 time steps with η = 10−32, σ = 0.20, r = 0.08,
T = 0.25 and strike of $100. The values are calculated in this table are performed
in double precision. The Binomial Method price is an optimal approximation and
was calculated based on Cox et al. (1979).

ε Binomial Method 8 time steps
7.29E−6 3.224899 3.224884
7.28E−6 3.224410
7.27E−6 3.224448
7.26E−6 3.224448
7.25E−6 3.224448
7.24E−6 3.224448
7.23E−6 3.224267
7.22E−6 3.224347
7.21E−6 3.223810

Table 6.18: Interpolation method - American put option (asset value of $100)
for adaptive node points and 8 time steps with η = 10−32, σ = 0.20, r = 0.08,
T = 0.25 and strike of $100. The values are calculated in this table are performed
in double precision. The Binomial Method price is an optimal approximation and
was calculated based on Cox et al. (1979).

For the case of 8 time steps the value of ε needs to be smaller since there are more

time steps and therefore more interpolations required. In this case, the optimal ε

value is 7.29E−6 which gives an excellent approximation compared to the Binomial

method.
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6.3 Interpolation Polynomials and Barrier Options

Barrier options are options which are dependent on whether the underlying asset

price reaches a pre-determined level within a certain time period. The payoff of

the option will vary depending on the level the asset price achieves. The are two

specific types of barrier options, they are knock-out options or knock-in options. A

knock-out option ceases to exists when the underlying asset price reaches a barrier.

Whereas, a knock-in option will come into existence if the underlying asset reaches

a barrier.

In this section we will apply the Interpolation method to a knock-out option called

a down and out call. The down and out call option is similar to a normal European

call option that ceases to exist when it reaches a barrier H . The barrier level for a

down and out call is set below the initial asset price. Hull (2006) gives a closed form

for the down and out call option, cdo in terms of the European call, c, as given in

(2.21) and the corresponding down and in call, cdi. Namely,

cdo = c − cdi (6.4)

where

cdi = xe−rT
(H

x

)2λ
erfc(−y) − ce−rT

(H

x

)2λ−2
erfc(σ

√
T − y), (6.5)

λ =
r + σ2

2

σ2
,

y =

ln

(
H2

xc

)
σ
√

T
+ λσ

√
T

and x is the underlying asset price and with c the strike price.

One of the advantages of this method is that the transformation of the path integral

(5.1) is in a barrier form. For options like the down and out barrier option, β1(xk−1)

is fixed to H unless the underlying asset value determines that β1(xk−1) is inside the
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barrier H .

Asset η Step Lk−1 Rk−1

Price ($)
100 10−8 9 −1.43841036225890 8.44118710000083

8 −1.43841036225890 7.48359933286901
7 −1.43841036225890 6.53093355998789
6 −1.43841036225890 5.58318874745056
5 −1.43841036225890 4.64036384470732
4 −1.43841036225890 3.70245778422486
3 −1.43841036225890 2.76946948113699
2 −1.43841036225890 1.84139783288643
1 −0.893241718857600 0.918241718857600

Table 6.19: Down and Out call option intervals of integration for K = 10, σ = 0.20,
r = 0.08, T = 0.25, H = $75 and strike of $100. Here η is the total error for the
tails.

In table 6.19 the left interval point is fixed for all time steps except for the final time

step, when the method dictates that the barrier is different. It should be noted that

the barrier of H = $75 is converted using
1

σ
ln (H).

6.3.1 Fixed Number of Partitions

We firstly apply a down and out call option to the interpolation method with fixed

number of partitions. The errors calculated in the tables are the absolute difference

between the prices evaluated from the analytical form presented in Hull (2006)

against those computed using the interpolation method.
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Asset Optimal η IPM Error
Price ($)

80 10−3 0.0683055896929662 8.8606713925206467E − 04
90 10−6 1.0254500127567925 2.5591529289811787E − 06
100 10−6 5.0170110377369452 3.0446349936347206E − 05
110 10−8 12.6204428872442822 5.6147134247508390E − 06
120 10−7 22.0665241762180813 3.6025388994165297E − 05

Table 6.20: Interpolation method - Down and Out call option (asset value of $100)
for fixed number of node points (N = 64) and 8 time steps with σ = 0.20, r = 0.08,
T = 0.25, strike of $100 and barrier of $75. The values are calculated in this table
are performed in double precision.

Table 6.20 presents results for a various down and out call options with varying η

such that the best approximation is evaluated. Table 6.21 is for 128 partitions.

Asset Optimal η IPM Error
Price ($)

80 10−3 0.0683072619700805 8.8773941636632056E − 04
90 10−6 1.0254484846409615 1.0310370980592953E − 06
100 10−7 5.0169828478871548 2.2565001457641731E − 06
110 10−9 12.6204480608633283 4.4109437769002113E − 07
120 10−8 22.0665573941933566 2.8074137209399552E − 06

Table 6.21: Interpolation method - Down and Out call option (asset value of $100)
for fixed number of node points (N = 128) and 8 time steps with σ = 0.20, r = 0.08,
T = 0.25, strike of $100 and barrier of $75. The values are calculated in this table
are performed in double precision.

An increase in the number of partitions (that is, number of interpolations made)

means that η can be decreased. A decrease in η allows for the potential of better

approximations, as is the case in table 6.21. Appendix C.2.1 presents prices for the

128 partitions and varying η (where the optimal prices in table 6.21 were derived

from). Table 6.22 uses 256 partitions at each time step.
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Asset Optimal η IPM Error
Price ($)

80 10−3 0.0683073667812694 8.8784422755521517E − 04
90 10−6 1.0254483906967153 9.3709285192700165E − 07
100 10−8 5.0169807549790546 1.6359204546567696E − 07
110 10−10 12.6204484686408858 3.3316821523854401E − 08
120 10−9 22.0665599904518572 2.1115521831038819E − 07

Table 6.22: Interpolation method - Down and Out call option for fixed number of
node points (N = 256) and 8 time steps with σ = 0.20, r = 0.08, T = 0.25, strike
of $100 and barrier of $75. The values are calculated in this table are performed in
double precision.

The prices in tables 6.20 - 6.22 shows with an increase in the number of partitions,

the best η for asset values decreased for asset values $100, $110 and $120. For these

asset values the approximations improved. For an asset value of $90, the best η

remained the same at 10−6 and the approximation improved. Given the asset value

of $80, which is near the barrier value, the best η remain the same and the approx-

imation did not improve.

Tables 6.23 and 6.24 are down and out call option prices for an increasing number

of time steps.

Asset Optimal η Approximation Error
Price ($)

80 10−3 0.0684750295337522 1.0555069800379977E − 03
90 10−6 1.0254506693384327 3.2157345690800310E − 06
100 10−6 5.0169913171112990 1.0725724289978311E − 05
110 10−8 12.6204459132041311 2.5887535753943425E − 06
120 10−7 22.0665443382339959 1.5863373081792531E − 05

Table 6.23: Interpolation method - Down and Out call option (asset value of $100)
for fixed number of node points (N = 128) and 16 time steps with σ = 0.20, r = 0.08,
T = 0.25, strike of $100 and barrier of $75. The values are calculated in this table
are performed in double precision.

Table 6.23 shows an improvement in the approximate prices when the asset value is

$100, $110 and $120 compared to the corresponding values in table 6.21. For asset

values of $80 and $90, the approximations in table 6.21 are slightly better. In all
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cases, the best η’s remained the same, despite the change in the number of time

steps. Table 6.24 are prices for down and out call options with 32 time steps.

Asset Optimal η IPM Error
Price ($)

80 10−3 0.0684788368401993 1.0593142864851065E − 03
90 10−7 1.0254608988946279 1.3445290764427242E − 05
100 10−5 5.0170147735455517 3.4182158542561680E − 05
110 10−9 12.6204430800773935 5.4218803141603544E − 06
120 10−6 22.0664688777809666 9.1323826109657169E − 05

Table 6.24: Interpolation method - Down and Out call option (asset value of $100)
for fixed number of node points (N = 128) and 32 time steps with σ = 0.20, r = 0.08,
T = 0.25, strike of $100 and barrier of $75. The values are calculated in this table
are performed in double precision.

The approximate prices in table 6.24 did not improve with a further increase in the

number of time steps. Also, the best η changed for each asset value except for an

asset value of $80.

In appendix C.2.1 a range of prices are presented for varying η values for the pa-

rameter set used in tables 6.20 - 6.24. These are where the prices in the tables were

derived from.

6.3.2 Fixed Spaced Partitions

We now apply the down and out call option with the use of fixed spaced partitions.

Table 6.25 are prices for varying spaced partitions and η’s.
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η Space IPM Error
(Partitions)

10−6 10−1 (348) 5.0170300926179250 4.9501230916376704E − 05
10−2 (386) 5.0170098978847584 2.9306497749403970E − 05
10−3 (435) 5.0169954087381203 1.4817351111362509E − 05
10−4 (496) 5.0169854371542311 4.8457672222057546E − 06
10−5 (578) 5.0169789317218401 1.6596651684908093E − 06
10−6 (692) 5.0169749788864193 5.6125005899743119E − 06
10−7 (866) 5.0169728040157544 7.7873712547860130E − 06
10−8 (1151) 5.0169717721315097 8.8192554988097971E − 06
10−9 (1726) 5.0169713887179688 9.2026690400037747E − 06
10−10 (3448) 5.0169713007819920 9.2906050165597609E − 06

10−7 10−1 (370) 5.0170384148661213 5.7823479112512066E − 05
10−2 (410) 5.0170182201453981 3.7628758389057770E − 05
10−3 (462) 5.0170037310055946 2.3139618585826804E − 05
10−4 (526) 5.0169937594270468 1.3168040038230577E − 05
10−5 (615) 5.0169872540022604 6.6626152518678428E − 06
10−6 (738) 5.0169833011640650 2.7097770562145573E − 06
10−7 (921) 5.0169811262921549 5.3490514587140048E − 07
10−8 (1226) 5.0169800944138707 4.9697313833640955E − 07
10−9 (1839) 5.0169797110474379 8.8033957068578417E − 07
10−10 (3673) 5.0169796230779342 9.6830907458933524E − 07

10−8 10−1 (392) 5.0170392994777373 5.8708090728415430E − 05
10−2 (434) 5.0170191047581509 3.8513371142245845E − 05
10−3 (488) 5.0170046156198866 2.4024232878061547E − 05
10−4 (557) 5.0169946440423354 1.4052655326196595E − 05
10−5 (650) 5.0169881386167852 7.5472297758616413E − 06
10−6 (779) 5.0169841857825546 3.5943955457862220E − 06
10−7 (973) 5.0169820109170020 1.4195299935515493E − 06
10−8 (1296) 5.0169809790307083 3.8764369977850599E − 07
10−9 (1944) 5.0169805955836511 4.1966423391937013E − 09
10−10 (3881) 5.0169805076564362 8.3730572475460008E − 08

10−9 10−1 (411) 5.0170393928197772 5.8801432768068596E − 05
10−2 (456) 5.0170191981008427 3.8606713834155038E − 05
10−3 (513) 5.0170047089619541 2.4117574944776399E − 05
10−4 (583) 5.0169947373830777 1.4145996068970490E − 05
10−5 (682) 5.0169882319565895 7.6405695804970808E − 06
10−6 (818) 5.0169842791279953 3.6877409861912902E − 06
10−7 (1020) 5.0169821042577594 1.5128707508971218E − 06
10−8 (1361) 5.0169810723648807 4.8097787141987425E − 07
10−9 (2038) 5.0169806888920911 9.7505082480298100E − 08
10−10 (4074) 5.0169806010175773 9.6305685648445660E − 09

Table 6.25: Interpolation method - Down and Out call option (asset price of $100)
for fixed spaced partitions and 8 time steps with σ = 0.20, r = 0.08, T = 0.25, strike
of $100 and barrier of $75. The values are calculated in this table are performed in
double precision.
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Table 6.25 shows the same patterns as the equivalent European and American op-

tions with the same partition distribution. As the distance of the partitions decrease,

so does the error. However, as also stated previously, eventually too many inter-

polations occur which causes the error to rise. If we refer to η = 10−8 in table

6.25, when the partition space is 10−10, the error rises compared to a space of 10−9.

The number of interpolations made for 10−10 is 3881, which is an increase of 1937

compared to the number of interpolations made for a partition space of 10−9.

6.3.3 Adaptive Nodes

The down and out option is now applied using an adaptive node allocation. Table

6.26 are prices with ε = 10−6 and the number of time steps used fixed at 8.
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Asset η Partitions IPM Error
Price ($) Used

80 10−3 58 0.0667076971555293 2.3100361456567875E − 03
10−4 65 0.0674275336015360 1.5901996996501005E − 03
10−5 68 0.0672370933556727 1.7806399455134320E − 03
10−6 72 0.0672915745025081 1.7261587986780111E − 03
10−7 75 0.0672845568851327 1.7331764160534316E − 03
10−8 80 0.0672923905737283 1.7253427274578517E − 03
10−9 84 0.0673127309525815 1.7050023486045907E − 03

90 10−3 67 1.0222277060305562 3.2260281033874225E − 03
10−4 72 1.0250202921474112 4.3344198653247346E − 04
10−5 73 1.1458590413285348 1.2040530719459111E − 01
10−6 81 1.0251509390672204 3.0279506672333673E − 04
10−7 83 1.0252210711434961 2.3266299044744781E − 04
10−8 82 1.4620555381593765 4.3660180402543286E − 01
10−9 91 1.0251726792727522 2.8105486119152367E − 04

100 10−3 74 5.0194331391387381 2.4525328763271015E − 03
10−4 77 5.0175642069767097 5.8360071429897076E − 04
10−5 82 5.0179963399931822 1.0157337307706293E − 03
10−6 85 5.0180193978603107 1.0387915978994633E − 03
10−7 89 5.0180505947074918 1.0699884450807162E − 03
10−8 92 5.0179777799471799 9.9717368476845425E − 04
10−9 95 5.0180132019509127 1.0325956885014198E − 03

110 10−3 76 12.6071276354699311 1.3320866513108487E − 02
10−4 80 12.6180020418139698 2.4464601690699084E − 03
10−5 85 12.6191418142999243 1.3066876831141494E − 03
10−6 89 12.6193887652008971 1.0597367821413295E − 03
10−7 94 12.6193160043933528 1.1324975896870315E − 03
10−8 96 12.6192126954519068 1.2358065311329769E − 03
10−9 99 12.6192355201199309 1.2129818631079203E − 03

120 10−3 74 22.0639763674506710 2.5838341564388134E − 03
10−4 82 22.0628994217529844 3.6607798541254954E − 03
10−5 86 22.0645480731361268 2.0121284709850862E − 03
10−6 90 22.0647955148665176 1.7646867405934907E − 03
10−7 94 22.0647950020762238 1.7651995308870516E − 03
10−8 98 22.0647691902863059 1.7910113208063905E − 03
10−9 102 22.0648056145526148 1.7545870544949382E − 03

Table 6.26: Interpolation method - Down and Out call option for Adaptive node
points and 8 time steps with ε = 10−6, σ = 0.20, r = 0.08, T = 0.25, strike of $100
and barrier of $75. The values are calculated in this table are performed in double
precision.
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To improve the results presented in table 6.26 we can evaluate prices with a smaller

ε value. Table 6.27 are down and out call option prices with ε set to 10−11.

Asset η Partitions IPM Error
Price ($) Used

80 10−3 587 0.0683072146821381 7.1051861904801146E − 04
10−4 642 0.0687790910800854 2.3864222110076385E − 04
10−5 682 0.0688473789731971 1.7035432798904017E − 04
10−6 716 0.0688566150165243 1.6111828466187006E − 04
10−7 752 0.0688578031005921 1.5993020059402443E − 04
10−8 783 0.0688579502199794 1.5978308120669213E − 04
10−9 812 0.0688579672710672 1.5976603011890432E − 04

90 10−3 679 1.0224396345886602 3.0140995452834426E − 03
10−4 719 1.0250854707610884 3.6826337285536526E − 04
10−5 706 1.1459434877436201 1.2048975360967641E − 01
10−6 793 1.0254498837255983 3.8504083454612981E − 06
10−7 830 1.0254530234446562 7.1068928762796357E − 07
10−8 802 1.4629639165870467 4.3751018245310297E − 01
10−9 896 1.0254532527596778 4.8137426596900346E − 07

100 10−3 719 5.0097134777741434 7.2671284882676324E − 03
10−4 766 5.0161797967156616 8.0080954674988103E − 04
10−5 809 5.0169295251541817 5.1081108229378280E − 05
10−6 845 5.0169764105428980 4.1957195134889602E − 06
10−7 878 5.0169797237830682 8.8247934307283948E − 07
10−8 910 5.0169806051998531 1.0625576807310466E − 09
10−9 947 5.0169807015054770 9.5243065517669478E − 08

110 10−3 746 12.6103791197460211 1.0069382237018476E − 02
10−4 797 12.6191599217570669 1.2885802259721135E − 03
10−5 842 12.6203153900204281 1.3311196261078795E − 04
10−6 886 12.6204408845995211 7.6173835183990235E − 06
10−7 924 12.6204469987161083 1.5032669303804980E − 06
10−8 956 12.6204482797488637 2.2223417550648605E − 07
10−9 1025 12.6204483926597995 1.0932323935008981E − 07

120 10−3 737 22.0482537285707458 1.8306473036364124E − 02
10−4 815 22.0647170331095133 1.8431684975978024E − 03
10−5 857 22.0663747563650574 1.8544524205410529E − 04
10−6 907 22.0665413973320668 1.8804275042638707E − 05
10−7 939 22.0665586636416684 1.5379654411118437E − 06
10−8 982 22.0665599361222640 2.6548484521882187E − 07
10−9 1024 22.0665600027465594 1.9886055024898042E − 07

Table 6.27: Interpolation method - Down and Out call option for Adaptive node
points and 8 time steps with ε = 10−11, σ = 0.20, r = 0.08, T = 0.25, strike of $100
and barrier of $75. The values are calculated in this table are performed in double
precision.
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The errors in table 6.27 are greatly improved compared to those presented in table

6.26. However, as presented in both tables 6.26 and 6.27, the number of nodes differ

immensely. So, when ε = 10−6, the number of nodes used are in the order of 30. In

the case of ε = 10−11, the number of nodes used vary between approximately 600 to

1000. Therefore, improvements should be expected.

Appendix C.2.3 presents further results for differing ε. These tables emphasise the

improvements in accuracy for the changes in ε. It must be noted that depending on

the requirements, a balance in accuracy and computational effort may be needed.

Smaller values of ε requires greater computational effort to derive an accurate price.

6.4 Quadrature Rules and American Put Options

Using the Quadrature (Newton-Cotes) rules employed for the European options,

table 6.28 presents results for American put options with the 200 partitions and

various number of time steps.

Asset Binomial Left End Left End Left End
Price ($) Method 4 Steps 8 Steps 16 Steps
80 20.000000 20.000000 20.000000 20.000000
90 10.037663 9.419727 10.233520 10.673077
100 3.224899 3.248504 3.435497 3.615112
110 0.665410 0.677737 0.714048 0.760814
120 0.088796 0.089300 0.094368 0.101612

Table 6.28: Left Endpoint Quadrature - American put option for 200 partitions
and various time steps with σ = 0.20, r = 0.08, T = 0.25, η = 10−32 and strike of
$100. The values are calculated in this table are performed in double precision. The
Binomial Method prices are optimal approximations (using various N) and were
calculated based on Cox et al. (1979).

The option prices in table 6.28 shows similar variations as in the interpolation

method. It can be shown that when not enough partitions are being used, the
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early exercise barrier is miscalculated. Even though some of the results in table 6.28

are close to the Binomial price, there are imprecisions in the calculations of the price

using the Left endpoint quadrature approximation.

Table 6.29 contains American put prices for an optimal amount of partitions given

8 time steps.

Asset Partitions Binomial Left End QR
Price ($) Method
90 825 10.037663 10.038135
100 2229 3.224899 3.224905
110 2150 0.665410 0.665411
120 1561 0.088796 0.088796

Table 6.29: Left Endpoint Quadrature - American put option for 8 time steps
and optimal partitions with σ = 0.20, r = 0.08, T = 0.25, η = 10−32 and strike of
$100. The values are calculated in this table are performed in double precision. The
Binomial Method prices are optimal approximations (using various N) and were
calculated based on Cox et al. (1979).

Even though the prices in table 6.29 are excellent approximations for the American

put option price, the computational effort was great. As mentioned in the previous

paragraph, the calculation of the Exercise Barrier at each time step is not as precise

as the interpolation and Fourier methods described earlier.

Table 6.30 are some further American put option prices evaluated using various

(Newton-Cotes) quadrature rules.

Asset Binomial Right End Mid Point Trapezoidal Composite
Price ($) Method Simpson’s
90 10.037663 10.000000 10.000000 10.000000 10.000000
100 3.224899 2.599630 3.187915 3.186625 3.070412
110 0.665410 2.516689 0.658364 0.657891 0.635625
120 0.088796 2.492115 0.087753 0.087676 0.085229

Table 6.30: Various Quadrature Rules - American put option for 8 time steps and
512 partitions with σ = 0.20, r = 0.08, T = 0.25, η = 10−32 and strike of $100. The
values are calculated in this table are performed in double precision. The Binomial
Method prices are optimal approximations (using various N) and were calculated
based on Cox et al. (1979).
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Clearly the results in table 6.30 are poor compared to the Binomial method and

those presented throughout the thesis. The poor accuracy of these prices are at-

tributed to the inaccuracy of the barrier points (early exercise boundary) at each

time step. The barriers calculated by the quadrature methods compared to those

evaluated by the Interpolation method are different. Given the higher accuracy

achieved by the latter method, the deficiency of the quadrature methods can be

attributed to the evaluation of the barrier points.

The inaccuracy in the barrier calculation can be attributed to the nature of the

interval. For the American put option the barrier moves outward at each time step

(that is, the left interval). Therefore, to calculate the next barrier point, the method,

whether IPM or Quadrature, requires an estimate of function values that are outside

the domain of the current time step. This is a form of extrapolation, which the

Quadrature methods do not perform well. To show the inaccuracy occurs, due to the

calculation of inferior barrier points, table 6.31 are American put option prices with

the barrier points obtained by an accurate Interpolation method approximation.

For each time step, the barrier point obtained by the interpolation method is used

within the Quadrature methods.

Quadrature Binomial Optimal Nodes Approximation
Method Method

3.224899
Left End 138 3.225513
Mid Point 57 3.224436

Table 6.31: Left End and Mid point Quadrature Rules - American put option
for an Asset Price of $100, 8 time steps and an optimal amount of partitions with
σ = 0.20, r = 0.08, T = 0.25, η = 10−32 and strike of $100. The values are calculated
in this table are performed in double precision. The Binomial Method prices are
optimal approximations (using various N) and were calculated based on Cox et al.
(1979).

As presented in table 6.31, the evaluated prices for the left end and mid point

quadrature rules have improved greatly compared to those in table 6.30. It must
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be stated that for the other rules (right end point, trapezoidal and the composite

Simpson’s) did not improve enough. In excess of 4096 node points were used in these

other rules and prices were in the range of $3.16 and $3.18. So, an improvement is

required in the evaluation of the barrier points at each time step. This is an issue

for all American put option prices and requires further investigation. It is envisaged

that the Quadrature methods will perform well for the down and out call option as

the barrier is fixed at each time step.

6.5 Quadrature Rules and Barrier Options

Using the Quadrature (Newton-Cotes) rules employed for the European and Amer-

ican put options, table 6.32 presents results for the down and out call option with

various partitions and 8 time steps.

Asset Optimal η Left Endpoint Error
Price ($)
N = 64

80 10−3 0.068265704858581 8.461823048671463E − 04
90 10−6 1.025446584949125 8.686547385838850E − 07
100 10−9 5.016980587577223 3.809786264241666E − 09
110 10−11 12.62044850128009 6.776161853849771E − 10
120 10−11 22.06656019939149 2.215585936937714E − 09

N = 128
80 10−3 0.068287400942693 8.678783889792541E − 04
90 10−6 1.025447547820377 9.421651370189466E − 08
100 10−9 5.016980591447074 6.006484198906037E − 11
110 10−12 12.62044850195964 1.936228954946273E − 12
120 10−15 22.06656020160710 2.131628207280301E − 13

N = 256
80 10−3 0.068297602247680 8.780796939656527E − 04
90 10−6 1.025447982063936 5.284600721466859E − 07
100 10−9 5.016980593114734 1.727725518207990E − 09
110 10−12 12.62044850196316 5.451639140119369E − 12
120 10−18 22.06656020160708 0.000000000000000E − 00

Table 6.32: Left Endpoint Quadrature - Down and Out call option for 8 time steps
with σ = 0.20, r = 0.08, T = 0.25, strike of $100 and barrier of $75. The values are
calculated in this table are performed in double precision.
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Table 6.32 shows an improvement in the approximation as the number of partitions

increase for all asset values other than $80. The justification for less accurate re-

sults and a lack of improvement at this asset value is its proximity to the barrier. A

possible solution to this problem is to consider other discretization schemes, where

extra nodes are used near the barrier. Refer to the adaptive discretization for the in-

terpolation method (Section 6.3.3) where results improved for the asset value of $80.

Table 6.33 are prices using Right Endpoint Quadrature.

Asset Optimal η Right Endpoint Error
Price ($)
N = 64

80 10−3 0.068342191541811 9.226689880968697E − 04
90 10−6 1.025449676530992 2.222927128814334E − 06
100 10−9 5.016980598662323 7.275314573007563E − 09
110 10−11 12.62044850149923 4.584759238923652E − 10
120 10−10 22.06656020049667 1.110404213022775E − 09

N = 128
80 10−3 0.068325632015505 9.061094617912047E − 04
90 10−6 1.025449093148066 1.639544201958998E − 06
100 10−9 5.016980596987800 5.600790942139611E − 09
110 10−12 12.62044850197052 1.281463823943341E − 11
120 10−15 22.06656020160710 1.776356839400250E − 14

N = 256
80 10−3 0.068316716249908 8.971936961940374E − 04
90 10−6 1.025448754669658 1.301065794656608E − 06
100 10−9 5.016980595884865 4.497856309626513E − 09
110 10−12 12.62044850196860 1.089084378236294E − 11
120 10−18 22.06656020160708 0.000000000000000E − 00

Table 6.33: Right Endpoint Quadrature - Down and Out call option for 8 time
steps with σ = 0.20, r = 0.08, T = 0.25, strike of $100 and barrier of $75. The
values are calculated in this table are performed in double precision.

As expected the right endpoint approximations were similar to those evaluated by

the left endpoint rule. It should also be noted that the prices evaluated by the right

endpoint are larger than those approximated by the left endpoint.

Table 6.34 are prices using Midpoint Quadrature.
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Asset Optimal η Midpoint Error
Price ($)
N = 64

80 10−3 0.068309240511536 8.897179578215703E − 04
90 10−6 1.025448511612557 1.058008693766155E − 06
100 10−9 5.016980595318302 3.931292624770322E − 09
110 10−11 12.62044850150694 4.507683115662076E − 10
120 10−10 22.06656019977550 1.831576668109847E − 09

N = 128
80 10−3 0.068307840878315 8.883183246010951E − 04
90 10−6 1.025448416586935 9.629830712842846E − 07
100 10−9 5.016980594782908 3.395898673375086E − 09
110 10−12 12.62044850196667 8.967049325292464E − 12
120 10−16 22.06656020160709 1.065814103640150E − 14

N = 256
80 10−3 0.068307490431320 8.879678776056721E − 04
90 10−6 1.025448392448670 9.388448065639210E − 07
100 10−9 5.016980594642222 3.255212988051426E − 09
110 10−12 12.62044850196628 8.576250820624409E − 12
120 10−16 22.06656020160708 0.000000000000000E − 00

Table 6.34: Midpoint Quadrature - Down and Out call option for 8 time steps
with σ = 0.20, r = 0.08, T = 0.25, strike of $100 and barrier of $75. The values are
calculated in this table are performed in double precision.

In most cases, the approximated down and out call option price using the midpoint

rule was between the values evaluated for the left and right endpoint.

Table 6.35 are prices using the Trapezoidal Quadrature rule.
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Asset Optimal η Trapezoidal Error
Price ($)
N = 64

80 10−3 0.068303637736538 8.841151828233723E − 04
90 10−6 1.025448128067019 6.744631551036662E − 07
100 10−9 5.016980593113967 1.726958132053369E − 09
110 10−11 12.62044850138965 5.680540482444485E − 10
120 10−11 22.06656019951860 2.088476946937590E − 09

N = 128
80 10−3 0.068306438824764 8.869162710496564E − 04
90 10−6 1.025448319815123 8.662112598312177E − 07
100 10−9 5.016980594215982 2.828972611723657E − 09
110 10−12 12.62044850196508 7.373657240350440E − 12
120 10−17 22.06656020160710 1.776356839400250E − 14

N = 256
80 10−3 0.068307139832806 8.876172790918402E − 04
90 10−6 1.025448368199469 9.145956059164462E − 07
100 10−9 5.016980594499438 3.112429425300434E − 09
110 10−12 12.62044850196587 8.167688747562352E − 12
120 10−18 22.06656020160708 0.000000000000000E − 00

Table 6.35: Trapezoidal Quadrature - Down and Out call option for 8 time steps
with σ = 0.20, r = 0.08, T = 0.25, strike of $100 and barrier of $75. The values are
calculated in this table are performed in double precision.

In some cases the Trapezoidal rule achieved better results than the rectangular rules.

Table 6.36 are prices using the Composite Simpson’s Quadrature rule.

193



CHAPTER 6. AMERICAN PUT AND BARRIER OPTIONS

Asset Optimal η Simpson’s Error
Price ($)
N = 64

80 10−3 0.068240065246154 8.205426924401821E − 04
90 10−6 1.025446090099999 1.363503864482141E − 06
100 10−7 5.016975630482336 4.960904672834943E − 06
110 10−6 12.62050955140471 6.104944700346948E − 05
120 10−5 22.06647082185757 8.937974951095384E − 05

N = 128
80 10−3 0.068275532665032 8.560101113182089E − 04
90 10−6 1.025447574142025 1.205381610080991E − 07
100 10−9 5.016980591439553 5.254374713103971E − 11
110 10−12 12.62044850173511 2.226006046157636E − 10
120 10−11 22.06656020112946 4.776161688369029E − 10

N = 256
80 10−3 0.068291909854050 8.723873003353422E − 04
90 10−6 1.025448011081464 5.574776003047788E − 07
100 10−9 5.016980593200113 1.813104333336923E − 09
110 10−12 12.62044850196314 5.432099214885966E − 12
120 10−19 22.06656020160709 1.421085471520200E − 14

Table 6.36: Composite Simpson’s Quadrature - Down and Out call option for 8
time steps with σ = 0.20, r = 0.08, T = 0.25, strike of $100 and barrier of $75. The
values are calculated in this table are performed in double precision.

When 256 partitions were used for the Composite Simpson’s rule, the option prices

evaluated were as accurate, if not better than the other rules. Table 6.37 are the

errors associated with each Quadrature rule for a specific type of Down and Out call

option.

As table 6.37 shows, there are minor differences between the Newton-Cotes rules.

All prices are very precise compared to the analytical solution. It is difficult to

compare the performance of the quadrature methods due to the propagating errors

from time step to time step. In most cases, a single integral is evaluated using a

particular rule and comparison is made by comparing the results. In these cases,

propagation of errors has also an influence on the performance. Some rules work

better with different discretization schemes also.
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6.6 Conclusion

The methods used in the previous chapter were applied to an American put option

and a Barrier down and out call option. The interpolation method performed well

when applied to these different options. Similar behavioural issues arose in these

cases compared to the European options. The option prices evaluated were quite

precise compared to the binomial and analytical solutions obtained from the litera-

ture. The results compared favourably to those achieved by the Fourier series. As

with the Fourier series, a-priori knowledge of the method parameters would allow

optimal evaluations to be gained for less computational effort.

The quadrature methods worked quite well for the barrier option but performed

poorly for the American put option. The poor performance occurred due to the

miscalculation of the early exercise boundary at each time step. Even using the cor-

rect boundary values (evaluated by the interpolation method) did not assist. Some

methods (right end point, trapezoidal and the composite Simpson’s rules) did not

improve significantly; with a high number of node points required to obtain an av-

erage result.

A possible improvement for this issue is the use of more sophisticated quadrature

rules. Weighted rules which take into account the weight within the integrand may

assist. Many of the weighted rules however are associated with single integrals,

integrated over one variable. These rules would need to be extended to take into

account a second variable. Since our path integral has two variables, the underlying

and time.
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Chapter 7

Conclusions and
Recommendations

The main aim of the thesis was to present a numerical investigation of the path

integral framework. The framework developed and presented by Chiarella et al.

(1999) follows the Black Scholes paradigm and was summarised in Chapter 2. The

path integral is an alternative representation of an option price than the traditional

partial differential equations, namely

fk−1(ξk−1) =
e−rΔt

√
π

∫ ∞

−∞
e−(ξk−μ(ξk−1,Δt))2fk(

√
2Δtξk)dξk. (7.1)

In Chapter 3, we represent the approach of Chiarella et al. (1999). The Fourier-

Hermite series is used to represent the underlying, fk(
√

2Δtξk), within the path

integral framework. The main advantage of this spectral method is the continuous

representation of the option price as a polynomial. This allows multiple option prices

to be evaluated from the same polynomial (that is, an option price for a particular

underlying value).

One of the major disadvantages with this technique is the computational effort re-

quired to obtain accurate prices. This can be attributed to the exponential and

factorial terms found in the recurrence relations, namely for a European and Amer-

ican put option,

αK−1
m =

σ

2m

[
e−rΔt

2m−1(m − 1)!υm−1
√

π
e−( b

υ
)2Hm−2(− b

υ
) + αK−1

m−1

]
. (7.2)
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Also, the matrix multiplication(s) required to find the coefficients of the option price

polynomial can be time consuming, especially when a large number of time steps

(K) and/or basis functions (N) are to be used,

α0 = e−r(K−1)ΔtAK−1αK−1. (7.3)

The coefficients determined (for a European option) in (7.3) requires matrix mul-

tiplication, with the dimensions of A and α determined by the number of basis

functions.

In an effort to combat the computational effort, in chapter 4 we offer a Normalised

version of the same technique. The recurrence relations are formed using similar

methods to the alternative, with differing Hermite orthogonal polynomial properties,

forming different relations. For example,

αK−1
m =

σ

m

[
αK−1

m−1 +
e−rΔt

(m − 1)!τm−1
√

2π
e−

1
2
( b

τ
)2H∗

m−2(−
b

τ
)

]
, (7.4)

evaluates the coefficients αK−1
m for the normalised version. This is equivalent to (7.2)

in the non-normalised method. The major difference being the 2m−1 term does not

exist in the normalised version. Investigations showed that the computational time

did not improve by any great amount, in most cases, less than five percent.

Therefore, one of the most time consuming parts of this type of method is the ma-

trix multiplication. If this matrix multiplication could be eliminated or the effort

required to calculate was drastically reduced, the computational time required to

obtain an accurate result could be reduced. Diagonalisation or other efficient meth-

ods to evaluate Ak would be worthwhile.

Another issue that arises in this method is the oscillating nature of the Fourier

series. That is, for a given K (the number of time steps) and N (the number of

basis functions), there are underlying values that will give more accurate results

than others.
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Figure 7.1: The absolute error of a Fourier-Hermite expansion vs Black-Scholes
for a European call with K = 4, N = 16 (red), N = 32 (blue), N = 64 (yellow),
σ = 0.20, r = 0.08, T = 0.25 and strike of $100.

Figure 7.1 shows which prices were better than other prices. Therefore, an a-priori

knowledge of what K and N is required, given a set of model parameters (volatil-

ity, interest rates and time to expiry), to give a better result would be advantageous.

The methods presented in Chapters 5 and 6 uses the same path integral framework,

(7.1), but is modified so that interpolation polynomials and Newton-Cotes quadra-

ture can be applied to find accurate results. The path integral is modified due to

the infinite interval in (7.1). An upper bound (the value of the underlying) is used

to approximate fk(ξk) at each time step, which allows a finite interval to be formed.

Using a better upper bound would be an obvious improvement in determining the

finite intervals. Better intervals will lead to higher accuracy in the option price

evaluation. In evaluating the intervals, a Taylor series was used for the error func-

tion. Use of a better approximation for the error function could also improve the

determination of the interval at each time step.
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In the thesis, the interpolation method used Hermite interpolation polynomials (of

order 4) to represent fk(ξk) in (7.1). These commonly used polynomials, repre-

senting the underlying, achieved precise option prices. The prices evaluated for

American put and the Barrier (down and out call) options were comparable to, the

Binomial and analytical solutions found in the literature, respectively.

One of the major advantages of this interpolation method is the ease of implemen-

tation. The implementation will also allow for the use of other Hermite interpo-

lation polynomials (different orders). Accurate results are evaluated with minimal

computational effort. As with the Fourier method, a-priori knowledge of method

parameters given a set of model parameters, would be advantageous.

For the interpolation method, various discretization schemes of the underlying were

offered. Each scheme having its advantages over the others. The fixed schemes

allowed for fast and precise results and the adaptive scheme traded computational

effort for higher accuracy. Other discretization schemes, Gauss types for instance,

could be used to improve the evaluation of the option price.

Various Newton-Cotes rules were applied to the path integral (7.1) to obtain ac-

curate option prices in Chapter 6. These rules achieve fast results and in the case

of the European options with high precision. Inaccuracies arose for the American

put option, specifically the calculation of the exercise boundary. To compensate

for this problem, the barriers were manually placed (obtained via the interpolation

technique) to investigate the merits of the technique. This issue requires further

attention and may be a flaw in using these types of rules.

Only one type of discretization scheme was used (fixed number of nodes). Other

schemes, including Gauss type should be investigated and may assist in the issues

arising with the American put option. Other types of quadrature, including weighted

rules for multi-variable and multi-dimensional integrals, would be worthwhile inves-
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tigating. Many of these rules may assist with obtaining a-priori knowledge of the

method parameters. Some of these weighted rules have associated errors. By bound-

ing the errors, appropriate and optimal K and N can be determined. The single

issue associated with all the techniques present in the thesis is the lack of knowledge

in regards to the number of time steps and basis functions/nodes prior to evaluation

of the option price.

Given the differing methods offered in the thesis, a further extension worth explor-

ing is different discretization of time. The implementations offered in the thesis,

has fixed spaced time steps. The use of an alternative scheme for time may lead

to improved precision, it is envisaged though that a greater computational effort

would be required. Other types of options could also be applied to the path integral

framework. Various barrier type options may be applied to the interpolation and

quadrature methods. Asian options, where payoff is determined by an average value

of the underlying, could be implemented, though may require further manipulation

of the path integral to compensate for the unusual payoff scheme.
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Appendix A

Fourier-Hermite Series Expansion

These appendices contain many proofs and analysis of the methods and techniques

described in Chapter 3.
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A.1 European Options

A.1.1 Completing the Square

This is a step by step evaluation of the power of the exponential in the path integral

(3.14) being converted to a complete square.
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. (A.1)

The expression (A.1) is in a form such that we can complete the square.
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A.1.2 Evaluating Am,n

This is the complete evaluation of elements Am,n. The first step requires the trans-

formation of (3.30) to a form so that integration by parts can be used.
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The derivative in (A.3) can be solved using property (3.6) and the product rule as

described in the chapter.
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So, to evaluate the element Am,n, (A.4) is substituted into (A.3). Since (A.4) is

expressed in a forward manner, rearrangement is required so that Am,n is expressed

in terms of Am−1,n−1. Therefore, as presented in the chapter
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It must be noted that when m > n element Am,n = 0.
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A.1.3 Evaluating Ψc
m(− b

υ
)

The following is a derivation of Ψc
m(− b

υ
) for a European call option. Ψc

m(− b
υ
) is

transformed so that it can assist in the evaluation of αK−1. The aim is to join the

two exponential in the integrand of (3.37) into a single exponential. The exponential

also has to be transformed so that Hermite polynomials and their properties can be

used. This is achieved via simple algebra.
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The proof for Ψc
0, as presented in (3.41), is as follows
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let,

u = z − συ

2
(A.8)

and substituting (A.8) into (A.7) gives
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The proof for Ψc
1, as in (3.43), is
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and substituting (A.11) into (A.10) gives
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Performing the substitution,

x = u2,

into (A.12) gives
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erfc

(− b

υ
− συ

2

)
+

1√
π

e−(− b
υ
−συ

2
)2
]
,

= e
1
4
σ2υ2

[
συ

2
erfc

(− b

υ
− συ

2

)
+

1√
π

e−(( b
υ
)2+ σ2υ2

4
+σb)

]
,

= e
1
4
σ2υ2 συ

2
erfc

(− b

υ
− συ

2

)
+

1√
π

e−(( b
υ
)2+σb), (A.13)

The proof for Ψc
m, as in (3.45), is
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Ψc
m(− b

υ
) =

e
1
4
σ2υ2

√
π

∫ − b
υ

−∞
e−(z−συ

2
)2
[
2zHm−1(z) − 2(m − 1)Hm−2(z)

]
dz,

=e
1
4
σ2υ2

[
1√
π

∫ − b
υ

−∞
2ze−(z−συ

2
)2Hm−1(z)dz

− 2(m − 1)√
π

∫ − b
υ

−∞
e−(z−συ

2
)2Hm−2(z)dz

]
,

=e
1
4
σ2υ2

[
1√
π

∫ − b
υ

−∞
2ze−(z−συ

2
)2Hm−1(z)dz

− 1√
π

∫ − b
υ

−∞
e−(z−συ

2
)2

( d

dz
Hm−1(z)

)
dz

]
,

=e
1
4
σ2υ2

[
1√
π

∫ − b
υ

−∞
2ze−(z−συ

2
)2Hm−1(z)dz

− 1√
2π

e−(z−συ
2

)2Hm−1(z)

]− b
υ

−∞
− 1√

π

∫ − b
υ

−∞
(z − συ

2
)e−(z−συ

2
)2Hm−1(z)dz

]
,

=e
1
4
σ2υ2

[
συ√

π

∫ − b
υ

−∞
e−(z−συ

2
)2Hm−1(z)dz − 1√

π
e−((− b

υ
−συ

2
)2Hm−1(− b

υ
)

]
,

=

[
συΨc

m−1(−
b

υ
) − e

1
4
σ2τ2

√
π

e−(( b
υ
)2+ σ2υ2

4
+σb)Hm−1(− b

υ
)

]
,

=

[
συΨc

m−1(−
b

υ
) − 1√

π
e−(( b

υ
)2+σb)Hm−1(− b

υ
)

]
, (A.14)

A.1.4 Evaluating Ωc
m(− b

υ)

The proof for Ωc
0, as in (3.42), is given by
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Ωc
0(−

b

υ
) =

1√
π

∫ ∞

− b
υ

e−z2

H0(z)dz,

=
1√
π

∫ ∞

− b
υ

e−z2

dz,

=
1

2
+

1√
π

∫ b
υ

0

e−z2

dz,

=
1

2
+

1

2
erf

( b

υ

)
,

=
1

2
erfc

(− b

υ

)
. (A.15)

The proof for Ωc
1, as in (3.44), is

Ωc
1(−

b

υ
) =

1√
π

∫ ∞

− b
υ

e−z2

H1(z)dz,

=
1√
π

∫ ∞

− b
υ

2ze−z2

dz. (A.16)

Performing the substitution,

u = z2,

into (A.16) gives
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Ωc
1(−

b

υ
) =

1√
π

∫ ∞

− b
υ

2ze−u du

2zdz
dz,

=
1√
π

∫ ∞

− b
υ

e−udu,

= − 1√
π

e−u

]∞

− b
υ

,

=
1√
π

e−( b
υ
)2 . (A.17)

The proof for Ωc
m, as in (3.46), is

Ωc
m(− b

υ
) =

1√
π

∫ ∞

− b
υ

e−z2

[
2zHm−1(z) − 2(m − 1)Hm−2(z)

]
dz,

=
1√
π

∫ ∞

− b
υ

2ze−z2

Hm−1(z)dz − 1√
π

∫ ∞

− b
υ

2(m − 1)e−z2

Hm−2(z)dz,

=
1√
π

∫ ∞

− b
υ

2ze−z2

Hm−1(z)dz − 2(m − 1)Ωc
m−2(−

b

υ
),

= − 1√
π

e−z2

Hm−1(z)

]∞

− b
υ

+ 2(m − 1)
1√
π

∫ ∞

− b
υ

e−z2

Hm−2(z)dz − 2(m − 1)Ωc
m−2(−

b

υ
),

=
1√
π

e−( b
υ
)2Hm−1(− b

υ
). (A.18)

A.1.5 Evaluating Ψp
m(− b

υ)

The proof for Ψp
0 as in (3.63), is
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Ψp
0(−

b

υ
) =

e
1
4
σ2υ2

√
π

∫ − b
υ

−∞
e−(z−συ

2
)2H0(z) dz,

=
e

1
4
σ2υ2

√
π

∫ − b
υ

−∞
e−(z−συ

2
)2 dz,

=
e

1
4
σ2υ2

√
π

∫ − b
υ
−συ

2

−∞
e−u2

du,

=
e

1
4
σ2υ2

2
erfc

( b

υ
+

συ

2

)
. (A.19)

The proof for Ψp
1 as in (3.63), is

Ψp
1(−

b

υ
) =

e
1
4
σ2υ2

√
π

∫ − b
υ

−∞
e−(z−συ

2
)2H1(z) dz,

=
e

1
4
σ2υ2

√
π

∫ − b
υ

−∞
2ze−(z−συ

2
)2 dz,

=
e

1
4
σ2υ2

√
π

∫ − b
υ
−συ

2

−∞
2(u +

συ

2
)e−u2

du,

=
2e

1
4
σ2υ2

√
π

[∫ − b
υ
−συ

2

−∞
ue−u2

du +
συ

2

∫ − b
υ
−συ

2

−∞
e−u2

du

]
,

= e
1
4
σ2υ2

[
1√
π

∫ − b
υ
−συ

2

−∞
e−v dv +

συ

2
erfc

( b

υ
+

συ

2

)]
,

=
συe

1
4
σ2υ2

2
erfc

( b

υ
+

συ

2

) − 1√
π

e−(( b
υ
)2+σb). (A.20)

The proof for Ψp
m as in (3.63), is
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Ψp
m(− b

υ
) =

e
1
4
σ2υ2

√
π

∫ − b
υ

−∞
e−(z−συ

2
)2Hm(z) dz,

=
e

1
4
σ2υ2

√
π

∫ − b
υ

−∞
e−(z−συ

2
)2
[
2zHm−1(z) − 2(m − 1)Hm−2(z)

]
dz,

= e
1
4
σ2υ2

[
1√
π

∫ − b
υ

−∞
2ze−(z−συ

2
)2Hm−1(z) dz

− 1√
π

∫ − b
υ

−∞
2(m − 1)e−(z−συ

2
)2Hm−2(z)

]
dz,

= e
1
4
σ2υ2

[
1√
π

∫ − b
υ

−∞
2ze−(z−συ

2
)2Hm−1(z) dz

− 1√
π

∫ − b
υ

−∞
2(m − 1)e−(z−συ

2
)2
(

d

dz

1

2(m − 1)
Hm−1(z)

)]
dz,

= e
1
4
σ2υ2

[
1√
π

∫ − b
υ

−∞
2ze−(z−συ

2
)2Hm−1(z) dz − 1√

π
e−(z−συ

2
)2Hm−1(z)

]− b
υ

−∞

− 1√
π

∫ − b
υ

−∞
2(z − συ

2
)e−(z−συ

2
)2Hm−1(z)

]
dz,

= e
1
4
σ2υ2

[
− 1√

π
e−(− b

υ
−συ

2
)2Hm−1(− b

υ
) +

συ√
π

∫ − b
υ

−∞
e−(z−συ

2
)2Hm−1(z) dz

]
,

= συΨp
m−1(−

b

υ
) − 1√

π
e−(( b

υ
)2+σb)Hm−1(− b

υ
). (A.21)

A.1.6 Evaluating Ωp
m(− b

υ)

The proof for Ωp
0 as in (3.66), is
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Ωp
0(−

b

υ
) =

1√
π

∫ − b
υ

−∞
e−z2

H0(z) dz

=
1√
π

∫ − b
υ

−∞
e−z2

dz,

=
1

2
erfc

( b

υ

)
. (A.22)

The proof for Ωp
1 as in (3.66), is

Ωp
1(−

b

υ
) =

1√
π

∫ − b
υ

−∞
e−z2

H1(z) dz,

=
1√
π

∫ − b
υ

−∞
2ze−z2

dz,

=
1√
π

∫ − b
υ

−∞
e−u du,

= − 1√
π

e−( b
υ
)2 . (A.23)

The proof for Ωp
m as in (3.66), is
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Ωp
m(− b

υ
) =

1√
π

∫ − b
υ

−∞
e−z2

Hm(z) dz,

=
1√
π

∫ − b
υ

−∞
e−z2

[
2zHm−1(z) − 2(m − 1)Hm−2(z) dz

]
,

=
1√
π

∫ − b
υ

−∞
e−z2

2zHm−1(z) − 2(m − 1)Ωp
m−2(−

b

υ
),

= − 1√
π

e−z2

Hm−1(z)

]− b
υ

−∞
+ 2(m − 1)Ωp

m−2(−
b

υ
) − 2(m − 1)Ωp

m−2(−
b

υ
),

= − 1√
π

e−( b
υ
)2Hm−1(− b

υ
). (A.24)

A.2 American Put Option

A.2.1 Evaluating γk−1
1

The proof to γk−1
1 as in (3.97) can be formed by using properties (3.86) and (3.88)

and integration.

γk−1
1 =

e−rΔt

211!υ1
√

π

[∫ zk

−∞
e−z2

H1(z) dz − eσb

∫ zk

−∞
e−z2+συzH1(z) dz

]
,

=
e−rΔt

2υ
√

π

[∫ zk

−∞
2ze−z2

dz − eσb+ σ2υ2

4

∫ zk

−∞
2ze−(z−συ

2
)2 dz

]
,

=
e−rΔt

2υ

[
− 1√

π
e−z2

k − 1√
π

eσb+ σ2υ2

4

∫ zk−συ

−∞
(2u + συ)e−u2

du

]
,

=
e−rΔt

2υ

[
− 1√

π
e−z2

k − 1√
π

eσb+ σ2υ2

4

[∫ zk−συ

−∞
2ue−u2

du + συ

∫ zk−συ

−∞
e−u2

du

]]
,

=
e−rΔt

2υ

[
− 1√

π
e−z2

k +
eσb−z2

k+συzk

√
π

− συeσb+ σ2υ2

4

2
erfc

(
συ

2
− zk

)]
. (A.25)
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A.2.2 Evaluating Θk−1
m

The proof for Θk−1
m as in (3.103), is.

Θk−1
m =

1√
π

∫ zk

−∞
e−z2

Hm(z) dz,

=
1√
π

∫ zk

−∞
e−z2

(2zHm−1(z) − 2(m − 1)Hm−2(z)) dz,

=
1√
π

∫ zk

−∞
2ze−z2

Hm−1(z) dz − 1√
π

∫ zk

−∞
2(m − 1)e−z2

Hm−2(z) dz,

= − 1√
π

e−z2
kHm−1(zk)

+
1√
π

∫ zk

−∞
2(m − 1)e−z2

Hm−2(z) dz − 1√
π

∫ zk

−∞
2(m − 1)e−z2

Hm−2(z) dz,

= − 1√
π

e−z2
kHm−1(zk). (A.26)

A.2.3 Evaluating Φk−1
m

The proof for Φk−1
m as in (3.104), is.
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Φk−1
m =

1√
π

∫ zk

−∞
e−z2+συzHm(z) dz,

=
eσb+ σ2υ2

4√
π

∫ zk

−∞
e−(z−συ

2
)2(2zHm−1(z) − 2(m − 1)Hm−2(z)) dz,

=
eσb+ σ2υ2

4√
π

[∫ zk

−∞
2ze−(z−συ

2
)2Hm−1(z) dz

− eσb+ σ2υ2

4√
π

∫ zk

−∞
2(m − 1)e−(z−συ

2
)2Hm−2(z) dz

]
,

=
eσb+ σ2υ2

4√
π

[∫ zk−συ
2

−∞
(2u + συ)e−u2

Hm−1(u +
συ

2
) du

−
∫ zk

−∞
2(m − 1)e−(z−συ

2
)2Hm−2(z) dz

]
,

=
eσb+ σ2υ2

4√
π

[∫ zk−συ
2

−∞
2ue−u2

Hm−1(u +
συ

2
) du

+ συ

∫ zk

−∞
e−(z−συ

2
)2Hm−2(z) dz −

∫ zk

−∞
2(m − 1)e−(z−συ

2
)2Hm−2(z) dz

]
,

=
eσb+ σ2υ2

4√
π

[
e−(zk−συ

2
)2Hm−1(zk) +

∫ zk

−∞
2(m − 1)e−(z−συ

2
)2Hm−2(z) dz

+ συ

∫ zk

−∞
e−(z−συ

2
)2Hm−2(z) dz −

∫ zk

−∞
2(m − 1)e−(z−συ

2
)2Hm−2(z) dz

]
,

= −eσb+ σ2υ2

4√
π

e−(zk−συ
2

)2Hm−1(zk) + συeσb+ σ2υ2

4 Φk−1
m−1. (A.27)

A.2.4 Evaluating γk−1
m

The proof for γk−1
m as in (3.107), is
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γk−1
m =

e−rΔt

2mm!υm

[
− 1√

π
e−z2

kHm−1(zk) +
eσb−z2

k+συzk

√
π

Hm−1(zk)

− συeσb+ σ2υ2

4 Φk−1
m−1

]
,

=

[
− 1

2mm!υm
√

π
e−rΔt−z2

kHm−1(zk) +
e−rΔt+σb−z2

k+συzk

2mm!υm
√

π
Hm−1(zk)

− σe−rΔteσb+ σ2υ2

4

2mm!υm−1
Φk−1

m−1

]
, (A.28)

To obtain a recurrence relation for γk−1
m , Φk−1

m−1 is replaced with γk−1
m−1 by rearranging

γk−1
m−1 =

e−rΔt

2m−1(m − 1)!υm−1

[
Θk−1

m−1 − Φk−1
m−1

]
,

σe−rΔt

2m−1(m − 1)!υm−1
Φk−1

m−1 =
e−rΔt

2m−1(m − 1)!υm−1
Θk−1

m−1 − γk−1
m−1,

σe−rΔt

2mm!υm−1
Φk−1

m−1 =
σe−rΔt

2mm!υm−1
Θk−1

m−1 −
σ

2m
γk−1

m−1,

σe−rΔt

2mm!υm−1
Φk−1

m−1 =
σe−rΔt

2mm!υm−1
√

π
e−z2

kHm−2(zk) − σ

2m
γk−1

m−1, (A.29)

substituting (A.29) into (A.28). Therefore, (A.28) becomes

γk−1
m =

σ

2m
γk−1

m−1 +
e−rΔt−z2

k

2mm!υm
√

π

[
Hm−1(zk)(e

σb+συzk − 1) + συHm−2(zk)

]
. (A.30)

A.2.5 Evaluating Ak
0,n

The proof to the solution of Ak
0,n as in (3.120), is.

Ak
0,n =

e−rΔt

200!υ0
√

π

∫ ∞

zk

e−z2

H0(z)Hn(υz + b) dz

=
e−rΔt

√
π

∫ ∞

zk

e−z2

Hn(υz + b) dz, (A.31)
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and using property (3.83), (A.31) can be expressed as,

Ak
0,n =

e−rΔt

√
π

∫ ∞

zk

e−z2

[
2(υz + b)Hn−1(υz + b) − 2(n − 1)Hn−2(υz + b)

]
dz,

=
e−rΔt

√
π

∫ ∞

zk

2υze−z2

Hn−1(υzk + b) dz + 2bAk
0,n−1 − 2(n − 1)Ak

0,n−2, (A.32)

and finally the integral in (A.32) is evaluated using (3.84) and integration by parts,

so

Ak
0,n =

e−rΔt

√
π

[
υe−z2

Hn−1(υzk + b) + 2υ2(n − 1)

∫ ∞

zk

e−z2

Hn−2(υzk + b) dz

]

+ 2bAk
0,n−1 − 2(n − 1)Ak

0,n−2,

=
υe−rΔt

√
π

e−z2
kHn−1(υzk + b) + 2bAk

0,n−1 + 2(υ2 − 1)(n − 1)Ak
0,n−2. (A.33)
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Appendix B

Normalised Fourier-Hermite Series
Expansion

These appendices contain many proofs and analysis of the methods and techniques

described in Chapter 4.

227



APPENDIX B. NORMALISED FOURIER-HERMITE SERIES EXPANSION

B.1 European Options

B.1.1 Completing the Square

This is a step by step evaluation of the power of the exponential in the path integral

(4.8) being converted to a complete square.

2(ξk − μ(ξk−1))
2 + ξ2

k−1 = 2(ξk − 1√
2Δt

(ξk−1 + b))2 + ξ2
k−1

= 2ξ2
k +

2

2Δt
(ξk−1 + b)2 − 4ξk√

2Δt
(ξk−1 + b) + ξ2

k−1

= 2ξ2
k +

2ξ2
k−1

2Δt
+

2b2

2Δt
+

4ξk−1b

2Δt
− 4ξk−1ξk√

2Δt
− 4ξk√

2Δt
+ ξ2

k−1

= ξ2
k−1

(
Δt + 1

Δt

)
+

4ξk−1√
2Δt

(
b −√

2Δtξk√
2Δt

)
+

(
ξk − b√

2Δt

)2

=
ξ2
k−1τ

2

Δt
+

4ξk−1√
2Δt

(
b −√

2Δtξk√
2Δt

)
+

(√
2Δtξk − b√

2Δt

)2

=
ξ2
k−1τ

2

Δt
+

4ξk−1τ√
2Δt

(
b −√

2Δtξk

τ
√

2Δt

)
+

(√
2Δtξk − b√

2Δt

)2

(B.1)

The expression (B.1) is in a form such that we can complete the square.
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=

[
ξk−1τ√

2Δt
−

√
2Δt ξk − b

τ
√
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]2
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τ
√
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√
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√
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τ 2
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√
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√
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2Δt ξk − b

τ
√

2Δt

]2

+
(
√

2Δtξk − b)2

Δt

[
Δt + 1 − 1

Δt + 1

]2

=

(
ξk−1τ√

Δt
−

√
2Δt ξk − b

τ
√

Δt

)2

+

(√
2Δt ξk − b

τ

)2

. (B.2)

B.1.2 Evaluating Ψ∗
m(− b

τ )

The following is a derivation of Ψ∗
m(− b

τ
) for a European call option. Ψ∗

m(− b
τ
) is

transformed so that it can assist in the evaluation of αK−1. The aim is to join the two

exponential in the integrand of (4.35) into a single exponential. The exponential also

has to be transformed so that normalised Hermite polynomials and their properties

can be used. This is achieved via simple algebra.

Ψ∗
m(− b

τ
) =

1√
2π

∫ ∞

− b
τ

eστze−
1
2
z2

Hm(z) dz,

=
1√
2π

∫ ∞

− b
τ

e−
1
2
(z2−2στz)Hm(z) dz,

=
1√
2π

∫ ∞

− b
τ

e−
1
2
(z2−2στz+σ2τ2)e

σ2τ2

2 Hm(z) dz,

=
e

1
2
σ2τ2

√
2π

∫ ∞

− b
τ

e−
1
2
(z−στ)2Hm(z) dz, (B.3)

The proof for Ψ∗
0, as presented in (4.36), is as follows
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Ψ∗
0(−

b

τ
) =

e
1
2
σ2τ2

√
2π

∫ ∞

− b
τ

e−
1
2
(z−συ)2H0(z) dz,

=
e

1
2
σ2τ2

√
2π

∫ ∞

− b
τ

e−
1
2
(z−στ)2 dz (B.4)

let,

u =
z − στ√

2
(B.5)

and substituting (B.5) into (B.4) gives

Ψ∗
0(−

b

τ
) =

e
1
2
σ2τ2

√
2π

∫ ∞

− b√
2 τ

− στ√
2

e−u2

√
2 du

dz
dz,

=
e

1
2
σ2τ2

2
+

e
1
2
σ2τ2

√
π

∫ b√
2 τ

+ στ√
2

0

e−u2

du,

= e
1
2
σ2τ2

[
1

2
+

1

2
erf

( b√
2 τ

+
στ√

2

)]
,

=
e

1
2
σ2τ2

2
erfc

(− b√
2 τ

− στ√
2

)
, (B.6)

The proof for Ψ∗
1, as in (4.36), is

Ψ∗
1(−

b

τ
) =

e
1
2
σ2τ2

√
2π

∫ ∞

− b
τ

e−
1
2
(z−στ)2H1(z) dz,

=
e

1
2
σ2τ2

√
2π

∫ ∞

− b
τ

ze−
1
2
(z−στ)2 dz (B.7)

let,

u =
z − στ√

2
, (B.8)

and substituting (B.8) into (B.7) gives
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Ψ∗
1(−

b

τ
) =

e
1
2
σ2τ2

√
2π

∫ ∞

− b√
2 τ

− στ√
2

(
√

2 u + στ)e−u2

√
2 du

dz
dz,

= e
1
2
σ2τ2

[
1√
π

∫ ∞

− b√
2 τ

− στ√
2

√
2 ue−u2

du +
στ√

π

∫ ∞

− b√
2 τ

− στ√
2

e−u2

du

]
. (B.9)

Performing the substitution,

x = u2,

into (B.9) gives

Ψ∗
1(−

b

τ
) = e

1
2
σ2τ2

[
1√
π

∫ ∞

− b√
2 τ

− στ√
2

√
2 ue−x dx

2u du
du +

στ

2
erfc

(− b√
2 τ

− στ√
2

)]
,

= e
1
2
σ2τ2

[
1√
2π

∫ ∞

− b√
2 τ

− στ√
2

e−xdx +
στ

2
erfc

(− b

τ
− στ√

2

)]
,

= e
1
2
σ2τ2

[
στ

2
erfc

(− b√
2 τ

− στ√
2

) − 1√
2π

e−x
]∞
− b√

2 τ
− στ√

2

]
,

= e
1
2
σ2τ2

[
στ

2
erfc

(− b√
2 τ

− στ√
2

)
+

1√
2π

e
−(− b√

2 τ
− στ√

2
)2
]
,

= e
1
2
σ2τ2

[
στ

2
erfc

(− b√
2 τ

− στ√
2

)
+

1√
2π

e
−(( b√

2 τ
)2+ σ2υ2

4
+σb)

]
,

= e
1
2
σ2τ2 στ

2
erfc

(− b√
2 τ

− στ√
2

)
+

1√
2π

e−(( b
τ
)2+2σb), (B.10)

The proof for Ψ∗
m, as in (4.36), is
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Ψ∗
m(− b

τ
) =

e
1
2
σ2τ2

√
2π

∫ − b
τ

−∞
e−

1
2
(z−στ)2

[
zHm−1(z) − (m − 1)Hm−2(z)

]
dz,

=e
1
2
σ2τ2

[
1√
2π

∫ − b
τ

−∞
ze−

1
2
(z−στ)2Hm−1(z) dz

− (m − 1)√
2π

∫ − b
τ

−∞
e−

1
2
(z−στ)2Hm−2(z) dz

]
,

=e
1
2
σ2τ2

[
1√
2π

∫ − b
τ

−∞
ze−

1
2
(z−στ)2Hm−1(z) dz

− 1√
2π

∫ − b
τ

−∞
e−

1
2
(z−στ)2

( d

dz
Hm−1(z)

)
dz

]
,

=e
1
2
σ2τ2

[
1

2
√

π

∫ − b
τ

−∞
ze−

1
2
(z−στ)2Hm−1(z) dz

− 1√
2π

e−
1
2
(z−στ)2Hm−1(z)

]− b
τ

−∞
− 1√

2π

∫ − b
τ

−∞
(z − στ)e−

1
2
(z−στ)2Hm−1(z) dz

]
,

=e
1
2
σ2τ2

[
στ√
2π

∫ − b
τ

−∞
e−

1
2
(z−στ)2Hm−1(z) dz − 1√

2π
e−

1
2
((− b

τ
−στ)2Hm−1(− b

τ
)

]
,

=

[
στΨ∗

m−1(−
b

τ
) − e

1
2
σ2τ2

√
2π

e−
1
2
(( b

τ
)2+σ2τ2+2σb)Hm−1(− b

τ
)

]
,

=

[
στΨ∗

m−1(−
b

τ
) − 1√

2π
e−

1
2
(( b

τ
)2+σb)Hm−1(− b

τ
)

]
, (B.11)

B.1.3 Evaluating Ω∗
m(− b

τ )

The proof for Ω∗
0, as in (4.36), is given by
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Ω∗
0(−

b

τ
) =

1√
2π

∫ ∞

− b
τ

e−
1
2
z2

H0(z) dz,

=
1√
2π

∫ ∞

− b
τ

e−
1
2
z2

dz,

=
1

2
+

1√
π

∫ b√
2 τ

0

e−u2

du,

=
1

2
+

1

2
erf

( b√
2 τ

)
,

=
1

2
erfc

(− b√
2 τ

)
. (B.12)

The proof for Ω∗
1, as in (4.36), is

Ω∗
1(−

b

τ
) =

1√
2π

∫ ∞

− b
τ

e−
1
2
z2

H1(z) dz,

=
1√
2π

∫ ∞

− b
τ

ze−
1
2
z2

dz. (B.13)

Performing the substitution,

u = z2,

into (B.13) gives
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Ω∗
1(−

b

τ
) =

1√
2π

∫ ∞

− b√
2 τ

ze−u du

zdz
dz,

=
1√
2π

∫ ∞

− b√
2 τ

e−udu,

= − 1√
2π

e−u

]∞

− b√
2 τ

,

=
1√
2π

e
−( b√

2 τ
)2
. (B.14)

The proof for Ω∗
m, as in (4.36), is

Ω∗
m(− b

τ
) =

1√
2π

∫ ∞

− b
τ

e−
1
2
z2

[
zHm−1(z) − (m − 1)Hm−2(z)

]
dz,

=
1√
2π

∫ ∞

− b
τ

ze−
1
2
z2

Hm−1(z) dz − 1√
2π

∫ ∞

− b
τ

(m − 1)e−
1
2
z2

Hm−2(z) dz,

=
1√
2π

∫ ∞

− b
τ

ze−
1
2
z2

Hm−1(z) dz − (m − 1)Ω∗
m−2(−

b

τ
),

= − 1√
2π

e−
1
2
z2

Hm−1(z)

]∞

− b
τ

+ (m − 1)
1√
2π

∫ ∞

− b
τ

e−
1
2
z2

Hm−2(z) dz − (m − 1)Ω∗
m−2(−

b

τ
),

=
1√
2π

e−
1
2
( b

τ
)2Hm−1(− b

τ
). (B.15)

B.1.4 Evaluating αK−1 for a European Call Option

Since we have solved the initial and general cases for Ψ∗ and Ω∗, a recurrence relation

for αK−1
m with m = 1, 2, . . . , N can be formed from (4.37) and using Ψ∗

m and Ω∗
m,

gives
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αK−1
m =

e−rΔt

m!τm

[
eσb

(
στΨ∗

m−1(−
b

τ
) +

1√
2π

e−( 1
2
( b

τ
)2+σb)Hm−1(− b

τ
)

)

− 1√
2π

e−( b
τ
)2Hm−1(− b

τ
)

]
,

(B.16)

and so

αK−1
m =

e−rΔt

m!τm

[
στeσbΨ∗

m−1(−
b

τ
)

]
. (B.17)

The next step is to find a relationship between αK−1
m and αK−1

m−1. Given (4.37) for

coefficient m − 1,

αK−1
m−1 =

e−rΔt

(m − 1)!τm−1

[
eσbΨ∗

m−1(−
b

τ
) − Ω∗

m−1(−
b

τ
)

]
,

therefore, rearranging αK−1
m−1 for,

eσbΨ∗
m−1(−

b

τ
) =

[
Ω∗

m−1(−
b

τ
) + erΔt(m − 1)!τm−1αK−1

m−1

]
, (B.18)

and substituting (B.18) into (B.16) gives

αK−1
m =

e−rΔt

m!τm

[
στ

(
Ω∗

m−1(−
b

τ
) + erΔtτm−1(m − 1)!αK−1

m−1

)]
,

=
e−rΔt

m!τm

[
στΩ∗

m−1(−
b

τ
) + στerΔt(m − 1)!τm−1αK−1

m−1

]
,

=σ

[
e−rΔt

m!τm−1
Ω∗

m−1(−
b

τ
) +

αK−1
m−1

m

]
,

=
σ

m

[
e−rΔt

(m − 1)!τm−1
√

2π
e−

1
2
( b

τ
)2H∗

m−2(−
b

τ
) + αK−1

m−1

]
. (B.19)
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B.1.5 Evaluating Ψ̂∗
m(− b

τ )

The proof for Ψ̂∗
0 as in (4.41), is

Ψ̂∗
0(−

b

τ
) =

e
1
2
σ2τ2

√
2π

∫ − b
τ

−∞
e−

1
2
(z−στ)2H0(z) dz,

=
e

1
2
σ2τ2

√
2π

∫ − b
τ

−∞
e−

1
2
(z−στ)2 dz,

=
e

1
2
σ2τ2

√
π

∫ − b√
2 τ

− στ√
2

−∞
e−u2

du,

=
e

1
2
σ2τ2

2
erfc

( b√
2 τ

+
στ√

2

)
. (B.20)

The proof for Ψ̂∗
1 as in (4.41), is

Ψ̂∗
1(−

b

τ
) =

e
1
2
σ2τ2

√
2π

∫ − b
τ

−∞
e−

1
2
(z−στ)2H1(z) dz,

=
e

1
2
σ2τ2

√
2π

∫ − b
τ

−∞
ze−

1
2
(z−στ)2 dz,

=
e

1
2
σ2τ2

√
π

∫ − b√
2 τ

− στ√
2

−∞
(
√

2 u + στ)e−u2

du,

=
e

1
2
σ2τ2

√
π

[√
2

∫ − b√
2 τ

− στ√
2

−∞
ue−u2

du +
στ

2

∫ − b√
2 τ

− στ√
2

−∞
e−u2

du

]
,

= e
1
2
σ2τ2

[
1√
π

∫ − b√
2 τ

− στ√
2

−∞
e−v dv +

στ

2
erfc

( b√
2τ

+
στ√

2

)]
,

=
στe

1
2
σ2τ2

2
erfc

( b√
2τ

+
στ√

2

) − 1√
2π

e−
1
2
(( b

τ
)2+2σb). (B.21)

The proof for Ψ̂∗
m as in (4.41), is
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Ψ̂∗
m(− b

τ
) =

e
1
2
σ2τ2

√
2π

∫ − b
τ

−∞
e−

1
2
(z−στ)2Hm(z) dz,

=
e

1
2
σ2τ2

√
2π

∫ − b
τ

−∞
e−

1
2
(z−στ)2

[
zHm−1(z) − (m − 1)Hm−2(z)

]
dz,

= e
1
2
σ2τ2

[
1√
2π

∫ − b
τ

−∞
ze−

1
2
(z−στ)2Hm−1(z) dz

− 1√
2π

∫ − b
τ

−∞
(m − 1)e−

1
2
(z−στ)2Hm−2(z)

]
dz,

= e
1
2
σ2τ2

[
1√
2π

∫ − b
τ

−∞
ze−

1
2
(z−στ)2Hm−1(z) dz

− 1√
2π

∫ − b
τ

−∞
(m − 1)e−

1
2
(z−στ)2

(
d

dz

1

(m − 1)
Hm−1(z)

)]
dz,

= e
1
2
σ2τ2

[
1√
2π

∫ − b
τ

−∞
ze−

1
2
(z−στ)2Hm−1(z) dz − 1√

2π
e−

1
2
(z−στ)2Hm−1(z)

]− b
τ

−∞

− 1√
2π

∫ − b
τ

−∞
(z − στ)e−

1
2
(z−στ)2Hm−1(z)

]
dz,

= e
1
2
σ2τ2

[
− 1√

2π
e−

1
2
( b

τ
−στ)2Hm−1(− b

τ
) +

στ√
2π

∫ − b
τ

−∞
e−

1
2
(z−στ)2Hm−1(z) dz

]
,

= στΨ̂∗
m−1(−

b

τ
) − 1√

2π
e−

1
2
(( b

τ
)2−2σb)Hm−1(− b

τ
). (B.22)

B.1.6 Evaluating Ω̂∗
m(− b

τ )

The proof for Ω̂∗
0 as in (4.41), is
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Ω̂∗
0(−

b

τ
) =

1√
2π

∫ − b
τ

−∞
e−

1
2
z2

H0(z) dz

=
1√
2π

∫ − b
τ

−∞
e−

1
2
z2

dz,

=
1

2
erfc

( b√
2 τ

)
. (B.23)

The proof for Ω̂∗
1 as in (4.41), is

Ω̂∗
1(−

b

τ
) =

1√
2π

∫ − b
τ

−∞
e−

1
2
z2

H1(z) dz,

=
1√
2π

∫ − b
τ

−∞
ze−

1
2
z2

dz,

=
1√
2π

∫ − b
τ

−∞
e−u du,

= − 1√
2π

e−
1
2
( b

τ
)2 . (B.24)

The proof for Ω̂∗
m as in (4.41), is
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Ω̂∗
m(− b

τ
) =

1√
2π

∫ − b
τ

−∞
e−

1
2
z2

Hm(z) dz,

=
1√
2π

∫ − b
τ

−∞
e−

1
2
z2

[
zHm−1(z) − (m − 1)Hm−2(z) dz

]
,

=
1√
2π

∫ − b
τ

−∞
e−

1
2
z2

zHm−1(z) − (m − 1)Ω̂∗
m−2(−

b

τ
),

= − 1√
2π

e−
1
2
z2

Hm−1(z)

]− b
τ

−∞
+ (m − 1)Ω̂∗

m−2(−
b

τ
) − (m − 1)Ω̂∗

m−2(−
b

τ
),

= − 1√
2π

e−
1
2
( b

τ
)2Hm−1(− b

τ
). (B.25)

B.2 American Put Option

B.2.1 Evaluating γk−1
1

The proof to γk−1
1 as in (4.71) can be formed by using properties (4.61) and (4.24)

and integration.

γk−1
1 =

e−rΔt

1!τ 1
√

2π

[∫ zk

−∞
e−

1
2
z2

H1(z) dz − eσb

∫ zk

−∞
e−

1
2
z2+στzH1(z) dz

]
,

=
e−rΔt

τ
√

2π

[∫ zk

−∞
ze−

1
2
z2

dz − eσb+ σ2τ2

2

∫ zk

−∞
ze−

1
2
(z−στ)2 dz

]
,

=
e−rΔt

τ

[
− 1√

2π
e−

1
2
z2
k − 1

2
√

π
eσb+ σ2τ2

2

∫ zk−στ

−∞
(u + στ)e−

1
2
u2

du

]
,

=
e−rΔt

τ

[
− 1√

2π
e−

1
2
z2
k − 1

2
√

π
eσb+ σ2τ2

2

[∫ zk−στ

−∞
ue−

1
2
u2

du + στ

∫ zk−στ

−∞
e−

1
2
u2

du

]]
,

=
e−rΔt

τ

[
− 1√

2π
e−

1
2
z2
k +

eσb− 1
2
z2
k+στzk

√
2π

− στeσb+ σ2τ2

2

2
erfc

(−στ

2
+

zk√
2

)]
.

(B.26)
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B.2.2 Evaluating Θk−1
m

The proof for Θk−1
m as in (4.77), is.

Θk−1
m =

1√
2π

∫ zk

−∞
e−

1
2
z2

Hm(z) dz,

=
1√
2π

∫ zk

−∞
e−

1
2
z2

(zHm−1(z) − (m − 1)Hm−2(z)) dz,

=
1√
2π

∫ zk

−∞
ze−

1
2
z2

Hm−1(z) dz − 1√
2π

∫ zk

−∞
(m − 1)e−

1
2
z2

Hm−2(z) dz,

= − 1√
2π

e−
1
2
z2
kHm−1(zk)

+
1√
2π

∫ zk

−∞
(m − 1)e−

1
2
z2

Hm−2(z) dz − 1√
2π

∫ zk

−∞
(m − 1)e−

1
2
z2

Hm−2(z) dz,

= − 1√
2π

e−
1
2
z2
kHm−1(zk). (B.27)

B.2.3 Evaluating Φk−1
m

The proof for Φk−1
m as in (4.78), is.
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Φk−1
m =

1√
2π

∫ zk

−∞
e−

1
2
z2+στzHm(z) dz,

=
eσb+ σ2τ2

2√
2π

∫ zk

−∞
e−

1
2
(z−στ)2(zHm−1(z) − (m − 1)Hm−2(z)) dz,

=
eσb+ σ2τ2

2√
2π

[∫ zk

−∞
ze−

1
2
(z−στ)2Hm−1(z) dz

− eσb+ σ2τ2

2√
2π

∫ zk

−∞
(m − 1)e−

1
2
(z−στ)2Hm−2(z) dz

]
,

=
eσb+ σ2τ2

2√
2π

[∫ zk−στ

−∞
(u + στ)e−

1
2
u2

Hm−1(u + στ) du

−
∫ zk

−∞
(m − 1)e−

1
2
(z−στ)2Hm−2(z) dz

]
,

=
eσb+ σ2τ2

2√
2π

[∫ zk−στ

−∞
ue−

1
2
u2

Hm−1(u + στ) du

+ στ

∫ zk

−∞
e−

1
2
(z−στ)2Hm−2(z) dz −

∫ zk

−∞
(m − 1)e−

1
2
(z−στ)2Hm−2(z) dz

]
,

=
eσb+ σ2τ2

2√
2π

[
e−

1
2
(zk−στ)2Hm−1(zk) +

∫ zk

−∞
(m − 1)e−

1
2
(z−στ)2Hm−2(z) dz

+ στ

∫ zk

−∞
e−

1
2
(z−στ)2Hm−2(z) dz −

∫ zk

−∞
(m − 1)e−

1
2
(z−στ)2Hm−2(z) dz

]
,

= −eσb+ σ2τ2

2√
2π

e−
1
2
(zk−στ)2Hm−1(zk) + στeσb+ σ2τ2

2 Φk−1
m−1. (B.28)

B.2.4 Evaluating γk−1
m

The proof for γk−1
m as in (4.81), is
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γk−1
m =

e−rΔt

m!τm

[
− 1√

2π
e−

1
2
z2
kHm−1(zk) +

eσb− 1
2
z2
k+στzk

√
2π

Hm−1(zk)

− στeσb+ σ2τ2

2 Φk−1
m−1

]
,

=

[
− 1

m!τm
√

2π
e−rΔt− 1

2
z2
kHm−1(zk) +

e−rΔt+σb− 1
2
z2
k+στzk

m!τm
√

2π
Hm−1(zk)

− σe−rΔteσb+ σ2τ2

2

m!τm−1
Φk−1

m−1

]
, (B.29)

To obtain a recurrence relation for γk−1
m , Φk−1

m−1 is replaced with γk−1
m−1 by rearranging

γk−1
m−1 =

e−rΔt

(m − 1)!τm−1

[
Θk−1

m−1 − Φk−1
m−1

]
,

σe−rΔt

(m − 1)!τm−1
Φk−1

m−1 =
e−rΔt

(m − 1)!τm−1
Θk−1

m−1 − γk−1
m−1,

σe−rΔt

m!τm−1
Φk−1

m−1 =
σe−rΔt

m!τm−1
Θk−1

m−1 −
σ

m
γk−1

m−1,

σe−rΔt

m!τm−1
Φk−1

m−1 =
σe−rΔt

m!τm−1
√

2π
e−

1
2
z2
kHm−2(zk) − σ

m
γk−1

m−1, (B.30)

substituting (B.30) into (B.29). Therefore, (B.29) becomes

γk−1
m =

σ

m
γk−1

m−1 +
e−rΔt− 1

2
z2
k

m!τm
√

2π

[
Hm−1(zk)(e

σb+στzk − 1) + στHm−2(zk)

]
. (B.31)
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Appendix C

Interpolation Polynomials

This appendix contains further data analysis for the InterPolation Method (IPM)

described in Chapter 5. For convenience the approximate results using this method

are in the column labeled IPM.
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C.1 European Options

This section contains results for various European options using the fixed number

of nodes (per time step), fixed spaced partitions and adaptive node distributions.

C.1.1 Fixed Number of Partitions

An analysis of the parameters were made in section 5.4.2. The results are numerical

prices of the data graphed.

Varying η and Partitions (N)

Tables C.1 - C.5 are European call options prices for varying η and number of

partitions (N) fixed at 64 at each time step.

Asset η IPM Error
Price ($)

80 10−4 0.0689055676694494 1.1216563173675103E − 04
10−5 0.0689512512544143 6.6482046771855138E − 05
10−6 0.0689317130989882 8.6020202197910345E − 05
10−7 0.0688979303334288 1.1980296775736558E − 04
10−8 0.0688569109541093 1.6082234707682054E − 04
10−9 0.0688093126214839 2.0842067970220680E − 04
10−10 0.0687548495225413 2.6288377864486841E − 04
10−11 0.0686943512286288 3.2338207255733871E − 04
10−12 0.0686302706720580 3.8746262912817044E − 04
10−13 0.0685646166087813 4.5311669240483696E − 04
10−14 0.0684962694270779 5.2146387410820748E − 04
10−15 0.0684201655575928 5.9756774359330566E − 04
10−16 0.0683288557435221 6.8887755766399448E − 04

Table C.1: European call option with K = 8, N = 64, σ = 0.20, r = 0.08,
T = 0.25, asset value of $80 and strike of $100. Here η is the total error for the tails
(refer to (5.26)). The values are calculated in this table are performed in double
precision.
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Asset η IPM Error
Price ($)

90 10−4 1.0250907293696512 3.6300476429253214E − 04
10−5 1.0254186444924345 3.5089641509285230E − 05
10−6 1.0254611444368389 7.4103028952637873E − 06
10−7 1.0254707252843509 1.6991150407312527E − 05
10−8 1.0254771780032472 2.3443869303502174E − 05
10−9 1.0254834100119699 2.9675878026116931E − 05
10−10 1.0254891455639026 3.5411429958817631E − 05
10−11 1.0254943604339977 4.0626300053941966E − 05
10−12 1.0255004294501593 4.6695316215615568E − 05
10−13 1.0255106884899348 5.6954355991123418E − 05
10−14 1.0255304691906100 7.6735056666298040E − 05
10−15 1.0255667049156083 1.1297078166463276E − 04
10−16 1.0256272991139672 1.7356498002354254E − 04

Table C.2: European call option with K = 8, N = 64, σ = 0.20, r = 0.08,
T = 0.25, asset value of $90 and strike of $100. Here η is the total error for the tails
(refer to (5.26)). The values are calculated in this table are performed in double
precision.

Asset η IPM Error
Price ($)

100 10−4 5.0162632406806198 7.1736558179130716E − 04
10−5 5.0170322174573707 5.1611194959444440E − 05
10−6 5.0171791741258476 1.9856786343599997E − 04
10−7 5.0172713387960828 2.9073253367192797E − 04
10−8 5.0173701613216330 3.8955505922214084E − 04
10−9 5.0174812387290979 5.0063246668646810E − 04
10−10 5.0176036943619984 6.2308809958694367E − 04
10−11 5.0177364876208452 7.5588135843435156E − 04
10−12 5.0178803792558169 8.9977299340543437E − 04
10−13 5.0180390615210957 1.0584552586845319E − 03
10−14 5.0182194891752729 1.2388829128621992E − 03
10−15 5.0184314664499077 1.4508601874962945E − 03
10−16 5.0186867485302180 1.7061422678071869E − 03

Table C.3: European call option with K = 8, N = 64, σ = 0.20, r = 0.08,
T = 0.25, asset value of $100 and strike of $100. Here η is the total error for the
tails (refer to (5.26)). The values are calculated in this table are performed in double
precision.
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Asset η IPM Error
Price ($)

110 10−4 12.6191544371908044 1.2940647922343729E − 03
10−5 12.6203063995743552 1.4210240868450796E − 04
10−6 12.6204213847275479 2.7117255491093673E − 05
10−7 12.6204285276262400 1.9974356799123960E − 05
10−8 12.6204236143870254 2.4887596014600000E − 05
10−9 12.6204172337181451 3.1268264893968833E − 05
10−10 12.6204133528399645 3.5149143073898159E − 05
10−11 12.6204138257078373 3.4676275201261930E − 05
10−12 12.6204131606021477 3.5341380891229512E − 05
10−13 12.6203977568857795 5.0745097260329608E − 05
10−14 12.6203523736852699 9.6128297769060289E − 05
10−15 12.6202691572634187 1.7934471961966736E − 04
10−16 12.6201536957545688 2.9480622847077864E − 04

Table C.4: European call option with K = 8, N = 64, σ = 0.20, r = 0.08,
T = 0.25, asset value of $110 and strike of $100. Here η is the total error for the
tails (refer to (5.26)). The values are calculated in this table are performed in double
precision.

Asset η IPM Error
Price ($)

120 10−4 22.0646820659120060 1.8781356951047545E − 03
10−5 22.0663171950582573 2.4300654885289763E − 04
10−6 22.0664553901652560 1.0481144185614522E − 04
10−7 22.0664377909500047 1.2241065710516530E − 04
10−8 22.0663993040532951 1.6089755381643034E − 04
10−9 22.0663536010475880 2.0660055952137490E − 04
10−10 22.0663005261894050 2.5967541770477442E − 04
10−11 22.0662402158038269 3.1998580328485016E − 04
10−12 22.0661783306269328 3.8187098017894439E − 04
10−13 22.0661196904855252 4.4051112158549621E − 04
10−14 22.0660586099259390 5.0159168117069886E − 04
10−15 22.0659795863288402 5.8061527827002468E − 04
10−16 22.0658681773066263 6.9202430048320718E − 04

Table C.5: European call option with K = 8, N = 64, σ = 0.20, r = 0.08,
T = 0.25, asset value of $120 and strike of $100. Here η is the total error for the
tails (refer to (5.26)). The values are calculated in this table are performed in double
precision.

Tables C.6 - C.10 are European call option prices for varying η and number of

partitions (N) fixed at 128 at each time step.
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Asset η IPM Error
Price ($)

80 10−4 0.0689367552870456 8.0978014140216121E − 05
10−5 0.0690036402171109 1.4093084074902600E − 05
10−6 0.0690110725171198 6.6607840659487980E − 06
10−7 0.0690100652256005 7.6680755852951386E − 06
10−8 0.0690076240513432 1.0109249842587490E − 05
10−9 0.0690046587459066 1.3074555279179913E − 05
10−10 0.0690012819366726 1.6451364513183318E − 05
10−11 0.0689975064663605 2.0226834825250953E − 05
10−12 0.0689933332174374 2.4400083748388375E − 05
10−13 0.0689887618405712 2.8971460614541332E − 05
10−14 0.0689837918932166 3.3941407969145885E − 05
10−15 0.0689784230627737 3.9310238412126278E − 05
10−16 0.0689726550373553 4.5078263830446250E − 05

Table C.6: European call option with K = 8, N = 128, σ = 0.20, r = 0.08,
T = 0.25, asset value of $80 and strike of $100. Here η is the total error for the tails
(refer to (5.26)).

Asset η IPM Error
Price ($)

10−4 1.0250862290958813 3.6750503806248780E − 04
10−5 1.0254110435852024 4.2690548741376733E − 05
10−6 1.0254495443869083 4.1897470354212984E − 06
10−7 1.0254542278377765 4.9370383285035624E − 07
10−8 1.0254550797537640 1.3456198202574376E − 06
10−9 1.0254555517806849 1.8176467412797659E − 06
10−10 1.0254560327402125 2.2986062688662434E − 06
10−11 1.0254565662080921 2.8320741484594292E − 06
10−12 1.0254571574257660 3.4232918222354414E − 06
10−13 1.0254578075044520 4.0733705084297633E − 06
10−14 1.0254585170377859 4.7829038422528281E − 06
10−15 1.0254592865874521 5.5524535084311433E − 06
10−16 1.0254601167095867 6.3825756430047065E − 06

Table C.7: European call option with K = 8, N = 128, σ = 0.20, r = 0.08,
T = 0.25, asset value of $90 and strike of $100. Here η is the total error for the tails
(refer to (5.26)).
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Asset η IPM Error
Price ($)

10−4 5.0161849394953126 7.9566676709844075E − 04
10−5 5.0169024397291455 7.8166533265533467E − 05
10−6 5.0169843854911038 3.7792286924909213E − 06
10−7 5.0169980171018702 1.7410839459053307E − 05
10−8 5.0170051428605795 2.4536598168534152E − 05
10−9 5.0170124121918205 3.1805929409656208E − 05
10−10 5.0170205348414312 3.9928579020215293E − 05
10−11 5.0170295868793682 4.8980616956795231E − 05
10−12 5.0170395769473197 5.8970684908843385E − 05
10−13 5.0170505062850035 6.9900022592328526E − 05
10−14 5.0170623750761409 8.1768813729732326E − 05
10−15 5.0170751832305012 9.4576968089760127E − 05
10−16 5.0170889304522124 1.0832418980144531E − 04

Table C.8: European call option with K = 8, N = 128, σ = 0.20, r = 0.08,
T = 0.25, asset value of $100 and strike of $100. Here η is the total error for the
tails (refer to (5.26)).

Asset η IPM Error
Price ($)

10−4 12.6191596559569792 1.2888460260596091E − 03
10−5 12.6203148892311905 1.3361275184864407E − 04
10−6 12.6204339094032747 1.4592579763994529E − 05
10−7 12.6204458492171359 2.6527659041652996E − 06
10−8 12.6204467005803540 1.8014026853530041E − 06
10−9 12.6204463572961778 2.1446868614383163E − 06
10−10 12.6204458386694647 2.6633135752351933E − 06
10−11 12.6204452494020103 3.2525810295114255E − 06
10−12 12.6204446010568372 3.9009262015055057E − 06
10−13 12.6204438953959279 4.6065871117662027E − 06
10−14 12.6204431328405455 5.3691424944934951E − 06
10−15 12.6204423143259366 6.1876571033625538E − 06
10−16 12.6204414403427752 7.0616402642054155E − 06

Table C.9: European call option with K = 8, N = 128, σ = 0.20, r = 0.08,
T = 0.25, asset value of $110 and strike of $100. Here η is the total error for the
tails (refer to (5.26)).
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Asset η IPM Error
Price ($)

10−4 22.0647150059023964 1.8451957047027623E − 03
10−5 22.0663713079930517 1.8889361404761384E − 04
10−6 22.0665361629037093 2.4038703388962190E − 05
10−7 22.0665507510834509 9.4505236469810683E − 06
10−8 22.0665498984873985 1.0303119701848829E − 05
10−9 22.0665471529241799 1.3048682920291377E − 05
10−10 22.0665438770243512 1.6324582749471794E − 05
10−11 22.0665402071496359 1.9994457464700410E − 05
10−12 22.0665361583697397 2.4043237359383518E − 05
10−13 22.0665317289970986 2.8472610000274123E − 05
10−14 22.0665269206924073 3.3280914693567532E − 05
10−15 22.0665217331912231 3.8468415877734863E − 05
10−16 22.0665161654550772 4.4036152022086661E − 05

Table C.10: European call option with K = 8, N = 128, σ = 0.20, r = 0.08,
T = 0.25, asset value of $120 and strike of $100. Here η is the total error for the
tails (refer to (5.26)).

Tables C.11 - C.15 are European call option prices for varying η and number of

partitions (N) fixed at 256 at each time step.

Asset η IPM Error
Price ($)

80 10−4 0.0689387078581818 7.9025443004362723E − 05
10−5 0.0690069218268951 1.0811474290990924E − 05
10−6 0.0690160461211648 1.6871800213001664E − 06
10−7 0.0690170968441743 6.3645701182208844E − 07
10−8 0.0690170820091693 6.5129201681302443E − 07
10−9 0.0690169130923457 8.2020884045134329E − 07
10−10 0.0690167037042556 1.0295969305753293E − 06
10−11 0.0690164674532151 1.2658479710400336E − 06
10−12 0.0690162060942279 1.5272069582268968E − 06
10−13 0.0690159197675642 1.8135336219728126E − 06
10−14 0.0690156084374017 2.1248637844476642E − 06
10−15 0.0690152719832055 2.4613179806461973E − 06
10−16 0.0690149104757052 2.8228254809049662E − 06

Table C.11: European call option with K = 8, N = 256, σ = 0.20, r = 0.08,
T = 0.25, asset value of $80 and strike of $100. Here η is the total error for the tails
(refer to (5.26)). The values are calculated in this table are performed in double
precision.
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Asset η IPM Error
Price ($)

90 10−4 1.0250859556035634 3.6777853038034297E − 04
10−5 1.0254105854941611 4.3148639782691900E − 05
10−6 1.0254488510621849 4.8830717589223860E − 06
10−7 1.0254532474503681 4.8668357555819997E − 07
10−8 1.0254537601255047 2.5991560986815543E − 08
10−9 1.0254538397174204 1.0558347668387924E − 07
10−10 1.0254538744589849 1.4032504134370294E − 07
10−11 1.0254539074482094 1.7331426571676189E − 07
10−12 1.0254539432989465 2.0916500267920135E − 07
10−13 1.0254539824909914 2.4835704760112209E − 07
10−14 1.0254540251466810 2.9101273734538635E − 07
10−15 1.0254540713075531 3.3717360934520935E − 07
10−16 1.0254541209016621 3.8676771837303781E − 07

Table C.12: European call option with K = 8, N = 256, σ = 0.20, r = 0.08,
T = 0.25, asset value of $90 and strike of $100. Here η is the total error for the tails
(refer to (5.26)). The values are calculated in this table are performed in double
precision.

Asset η IPM Error
Price ($)

100 10−4 5.0161800213911496 8.0058487126194455E − 04
10−5 5.0168942765180953 8.6329744315716272E − 05
10−6 5.0169721147311641 8.4915312469069359E − 06
10−7 5.0169807698623208 1.6359991000802765E − 07
10−8 5.0169820459554524 1.4396930411719744E − 06
10−9 5.0169825896216302 1.9833592192208815E − 06
10−10 5.0169831088098622 2.5025474512108126E − 06
10−11 5.0169836784466115 3.0721842000924759E − 06
10−12 5.0169843064752984 3.7002128874807916E − 06
10−13 5.0169849938369833 4.3875745724120119E − 06
10−14 5.0169857406521343 5.1343897231048707E − 06
10−15 5.0169865470375985 5.9407751870632630E − 06
10−16 5.0169874130037595 6.8067413483419159E − 06

Table C.13: European call option with K = 8, N = 256, σ = 0.20, r = 0.08,
T = 0.25, asset value of $100 and strike of $100. Here η is the total error for the
tails (refer to (5.26)). The values are calculated in this table are performed in double
precision.
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Asset η IPM Error
Price ($)

110 10−4 12.6191599959021907 1.2885060808487392E − 03
10−5 12.6203154456118938 1.3305637114602309E − 04
10−6 12.6204347405830664 1.3761399972334054E − 05
10−7 12.6204470136595468 1.4883234922269395E − 06
10−8 12.6204482510154126 2.5096762723553212E − 07
10−9 12.6204483510113672 1.5097167127553490E − 07
10−10 12.6204483299921879 1.7199085211583309E − 07
10−11 12.6204482932302575 2.0875278172738376E − 07
10−12 12.6204482507003952 2.5128264469209682E − 07
10−13 12.6204482042078769 2.9777516286078054E − 07
10−14 12.6204481546761080 3.4730693043716343E − 07
10−15 12.6204481000043227 4.0197871697955634E − 07
10−16 12.6204480418787988 4.6010424081810442E − 07

Table C.14: European call option with K = 8, N = 256, σ = 0.20, r = 0.08,
T = 0.25, asset value of $110 and strike of $100. Here η is the total error for the
tails (refer to (5.26)). The values are calculated in this table are performed in double
precision.

Asset η IPM Error
Price ($)

120 10−4 22.0647170628561504 1.8431387509593167E − 03
10−5 22.0663747124115588 1.8548919555327892E − 04
10−6 22.0665412512933408 1.8950313768195670E − 05
10−7 22.0665578560066891 2.3456004222266458E − 06
10−8 22.0665593724022706 8.2920484090198698E − 07
10−9 22.0665593655224157 8.3608469592100221E − 07
10−10 22.0665591840155990 1.0175915110544054E − 06
10−11 22.0665589565979374 1.2450091735338731E − 06
10−12 22.0665586934555975 1.5081515147841174E − 06
10−13 22.0665584174259628 1.7841811472685265E − 06
10−14 22.0665581126993722 2.0889077384511623E − 06
10−15 22.0665577884289199 2.4131781906078231E − 06
10−16 22.0665574419953892 2.7596117224693018E − 06

Table C.15: European call option with K = 8, N = 256, σ = 0.20, r = 0.08,
T = 0.25, asset value of $120 and strike of $100. Here η is the total error for the
tails (refer to (5.26)). The values are calculated in this table are performed in double
precision.
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Varying η and Time Steps (K)

Tables C.16 - C.20 are European call prices for varying η and number of partitions

(N) fixed at 128 at each time step and the number of time steps fixed at 4.

Asset η IPM Error
Price ($)

80 10−4 0.0688383390069953 1.7939429419047215 × 10−4

10−5 0.0689925677644777 2.5165536708053170 × 10−5

10−6 0.0690140651674954 3.6681336904346648 × 10−6

10−7 0.0690167067450898 1.0265560959556337 × 10−6

10−8 0.0690168398575387 8.9344364703845131 × 10−7

10−9 0.0690166313256694 1.1019755164040808 × 10−6

10−10 0.0690163525693472 1.3807318385633191 × 10−6

10−11 0.0690160361673992 1.6971337865644490 × 10−6

10−12 0.0690156858456771 2.0474555086948121 × 10−6

10−13 0.0690153019864084 2.4313147773606485 × 10−6

10−14 0.0690148845928768 2.8487083089472585 × 10−6

10−15 0.0690144336276348 3.2996735509303182 × 10−6

10−16 0.0690139490618014 3.7842393843848764 × 10−6

Table C.16: European call option with K = 4, N = 128, σ = 0.20, r = 0.08,
T = 0.25, asset vale of $80 and strike of $100. Here η is the total error for the tails
(refer to (5.26)). The values are calculated in this table are performed in double
precision.

Asset η IPM Error
Price ($)

90 10−4 1.0248647586828115 5.8897545113217181 × 10−4

10−5 1.0253843055081435 6.9428625800067867 × 10−5

10−6 1.0254458861939419 7.8479400016789880 × 10−6

10−7 1.0254529419206306 7.9221331300560749 × 10−7

10−8 1.0254537546582394 2.0524295804569270 × 10−8

10−9 1.0254538746841340 1.4055019023628823 × 10−7

10−10 1.0254539229216315 1.8878768773961108 × 10−7

10−11 1.0254539675401335 2.3340618986178452 × 10−7

10−12 1.0254540159389953 2.8180505168978742 × 10−7

10−13 1.0254540689281852 3.3479424163540550 × 10−7

10−14 1.0254541266163428 3.9248239918493466 × 10−7

10−15 1.0254541890303279 4.5489638427625989 × 10−7

10−16 1.0254542561916775 5.2205773384828014 × 10−7

Table C.17: European call option with K = 4, N = 128, σ = 0.20, r = 0.08,
T = 0.25, asset vale of $90 and strike of $100. Here η is the total error for the tails
(refer to (5.26)). The values are calculated in this table are performed in double
precision.
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Asset η IPM Error
Price ($)

100 10−4 5.0159521235252402 1.0284827371712102 × 10−3

10−5 5.0168683465368709 1.1225972554040897 × 10−4

10−6 5.0169695112331354 1.1095029275876023 × 10−5

10−7 5.0169808511259220 2.4486351071772994 × 10−7

10−8 5.0169825382459337 1.9319835224684834 × 10−6

10−9 5.0169832646039971 2.6583415857484027 × 10−6

10−10 5.0169839600465584 3.3537841469255536 × 10−6

10−11 5.0169847231833717 4.1169209603897361 × 10−6

10−12 5.0169855645086203 4.9582462087471857 × 10−6

10−13 5.0169864852090669 5.8789466558795134 × 10−6

10−14 5.0169874854752265 6.8792128153638554 × 10−6

10−15 5.0169885653782496 7.9591158386183025 × 10−6

10−16 5.0169897249702746 9.1187078637977592 × 10−6

Table C.18: European call option with K = 4, N = 128, σ = 0.20, r = 0.08,
T = 0.25, asset vale of $100 and strike of $100. Here η is the total error for the tails
(refer to (5.26)). The values are calculated in this table are performed in double
precision.

Asset η IPM Error
Price ($)

110 10−4 12.6190176889321766 1.4308130508622341 × 10−3

10−5 12.6202974977079112 1.5100427512848569 × 10−4

10−6 12.6204325970149238 1.5904968114766049 × 10−5

10−7 12.6204467451297599 1.7568532795220193 × 10−6

10−8 12.6204481895572425 3.1242579634493950 × 10−7

10−9 12.6204483027103329 1.9927270666908470 × 10−7

10−10 12.6204482727472005 2.2923583864464803 × 10−7

10−11 12.6204482231697881 2.7881325026513082 × 10−7

10−12 12.6204481671445130 3.3483852635018962 × 10−7

10−13 12.6204481057453357 3.9623770375918355 × 10−7

10−14 12.6204480391416460 4.6284139298968796 × 10−7

10−15 12.6204479673705841 5.3461245430597160 × 10−7

10−16 12.6204478904231117 6.1155992769901246 × 10−7

Table C.19: European call option with K = 4, N = 128, σ = 0.20, r = 0.08,
T = 0.25, asset vale of $110 and strike of $100. Here η is the total error for the tails
(refer to (5.26)). The values are calculated in this table are performed in double
precision.

253



APPENDIX C. INTERPOLATION POLYNOMIALS

Asset η IPM Error
Price ($)

120 10−4 22.0646922057009292 1.8679959061712603 × 10−3

10−5 22.0663695920392975 1.9060956780170280 × 10−4

10−6 22.0665403269740032 1.9874633097605177 × 10−5

10−7 22.0665575821960616 2.6194110380739488 × 10−6

10−8 22.0665591499322957 1.0516748027988854 × 10−6

10−9 22.06655908737521010 1.1142318873114121 × 10−6

10−10 22.0665588287621048 1.3728449960170863 × 10−6

10−11 22.0665585223048666 1.6793022333816410 × 10−6

10−12 22.0665581821209393 2.0194861616307236 × 10−6

10−13 22.0665578098858539 2.3917212460533577 × 10−6

10−14 22.0665574055449163 2.7960621845624090 × 10−6

10−15 22.0665569688028569 3.2328042437468341 × 10−6

10−16 22.0665565000875041 3.7015195963885361 × 10−6

Table C.20: European call option with K = 4, N = 128, σ = 0.20, r = 0.08,
T = 0.25, asset vale of $120 and strike of $100. Here η is the total error for the tails
(refer to (5.26)). The values are calculated in this table are performed in double
precision.

Tables C.21 - C.25 are European call prices for varying η and number of partitions

(N) fixed at 128 at each time step and the number of time steps fixed at 8.

Asset η IPM Error
Price ($)

80 10−4 0.0689367552870456 8.0978014140216121 × 10−5

10−5 0.06900364021711010 1.4093084074902600 × 10−5

10−6 0.0690110725171198 6.6607840659487980 × 10−6

10−7 0.0690100652256005 7.6680755852951386 × 10−6

10−8 0.0690076240513432 1.0109249842587490 × 10−5

10−9 0.0690046587459066 1.3074555279179913 × 10−5

10−10 0.0690012819366726 1.6451364513183318 × 10−5

10−11 0.0689975064663605 2.0226834825250953 × 10−5

10−12 0.0689933332174374 2.4400083748388375 × 10−5

10−13 0.0689887618405712 2.8971460614541332 × 10−5

10−14 0.0689837918932166 3.3941407969145885 × 10−5

10−15 0.0689784230627737 3.9310238412126278 × 10−5

10−16 0.0689726550373553 4.5078263830446250 × 10−5

Table C.21: European call option with K = 8, N = 128, σ = 0.20, r = 0.08,
T = 0.25, asset value of $80 and strike of $100. Here η is the total error for the tails
(refer to (5.26)). The values are calculated in this table are performed in double
precision.
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Asset η IPM Error
Price ($)

90 10−4 1.0250862290958813 3.6750503806248780E − 04
10−5 1.0254110435852024 4.2690548741376733E − 05
10−6 1.0254495443869083 4.1897470354212984E − 06
10−7 1.0254542278377765 4.9370383285035624E − 07
10−8 1.0254550797537640 1.3456198202574376E − 06
10−9 1.0254555517806849 1.8176467412797659E − 06
10−10 1.0254560327402125 2.2986062688662434E − 06
10−11 1.0254565662080921 2.8320741484594292E − 06
10−12 1.0254571574257660 3.4232918222354414E − 06
10−13 1.0254578075044520 4.0733705084297633E − 06
10−14 1.0254585170377859 4.7829038422528281E − 06
10−15 1.0254592865874521 5.5524535084311433E − 06
10−16 1.0254601167095867 6.3825756430047065E − 06

Table C.22: European call option with K = 8, N = 128, σ = 0.20, r = 0.08,
T = 0.25, asset value of $90 and strike of $100. Here η is the total error for the tails
(refer to (5.26)). The values are calculated in this table are performed in double
precision.

Asset η IPM Error
Price ($)

100 10−4 5.0161849394953126 7.9566676709844075E − 04
10−5 5.0169024397291455 7.8166533265533467E − 05
10−6 5.0169843854911038 3.7792286924909213E − 06
10−7 5.0169980171018702 1.7410839459053307E − 05
10−8 5.0170051428605795 2.4536598168534152E − 05
10−9 5.0170124121918205 3.1805929409656208E − 05
10−10 5.0170205348414312 3.9928579020215293E − 05
10−11 5.0170295868793682 4.8980616956795231E − 05
10−12 5.0170395769473197 5.8970684908843385E − 05
10−13 5.0170505062850035 6.9900022592328526E − 05
10−14 5.0170623750761409 8.1768813729732326E − 05
10−15 5.0170751832305012 9.4576968089760127E − 05
10−16 5.0170889304522124 1.0832418980144531E − 04

Table C.23: European call option with K = 8, N = 128, σ = 0.20, r = 0.08,
T = 0.25, asset value of $100 and strike of $100. Here η is the total error for the
tails (refer to (5.26)).
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Asset η IPM Error
Price ($)

110 10−4 12.6191596559569792 1.2888460260596091E − 03
10−5 12.6203148892311905 1.3361275184864407E − 04
10−6 12.6204339094032747 1.4592579763994529E − 05
10−7 12.6204458492171359 2.6527659041652996E − 06
10−8 12.6204467005803540 1.8014026853530041E − 06
10−9 12.6204463572961778 2.1446868614383163E − 06
10−10 12.6204458386694647 2.6633135752351933E − 06
10−11 12.6204452494020103 3.2525810295114255E − 06
10−12 12.6204446010568372 3.9009262015055057E − 06
10−13 12.6204438953959279 4.6065871117662027E − 06
10−14 12.6204431328405455 5.3691424944934951E − 06
10−15 12.6204423143259366 6.1876571033625538E − 06
10−16 12.6204414403427752 7.0616402642054155E − 06

Table C.24: European call option with K = 8, N = 128, σ = 0.20, r = 0.08,
T = 0.25, asset value of $110 and strike of $100. Here η is the total error for the
tails (refer to (5.26)).

Asset η IPM Error
Price ($)

120 10−4 22.0647150059023964 1.8451957047027623E − 03
10−5 22.0663713079930517 1.8889361404761384E − 04
10−6 22.0665361629037093 2.4038703388962190E − 05
10−7 22.0665507510834509 9.4505236469810683E − 06
10−8 22.0665498984873985 1.0303119701848829E − 05
10−9 22.0665471529241799 1.3048682920291377E − 05
10−10 22.0665438770243512 1.6324582749471794E − 05
10−11 22.0665402071496359 1.9994457464700410E − 05
10−12 22.0665361583697397 2.4043237359383518E − 05
10−13 22.0665317289970986 2.8472610000274123E − 05
10−14 22.0665269206924073 3.3280914693567532E − 05
10−15 22.0665217331912231 3.8468415877734863E − 05
10−16 22.0665161654550772 4.4036152022086661E − 05

Table C.25: European call option with K = 8, N = 128, σ = 0.20, r = 0.08,
T = 0.25, asset value of $120 and strike of $100. Here η is the total error for the
tails (refer to (5.26)).

Tables C.26 - C.30 are European call prices for varying η and number of partitions

(N) fixed at 128 at each time step and the number of time steps fixed at 16.
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Asset η IPM Error
Price ($)

80 10−4 0.0689582771692606 5.9456131925217544E − 05
10−5 0.0689793368560128 3.8396445172970105E − 05
10−6 0.0689665708855032 5.1162415682531361E − 05
10−7 0.0689462056729448 7.1527628240936753E − 05
10−8 0.0689216843832525 9.6048917933261140E − 05
10−9 0.0688935607390907 1.2417256209509364E − 04
10−10 0.0688611168765195 1.5661642466626487E − 04
10−11 0.0688232380201808 1.9449528100494266E − 04
10−12 0.0687810515966192 2.3668170456656729E − 04
10−13 0.0687384809806727 2.7925232051312886E − 04
10−14 0.0686993995053716 3.1833379581415336E − 04
10−15 0.0686641977283687 3.5353557281709181E − 04
10−16 0.0686285034915563 3.8922980962951756E − 04

Table C.26: European call option with K = 16, N = 128, σ = 0.20, r = 0.08,
T = 0.25, asset value of $80 and strike of $100. Here η is the total error for the tails
(refer to (5.26)).

Asset η IPM Error
Price ($)

90 10−4 1.0252112526988435 2.4248143510024328E − 04
10−5 1.0254304211527474 2.3312981196378646E − 05
10−6 1.0254577677306331 4.0335966894691766E − 06
10−7 1.0254636223942994 9.8882603556671445E − 06
10−8 1.0254677244796533 1.3990345709528895E − 05
10−9 1.0254724796790455 1.8745545101936378E − 05
10−10 1.0254782416938892 2.4507559945492752E − 05
10−11 1.0254848560957128 3.1121961769145501E − 05
10−12 1.0254916916648129 3.7957530869131562E − 05
10−13 1.0254975951859269 4.3861051983104526E − 05
10−14 1.0255009251387170 4.7191004773350365E − 05
10−15 1.0254996504810641 4.5916347120311674E − 05
10−16 1.0254914799169168 3.7745782973178099E − 05

Table C.27: European call option with K = 16, N = 128, σ = 0.20, r = 0.08,
T = 0.25, asset value of $90 and strike of $100. Here η is the total error for the tails
(refer to (5.26)).
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Asset η IPM Error
Price ($)

100 10−4 5.0163672497859464 6.1335647646501568E − 04
10−5 5.0169930707709156 1.2464508504506089E − 05
10−6 5.0170976275381935 1.1702127578200328E − 04
10−7 5.0171546171944028 1.7401093199143070E − 04
10−8 5.0172150865578313 2.3448029542044724E − 04
10−9 5.0172851661250997 3.0455986268843049E − 04
10−10 5.0173624377283215 3.8183146591069805E − 04
10−11 5.0174384587526966 4.5785249028554298E − 04
10−12 5.0175049287416051 5.2432247919440012E − 04
10−13 5.0175626290813584 5.8202281894709218E − 04
10−14 5.0176260795912890 6.4547332887798792E − 04
10−15 5.0177211545220777 7.4054825966660132E − 04
10−16 5.0178778465529241 8.9724029051288512E − 04

Table C.28: European call option with K = 16, N = 128, σ = 0.20, r = 0.08,
T = 0.25, asset value of $100 and strike of $100. Here η is the total error for the
tails (refer to (5.26)).

Asset η IPM Error
Price ($)

110 10−4 12.6192243540329905 1.2241479500491037E − 03
10−5 12.6203187087153221 1.2979326771689337E − 04
10−6 12.6204275920049565 2.0909978082350733E − 05
10−7 12.6204357462574137 1.2755725625757108E − 05
10−8 12.6204330975581236 1.5404424916209969E − 05
10−9 12.6204274184788865 2.1083504153640575E − 05
10−10 12.6204265898257120 2.1912157327497184E − 05
10−11 12.6204299463401579 1.8555642880557777E − 05
10−12 12.6204123097258307 3.6192257207856571E − 05
10−13 12.6203658604232931 8.2641559745466608E − 05
10−14 12.6203331480489922 1.1535393404649152E − 04
10−15 12.6203715480197118 7.6953963326631403E − 05
10−16 12.6204925573686229 4.4055385584051976E − 05

Table C.29: European call option with K = 16, N = 128, σ = 0.20, r = 0.08,
T = 0.25, asset value of $110 and strike of $100. Here η is the total error for the
tails (refer to (5.26)).
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Asset η IPM Error
Price ($)

120 10−4 22.0646946915641315 1.8655100429670890E − 03
10−5 22.0663408517722779 2.1934983482074788E − 04
10−6 22.0664901703076524 7.0031299448380935E − 05
10−7 22.0664862587156740 7.3942891426481694E − 05
10−8 22.0664638811254008 9.6320481698941585E − 05
10−9 22.0664361600788546 1.2404152824330161E − 04
10−10 22.0664045675190117 1.5563408808649815E − 04
10−11 22.0663735070014617 1.8669460563891516E − 04
10−12 22.0663294149184424 2.3078668865694763E − 04
10−13 22.0662782667328869 2.8193487421335206E − 04
10−14 22.0662494584594882 3.1074314761070365E − 04
10−15 22.0662299096733996 3.3029193370059939E − 04
10−16 22.0661684686939346 3.9173291316585424E − 04

Table C.30: European call option with K = 16, N = 128, σ = 0.20, r = 0.08,
T = 0.25, asset value of $120 and strike of $100. Here η is the total error for the
tails (refer to (5.26)).

C.1.2 Fixed Spaced Partitions

Table C.31 are European call option prices using Fixed Space Partitions and 8 time

steps.
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η Space IPM Error
(Partitions)

10−8 0.10 (571) 5.0170393001964610 5.8693934049808272E − 05
0.09 (635) 5.0170191054794246 3.8499217013682197E − 05
0.08 (712) 5.0170046163516142 2.4010089202941565E − 05
0.07 (812) 5.0169946447725833 1.4038510171704432E − 05
0.06 (949) 5.0169881393371067 7.5330746952817496E − 06
0.05 (1139) 5.0169841865188891 3.5802564780917923E − 06
0.04 (1421) 5.0169820116252728 1.4053628615007252E − 06
0.03 (1895) 5.0169809797489462 3.7348653544877486E − 07
0.02 (2840) 5.0169805964410719 9.8213388810552971E − 09
0.01 (5676) 5.0169805081153545 9.8147057148167960E − 08

10−16 0.10 (826) 5.0170394044695792 5.8798207167726213E − 05
0.09 (917) 5.0170192097522701 3.8603489858901607E − 05
0.08 (1031) 5.0170047206242590 2.4114361847626942E − 05
0.07 (1176) 5.0169947490435307 1.4142781119136361E − 05
0.06 (1372) 5.0169882436167867 7.6373543753116557E − 06
0.05 (1648) 5.0169842907878239 3.6845254125505988E − 06
0.04 (2058) 5.0169821159164245 1.5096540136039227E − 06
0.03 (2744) 5.0169810840361189 4.7777370740242908E − 07
0.02 (4113) 5.0169807006890261 9.4426615138143433E − 08
0.01 (8224) 5.0169806119534828 5.6910719192782011E − 09

10−32 0.10 (1183) 5.0170394044699238 5.8798207512589240E − 05
0.09 (1314) 5.0170192097533661 3.8603490955246844E − 05
0.08 (1477) 5.0170047206247226 2.4114362311145054E − 05
0.07 (1689) 5.0169947490452049 1.4142782793491460E − 05
0.06 (1970) 5.0169882436156605 7.6373532498230645E − 06
0.05 (2362) 5.0169842907883959 3.6845259850093459E − 06
0.04 (2952) 5.0169821159098253 1.5096474140219307E − 06
0.03 (3935) 5.0169810840248106 4.7776239978092327E − 07
0.02 (5901) 5.0169807006477285 9.4385316923295548E − 08
0.01 (11798) 5.0169806119866811 5.7242696693826645E − 09

Table C.31: European call option price for an asset price of $100 with K = 8,
σ = 0.20, r = 0.08, T = 0.25 and strike of $100. Here η is the total error for the
tails. The value in brackets, represents the number of partitions used to obtain the
option price. Double precision was used to calculate the values.

C.1.3 Adaptive Node Allocation

The following are varying results for European Call options using the Adaptive Node

Allocation for each time step.
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Asset η Partitions IPM Error
Price ($) Used

80 10−8 32 0.0683036148058220 7.1411849536408408E − 04
10−16 38 0.0683161742817790 7.0155901940712135E − 04
10−32 48 0.0682909719159381 7.2676138524808195E − 04

90 10−8 35 1.0253784795629517 7.5254570991965808E − 05
10−16 42 1.0254737759957526 2.0041861808865746E − 05
10−32 50 1.0252199185734290 2.3381556051478569E − 04

100 10−8 37 5.0174861712502077 5.0556498779677495E − 04
10−16 45 5.0174971044474770 5.1649818506582790E − 04
10−32 52 5.0174392446016380 4.5863833922701880E − 04

110 10−8 38 12.6200227904004230 4.2571158261617281E − 04
10−16 45 12.6199792761028000 4.6922588023967648E − 04
10−32 55 12.6199707960413612 4.7770594167884095E − 04

120 10−8 38 22.0657953634293591 7.6483817774974927E − 04
10−16 46 22.0657571768756462 8.0302473146331987E − 04
10−32 57 22.0658059171494401 7.5428445767133923E − 04

Table C.32: European call option with adaptive node distribution with an inter-
polating error ε = 10−6 and with K = 4, σ = 0.20, r = 0.08, T = 0.25 and strike of
$100. Here η is the total error for the tails. Double precision was used to calculate
the values.

Asset η Partitions IPM Error
Price ($) Used

80 10−8 50 0.0688954102687032 1.2232303248293705E − 04
10−16 61 0.0688940066247114 1.2372667647477312E − 04
10−32 75 0.0689046674456321 1.1306585555407320E − 04

90 10−8 55 1.0254277685535811 2.5965580362566354E − 05
10−16 66 1.0254169779481670 3.6756185776802563E − 05
10−32 79 1.0254329508733471 2.0783260596540787E − 05

100 10−8 58 5.0170432852059683 6.2678943557603617E − 05
10−16 68 5.0170593597916806 7.8753529269420808E − 05
10−32 83 5.0170530272327625 7.2420970351205760E − 05

110 10−8 59 12.6203772670746748 7.1234908363693172E − 05
10−16 70 12.6203810305626245 6.7471420414633165E − 05
10−32 86 12.6203805761256920 6.7925857347161944E − 05

120 10−8 60 22.0664371647642739 1.2303684283621052E − 04
10−16 70 22.0664348117661007 1.2538984101029271E − 04
10−32 88 22.0664328279561737 1.2737365093773434E − 04

Table C.33: European call option with adaptive node distribution with an inter-
polating error ε = 10−7 and with K = 4, σ = 0.20, r = 0.08, T = 0.25 and strike of
$100. Here η is the total error for the tails. Double precision was used to calculate
the values.
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Asset η Partitions IPM Error
Price ($) Used

80 10−8 78 0.0689989134074569 1.8819893729201970E − 05
10−16 96 0.0689991677138930 1.8565587293082123E − 05
10−32 117 0.0689988705545568 1.8862746629304088E − 05

90 10−8 88 1.0254467440320314 6.9901019124005148E − 06
10−16 103 1.0254474372179319 6.2969160118803158E − 06
10−32 124 1.0254479143915620 5.8197423817574201E − 06

100 10−8 89 5.0169924302855735 1.1824023162659847E − 05
10−16 109 5.0169913953935454 1.0789131134336660E − 05
10−32 130 5.0169899157673292 9.3095049176483702E − 06

110 10−8 92 12.6204399615872873 8.5403957517105056E − 06
10−16 111 12.6204381116031996 1.0390379839853026E − 05
10−32 136 12.6204367174553553 1.1784527684244317E − 05

120 10−8 92 22.0665399725005678 2.0229106542646313E − 05
10−16 112 22.0665405299263355 1.9671680773214462E − 05
10−32 139 22.0665405886243384 1.9612982771199938E − 05

Table C.34: European call option with adaptive node distribution with an inter-
polating error ε = 10−8 and with K = 4, σ = 0.20, r = 0.08, T = 0.25 and strike of
$100. Here η is the total error for the tails. Double precision was used to calculate
the values.

Asset η Partitions IPM Error
Price ($) Used

80 10−8 122 0.0690146803463858 3.0529548003467750E − 06
10−16 150 0.0690146879852485 3.0453159376598454E − 06
10−32 184 0.0690147040815196 3.0292196664797634E − 06

90 10−8 135 1.0254525910199330 1.1431140107404092E − 06
10−16 163 1.0254529422904397 7.9184350396110936E − 07
10−32 196 1.0254528224019526 9.1173199111976855E − 07

100 10−8 142 5.0169825138271680 1.9075647568478349E − 06
10−16 169 5.0169824382954689 1.8320330578969202E − 06
10−32 204 5.0169824313320062 1.8250695947574780E − 06

110 10−8 147 12.6204468274334065 1.6745496322911890E − 06
10−16 176 12.6204468951690991 1.6068139402358739E − 06
10−32 213 12.6204469508081285 1.5511749107410822E − 06

120 10−8 146 22.0665570766488592 3.1249582504999651E − 06
10−16 178 22.0665570880606516 3.1135464595433149E − 06
10−32 221 22.0665570674505034 3.1341566064657655E − 06

Table C.35: European call option with adaptive node distribution with an inter-
polating error ε = 10−9 and with K = 4, σ = 0.20, r = 0.08, T = 0.25 and strike of
$100. Here η is the total error for the tails. Double precision was used to calculate
the values.
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Asset η Partitions IPM Error
Price ($) Used

80 10−8 193 0.0690172078013851 5.2549980107414324E − 07
10−16 236 0.0690172582546654 4.7504652075100809E − 07
10−32 296 0.0690172579420216 4.7535916448786242E − 07

90 10−8 214 1.0254534930640242 2.4106991940858746E − 07
10−16 254 1.0254535991744871 1.3495945663105635E − 07
10−32 313 1.0254536019086471 1.3222529668399652E − 07

100 10−8 225 5.0169808299027157 2.2364030488608577E − 07
10−16 271 5.0169809155872507 3.0932483935375288E − 07
10−32 333 5.0169809095824611 3.0332005032662757E − 07

110 10−8 229 12.6204482262521953 2.7573084371290690E − 07
10−16 276 12.6204482376241689 2.6435887090503485E − 07
10−32 344 12.6204482351633924 2.6681964693242577E − 07

120 10−8 231 22.0665595105130130 6.9109409583933967E − 07
10−16 288 22.0665597140188332 4.8758827808637051E − 07
10−32 366 22.0665596995283586 5.0207875079699704E − 07

Table C.36: European call option with adaptive node distribution with an inter-
polating error ε = 10−10 and with K = 4, σ = 0.20, r = 0.08, T = 0.25 and strike of
$100. Here η is the total error for the tails. Double precision was used to calculate
the values.

Asset η Partitions IPM Error
Price ($) Used

80 10−8 307 0.0690176085869599 1.2471422625084244E − 07
10−16 377 0.0690176576342929 7.5666893237236188E − 08
10−32 481 0.0690176577220457 7.5579140450428295E − 08

90 10−8 337 1.0254536147954754 1.1933846827405503E − 07
10−16 403 1.0254537106797199 2.3454223806174124E − 08
10−32 491 1.0254537106768995 2.3457044119601367E − 08

100 10−8 362 5.0169805370092924 6.9253119211465375E − 08
10−16 435 5.0169806541162956 4.7853884049819939E − 08
10−32 519 5.0169806519832498 4.5720838920404461E − 08

110 10−8 366 12.6204484257445184 7.6238521051763541E − 08
10−16 459 12.6204484630551867 3.8927852608061642E − 08
10−32 532 12.6204484645069286 3.7476111103273979E − 08

120 10−8 366 22.0665599222584845 2.7934862478762312E − 07
10−16 441 22.0665601247959060 7.6811204618998374E − 08
10−32 532 22.0665601256640791 7.5943032418201994E − 08

Table C.37: European call option with adaptive node distribution with an inter-
polating error ε = 10−11 and with K = 4, σ = 0.20, r = 0.08, T = 0.25 and strike of
$100. Here η is the total error for the tails. Double precision was used to calculate
the values.
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The next results are for European Call options using the Adaptive Node Allocation

at the first time step only.

Asset η Partitions IPM Error
Price ($) Used

80 10−8 30 0.0647530362187676 4.2646970824184848E − 03
10−16 37 0.0652485905418126 3.7691427593735337E − 03
10−32 46 0.0655335425615821 3.4841907396040549E − 03

90 10−8 34 1.0250303800479135 4.2335408603020458E − 04
10−16 40 1.0249006559712861 5.5307816265760812E − 04
10−32 47 1.0249922062839603 4.6152784998337859E − 04

100 10−8 37 5.0169731408602267 7.4654021846309870E − 06
10−16 43 5.0173086543014094 3.2804803899860735E − 04
10−32 50 5.0172921435895832 3.1153732717240090E − 04

110 10−8 38 12.4745040775131812 1.4594442446985711E − 01
10−16 45 12.6200147834617464 4.3371852129214794E − 04
10−32 53 12.6199203722459821 5.2812973705684829E − 04

120 10−8 40 22.0635446242469051 3.0155773602047464E − 03
10−16 46 22.0647869190571448 1.7732825499661153E − 03
10−32 55 22.0649245913760943 1.6356102310155496E − 03

Table C.38: European call option with single adaptive node distribution at the
first time step with an interpolating error ε = 10−6 and with K = 4, σ = 0.20,
r = 0.08, T = 0.25 and strike of $100. Here η is the total error for the tails. Double
precision was used to calculate the values.
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Asset η Partitions IPM Error
Price ($) Used

80 10−8 46 0.0678365793214134 1.1811539797726943E − 03
10−16 57 0.0679305218950064 1.0872114061796995E − 03
10−32 70 0.0680434099544715 9.7432334671464314E − 04

90 10−8 52 1.0253647729123416 8.8961221602137930E − 05
10−16 62 1.0253546486926255 9.9085441318189083E − 05
10−32 73 1.0253609300581759 9.2804075767921601E − 05

100 10−8 56 5.0160950281385528 8.8557812385828272E − 04
10−16 65 5.0170287433638627 4.8137101451434239E − 05
10−32 78 5.0170291647828407 4.8558520429620167E − 05

110 10−8 60 12.6181838452583648 2.2646567246736860E − 03
10−16 68 12.6203476962336545 1.0080574938398090E − 04
10−32 82 12.6203456755827563 1.0282640028336232E − 04

120 10−8 63 22.0648712217616776 1.6889798454322591E − 03
10−16 71 22.0660650839243218 4.9511768278887036E − 04
10−32 85 22.0661100951545244 4.5010645258469761E − 04

Table C.39: European call option with single adaptive node distribution at the
first time step with an interpolating error ε = 10−7 and with K = 4, σ = 0.20,
r = 0.08, T = 0.25 and strike of $100. Here η is the total error for the tails. Double
precision was used to calculate the values.

Asset η Partitions IPM Error
Price ($) Used

80 10−8 75 0.0687180173132312 2.9971598795491871E − 04
10−16 91 0.0686897011165346 3.2803218465150786E − 04
10−32 111 0.0686884080908636 3.2932521032250387E − 04

90 10−8 85 1.0254344795077599 1.9254626183740076E − 05
10−16 97 1.0254362120841831 1.7522049760611280E − 05
10−32 117 1.0254326921476347 2.1041986309096317E − 05

100 10−8 91 5.0169835301475638 2.9238851527446652E − 06
10−16 104 5.0169856227568159 5.0164944045971716E − 06
10−32 124 5.0169862259386448 5.6196762340809947E − 06

110 10−8 91 12.6203376167489605 1.1088523407809525E − 04
10−16 109 12.6204320012411717 1.6500741867320201E − 05
10−32 129 12.6204321899372314 1.6312045808541953E − 05

120 10−8 97 22.0664723399513498 8.7861655762022650E − 05
10−16 113 22.0664889287525021 7.1272854607062897E − 05
10−32 134 22.0664942622059996 6.5939401111547724E − 05

Table C.40: European call option with single adaptive node distribution at the
first time step with an interpolating error ε = 10−8 and with K = 4, σ = 0.20,
r = 0.08, T = 0.25 and strike of $100. Here η is the total error for the tails. Double
precision was used to calculate the values.
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Asset η Partitions IPM Error
Price ($) Used

80 10−8 116 0.0689375959379025 8.0137363283629397E − 05
10−16 143 0.0689328220463222 8.4911254863971088E − 05
10−32 174 0.0689226935416872 9.5039759498958837E − 05

90 10−8 133 1.0254499221687041 3.8119652394710823E − 06
10−16 155 1.0254501539858176 3.5801481260491763E − 06
10−32 186 1.0254502190435195 3.5150904242886583E − 06

100 10−8 140 5.0169804761446732 1.3011773811189009E − 07
10−16 163 5.0169815587802802 9.5251786944028360E − 07
10−32 195 5.0169816476442266 1.0413818155030619E − 06

110 10−8 148 12.6204385958538357 9.9061292030411252E − 06
10−16 171 12.6204458862049833 2.6157780552704679E − 06
10−32 205 12.6204459271643668 2.5748186721630262E − 06

120 10−8 157 22.0665483741688604 1.1827438251010847E − 05
10−16 179 22.0665487395526547 1.1462054455568804E − 05
10−32 215 22.0665486133647271 1.1588242385118797E − 05

Table C.41: European call option with single adaptive node distribution at the
first time step with an interpolating error ε = 10−9 and with K = 4, σ = 0.20,
r = 0.08, T = 0.25 and strike of $100. Here η is the total error for the tails. Double
precision was used to calculate the values.

Asset η Partitions IPM Error
Price ($) Used

80 10−8 182 0.0689941859085118 2.3547392674334953E − 05
10−16 226 0.0689968093376596 2.0923963526501155E − 05
10−32 274 0.0689946039240728 2.3129377113291320E − 05

90 10−8 207 1.0254527202812522 1.0138526915573487E − 06
10−16 244 1.0254530669426853 6.6719125831754544E − 07
10−32 308 1.0254531282419075 6.0589203619565435E − 07

100 10−8 221 5.0169789819791211 1.6242832898138992E − 06
10−16 260 5.0169808246016006 2.1833918978364508E − 07
10−32 306 5.0169807846794052 1.7841699367915353E − 07

110 10−8 236 12.6204479354339512 5.6654908819897543E − 07
10−16 272 12.6204481078901640 3.9409287500014045E − 07
10−32 330 12.6204481122970229 3.8968601678845971E − 07

120 10−8 246 22.0665579241181149 2.2774889973931067E − 06
10−16 286 22.0665582758502872 1.9257568234509748E − 06
10−32 351 22.0665582779249583 1.9236821524604153E − 06

Table C.42: European call option with single adaptive node distribution at the
first time step with an interpolating error ε = 10−10 and with K = 4, σ = 0.20,
r = 0.08, T = 0.25 and strike of $100. Here η is the total error for the tails. Double
precision was used to calculate the values.
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Asset η Partitions IPM Error
Price ($) Used

80 10−8 292 0.0690123703176366 5.3629835495357277E − 06
10−16 369 0.0690118570575226 5.8762436635248320E − 06
10−32 466 0.0690118143068898 5.9189942963220818E − 06

90 10−8 331 1.0254535143641064 2.1976983739790956E − 07
10−16 381 1.0254536379048673 9.6229076443354877E − 08
10−32 468 1.0254536268056598 1.0732828393394955E − 07

100 10−8 357 5.0169804793704280 1.2689198303217353E − 07
10−16 408 5.0169806387585929 3.2496182134078566E − 08
10−32 500 5.0169806386728908 3.2410479855471408E − 08

110 10−8 374 12.6204476899931777 8.1198986146002738E − 07
10−16 458 12.6204484366120280 6.5371011381820665E − 08
10−32 514 12.6204484348346639 6.7148375748615763E − 08

120 10−8 386 22.0665597106699458 4.9093716314452251E − 07
10−16 454 22.0665599138313162 2.8777579486050087E − 07
10−32 545 22.0665599109669692 2.9064014250845815E − 07

Table C.43: European call option with single adaptive node distribution at the
first time step with an interpolating error ε = 10−11 and with K = 4, σ = 0.20,
r = 0.08, T = 0.25 and strike of $100. Here η is the total error for the tails. Double
precision was used to calculate the values.

Asset η Partitions IPM Error
Price ($) Used

80 10−8 467 0.0690164011553810 1.3321458051680085E − 06
10−16 657 0.0690164645751736 1.2687260124975321E − 06
10−32 928 0.0690164148041142 1.3184970719176334E − 06

90 10−8 548 1.0254535519164236 1.8221752006580827E − 07
10−16 631 1.0254537167652471 1.7368696585140508E − 08
10−32 738 1.0254537179865473 1.6147396440790995E − 08

100 10−8 578 5.0169802295469976 3.7671541372463757E − 07
10−16 725 5.0169806118828433 5.6204318976682544E − 09
10−32 871 5.0169806141676014 7.9051903911775412E − 09

110 10−8 651 12.6204482528549295 2.4912810980826094E − 07
10−16 797 12.6204484915003992 1.0482639756226320E − 08
10−32 966 12.6204484932440018 8.7390372716100728E − 09

120 10−8 612 22.0665597225116343 4.7909547440383449E − 07
10−16 801 22.0665601559853357 4.5621773026027768E − 08
10−32 960 22.0665601581406321 4.3466477639420020E − 08

Table C.44: European call option with single adaptive node distribution at the
first time step with an interpolating error ε = 10−12 and with K = 4, σ = 0.20,
r = 0.08, T = 0.25 and strike of $100. Here η is the total error for the tails. Double
precision was used to calculate the values.
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C.2 Barrier Option

C.2.1 Fixed Number of Partitions

The following are various down and out call option prices using the interpolation

method. The first three tables C.45 - C.49 show the affects in changing the (fixed)

number of partitions used at each time step for varying η values.
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Asset Best η IPM Error
Price ($)

80 10−3 0.0683055896929662 8.8606713925206467E − 04
10−4 0.0687759760647901 1.3564535110758853E − 03
10−5 0.0688423253431654 1.4228027894512573E − 03
10−6 0.0688491774848888 1.4296549311745843E − 03
10−7 0.0688475393165816 1.4280167628674266E − 03
10−8 0.0688444210785239 1.4248985248097425E − 03
10−9 0.0688407366243453 1.4212140706310853E − 03
10−10 0.0688366018755622 1.4170793218480464E − 03
10−11 0.0688320324871941 1.4125099334799099E − 03

90 10−3 1.0224401440197386 3.0073095841248385E − 03
10−4 1.0250862935897256 3.6116001413781518E − 04
10−5 1.0254112962308759 3.6157372987517811E − 05
10−6 1.0254500127567925 2.5591529289811787E − 06
10−7 1.0254549329916194 7.4793877558390620E − 06
10−8 1.0254560401453998 8.5865415362998410E − 06
10−9 1.0254567853829346 9.3317790711769377E − 06
10−10 1.0254575565850177 1.0102981154273827E − 05
10−11 1.0254583966701443 1.0943066280737213E − 05

100 10−3 5.0097261031306912 7.2544882563176094E − 03
10−4 5.0161999919981266 7.8059938888250247E − 04
10−5 5.0169230663740523 5.7525012956555210E − 05
10−6 5.0170110377369452 3.0446349936347206E − 05
10−7 5.0170311406572363 5.0549270227268073E − 05
10−8 5.0170451456981162 6.4554311107745121E − 05
10−9 5.0170596724315883 7.9081044579432103E − 05
10−10 5.0170754061278133 9.4814740804471942E − 05
10−11 5.0170924023187995 1.1181093179032930E − 04

110 10−3 12.6080060802346914 1.2442421723016239E − 02
10−4 12.6191581209801011 1.2903809776060315E − 03
10−5 12.6203128367279405 1.3566522976682371E − 04
10−6 12.6204313002239772 1.7201733729099722E − 05
10−7 12.6204426500682523 5.8518894535675159E − 06
10−8 12.6204428872442822 5.6147134247508390E − 06
10−9 12.6204419103890277 6.5915686797701767E − 06
10−10 12.6204407360192867 7.7659384201123061E − 06
10−11 12.6204394713437171 9.0306139899354321E − 06

120 10−3 22.0482436846082166 1.8316516998859167E − 02
10−4 22.0647021565586066 1.8580450484695366E − 03
10−5 22.0663540887229992 2.0611288407967887E − 04
10−6 22.0665143847740346 4.5816833041389948E − 05
10−7 22.0665241762180813 3.6025388994165297E − 05
10−8 22.0665182612426989 4.1940364378656447E − 05
10−9 22.0665102067487418 4.9994858336566139E − 05
10−10 22.0665013888027026 5.8812804373808980E − 05
10−11 22.0664919800444252 6.8221562651848977E − 05

Table C.45: Interpolation method - Down and Out call option (asset value of $100)
for fixed number of node points (N = 64) and 8 time steps with σ = 0.20, r = 0.08,
T = 0.25, strike of $100 and barrier of $75. The values are calculated in this table
are performed in double precision.

269



APPENDIX C. INTERPOLATION POLYNOMIALS

Asset Best η IPM Error
Price ($)

80 10−3 0.0683072619700805 8.8773941636632056E − 04
10−4 0.0687790449978890 1.3595224441748642E − 03
10−5 0.0688472118448349 1.4276892911207128E − 03
10−6 0.0688562991647970 1.4367766110828686E − 03
10−7 0.0688573103486822 1.4377877949680500E − 03
10−8 0.0688572530953786 1.4377305416644654E − 03
10−9 0.0688570389472511 1.4375163935368709E − 03
10−10 0.0688567818923351 1.4372593386209327E − 03
10−11 0.0688564958021260 1.4369732484118144E − 03

90 10−3 1.0224397192638275 3.0077343400360113E − 03
10−4 1.0250855724302372 3.6188117362636468E − 04
10−5 1.0254102072014823 3.7246402381091448E − 05
10−6 1.0254484846409615 1.0310370980592953E − 06
10−7 1.0254528951658006 5.4415619371583901E − 06
10−8 1.0254534228871026 5.9692832390587092E − 06
10−9 1.0254535187915284 6.0651876647790925E − 06
10−10 1.0254535708590353 6.1172551718557955E − 06
10−11 1.0254536219906023 6.1683867387182789E − 06

100 10−3 5.0097141673701895 7.2664240168197891E − 03
10−4 5.0161809638127917 7.9962757421753183E − 04
10−5 5.0168955688406109 8.5022546397750531E − 05
10−6 5.0169737857093084 6.8056777005609526E − 06
10−7 5.0169828478871548 2.2565001457641731E − 06
10−8 5.0169845570965599 3.9657095510237106E − 06
10−9 5.0169855581428315 4.9667558225940933E − 06
10−10 5.0169865574496173 5.9660626085256130E − 06
10−11 5.0169876286881063 7.0373010974122963E − 06

110 10−3 12.6080072437573278 1.2441258200379668E − 02
10−4 12.6191598972215822 1.2886047361243547E − 03
10−5 12.6203153152431966 1.3318671450990305E − 04
10−6 12.6204345739939541 1.3927963751769745E − 05
10−7 12.6204468065268198 1.6954308873495805E − 06
10−8 12.6204480039080575 4.9804964874500257E − 07
10−9 12.6204480608633283 4.4109437769002113E − 07
10−10 12.6204479956123556 5.0634535175841933E − 07
10−11 12.6204479125415716 5.8941613534368997E − 07

120 10−3 22.0482530542952233 1.8307147311855121E − 02
10−4 22.0647162683832398 1.8439332238356920E − 03
10−5 22.0663736286873480 1.8657291972756784E − 04
10−6 22.0665398716459471 2.0329961128440210E − 05
10−7 22.0665561888958024 4.0127112743704174E − 06
10−8 22.0665573941933566 2.8074137209399552E − 06
10−9 22.0665570491997904 3.1524072852118223E − 06
10−10 22.0665565108357207 3.6907713579781287E − 06
10−11 22.0665559208715365 4.2807355410401371E − 06

Table C.46: Interpolation method - Down and Out call option (asset value of $100)
for fixed number of node points (N = 128) and 8 time steps with σ = 0.20, r = 0.08,
T = 0.25, strike of $100 and barrier of $75. The values are calculated in this table
are performed in double precision.
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Asset Best η IPM Error
Price ($)

80 10−3 0.0683073667812694 8.8784422755521517E − 04
10−4 0.0687792371757303 1.3597146220160937E − 03
10−5 0.0688475178867252 1.4279953330110346E − 03
10−6 0.0688567448060473 1.4372222523331376E − 03
10−7 0.0688579217104104 1.4383991566962735E − 03
10−8 0.0688580562510999 1.4385336973857677E − 03
10−9 0.0688580593096919 1.4385367559777000E − 03
10−10 0.0688580452150260 1.4385226613118358E − 03
10−11 0.0688580276916166 1.4385051379024413E − 03

90 10−3 1.0224396930333099 3.0077605705535956E − 03
10−4 1.0250855277497526 3.6192585411085054E − 04
10−5 1.0254101400634417 3.7313540421878011E − 05
10−6 1.0254483906967153 9.3709285192700165E − 07
10−7 1.0254527701057747 5.3165019112816347E − 06
10−8 1.0254532626717492 5.8090678857480871E − 06
10−9 1.0254533192929198 5.8656890563474340E − 06
10−10 1.0254533280191160 5.8744152525019855E − 06
10−11 1.0254533318310959 5.8782272324003904E − 06

100 10−3 5.0097134200483904 7.2671713386186776E − 03
10−4 5.0161797719151666 8.0081947184257318E − 04
10−5 5.0168938457101655 8.6745676843025254E − 05
10−6 5.0169714501784908 9.1412085179154445E − 06
10−7 5.0169798187731356 7.7261387287919092E − 07
10−8 5.0169807549790546 1.6359204546567696E − 07
10−9 5.0169809051381016 3.1375109316167382E − 07
10−10 5.0169809768787967 3.8549178779656579E − 07
10−11 5.0169810449513959 4.5356438674315491E − 07

110 10−3 12.6080073177338665 1.2441184223840884E − 02
10−4 12.6191600107495923 1.2884912081151390E − 03
10−5 12.6203154726816322 1.3302927607539150E − 04
10−6 12.6204347840687063 1.3717888999731365E − 05
10−7 12.6204470745996868 1.4273580206669578E − 06
10−8 12.6204483356843866 1.6627332011243112E − 07
10−9 12.6204484607604144 4.1197292799388663E − 08
10−10 12.6204484686408858 3.3316821523854401E − 08
10−11 12.6204484644797326 3.7477973502397788E − 08

120 10−3 22.0482536251306662 1.8306576476409542E − 02
10−4 22.0647171354911116 1.8430661159668515E − 03
10−5 22.0663748536137589 1.8534799331726415E − 04
10−6 22.0665414615643449 1.8740042731502093E − 05
10−7 22.0665581896313014 2.0119757748737754E − 06
10−8 22.0665598451358989 3.5647117757608981E − 07
10−9 22.0665599904518572 2.1115521831038819E − 07
10−10 22.0665599668678283 2.3473925025996323E − 07
10−11 22.0665599400823353 2.6152474075225030E − 07

Table C.47: Interpolation method - Down and Out call option for fixed number of
node points (N = 256) and 8 time steps with σ = 0.20, r = 0.08, T = 0.25, strike
of $100 and barrier of $75. The values are calculated in this table are performed in
double precision.
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Asset Best η IPM Error
Price ($)

80 10−3 0.0684750295337522 1.0555069800379977E − 03
10−4 0.0687307337863579 1.3112112326437342E − 03
10−5 0.0687640794551370 1.3445569014227830E − 03
10−6 0.0687671383006468 1.3476157469326211E − 03
10−7 0.0687660746061996 1.3465520524854604E − 03
10−8 0.0687642758953696 1.3447533416554615E − 03
10−9 0.0687621648461850 1.3426422924708360E − 03
10−10 0.0687597936993950 1.3402711456808429E − 03
10−11 0.0687571690260584 1.3376464723441968E − 03

90 10−3 1.0233568354873057 2.0906181165576687E − 03
10−4 1.0252080882368706 2.3936536699287886E − 04
10−5 1.0254255393210923 2.1914282771241800E − 05
10−6 1.0254506693384327 3.2157345690800310E − 06
10−7 1.0254537488210473 6.2952171838229209E − 06
10−8 1.0254543806071188 6.9270032553719885E − 06
10−9 1.0254547766813371 7.3230774735866255E − 06
10−10 1.0254551827690328 7.7291651693484065E − 06
10−11 1.0254556257670291 8.1721631656206384E − 06

100 10−3 5.0107865014472113 6.1940899397976146E − 03
10−4 5.0163260928138591 6.5449857314936466E − 04
10−5 5.0169232979320393 5.7293454969881141E − 05
10−6 5.0169913171112990 1.0725724289978311E − 05
10−7 5.0170037717753750 2.3180388365739990E − 05
10−8 5.0170110222316202 3.0430844611545327E − 05
10−9 5.0170183757780897 3.7784391080514235E − 05
10−10 5.0170263831041142 4.5791717104975982E − 05
10−11 5.0170350954736609 5.4504086651613326E − 05

110 10−3 12.6084866167184035 1.1961885239303305E − 02
10−4 12.6192269843602123 1.2215175974938930E − 03
10−5 12.6203231672093068 1.2533474839926395E − 04
10−6 12.6204343701590691 1.4131798636851656E − 05
10−7 12.6204452616290510 3.2403286553961408E − 06
10−8 12.6204459132041311 2.5887535753943425E − 06
10−9 12.6204454808093587 3.0211483481590307E − 06
10−10 12.6204448953281236 3.6066295838743656E − 06
10−11 12.6204442510343959 4.2509233105780808E − 06

120 10−3 22.0482012901957809 1.8358911411295309E − 02
10−4 22.0647099550959105 1.8502465111674971E − 03
10−5 22.0663672076409192 1.9299396615823916E − 04
10−6 22.0665307799731067 2.9421633970794225E − 05
10−7 22.0665443382339959 1.5863373081792531E − 05
10−8 22.0665425671607061 1.7634446372594148E − 05
10−9 22.0665389660413034 2.1235565772492748E − 05
10−10 22.0665348926796412 2.5308927434353201E − 05
10−11 22.0665304961700173 2.9705437060156825E − 05

Table C.48: Interpolation method - Down and Out call option (asset value of
$100) for fixed number of node points (N = 128) and 16 time steps with σ = 0.20,
r = 0.08, T = 0.25, strike of $100 and barrier of $75. The values are calculated in
this table are performed in double precision.
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Asset Best η IPM Error
Price ($)

80 10−3 0.0684788368401993 1.0593142864851065E − 03
10−4 0.0686338213621091 1.2142988083949763E − 03
10−5 0.0686443300824745 1.2248075287602835E − 03
10−6 0.0686351783551779 1.2156558014637248E − 03
10−7 0.0686217445868527 1.2022220331385611E − 03
10−8 0.0686057758141439 1.1862532604296891E − 03
10−9 0.0685870452324950 1.1675226787807771E − 03
10−10 0.0685689740662313 1.1494515125171599E − 03
10−11 0.0685421262130522 1.1226036593380375E − 03

90 10−3 1.0238303171003096 1.6171365035538843E − 03
10−4 1.0252744162133363 1.7303739052731970E − 04
10−5 1.0254371765819830 1.0277021880548964E − 05
10−6 1.0254568005622298 9.3469583663241540E − 06
10−7 1.0254608988946279 1.3445290764427242E − 05
10−8 1.0254669810358874 1.9527432023984381E − 05
10−9 1.0254614192326361 1.3965628772524830E − 05
10−10 1.0254837011014923 3.6247497628774661E − 05
10−11 1.0254408154691956 6.6381346678148767E − 06

100 10−3 5.0113887800292716 5.5918113577371753E − 03
10−4 5.0164559507026985 5.2464068431082311E − 04
10−5 5.0170147735455517 3.4182158542561680E − 05
10−6 5.0171082270027094 1.2763561570081072E − 04
10−7 5.0171567070606340 1.7611567362518787E − 04
10−8 5.0172102741930491 2.2968280604038216E − 04
10−9 5.0172748855295328 2.9429414252352126E − 04
10−10 5.0173205275582715 3.3993617126262810E − 04
10−11 5.0173753581525844 3.9476676557542723E − 04

110 10−3 12.6087131035068634 1.1735398450843371E − 02
10−4 12.6192547805435993 1.1937214141083397E − 03
10−5 12.6203210075730823 1.2749438462467122E − 04
10−6 12.6204265992730740 2.1902684632646441E − 05
10−7 12.6204344136141948 1.4088343511242662E − 05
10−8 12.6204246877480770 2.3814209629269278E − 05
10−9 12.6204430800773935 5.4218803141603544E − 06
10−10 12.6203934588103799 5.5043147326183650E − 05
10−11 12.6204451597451470 3.3422125594873009E − 06

120 10−3 22.0481386543581515 1.8421547248925751E − 02
10−4 22.0646746436143886 1.8855579926896349E − 03
10−5 22.0663217006377472 2.3850096932953591E − 04
10−6 22.0664688777809666 9.1323826109657169E − 05
10−7 22.0664642714516432 9.5930155433188169E − 05
10−8 22.0664378380520461 1.2236355503292273E − 04
10−9 22.0664168518034600 1.4334980361629945E − 04
10−10 22.0663714764300956 1.8872517698054203E − 04
10−11 22.0663681987526772 1.9200285439890941E − 04

Table C.49: Interpolation method - Down and Out call option (asset value of
$100) for fixed number of node points (N = 128) and 32 time steps with σ = 0.20,
r = 0.08, T = 0.25, strike of $100 and barrier of $75. The values are calculated in
this table are performed in double precision.
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C.2.2 Fixed Spaced Partitions

Table C.50 are down and out call option prices for an asset value of $100 and a

barrier of $75.

η Space IPM Error
(Partitions)

10−3 10−1 (263) 5.0097725451313302 7.2080462556786684E − 03
10−2 (290) 5.0097522535224988 7.2283378645100760E − 03
10−3 (328) 5.0097376462119341 7.2429451750746776E − 03
10−4 (376) 5.0097276078056465 7.2529835813621435E − 03
10−5 (436) 5.0097210616502732 7.2595297367354650E − 03
10−6 (522) 5.0097170816403391 7.2635097466695886E − 03
10−7 (653) 5.0097148912581355 7.2657001288736756E − 03
10−8 (868) 5.0097138514636370 7.2667399233714014E − 03
10−9 (1302) 5.0097134653422977 7.2671260447111641E − 03
10−10 (2598) 5.0097133768095778 7.2672145774312080E − 03

10−4 10−1 (295) 5.0162385027547556 7.4208863225302957E − 04
10−2 (328) 5.0162183045148181 7.6228687219057067E − 04
10−3 (369) 5.0162038122478085 7.7677913919993458E − 04
10−4 (421) 5.0161938381544244 7.8675323258448060E − 04
10−5 (490) 5.0161873314695171 7.9325991749132352E − 04
10−6 (587) 5.0161833777435998 7.9721364340881729E − 04
10−7 (735) 5.0161812024217403 7.9938896526826619E − 04
10−8 (977) 5.0161801703202373 8.0042106677113978E − 04
10−9 (1465) 5.0161797868068314 8.0080458017758871E − 04
10−10 (2925) 5.0161796989618219 8.0089242518732728E − 04

10−5 10−1 (324) 5.0169525294902453 2.8061896763936778E − 05
10−2 (359) 5.0169323345752970 4.8256811711888670E − 05
10−3 (404) 5.0169178453012382 6.2746085770226667E − 05
10−4 (461) 5.0169078736315234 7.2717755485174340E − 05
10−5 (538) 5.0169013681475443 7.9223239464465411E − 05
10−6 (644) 5.0168974152741921 8.3176112816718550E − 05
10−7 (804) 5.0168952403875577 8.5350999450700682E − 05
10−8 (1072) 5.0168942084994228 8.6382887586056167E − 05
10−9 (1604) 5.0168938250672355 8.6766319773445844E − 05
10−10 (3205) 5.0168937372413733 8.6854145635306690E − 05

Table C.50: Interpolation method - Down and Out call option (asset price of
$100) for fixed spaced node points and 8 time steps with σ = 0.20, r = 0.08,
T = 0.25, strike of $100 and barrier of $75. The values are calculated in this table
are performed in double precision.

C.2.3 Adaptive Node Allocation

The following tables are Down and Out option prices using the adaptive node allo-
cation scheme.
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Asset η Partitions IPM Error
Price ($) Used

80 10−3 93 0.0685075848117223 5.1014848946381993E − 04
10−4 103 0.0686057314282196 4.1200187296657484E − 04
10−5 106 0.0685984492775369 4.1928402364919048E − 04
10−6 114 0.0686030816908914 4.1465161029477157E − 04
10−7 120 0.0686093311489033 4.0840215228278012E − 04
10−8 124 0.0686078655367144 4.0986776447168296E − 04
10−9 130 0.0686078595662187 4.0987373496747127E − 04

90 10−3 108 1.0223730565834366 3.0806775505071160E − 03
10−4 115 1.0250367575065114 4.1697662743235553E − 04
10−5 115 1.1459312486363369 1.2047751450239320E − 01
10−6 125 1.0253966828071532 5.7051326790395762E − 05
10−7 133 1.0253705445670849 8.3189566858765662E − 05
10−8 129 1.4628655386171763 4.3741180448323252E − 01
10−9 142 1.0253695034687036 8.4230665240055125E − 05

100 10−3 114 5.0138820734270544 3.0985328353563824E − 03
10−4 123 5.0163450488826369 6.3555737977449844E − 04
10−5 128 5.0170592935254312 7.8687263019988629E − 05
10−6 135 5.0171397171182806 1.5911085586919893E − 04
10−7 141 5.0171511737617154 1.7056749930452475E − 04
10−8 146 5.0171487064646545 1.6810020224342082E − 04
10−9 150 5.0171528726403052 1.7226637789441446E − 04

110 10−3 119 12.6078589179667553 1.2589584016284294E − 02
10−4 128 12.6189831392058114 1.4653627772281963E − 03
10−5 133 12.6202608652958812 1.8763668715726656E − 04
10−6 140 12.6202601728833805 1.8832909965960098E − 04
10−7 147 12.6202859465386208 1.6255544441901026E − 04
10−8 151 12.6202831221511076 1.6537983193176675E − 04
10−9 157 12.6202858584042339 1.6264357880491076E − 04

120 10−3 120 22.0479818604872690 1.8578341119840358E − 02
10−4 128 22.0653467635675966 1.2134380395156796E − 03
10−5 137 22.0662530238758130 3.0717773129851356E − 04
10−6 143 22.0662560718336991 3.0412977340965597E − 04
10−7 148 22.0662726930162556 2.8750859085435732E − 04
10−8 155 22.0662753321348966 2.8486947221406655E − 04
10−9 162 22.0662809753278779 2.7922627923171461E − 04

Table C.51: Interpolation Method - Down and Out call option for Adaptive node
points and 8 time steps with ε = 10−7, σ = 0.20, r = 0.08, T = 0.25, strike of $100
and barrier of $75. The values are calculated in this table are performed in double
precision.

275



APPENDIX C. INTERPOLATION POLYNOMIALS

Asset η Partitions IPM Error
Price ($) Used

80 10−3 155 0.0682681029425389 7.4963035864719987E − 04
10−4 159 0.0688133107559223 2.0442254526387453E − 04
10−5 169 0.0688105313096403 2.0720199154581611E − 04
10−6 179 0.0688164761735872 2.0125712759888831E − 04
10−7 191 0.0688180496788722 1.9968362231388963E − 04
10−8 198 0.0688183518866204 1.9938141456568624E − 04
10−9 205 0.0688177961746860 1.9993712650015222E − 04

90 10−3 173 1.0224227920094464 3.0309421244972129E − 03
10−4 181 1.0250721271529495 3.8160698099427848E − 04
10−5 178 1.1459237309539734 1.2046999682002978E − 01
10−6 201 1.0254321387973033 2.1595336640277407E − 05
10−7 210 1.0254389104161938 1.4823717749828935E − 05
10−8 203 1.4629484595152973 4.3749472538135348E − 01
10−9 224 1.0254385779112785 1.5156222665270447E − 05

100 10−3 187 5.0097391179938802 7.2414882685313542E − 03
10−4 193 5.0162055297531118 7.7507650929897753E − 04
10−5 204 5.0169182656975186 6.2340564892238159E − 05
10−6 213 5.0169960512148535 1.5444952441989734E − 05
10−7 223 5.0170043499404455 2.3743678034121585E − 05
10−8 232 5.0170050607473788 2.4454484967573187E − 05
10−9 238 5.0170060349250409 2.5428662629722876E − 05

110 10−3 192 12.6079839801466065 1.2464521836433318E − 02
10−4 201 12.6196794430449231 7.6905893811596293E − 04
10−5 211 12.6202898843292282 1.5861765381153248E − 04
10−6 221 12.6204201860852265 2.8315897812603019E − 05
10−7 231 12.6204237385471298 2.4763435910180043E − 05
10−8 241 12.6204222389087377 2.6263074301424716E − 05
10−9 248 12.6204216696886338 2.6832294405809698E − 05

120 10−3 193 22.0482087559703572 1.8351445636755059E − 02
10−4 202 22.0646722191764582 1.8879824306511361E − 03
10−5 216 22.0664604134588203 9.9788148288926237E − 05
10−6 226 22.0665014574836249 5.8744123485054978E − 05
10−7 238 22.0665131638000638 4.7037807046623747E − 05
10−8 246 22.0665146076756500 4.5593931460863324E − 05
10−9 255 22.0665149761169381 4.5225490172273730E − 05

Table C.52: Interpolation Method - Down and Out call option for Adaptive node
points and 8 time steps with ε = 10−8, σ = 0.20, r = 0.08, T = 0.25, strike of $100
and barrier of $75. The values are calculated in this table are performed in double
precision.
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Asset η Partitions IPM Error
Price ($) Used

80 10−3 243 0.0683012678226094 7.1646547857673153E − 04
10−4 256 0.0687883682913956 2.2936500979055209E − 04
10−5 269 0.0688413317325429 1.7640156864325322E − 04
10−6 284 0.0688505856898115 1.6714761137461573E − 04
10−7 299 0.0688517112947402 1.6602200644597184E − 04
10−8 312 0.0688519157980230 1.6581750316314176E − 04
10−9 325 0.0688519182439113 1.6581505727484734E − 04

90 10−3 283 1.0224378064467050 3.0159276872386218E − 03
10−4 285 1.0250834161862925 3.7031794765125109E − 04
10−5 280 1.1458934530507712 1.2043971891682742E − 01
10−6 317 1.0254485095276962 5.2246062474600730E − 06
10−7 330 1.0254510932790835 2.6408548601392079E − 06
10−8 319 1.4629617358079796 4.3750800167403592E − 01
10−9 354 1.0254514797949690 2.2543389746956799E − 06

100 10−3 304 5.0097173385506721 7.2632677117392963E − 03
10−4 305 5.0164384356775296 5.4217058488154057E − 04
10−5 321 5.0168976984638567 8.2907798554243683E − 05
10−6 336 5.0169754244275229 5.1818348882626264E − 06
10−7 350 5.0169837275339875 3.1212715759232346E − 06
10−8 364 5.0169845201876893 3.9139252783204626E − 06
10−9 378 5.0169845632036898 3.9569412788043046E − 06

110 10−3 316 12.6080034995456867 1.2445002437352914E − 02
10−4 324 12.6191561968738597 1.2923051091795479E − 03
10−5 333 12.6203114432710670 1.3705871197144948E − 04
10−6 346 12.6204357780953451 1.2723887693466551E − 05
10−7 366 12.6204440064880323 4.4954950068065713E − 06
10−8 379 12.6204444400538023 4.0619292374088900E − 06
10−9 393 12.6204447061330356 3.7958500037627019E − 06

120 10−3 320 22.0482466301654547 1.8313571441655463E − 02
10−4 331 22.0647099954582728 1.8502061488373522E − 03
10−5 338 22.0664406160850355 1.1958552207647077E − 04
10−6 356 22.0665343491479859 2.5852459126229910E − 05
10−7 372 22.0665523753337922 7.8262733183009914E − 06
10−8 390 22.0665529843572266 7.2172498838396493E − 06
10−9 403 22.0665529845075810 7.2170995291109818E − 06

Table C.53: Interpolation Method - Down and Out call option for Adaptive node
points and 8 time steps with ε = 10−9, σ = 0.20, r = 0.08, T = 0.25, strike of $100
and barrier of $75. The values are calculated in this table are performed in double
precision.
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APPENDIX C. INTERPOLATION POLYNOMIALS

Asset η Partitions IPM Error
Price ($) Used

80 10−3 386 0.0683063772075618 7.1135609362429821E − 04
10−4 409 0.0687782529016035 2.3948039958263676E − 04
10−5 430 0.0688465414940495 1.7119180713660517E − 04
10−6 451 0.0688557767585354 1.6195654265074941E − 04
10−7 472 0.0688569633657301 1.6076993545608483E − 04
10−8 493 0.0688571136846980 1.6061961648816724E − 04
10−9 511 0.0688571300196840 1.6060328150216668E − 04

90 10−3 447 1.0224393313096838 3.0144028242598542E − 03
10−4 461 1.0250851667585097 3.6856737543403129E − 04
10−5 452 1.1459434441326730 1.2048970999872927E − 01
10−6 500 1.0254496931976311 4.0409363126492348E − 06
10−7 523 1.0254527260822395 1.0080517042626580E − 06
10−8 502 1.4629638180944728 4.3751008396052915E − 01
10−9 562 1.0254529641116374 7.7002230633449464E − 07

100 10−3 474 5.0097140215873459 7.2665846750655239E − 03
10−4 494 5.0161803320614933 8.0027420091763335E − 04
10−5 510 5.0169316216436100 4.8984618801484192E − 05
10−6 531 5.0169719219845765 8.6842778343476645E − 06
10−7 553 5.0169802502349148 3.5602749637320130E − 07
10−8 570 5.0169811870119183 5.8074950681774595E − 07
10−9 596 5.0169812240959644 6.1783355306821441E − 07

110 10−3 492 12.6080067369330528 1.2441765049986397E − 02
10−4 515 12.6191594245831684 1.2890773998713856E − 03
10−5 535 12.6203148781615173 1.3362382152160013E − 04
10−6 551 12.6204437312712390 4.7707118006057314E − 06
10−7 576 12.6204465123836265 1.9895994129992545E − 06
10−8 603 12.6204478464727288 6.5551030992150316E − 07
10−9 618 12.6204479207741027 5.8120893653423877E − 07

120 10−3 487 22.0482525571904660 1.8307644416643010E − 02
10−4 516 22.0647160840671859 1.8441175399230847E − 03
10−5 544 22.0663738108224941 1.8639078461779590E − 04
10−6 566 22.0665404520127701 1.9749594340479071E − 05
10−7 592 22.0665585954243753 1.6061827340374535E − 06
10−8 614 22.0665588752758559 1.3263312531597293E − 06
10−9 644 22.0665590692659244 1.1323411847063980E − 06

Table C.54: Interpolation Method - Down and Out call option for Adaptive node
points and 8 time steps with ε = 10−10, σ = 0.20, r = 0.08, T = 0.25, strike of $100
and barrier of $75. The values are calculated in this table are performed in double
precision.
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