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Abstract

This dissertation is an examination of methods for computing an option price using
a path integral framework. The framework, developed by Chiarella, El-Hassan and
Kucera, is based on the Black and Scholes paradigm. The path integral is backward
recursive with the payoff known at expiry and has no closed form solution. Three
specific financial derivatives are used in this dissertation, they are, European (call

and put), American put and a down and out call (Barrier type) option.

The work in this dissertation examines three methods to approximate the option
price. The first is a review of the spectral method offered by Chiarella et al. Their
method involves the use of a Fourier-Hermite series expansion which represents the
option value at each time step. The Hermite orthogonal polynomials and their as-
sociated properties are employed to create a set of recurrence relations so that a
final option pricing polynomial is formed. A similar approach using normalised Her-
mite orthogonal polynomials is also presented. Similar methods and techniques are
utilised to form a new set of recurrence relations. The accuracy obtained for both

types of orthogonal polynomials are of the same magnitude.

In the other approaches, the path integral is transformed from an infinite interval
integral to one of a finite interval with a bound on the resulting error. This is
achieved by using the weight (in the form of a Gaussian) within the integrand of the
path integral. Using an a-prior: value, the tails of the Gaussian are eliminated to
form the finite interval. Two numerical methods are used to approximate the option
price namely, mathematical interpolation and various quadrature (Newton-

Cotes) rules.



The interpolation approach takes a series of Hermite interpolation polynomials (of
order 2) to represent the option price at each time step. Since there is no closed
form solution of the path integral, converting the option price function to a series
of polynomials allows an approximation of the option price to be found. By dis-
cretizing the underlying, a series of integrations are evaluated for each time step.
Various discretization schemes are implemented including a fixed number of parti-
tions (equally spaced over each time step), equally spaced partitions (over each time
step) and an adaptive node distribution. In this final discretization scheme, the
partitions are formed so that the errors caused by interpolation are controlled. The
option price approximations are highly accurate with some discretization schemes

working better than others.

The final approach takes the finite interval path integral and uses various quadrature
(Newton-Cotes) rules. Endpoint, Midpoint, Trapezoidal and Simpson’s rules are
employed to approximate the option price. The underlying is discretized using a
fixed number of partitions, equally spaced over all time steps for each of the rules
implemented. The results obtained using the various rules are highly accurate for
the European option and the down and out call option but require a large number
of partitions to obtain the same accuracy as the other methods for the American

put option.
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Chapter 1

Introduction

The pricing of derivative securities, such as options, has in the past three decades,
encroached into the world of science. Many mathematicians, physicists and statisti-
cians have contributed their methodologies and techniques to the world of finance.
These methods, usually used in engineering and the physical sciences, have been

aptly adapted to problems in the financial world.

The major issue confronting investors is security of their assets or financial position.
A wheat grower may want to sell his/her crop in the future at a predetermined
price and not wait until the crop is ready to sell (at a price below expectation). An
investor would like to buy or sell shares in a company ABC for a predetermined

price in the future.

Given these issues, pricing of derivative securities is not so simple. With different
underlying assets to protect, the condition of financial markets changing from na-
tion to nation, investor sentiments differing due to human feelings and other factors

influencing security prices, mathematical modeling can be complex.

In creating a financial instrument involving the risk of an underlying asset, the

following aspects must be taken into consideration when modeling;

i. An understanding of the underlying asset,

ii. The volatility associated with the underlying asset,
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iii. Other conditions involved in the markets where the financial instrument and
the underlying asset are traded. Examples of such conditions include trading

periods, transaction costs and interest rates.

Later in this chapter, an investigation is made into various methods and techniques
used to assist in the pricing of derivative securities. In an effort to combat the com-
plexities of models designed, many authors place conditions and constraints such

that solutions/approximations can be made.

The thesis will concentrate on the area of pricing using a path integral framework.
The use of path integrals has been commonplace in science for many years since
the creation of the path integral in Feynman (1942). Its application to finance, in
particular the pricing of derivative securities, has been less common. The thesis will
offer various alternative techniques to solve a particular path integral model. One of
the major advantages of the methods presented is the high accuracy achieved, very

efficiently and with relatively low computational effort.

The remainder of this introduction includes a section 1.1 of commonly used terms.
Section 1.2 gives a brief summary of the basic concepts used in the pricing of options.
An explanation of factors which affect Options and their pricing are also given. Sec-
tion 1.2 also gives a thorough review of the literature for non path integral modeling

of option pricing.

Section 1.3 reviews option price modeling with an emphasis on Path Integrals. It is
hoped that the review in section 1.2 and 1.3 will allow the reader to appreciate the
vastness of the topic at hand. We finally state the objectives and aims of this thesis

in Section 1.4.
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1.1 Common Terminology

The following section gives a very brief overview of the basic terms and concepts
involved in option pricing. If further understanding of the basic areas of financial
derivatives and the markets they trade in is required, then Hull (2006) and Wilmott
(1999) are excellent resources. Most of the terms and concepts within this section

are sourced from Atkinson (1989), Kreyszig (2006), Hull (2006) and Wilmott (1999).
The following is a list of commonly used terms within this thesis.

Commodities: Commodities are usually raw products such as precious metals, oil,
food products etc.

Forward Contract: A forward contract is an agreement where one party promises
to buy an asset from another party at some specified time in the future and at some
specified price.

Futures Contract: A futures contract is similar to a forward contract with the
only difference being that they are traded on an exchange and are marked to market.
Options: Gives one party the opportunity to buy or sell an asset from/to another
party at a prearranged price.

Call Options: The holder has the right to buy an asset by a certain date for a
certain pre-agreed price.

Put Options: The holder has the right to sell an asset by a certain date for a
certain pre-agreed price.

European Options: Options that can only be exercised at the expiration date.
American Options: Options that can be exercised at any time up to the expira-
tion date.

Barrier Options: Options of an exotic type, in which the payoff depends upon
the reaching or crossing of a barrier (predetermined price) by the underlying. These
options include call options and put options, and are similar to common options in
many respects. Barrier options become active/inactive when the underlying crosses

the barrier.
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Underlying: The financial instrument on which the derivative value depends. The
option payoff is defined as some function of the underlying asset at expiry.

Strike or Exercise Price: The amount at which the underlying can be bought
(call) or sold (put).

Expiration or Expiry Date: Date on which the derivative can be exercised or
date on which the option ceases to exist or give the holder any rights to act.
Intrinsic Value: The payoff that would be received if the underlying is at its cur-
rent level when the derivative expires.

In the Money: An option with positive intrinsic value.

Out of the Money: An option with no intrinsic value, only time value.

At the Money: A call or put with a strike that is close to the current asset value.
Hedging: A strategy to Establish a guaranteed future price of a commodity.
Speculating: Investors wishing to take a position in the market. Either they are
betting that the price will go up or they are betting that it will go down.
Arbitrage: Involves locking in a riskless profit by simultaneously entering into
transactions in two or more markets.

Volatility: Is the term given to represent the standard deviation of the instanta-
neous return of the underlying.

Fourier Analysis and Series: Fourier Analysis concerns the study of periodic
phenomena. Fourier Series is a series which represents complicated functions in
terms of simple periodic functions.

Mathematical Interpolation: Mathematical interpolation is the selection of a
function p(x) from a given class of functions satisfying some smoothness conditions
in such a way that the graph of y = p(z) passes through a finite set of given data
points.

Quadrature: The quadrature of a geometric figure is the determination of its area.

Gaussian (Distribution): Is another term used for the Normal Distribution.
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1.2 Options and Option Pricing

To appreciate the content of the following thesis, an introduction to some of the
basic concepts is worthwhile. The concepts covered in this section include aspects
of option pricing and the mathematics presented throughout the thesis. To a math-
ematician some of the methods used in the thesis are quite novel. But to understand
the problem at hand, an introduction to terms and concepts used in option pricing

may be required.

The term Risk Management is sometimes used to describe the security of invest-
ments. As people insure their valuable possessions such as houses, cars and boats,
investors need to secure their assets and/or financial position by using financial in-

struments such as options (contingent claims).

Within the financial world, there are various assets, and many variants that affect
the value of an asset. Some examples of assets that can be secured and the factors

that affect the value of them, include:

e Shares

Commodities such as Wheat, Wool, Sheep, Electricity, etc

e Bonds

Stock Exchange Indices

Foreign Exchange

Interest Rates

Volatility.

Given the nature of assets and the variants, the pricing of financial instruments
such as options is sometimes complex and time consuming. Adams, Booth, Bowie
& Freeth (2003) states various factors that affect the pricing of options. The factors

include:
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Exercise Price

Underlying Asset Price

Time to Expiry

Volatility

Interest Rates

Incomes & Dividends.

Adams et al. (2003) briefly explains the meaning of each factor but also describes
how each factor affects the value of the option (Put and Call). In later chapters, we

explain and analyse the effects of these factors on the price of options.

Options are common financial instruments which allow one party to buy/sell assets
from another party for a particular price. As described, many factors influence the
value of the option. The remainder of this section will take a detailed look at the
modeling of options as well as the techniques used to determine the value of an

option.

Since the development of the pricing of derivative securities by Black & Scholes
(1973) and Merton (1973), the literature has become vast. This area of finance has
developed to the point where science has taken a grasp and influenced the creation
of various models and the techniques to solve them. With the Black, Scholes and
Merton developments of their formula to the development of models which incorpo-
rate Jump Diffusion parameters, science and especially mathematics, have been at

the forefront of pricing financial instruments (options).
The literature provides a variety of techniques to solve various option prices. Some
of the major methods used include (in no particular order):

1. Lattice Structures (Trees)

2. Monte Carlo Simulation
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3. Quadrature
4. Solutions to partial differential equations (PDE’s)

5. Martingales and other probabilistic methods.

With the development of the Black and Scholes partial differential equation (PDE)
and the analytic solution (formula), the mathematical /scientific world became in-
volved. The further development and extensions of the Black-Scholes PDE and
the creation of other types of options (that is, exotic, barrier and path dependent
options) has led to other mathematical methods for their modeling and analysis.
Chapter 2 gives a detailed presentation of the Black and Scholes paradigm and the
development of the PDE leading to the Black and Scholes formula.

Since Black & Scholes (1973) and Merton (1973), the literature for pricing derivative
securities has flourished. The techniques and methodologies employed are numer-
ous and varied. The most common techniques used include simulation, particularly
Monte Carlo and discretization methods like binomial and trinomial trees, and finite
differences. The varying techniques employed are dependent on the equations to be
solved. The most common form of equations used are differential equations. How-
ever, in recent times, the use of path integrals has increased and various techniques

to solve these integrals have been developed.

Other techniques are also employed due to the creation of other types of securities.
These securities are sometimes complex compared to the original warrants described
by Black, Scholes and Merton. However, some of these securities are based on the
Black and Scholes paradigm. They are based on similar assumptions and conditions

as described in Chapter 2.

This section will present the influential and relevant works in the option pricing
world. Some of the methods and techniques developed over the years have shown
the multitude of mathematical adaptations used to procure an option price. This

part of the review shows the vastness of the modeling, the techniques and the ad-

7
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vancement of option pricing.

The ground breaking and defining work by Black, Scholes and Merton, paved the
way for many changes in the management and modeling of risk. Many subsequent
authors have gone on to extend and modify the early work of Black, Scholes and
Merton. Along with these new works, has been the creation of new financial instru-

ments (and options) based on the models and theories of these authors.

Another influential paper is that of Cox, Ingersoll & Ross (1985) who present a
theory of the term structure of interest rates. This paper is of great importance to
the financial world, as it has led to other types of modeling in finance, not just those
related to Black, Scholes and Merton’s work. They explain the term structure of
interest rate as a relationship among the yields on default-free securities, that differ
only in their term to maturity. By offering a complete schedule of predicted interest
rates across time, the term structure embodies the markets’ anticipations of future

events.

The authors present a description of the previous works on the term structure of
interest rates. Cox, Ingersoll and Ross incorporate general equilibrium theory, in
combination with the previous studies to develop their term structure of interest
rates. It is worth mentioning the work of Maghsoodi (1996) who extends the Cox,
Ingersoll and Ross model to incorporate time-varying parameters. The work by
Cox, Ingersoll and Ross and related authors shows that not all risk management
and financial instrument modeling revolves around early methods and techniques
of Black, Scholes and Merton, and that there are other methods and techniques to

investigate and that model financial risk.

The rest of this section will describe the modeling of other authors who have based
their works mainly around that of Black and Scholes, and Merton. Most of the
modeling is based on extensions and alternatives of their basic models. Other mod-

els are described which include exotic options and American options. Also reviewed
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are some models with solutions to financial instruments using numerical methods,
especially for American options. In reviewing these extended and modified models,
the various types of methods and techniques used are clear. The authors presented
various differences to the earlier models. Popular methods included the relaxation of
assumptions, the introduction of real market occurrences and various differing meth-
ods and techniques to solve the old models. The following paragraphs are grouped

in such a way that these variations are made clear.

An appropriate extension/modification to the work of Black & Scholes (1973) was
devised by Hyland, McKee & Waddell (1999) to incorporate time-dependent interest
rates and volatility. The authors present some interest rate and volatility models to
illustrate their work. These models are very general time-dependent equations and

are not indicative of the typical interest rate and volatility structures.

Silverman (1999) and Garven (1986) present alternative methods to find a solution
to the Black and Scholes PDE, namely
av 1 o*V ov

2 4 52927 © - _ = 0. 1.1
8t+205652+r565 rV =0 (1.1)

where V' is the option price, t is time, ¢ is the volatility associated with the asset

which has a value S and r is the interest rate.

Silverman’s involves the use of Green’s function and Garven’s presentation is in
view of the risk neutrality arguments presented by both Cox & Ross (1976) and Ru-
binstein (1976). It is clear that there are alternative methods to solve (1.1) other

than the conversion to the heat transfer equation method used by Black and Scholes.

In the following paragraphs, a summary of various types of European option models
will be made. These descriptions will show the types of modifications and extensions
to option pricing models that have been performed over the years, with particular
reference to the Black-Scholes equation. These models present changes to the Black

and Scholes paradigm. Conditions are altered or dispensed with, with the objective
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of modeling options for real market scenarios. As stated previously, the advantage of
the Black, Scholes and Merton model is that the option price is easily found. Even
though these models are more realistic, they do require extensive computational

effort. In some cases, exact solutions are difficult to find.

Jennergren & Naslund (1996) and Merton (1976) present an extended Black-Scholes
model to incorporate a class of option with stochastic lives (options which may
be canceled but the underlying stock retain their value). This is an appropriate
modification, as options may cease to exist due to company mergers, bankruptcy,
and employee resignations (for an employee class option) as examples. The intro-
duction of arbitrage is a useful modification to the modeling of financial risk. Ilinski

(1999) allows the possibility of virtual arbitrage in his modified Black-Scholes model.

However, by allowing arbitrage possibilities, one would have to be realistic and have
to consider the cost(s) involved in obtaining such a riskless position. So, another
popular method of extending the Black-Scholes equation (or any other financial in-
strument model) is the introduction of transaction costs or fees. There have been
various modified models presented over the years to incorporate the effects of trans-
action costs. One of the first and most popular works in regards to transaction costs
was that of Hodges & Neuberger (1989). Later, Davis, Panas & Zariphopoulou
(1993) developed a model for European options with transaction costs, with Davis
& Zariphopoulou (1995) presenting a similar model for American options. Whalley
& Wilmott (1997) produced an efficient and simpler hedging strategy to be calcu-
lated. One of the main problems in analysing these types of models is, that they may
be too complex and the question as to whether there is a method to find a simpler
solution. Chao, Jing-Yang & Sheng-Hong (2007) use a Markov chain approximation
to compute Barrier option prices with transaction costs. Given new methodologies
and techniques, instead of finding a precise solution for a complex model, deter-
mining an imprecise result, together with an estimate of the imprecision, will allow

these real world models to be applied in practice.

10
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Another assumption that can be modified/manipulated is the structure of volatility.
The original Black and Scholes model used a constant volatility for the stock price,
which was used for the purpose of simplification. However, stock/asset volatilities
have complex structures and it would be appropriate to represent these complex
volatility structures (i.e. stochastic volatility) in the option pricing models. One of
the most popular models developed was by Heston (1993). The Heston Model is
used by many authors when comparing their own models and techniques involving
stochastic volatility. Heston shows there is a bias between volatility and the spot
asset price. Therefore, he incorporates this into his model. Finally, analytical forms
are found for the various PDE’s using characteristic functions which are easy to

compute.

Some other models presented to incorporate varying volatility structures worth men-
tioning include Chalupa (1997), Sircar & Papanicolaou (1998), Kurpiel & Roncalli
(1998) and Zuhlsdorff (2001). In recent times, Medvedev & Scaillet (2007) derive
implied volatilities for options under a two-factor jump-diffusion stochastic volatil-
ity. Hilber, Matache & Schwab (2005) offer a unique approach to solving option
prices under stochastic volatility. They offer an algorithm based on a sparse wavelet

space discretization.

Given the extensive works by the previous authors in modifying or extending the
work of Black and Scholes, and Merton, there have been presentations of other fi-
nancial instrument models (and in particular, other option pricing models). One of
these is the modeling of Exotic options. These options are non-standard options,
and have been examined extensively. This thesis will examine exotic (American and

Barrier types) along with the Vanilla (European type) options.

There have been numerous exotic option pricing models presented including that
of Carr, Ellis & Gupta (1998) who develop static hedges for several exotic options
using standard options. In this area, the work of Neuberger & Hodges (2000) in
which they devise a model for exotic options in the spirit of the Merton (1973)

11
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approach for rational bounds on the pricing of exotic options is worthy of exam-
ination. Penaud, Wilmott & Ahn (1998) extend a Vanilla Passport option to add
various exotic features to that option. The authors present seven different types of
exotic passport options, using the same assumptions as used in deriving the Black-
Scholes equation. Schoutens & Symens (2003) present a Monte Carlo simulation

method to price exotic options with stochastic volatility.

An interesting exotic option pricing model is proposed by Geman (2001). The au-
thor develops a technique to find the price of a type of exotic option called an Asian
option (there is also the development of a Barrier option). The technique offered
involves the use of Laplace transforms and of a time-changed squared Bessel pro-
cess. Geman presents some numerical work, comparing the author’s results to an

equivalent Monte Carlo simulation.

Finally, some of the more recent techniques used in approximating financial instru-
ment pricing models is via the use of Martingale methods and game theory. Musiela
& Rutkowski (1997) present numerous financial instrument models via the use of
Martingale Methods. Prigent, Renault & Scaillet (2004) also address the problem of
option pricing (with discrete re-balancing) using Martingale measures. Henderson
(2005) presents some Martingale measures to incomplete stochastic volatility mod-
els. The use of Martingale methods and game theory reiterates that the modeling of
financial instrument (option) pricing is open to various methods and techniques. Ols-
der (2000) develops a technique for the pricing of options using game theory. The
author offers one model for a two player system, with the players being nature and
the investor. The second model consists of three players, being nature, the investor

and the bank (whose presence forces the introduction of transaction costs).

So far the review has presented models for corporate liabilities, European options
and exotic options. One of the most common financial instruments (and option)
is the American option. These options allow the owner to buy or sell the underly-

ing asset at any time up to the maturity date. There has been a vast amount of

12



CHAPTER 1. INTRODUCTION

literature in the mathematical modeling of American options, with the main issue
concerning when to exercise an option. This problem is known as the early exercise

option.

One of the first American option pricing models to be presented is that of Brennan
& Schwartz (1977). Their work has also been extended and modified over the years.
Another two relevant American option pricing models presented are by Geske &
Johnson (1984) and Kim (1990). The following paragraphs will summarise their

work.

Brennan & Schwartz (1977) confirms that the American put option obeys the Black-
Scholes equation. The authors then describe and state a numerical method to solve
the Black-Scholes equation for an American option. The solution for the American
option differs greatly to the European option, as an American option can be exer-
cised at any time up to the exercise date. Brennan and Schwartz apply their model
against some historical data. They compare the put result against the equivalent
Black-Scholes European put option. This comparison seems to be irrelevant, as a
European option can only be exercised on the exercise date. Cox, Ross & Rubinstein
(1979) offers a Binomial tree approach to various options, including an American
put. They argue that their alternative approach to Brennan & Schwartz (1977) is

simpler and in most cases computationally more efficient.

Geske & Johnson (1984) developed an analytical approximation for an American
put option. They argue that numerical solutions are expensive, which may have
been the case in the 70’s and 80’s. The analytical solution presented by Geske and

Johnson 1is

P = Xw, — Sw; (1.2)

where w; and ws may be represented as a Taylor series, X is the exercise price and

S'is the stock price.

13
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In devising this solution, Geske and Johnson determine at each instant, dt, the put
will be exercised if, the put has not already been exercised and the payoff from exer-
cising the put equals or exceeds the value of the put if it is not exercised. The authors
go on to present formula evaluations and applications, comparing their results to
those of Parkinson (1977) and Cox & Rubinstein (1984). In comparing their results,
the authors state that the option values yielded are within one penny of each other.
They also note that the European value is close to the American value, where the
American option would be more valuable when the early exercise option is taken.
They also indicate that the analytical solution they offer is faster to compute by a
factor of 10 compared to the standard numerical methods. At the time of the model
presentation, the analytical approximation may have been faster. Analytical approx-
imations has its advantages as prices can be evaluated precisely and can be used to
compare against other methods and techniques. But with high-speed computers and
efficient numerical methods, the argument of analytical approximations being faster

to calculate is now out-dated, however analytic solutions do provide valuable insight.

Kim (1990) offers a differing analytical evaluation of an American put via the use
of numerical methods. Kim questions the Geske & Johnson (1984) solution, as Kim
states it is yet to be shown that an analytical solution to an American put value can

be obtained as the sum of an infinite series of functions.

The integral equation presented in Kim (1990) cannot be solved explicitly, however,
it can be solved numerically. In determining the optimal exercise boundary, B(s),
the computation of the American put value is achieved by straight forward numeri-
cal integrations. Some of the techniques offered in this thesis may be applied to the

integral equation presented in Kim (1990).

There has also been modeling of American options using various other methods and
techniques. Jaillet, Lamberton & Lapeyre (1990) verify the modeling of Brennan
& Schwartz (1977) with the use of variational inequalities. El Karoui & Karatzas

(1995) describe a model for an American put option using Martingale methods. Part

14
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of their work is an extension of Bensoussan (1984). As discussed previously in this
review, Davis & Zariphopoulou (1995) present a model for American options with
transaction fees. Coleman, Li & Verma (1999) offer a Newton method for Ameri-
can option pricing. Their work is based around improving the work of Brennan &
Schwartz (1977). These models show that there are various mathematical methods

and techniques that can be applied to the pricing of American options.

Other models and solutions using numerical methods worth noting are Siddiqi, Man-
chanda & Koévara (2000), who define an application of an efficient algorithm for a
numerical solution for American options. The solution, like that of many authors
previously, is based on the Black-Scholes equation. Stamicar, Sevéovié & Chadam
(1999) find a numerical approximation for an early exercise boundary for an Ameri-
can put option near expiry. Zhao, Davison & Corless (2007) design a compact finite
difference method for pricing American options. The authors offer three types of
finite difference methods and the results compare favourably to the existing Crank-

Nicolson methods.

Sullivan (2000) uses Gaussian quadrature to evaluate the price of an American put
option. Initially the author presents approximations for a European put option
using a Binomial Tree, Trapezoidal, Simpson’s and Gauss-Legendre methods, with
the Simpson and Gauss-Legendre methods working quite well. The Gauss-Legendre
quadrature is then applied to the American put option using Chebyshev approxi-
mations. Thorough analysis of convergence, accuracy and speed are presented and
comparisons to analytical methods are made. Some of the quadrature described
in Sullivan (2000) will be applied to a path integral representation of various types

of options in the thesis (Chapter 5 and 6).

In describing these models in the last couple of paragraphs, it is clear that the mod-
eling of American options is more complex than the modeling of European options
since American options can be exercised at any time up to the expiry date. Calcu-

lating the early exercise boundary (the point at which the American option should
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be exercised) is just as important as the value of the option itself.

In collating this review of pricing of financial instruments like options, it is clear that
financial instruments are becoming complex to model and to price. This review was
presented to give an overview of the changing landscape of option pricing. An area
that has not been presented thus far is the use of Path Integrals which is the main

emphasis of the thesis.

Path Integrals have been used in the area of science for many years. In the world
of option pricing it has only been in the last decade or so that the path integral has
been used to model the price of an option. The following section will give a review
of the literature presented so far. It is envisaged that the reader has some basic

knowledge and understanding of path integrals.

1.3 Option Pricing and Path Integrals

The use of path integrals has developed into a viable option pricing model represen-
tation in the past decade or so. Since the creation of the Black-Scholes PDE and the
various techniques to solve (1.1), authors have attempted to model vanilla and non
vanilla options in alternative forms. Path integrals has been one of the alternative

methods.

Path integrals have been used in various areas of science over the years, especially
in quantum physics. One of the advantages of using path integrals is the variety of
techniques used to solve them. From Monte Carlo simulation to various quadrature

methods, the techniques have been developed and applied to finance.

The following review will present the use of path integrals to model and the tech-
niques to evaluate option prices. One of the early uses of a path integral in derivative
security pricing was from Makivic (1994). The author presents a Monte Carlo ap-

proach (using the Metropolis algorithm) to price a security.
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Makivic also states that the main advantages of a path integral approach are:

(1) partial derivatives of the price with respect to all of the input parameters can

be computed in a single simulation,

(2) results for multiple sets of parameters can be computed in a single simulation,

and

(3) suitability for implementation on a parallel or distributed computing environ-

ment.

It must be said that his assertions are correct for a path integral approach using
Monte Carlo simulation to evaluate the price. The best results show errors of order

1074

Baaquie (1997) presents a path integral approach to option pricing with stochastic
volatility. Baaquie generalises the results of Hull & White (1987) for cases when
the stock price and volatility have non-zero correlation. Ingber (2000) also presents
a path integral approach to options with stochastic volatilities. The author uses an
Adaptive Simulated Annealing approach to determine the behaviour of diffusion.
This behaviour is determined by daily Eurodollar future prices and implied volatil-

ities. An algorithm called PATHINT is used to evaluate prices.

Linetsky (1998) offers a path integral approach to financial modeling and option
pricing. The author states that "the path integral formalism constitutes a conve-
nient and intuitive language for stochastic modeling in finance”. Linetsky presents
various path integrals, including a framework for the Black-Scholes paradigm path
dependent options and multi-asset derivatives. The author finally develops evalu-
ations for various options using analytical approximations and numerical methods

(Monte Carlo simulation and/or discretization schemes).

Some authors have investigated the use of path integrals to model path dependent

options. Matacz (2000) uses a partial averaging method to price path dependent
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options (Asian options and occupation time derivatives). The method of partial
averaging reduces the dimension of the integral. The evaluation can be performed
by Monte Carlo simulation methods. Baaquie, Coriano & Srikant (2003) also offer a
path integral approach to solve for path dependent options. They build their model
using the Black-Scholes paradigm and then extend it to create more complex secu-
rities such as exotic and path dependent options. Baaquie et al. (2003) evaluate the
option prices by Monte-Carlo simulation. Bormetti, Montagna, Moreni & Nicrosini
(2006) also present a path integral framework to evaluate (via Monte Carlo simula-

tion) prices for various path dependent options.

An interesting application using a path integral approach is offered by Otto (1999).
The author presents a model to price interest rate derivatives. Path integrals for the
short term and bond option are developed. Otto suggests two techniques to solve

these derivatives, they are a lattice method or the use of Monte Carlo simulation.

Bennati, Rosa-Clot & Taddei (1999) develop a path integral approach for various
stochastic equations that best represent financial markets. The path integrals are
designed to cater for one and multi dimensional cases. The authors then present
some analytic results for various models such as Black-Scholes, Cox-Ingersoll-Ross
and others. Rosa-Clot & Taddei (2002) offer numerical methods to price some of
the derivative securities presented in Bennati et al. (1999). Rosa-Clot and Tad-
dei use two methods to evaluate prices, Monte Carlo simulation and deterministic
evaluations (quadrature rules). The deterministic evaluations has its advantages
in low dimensional problems but in high dimensions the technique has issues with
large matrix dimensions. Various options (European options , Zero-coupon bonds,

Caplets, American options and Bermudan swaptions) are priced.

Some authors have investigated the use and evaluation of path integrals to price op-
tions using unique and less common techniques. Kleinert (2002) presents a Natural
Martingale for non-Gaussian fluctuations of the underlying. Decamps, De Schepper

& Goovaerts (2006) develop a path integral approach to asset-liability manage-
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CHAPTER 1. INTRODUCTION

ment. Chiarella, El-Hassan & Kucera (1999) present an evaluation of a European
and American option in a path integral framework. The novel approach to the eval-
uation is the use of a Fourier-Hermite series. The technique takes into consideration

the form of the integrand of the path integral (1.3),

PN &) = e:/r_:t /°° 6_(5’“_“(5’“*1))2fk( V2AL ;) dE,. (1.3)

The Gaussian in the integrand is in the form of the weight of a Hermite orthogonal
polynomial. The price function, f*(&,), is expanded into a Fourier-Hermite series.
This series is continuous and is a differentiable representation of the underlying.
Given the form of the Fourier-Hermite series, the Deltas are easily found as well as

the option price.

In Chapter 2 we present the development of the path integral (1.3). Chapter 3, in
this thesis, gives a thorough overview of the technique used to find the option price.
In this overview of the technique, errors were found in the formulation and in the
results presented. The path integral is formed using an application of Ito’s Lemma.
Chapter 4 offers a modification to the technique used to evaluate the option price.
The alternative method uses normalised Hermite orthogonal polynomials. The use
of the normalised polynomials has its advantages, especially when a large number

of basis functions are used.

An extension of the previous approach is offered by Chiarella, El-Hassan & Kucera
(2004) to incorporate the evaluation of point barrier option prices. The path integral
is very similar with the only difference being the integral domain. The path integral

(1.3) with a finite domain, namely,

—rAt

SN &) = e\/7—T /z’“’“ 6_(g’“_u(g’“*l))zfk(V 2At &) dEy,, (1.4)

where
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In (ka) In (bk,u)

T V2Bl ox/ 208,

for k = K—1,...,1with b;,; and by ,, being the lower and upper barriers respectively,

(1.5)

and 2y, =

at time step k.

Chapters 5 and 6 offer alternative techniques to evaluate the same path integral
framework (1.3) and (1.4). Prices are approximated for European, American and
Barrier options. The techniques take into account the form of the integrand such
that interpolation polynomials and various quadrature rules can be used. The tech-

niques employed are highly accurate and very fast to compute.

Given the literature review presented in this thesis, it is clear that the methods
and techniques used in evaluating the option price are vast. From the early days of
Black, Scholes and Merton to the introduction of many scientific approaches, option
pricing is a growing area in both finance and mathematics. Path integrals in finance
is relatively new in comparison, with the last decade seeing an increase in activity.
Path integrals have been used in areas such as quantum physics for many years since

the initial work by Feynman (1942).
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1.4 Thesis Objectives

The thesis is based around the path integral framework offered by Chiarella et al.
(1999). In their method, the underlying is expanded into a Fourier-Hermite series.
At each time step, the coefficients of the series are determined in a backward recur-
sive manner, using recurrence relations. These relationships are formed utilising the
orthogonal properties of Hermite orthogonal polynomials. In Chapter 3, an anal-
ysis of the method described by Chiarella et al. is presented. This will assist in
understanding the remaining chapters and comparison of techniques used to solve

the same problem.

The first approach is similar to that offered by Chiarella et al. The main difference
being the use of normalised Hermite orthogonal polynomials. A set of recurrence
relations are formed, as with the previous method. The benefits of using the nor-
malised polynomials are the form of the recurrence relations as well as the speed to
find accurate results (especially for the European option). Some relations have one
less exponential term. Given this fact, the speed of computation should be improved

for a large number of basis functions.

The next approach, using the same path integral framework, also converts the un-
derlying price at each time step. The price is represented by a series of interpolation
polynomials. In this method, integration is performed only once, at the beginning
of the process. Using the result of the integration and the interpolation polynomial
coefficients found, the option price is evaluated. This process is repeated at each
time step. The method requires no transformations and is quite straight forward to
implement. The path integral framework is converted from an infinite interval to a

finite interval.
The major issues arising from this method include, the determination of the interval

of integration and the node point allocation. The problem of the interval of integra-

tion is solved via the properties of the Gaussian in the integral. Node allocation or
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distribution will vary depending on the derivative security being priced. Similar to
Chiarella et al., the resultant derivative security price is continuous and infinitely
differentiable allowing for fast and accurate evaluation of the hedge ratios (if re-
quired). The major advantage of this method is the very high accuracy obtained

and the easy adaptation for American and Barrier type options.

The final approach uses traditional quadrature rules such as the trapezoid and Simp-
son’s rule. Using a similar set up to that of the previous technique, a quadrature
scheme is formed to represent the derivative security price at each time step. The
rules used show that accurate results can be found in relatively quick time. Issues as
those that have arisen in the previous approach such as node allocation also exists
in this approach. The quadrature rules can also be easily applied to American and

Barrier type options.

The thesis is a numerical investigation of the path integral framework. The thesis will
emphasise the performance and accuracy of each of the methods for the framework
and particular parameters. Trade offs between accuracy and computational effort
are addressed. The ease of implementation (in the case of the European options)
allows an insight into the behaviour and performance of the method for the path
integral framework and more complex options like, American put and down and out

call options.
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Chapter 2
The Black and Scholes Paradigm

This chapter shows the evolution of the Black & Scholes (1973) paradigm. It begins
with the major assumptions in which a derivative security like an option is modeled
and priced. We present the formulation of the Black and Scholes equation (a partial
differential equation) using a replicating portfolio. In deriving the Black and Scholes
equation, a formula is presented for both a European Call and a Put option. Finally,
the development of the Chiarella et al. (1999) path integral is presented, which is

constructed based on the Black and Scholes paradigm.
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CHAPTER 2. THE BLACK AND SCHOLES PARADIGM

2.1 Introduction

Prior to presenting the path integral framework used in this thesis for option pric-
ing, an understanding of the Black & Scholes (1973) paradigm is required. Since
many option pricing models are based on this paradigm, the chapter will describe
the fundamentals of the assumptions, equations and the derivation of the formula.
We initially present the major assumptions on which a model using the paradigm
must satisfy. There are many assumptions which exist and continue to be used since

the creation of the Black and Scholes formula well over three decades ago.

Following the assumptions, we present a summary version of the creation of the Black
and Scholes equation (a partial differential equation) using a replicating portfolio.
The presented method is based on that in Wilmott (1999). The partial differential
equation (pde), is derived using a portfolio containing a long position in the option
and a short position in a quantity of the underlying. The portfolio is replicating
because it changes continuously with respect to time and a change in value of the
underlying. The pde is also derived using common financial principles of delta hedg-

ing and no arbitrage.

We finally present the formulation of the path integral framework based on Chiarella
et al. (1999). This is the framework which is central to this thesis. The framework
developed uses the assumptions and ideas described in this paradigm. The frame-

work is built based on the technique of path integrals in statistical physics.

2.2 The Black-Scholes Assumptions

Understanding of the modeling of an option price based on the Black and Scholes
paradigm, requires a list of assumptions and conditions to be followed. Since the
creation of the Black and Scholes formula over three decades ago, these assumptions

have extended to cater for the changing evolution of the financial world. Here are a
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CHAPTER 2. THE BLACK AND SCHOLES PARADIGM

list of the major assumptions in the Black and Scholes paradigm.

1. The underlying asset follows a log-normal random walk and the variance is

known and constant.
2. The risk-free interest rate is a known function of time.
3. The underlying pays no dividends and is fungible.
4. Options can only be exercised at Maturity (Vanilla Options).
5. There are no transaction costs.
6. There are no arbitrage opportunities.

7. An investor can borrow any amount of money to purchase the security, at the

short-term interest rate.

8. There is no credit risk.

There are other assumptions which can be included in the paradigm. Given these

assumptions, a Black and Scholes model can be created.

2.3 Replicating Portfolio

We can develop the Black and Scholes equation (a partial differential equation) by
creating a portfolio of one long position in the option and a short position in a
quantity of the underlying. If we denote the option price as V' (S, t), the quantity A
of the underlying S, then the value of the portfolio is given by

I =V(S,t)— AS, (2.1)

where S is the value of the underlying and ¢ is time. If we assume that the underlying

follows a log-normal random walk
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dS = pSdt + o Sdw, (2.2)

where p is the drift parameter, o is the volatility associated with the underlying
and W represents the Brownian motion. For a thorough investigation of Brownian
motion, we refer the reader to Chapter 3.3 in Ross (2003). A portfolio value therefore

changes with respect to time

dIl = dV — AdS. (2.3)

We now introduce Ito’s Lemma, the reader is referred to Wilmott, Dewynne &
Howison (2000) for a thorough investigation of the Lemma (Chapter 2.3).
oV oV 1 A%

dV = —dt + —d —028%—dt 2.4
V=gt + 5599+ 395 553 (2:4)

and we substitute (2.4) into (2.3) so that the portfolio changes by

oV v 1., L0V
ai= g+ Y gs 229V e Ags 9.5
ot T g T3 gse (2:5)

In (2.5) there are two terms which involve risk. They are g—‘S/dS and AdS. To

eliminate this risk we let

_v
BCEh

This elimination is commonly known as Delta Hedging giving from (2.5) and (2.6)

OV 1, 0V
.6

where as a consequence of assumption (2.6), the change in the portfolio is now risk-

A (2.6)

less.

Since the change in the portfolio value is risk free, it must earn the risk free rate of

interest otherwise riskless arbitrage opportunities would exists. Namely

dIl = rIldt. (2.8)
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Therefore, substituting (2.8) into (2.7) and using (2.1) and (2.6) gives

WV 1,0V
or 20 7 98

+ —0252—)dt = rlldt

=r(V - Sg—g)dt (2.9)

and with the rearrangement of (2.9) gives

ov 1, ,0*V oV
vz - _ =0. 2.1
6t+205852+7’585 rV =20 (2.10)

The partial differential equation (2.10) is the Black and Scholes equation that is

commonly referred to in the literature.

The pde (2.10) is of a parabolic form, which are usually called diffusion equations.
These equations have been used to model many areas of science. The simplest form
of the diffusion equation is

ou  0%u

which is the heat equation for the temperature in a bar. In (2.11), u is the tem-
perature, x is the spatial coordinate and ¢ is time. This is achievable by changing

variables in (2.10) to reduce to the form of (2.11).

2.4 The Black-Scholes Formula

In this thesis, the techniques used, are initially applied to the European call and put
options and so, a presentation of how the Black and Scholes formula (for a European
call and put option) is derived from (2.10) follows. The boundary conditions will
determine the type of options to be considered. The derivation of the Black and

Scholes formula will also assist in the understanding of the derivation of the path
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integral of Chiarella et al. (1999).

Equation (2.10) is a backward equation since we are valuing an option for an un-

derlying with some future value at time 7. Discounting for interest rate, r gives

V(S,t) = e " TDU(S, 1) (2.12)

which upon substitution into (2.10) gives

ou 1 ,,0%U QU
- z = — =0. 2.1
BT —1—205 8SQ+TS€95 0 (2.13)

With the substitutions,

0 0 0? L, 0P 5, 0
i 2 e 2%
oS 0z 052 022 0z’

in (2.13) gives, after some algebra,

T=T—-1t z=In(9),

U 1 ,0°U 1, 0U

A final substitution

1
$:Z+(T—502)T and U = W(z,t)

reduces the Black and Scholes equation (2.14) to,

oW 1 L,0°W

or 27 o2

This simplified version of the Black and Scholes equation, is in a similar form to the

(2.15)

diffusion (heat) equation (2.11).

At this point we direct the reader to Wilmott (1999) for a step by step solution to
(2.15). The solution offered by Wilmott (1999) is,

—r(T—t 00 *
V(S 1) = et e—an(S—%>+(r—éa%(T—t)F/w(T—t)p(g*)ﬁ

o\/2n(T —t) Jo S* (2.16)
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where S* is an arbitrary constant and P(S*) is the payoff function for various op-
tions which can be applied in a fairly straight forward fashion. The payoff function
P(S*), is the boundary condition, which varies depending on the type of option

being considered.

2.4.1 European Call and Put Option

For a European call option, E.(S,t), with a payoff function

P(S)=(S—E,0)" =max(S - E,0), (2.17)

where F is the strike price. Equation (2.16) is re-written as

I b e~ ()= Jo?) 10 22 (r—t) g _ gy B
o\ 2n(T —t) JE S*

and using the change of variable z* = In (5*), (2.18) becomes

E,(S,1) (2.18)

—r(T—t) 0
e * 1.2 2 2 *
E.(S,) = e~ (=" +In (S)+(r—50%)(T=1))* /20 (T—t)(ex — E)dz*,
o/ 27(T —t) Jm ()
—rA 00
_ e ' e—(—ac*-l—ln(S)+(T—%02)At)2/202At€fU*dx*

oV 2t At Jin(B)

Ee—rAt e8]

N oV 2t At Jin(E)

where At =T —t. Since the two integrals in (2.19) are in the form

e*(*m*“rln (S)Jr(rf%gQ)At)Q/QaQAtdx*’ (219)

w & 1.2
- 6_533 dx’ 220
vV 2T /d ( )

the European call option price can be written in terms of the cumulative distribution

frequency of the Normal Distribution, N(.). Namely,

E.= SN(d)) — EeT"*"N(dy), (2.21)

29



CHAPTER 2. THE BLACK AND SCHOLES PARADIGM

where
In (£ 152 At
i = n(z)+(r+50°%) | (2.22)
oV At
and

In (%) + (r — %UQ)At

d p—
? oV At

= dy — oVAL. (2.23)

The European put option, E,(S,t), is similarly derived using the following payoft

function,

P(S)=(FE - 5,0)" = max(E — S,0). (2.24)

Since the payoff for a European put is £ — S, the above steps are used to find,

E, = —SN(—dy) + Ee "™ N(—d,), (2.25)

where d; and dy are as given in (2.22) and (2.23).

So, this is the derivation of the Black and Scholes formula using the various assump-
tions and a partial differential equation formed using a replicating portfolio. To
finalise this chapter on the Black and Scholes paradigm, we will look at the pricing

problem in a path integral framework.

2.5 Path Integral Framework

So far in this chapter we have given a presentation of the Black and Scholes paradigm
and the development of their equation and formula. The investigation is a good step-
ping stone in understanding the motivation of the thesis. The proceeding chapters
present some of the previous work and introduce new techniques to the pricing of

options in a path integral framework. The path integral framework developed is
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based on the Black and Scholes paradigm and uses some of the ideas presented so

far in this chapter.

The path integral used in this thesis was developed by Chiarella et al. (1999). The

derivative security or option price f(x,t) is given by a Feynman-Kac formula

f(zo,t0) = e "TE, [g(zr)] (2.26)

where z is the log of the underlying, ¢ is time, 7" is the expiry date, g(.) is the payoff

function and E}, is the expectation at ¢, generated by

dr = rdt + odW (t) (2.27)

where W (t) is standard Brownian motion.

Since Fy, is the expectation with respect to the transition probability distribution

function from (xg,ty) to (z,T), represented by 7w (z, T'|zo, to), (2.26) becomes

f(wo, tg) = e~ "=t /g(x)ﬂ(x,T\xo,to)dx. (2.28)

The interval (to,T") can be subdivided into K intervals, to, 1, ..., tx_1,tk, ..., LK, SO

that (2.28) can be related to the option price over the subinterval ¢5_; to ¢, namely

f(:l:k,l,tk,l) = e_r(tk_tk_l)/f(.Tk,tk)ﬂ'(.Tk,tk’l'k1,tk1)d£[k. (229)

At this point Chiarella et al. (1999) observe that time has been discretized but the

price dependence is continuous and so (2.29) can be rewritten as

fk_l(l‘k_l) = €_r(tk_tk_l) /fk(l'k)ﬂ'(l‘k,tk|$k_1,tk_1)dl‘k, (230)

with time dependence of f denoted by the superscript k. Since 7(zy, tg|Tr_1,tx_1)
satisfies the Chapman-Kolmogorov equation, a repeated Chapman-Kolmogorov equa-

tion is used in Chiarella et al. (1999) namely,

(2, talz1,t1) = /W(xn,tn|x2,t2)7r(x2,t2|xl,t1)dx2, (2.31)
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to formulate the expectation as a path integral. Therefore, (2.28) is transformed to

a path integral by multiple use of the Chapman-Kolmogorov equation. As stated

earlier, the time interval ¢, to T is subdivided into K intervals of length At =

(T —to)/ K, with t, =ty + kAt and the transition probabilities become

(ZEK,tK|l'0,t0 /dZEK 1/dl‘K 2. /dZEK_k.../dZEQ/dl'l

X T, tr|er—1,tk-1) X T(Xx_1,tk_1|TK_2,TK—2) ..

X (XK ks t— | T K — (ke 1)s LR~ (k1)) - - -

X W($2,t2|l‘1,t1) X 7T(l'1,t1|$0,t0).

(2.32)

For small time intervals, At, the transition probability density for (2.27) is approx-

imated by a normal density so that,

m(x, t + At|x* t) = #6—(($—$*)—7’At)2/202At'

V2mo2At

Substituting (2.33) into (2.32) gives

((w1—z0)—1At)2 /202 At

T( Tk, L |To, T
™k, txloo, o) = V2mo2 At /K 1 /

R K-1 diy
e ,}_[1 V2ro2 At
where,
K-1
A= (zpy1 — ) — TAL)? 202 At.
k=1

(2.33)

(2.34)

Equation (2.34) becomes the path integral expression for w(x g, tx|xg,to) as n — 0o

in the limit of finite dimensional integrals, therefore, the option pricing formula

becomes
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f(xo,to) = et =to) /g($K)7T($K,tK|$0,t0)dIK

:€_r(tK_tO)//.../W($1,t1|l‘0,t0) X7T(l'2,t2|$1,t1)...

X T(xg_1,tk—1]|Tk—2,tk—2) X T(Tx, ti|Tr_1,tK-1)

X g(xg)drg,drg_q ... dredr. (2.35)

Integrating successively with respect to each zy, where k = K, K —1,...,1, equation

(2.35), reduces to

oo

() = emt/ T(2hy trlr1, teo1) fF (21 day, (2.36)

— 00

where f*1(z,_1) = f(zr_1,tr—1) and fX(zx) denotes the payoff function g(xy).
Given that the underlying S follows a geometric Brownian motion represented by

dS =rSdt + o SdW (2.37)

for 0 < ¢ < T and o is a constant volatility, Chiarella et al. (1999) transforms (2.37)

to incorporate unit diffusion coefficient and an infinite interval.

Firstly, the underlying is normalised by the exercise price, namely S = S/X and
with

= /—dS— L), (2.38)

g

giving a representation of the underlying on an infinite interval. On applying Ito’s

Lemma,

d¢ = l(r - %UQ)dt + dW (t), (2.39)

g

¢ can now be written as a time dependent variable, namely

1 1
& =68 + ;(r - 502)t + W4, (2.40)
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from which we conclude that

& ~ N(& + l(7“ — 102)15,15). (2.41)
o 2

Using the fact that & is normally distributed, the transition probability density

function (2.34) becomes

1
m(ép, T|€ t) = —— e*((éT*\/2(Tft)u(£t7T*t))2/2(T*t))’ (2.42)
27(T —t)
where
1 1 1
w(&, T —t) = ——|¢& + =(r— =) (T - 1)].
(@ T 0= mslet = 30T~ )

So, substituting (2.42) into (2.36) gives (1.3) namely,

e—rAt o0

[ (o) = N

where At =), — t;—1 and p(&x—1, At) is given by (2.42).

e~ G- A0)? £k (/O A1E Vg, (2.43)

This is the path integral that is going to be used throughout the thesis. The ex-
ponential in (2.43) is in a form very similar to properties associated with Hermite
orthogonal polynomials. The path integral (2.43), has only an analytical solution at
tx (the first time step), when the payoff function, fX(£x) is known. All subsequent

time steps need to be solved using non-analytical methods.

As described in the previous chapter, Chiarella et al. (1999) use a Fourier-Hermite
series expansion to represent the option pricing function f*(£;). Using the recursive
nature of this method, the option price, f°(&) is found by solving for the coeffi-
cients of the Fourier-Hermite series. Chapter 3 gives a presentation of the method

and chapter 4 details a normalised version of the same technique.

The subsequent chapters utilise the same path integral (2.43) using interpolation

polynomials and various quadrature rules. These methods offer an alternative to the
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Fourier-Hermite method. These new methods are applied to a European, American

and Barrier option.
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Chapter 3

Fourier-Hermite Series Evaluation

The approach used in this chapter closely follows and is a summary of the method
presented in Chiarella et al. (1999) which is crucial to the understanding of further
developments in the current work. This spectral method is based on the particular
form of the integrand of the appropriate path integral of the problem at hand. The
method links the function representing the underlying by using a Fourier-Hermite
series expansion, with the coefficients of the series from one time step linked to the
coefficients of the next time step. The process is repeated until the final time step,

at which stage the final option price is evaluated using a pricing polynomial.
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3.1 Introduction

A presentation and analysis of the method and techniques used by Chiarella et al.
(1999) is made in this chapter. The method presented involves the use of Hermite

orthogonal polynomials and Fourier series.

The first part of the integrand in the path integral (2.43) (a weight function in the
form of a Gaussian) is in a form appropriate to be applied to Hermite orthogonal
polynomials and the properties associated with these types of polynomials. The
aim of this method is to represent the underlying in a Fourier-Hermite series. As
with most Fourier series, the objective is to find the coefficients of the series. These
coefficients are determined by using the orthogonal properties of the Hermite poly-
nomials. A set of recurrence relations are formed which are in turn used to explicitly
evaluate the coefficients of the Fourier-Hermite series. The recurrence relations are
expressed so that the coefficients of the polynomial, at the final step, is used to

evaluate the option price.

One of the advantages of the method employed is that the underlying is represented
by a polynomial. This allows for a set of option prices to be found for a set of
model parameters. Most methods determine only a single option price whereas this
spectral method allows for multiple prices. Also, approximating the hedge ratios are
easily determined by differentiation, given the pricing polynomial approximation is

smooth.

Section 3.2 introduces the Fourier-Hermite series as a representation of the underly-
ing. With the use of various Hermite polynomial and their mathematical properties,
a link between the coefficients is formed from one time step to the next. The link,
in the form of a recurrence relation, is used to find the elements of a 2 dimensional
matrix. This upper triangular matrix is used to modify the coefficients from one

time step to the next, until the final option price can be evaluated.
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In sub-sections 3.2.1 and 3.2.2, the relationship built in the previous section is ap-
plied to evaluate a call and put option price respectively. The implementation of
both types of option prices differ due to the payoff function used at the expiry date
of the option. Since the path integral is backward recursive, the payoff function is
used firstly to allocate the first set of coefficients in the form of a vector. Given the
difference in payoff functions, the initial coefficients will differ but all subsequent

steps remain the same in the process of evaluating the option price.

Sub-section 3.2.3 will present a thorough analysis of the method applied to Euro-
pean options. The analysis will be based on the comparison of the Fourier-Hermite
series expansion method with the analytical solutions obtained by Black and Scholes

formula.

Section 3.3 investigates the same method applied to an American put option. The
major difference is the path integral set-up. Since an American option can be exer-
cised at any time during the life of the option, the integral is split into two parts.
The two parts represents whether or not the option is being exercised. So, one of the
issues in the evaluation of the option price is where do we exercise? In the imple-
mentation, the exercise component is derived using the payoff for a put option and
the non-exercise part is similar to the European put, with the interval of integration
being the difference. Sub-section 3.3.1 will present an analysis of the method applied
to an American put option. The analysis will compare the results obtained by this
method to those evaluated by a Binomial tree method. Some further results will

also be presented in chapters 5 and 6.

3.2 European Options

The first derivative security price to be evaluated is a European option. A European
option allows the holder the right (but not the obligation) to exercise the option at

the final expiry date. The European option price therefore is evaluated depending on
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the time to expiry, 7', the volatility of the underlying, o and the short-term interest

rate, r. The volatility and interest rate are constant throughout the life of the option.

The path integral, as presented in Chapter 2 for k = K, K — 1,...,1, is given by

—rAt 00
PG = T [ VBRI ) des (3.1
where
_ b
(&) = fli/;—; ) (3.2)
and
b= %(r — %O’Q)At. (3.3)

The aim of this spectral approach is to represent f*~1(£, ;) in a form that allows
its use in subsequent time steps. The appropriateness of this method is due to the
form of the exponential (Gaussian) in the integrand. Given the Gaussian form is
similar to the weighting function of Hermite polynomials, the properties associated

with these types of polynomials can be utilised.

Namely, the underlying, f*~1(¢, ), may be represented by a Fourier series of Her-
mite polynomials, with oz’(;*l being the coefficient of the Hermite polynomial term
H,(&k-1). The series is fixed to a finite number of basis functions N. This repre-
sentation, with the use of further substitutions and the properties of the Hermite
polynomial, will form a set of polynomial representations for the underlying. So,

the form of f*~1(&,_,) can be expressed as,

N Gm) 2 D ol Hy (Gm). (3.4)

q=0

With the Hermite polynomial properties,

Ho(t) =1, Hy(t) =2t (3.5)
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H, (vt +b) =2(vt +b)H,_1(vt+b) —2(n — 1)H,_s(vt+0b) for n>1 (3.6

%Hn(vt +b) = 2onH,_ (vt +b), (3.7)
% /_ Z Ho(t)e ™ di = 1, (3.8)
% / Z Hy(t)e " dt =0, (3.9)
and
erfo(z) = % /:o e dt =1—erf(z). (3.10)

The use of the Hermite polynomials and various properties associated with them,
allow an expression (recurrence relation) to be formed. This will enable the coeffi-
cients of one time step to be expressed in terms of the coefficients of the previous
time step. The process begins with the allocation of the coefficients at the first time
step. At this initial time step, the coefficients for fX=1(¢,_|) are evaluated, with
(&) being represented by the payoff function. The payoff function is in such a
form that there is an analytic solution to the path integral (3.1) at this time step.

In the proceeding steps, a Fourier-Hermite series expansion for f*(&;) in (3.1) will
also be introduced to complete the expression. The coefficients found for fX=1(&,_ )
are used to find the coefficients of the subsequent time steps until the coefficients of
10(&,) are evaluated. The polynomial formed for f°(&,) is the representation of the
required option price. This polynomial can then be used to find any option price or

hedge ratio.

To begin the process of determining the coefficients, (3.4) is substituted into (3.1),

to produce,
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—rAt

N x
S ok H, (Ger) = © / (6 mE)) fE(VIAT &) d (3.11)
q=0 \/7_T —00

The aim is to determine the coefficients o/(;*l in (3.11). Therefore, (3.11) needs

transformation taking into consideration the Hermite polynomial H,(&,_1) and the

form of the integrand.

To this end, the following orthogonality property of Hermite polynomials

1 —
o men (3.12)

. Y
0, otherwise

ml2m /7 / e~ Hp (1) Hy (1) dt = 6y = {

may be utilised to determine the coefficients o/q“*l. Thus, from (3.11) we have

N
1

_— e Ci- 'H,, E 1H

\/7?/_ §k1 Oé qfkldfkl

q=

—rAt

-7 [ et [ e’ (a6 dede

and so the left hand side is further simplified by using property (3.12) to give

efrAt e8]

" :2mm!\/7_r

{\F/ “le—r@ )+ [ (6, 1) dep | fH(VIDLEL) dé,

Qmml\/_/ P V2D &) I (&) déi, (3.13)

where,

Proposition 3.2.1. The integrand term,

V2At gL —byo —
V2AL e (V2L
Ln(&1) = =) (3.14)

,Uerl
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Proof. The analytical form (3.14) can be utilised so that the coefficients for the
(k — 1) time step can be determined. This can be achieved by modifying (3.13),
using the analytical form (3.14) and introducing a Fourier-Hermite series for time
step k. This will create a relationship between the coefficients from one time step

to the next. Given,

1 o
b6 = o [ G ) de (3.15)

Finding the analytical form of (3.15) can be assisted by firstly completing the square
of the index of the exponential within the integrand in (3.14). The reason for
completing the square is to maintain the exponential within the integrand in a form
suitable for the use of Hermite polynomials and their properties. This is achieved

using some simple algebra (see A.1.1 for a step by step evaluation).

viio  V2AtE, - br N {\/QAt & —b
V2AL UV 2AL

where 11(€,_1) and b are as defined by (3.2) and (3.3) respectively and

(6 — 1(€e))? + €2, = ] . (3.16)

v

v =v1+2At. (3.17)
Therefore, substituting (3.16) into (3.14) and rearranging gives

V2AT &, —b

)2 poo vEu_1  V2ALg,-b

ei( 2At vV2At )Hm(€k71> dgkfla (318)

e_( v
In(&) = ——=— |

where b is given by (3.3) and v by (3.17).

To assist in obtaining an analytical form for I,,,, the following substitution is required,

y = (R
V2At

and (3.18) is evaluated analytically as follows,
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\/75165
248t & —b At At
Il = S [, (2 VB,

,—2A M}Ek b) 00 . VIR &) — b y /2A
e T vtV H( ) dy,
VT o
\/_
,—2A 2A Ek b) Hm(\/QAiék*b) 3 19
’Um+1 9 ( * )
]

Since (3.14) is in an analytical form, (3.13) can be modified by substituting (3.14)
and replacing f*(&.) with a Fourier-Hermite series. This will transform (3.13) so
that property (3.12) is applied, which allows in turn a recurrence relation to be

k—1

obtained with a*~! expressed in terms of o*. Given,

V2AL 5k by

H (\/mﬁkfb)
————fH(V2At &) &, (3.20)

h—1 e At / V2At e
™o omml /T

and by performing a further substitution,

Um—l—l

VRALE - b
i ——
(3.20) is simplified to,

—rAt 9]
k=1 _ 67 —22 k
Om = 2m7nlvm\/7_T e € Hm(Z)f (UZ + b) dz. (321)

The final step required to obtain a recurrence relation between af~!

and o, is
to introduce a Fourier-Hermite series for f*(vz + b). This Fourier-Hermite series
is similar to (3.4), the major difference being the coefficients are for time step k.

Therefore,

N
= > b H, (&), (3.22)
n=0

and the Fourier-Hermite series (3.22) is substituted into (3.21). This will express

a1 in terms of o,
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efrAt oo N

k—1 _ —2z2 k
o, = W 7006 Hm(Z)ZO[an(UZ+b) dZ,

e—rAt

N o
_ k 2
—W;% / €T Hn(2)Hn(vz +) dz (3.23)

=0

Proposition 3.2.2. The coefficients a1 can be evaluated by the recurrence relation

N
af=l = eTrAl Z kA, (3.24)
n=0
where,
Ay = L T el () H b) d 3.25
m,n—m _006 m(Z) n('UZ"— ) Z, ( . )

with the following relations define the elements A, ,,

Ao =1 Ap = 20,

Agn = 20A0, 1 +2(n — 1)(v* = 1)Agpo, forn=23,....,N
(3.26)

Am,nzﬁAm,Ln,l, for m=1,2....N and n=2,3,...,N,
m

Apn =0 form>n.

Proof. Since (3.24) is an expression that links the a’s from time step k to k — 1, a
recurrence relation is built. This relationship is created by finding the elements of
the 2 dimensional matrix A from (3.25). The elements, A,,, are in a similar form

to (3.12).

To find the elements of matrix A, the initial elements are required. The matrix A

is used to modify the coefficients from one time step to the next. Therefore, the

coefficients a® ! are multiplied by A to give, a~2. This process is repeated for
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the proceeding time steps until o is found. So, prior to evaluating any coefficients,

the elements of matrix A require determination.

To start with, the element Ay is given by,

A070 200|U0\/_/ 72 HO )Ho('UZ + b) dZ,

1 °° 2
= — e * dz,
7.

and therefore using (3.8), Ago = 1 as given in (3.26).

Element A is given by,

A071 _Z H() )Hl(UZ + b) dZ,

200'1}0\/_ /
-~ / 2 Hy vz + b) dz,

1
= ﬁ/ 2ze ™% dz+—/ e dz, (3.27)

with the first integral in (3.27) being in the form of (3.9) and the second integral in
(3.27) is in the form of (3.8). So, Ap1 = 2b as given in (3.26).

Given the elements Ay and Ag 1, the subsequent elements Ay, are evaluated by,

AO,n 200|U0\/_/ 72 HO )Hn('UZ + b) dZ,

\/—/ [ (vz+b)H, 1(vz+b) —2(n—1)H, 2(vz+b)|dz,

1 o 2
== T / Quze * anl(/UZ + b) dz + QbA()’n,l — 2(71, — 1)140’”,2, (328)
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where we have used (3.6) to transform Ay ,,. The integral in (3.28) is evaluated using

the property (3.7) and integration by parts, to give,

1 00
AOn = — / 1)67222/0(71 — 1)Hn,2(/UZ -+ b) dz -+ 2bA0 n—1 — 2(71, — 1)A0 n—2s
) \/7_T . ) ’

= 2U2(n - 1)A07n_2 + 2bA07R_1 - 2(n — 1)A0,n—27

and so

Agn =2bA0, 1 +2(n —1)(v* —1)Ag, o forn=23 ... N. (3.29)

The solution to the elements A,, ,, are derived using the Hermite polynomial proper-
ties (3.6) and (3.7). Also, to assist in the evaluation of elements A,, ,,, the H,,(vz+b)
term in the integrand of (3.25) is replaced using (3.7). The reason for this replace-
ment is to complement the method (integration by parts) of evaluation of A,,,. A

proof for elements A,,,, can be found in appendix A.1.2. So,

2mmluma/T dzv2(n+1)

and using integration by parts, A,, , is transformed to,

1 © d1 1
Appn = ———— / e ? Hm(z)[ 7Hn+1(vz+b)} dz,

Ay = [_%ﬁ% /_ Z Hoor (07 +b) (%eZQHm(z)) dz]. (3.30)

The derivative in (3.30) can be solved using property (3.6) and the product rule.

Therefore,

d
(%engm(z)) = 2me " H,,_1(2) — 2z¢ % Hp(2),

— efZQ [QmHm_l(Z) — QZ'I_IW(Z)}7

= ¢ [~ Hpia(2)]. (3.31)
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So, to evaluate the element A,,,, (3.31) is substituted into (3.30). Since (3.30) is
expressed in a forward manner, rearrangement is required so that A,, , is expressed

in terms of A,,_1,-1. Therefore,

1 [ 1 1 1 [ .
Amn = - = Hn ble * —Hm d )
2mmlom | v2(n+1) /7 /_Oo +1(vz +ble ( +1(2)) Z]
1 1 1 1 *
- o = - Hm Hn b d 3
2mmlom | v2(n + 1) \/77/006 +1(2) Hypr (v + ) z]
1 m—+11 [* 5
B 2m+1(m + 1)lym+t [n +1 ﬁ . € m+1(2) Hny1(vz +b) dz} )
m+1
- n+1 m+1,n+1,
and so
n+1
Am n = m.ns
bl = T Am,
giving
Amp = EAmfl,nfl- (3.32)
m

It must be noted that when m > n elements A,,,, = 0.

O

The expression for Ay, and A,, ,, in (3.26) are different to those presented in Chiarella
et al. (1999). Since there are no proofs in Chiarella et al. (1999) for the elements of

matrix A, it is difficult to ascertain where the differences have occurred.

The relation (3.25) gives the elements of an upper triangular matrix with leading
diagonal elements being one. For particular model attributes, the elements of the
Matrix A are evaluated by the relationships expressed. The next part of the process

K-1

is to firstly find the values of a™ 7", since it is the first step in the backward recursive
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path integral framework. Using the values of the Matrix A and a®~!, a recurrence
relation can be found and as such, the value of a European call and put option price

can be evaluated.

For each particular type of European option (call or put), the values of a differ
because of the payoff function. Therefore, the af~! values will require separate
evaluations. The next two sections will present the af =1 values for the call and put
option respectively. These option pricing solutions are obtained by the following
expression, which is derived from (3.24), and depending on the number of time

steps K,

aO — efT(Kfl)AtAKflaKfl' (333)

In implementing this method and taking into consideration the expression (3.33),
the two major issues to ponder are the values of the matrix A and a®~!. The
coefficients of the option price polynomial (a’) are determined by this matrix mul-

tiplication.

Since the elements of matrix A have been found in this section, the next two sections
will describe the relationships to find the coefficients for the first time step K — 1.
These coefficients are determined using the payoff functions for a call or put option.
Since the payoffs differ for each type of option, the coefficients are evaluated using

different f¥ and intervals of integration.

3.2.1 European Call Options

The next step in determining an option price using the spectral method, is to calcu-

0 are the coefficients

late the coefficients of the final time step (a”). The values in
of the option price polynomial (a Fourier-Hermite series). These coefficients are
evaluated by (3.33). Since the elements of matrix A can be found using the rela-

tionships (3.26) determined from the previous section, the final requirement is to
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find the vector a® 1.

To calculate the values of a*~!, consideration must be given to the payoff function
for the type of option being modeled. Therefore, for the first time step and recalling
(3.13), namely

—rAt

ap ' = 2mm'\/_/ FE(V2At Ek) L (Ex) ke,

where the payoft function for a European Call option is given by

FE(Er) = (e = 1), (3.34)

then substituting the payoff function (3.34) into (3.13) gives

—rAt [ee]
K1 _© VEAtotk _ 1)1 d 3.35
Aoy 2mm'ﬁ 0 (6 ) m(gK) £K7 ( . )

where I,,,({x) is as given in (3.18) and explicitly in (3.19).

The interval of integration in (3.35) is now over [0, +00) since the payoff only occurs
for positive {x. Given the form of (3.35), a recurrence relation will be created to
link the coefficients of the first time step. The integral in (3.35) using (3.19) may
be simplified to obtain an analytical form for the o~ for m = 0 and 1. All other

subsequent values are derived by a recurrence relation linking a1 to o5 ~1. So,

—rAt

_ € > toék =

—rAt |:/ \/EUE \/ﬁsK (\/QA 5]{ )de

2mm'\/7_r Uerl

- [CerEen i, (VAL >d&<]

To simplify the above, the following substitution is required,

 V2AGE —b

v
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which gives,

e At [ 2 * 2 |
- o(vz+b) —z _ —z
= o va _/_b e e * Hpy(z)dz /_b e " Hy(2) dz_ :
e " | ab /OO ovz —z2H ( ) d /OO —z2H ( ) d ] (3 36)
=——F|e e’e m(2) dz — e m(z) dz|. .
2mmlumy/m | -b b |

K-1
m

To find the values of «;~', redefining (3.36) to a neater form, with the following

expressions will assist in the process of finding these values,

b 1 o >
Ve (——) = N / . e’ e " Hy(2) dz,

v

guy2

= / e %) H, (2) dz, (3.37)

and

v

Qﬁn(—é) = % /O: e H,(2) dz. (3.38)

The derivation of W¢ (—£) can be found in A.1.3. Therefore, (3.36) is redefined by,

v

—rAt b b
k-1 € {eab\p;(__) — Q¢ (——)]. (3.39)

m 2mmlym v v

K-1

", a recurrence relationship for ¥¢ and )¢ is

To determine all the values of «
built. In finding the relationships in ¥¢ and €2¢, the various Hermite polynomial
properties (3.5) - (3.10) described in the previous section are used. The relation-
ship requires that the initial values are found first. It is clear that the analytical

forms found for these initial terms are going to require attention when implemented.
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Since the complementary error function,

erfe(x) = 2 /00 e dt (3.40)
77,

is to be used, a suitable and accurate math library is needed. Computer algebra
packages like Maple and Matlab have an extensive math library including the com-
plementary error function. These packages also allows for very high accuracy. At
this point it must be stated that the use of these computer packages are sometimes
not the most efficient and quickest options in the implementation of this method.
These packages are excellent to use for testing and for the accuracy of math library
functions. However, due to the overheads associated with GUI and operating system

constraints, speed of processing is decreased.

An alternative to using a computer algebra package, is to implement the method
using a computer programming language like FORTRAN. This programming lan-
guage, like others, only allow for double precision (16 digit accuracy) for the com-
plementary error function (as well as various other math functions). Which means
that accuracy is forsaken but speed of processing is increased markedly, since GUI

is not as sophisticated.

Proposition 3.2.3. So, to find the coefficients, a’* =, the analytical form of U¢ and
Q¢ are required. The proofs for W¢ and Q¢ can be found in Appendiz A.1.3 and A.1.4.

Since the Hermite polynomials are formed using a two term recurrence relation, Vg

and U require evaluation. Namely, they are given by (A.9) and (A.15) as

15242 oo 152,,2
o by_e ~(-%p)? _ ¢ b oy
wi(-2) = = /_2 eI Hy () ds = S—erfe(—2 = T0), (3.41)
and
., b 1 s 1 b
Qo(_;) = 7= e “ Hy(z)dz = aerfc(—;). (3.42)
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The analytical form of WU§ and S are,

152,200 b ov 1 b2y
\Iﬂi(__) = e i 2_€ch(_; - 7) ﬁe )+ b), (3.43)
and
b 1 o 2 1 by2
c(_ "\ — -z — *(5)
Q5( U) \/7?/_% 2ze " dz \/7_Te . (3.44)

The proofs for \Ilf(—%) and Qﬁ(—%) are in Appendiz A.1.3 and A.1.4 and are given
by (A.13) and (A.17).

Finally, the general values V¢,(—2) and QS,(—2) are evaluated, with proofs in Ap-
pendiz A.1.3 and A.1.4 and given by (A.14) and (A.18) namely,

and

an(—é) :% /_Oo e [2,2Hm1(z) —2(m — 1)Hm2(z)] dz,

v

b
v

1 b2 b
= WrH _(=2). 3.46
\/7_1'6 m 1( ’U) ( )

Proposition 3.2.4. Since we have solved the initial and general cases for V¢ and

K-1

" can be formed, namely

Q¢ a recurrence relation for o

K1 O e A -’ g ( b) +af! (3.47)
o —_ e v m—2—— [ y .
2m |27 1(m — Dlom—1y/x 20— m—1
with
—rAt L o 9 b
aé(fl :e - leab+4a v e?"fc(—— _ %) _ €TfC(——):|, (348)
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and

b
Q-1 :ge—mﬁabjtigzwerfc(_; B %U) (3.49)

Proof. The elements o~ with m = 1,2,..., N can be formed from (3.39) and

using (3.45) and (3.46), viz

—rAt
K—1 € ob c b Lo ((®)2+ob) b
S Ve (— ) 4+ e @ g (D
a le (UU e U)+\/—6 1( v)

mo T ommlpm T
1 by b
- g |
(3.50)
and so
—rAt
K-1_ € abygsc _E

U = G {ave ve o ( U)} (3.51)

K=1 and ofi~1. Given (3.39) for

The next step is to find a relationship between « -

coefficient m — 1,

—rAt
K-1 __ € oby1,C b c b
Q-1 = 2m_1(m _ ].)!Um_l le \pmfl(_;) - le(_;):|7

. K—1
therefore, rearranging «,.~; for,

b b
Wy (—) = [9;_1<—;> e (i — 1)!vm‘1a£§:ﬂ , (3.52)

and substituting (3.52) into (3.50) gives
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efrAt b
! “ommipm |7 (9;1(__) + ey (m — 1)!aﬁ%)] ;
mmlym v
efrAt r b
= S Tom ovQC, (—=) 4 ove2m(m — 1)!1/”1045%] :
mmlom v
—rAt K—1
e b T
e 790 _ m
—rAt
g € b2 b
= -G’ H Y K—1

where (3.46) has been used in the final step. So, (3.53) achieves a relationship
between coefficient m and m — 1. The expression (3.53) are the a®~! values for

m > 2, with the following initial conditions,
_ . oboes D e, b
alf =ty - 52

_e—rAt ab+i02v b 3.54
ek EA S| BCET)

and

g

_ b ov
=—e
4

— ). (3.55)

rAtJrabJr%o'QvQ 67’fC(—
2

O

So, with all values for a®~! determined, the European call option price can be

found. The price is evaluated by solving (3.33). Subsection 3.2.3 will analyse the
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call option prices taking into consideration the number of basis functions and time

steps used, along with the model parameters.

The next step is to evaluate the coefficients for a European put option.

3.2.2 European Put Options

To determine the recurrence relation for a® ~! for a European put option, the math-
ematics and process involved are similar to that of the European call. The major

difference is the payoff function for the put option namely,

FEEr) = (1 —e™5), (3.56)
The expression (3.13) differs due to the different payoff function for a put option for

which the interval of integration is (—oo, 0]. Therefore,

—rAt 0
K—1 €

o 2T J_ oo
As with the European call option, substituting (3.19) into (3.57) gives

(1 — VAo [ (k) déxe. (3.57)

—rAt b

a1 = 26'7\/_ [/ e % H,(2) dz — e"b/ ’ Ve H,,(2) dz|, (3.58)
mTmvT T - —00

and redefining (3.58) with

b g~v -
PP (_;) — / e~ (=% Hm(z) dz, (3.59)
and

an(—é) = % /_E e H,,(2) dz. (3.60)

v
where U2 (—2) is in a similar form to V¢ (—2) in (3.37) and Q%,(—2) is similar to

Q¢,(—2) in (3.38). Therefore, (3.58) is defined by,
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okt = fop L0y g (0] (3.61)

m 2mmlom | ™ v o
Similarly to the European call option, a recurrence relation is required. The only
differences being the form of (3.61) and the interval of integration. The mathematics
applied is similar, with use of the same properties and techniques. An alternative

definition for the complementary function is also used in the evaluation of European

put options. Namely

2 [
erfe(x) :ﬁ/x e dt (3.62)

Proposition 3.2.5. The values of WP are,

qf{;(—%) = 65; - erfc(% +5), (3.63)
\1111’(_9) _overr” erfc(% + (;—U) - %e((z)%r"b), (3.64)
V(=) = oW (=) = e B (=), (3.65)
where the proofs for WP are found in A.1.5.
Proposition 3.2.6. The values of (27,
() = Lerfe(2), (3.66)
ij(—% _ _% -2 (3.67)
an(_g) _ _%6—<%>2Hm_1(_g), (3.68)

where the proofs for QP are found in A.1.6.



CHAPTER 3. FOURIER-HERMITE SERIES EVALUATION

Since the initial and general cases for UP and P have been solved, the following

recurrence for o =1 holds

K-1_ 0 e ~ b)+ Kl (3.69)
[0 = e ‘v m—2\—— (e .
2m [ 2m~Y(m — 1)lvm—ty/7 o met

for m =2,3,... N, with initial conditions,

—rAt b s b
Ozé(—l :e 5 |:6ch(;) _ gobtiotv eT’fC(; + %)], (370)
K-1 9 —rAttobtlo?r? b ov
- 7 - T 5 ) 71
o 7 i erfc(v + ) (3.71)
K-1

Given the values for « and matrix A, the option price polynomial is formed
for both the put and call options. The following section will analyse the method.
Consideration will be given to the issues which affect the accuracy and speed of

evaluation of the option prices.

3.2.3 Results and Analysis

One of the advantages of the Fourier-Hermite expansion method is the explicit rep-
resentation of the underlying. Since the path integral is based on the Black-Scholes
paradigm, comparisons are easily evaluated. These comparisons can be made nu-

merically and graphically.

Due to the underlying being represented by a polynomial (Fourier-Hermite series),
the errors associated with this method will vary, due to the oscillatory nature of the
Fourier-Hermite series, for different asset values. Figure 3.1 represents the Black-
Scholes formula as a curve and the corresponding Fourier-Hermite expansion for a

set of model parameters.
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1.5+

0.5+

X

Figure 3.1: A Fourier-Hermite expansion (blue) and Black-Scholes formula (red)
for a European call with ¢ = 0.20, » = 0.08, T' = 0.25 and strike price, X = $100.
The Fourier-Hermite expansion was derived for 4 time steps and 32 basis functions.

The vertical axis is the option price and the horizontal axis represents the trans-

formed variable £. Recalling that,

1
=—In(S
€= (s),
AssetValue
h is th lised t pri e, S=————7—).
where S is the normalised asset price (i.e. S SirikePrice

Figure 3.2 are the absolute errors when comparing the Fourier-Hermite expansion

result to the Black-Scholes formula for a European call option.

o8



CHAPTER 3. FOURIER-HERMITE SERIES EVALUATION

2e-07 -

0.5 1 15

X

Figure 3.2: The absolute error of a Fourier-Hermite expansion vs Black-Scholes
for a European call K =4, N = 32, 0 = 0.20, » = 0.08, T" = 0.25 and strike price
of $100.

It is clear from figures 3.1 and 3.2 that as the asset price moves further away from
the strike price, the Fourier-Hermite expansion method deteriorates, as expected. It
must be also stated that the deterioration occurs for options that are rarely written.
Figure 3.2 also shows the oscillating nature of the Fourier-Hermite series. As can
be seen in figure 3.2, some asset values will give better approximations than others

(refer to —1.0 < ¢ < —0.9, compare to £ = 0).

Table 3.1 shows a numerical representation of the Fourier-Hermite expansion method
for a set of model parameters and 4 time steps. In the various tables presented in
this thesis, the absolute error is used to measure the accuracy of the methods. The
absolute error is calculated by evaluating the difference between the approximate

value compared to the so called exact value.
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Basis Asset Black- Fourier- Absolute
Functions Price ($) Scholes Hermite Error
8 80 0.069017900 0.10042273  3.14E-2
16 0.068409100 6.09F£—4
32 0.069023763 5.86E—6
64 0.068723077 2.95FE—4
128 1.1449292 1.08£0
90 1.0254530 1.0088962 1.66 -2

1.0248461 6.07E—4

1.0254590 6.00E—6

1.0254570 4.00E—6

1.0243229 1.13E£-3

100 5.0169820 5.0308067 1.38E—-2

5.0175159 5.34E—4

5.0169880 6.00E—6

5.0169860 4.00E—6

5.0169575 2.45E—-5

110 12.620446 12.602872 1.76 -2

12.620203 2.43E—-4

12.620456 1.00E—-5

12.620452 6.00E—6

12.620058 3.88E—4

120 22.066563 22.092199 2.56 E—2

22.066622 5.90E—-5

22.066564 1.00E—6

22.066533 3.00E-5

21.817455 2.49E—-1

Table 3.1: Fourier-Hermite - European call option for 4 time steps, ¢ = 0.20,
r = 0.08, T' = 0.25, strike price of $100 and for various basis functions. Single
precision was used to calculate the values.

Given the model parameters (¢ = 0.20, r = 0.08, T" = 0.25, strike of $100) and
the number of time steps equal to 4, table 3.1 shows that approximately 32 to 64
basis functions gives the best results. Figure 3.3 shows the errors for three different

expansions (varying basis functions).
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02 0.4 06 08 1

X

Figure 3.3: The absolute error of a Fourier-Hermite expansion vs Black-Scholes
for a European call with K = 4, N = 16 (red), N = 32 (blue), N = 64 (yellow),
o =0.20, r = 0.08, T = 0.25 and strike of $100.

Figure 3.3 reinforces the earlier statement that as the asset price moves away from
the strike price, the errors associated with Fourier-Hermite expansion method gen-
erally increase. Figures 3.2 and 3.3 also demonstrates the oscillatory nature of the

series solution.

So far the analysis has looked at approximations using single precision (8 digits).
By increasing the precision to double precision (16 digits) and given the form of
the recurrence relations, a marked improvement is expected. Figure 3.4 shows the

absolute errors for a particular expansion compared to the Black-Scholes formula.
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4e-12 A

3e-12

05 1 15
X

Figure 3.4: The absolute error of a Fourier-Hermite expansion vs Black-Scholes for
a European call K =4, N = 64, 0 = 0.20, r = 0.08, T" = 0.25 and strike of $100.
The comparison is made with double precision accuracy.

The errors pictured in figure 3.4 have the expansion within 107!2 of the actual (Black-
Scholes) price. If we compare this to the data in table 3.1, there is an improvement
of the order of one million. This improvement is achieved by just increasing the
precision of the implementation. Figure 3.4 also shows the trend, as the asset price
drifts away from the strike price, the approximation deteriorates. The magnitude of

deterioration is relatively the same when comparing figures 3.2 and 3.4.

Table 3.2 presents some numerical results using the same model parameters as table

3.1, but is performed with double precision.
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Basis Asset Black- Fourier- Absolute
Functions Price ($) Scholes Hermite Error

8 80 0.06901773330119400 0.10041898548 3.14E-2

16 0.06840482653 6.13E—4

32 0.06901884376 1.11E—-6

64 0.06901773314 1.56 E—10

128 0.06901772269 1.06 E—8

90 1.025453734133940 1.008891303993 1.66 -2

1.024841496754 6.12E—4

1.025454269903 5.36 E—7

1.025453734209 7.60E—11

1.025453734141 8.02E—12

100 5.016980606262390 5.030800866969739 1.38FE—2

5.017510042390387 5.29F—4

5.016982239341966 1.63E—6

5.016980606296171 3.38E—11

5.016980606262366 2.40FE—14

110 12.62044850198304 12.602865397914 1.76 -2

12.620197548190 2.51E—-4

12.620451132365 2.63E—6

12.620448501957 2.58E—11

12.620448501979 3.26E—-12

120 22.06656020160710 22.09219252269 2.56 E—2

22.06661688376 5.67TE—5

22.06655832124 1.88FE—6

22.06656020154 6.13E—-11

22.06656020231 7.32E—-10

Table 3.2: Fourier-Hermite - European call option for K = 4, ¢ = 0.20, r = 0.08,
T = 0.25, strike of $100 and for various basis functions. Double precision was used
to calculate the values.

Table 3.2 shows that the best results occur when 64 to 128 basis functions are used.
Since the precision of the implementation has increased, the time taken to evaluate
these prices increase. Also, the best prices in double precision seem to occur with

more basis functions, this means that further computation is required.

In table 3.1 the best results occurred when 32 or 64 basis functions were used. If we
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compare the results for 8, 16 and 32 basis functions in tables 3.1 and 3.2, the errors
obtained are slightly better in double precision. So, the question remains whether a
small improvement in the evaluation of the option price is worth the extra compu-
tational time caused by an increase in the precision of implementation. It is clear
though, with large number of basis function, that in double precision, prices are

evaluated much more precisely.

Figure 3.5 graphs the absolute errors for various time step expansions, with the

number of basis functions N fixed at 32.

4e—-08 A

0.2 0.4 0.6 0.8 1

X

Figure 3.5: The absolute error of a Fourier-Hermite expansion vs Black-Scholes for
a European call with K =4 (red), K = 8 (blue), K = 16 (green), K = 32 (yellow),
K = 64 (black), N = 32, 0 = 0.20, » = 0.08, T" = 0.25 and strike of $100. The
comparison is made with double precision accuracy.

Figure 3.5 shows that as the number of time steps increase, the errors tend to im-
prove. However, it must be stated that some of the improvements are minor. It is
also clear that as the number of time steps increase, so does the time taken to eval-
uate the option price. Therefore, one needs to determine whether the time required

to obtain certain accuracy is beneficial.
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Table 3.3 shows the prices for a European call with the strike price set to the asset
value of $100. The prices are for a varying number of time steps and 32 basis func-

tions were used.

Time Black- Fourier- Absolute
Steps Scholes Hermite Error
4 5.016980606262390 5.016982239341966  1.63E—6

8 5.016981241524321  6.3bE—T7

16 5.016980979787151  3.74E-T7

32 5.016980887803363  2.82E -7

64 5.016980849554562  2.43E -7
128 5.016980832150103  2.26 -7
256 5.016980823852529  2.18E -7

Table 3.3: Fourier-Hermite - European call option for 32 basis functions, o = 0.20,
r =0.08, T = 0.25, asset price of $100, strike of $100 and for various time steps K.
Double precision was used to calculate the values.

The data in table 3.3 reiterates the point that after 32 time steps, the improvement
is marginal. Figure 3.6 also shows the absolute errors for various time step expan-

sions, with the number of basis functions fixed at 64.
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Figure 3.6: The absolute error of a Fourier-Hermite expansion vs Black-Scholes for
a European call with K =4 (red), K = 8 (blue), K = 16 (green), K = 32 (yellow),
K = 64 (black), N = 64, 0 = 0.20, » = 0.08, T' = 0.25 and strike of $100. The
comparison is made with double precision accuracy.

Figure 3.6 shows similar patterns as those described previously. They include the
peaks and troughs in the errors and the deterioration of the approximations as the

asset prices move away from the strike price.
Table 3.4 shows the prices for a European call with the strike price set to the asset

value of $100. The prices are for varying number of time steps and 64 basis functions

were used.
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Time Black- Fourier- Absolute
Steps Scholes Hermite Error
4 5.016980606262390 5.016980606296171 3.38FE—11

8 5.016980606267894 5.50F—12

16 5.016980606264234 1.84F—12

32 5.016980606263993 1.60FE—12

64 5.016980606264063 1.67FE—12
128 5.016980606262296 9.40FE—14
256 5.016980606260944 1.45FE—12

Table 3.4: Fourier-Hermite - European call option for 64 basis functions, o = 0.20,
r = 0.08, T = 0.25, asset price of $100, strike of $100 and for various time steps K.

Double precision was used to calculate the values.

Figure 3.6 and table 3.4 also show that errors can improve with an increase in the
number of time steps. However, in the case of N = 64 when ¢ is less than —0.7,
the absolute error for K = 16 is better than for K = 32 and K = 64. Table 3.4
shows small improvements as the number of time steps increase. The issue again

arises whether the time taken to evaluate the price for the minimal improvement is

worthwhile.

We now investigate the Fourier-Hermite expansion method for the evaluation of Eu-

ropean put option prices. Figure 3.7 shows the errors for an expansion with 4 time

steps and 64 basis functions.
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Figure 3.7: The absolute error of a Fourier-Hermite expansion vs Black-Scholes for
a European put K =4, N = 64, 0 = 0.20, r = 0.08, T" = 0.25 and strike of $100.
The comparison is made with double precision accuracy.

Table 3.5 shows the prices and errors for expansions of 4 time steps and varying

number of basis functions.
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Basis Asset Black- Fourier- Absolute
Functions Price ($) Scholes Hermite Error

8 80 18.08888506397669 18.12028631642989 3.14E-2

16 18.08827215721178 6.13E—4

32 18.08888617444142 1.11E—-6

64 18.08888506382045 1.56 £—10

128 18.08888505394765 1.00E£—8

90 9.045321064809460 9.028758634532931 1.66 -2

9.044708827429788 6.12E—4

9.045321600578635 5.36 E—7

9.045321064885542 761E—11

9.045321064820661 1.12E-11

100 3.036847936937940 3.050668197707927 1.38E—-2

3.037377373065952 5.29FE—4

3.036849570017532 1.63E£—6

3.036847936971743 3.38E—11

3.036847936937936 4.00E—-15

110 0.6403158326585500  0.6227327286612299  1.76 -2

0.6400648788657842  2.51E—4

0.6403184630408953  2.63E—6

0.6403158326328689  2.57E—11

0.6403158326560198  2.53E—12

120 0.08642753228261400 0.1120598529337736  2.56F—2

0.08648421444485786 5.67TE—5

0.08642565191656440 1.88E—6

0.08642753222133237 6.13E—-11

0.08642753317810308 8.95E—10

Table 3.5: Fourier-Hermite - European put option for 4 time steps, ¢ = 0.20,
r = 0.08, T = 0.25, strike of $100 and for various basis functions. Double precision
was used to calculate the values.

The absolute errors for the European put options in table 3.5 are very similar to
the corresponding call option. There are some minor differences for prices evaluated
using 128 basis functions. The similarity can be justified by analysing the payoff
functions (3.34) and (3.56). Since the payoffs are similar in form, the only two dif-

ferences in the evaluation in o' and o®~!. The recurrence relations (3.53) and
0 1

(3.69) to find the other a®~! values are the same for a call and put option. The
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matrix A is the same for a call and put and the coefficients for each option, a® are

evaluated using (3.33).

3.3 American Put Options

The American put option differs greatly to the European options presented so far.
An American option allows the holder to exercise his/her right at any time during
the life of the option. The major issue with an American option is, when is the best

time to exercise?

In the path integral framework (3.1) presented previously, the interval of integration
was over an infinite domain. For the American put, (3.1) will need to be partitioned
to take into account the point (barrier) where the option is to be exercised. There-
fore, the path integral will be split into two, with the first integral representing
the payoff or early exercise area and the second being the non-exercise value of the

American put option.

To help to distinguish the difference between the American put and the European

option, (3.1) becomes

efrAt o0

\/7_T —00

where V is the value of the American put option unexercised. If we denote F*~!

VEL, ) = e~ G r&))’ PR (VAL €,) dE,, (3.72)

as the value of the option at time ¢,_; and since an American put option can be
exercised at any time, £;_, is introduced to denote the optimal exercise point, then

FE (&) =

{Vkl(&g—ﬁy N R (3.73)

1—e-1 —co< & <& )
Since the American put option can be exercised at any time, the path integral (3.72)

is split into two parts,
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Vkil(fkfl) _ hkq(&_l) + € /OO ef(ék*u(ékfl))gvk(‘/zAt &) &y, (3.74)

where

71"At

.
W () = M e G mlE )P (1 — oVRRTEL) ge (3.75)

The integral in (3.75) is the payoff or early exercise component of the path integral

(3.74). The early exercise point &;_; is the value of ¢ which solves

VFL(E) =1 — et (3.76)

Equation (3.76) is an important part of evaluating the American put option price.

At each time step the value of £ is determined such that (3.76) is satisfied.

As with the path integral for European options, the following Fourier-Hermite series

expansions are introduced,

N
VEN &) 2 ) o H (&) (3.77)
q=0
and
N
R (Eny) ng YH, (&c1). (3.78)

With the American put option, the most appropriate manner in evaluating V° is to
treat the two integrals separately. Once recurrence relations are determined for the
coefficients of the Fourier-Hermite series, the two parts are joined for final evaluation

of the American put option price. Therefore, substituting (3.77) into (3.74) gives

e—rAt

N oo
> b Hy(€or) = WP (&) + VT /s: et VR (VRALG) day, (3.79)

q:O 2At

and substituting (3.78) into (3.75) gives
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efrAt

k
VR o n@m )P (1 oVEREY gy (3.80)

N
D T Hy (&) =
q=0

So, (3.79) becomes

N
e Hy(Ge1) > 0 Hy(Go) dn
K

—rAt o
\/—/m S H (6 1)6\/— / e G (1 — o VEATE) dig dg
—TAt
/ e H (1) NG / S VE(VRAL 6) 6y dggn,

(3.81)

Prior to forming the evaluation of a*~!, the coefficients of 4* require generation.
The values of 4% are found recursively, with 4v%~! = 0 since the early exercise
boundary is at 0 at the first time step. To assist in the evaluation of the elements in

~*, the following Hermite polynomial and their mathematical properties are used,

Ho(t) =1, Hi(t) =2t (3.82)

H, (vt +b) =2(vt +b)H,—1 (vt +b) —2(n — 1)H,_o(vt +b), forn>1, (3.83)

d
%Hn(vt +b) = 2vnH,_1(vt + b), (3.84)
= / T et dt = il (3.85)
Vel RV '
1 v e’
— | H@)e"dt=——, 3.86
NG /_oo (1) NG (3.86)
1 [ e
— | H)edt=1, (3.87)
T J-x

and
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erfe(r) = — /—x et dt (3.88)
So,

\/—/ gle fk127k1ka1d§k1

1 VaAt ) efrAt 00 )
_ 1 Gl (6 / ~(EnlE-1))? (] _ oVIDLERY e des.
\/7?/006 (&fl)ﬁime (I—e ) d€k dx—1,
which simplifies to
b1 —rAt /\/T
7
L/ e E-ue DS (6 ) d | (1 — e7VEA0E) g,
VT J
m oV2ALE
)(1— *) dEp, 3.89
[ e o
where,
]_ o 2 2
Im(fk) _ _/ e~ (& —nl&r-1)) +£k—1}Hm(€k71) d€_1. (3.90)
VT ) o

Using the analytical solution to I,,(&x) as presented in subsection 3.2 gives,

\/EE —b -
S e /w— 280 AT e g, (91
m Qmm'\/_ pm+1 ks .

and by performing a further substitution,

C V2AEE —b

v

(3.91) is simplified to,
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&b
v 2

e Hp(2)(1 — e7"%) dz

—rAt
k-1 e

Tm :2mmlvmﬁ o
efrAt Zk , 2k )

and

_ &b
o= (3.93)

Given (3.92), the values of vector v*~! can be evaluated. Beginning with m = 0,

—00 —0o0

e—rAt 2k ) ) 2k 2y
= e dz—e’ e T dy|. (3.94)
e [

Using property (3.88) and completing the square of the Gaussian in the right integral,

b1 e—rAt 2k ) ) 2k 5
il = 0107 {/ e * Hy(z) dz — € / e * T Hy(2) dz],

(3.94) becomes

2
1 etV o
ATl =R {—erfc(—zk) — / e~ =% dz] )

2 NZ3 oo
—rAt 0202
_ ¢ 5 [erfc(_zk) _ €Ub+4erfc(o-2—v — Zk):| . (395)
For m =1,
k—1 e_TAt . —22 ob - —224ovz
Vo= S0l o/ 7006 Hy(z)dz—e 7006 Hi(z2) dz|,

—rAt 2k 5202 2k oo

= 26 N [/ 2z¢ % dz — VYT / 2ze~ =% dz] . (3.96)
Uy —0oo —00

Using properties (3.86) and (3.88), (3.96) becomes
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5242

1 efrAt 1 eabfziJravzk O.er'bJr

_ 2 41} agv
A proof of (3.97), can be found in appendix A.2.1.

Form=2,3,..., N,

k-1 e k-1 k-1
where
LI 3.99
] I O (399)
and
oh-1 = \LF / K e rovr g (2) de. (3.100)
7T — 0
and using,

H,(vt +b) =2wt+b)H,_1(vt+b) —2(n—1)H,_o(vt+0b), forn>1,

becomes
k—1 __ 1 o —22 - -
O = NG e * (2zHp-1(2) — 2(m — 1)H,,—2(2)) dz, (3.101)
™ —0o0
and
k-1 er 024U2 * —(z—%)?
o = e 2 (22Hpm-1(2) — 2(m — 1)H,,—2(2)) dz. (3.102)

" VT )
An analytical form for (3.101) is determined using properties, (3.84) and (3.85), and
along with integration by parts gives
k—1 1 —22
Or " = ——=e *Hp,q(2), (3.103)
T
where z is given by (3.93). The proof for (3.103) can be found in Appendix A.2.2

leading to the evaluation (A.26). For ®, a recurrence relation is built using proper-

ties, (3.84) and (3.85), and along with integration by parts gives
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ov

e~ o () + ove® T R (3.104)

The proof for (3.104) can also be found in Appendix A.2.3 leading to evaluation
(A.27). Therefore,

—rAt ob—2z2+ovz
— € 1 —22 € r -
i e
0'2112
— ovett @5;_11]. (3.105)

!, is replaced with vfn__ll by rearranging

To obtain a recurrence relation for 7%~1, ok~

—rAt

k=1 _ € k=1 _ gk—1
=1 = Gy Tyl {@ml éml}, (3.106)

for @1 and substituting into (3.105). Therefore, (3.105) becomes

—rAt—z]%

k=1 __ i k—1 67 obtovzy
Tmo = 5 Tme1 + Sl |:Hm—1(zkz)(€ 1)+ O'UHm_Q(Zk-):| . (3.107)

The proof for (3.107) can be found in Appendix A.2.4 leading to the evaluation

(A.30).

Therefore, given (3.107), (3.81) becomes

N
1 [e.e]
— e i1 H (1) Z ag Ho(€e1) A&y = 7"

which simplifies to,
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—rAt oo
— — €
k—1 k—1

AL
K 2mml\/m

1 [e.e]
l_ / e (EnE P (64 )6 | VE(V2AL &) déy,

VT

— Ak k /
where,
1 o 2 2
i) = ﬁ/ e (O THE I HEA H (€1) . (3.109)

Using the analytical solution to I,,(&) as presented in sub-section 3.2 gives

_ (YEALEi=by: VOAE € —b
rat V2At e ’H, (Y2ELE: D)
k—1 __ k*l m ) k
(3.110)
and by performing a further substitution,
V2At5 —b
= - ,
(3.110) is simplified to,
efrAt o0 )
bt =t — e Hy(2)VF(vz +b) dz. (3.111)

2mmlym,/m [t
VT Ji

Finally, a Fourier-Hermite series is introduced for V* to complete the relationship

k—1

between o~ and o,

VEG) 2 ) ol Ha(&), (3.112)

and substituting (3.112) into (3.110) gives
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—rAt 00 N

—rAt N 0o
k-1 € k 2
=+ S T E a, /*b e " Hpy(2)Hy(vz+b) dz.

Proposition 3.3.1. The expression (3.113) can be rewritten into

1 - ﬁ)/m + Z &iA]:n no
where

—rAt o0

mon = Gt g J, € 2wz B dz,

and

_G-b

With the elements of A* being

—rAt

Ao = —5—erfe(z),

Aby = e berfe(z,) + %ezi :

—rAt
e 2
k -z

AT, =
1.0 21)\/7_?6 ’
form=0andn=2,3,...,N,

ko _
AO,n -

and form >1 and n =0,

—rAt

A
0 ommlymy /[

e % Hpp_1(21).
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For general m and n,

e—rAt

Qmmlvmﬁe

Ak = %A’in_l,n_l 4 A H, 1 (20) Ho (02 + D). (3.122)

Proof. As with the European options, the elements of matrix A* require evaluation.
The major difference with the matrix A* to the European option matrix is that

for each time step, the elements will change because the early exercise point, &,

k—1

will differ. Therefore, for each time step, the coefficients, « are found. In the

0

European option, the coefficients of the option price series, a”, are evaluated by

using matrix A and a1 only.
So element Af is given by

—rAt o0
k 6

e—rAt

e 2
= e dz, (3.123)
=/,

therefore using (3.88),

—rAt

Afo = erfe(zy). (3.124)

The next element Af | is given by

—rAt o0
Ak = [ P H()H b) d
0,1 200!’(}0\/7_1' ” € O(Z) 1(UZ+ ) <
€7TAt & 2 o 2
- v 2z¢77 dz+2b/ e’ dz}. (3.125)

Using properties (3.85) and (3.88), (3.125) becomes,

Agy = e lb er fe(z,) + %ei} . (3.126)

Form=0andn=2,3,..., N,
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efrAt 00 )
A= ““ Hy(2)H, b)d
0,n QOO!UO\/7_T . € O(Z) (UZ+ ) z
e—rAt 00 )
— —~"H, b) dz, 3.127
=] e (vz+b)dz ( )

and using property (3.83), (3.127) can be expressed as,

—rAt [
Ab, = ¢ / e lQ(Uz +0)H,—1(vz+b) —2(n—1)H,_2(vz + b)| dz,
VT L
efrAt 00 ) L L
=7 /Zk 2uze™* H,_1(vzp +0) dz + 2bA5,, 1 —2(n — 1)Ag,, o,
ve A, k 2 k
=7 e Hy 1(vz, +b) +20A5, 1 +2(v° = 1)(n - 1)Ag,, o (3.128)

The proof to (3.120) can be found in Appendix A.2.5 leading to evaluation (A.33).

For the value of m =1 and n =0,

e—rAt o0 9
Ak = T Hy(2)H, b) d
1,0 211!1}1\/7_1' , € 1('2) O(UZ+ ) 2
e—rAt e8] 9
_ 926~ dz, 3.129
TV (8129)

and using property (3.85), (3.129) becomes

efrAt )

%k, 3.130
2u\/m c ( )
For m > 1 and n = 0 and using property (3.83) gives,

ko __
Al,O =
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L efrAt 00 L
A “Hp(2)Hy(vz 4+ b) dz,

= (A
0
e 2mmlomy /T [

efrAt oo e
— o : e leHml(z) —2(m — 1)H,,o(2)| dz,
[T e Hy (=) de — 2(m — 1) A (3.131)
= ze m— - — 1A 50 .
2mmlomy/m f,, ! 20

Using integration by parts, (3.131) reduces to,

efrAt )

—z
—— ¢ k
2mmlumy /T

For general m and n and using property (3.83) for H,,(z) gives,

Al = H,, 1 (z1). (3.132)

. efrAt 0 e
Ar = H,(2)H,(vz+b) dz,

T —— (&
mn = gmmvn/z

efrAt e8]

- 2mm'vmﬁ 2k eingn(/UZ + b) 22Hm71(2) o 2(m - 1)Hm*2(2) dZ,

e—rAt e8]

= Sz ). 226 Hp 1 (2)Hy(v2 4+ b) dz — 2(m — 1)A¥ _, . (3.133)
Using integration by parts, (3.133) reduces to,
) no eTAt

Apn = EAm—Ln—l + We kHp 1 (zx) Hy(vzg, + D). (3.134)

[

Prior to finding all coefficients, as with the European options, the coefficients for the

K-1

first time step « are evaluated. Since the American put and European put at

the first time step are equivalent, the expression (3.69) and (3.70) are used. Namely,

—rAt
K—1 g e

= 7( )
Fm 2m | 271 (m — 1)!Um—1ﬁe

(3.135)

e o
ml\)
3
s
|
|
+
o
=

81



CHAPTER 3. FOURIER-HERMITE SERIES EVALUATION

for m =2,3,... N, with initial conditions,

—rAt b b
ap ! o 5 erfc(;) - eUbJr%UQ”Qerfc(; + %) ; (3.136)
K-1 - g —rAt+ob+ o272 é Q 1
a; 1€ 1 erfc(v + ). (3.137)
Therefore, the coefficients a*~! are evaluated by,

N

b =k 4> kAl (k=K-1,K-2..,1), (3.138)
n=0

The recurrence relation (3.138) is evaluated similar to (3.33) in the European op-
tions section. The major difference being that for the American put, the coefficients
o are evaluated for each time step since the early exercise point varies from one

time step to the next. So, (3.138) is used at each time step until k£ = 1.

3.3.1 Results and Analysis

In Chiarella et al. (1999), the results presented used a high number of time steps
for both the European and American options. As was presented in Section 3.2.3,
the number of time steps required to achieve an accurate result was not as large as
envisaged. However, initial investigation of the American put option showed that

large time steps were required to achieve some accurate results.

Initial investigations also show that the oscillating approximations shown in figures
3.2, 3.3 and 3.4 for the European options are typical and also apply for the Ameri-
can put case. Therefore, a parameter set (K,N) may be an optimal approximation
for one particular underlying asset value but may not give the same accuracy for
another underlying value. Table 3.6 shows some results for American puts when the

number of basis functions used is 40.
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Asset Binomial F-H F-H F-H
Price () Method 60 steps 80 Steps 100 Steps
80  20.000000 20.000000 20.000000  20.000000

90 10.037663 10.051996 10.062199  10.068956

100 3.224898  3.176885  3.194857 3.205842

110 0.665410  0.627337 0.637849 0.644346

120 0.088795  0.085086  0.088416 0.090615

Table 3.6: Fourier-Hermite - American put option for various time steps and 40
basis functions with o = 0.20, r = 0.08, T" = 0.25, strike of $100. Double pre-
cision was used to calculate the values. The Binomial Method prices are optimal
approximations (using various V) and were calculated based on Cox et al. (1979).

Table 3.6 shows that the optimal approximation will vary when the number of basis
functions is fixed. For instance, when the asset value is $90, the number of time
steps required to find the best approximation is less than 60. For an asset value of
$110, the number of times steps is greater than 100. Therefore the computational
effort required to find the optimal option price is greater for $110 than $90. In a
computer algebra package like Maple, this can be quite time consuming, even with
a search algorithm like a bi-section. An improvement could be made with an efficient
search algorithm. A bi-section was chosen because of the ease of implementation.
Table 3.7 shows the best number of time steps required for various underlying asset

values to give optimal approximations.

Asset Time Binomial F-H
Price ($) Steps Method 40 Basis Functions
90 43 10.037663 10.037439

100 172 3.224898 3.224875

110 363 0.665410 0.665417

120 83 0.088795 0.088800

Table 3.7: Fourier-Hermite - American put option for 40 basis functions and the
best number of time steps with o = 0.20, r = 0.08, T' = 0.25, strike of $100. Double
precision was used to calculate the values. The Binomial Method prices are optimal
approximations (using various V) and were calculated based on Cox et al. (1979).

Clearly there is a great discrepancy in results presented in Table 3.7. The oscillating

nature of the Fourier-Hermite expansion/series explains the differences between the
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number of time steps to find the optimal approximation. The issue arising from
the results present in this table is the time required to find the optimal result. As
we can see when the asset value is $110, the number of time steps required is 363.
As the number of time steps increases, so does the time and computational effort
required. Table 3.8 presents results for the number of basis functions required to

find the best approximation when the number of time steps are fixed to 100.

Asset Basis Binomial F-H
Price ($) Functions Method 40 steps
90 35 10.037663 10.037604

100 12 3.224898  3.254261

110 20 0.665410  0.631602

120 13 0.088795  0.089520

Table 3.8: Fourier-Hermite - American put option for 40 time steps and the best
basis functions with o = 0.20, r = 0.08, T" = 0.25, strike of $100. Double pre-
cision was used to calculate the values. The Binomial Method prices are optimal
approximations (using various V) and were calculated based on Cox et al. (1979).

Again the same issues arise as with table 3.7, as the number of basis functions (V)
or the number of time steps (K') increase, so does the computational effort required.
In the case of N increasing, the calculations of exponentials and factorials are an
issue. Luckily, technology allows as to evaluate these functions much faster today.

Further analysis of results will also be presented in Chapters 4, 5 and 6.

3.4 Conclusion

Chiarella et al. (1999) offer a unique approach to evaluate the price of an option
in a path integral framework. The use of a Fourier-Hermite series to represent the
underlying allows the final option price polynomial to be formed by using recurrence
relations. These relations allow the coefficients of the Fourier series (the price poly-
nomial) to be evaluated. The Fourier-Hermite series is used due to the form of the
Gaussian within the integrand of the path integral (3.1). The recurrence relations

are formed using the orthogonality properties of the Hermite polynomials, analytical
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integration methods and some algebra.

The results using this method are quite good, especially for the European options.
For the American put, precise results can be obtained. However the computational
effort to evaluate a good approximation can be long especially when using a computer
algebra package like Maple. Given the oscillatory nature of the Fourier-Hermite
series, the parameter set, K (the number of time steps) and N (the number of basis
functions), may be precise for certain asset values but not necessarily for others.
Therefore, to obtain accurate results for a particular asset value, a search such as

bi-section, may be required to find the best parameter set.

In investigating this method, it was clear that some of the equations/relations and
results were not accurately stated. The results obtained are quite different to those
presented in Chiarella et al. (1999). It must be said however that accurate results
are possible but require some computational effort. One of the main advantages of
this method is the fact that more than one option price may be calculated at any
given time. This was very advantageous for the European option. Due to the oscil-
latory nature of the Fourier-Hermite series, some option prices were more accurate
than others. In the case of the European option where errors were in a trough,
the errors were as low as 1074, Even approximate prices where the errors peak,
using the same Fourier-Hermite series had errors in the order of 107!, which is still
very accurate. For the American put option, the results were not as accurate and
therefore, as shown in section 3.3.1, one parameter set may give an accurate result

for a certain asset price but was not so accurate for another.

One of the issues with this method is the orthogonality property (3.12) of the Her-
mite polynomial. This property contains an exponential and factorial with respect
to N. So, even with sophisticated computing, the recurrence relations will require
time to compute for large values of N. To combat this problem, chapter 4 will
present a modified version of the Fourier-Hermite method. The modified method

uses normalised Hermite polynomials in a Fourier series expansion. The method
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is very similar to that presented in this Chapter, with the creation of recurrence
relations to find the coefficients of the Fourier series. The main advantage of the
modification is in that the orthogonality property for the normalised Hermite does

not have an exponential or factorial involved.
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Chapter 4

Normalised Fourier-Hermite Series
Evaluation

This chapter offers an alternative Fourier series method to the one presented in
Chapter 3. The alternative uses a normalised Fourier-Hermite series to represent
the underlying. The major difference in this method is the form of the Hermite
orthogonal polynomial and their mathematical properties. The method is similar
to that presented in the previous Chapter 3 with some of the recurrence relations

formed being identical.
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4.1 Introduction

In this chapter we offer a similar approach to the previous chapter with the major
difference being the use of normalised Hermite polynomials. The approach is simi-
lar, with the properties associated to the normalised polynomials being different to

those presented in Chapter 3.

The use of these normalised Hermite polynomials will offer an alternative to those
presented in Chapter 3. One of the advantages envisaged by using these normalised
polynomials is that the recurrence relations involving the coefficients a*~! may
eliminate the use of the exponential (2" term). This is achieved because of the form
of the orthogonality property for the normalised Hermite polynomial, involving the
Kronecker ¢ function

, m=mn

&0 t2 1
Nz / =% B () HP (£) dt = 6y — (4.1)

oo ’ {O, otherwise
This § function, (4.1), does not have an exponential term in its coefficient. It is
hoped that this will improve the efficiency and speed of evaluation of the options
being priced, especially for large N (the number of basis function). As described
in the previous chapter, an improvement to the use of Hermite polynomials was
required since as the number of basis functions increases, the evaluation of option
prices became inefficient. It turns out that using normalised Hermite polynomials

ameliorates this issue.

4.2 FEuropean Options

As with the Fourier-Hermite method, we firstly transform the path integral (3.1),
so that a recurrence relation can be built to link the coefficients of the normalised
Fourier-Hermite polynomials from one time step to the next. Recalling the path

integral,
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—rAt 00
PG =S [ e aRt g de, (12)
VT ) e
where
§k—1+0
_ ; 4.3
and
1 1
b= —(r— =c*)At 4.4
~(r - 30%) (14)
Given the normalised Fourier-Hermite expansion,
P (&) Zo/f Y (&) (4.5)

where H;(£,-1) is a normalised Hermite polynomial then, substituting (4.5) into

(4.2), the path integral is transformed to,

N —rAt o]
N ok H (G) = \/; / e G @) (VAL &) . (4.6)

q=0

Utilising the orthogonality property of normalised Hermite polynomials given by
(4.1) and following the method used for the non-normalised Fourier-Hermite of sec-

tion 3.2 produced upon simplification

—r

ot = S [ s T 6 de @)

m)!

where,

(é’k \/_/ 2(&k—p(Ex—1))? +£i_1]H:1(§k71) dép 1. (4.8)

We note that the exponential in the integrand of (4.8) has been modified to accom-
modate the use of normalised Hermite polynomials. Completing the square as with

the Fourier-Hermite method (see Appendix B.1.1 for a step by step evaluation) gives

§i1T  V2ALE — b)2 N (\/2At E—b
VAt VAL T
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where 11(€,_1) and b are as defined in (4.3) and (4.4) respectively and

1+ At. (4.10)

Therefore, substituting (4.9) into (4.8) and rearranging to give

VIAT gk by
e~ ( r{k 1  V2ALgy—byo

I(6) = / A 6y de, (1)

where b is given by (4.4) and 7 by (4.10).

(4.11) is evaluated analytically,

_1(V2ALER—byo V2AL £, —b
\/At e 2( T ) H;L(igk
I5,(&) = —) (4.12)

Terl

At this point we need to transform (4.7), so that a Fourier series for time step k can

be introduced. Therefore, substituting (4.12) into (4.7) produces

At Ate” FEE H;( 28! gk_b)
e " o

kbl = NG =g T FRV2A &) dée,  (4.13)

and on making the substitution,

VARG b

T

simplifies (4.13) to

—rAt 0 2
k—1 € —Z rrx k
oy, = e 2 H (2)f"(tz+b) d=. 4.14
m!Tm™\ 21 J—so ()1 ) ( )

The following normalised Fourier-Hermite series is introduced for f*(7z + b) to

k—1

complete the recurrence relationship between a*~!' and o, therefore

N
K=Y anH(E) (4.15)
n=0
and the series (4.15) is substituted into (4.14) so that,
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ef’l"At oo 2 N
= e 2H (2 oF ¥ (12 +b) dz
mlTm\ 21 J oo ( ); ( )

—rAt

e
= ’2H* (2)H) (12 +b) dz.
mlT™m\ 21 Z /

The expression (4.16) can be rewritten into

N
k-1 _ _—rAt k Ax*
, =e E anAmn,

where,

A " (2)H (12 +b) d=.

— - 2 H
" m'Tm\/ /

(4.16)

(4.17)

(4.18)

Since (4.17) is an expression that links the a's from time step k to k — 1, a recur-

rence relation is built. This relationship is created by finding the elements of the 2

dimensional matrix A* from (4.18). These elements, Ay , are found using the same

methods and similar properties to those in the Fourier-Hermite section 3.2.

To find the elements of matrix A*, the initial elements are required. The following

normalised Hermite polynomial and mathematical properties are used to assist in

the evaluation of these elements.
Hi(x)=1, Hi(x)=nrx,

Hi(ax +b) = (ax +b)H,_(ax +b) — (n —1) H _,(ax + ),

d
aHZ((LJJ +b)=anH (ax+Db),

L /Oo e~ dt = 0
- e — ,
\Y4 27'(' —00

91

(4.19)

(4.20)

(4.21)

(4.22)



CHAPTER 4. NORMALISED FOURIER-HERMITE SERIES EVALUATION

1 o t2
— [ eTdt=1, (4.23)
V2 /oo
and
fel) === [ e ar=1-ers (1.24)
erfe(r) = — e =1—erf(z). .
VT Ja
The first element Ag, is given by,
Moo= — \/_ / (2)H: (2 + b)d=.
L[5y (4.25)
= — e 7dz .
V2T J 0o 7
and so from (4.23) A5, = 1.
Element Ag, is given by,
Aoy = — \/_ / (2)H (72 + b)d=.
-5 H* (12 4 b)dz,
v
L [ 954 = (4.26)
= — e Tdy 4+ —— :
V2T J oo

with the first integral in (4.26) being in the form of (4. 22) and the second integral
in the form of (4.23) and Ag, = b.

Given the elements Af, and A, the subsequent elements Aj,, are evaluated by,

*

A = / H (72 + b)dz,
o= e () Hy (= +1)

1 o 22
= — Tze 2 H (T2 +0b)dz+bAg,, n—1) A5, o, 4.27
=/ (724 e DA = (- 1) A, (42)
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where we have used (4.20) to transform Af,. The integral in (4.27) is evaluated

using property (4.21) and integration by parts to give,

Agn:\/_/ n—l *2HZ (Tz+b)dz+bA0n1 (n—l)Aan_2,

=T (n_l)AEk)n 2+bA0n 1 (n_l)Ag,n—%
and so

Agn=bA5, 1 —(n—=1) (7" = 1)A;,_, forn=23.. N. (4.28)

As with the derivation for Hermite polynomials, the normalised properties (4.20)

and (4.21) are used to evaluate elements Ay . Namely,

*
min m'Tm\/_ /

and using integration by parts, A7, is transformed to,

a1 1 .
)[dZTn_i_lHnH(Tz—l—b)}dz,

1 d 22
A = —l———— H: Tz+b)(d 2H;(z))dz]. (4.29)
’ z

The derivative in (4.29) can be solved using property (4.20) and the product rule,

to produce

M)

z

=e 2 [—H} ., (2)]. (4.30)

Substitution of (4.30) in (4.29) produces
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mlrm

. 1 1 1 1 2 N N
Am,n = [;‘n+1 \/ﬁ/_we 2 [_Hm+1(z)]Hn+1(Tz+b) dZ:|7

1 m+1 1 [ e )

(4.31)
and so from (4.18)
mmn n -+ 1 m+1,n+1>
and so rearrangement produces
n
A =— A" . 4.32
m,n m m—1n—1 ( )
It must be noted that when m > n element A7, = 0.
Therefore in summary
AS,O - ]_7
Ag,l - b,
Agn=b0A5 1+ (n—1)(r"—1) A}, 5, n=23,...,N,
(4.33)
n
A =—A 1., m=12... N, n=12..., N,
b m K

A, =0 for m>n.
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We note that the term Ag; and recurrence relation Axg, differ by a multiple of 2 to
those presented in the non-normalised method. The Af, term and A; | recurrence
relation being identical to the other method. It must said that the technique to find
the elements of A* were very similar to find as those in the non-normalised method.
The only difference being the mathematical identities and properties used for this

Gaussian.

Given the elements of A*, the next step is to evaluate o =1 values for the call and
put option. Once the af~1 are found, as with the non-normalised method, the

following expression is used

aO — efr(Kfl)AtA*KflaKfl‘ (434)

The a values are the coefficients of the option price polynomial. We derive the

values of a® for the non-normalised Hermites next, using the techniques shown in

Chapter 3.

4.2.1 European Call Option Pricing

With a recurrence relations built to determine the elements of the Matrix A* from
(4.17), the values of @ can now be determined for a European call option price.
Given the expression (4.34), a recurrence relationship is required to determine the

K-1

values of a such that the values of a® are found and in doing so, evaluating the

European call option price.
Substituting the payoff function (3.34) into (4.7) gives

—rAt

a1 - {eab/we"”e_éH* z dz—/ooe_éH* z dz}. 4.35
el | () () (1.35)

3o

Defining
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and

T

b 1 1
()= —/ e 2 H (z)dz,
D=y [, e
gives (4.35) as

—rAt
i = e - -2,

Tm T T

The important values of U* and Q* are evaluated in Appendices B.1.2 and B.1.3

and are provided in terms of the well known er fc(.) function by the following rela-

tionships,
b 37T b oT
Ui(——) = erfe(——— —=),
o) =gt )
b 1 b
Qy(—=) = zerfe(——),
0( 7_) 2 f( \/57_)
b 12 20T b oT 1 1/(by2
Ui(——)=e2" —erfe(— - — e~ 2((3)7+20h),
i S Y NG U=
1 10by2
Qi(—=) = —e 37,
1( T) \/ﬂ
* * L 122 420b) 7+ b
\Dm(_—):aT\Ijmfl(_ )+ \/%e 2T Hmfl(__%
and

(). (4.36)
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Since we know the initial and general cases for ¥* and 2*, a recurrence relation
for =1 for m = 1,2,..., N can be formed (and is evaluated in Appendix B.1.4),

namely

—rAt
K—1 g e

QT =— e
" m [(m— D)lrm=1y/27

The equation (4.37) are the a®~1 values for m = 2,3,... N, with the following

b
*%<3>2H;,2(—;) + aﬁi] : (4.37)
initial conditions,

aé{—l _c |:€Ub+%a27—2erfc(__ ~ - erfc(——)], (4.38)

and

b T
V21 V2

With recurrence relations built for A and o*~!, European call options can be eval-

_ g 1 .22
Od]f 1 ——¢ rAtt+obtso°T ETfC(—

). (4.39)

uated.

4.2.2 European Put Option Pricing

With a recurrence relation built to determine the elements of the Matrix A* from
(4.17), the values of a® can now be determined for a European Put option price.
Given the expression (4.34), a recurrence relationship is required to determine the
values of a1 such that the values of @ are found and in doing so, evaluating the

FEuropean put option price.

Substituting the payoff function (3.56) into (4.7) gives

efrAt T 1.2 2

b b
K-1 —=z * ob L P *
o, = e 2" H (2)dz—e / e”Fe 2" H (2)dz|. (4.40
=l ® [ ()|, (110)
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Defining anew for the put option

and

b
R b 1 -7
D=7 == e 37 H (2)dz,

T

produces the expression from (4.40)

—rAt [ .
i = =) - i -2,

mlrm | ™ 1 T

The important values of U* and Q* are evaluated in Appendices B.1.5 and B.1.6
and are also provided in terms of the well known erfc(.) function by the following

relationships,

20T b oT 1 —%(($)2+20b)7

NN U

3 (VP42 e ()

and

6*5(3)2H;71(—;). (4.41)
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A recurrence relation for a1 for m = 1,2,..., N can be formed, namely
—rAt
K-1_09 | k-1 € _L(by2 o, b ]
o, =— o, + e 27 Hy o(——)|. 4.42
m [ ! (m — 1)lrm=1y/27 2 T) (4.42)

The equation (4.42) are the a®~! values for m = 2,3,..., N, with the following

initial conditions,

—rAt
K-1_°€ b obt Lo272 b 07’}
Q = erfe(——)+e"" "2 erfc(—————=)|, 4.43
£ = [errel ) fl-m = B ()
and
b
alf~t =~ ge_rAHUbJF%UQTQerfc( o7 ). (4.44)

2 \/§T+ﬁ

Now European put option prices can be evaluated.

4.2.3 Results and Analysis

The normalised Fourier-Hermite method has the same representation as the Fourier-
Hermite method. One of the differences in obtaining the polynomial form are the
form are the recurrence relations. The Delta function used in the normalised Fourier-
Hermite approach does not include the exponential (2™) function. Therefore, the
issue of large N (the number of basis functions) that arise in the previous method,

may be alleviated, to a certain extent, in the normalised approach.

As with the previous method, we can compare the normalised method against the

Black Scholes formula.
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1.41

1.2

0.8
0.6
0.4

0.2

X

Figure 4.1: A normalised Fourier-Hermite expansion (blue curve) and Black Sc-
holes formula (red curve) for a European call with o = 0.20, r = 0.08, 7' = 0.25 and
strike price, X = $100. The normalised Fourier-Hermite expansion was derived for
4 time steps and 32 basis functions.

If we compare the figure 4.1 to the Fourier-Hermite figure 3.1, we see that the
normalised method is a better representation for asset values further away from
the strike price. If we take a closer look at the difference between the expansion

approximation and the Black-Scholes formula.
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05 1 15
X

Figure 4.2: The absolute error of a normalised Fourier-Hermite expansion vs Black
Scholes analytical solution for a European call K =4, N = 32, 0 = 0.20, r = 0.08,
T = 0.25 and strike price of $100.

Figures 4.1 and 4.2 shows the normalised method gives better results for asset values
further from the strike price. However, options with this strike price ($100) would
not be written for these asset values. Closer to the strike price, the non-normalised
method is better. Table 4.1 shows a numerical representation of the normalised
Fourier-Hermite expansion method for a set of model parameters and 4 time steps.
As with the non-normalised method, the absolute error is used to measure the

accuracy of the prices.
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Basis Asset Black- Fourier- Absolute
Functions Price ($) Scholes Hermite Error
8 80 0.069017900 —0.006431766 7.54E—2
16 0.088458600 1.94F -2

32 0.069881862 8.64E—4
64 0.069009754 8.15E—6

128 0.069296396 2.78E—4
90 1.0254530 0.97144092 5.40E—-2

1.0069471 1.85 -2

1.0242163 1.24F -3

1.0254483 4.70E—6

1.0254531 1.00E-7

100 5.0169820 5.1595170 1.43FE—-1

5.0392292 2.22F-2

5.0180316 1.06E—-3

5.0169829 9.00E—-7

5.0169781 3.90E—6

110 12.620446 12.537716 8.27TE—-2

12.597114 2.33E-2

12.619442 1.00E£—-3

12.620449 3.00E—6

12.620442 4.00E—6

120 22.066563 21.945115 1.21E-1

22.076090 9.53E-3

22.067815 1.25FE—-3

22.066550 1.30E -5

22.066718 1.55F—4

Table 4.1: Normalised Fourier-Hermite - European call option for 4 time steps,
o= 0.20, r = 0.08, T = 0.25, strike price of $100 and for various basis functions.
Single precision was used to calculate the values.

Table 4.1 shows that for asset values of $90 to $110 and the number of basis func-
tions used is approximately 64 to 128, the results for the normalised approach are

as good as, if not better, than those evaluated for the non-normalised method.

Table 4.2 presents some numerical results using the same model parameters as table

4.1, but is performed with double precision.
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Basis Asset Black- Fourier- Absolute
Functions Price ($) Scholes Hermite Error

8 80 0.069017900 7.54FE—2
16 1.94E -2
32 8.64E—4
64 8.15E—6
128 2.7T8E—4

90 1.0254530 0.40E -2
1.85E-2
1.24E-3
4.70E—6
1.00E—-7

100 2.0169820 1.43E—-1
2.22E-2
1.06E-3
9.00E-7
3.90E—6

110 12.620446 8.27TE -2
2.33E-2
1.00E-3
3.00E—6
4.00E—6

120 22.066563 1.21E-1
9.53E-3
1.25E-3
1.30E-5
1.55E—4

Table 4.2: Normalised Fourier-Hermite - European call option for 4 time steps,
o= 0.20, r = 0.08, T = 0.25, strike price of $100 and for various basis functions.
Double precision was used to calculate the values.

The Table 4.3 shows the prices and errors for expansions of 4 time steps and varying

number of basis functions.
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Asset

Black-
Scholes

Fourier-
Hermite

Absolute
Error

Basis

Functions Price ($)

8 80

16

32

64

128
90
100
110
120

18.08888506397669

9.045321064809460

3.036847936937940

0.6403158326585500

0.08642753228261400

18.01343751006435
18.10832984562124
18.08974907818617
18.08887723039570
18.08888506434852

8.991311526733935
9.026817995821769
9.044085364654334
9.045318182920060
9.045321065259884

3.179388674293241
3.059099678525065
3.037902053276338
3.036853028959601
3.036847937209272

0.5575876168848387
0.6169841497201888
0.6393131629084357
0.6403188161068562
0.6403158329955574

—0.0350119989905038
0.09596066895079108
0.08768541887430010
0.08641956163094973
0.08642753286933688

7.54E -2
1.94E-2
8.64F—4
7.83E—6
3.72E-10

5.40E -2
1.85E—-2
1.24E-3
2.88E—6
4.50E£—-10

1.43E—-1
2.23E-2
1.05E-3
5.09E -6
2.711E-10

8.27TE—2
2.33E-2
1.00E-3
2.98E—-6
3.37E—-10

1.21E-1
9.53E-3
1.26E—-3
797TE—6
5.87TE—10

Table 4.3: Normalised Fourier-Hermite - European put option for 4 time steps,
o =0.20, r = 0.08, T'= 0.25, strike of $100 and for various basis functions. Double
precision was used to calculate the values.

The parameters used for the call option (table 4.2) are identical to those used for

the put option (table 4.3). For this parameter set, the normalised Fourier-Hermite

expansion approximations work better for most of the put options compared to the

call options. Varying the parameters have differing affects on the approximation

using both types of Fourier-Hermite expansion techniques. An ability to find the

optimal parameters would be advantageous.
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4.3 American Put Options

The path integral (3.72) and early exercise point for the normalised method is the
same, the difference being the Fourier set up which will incorporate normalised

Hermite polynomials. Therefore, re-presenting the path integral

e—rAt e8]

VT )

where V is the value of the American put option unexercised. If we denote F*~! as

VA (o)) = e @G VR (V2AL &) dey, (4.45)

the value of the option at time t;_; and since an American option can be exercised

at any time, & _, is introduced to denote the optimal exercise point, then

VR P <& <

FFY (&) = (Cemt). Gy < G <00 ; (4.46)
1—e% -1, —oc0< &1 <&,

Since the American put option can be exercised at any time, the path integral (4.45)

is split into two parts,

—rAt

Vk—1(§k_1) _ hk—l(fk_l) + eﬁ /OO e—(fk—u(fkfl))gvk(,/zmg ¢,) de,, (4.47)

where

—rAt i
V2At 2
hk_l(fk—ﬁzeﬁ / e Qe )P (1 oVAALE g, (4.48)

The integral in (4.48) is the payoff or early exercise component of the path integral

(4.47). The early exercise point &;_; is the value of £ which solves

VEHE) =1 — €. (4.49)

So, the initial set up of the American Option is made, the following normalised

Fourier-Hermite series expansions are introduced
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N
VE &) 2 ) b H (6m) (4.50)
q=0
and
W (&) Zv’f "Hy (1) (4.51)

As with the non normalised method, the most appropriate manner in evaluating V°
is to treat the two integrals separately. Therefore, recurrence relations are formed
for the coefficients of the normalised Fourier-Hermite series, the two parts are joined
for final evaluation of the American put option price. Therefore, substituting (4.50)

into (4.47) gives

71"At o0

§ :0/“ YH (&on) / e @D VRV E) day, (4.52)
\/_ Sk
V2At

and substltutmg (3.78) into (3.75) gives

4
Zvé“ U (6m) = f/ om0 VI (4.5))

Using the orthogonalisation property, (4.52) becomes

. N
ﬁ/_ e~ 36k LH( §klzoz 'H Hy(Ep—1) d€p—a

q=

k
1 JaAL —rAt 00
- ﬁ/ = eiéi—lH;(gkfl)e 5 / ef(fk*li(gkfl))Q(l _ V24t ék) d&y dép,
—0oQ V i — 00

—rAt

1 x x
t [ o MG S [ e YA (VaRT ) dg dgs
V) VT )

(4.54)
Prior to forming the evaluation of a*~!, the coefficients of 4* require generation.
The values of 4* are found recursively, with v%~! = 0. To assist in the evaluation of
the elements in v*, the following Hermite polynomial and mathematical properties

are used,

Hj(z) =1, Hj(z) =z, (4.55)
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H(ax +b) = (ax +b)H,_,

and

So,

d

7L

=an H (ax +D),

t2
2te” 2 dt =0,

L /OO St =1
- e — ,
V2T J -

1 /°° ¢2 ez
— Hi(te 2 dt = )
V21 Ja 1() V2T

N
! b -3&k * k—1 gy
ﬁ /Ooe 2§k71Hm(£kz—1) ;Vq Hq (€p—1) d€k—q

&
1 /\/2At _52
e — e kle:,L f _
N Ge) 5

which simplifies to

efrAt

o

mv2r J-

frAt

m'\/_

e—rAt

3
V2at

e L€ —n(&r- 1))?

\/K*
/Isk

(ax +b) — (n—1)H _,

(ax +b),

(4.56)

(4.57)

(4.58)

(4.59)

(4.60)

(4.61)

(4.62)

/ o~ (Ee—p(r-1))* (1— ea\/ﬂf’“) d&y dép_q,

TV HE (61) dEpy | (1 — e

o eow/QAt fk) dfka
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where,

(60 = = / ~l&—ne ) (6, ) dey . (4.64)

Using the analytical solution to I,,(&) as presented in sub-section 3.2 gives,

T (1 — VA dgy, (4.65)

m _m'\/—

and by performing a further substitution,

A A AT e BCTEEN? g (V2BLEby
Tm—i—l

VARG —b

-
(4.65) is simplified to,
efrAt @ 2
k—1 T —Z rrx oTz+0ob
= e 2 H (z)(1—e dz
L irry -3 m(2)( )
e At L2 o [y
= e TH(z)dz —e° e 2TITFH (2) dz |, 4.66
| T [ ACKA RS
and
& —b
== 4.67
2k - (4.67)

Given (4.66), the values of vector v*~1 can be evaluated. Beginning with m = 0,

e—rAt 2k L2 2k 42
= N [/ ez Hy(2)dz — e"b/ e 2T H(2) dz} :

eirAt k 22 b 2k z2+
= e 2 dz—e° e 27 dz]. (4.68)

Using property (4.24) and completing the square of the Gaussian in the right integral,
(4.68) becomes
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2,2

1 ob+ I 2
%/)gq _ A [567’]‘10(—&) e 2 / e~ 3(z—07)? dz},

V2r

o0

e At -2 oT  Z

=3 {erfc(—i) — e”b+%erfc(—ﬁ + 7

For m =1,

)|

eirAt k 22 k 22
ARt [/ T2 H{(2)dz — e"b/ e 2T H(2) dz} :

e ——— e
17/ 27 oo

(e 9]

—rAt 2k 2k
e r 2 2_2 1
= [/ 2e” 7 dy — e / 2~ 2(z=oT)? dz} .
TV21 | J -0 PSS

Using properties (4.61) and (4.24), (4.70) becomes

2
_ _Zk o?r2
b1 e rAt 1 _ﬁ eab S toTzg O.TeabJr 5 oT 2k
V= e + erfel —— — L)1,

V2r V2r 2

A proof of (4.71), can be found in appendix B.2.1.

V2

Form=23,..., N,

ke € k—1
Ym = Fm @m _cbm )

where

ol = T () d,

T J—c0
and
q)k—l _ 1 Eh e—é—f—UTZH* (2) dZ

m /_271' e m

and using,

H(ax +b) = (ax +b)H,_,(ax +b) — (n — 1)H_,(ax +b),
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(4.71)
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becomes
ot = L /Zk e‘é(zH* (2) = (m—1)H} _5(2))dz (4.75)
m \/% - m—1 m—2 ’ .
and
€Ub+di;2 Zk 1 2
Pr-1 — e 2 mr (2) — (m = 1)H?_,(2)) dz. (4.76)

" V2T oo

An analytical form for (4.75) is determined using properties, (4.21) and (4.60), and

along with integration by parts gives

1 2
OF = T H (). (4.77)

" V2T

where zj, is given by (4.67). The proof for (4.77) can be found in Appendix B.2.2.
For @, a recurrence relation is built using properties, (4.21) and (4.60), and along

with integration by parts gives

2.2
0_b+027'

(I)kfl —
" V2T

The proof for (4.78) can also be found in Appendix B.2.3 leading to the evaluation
(B.28). Therefore,

e 2RI B () 4+ or @k (4.78)

2
—rAt 2 ob—k +oTz)
p_1 € 1 = e 2
m ——F€ Hm_ zZ +7Hm_ zZ
v mlrm |: \/% 1( k) \/ﬂ 1( k)
02,2
—oTe?t 2 @ﬁlll], (4.79)

To obtain a recurrence relation for v#~1, ®*~1 is replaced with v*~% by rearranging

k—1 e A k-1 k-1

m — 1)lrm-1

for ®*~1 and substituting into (4.79). Therefore, (4.79) becomes

2
—rAt—Ck
k—1 k—1 € 2 * ob+oTzy *
Yo Yo H . (z)(e —1)+oTH;, (2 } 4.81
vt LA ) +orHo(w)|. (481)
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The proof for (4.81) can be found in Appendix B.2.4.

Therefore, given (4.81), (4.54) becomes

N
/ e 2 HY (& Za TH (&) dépor ="
\/_ q=0

—TAt
/ e 2§k 1H gkz 1
5k

which simplifies to,

/ —(Ek—u(fk—l))ka(\/@ &) d&g dég—1,

efrAt o0

ml/m

k-1 __ _k—1
Odm _’ym +

{r/ 2L 7 (6 ) | VE(VRAL &) dé,

—rAt o0

g VI(V2ALE)T (&) e, (4.82)

e

- ml/m

where,

I (&) = \/_/ 2(&k—p(Ex—1))? +§1§—1]H:‘n(§k71) dé_. (4.83)

Using the analytical solution to I, (&) as presented in sub-section 3.2 gives,

_ L(Y2ALEmh) V2ALE,—b
rAt \/_t e~ 1 )? ( &k )
k-1 _ _k— m T k
=yt m'\/_ /Ek g VE(V2AL &) dEy,
(4.84)
and by performing a further substitution,
 V2AtE -
D —
(4.84) is simplified to,
efrAt 9] 2
bl =htly — e" T H: (2)VF(12 + b) dz. (4.85)

mlrmy/2m J&=b
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Finally, a normalised Fourier-Hermite series is introduce for V¥ to complete the

k—1

relationship between a*~! and o,

N
K2 Y anH (),
n=0

and substituting (4.86) into (4.84) gives

—rAt 00 2
k=1 _ k-1 € -z

ar=t = + e
" Tm mlrm/2m J&b

71"At

=Y +m'7m\/ﬂz

The expression (4.87) can be rewritten into

1_7m —f-ZOé

where

—rAt o0

A =
T mlrma /2

and

2 =
T

N
z) Z afHX (12 + b) dz,

ﬁ _TH* (2)H (12 +b) d=.

22
e 2 H (2)H (12 +b) dz.

& —b

(4.86)

(4.87)

(4.88)

(4.89)

(4.90)

The elements of matrix A* require evaluation with matrix A* these elements chang-

ing for each time step because the optimal early exercise point, &, will differ. There-

fore, for each time step, the coefficients, a1

So element Af is given by

—rAt 00
k e

Af = ——
0.0 017027

e—rAt e8] 22
2

:\/% -

dz,
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therefore using (4.62),

—rAt

Ak = C er fe(ZR). 4.92
0,0 f (\/5) ( )
The next element Af ; is given by,
L efrAt 00 2
Ajy = ———=— e 2 Hi(2)H{(tz+b) dz
0,1 0!7_0\/% 0( ) 1( )
[T ta s [t 1.93)
= T ze” zdz + ez dz|. .
V2T { /zk /zk } (
Using properties (4.60) and (4.62), (4.93) becomes,
) 2k T %
Afy =e {— erfc(T) \/—_e 2 } . (4.94)

Form=0andn=2,3,..., N,

—rAt 9]
k 6

Ap, = ——— e_éH*zH;Tz—I—b dz
0, O!TO\/% . 0() ( )

efrAt
B V2T

and using property (4.56), (4.95) can be expressed as,

22
e 2 H(1tz+0b)dz, (4.95)

—rAt 0 2

S e T [(Tz +b0)H: ((tz+b) —(n—1)H, _5(tz+b)| dz,

Ak —
0,n /_271'

efrAt

= Nors TzeT T dz+bA0n L — (n—=1)Af,

= ei%H: 1(T2p +0) + bAOn (= 1)(n - 1)Agn 2- (4.96)

For the value of m =1 and n = 0,
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—rAt e8]
k 6

2
Al g = ——— e~ T HY(2)H} (12 + b) dz,
1,0 1!7_1\/% ” 1() O( )

e—rAt 0 2

= ze” 7 dz, (4.97)
TV22m J2,

and using property (4.60), (4.97) becomes

e—rAt z}%
A¥ = e 2. (4.98)
’ TV 2T

For m > 1 and n = 0 and using property (4.56) gives,

efrAt o0

22 * *
W . 677Hm(2)H0 (TZ + b) dZ,

ko
Am,O -

)

e—rAt e8] ;
= e 2z |zH () —(m—1)H’ _,(2)| dz,
s | ¢ HAG) — m 1), 402

e—rAt e8]

= ze‘éH*_ 2)dz — (m— 1)AE . 4.99
m'Tm\/% . m 1( ) ( ) m—2,0 ( )

Using integration by parts, (4.99) reduces to,

efrAt 22

k
———e 2 H' (24). 4.100

For general m and n and using property (4.56) for H} (z) gives,

ko
Am,O -

—rAt 00
e T
AF

z2
oy = ————— e 2H (2)H (12 +) dz,
’ mlTm\/271 J,, () Hi( )

e—rAt o0

= — cTH T2+ 0b)|2H, () —(m—1)H; ,(z)| dz,

efrAt oo .2
= — ze” T HY (2)H (12 +0b)dz — (m —1)AF_, .
m'Tm\/% ” 1( ) ( ) ( ) 2,

Using integration by parts, (4.101) reduces to,

(4.101)
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—rAt 2
n e z
Aﬁm,n = EASm—l,n—l + me_%H;—ﬂzk)H;(Tzk +b). (4.102)

Prior to finding all coefficients, as with the European options, the coefficients for the

K-1

first time step « are evaluated. Since the American put and European put at

the first time step are equivalent, the expression (4.42) and (4.43) are used. Namely,

—rAt
K-1_ 0 K-1 e ~1(L)2 s b }
e [ e 27 H S(——)|. 4.103
Vm{ ' =127 (m — 1) 2( 7') ( )

for m =2,3,... N, with initial conditions,

—rAt b b
ap ! . [erfc(—) + e”b%UQTQerfc(—— - ﬂ)} :

2 V21 V21 V2
b oT

&{(71 _ %efrAtJrabJr%aQTQerfc( + _) (4.104)

V21 V2

Therefore, we are able to evaluate various American put options using the expres-

sions and recurrence relations evaluated throughout this section.

4.3.1 Results and Analysis

Considering the normalised method realised similar recurrence relations and expres-
sions, it is fair to say that we would expect similar results to those presented for
the non-normalised examples. However, due to the oscillating nature of the two
methods, a different parameter set N (the number of basis functions) and K (the
number of time steps) may be required to achieve identical (or similar) prices. Table
4.4 shows some results for American put options when the number of basis functions

used 1is 40.
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Asset Binomial Norm F-H Norm F-H Norm F-H
Price ($§) Method 60 steps 80 Steps 100 Steps
80  20.000000 20.000000 20.000000 20.000000

90 10.037663 10.098764 10.112576 10.122039

100 3.224898 3.184179 3.202324 3.213752

110 0.665410 0.654379 0.666875 0.674574

120 0.088795 0.064938 0.067110 0.068702

Table 4.4: Normalised Fourier-Hermite - American put option for various time
steps and 40 basis functions with ¢ = 0.20, » = 0.08, T" = 0.25, strike of $100.
Double precision was used to calculate the values. The Binomial Method prices are
optimal approximations (using various V) and were calculated based on Cox et al.

(1979).

Table 4.4 are prices for various time steps given 40 basis functions. Table 4.5 presents
accurate prices for 40 basis functions and the optimal number of time steps used to

evaluate option price.

Asset Binomial F-H Norm F-H
Price ($) Method 40 Basis Functions 40 Basis Functions
90 10.037663  10.037439(43) 10.036482(25)
100 3.224808  3.224875(172) 3.225033(130)
110 0.665410 0.665417(363) 0.665395(77)
120 0.088795 0.088800(83) 0.079935(4)

Table 4.5: Comparison of the Fourier-Hermite expansion methods for various
American put option prices for 40 basis functions and the best number of time
steps with ¢ = 0.20, » = 0.08, T' = 0.25, strike of $100. Double precision was
used to calculate the values. The number of time steps are in brackets after the
price. The Binomial Method prices are optimal approximations (using various )
and were calculated based on Cox et al. (1979).

Table 4.6 presents American put option prices for 40 time steps using basis functions

which evaluate these prices accurately.
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Asset Binomial F-H Norm F-H
Price ($) Method 40 steps 40 steps
90 10.037663  10.037604(35) 10.047204(60)

110 0.665410  0.631602(20 0.630337(40

5 0
100 3.224808  3.254261(12)  3.223757(23)
) )
120 0.088795  0.089520(13)  0.088798(30)

Table 4.6: Comparison of the Fourier-Hermite expansion methods for various
American put option prices for 40 time steps and the best basis functions with
o = 0.20, r = 0.08, T' = 0.25, strike of $100. Double precision was used to calcu-
late the values. The number of basis functions are in brackets after the price. The
Binomial Method prices are optimal approximations (using various N) and were
calculated based on Cox et al. (1979).

Tables 4.5 and 4.6 show that in some cases the normalised method evaluated better
prices than the non-normalised method. Also, some of the prices presented in these
tables were comparable to the Binomial method. However, in other cases, the prices

evaluated were not so accurate (refer to table 4.6, asset price $110).

4.4 Conclusion

The normalised Fourier-Hermite expansion presented in this chapter involves the
same approach offered in Chapter 3 with the difference being the use of normalised
Hermite orthogonal polynomials. These normalised polynomials have different prop-
erties to those of the non-normalised type. The Delta function for instance has only a

factorial coefficient whereas the non-normalised has a factorial and exponential term.

The recurrence relations and expressions formed to evaluate the prices of the Eu-
ropean and American put options had similarities to those presented in Chapter 3.
The differences occurring due to the nature of the properties associated with the

normalised Hermite polynomials (refer to (4.19) and (4.21)).

It is clear that both types of polynomials used lead to similar results, with one

not better than the other in most cases. Computation times are relatively the
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same. In both types of Hermite polynomials, the optimal approximation would vary
for differing N (basis functions) and K (number of time steps). So, it would be
advantageous if some a-prior knowledge of these parameters were known to give an

optimal approximation.
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Chapter 5

Interpolation Polynomials,
Quadrature Rules and European
Options

The approaches to be offered in this chapter involves the use of interpolation polyno-
mials and quadrature rules. This numerical method is an alternative to the spectral
method covered in Chapter 3 and the normalised Fourier expansion version as pre-
sented in Chapter 4 and those traditionally used such as Monte Carlo simulation,
finite differences and trees. The reason for the use of these methods for the path
integral framework is due to the fact that a closed form solution is not possible
at every time step. The approach being presented converts the path integral into
a sum of "closed interval” integrals, which accurately prices options by utilising

interpolation polynomials and various quadrature (Newton-Cotes) rules.
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5.1 Introduction

The formulation of the path integral framework, as presented in Chapter 2, has no
closed form solution at each time step. Therefore, alternative (numerical) meth-
ods are required to find an approximate solution, in this case, an option price. As
elaborated in Chapter 1, the most common methods used in solving path integrals
involves the use of Monte Carlo simulation and spectral methods like those presented

in Chapters 3 and 4.

Interpolation polynomials have been used in many fields of mathematics and science.
The polynomials, created from a set of data points (nodes), are used to represent
a function that when manipulated in the context of the problem can give a closed
form solution. Issues which affect this method of interpolation include, the types of

polynomials to be used and grid allocations (discretization schemes).

Section 5.2 transforms the path integral into a form which allows for an efficient
approximation to be found. An investigation of the weight function (kernel) used in
the path integral framework is made. The weight function is used to transform the

interval of integration from an infinite to closed form.

Section 5.3 investigates the formulation and implementation of the interpolation.
Section 5.4 presents a thorough analysis of interpolating f*(z,) for European op-
tions. The analysis covers the effects of the model parameters on the method. That
is, how does changes in the Volatility, Interest Rates and Time to Expiry affect the

method and the results. Various node allocations are presented.

An alternative to using interpolation polynomials to solve the modified path inte-
gral are quadrature rules. Section 5.5 presents results for European options utilizing
various Newton-Cotes quadrature rules (endpoint, midpoint, trapezoidal and Simp-
son’s). It will shown that the Newton-Cotes rules are very accurate and fast to

compute (especially for the European options). Section 5.6 concludes the chapter,
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summarising the most important aspects of the approaches offered.

5.2 The Path Integral Framework

The path integral, as in Chapter 2 (equation (2.43)), is given by the following
expression for k= K, K —1,...,1,

Y, ) = U/ e~ @mm@ ) th (VAL 1) dx,, (5.1)

where
1 1 1 e At
M(‘rkz—l) = \/Q—At(xk_l + ;(T - 502)At)7 U= \/7_7'
and

1
r; = —In(9), j=0,1,2,..., K.

Q

To assist in the implementation of this approach, a transformation of (5.1) is required

by replacing v2At x,, with z}, and neglecting the * for convenience, so that

P =0 [ ) piay) o, 52)
where
efrAt

Vi oAt

The reason for the change of variable is to simplify the interpolation of f* and also
improve the efficiency of the interpolation process. There is no closed form solution
to the path integral (5.1) or (5.2), with the only exception being when k = K

namely,

[e.o]

(TS e )P (g ) de (5.3)

Py =2 [

— 00

where f¥(z,) is the payoff function. For a call option,
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e« —1, z,>0
Mz,) = TR 5.4
£ {07 " (5.4)
and for a put option,
e %k —1, z,<0
Mz,) = oK 5.5
£ () {O’ "2 5

Therefore, for a call option, the path integral f%~!(z, ) has a closed form, which

is derived by first substituting (5.4) into (5.3),

x

fH ) =0 / e an P (e - 1) da (5.6)
0

The integral (5.6) can be split into two parts and using basic index laws, transforms

(5.6) to,

fol(l_Kil) — Q[/ 6_(\/%—M(:EK_1))2+U$K de _/ 6‘(\/%‘#(%(—1))2 dZEK:|, (57)
0 0

and by completing the square in the first integral of (5.7) gives,

F Yz, y) =Q [w/ e~ (e plek )=V g _/0 e~ @k —mlag_1))? de], (5.8)
0

where
w = e At VAL 4T (5.9)
and
At
o 702' (5.10)

Therefore, the integrands in (5.8) take the form of a Gaussian function. With a

change of variables,

Ur = — p(T_y) — VT

Uy = Ty — (U(Ty_1) (5.11)
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equation (5.8) becomes

SN e, ) = Q{w /00 et duy — /00 e du2:|. (5.12)

M(IK71 )—V/T
Recalling

erfe(x \/_ / Pdt =1—erf(x) (5.13)

(5.12) can be defined in terms of the error function,

) . 11
P ) = o (5 gerf o) +vA) ) - § - gerf )| (519
with w and 7 given by (5.9) and (5.10) respectively. For the put option,

0 @
P2 ) =Q / ¢~ (Ea ) (emom _ 1) dy, | (5.15)

— 00

The integral (5.15) can be split into two parts as with the call option,

0 T 0 (z
fol(xKil) =0 {/ ef(\/TKTt*M(xK—l))Qf‘mK de—/ e 2aiH@-1)? dl‘K}. (5.16)

— 00 —00

Again, completing the square in the first integral of (5.16) gives,

0 0
N, ) :Q{w/ e~ (ExmrlE VD g —/ (o —nle 1) g } (5.17)

Using the change of variable (5.11), (5.17) becomes

*M(x}(_1)+\/7_' 5 7/1,(th_1) 5
SN, ) =9 lw/ e " duy — / e " dU2:|. (5.18)

o0 (e o]

The equation (5.18) can be expressed in terms of the error function,

1

P ) = e -

2 gerfw(xK_l))—w@—%erfw(xK_mﬁ))}, (5.19)

2

with w and 7 given by (5.9) and (5.10) respectively. Since we know fX~!(z,_,) for

both a put and call, it can be used for both a European or American style option.

123



CHAPTER 5. INTERPOLATION POLYNOMIALS, QUADRATURE RULES
AND EUROPEAN OPTIONS

At this point it is worth noting that it is evident that a closed form solution for all

the subsequent integrals cannot be found due to the form of f**(z,_,).

Therefore, f*~!(z, ;) can be transformed/approximated which allows the path in-
tegral to have a closed form. Interpolating f*~!(z, ;) into many polynomials will
have the desired impact. Each subsequent f*(x,) is in turn interpolated until f°(z,)

is found.

Due to the nature of path integrals, the errors associated with interpolation are
always carried forward to each subsequent time step. Therefore, the interpolation
method and the discretisation of nodes are very important. Minimising errors in

early time steps can only assist in achieving an accurate approximation.

A major issue that needs to be addressed prior to investigating the interpolation
method, is obtaining a closed interval for each integral step. An investigation of the

weight function is needed such that the integrals have a closed interval.

5.2.1 The Weight Function

In determining the most appropriate closed interval to interpolate over each time
step, a thorough investigation of the weight function is required. The weight function

in (5.2) is,

L (Gnen) (5.20)

w('xlm xkfl) = \/m

Figure 5.1 is a graphical representation of (5.20).
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Figure 5.1: A graphical representation of the weight function

Given the nature of the weight in (5.2), and by setting the area under the tails

to some a-priori bound, the infinite interval will convert to a closed interval with

an associated error in doing so. Since the weight is symmetrical around the mean,

the interval should take the form, (vV2At (L,_; +p(zp_y)), V2AL (Ry_; + p(x)_1))),
where L,_, is the left and R,_, is the right side of the interval. The intervals formed

were derived based on the Gaussian in the path integral being of the standard form,

with a mean of 0 and a standard deviation of 1. Given the formulation of the closed

interval, the path integral (5.2) will take the form,

N wgy) =V (g, —00, By (z4_1))
+ W(zy_y, By (1) Bo(Th_1))

+ U (2),_y, Ba(2)_1), 00)

where

and
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Bi(xp_y) = V2Ot (Li_y + p(y_y)),
By(ay_y) = V2AL (R, + p(xy_y)). (5.23)

The path integral, U(x,_,, 5 (x,_1), By(x,_1)), has a closed interval so that inter-
polation is possible. Since the interval consists of the variable z,_,, consideration
must be given to the allocation of the intervals of integration for each time step.
The path integral is backward recursive in nature, however, the optimal interval al-
location must occur in a forward manner (i.e. for k =1,2,..., K —1). All intervals
are based on the value of the underlying z, (i.e the value of the underlying at the
beginning of an options life). The value of the option is based on the payoff function
(i.e. the boundary condition) and is used as the starting point in the path integral

framework, with the option price calculated in a backward direction to f°(x,).

To evaluate the option price f° for a certain underlying value, z,, the interval of its
integral and f1(z,) is required. The interval of integration for f°(z,), is dependent

on the value of z,. That is,

ﬁz(xo) xq 2
(g, B1(x0), Ba(20)) = Q/( : e~ (Vam (o) fl(xl)'dxl' (5.24)
B1(zg

The intervals of integration for fj(xj), where j =1,2,..., K —2,and L, = R, = z,

being the value of the underlying, is determined by the pair of recursive equations,

51(1/3‘) = V2AL (Lj + :U’(ﬁl(Lj—l)))

52(33') = V2AL (Rj + :U’(ﬁ2(ijl)))‘ (5.25)
So, for each subsequent interval of integration, the previous interval values are used
to determine the next. Table 5.1 is an example of the intervals of integration required

when K = 4, with the value of the underlying, z,, the intervals for each time step

are given.
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‘ k ‘ Function ‘ Left Side ‘ Right Side ‘
3 f2($2) Ly = By(Ly) | Ry = Br(Ry)
2 fH(xy) Ly = Bi(Ly) | Ry = Br(Ry)
1 JAED) Ly = Bi(Ly) | By = Br(Ry)

Table 5.1: An example of the intervals of integration used for pricing an option
using 4 time steps.

Figure 5.2 is a graphical representation of the process involved in allocating the

intervals of integration at each time step.

Figure 5.2: A graphical view point of the interval allocation for K =4

So, starting with the underlying value x,, the upper and lower bounds (R, and L)
for the next time step are determined. The value of the upper bound (R,) is then
used to find the subsequent upper bound (R,) and this process continues for the
remaining time steps. The process is also performed for the lower bounds in the

Same manner.

Prior to using the recursive equations (5.25), determination of each L; and R; is

required.

5.2.2 Closed Interval Allocation

Given the recursive equations (5.25), the optimal closed interval for each time step

is found satisfying the following conditions,
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U (z),_y, —00, B1(x)_1))

W(zy_y, By(x)_y),00) <

N3

ols A

. (5.26)

where 7 is an a-prior: error set to a value close to zero.

Theoretically, the best option price possible is capped to the value of 1. That is,
if 7 = 1078 then the smallest error (difference between the approximated price and
the so-called exact price) possible is 107%. However, this would only occur if the
path integral had a closed form solution at each time step. Since this is not possible,

errors associated with approximating the option price may vary from 7.

The integrals (5.26), as (5.2), do not have a closed form solution. An approximation
of fk(x*) is required so that, firstly the integrals have a closed form solution and

secondly, that the approximation is an upper bound to the exact f*(z*).

From Black & Scholes (1973), any security price cannot be greater than the value
of the asset or underlying itself. The upper bound for a call option therefore takes

the following form,

FHy) < e, (5.27)

and the upper bound for a put is

F(wy) < e, (5.28)

Recalling (5.6) and (5.15) in Section 5.2, the integrals formed by using the upper
bounds (5.27) and (5.28) are very similar.

e—rAt

\ch(xk:—lv _Oovﬁl(‘rk—l)) < \/_ / 6_(\/2—%_1“1%71))260:% d‘rk (529)
™ Jo

and
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efrAt [e%S)

Uy, Bo(wy),00) <~ e~ R ooy g (5.30)
™ Jo

By referring to the first integral in (5.6) and (5.15), we complete the square so, a

call takes the following form for the outer integrals,

Tk

QAt—N(ack,l)—\ﬁ)g dl‘k, (531)

w lBl(Ik—l) (
V(. ¢, —00, Bi(T),_ <7/ e
( k—1 51( k 1)) \/m e

and

w &0 (k. _ _ 2
U (2,1, By(r_1),00) < / e~ (Vami @)=V go 5.32
( k—1 BQ( k 1) ) \/m /62(:%_1) k ( )

For a put option,

ﬁl(xk_l) x
W, (11, —00, By (4 1)) <~ / e~ (Tam @)D gp - (5.33)

V2AtT J_so

and

A D O eI AV L
Vo (x_q, Bo(x)_1),00) < / e V2Ai k-1 dx,, 5.34
p( k—1 2( k 1) ) \/m L) k ( )

with w and 7 given by (5.9) and (5.10) respectively. By performing a change of
variable as in section 5.2 and recalling (5.13), firstly (5.31) and (5.32) become,

Welty =00, Bilwg_)) < S (1= erf(Lyy + V7)) (5.35)
and
Welwy, Bl ),50) < S (L= erf(Ryy = V7). (5.36)

For the put option, (5.33) and (5.34) become,

Wy (21, =00, Buly ) < 5 (L= erf(Lyy = V7)) (5.37)

and

\Ilp(xkflvﬁQ(xkfl)v 00) < %(1 —erf(Ry_, + \/7_')) (5.38)
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Setting the outer integrals, (5.35), (5.36), (5.37) and (5.38) to an a-priori error
margin, 7, that is, the area under the tails, then values for L, _, and R,_, can be

determined.

Using an asymptotic expansion given in Abramowitz & Stegun (1970),

—x2

1= erf(z) ~ xf1—2—;2+0( o (5.39)

A general form for (5.35), (5.36),(5.37) and (5.38) is

g(l —erf(X)) =n. (5.40)

Since X is assumed to be large, substituting the first term in (5.39) into (5.40) is

sufficient,

e 2n
= 5.41
X W (5.41)
and with some simple algebra,
2
(YT Z X2 (x), (5.42)
W
Since X is assumed to be large, (5.42) becomes,
2
In ( ”\F) ~X?, (5.43)
and therefore
2
X~y = (21T (5.44)
w
Substituting (5.44) into (5.42) and solving for X gives,
2 1
X oy f—m (2T S (I (522)), (5.45)
w n\f

with w is given by (5.9). Table 5.2 is an example of the intervals used for a particular

European call option.
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Asset 1) Step L, , R,
Price ($)

80 1078 3 —5.25402180800974  3.28294451560886
2 —3.88650792296428  1.80435969849094
1 —2.50707574146733  0.338140259899832
1071 3 —7.19311250452033  5.22312967391776
2 —5.17948762893245 3.09770361816799
1 —3.15369033280151  0.984754851234016
10732 3 —9.90611842381887  7.93666498266998
—6.98829302802270 4.90668518241841
1 —4.05815984534679  1.88922436377929

Table 5.2: European call option intervals of integration for K = 4, o = 0.20,
r=0.08, T = 0.25 and strike of $100. Here 7 is the total error for the tails.

It is clear from Table 5.2, that the value of n has a significant influence on the inter-
vals of integration. A balance is required between the value of 1 and the interpolation
parameters. The wider the interval, the lower the accuracy of the interpolation. To
improve the interpolation, a better grid allocation is required. However, to achieve

this will lead to inefficiencies and greater computational effort.

5.3 Interpolation Polynomials

The objective of the interpolation is to convert the path integral (5.2), at each time
step, to a form for which a closed form solution can be obtained. For a review of
interpolation in general, we refer the reader to Atkinson (1989). de Boor (1978) gives

a more detailed account on interpolation and the use of splines.

Issues which influence the interpolation include the number of partitions to be used
(N) and the placement of nodes, the type of polynomials to be used and the sample
data (including end points). Also, the values of the model parameters o,r, T and K
(time slicing) have their part to play. A change in any of these variables, invariably

changes the final price. For example, a change in K, will require either a change in
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the value of NV or the positioning of the node points to obtain a similar price.

The most commonly used functions for interpolating are polynomials of order ¢, in

the form,

p(z) = ap + oy + a2’ + ..+ aq_lxq_l + a7t (5.46)

To find the appropriate polynomials, discretization of the interval into N partitions
is required. For example, Figure 5.3 is the grid for equally spaced nodes, given
n=1,2,...,N — 1, N, takes the form (the grid allocation is an issue which is pur-

sued later in this chapter),

a b

Tr.0 L1 ) TeN—2 TpN-1 TN

Figure 5.3: The discretization of x,,

From this point, results and analysis presented in this chapter are for Hermite in-

terpolation polynomials (of order 4 (cubics)).

F(x,n) = o, + ay @ + 0y, 27 + ag,7°, n=20,...,N. (5.47)

This method involves the interpolation of the European option, f*(x,) (the Ameri-
can Put and a barrier option will be examined in the next chapter). By replacing the
f¥(x,) with a series of polynomials (recalling that a closed form solution of f¥(z,)
is obtained by using the payoff functions (2.17) and (2.24)), the path integral (5.2)

then becomes,

U@y, Bi(Th-1)s Bo(Ty) QZ/ ~(a ) ¢ (951{7") dr,  (5.48)
kn 1

where (2 is given in (5.2).
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Each component of the sum is an integral. Given the use of a Hermite interpolation

polynomials, the components of the sum take the form,

“(I’“—l))QxZ dr,, (5.49)

3
Iklxk nab) = Z /
q=0

and from (5.48)

U (@g_y, B (T_1), Bo(Tp—1) szlk Ny 1 Thn—1> Thn)- (5.50)

n=1 ¢g=0

Section 5.4 will present and analyse results with particular emphasis on the effects

of node allocation and the various closed intervals used.

5.4 Interpolation and European Options

European style options are one of the simplest financial instruments to solve. It is
wise to analyse thoroughly the affects of the method parameters such as N (number
of partitions) and 7 (the a-prior bound used to close the path integral interval) for
European options. Therefore, any findings from the analysis can easily be applied to
more complex financial instruments, such as American or barrier options. Changes
in the model parameters, such as K (time steps), o (volatility), T (time to expiry)

and r (interest rates), also have an affect on the option price.

Table 5.3 is a summary of European option prices using the Black-Scholes formula.
These results are used when comparing the various approximations presented in later
sections of this chapter. The errors presented are an absolute difference between the

interpolation method (IPM) and Black-Scholes price.
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Asset Price ($) European Call Price ($) European Put Price ($)
80 0.06901773330119 18.0888850639767
90 1.02545373413394 9.04532094721139
100 5.01698060626241 3.03684781734310
110 12.6204485019830 0.64031578148717
120 22.0665602016071 0.08642752091237

Table 5.3: Black-Scholes - European option prices with, ¢ = 0.20, » = 0.08,
T = 0.25 and strike of $100.

The first part of the analysis involves the use of a fixed number of partitions, that are
equally spaced at each time step. Since this node allocation is simple to implement,

a thorough analysis of the model and method parameters are made.

5.4.1 Fixed Number of Partitions

In this node allocation, the number of nodes allocated at each time step are the
same and are equally spaced over the interval of integration. Therefore, as the time
step gets closer to k = 0, the distribution becomes denser (i.e the space between
nodes (partition length) is decreasing). This is due to the fact that the interval of
integration at the first time step is the widest and the last is the smallest (refer to

table 5.2). With the intermediate interval lengths gradually decreasing.

Table 5.4 contains some numerical approximations for European call options with

128 partitions used at each time step.
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Asset n IPM Result Error
Price ($)
80 1078 0.0690076240325474  1.0109268638739191F — 05
10716 0.0689726550385943  4.5078262591853688F — 05
10732 0.0688259946315314  1.9173866965471135F — 04
90 1078 1.0254550797608930  1.3456269492770345F — 06
10716 1.0254601167095607  6.3825756169838543F — 06
10732 1.0254811418688603  2.7407734916502779F — 05
100 107®  5.0170051428601026  2.4536597691832140F — 05
10716 5.0170889304529478  1.0832419053696807F — 04
10732 5.0174346307412199  4.5402447880898977F — 04
110 1078 12.6204467004580998 1.8015249403369182F — 06
10716 12.6204414403296745 7.0616533648371060F — 06
10732 12.6204199493163536 2.8552666686554318F — 05
120 1078 22.0665498972233856 1.0304383724069055F — 05
10716 22.0665161653561519 4.4036250959611500F — 05
10732 22.0663757561983438 1.8444540876572102F — 04

Table 5.4: Interpolation method - European call option with 8 time steps, 128
partitions, o = 0.20, r = 0.08, 7" = 0.25 and strike of $100. Here 7 is the total error
for the tails (refer to (5.26)). Double precision was used to calculate the values.

Table 5.5 presents European put option prices for the same settings as table 5.4.
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Asset n IPM Result Error
Price ($)
80 1078 18.08629222663164 2.592837345063992F —3

1071%  18.08337631887139 5.508745105312074E -3
10732 18.07740932173431 1.147574224239223 E -2

90 1078 9.042396439929282 2.924624880182303 -3
10716 9.039159958455835 6.161106353629042E -3
10732 9.032634269541020 1.268679526844341 -2

100 107%  3.033601059225259 3.246877712677690E —3
10716 3.030082741798865 6.765195139071117E -3
10732 3.023154541128493 1.369339580944290 £ —2

110 107%  0.6366952507974828  3.620581861078428 E—3
10710 0.6327273319993394  7.588500659221759F—3
10732 0.6247034663400692  1.561236631849195F—2

120 1078 0.08244929289049295 3.978239392127833E—3
1071% 0.07809231901426740 8.335213268353394F—3
10732 0.06922013491199029 1.720739737063049F —2

Table 5.5: Interpolation method - European put option with 8 time steps, 128
partitions, o = 0.20, r = 0.08, 7" = 0.25 and strike of $100. Here 7 is the total error
for the tails (refer to (5.26)). Double precision was used to calculate the values.

It is evident with this node distribution that as n decreases, the errors increase.
This trend is due to the fact that as n becomes smaller, the interval lengths for the
interpolation increase in size. The increase in interval lengths cause the partitions to
be less dense. With a sparser distribution, the interpolation errors increase, which

are then carried forward to proceeding time steps.
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Figure 5.4: The discretization of x for K = 4 with a fixed number of partitions,
equally spaced.

Figure 5.4 shows the discretization for each time step, given a fixed number of par-
titions that are equally spaced. As is illustrated in this figure, the densities of the
distribution of nodes change at each time step. It is clear that even though a smaller
71 value theoretically gives a better approximation, this is countered by the decrease

in density of the distribution of nodes for a wider interval of integration.

It is also clear that the closer two nodes are together, the better the interpolation
becomes. However, too many interpolations can increase the error. Therefore, a
compromise is required between the value of 17 used and the number of nodes being
distributed throughout the interval of integration. In later sections, other distribu-

tions are used to alleviate the compromise between 7 and interpolation accuracy.

Prior to analysing these other distributions, an investigation of the effects of model

parameters on the option price using the IPM is required. Since this node distri-
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bution is quite simple to implement, it is worthwhile investing time in understand-
ing the effects of changing model parameter values have on the parameters of the
method. That is, how do changes in K, o, T and r affect the approximate option

price, given certain values of N and 7n?

5.4.2 Parameter Analysis

Before investigating the method of interpolation in further detail, an in-depth anal-
ysis of model and method parameters is required. How do K, o, T and r influence

N and 7, and vice-versa?

The first parameter to be investigated is the value of 1. Since 7 controls the interval
of integration, attempting to find an optimal 7 value is required. The plots presented

were produced for a European call option.

n
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Figure 5.5: The effects of a changing n with K =8, N =128, 0 = 0.20, r = 0.08,
T = 0.25 and strike of $100.
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Figure 5.6: The effects of a changing n with K =8, N =64, 0 = 0.20, r = 0.08,
T = 0.25 and strike of $100.
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Figure 5.7: The effects of a changing n with K =8, N = 256, 0 = 0.20, r = 0.08,
T = 0.25 and strike of $100.

From figure 5.5, the optimal value of 7 is in the range (107%,107%) for the parameter
set K =8, N =128, 0 =0.20, r = 0.08, T" = 0.25 and strike of $100. It is worth

noting that changes in this parameter set may change the optimal value of 7.

Figure 5.6 shows an optimal 7 value in the range (107°,1077). Figure 5.7 shows
an optimal 1 value in the range (1077,107%). The change in the optimal value is
due to a change in the value of N. The change in the optimal range occurs due to
the change in the number of partitions being used in the allocation of nodes. This

means, for the case when N = 64, the interpolation is not as accurate. To com-
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pensate for the lack of accuracy, the value of 7 is increased. So, the node allocation
will become denser. Figure 5.8 shows the difference in allocations, where interval

(La, R.) is for a larger n value compared to interval (L, Rp).

a a
x;,o 1};,1 xa 2 %I 62 xal 63 xal 64
L, R,
951;,0 951;,1 ley,Q cee ‘rbl,62 xbl,63 xbl,64

Figure 5.8: An example of the fixed number of nodes (equally spaced) discretization
for N = 64 for varying interval of integration.

Increasing the value of 7 also restricts the best approximation achieved. Remem-
bering the value of 7 is the point where the tails of the weight function are removed.
Therefore, a compromise between 1 and N is needed. As Figures 5.5, 5.6 and 5.7

show, decreasing N invariably requires an increase in 7).

Figures 5.9 - 5.11 show the effect on  when changing K from 8 to 6.
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Figure 5.9: The effects of a changing n with K =6, N =128, 0 = 0.20, r = 0.08,
T = 0.25 and strike of $100.
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Figure 5.10: The effects of a changing n with K =6, N =64, 0 = 0.20, r = 0.08,
T = 0.25 and strike of $100.
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Figure 5.11: The effects of a changing n with K =6, N = 256, 0 = 0.20, r = 0.08,
T = 0.25 and strike of $100.

Comparing Figures 5.5 - 5.7 with Figures 5.9 - 5.11 shows a similar result in the
optimal values for 7. The only difference is the error obtained for each of the ap-
proximations. Appendix C.1.1 show results for optimal n for various K values. In
analysing all these figures, it is clear that N has a major influence on the optimal 7.
The model parameter K, in combination with N and 7, influences the final price.
That is, given a certain N and 7, there is a K which will give an improved approx-

imation.

The interest rate, r, is the discounting factor on the value of money. In the analysis
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of the interest rate, various interest rates between 2% and 40% were used.

Errors for Certain Interest Rates
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Figure 5.12: The effects of changing the Interest Rate with K = 8 N = 128,
o =10.20,T = 0.25, 7 = 107 and strike of $100.

From Figure 5.12, there exists an interest rate, in combination with a certain K, N
and 7, such that the approximation is optimal. However, it must be stated that the

difference in approximations between all interest rates are similar.

The next parameter for analysis is o, the volatility of the underlying. The volatili-

ties used are between 5% and 50%.

Errors for Certain Volatilities
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Figure 5.13: The effects of changing the Volatility with K = 8, N = 128, ¢ = 0.20,
T = 0.25, 7 = 1077 and strike of $100.

The approximations, with volatility changes in Figure 5.13, behave similarly to those
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with interest rate changes. The only difference is that there may be more than one
volatility value which gives a better approximation for a set of values for K, N and
1. Therefore, it is possible for various local minimums to occur for a particular set

of K, N and 7, with one of these minima being the global minimum.

The final parameter to analyse is the Time to Expiry, T". The times used in this

analysis include values between 0.1 year to 2 years.

Errors for Certain Times to Expiry

Log Errors

-6.5

Time to Expiry

—— Asset Price $80 —#— Asset Price $90 Asset Price $100 Asset Price $110 —*— Asset Price $120 ‘

Figure 5.14: The effects of changing the Time to Expiry with K = 8 N = 128,
o=10.20,T =0.25 7= 10" and strike of $100.

The approximations, with Time to Expiry changes in Figure 5.14, behave similarly

to those with interest rate and volatility changes.

It is obvious to find the optimal approximation is a multi-dimensional problem. Fig-

ure 5.15 shows the nature of the problem at hand.
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Figure 5.15: Approximations for various K (right axis) and N (left axis) with
n=10"", 0 = 0.20, T = 0.25, asset price = $100 and strike of $100.

From figure 5.15 it is evident that the optimal approximation occurs when K = 4
and N = 140. This plot also shows other patterns such as when the number of
time steps, K increases, to improve the approximation an increase in the number of

partitions used is also required.

5.4.3 Fixed Spaced Partitions

The allocation of equally spaced partitions is an alternative to a fixed number of
partitions. This distribution was not used with the intention to improve the results.
The distribution, having identical densities, could lead to simpler analysis of the
errors obtained. An obvious extension to this method would be to predict the best
approximation for a certain set of parameters (o, T, r, the asset and strike price).
This extension could be achieved with most node distributions but should be easily
implemented if the partitions were equally spaced. The previous allocation type,
fixed number of partitions, which has varying densities from one time step to the
next, requires analysis of errors for each interpolation. These calculations would

require a greater computational effort.

As mentioned previously, theoretical error analysis is outside the scope of this thesis.
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However, this analysis may assist in predicting the optimal method parameters (N

and 7) prior to approximating the option price. Table 5.6 contains European call

option prices for various node spacing between 0.01 and 0.1.

n Space IPM Result Error

(Total Partitions)

107%  0.10 (173) 5.0170056697858438  2.5063523432372614F — 05
0.09 (192) 5.0169970139984361 1.6407736024709463FE — 05
0.08 (216) 5.0169908039512894  1.0197688878055278E — 05
0.07 (246) 5.0169865302421375 5.9239797262078397FE — 06
0.06 (288) 5.0169837421334647 3.1358710537998657FE — 06
0.05 (345) 5.0169820480417426 1.4417793313403759FE — 06
0.04 (431) 5.0169811159409443 5.0967853340577740E — 07
0.03 (574) 5.0169806737174278  6.7455016572459670F — 08
0.02 (861) 5.0169805093572686 9.6905142937808719F — 08
0.01 (1720) 5.0169804715224018  1.3474000942759190F — 07

10716 0.10 (251) 5.0170058070948258  2.5200832414612462F — 05
0.09 (279) 5.0169971513073213  1.6545044909804796 K — 05
0.08 (312) 5.0169909412589941 1.0334996582844758 E — 05
0.07 (357) 5.0169866675485633 6.0612861521591732F — 06
0.06 (417) 5.0169838794404242 3.2731780133521404F — 06
0.05 (501) 5.0169821853506589  1.5790882476607315E — 06
0.04 (624) 5.0169812532524150 6.4699000393297901F — 07
0.03 (832) 5.0169808110206686 2.0475825757149124F — 07
0.02 (1247) 5.0169806466934990 4.0431087644510200F — 08
0.01 (2493) 5.0169806085350679  2.2726570625408726 E — 09

10732 0.10 (359) 5.0170058070942467 2.5200831835214821F — 05
0.09 (399) 5.0169971513067786 1.6545044367183293F — 05
0.08 (448) 5.0169909412581415 1.0334995730748586F — 05
0.07 (513) 5.0169866675484354  6.0612860244835254F — 06
0.06 (597) 5.0169838794412467 3.2731788356110680F — 06
0.05 (717) 5.0169821853609813  1.5790985699593030F — 06
0.04 (894) 5.0169812532574136  6.4699500271214738FE — 07
0.03 (1193) 5.0169808110248049 2.0476239384614736FE — 07
0.02 (1788) 5.0169806466714393 4.0409028206900288FE — 08
0.01 (3576) 5.0169806090475753  2.7851644601728509FE — 09

Table 5.6: Interpolation method - European call option price using fixed spaced
partitions for an asset price of $100 with 4 time steps, o = 0.20, r = 0.08, T' = 0.25

and strike of $100. Here 7 is the total error for the tails.

The value in brackets,

represents the number of interpolations made to obtain the option price. Double
precision was used to calculate the values.

The errors are very similar for all three n values used. However, when the spacing
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is 0.01 and 0.02, the errors are significantly better for n values of 10716 and 10732,

A valid comparison between equally spaced partitions and fixed number of partitions
should be made when the total number of interpolations are identical (or approxi-

mately the same). In the results from the fixed number of partitions section (refer

to 5.4), the total number of partitions used were 384.

n Space Interpolations IPM Result Absolute Relative Error
Made
1078 384 5.0170051428601026  2.4536597691832140F — 05
0.05 345 5.0169820480417426 1.4417793313403759E — 06
10716 384 5.0170889304529478 1.0832419053696807E — 04
0.07 357 5.0169866675485633 6.0612861521591732E — 06
10732 384 5.0174346307412199  4.5402447880898977E — 04
0.09 399 5.0169971513067786 1.6545044367183293E — 05

Table 5.7: Comparison of fixed number and fixed spaced partitions for a European
call option prices for an asset price of $100 with 4 time steps, o = 0.20, r = 0.08,
T = 0.25 and strike of $100. Here 7 is the total error for the tails. The first line
represents the price using fixed number of nodes and the second being equally spaced
partitions.

From Table 5.7, it is clear that the equally spaced nodes will give better results.
The magnitude of improvement is emphasised when n = 1076, Under the fixed
number of partitions, at each time step, f*(z;) is interpolated, and realises errors
for each interpolation. The interpolation errors from previous time steps are carried
to the subsequent time steps remaining, as previously mentioned. With the fixed
number of partition distribution, the density of the nodes is less in the early steps,
which incur greater interpolation errors. These errors carry forward to the final time
steps when the distribution is denser. That is a greater number of interpolations

are made, which propagates the errors of the earlier interpolation.

Using the equally spaced nodes has the advantage of using the nodes early. That

is, the errors from interpolation are less than those incurred in the fixed number of
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nodes distribution. In the final steps, the density is the same and actually less inter-
polations are made. For example, when n = 10732, the nodes used are (199,133, 67).
For the fixed number of partitions, 128 partitions are used at each time step. So,
the first two time steps give a better interpolation for equally spaced nodes and less

error being propagated to the final time step.

5.4.4 Adaptive Node Allocation

The adaptive node distribution is formed by controlling the errors of interpolation.
That is, the nodes are found which give a fixed interpolating error. The error bounds
used can vary as required. The results presented in this thesis, using the adaptive

node allocation, uses the error bound ®, such that,

0.8¢ < & < 1.2¢ (5.51)

where € is of the L; (Lebesgue Norm) form, namely,

e= [ 1) - o] o (5.52)

k,n

This alternative to the previous distributions is important in minimising (as well
as controlling) the error of interpolation to achieve better results. The minor dis-
advantage to this node distribution is the computational effort required to find the

optimal nodes.

Table 5.8 presents some results for ¢ = 107°. Even though requiring a greater
computational effort to determine the node distribution, the effort is compensated
by the fact the number of interpolations made is much less than the previous two
distributions. A comparison of the results in table 5.7 with those in table 5.8, the
adaptive nodes approximation is comparable if not better than the previous node

distributions. Appendix C.1.3 contains further results for varying e.
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Asset n Partitions IPM Result Error
Price ($) Used
80 1078 122 0.0690146803463858  3.0529548003467750F — 06
10716 150 0.0690146879852485  3.0453159376598454F — 06
10732 184 0.0690147040815196  3.0292196664797634F — 06
90 10=% 135 1.0254525910199330  1.1431140107404092F — 06
10716 163 1.0254529422904397  7.9184350396110936F — 07
10732 196 1.0254528224019526  9.1173199111976855E — 07
100 1078 142 5.0169825138271680  1.9075647568478349F — 06
10716 169 5.0169824382954689  1.8320330578969202F — 06
10732 204 5.0169824313320062  1.8250695947574780F — 06
110 1078 147 12.6204468274334065 1.6745496322911890F — 06
10716 176 12.6204468951690991 1.6068139402358739F — 06
10732 213 12.6204469508081285 1.5511749107410822F — 06
120 108 146 22.0665570766488592  3.1249582504999651F — 06
10716 178 22.0665570880606516 3.1135464595433149F — 06
10732 221 22.0665570674505034 3.1341566064657655F — 06

Table 5.8: Interpolation method - European call option with adaptive node dis-
tribution with an interpolating error ¢ = 107 and with 4 time steps, ¢ = 0.20,
r =0.08, T = 0.25 and strike of $100. Here 7 is the total error for the tails. Double
precision was used to calculate the values.

After analysing the node distributions for each of the time steps, it is evident that

the distributions are very similar. Figure 5.16 shows the densities of the node dis-

tribution for a specific European call option price for the first four time steps (for a

case where K = 8). It is clear from these bar charts that the node distribution in

each time step is very similar.
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Figure 5.16: Adaptive Node Distribution for the first 4 time steps when K = 8

To combat the computational effort required for allocating nodes at each time step,
nodes are distributed in the first time step only. This distribution is used in the
subsequent time steps to follow. Since the intervals decrease in size, the nodes
that are outside the interval are discarded and the endpoints are added (if not
already included in the original distribution). Table 5.9 are results for the alternative

adaptive node distribution.
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Asset n Partitions IPM Result Error
Price ($) Used
80 108 116 0.0689375959379025  8.0137363283629397F — 05
10716 143 0.0689328220463222  8.4911254863971088E — 05
10732 174 0.0689226935416872  9.5039759498958837FE — 05
90 1078 133 1.0254499221687041  3.8119652394710823F — 06
10716 155 1.0254501539858176  3.5801481260491763F — 06
10732 186 1.0254502190435195  3.5150904242886583F — 06
100 108 140 5.0169804761446732  1.3011773811189009F — 07
10716 163 5.0169815587802802  9.5251786944028360L — 07
10732 195 5.0169816476442266  1.0413818155030619F — 06
110 108 148 12.6204385958538357  9.9061292030411252F — 06
10716 171 12.6204458862049833 2.6157780552704679F — 06
10732 205 12.6204459271643668 2.5748186721630262F — 06
120 10=% 157 22.0665483741688604 1.1827438251010847FE — 05
10716 179 22.0665487395526547 1.1462054455568804F — 05
10732 215 22.0665486133647271 1.1588242385118797FE — 05

Table 5.9: Interpolation method - European call option with single adaptive node
distribution at the first time step with an interpolating error ¢ = 10~ and with 4
time steps, o = 0.20, r = 0.08, T' = 0.25 and strike of $100. Here 7 is the total error
for the tails. Double precision was used to calculate the values.

Generally, this method of distribution, gives similar results to the other adaptive

distributions and in some cases, an improved result (refer to an asset price of $100).

The advantage of this method is, the reduced computational effort required to ob-

tain very accurate results. To obtain more accurate results than those presented in

Tables 5.8 and 5.9, it is advised that ¢ becomes smaller. However, a trade off for

accuracy, is the computational effort required and hence time. Though it must be

said that the method of allocating nodes at the fist time step alleviates this problem.

As stated previously, further results can be found in Appendix C.1.3.
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5.5 Traditional Quadrature Rules

An alternative to finding the European option price is the use of quadrature rules.
The use of quadrature is very common for integral equations which have no closed

form solution(s). Recalling the path integral,

[ee) z 2
Py =0 [ (G i) da, (5.53)
where
e—rAt

V2AtT

For convenience, we denote that

g(xkzvxk:—l) = 6_(“%_u(xk*1)) fk(sz) (5.54)

As with the interpolation approach in the previous sections, the path integral interval

has to be converted. We employ the same approach as previously so that,

PN @) =V (xy_y, —00, By(z_q))
+ (g, By (1) Bo(Th-1))

+ W(z)y, Byl 1), 00) (5.55)

where

b
U(x),_q,a,b) = Q/ g(xy, xp_q) dxy, (5.56)

and

Bi(xp_y) = V2Ot (Li_y + p(zy_y))
By(xy_y) = V2Ot (Ry_y + p(xy_y))-

Section 5.2.2 has an explanation on how the intervals are set.
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It is assumed in the quadrature rules that there are NV + 1 sample points and that
the partitions are equally spaced. Figure 5.17 is an example of a grid for equally

spaced nodes, given n =0,1,2,...,N —1, N,

a b

Tr.0 L1 ) TgN—2 TpN-1 TN

Figure 5.17: The discretization of x,,

The rest of this section will now investigate the most common quadrature rules (in-

cluding endpoint, midpoint, trapezoidal and a composite Simpson rule).

5.5.1 Left and Right Endpoint Approximation

The Endpoint Approximation is a method of approximating rectangular areas. The
sum of multiple rectangle areas (a Riemann Sum) are used to approximate the area
under a particular curve. The left or right side of the rectangles are used for the

height of the rectangle and the change in the x value is the width.

Clearly, this approximation is not overly accurate unless many rectangles are used.
As described in the previous sections, it is not necessarily a given to use as many rect-
angles (or interpolations) as possible. Time constraints must be considered when
using this approximation. Mathematically, the Left Endpoint approximation for

(5.53) is given by,

N-1
U(zyy,0,b) = AxZg (Thi 1) (5.57)
=0

Therefore, (5.57) breaks the area under (5.54) into N rectangles. Table 5.10 shows

results for 32 rectangles.
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Asset n Left End QR Error
Price ($)
80 1078 0.06901764939587995 8.390530617519154F—8
10716 0.06903104945227437 1.331615108823847F—5
10732 0.06757412997851460 1.443603322671530FE—3
90 1078 1.025453345956308 3.881776360348255 E—7
10716 1.025687042770189 2.333086362453773FE—4
10732 1.044118566638236 1.866483250429263 F—2
100 107®  5.016980560499655 4.576275625112203 £ —8
10716 5.017259560237605 2.789539751937298 E—4
10732 5.036957233365779 1.997662710336812F —2
110 1078 12.62044807790149 4.240815449918500E—7
10716 12.62046538268648 1.688070343952575E—5
10732 12.68516174817051 6.471324618746621 K —2
120 1078 22.06655968365653 5.179505819796759F —7
10716 22.06671664815568 1.564465485728306 £ —4
10732 22.18405828892942 1.174980873223141 E—1

Table 5.10: Left Endpoint - European call options with 4 time steps, 32 partitions,
o = 0.20, r = 0.08, T = 0.25 and strike of $100. Here 7 is the total error for the
tails (refer to (5.26)).

The results from table 5.10 show that for small values of n, the approximation per-
forms poorly. The reason for this is quite logical; as 1 gets smaller, the intervals of
integration increase, meaning that the 32 rectangles must cover a larger area. Table
5.11 shows the optimal 7 for each asset price and same parameters as those used in

table 5.10.

Asset Optimal Left End QR Error
Price (8) 7
80 10710 0.06901775932364641 2.602246063077018 E—8
90 1078 1.025453457577973 2.765559710127263E—7
100 10-8 5.016980560499655 4.576275625112203 F —8
110 108 12.62044807790149 4.240815449918500FE—7
120 1078 22.06656015698260 4.462449609832220 -8

Table 5.11: Left Endpoint - European call options with 4 time steps, 32 partitions,
o =0.20, r = 0.08, T = 0.25 and strike of $100. Here 7 is the total error for the

tails (refer to (5.26)).
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Recalling that n controls the overall approximation of the option price, increasing
the number of rectangles should improve the approximation. Table 5.12 are some

results for 256 rectangles.

Asset Left End QR Error
Price ($)
80 1078 0.06901768008684646 5.321433967087064 £ —8
10716 0.06901773330119115 5.370703881624195E—15
10732 0.06901773330119265 6.869504964868156 F—15
90 107%  1.025453625523113 1.086108305514699FE —7
10716 1.025453734133945 1.554312234475219FE—15
10732 1.025453734133948 4.218847493575595E—15
100 107%  5.016980450514724 1.557476876357100E—7
10716 5.016980606262407 4.440892098500626 E—15
10732 5.016980606262412 8.881784197001252FE—16
110 1078 12.62044830726072 1.947223218223826 F/—7
10716 12.62044850198304 3.552713678800501 £ —15
10732 12.62044850198304 3.552713678800501 £ —15
120 1078 22.06655997202600 2.295811114549906 K —7
10716 22.06656020160712 1.776356839400250 E—14
10732 22.06656020160712 2.486899575160351 E—14

Table 5.12: Left Endpoint - European call options with 4 time steps, 256 partitions,
o =0.20, r = 0.08, T = 0.25 and strike of $100. Here 7 is the total error for the
tails (refer to (5.26)).

The results from 5.12 show that with an increase in the number of rectangles, smaller
values of 7 can achieve better approximations. By increasing the number of rectan-
gles and decreasing 1 should improve the approximate option price. Table 5.13 shows

the optimal 7 for each asset price for the same parameters as those used in table 5.12.
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Asset Optimal Left End QR Error
Price ($) 7
80 1073 0.06901773330119051  4.732325642464730F —15
90 10722 1.025453734133946 1.998401444325282E—15
100 1072 5.016980606262410 8.881784197001252E—16
110 1073 12.62044850198304 0.000000000000000E0
120 10733 22.06656020160710 0.000000000000000E0

Table 5.13: Left Endpoint - European call options with 4 time steps, 256 partitions,
o =0.20, r = 0.08, T = 0.25 and strike of $100. Here 7 is the total error for the
tails (refer to (5.26)).

The increase in the number of rectangles in combination with a smaller n has pro-
duced excellent approximations. The method of Left Endpoint approximation is
easy to implement, with simple function calls made. The results achieved are very

accurate and are very fast to compute (less than 1 second).

The Right Endpoint approximation uses the right side of a rectangle to approximate
area. As with the Left Endpoint approximation, the height is taken from the right
side of the rectangle and width is the change in x. The Right Endpoint approxima-
tion for (5.53) is given by,

N
U(x),_q,a,b) = AxZg(xkvi,xk_l) (5.58)

=1

Table 5.14 shows results for 32 rectangles.
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Asset n Right End QR Error
Price ($)
80 1078 0.06901774109313175 7.791945616508755E—9
10716 0.06903104945227856 1.331615109242956 F—5
10732 0.06757412997851460 1.443603322671530FE—3
90 1078 1.025453540167024 1.939669198591787E -7
10716 1.025687042770195 2.333086362513725 K —4
10732 1.044118566638236 1.866483250429263 F—2
100 107®  5.016980843731448 2374690373230237TE—7
10716 5.017259560237612 2789539752008352FE —4
10732 5.036957233365779 1997662710336812F —2
110 1078 12.62044843424046 6.774257599317934 E—8
10716 12.62046538268649 1.688070344840753E—5
10732 12.68516174817051 6.471324618746621 K —2
120 1078 22.06656009480615 1.068009609639375 £ —17
10716 22.06671664815569 1.564465485834887E —4
10732 22.18405828892942 1.174980873223141 E—1

Table 5.14: Right Endpoint - European call options with 4 time steps, 32 partitions,
o = 0.20, r = 0.08, T = 0.25 and strike of $100. Here 7 is the total error for the
tails (refer to (5.26)).

Similarly to the Left Endpoint approximation, the Right End Point performs poorly
as 1) gets smaller for N = 32. The optimal approximations occur for n = 1078 except
for an asset price of 120. For this asset value, n = 1079 gives the optimal approxi-

mation. So, table 5.15 uses 256 rectangles and presents the best approximations.

Asset Optimal Right End QR Error
Price (8) 7
80 107% 0.06901773330119051  4.732325642464730E£—15
90 107% 1.025453734133945 1.776356839400250E—15
100 1072 5.016980606262410 8.881784197001252E—16
110 1016 12.62044850198304 0.000000000000000E£0
120 10733 22.06656020160710 0.000000000000000£0

Table 5.15: Right Endpoint - European call options with 4 time steps, 256 parti-
tions, o = 0.20, » = 0.08, T" = 0.25 and strike of $100. Here 7 is the total error for
the tails (refer to (5.26)).

The approximations in table 5.15 are very similar to those presented in table 5.13.

The only differences being for asset value of $90 (a slightly better approximation)
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and some of the 7 values differ.

Since the option price function for a call (f*~!(x, ,)) is convex and increasing in
nature for the interval of integration, the left endpoint approximation is a lower
bound for the function and the right endpoint approximation is an upper bound.

For the put option the situation is reversed.

5.5.2 Midpoint Approximation

An alternative to the Left and Right Endpoint approximation is to use the mid
point of the rectangles, this rule is commonly known as the midpoint quadrature rule.
Since the Left Endpoint underestimates the area and Right Endpoint overestimates,
the Midpoint attempts to strike a balance. Therefore, in theory, it is a better

approximation. The midpoint quadrature rule in terms of g(x,, x,_;) is

N—-1
Tyl T Ty
(ag g a,0) = Az Yy g(— ). (5.59)
1=0

Table 5.16 presents European call option prices with the number of partitions fixed

to 256.
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Asset n Mid Point QR Error
Price ($)
80 107%  0.06901768615240528 4.71E—8
10716 0.06901773330119071 4.58 E—15
1073%  0.06901773330119207 5.94E—15
90 1078 1.025453638403598 9.57TE—8
10716 1.025453734133945 1.78E—15
10732 1.025453734133946 2.00E-15
100 1078 5.016980469322782 1.37TE-T7
10716 5.016980606262410 8.88FK—16
10732 5.016980606262409 1.78E—15
110 1078 12.62044833094894 1.711E-7
10716 12.62044850198305 5.33E—-15
10732 12.62044850198304 1.78E—15
120 1078 22.06655999943769 2.02E-7
10716 22.06656020160712 1.07TE—-14
10732 22.06656020160711 3.55E—15

Table 5.16: Midpoint - European call options with 4 time steps, 256 partitions,
o = 0.20, r = 0.08, T = 0.25 and strike of $100. Here 7 is the total error for the
tails (refer to (5.26)).

In most cases in table 5.16 the mid point rule approximation is better than the
end point rules (the midpoint rule being an average of the left and right endpoint
method). In the cases where the mid point rule is worse off, the differences are
minimal and considering the accuracy of the approximations, these differences are

negligible.

Table 5.17 presents some accurate results for similar options presented in table 5.16.
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Asset Optimal Mid Point QR Error
Price (3) 7
80 1071 0.06901773330118409 2.04E—15
90 10719 1.025453734133945 1.78E—15
100 10719 5.016980606262410 8.88E—16
110 10716 12.62044850198304 0.00E0
120 1028 22.06656020160711 3.55FE—15

Table 5.17: Midpoint - European call options with 4 time steps, 256 partitions,
o =0.20, r = 0.08, T = 0.25 and strike of $100. Here 7 is the total error for the
tails (refer to (5.26)).

The prices in table 5.17 are just as accurate as the left and right end point approxi-
mation. The only difference is in the mid point approximation the optimal 7 is not

as small as those in the other rectangular quadrature rules.

5.5.3 Trapezoidal Rule

The trapezoidal rule is similar to the rectangular rules described previously, with
the major difference being that instead of using rectangles, the areas of trapeziums
are used. Since f*~!(z,_,) is convex in nature (increasing for a call option and de-
creasing for a put option), the approximation will be an upper bound of the analytic

solution.

The trapezoidal rule for the path integral takes the form,

N-1
gl o, Ty _ G\ Ty N» Tp
Wz, 0,0) =Ax[—( e S gl )+ L D) O I o

=1

Table 5.18 presents the same options as those applied with the other quadrature

rules (with the use of 256 trapeziums).
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Asset n Trapezoidal QR Error
Price ($)

80 107%  0.06901768581792513 4.75E—8
10716 0.06901773330119140 5.27E—15
1073%  0.06901773330119265 6.52FE—15

90 1078 1.025453637661283 9.65F—8
10716 1.025453734133945 1.33E—-15
10732 1.025453734133946 2.44F—-15

100 1078 5.016980468216713 1.38E—-T7
10716 5.016980606262407 4.44FE-15
10732 5.016980606262413 1.78E—15

110 1078 12.62044832953190 1.72E-7
10716 12.62044850198304 3.55E—15
10732 12.62044850198303 5.33E—15

120 1078 22.06655999772285 2.04E-7
10716 22.06656020160712 1.42E—-14
10732 22.06656020160712 1.07TE—-14

Table 5.18: Trapezoidal - European call options with 4 time steps, 256 partitions,
o =0.20, r = 0.08, T = 0.25 and strike of $100. Here 7 is the total error for the
tails (refer to (5.26)).

Table 5.19 presents some accurate results for similar options presented in 5.18.

Asset Optimal Trapezoidal QR Error
Price ($) 7
80 1071 0.06901773330118310 3.03E—15
90 1072 1.025453734133945 1.11E-15
100 1022 5.016980606262410 8.88FK—16
110 10-2 12.62044850198304 0.00E0
120 1072 22.06656020160711 3.55FE—15

Table 5.19: Trapezoidal - European call options with 4 time steps, 256 partitions,
o =0.20, r = 0.08, T = 0.25 and strike of $100. Here 7 is the total error for the
tails (refer to (5.26)).

5.5.4 Composite Simpson Rule

The Simpson quadrature rule approximates the area under the curve using parabolic
functions. The composite Simpson rule, derived from the Simpson’s quadrature rule,
is similar in form to the endpoint rules, the major difference being the weights used.

The composite rule for the path integral takes the form,
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Ax
U(z)_y,a,b) =

—i-QZg(

lg(xk-,o, Ty_1)

N/2—1

N/2

Tk 205 T ) +4 Z 9(%,2]'717 Ty_q) + g(xk,Na Tpq)|-

J=1

(5.61)

Table 5.20 and 5.21 presents option prices using the composite Simpson rule with

the number of partitions fixed to 256.

Asset n Composite Simpson’s QR Error
Price ($)
80 1078 0.06901768177488442 5.15E—-8
1071 0.06901773330119121 5.08E—15
10732 0.06901773330119260 6.47E—15
90 1078 1.025453629075925 1.05E—-7
10716 1.025453734133945 1.33E—-15
10732 1.025453734133946 2.66 E—15
100 107%  5.016980455677901 1.51E-7
10716 5.016980606262408 2.66 E—15
10732 5.016980606262408 2.66 E—15
110 1078 12.62044831366562 1.88E—7
10716 12.62044850198305 711E—-15
10732 12.62044850198305 711E—-15
120 1078 22.06655997874159 2.23E-7
10716 22.06656020160712 1.07TE—-14
10732 22.06656020160712 1.42FE—14

Table 5.20: Composite Simpson’s Rule - European call options with 4 time steps,
256 partitions, o = 0.20, » = 0.08, T" = 0.25 and strike of $100. Here 7 is the total
error for the tails (refer to (5.26)).

Table 5.21 presents some accurate results for similar options presented in 5.20.
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Asset Optimal Composite Simpson’s QR Error

Price ($) 7
80 107% 0.06901773330119064 4.51E—-15
90 107% 1.025453734133944 8.88E—16
100 10718 5.016980606262412 8.88E—16
110 10720 12.62044850198304 0.00E0
120 1073 22.06656020160711 3.55E—15

Table 5.21: Composite Simpson’s Rule - European call options with 4 time steps,
256 partitions, o = 0.20, » = 0.08, T' = 0.25 and strike of $100. Here 7 is the total
error for the tails (refer to (5.26)).

The results presented for the composite Simpson’s rule are very similar to the re-
sults presented for the other rules. Computationally, the time taken to achieve these
results are very similar to the other quadrature rules. This was expected for the

composite Simpson’s rule.

5.6 Conclusion

The approaches in this chapter are commonly used mathematical methods. The
method of Mathematical interpolation and quadrature were applied to the pricing
of European options. Firstly, the path integral was modified so that the interval be-
came finite. This was achieved by using an upper bound of the underlying and the
form of the Gaussian in the integrand. Using the modified path integral, an inter-
polation method was implemented to analyse the model parameters (r, the interest
rate, o, the volatility and 7', the time to expiry). It showed that for a particular K
(discretization of time) and 7 (the parameter that controls the interval of integra-

tion), there existed an accurate option price.

Various discretization schemes of the underlying were used. These schemes were
formed to improve results and others used to improve computational effort and ef-
ficiency. A fixed number of nodes (equally spaced) were used since it was easy to
implement and quite fast to obtain results. Equally spaced nodes were used as a

scheme for future analysis of finding the most accurate result. One of the issues
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in the methods implemented in this chapter is knowing which parameters gives the
most accurate price. By having equivalent interval integrals may assist in achieving
this. The results for this scheme were better than those obtained in the fixed num-

ber allocation.

The final scheme used was an adaptive approach. Nodes were allocated based on
a fixed interpolation error. By controlling the error of interpolation, nodes were
distributed in a scheme most suitable. Nodes are placed in positions which allow
the interpolation error to be fixed to a particular band of values. It was found that
the distribution of nodes at each time step were very similar. So, to improve com-
putational efficiency and speed, nodes were distributed at the first time step and
then the scheme was used in the remaining time steps, with unused nodes being

eliminated.

Various quadrature (Newton-Cotes) rules were also used to obtain the option price.
The results obtained were highly accurate when compared to the Black-Scholes for-
mula. The results obtained using these rules were more precise than those obtained
using the interpolation method. A simple discretization scheme (fixed number of

equally spaced nodes) were used for each rule.

In both approaches, one of the main issues arising is knowing when the best result
can be obtained. Given a particular set of values for r, o and T', what N (discretiza-
tion scheme), K (time steps) and 7 (interval length) will give the most accurate
result. A simple search technique, like a bi-section, was used in the data obtained
in this chapter. Other, more sophisticated, techniques would also improve the ap-

proaches presented in this chapter.

The next chapter uses the approaches of this chapter and applies them to more
complex options (American Put and Barrier down and out call options). One of the
advantages of the modification made to the path integral is, the form of the finite

interval is easily adaptable for options with barriers. Since the American put has
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a barrier for early exercise and the down and out call option ceases to exist at a
particular barrier value, one side of the interval can be fixed to the barrier point.
All discretization schemes are implemented using upper and lower interval values

(whichever way they are found). Option values in these cases are zero when outside

the barrier.
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Chapter 6

American Put and Barrier Options

This chapter applies the approaches of Chapter 5 to an American put option and
a Down and Out (European style) call option. Similar discretization schemes and
parameters are utilized as in Chapter 5. A particular emphasis on performance and
accuracy of the Interpolation and Quadrature methods are made. For these types
of options, consideration must be given to the barriers required and those already

formed by the finite interval evaluated.
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6.1 Introduction

In this chapter we will apply the methods presented in Chapter 5 to an American
put option and a Down and Out call option. Given the path integral has a finite
interval, this is equivalent to having two barriers. These barriers are evaluated so
that numerical methods like those in the previous chapter can be utilised to accu-

rately approximate the option price.

For the American put and Down and Out options, the barriers will vary depending
on the price required. If the option barrier is inside the finite interval, then the
path integral interval will change to cater for the option barrier. Therefore, these
numerical methods will require different parameters to those used for the European
options to achieve accurate results. The same discretization schemes will be applied

for these options.

Section 6.2 and 6.3 applies the interpolation method to the American put and Down
and Out call option respectively. Various discretization schemes, as described in
Chapter 5 are applied to the two options. Section 6.4 and 6.5 applies the various
Newton-Cotes rules for the American put and Down and Out call option. Section

6.6 concludes the chapter.

6.2 Interpolation Polynomials and American Put
Options

The interpolation techniques employed for the European option can also be applied
to the American put option. However, since the American put option contains a
barrier (denoted by B(x,_;)), the interval of integration L; is fixed to this barrier
and R; is obtained by solving (5.38).

Therefore, the option price at each time step is determined by the following expres-
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sion for k=1,2,..., K — 1,

PN @) =¥ (2, —00, B(w;,_4))
+ W@y, B(g_1), o)1)

+ U (2, B ), 00) (6.1)

where

B(ﬂfkil) —(x—k—t(x ))2
Vo100, Blag ) =2 [ G (1= ) da,

—00

\Il(xk:—h ﬁQ(*%c—l)? OO)

AN
NI

(6.2)

The barrier point B(z,,) = xj, is found such that, x} is the solution to the following

expression

fHlag) =1—e™ (6.3)

and the middle integral in (6.1) is determined by using the interpolation method

presented earlier in Chapter 5.

6.2.1 Fixed Number of Partitions

We firstly apply the interpolation method to an American put option using a fixed
number of partitions (equally spaced) at each time step. Table 6.1 presents results
for a varying number of time steps and the number of partitions (V) used is fixed

to 100.
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Asset Binomial IPM IPM IPM
Price () Method 4 Steps 8 Steps 16 Steps
80 20.000000 20.000000 20.000000 20.000000
90 10.037663 9.824579  9.976936  10.406923
100 3.224899 3.182479  3.291575  3.638102
110 0.665410 0.654543  0.684210 0.778183
120 0.088796 0.084440  0.084569  0.092523

Table 6.1: Interpolation method - American put option for 100 partitions and
various time steps with ¢ = 0.20, r = 0.08, T' = 0.25, n = 1073 and strike of
$100. The values are calculated in this table are performed in double precision. The

Binomial Method prices are optimal approximations (using various N) and were
calculated based on Cox et al. (1979).

The results in table 6.1 show similar patterns to those presented in table 3.6. There-

fore, there should be an optimal number of time steps for 100 partitions.

Asset Time Binomial IPM
Price ($) Steps Method

90 10 10.037663  10.036710
100 6 3.224899 3.229790
110 6 0.665410 0.666986
120 13 0.088796 0.088617

Table 6.2: Interpolation method - American put option for 100 partitions and
optimal time steps with ¢ = 0.20, r = 0.08, T = 0.25, n = 1073 and strike of
$100. The values are calculated in this table are performed in double precision. The

Binomial Method prices are optimal approximations (using various N) and were
calculated based on Cox et al. (1979).

The results in table 6.2 are not as precise as those in table 3.6. However, if we
increase the number of interpolations per time step to 200, we would envisage that

we should be able to obtain better results, especially for optimal K.
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Asset Binomial IPM IPM IPM
Price () Method 4 Steps 8 Steps 16 Steps
80 20.000000 20.000000 20.000000 20.000000
90 10.037663 9.821295  9.948753  10.051384
100 3.224899 3.174616  3.220669  3.342221
110 0.665410 0.653157  0.664813  0.698396
120 0.088796 0.086430  0.086948  0.089930

Table 6.3: Interpolation method - American put option for 200 partitions and
various time steps with ¢ = 0.20, r = 0.08, T' = 0.25, n = 1073 and strike of
$100. The values are calculated in this table are performed in double precision. The
Binomial Method prices are optimal approximations (using various N) and were
calculated based on Cox et al. (1979).

Table 6.3 presents results for varying time steps and the number of partitions fixed

to 200. Table 6.4 presents results for the optimal time steps for 200 partitions.

Asset Time Binomial IPM
Price ($) Steps Method

90 15 10.037663  10.038215
100 8 3.224899 3.220669
110 8 0.665410 0.664813
120 14 0.088796 0.088955

Table 6.4: Interpolation method - American put option for 200 partitions and
optimal time steps with ¢ = 0.20, r = 0.08, T = 0.25, n = 1073 and strike of
$100. The values are calculated in this table are performed in double precision. The

Binomial Method prices are optimal approximations (using various N) and were
calculated based on Cox et al. (1979).

Table 6.4 shows an improvement in the American put option price to those present
in table 6.2. We can also investigate the effect of varying the number of partitions for
a fixed number of time steps. Table 6.5 presents approximate prices for an American

put option with the number of time steps fixed to 8.
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Asset Binomial IPM IPM IPM IPM
Price (8) Method N =32 N =064 N =128 N =256
80 20.000000  20.000000 20.000000 20.000000 20.000000
90 10.037663  10.704074 10.045959 9.9617033 9.945430
100 3.224899  4.006660  3.426438  3.254724  3.211479
110 0.665410  0.881138  0.719538  0.674214  0.662247
120 0.088796  0.090384  0.079813  0.085813  0.087252

Table 6.5: Interpolation method - American put option for 8 time steps and various
node points with o = 0.20, r = 0.08, 7" = 0.25, n = 1073? and strike of $100. The
values are calculated in this table are performed in double precision. The Binomial
Method prices are optimal approximations (using various N) and were calculated
based on Cox et al. (1979).

As with the fixed number of partitions, we can find the optimal number of partitions
for a fixed number of time steps. Table 6.6 presents prices for the optimal number

of partitions when the number of time steps are fixed to 8.

Asset Nodes Binomial IPM
Price (8) Method

90 66 10.0376631 10.037994
100 184 3.224899 3.224953
110 191 0.665410 0.665446
120 32 0.088796 0.090384

Table 6.6: Interpolation method - American put option for 8 time steps and optimal
partitions with o = 0.20, » = 0.08, T" = 0.25, n = 10732 and strike of $100. The
values are calculated in this table are performed in double precision. The Binomial

Method prices are optimal approximations (using various N) and were calculated
based on Cox et al. (1979).

As we can see in table 6.6, the results are quite accurate, except for an asset price
of $120. This could be due to the fact that when K = 8, there is no N which allows
for an accurate result (like those for the other asset prices). For this interpolation
method it may be advantageous to fix the number of time steps and vary the number

of partitions to find a precise approximation.
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6.2.2 Fixed Spaced Partitions

We can also apply the fixed spaced partitions distribution to the American put
option. Table 5.6 contains European call option prices for various partition spacing

between 0.01 and 0.1.

Binomial Space IPM Error

Method (Total Partitions)

3.224899 0.10 (619) 3.343134 1.182362F — 01
0.09 (686) 3.316435 9.153747F — 02
0.08 (770) 3.292111 6.721259F — 02
0.07 (879) 3.270316 4.541829F — 02
0.06 (1026) 3.251185 2.628746F — 02
0.05 (1228) 3.234828 9.930157F — 03
0.04 (1535) 3.221333 3.564979F — 03
0.03 (2046) 3.210769 1.412878F — 02
0.02 (3086) 3.203188 2.170986F — 02
0.01 (6129) 3.198623 2.627530F — 02

Table 6.7: Interpolation method - American put option price using fixed spaced
partitions for an asset price of $100 with 8 time steps, o = 0.20, r = 0.08, T' = 0.25
and strike of $100. Here 7 is the total error for the tails. The value in brackets,
represents the number of interpolations made to obtain the option price. Double
precision was used to calculate the values. The Binomial Method price is an optimal
approximation and was calculated based on Cox et al. (1979).

Table 6.7 shows that a good approximation occurs when the fixed partition space
is approximately 0.04. After this spacing the error increases again as the number
of partitions increase. So, as with the European option, a balance between spacing
and the number of interpolations needs to be achieved. Table 6.8 investigates the

length of space around 0.04 by adding an additional decimal place.
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Binomial Space IPM Error

Method (Total Partitions)

3.224899  0.049 (1254) 3.233349 8.450544F — 03
0.048 (1282) 3.231898 6.999583F — 03
0.047 (1308) 3.230476 5.577595E — 03
0.046 (1337) 3.229082 4.184343F — 03
0.045 (1365) 3.227718 2.820075F — 03
0.044 (1397) 3.226383 1.484753F — 03
0.043 (1429) 3.225058 1.600883F — 04
0.042 (1463) 3.223799 1.098535F — 03
0.041 (1499) 3.222552  2.346364E — 03

Table 6.8: Interpolation method - American put option price using fixed spaced
partitions (with an extra decimal place) for an asset price of $100 with 8 time steps,
o =020, r = 0.08, T = 0.25 and strike of $100. Here n = 10732 is the total
error for the tails. The value in brackets, represents the number of interpolations
made to obtain the option price. Double precision was used to calculate the values.
The Binomial Method price is an optimal approximation and was calculated based
on Cox et al. (1979).

Table 6.8 presents improved results as expected. The optimal approximation occurs

between 0.042 and 0.043. Table 6.9 investigates this spacing interval.

Binomial Space IPM Error
Method (Total Partitions)

3.223926 9.417471E — 04

3.224899  0.0429 (1431) 3.224948  4.954533E — 05
0.0428 (1436) 3.224819 7.918370EF — 05
0.0427 (1438) 3.224690 2.076232E — 04
0.0426 (1443) 3.224562  3.357855E — 04
0.0425 (1445) 3.224434 4.638370F — 04
0.0424 (1449) 3.224307 5.727084EF — 04
0.0423 (1452) 3.224180 6.960137E — 04
0.0422 (1456) 3.224053 8.190258E — 04
)

0.0421 (1459

Table 6.9: Interpolation method - American put option price using fixed spaced
partitions (with an extra decimal place) for an asset price of $100 with 8 time steps,
o =020, r = 0.08, T = 0.25 and strike of $100. Here n = 10732 is the total
error for the tails. The value in brackets, represents the number of interpolations
made to obtain the option price. Double precision was used to calculate the values.
The Binomial Method price is an optimal approximation and was calculated based
on Cox et al. (1979).

Again improved results are shown in table 6.9, with the best approximation in the

spacing interval of 0.0428 and 0.0429. Table 6.10 investigates further.
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Binomial Space IPM Error

Method (Total Partitions)

3.224899  0.04289 (1431) 3.224935 3.552170F — 05
0.04288 (1431) 3.224922  2.303481E — 05
0.04287 (1433) 3.224909 1.029906F — 05
0.04286 (1433) 3.224896 1.942798F — 06
0.04285 (1434) 3.224883 1.439585F — 05
0.04284 (1434) 3.224870 2.685903F — 05
0.04283 (1434) 3.224857 3.933016F — 05
0.04282 (1434) 3.224845 5.178347F — 05

)

0.04281 (1436 3.224832  6.425259E — 05

Table 6.10: Interpolation method - American put option price using fixed spaced
partitions (with an extra decimal place) for an asset price of $100 with 8 time steps,
o =020, r = 0.08, T = 0.25 and strike of $100. Here n = 10732 is the total
error for the tails. The value in brackets, represents the number of interpolations
made to obtain the option price. Double precision was used to calculate the values.
The Binomial Method price is an optimal approximation and was calculated based
on Cox et al. (1979).

Table 6.10 shows that a spacing of 0.04286 is an excellent approximation of a Amer-
ican put option price. It must be said that further investigation is possible by
obtaining better spacing precision. However, considering that the Binomial method
obtained is to 6 digit accuracy, the price obtained for a spacing of 0.04286 in table
6.10 is very accurate compared to the Binomial method. Table 6.11 are optimal

results for various asset values.

Asset Space IPM Error
Price ($) (Total Partitions)
90 0.08876 (654) 10.037655  8.042291393950407E — 06
100 0.04286 (1433) 3.224896  1.942798209561975F — 06
110 0.05371 (1206) 0.665410  4.356533792569672F — 07
120 0.007 (9654) 0.087797  9.993420516646702F — 06

Table 6.11: Interpolation method - precise American put option price for an asset
price of $100 with K = 8, o = 0.20, r = 0.08, T' = 0.25 and strike of $100. Here
n = 10732 is the total error for the tails. The value in brackets, represents the
number of interpolations made to obtain the option price. Double precision was
used to calculate the values.

Table 6.11 presents some highly accurate results for various asset prices. For asset

price $120, many partitions were required to achieve the evaluated result compared
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to the other asset values.

6.2.3 Adaptive Nodes

For the American put option, the adaptive nodes will need to be calculated at each
time step as the interval of integration will expand on the left hand side. With the
European option, the intervals of integration move inward from both sides, there-
fore the allocation could be sliced for either side. The American put option interval
differs because the barrier (or left side of the interval) tends to move out, while the

right side moves inward. Therefore, allocations at each time step is performed.

Table 6.12 shows some American put option prices for an adaptive node distribution

when the asset value is $100.

€ Binomial Method 4 time steps 8 time steps

1071 3.224899 15.628738 24.023563
1072 5.021539 8.322211
1073 3.601882 4.234894
1074 3.244270 3.415439
1075 3.183102 3.232615
10°¢ 3.173328 3.203636

Table 6.12: Interpolation method - American put option (asset value of $100)
for adaptive node points and 4 time steps with n = 107%2, ¢ = 0.20, » = 0.08,
T = 0.25 and strike of $100. The values are calculated in this table are performed
in double precision. The Binomial Method price is an optimal approximation and
was calculated based on Cox et al. (1979).

When the number of time steps used is 4, the best € is somewhere between 10~* and
107°. For 8 time steps the best € is between 107° and 107¢. Table 6.13 will expand
on the results found in Table 6.12 by using a more precise € (additional decimal

places).
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€ Binomial Method 4 time steps

9E—-5 3.224899 3.240004
8E—5 3.236440
TE—5 3.228739
6E—5 3.221673
S5E—5 3.216960
4E—5 3.209042
3E—5 3.201310
2FE-5 3.191629

Table 6.13: Interpolation method - American put option (asset value of $100)
for adaptive node points and 4 time steps with n = 107%2, ¢ = 0.20, » = 0.08,
T = 0.25 and strike of $100. The values are calculated in this table are performed
in double precision. The Binomial Method price is an optimal approximation and
was calculated based on Cox et al. (1979).

Table 6.13 shows with a better € value (more precision), an improved approximation

can be found. Table 6.14 adds another decimal place to e.

€ Binomial Method 4 time steps

6.9E-5 3.224899 3.228715
6.8E—5 3.226489
6.7E—5 3.227012
6.6E—5 3.227030
6.5E—5 3.226771
6.4E—-5 3.225582
6.3E—5 3.224506
6.2E—-5 3.222634
6.1E—-5 3.221698

Table 6.14: Interpolation method - American put option (asset value of $100)
for adaptive node points and 4 time steps with n = 107%2, ¢ = 0.20, » = 0.08,
T = 0.25 and strike of $100. The values are calculated in this table are performed
in double precision. The Binomial Method price is an optimal approximation and
was calculated based on Cox et al. (1979).

Clearly the best result is around € = 6.3E—5. So, with further investigation in table
6.15, the best approximation was found to be at ¢ = 6.21 E—5.
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€ Binomial Method 4 time steps
6.29E—-5 3.224899 3.224506
6.28FE—5 3.224506
6.27TE—5 3.224498
6.26 E—5 3.224498
6.25E—5 3.224498
6.24E—-5 3.224498
6.23E-5 3.224574
6.22FE—5 3.224574
6.21E—5 3.224574

Table 6.15: Interpolation method - American put option (asset value of $100)
for adaptive node points and 4 time steps with n = 10732, ¢ = 0.20, r = 0.08,
T = 0.25 and strike of $100. The values are calculated in this table are performed
in double precision. The Binomial Method price is an optimal approximation and
was calculated based on Cox et al. (1979).

The results in table 6.15 can be similar for differing e values because the node
distributions are the same. Therefore, when ¢ = 6.21F—5, 6.22E—5 and 6.23F—5,
the number of nodes and the distribution of such are identical, so the approximations
are the same. Table 6.16, 6.17 and 6.18 are results for 8 time steps with varying

values of e.

€ Binomial Method 8 time steps

9F—6 3.224899 3.229158
S8E—6 3.227386
TE—6 3.223595
6L—6 3.221340
5E—6 3.218585
4FE—6 3.214595
3E—6 3.211248
2FE—6 3.207711

Table 6.16: Interpolation method - American put option (asset value of $100)
for adaptive node points and 8 time steps with n = 10732, ¢ = 0.20, r = 0.08,
T = 0.25 and strike of $100. The values are calculated in this table are performed
in double precision. The Binomial Method price is an optimal approximation and
was calculated based on Cox et al. (1979).
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€ Binomial Method 8 time steps

7T9E—6 3.224899 3.226953
7.8E—6 3.226481
7.7E—6 3.226008
7.6E—6 3.226185
7.5E—6 3.225254
74E—6 3.225483
7.3E—6 3.225154
7.2E—6 3.223834
7.1E—6 3.224639

Table 6.17: Interpolation method - American put option (asset value of $100)
for adaptive node points and 8 time steps with n = 10732, ¢ = 0.20, r = 0.08,
T = 0.25 and strike of $100. The values are calculated in this table are performed
in double precision. The Binomial Method price is an optimal approximation and
was calculated based on Cox et al. (1979).

€ Binomial Method 8 time steps
7T29FE—6 3.224899 3.224884
7.28E—6 3.224410
727TE—6 3.224448
7.26E—6 3.224448
7.25E—6 3.224448
7.24FE—6 3.224448
7.23E—6 3.224267
7.22E—6 3.224347
721E—6 3.223810

Table 6.18: Interpolation method - American put option (asset value of $100)
for adaptive node points and 8 time steps with n = 10732, ¢ = 0.20, r = 0.08,
T = 0.25 and strike of $100. The values are calculated in this table are performed
in double precision. The Binomial Method price is an optimal approximation and
was calculated based on Cox et al. (1979).

For the case of 8 time steps the value of € needs to be smaller since there are more
time steps and therefore more interpolations required. In this case, the optimal e
value is 7.29 ' —6 which gives an excellent approximation compared to the Binomial

method.
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6.3 Interpolation Polynomials and Barrier Options

Barrier options are options which are dependent on whether the underlying asset
price reaches a pre-determined level within a certain time period. The payoff of
the option will vary depending on the level the asset price achieves. The are two
specific types of barrier options, they are knock-out options or knock-in options. A
knock-out option ceases to exists when the underlying asset price reaches a barrier.
Whereas, a knock-in option will come into existence if the underlying asset reaches

a barrier.

In this section we will apply the Interpolation method to a knock-out option called
a down and out call. The down and out call option is similar to a normal European
call option that ceases to exist when it reaches a barrier H. The barrier level for a
down and out call is set below the initial asset price. Hull (2006) gives a closed form
for the down and out call option, ¢4, in terms of the European call, ¢, as given in

(2.21) and the corresponding down and in call, ¢4;. Namely,

Cdo = C — Cygj (64)
where
H H . on-
Cai = xeirT(;)Q)\eTfC(_y) — CefrT(;y)\ QQTfC(U\/T —Y), (6.5)
T+ 02—2
A= PR

H2

In (—)
xrc

Y= ——F=—
oV T

and x is the underlying asset price and with ¢ the strike price.

T AVT

One of the advantages of this method is that the transformation of the path integral
(5.1) is in a barrier form. For options like the down and out barrier option, 3, (z,_;)

is fixed to H unless the underlying asset value determines that 3, (z,_,) is inside the
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barrier H.
Asset ] Step L, , R,
Price ($)
100 1078 —1.43841036225890  8.44118710000083

—1.43841036225890  7.48359933286901
—1.43841036225890  6.53093355998789
—1.43841036225890  5.58318874745056
—1.43841036225890  4.64036384470732
—1.43841036225890  3.70245778422486
—1.43841036225890  2.76946948113699
—1.43841036225890  1.84139783288643
—0.893241718857600 0.918241718857600

=N W Ctoy g 0 ©

Table 6.19: Down and Out call option intervals of integration for K = 10, o = 0.20,
r =0.08, T = 0.25, H = $75 and strike of $100. Here 7 is the total error for the
tails.

In table 6.19 the left interval point is fixed for all time steps except for the final time
step, when the method dictates that the barrier is different. It should be noted that
1
the barrier of H = $75 is converted using — In (H).
o

6.3.1 Fixed Number of Partitions

We firstly apply a down and out call option to the interpolation method with fixed
number of partitions. The errors calculated in the tables are the absolute difference
between the prices evaluated from the analytical form presented in Hull (2006)

against those computed using the interpolation method.
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Asset Optimal 77 IPM Error
Price ($)
80 1073 0.0683055896929662  8.8606713925206467F — 04
90 1076 1.0254500127567925  2.5591529289811787F — 06
100 1076 5.0170110377369452  3.0446349936347206F — 05
110 1078 12.6204428872442822 5.6147134247508390F — 06
120 1077 22.0665241762180813  3.6025388994165297F — 05

Table 6.20: Interpolation method - Down and Out call option (asset value of $100)
for fixed number of node points (N = 64) and 8 time steps with o = 0.20, r = 0.08,
T = 0.25, strike of $100 and barrier of $75. The values are calculated in this table
are performed in double precision.

Table 6.20 presents results for a various down and out call options with varying 7

such that the best approximation is evaluated. Table 6.21 is for 128 partitions.

Asset Optimal 7) IPM Error
Price (8)
80 1073 0.0683072619700805  8.8773941636632056 F — 04
90 1076 1.0254484846409615  1.0310370980592953F — 06
100 1077 5.0169828478871548  2.2565001457641731F — 06
110 107° 12.6204480608633283 4.4109437769002113E — 07
120 1078 22.0665573941933566  2.8074137209399552F — 06

Table 6.21: Interpolation method - Down and Out call option (asset value of $100)
for fixed number of node points (N = 128) and 8 time steps with o = 0.20, r = 0.08,
T = 0.25, strike of $100 and barrier of $75. The values are calculated in this table
are performed in double precision.

An increase in the number of partitions (that is, number of interpolations made)
means that 7 can be decreased. A decrease in 7 allows for the potential of better
approximations, as is the case in table 6.21. Appendix C.2.1 presents prices for the
128 partitions and varying n (where the optimal prices in table 6.21 were derived

from). Table 6.22 uses 256 partitions at each time step.

180



CHAPTER 6. AMERICAN PUT AND BARRIER OPTIONS

Asset Optimal 7) IPM Error
Price ($)
80 1073 0.0683073667812694  8.8784422755521517F — 04
90 1076 1.0254483906967153  9.3709285192700165F — 07
100 1078 5.0169807549790546  1.6359204546567696 F — 07
110 10710 12.6204484686408858 3.3316821523854401F — 08
120 107° 22.0665599904518572  2.1115521831038819F — 07

Table 6.22: Interpolation method - Down and Out call option for fixed number of
node points (N = 256) and 8 time steps with o = 0.20, » = 0.08, T" = 0.25, strike
of $100 and barrier of $75. The values are calculated in this table are performed in
double precision.

The prices in tables 6.20 - 6.22 shows with an increase in the number of partitions,
the best n for asset values decreased for asset values $100, $110 and $120. For these
asset values the approximations improved. For an asset value of $90, the best 7
remained the same at 10~% and the approximation improved. Given the asset value
of $80, which is near the barrier value, the best 1 remain the same and the approx-

imation did not improve.

Tables 6.23 and 6.24 are down and out call option prices for an increasing number

of time steps.

Asset Optimal 7) Approximation Error
Price ($)
80 1073 0.0684750295337522  1.0555069800379977F — 03
90 10°¢ 1.0254506693384327  3.2157345690800310F — 06
100 10°¢ 5.0169913171112990  1.0725724289978311F — 05
110 1078 12.6204459132041311  2.5887535753943425E — 06
120 1077 22.0665443382339959 1.5863373081792531F — 05

Table 6.23: Interpolation method - Down and Out call option (asset value of $100)
for fixed number of node points (N = 128) and 16 time steps with o = 0.20, » = 0.08,
T = 0.25, strike of $100 and barrier of $75. The values are calculated in this table
are performed in double precision.

Table 6.23 shows an improvement in the approximate prices when the asset value is
$100, $110 and $120 compared to the corresponding values in table 6.21. For asset
values of $80 and $90, the approximations in table 6.21 are slightly better. In all
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cases, the best n’s remained the same, despite the change in the number of time

steps. Table 6.24 are prices for down and out call options with 32 time steps.

Asset Optimal 7) IPM Error
Price (8)
80 1073 0.0684788368401993  1.0593142864851065F — 03
90 1077 1.0254608988946279  1.3445290764427242F — 05
100 107° 5.0170147735455517  3.4182158542561680F — 05
110 107° 12.6204430800773935 5.4218803141603544F — 06
120 1076 22.0664688777809666 9.1323826109657169F — 05

Table 6.24: Interpolation method - Down and Out call option (asset value of $100)
for fixed number of node points (N = 128) and 32 time steps with o = 0.20, » = 0.08,
T = 0.25, strike of $100 and barrier of $75. The values are calculated in this table
are performed in double precision.

The approximate prices in table 6.24 did not improve with a further increase in the
number of time steps. Also, the best 1 changed for each asset value except for an

asset value of $80.

In appendix C.2.1 a range of prices are presented for varying 7 values for the pa-
rameter set used in tables 6.20 - 6.24. These are where the prices in the tables were

derived from.

6.3.2 Fixed Spaced Partitions

We now apply the down and out call option with the use of fixed spaced partitions.

Table 6.25 are prices for varying spaced partitions and 7’s.
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7 Space IPM Error
(Partitions)
1075 107! (348 5.0170300926179250 4.9501230916376704E — 05

5.0170098978847584
5.0169954087381203
5.0169854371542311
5.0169789317218401

2.9306497749403970E — 05
1.4817351111362509E — 05
4.8457672222057546 E — 06
1.6596651684908093 £ — 06

1075 (692 5.0169749788864193 5.6125005899743119E — 06
1077 (866) 5.0169728040157544 7.7873712547860130L — 06
1078 (1151) 5.0169717721315097  8.8192554988097971E — 06
1079 (1726) 5.0169713887179688 9.2026690400037747E — 06

10-7 107 (370)

5.0169713007819920
5.0170384148661213
5.0170182201453981
5.0170037310055946
5.0169937594270468
5.0169872540022604

9.2906050165597609E — 06
5.7823479112512066 E — 05
3.7628758389057770E — 05
2.3139618585826804F — 05
1.3168040038230577E — 05
6.6626152518678428 £ — 06

1076 (738 5.0169833011640650 2.7097770562145573E — 06
1077 (921) 5.0169811262921549 5.3490514587140048E — 07
1078 (1226) 5.0169800944138707 4.9697313833640955E — 07
1079 (1839) 5.0169797110474379 8.8033957068578417E — 07
10719 (3673)  5.0169796230779342  9.6830907458933524F — 07
1078 107! (392) 5.0170392994777373 5.8708090728415430E — 05
1072 (434 5.0170191047581509 3.8513371142245845E — 05

5.0170046156198866
5.0169946440423354
5.0169881386167852

2.4024232878061547E — 05
1.4052655326196595E — 05
7.5472297758616413E — 06

1075 (779 5.0169841857825546  3.5943955457862220E — 06
1077 (973) 5.0169820109170020 1.4195299935515493E — 06
107® (1296) 5.0169809790307083  3.8764369977850599E — 07
1079 (1944) 5.0169805955836511  4.1966423391937013E — 09
10719 (3881)  5.0169805076564362 8.3730572475460008E — 08
1072 107! (411) 5.0170393928197772  5.8801432768068596E — 05
1072 (456 5.0170191981008427 3.8606713834155038E — 05

5.0170047089619541
5.0169947373830777
5.0169882319565895

2.4117574944776399F — 05
1.4145996068970490E — 05
7.6405695804970808E — 06

1075 (818 5.0169842791279953 3.6877409861912902E — 06
1077 (1020) 5.0169821042577594 1.5128707508971218E — 06
1078 (1361) 5.0169810723648807 4.8097787141987425E — 07
1079 (2038) 5.0169806888920911  9.7505082480298100L — 08

10710 (4074)

5.0169806010175773

9.6305685648445660E — 09

Table 6.25: Interpolation method - Down and Out call option (asset price of $100)
for fixed spaced partitions and 8 time steps with o = 0.20, » = 0.08, T" = 0.25, strike
of $100 and barrier of $75. The values are calculated in this table are performed in
double precision.
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Table 6.25 shows the same patterns as the equivalent European and American op-
tions with the same partition distribution. As the distance of the partitions decrease,
so does the error. However, as also stated previously, eventually too many inter-
polations occur which causes the error to rise. If we refer to n = 107% in table
6.25, when the partition space is 1071, the error rises compared to a space of 1079,
The number of interpolations made for 107! is 3881, which is an increase of 1937

compared to the number of interpolations made for a partition space of 107Y.

6.3.3 Adaptive Nodes

The down and out option is now applied using an adaptive node allocation. Table

6.26 are prices with € = 107% and the number of time steps used fixed at 8.
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Asset 7 Partitions IPM Error
Price (8) Used
80 1073 58 0.0667076971555293  2.3100361456567875F — 03
1074 65 0.0674275336015360  1.5901996996501005F — 03
107 68 0.0672370933556727  1.7806399455134320F — 03
106 72 0.0672915745025081  1.7261587986780111F — 03
10~ 75 0.0672845568851327  1.7331764160534316F — 03
1078 80 0.0672923905737283  1.7253427274578517F — 03
107° 84 0.0673127309525815  1.7050023486045907F — 03
90 1073 67 1.0222277060305562  3.2260281033874225E — 03
1074 72 1.0250202921474112  4.3344198653247346FE — 04
107 73 1.1458590413285348  1.2040530719459111F — 01
106 81 1.0251509390672204  3.0279506672333673F — 04
1077 83 1.0252210711434961  2.3266299044744781F — 04
1078 82 1.4620555381593765  4.3660180402543286F — 01
10~° 91 1.0251726792727522  2.8105486119152367F — 04
100 1073 74 5.0194331391387381  2.4525328763271015F — 03
10~4 7 5.0175642069767097  5.8360071429897076F — 04
107 82 5.0179963399931822  1.0157337307706293F — 03
10-6 85 5.0180193978603107  1.0387915978994633F — 03
1077 89 5.0180505947074918  1.0699884450807162F — 03
1078 92 5.0179777799471799  9.9717368476845425F — 04
10~° 95 5.0180132019509127  1.0325956885014198 F — 03
110 1073 76 12.6071276354699311 1.3320866513108487F — 02
1074 80 12.6180020418139698  2.4464601690699084F — 03
107 85 12.6191418142999243 1.3066876831141494F — 03
10-6 89 12.6193887652008971 1.0597367821413295F — 03
10~ 94 12.6193160043933528 1.1324975896870315F — 03
1078 96 12.6192126954519068 1.2358065311329769F — 03
1077 99 12.6192355201199309 1.2129818631079203E — 03
120 1073 74 22.0639763674506710 2.5838341564388134F — 03
1074 82 22.0628994217529844  3.6607798541254954F — 03
107 86 22.0645480731361268 2.0121284709850862F — 03
106 90 22.0647955148665176 1.7646867405934907F — 03
1077 94 22.0647950020762238 1.7651995308870516F — 03
1078 98 22.0647691902863059 1.7910113208063905F — 03
10~° 102 22.0648056145526148 1.7545870544949382F — 03

Table 6.26: Interpolation method - Down and Out call option for Adaptive node
points and 8 time steps with € = 1079, o = 0.20, r = 0.08, T" = 0.25, strike of $100
and barrier of $75. The values are calculated in this table are performed in double

precision.
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To improve the results presented in table 6.26 we can evaluate prices with a smaller

e value. Table 6.27 are down and out call option prices with € set to 10711,

Asset 7 Partitions IPM Error
Price (8) Used
80 1073 587 0.0683072146821381  7.1051861904801146 F — 04
10~4 642 0.0687790910800854  2.3864222110076385F — 04
107 682 0.0688473789731971  1.7035432798904017F — 04
106 716 0.0688566150165243  1.6111828466187006 £ — 04
1077 752 0.0688578031005921  1.5993020059402443F — 04
1078 783 0.0688579502199794  1.5978308120669213F — 04
10~° 812 0.0688579672710672  1.5976603011890432F — 04
90 1073 679 1.0224396345886602  3.0140995452834426 F — 03
10~4 719 1.0250854707610884  3.6826337285536526 K — 04
107 706 1.1459434877436201  1.2048975360967641F — 01
10-6 793 1.0254498837255983  3.8504083454612981 E — 06
1077 830 1.0254530234446562  7.1068928762796357FE — 07
1078 802 1.4629639165870467  4.3751018245310297F — 01
10~° 896 1.0254532527596778  4.8137426596900346F — 07
100 1073 719 5.0097134777741434  7.2671284882676324F — 03
1074 766 5.0161797967156616  8.0080954674988103F — 04
107° 809 5.0169295251541817  5.1081108229378280F — 05
106 845 5.0169764105428980  4.1957195134889602F — 06
10~ 878 5.0169797237830682  8.8247934307283948 K — 07
1078 910 5.0169806051998531  1.0625576807310466 FE — 09
107° 947 5.0169807015054770  9.5243065517669478E — 08
110 1073 746 12.6103791197460211 1.0069382237018476 E — 02
10~4 797 12.6191599217570669 1.2885802259721135E — 03
107 842 12.6203153900204281 1.3311196261078795FE — 04
106 886 12.6204408845995211 7.6173835183990235E — 06
1077 924 12.6204469987161083  1.5032669303804980E — 06
1078 956 12.6204482797488637 2.2223417550648605E — 07
10~° 1025 12.6204483926597995 1.0932323935008981F — 07
120 1073 737 22.0482537285707458 1.8306473036364124F — 02
10~4 815 22.0647170331095133 1.8431684975978024F — 03
107 857 22.0663747563650574  1.8544524205410529F — 04
10-6 907 22.0665413973320668 1.8804275042638707FE — 05
1077 939 22.0665586636416684 1.5379654411118437F — 06
1078 982 22.0665599361222640 2.6548484521882187F — 07
10~° 1024 22.0665600027465594  1.9886055024898042F — 07

Table 6.27: Interpolation method - Down and Out call option for Adaptive node
points and 8 time steps with e = 1071, o0 = 0.20, r = 0.08, T' = 0.25, strike of $100
and barrier of $75. The values are calculated in this table are performed in double

precision.

186



CHAPTER 6. AMERICAN PUT AND BARRIER OPTIONS

The errors in table 6.27 are greatly improved compared to those presented in table
6.26. However, as presented in both tables 6.26 and 6.27, the number of nodes differ
immensely. So, when € = 1075, the number of nodes used are in the order of 30. In
the case of € = 107!, the number of nodes used vary between approximately 600 to

1000. Therefore, improvements should be expected.

Appendix C.2.3 presents further results for differing e. These tables emphasise the
improvements in accuracy for the changes in €. It must be noted that depending on
the requirements, a balance in accuracy and computational effort may be needed.

Smaller values of € requires greater computational effort to derive an accurate price.

6.4 Quadrature Rules and American Put Options

Using the Quadrature (Newton-Cotes) rules employed for the European options,
table 6.28 presents results for American put options with the 200 partitions and

various number of time steps.

Asset Binomial Left End Left End Left End
Price ($) Method 4 Steps 8 Steps 16 Steps
80 20.000000 20.000000 20.000000 20.000000
90 10.037663 9.419727 10.233520 10.673077
100 3.224899 3.248504  3.435497  3.615112
110 0.665410 0.677737  0.714048 0.760814
120 0.088796 0.089300 0.094368 0.101612

Table 6.28: Left Endpoint Quadrature - American put option for 200 partitions
and various time steps with o = 0.20, r = 0.08, T = 0.25, n = 1073 and strike of
$100. The values are calculated in this table are performed in double precision. The
Binomial Method prices are optimal approximations (using various N) and were
calculated based on Cox et al. (1979).

The option prices in table 6.28 shows similar variations as in the interpolation

method. It can be shown that when not enough partitions are being used, the
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early exercise barrier is miscalculated. Even though some of the results in table 6.28
are close to the Binomial price, there are imprecisions in the calculations of the price

using the Left endpoint quadrature approximation.

Table 6.29 contains American put prices for an optimal amount of partitions given

8 time steps.

Asset Partitions Binomial Left End QR
Price (8) Method

90 825 10.037663  10.038135

100 2229 3.224899 3.224905

110 2150 0.665410  0.665411

120 1561 0.088796  0.088796

Table 6.29: Left Endpoint Quadrature - American put option for 8 time steps
and optimal partitions with ¢ = 0.20, r = 0.08, T' = 0.25, n = 1072 and strike of
$100. The values are calculated in this table are performed in double precision. The
Binomial Method prices are optimal approximations (using various N) and were
calculated based on Cox et al. (1979).

Even though the prices in table 6.29 are excellent approximations for the American
put option price, the computational effort was great. As mentioned in the previous
paragraph, the calculation of the Exercise Barrier at each time step is not as precise

as the interpolation and Fourier methods described earlier.

Table 6.30 are some further American put option prices evaluated using various

(Newton-Cotes) quadrature rules.

Asset Binomial Right End Mid Point Trapezoidal Composite
Price ($§) Method Simpson’s
90 10.037663  10.000000 10.000000 10.000000 10.000000
100 3.224899 2.599630 3.187915 3.186625 3.070412
110 0.665410 2.516689 0.658364 0.657891 0.635625
120 0.088796 2.492115 0.087753 0.087676 0.085229

Table 6.30: Various Quadrature Rules - American put option for 8 time steps and
512 partitions with o = 0.20, r = 0.08, T' = 0.25, n = 10732 and strike of $100. The
values are calculated in this table are performed in double precision. The Binomial
Method prices are optimal approximations (using various N) and were calculated
based on Cox et al. (1979).
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Clearly the results in table 6.30 are poor compared to the Binomial method and
those presented throughout the thesis. The poor accuracy of these prices are at-
tributed to the inaccuracy of the barrier points (early exercise boundary) at each
time step. The barriers calculated by the quadrature methods compared to those
evaluated by the Interpolation method are different. Given the higher accuracy
achieved by the latter method, the deficiency of the quadrature methods can be

attributed to the evaluation of the barrier points.

The inaccuracy in the barrier calculation can be attributed to the nature of the
interval. For the American put option the barrier moves outward at each time step
(that is, the left interval). Therefore, to calculate the next barrier point, the method,
whether IPM or Quadrature, requires an estimate of function values that are outside
the domain of the current time step. This is a form of extrapolation, which the
Quadrature methods do not perform well. To show the inaccuracy occurs, due to the
calculation of inferior barrier points, table 6.31 are American put option prices with
the barrier points obtained by an accurate Interpolation method approximation.
For each time step, the barrier point obtained by the interpolation method is used

within the Quadrature methods.

Quadrature Binomial Optimal Nodes Approximation

Method Method

3.224899
Left End 138 3.225513
Mid Point 57 3.224436

Table 6.31: Left End and Mid point Quadrature Rules - American put option
for an Asset Price of $100, 8 time steps and an optimal amount of partitions with
o =0.20,r = 0.08, T = 0.25, n = 1073 and strike of $100. The values are calculated
in this table are performed in double precision. The Binomial Method prices are
optimal approximations (using various V) and were calculated based on Cox et al.
(1979).

As presented in table 6.31, the evaluated prices for the left end and mid point

quadrature rules have improved greatly compared to those in table 6.30. It must
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be stated that for the other rules (right end point, trapezoidal and the composite
Simpson’s) did not improve enough. In excess of 4096 node points were used in these
other rules and prices were in the range of $3.16 and $3.18. So, an improvement is
required in the evaluation of the barrier points at each time step. This is an issue
for all American put option prices and requires further investigation. It is envisaged
that the Quadrature methods will perform well for the down and out call option as

the barrier is fixed at each time step.

6.5 Quadrature Rules and Barrier Options

Using the Quadrature (Newton-Cotes) rules employed for the European and Amer-

ican put options, table 6.32 presents results for the down and out call option with

various partitions and 8 time steps.

Asset Optimal 7) Left Endpoint Error
Price ($)
N =64

80 1073 0.068265704858581 8.461823048671463F — 04
90 1076 1.025446584949125 8.686547385838850F — 07
100 107° 5.016980587577223 3.809786264241666 F — 09
110 10~ 12.62044850128009 6.776161853849771F — 10
120 1071 22.06656019939149 2.215585936937714E — 09

N =128
80 1073 0.068287400942693 8.678783889792541F — 04
90 1076 1.025447547820377 9.421651370189466 ' — 08
100 107° 5.016980591447074  6.006484198906037E — 11
110 10712 12.62044850195964 1.936228954946273F — 12
120 1071 22.06656020160710 2.131628207280301F — 13

N = 256
80 1073 0.068297602247680 8.780796939656527F — 04
90 107¢ 1.025447982063936  5.284600721466859F — 07
100 107° 5.016980593114734 1.727725518207990F — 09
110 10712 12.62044850196316 5.451639140119369F — 12
120 1018 22.06656020160708 0.000000000000000E — 00

Table 6.32: Left Endpoint Quadrature - Down and Out call option for 8 time steps
with o = 0.20, » = 0.08, T' = 0.25, strike of $100 and barrier of $75. The values are

calculated in this table are performed in double precision.
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Table 6.32 shows an improvement in the approximation as the number of partitions

increase for all asset values other than $80. The justification for less accurate re-

sults and a lack of improvement at this asset value is its proximity to the barrier. A

possible solution to this problem is to consider other discretization schemes, where

extra nodes are used near the barrier. Refer to the adaptive discretization for the in-

terpolation method (Section 6.3.3) where results improved for the asset value of $80.

Table 6.33 are prices using Right Endpoint Quadrature.

Asset Optimal 7) Right Endpoint Error
Price ($)
N =64
80 1073 0.068342191541811 9.226689880968697FE — 04
90 10°¢ 1.025449676530992  2.222927128814334F — 06
100 107° 5.016980598662323 7.275314573007563FE — 09
110 1071 12.62044850149923 4.584759238923652F — 10
120 10710 22.06656020049667 1.110404213022775E — 09
N =128
80 1073 0.068325632015505 9.061094617912047E — 04
90 10°¢ 1.025449093148066 1.639544201958998F — 06
100 107 5.016980596987800 5.600790942139611F — 09
110 10712 12.62044850197052 1.281463823943341F — 11
120 1071 22.06656020160710 1.776356839400250F — 14
N = 256
80 1073 0.068316716249908 8.971936961940374E — 04
90 10-¢ 1.025448754669658 1.301065794656608 E' — 06
100 107 5.016980595884865 4.497856309626513F — 09
110 10712 12.62044850196860 1.089084378236294F — 11
120 10-18 22.06656020160708  0.000000000000000E — 00

Table 6.33: Right Endpoint Quadrature - Down
steps with o = 0.20, » = 0.08, T = 0.25, strike of $100 and barrier of $75. The
values are calculated in this table are performed in double precision.

and Out call option for 8 time

As expected the right endpoint approximations were similar to those evaluated by

the left endpoint rule. It should also be noted that the prices evaluated by the right

endpoint are larger than those approximated by the left endpoint.

Table 6.34 are prices using Midpoint Quadrature.
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Asset Optimal 7) Midpoint Error
Price ($)
N =64
80 1073 0.068309240511536  8.897179578215703FE — 04
90 10°¢ 1.025448511612557 1.058008693766155F — 06
100 107° 5.016980595318302 3.931292624770322F — 09
110 1071 12.62044850150694 4.507683115662076F — 10
120 10710 22.06656019977550 1.831576668109847FE — 09
N =128
80 1073 0.068307840878315 8.883183246010951F — 04
90 10°¢ 1.025448416586935 9.629830712842846F — 07
100 107 5.016980594782908 3.395898673375086 £ — 09
110 10712 12.62044850196667 8.967049325292464F — 12
120 10716 22.06656020160709 1.065814103640150F — 14
N = 256
80 1073 0.068307490431320 8.879678776056721E — 04
90 10-¢ 1.025448392448670 9.388448065639210F — 07
100 107 5.016980594642222  3.255212988051426 £ — 09
110 10712 12.62044850196628 8.576250820624409F — 12
120 10716 22.06656020160708  0.000000000000000E — 00

Table 6.34: Midpoint Quadrature - Down and Out call option for 8 time steps
with o = 0.20, r = 0.08, T' = 0.25, strike of $100 and barrier of $75. The values are
calculated in this table are performed in double precision.

In most cases, the approximated down and out call option price using the midpoint

rule was between the values evaluated for the left and right endpoint.

Table 6.35 are prices using the Trapezoidal Quadrature rule.
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Asset Optimal 7) Trapezoidal Error
Price ($)
N =64
80 1073 0.068303637736538 8.841151828233723F — 04
90 107¢ 1.025448128067019 6.744631551036662F — 07
100 107° 5.016980593113967 1.726958132053369F — 09
110 10~ 12.62044850138965 5.680540482444485F — 10
120 10~ 22.06656019951860 2.088476946937590F — 09
N =128
80 1073 0.068306438824764 8.869162710496564F — 04
90 107¢ 1.025448319815123 8.662112598312177E — 07
100 107° 5.016980594215982 2.828972611723657F — 09
110 1012 12.62044850196508 7.373657240350440F — 12
120 10717 22.06656020160710 1.776356839400250F — 14
N = 256
80 1073 0.068307139832806 8.876172790918402F — 04
90 1076 1.025448368199469 9.145956059164462F — 07
100 107° 5.016980594499438  3.112429425300434F — 09
110 1012 12.62044850196587 8.167688747562352F — 12
120 1018 22.06656020160708  0.000000000000000F — 00

Table 6.35: Trapezoidal Quadrature - Down and Out call option for 8 time steps
with o = 0.20, r = 0.08, T' = 0.25, strike of $100 and barrier of $75. The values are
calculated in this table are performed in double precision.

In some cases the Trapezoidal rule achieved better results than the rectangular rules.

Table 6.36 are prices using the Composite Simpson’s Quadrature rule.
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Asset Optimal 7) Simpson’s Error
Price ($)
N =64
80 1073 0.068240065246154  8.205426924401821F — 04
90 10°¢ 1.025446090099999 1.363503864482141F — 06
100 1077 5.016975630482336 4.960904672834943FE — 06
110 10-¢ 12.62050955140471  6.104944700346948 F — 05
120 1075 22.06647082185757 8.937974951095384F — 05
N =128
80 1073 0.068275532665032 8.560101113182089E — 04
90 10°¢ 1.025447574142025 1.205381610080991F — 07
100 107 5.016980591439553 5.254374713103971E — 11
110 10712 12.62044850173511  2.226006046157636F — 10
120 10711 22.06656020112946 4.776161688369029F — 10
N = 256
80 1073 0.068291909854050  8.723873003353422F — 04
90 10-¢ 1.025448011081464 5.574776003047788FE — 07
100 107 5.016980593200113 1.813104333336923FE — 09
110 10712 12.62044850196314  5.432099214885966 F — 12
120 1071 22.06656020160709 1.421085471520200F — 14

Table 6.36: Composite Simpson’s Quadrature - Down and Out call option for 8
time steps with o = 0.20, r = 0.08, T = 0.25, strike of $100 and barrier of $75. The
values are calculated in this table are performed in double precision.

When 256 partitions were used for the Composite Simpson’s rule, the option prices
evaluated were as accurate, if not better than the other rules. Table 6.37 are the
errors associated with each Quadrature rule for a specific type of Down and Out call

option.

As table 6.37 shows, there are minor differences between the Newton-Cotes rules.
All prices are very precise compared to the analytical solution. It is difficult to
compare the performance of the quadrature methods due to the propagating errors
from time step to time step. In most cases, a single integral is evaluated using a
particular rule and comparison is made by comparing the results. In these cases,
propagation of errors has also an influence on the performance. Some rules work

better with different discretization schemes also.
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CHAPTER 6. AMERICAN PUT AND BARRIER OPTIONS

6.6 Conclusion

The methods used in the previous chapter were applied to an American put option
and a Barrier down and out call option. The interpolation method performed well
when applied to these different options. Similar behavioural issues arose in these
cases compared to the European options. The option prices evaluated were quite
precise compared to the binomial and analytical solutions obtained from the litera-
ture. The results compared favourably to those achieved by the Fourier series. As
with the Fourier series, a-priori knowledge of the method parameters would allow

optimal evaluations to be gained for less computational effort.

The quadrature methods worked quite well for the barrier option but performed
poorly for the American put option. The poor performance occurred due to the
miscalculation of the early exercise boundary at each time step. Even using the cor-
rect boundary values (evaluated by the interpolation method) did not assist. Some
methods (right end point, trapezoidal and the composite Simpson’s rules) did not
improve significantly; with a high number of node points required to obtain an av-

erage result.

A possible improvement for this issue is the use of more sophisticated quadrature
rules. Weighted rules which take into account the weight within the integrand may
assist. Many of the weighted rules however are associated with single integrals,
integrated over one variable. These rules would need to be extended to take into
account a second variable. Since our path integral has two variables, the underlying

and time.
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Chapter 7

Conclusions and
Recommendations

The main aim of the thesis was to present a numerical investigation of the path
integral framework. The framework developed and presented by Chiarella et al.
(1999) follows the Black Scholes paradigm and was summarised in Chapter 2. The
path integral is an alternative representation of an option price than the traditional

partial differential equations, namely

efrAt o0

VT )

In Chapter 3, we represent the approach of Chiarella et al. (1999). The Fourier-

PN Ge) = e~ T A PR (VRN ) dEy. (7.1)

Hermite series is used to represent the underlying, f*(v/2At&,), within the path
integral framework. The main advantage of this spectral method is the continuous
representation of the option price as a polynomial. This allows multiple option prices
to be evaluated from the same polynomial (that is, an option price for a particular

underlying value).

One of the major disadvantages with this technique is the computational effort re-
quired to obtain accurate prices. This can be attributed to the exponential and
factorial terms found in the recurrence relations, namely for a European and Amer-

ican put option,

—rAt
K—1 g e

- —(
m 2m | 21 (m — 1)!vm—1ﬁe
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CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS

Also, the matrix multiplication(s) required to find the coefficients of the option price
polynomial can be time consuming, especially when a large number of time steps

(K) and/or basis functions (N) are to be used,

aO _ efT(Kfl)AtAKflaKfl' (73)

The coefficients determined (for a European option) in (7.3) requires matrix mul-
tiplication, with the dimensions of A and a determined by the number of basis

functions.

In an effort to combat the computational effort, in chapter 4 we offer a Normalised
version of the same technique. The recurrence relations are formed using similar
methods to the alternative, with differing Hermite orthogonal polynomial properties,

forming different relations. For example,

o Y S Gy, _(-2) (7.4
o = |Q, (& T m—2\"— s .
" m| " (m — 1)lrm=1y/27 »or

=

evaluates the coefficients aX =1 for the normalised version. This is equivalent to (7.2)
in the non-normalised method. The major difference being the 2™~! term does not
exist in the normalised version. Investigations showed that the computational time

did not improve by any great amount, in most cases, less than five percent.

Therefore, one of the most time consuming parts of this type of method is the ma-
trix multiplication. If this matrix multiplication could be eliminated or the effort
required to calculate was drastically reduced, the computational time required to
obtain an accurate result could be reduced. Diagonalisation or other efficient meth-

ods to evaluate A* would be worthwhile.

Another issue that arises in this method is the oscillating nature of the Fourier
series. That is, for a given K (the number of time steps) and N (the number of
basis functions), there are underlying values that will give more accurate results

than others.
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0.2 0.4 0.6 0.8 1

X

Figure 7.1: The absolute error of a Fourier-Hermite expansion vs Black-Scholes
for a European call with K = 4, N = 16 (red), N = 32 (blue), N = 64 (yellow),
o =0.20, r = 0.08, T = 0.25 and strike of $100.

Figure 7.1 shows which prices were better than other prices. Therefore, an a-priori
knowledge of what K and N is required, given a set of model parameters (volatil-

ity, interest rates and time to expiry), to give a better result would be advantageous.

The methods presented in Chapters 5 and 6 uses the same path integral framework,
(7.1), but is modified so that interpolation polynomials and Newton-Cotes quadra-
ture can be applied to find accurate results. The path integral is modified due to
the infinite interval in (7.1). An upper bound (the value of the underlying) is used

to approximate f¥(£;) at each time step, which allows a finite interval to be formed.

Using a better upper bound would be an obvious improvement in determining the
finite intervals. Better intervals will lead to higher accuracy in the option price
evaluation. In evaluating the intervals, a Taylor series was used for the error func-
tion. Use of a better approximation for the error function could also improve the

determination of the interval at each time step.
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CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS

In the thesis, the interpolation method used Hermite interpolation polynomials (of
order 4) to represent f*(&,) in (7.1). These commonly used polynomials, repre-
senting the underlying, achieved precise option prices. The prices evaluated for
American put and the Barrier (down and out call) options were comparable to, the

Binomial and analytical solutions found in the literature, respectively.

One of the major advantages of this interpolation method is the ease of implemen-
tation. The implementation will also allow for the use of other Hermite interpo-
lation polynomials (different orders). Accurate results are evaluated with minimal
computational effort. As with the Fourier method, a-priori knowledge of method

parameters given a set of model parameters, would be advantageous.

For the interpolation method, various discretization schemes of the underlying were
offered. Each scheme having its advantages over the others. The fixed schemes
allowed for fast and precise results and the adaptive scheme traded computational
effort for higher accuracy. Other discretization schemes, Gauss types for instance,

could be used to improve the evaluation of the option price.

Various Newton-Cotes rules were applied to the path integral (7.1) to obtain ac-
curate option prices in Chapter 6. These rules achieve fast results and in the case
of the European options with high precision. Inaccuracies arose for the American
put option, specifically the calculation of the exercise boundary. To compensate
for this problem, the barriers were manually placed (obtained via the interpolation
technique) to investigate the merits of the technique. This issue requires further

attention and may be a flaw in using these types of rules.

Only one type of discretization scheme was used (fixed number of nodes). Other
schemes, including Gauss type should be investigated and may assist in the issues
arising with the American put option. Other types of quadrature, including weighted

rules for multi-variable and multi-dimensional integrals, would be worthwhile inves-

200



CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS

tigating. Many of these rules may assist with obtaining a-prior: knowledge of the
method parameters. Some of these weighted rules have associated errors. By bound-
ing the errors, appropriate and optimal K and N can be determined. The single
issue associated with all the techniques present in the thesis is the lack of knowledge
in regards to the number of time steps and basis functions/nodes prior to evaluation

of the option price.

Given the differing methods offered in the thesis, a further extension worth explor-
ing is different discretization of time. The implementations offered in the thesis,
has fixed spaced time steps. The use of an alternative scheme for time may lead
to improved precision, it is envisaged though that a greater computational effort
would be required. Other types of options could also be applied to the path integral
framework. Various barrier type options may be applied to the interpolation and
quadrature methods. Asian options, where payoff is determined by an average value
of the underlying, could be implemented, though may require further manipulation

of the path integral to compensate for the unusual payoff scheme.
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Appendix A

Fourier-Hermite Series Expansion

These appendices contain many proofs and analysis of the methods and techniques

described in Chapter 3.
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A.1 European Options
A.1.1 Completing the Square

This is a step by step evaluation of the power of the exponential in the path integral

(3.14) being converted to a complete square.

1
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The expression (A.1) is in a form such that we can complete the square.

210



APPENDIX A. FOURIER-HERMITE SERIES EXPANSION
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A.1.2 Evaluating A,,,

v

This is the complete evaluation of elements A,,,. The first step requires the trans-

formation of (3.30) to a form so that integration by parts can be used.

d 1 1

Amn = —H, b)| dz,
2mm'vm\/_ m(?) [dzv 2(n+1) nlvz+ )} :

o0

1 11 1
- " —=e " Hy(2)H,
2mmlym (U 2(n + 1) \/Ee m(2)Hpp1(vz + b)}

o0

1 d _»
Hn b ~H(2)) dz ),
C0u2(n+1) n+1 \/_ nlvz+ )(dz (Z>) Z)

1 1 d _,»
Hn b " H, dz|. (A3
~ 2mplym l v2(n+1) \/_ vz +0) (dz (Z>) Z] (A.3)

The derivative in (A.3) can be solved using property (3.6) and the product rule as
described in the chapter.
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d 2 2 2
(d—ez Hm(z)) =2me " H,,_1(2) — 2ze™* H,(2),
z

= 6_22 [QmHm_l(Z) — QZ'I_IW(Z)}7

= [~ Hpi(2)]. (A.4)

So, to evaluate the element A,,,, (A.4) is substituted into (A.3). Since (A.4) is
expressed in a forward manner, rearrangement is required so that A,, , is expressed

in terms of A,,_1,_1. Therefore, as presented in the chapter

1 [ 1 1 1 [ )
Amn = - = Hn ble * —Hm d )
’ 2mmly™m i U2(n+1)\/7_1'/00 +1(UZ+ )6 ( +1(2)) Z:|
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m+1
- n+1 m+1,n+1,
and so
n+1
Am n = 14mmns
o+l = A,
giving
Am,n = ﬁAm—l,n—l- (A5)
m

It must be noted that when m > n element A,,,, = 0.
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A.1.3 Evaluating 11121(—%)

The following is a derivation of ¥¢ (—2) for a European call option. W¢, (—2) is
transformed so that it can assist in the evaluation of a®~!. The aim is to join the
two exponential in the integrand of (3.37) into a single exponential. The exponential
also has to be transformed so that Hermite polynomials and their properties can be

used. This is achieved via simple algebra.

\I/C 7 ovz —zQHm d ’
T P
_ L /OO e*(ZQ*UUZ)Hm(Z) dz

vr )b ’

2 2.2
z 2 _ovz+<
\/_ b
v

)e%Hm(z) dz,

= / e~ =%V H,.(2) dz, (A.6)

let,

and substituting (A.8) into (A.7) gives
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let,
ov
U=z——
2 )
and substituting (A.11) into (A.10) gives
e1o™v? oo ov du
Ui(——) / 2(u+ —)e " . ——dz,
\/E _%_% 2 dz

Performing the substitution,

into (A.12) gives
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The proof for U¢  asin (3.45), is

215



APPENDIX A. FOURIER-HERMITE SERIES EXPANSION

2,2 1 v ov\2
= lﬁ [ T
1 ou\2 v 1 v agv gu\2
— _(Z_ 2 ) H _ - - (Z_ 2 ) H _ d
T e =gz [ e P e
%021}2 agv % 7(Z7@2 ( )d 1 7((7&7% QH ( )
=€ — e m—1\2)az — —=¢ v m—1{— s
VT s : NG :
[ c b 6%027-2 _((b\2 o2y o b
S|t s e “Hml(—;ﬂ’
T N T b
~|oown (D) - e, -2, (A14)

A.1.4 Evaluating Q¢ (—2)

v

The proof for Q, as in (3.42), is given by
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N
Q(——) = ﬁ/b e * Hy(z)dz,

v

= ﬁ B e “dz,
1 1 v
§+ﬁ ; € dZ,
1 1

=53/

= %erfc(——)

The proof for Qf, as in (3.44), is

v

b1 <
Qs(—2) = ﬁ/ e~ Hy (2)dz,

1 o 2
= — 2ze % dz.
Nz /g

Performing the substitution,

into (A.16) gives
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_ (A.17)

The proof for Q¢ . as in (3.46), is

o (=4 :% /_ Oj e {ZZHml(z) ~ o(m— 1)Hm2(z)} iz,

v

1 o 2 1 o 2
:ﬁ /fj 2z ¥ Hp1(2)dz — ﬁ /2 2(m —1)e™* H,,_o(2)dz,

1 [ b
SV /_ 22 Hy 1 (2)dz = 2m — 1), (),

—— e >2Hm,1(—5). (A.18)

A.1.5 Evaluating llfﬁ,b(—%)

The proof for ¥§ as in (3.63), is
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(A.19)

I
]
N
Q
S
—
\
[\
I
aQ
|
®
|
NN
e
U
N

b__ov
1 [ b
e AR )]

oty 1
ave; erfe(—+ Q) — (o),
v

3~ (A.20)

The proof for P as in (3.63), is
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b
1 v v
— 2(m —1)e (Z_T)QHm_Q(Z):| dz,
T J-
= i7"’ Y 2ze~ =% (2) dz
- Vi) "

b
— ﬁ/_oo 2(2_ O-Q_U)ei(z 2) Hm—l(z):| dZ,
T (==’ _b LY =)’ g d}
e \/7_Te m1(——) NN e m-1(z) dz|,
b 1 by2 b
N Y e B (C O O) AR A A.21
W () = e () (A21)

A.1.6 Evaluating le(—%)

The proof for Qf as in (3.66), is
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(-2 = % / ¢ Ho(2) dz

v

_b
1 b
= aerfc(;). (A.22)

The proof for 2} as in (3.66), is

b
b 1 T 2
()= = / P H, (=) d,

v

b
1 T 2
= — 2ze % dz,
VT /oo

b

1 [~%
= — e “du
Bl

The proof for QP as in (3.66), is
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b
b 1 TV
p _—— = —- -z
O ( v) \/7?/_00 e * Hpy(z2)dz,

- % / ; e {QZHm_l(z) —2(m — 1)Hp_s(2) dz|,

b
ot b
- /_OO 22 1 (2) = 2m — ), (),

A.2 American Put Option

A.2.1 Evaluating 7{“_1

The proof to 4§~ as in (3.97) can be formed by using properties (3.86) and (3.88)

and integration.

k-1 e_TAt . —z2 ob - —22+ovz
= BTN e Hy(z)dz—e e Hi(z) dz|,

o0 —0o0

—rAt 2k 2k
e T _ .2 0‘21)2 (s OU\2
= [/ 2z dz — et 4 / 2ze~(*7%) dZ},
2Uﬁ —c0 —00
efrAt r 1 5

L ovre / Zk_w(z +ov)e ™ d
— —e u+ov)e™™ dul,
20 | 7w N o

—rAt T 2x—0U 2g—0U

e r ]_ _ 2 1 (72112 2 a2

= — ek — ——e%tt 2ue ™ du + ov e " dul |,
20 | 7 LS oo o

_ r .2
e rAt 1 eab zjtovzg

Ub—l——"gv2
2 agve 4 aguv
_ _ Lz _ %% ). (A2

2w | VA T A 2 erfc(Q Z’C)} (A.25)
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A.2.2 Evaluating %!

The proof for ©F1 as in (3.103), is

O, = % / P H () d
m —0o0

\/_/ 2(22Hp-1(2) — 2(m — 1) Hyy_o(2)) dz,

1 “k 2
= NG /OO 2z Hp 1(2) dz — —/ M, _5(2) dz,
1 >
= ———=¢ “*H,_1(z)
T
L2 /k 2(m —1)e > Hp_o(2) d / e " Hyo(2) dz
— m—1)e " H,p,_ z— — e ,
Jr ) o 2
= —ie’Z'%H (21) (A.26)
- \/7_T m—1 k)- .

A.2.3 Evaluating ®%!

The proof for ®*~1 as in (3.104), is
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2k

1 2
L — e P L (2) dz
= ,

o0

0'2112

60b+ 4 Ek ovy2
= / e~ %) (22H,_1(2) — 2(m — 1) H,y_s(2)) dz,

ov

ot T2 2 ov
= 2 Y Hp, —)d
NG {/_Oo (2u 4+ ov)e 1(u+ 2) u

2k 5
- / 2(m — 1)e G2 H,,_o(2) dz},

ov

o202 _ov
ot [ [T ov

N Uoo 2ue™" Hypa (w4 =) du

Zk 2k
—i—av/ e TV H,, y(2) dz —/ 2(m — 1)e~ =) H,,_o(2) dz},

o0 —0o0

4 gv\2 Ek gv\2
= {e_(z’“_T Hyo1(2k) +/ 2(m —1)e” "2V H,,_y(2) dz

—0o0

2,2
et (2 b p1
=— e T2 Hoy g (2) 4 ove” T @Y (A.27)

VT

A.2.4 Evaluating 7!

The proof for v*~1 as in (3.107), is
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3 e
’Yﬁq ! Hyp 1 (21)

—rAt 1 eab—zi +ovzg
~ 2mmplym

S *ZEH +

obto2e? £ g1
—ove TN

1 A ) efrAtJrabfziJravzk
—rAt—=z
=|——e kHo_1(zk) + H,_1(z
[ 2mmluma/T m-1(2) ommlomy/r " (2)
2, 2
—rAt obt I
oe"e? AT Ly
ORI (A.28)
2mmlym—1 m

To obtain a recurrence relation for v*~1, ®*~1 is replaced with v*~% by rearranging

—rAt

k—1 _ € k=1 _ gk—1
Vm—1 _2m_1(m - 1)!’Um_1 l@ml (I)m1:| )

—rAt —rAt
e k—1 € E—1

_ k-1
2m=1(m — 1)!1}””“1CI>W_1 _2m*1(m - 1)!1}7”*1@”‘_1 Tm—1)

—rAt —rAt
oe k—1 oe k=1 9 k-1

omplym—1 " m=1 Qmm!vm*@m_l 2mﬁym_1’

—rAt —rAt
oe E—1 oe

% e
ommlym=1 ="l omyplym=1, /7

g
G_ZI%Hm_Q(Zk) — %”}/7];__11, (A29)

substituting (A.29) into (A.28). Therefore, (A.28) becomes

—rAt—z]%

k=1 __ i k-1 ob+ovzy
Tm = g Tm + Sl H,1(z)(e 1)+ ovH, o(z)|. (A.30)

A.2.5 Evaluating A’gm

The proof to the solution of Af, as in (3.120), is.

—rAt 00
k. _ € —22
A07n = W 5 € Ho(Z)Hn(UZ + b) dz
—rAt

€ Oo 2
= e *"H,(vz+b)dz, A.31
vl A G (A3)
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and using property (3.83), (A.31) can be expressed as,

—rAt e8]
Ak ¢ / 2wz 4+ B Hoy 1 (07 4+ b) — 2n — 1) Hy_o(vz + )| dz,
SRV
efrAt 0 )
= 2uze™ Hy, q(vzp +b) dz +20AL, | —2(n— 1AL, (A.32)
ﬁ 2k ’ ’

and finally the integral in (A.32) is evaluated using (3.84) and integration by parts,

SO

—rAt 00
Af,=—— {veZQHnl(vzk +b) 4+ 20%(n — 1) / ¢ % Hy_o(vzy, + b) dz

2k
k k
+ QbAO,nfl —2(n — 1)A0,n727

UefrAt

=7 e H,_1(vzp + D) + 20AL | +2(0* —1)(n— 1AL, (A.33)
- , ,
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Appendix B

Normalised Fourier-Hermite Series
Expansion

These appendices contain many proofs and analysis of the methods and techniques

described in Chapter 4.
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B.1 European Options
B.1.1 Completing the Square

This is a step by step evaluation of the power of the exponential in the path integral

(4.8) being converted to a complete square.

2(&r — p(€e-1))® + &y = 2(& — ﬁ(&c_l +0)*+ &,

ALk
2At

=2+ s (Gt + D) — (Gt D) €y

o 260 208 AGab 466 4G L
2At  2At  2At VOAE oA R

e (At+1) N A€p_1 (b—\/zmgk) N (£ b )2
SR At V2AL\  V2AT " VRAL

&G L A (b - \/2At§k) . (\/2At§k _ 5)2
At VAR VRAT V2At

_ G AT (b— ¢2At§k) («mtfk —b)2 (B.1)

At V2AE U TV2AL V2AL

The expression (B.1) is in a form such that we can complete the square.
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_ [&ar VARG - b]? N (\/QAtgk - 6)2 . (\/QAtfk — b)2
LV 2AL TV 2AL vV 2AL TV 2AL
_[&ar  VEATG D) (V2ARG 0P 17
LV 2AL TV2AL | At 72|
(& V2AEG D] 2 N (V2AtE — b2 [72 - 177
| V2At V2At | At T
& V2ALG - b]? N (V2AtE, — b2 [At+1 — 1r
| V2At V2At ] At At + 1
(G VRALG b\ | (V2ALG - b
Wiy A +H——)" (B.2)

B.1.2 Evaluating lIfj;l(—g)

The following is a derivation of W} (—2) for a European call option. W7 (—2) is

transformed so that it can assist in the evaluation of & ~!. The aim is to join the two

exponential in the integrand of (4.35) into a single exponential. The exponential also

has to be transformed so that normalised Hermite polynomials and their properties

can be used. This is achieved via simple algebra.

1 ° 12
Ur(——) = — e 2" H,,(2) dz,
==, )

_ L2
e 5(z QUTZ)H

1 [o@)
V2T /_ﬁ

1
675(

1 o0
\ 2T /g

The proof for W}, as presented in (4.36), is as follows
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let,

u =

and substituting (B.5) into (B.4) gives

s b) 20T /00 2 V2du p
—) = e Z
0 T \/271' 7%707 dZ ’

1 _2_2
50’ T oo
¢ zem 20 1
2r J_2
b
let,
Z— 0T
u =

and substituting (B.8) into (B.7) gives
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1 1 o0 [e.e]

— 27 lT / V2ue™ du+ 2L e“Qdu} . (B.9)
™ J__b _oT

VORI

Performing the substitution,

T =u’,
into (B.9) gives
b L oo 1 [ dx oT b oT
Ui(—=) =e277 —/ V2ue™® du+ —erfe(— - —) |,
o RYZS —p-2 2u du 2 ( NoX: \/§>
1,22 [ 1 /OO _ oT b oT ]
=e277 | —— e dr + —erfe(— — —=) |,
LVom )b e 2 ( \/5)
12007 b oT 1 i
=e2 —erfe(—— — —=) — e or | s
T R T s
1002|0T b oT 1 (b _ory]
=e22 " | —erfc(— - — )+ — varvE |
| 2 / ( V2T \/i) 2 ]
1,22 Keza b oT 1 —((=L )L,_ﬁ_,_ab)
=e2? " | —erfcl————— —=) + —e V27 2 ,
ERE v TRV A -
= e%"QTQEeTfC(— b 2) + Le*((éy“"b) (B.10)
2 V2r V2 V2T ’ '

The proof for ¥ | asin (4.36), is
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27 J o
b
(m — 1) T 71( _ )2
- e 2T Hy, o(z) dz|,
\ 2T —o

) b
2) +“b)Hm_1(—;)] , (B.11)

B.1.3 Evaluating Qj;b(—g)

The proof for 2, as in (4.36), is given by
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D(--)= N "2 Ho(2) dz,
1 1,2
-5/, e dz,
L T g
2 ) ’
1 1 b
= -+ zer ,
Lt
= —erfe(— b ). (B.12)
Var
The proof for Qf, as in (4.36), is
. 1 [ i
Qi (——) = VAR e 2" Hy(z) dz,
L7 iy (B.13)
= — ze 2% dz. :
Vom J_b
Performing the substitution,
u = 2%

into (B.13) gives
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- (B.14)

The proof for QF , as in (4.36), is

%) m/

=75 _Eze* Hy1(2) dz — (m — 1), _o(—=),
1 1 -
= o) L
+(m—1)% _267522[{ 2(2) dz — (m = 1), _,(—-),
_ L ey b
o G H,, o ( T). (B.15)

B.1.4 Evaluating a®~! for a European Call Option

Since we have solved the initial and general cases for U* and 2%, a recurrence relation

K-1

for ajt~' with m = 1,2,..., N can be formed from (4.37) and using ¥} and Q,,

gives
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- efrAt " . 1 (1(by2ag
o _m!Tm [6 b(UT\Dml(_—) * \/27r6 SR b)Hm—l(__))
1
_ 6—(3)2Hm_1(__)}

(B.16)

and so

ko1 _ e by * b
an = ore”Ur (—=)|. (B.17)

mlrm T

K=1 and a%~1. Given (4.37) for

The next step is to find a relationship between « 1"

coefficient m — 1,

—rAt
K—1 _ €
szfl -

[eab%l(—g) - %1(‘9] ’

(m —1)lym-1
K—

: 1
therefore, rearranging «;. —; for,

b b
(-2 = |- - Dl (Bas)

and substituting (B.18) into (B.16) gives

efrAt r

e o Ot
= {m!Tml ma (=) F m |
o e~ At 1/b\2 :|
= —5(3)? = K-1
— e 27 H o(——)+ta B.19
m[(m_l)!Tm_l — (= 2) + ok (5.19)
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B.1.5 Evaluating \ifj;l(—g)

The proof for ¥ as in (4.41), is

122 b ot
e27 7 V2T ?/% _u2
= e " du,
VT )
122
e29 7 b oT
= erfc( —)

The proof for U* as in (4.41), is

122 b
S e2? 7 T 2
Ui(——) = e 2T 1 (2 dz,
1( 7') V2T /_oo 1( )

1
50°T -
€2 1 2
T Ver / s s,
T J—c0
122 __b _or
e27 7 VZr V2

= e V2 v ue ™ du+ﬂ vk
ﬁ — 0 2 — 0
1 %
1 2. 2 2T 2
=277 | — e U dv —|— —erfc
|:\/7_T —00 f (\/_T
1 _2_2
oTe2? 7 b oT 1 1
= erfo(—— + —=) — ——e2((7)7+200)
2 / (\/57' \/§> V2

The proof for U* as in (4.41), is
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1 - 1 -
_ 6%0_27-2 |\\/—2_7T Ze—%(z UT)QHm_l(Z) dz — o 62(207)2Hm_1(z):|
1 72 —2(z—01)?
N (z—oT)e 2 Hy 1 (2)| dz,
T J—-00
Pl D S va by, o L(z—ar)?
— e2 —\/%6 2 Hm_l(—;)—i—ﬁ e 2 Hm_l(z) dZ 9
A b 1
=0TV’ - e~ 2((2)?=20) 1(—=) (B.22)

B.1.6 Evaluating Qj;l(—g)

The proof for 2% as in (4.41), is
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(B.23)

. B.24
o (B.24)
The proof for O, as in (4.41), is
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1 _1,2 B A A b
= H()] - D (-2 = D (-2,
——— e‘%(g’QHm_l(—é). (B.25)

B.2 American Put Option
B.2.1 Evaluating 77!

The proof to 4f~* as in (4.71) can be formed by using properties (4.61) and (4.24)

and integration.

k-1 e*TAt . —122 ob . —1224072
04 :m 7006 2 Hy(z)dz—e 7006 2 Hi(z2) dz|,

—rAt 2K Zk
e T _ 1.2 o272 _ 1l 2

= [/ 26727 dz — 0T ze 25707 4 ,
TV21 | J -0 —co

—rAET 2, —0T
e r 1 _ 1.2 1 o272 _ 1,2
= - e — e (u+or)e 2" dul,

oo

—rAET 2, —0T 2k—0T
e " 1 1.2 1 o272 1,2 1,2
= - e 2% — ——¢%T ue 2 du+ ot e 2 dul |,

(e 9] — 00

e A R N b3 o GreottTS s (—UT LA )]
= — e 2% — erfel —+—= 1.
T V2 V2m 2 2 V2
(B.26)
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B.2.2 Evaluating ©%!

The proof for ©F! as in (4.77), is

(Sl 7% H,(2) dz,

\/%/ 37 “(2Hp-1(2) — (m — 1)Hp_s(2)) dz,

m/ Hna Z‘—/ e

1 12
= — e 2% H,,_1(z
V2T 1(z)

1 “k 1,2
+ — m—1)e 2% Hy,_ dz——/
5 ) L )

1
= e P H, ().

Vo
B.2.3 Evaluating ®F!

The proof for ®*~1 as in (4.78), is
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2k
k—1 —12240672
k- :—/ e 2 H,o(2) dz,

o0

60b+ 2 k 1 2
T Ve / e 27 (2Hy 1 (2) = (m — 1) Hia(2)) dz,

2,2

60b+- 5 Zk 1,
N \/ﬂ |:/—oo = ;(z UT)QHW—I(Z) dz

2,2

60b+ 2 Zk 1 2
Vo /_oo(m—l)w(”” Hm2(2>dz}

2,2

[ wt om0 d
= u+or)e 2 H,_1(u+o7) du
21 /_oo

Zk 1 2
- / (m—1)e 27" H, _y(2) dz} :

—00

0272

e’ RTIT 1 e

= ue 2 Hy, 1(u+o7)du
V2T o

k 1 2 k 1 2
+ 07’/ e 2C H, () dz — / (m—1)e 2C="H, _y(2) dz} ,

oo —0o0

2,2

60b+ 2 —l(z —o1)? * —l(z—m')2
= N e 2%k Hy 1 (z) + 7oo(m—1)e 2 H,, 2(2) dz

Zk 5 Zk 5
+ 07’/ e 2(zmom) H,o(z) dz — / (m — 1)6_%(2_07—) H,, 2(2) dz} ,

oo —0o0

02,2

b+
e’ T2 1 2
= — 6__§(zk__07) }J

V2T "

o2:2

1 (zp) + ot ORL (B.28)

B.2.4 Evaluating %!

The proof for v*~1 as in (4.81), is
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—rAt ob—L224072,

i1 € 1 1 €777 2%

fym — — e 2 ka_ Zk; + Hm— Zk?
m!Tm[ v or (%) v or 1(2)

2.2
ob+ 75— qk—1
—oTe 2 @ml] ,

1.2
1 Lo efrAtJrabeszraTzk
—rAt—5z
e 2% Hp, 1 (21) + Hpo1(21)

{ mlrmy/ 21 mlrm/ 27

02,2
B O.e—rAteabJr 5 1

CI)m—l ’ (B29)
mlrm—1

To obtain a recurrence relation for v*=1, (1’5:1 is replaced with vfn__ll by rearranging

k—1 _ € k—1 _ gk—1
Vm—1 _(m - 1)!7-771—1 |:@m1 (I)m1:|7

—rAt —rAt
oe k-1 € k-1 k-1

— & _
(m — 1)!7'7”*1 m—1 (m _ 1)!7-m71 m—1 Tm—1s

O.e—rAt b1 O.e—rAt b1 o
1= 1 V-
mlrm—1 M= lpme 1 Ml Tme L
—rAt —rAt
oge” " oe 1.2 o
ol =0 o3 o (z) — Akt B.30
mlrm=1 "l rme1 o m-2(2) m Y ( )

substituting (B.30) into (B.29). Therefore, (B.29) becomes

—rAt—122
k—1 k—1 € 27k ob+oTz
== H,,_1(z)(e F—1)4+o01Hpm o(2k) |- B.31
v Ym—1 T o 1(2)( ) 2(2k) ( )
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Interpolation Polynomials

This appendix contains further data analysis for the InterPolation Method (IPM)
described in Chapter 5. For convenience the approximate results using this method

are in the column labeled IPM.
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C.1 European Options

This section contains results for various European options using the fixed number

of nodes (per time step), fixed spaced partitions and adaptive node distributions.

C.1.1 Fixed Number of Partitions

An analysis of the parameters were made in section 5.4.2. The results are numerical

prices of the data graphed.

Varying 7) and Partitions (V)

Tables C.1 - C.5 are European call options prices for varying n and number of

partitions (V) fixed at 64 at each time step.

Asset
Price (8)

IPM

Error

80

1074
1079
106
1077
1078
1079
10710
10—11
10712
10—13
10714
10—15
10716

0.0689055676694494
0.0689512512544143
0.0689317130989882
0.0688979303334288
0.0688569109541093
0.0688093126214839
0.0687548495225413
0.0686943512286288
0.0686302706720580
0.0685646166087813
0.0684962694270779
0.0684201655575928
0.0683288557435221

1.1216563173675103E — 04
6.6482046771855138E — 05
8.6020202197910345E — 05
1.1980296775736558 E — 04
1.6082234707682054FE — 04
2.0842067970220680L — 04
2.6288377864486841F — 04
3.2338207255733871 L — 04
3.8746262912817044F — 04
4.5311669240483696 £ — 04
5.2146387410820748E — 04
5.9756774359330566 L — 04
6.8887755766399448E — 04

Table C.1: European call option with K = 8 N = 64, ¢ = 0.20, r = 0.08,
T = 0.25, asset value of $80 and strike of $100. Here 7 is the total error for the tails
(refer to (5.26)). The values are calculated in this table are performed in double
precision.
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Price (8)

Asset

U

IPM

Error

90

1071
1075
10-¢
1077
10-8
1079
10710
10—11
10—12
10713
10—14
10715
10—16

1.0250907293696512
1.0254186444924345
1.0254611444368389
1.0254707252843509
1.0254771780032472
1.0254834100119699
1.0254891455639026
1.0254943604339977
1.0255004294501593
1.0255106884899348
1.0255304691906100
1.0255667049156083
1.0256272991139672

3.6300476429253214F — 04
3.5089641509285230L — 05
7.4103028952637873E — 06
1.6991150407312527E — 05
2.3443869303502174F — 05
2.9675878026116931 L — 05
3.5411429958817631E — 05
4.0626300053941966 E — 05
4.6695316215615568E — 05
5.6954355991123418E — 05
7.6735056666298040E — 05
1.1297078166463276 E — 04
1.7356498002354254F — 04

Table C.2: European call option with K = 8 N = 64, ¢ = 0.20, r = 0.08,
T = 0.25, asset value of $90 and strike of $100. Here 7 is the total error for the tails
The values are calculated in this table are performed in double

(refer to (5.26)).

precision.

Price (8)

Asset

IPM

Error

100

1071
1075
10-¢
1077
10-8
1079
10710
10—11
10—12
10713
10—14
10715
10—16

5.0162632406806198
5.0170322174573707
5.0171791741258476
5.0172713387960828
5.0173701613216330
5.0174812387290979
5.0176036943619984
5.0177364876208452
5.0178803792558169
5.0180390615210957
5.0182194891752729
5.0184314664499077
5.0186867485302180

7.1736558179130716E — 04
5.1611194959444440F — 05
1.9856786343599997F — 04
2.9073253367192797E — 04
3.8955506922214084F — 04
5.0063246668646810L — 04
6.230880995869436 7L — 04
7.5588135843435156E — 04
8.9977299340543437L — 04
1.0584552586845319E — 03
1.2388829128621992E — 03
1.4508601874962945E — 03
1.7061422678071869E — 03

Table C.3: European call option with K = 8 N = 64, ¢ =

0.20, r

0.08,

T = 0.25, asset value of $100 and strike of $100. Here 7 is the total error for the
tails (refer to (5.26)). The values are calculated in this table are performed in double

precision.
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Asset n
Price (8)

IPM

Error

1071
1075
10-¢
1077
10-8
1079
10710
10—11
10—12
10713
10—14
10715
10—16

110

12.6191544371908044
12.6203063995743552
12.6204213847275479
12.6204285276262400
12.6204236143870254
12.6204172337181451
12.6204133528399645
12.6204138257078373
12.6204131606021477
12.6203977568857795
12.6203523736852699
12.6202691572634187
12.6201536957545688

1.2940647922343729E — 03
1.4210240868450796 £ — 04
2.7117255491093673E — 05
1.9974356799123960F — 05
2.4887596014600000E — 05
3.1268264893968833 L — 05
3.5149143073898159F — 05
3.4676275201261930F — 05
3.5341380891229512F — 05
5.0745097260329608E — 05
9.6128297769060289E — 05
1.7934471961966736 E — 04
2.9480622847077864F — 04

Table C.4: European call option with K = 8 N = 64, 0 =

0.20, » = 0.08,

T = 0.25, asset value of $110 and strike of $100. Here 7 is the total error for the
tails (refer to (5.26)). The values are calculated in this table are performed in double

precision.

Asset
Price (8)

IPM

Error

1071
1075
10-¢
1077
10-8
1079
10710
10—11
10—12
10713
10—14
10715
10—16

120

22.0646820659120060
22.0663171950582573
22.0664553901652560
22.0664377909500047
22.0663993040532951
22.0663536010475880
22.0663005261894050
22.0662402158038269
22.0661783306269328
22.0661196904855252
22.0660586099259390
22.0659795863288402
22.0658681773066263

1.8781356951047545E — 03
2.4300654885289763 L — 04
1.0481144185614522F — 04
1.2241065710516530E — 04
1.6089755381643034E — 04
2.0660055952137490F — 04
2.5967541770477442F — 04
3.1998580328485016 £ — 04
3.8187098017894439F — 04
4.4051112158549621F — 04
5.0159168117069886 L — 04
5.8061527827002468E — 04
6.9202430048320718F — 04

Table C.5: European call option with K = 8 N = 64, ¢ =

0.20, r

0.08,

T = 0.25, asset value of $120 and strike of $100. Here 7 is the total error for the
tails (refer to (5.26)). The values are calculated in this table are performed in double

precision.

Tables C.6 - C.10 are European call option prices for varying n and number of

partitions (V) fixed at 128 at each time step.
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U

IPM

Error

1071
1075
10-¢
1077
10-8
1079
10710
10—11
10—12
10713
10—14
10715
10—16

0.0689367552870456
0.0690036402171109
0.0690110725171198
0.0690100652256005
0.0690076240513432
0.0690046587459066
0.0690012819366726
0.0689975064663605
0.0689933332174374
0.0689887618405712
0.0689837918932166
0.0689784230627737
0.0689726550373553

8.0978014140216121F — 05
1.4093084074902600E — 05
6.6607840659487980L — 06
7.6680755852951386E — 06
1.0109249842587490E — 05
1.3074555279179913E — 05
1.6451364513183318E — 05
2.0226834825250953 L — 05
2.4400083748388375L — 05
2.8971460614541332F — 05
3.3941407969145885L — 05
3.9310238412126278E — 05
4.5078263830446250EF — 05

Table C.6: European call option with K = 8 N = 128, ¢ = 0.20, r = 0.08,
T = 0.25, asset value of $80 and strike of $100. Here 7 is the total error for the tails
(refer to (5.26)).

Asset
Price (8)

IPM Error

107*
107°
107°
1077
1078
1077
10—10
10711
10—12
10713
10—14
10715
10—16

1.0250862290958813
1.0254110435852024
1.0254495443869083
1.0254542278377765
1.0254550797537640
1.0254555517806849
1.0254560327402125
1.0254565662080921
1.0254571574257660
1.0254578075044520
1.0254585170377859
1.0254592865874521
1.0254601167095867

3.6750503806248780L — 04
4.2690548741376733E — 05
4.1897470354212984F — 06
4.9370383285035624EF — 07
1.3456198202574376E — 06
1.8176467412797659E — 06
2.2986062688662434 L — 06
2.8320741484594292F — 06
3.4232918222354414F — 06
4.0733705084297633E — 06
4.7829038422528281F — 06
5.5524535084311433EF — 06
6.3825756430047065 L — 06

Table C.7: European call option with K = 8 N = 128, ¢ = 0.20, r = 0.08,
T = 0.25, asset value of $90 and strike of $100. Here 7 is the total error for the tails
(refer to (5.26)).
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U

IPM

Error

1071
1075
10-¢
1077
10-8
1079
10710
10—11
10—12
10713
10—14
10715
10—16

5.0161849394953126
5.0169024397291455
5.0169843854911038
5.0169980171018702
5.0170051428605795
5.0170124121918205
5.0170205348414312
5.0170295868793682
5.0170395769473197
5.0170505062850035
5.0170623750761409
5.0170751832305012
5.0170889304522124

7.9566676709844075E — 04
7.8166533265533467E — 05
3.7792286924909213F — 06
1.7410839459053307E — 05
2.4536598168534152E — 05
3.1805929409656208 L — 05
3.9928579020215293E — 05
4.8980616956795231E — 05
5.8970684908843385L — 05
6.9900022592328526 E — 05
8.1768813729732326 L — 05
9.4576968089760127E — 05
1.0832418980144531E — 04

Table C.8: European call option with K = 8 N = 128, ¢ = 0.20, r = 0.08,
T = 0.25, asset value of $100 and strike of $100. Here 7 is the total error for the
tails (refer to (5.26)).

Asset
Price (8)

IPM Error

107*
107°
107°
1077
1078
1077
10—10
10711
10—12
10713
10—14
10715
10—16

12.6191596559569792
12.6203148892311905
12.6204339094032747
12.6204458492171359
12.6204467005803540
12.6204463572961778
12.6204458386694647
12.6204452494020103
12.6204446010568372
12.6204438953959279
12.6204431328405455
12.6204423143259366
12.6204414403427752

1.2888460260596091E — 03
1.3361275184864407E — 04
1.4592579763994529E — 05
2.6527659041652996 E — 06
1.8014026853530041F — 06
2.1446868614383163E — 06
2.6633135752351933E — 06
3.2525810295114255F — 06
3.9009262015055057E — 06
4.6065871117662027F — 06
5.3691424944934951EF — 06
6.1876571033625538E — 06
7.0616402642054155E — 06

Table C.9: European call option with K = 8, N = 128, ¢ = 0.20, r = 0.08,
T = 0.25, asset value of $110 and strike of $100. Here 7 is the total error for the
tails (refer to (5.26)).
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Asset
Price (8)

U

IPM

Error

1071
1075
10-¢
1077
10-8
1079
10710
10—11
10—12
10713
10—14
10715
10—16

22.0647150059023964
22.0663713079930517
22.0665361629037093
22.0665507510834509
22.0665498984873985
22.0665471529241799
22.0665438770243512
22.0665402071496359
22.0665361583697397
22.0665317289970986
22.0665269206924073
22.0665217331912231
22.0665161654550772

1.8451957047027623E — 03
1.8889361404761384F — 04
2.4038703388962190E — 05
9.4505236469810683E — 06
1.0303119701848829E — 05
1.3048682920291377E — 05
1.6324582749471794E — 05
1.9994457464700410F — 05
2.4043237359383518E — 05
2.8472610000274123E — 05
3.328091469356 7532 — 05
3.8468415877734863 E — 05
4.4036152022086661 £ — 05

Table C.10: European call option with K = 8 N = 128, ¢ = 0.20, r = 0.08,
T = 0.25, asset value of $120 and strike of $100. Here 7 is the total error for the
tails (refer to (5.26)).

Tables C.11 - C.15 are European call option prices for varying n and number of

partitions (N) fixed at 256 at each time step.

Asset
Price (8)

IPM

Error

80

1074
105
106
1077
1078
107
10—10
10711
10—12
10713
1071
1071
10719

0.0689387078581818
0.0690069218268951
0.0690160461211648
0.0690170968441743
0.0690170820091693
0.0690169130923457
0.0690167037042556
0.0690164674532151
0.0690162060942279
0.0690159197675642
0.0690156084374017
0.0690152719832055
0.0690149104757052

7.9025443004362723E — 05
1.0811474290990924E — 05
1.6871800213001664E — 06
6.3645701182208844 L — 07
6.5129201681302443F — 07
8.2020884045134329F — 07
1.0295969305753293E — 06
1.2658479710400336E — 06
1.5272069582268968E — 06
1.8135336219728126 E — 06
2.1248637844476642E — 06
2.4613179806461973F — 06
2.8228254809049662L — 06

Table C.11: European call option with K = 8 N = 256, ¢ = 0.20, r = 0.08,
T = 0.25, asset value of $80 and strike of $100. Here 7 is the total error for the tails
(refer to (5.26)). The values are calculated in this table are performed in double
precision.
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Price (8)

Asset

U

IPM

Error

90

1071
1075
10-¢
1077
10-8
1079
10710
10—11
10—12
10713
10—14
10715
10—16

1.0250859556035634
1.0254105854941611
1.0254488510621849
1.0254532474503681
1.0254537601255047
1.0254538397174204
1.0254538744589849
1.0254539074482094
1.0254539432989465
1.0254539824909914
1.0254540251466810
1.0254540713075531
1.0254541209016621

3.6777853038034297F — 04
4.3148639782691900E — 05
4.8830717589223860E — 06
4.8668357555819997E — 07
2.5991560986815543 L — 08
1.0558347668387924E — 07
1.4032504134370294E — 07
1.7331426571676189E — 07
2.0916500267920135E — 07
2.4835704760112209F — 07
2.9101273734538635E — 07
3.3717360934520935F — 07
3.8676771837303781 L — 07

Table C.12: European call option with K = 8 N = 256, ¢ = 0.20, r = 0.08,
T = 0.25, asset value of $90 and strike of $100. Here 7 is the total error for the tails
(refer to (5.26)). The values are calculated in this table are performed in double

precision.

Price (8)

Asset

IPM

Error

100

1071
1075
10-¢
1077
10-8
1079
10710
10—11
10—12
10713
10—14
10715
10—16

5.0161800213911496
5.0168942765180953
5.0169721147311641
5.0169807698623208
5.0169820459554524
5.0169825896216302
5.0169831088098622
5.0169836784466115
5.0169843064752984
5.0169849938369833
5.0169857406521343
5.0169865470375985
5.0169874130037595

8.0058487126194455F — 04
8.6329744315716272E — 05
8.4915312469069359E — 06
1.6359991000802765E — 07
1.4396930411719744E — 06
1.9833592192208815E — 06
2.5025474512108126 E — 06
3.0721842000924759E — 06
3.7002128874807916 L — 06
4.3875745724120119E — 06
5.1343897231048707L — 06
5.9407751870632630EL — 06
6.8067413483419159E — 06

Table C.13: European call option with K = 8 N = 256, ¢ = 0.20, r = 0.08,
T = 0.25, asset value of $100 and strike of $100. Here 7 is the total error for the
tails (refer to (5.26)). The values are calculated in this table are performed in double
precision.
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Price (8)

Asset

U

IPM

Error

110

1071
1075
10-¢
1077
10-8
1079
10710
10—11
10—12
10713
10—14
10715
10—16

12.6191599959021907
12.6203154456118938
12.6204347405830664
12.6204470136595468
12.6204482510154126
12.6204483510113672
12.6204483299921879
12.6204482932302575
12.6204482507003952
12.6204482042078769
12.6204481546761080
12.6204481000043227
12.6204480418787988

1.2885060808487392E — 03
1.3305637114602309E — 04
1.3761399972334054E — 05
1.4883234922269395E — 06
2.5096762723553212F — 07
1.5097167127553490E — 07
1.7199085211583309E — 07
2.0875278172738376 L — 07
2.5128264469209682EF — 07
2.9777516286078054E — 07
3.4730693043716343F — 07
4.0197871697955634FE — 07
4.6010424081810442F — 07

Table C.14: European call option with K = 8 N = 256, ¢ = 0.20, r = 0.08,
T = 0.25, asset value of $110 and strike of $100. Here 7 is the total error for the
tails (refer to (5.26)). The values are calculated in this table are performed in double

precision.

Price (8)

Asset

IPM

Error

120

1071
1075
10-¢
1077
10-8
1079
10710
10—11
10—12
10713
10—14
10715
10—16

22.0647170628561504
22.0663747124115588
22.0665412512933408
22.0665578560066891
22.0665593724022706
22.0665593655224157
22.0665591840155990
22.0665589565979374
22.0665586934555975
22.0665584174259628
22.0665581126993722
22.0665577884289199
22.0665574419953892

1.8431387509593167E — 03
1.8548919555327892F — 04
1.8950313768195670E — 05
2.3456004222266458E — 06
8.2920484090198698E — 07
8.3608469592100221F — 07
1.0175915110544054E — 06
1.2450091735338731E — 06
1.5081515147841174F — 06
1.7841811472685265E — 06
2.0889077384511623E — 06
2.4131781906078231E — 06
2.7596117224693018E — 06

Table C.15: European call option with K = 8 N = 256, ¢ = 0.20, r = 0.08,
T = 0.25, asset value of $120 and strike of $100. Here 7 is the total error for the
tails (refer to (5.26)). The values are calculated in this table are performed in double
precision.
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Varying 1) and Time Steps (K)

Tables C.16 - C.20 are European call prices for varying n and number of partitions

(N) fixed at 128 at each time step and the number of time steps fixed at 4.

Asset
Price (8)

n

IPM

Error

80

101
1075
10-¢
1077
10°8
1077
10710
10—11
10712
10—13
10714
10715
10—16

0.0688383390069953
0.0689925677644777
0.0690140651674954
0.0690167067450898
0.0690168398575387
0.0690166313256694
0.0690163525693472
0.0690160361673992
0.0690156858456771
0.0690153019864084
0.0690148845928768
0.0690144336276348
0.0690139490618014

1.7939429419047215 x 102
2.5165536708053170 x 107°
3.6681336904346648 x 106
1.0265560959556337 x 1076
8.9344364703845131 x 10~7
1.1019755164040808 x 106
1.3807318385633191 x 106
1.6971337865644490 x 1076
2.0474555086948121 x 1076
2.4313147773606485 x 1076
2.8487083089472585 x 106
3.2996735509303182 x 106
3.7842393843848764 x 106

Table C.16: European call option with K = 4, N = 128, ¢ = 0.20, r = 0.08,
T = 0.25, asset vale of $80 and strike of $100. Here 7 is the total error for the tails
(refer to (5.26)). The values are calculated in this table are performed in double

precision.

Asset
Price (8)

IPM

Error

90

101
1075
10-°
1077
10°8
10~°
10710
10—11
10712
10—13
10714
10715
10—16

1.0248647586828115
1.0253843055081435
1.0254458861939419
1.0254529419206306
1.0254537546582394
1.0254538746841340
1.0254539229216315
1.0254539675401335
1.0254540159389953
1.0254540689281852
1.0254541266163428
1.0254541890303279
1.0254542561916775

5.8897545113217181 x 10~*
6.9428625800067867 x 107>
7.8479400016789880 x 10~°
7.9221331300560749 x 10~7
2.0524295804569270 x 10~8
1.4055019023628823 x 107
1.8878768773961108 x 107
2.3340618986178452 x 10~7
2.8180505168978742 x 10~ 7
3.3479424163540550 x 10~
3.9248239918493466 x 10~7
4.5489638427625989 x 10~7
5.2205773384828014 x 10~7

Table C.17: European call option with K = 4, N = 128, ¢ = 0.20, r = 0.08,
T = 0.25, asset vale of $90 and strike of $100. Here 7 is the total error for the tails
(refer to (5.26)). The values are calculated in this table are performed in double
precision.
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Asset
Price (8)

n

IPM

Error

100

101
1075
10-¢
1077
10°8
1077
10710
10711
10—12
10713
10—14
10715
10—16

5.0159521235252402
5.0168683465368709
5.0169695112331354
5.0169808511259220
5.0169825382459337
5.0169832646039971
5.0169839600465584
5.0169847231833717
5.0169855645086203
5.0169864852090669
5.0169874854752265
5.0169885653782496
5.0169897249702746

1.0284827371712102 x 103
1.1225972554040897 x 10~4
1.1095029275876023 x 105
2.4486351071772994 x 10~7
1.9319835224684834 x 106
2.6583415857484027 x 1076
3.3537841469255536 x 100
4.1169209603897361 x 106
4.9582462087471857 x 1076
5.8789466558795134 x 106
6.8792128153638554 x 1076
7.9591158386183025 x 10~°
9.1187078637977592 x 1076

Table C.18: European call option with K = 4, N = 128, ¢ = 0.20, r = 0.08,
T = 0.25, asset vale of $100 and strike of $100. Here 7 is the total error for the tails
(refer to (5.26)). The values are calculated in this table are performed in double

precision.

Asset
Price (8)

IPM

Error

110

101
1075
10-°
1077
10°8
10~°
10710
10711
10—12
10713
10—14
10715
10—16

12.6190176889321766
12.6202974977079112
12.6204325970149238
12.6204467451297599
12.6204481895572425
12.6204483027103329
12.6204482727472005
12.6204482231697881
12.6204481671445130
12.6204481057453357
12.6204480391416460
12.6204479673705841
12.6204478904231117

1.4308130508622341 x 103
1.5100427512848569 x 10~4
1.5904968114766049 x 10~
1.7568532795220193 x 106
3.1242579634493950 x 10~7
1.9927270666908470 x 10~7
2.2923583864464803 x 10~ 7
2.7881325026513082 x 10~ 7
3.3483852635018962 x 10~7
3.9623770375918355 x 10~7
4.6284139298968796 x 107
5.3461245430597160 x 10~7
6.1155992769901246 x 107

Table C.19: European call option with K = 4, N = 128, ¢ = 0.20, r = 0.08,
T = 0.25, asset vale of $110 and strike of $100. Here 7 is the total error for the tails
(refer to (5.26)). The values are calculated in this table are performed in double
precision.
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Asset 77 IPM Error
Price (8)
120 107%  22.0646922057009292  1.8679959061712603 x 10~3
107°  22.0663695920392975  1.9060956780170280 x 10~*
1076 22.0665403269740032  1.9874633097605177 x 10~°
1077 22.0665575821960616  2.6194110380739488 x 106
1078 22.0665591499322957  1.0516748027988854 x 10~6
1079 22.06655908737521010 1.1142318873114121 x 1076
10719 22.0665588287621048  1.3728449960170863 x 106
1071 22.0665585223048666  1.6793022333816410 x 1076
10712 22.0665581821209393  2.0194861616307236 x 1076
10713 22.0665578098858539  2.3917212460533577 x 1076
107 22.0665574055449163  2.7960621845624090 x 1076
10715 22.0665569688028569  3.2328042437468341 x 1076
10716 22.0665565000875041  3.7015195963885361 x 10~°

Table C.20: European call option with K = 4, N = 128, ¢ = 0.20, r = 0.08,
T = 0.25, asset vale of $120 and strike of $100. Here 7 is the total error for the tails
(refer to (5.26)). The values are calculated in this table are performed in double
precision.

Tables C.21 - C.25 are European call prices for varying n and number of partitions

(N) fixed at 128 at each time step and the number of time steps fixed at 8.

Asset IPM Error
Price (8)
80 1071 0.0689367552870456  8.0978014140216121 x 10~°
107°  0.06900364021711010  1.4093084074902600 x 10~°
1076 0.0690110725171198  6.6607840659487980 x 106
1077 0.0690100652256005  7.6680755852951386 x 1076
1078 0.0690076240513432  1.0109249842587490 x 107>
1072 0.0690046587459066  1.3074555279179913 x 107°
10719 0.0690012819366726  1.6451364513183318 x 107°
107 0.0689975064663605  2.0226834825250953 x 107°
10712 0.0689933332174374  2.4400083748388375 x 107°
10713 0.0689887618405712  2.8971460614541332 x 10~°
107 0.0689837918932166  3.3941407969145885 x 10~°
1071°  0.0689784230627737  3.9310238412126278 x 10~°
1071 0.0689726550373553  4.5078263830446250 x 107°

Table C.21: European call option with K = 8 N = 128, ¢ = 0.20, r = 0.08,
T = 0.25, asset value of $80 and strike of $100. Here 7 is the total error for the tails
(refer to (5.26)). The values are calculated in this table are performed in double
precision.
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Asset n
Price (8)

IPM

Error

90 107*
107°
107°
1077
108
1077
10710
10—11
10—12
10713
10—14
10715
10—16

1.0250862290958813
1.0254110435852024
1.0254495443869083
1.0254542278377765
1.0254550797537640
1.0254555517806849
1.0254560327402125
1.0254565662080921
1.0254571574257660
1.0254578075044520
1.0254585170377859
1.0254592865874521
1.0254601167095867

3.6750503806248780L — 04
4.2690548741376733E — 05
4.1897470354212984F — 06
4.9370383285035624E — 07
1.3456198202574376E — 06
1.8176467412797659E — 06
2.2986062688662434F — 06
2.8320741484594292F — 06
3.4232918222354414F — 06
4.0733705084297633E — 06
4.7829038422528281F — 06
5.5524535084311433EF — 06
6.3825756430047065 L — 06

Table C.22: European call option with K = 8 N = 128, ¢ = 0.20, r = 0.08,
T = 0.25, asset value of $90 and strike of $100. Here 7 is the total error for the tails
(refer to (5.26)). The values are calculated in this table are performed in double

precision.

Asset
Price (8)

IPM

Error

1071
1075
10-¢
1077
10-8
1079
10710
10—11
10—12
10713
10—14
10715
10—16

100

5.0161849394953126
5.0169024397291455
5.0169843854911038
5.0169980171018702
5.0170051428605795
5.0170124121918205
5.0170205348414312
5.0170295868793682
5.0170395769473197
5.0170505062850035
5.0170623750761409
5.0170751832305012
5.0170889304522124

7.9566676709844075E — 04
7.8166533265533467E — 05
3.7792286924909213F — 06
1.7410839459053307E — 05
2.4536598168534152F — 05
3.1805929409656208 L — 05
3.9928579020215293EF — 05
4.8980616956795231E — 05
5.8970684908843385L — 05
6.9900022592328526 E — 05
8.1768813729732326 L — 05
9.4576968089760127E — 05
1.0832418980144531E — 04

Table C.23: European call option with K = 8 N = 128, ¢ = 0.20, r = 0.08,
T = 0.25, asset value of $100 and strike of $100. Here 7 is the total error for the

tails (refer to (5.26)).
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Asset n
Price (8)

IPM

Error

1071
1075
10-¢
1077
10-8
1079
10710
10—11
10—12
10713
10—14
10715
10—16

110

12.6191596559569792
12.6203148892311905
12.6204339094032747
12.6204458492171359
12.6204467005803540
12.6204463572961778
12.6204458386694647
12.6204452494020103
12.6204446010568372
12.6204438953959279
12.6204431328405455
12.6204423143259366
12.6204414403427752

1.2888460260596091E — 03
1.3361275184864407E — 04
1.4592579763994529E — 05
2.6527659041652996 E — 06
1.8014026853530041E — 06
2.1446868614383163E — 06
2.6633135752351933E — 06
3.2525810295114255F — 06
3.9009262015055057E — 06
4.6065871117662027F — 06
5.3691424944934951EF — 06
6.1876571033625538E — 06
7.0616402642054155E — 06

Table C.24: European call option with K = 8 N = 128, ¢ = 0.20, r = 0.08,
T = 0.25, asset value of $110 and strike of $100. Here 7 is the total error for the

tails (refer to (5.26)).

Asset
Price (8)

IPM

Error

107*
107°
107°
1077
1078
1077
10—10
10711
10—12
10713
10—14
10715
10—16

120

22.0647150059023964
22.0663713079930517
22.0665361629037093
22.0665507510834509
22.0665498984873985
22.0665471529241799
22.0665438770243512
22.0665402071496359
22.0665361583697397
22.0665317289970986
22.0665269206924073
22.0665217331912231
22.0665161654550772

1.8451957047027623E — 03
1.8889361404761384F — 04
2.4038703388962190E — 05
9.4505236469810683E — 06
1.0303119701848829EF — 05
1.3048682920291377E — 05
1.6324582749471794F — 05
1.9994457464700410E — 05
2.4043237359383518E — 05
2.8472610000274123E — 05
3.3280914693567532E — 05
3.8468415877734863 E — 05
4.4036152022086661 £ — 05

Table C.25: European call option with K = 8 N = 128, ¢ = 0.20, r = 0.08,
T = 0.25, asset value of $120 and strike of $100. Here 7 is the total error for the
tails (refer to (5.26)).

Tables C.26 - C.30 are European call prices for varying n and number of partitions

(N) fixed at 128 at each time step and the number of time steps fixed at 16.
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Asset
Price (8)

U

IPM

Error

80

1071
1075
10-¢
1077
10-8
1079
10710
10—11
10—12
10713
10—14
10715
10—16

0.0689582771692606
0.0689793368560128
0.0689665708855032
0.0689462056729448
0.0689216843832525
0.0688935607390907
0.0688611168765195
0.0688232380201808
0.0687810515966192
0.0687384809806727
0.0686993995053716
0.0686641977283687
0.0686285034915563

5.9456131925217544F — 05
3.8396445172970105EL — 05
5.1162415682531361F — 05
7.1527628240936753E — 05
9.6048917933261140F — 05
1.2417256209509364E — 04
1.5661642466626487E — 04
1.9449528100494266 E — 04
2.3668170456656729F — 04
2.7925232051312886F — 04
3.1833379581415336 L — 04
3.5353557281709181F — 04
3.8922980962951756 ' — 04

Table C.26: European call option with K = 16, N = 128, ¢ = 0.20, » = 0.08,
T = 0.25, asset value of $80 and strike of $100. Here 7 is the total error for the tails

(refer to (5.26)).

Asset
Price (8)

IPM

Error

90

107*
107°
107°
1077
1078
1077
10—10
10711
10—12
10713
10—14
10715
10—16

1.0252112526988435
1.0254304211527474
1.0254577677306331
1.0254636223942994
1.0254677244796533
1.0254724796790455
1.0254782416938892
1.0254848560957128
1.0254916916648129
1.0254975951859269
1.0255009251387170
1.0254996504810641
1.0254914799169168

2.4248143510024328FE — 04
2.3312981196378646 L — 05
4.0335966894691766 . — 06
9.8882603556671445 L — 06
1.3990345709528895E — 05
1.8745545101936378E — 05
2.4507559945492752E — 05
3.1121961769145501F — 05
3.7957530869131562L — 05
4.3861051983104526 E — 05
4.7191004773350365E — 05
4.5916347120311674E — 05
3.7745782973178099E — 05

Table C.27: European call option with K = 16, N = 128, ¢ = 0.20, » = 0.08,
T = 0.25, asset value of $90 and strike of $100. Here 7 is the total error for the tails

(refer to (5.26)).
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Asset n
Price (8)

IPM

Error

1071
1075
10-¢
1077
10-8
1079
10710
10—11
10—12
10713
10—14
10715
10—16

100

5.0163672497859464
5.0169930707709156
5.0170976275381935
5.0171546171944028
5.0172150865578313
5.0172851661250997
5.0173624377283215
5.0174384587526966
5.0175049287416051
5.0175626290813584
5.0176260795912890
5.0177211545220777
5.0178778465529241

6.1335647646501568E — 04
1.2464508504506089E — 05
1.1702127578200328E — 04
1.7401093199143070E — 04
2.3448029542044724F — 04
3.0455986268843049E — 04
3.8183146591069805F — 04
4.5785249028554298E — 04
5.2432247919440012F — 04
5.8202281894709218F — 04
6.4547332887798792E — 04
7.4054825966660132EF — 04
8.9724029051288512F — 04

Table C.28: European call option with K = 16, N = 128, ¢ = 0.20, » = 0.08,
T = 0.25, asset value of $100 and strike of $100. Here 7 is the total error for the

tails (refer to (5.26)).

Asset
Price (8)

IPM

Error

107*
107°
107°
1077
1078
1077
10—10
10711
10—12
10713
10—14
10715
10—16

110

12.6192243540329905
12.6203187087153221
12.6204275920049565
12.6204357462574137
12.6204330975581236
12.6204274184788865
12.6204265898257120
12.6204299463401579
12.6204123097258307
12.6203658604232931
12.6203331480489922
12.6203715480197118
12.6204925573686229

1.2241479500491037E — 03
1.2979326771689337E — 04
2.0909978082350733E — 05
1.2755725625757108E — 05
1.5404424916209969EF — 05
2.1083504153640575E — 05
2.1912157327497184E — 05
1.8555642880557777E — 05
3.6192257207856571E — 05
8.2641559745466608 E — 05
1.1535393404649152F — 04
7.6953963326631403E — 05
4.4055385584051976 £ — 05

Table C.29: European call option with K = 16, N = 128, ¢ = 0.20, » = 0.08,
T = 0.25, asset value of $110 and strike of $100. Here 7 is the total error for the

tails (refer to (5.26)).
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Table C.30: European call option with K = 16, N = 128, ¢ = 0.20, » = 0.08,
T = 0.25, asset value of $120 and strike of $100. Here 7 is the total error for the

Asset
Price (8)

U

IPM

Error

120

1071
1075
10-¢
1077
10-8
1079
10710
10—11
10—12
10713
10—14
10715
10—16

22.0646946915641315
22.0663408517722779
22.0664901703076524
22.0664862587156740
22.0664638811254008
22.0664361600788546
22.0664045675190117
22.0663735070014617
22.0663294149184424
22.0662782667328869
22.0662494584594882
22.0662299096733996
22.0661684686939346

1.8655100429670890E — 03
2.1934983482074788E — 04
7.0031299448380935E — 05
7.3942891426481694E — 05
9.6320481698941585F — 05
1.2404152824330161EF — 04
1.5563408808649815E — 04
1.8669460563891516 E — 04
2.3078668865694763 L — 04
2.8193487421335206 £ — 04
3.1074314761070365 — 04
3.3029193370059939F — 04
3.9173291316585424F — 04

tails (refer to (5.26)).

C.1.2 Fixed Spaced Partitions

Table C.31 are European call option prices using Fixed Space Partitions and 8 time

steps.
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n Space IPM Error

(Partitions)

10~% 0.10 (571) 5.0170393001964610  5.8693934049808272F — 05
0.09 (635) 5.0170191054794246  3.8499217013682197F — 05
0.08 (712) 5.0170046163516142  2.4010089202941565F — 05
0.07 (812) 5.0169946447725833 1.4038510171704432F — 05
0.06 (949) 5.0169881393371067  7.5330746952817496 F — 06
0.05 (1139) 5.0169841865188891  3.5802564780917923F — 06
0.04 (1421) 5.0169820116252728  1.4053628615007252F — 06
0.03 (1895) 5.0169809797489462  3.7348653544877486E — 07
0.02 (2840) 5.0169805964410719  9.8213388810552971F — 09
0.01 (5676) 5.0169805081153545 9.8147057148167960F — 08

10716 0.10 (826) 5.0170394044695792  5.8798207167726213F — 05
0.09 (917) 5.0170192097522701  3.8603489858901607F — 05
0.08 (1031) 5.0170047206242590 2.4114361847626942F — 05
0.07 (1176) 5.0169947490435307 1.4142781119136361F — 05
0.06 (1372) 5.0169882436167867  7.6373543753116557E — 06
0.05 (1648) 5.0169842907878239  3.6845254125505988 K — 06
0.04 (2058) 5.0169821159164245 1.5096540136039227F — 06
0.03 (2744) 5.0169810840361189  4.7777370740242908F — 07
0.02 (4113) 5.0169807006890261  9.4426615138143433F — 08
0.01 (8224) 5.0169806119534828  5.6910719192782011F — 09

10732 0.10 (1183) 5.0170394044699238  5.8798207512589240F — 05
0.09 (1314) 5.0170192097533661  3.8603490955246844F — 05
0.08 (1477) 5.0170047206247226  2.4114362311145054F — 05
0.07 (1689) 5.0169947490452049 1.4142782793491460F — 05
0.06 (1970) 5.0169882436156605 7.6373532498230645F — 06
0.05 (2362) 5.0169842907883959  3.6845259850093459E — 06
0.04 (2952) 5.0169821159098253  1.5096474140219307F — 06
0.03 (3935) 5.0169810840248106 4.7776239978092327F — 07
0.02 (5901) 5.0169807006477285  9.4385316923295548 F — 08
0.01 (11798) 5.0169806119866811  5.7242696693826645F — 09

Table C.31: European call option price for an asset price of $100 with K = 8,

o =0.20, r = 0.08, T = 0.25 and strike of $100. Here 7 is the total error for the
tails. The value in brackets, represents the number of partitions used to obtain the
option price. Double precision was used to calculate the values.

C.1.3 Adaptive Node Allocation

The following are varying results for European Call options using the Adaptive Node

Allocation for each time step.
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Asset Partitions IPM Error
Price ($) Used
80 1078 32 0.0683036148058220  7.1411849536408408FE — 04
10716 38 0.0683161742817790  7.0155901940712135E — 04
10732 48 0.0682909719159381  7.2676138524808195FE — 04
90 10-8 35 1.0253784795629517  7.5254570991965808FE — 05
10716 42 1.0254737759957526  2.0041861808865746E — 05
10732 50 1.0252199185734290  2.3381556051478569E — 04
100 10-% 37 5.0174861712502077  5.0556498779677495E — 04
10716 45 5.0174971044474770  5.1649818506582790E — 04
10732 52 5.0174392446016380  4.5863833922701880E — 04
110 1078 38 12.6200227904004230 4.2571158261617281F — 04
1071 45 12.6199792761028000 4.6922588023967648FE — 04
10732 55 12.6199707960413612  4.7770594167884095F — 04
120 1078 38 22.0657953634293591  7.6483817774974927F — 04
10716 46 22.0657571768756462 8.0302473146331987F — 04
10732 57 22.0658059171494401  7.5428445767133923FE — 04

Table C.32: European call option with adaptive node distribution with an inter-
polating error € = 107% and with K =4, 0 = 0.20, r = 0.08, T' = 0.25 and strike of
$100. Here 7 is the total error for the tails. Double precision was used to calculate

the values.

Asset Partitions IPM Error
Price ($) Used
80 10~8 50 0.0688954102687032 1.2232303248293705EF — 04
10716 61 0.0688940066247114 1.2372667647477312F — 04
10732 75 0.0689046674456321 1.1306585555407320F — 04
90 10—8 55 1.0254277685535811 2.5965580362566354F — 05
1016 66 1.0254169779481670  3.6756185776802563F — 05
10732 79 1.0254329508733471 2.0783260596540787F — 05
100 108 58 5.0170432852059683  6.2678943557603617FE — 05
10716 68 5.0170593597916806  7.8753529269420808 F — 05
10732 83 5.0170530272327625  7.2420970351205760F — 05
110 108 59 12.6203772670746748 7.1234908363693172FE — 05
10~ 70 12.6203810305626245 6.7471420414633165FE — 05
10732 86 12.6203805761256920 6.7925857347161944F — 05
120 1078 60 22.0664371647642739 1.2303684283621052F — 04
10716 70 22.0664348117661007 1.2538984101029271F — 04
10732 88 22.0664328279561737 1.2737365093773434F — 04

Table C.33: European call option with adaptive node distribution with an inter-
polating error € = 1077 and with K =4, o = 0.20, r = 0.08, T' = 0.25 and strike of
$100. Here n is the total error for the tails. Double precision was used to calculate
the values.
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Asset Partitions IPM Error
Price ($) Used
80 10-% 78 0.0689989134074569  1.8819893729201970F — 05
10~16 96 0.0689991677138930  1.8565587293082123F — 05
10732 117 0.0689988705545568  1.8862746629304088F — 05
90 108 88 1.0254467440320314  6.9901019124005148E — 06
10716 103 1.0254474372179319  6.2969160118803158E — 06
10732 124 1.0254479143915620  5.8197423817574201E — 06
100 10-8 89 5.0169924302855735  1.1824023162659847F — 05
10~ 109 5.0169913953935454  1.0789131134336660F — 05
10732 130 5.0169899157673292  9.3095049176483702F — 06
110 1078 92 12.6204399615872873  8.5403957517105056E — 06
10716 111 12.6204381116031996 1.0390379839853026E — 05
10732 136 12.6204367174553553  1.1784527684244317F — 05
120 1078 92 22.0665399725005678  2.0229106542646313F — 05
10716 112 22.0665405299263355 1.9671680773214462F — 05
10732 139 22.0665405886243384 1.9612982771199938F — 05

Table C.34: European call option with adaptive node distribution with an inter-
polating error € = 1078 and with K =4, 0 = 0.20, r = 0.08, T' = 0.25 and strike of
$100. Here 7 is the total error for the tails. Double precision was used to calculate

the values.

Asset Partitions IPM Error
Price ($) Used
80 10~8 122 0.0690146803463858  3.0529548003467750F — 06
10716 150 0.0690146879852485  3.0453159376598454F — 06
10732 184 0.0690147040815196  3.0292196664797634F — 06
90 10—8 135 1.0254525910199330 1.1431140107404092F — 06
10716 163 1.0254529422904397  7.9184350396110936F — 07
10732 196 1.0254528224019526  9.1173199111976855E — 07
100 108 142 5.0169825138271680 1.9075647568478349F — 06
10716 169 5.0169824382954689 1.8320330578969202F — 06
10732 204 5.0169824313320062 1.8250695947574780F — 06
110 10-8 147 12.6204468274334065 1.6745496322911890F — 06
10-16 176 12.6204468951690991 1.6068139402358739F — 06
10732 213 12.6204469508081285 1.5511749107410822FE — 06
120 10—8 146 22.0665570766488592  3.1249582504999651F — 06
10716 178 22.0665570880606516 3.1135464595433149F — 06
10732 221 22.0665570674505034 3.1341566064657655F — 06

Table C.35: European call option with adaptive node distribution with an inter-
polating error € = 107 and with K =4, 0 = 0.20, r = 0.08, T' = 0.25 and strike of
$100. Here n is the total error for the tails. Double precision was used to calculate
the values.
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Asset Partitions IPM Error
Price ($) Used
80 1078 193 0.0690172078013851  5.2549980107414324F — 07
10716 236 0.0690172582546654  4.7504652075100809FE — 07
10732 296 0.0690172579420216  4.7535916448786242F — 07
90 10-8 214 1.0254534930640242  2.4106991940858746FE — 07
10716 254 1.0254535991744871 1.3495945663105635E — 07
10732 313 1.0254536019086471 1.3222529668399652F — 07
100 10-8 225 5.0169808299027157  2.2364030488608577E — 07
1016 271 5.0169809155872507  3.0932483935375288E — 07
10732 333 5.0169809095824611  3.0332005032662757E — 07
110 1078 229 12.6204482262521953  2.7573084371290690E — 07
10716 276 12.6204482376241689  2.6435887090503485E — 07
10732 344 12.6204482351633924  2.6681964693242577E — 07
120 1078 231 22.0665595105130130 6.9109409583933967FE — 07
10716 288 22.0665597140188332 4.8758827808637051F — 07
10732 366 22.0665596995283586  5.0207875079699704F — 07

Table C.36: European call option with adaptive node distribution with an inter-
polating error € = 1071° and with K =4, o = 0.20, r = 0.08, T' = 0.25 and strike of
$100. Here 7 is the total error for the tails. Double precision was used to calculate

the values.

Asset Partitions IPM Error
Price ($) Used
80 10-% 307 0.0690176085869599 1.2471422625084244F — 07
10~ 377 0.0690176576342929  7.5666893237236188F — 08
10732 481 0.0690176577220457  7.5579140450428295F — 08
90 10-8% 337 1.0254536147954754 1.1933846827405503EF — 07
1016 403 1.0254537106797199  2.3454223806174124F — 08
10732 491 1.0254537106768995  2.3457044119601367F — 08
100 1078 362 5.0169805370092924  6.9253119211465375FE — 08
10716 435 5.0169806541162956  4.7853884049819939F — 08
10732 519 5.0169806519832498  4.5720838920404461F — 08
110 1078 366 12.6204484257445184  7.6238521051763541F — 08
10-16 459 12.6204484630551867 3.8927852608061642F — 08
10732 532 12.6204484645069286 3.7476111103273979FE — 08
120 1078 366 22.0665599222584845  2.7934862478762312F — 07
10716 441 22.0665601247959060 7.6811204618998374F — 08
10732 532 22.0665601256640791  7.5943032418201994F — 08

Table C.37: European call option with adaptive node distribution with an inter-
polating error € = 107! and with K =4, o = 0.20, r = 0.08, T' = 0.25 and strike of
$100. Here 7 is the total error for the tails. Double precision was used to calculate
the values.
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The next results are for European Call options using the Adaptive Node Allocation

at the first time step only.

Asset Partitions IPM Error
Price ($) Used
80 1078 30 0.0647530362187676  4.2646970824184848F — 03
10716 37 0.0652485905418126  3.7691427593735337FE — 03
10732 46 0.0655335425615821  3.4841907396040549E — 03
90 1078 34 1.0250303800479135  4.2335408603020458FE — 04
10716 40 1.0249006559712861  5.5307816265760812E — 04
10732 47 1.0249922062839603  4.6152784998337859E — 04
100 10-% 37 5.0169731408602267  7.4654021846309870E — 06
10716 43 5.0173086543014094  3.2804803899860735E — 04
10732 50 5.0172921435895832  3.1153732717240090F — 04
110 108 38 12.4745040775131812  1.4594442446985711F — 01
1071 45 12.6200147834617464 4.3371852129214794F — 04
10732 53 12.6199203722459821  5.2812973705684829F — 04
120 1078 40 22.0635446242469051  3.0155773602047464F — 03
10716 46 22.0647869190571448  1.7732825499661153F — 03
10732 55 22.0649245913760943 1.6356102310155496E — 03

Table C.38: European call option with single adaptive node distribution at the
first time step with an interpolating error ¢ = 107% and with K = 4, ¢ = 0.20,
r =0.08, T = 0.25 and strike of $100. Here 7 is the total error for the tails. Double
precision was used to calculate the values.
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Asset Partitions IPM Error
Price ($) Used
80 107% 46 0.0678365793214134  1.1811539797726943F — 03
10716 57 0.0679305218950064  1.0872114061796995FE — 03
10732 70 0.0680434099544715  9.7432334671464314F — 04
90 10-8 52 1.0253647729123416  8.8961221602137930F — 05
10716 62 1.0253546486926255  9.9085441318189083E — 05
10732 73 1.0253609300581759  9.2804075767921601E — 05
100 10-8 56 5.0160950281385528  8.8557812385828272E — 04
10 65 5.0170287433638627  4.8137101451434239EF — 05
10732 78 5.0170291647828407  4.8558520429620167E — 05
110 1078 60 12.6181838452583648 2.2646567246736860E — 03
10 68 12.6203476962336545  1.0080574938398090F — 04
10732 82 12.6203456755827563  1.0282640028336232F — 04
120 1078 63 22.0648712217616776 1.6889798454322591F — 03
10716 71 22.0660650839243218 4.9511768278887036F — 04
10732 85 22.0661100951545244  4.5010645258469761FE — 04

Table C.39: European call option with single adaptive node distribution at the
first time step with an interpolating error ¢ = 1077 and with K = 4, ¢ = 0.20,
r =0.08, T'= 0.25 and strike of $100. Here 7 is the total error for the tails. Double
precision was used to calculate the values.

Asset Partitions IPM Error
Price ($) Used
80 10~8 75 0.0687180173132312  2.9971598795491871F — 04
10716 01 0.0686897011165346  3.2803218465150786F — 04
10732 111 0.0686884080908636  3.2932521032250387F — 04
90 1078 85 1.0254344795077599 1.9254626183740076 F — 05
1016 97 1.0254362120841831 1.7522049760611280F — 05
10732 117 1.0254326921476347  2.1041986309096317E — 05
100 108 91 5.0169835301475638  2.9238851527446652F — 06
10~ 104 5.0169856227568159  5.0164944045971716 FE — 06
10732 124 5.0169862259386448  5.6196762340809947F — 06
110 1078 91 12.6203376167489605 1.1088523407809525F — 04
10716 109 12.6204320012411717 1.6500741867320201F — 05
10732 129 12.6204321899372314 1.6312045808541953FE — 05
120 10-8 97 22.0664723399513498 8.7861655762022650F — 05
10716 113 22.0664889287525021 7.1272854607062897F — 05
10732 134 22.0664942622059996  6.5939401111547724F — 05

Table C.40: European call option with single adaptive node distribution at the
first time step with an interpolating error ¢ = 107% and with K = 4, ¢ = 0.20,
r =0.08, T = 0.25 and strike of $100. Here 7 is the total error for the tails. Double
precision was used to calculate the values.
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Asset Partitions IPM Error
Price ($) Used
80 1078 116 0.0689375959379025  8.0137363283629397F — 05
10716 143 0.0689328220463222  8.4911254863971088FE — 05
10732 174 0.0689226935416872  9.5039759498958837F — 05
90 10-% 133 1.0254499221687041  3.8119652394710823F — 06
10716 155 1.0254501539858176  3.5801481260491763E — 06
10732 186 1.0254502190435195  3.5150904242886583E — 06
100 1078 140 5.0169804761446732  1.3011773811189009E — 07
1071 163 5.0169815587802802  9.5251786944028360E — 07
10732 195 5.0169816476442266  1.0413818155030619E — 06
110 1078 148 12.6204385958538357  9.9061292030411252E — 06
1071 171 12.6204458862049833  2.6157780552704679E — 06
10732 205 12.6204459271643668 2.5748186721630262F — 06
120 1078 157 22.0665483741688604 1.1827438251010847F — 05
10716 179 22.0665487395526547 1.1462054455568804F — 05
10732 215 22.0665486133647271  1.1588242385118797F — 05

Table C.41: European call option with single adaptive node distribution at the
first time step with an interpolating error ¢ = 107 and with K = 4, ¢ = 0.20,
r =0.08, T'= 0.25 and strike of $100. Here 7 is the total error for the tails. Double
precision was used to calculate the values.

Asset Partitions IPM Error
Price ($) Used
80 10~8 182 0.0689941859085118  2.3547392674334953F — 05
10716 226 0.0689968093376596  2.0923963526501155F — 05
10732 274 0.0689946039240728  2.3129377113291320F — 05
90 10—8 207 1.0254527202812522 1.0138526915573487F — 06
1016 244 1.0254530669426853  6.6719125831754544F — 07
10732 308 1.0254531282419075  6.0589203619565435F — 07
100 108 221 5.0169789819791211 1.6242832898138992F — 06
10-16 260 5.0169808246016006  2.1833918978364508F — 07
10732 306 5.0169807846794052 1.7841699367915353EF — 07
110 108 236 12.6204479354339512 5.6654908819897543F — 07
10-16 272 12.6204481078901640 3.9409287500014045E — 07
10732 330 12.6204481122970229 3.8968601678845971F — 07
120 10—8 246 22.0665579241181149 2.2774889973931067F — 06
1016 286 22.0665582758502872 1.9257568234509748 F — 06
10732 351 22.0665582779249583  1.9236821524604153F — 06

Table C.42: European call option with single adaptive node distribution at the
first time step with an interpolating error ¢ = 107° and with K = 4, ¢ = 0.20,
r = 0.08, T = 0.25 and strike of $100. Here 7 is the total error for the tails. Double

precision was used to calculate the values.
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Partitions
Used

IPM

Error

Asset
Price ($)
80 10~8
10—16
10732
90 108
10—16
10—32
100 108
10716
10—32
110 1078
10716
10732
120 1078
10—16
10732

292
369
466

331
381
468

357
408
500

374
458
014

386
454
545

0.0690123703176366
0.0690118570575226
0.0690118143068898

1.0254535143641064
1.0254536379048673
1.0254536268056598

5.0169804793704280
5.0169806387585929
5.0169806386728908

12.6204476899931777
12.6204484366120280
12.6204484348346639

22.0665597106699458
22.0665599138313162
22.0665599109669692

5.3629835495357277E — 06
5.8762436635248320E — 06
5.9189942963220818E — 06

2.1976983739790956E — 07
9.6229076443354877E — 08
1.0732828393394955E — 07

1.2689198303217353E — 07
3.2496182134078566E — 08
3.2410479855471408E — 08

8.1198986146002738E — 07
6.5371011381820665E — 08
6.7148375748615763E — 08

4.9093716314452251F — 07
2.8777579486050087E — 07
2.9064014250845815E — 07

Table C.43: European call option with single adaptive node distribution at the
first time step with an interpolating error ¢ = 107 and with K = 4, ¢ = 0.20,
r =0.08, T'= 0.25 and strike of $100. Here 7 is the total error for the tails. Double
precision was used to calculate the values.

Asset Partitions IPM Error
Price ($) Used
80 10~% 467 0.0690164011553810 1.3321458051680085EF — 06
10716 657 0.0690164645751736 1.2687260124975321F — 06
10732 928 0.0690164148041142 1.3184970719176334E — 06
90 10—8 548 1.0254535519164236 1.8221752006580827E — 07
10-16 631 1.0254537167652471 1.7368696585140508 E — 08
10732 738 1.0254537179865473 1.6147396440790995F — 08
100 108 578 5.0169802295469976  3.7671541372463757FE — 07
10-16 725 5.0169806118828433  5.6204318976682544F — 09
10732 871 5.0169806141676014  7.9051903911775412F — 09
110 1078 651 12.6204482528549295 2.4912810980826094F — 07
10-16 797 12.6204484915003992 1.0482639756226320F — 08
10732 966 12.6204484932440018 8.7390372716100728E — 09
120 1078 612 22.0665597225116343  4.7909547440383449F — 07
10-16 801 22.0665601559853357 4.5621773026027768 FE — 08
10732 960 22.0665601581406321 4.3466477639420020F — 08

Table C.44: European call option with single adaptive node distribution at the
first time step with an interpolating error ¢ = 1072 and with K = 4, ¢ = 0.20,
r = 0.08, T = 0.25 and strike of $100. Here 7 is the total error for the tails. Double

precision was used to calculate the values.
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C.2 Barrier Option

C.2.1 Fixed Number of Partitions

The following are various down and out call option prices using the interpolation
method. The first three tables C.45 - C.49 show the affects in changing the (fixed)

number of partitions used at each time step for varying n values.

268



APPENDIX C. INTERPOLATION POLYNOMIALS

Asset Best 7'] IPM Error
Price ($)
80 10~3 0.0683055896929662  8.8606713925206467F — 04
10~4 0.0687759760647901  1.3564535110758853F — 03
10~5 0.0688423253431654  1.4228027894512573F — 03
106 0.0688491774848888  1.4296549311745843F — 03
1077 0.0688475393165816  1.4280167628674266F — 03
10—8 0.0688444210785239  1.4248985248097425F — 03
10~9 0.0688407366243453  1.4212140706310853F — 03
10—10 0.0688366018755622  1.4170793218480464F — 03
10~ 0.0688320324871941  1.4125099334799099F — 03
90 1073 1.0224401440197386  3.0073095841248385E — 03
10~4 1.0250862935897256  3.6116001413781518E — 04
10~5 1.0254112962308759  3.6157372987517811F — 05
10~6 1.0254500127567925  2.5591529289811787E — 06
107 1.0254549329916194  7.4793877558390620E — 06
108 1.0254560401453998  8.5865415362998410E — 06
107° 1.0254567853829346  9.3317790711769377E — 06
10—10 1.0254575565850177  1.0102981154273827E — 05
10—t 1.0254583966701443  1.0943066280737213E — 05
100 1073 5.0097261031306912  7.2544882563176094F — 03
1074 5.0161999919981266  7.8059938888250247F — 04
10~5 5.0169230663740523  5.7525012956555210F — 05
10~6 5.0170110377369452  3.0446349936347206F — 05
1077 5.0170311406572363  5.0549270227268073F — 05
10—8 5.0170451456981162  6.4554311107745121F — 05
107° 5.0170596724315883  7.9081044579432103F — 05
10710 5.0170754061278133  9.4814740804471942F — 05
10~ 5.0170924023187995  1.1181093179032930F — 04
110 10—3 12.6080060802346914  1.2442421723016239E — 02
10~ 12.6191581209801011  1.2903809776060315E — 03
10~5 12.6203128367279405 1.3566522976682371FE — 04
106 12.6204313002239772  1.7201733729099722F — 05
107 12.6204426500682523  5.8518894535675159E — 06
10-8 12.6204428872442822  5.6147134247508390F — 06
107? 12.6204419103890277 6.5915686797701767E — 06
10—10 12.6204407360192867 7.7659384201123061F — 06
10~11 12.6204394713437171  9.0306139899354321F — 06
120 10-3 22.0482436846082166 1.8316516998859167F — 02
10~4 22.0647021565586066 1.8580450484695366F — 03
10~5 22.0663540887229992 2.0611288407967887F — 04
10~6 22.0665143847740346 4.5816833041389948F — 05
1077 22.0665241762180813  3.6025388994165297F — 05
108 22.0665182612426989  4.1940364378656447FE — 05
107° 22.0665102067487418  4.9994858336566139F — 05
10~10 22.0665013888027026 5.8812804373808980F — 05
10-11 22.0664919800444252 6.8221562651848977F — 05

Table C.45: Interpolation method - Down and Out call option (asset value of $100)
for fixed number of node points (N = 64) and 8 time steps with o = 0.20, r = 0.08,
T = 0.25, strike of $100 and barrier of $75. The values are calculated in this table
are performed in double precision.
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Asset Best 7] IPM Error
Price ($)
80 10-3 0.0683072619700805 8.8773941636632056 F — 04
10~ 0.0687790449978890 1.3595224441748642F — 03
10~5 0.0688472118448349 1.4276892911207128FE — 03
106 0.0688562991647970 1.4367766110828686F — 03
107 0.0688573103486822 1.4377877949680500F — 03
10-8 0.0688572530953786 1.4377305416644654F — 03
10~? 0.0688570389472511 1.4375163935368709FE — 03
10~10 0.0688567818923351 1.4372593386209327FE — 03
10—11 0.0688564958021260 1.4369732484118144F — 03
90 10-3 1.0224397192638275 3.0077343400360113F — 03
10~4 1.0250855724302372 3.6188117362636468F — 04
10~° 1.0254102072014823 3.7246402381091448F — 05
10-6 1.0254484846409615 1.0310370980592953 E — 06
107 1.0254528951658006 5.4415619371583901F — 06
108 1.0254534228871026 5.9692832390587092F — 06
10~9 1.0254535187915284 6.0651876647790925F — 06
10~10 1.0254535708590353 6.1172551718557955F — 06
10-11 1.0254536219906023 6.1683867387182789F — 06
100 1073 5.0097141673701895 7.2664240168197891F — 03
10~* 5.0161809638127917 7.9962757421753183F — 04
10~5 5.0168955688406109 8.5022546397750531 F — 05
10-6 5.0169737857093084 6.8056777005609526 F — 06
10~7 5.0169828478871548 2.2565001457641731F — 06
10-8 5.0169845570965599 3.9657095510237106 F — 06
10~9 5.0169855581428315 4.9667558225940933F — 06
10—10 5.0169865574496173 5.9660626085256130F — 06
10—t 5.0169876286881063 7.0373010974122963F — 06
110 10-3 12.6080072437573278 1.2441258200379668F — 02
10~ 12.6191598972215822  1.2886047361243547F — 03
10~° 12.6203153152431966 1.3318671450990305F — 04
106 12.6204345739939541 1.3927963751769745E — 05
107 12.6204468065268198 1.6954308873495805E — 06
10-8 12.6204480039080575 4.9804964874500257F — 07
107? 12.6204480608633283 4.4109437769002113F — 07
10~10 12.6204479956123556  5.0634535175841933F — 07
10~11 12.6204479125415716  5.8941613534368997FE — 07
120 10-3 22.0482530542952233 1.8307147311855121F — 02
1074 22.0647162683832398  1.8439332238356920F — 03
10-5 22.0663736286873480 1.8657291972756784F — 04
10-6 22.0665398716459471 2.0329961128440210F — 05
107 22.0665561888958024 4.0127112743704174F — 06
108 22.0665573941933566 2.8074137209399552F — 06
10~9 22.0665570491997904  3.1524072852118223F — 06
10~10 22.0665565108357207 3.6907713579781287F — 06
10-11 22.0665559208715365 4.2807355410401371F — 06

Table C.46: Interpolation method - Down and Out call option (asset value of $100)
for fixed number of node points (N = 128) and 8 time steps with ¢ = 0.20, r = 0.08,
T = 0.25, strike of $100 and barrier of $75. The values are calculated in this table
are performed in double precision.
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Asset Best 7] IPM Error
Price ($)
80 10-3 0.0683073667812694 8.8784422755521517FE — 04
10~ 0.0687792371757303 1.3597146220160937FE — 03
10~5 0.0688475178867252 1.4279953330110346F — 03
106 0.0688567448060473 1.4372222523331376 £ — 03
107 0.0688579217104104 1.4383991566962735F — 03
10-8 0.0688580562510999 1.4385336973857677TE — 03
10~? 0.0688580593096919 1.4385367559777000F — 03
10~10 0.0688580452150260 1.4385226613118358F — 03
10—11 0.0688580276916166 1.4385051379024413F — 03
90 10-3 1.0224396930333099 3.0077605705535956 £ — 03
10~4 1.0250855277497526 3.6192585411085054F — 04
10-5 1.0254101400634417 3.7313540421878011F — 05
10-6 1.0254483906967153 9.3709285192700165F — 07
107 1.0254527701057747 5.3165019112816347F — 06
108 1.0254532626717492 5.8090678857480871F — 06
10~9 1.0254533192929198 5.8656890563474340F — 06
10~10 1.0254533280191160 5.8744152525019855F — 06
10-11 1.0254533318310959 5.8782272324003904F — 06
100 1073 5.0097134200483904 7.2671713386186776FE — 03
10~* 5.0161797719151666 8.0081947184257318FE — 04
10~5 5.0168938457101655 8.6745676843025254F — 05
10-6 5.0169714501784908 9.1412085179154445F — 06
10~7 5.0169798187731356 7.7261387287919092F — 07
10-8 5.0169807549790546 1.6359204546567696 ' — 07
10~9 5.0169809051381016 3.1375109316167382E — 07
10—10 5.0169809768787967  3.8549178779656579F — 07
10—t 5.0169810449513959 4.5356438674315491F — 07
110 10-3 12.6080073177338665 1.2441184223840884F — 02
10~ 12.6191600107495923 1.2884912081151390F — 03
10~° 12.6203154726816322 1.3302927607539150F — 04
106 12.6204347840687063 1.3717888999731365FE — 05
107 12.6204470745996868 1.4273580206669578FE — 06
10-8 12.6204483356843866 1.6627332011243112F — 07
109 12.6204484607604144 4.1197292799388663F — 08
10~10 12.6204484686408858 3.3316821523854401F — 08
10~11 12.6204484644797326 3.7477973502397788E — 08
120 10-3 22.0482536251306662 1.8306576476409542F — 02
1074 22.0647171354911116  1.8430661159668515E — 03
10-5 22.0663748536137589  1.8534799331726415F — 04
10-6 22.0665414615643449 1.8740042731502093F — 05
107 22.0665581896313014 2.0119757748737754E — 06
108 22.0665598451358989  3.5647117757608981F — 07
10~9 22.0665599904518572 2.1115521831038819F — 07
10~10 22.0665599668678283  2.3473925025996323F — 07
10-11 22.0665599400823353 2.6152474075225030F — 07

Table C.47: Interpolation method - Down and Out call option for fixed number of
node points (N = 256) and 8 time steps with o = 0.20, r = 0.08, T" = 0.25, strike
of $100 and barrier of $75. The values are calculated in this table are performed in
double precision.
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Asset Best 7] IPM Error
Price ($)
80 10-3 0.0684750295337522 1.0555069800379977FE — 03
10~ 0.0687307337863579 1.3112112326437342F — 03
10~5 0.0687640794551370 1.3445569014227830F — 03
106 0.0687671383006468 1.3476157469326211F — 03
107 0.0687660746061996 1.3465520524854604F — 03
10-8 0.0687642758953696 1.3447533416554615F — 03
10~? 0.0687621648461850 1.3426422924708360F — 03
10~10 0.0687597936993950 1.3402711456808429F — 03
10—11 0.0687571690260584 1.3376464723441968 F — 03
90 10-3 1.0233568354873057 2.0906181165576687F — 03
10~4 1.0252080882368706 2.3936536699287886F — 04
10-5 1.0254255393210923 2.1914282771241800F — 05
10-6 1.0254506693384327 3.2157345690800310F — 06
107 1.0254537488210473 6.2952171838229209F — 06
108 1.0254543806071188 6.9270032553719885F — 06
10~9 1.0254547766813371 7.3230774735866255F — 06
10~10 1.0254551827690328 7.7291651693484065F — 06
10-11 1.0254556257670291 8.1721631656206384F — 06
100 1073 5.0107865014472113 6.1940899397976146F — 03
10~* 5.0163260928138591 6.5449857314936466 F — 04
10~5 5.0169232979320393 5.7293454969881141F — 05
10-6 5.0169913171112990 1.0725724289978311F — 05
10~7 5.0170037717753750 2.3180388365739990F — 05
10-8 5.0170110222316202 3.0430844611545327F — 05
10~9 5.0170183757780897  3.7784391080514235E — 05
10—10 5.0170263831041142 4.5791717104975982F — 05
10—t 5.0170350954736609 5.4504086651613326 F — 05
110 10-3 12.6084866167184035 1.1961885239303305F — 02
10~ 12.6192269843602123 1.2215175974938930F — 03
10~° 12.6203231672093068 1.2533474839926395F — 04
106 12.6204343701590691 1.4131798636851656F — 05
107 12.6204452616290510  3.2403286553961408 E — 06
10-8 12.6204459132041311 2.5887535753943425F — 06
107? 12.6204454808093587 3.0211483481590307FE — 06
10~10 12.6204448953281236 3.6066295838743656F — 06
10~11 12.6204442510343959 4.2509233105780808E — 06
120 10-3 22.0482012901957809 1.8358911411295309F — 02
1074 22.0647099550959105 1.8502465111674971F — 03
10-5 22.0663672076409192 1.9299396615823916F — 04
10-6 22.0665307799731067 2.9421633970794225F — 05
107 22.0665443382339959 1.5863373081792531F — 05
108 22.0665425671607061  1.7634446372594148 F — 05
10~9 22.0665389660413034 2.1235565772492748 ' — 05
10~10 22.0665348926796412 2.5308927434353201F — 05
10-11 22.0665304961700173 2.9705437060156825F — 05

Table C.48: Interpolation method - Down and Out call option (asset value of
$100) for fixed number of node points (N = 128) and 16 time steps with o = 0.20,
r = 0.08, T = 0.25, strike of $100 and barrier of $75. The values are calculated in
this table are performed in double precision.
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Asset Best 7] IPM Error
Price ($)
80 10-3 0.0684788368401993 1.0593142864851065F — 03
10~ 0.0686338213621091 1.2142988083949763 F — 03
10~5 0.0686443300824745 1.2248075287602835FE — 03
106 0.0686351783551779 1.2156558014637248 ' — 03
107 0.0686217445868527 1.2022220331385611F — 03
10-8 0.0686057758141439 1.1862532604296891F — 03
10~? 0.0685870452324950 1.1675226787807771E — 03
10~10 0.0685689740662313 1.1494515125171599F — 03
10—11 0.0685421262130522 1.1226036593380375E — 03
90 10-3 1.0238303171003096 1.6171365035538843F — 03
10~4 1.0252744162133363 1.7303739052731970F — 04
10-5 1.0254371765819830 1.0277021880548964F — 05
10-6 1.0254568005622298 9.3469583663241540F — 06
107 1.0254608988946279 1.3445290764427242F — 05
108 1.0254669810358874 1.9527432023984381F — 05
10~9 1.0254614192326361 1.3965628772524830F — 05
10~10 1.0254837011014923 3.6247497628774661F — 05
10-11 1.0254408154691956 6.6381346678148767FE — 06
100 1073 5.0113887800292716 5.5918113577371753EF — 03
10~* 5.0164559507026985 5.2464068431082311F — 04
10~5 5.0170147735455517  3.4182158542561680F — 05
10-6 5.0171082270027094 1.2763561570081072F — 04
10~7 5.0171567070606340 1.7611567362518787FE — 04
10-8 5.0172102741930491 2.2968280604038216 F — 04
10~9 5.0172748855295328 2.9429414252352126 F — 04
10—10 5.0173205275582715 3.3993617126262810F — 04
10—t 5.0173753581525844 3.9476676557542723F — 04
110 10-3 12.6087131035068634 1.1735398450843371F — 02
10~ 12.6192547805435993 1.1937214141083397F — 03
10~° 12.6203210075730823  1.2749438462467122F — 04
106 12.6204265992730740 2.1902684632646441F — 05
107 12.6204344136141948 1.4088343511242662F — 05
10-8 12.6204246877480770 2.3814209629269278F — 05
107? 12.6204430800773935 5.4218803141603544F — 06
10~10 12.6203934588103799 5.5043147326183650F — 05
10~11 12.6204451597451470 3.3422125594873009FE — 06
120 10-3 22.0481386543581515  1.8421547248925751F — 02
1074 22.0646746436143886 1.8855579926896349F — 03
10-5 22.0663217006377472  2.3850096932953591F — 04
10-6 22.0664688777809666 9.1323826109657169F — 05
107 22.0664642714516432 9.5930155433188169F — 05
108 22.0664378380520461 1.2236355503292273F — 04
10~9 22.0664168518034600 1.4334980361629945F — 04
10~10 22.0663714764300956 1.8872517698054203F — 04
10-11 22.0663681987526772 1.9200285439890941F — 04

Table C.49: Interpolation method - Down and Out call option (asset value of
$100) for fixed number of node points (N = 128) and 32 time steps with o = 0.20,
r = 0.08, T = 0.25, strike of $100 and barrier of $75. The values are calculated in
this table are performed in double precision.
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C.2.2 Fixed Spaced Partitions

Table C.50 are down and out call option prices for an asset value of $100 and a

barrier of $75.

U

Space

(Partitions)

IPM

Error

1073

1074

107°

1071 (263

10~ 1(324
1072 (359
1073 (404
10~4 (461
107° (538
1076 (644
1077 (804)
1078 (1072)
107Y (1604)

10719 (3205)

5.0097725451313302
5.0097522535224988
5.0097376462119341
5.0097276078056465
5.0097210616502732
5.0097170816403391
5.0097148912581355
5.0097138514636370
5.0097134653422977
5.0097133768095778
5.0162385027547556
5.0162183045148181
5.0162038122478085
5.0161938381544244
5.0161873314695171
5.0161833777435998
5.0161812024217403
5.0161801703202373
5.0161797868068314
5.0161796989618219
5.0169525294902453
5.0169323345752970
5.0169178453012382
5.0169078736315234
5.0169013681475443
5.0168974152741921
5.0168952403875577
5.0168942084994228
5.0168938250672355
5.0168937372413733

7.2080462556786684E — 03
7.2283378645100760E — 03
7.2429451750746776E — 03
7.2529835813621435E — 03
7.2595297367354650E — 03
7.2635097466695886 L — 03
7.2657001288736756E — 03
7.2667399233714014E — 03
7.2671260447111641EF — 03
7.2672145774312080E — 03
7.4208863225302957E — 04
7.6228687219057067E — 04
7.7677913919993458 ' — 04
7.8675323258448060L — 04
7.9325991749132352F — 04
7.9721364340881729E — 04
7.9938896526826619E — 04
8.0042106677113978E — 04
8.0080458017758871F — 04
8.0089242518732728  — 04
2.8061896763936778E — 05
4.8256811711888670EL — 05
6.2746085770226667E — 05
7.2717755485174340E — 05
7.9223239464465411EF — 05
8.3176112816718550EL — 05
8.5350999450700682FE — 05
8.6382887586056167L — 05
8.6766319773445844F — 05
8.6854145635306690F — 05

Table C.50:

$100) for fixed spaced node points and 8 time steps with ¢ = 0.20, r =

Interpolation method - Down and Out call option (asset price of

0.08,

T = 0.25, strike of $100 and barrier of $75. The values are calculated in this table
are performed in double precision.

C.2.3 Adaptive Node Allocation

The following tables are Down and Out option prices using the adaptive node allo-

cation scheme.
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Asset (] Partitions IPM Error
Price ($) Used
80 1073 93 0.0685075848117223  5.1014848946381993F — 04
107 103 0.0686057314282196  4.1200187296657484F — 04
1075 106 0.0685984492775369  4.1928402364919048E — 04
1076 114 0.0686030816908914  4.1465161029477157E — 04
1077 120 0.0686093311489033  4.0840215228278012F — 04
1078 124 0.0686078655367144  4.0986776447168296 FE — 04
1079 130 0.0686078595662187  4.0987373496747127E — 04
90 1073 108 1.0223730565834366  3.0806775505071160EF — 03
107 115 1.0250367575065114  4.1697662743235553F — 04
107° 115 1.1459312486363369 1.2047751450239320F — 01
1076 125 1.0253966828071532  5.7051326790395762F — 05
1077 133 1.0253705445670849  8.3189566858765662F — 05
1078 129 1.4628655386171763  4.3741180448323252F — 01
1079 142 1.0253695034687036  8.4230665240055125F — 05
100 1073 114 5.0138820734270544  3.0985328353563824F — 03
1074 123 5.0163450488826369  6.3555737977449844F — 04
107° 128 5.0170592935254312  7.8687263019988629F — 05
1076 135 5.0171397171182806 1.5911085586919893 F — 04
1077 141 5.0171511737617154  1.7056749930452475F — 04
1078 146 5.0171487064646545 1.6810020224342082F — 04
1079 150 5.0171528726403052 1.7226637789441446 FE — 04
110 1073 119 12.6078589179667553  1.2589584016284294F — 02
1074 128 12.6189831392058114  1.4653627772281963F — 03
107° 133 12.6202608652958812  1.8763668715726656 F — 04
1076 140 12.6202601728833805  1.8832909965960098 F — 04
1077 147 12.6202859465386208  1.6255544441901026 ' — 04
1078 151 12.6202831221511076  1.6537983193176675F — 04
1072 157 12.6202858584042339 1.6264357880491076 £ — 04
120 1073 120 22.0479818604872690  1.8578341119840358FE — 02
107 128 22.0653467635675966  1.2134380395156796 F — 03
1075 137 22.0662530238758130  3.0717773129851356 K — 04
1076 143 22.0662560718336991  3.0412977340965597F — 04
1077 148 22.0662726930162556  2.8750859085435732F — 04
10~% 155 22.0662753321348966  2.8486947221406655F — 04
1079 162 22.0662809753278779  2.7922627923171461 F — 04

Table C.51: Interpolation Method - Down and Out call option for Adaptive node
points and 8 time steps with € = 1077, o = 0.20, » = 0.08, T' = 0.25, strike of $100
and barrier of $75. The values are calculated in this table are performed in double
precision.
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Asset (] Partitions IPM Error
Price ($) Used
80 1073 155  0.0682681029425389  7.4963035864719987F — 04
1074 159  0.0688133107559223  2.0442254526387453FE — 04
107° 169  0.0688105313096403 2.0720199154581611F — 04
1076 179 0.0688164761735872 2.0125712759888831F — 04
1077 191  0.0688180496788722 1.9968362231388963F — 04
10~8 198  0.0688183518866204 1.9938141456568624F — 04
107° 205  0.0688177961746860 1.9993712650015222F — 04
90 1073 173 1.0224227920094464  3.0309421244972129E — 03
1074 181  1.0250721271529495 3.8160698099427848FE — 04
107° 178  1.1459237309539734  1.2046999682002978 FE — 01
1076 201 1.0254321387973033 2.1595336640277407FE — 05
10~7 210  1.0254389104161938 1.4823717749828935F — 05
10~8 203  1.4629484595152973 4.3749472538135348FE — 01
107? 224 1.0254385779112785 1.5156222665270447FE — 05
100 1073 187  5.0097391179938802  7.2414882685313542F — 03
1074 193  5.0162055297531118  7.7507650929897753 F — 04
107° 204 5.0169182656975186  6.2340564892238159F — 05
106 213 5.0169960512148535  1.5444952441989734F — 05
1077 223 5.0170043499404455 2.3743678034121585FE — 05
10~8 232 5.0170050607473788  2.4454484967573187FE — 05
107? 238  5.0170060349250409 2.5428662629722876F — 05
110 1073 192 12.6079839801466065 1.2464521836433318E — 02
1074 201  12.6196794430449231 7.6905893811596293F — 04
107° 211 12.6202898843292282 1.5861765381153248 F — 04
106 221 12.6204201860852265 2.8315897812603019F — 05
107 231 12.6204237385471298 2.4763435910180043FE — 05
108 241 12.6204222389087377 2.6263074301424716FE — 05
1079 248  12.6204216696886338  2.6832294405809698FE — 05
120 1073 193  22.0482087559703572 1.8351445636755059F — 02
1074 202 22.0646722191764582 1.8879824306511361F — 03
109 216 22.0664604134588203 9.9788148288926237FE — 05
106 226  22.0665014574836249 5.8744123485054978FE — 05
1077 238  22.0665131638000638 4.7037807046623747FE — 05
1078 246  22.0665146076756500 4.5593931460863324F — 05
1079 255  22.0665149761169381 4.5225490172273730FE — 05

Table C.52: Interpolation Method - Down and Out call option for Adaptive node
points and 8 time steps with € = 1078, o = 0.20, r = 0.08, T' = 0.25, strike of $100
and barrier of $75. The values are calculated in this table are performed in double
precision.
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Asset (] Partitions IPM Error
Price ($) Used
80 1073 243 0.0683012678226094  7.1646547857673153E — 04
107 256 0.0687883682913956  2.2936500979055209F — 04
1075 269 0.0688413317325429 1.7640156864325322F — 04
1076 284 0.0688505856898115 1.6714761137461573F — 04
1077 299 0.0688517112947402 1.6602200644597184F — 04
1078 312 0.0688519157980230 1.6581750316314176 £ — 04
1072 325 0.0688519182439113 1.6581505727484734F — 04
90 1073 283 1.0224378064467050  3.0159276872386218E — 03
107* 285 1.0250834161862925  3.7031794765125109F — 04
1075 280 1.1458934530507712 1.2043971891682742F — 01
1076 317 1.0254485095276962  5.2246062474600730E — 06
1077 330 1.0254510932790835  2.6408548601392079F — 06
1078 319 1.4629617358079796  4.3750800167403592F — 01
1079 354 1.0254514797949690  2.2543389746956799F — 06
100 1073 304 5.0097173385506721 7.2632677117392963F — 03
1074 305 5.0164384356775296  5.4217058488154057F — 04
107° 321 5.0168976984638567  8.2907798554243683F — 05
1075 336 5.0169754244275229  5.1818348882626264F — 06
1077 350 5.0169837275339875  3.1212715759232346F — 06
1078 364 5.0169845201876893  3.9139252783204626 K — 06
1079 378 5.0169845632036898  3.9569412788043046F — 06
110 1073 316 12.6080034995456867  1.2445002437352914F — 02
1074 324 12.6191561968738597  1.2923051091795479F — 03
107° 333 12.6203114432710670 1.3705871197144948E — 04
1075 346 12.6204357780953451  1.2723887693466551F — 05
1077 366 12.6204440064880323  4.4954950068065713F — 06
10~% 379 12.6204444400538023  4.0619292374088900F — 06
1072 393 12.6204447061330356  3.7958500037627019E — 06
120 1073 320 22.0482466301654547 1.8313571441655463F — 02
107 331 22.0647099954582728  1.8502061488373522F — 03
1075 338 22.0664406160850355  1.1958552207647077FE — 04
1075 356 22.0665343491479859  2.5852459126229910F — 05
1077 372 22.0665523753337922  7.8262733183009914F — 06
1078 390 22.0665529843572266  7.2172498838396493 F — 06
1072 403 22.0665529845075810  7.2170995291109818F — 06

Table C.53: Interpolation Method - Down and Out call option for Adaptive node
points and 8 time steps with e = 107, o = 0.20, r = 0.08, T' = 0.25, strike of $100
and barrier of $75. The values are calculated in this table are performed in double
precision.
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Asset (] Partitions IPM Error
Price ($) Used
80 1073 386 0.0683063772075618  7.1135609362429821 F — 04
107 409 0.0687782529016035  2.3948039958263676 ' — 04
1075 430 0.0688465414940495 1.7119180713660517F — 04
1076 451 0.0688557767585354  1.6195654265074941F — 04
1077 472 0.0688569633657301 1.6076993545608483 F — 04
1078 493 0.0688571136846980 1.6061961648816724F — 04
1079 511 0.0688571300196840 1.6060328150216668 E — 04
90 1073 447 1.0224393313096838  3.0144028242598542F — 03
107* 461 1.0250851667585097  3.6856737543403129F — 04
107° 452 1.1459434441326730 1.2048970999872927F — 01
1076 500 1.0254496931976311  4.0409363126492348E — 06
1077 523 1.0254527260822395 1.0080517042626580F — 06
1078 502 1.4629638180944728  4.3751008396052915F — 01
107 562 1.0254529641116374  7.7002230633449464F — 07
100 1073 474 5.0097140215873459  7.2665846750655239F — 03
1074 494 5.0161803320614933  8.0027420091763335F — 04
107° 510 5.0169316216436100  4.8984618801484192F — 05
1079 531 5.0169719219845765  8.6842778343476645F — 06
1077 553 5.0169802502349148  3.5602749637320130F — 07
1078 570 5.0169811870119183  5.8074950681774595F — 07
107 596 5.0169812240959644  6.1783355306821441F — 07
110 1073 492 12.6080067369330528  1.2441765049986397F — 02
1074 515 12.6191594245831684  1.2890773998713856 F — 03
10~° 535 12.6203148781615173  1.3362382152160013F — 04
107% 551 12.6204437312712390  4.7707118006057314F — 06
1077 576 12.6204465123836265 1.9895994129992545FE — 06
10~% 603 12.6204478464727288  6.5551030992150316 F — 07
1072 618 12.6204479207741027  5.8120893653423877FE — 07
120 1073 487 22.0482525571904660 1.8307644416643010F — 02
107 516 22.0647160840671859  1.8441175399230847F — 03
1075 544 22.0663738108224941  1.8639078461779590F — 04
1075 566 22.0665404520127701  1.9749594340479071F — 05
1077 592 22.0665585954243753  1.6061827340374535F — 06
10~% 614 22.0665588752758559  1.3263312531597293 F — 06
1079 644 22.0665590692659244  1.1323411847063980F — 06

Table C.54: Interpolation Method - Down and Out call option for Adaptive node
points and 8 time steps with e = 1071°, ¢ = 0.20, » = 0.08, T' = 0.25, strike of $100
and barrier of $75. The values are calculated in this table are performed in double
precision.
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