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ABSTRACT

Yield plays a central role in the processes, practices, management and operation of urban
water supply systems. In Australia, yield is commonly defined as the maximum average
annual volume of water that can be supplied from the water supply system subject to climate
variability, operating rules, demand pattern and adopted level of service (or security criteria).
For a given water supply system, yield is typically estimated via computational simulation
using the entire sequence of available historic climate data. This means that the simulation,
and hence the estimation of yield, is subject to a range of extreme climate events consisting
of various dry and wet spells with a multitude of severities and durations, present in the
historic data. System management policies and rules are optimised to a single climate
scenario that may not match the planning length of the studies conducted by the water

authority, nor allowing for the effects of future climate variability.

This study is on the importance of input variables and climate variability to the
estimation of yield of an urban water supply system. Primarily, the effects of planning period

and the climate variability on the yield and on the importance of input variables are assessed.

A preliminary case study on a simple, hypothetical urban water supply system was
conducted primarily to assess the applicability and limitations of three sensitivity analysis
(SA) techniques, namely the Morris Method, the Fourier Amplitude Sensitivity Test and
Sobol’s method of SA. These techniques produced mostly reliable results which revealed
some limitations of the SA framework adopted. The findings and conclusions of the
preliminary study bore important improvements before use on the complex case study of the

Barwon Water supply system.

Employing 20 climate scenarios over four simulation lengths, the input variables used in
the estimation of yield for the Barwon urban water supply system were subjected to SA
using the above-mentioned techniques. Significant findings of the study showed that the
estimation of yield is more volatile to changes in the input variables and climate variability
for shorter planning periods. This was indicated by the average and the range of the yield
estimate decreasing as the planning length increased.

From this study, the main recommendation for water authorities is to consider a number
of yield estimates over a simulation planning period the same as the study design period.
Consequently, a water supply system should not have a single yield estimate but several;

each representative of certain planning period and a possible climate scenario.
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Chapter 1

Introduction

1.1 Background

Potable water and its supply systems are viewed as increasingly valuable commodities
throughout Austraia and the rest of the world. Changing climate and the increasing growth
in population has put many water supply systems under immense pressure, often being
required to supply a demand which is close to or exceeding its sustainable demand limit, or
yield. Such pressures have been exerted on most Australian water supply systems, resulting
in record restriction periods and in some cases the introduction of permanent water saving
measures (DSE, 2004). Demand shortfalls can be aleviated by decreasing the demand via
water saving measures and schemes, and education; and/or increasing the yield of the system
by optimising system management and/or augmentation with additional water sources. All of
these methods, and many operational processes undertaken by water authorities, rely heavily

on theyidld of the water supply system.

Yield can be thought of as the maximum volume of water that can be sustainably
supplied from the system over a given period. It is subject to inflows, outflows and
management rules and policies, and therefore it is adirect indicator of the performance of the
system and its management. Not only does it define the maximum target demand, it is also
an essential part in water supply system management and policy development and
enforcement. It is used in augmentation studies, guides water sharing, and assistsin decision-
making polices. Optimising the management of an existing water supply system is a
continual process that is largely the responsibility of water authorities and their processes
and practices. The management and operational improvements of a system ultimately aim at
maximising the performance of the system, namely the yield of the system. However, the
estimation of the yield of a system contains various sources of uncertainty, such as the
natural variability inherently implicated in being affected by climatic events, and the lack of
knowledge of the optimum set of management policies and rules, which themselves are
subject to climatic events.

Typicaly, the estimation of yield of a specific urban water supply system is performed
using a computational model of the physical system simulated over the entire available
sequence of historic climate data. This sequence is usually all historic data since recording
began until the present day. Using a historic sequence provides a redlistic scenario to which

the authorities optimise system management operations, policies and rules whilst balancing
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stakeholder requirements. These operations, policies and rules are input variables in the
estimation of yield of the system. This method is based on only one climate scenario and
provides no flexibility to assess the impact of different climate realisations or to observe the
effects of different planning lengths. Furthermore, it implies that there is a fixed set of

optimised system policies and rules for any and al future scenarios.

The use of computational modelling is a critical element in the processes, practices,
management and operation of urban water supply systems. However, uncertainty exists
throughout all aspects of managing and modelling urban water supply systems, from the
collection and handling of data, the interpretation of the physical system into a
computational simulation, accuracy of future predictions, value of input variables, operation
of the model, etc. This uncertainty propagates through the model to the model output: the
yield. Following, this uncertainty in the estimation of yield will be ingtilled onto any
management policies derived from the yield estimate. Although the exact realisation of yield
is impossible to obtain (due to the variability that occurs from climate events and lack of
knowledge of the optimal position of the system polices, rules and thresholds), certainty in
its egtimation can be improved by identifying highly influential input variables, and
investigating and refining their knowledge. This will improve the confidence in the yield
estimate and any management procedures and processes that consider it, leading to optimised
system policy development and enforcement, augmentation studies, water sharing strategies

and other decision-making practices, as well as an optimal target demand.

The yidd of a water supply system is dependant on numerous variables including data
(e.g. streamflow and demand), empirical inputs (e.g. operating rules), and model parameters.
As these inputs are determined through either measurement, optimisation or modeller
experience, they inherently contain unguantified errors which are conveyed through the
model structure to the output. Minimising these errors will increase the confidence in the
output, or yield. However, input variables may have different significance in terms of their
influence on the output. Therefore, it is desirable to identify, investigate and improve the
input variables that have considerable effects on the output. The identification of important
variablesis aprimary goal of Sensitivity Analysis (SA).

SA is a set of frameworks and techniques that have been explicitly developed to
investigate the effects of input variability on the output of a model. SA is the study of how
perturbations to the model inputs propagate through the model causing changes to the outpui.
The greater the output change resulting from a unit perturbation in an input variable, the
greater the sengitivity of the model and output to that input variable. Sensitivity of an output

to changes in an input variable shows the importance of that variable to the model. In this
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study, the SA will assess how perturbations to input variables effect the estimation of yield.
The application of SA to a given problem is potentially powerful in identifying, assessing
and measuring the importance of the input variables on the model and its output. The success
depends on the applicability of the SA framework adopted, specificaly the aptness of the
selected technique(s), design of SA experiments, accuracy required and determined, and the

examination of the results.
1.2 Aims of the Study

The aim of this study was to identify the importance of the variables used in the estimation
of yield of an urban water supply system. Understanding the importance of the variables
used in the estimation of yield provides an indication as to where water authorities should
prioritise research and focus their resources to improve the understanding of the input
variables. Greater understanding of the input variables used in the estimation of the yield will
improve the confidence of its estimation, leading to optimised management procedures and

policies, aswell as more reliable target demand.

The first case study used in this research employed a simple, hypothetical urban water
supply system as a proof-of-concept study to assess the adopted SA techniques and
framework, and to provide preliminary results. A number of limitations, findings and
conclusions became apparent whilst attempting to achieve the above aim using this
hypothetical model. The principal deficiencies were in the adopted definition of yield and the

associated handling of time series variables, such as streamflow and rainfall.

Subsequently, a revised aim was realised for use on the second case study considering
the more complex Barwon urban water supply system in Victoria, Australia. The modified
aim was to identify the importance of input variables, climate variability and planning length
(i.e. the simulation length used in the ssimulation models) on the estimation of yield of an
urban water supply system. Findings of this aim will highlight deficiencies (or otherwise) in
the approach that is typically used to estimate yield, leading to shortcomings in studies that
depend on a yield estimate and similar weaknesses in other studies that use the entire
sequence of available historic data. If the estimation of yield is indeed sensitive to climate
variability and planning period, it highlights the deficiency in the current approach of
estimating the yield of an urban water supply. Ultimately, it highlights the need to consider
the planning period and possible climate scenario in the estimation of yield, and for policies,

rules and practices that depend on yield.

1-3



To achieve the modified aim, a series of SA experiments were used to identify and
quantify the sensitivity of the model, and its output(s), to changes in the model inputs. The
sengitivity of the model and yield to changes in the model inputs will be observed under
different climate realisations, giving an indication of the need for a dynamic set of policies
and rules that accommodate possible future climate realisations. Furthermore, by assessing
the sengitivity of the model to changes in the input variables over different planning lengths,
the necessity of using the same or similar smulation period (in the simulation of the water

supply model) as the planning length of the system studies will become apparent.
1.3 Research Methodology

To achieve the above aims, several denotabl e steps were used:
1. Review of SA theory and SA techniques
2. Design of SA framework for the preliminary case study
3. Conduct SA on preliminary study and review findings
4. Design of SA framework for the Barwon urban water supply system case study

5. Conduct SA on the Barwon system and review findings
Task 1 —Review of SA theory and SA techniques

A review of uncertainty and sengtivity theory highlighted the difference between the two
and introduced the significance and purpose of SA. A number of the more modern and
commonly used SA techniques were then examined. Each technique was assessed against
several ideal characteristics for application to the urban water supply system models,
considering the input/output types and structure, the model type and availability, the
accuracy and computational requirements. From this review three SA techniques were
selected to assess the sensitivity of the estimation of yield to input variable perturbations,
namely the Morris method, the Fourier Amplitude Sensitivity Test (FAST) and Sobol’s
method of senditivity analysis. The extended Fourier Amplitude Sensitivity Test (eFAST)

was also selected as a natural extension to the original FAST.
Task 2 —Design of SA framework for the preliminary case study

Following the review of SA in Task 1 and the requirements of the selected SA techniques, a
SA framework for the preliminary case study was developed. The framework consists of SA
methodology, input variable handling strategies and design of SA experiments. This case
study was a proof-of-concept study primarily to assess the applicability of the SA techniques
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to an urban water supply system model, and to uncover limitations of the adopted SA

framework, if any.

The SA methodology applied was largely based upon measurement and handling errors,
where al input variables had an uncertainty margin about their nominal values that defined
the range of perturbations. Variable handling strategies attempt to convert input variables so

that input variables can be perturbed by a scalar valuein SA, if they are not already.

The SA experiments were designed so that progressively accurate, yet computationally
expensive, information was obtained. The Morris method was used to screen for variables
that have zero or negligible importance to the estimation of yield, with the results confirmed
using the FAST/eFAST techniques. SA using the FAST/eFAST and Sobol’ methods were
then performed on the most important variables identified through the Morris method
experiments. Grouping of variables was also completed using the Morris and eFAST
methods.

Task 3—Conduct SA on preliminary study and review findings

Whilst conducting the framework developed in Task 2, important findings and conclusions
revealed limitations of the SA techniques and more importantly in the SA framework
adopted. Input variable handing strategies were also found to be limited when considering

variables with multiple parts, or when perturbing time series variables.

Results of the SA showed mixed success of the three techniques used. The Morris and
FAST/eFAST methods performed reliably but the Sobol’ method gave erroneous results due
to approximations in its algorithm, the model structure and non-independent input variables.
The findings of the Morris and FAST/eFAST methods showed domination of results by the
streamflow variable. This result caused a review on the handling of streamflow variable, and

other time series variables, which highlighted a shortcoming in the SA framework adopted.

Task 4 — Design of SA framework for the Barwon urban water supply system case
study

The limitations found in Task 3 resulted in the modified aim discussed in Section 1.2, hence
amajor ateration in the SA framework applied to the Barwon urban water supply system.
The revised SA methodology consists of establishing a number (20) of different climate
scenarios over four different planning periods. The climate scenarios consist of the four
climate dependant variables (streamflow, rainfall, evaporation and demand) leaving the
remaining input variables to be tested in the SA. This method also avoids handling issues
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with time series variables as experienced in Tasks 2 and 3 and preserves cross correlations

between the climate dependant variables.
Task 5— Conduct SA on the Barwon system and review findings

This task once again showed the success of the Morris and eFAST methods and the
deficiency of the Sobol’ method. FAST was not used in this study because the accuracy and
efficiency of eFAST made it redundant. Few trends were discovered regarding the evolution
of the importance of the input variables over the scenarios and planning length, responding
directly to the modified aim. Significant findings regarding the average yield estimate and
the range of the yield estimate were also made which highlighted the shortcomings to the
current approach of how yield is estimated and used throughout water supply planning

studies.
1.4 Significance of the Research

Thefocus of this study is to identify the importance of input variables used in the estimation
of yield of an urban water supply system. Knowing the importance of input variables
provides insight into where water authorities resources should be spent and research
focussed so that a better understanding of the input variables is gained. This greater
knowledge will ultimately lead to improved confidence in the estimation of yield and flow
through to other studies, practices and processes of water authorities that depend on yield.
By performing the SA on a number of climate scenarios and over a number of planning
lengths, the change of the importance of the input variables can be assessed. Also it provides
opportunity to observe the impact of the climate variability and the planning length on the
estimation of yield.

As discussed in Section 1.1, the estimation of yield is typicaly performed using the
entire avail able sequence of historic climate data which provides a realistic climate scenario
but gives no concern as to the length of time in question in the study. This approach does not
provide any flexibility for a different future climate or planning length in the yield estimate
and implies that there is a fixed set of optimised system policies and rules for al future
scenarios and planning lengths. The findings of this thesis will indicate whether this is an
acceptable approach if, and only if, the planning length and climate variability do not have a
great effect the estimation of yield. If they do have an effect on the yield estimate, then there

is an argument to use an appropriate planning length in the estimation of yield.

Additionally, there is evidence that over the past decade many water supply systems in

Australia have experienced a reduced inflow which seems to be permanent. Seen in Figure
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1-1 is the total annual inflow into the Barwon water supply system storages, together with
the average annual inflow for two periods (1927 to 1996 and 1997 to 2003). There is a clear
change in the average annual inflow from 155 Gl in the 1927 to 1996 period to the 76 Gl in
the 1997 to 2003 period: a 51% reduction in average inflow. This reduced inflow has
continued to 2008. It is not known whether this recent period is simply another dry period,
such as the period from 1937 to 1946 that has an average annual inflow of 105G, 33%
below average, or due to a more permanent feature of the climate. Conversely, it is not
known whether the 50-60 years prior to 1997 were exceptionally high inflow as the records
do not date back far enough. The worst case scenario is that the lower average inflow is
permanent. If thisis assumed, it means that only 10 years of correct climate datais available

for water supply system studies, including yield studies.
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Potentially 10 years of data is not sufficient to robustly estimate yield and for use in
other studies. The SA on the yield estimate of the Barwon urban water supply system in
Chapter 5 is performed over various planning lengths (20, 40, 60 and 77 years). This
provides an opportunity to assess what length of datais required to provide arobust estimate
of yield, which can then be used with confidence. In the case that more than 10 years of data
are required (certainly this will be the finding of this study as the minimum planning length
used was 20 years), then it is necessary to generate the data for the remaining period prior to
these 10 years, which have similar characteristics to the data post-1996. Although this is not
part of this study, this can be done by downscaling the data prior to 1997 so that they have
similar statistical characteristics as the 10 years after 1997. From these points of view, it is
considered that this study istimely to account for ‘ climate shift’ that has been experienced in
most parts of Australiasince 1997.
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1.5 Layout of the Thesis

This thesis consists of several components that generally follow the order of the tasks
outlined in Section 1.3. Before undertaking Task 1, a discussion of the management practices
of urban water supply systems is presented in Chapter 2, including a summary of general

system policies and rules used in the simulation of an urban water supply system.

Following this is Chapter 3 which outlines the principles and available techniques that
can be used to perform sensitivity anaysis are outlined, including a comparative assessment
of the techniques in light of the selected models requirements and limitations. This
discussion then leads into a more detailed analysis of the most applicable (and currently

available) sensitivity analysis techniques.

The subsequent two chapters (Chapters 4 and 5) individually introduce the two case
studies and give an in depth description of the systems, their models and the input variables.
A section on the design of experiments relates to how the sensitivity analyses were
performed, followed by results and discussion. Different conclusions were drawn from the
two case studies relating to the aims of the thesis, on the applicability and limitations of the
selected sengitivity analysis framework. These are discussed at the end of Chapters 4 and 5,

aswell as further conclusions that were revealed whilst undertaking the case studies.

Chapter 6 ends the thesis by presenting a summary of the research work conducted,
findings and conclusions drawn from this study, including recommendations to industry,

limitations of the study and potential future research.
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Chapter 2
Urban Water Supply System Yield

2.1 Introduction

The reliable supply of clean potable water is essential for the well-being and success of
communities. Government authorities continually confront various issues, problems and
limitations in their attempt to provide the community’s needs of clean and reliable water
supply. Indeed, water can impose limits on national development by restricting population
growth when at limited volumes and impeding nationa production (agricultural and
otherwise) through poor quality (Smith, 1998). Not only is water a political issue, but also
social, environmental and economical. Lack of rainfal, water quality, suitability of source,
infrastructure and storage, cost, and the community’ s acceptable security of water supply are
factors which need to be addressed in the amelioration of urban water supply. Above all, the
management of a system is critical in optimising an existing urban water supply system
which aims at maximising the system’'s yield while balancing stakeholder requirements.

Optimisation islargely dependant on the water authority and its processes and practices.

Recently climate change and the increasing growth in population have put many water
supply systems under immense pressure, often being required to supply a demand which is
close to or exceeding its limit, or yield. Such pressures have been exerted on most Australian
water supply systems, resulting in record restriction periods and in some cases the

introduction of permanent water saving measures.

Since the early 1990s efforts to slow the growth of demand in Australian cities have had
modest results (Dingle, 2008) with urban water authorities implementing education,
awareness and conservation measures. The arrival of the current drought at the turn of the
century® saw a more escalated approach to reducing demand with consumers and developers
(with encouragement from the government and water authorities) largely accepting and
employing alternative water sources and smart water practices. The use of rainwater tanks,
water saving devices and water sensitive designs has not only become fashionable for the
domestic consumer but essentia for industrial consumers and their products to appear

environmentally friendly.

! The length of the drought is subjective. MJA (2006) claims that Melbourne moved into drought in
2002 while Melbourne Water recognises the drought beginning in 1997.
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To increase the yield of the system, potential exists through obtaining new water sources
by building new dams and diversions, constructing desalination plants or augmentation with
new ground water sources. These methods are only feasible if supply increase outweighs the
economic and environmental costs. A number of major Australian cities have tried to
increase supply via this approach. Such as the Melbourne metropolitan area where the
implementation and initial construction of major pipelines (to introduce water transfers
between previously unconnected water supply systems) and a desalination plant have been
met with opposition concerning their environmental costs for only modest improvements to

supply (Dingle, 2008).

The estimation of yield of an urban water supply system is a critical process that water
authorities use in many important and essential system management practices and processes.
The primary aim of this thesisis to identify and quantify the important input variables used
in the estimation of yield of an urban water supply system. Doing so indicates where water
authorities should concentrate resources and focus research to efficiently reduce uncertainty
in the input variables and hence increase confidence in the estimation of yield itself. To do
this, Senditivity Analysis (SA) was performed on two urban water supply system case
studies. The first case study used was a preliminary study used as a proof-of-concept to
review the application of SA techniques to an urban water supply system model, and to
investigate feasibility of input variable handling strategies and the SA framework adopted.
Animproved SA framework and input variable handling strategies were then be applied in a

SA on the much more computationally expensive Barwon urban water supply system.

This chapter continues, in Section 2.2, by providing a discussion of the management of
an urban water supply system putting into context the significance of the yield and the
importance of its accurate estimation. A brief discussion on water supply system modelling
and available computational models is then presented in Section 2.3, including a more
focussed description of the REALM (REsource ALlocation Model) software that is used in
this study. A discussion on various definitions of yield provided in the water resources
literature culminates in the definition adopted in this study, with a general discussion of the
input variables required follows in Section 2.4. Section 2.5 provides a review of the
procedure used to estimate yield, with Section 2.6 summarising the chapter.

2.2 Urban Water Supply System Management

A mgjor concern of urban water supply management is how to sustain a sufficient supply of
water during drought periods or low storage volumes. Drought response plans and water

conservation measures have been developed in response to the threat of low storage volumes
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and are generaly only implemented when the storage volume falls below a threshold.
However, some water authorities in Australia have implemented permanent water saving
measures that attempt to provide the system, water authorities and consumers greater
security of supply in the future. It is these sorts of plans and policies — and their associated
education schemes, rebates and incentives — that aid in limiting water consumption and

reducing demand.

The management of urban water supply systems encompasses a wide range of studies,
including drought management, allocation and augmentation based on short- and long-term
planning periods. Management of a complex multi-purpose, multi-reservoir water supply
system requires the assessment of numerous variables, objectives, risks and uncertainties.
Water authorities and their water supply modellers are continually aiming at devel oping and
studying the future plausibility of optimal rules and policies. They try to meet the various,
often conflicting, objectives and stakeholders while complying with legal contracts,
agreements and traditions affecting water allocation and use.

To meet the objectives and requirements of the stakeholders, water authorities develop
aternative operating rules that dictate how the system is managed under different conditions.
These dternative operating rules cannot satisfy all objectives of al stakeholders but a
reasonable and rational judgment can be made as to which set of operating rules is best for
the current and future use and conditions of the system. The operating rules of a system
typically balance the needs of the water end users such as. the domestic and industrial water
demands; the environmental needs of the natural river systems and other water courses; and

the security of continua supply to baoth.

The most important objective for water authorities is to balance the demand with the
available supply of potable water. This, as discussed in Section 1.1, can be done from two
opposing directions. The demand can be reduced though education, incentives and regulation
through restrictions, whilst the volume of water that can be supplied can be maximised by
water source augmentation and by optimizing the management policies, processes and rules
related to the supply system. For many water supply system management policies and
processes the yield of the system is an essential component. It provides an estimate of the
volume of water that can be safely supplied from a system without system failure whilst also
satisfying stakeholder objectives. It is also a key indicator of the maximum demand

allowable for a sustainable operation of an urban water supply system.
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2.3 Water Supply System Modelling

Water authorities and system modellers have used computational modelling for severa
decades to provide information on water resources systems and as decision making tools. A
number of reviews of research in reservoir operation and bulk water harvesting allocation
models have been made in the past. Y akowitz (1982) provides an early survey of dynamic
programming models for water resource problems and the techniques used to achieve
solutions. Yeh (1985) explored reservoir management and operational methods and
simulation models including linear programming, dynamic programming and nonlinear
programming and simulation models. Similarly, Wurbs (1993) provided an inventory and
comparison of reservoir-system anaysis models, emphasising their practical applications.
Recently Labadie (2004) and Wurbs (2005) provide similar reviews of computational models
related to river/reservoir water supply systems and their applications. Wurbs (2005) offers a
list of references that provide general reviews of modelling techniques for reservoir/river
yield and reliability. These are: McMahon and Mein (1986), Votruba and Broza (1989),
Wurbs (1993, 1996), ReVelle (1999) and Nagy et al. (2002).

Numerous water harvesting and distribution models are available. Early developmentsin
modelling water resources include HEC-3 and HEC-5 models (Hydrologic Engineering
Center, 1971; 1979). The 1980's saw an increase in the number of software packages that
include MODSIM (Labadie et a., 1986), IRIS (Loucks et al., 1987) and WASP (Kuczera
and Diment, 1988). REALM (Diment, 1991 and Perera and James, 2003), WATHNET
(Kuczera, 1992), IQQM (Department of Land and Water Conservation, 1999), RiverWare
(Zagona et al., 2001) and Aquator (Oxford Scientific Software, 2004) are just some more
recent software packages that are available.

The REALM simulation software package is used extensively in the water supply
industry in Audtralia, becoming a standard package for simulation of water supply systems
throughout Victoria and much of Australia. Of particular relevance is the use of REALM by
Barwon Water Corporation for simulation of the Barwon water supply system, which is a
case study considered in this thesis. A description of REALM including the structure and
configuration details relating to urban water supply system modelling is presented below.
The two models considered in thisthesis are described in Sections 4.2 and 5.2.

2.3.1 REALM Simulation Software

REALM (REsource ALlocation Model) is a generalised computational simulation software

package that models the harvesting and bulk distribution of water resources within a water
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supply system. Useful features of REALM include generality in modelling a wide range of
water supply systems with diverse forms of operating rules, flexibility in terms of analysing
‘what if’ scenarios, and high reliability obtained through extensive testing and use in
practical applications. It has been developed by Department of Sustainability and
Environment (formally the Department of Conservation and Natural Resources) in close
conjunction with its major users, with many enhancements made in response to suggestions
and feedback from these users. As a result, not only is it now able to meet the needs of a
diverse set of usersin the water industry, but it has also devel oped into a comprehensive tool
for water supply planning and management. There is now a REALM water resource
planning model for al major water supply schemesin Victoria, Australia. Western Australia
and South Australia are also major users of REALM. The REALM software and its manuals
are freely available for download from the Department of Primary Industries (DPI) website:
http://www.dpi.vic.gov.au/dpi/vro/vrosite.nsf/pages/water-surfacemod.

REALM uses a fast network linear programming algorithm to optimise the water
alocation within the network during each simulation time step, in accordance with user-
defined operating rules (Perera and James, 2003 and Perera et al., 2005). It requires three

main inputs that are generally arranged into:

e System description and parameters — including system layout and connections,
relevant storage data, operating rules etc. The configuration details are inputted into
REALM’s graphical interface that records it into system files.

o Streamflow and climate data — such as streamflow data, rainfall and evaporation

data, and other climate indices. These system inflows are stored in streamflow files.

e Demand and other consumption data — These are stored in demand text files and
include unrestricted demands for each demand centre, which can include, rural and

urban demands, environmental flows, hydropower generation demand, etc.

The system file contains information on the nodes (i.e. storages, demand centres, pipe
junctions, etc.) and carriers (i.e. rivers and pipes) in the network from which it configures the
system, including constraints, priorities for water releases, etc. It also contains information
regarding operating rules controlling water transfers and demand regtrictions. The
streamflow file contains data relating to system inflows and climatic influences on the
system. The system inflows are the unregulated streamflow into the storages available for
harvesting. Climatic influences can include temperature, evaporation, rainfall and/or climatic

indices data, which are used to model the reservoir evaporation losses and seasonally adjust
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monthly demands from the average annual demand values. The demand file contains

unrestricted demands for each demand centre in the system.

During each smulation time step, REALM uses the fast network linear programming
algorithm to optimise the allocation of water within the system considering user-defined
penalties and operating rules. When allocating the water within the system, the optimisation
process attempts to satisfy the following criteria, in order of priority (Perera and James,
2003):

1. Satisfy evaporation losses (and rainfall gains) in the reservoirs.

2. Satisfy transmission lossesin carriers.

3. Satisfy al demands (which may be restricted).

4. Minimise spillsfrom the system.

5. Satisfy in-stream requirements defined by minimum capacity of carriers.

6. Attempt to meet the end of season storage target volumes.

2.4 Definition of Yield

There are many definitions and interpretations for the yield of awater supply system. Eachis
applicable under different circumstances and/or system management operations. Most water
resource references provide a discussion on the range of definitions and provide their own,

often with varying lexicon.

Linsey et a. (1992) give a genera definition of yield as “the volume of water that can be
supplied from a reservoir or multi-reservoir system over a given duration”. This is
synonymous with McMahon and Mein's (1986) definition of: “the amount of water that can

be supplied from areservoir or catchment during a specified interval of time”.

In their discussion of yield, McMahon and Mein (1986), cite a more precise definition of
yield by Law (1955) as“... the uniform rate at which water can be drawn from the reservoir
throughout a dry period of specified severity, without depleting the contents to such an
extent that withdrawal at that rate is no longer possible”. This definition is often referred to
as safe yield, or sometimes firm yield, which denctes the volume of water that can be
supplied over the worst drought in recorded history. For instance, Linsley et al. (1992) state
safe, or firm, yield as “the maximum quantity of water that can be guaranteed during a
critical dry period” where the critical dry period is regarded as the lowest historic streamflow
volume. Twort et al. (2000) similarly offer: “the steady supply that could just be maintained
through arepetition of the worst drought on record” but term it historic yied.
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McMahon and Adeloye (2005) provide different definitions to safe yield and firm yield,
yet they are fundamentally the same. They state firm yield “is aterm used mainly in the USA
to describe the yield that can be met over a particular planning period with a specified no-
failure reliability usually based on the historical record”, whilst expressing that safe yield
implies 100% reliability in the supply. They recommend that hydrologists not use the term
safe yield but give no such warning to firm yield.

Additional extensions to the above definitions of safe yield include: the secondary yield
which defines “the volume of water above safe yield that becomes available during periods
of high streamflow” (Lingley et a., 1992) and probability yield which denotes. “the steady
supply that could just be maintained through a drought of specified severity and probability”
(Twort et a., 2000). Twort et al. (2000) also defines failure yield as “the steady supply that
could be maintained for a given percentage of daysin ayear (as averaged over two decades

or more)”.

McMahon and Adeloye (2005) provide a more quantitative definition of yield as the
controlled release from a reservoir system, often expressed as a ratio or percentage of the
mean annual inflow to the reservoir. However this seems to be more applicable to a single

reservoir asthey suggest that release, draft and regulation are terms for yield.

These are a few of the commonly referred to definitions which are mostly intended for
use for studies concerning a single reservoir but they are easily translated to a multi-reservoir
system. However, the above definitions consider only a quantity or uniform flow of water
that is supplied from the system. They do not explicitly consider seasona patterns of
demand, nor do they allow for the effects of demand restrictions. These are important

considerations as they play an integral part in the behaviour of the system.

McMahon and Adeloye (2005) also give a definition of operational yield that considers
seasonal patterns of demand and demand restrictions. They state that operational yield is
determined by reducing supply so that reservoirs do not become empty during a prevailing
drought and assume no knowledge of future inflows. This definition does not alow for other
types of system failure, only the storage drawdown.

Taking this into account, a generalised definition of yield that is commonly used
throughout Australial s water authorities (SKM, 2003), and used in this study, is:

Yield — The maximum average annual volume of water that can
be supplied from the water supply system subject to

streamflow variability, operating rules, demand pattern
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and adopted level of service (or security criteria) (VU
and DSE, 2005).

The estimation of yield of an urban water supply system is a fundamental element in the
management and operation of an urban water supply system. It is a direct representation of
the performance of the physical characteristics of the system and the optimum operational
and management of the system. Considering the above definition, it can be reasoned that the
yield of an urban water supply system is the upper limit of the demand of the system (i.e. the
sustainable volume of water that can be supplied from a system over a given period).
Therefore the yield of the system is synonymous to the maximum Average Annual Demand
(AAD) that can be supplied over a given period. If the actual operating AAD is greater than
the yield, the system will drawdown and water supply will eventually run out, i.e. the system

IS unsustainable.

Following are short descriptions of each of the components that are included in the above
definition. See Sections 4.2.1 and 5.2.1 for system specific description of these components
relating to the two case study systems used in this thesis.

2.4.1 Streamflow/Climate Variability and Demand Pattern

Climate variability represents the meteorological changes that affect climate dependant
variables such as. streamflow, rainfall, temperature and evaporation. Hourly, daily, seasonal
and yearly variability occurs, as well as longer trends and oscillations such as the short
period El Nino — Southern Oscillation (ENSO) and much longer Pacific Decada Oscillation
(PDO). All of which can be further modified by other chaotic climate processes and natural
forces (such as volcanic activities and solar fluctuations), and by human induced impacts
(McKeon, 2006). As these variables change temporaly, so they do spatially. This spatial
variability isaresult of geological characteristics that effect loca meteorological conditions.

Tempora climate variability, specifically of the rainfall and temperature patterns, affects
water consumption patterns. Water demand generally increases with higher temperatures and
decreased rainfal, and it is therefore important to consider demand as a climate dependant
variable. Smilarly, spatial climate variability can also affect the local demand patterns and
system management policies. Other factors such as changes in consumers' attitudes towards
water conservation, education and water restriction polices also affect the demand pattern.

However, the study on social effects on demand pattern is not within the scope of this study.

These climate patterns are important as they influence the location and magnitude of

water inflows at various times, and where and when it will be needed to satisfy demand. This
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in turn has bearing on numerous management policies and operating rules of a water supply

system.

2.4.2 Operating Rules

The operating rules are system specific and ensure that optimal allocation of water is
observed whilst a satisfactory performance level according to the stakeholders requirements
is satisfied. These cover restriction rule curves, target storage curves and other operating

rules.

2.4.2.1 Restriction Rule Curves

Restriction Rule Curves (RRC) are an essential component of the management of an
urban water supply system. They are used to determine the required level of restrictions to
the ex-house demand to ensure that the system is not too severely depleted and remains able
to supply demand in the future. They are essentially a set of curves that are derived through
optimisation that provide a balance between system depletion and public' s acceptance to the
severity of restrictions. Each urban water supply system has a unique set of RRCs optimised

to their policies and requirements.

Figure 2-1 depicts a set of 5-stage urban RRCs. The total system storage at the beginning
of a given month, expressed as either an absolute value or a percentage of AAD, is used to
define the restriction trigger level for that month. Restrictions are imposed when the tota
system storage drops below the level defined by the upper rule curve for that month. When
the total system storage is above the upper rule curve, no restrictions are implemented and
when below the lower rule curve, the water demand is restricted to the base demand (i.e. in-
house water use only). Between the upper rule curve and lower rule curve, the intermediate
curves are associated with various percentages of restrictable demand, increasing in severity
as the storage volume decreases. Only the demand above the base demand is restricted, i.e.

only outside house demand is restricted.

2.4.2.2 Target Storage Curves

For multiple reservoir systems, target storage curves specify the preferred distribution of
individual storage volumes for various total system storage volumes at each time step
(Kuczera and Diment, 1988; Perera and Codner, 2006). These curves impose inter-storage
transfers to distribute water in the system to ensure water is available to supply demand
centres. Target storage curves are widely used in the simulations models developed in
Australia such as REALM (Diment, 1991; Perera and James, 2003; Perera et al. 2005),
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WASP (Kuczera and Diment, 1988) and WATHNET (Kuczera, 1990; Kuczera, 1992).
Figure 2-2 shows a typical set of target storage curves for a two-reservoir system. For a
given total system storage Sy at a given time-step, the target rule curves specify the storage
volumes at reservoirs 1 and 2 as S;* and Sy* respectively, where the sum of S;* and Sy*

equalsto Sy.

Zone 0 Upper Rule Curve

Level 0 r—|—
h Level1 |—'
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Total System Storage as % of AAD
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Figure 2-1. Example of a 5-Stage Urban Restriction Rule Curves.
(Source: VU and DSE, 2005)
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Figure 2-2. Target Storage Curvesfor a Typica Two-Reservoir System.
(Source: Perera and Codner, 1996)
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Different sets of target storage curves can be used for different months of the year.
Commonly urban water supply systems with large storage capacity will use a ‘filling’ target
rule curves set over the higher streamflow, lower demand months and a ‘ drawdown’ set for
lower streamflow, higher demand months. This helps avoid spills in the higher streamflow
periods and allows water to be stored in smaller storages closer to the demand centres in

higher demand periods.

Target storage curves can be determined through optimisation, however they are
generally established through modeller experience and/or system limitations and
requirements. They are important so that spills are avoided during filling and demand

shortfalls minimised by ensuring water is available at the time and location it is required.

2.4.2.3 Other Operating Rules

Further system operating rules could also be defined through other system variables such as
environmental flow releases, diversions, hydropower generation etc. These rules are derived
from studies relating to river health and hydropower generation requirements undertaken by
relevant environmental and power generation authorities. They are incorporated into the
models through node and carrier rules and considered permanent rules in this study, hence

will not considered in the sensitivity analysesin Chapters 4 and 5.
2.4.3 Required Level of Service

Potentially the most important consideration used in estimating yield is the level of service
required from the system. Also called the security of supply, the level of service is measured
using one or more security criteria and their thresholds. These system specific security

criteriarules can include:

Reliability of supply — the percentage of time-steps in which restrictions are not
implemented.

o Worst severity restriction stage — the worst severity restriction stage permissible.

e Maximum consecutive restriction period — the maximum consecutive number of

time steps that restrictions are allowed to be imposed on demand.

e Minimum storage level — the minimum total system storage level at any time during
the simulation period.
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The tolerance levels of the security criteria or thresholds are determined from the
acceptance of the end water users but mostly from the requirements and risks of the system
and its management. That is, although the public may accept lenient performance thresholds
the water authorities may adopt strict rules to avoid system failures. They are therefore
generally determined by the decision makers with respect to the risk of system failure and

future supply security, with some consideration given to the public opinion.
2.5 Estimation of Yield

Given the definition of yield in Section 2.4, for this study yield is synonymous with the
maximum average annual demand a certain system can supply. Simply, the yield is the
largest volume of water that can be supplied, on average, over a given period, without

system failure.

Yield is commonly estimated by increasing or decreasing the Average Annual Demand
(AAD) until the accepted level of service is amost violated. This is done using a
computational water supply system model that ssimulates the specific water supply system
that incorporates streamflow variability, operating rules and demand pattern. Throughout this
study, the yield estimate was determined using such a heuristic iterative procedure which is
common within the water resources industry (See SKM, 2003 for an application by the
Sydney Catchment Authority). REALM iscommonly used in yield estimation of urban water
supply systems (SKM, 2006; ANRA, 2007; Barwon Water, 2007). Several smulations are
required to converge sufficiently to the fina yield estimate of the system under a specific
system realisation. Within the sensitivity analysis used in this study (See Chapters 4 and 5)
each yield estimate is a result of a different system realisation which includes a different
combination of randomly selected variable values, positions or states. The computationa
expense for each estimation of yield depends on the complexity of the system being
modelled, the length of the simulation, the number of simulations required to obtain the yield
estimate and the power of the computer.

Two water systems are used in this thesis. A simple, hypothetical system (based on
Getting Started Example given in VU and DSE, 2005) is used as a preliminary case study in
Chapter 4 and the Barwon urban water supply system (SKM, 2006) is used in Chapter 5.
Both of these models are smulated using the REALM computational package.

2.6 Summary

Potable water consumption and the awareness that clean water is a commodity, has changed

dramatically over the past decade as a result of political, economical and environmental
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pressures. Climate change and the increasing growth in population has put many water
supply systems under immense pressure, often being required to supply a demand which is
close to or exceeding its limit. Such pressures have been exerted on most Australian water
supply systems, resulting in record restriction periods and in some cases the introduction of
permanent water saving measures. Balancing the available supply and demand is the
foremost concern for water authorities. To match demand and supply, several possibilities
are available, such as; reducing demand through education and water saving measures, and
increasing supply through augmentation with new water sources and by optimal management

of the system, policiesand rules.

Theyield, the volume of water that can sustainably be supplied by a system over a given
period, is a key component in the management of an urban water supply system. Therefore,
its accurate estimation is necessary for correct manageria procedures and practices.
Although the estimation of yield consists of a number of input variables that inherently
contain uncertainty and/or a range of variability. These uncertainties may be due to lack of
precise knowledge of the parameters in the physical system, an unknown optimal position of

the variable or combination of the two.

The typical approach used to estimate yield is to consider a computational model of the
system and perform simulations with various Average Annual Demands (AAD) until the
system is on the verge of failing. That is, the yield is the maximum AAD the system can

supply without alevel of service criteria (or security criteria) threshold violated.
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Chapter 3
Sensitivity Analysis

3.1 Introduction

Urban water supply systems are subject to the three key influences that significantly affect
the performance of the system, affecting the yield of the system in particular. These are the
inflows and outflows of the system (e.g. rainfall, streamflow and demand), the physical
characteristics of the system, and the management and handling of both. To assist in the
management of a system, water authorities use computational models that are an abstraction
of the physical system; an approximate representation of the actual system. This
approximation includes estimations and assumptions that inherently introduce imperfections
and errors into the model, leading to a degree of variability that is not present in the physical
system. This modelling variability, combined with the above three key influences, influence
the performance of the model to correctly match the physical system. All these elements of
variability lead to uncertainty regarding the performance of the model and the model
output(s); in this study the yield estimate of an urban water supply system.

If the uncertainty in the input variables of a model is reduced, then the confidence in the
model performance would improve and the uncertainty in the output will consequently
reduce. However, simply improving of knowledge of the input variables with the greatest
amount of uncertainty may not be an efficient course in effectively reducing output
uncertainty. The influence of a change in an input variable on the output must also be
considered. This is known as the sensitivity of a model and its output to changes in input
variables. The greater aim of this project is to indicate which input variables water
authorities should focus resources and research to improve the accuracy of their values so
that the confidence in the yield estimate increases. This is done by identifying and
guantifying the sources of variability in the yield estimate by means of sensitivity analysis.
Before doing so, uncertainty and sensitivity must be understood and defined in light of water

supply modelling and appropriate Sensitivity Analysis (SA) techniques selected.

The current chapter begins with a discussion on the sources and typologies of
uncertainty, highlighting the difficulty of developing a single definition and typology of
uncertainty. Following on in Section 3.3 is an overview of SA, with definitions, uses, indices
and general requirements for successful application. A review of SA techniquesisthen given
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in Section 3.4. This review is presented in a classfication arrangement with the most

significant techniques and some of their applications presented under each classification.

Section 3.5 gives a comparison of each of the reviewed techniques against a number of
preferable criteria for their application to an urban water supply system model and its
variables. This culminates in the selection of the most appropriate SA techniques (the Morris
method, the Fourier Amplitude Sensitivity Test and the method of Sobol’), with further
details regarding their algorithms, indices, advantages and disadvantages following.

A brief review of SA in water resources and hydrology is presented in Section 3.6 and
finaly the chapter summary is given in Section 3.7, providing a discussion of the main

findings.

3.2 Sources and Typologies of Uncertainty

Ronon (1988) succinctly expressed the importance of understanding uncertainty in science

and engineering with: “It seems that the only certain aspect of scienceisthat it isuncertain”.

A degree of uncertainty surrounds everything we do: in every action, choice, decision,
within al aspects of everyday life we encounter a certain degree of uncertainty. This
uncertainty is assessed almost automatically, somewhat ingtinctively, generaly as a quick
qualitative risk assessment that we evaluate by drawing from past experiences. In this case,
we are generally equating the uncertainty involved in an action as a lack of confidence or a
lack of control over that event, considering the possible variations in the outcome that may
result. Similarly, in scientific fields, uncertainty is inherent within all aspects, particularly in
the field of computational modelling of a physical system. Here however, modellers and

analysts equate uncertainty to a perceived lack of knowledge and/or randomness.

Uncertainty is typically defined as the lack of knowledge of the true state of a
phenomenon, process and/or data; where the extreme case of uncertainty is total ignorance
(Harwood and Stokes, 2003; Walker et a., 2003). Conversealy, having exact knowledge of
the system’s processes and precise knowledge of all possible variables within a system, the
outcomes are then perfectly predictable. That is to say that if the true value of al inputs are
realised, then the outcome has no variability. However, thisis never the case in reality; there
will always be a source of uncertainty and therefore variability in the outcome: it is

unavoidable.
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A computational model is an abstraction of a physical system that can be represented by
Figure 3-1 (Frantz, 1995). As such, it is not only subject to the same sources of uncertainty
as the real system but also a range of additional uncertainties arising from assumptions and
approximations used in the formulation, parameterisation, calibration, execution and
interpretation of the model. In terms of computational modelling, uncertainty can be defined
as. “apotentia deficiency in any phase or activity of the modelling process that is due to the
lack of knowledge" (Oberkampf et a. 1998).

validation verification credibility
Real World Conceptual Simulation Model User(s)
System Model
abstraction implementation execution

Figure 3-1. Generalised Model Abstraction from Physical System (Frantz, 1995).

Burges and Lettenmaier (1975) suggests that two main sources of uncertainty exist in
computational models; i) the selection of the incorrect model with correct (deterministic)
parameters, and ii) the choice of correct model with incorrect, or uncertain parameters. These
are often referred to as Type | uncertainty and Type |l uncertainty, and almost always exist
simultaneoudy. Within the two broad groups that Burges and Lettenmaier (1975) suggest,
specific sources of uncertainty are expediently acknowledged. The identification of the
sources of uncertainty of a simulation model is particularly subjective to the purpose of the
application, field of investigation and the subjectivity of the analyst (Kondolf, 1995; Lewin,
2001; Ascough et al., 2008, Wheaton et al., 2008). Therefore, numerous typologies that

attempt to categorise the sources of uncertainty have been developed.

Ascough et al. (2008) provide a discussion on various uncertainty typologies that are
present in uncertainty and risk assessment literature from 1990 to present. Table 3-1 lists the
typologies presented by Ascough et al. (2008) to which they comment on the divergence and
overlap of various sources. The origina table given by Ascough et al. (2008) has been
extended to include other works directly related to uncertainty in the hydrology and water

resources discipline.
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Table 3-1: Uncertainty Typologiesfrom the Literature.

Reference From Literature

Types of Uncertainty Considered

Burges and Lettenmaier (1975)

Beck (1987)

Morgan and Henrion (1990); Hofstetter
(1998)*

Funtowicz and Ravetz (1990)*

Y eh and Tung (1993) citing Yen et al.
(1986)

Lei and Schilling (1994)

US EPA (1997*, 2003)

Bedford and Cooke (2001)*

Huijbregts et d. (2001)*

Bevington and Robinson (2002)*

Regan et d. (2002)*

Walker et . (2003)*

van Asselt and Rotmans (2002)

Tung and Y en (2005)

Maier and Ascough |1 (2006); Maier et
al. (2008)*

Typel : model selection error with correct parameters
Type Il: incorrect or uncertain parameters, with correct model

model uncertainty, parameter (coefficient) uncertainty, future
prediction uncertainty, operationa uncertainty

statistical variation, subjective judgment, linguistic imprecision,
inherent randomness disagreement, approximation

data uncertainty, model uncertainty, completeness uncertainty

randomness of natural processes, model uncertainty, parameter
uncertainty, operational uncertainty
data uncertainty: measurement, inconsistency, handling errors

input data, model structure, model parameter, undetected numerical
error

scenario uncertainty, parameter uncertainty, model uncertainty

aleatory uncertainty, epistemic uncertainty, parameter uncertainty, data
uncertainty, model uncertainty, ambiguity, volitional uncertainty

parameter uncertainty, model uncertainty, uncertainty due to choices,
spatia variability, temporal variability, variability between sources and
objects

systematic errors, random errors

epistemic uncertainty, linguistic uncertainty

location: context uncertainty, model uncertainty (input, structure,
technical, parameter, outcome)

level: statistical uncertainty, scenario uncertainty, recognized
ignorance, total ignorance

nature: epistemic uncertainty, variability uncertainty

structural uncertainties: irreducible ignorance, indeterminacy, reducible
ignorance, conflicting evidence

unreliability uncertainties: practically immeasurable, lack of
observations and measurements i nexactness

natural variability: climatic, geomorphic, hydrologic, seismic,
structural
knowledge deficiency: model, operational, data

data: measurement error (instrument and calibration, reading/logging,
transmission/storage), type, length, handling, presentation

model: method, data available, calibration, validation, input variability
human: experience, knowledge, political

* Denotes table entries originating from Ascough et al. (2008)
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From Table 3-1 it becomes clear there are many typologies of uncertainty applicable to
different discipline systems and models, and ideology of sources of variability therein.
Walker et al. (2003) identify and attribute the lack of a shared generic typology and common
terminology of uncertainty to different decision support purposes. While van Asselt and
Rotmans (2002) suggest the many classifications of uncertainty that exist are due to the
difficulty of defining uncertainty. Wheaton et a. (2008) discuss the extensive range of
lexicon that can be used as synonyms of uncertainty. They identify and list 24 potential
synonyms for the noun uncertainty and 27 synonyms for the adjective uncertain. They also
consider 10 concepts related to and influenced by uncertainty, such as risk, accuracy,
precision, repeatability, confidence, etc. Whatever the reasons for the numerous typologies
of uncertainty, the classification of the types and sources of uncertainty allows for their
identification in a systematic fashion (Wheaton et al., 2008).

It is not the aim of this discussion to suggest a common typology, just to draw attention
to the extent of uncertainty sources and the various typologies that exist. For in depth
commentary of the definitions and typologies of uncertainty, see the recently published:
Norton et al. (2006), Refsgaard et al. (2007), Ascough et al. (2008), Wheaton et al. (2008)
and citations therein. Indeed, it is the opinion of the author that there is not, and should not
be, a common, shared typology and common terminology. Each field and discipline, each
application and stage therein, and each analyst and set of stakeholders will have opinion to
where uncertainty originates, which are deemed important and the potential results of these

uncertainties.

From the citations given in Table 3-1 and other discussions regarding uncertainty, it is
generaly recognised that two distinct types of uncertainty exist: objective uncertainty,
relating to natural variability or inherent randomness of a system, and subjective uncertainty,
relating to the lack of accurate knowledge of the system, its model and variables. Objective
uncertainty will aways exist, even if or when al subjective uncertainty is eliminated. A
number of other terminologies have been given to the same two types of uncertainty, such as
those givenin Table 3-2.

Understanding and quantifying uncertainty is an important step in the design,
development, calibration, validation and use of computational models. It is a quantitative
evaluation of the quality of the result and gives an indication on the reliability of the model
output via error estimations. Suppose either the structure or the input variables of a model
are highly uncertain, the outcomes from the model will aso have a high level of uncertainty.

This identification allows the modeller, analyst and operator to focus resources and research
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into areas that cause the highest amount of uncertainty in an attempt to increase the

confidence in the model output.

Table 3-2. Alternative Terminology for the Two Distinct Types of Uncertainty.

Natural Variability K nowledge Deficiency Reference From Literature
Objective Subjective Yen and Ang, 1971
Aleatory Epistemic NRC, 2000; Bedford and Cooke, 2001
Non-Cognitive Cognitive Halder and Mahadevan, 2000;

Tung and Y en, 2005
Stochastic Epistemic Walker et al., 2003
Irreducible Reducible Ascough et a., 2008

However, the impact of input variable perturbation on the output of the model is aso
important to consider before efficient prioritisation of research and resources is possible.
That is, a model and its output may be considerably sensitive to a perturbation in an input
variable even though there is little uncertainty in its knowledge. The sensitivity of a model
and its output to changes in the input model variables is also commonly termed importance
of a variable. Synonymously, sensitivity can be deemed as the level of dependency of the
model (and output) on an input variable. Knowing the importance of the input variables, in
conjunction to their uncertainty, indicates to the analyst how to efficiently prioritise future
research and resource expenditure to improve knowledge of the input variables and hence
improve confidence in the yield estimate. The assessment of the importance of input
variables, the sensitivity or dependence of a model to the variables, is the primary objective

of sengitivity analysis (SA).

3.3 Sensitivity Analysis

Sensitivity Analysis (SA), occasionally termed uncertainty propagation analysis (Lei and
Schilling, 1994), attempts to provide an understanding of how the model response variables
(the outputs, numerical or otherwise) respond to changes in the inputs. Saltelli (2000) defines
SA as: “the study of how the variation in the output of a model (numerical or otherwise) can
be apportioned, qualitatively or quantitatively, to different sources of variation, and how the
given model depends upon the information fed into it”. Sources of variation include input

variables or factors, model parameters, model structure, assumptions and specifications.
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Traditionaly SA has been closely associated with uncertainty analysis, with its
application generally being a part of uncertainty analysis. In this setting the strength of SA
has been often overlooked, considered as "the easiest analysis’ of uncertainty analysis which
produces “only rudimentary results’ (Zhang and Yu, 2004). Zhang and Yu (2004),
paraphrasing the U.S. EPA (1999), claim: “Consequently, it is best suited for making
preliminary uncertainty analyses’. Uncertainty analysis determines the uncertainty in the
model output as a function of the uncertainties in the model itself and the model inputs
(Tung and Yen, 2005). It does not provide evidence of the importance of the uncertainty of

the inputs on the model, its output and the uncertainty therein.

SA isauseful collection of tools for system and model analysts and decision makers who
can use it without the explicit consideration of uncertainty of each variable. For analysts of
models that utilise variables with a range of natural variability, not necessarily a range of
knowledge deficiency, sensitivity becomes a useful decision and management tool. Indeed,
the range of perturbation assigned to each input variable in sensitivity analysis is generally
the feasible extent of its realisations, but it can extend beyond this range to anayse system
behaviour at extreme values or it can be a sub-range to observe how the system performsin a

specific region.

Sensitivity analysis can be used for several purposes. These include:
1. Establishing model dependence on input variables

2. Verify the modd structure

3. ldentify over-parameterisation of a model

4. Observe model reaction of extreme val ues/events

5. ldentify critical areas of lack of knowledge and data

6. Decision making tool

SA differs greatly from uncertainty analysis whereby the application, outputs and
principles encompass much more than evauating the effects of uncertainty on a model
output. Indeed, SA is becoming a significant discipline of its own. The sensitivity of a model
output to changes in an input variable can be thought of as the importance of that input
variable to the output. Similarly, it shows the dependence of the model structure to that input
variable. Sengtivity analysis can be summarised by: “How important are the individual
elements of the input with respect to the uncertainty in the output?’ (Helton, 2000). Whereas
uncertainty analysis can be similarly summarised by: “What is the uncertainty in the output
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given the uncertainty in the input?’ (Helton, 2000). As stated previously, SA apportions
output variability to the input variables without necessarily requiring accurate knowledge of
the uncertainty of each input variable. Whereas uncertainty analysis requires accurate
knowledge of the input variables, including their ranges and probability distributions, in

order to determine their contribution to the uncertainty in the model output(s).

The sensitivity of the model output to changes to an input variable is an indication of the
effect that a perturbation of that input will have on the output. An input variable associated to
a high sengtivity will result in a greater variation of the model output and vice-versa. This
sengitivity illustrates the care that modellers must take to obtain and employ an appropriate
value for the input variable, but can also signify itsimportance in relation to its dependency
by the model structure (Saltelli et a., 1999).

The successful application of SA largely depends upon the model structure, including the
input variable type, possible model linearity and correlations, and the selection of an
appropriate SA technique, or techniques, to investigate accurately the nature of the input
variables and model output. For example, a purely linear model (i.e. a model where the
input-output relationship is linear) can be easily investigated with the use of first-order,
differential or one-at-a-time (OAT) techniques'. However, for a model that is non-linear or
non-monotonic, first-order differential analyses are ineffective as they cannot either identify

or handle non-linearity, interactions, or correlations between variables.

3.4 Sensitivity Analysis Techniques

The basis of SA, regardless of the technique selected, is the principle of perturbing the input
variables of amodel and observing how the output of the model reacts. Most SA techniques
assume a scalar input variable; therefore, the required perturbations generated by the
techniques’ sampling strategy assume a scalar change. For input variables that are indeed
scalar, this perturbation can be a percentage change, an absolute change or a replacement of
the nominal value. For other input variable types such as discretely distributed variables and
non-scalar variables (i.e. vector, time-series, etc.) variable handling is required. Appropriate
handling techniques for such variables are discussed in the relevant sections of Chapters 4
and 5.

! One-at-a-time (OAT) techniques test the importance of input variables on a model output by

perturbing each input variable in turn and observing the impact on the model output.
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A number of taxonomies are available in which to classify the SA techniques. Isukapalli
(1999) suggests broadly classifying the SA techniques into (a) senditivity testing, (b)
analytical methods, (¢) sampling based methods and (d) computer agebra based methods.
Isukapalli’s (1999) system of classification is convoluted as some of the groups, namely
groups (a) and (d), only contain one technique, which are derivatives of techniques found in
groups (c) and (b), respectively. The use of two groups, i.e. analytical methods and sampling
based methods, would be an improvement. Also, the sampling based methods group within
Isukapalli’s (1999) taxonomy contains sampling strategies such as Monte Carlo Sampling
(MCS) and Latin Hypercube Sampling (LHS) as well a variety of sengtivity indices, some
that use MCS or LHS. It is the view of the author that sampling strategies such as MCS and
LHS should not be considered an SA technique as they do not provide a sensitivity measure,
but a strategy to ensure that random model responses are simulated from which sensitivity
indices are then determined.

Campolongo et al. (2000a) offers a common classification system based largely on the
extent of the input variable range that the technique assesses. Here, the techniques are
divided into three levels:

1. Factor Screening Methods - Techniques that are typically qualitative, producing only
ranked results through computationally efficient sampling strategies. They generaly
employ some local or global properties and “some can provide univariate assessment
(one-at-a-time, 1st order of Morris and Cotter) while others allow for assessment of
factor interaction (e.g. factorial designs)” (US EPA, 2003). The primary objective of
factor screening experiments is to identify the most important variables of a model
that contains a large number of input variables (US EPA, 2003). The variables that
have negligible effect on the output can then assume their nominal values and be

disregarded from further analysis.

2. Loca SA Methods - The emphasis is on the local impact of the input factors on the
model by working intensively in asmall, local region focused around a specific point
of the input parameter space. This point is typically the nominal, mean or the failure
point of the space. Local methods typically consider the input to output relationship
to be linear and only provide univariate assessment through differentiation based
techniques (US EPA, 2003).

3. Global SA Methods - Apportions the variance in the output to the changes in the
input over the entire, or relatively large, range of the input parameter space. Saltelli

39



(2000) highlights two properties global methods possess: i) sengtivity measures
incorporate the effects of the range and shape of the variable probability density
function, and ii) individua variable measures are estimated while varying all other
variables. Generally, they are computationally demanding MCS based techniques
that use correlation, regression or variance based principles. They are capable of

presenting a multivariate assessment of model sensitivity (US EPA, 2003).

The above system of classification is widely used in SA studies (e.g. Ronen, 1988;
Saltelli et a., 2000; US EPA, 2003; Campolongo et a., 2000a; Tung and Yen, 2005).
However, this arrangement is ambiguous as the classification of a technique as local or
global is subject to whether arange is large enough to be perceived as global, or whether the
number of simulations used with aloca or global method can be considered as a screening
experiment. The nature of some techniques can also cause problems when classifying into
such an arrangement: such as the Morris Method (Morris, 1991), which is deemed a

screening method, but assesses globa sensitivities using locally determined sensitivities.

Another taxonomy that is based on the form of sensitivity assessment is outlined by Frey
and Patil (2002). Again, three classes are presented:

1. Graphica Methods - are a simple set of methods that provide a quick overview of the
sengitivity of a model by visually representing the input to output relationship using
charts, graphs, surfaces, etc. They can be useful as screening techniques or as a
complement to mathematical or statistical methods.

2. Mathematica Methods - determine the sensitivity of a model output to variation of
an input by assessing the rate of change via differential methods. They typically
require only a few values of an input value that represent the possible range of the
input and as a result cannot address the variance in the output due to the variance in

the input. The model equations are not always required.

3. Statistical Methods - determine sensitivity indices by perturbing the input variables,
performing running the required simulations and assessing the resultant output
variance. These methods can be one-at-a-time designs or vary multiple input
variables simultaneously to allow the identification of the effect of interacting
variables.
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The ambiguities and problems identified in the classification of Isukapalli (1999) and
Campolongo et al. (2000a) are not present in the classification of Frey and Patil (2002). SA
techniques are easily identified as graphical, mathematical or statistical by understanding
their methods, particularly the indices produced. If the techniques indices use statistical
expressions, such as means, standard deviations or variances, the method is a statistical
method. This classification also avoids categorising sampling strategies as SA methods as
found in Isukapalli’ s (1999) taxonomy.

Structured on the classification given by Frey and Patil (2002), the following sections
provide brief discussions of commonly used techniques, including examples of their
application. This list is not an exhaustive list of SA techniques, just some of the more
commonly used and often referred techniques. For other reviews and classifications of SA
techniques see: Helton (1993), Hamby (1995), Iskupalli (1999), Saltelli et al. (2000, 2004),
Helton and Davis (2003), Oakley and O'Hagan (2004), Frey and Patil (2002), Christiaens
and Feyen (2002), US EPA (2003), Patil and Frey (2004) and Tang et a. (2006).

3.4.1 Graphical Methods

Graphical methods have been used throughout most SA studies, for instance Frey and Patil
(2002), Saltelli et a. (2000), and Cooke and van Noortwijk (2000). They provide visual
representation of input to output relationships that can give the analyst a quditative insight
into trends, non-influential variables, and the effective range of input variables. However,
not much literature exists explicitly on graphical methods due to them being viewed as a
method of presenting results of statistical and mathematical methods. Cooke and van
Noortwijk (2000) note that the main source for graphical methods are software packages.
The main difficulty with graphical methods is constructing useful graphical presentations
and solutions when analysing complex problems with many input variables (Cooke and van
Noortwijk, 2000).

Two commonly used graphical methods, scatter plots and contour plots are briefly
described below. However, other graphical methods such as histograms, cobweb plots and
radar diagrams have aso been used for SA (Cooke and van Noortwijk, 2000; van der Sluijs
et a., 2005; Ababei et al., 2007).
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3.4.1.1 Scatter Plots

Scatter plots of each variable against a model output presents a graphical representation of
trends and importance of each variable to the model and its output. If a scatter plot shows a
significant pattern, i.e. a trend, the associated variable can be considered important and the
model sensitive to changes in that input variable. If the scatter plot does not show a trend
(i.e. the spread of output is relatively uniform across the input range), then the model output
is not so dependant on that variable. Hamby (1995) shows that correlations can be
qualitatively determined using a scatter plot of the input variable and the model output
variable.

Frey and Patil (2002) note that scatter plots can be used as a guide to the selection of
appropriate SA techniques as they can help in visualising and identifying complex
dependencies between input and output. However, as Vose (2000) observes, the number of
points that are plotted must be enough to observe any pattern but not too many as to obscure

any variability.

Application of scatter plots for SA covers many fields of research. See Frey and Patil
(2002) provides an extensive list, and Tang et a. (2006) and Helton and Davis (2003) for
some exampl es of examination of scatter plots.

The logical extension of scatter plots is the determination of correlation coefficients to
assess trends of the input to output relationship (see Section 3.4.3.3).

3.4.1.2 Contour Plots

Contour plots can be used to represent a three-dimensiona relationship in two-dimensions.
When the contours represent the model output, the regions that contain tighter lines signify
regions of greater sensitivity. They can be a simple representation of varying two inputs and
the resulting output change, such as those used by Risbey and Entekhabi (1996) to show the
simulated streamflow changes to temperature and precipitation changes in the Sacramento
Basin in the California, USA. Chu et a. (2006), aso use contour plots to present sensitivity
measures against regions of parameter space, such as confidence limits.

3.4.2 Mathematical Methods

Mathematical methods discussed here consist of differentia sensitivity analysis methods,

nominal range sensitivity, and difference in log-odds ratio. Other methods, such as the break-
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even analysis (von Winterfeldt and Edwards, 1986), the Management Option Rank
Equivalence (MORE) method of senstivity anaysis (Ravalico et al., 2007), algebraic
sendgitivity analysis (Norton, 2008), and difference in log-odds ratio method (Walpole and
Myers, 1993) are also categorised under mathematical methods of SA, however they are not
discussed here due to their obscurity or relatively new arrival to the SA field.

3.4.2.1 Differential Sensitivity Analysis

Differential analysisis abranch of SA that indicates the sengitivity of a model to variation in
each input from partial derivatives of the model equation. The importance of the i-th input
variable () isindicated by oy/0x;, determined viafinding the partial derivative of the output
(y) with respect to that input (x). The greater oy/ox, the more sensitive the model is to
changes in the i-th input variable. If the equation(s) expressing the model’s input to output
relationship is explicitly known, the direct method (Hamby, 1995) or a Neumann expansion
(Isukapalli, 1999) can be used. If the model’s equation(s) are not readily available, a Taylor
series expansion approximation of the model can be used. From the partial derivatives of the
Taylor series, the importance of the input variables can be determined (See Saltelli et al.,
2000).

Two commonly used first-order differential SA based methods are the First Order Error
Analysis (FOEA) and First Order Reliability Analysis (FORA). The basic principle of these
two methods is to construct a truncated expansion of the Taylor series around a pre-
determined point of each input variable distribution and determine the mean and variance.
The Taylor seriesis expanded about the failure point is used for FORA (Melching and Y oon,
1996), and about the mean for FOEA (Yen et al., 1986; Zhang and Y u, 2004; Carrasco and
Chang, 2005).

As first-order differential SA provides a measure of local sensitivity around a nominal
point, only a small part of the input variable space is addressed, and linearity assumed.
Therefore, non-linearity of input variables, interaction between variables and correlated
inputs are not considered: these methods may only be useful for functions that are linear or

near-linear.

Automatic approaches based on differential senstivity analysis are available, most
significantly the Automatic Differentiation Method and Green's function (See Isukapalli,
1999). These approaches are fundamentally the same, therefore the details are not provided

here.
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3.4.2.2 Nominal Range Sensitivity

Also known as local sensitivity analysis or threshold analysis (Cullen and Frey, 1999), the
nominal range sengitivity analysis applies a change across the entire range of the plausible
values of each input. As one input is perturbed across its plausible range, the remaining
inputs are kept at their nominal or base-case values (i.e. an OAT design). The percentage
change in the model output as a result of input perturbations indicates the sensitivity (also
called swing weight) corresponding to that input variable (Tang et a., 2006). This can be
represented as either a positive or a negative percentage difference with respect to the
nominal value (Frey and Patil, 2002).

Nominal range sensitivity is a ssimple and computationally efficient method of providing
an approximate estimate of the importance of each input variable, and therefore is used as a
screening method. It is generally applicable to deterministic models and not usually used for
probabilistic analysis (Frey and Patil, 2002).

Considering its OAT design, this method performs well with linear models but does not
allow for non-linearity, interactions or correlations between or among input variables. The
ranking indices produced are reliable only if there are no considerable interactions and the
plausible ranges are properly specified for each input (Frey and Patil, 2002; Tang et d,
2006).

A variation of the nominal range method is the difference in log-odds ratio (Patil and
Frey, 2004), which uses the ratio of probability that an event occurs to the probability that
the event does not occur to assess the sensitivity of a model to an input variable. However,
the log-odds Ratio has been sparsely used and not discussed further. See Patil and Frey
(2004) and references therein for more details.

3.4.3 Statistical Methods

Statistical methods are characterised by the use of mean, variance or standard deviation as
the primary source of indicating sensitivity of a model to input variables. Included here are
the more traditional regression and correlation based SA measures, ANalysis Of VAriance
(ANOVA), response surface methodology, the Morris method, the notably popular and
robust variance based methods and the closely related Generalised Likelihood Uncertainty
Estimation (GLUE) and the Regionalised Sensitivity Analysis (RSA) methods. Further
statistically based SA methods, not discussed below, are available such as Cotter’'s OAT
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design (Cotter, 1979), Andres Iterated Fractional Factorial Design (IFFD) (Andres and
Hajas, 1993), the sengitivity analysis method based on regiona splits and regression trees
(SARS-RT) developed by Pappenberger et al. (2006a) and the fast probability integration
technique developed and expanded by a number of contributors (for details see Haskin et al.,
1996).

3.4.3.1 Regression Analysis

The basis of regression analysis is to assume that the input to output relationship of a model

is characterised by (assuming alinear regression model with one output is required):

y=b,+bx +bx, +..+bx +e (3.1
where y isthe model output variable
o] is the regression coefficient for the i-th (of k) input to be
determined
X; is the i-th (of K) input variable. x; can be an input term (x),

an interaction term (X x X;), or any higher order term

e isthe error term

The effect of an individual input variable or the combined effects of multiple inputs on
the output variable y is indicated by the magnitude of the regression coefficients, b;. These b,
coefficients are commonly estimated by least-squares andysis (Campolongo et al., 2000a)
and indicate the sensitivity of the model output, v, to the i-th input variable. To standardise
each b; for ease of comparison between variables, Draper and Smith (1981) proposed the
Standardised Regression Coefficient (SRC):

SRe(yx) =t (32)
Sy
where b isthe regression coefficient of the random input variable x;
Si isthe standard deviation of the random input variable x;
§y isthe standard deviation of the model output

When used for sensitivity analysis, SRC is only as good as the fit of the regression
model. The model coefficient of determination, R, defined by Equation (3.3), indicates the
linearity of the original model. When the associated model coefficient of determination, R,
ishigh (i.e. closeto 1) the regression model accounts for most of the amount of variability in
y, indicating a linear model. If R is low, the model has a non-linear input to output

behaviour and the SRC-based SA is of little value as the regression model assumes a
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linearity (Campolongo et al., 2000a). If the model is found to be highly non-linear,
Standardised Rank Regression Coefficients (SRRC) can be used, but only if the model is
monotonic. If the model is both non-linear and non-monotonic variance decomposition is
recommended (Ekstrém, 2005).

Rj == (3.3)
—\2
2 (% -9)
i=1
where A is the approximated output of the regression model
Y, isthe origina output values
Y/ is the mean of the output
n is the number of values

Use of the Standardised Rank Regression Coefficient (SRRC), a SRC measure with the
ranked model output, may improve the R value, but the cost of the transformation alters the
model under analysis (Saltelli and Bolado, 1998). SRRCs are ca culated using Equation (3.2)
using the ranks of the inputs and output instead of the origina value of the parameter where
ranking 1 corresponds to the smallest original value (Manache and Melching, 2004). The use
of rank transformed data results in an analysis based on the monotonic relationship strength
rather than a linear relationship strength (Helton and Davis, 2002). Therefore they are more
robust, and provide a useful solution when the model has long tailed input to output

distributions.

Stepwise regression analysis can be used to automatically exclude statistically
insignificant inputs. It produces a regression model by progressively including the next most
significant input variable, until no significant input can be identified (Helton and Davis,
2003). The R? value represents the significance of each variable; the variable causing the
greatest increase in the total R is included in the regression model in progressive analysis
steps. The mode’s coefficient of determination R? and SRCs at each step indicate the
influence of the selected input variables on the output and the importance of individual input
variables, respectively. For uncorrelated input variables, the R? and the SRC attributed to a
variable are identical. The inclusion of correlated variables cause unrepresentative changes
in the results as effects can be added to or deleted from the regression model at each step
(Campolongo et ., 2000a).
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3.4.3.2 Response Surface Method

A particular case of the regression anaysisis the response surface method. The methodol ogy
here involves developing a response surface of the first- or higher-order relationship (i.e.
input variable interactions) between the model output and one or more input variables. An
equation of appropriate order is fitted to data obtained from the original model, typicaly
using a least-squares regression. Once the response surface is developed, the importance of
input variables can be determined via inspection of the functional form of the response
surface, or appropriate sensitivity analyses, such as nominal range sensitivity, differentia
analysis, regression anaysis, multiple information index method, variance based SA, etc.
(Frey and Patil, 2002).

For a computationally intensive model, the RSM approach is advantageous as it can
reduce a complex model into a form that is much easier and/or faster to produce model
outputs. However, a surface is limited to those variables and their ranges used in its
construction and calibration (Frey and Patil, 2002). If another variable is included, or arange
extended, the entire surface needs to be re-computed so that input variable interactions are

captured, which can be computationally expensive.

3.4.3.3 Correlation Analysis

Correlation analysis can be thought of as an extension to the scatter plots as it attempts to
quantify the characteristics that the scatter plots display. In terms of SA, the correlation
analysis provides information on the importance of a variable to a model and its output. Two
correlation measures are usualy recognised; Pearson’s product moment Correlation
Coefficient (CC) and Partia Correlation Coefficients (PCC).

Correlation Coefficient (CC):

Otherwise known as Pearson’ s sensitivity measure, the CC provides the strength of the linear

correlation between each input variable and the model output by use of Equation (3.4):

Cny _ z;()ﬁ B )(y, _7) 2 (34)
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b

where CCy is the correlation between input variable x and output

variabley
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is the mean of x
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<

The importance of an input variable is demonstrated by the magnitude of CC,,, a unitless
index between -1 and +1. The greater the absolute magnitude of CC,, is the greater the
importance of the variable. A flaw that the CC measure possesses is that it measures the
linear relationship between the input and output with the effects of other variables included,
therefore only suitable for linear models with uncorrelated input variables. For a non-linear
monotonic model, the Spearman Coefficient, or the Ranked Correlation Coefficient (RCC),
is used. The RCC measure is calculated using the ranks of both y and x; instead of the
original value (Campolongo et a., 2000a).

Partial Correlation Coefficient (PCC):

The Partial Correlation Coefficient (PCC) provides the linear relationship between an input

and output free of any of the linear effects of al other input variables (Campolongo et dl.,

2000b). The PCC between x and y (PCC, ) is determined by first constructing, the

following two regression models:

e =CO+ZCpo, 37=b0+prxp (3.5)
= =
where bi, Ci are the regression coefficients

Two new variables are then defined as (X — %) and (y—¥). PCC,  is the CC between

as(x—X)and (y—V),ie (x—X) replacesx and (y— ) replaces y; in Equation (3.4)
(Campolongo et a., 2000b).

Similar to the SRCs and CCs, this measure is useful for linear models (i.e. high R value).
When dealing with non-linear monotonic models, a rank transformation can be applied in the
PCC which gives Partial Ranked Correlation Coefficient (PRCC).

3.4.3.4 Analysis of Variance

ANalysis Of VAriance (ANOVA) is a probabilistic SA technique that partitions output
variance into components due to different input variables (individually or grouped) by
determining whether there is a statistical relationship between a model output and one or
more inputs (Frey and Patil, 2002). In the ANOVA algorithm, each factor assumes a limited
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number of distinct points in the variable space (the levels), from which the significance of an
input variable is tested individually, or multiple input variables at atime. If all variables and
combination of variables are tested for their significance, complete decomposition of the
output variance is determined. Ginot et al. (2006) states that for linear variables a two level
design is practical while a three or four level design for non-linear variables. If there is no
significant association, then the variation in the output is random, and the input variable(s) is
not important. Typically, the coefficients of the F-test are used to indicate sengitivity, but the
coefficients of the Tukey test or Scheffe test can aso be used (See Montgomery, 1997;
Hochberg and Tamhane, 1987, as cited in Frey and Patil, 2002).

ANOVA is model independent, therefore does not require knowledge of input to output
relationships. It assumes the output is normally distributed and requires accurate knowledge
of input variable range. It is difficult to assessindividua variables effectsif correlations exist
(Frey and Paetil, 2002). The number of model simulations becomes great when considering a
large number of input variables as ANOVA requires p* model simulations, where k is the
number of variables each with p levels. For instance, a 10 variable model where p = 4
requires 4'° = 1,048,576 model simulations. More efficient alternatives are the FAST/eFAST
and Sobol’ methods which also sample the space from the full range, not the sparse sampling
of ANOVA.

3.4.3.5 The Morris Method

The Morris method is a specialised randomised OAT design that proves to be an efficient
and reliable technique to identify and rank important variables (Morris, 1991; Campolongo
et al., 2000b). The method is based on the OAT assumption that if all variables are changed
by the same relative amount, the variable that exhibits the largest variation in the output is
the most influential. The efficiency of the Morris method is obtained from the construction
of atrgectory (a pathway through the input variable space) so that an Elementary Effect
(EE) is calculated for each input variable using requiring (2k + 1) model simulations, where
k is the number of input variables. Multiple trgjectories are constructed providing a series of

EEs for each input variable.

The mean of the set of EEs for each input variable, denoted by u, assesses the overal
influence of the factor on the output. It represents the sensitivity strength between the input
variables and the output responses due to all first- and higher-order effects. While the
original design does not allow for the separation between the orders of effects, an extension

to the original, the New Morris method (Campolongo and Braddock, 1999; Cropp and
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Braddock, 2002) allows identification of two-factor interaction effects. The New Morris
method is described in Section 3.5.1.2.

The spread, or variance, of the set of EES represented by o, provides a measure that
indicates a possible interaction of an input variable with other variables and/or the input
variable has a non-linear effect on the output (Campolongo and Braddock, 1999). Thisis a
useful advantage of the Morris method, however, distinction of whether the variance is a
result of non-linearity or interactions is not possible with the origina Morris method design

—itispossible with the New Morris method.

The Morris method is primarily a screening technique to provide only ranking of
importance of variables (Ratto et a., 2007). It is useful at identifying important variables
(and variables with negligible importance) from within a large collection of input variables
or those that are associated with a computationally demanding model. Due to its efficient EE
sampling strategy the number of model simulations required is proportional to the number of
considered input variables, and the number of trgectories, r. Therefore a Morris method SA
experiment requires (k + 1) x r, where k is the number of input variables considered. The
Morris method employs a linear approximation of the output change across a fundamentally
sparse input variable sampling space. The change of input over which an EE is estimated
may miss alarge input to output non-uniformity, therefore it must be stressed that the results
can only be used for qualitative, ranking purposes. These shortcomings are also present in
similar one-at-a-time methods, such as nomina range sensitivity. However, the Morris

method is preferred over such techniques due to its computational efficiency.

Further details of the Morris method are given provided in Section 3.5.1.

3.4.3.6 Variance Based Techniques

The variance based techniques, namely the Fourier Amplitude Sensitivity Test (FAST)
(Cukier et d., 1973), and Sobol’s method of sensitivity analysis (Sobol’, 1993), use the
concept of variance as a measure of the importance of an input variable to a model, and its
output, by determining the fractional contribution of each input to the variance of the output
(Kioutsioukis et al., 2004). These methods can identify and quantify interactions between
variables, and can be applied to a single or group of variables. They are model independent

so they can be used on amodel which algorithms are unknown or complex.

3-20



The FAST and Sobol’ methods determine the same first-order sensitivity index (S), first
proposed by Hoffman and Gardner (1983) (Hamby, 1994) that measures the relative

contribution of an individual input variable (X;) to the variance in the models’ output (Y):

_V(E(Y[X)

S Ve (3.6)
where S isthe first-order sensitivity index for i-th input variable, X.
E(Y|X) is the expected value of Y conditional on the value of X;
V(Y) isthe total variance of the model output Y

The numerator of this expression,V (E(Y | X;)) , is the expected amount of variance that

would be removed from the total output variance if the true value of X; known. It is known as
the first-order effect. The first order sengtivity index, S, aso called importance measure or
first order effect, is simply the ratio of the variance due to the i-th input variable (void of any
interaction effectsS) to the variance due to the effects of all variables. Therefore, if the model
is purely additive the sum of § equals 1, while for non-uniform, non-additive models the
sum of § islessthan 1. The natural progression is then to estimate the conditional variance
of the X; and X, V(E(Y|X;,X,)), and therefore §;, and so on. Eventualy, sensitivity

estimates of increasingly higher order can be estimated and summed as in Equation (3.7):

k

2.5+ D, §+tS, =1 (3.7)
i=1 1<i<j<k
where Kk is the number of input variables

The second sensitivity measure that can be computed using variance based methods is
the total sensitivity index Sy (where Sy is the total-order sensitivity index of the i-th input
variable). It can be computed using Sobol’ and extended FAST (eFAST) — a derivative of the
original FAST proposed by Saltelli et al. (1999). This is defined as the sum of al effects
involving the i-th input variable. For instance, for a three variable model Sy, is calculated

using Equation (3.8):
Srl = S"'Sz +513+§23 (3.8)

Sensitivity indices of higher order (i.e. second- and higher-order) can also be estimated
using Sobol’ method. The eFAST method cannot estimate higher-order measures, only S
and Sy. Higher-order sensitivity indices quantify the combined effect of changing two or
more variables at the same time. This can provide important information regarding

interaction effects that is not possible to identify from the § or Sy; indices.
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The variance based methods have some important advantages:

e They are modd independent in the sense that the model structure and/or
characteristic does not effect the accuracy of the method. e.g. will work regardless of
the additivity or linearity of the test model (Chan et a., 2000).

e They do not require explicit knowledge of the model algorithms, therefore can be
applied to complex computational models.

e These methods can identify and quantify interactions between variables, and can be

applied to asingle variable or group of variables.

The main drawback of the variance based methods is their computational cost as they
require a large number of model simulations in order to estimate a k-dimensional integral (k
is the number of input variables considered). Another disadvantage is the errors that occur
when applying the variance based techniques to a model that contains discretely distributed
input variables (i.e. variables that are not continuous). Discretely distributed variables cause
problems with the estimation of the integral due to the non-continuity and the possible lack

of relationship between the adjacent discrete points.

3.4.3.7 Regionalised Sensitivity Analysis

Regionalised Sensitivity Analysis (RSA), originally termed Generalised Sensitivity Analysis
(GSA) and sometimes referred to as the Hornberger—Spear—Y oung-method (Sieber and
Uhlenbrook, 2005), determines which input variables are most important in the production of
the model output(s) by firstly separating the input variable space into the dichotomy of
behavioural or non-behaviourd. Behavioural is defined as a pattern of model responses that
mimicked the qualitative behaviour of the real system. For each input variable, RSA then
compares the cumulative distributions of the behavioural and non-behavioura parts of the
input space. The greater the difference between the cumulative distributions the greater the
importance of the input variable being investigated (Pappenberger et a., 2006a). This can be
done by observing the vertical distance between the distributions, as measured by the
Kolmogrov-Smirnov test (Spear and Hornberger, 1980).

RSA was initidly developed to analyse eutrophication processes of the Peel Inlet in
Western Australia but has since been applied to various water quality investigations (See
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Hornberger and Spear, 1980; Spear and Hornberger, 1980; Spear et al., 1994; Y oung, 1999;
Ratto et al., 2007 and references therein).

3.4.3.8 GLUE Methodology

Described by Beven and Binley (1992), the Generalized Likelihood Uncertainty Estimation
(GLUE) methodology is a Bayesian type methodology for calibration and uncertainty
estimation of physicaly based distributed models based on the RSA methodology
(Pappenberger et al., 2006a). It is based upon making a large number of runs of a given
model with different sets of parameter values, chosen randomly from specified parameter
digtributions. On the basis of comparing predicted and observed responses, each set of
parameter values is assigned a goodness of fit measure, that Beven and Binley (1992) called
a “likelihood measure”, which measures how well the model conforms to the observed
behaviour of the system. Observing the likelihood measure, the distinction of behavioural
and non-behavioural is made and the sensitivities indirectly indentified from the slope of the
behavioural cumulative distribution function of each input variable (Pappenberger et al.,
2006a).

3.5 Review, Comparison and Selection of Techniques for Use in this
Study

The selection of an appropriate set of sensitivity analysis techniques is essential for
successful sensitivity anayses. To select the techniques, the characteristics of the moddl that
will be used and itsinput variables must be considered, as well as a basic appreciation of the

design of experiments that will be undertaken.

The two REALM models of urban water supply systems considered in this study (a
simple, hypothetica system and the Barwon urban water supply system) are treated as
closed, “black box” models. This is to match their use in the water authority’ s management
procedures and because of the vast number of physical characteristics, such as pipe size,
capacities and pendlties, reservoir sizes, etc. that are deemed to be known precisely and
cannot be changed in the physical system. Within the SA ideology, all model parameters,
including those that define physical characteristics of the system, should be analysed but this
would not be feasible within this study. For instance, the Barwon model contains 511
carriers and 435 nodes that have multiple parameters associated with all of them. This would

lead to thousands of potential variables to include in the SA, requiring in an immense
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number of model simulations. Moreover, knowing the importance of these would be of little

benefit to awater authority as they are fixed in the physical system.

The REALM engine is built around a network linear programming algorithm that
computes the allocation of water via numerous rules, limitations and criteria. That is, the
behaviour of the model can change significantly if a certain rule is changed. Therefore, the
model is presumed to be non-linear, non-monotonic and include many input variable

interactions.

The characteristics of the input variables themselves are of various forms. Some
variables are scalar absolute or percentage variables, some are multi-factored absolute or
percentage variables (i.e. restriction rule curves or target storage curves) and some are
discrete (or non-continuous) variables, such as maximum consecutive months with
restrictions imposed. These variables can also be associated with numerous types of

probability distributions, which were not readily available.

A number of idea selection criteria to select the most appropriate sensitivity analysis
technique(s) for usein this study can be identified, viz.:

1. Unknown model function — The mode is treated as a “black box”. The technique

must not require the model function or equations.

2. Modd independent — The technique is free of any assumptions about the model.
Linearity or additivity should not influence the analysis accuracy (Saltelli, 2000).
The SA techniques should ideally accommodate both non-linear and non-monotonic

models.

3. Variable correlations and interactions — The identification of possible variable
interaction is desirable, to the second- or higher-order. The SA technique should

ideally be able to quantify the interactions.

4. Input/output variable data requirements — The techniques should not require a priori
knowledge regarding the characteristics of the input variables, i.e. distributions,
likelihood measures etc. The technique must be able to handle a continuous, absolute
outpuit.
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5. Apportion output variance — Apportioning the output variance is necessary to
identify all-order effects.

Computational efficiency is also important as the Barwon REALM model is relatively
computationally expensive to run, therefore the technique(s) must be able to compute the

senditivity indices efficiently.

Table 3-3 shows each of the SA techniques considered in Section 3.4 corresponding to
their applicability with respect to the above five ideal selection criteria. From this, three main
techniques were selected for the sengtivity analyses of the two case study systems. The
Morris method was selected, primarily as a screening technique to eliminate non-influential

variables (i.e. variables to which the model output are not sensitive).

As the REALM models are assumed to be ‘black-box’ models with many variable
interactions and correlations present, scatter and contour plots, differential analysis, nominal
range, correlation, RSA and GLUE were disregarded as appropriate techniques.
Furthermore, regression based analysis and response surface method were disregarded due to
difficulty handling correlations and non-linearity. The remaining techniques, the FAST,
Sobol’ and ANOVA, are all capable of handling non-linearity, correlated variables and
perform variance decomposition. However, the ANOVA technique can require a greatly
number of model simulations compared to the FAST and Sobol’ methods. Therefore, the
variance based FAST and Sobol’ methods were chosen for accurate analysis of the

remaining variables.

The FAST and Sobol’ methods are model independent and can assess first- and higher-
order effects, including input variable non-linearity and variable interactions. One major
drawback with the Morris method and FAST is their limitations in handling discrete
variables, while the Sobol’ method becomes computationally expensive to generate accurate
results from a model with a large number of variables or when performing higher-order
analysis. These disadvantages will be discussed in the following detailed review of the
selected SA techniques.

Following are detailed descriptions of the three selected methods, including discussion of

their agorithms, advantages and limitations. Some possible improvements or methods of
avoiding limitations are presented where applicable.
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Table 3-3. Comparison of the Considered SA Techniques Against Ideal Selection Criteria.

Unknown Model Variable {?;T;ﬁgg’;t; Apportion
M odel Independent Correlationsand Requirements Output
Function Interaction € Variance
Scatter and Contour Yes Yes No Input range and No
Plots distribution
Differential No No No Functional form of No
Sensitivity Analysis model
Nominal Range Yes Yes No Input range and No
Sensitivity distribution
Regression Analysis Yes No Interactions possible Input range and Yes
Corrdlati ith distribution. Cannot
orkr t |;ns Wlat' handle discrete
rank transformation. | il ec
Response Surface Yes Yes Depends on how the response surfaceis used after
M ethod developed.
Correlation Analysis Yes No No Input range and Yes
distribution. Cannot
handle discrete
variables
ANOVA Yes Yes Interactions only Input range and Possible
distribution. Assumes
output is normally
distributed.
Morris Method Yes Yes Possible qualitative  Input range and Indirectly,
identification distribution. Issues  qualitatively
handling discrete
variables
Fourier Amplitude  Yes Yes Yes, with Extended  Input range and Yes
Sensitivity Test FAST distribution. Issues
handling discrete
variables
M ethod of Sobol’ Yes Yes Yes Input range and Yes
distribution.
Regionalised Yes Yes Possible, with Input range, No
Sensitivity Analysis difficulty distribution and
likelihood. Requires a
binary output
dichotomy
GLUE Methodology Yes Yes Possible, with Input range, No
difficulty distribution and

likelihood. Requires a
binary output
dichotomy
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3.5.1 Further Details of the Morris Method

The Morris Method is a screening technique useful in identifying variables that have a
considerable effect on the model output from within a large collection of input variables or
those that are associated with a computationally demanding model. As discussed in Section
3.4.3.5, this design was proposed by Morris (1991) as an efficient screening design. It is
based on a specia design matrix that results in a more economic design than random
sampling. Assuming a computationally expensive model with a large number of input
factors, Morris (1991) developed this method to determine which factors have the following

effects on the modd outpuit:

1. Negligible effects
2. Linear (additive) effects

3. Nonlinear (interaction) effects

The Morris method (Morris, 1991) evaluates the effect that a change in an input variable
has on the model output; termed Elementary Effects (EES). An EE is simply the ratio of
difference in the output (y), before and after a positive A change of a single input variable

(%), to the change in input (A), as given in Equation (3.9).

EE, () =[ V(X X0 X, 1% + A, %100 %) = YOOI/ A (3.9)

where A is apredetermined multiple of 1/(p - 1)
is the number of ‘levels’, or values, over which the variables

can be sampled. Also known as the resolution of sampling.

Assume that k input variables are uniformly distributed over a k-dimensional unit cube
and that the EEs are represented by vectors through the unit cube. Conventional OAT
designs sample two points per variable to calculate one EE. Seen in Figure 3-2a, the
individual EEs (indicated by arrows, one for each variable) would require (k x 2) model
simulations to carry out under a conventional OAT design. Morris (1991) proposes that the
EEs are positioned in pseudo-random pathways throughout the variable space, a unit cube, so
that the tails of each vector shares the same variable space position as the head of the
previous vector. The exception is the first and last vectors that do not share simulation
results. The EE pathways are termed trgjectories with multiple trajectories constructed and
simulated to form an SA experiment. The Morris method a gorithm connects the individual
EEs to create a trgjectory through the variable space, as shown in Figure 3-2b. This design
requires (k + 1) model simulations, producing a (k — 1) model simulation saving compared to
conventional OAT designs.
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Multiple trgjectories (where r denotes the number of trgectories) are constructed from
which a set of EEsis obtained for each input variable. F; denotes the finite distribution of EE;
which relate to the r EEs for the i-th input variable. The mean and standard deviation of the
set of EE; (denoted as n and o, respectively) are calculated for each input variable. p
indicates the overal influence of a variable on the output and ¢ indicates a strong variable
interaction, a nonlinear variable or both. Further measures are available, which are discussed
below.

/ /
(@) (b)

Figure 3-2. Region of Experimentation, Q
(8) Individual EEsfor a Three Variable Modd. Six Simulations Required. p = 4.
(b) Trajectory EEsfor a Three Variable Model. Four Simulations Required. p = 4.

The Morris design is essentially composed of individual randomized OAT designs, in
which the impact of changing the value of each input variable on the model output is
evaluated in turn. The region of experimentation Q is a k-dimensiona cube over which the
input vector x is uniformly distributed. Assuming a unit cube, each dimension is resolved
into a number of levels, p, resulting in the set {0, 1/(p-1), 2/(p-1),...,1}, from which x can be
sampled from with equal probability, where p is called the level, or the resolution of
sampling. Figure 3-2(a) and (b) shows Q for a three input variable model in which p = 4,
which results in three equal spaces between sampling points, and A = 1/(p-1) = 1/3. In this
case x; can assume avalue from the set {0, 1/3, 2/3, 1}.

The number of levels, p, determines the resolution of possible sampling. When p is
small, the sampling is sparse and as p increases, the number of possible points increases. The

advantage of alow p isthat fewer model simulations are required to cover Q but it can mean
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that regions of non-uniformity that are between sampling points can be skipped and assumed
linear. A high p means that areas of non-uniformity are more likely to be captured but a

higher number of model simulations are required to cover Q sufficiently.

In his origina paper, Morris (1991) provided a series of matrices to construct a single
trajectory. A detailed description of the Morris method agorithm is provided in Appendix A,
which includes a mathematical explanation combined with a ssmple numerical example of
the major stages of the agorithm. Appendix A concludes with a discussion of a shortcoming
of the Morris method; which becomes apparent when considering discretely distributed input
variables. This shortcoming means that the number of points of a discrete variable must be
equal to the number of levels p, or be a multiple of p. This ensures that the two points
sampled (over the A change) for the calculation of EE of the discrete variable coincide with
the possible discrete points that the variable is distributed over. Asis discussed in Appendix
A, itis possible to avoid this limitation by assigning a different p value to that variable, but
thiswill require further alteration to the algorithm.

3.5.1.1 Elementary Effects and Morris Indices

The finite distribution of the elementary effects due to thei-th input variable is denoted as F;.
Each F; contains r independent elementary effects (one EE per input variable from each of
the r trgectories), from which the sengitivity indices can be computed. Morris (1991)
proposed two measures namely the mean (1) and standard deviation (o) of the set of EEs for

each input variable.

= (3.10)

o =J3  (EE, — 4, ) (311)
n=1

The senditivity index w;, can be used to assess the sensitivity strength between the i-th
input variable and the output response due to al first- and higher-order effects that are
associated with that variable (Campolongo and Braddock, 1999). When y; is high in contrast
to other variables, the output is said to be highly sensitive to thisinput variable as the A input
variable change causes a large deviation in the output. Conversely, a variable with a low
value has small sensitivity associated to it as the same A change causes a relatively low

changein output.
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Determining the spread (variance) of F;, denoted by o, indicates possible interactions
with other variables and/or that the variable has a non-linear effect on the output
(Campolongo and Braddock, 1999). However, the original Morris method does not identify

whether the variance is aresult of non-linearity or interactions.

A convenient method of presenting the estimated indices is to plot al variables on a u-o
plane as shown in Figure 3-3. It is then possible to clearly identify the important variables
from their position along the p-axis. When a variable has a high positive x it signifies that the
variable tends to have a strong positive input to output behaviour. A negative x shows that
the variable tends to have an inverse input to output behaviour. Similarly, the o-axis gives an

insight into the strength of interaction and/or non-linearity of an input variable.
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Figure 3-3. Example of n — o Plane used to Present Results of a Morris Method Experiment.
(Source: Morris, 1991).

One of the weaknesses present in the original work of Morris (1991) is the possible
misrepresentation of non-monotonic variables (Campolongo et a., 2007). Such a variable
would produce positive and negative elementary effects, from which the mean value, g,
would indicate a lower overall sensitivity measure for a variable that is till highly sensitive.
Simply, when calculating u, effects that have opposite signs cancel out each other (Saltelli et

a., 2004); hence using p can be misleading asto the order of importance of the variables
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Initially discussed in Saltelli et a. (2004) and Campolongo et al. (2005), Campolongo et
a. (2007) proposed the use an extra sensitivity measure, u* (See Equation (3.12)); the mean
of the finite distribution of absolute values (G;) of the elementary effects. The benefit of u*,
is that only the magnitudes of the changes are considered, avoiding some effects that may
cancel each other out, hence providing a more accurate measure of total influence compared

to u.

Z\ EE,
* n=1

/’IZ

(3.12)
r

While u* provides greater reliability when ranking variables, important information
regarding the nature of the effect of the variable on the output can be gained when in
combination with x. For example, if an input variable has different magnitudes for ¢ and u*,
it suggests that positive A changes cause positive and negative EE’s over different regions in
the variable space. This provides the analyst an insight into the nature of the non-linearity of

the model and input variable.

The natural progression of the ¢ and x* indices would be to consider o* asthe spread, or
standard deviation, of G;. However, the spread of G; would be reduced (compared to the
spread of F;) due to the absolute values and not give atrue impression of the non-linearity of
the model input to output relationship (Campolongo et a., 2007).

The Morris method assumes a linear input to output relationship that is tested over a
relatively sparse sampling framework. The measures are also the combined effects of the
subject input variable, and the effects of any interaction that may exist between that variable
with another input variable. Therefore, the Morris method should only be used as a ranking

technique.

3.5.1.2 The New Morris Method

A mgor variation on the origina Morris method was proposed by Campolongo and
Braddock (1999), which was later corrected by Cropp and Braddock (2002). Recognising the
deficiency of the Morris method to distinguish between variable interaction and non-linear
behaviour, Campolongo and Braddock (1999) demonstrated a method of identifying second-
and higher-order interaction effects.

To determine the interaction effects of combinations of variables, multiple variables are

changed at the same time; for a second-order interaction, two factors are changed, for athird-
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order interaction, three factors must be changed, and so on. Considering second-order
interactions, the measure of a A change in both the i-th and j-th input variables is the Second-
order Elementary Effect (SEE;;) and the distribution of multiple SEE;;s denoted as SF;;.

The New Morris method (Cropp and Braddock, 2002) determines one SEE;; for each pair
of variables per trgectory. Therefore, r x (@) model simulations are required to calculate

for second-order analysis, in addition to ther x (k + 1) for first-order analysis.

3.5.1.3 Improved Sampling Strategy

A major drawback of the original Morris method is that the sampling strategy used by Morris
(1991) does not guarantee optimum coverage of the sampled points through the variable
space, especially when dealing with a large number of input variables. Campolongo et al.
(2007) suggest an improved sampling strategy to ameliorate the spread, without additional

model simulations required. The am isto gain a more uniform spread of sampled points.

The improved coverage of the variable space is done by creating a large number of
trgjectories; say ~500-1000, and selecting traectories that result in the greatest ‘spread’.
Campolongo et a. (2007) show considerable improvements in the distribution of the
sampled pointsis achieved using this strategy. However it was not employed in this study as
the distribution of points was not considered an issue due to the small number of variables
used in the SA case studies in Chapters 4 and 5. Refer to Campolongo et al. (2007) for
details of the implementation of the improved sampling strategy.

3.5.1.4 Grouping of Variables

The origina Morris Method (Morris, 1991) has been extended to incorporate grouping of
input variables (Campolongo et al., 2007). Adopting grouping with any SA technique is
valuable when used to explore the effects of groups of closely related variables, such as the
clusters of variables associated with certain processes of a model. For instance, by grouping
al variables related to the modelling of evaporation (i.e. empirical factors, volume to surface
area relationship etc.) in an urban water supply simulation model, the synergy of their
perturbations on the estimation of yield can be assessed. The synergy of any group of input
variables is invaluable to modellers as it signifies that even if individua variables cause little
senditivity, together they might be of major importance. Conversely, if individual
senditivities are large, but combined sensitivity is small, it indicates some cancelling out, or

lessening effects.
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The grouping of variablesis performed by changing each variable in a given group at the
same time. The EEs now represent a A changes of multiple input variables. These A changes
can be either positive or negative, therefore only the sensitivity indices x* and o are
computed when grouping variables. This is because the changes of each variable within the
group can be in different directions, i.e. positive or negative. The index x is not calculated as

this index assumes that the A changes are all in the same direction.

3.5.2 Further Details of Fourier Amplitude Sensitivity Test (FAST)

The origina Fourier Amplitude Sensitivity Test (FAST), developed by Cukier et a. (1973,
1975, 1978), Schaibly and Shuler (1973), Koda et al. (1979) and McRea et a. (1982),
provides a means of estimating the first-order sensitivity indices, S. Substantial
advancements have been made by Saltelli et al. (1999) who presented the extended Fourier
Amplitude Sensitivity Test (eFAST), a method of determining the Total Sensitivity indices,
S, in addition to S, and Fang et al. (2003) who improved accuracy by utilising cumulative

probabilities instead of probability density when transforming non-uniform distributions.

The basic tenet that the FAST method is built upon is that a model, or function, can be
expanded into a Fourier series. All input variables are simultaneously varied using different
frequencies { w;} in the required model, and the amplitude of those frequencies are observed
in the model output by means of Fourier analysis. From the Fourier coefficients, the mean
and variance of the model’s output can be determined (Fang et al., 2003), and apportioned,
via an ANOVA-like decomposition, to the variance in the input variables (Saltelli and
Bolado, 1998). Simply, the importance of each input variable is estimated by observing the
amplitudes, {w;} in the output. The greater the amplitude of a frequency (as found in the

output), the more sensitive the model is to the variable that is assigned that frequency.

Consider the model Y = f(X), where Y is the model output variable vector and X is the
random model input variable vector (X, ..., %) with ajoint probability distribution p(x, ...,
X). Assume that Y has a finite mean and variance. As stated in Section 3.4.3.6, the ultimate
am of FAST, and the Sobol’ method, is to estimate the sensitivity index, as shown
previoudly as Equation (3.6) and here as Equation (3.13):

_V(E(Y[X)

v (3.13)

S

As previously stated, the numerator of this expression is the expected amount of variance

that would be removed from the total output variance if the true value of X; known. That is,
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V(E(Y | X,)) is the conditional variance of input variable X;. Similarly, the denominator is

the total variance of the output variable Y.

The FAST algorithm is centralised around the conversion of the k-dimensional integrals
(where k is the number of input variables) in X into a one-dimensional integral in a new

variable s by the following function:

x =G (snmws), i=1..K (3.14)
where S isascalar variable varying between —o and «
{wi} isaset of incommensurate angular frequencies
G is the transform function

For a suitably chosen set of frequencies {ws, ..., o} and G;, the curve described by Xin
the k-dimensiona space when s varies between —o and o completely fills a k-dimensiona

unit cube QX

Q=(X[0<x <Li=1..,k) (3.15)

The expectation of Y can then be calculated by:

E(Y)=fo=], f(X) dx.dx, (3.16)

For an incommensurate set of frequencies the integrals in Equation (3.16) is impossible
to compute numerically, as it would require calculation of Fourier coefficients over an
infinite period. By applying a specia case of the ergodic theorem proved by Weyl (1938) the
integralsin Equation (3.16) and Equation (3.17) are equal.

E(Y)=f, = m% [" f(x(9)ds (3.17)

Using Equation (3.17) with an appropriate set of integer frequencies, the curve is now
only an approximately space-filling periodic curve with a period of 2z, on which numerical
integration can be performed (Saltelli and Bolado, 1998). Applying thisto Equation (3.14), s

is now varying between — and =.

Incorporating the curve change described above into the computation of variances, V(Y)
= E(X?) — [E(X)]? Equation (3.18) is obtained:

V() =%j f2(X(s))ds— f2, (3.18)
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where:

f2=E(Y) =%j f(X(s))ds (3.19)

Applying Parseval’ s theorem to Equation (3.18) the variance of Y can be expressed as:

V) =S (K +BY) (3.20)

j=1

where A, and B; are the cosine and sine Fourier coefficients of f(s), respectively,

caculated asfollows:

A ==[" f(s)cos(js)ds
Ty

1. (3.22)
B, = ;L f(s)sin(js)ds
The contribution to the total variance V of the factor X; is evaluated by:
Vs oD (A, +BL) 322)
b1
where A, is the p-th harmonic of the frequency w;
;i isthe frequency assigned to the i-th input variable

where the summation extends over al harmonics of w;. In practice, of course, only the
first severa harmonics are summed as the influence caused by higher harmonics are
negligible. It also means that the number of simulations required reduces because the angular
frequencies can now have common divisors above this harmonic, thus alowing the selection

of lower frequenciesin the set { w}.

The sensitivity index is then calculated by the usual formula: § =V, /V . This quantifies

the part of the variance of f that is due to the i-th input variable (Saltelli and Bolado, 1998).
The original FAST agorithm cannot calculate the total sensitivity index, Sy. However both
S and Sy; can be estimated using the extended FAST (eFAST) which utilises a more efficient
sampling strategy than FAST (Saltelli and Bolado, 1998).

Accuracy of the sensitivity indices depends on the selection of space filling curve and the
set of angular frequencies. The set of frequencies should be incommensurate (not share a
common divisor) and selected so that common Fourier transform issues, such as aliasing and

interference, are prevented (Cukier et al. 1973). That is, no w; should be obtained by a linear
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combination of any other frequency in the set. However, if only the first M harmonics are
considered in Equation (3.22) then the frequencies only need to be incommensurate up to a
common divisor of M. This consequently allows for the use of a lower set of frequencies.

However, the lower the frequency, the less the space isfilled in the transformation.

Using the highest w; and M, the number of simulations (N) required by the original
FAST algorithmis (4 x M x max(w;) + 1).

The selection of the transform function G; should ideally oscillate uniformly between 0O
and 1. Severa transformation functions have been suggested by Cukier et al. (1973),
Schaibly and Shuler (1973), Koda et a. (1979) and Saltelli et al. (1999). Saltelli et al. (1999)
suggested the function given in Equation (3.23) which produces linear curve oscillating
between 0 and 1 for al input variables. A two variable example of Equation (3.23) is
demonstrated in Figure 3-4 where two variables that are given the commensurable
frequencies w = 11, and w = 19. The straight lines that it produces mean that the variable

space is sampled uniformly.

x =%+ (%jarcsi n(sin(o,s+¢,)) (3.23)
where {wi} isaset of integer angular frequencies
0i is arandom phase-shift parameter where (0 < ¢; <2 n)
s isascaar variable varying between —t and «t
1
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0.7p E
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% 04r R
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Figure 3-4. Transformation of Two Input Variables using Equation (3.23).
w1 =11. w,=19.
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3.5.2.1 Extended FAST

The Extended Fourier Amplitude Sensitivity Test is an extension on the original FAST and
was proposed by Saltelli and Bolado (1998). This strategy providesthe § and Sy; indicesin a
more economic sampling strategy, which Saltelli and Bolado (1998) claims to provide more

accurate estimation of the sensitivity indices than the original FAST design.

The same sampling strategy of Equation (3.23) is utilised, however the frequencies are
now selected so that a particular subject input variable takes a high frequency and all other
input variables (the complementary set of variables) are assigned low, complementary
frequencies. This creates a sample matrix that allows the calculation of V; and therefore S.

The partial variance of the complementary set of variables can then be calculated by:

1M
V= Epzl( Avi + By | (3.24)
where R is the complementary frequency

Total indices Sy; are calculated by considering the frequencies that are not harmonics of
the frequency w, i.e. w-. These frequencies contain information about the residual variance

that is not accounted for by the first-order indices. Hence we can define Sy; as:

V~i
S =1t (3.25)

Two limitations of both FAST agorithms are the aliasing between variables and the
interference error due to non-independent variables (Lu and Mohanty, 2001; Xu and Gertner,
2007). Aliasing leads to leaking between frequencies in the output which results in an
artificial increase in the sensitivity indices. The interference error relates to the variance that
is captured and attributed to a variable but caused by a correlated variable.

3.5.3 Further Details of Sobol’

Sobol’ proposed that his method is an extension to the FAST approach as given in Cukier et
a. (1978). Let the region of experimentation Q is a k-dimensional cube over which the input
vector X is uniformly distributed, where k is the number of input variables. The main idea
behind Sobol’s (1993) approach is based on the unique decomposition of the model into

summands of increasing dimensionality:

f(xl,...,xk)=f0+Zfi(>q)+Z DX ) e (X0 %0 %) (3.26)

1<i<j<k
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where fy is a constant equal to the expectation of the output, E(Y), and the integrals of

each summand over any of its own variablesis zero as shown in Equation (3.27):

(XX )dx, =0, 1<k<s (3.27)

0 .
Thetota variance V(Y) is defined as:

V= jﬂk f2(X)dX — f2 (3.28)

From the each term in Equation (3.26) the partia variances are computed by:

1 1
Vo= o 2506, % ), odx, (3.29)

where 1<i;<...<is<k and s=1,2, ...,k

The sensitivity measures can then be calculated using:

\VA
S.. =W 1<i, <..<i; <k (3.30)

Following Homma and Saltelli (1996) and Chan et al. (2000), Monte Carlo methods are
used to estimate Equations (3.28) and (3.29), with their respective Equations (3.31) and
(3.33):

V) ==Y 12(X,) - f7 (331)
n m=1
where
f =130 (x,) (332)
n m=1
V=2 O X (X2 X 12 (339
n m=1
where V, is the output variance attributed to the i-th input variable
n isthe sample size

Xm is the sampled point in Q*

X=iym denotes all sample values of input variables, except variable

Xi1 eg (X1m1 Xomy «s X(i—l)ma X(i+1)m1 [ERR] ka)

The superscripts (1) and (2) given in Equation (3.33) indicate two sampling matrices for

X, both of dimension n x k. For example:
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Xpo Koo Xy X X e Xy

X(l): X Xog e Xy and X(z): X;l Xéz X;k (3.34)
Xa Xz o X Xa X - X

Substituting the sampling matrices into Equation (3.33):

X Xy e Xy Xy Xp  Xp oo X X
\/i:%zf Xy X e Xy Xy f Xg o Xy e Xy Xy _12‘02(3'35)

Xg Xz o Xy Xgo) \Xg X o Xy Xy

Equations (3.33) and (3.35) suggest X; is fixed while the remaining variables, X, are

varied. If X is an important variable, then the product of f(X&, X&) and

f (X&), X&) will be large producing a large Vi. If X is not an important variable
FXE) . X8) and (X3, X)) will cancel each other out, producing a small V; (Pastres,
et dl., 1999).

Higher order partia variances can be determined using:

13 2
:Ez_l f (Xfl()ij)m’ |Jm) f (X (ijym? XIEJT;)]) \/I _Vj - fOZ (336)
where \ is the output variance attributed to the i-th and j-th input
variable

X9 isX® with thei-th and j-th elements swapped with X

~(ij)m

The senditivity measures can therefore be calculated using one of the applicable

equations below:

wn
Il
<|<

<

; _VENITX, X))
V(Y) (3.37)
-§-5,

Y
|

S =

|
<|:< <|
:&Z

m
Il
|
<|=

where S isthe importance of thei-th variable
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S is the closed effect of all effects involving the i-th and j-th

input variable

S is the two-factor interaction effect between the i-th and the j-
th input variables

Sh isthetotd sensitivity index, a sum of the effects of all orders
involving thei-th input variable

V. is the total variance excluding the variance due to the i-th

input variable, estimated using Equation (3.38)

13 -
V=3 (X XD F (X X2) - (3:38)
m=1
Equation (3.38) suggests X; is varied while the remaining input variables, X, are fixed.
If the X.'s are important, then V_ will be large and Sy will be small. If X.’s are not
important, V- will be small and Sy; will be large (Pastres et a., 1999).

As S isaratio of V and V;, the sum of all § should equate to one if the model is purely
additive, and never sum to greater than one. However, due to the Monte Carlo estimates of

the integrals, errors can occur. These errors can be reduced by increasing n.

The ‘closed’ effect of the i-th and j-th input variables, S, was proposed by Sdltelli

(2002a). This is a measure of effects of the i-th and j-th variables, including the individual
effects (§ and §), and the interaction effect of the i-th and j-th variables. Both S’ and S; can

only be calculated using the Sobol’ method.

An advantage of Sobol’" over FAST/eFAST is that Sobol’ provides sensitivity
information regarding higher-order effects. However, eFAST is more computationally
efficient when calculating just the first- and total-order effects. The Sobol’ method requires
n(2k + 1) model evaluations for calculation of all first- and total-order sensitivity effects,
where nistherequired resolution, i.e. n isthe number of Monte Carlo samples per sensitivity

index.

Saltelli (2002b) provided an enhancement to the original Sobol’ (1993) algorithm, so that
using n(2k + 2) model simulations, the first-, second- and total-order sensitivity indices can
be determined. In this thesis, the Saltelli (2002b) version of Sobol’s methodology was used

to compute the first-, second- and total-order indices.
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3.6 Applications of Sensitivity Analysis in Water Resources and
Hydrology

The application of SA in hydrology and water resources has generally been applied as part of
uncertainty analysis. Pappenberger and Beven (2006) and Pappenberger et a. (2006b)
discuss that uncertainty estimation is a fundamental topic in hydrology and hydraulic
modelling. The reason for thisis obvious: most of the applications of modelling in hydrology
and water resources dea with inputs variables and parameters that contain considerable

amounts of uncertainty.

Significant attempts at sensitivity analysis in hydrology and water resources go back to
1972, with the pioneering papers of Freeze (1972) and McCuen (1973; 1974). Freeze
presented simulations to examine the effect of variation in certain physical parameters on
runoff generation. However, he did not use the word “sensitivity analysis’. Subsequently
several authors, McCuen (1974), Burges and Lettenmaier (1975), Coleman and DeCoursey
(1976) and Beven (1979) applied an analytical first-order sensitivity analysis to a variety of
hydrologica models, while Greis (1982) used regression anaysis to investigate the
variability of water demand for energy production dueto climate.

Rogers et al. (1985), Calver (1988) and Binley and Beven (1991) studied the Institute of
Hydrology Distributed Model (IHDM) to determine its predictive uncertainty in some of first
examples of calibration of physicaly based models based on sensitivity analysis. They
pointed out the importance of calibrating such models against physical measurements and
demonstrated the importance of sensitivity analysis in determining which input parameters

should be carefully calibrated in view of the sensitivity of the output to their values.

Recognising the importance of SA in investigation and calibration of environmental and
hydrologic models, hydrologists have been responsible for the significant RSA/GLUE
(Regional Sendtivity Analysis / Generalised Likelihood Uncertainty Estimation)
methodology branch of sensitivity analysis. The Generalised Sensitivity Analysis (GSA)
method was originaly developed by Spear and Hornberger for an analysis of a multi-
parameter eutrophication model (Spear and Hornberger, 1980; and Hornberger and Spear,
1980) but soon became known as RSA. RSA was developed further and applied to many
different applications by a number of contributors many of whom apply RSA to water
quality and rainfall-runoff modelling — see Beck (1987), Jakeman et al. (1990), Spear et al.
(1994), Young (1999), and Ratto et a. (2007) and citations therein for discussions and case
studies.
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The GLUE methodology, proposed by Beven and Binley (1992), is an extension of the
RSA method of sengitivity analysis (Ratto et al., 2007). GLUE has been extensively used
throughout environmental modelling — see Beven (2006) and Zheng and Keller (2007) for an
extensive lists of applications. Hydrology specific applications include Freer et a. (1996)
and Montanari (2005) who use GLUE in runoff prediction applications, and Page et a.
(2003) who investigated uncertainty surrounding modelling acid deposition in ground water
catchments, while Romanowicz and Beven (2003) and Pappenberger et a. (2005) used
GLUE in flood inundation applications. The GLUE methodology has also been applied to
digtributed catchment models (Muleta and Nicklow, 2005; Zheng and Keller, 2007) and
groundwater modelling (Christensen, 2003).

More straightforward sensitivity analysis strategies and indices have been used broadly
for many years. Burges and Lettenmaier (1975), Chadderton et al. (1982), Tung and
Hathhorn (1988), Melching and Anmangandla (1992) and Warwick (1997) have all applied
either the FORA or FOEA differential sensitivity analysis techniques (see Section 3.4.2.1 for
abrief description of FORA and FOEA) to the well-known Streeter and Phelps (1925) water
quality model. FORA and FOEA have also been successfully applied to the QUAL2E model
to determine key sources of uncertainty by Brown and Barnwell (1987), Melching and Y oon
(1996) and Wagener et a. (1996). Differential approaches have also been used by Yeh and
Tung (1993), who applied FOEA to a modd simulating the movement of river bed pits that
results from sand and gravel mining operations, Sinokrot and Stefan (1994) who performed a
differential SA to observe the sensitivity of stream temperature to severa input parametersin
a dynamic water quality model. Zerihun et a. (1996) used a similar approach to rank 13
input variables to seven output responses in a irrigation model. More recently, Maier et a.
(2001) performed an FORA on a water quality model for the Willamette River, Oregon,
USA. See Melching and Y oon (1996) and Zhang and Y u (2004) for discussions, applications
and references associated to FOEA and FORA.

Besides the FORA and FOEA methods, other mathematical methods of SA (discussed in
Section 3.4.2) have been sparsely used. The nominal range SA technique has successfully
been applied by Brandt and Elliott (2005), who used it in an agricultural application to
determine the effect of input factor perturbations on the phosphorus index score for
agricultural biosolids recycling, and Dakins et al. (1994) who used it in a fishing industry
assessment of a contaminated harbour. Brandt and Elliott (2005) appreciated the nominal
range SA technique as a “straightforward and simple” application however noted that

caution must be taken when setting input variable range.
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Many of the statistical methods of SA discussed in Section 3.4.3 have also been widely
used in environmental modelling, however applications to water resources and hydrology
field seem scarce (Sieber and Uhlenbrook, 2005). Regression and correlation based
techniques of SA have been used by Pastres et a. (1999) (whom aso performed a Sobol’
method based SA) on a eutrophication model of Venice lagoon, Italy and by Christiaens and
Feyen (2002) for an analysis on important soil hydraulic variables in the integrated surface
and ground water model MIKE SHE. Muleta and Nicklow (2004) used stepwise regression
analysis on ranked input and output variables to decrease the calibration parameters of a
digtributed catchment model and Manache and Melching (2004) gave a review of severa
regression and correlation indices and application using a water quality model. Sieber and
Uhlenbrook (2005) used both a regression based SA and RSA to verify the structure of a
time-dependent model of the Brugga catchment basin, Germany. In comparison to the RSA
results, and to results of a previous study, they judged the regression SA to be successful and
proved the model’s concept. Sieber and Uhlenbrook (2005) observed the importance of
parameters in the model, the dependency of the sensitivity on the initial and boundary

conditions and the sensitivity of temporal and spatial variability.

The Morris method, FAST and Sobol’ have also been largely overlooked by the water
and hydrology community. Recent years has seen an increased adoption of these methods for
use in environmental modelling. This is due to their increased viability resulting from
increased computer power availability but predominately due to the members of the
Econometrics and Applied Statistics Unit (EAS) at the Joint Research Centre (JRC) of the
European Commission (Ispra, Varese, Italy). This group has authored or co-authored a
significant number of papers that use these three methods, notably are Saltelli et al. (2000)
and Saltelli et a. (2004). Indeed one application of Morris and Sobol’ was done by
Campolongo and Saltelli (1997) in an investigation of sulphur gas production from algal
biota.

An early application of the Sobol’ method of SA was performed by Pastres et a. (1999)
who, as previously mentioned, used linear regression and Sobol’ SA on a shallow-water 3D
eutrophication model. Since then few hydrological and water resource modellers have used
Sobol’. Some notable examples are Hall et al. (2005) who used the Sobol’ method to
estimate first- and total-order sensitivity indices for six input variables in a flood inundation
model, and a string of papers by Tang et a. (2006, 2007a, 2007b) and van Werkhoven et al.
(2008) who used Sobol’ on various catchment models. Tang et a. (2006) gives a comparison
of four SA techniques, concluding that the Sobol’ and ANOV A methods were superior to the
RSA and differential SA techniques that they al so tested.
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Using a two-step SA approach, Francos et a. (2003) provided one of the first
applications of the Morris method and of FAST to the environmental modelling community.
Their study considered the complex SWAT (Soil and Water Assessment Tool) hydrologica
digtribution model using the Ouse catchment in the UK as a case study, with 82 input
variables and 22 model output variables. The Morris method was used as a screening pass to
determine the qualitative ranking of al 82 input variables over 22 model outputs. This was
followed by a deeper analysis of the most relevant input variables for specific sets of model
output variablesusing FAST.

Considering the SWAT model of the Dender catchment in Belgium, van Griensven et al.
(2002) combined the Morris method with a Latin Hypercube sampling strategy to screen for
the most important out of 129 input variables over five model outputs. Instead of
constructing trajectories through the variable space, their methodology randomly selects a
number of points in the hypercube ensuring that a uniform spread is generated. From each
point, all variables are perturbed, one-at-a-time, resulting in a design of the cost as the
Morris method.

Ho et a. (2005) used the Morris and New Morris algorithms to assess two models; a soil
erosion and deposition model, and a rainfal runoff model. They commented that no

“definitive conclusions’ could be drawn relating to the nature of the models.

Particular relevance to this thesis is the use of the Morris method on the REALM
Goulburn System Modd (GSM) by Schreider et al. (2003) and Braddock and Schreider
(2006). In their study, Braddock and Schreider (2006) used the Morris method for first-order
analysis and also the rarely implemented New Morris Method for second-order analysis.
They considered nine input variables including transmission, operational and evaporation
losses, a transfer function, and REALM convergence thresholds, and 16 output variables
consisting of water outflows, alocations and diversions. In a series of Morris method
experiments they found that the GSM is sensitive to the model convergence thresholds, with
second-order effects present, illustrating the need to limit these thresholds more tightly.

3.7 Summary

Computational modelling of water resources systems contains a number of sources of
variability and uncertainty. The use of computational models for management of urban water
supply systems is a key practice for water authorities. In particular the use of models for

estimating the yield of a system is extremely important for water authorities as yield is
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essential for system performance and many management practices. However, variability
surrounds all aspects of the modelling of a physical water system, including the accuracy of
climate data measurements and its use for studies of future system use, the accuracy of the
model to the physical system, the accuracy of the management policies, etc. These sources of
variability, whether originating from knowledge deficiency or from natural variability,
propagate through the model and cause output variability. For this study, the output is the
yield of urban water supply systems. Since yield isimportant in management of water supply

systems, it is necessary to improve the confidencein its estimate.

Sensitivity analysisis a useful procedure to identify the importance of input variables to
amodel and its outputs. Often thisis referred to as the sensitivity of the model to changesin
the input variables or the dependency of the model and outputs to the input variables. This
chapter has introduced Sensitivity Analysis (SA) and discussed, under a classification
system, a number of commonly used techniques. With consideration given to the most ideal
features for the successful application of SA techniques to urban water supply systems, the
Morris method, the Fourier Amplitude Sensitivity Test (FAST) and Sobol’ method of SA
were selected appropriate. The Morris method was chosen as a screening technique to
identify and rank the importance of variables, to identify any negligible importance variables
and to provide a quick insight into the behaviour of the model. The FAST and Sobal’
techniques are variance based methods that can provide first-, higher-, and total-order
importance measures of the input variables. The variance based methods are model and
variable independent and can handle non-linearity and correlations. The Sobol’ method can

a so quantify interaction effects of input variables.
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Chapter 4
Preliminary Sensitivity Analysis Using a Hypothetical Urban
Water Supply System

4.1 Introduction

Chapter 2 discussed the definition, importance and method of the estimation of yield of an
urban water supply system. Yield is central to many management policies and practices of an
urban water supply system, and therefore important to the performance and management of
the system. However the estimation of yield is subject to many sources of input uncertainty
which propagate through the model. Reducing the uncertainty in the input variables would
reduce the uncertainty in the yield estimate, and therefore improve the confidence on the
management policies and practices which depend on it. As discussed in Sections 3.2 and 3.3,
quantifying the sensitivity of the model and the output to changes in the input leads to an
indication as to the most important variables to the model and the output. Knowing this gives
an insight into which variables research should be focussed and resources spent so as to
reduce the input uncertainty and hence the output uncertainty. To do this Sensitivity Analysis
(SA) can used to identify and quantify the sensitivity of a model to an input variable.
Sections 3.4 and 3.5 presented common SA techniques and culminates in the selection of
three appropriate techniques for the sensitivity analysis of the yield estimate of an urban

water supply system.

This chapter discusses the use of a simple, hypothetical case study as a ‘proof of concept’
for the application of the Morris method, the Fourier Amplitude Sensitivity Test (FAST) and
Sobol’ method of sensitivity analysis. This case study is a proof-of-concept study to assess
the applicability of these techniques and to identify their limitations and shortcomings before
applying them to a more computationally expensive urban water supply system. Also to be
assessed is the SA framework and the variable handling strategies used for the many input
variables used in the estimation of yield. Where limitations are found, improvements or
alternatives will be applied to the case study of the Barwon urban water supply system,

which is described in Chapter 5.

The case study used in this chapter is the Getting Started Example model found in VU
and DSE (2005). A description of this case study is provided in Section 4.2, including details
of the model inputs used. Section 4.3 describes the SA framework, including the input
variable handling strategies (Section 4.3.1) and the design of experiments (Section 4.3.2).
Sections 4.4 and 4.5 present the sensitivity analysis results of using the Morris method and
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the variance based techniques, respectively. Following this in Section 4.6 is a discussion on
issues and limitations of the framework used in this case study and recommendations for

improvements for use in the Barwon urban water supply system case study.
4.2 System Description

The Getting Started Example model (VU and DSE, 2005), a hypothetical two-reservoir
system, was considered as the case study. The schematic diagram of this system is shown in
Figure 4-1, while basic system, streamflow and demand data, given in VU and DSE (2005),
were used for the case study. The only modification to the VU and DSE (2005) system is the
inclusion of evaporation modelling for Reservoir B; in VU and DSE (2005) the evaporation

is modelled only in Reservoir A.

Reservoir Reservoir

>

Stream Stream
Terminator . Terminator
City
Demand

Figure 4-1. Case Study Water Supply System.

Reservoirs A and B receive a combined mean annual streamflow of 104,000 MI from
their own catchments and supply water to a City. Reservoir A, which has a capacity of
100,000 M, can transfer water to the 60,000 Ml capacity Reservoir B. Both reservoirs have a
minimum capacity of zero MI. The reservoirs are also subject to rainfall gains and

evaporation losses.

Monthly demand disaggregation factors, which reflect typical high demands during
summer months and low demands during winter months, are used to disaggregate annual
demand (which is used in yield estimation) into monthly demands. These monthly demands
are further adjusted by a climate index variable to account for the effects of climate
variability over the simulation period. The streamflow data at the reservoirs, climate data for

modelling reservoir losses and gains (i.e. rainfall and evaporation data), and climatic index
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variable data for disaggregating annual demand data into monthly data were available for a

period of 28 years.

The current method of estimating yield involves using an entire available historic data
sequence. In effect, the dates of the historic sequence have no consequence on the estimation
of yield. They are only used as a requirement of REALM and for planning purposes where it
provides an identification of the sequence used. For this study, the historic time-series data
(streamflow, evaporation and rainfall) were used, but the simulation period was considered
from January 1996 to December 2023 as obtained from, and to be consistent with, the
REALM Getting Started Example.

4.2.1 Model Input Variables Used in this Study

Following is a brief discussion regarding the input variables that were considered in the
study, with the nominal values presented. These nominal values are considered as the base
case of the study, as given in VU and DSE (2005), and are used as a basis for the variable
perturbation ranges required in the following SA.

4.2.1.1 Streamflow Data

Twenty eight years of unregulated monthly historical streamflow data is available for this
case study and is shown in Figure 4-2. Reservoir A has a mean annual streamflow of
approximately 68,000 MI with a minimum monthly flow of 42,550 MI and maximum
monthly flow of 96,000 MI. Similarly Reservoir B receives approximately 36,000 Ml
average annual streamflow with a minimum monthly flow of 5,900 MI and maximum of
79,280 MI.

Additionally shown in Figure 4-2 is the monthly combined streamflow of Reservoir A
and Reservoir B, the combined average (~8650 MI) and the 12 month rolling average. The
12 month rolling average curve shows the average combined streamflow of the 12 months
prior to the marked point in Figure 4-2. Most noticeable from the rolling average is the low
streamflows that occur in 2006. In the period 1996 to 2005, the rolling average is mostly
above the combined streamflow average, while the rolling average for the period 2006 to

2023 show several low 12 monthly combined streamflow minima.

Table 4-1 shows the mean, standard deviation and coefficient of variance for the monthly
and annual streamflow data for Reservoir A. The same statistical quantities for Reservoir B

are given in Table 4-2.
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Figure 4-2. Monthly Streamflow Data for Reservoir A, Reservoir B and Combined Streamflow. Also Shown is the Trend and 12 Month Moving

Average of the Total Streamflow.
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Table 4-1. Statistical Properties of Streamflow into Reservoir A.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual
g Mean (MI) 1179 1125 1007 1932 3662 7323 11191 14115 11171 8033 4647 2682 68067
% Standard Deviation (MI) 426 374 491 676 1278 2190 2150 3220 2791 1984 1527 2308 12411
i} Coefficient of Variance (C,) 0.361 0.332 0.487 0.350 0.349 0.299 0.192 0.228 0.250 0.247 0.329 0.861 0.182

Table 4-2. Statistical Properties of Streamflow into Reservoir B.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual
% Mean (MI) 1042 650 575 715 1796 3117 4736 6439 6189 5335 3429 1785 35808
§ Standard Deviation (MI) 636 545 331 493 3102 3782 3585 4230 3626 4022 3758 1085 17048
- Coefficient of Variance (C,) 0.611 0.838 0.576 0.690 1.727 1.213 0.757 0.657 0.586 0.754 1.096 0.608 0.476




4.2.1.2 Evaporation Data

The evaporation losses and rainfall gains in both reservoirs are modelled through climatic
data, and the evaporation empirical factors ‘A’ and ‘B’ (VU and DSE, 2005), as defined by
Equations (4.1) and (4.2):

Evaporation(mm) = B x[Evaporation Data]+A —[Rainfall Data] (4.1)
Net Evaporation (Ml)=Evaporation(mm) x Surface Area(Ha)/100 (4.2)
where Aand B are empirical factors.

The evaporation data time-series and the rainfall data time-series are historic monthly
measurement records and are assumed to be valid for both reservoirs. For each reservoir,
evaporation (in millimetres) is determined using Equation (4.1). The evaporation and rainfall
data are adjusted by the A and B parameters, individually set for each reservoir. The final
loss/gain volume (net evaporation) is determined during model simulation by multiplying the
evaporation in millimetres by the reservoirs’ surface area, as shown in Equation (4.2). The
volume to surface area relationships for Reservoirs A and B are defined in Table 4-3 and

Table 4-4, respectively.

Table 4-3. VVolume to Surface Area Relationship of Reservoir A.

Volume (MI) Surface Area (Ha)
0 0

10,000 176

50,000 700

100,000 1,000

Table 4-4. Volume to Surface Area Relationship of Reservoir B.

Volume (MI) Surface Area (Ha)
0 0

10,000 176

50,000 700

60,000 1,000




4.2.1.3 Demand

In this study the yield estimate is synonymous to the Average Annual Demand (AAD) when
the system is performing at a level of service threshold (see Section 2.4 for further
discussion). This means that the demand itself is not an input variable, but its value in this
study — termed yield — is the output of the model. However, the two variables, temporal
disaggregation factors and the climate index variable are used to modify the demand before

model simulation.

4.2.1.4 Temporal Disaggregation Factors

Temporal Disaggregation Factors (TDFs) disaggregate the AAD into monthly demands. As
the monthly values (nominal values used in this study and in the REALM Getting Started
Example are shown in Figure 4-3) are percentages of the annual demand, the sum of the 12
individual factors is required to sum to 100%, therefore TDFs are a multi-factored variable.
TDFs are generated using historic water use data to determine the typical breakdown of

annual to monthly demands.
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Figure 4-3. Nominal Temporal Disaggregation Factors used in this Study.




4.2.1.5 Climate Index Data

The so called “climate index” variable time series consists of 28 years of monthly data which
characterises ex-house water use. The data is an empirical representation of demand
behaviour that results from climatic fluctuations over the 28 year period. The climate index
variable is used after the application of the TDFs to seasonally adjust the monthly demand as

shown in Equation (4.3).

Monthly Demand = %Yj +B, (4.3)
where Monthly Demand is the seasonally adjusted monthly demand
Cl; is the climatic index for the j-th month
Y| is the ex-house water use (i.e. the difference between the j-th

month demand and the j-th month base demand, B;)

B; is the base demand for the j-th month

The climate index variable is generally inversely proportional to the streamflow and
correlated to rainfall data to a certain extent. It can also depend on a combination of rainfall,
temperature and time of the year (VU and DSE, 2005). The climate index variable can be
determined by hindcasting procedures which produces monthly data. The climate index

variable must average to 100 for the entire historic period.
4.2.1.6 Restriction Rule Curves

A five-stage demand restriction policy (shown graphically in Figure 4-4 and numerically in
Tables 4-5 and 4-6) is adopted for the system to restrict the demand during low system
storage volume periods. It consists of upper and lower rule curves, including four
intermediate restriction zones (with definitions of relative positions and percentage
restrictable levels), and a base demand curve. The upper, lower and intermediate Restriction
Rule Curves (RRCs) denote the restriction stage triggered when the total system storage,
expressed as percentages of AAD in Figure 4.4, drops below a certain level. The base curve
denotes the unrestrictable demand, generally the in-house water demand. Restrictions are
only applied to ex-house water demand, which is the difference between the monthly

(unrestricted) demand and the base demand curve.

The intermediate zone curves are defined by a relative position (Table 4-6) between the
upper and lower curves, measured from the upper RRC. If the total system storage volume is

in an intermediate zone, the ex-house water demand is restricted by the appropriate



percentage restrictable. More severe restrictions are progressively imposed as the total
system storage volume continues to drop, until it falls below the lower RRC. In this zone,
zone 5, 100% ex-house water demand restriction applies, i.e. only the base demand is
supplied (Perera and James, 2003). The nominal trigger levels of the upper and lower curves
and base demand are given in Table 4-5 and values of the relative position and percentage

restrictable for the intermediate curves are given in Table 4-6.

Percentage of Average Annual Demand

140
120
Upper RRC

80

60

Zone 0/ Stage 0

Zone 1/ Stage 1
Zone 2 / Stage 2
Zone 3/ Stage 3

Lower RRC
40
Zone 5/ Stage 5
201
Base Demand
1 1 1 1 1 1 1 1 1 1 1
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Figure 4-4. Set of 5-Stage Urban Restriction Rule Curves.

Table 4-5. Restriction Rule Curve Values.

BaseDemand Lower RRC  Upper RRC
(% AAD) (% AAD) (% AAD)
January 6 70 120
February 6 60 110
March 6 50 100
April 6 45 90
May 6 40 80
June 6 40 80
July 6 40 80
August 6 40 80
September 6 45 90
October 6 50 100
November 6 60 110
December 6 70 120
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Table 4-6. Percentage Restrictable and Relative Position of the Intermediate Curves.

Relative Position as % from Upper RRC

Per centage
Upper Bound Lower Bound Regirictable

Zone 0 - 0 0

Zonel 0 25 20

Zone 2 25 50 0

Zone 3 50 75 60

Zone 4 75 100 80

Zone 5 100 _ 100

The set of RRCs (including positions and percentage restrictable) are developed through
optimisation, experience and stakeholder requirements. There are obvious interactions and

correlations within the RRC set and also interactions to other REALM input variables.
4.2.1.7 Target Storage Curves

The reservoir target storage curves specify the preferred storage volumes of individual
reservoirs for a given total system storage. In this case study they are defined by a single set
of five-point target curves for all months of the year. In practice, they are generally produced
from optimisation, and are designed to force inter-reservoir transfers to ensure that demands

can be supplied at various demand centres.

Given in Table 4-7 and shown graphically in Figure 4-5 are the nominal values used in
this study. For a given total system storage at a given month, say 65,000 MI, the target
storage curves specify the storage volumes of Reservoirs A and B to be 40,000 Ml and
25,000 MI respectively. Linear interpolation is used for total system storage volumes

between the points provided in Table 4-7 during REALM simulation.

Table 4-7. Target Storage Curve Values for Simple Case Study.

Total System

Storage(Ml)  ° 65,000 125,000 140,000 160,000
Reservoir A 0 40,000 65,000 80,000 100,000
Storage (MI) ' ' ' '
Reservoir B

Storage (M) © 25,000 60,000 60,000 60,000
Point 1 2 3 4 5
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Figure 4-5. Target Storage Curves for the Hypothetical Case Study System.

4.2.1.8 Security of Supply

Security of supply thresholds ensure that the system is able to supply the demand over the
planning period while meeting stakeholder requirements. In this study, three thresholds are

employed:

1. Reliability of supply — The percentage of simulation time-steps in which
restrictions are not imposed is nominally considered as 95%. For planning
period of 28 years, 95% reliability means a maximum of 15 months in

restriction.

2. Maximum allowable consecutive months in restriction — Nominally the
maximum allowable consecutive months in which restrictions are imposed is

setto 12.

3. Worst severity restriction stage — The worst severity restriction stage is

nominally considered to be stage 3.

The system is considered to have failed if one or more of these thresholds are violated.
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4.2.1.9 Initial Storage Volumes

Initial storage volumes set the storage of each reservoir at the beginning of the simulation
period. Much discussion surrounds the values of the initial storage volumes. Theoretically
they can be set anywhere between 0% and 100% of capacity. If the initial volumes are below
the upper RRC then restrictions are immediately imposed in the simulation (i.e. at the start of
the model simulation) and if low enough the maximum severity threshold violated and the

system already failed.

In practice, the initial storage volume(s) depend of the purpose of the study and can be
set to the current storage volume, to an ‘online’ volume for augmentation studies (level
which is reached before an additional storage begins to supply water) or to an arbitrary

percentage such as 80%.
4.3 Sensitivity Analysis Framework

The aim of this preliminary case study on a hypothetical urban water supply system is to
evaluate the applicability of the selected sensitivity analysis techniques on an urban water
supply allocation model, specifically used to determine the sensitivity of the yield estimate to
its input variables. Intended as a proof-of-concept study — an exploratory process — the
accuracy of the sensitivity framework, the variable attributes (ranges, distributions) and the
variable handling strategies used in this study were not designed nor expected to be perfect.
Instead, the limitations, conclusions and recommendations from this proof-of-concept study
will be considered for use in the estimation of yield of the Barwon urban water supply

system (Chapter 5).

The definition of yield used in this study is: the maximum average annual volume of
water that can be supplied from the water supply system subject to streamflow variability,
operating rules, demand pattern and adopted level of service (or security criteria), which are
defined by supply reliability, worst restriction level and consecutive number of months of
restrictions (VU and DSE, 2005). The estimation of yield is determined using the process
described in Section 2.5.

As discussed in Section 3.3, Sensitivity Analysis (SA) is: “the study of how the variation
in the output of a model (numerical or otherwise) can be apportioned, qualitatively or
quantitatively, to different sources of variation (e.g. input variables, model parameters,
structure etc.), and how the given model depends upon the information fed into it” (Saltelli,
2000). SA assesses the effect of input variation on the model output, indicating the

importance of each input variable to the processes of the model. The greater the output
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change that is incurred by a unit change in an input variable, the more sensitive the model is
to changes in that input variable. The sensitivity of the model to an input variable illustrates
the care that modellers must take to obtain and employ an appropriate value for the variable,
but also signifies its importance in relation to its dependency by the model structure (Saltelli
etal., 1999).

The basis of SA is to perturb the input variables, within a predetermined range, and
observe the changes they have on the model output. The pattern of perturbations depends on
the selected SA technique. For this study and the study on the Barwon urban water supply
system (Chapter 5), three SA techniques were selected (Section 3.5). The Morris method was
used primarily as a screening method to identify input variables that the yield estimate has a
negligible sensitivity to and sot they can be eliminated from further, more detailed SA. The
more accurate but computationally expensive Fourier Amplitude Sensitivity Test (FAST)

and method of Sobol” were then used on the remaining input variables.

The methodology applied in this case study is a basic application of sensitivity analysis
based around uncertainty and errors in the values of the input variables. All input variables
are considered to have data error resulting from instrument errors, reading and handling
errors, etc. The error range for all the input variables are assigned using common error
margins considered standard within the water resources industry or where limitations due to
variable characteristics exists. The distributions of the input variables are considered to be
uniform so that the SA explores the range evenly, and should preferably be continuous for
accurate SA. These were the general handling guidelines used in this preliminary study with
further discussion on the handling of individual variables presented in the following
paragraphs. Other sources of uncertainty, such as physical system characteristics (e.g.
reservoir and carrier capacities) and model operation uncertainty (e.g. REALM’s internal
operations, such as the hierarchy of optimisation) were considered fixed (or no uncertainty)
in this study.

In SA, the input factors or variables need to be sampled over a reasonable range of
absolute values, or a percentage change from their nominal values. This sampling range is up
to the analysts’ discretion; generally it is considered to be a feasible range in which a
variable can exist in the physical system. It can, however, exceed the feasible range in some
cases; such as when the feasible range is determined by stakeholders’ choice, or when

observing a model’s behaviour at extreme parts of the variable space.

The random samples that are generated in accordance to the selected SA technique

represent the perturbation of each input variable as a scalar value. Variables must therefore
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have the ability to be perturbed by a single, scalar sample. Where the model contains only
scalar variables perturbing the parameters is simple. For cases where the input variables are
time-series or have multiple factors within the variable (e.g. the 12 monthly values
constituting the TDFs in Section 4.2.1.4) special handling strategies are required. This is
because the random scalar samples cannot simply perturb variables that have more than one

factor associated with them.

The types of data relevant to this case study are as follows:

1. Time series data variables — The time series data variables used in this case study
are: 28 years of monthly streamflow, rainfall, evaporation and climate index data.
These data variables are based on historic measurements and therefore subject to
data collection and handling errors: the industry standard is to assume a +5% error
margin on individual datum. A special handling technique is required to perturb this

type of variables.

2. Percentage scalar variables — This group consists of scalar variables that nominally
assume a percentage value. A single percentage randomly selected from the
variable’s range is used to perturb the nominal value of the variable. The variables
contained in this group are: initial storage volumes as percentage of capacity,
reliability of supply threshold, upper RRC and lower RRC, base demand, and
relative position and percentage restrictable demand for various intermediate

restriction stages.

3. Absolute scalar variables — Consisting of the consecutive number of restriction
months threshold, worst restriction stage threshold, and evaporation modelling
empirical factors A and B, the variables within this group are characterised by an
absolute scalar value. The range for these input variables is defined by absolute

values from which a randomly value is selected.

4. Multi-factored variables — This group contains variables that have multiple factors
attributed to them, such as the TDFs which have 12 monthly values, but should be
considered as a single input variable. The individual factors within these variables
could be tested individually in the sensitivity analysis but from a system
management position they should be considered as a single variable. Also, some
multi-factored variables have intricate relationships within them that should remain
intact when performing SA. Temporal disaggregation factors, volume to surface area
relationship of reservoirs and the target storage curves are the multi-factored

variables in this study.
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There are several variables that are required to sum or average to a certain value,
therefore require a special handling strategy. They are the TDFs, climate index time series
and target storage curves. The TDFs and climate index variables are handled using the
algorithm presented in Section 4.3.1.3, which perturbs individual factors so that their sum
maintains the required property, while the handling technique used for the target storage

curves is discussed in Section 4.3.1.6.

A list of variables and their assigned ranges used in this case study is shown in Table
4-8. Also presented in Table 4-8 are reference numbers of the variables (variable numbers)
and groups they are assigned to. Their grouping is used in the grouping SA experiments in
Sections 4.4 and 4.5. The fourth column provides the sampling ranges of each variable and

the fifth column displays the variable type as listed above.
4.3.1 Input Variable Handling

The following is a discussion on the handling strategies for each of the identified input
variables arranged in the groupings given in Table 4-8. In the SA, the variables are required
to be perturbed in accordance to the SA techniques’ requirements. A range must therefore be
defined for each input variable from which a sample that represents the perturbation can be

randomly selected.
4.3.1.1 Streamflow

The streamflow data is based on historic measurements and therefore subject to data
collection and handling errors. Therefore, a sampling range of -5% to +5% for streamflow is
chosen to reflect the accepted water resources industry error margin. Each streamflow data
point is changed uniformly in this study by the same randomly selected number from the

above range.
4.3.1.2 Evaporation

The rainfall and evaporation time series consist of 28 years of monthly historic data. They
are subject to similar data collection and handling errors as the streamflow variable,
therefore a range of -5% to +5% of the recorded data is suitably chosen. A single percentage
randomly selected from this range is used to change all the data points in the time series
using a uniform change method as in Section 4.3.1.1.

The two evaporation empirical factors associated with the modelling of evaporation of
each reservoir are sampled individually. Factor A has a nominal value of 0 and is sampled
between -5 and +5. Factor A is simply added to the evaporation height in Equation (4.1).

4-15



Table 4-8. Description of Input Variables Used in this Study.

Group

Variable

Name Number Variable Range Remarks
-804 - 0, i - i
Streamflow 1 Streamflow S.A’ .+5A’ of T'”_‘e SEries
historic data variable
2 Rainfall -5% - +5% of Time-series
historic data variable
3 Evaporation -5% - +5% of Time-series
P historic data variable
4 Evaporation Factor A for Reservoir A 0-5 Ab§olute scalar
variable
Evaporation 5 Evaporation Factor A for Reservoir B 0-5 Ab§olute scalar
variable
6 Evaporation Factor B for Reservoir A 0.95-1.05 Abgolute scalar
variable
7 Evaporation Factor B for Reservoir B 0.95-1.05 Abgolute scalar
variable
504 - 0, i-
8 Volume to Surface Area Relationship 5 A’. +5% of Mu_lt' factored
nominal volumes variable
504 - 0, i-
9 Temporal Disaggregation Factors 5% . +3% O.f. Mu_lt' factored
Demand nominal position variable
Pattern 10 Climate Index -5% - +5% of Time-series
nominal data variable
-804 - 0,
11 Upper Restriction Rule Curve Position 5 A’. +5% O.f. Per_centage scalar
nominal position variable
-804 - 0,
12 Lower Restriction Rule Curve Position 5% . +5% O.f. Per_centage scalar
nominal position variable
13 Base Demand Position -5% - +5% of Percentage scalar
nominal position variable
504 - 0,
14 Stage 1 Percentage Restrictable 5% - +5% O.f. Perpentage scalar
nominal position variable
-804 - 0,
- 15 Stage 2 Percentage Restrictable 5% . 3% O.f. Per_centage scalar
Restriction nominal position variable
Rule Curves . _504 - +50
16 Stage 3 Percentage Restrictable 5% . 3% O.f. Per_centage scalar
nominal position variable
504 - 0,
17 Stage 4 Percentage Restrictable 5% - +5% O.f. Perpentage scalar
nominal position variable
504 - 0,
18 Stage 1 Relative Position 5% - +5% O.f. Perpentage scalar
nominal position variable
-804 - 0,
19 Stage 2 Relative Position 5% . +3% O.f. Per_centage scalar
nominal position variable
504 - 0,
20 Stage 3 Relative Position 5% - +5% O.f. Perpentage scalar
nominal position variable
21 Consecutive Month in Restriction 6 — 18 months Abgolute scalar
variable
Security of 22 Worst Severity Restriction Stage 3-4 Ab§olute scalar
Supply variable
- Percentage scalar
0 — 0,
23 Supply Reliability 80% — 98% variable
504 - 0,
24 Target Storage Curves — Point 2 5% . +5% O.f. Perpentage scalar
Target nominal position variable
arge EYT)
Storage 25 Target Storage Curves — Point 3 5% . +5% O.f. Perpentage scalar
Curves nominal position variable
-804 - 0,
26 Target Storage Curves — Point 4 5 A’. +3% O.f. Per_centage scalar
nominal position variable
- 0,
Initial 27 Initial Volume of Reservoir A 25 10.0 % of Per_centage scalar
Storage capacity variable
Volumes 28 Initial Volume of Reservoir B 25-100% of Percentage scalar
capacity variable
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This means that the -5 to +5 range causes up to a £5 mm change in the evaporation.
Factor B is sampled from 0.95 to 1.05, with its nominal value of 1. The range for Factor B
was selected as it results in approximately a +5% change to the evaporation via Equation
(4.2).

The volume to surface area relationship, given in Tables 4-3 and 4-4, is assigned a
continuous distributed sampling range of -5% to +5%. This range was considered as a
representation of the measurement errors of the reservoir profile which will subsequently
error the evaporation modelling for a given storage volume. In this study the random sample
changes all surface area values simultaneously, leaving the storage volume unchanged. i.e. a
+3% random sample changes all intermediate surface areas given in Tables 4-3 and 4-4 by

+3% simultaneously.
4.3.1.3 Demand Pattern

Monthly demand pattern is affected by two variables; the TDFs and climate index variables.
Both of these variables are multi-factor variables and require special handling strategies to
ensure that they maintain the requirement that they sum to, or their average equals, a
required value. The TDFs, shown in Figure 4-3, require the 12 monthly values to sum to

100% and climate index time series must average 100 over the simulation period of 28 years.

Both variables are handled using the same algorithm which changes each factor
(approximately) by the randomly selected percentage change. The algorithm ensures that all
individual factors within a multi-factored variable are perturbed, requiring only one

randomly selected sample. The algorithm is given on the next page.

Figure 4-6 provides an example of the following algorithm applied to the nominal TDFs
(given in Figure 4-4) using a random number: p = +0.035. The rows in Figure 4-6 show

notable values determined in each step in the above algorithm. As it can be seen, the initial
calculation of X, results in a total sum error of 0.002, therefore the 12 monthly are scaled

back to sum to unity. The algorithm perturbs each monthly factor by either -3.3%, or +3.7%;

i.e. approximately the expected 3.5%. This is a satisfactory result for perturbation algorithm.

The sampling range of -5% to +5% was considered for perturbing the TDFs as it
produces adequate perturbation of the individual factors while still ensuring a realistic
correlation between monthly figures. Using the above algorithm, only one random sample is

now required to perturb the TDFs.
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The perturbations of climate index variable are sampled over a range of -5% to +5%.
This was considered a reasonable range for similar reasons to the streamflow variable. One

random sample is used to perturb the climate index variable.

Let multi-factor variables: X, ..., Xk > 0 be the set of inputs

such that:  >* X, =1.

Let €1, ..., ek be a random permutation of +1’s and -1’s

(normally as near as possible to £ for each +1’s and -1’s),

S0 as not to introduce bias.

(=g X, i=1..,k
V=Xl

Let p be a random variable uniformly distributed between,

say —a and +a (e.g.£0.05).

Z =p(Y, _Y_)
Then >* Z =p(>." Y, —kY)=0

Let the modified value of Xj be X' =X; +Z;,;i=1,...,k

Check that all X are positive for p = +a. Otherwise, the

range —a to +a of p must be suitably reduced.

Finally check that )" X =>" X, +> 7 =1.

If > X/ =1, standardise X" to sum to unity.
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Figure 4-6. Example of Perturbation Algorithm on Temporal Disaggregation Factors.

4.3.1.4 Restriction Rule Curves

Referring to Figure 4-4, and Tables 4-5 and 4-6, three sub groups of variables in the RRCs
are identifiable: primary curves (i.e. upper and lower RRCs, and base demand), intermediate
curves and percentage restrictable. All RRC variables are assigned a 5% error margin
around the nominal value, therefore all are assigned a continuous distribution ranging from -

5% to +5%. Each sub group is handled as follows:

Primary Curves

Primary curves define the positions of the upper and lower RRCs and the base demand. A
single random percentage value is used to perturb the twelve monthly values of the upper
RRC. For example, if a +4.5% is random selected, each monthly value of the upper RRC is
changed by +4.5%. Similarly, another random percentage is used to perturb the lower RRC
and yet another to change the base demand. Therefore, three random percentage values are

required, one for each of the primary curves.

Percentage Restrictable

There are four percentage restrictable variables, one for each of the four restriction zones. In

this study, each percentage restrictable value is perturbed individually, requiring four random
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numbers. For example, a single percentage value (that is randomly selected in accordance to
the SA techniques requirement) is used to change the stage 1 percentage restrictable value.
Another randomly selected percentage value is used to perturb the stage 2 percentage

restrictable value, and so on.

Intermediate Curves

The intermediate curves define the trigger levels between restriction zones 1, 2, 3 and 4. The
relative positions of the three intermediate curves (between zones 1-2, 2-3 and 3-4) was
perturbed by changing the nominal scalar values. Each relative position variable is perturbed
individually, therefore requiring three randomly selected numbers (one for each relative
position). This effectively changes their relative position between the upper and lower RRCs

either positively or negatively.
4.3.1.5 Security of Supply

A continuous distribution range of 80% to 98% was assigned to the reliability of supply
threshold variable. The lower limit was considered to be representative of what the water
users could consider a reasonable minimum reliability of supply. An upper limit was initially
considered to be 100%, however no restriction periods leads to very low yield estimates,

therefore was set to 98%.

The maximum number of consecutive months in restrictions threshold was assigned a
range of 6 to 18 months. Restrictions are implemented on a monthly basis; therefore the
distribution of the sampling range for this variable must be discrete. It was discussed in
Chapter 3 that discrete distributions should be avoided as some SA techniques are not able to
handle them correctly. For instance, the Morris method observes the difference between two
consecutive sample points to determine the elementary effect of such a change when are then
standardised between all variables. If these consecutive sample points do not have a relative
association between points (as is possible with discrete variables) the elementary effect
produces a sensitivity measure that is not representative to the perturbation. Discrete
distributions also create problems in the estimation of the integral used in the variance based
methods. However, in this case a discrete distribution is suitable and was adopted as there is
a direct and relative relationship between each of the discrete points (i.e. the discrete points
are representative of the 6 to 18 month range, which are ordered and evenly spaced), and the

consecutive months variable cannot be reduced to fractions of months.

A discretely distributed range of stage 2 to stage 4 was assigned to the worst severity
restriction stage allowable threshold variable. Again, a discrete distribution is suitable due to
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the direct representation of the variable, and that the stages are themselves integer values.
Stage 1 was excluded from this range as it is generally accepted by stakeholders of the water
system to be too severe a threshold as it does not allow stage 2 restrictions to be imposed on

the ex-house demand.
4.3.1.6 Target Storage Curves

The target storage curves (see Figure 4-5 and Table 4-7 for nominal values) could be
considered as a multi-factored variable (i.e. should be considered as a single variable in the
SA). However, they are not handled as such in the SA of this case study as an appropriate
handling strategy could not be established. Target storage curves possess a requirement that
individual storage volumes must sum to a given total system storage, therefore this must be
considered in developing the handling strategy. Also, the storage volume of a reservoir

should not decrease as the total system storage increases.

When setting the values of the reservoirs the lower limits and upper limits of both must
be considered so that they sum to the nominal total system storage for each point. Table 4-9
shows, in order of descending rows, the nominal total system storage (as given by VU and
DSE, 2005), the nominal individual storage volumes, the lower bound of Reservoir B (with
the associated Reservoir A volume given in parenthesis), the upper bound of Reservoir B and
lastly the curve reference points. At point 1 both storages are at zero, and at point 5 they are
both at capacity. The intermediate points 2, 3 and 4 are set so their sum equals the total
system storage for that point. Reservoir B is considered as the controlling reservoir as it is
the smallest, hence used for setting the lower and upper limits. Reservoir A then makes up

the remaining total system storage volume, with the associate volume given in parenthesis.

Table 4-9. Reservoir B Sampling Limits for Nominal Total Storage VVolumes. The Required
Reservoir A VVolumes are Given in Parenthesis.

Nominal Total System Storage

M1y 0 65,000 125,000 140,000 160,000
Reservoir B Nominal Values (MI) 0(0) 25,000 60,000 60,000 60,000
(Reservoir A Nominal Values, MI) (40,000) (65,000) (80,000) (100,000)
Reservoir B Lower Limit (MI) _ 0 25,000 40,000

(Reservoir A Storage, Ml) (65,000) (100,000) (100,000)

Reservoir B Upper Limit (Ml) B 60,000 60,000 60,000

(Reservoir A Storage, Ml) (5,000) (65,000) (80,000)

Point 1 2 3 4 5
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To handle the target storage curves, several methods were considered:

1. Change points 2, 3 and 4 for Reservoir B independently by sampling three random
numbers. The range of sampling of point 2 is defined by the lower and upper limits
in of column 3 in Table 4-9. The range for point 3 is given by the lower and upper
limits shown in column 4 in Table 4-9, and so on. Once the storage of Reservoir B is
set, Reservoir A takes up the difference to the total system storage with the

corresponding volumes shown in parenthesis.

2. Change the total system storage volumes for points 2, 3 and 4 either independently
(using three random numbers) or simultaneously (using one random number and a
predefined direction pattern). Changing the total system storage also requires the
individual storages to be adjusted. The individual storages are altered so that their
percentage of total storage remains the same, effectively changing the individual

storages by the same percentage as the total system storage.

3. Generate multiple sets of target curves before the SA experiments and assigned a
discrete number to each. The curves were generated so that the minimum and
maximum storage limitations were observed and they summed to the correct total

system storage.

The first method listed above was used in the SA for this case study as it provides
perturbations without using discrete distributions. The second method was disregarded as it
required an extra, superfluous change to the individual volumes as well as the total system
storage. The third method was not considered as it requires a discrete distribution which
would not have a relationship between the sampling points, hence causing issues with the SA

techniques.
4.3.1.7 Initial Volume of Reservoirs

The storage capacity of Reservoirs A and B are 100,000 Ml and 60,000 MI, respectively. The
initial volume of the reservoirs can theoretically be sampled from 0% to 100% storage
capacity.

Figure 4-7 shows the yield estimate considering the initial storage volume as a variable
between 0% to 100% storage capacity for both reservoirs, keeping the other input variables
at their nominal values as given in Section 4.2 and VU and DSE (2005). When the initial
volumes are low the model produced small yield estimates. When both of the initial storage

volumes were increased to sum to approximately 35% to 40% of the total storage capacity,
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the yield increases to ~60,000 Ml (indicated by the yellow dashed line in Figure 4-7), and the

rate of change of the yield estimate decreases as can be seen from the wider contours.
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Figure 4-7. Yield Estimate Over 0-100% Initial Storage VVolumes.

At the yield estimate of approximately 60,000 Ml (highlighted by a yellow dashed line in
Figure 4-7), a change of the critical security of supply threshold (that which is violated)
occurs. For yield estimates lower than 60,000 MI the worst severity restriction stage (set at
stage three) becomes the critical threshold. This is due to the reservoirs filling from a small
initial volume, causing the maximum severity threshold to be violated at early part of the
simulation period, giving low yield volume. When the yield estimate is greater than 60,000
M, the supply reliability (set at 95%) becomes the critical threshold. The streamflow (Figure
4-2) at the beginning of the historic sequence provides high volumes of inflow in the
reservoir. As a result, storage filling is quite rapid. Within only a few years the reservoirs
come close to or do spill, depending on the initial storage volumes. After this point, the
reservoirs never drawdown further than the stage one restriction level, or never long enough

to violate the consecutive number of months of restrictions (nominal value is 12 months).

Considering the unrealistically low yield that is produced from a low initial storage
volume, the sampling range of the initial storage volume parameter for Reservoirs A and B

were considered as uniformly distributed from 25% to 100% storage capacity in initial
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investigations. However, since the definition of yield is not dependent on the initial storage
volumes and considering that yield is a planning attribute which depends on system
characteristics, a methodology was developed to determine yield estimate without the

influence of initial storage volume.

An iterative procedure is adopted in which the simulation is repeated several times with
end storage becoming the initial storage of the subsequent iteration until the end storages
converge. Studies conducted on this case study system showed that within 2-3 iterations the
initial storage volume of the final iteration converges to the same value and hence, the yield
converges, regardless of the starting initial storage volume. This approach was used in this

case study as well as the Barwon urban water supply system study (Chapter 5).

The initial storage volumes contain modelling uncertainty unlike all other input variables
which were assumed to contain measurement and handling error uncertainty. The initial
storage volumes are included in the SA of this case study to observe if there remains any

effect on the estimation of yield while employing this procedure.

4.3.2 Design of Sensitivity Analysis Experiments

A tiered approach is the most widely used methodology for SA (e.g. US EPA, 2003; Saltelli
et al., 2000, 2004); starting with simple and computationally inexpensive experiments, and
progressively increasing the computational cost and the accuracy of the experiments. Often
preliminary random experiments using graphical techniques, such as scatter plots, are
performed as a screening experiment to gain a basic understanding of each input variable to
model output behaviour. The purpose of simple random experiments as screening
experiments is to identify trends, non-influential variables and possible limitations (e.g. non-
influential regions of input space) of each input variable. Then more complex,
comprehensive and accurate SA techniques are used on input variables that show importance

in the screening experiments.

The Morris method, Fourier Amplitude Sensitivity Test (FAST) and the Sobol’ method
of sensitivity analysis were selected as the most appropriate SA techniques for use in
estimating the sensitivity of the yield estimate of urban water supply systems. See Section
3.5 for a review, comparison and selection of these techniques. The Morris method was
selected as the screening technique to provide identification and ranking of the most
important variables. It also indicates the variables that have possible non-linearity or
interaction effects. The results of the Morris method are then confirmed by the FAST and
extended FAST (eFAST) methods.
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The variance based methods — the FAST/eFAST and Sobol’ methods — were selected for
detailed analyses of the importance of variables used in the estimation of yield of urban
water system. FAST provides first-order importance measures, with eFAST providing first-
and total-order sensitivity effects. Comparing the first-order and total-order sensitivity
indices gives further indication of the importance of variables and identifies variables with
higher-order effects. The method of Sobol’ is selected to quantify higher-order interaction

effects between input variables.

SA on groups of variables (groupings of variables indicated in Table 4-8) will also be
performed using the Morris method and eFAST. This is done to gain information regarding
the effect of a set of linked variables, showing possible synergy in the estimation of yield
amongst the variables. Sobol’ does not allow selection of groups of variables, but determines
effects of multiple variables by calculating second- and higher-order effect of all
combinations of input variables of a particular order. For instance, a second-order analysis
will quantify the effects all pair-wise combinations of input variables, a third-order will
quantify the combined effects of all three variable combinations, etc.

4.4 Sensitivity Analysis: The Morris Method

All input variables listed in Table 4-8 were tested for their importance in the estimation of
yield of the hypothetical urban water supply system using the Morris method. The Morris

method algorithm provides three indices:
u - The overall sensitivity effect due to all first- and higher-order effects.

u* - The ‘true’ importance measure, free of any non-monotonic input to output

behaviour that could be present in p.

o - The possible non-linearity of an input variable or interactions of an input
variable with other variables. The Morris method does not distinguish

between these two effects.

The Morris algorithm requires the selection of the number of levels p, A as a multiple of

1/(p - 1), the number of trajectories to perform and a random seed.

The experiments in this study were performed using a variety of algorithm settings and
random seeds as noted in Table 4-10. The level p determines the number of equally spaced
sampling points in the variables’ range (i.e. the sampling resolution) from which two are
sampled with a A change between. The higher p is, the higher the number of possible points

that can be sampled from the variable space. Different number of levels, p, were used so that
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the sampling can be over a sparse and a fine resolution. Different A were also used so that
small and broad perturbations were produced. The number of trajectories required, r, and the
number of input variables, k, determine the number of required model simulations: r(k + 1).
The random seed ensures that different sets of trajectories are constructed for each p and A

setting.

The results from all experiments are combined for simplicity and shown in Table 4-11.
The reason for the various settings and the combined results is so that any bias that may
occur from a particular setting is avoided and that all effects from small and large A changes

are captured.

Table 4-10. Algorithm Settings for the Morris Method Sensitivity Analysis Experiment.

Experiment _'l\_l :J;?:C?Oﬁ; Level A Seed

1 10 4 1 18936437
2 10 4 1 874366872
3 10 6 2 18936437
4 10 6 2 874366872
5 10 6 3 18936437
6 10 6 3 874366872
7 10 6 4 18936437
8 10 6 4 874366872
9 10 8 3 18936437
10 10 8 3 874366872
11 10 8 4 18936437
12 10 8 4 874366872
13 10 8 5 18936437
14 10 8 5 874366872
15 20 4 2 18936437
16 20 4 2 874366872

Individual results of the each experiment listed in Table 4-10 are given in Appendix B.
The results in Appendix B show that the p, u* and o measures for most input variables are
relatively stable for the various setting used. Of particular significance is the target storage
curve point 3 variable which results in zero p, p* and o measures for all experiments except
experiment 16. Similarly the relative position point 1, stage 2 percentage restrictable and
lower RRC position variables show that in some experiments they return zero p, u* and ¢
measures, while in other experiments they have a low importance measure. The combined
results given in Table 4-11 reflect a more reliable estimation of the importance of the input

variables as the effects of the various Morris algorithm settings are capture.
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Included in Table 4-11 is the p, u* and o measures and the u* rankings. u* is used for
ranking as it is a better measure of the total sensitivity of an input variable because it
considers only the magnitude of the change, whereas p also considers the direction of the
change and can therefore include cancelling out of effects. The p, u* and o results are also
presented graphically on a p-c axis in Figure 4-8. Noticeably there are only a few input
variables that show any importance to the estimation of yield. These variables are labelled in
Figure 4-8, whereas the remaining variables that have negligible p, u* and o results in

comparison are not labelled for clarity.

The streamflow variable is clearly the most important input variable, with the reliability,
consecutive months and the upper RRC showing noteworthy effects on the yield estimate, as
indicated from the position along the p/p*-axis. The consecutive months threshold,
reliability threshold and streamflow show large interaction or non-linearity behaviours as

indicated by the large o indices.

Interestingly, most of the input variables show a negative input to output behaviour, this
is revealed by the difference between p and p*. When these indices are equal but opposite
(note that pu* will always be positive) it shows that the variable have a monotonically
negative input to output behaviour. When they are not equal but p is still negative it shows
that the input to output behaviour is non-monotonic but tends to be negative. The
streamflow, consecutive months threshold and the rainfall variables all produce equal p and
p* indices. This indicates that when they have been perturbed they produce an output change
in the same direction, i.e. when they are increased, the yield estimate also increases, when

they are decreased, the yield decreases.

There are a number of variables that show a zero influence on the output. These include
the initial storage volume variables, the target curve points 3 and 4, stage 3 and stage 4
percentage restrictable, stage 2 and stage 3 relative position, and the worst restriction stage
threshold. The initial storage volume variables are zero due to the iterative handling
procedure used. The zero measures for the stage 2 (and 3) relative position and stage 3
percentage restrictable suggests that the worst severity restriction stage that is triggered is
stage 2 restrictions, i.e. the system never triggers a stage 3 restriction. This is also indicated
by the zero results for the worst restriction stage, which itself suggests that total system
storage does not drawdown enough for the worst restriction stage (either stage 3 or 4) to be
the critical threshold. The zero effects of the target curves points shows that changing these

points does not effect the yield estimate.
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Table 4-11. Combined Results of the Morris Method Experiments.

Factor R p* c p* Ranking
Streamflow 6151 6151 996 1
Rainfall 852 852 189 5
Evaporation -629 640 234 9
Evaporation Factor A for Reservoir A -658 713 391 8
Evaporation Factor A for Reservoir B -728 728 192 7
Evaporation Factor B for Reservoir A -294 295 244 12
Evaporation Factor B for Reservoir B -315 315 211 11
Volume to Surface Area Relationship 200 205 209 14
Temporal Disaggregation Factors -433 444 264 10
Climate Index -737 737 270 6
Upper RRC Position -1169 1195 692 3
Lower RRC Position 44 44 145 16
Base Demand Position -204 210 241 13
Stage 1 Percentage Restrictable 108 129 204 15
Stage 2 Percentage Restrictable 23 31 93 18
Stage 3 Percentage Restrictable 0 0 0 20
Stage 4 Percentage Restrictable 0 0 0 20
Stage 1 Relative Position -31 31 103 18
Stage 2 Relative Position 0 0 0 20
Stage 3 Relative Position 0 0 0 20
Consecutive Months in Restriction 1190 1190 2063 4
Worst Severity Restriction Stage 0 0 0 20
Supply Reliability -3891 3891 1438 2
Target Storage Curves — Point 2 -31 31 102 17
Target Storage Curves — Point 3 0 0 0 20
Target Storage Curves — Point 4 0 0 0 20
Initial Volume of Reservoir A 0 0 0 20
Initial Volume of Reservoir B 0 0 0 20
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Figure 4-8. Combined Results of the Morris Method Experiments.

The following points summarise the findings from the Morris method experiments:

The most influential variables in the estimation of yield for the hypothetical urban
water supply system are the streamflow, reliability of supply threshold, the upper

RRC position and the consecutive months in restriction.

Interactions and/or non-linearity behaviour exists, primarily in the consecutive

months, reliability of supply and streamflow variables.

The most severe restriction stage imposed on this system is stage 2. This effectively
negates the use of several variables, namely the worst restriction stage (which had a
range of 3-4), stage 3 and stage 4 percentage restrictable, and stage 2 and stage 3

relative position.

The target curve points 2 and 3 are not influential, either suggesting that the storages
never fill past curve point 2 (65,000 MI total storage) for any Morris method
experiment, or that the yield is not sensitive to changes of target curve point 3 and

point 4.

The Morris method has successfully been applied to test the input variables used in
the estimation of yield of an urban water supply system. It has efficiently identified
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variables with negligible influential to the estimation of yield and also revealed

system behaviour, such as highlighted in the points above.

The Morris method identified several variables that have zero influence on the estimation
of yield and should therefore be neglected from further SA experiments to decrease the
number of simulations required. Nevertheless, all variables as listed in Table 4-8 will be used
in preliminary experiments using the variance based FAST and eFAST methods to confirm
the results of the Morris method. Once these results are confirmed, the FAST, eFAST and

Sobol” methods will be used a reduced number of variables.
4.5 Sensitivity Analysis: Variance Based Methods

Two variance based methods are employed in this study: the Fourier Amplitude Sensitivity
Test (FAST) and Sobol” method of sensitivity. The following four sensitivity indices are
used in this section to assess the sensitivity of the estimation of yield to changes in the input

variables:

S - The first-order sensitivity effects of the i-th input variable, free of any higher-
order or interaction effects. S can be calculated via the classic FAST, eFAST

and the Sobol’ SA techniques. These indices should be positive and £S < 1.

St - The total-order sensitivity effects of the i-th input variable which includes the
effects of all possible combinations that the i-th input variable is included in.
S can be calculated via the eFAST and the Sobol” SA techniques. Sy; > S for

the same variable.

S; - A measure of the first-order interaction effects of the i-th and j-th input
variables, free of the effects of all other interactions and individual effects of

the i-th and j-th input variables. S; can only be calculated using the Sobol’

method and is determined by: §; = §/ - § - S, . S; should always be positive.

S’ - The ‘closed’ (Saltelli, 2002a) effect of the i-th and j-th input variables. This is

a measure of effects of the i-th and j-th input variables, including the
individual effects (S§ and §), and the interaction effect of the i-th and j-th

input variables. S can only be calculated using the Sobol” method and should

always be positive.

Note that the Sobol” technique has two commonly used algorithms, Sobol’s (1993) own

algorithm and a more accurate and computationally efficient algorithm developed by Saltelli
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(2002b). The calculation of the sensitivity indices are done using the same equations, as
presented in Section 3.5.3, but the sampling design differ in the two methods. For this study
the Saltelli algorithm is used as it provides the same S and Sy indices as the original Sobol’
algorithm but at a lower computational cost, and can also calculate higher-order sensitivity

indices which the original Sobol’ method cannot.

Using all variables given in Table 4-8, ten preliminary FAST/eFAST experiments were
used to confirm the results of the Morris method experiments given in Section 4.4. Table
4-12 details the settings of these experiments. Both the classic FAST and the eFAST
algorithms are used to confirm the Morris method results, as well as a grouped experiment
using the eFAST algorithm. The accuracy of the FAST and eFAST techniques increases as
the number of simulations increases, therefore increasing accuracy experiments were
considered until sufficient convergence was reached. Different seeds are used to provide two
experiments for each of the same resolution experiments (i.e. same or similar number of
model simulations) which are then averaged. Due to the eFAST grouping algorithm the
different random seeds produce slightly different number of required model simulations.
This can be seen in different number of simulations between experiments 7 and 8 and
between experiments 9 and 10. Only 40,000 run classic FAST experiments were performed
as this was expected to be sufficiently accurate. The results of these experiments
(experiments 1 and 2) are confirmed with the eFAST experiments (experiments 3 to 6). For
experiments that have the resolution of sampling (i.e. the same or similar number of model

simulations), the results are averaged and presented.

Table 4-12. Settings of the Preliminary FAST Experiments.

Experiment FAST Number of Number of  Random
Number Algorithm VariablesGroups Simulations Seed

1 Classic 28 Variables 40000 9825169
2 Classic 28 Variables 40000 3584381
3 Extended 28 Variables 9884 9825169
4 Extended 28 Variables 9884 3584381
5 Extended 28 Variables 19964 9825169
6 Extended 28 Variables 19964 3584381
7 Grouped 7 Groups 9615 8974561
8 Grouped 7 Groups 9559 3584381
9 Grouped 7 Groups 19627 8974561
10 Grouped 7 Groups 19571 3584381
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Table 4-13 presents the averaged first-order sensitivity indices (S) for the classic FAST
experiments 1 and 2. Acceptable results are gained from these experiments as the sum of §
is not greater than one. The sum of § indicates the degree of additivity of the model; the
closer S is to unity the more additive the model, where the sum of § is exactly 1 for a
completely additive model. It is clear that the first-order measure is dominated by the
streamflow, followed by the reliability threshold. The upper RRC position, consecutive
months threshold and the rainfall variables are then the most important, with the remaining
variables showing negligible difference in their importance. These results of experiments 1
and 2 confirm the Morris method ranking for the 12 most important input variables in the
estimation of yield. Also corresponding with the Morris method are most of the zero
importance variables. However, three variables, the lower RRC position, the relative position
of intermediate curve 1 and target curve point 2, show a zero § results whereas their p

values were not.

Four experiments using eFAST (experiments 3, 4, 5 and 6) were also performed on the
individual variables shown in Table 4-8 to confirm the accuracy and the results of the Morris
method experiments. The averaged first-order and total-order sensitivity indices of
experiments 3 and 4 are presented in Table 4-14 and the averaged results of experiments 5
and 6 are presented in Table 4-15. The rankings of the 10 most important variable in
experiment 5 and 6 correspond to the ranking of the Morris method experiments, confirming
the accuracy of the Morris method at screening for important variables. However, errors are
present. The results of experiments 3 and 4 sum to less than one, however the averaged
results of experiments 5 and 6 sum to greater than one. This is counter to the theory that an
increased number of model simulations should provide a more accurate estimation of the
sensitivity indices. The source of this error is unknown, it could be due to aliasing or
interference between frequencies or due to the issues handling discretely distributed
variables. Nevertheless, the results will be used with caution. Between the two sets of
experiments, the streamflow, reliability threshold, upper RRC position, consecutive months
threshold and the rainfall variables have the same S ranking and the sensitivity indices have
same order of magnitude. The magnitude of Sy and the difference between S and Sy from
Table 4-14 and Table 4-15 indicate that there are high-order effects in all input variables,
specifically in the streamflow, reliability threshold, volume to surface area and the

evaporation factor A of Reservoir B.
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Table 4-13. First-Order Indices (S) for FAST Experiments 1 and 2 (Averaged).

Variable Si Ranking
Streamflow 0.6286 1
Rainfall 0.0112 5
Evaporation 0.0058 9
Evaporation Factor A for Reservoir A 0.0074 8
Evaporation Factor A for Reservoir B 0.0077 7

Evaporation Factor B for Reservoir A 0.0015 12
Evaporation Factor B for Reservoir B 0.0017 11
Volume to Surface Area Relationship 0.0008 13

Temporal Disaggregation Factors 0.0035 10
Climate Index 0.0091

Upper RRC Position 0.0284

Lower RRC Position 0 17
Base Demand Position 0.0007 14
Stage 1 Percentage Restrictable 0.0003 15
Stage 2 Percentage Restrictable 0.0001 16
Stage 3 Percentage Restrictable 0 17
Stage 4 Percentage Restrictable 0 17
Stage 1 Relative Position 0 17
Stage 2 Relative Position 0 17
Stage 3 Relative Position 0 17
Consecutive Months in Restriction 0.0164 4
Worst Restriction Stage 0 17
Supply Reliability 0.2273 2
Target Storage Curves — Point 2 0 17
Target Storage Curves — Point 3 0 17
Target Storage Curves — Point 4 0 17
Initial Volume of Reservoir A 0 17
Initial Volume of Reservoir B 0 17

Some irregularities and limitations of the eFAST technique become apparent between the
two sets of experiments (experiments 3 and 4 and experiments 5 and 6). The most obvious,
and previously discussed, is the sum of § for experiments 5 and 6 is greater than one. There
are also numerous variables that have a zero S in Table 4-15 whereas they are non-zero in
Table 4-14. Another observation is that the variables with high S; (streamflow and reliability
threshold) in experiments 3 and 4 increase in experiment 5 and 6, while most other variables
decreases. A significant finding from the point of the performance of the eFAST method is

the non-zero S results for the initial storage volumes.
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Table 4-14. First-Order Indices (S) and Total-Order (Sy;) for eFAST Experiments 3 and 4

(Averaged).

Variable Si Ranking Sy Ranking Sy —S
Streamflow 0.6298 1 0.6504 1 0.0207
Rainfall 0.0112 5 0.0166 8 0.0055
Evaporation 0.0050 9 0.0104 16 0.0054
Evaporation Factor A for Reservoir A 0.0066 8 0.0122 10 0.0056
Evaporation Factor A for Reservoir B 0.0103 6 0.0320 5 0.0218
Evaporation Factor B for Reservoir A 0.0016 11 0.0112 14 0.0096
Evaporation Factor B for Reservoir B 0.0013 13 0.0074 23 0.0061
Volume to Surface Area Relationship 0.0015 12 0.0286 6 0.0271
Temporal Disaggregation Factors 0.0041 10 0.0119 12 0.0078
Climate Index 0.0069 7 0.0115 13 0.0046
Upper RRC Position 0.0315 3 0.0440 4 0.0126
Lower RRC Position 0.0002 20 0.0084 19 0.0082
Base Demand Position 0.0010 14 0.0080 21 0.0070
Stage 1 Percentage Restrictable 0.0004 15 0.0105 15 0.0101
Stage 2 Percentage Restrictable 0.0002 20 0.0069 27 0.0067
Stage 3 Percentage Restrictable 0.0002 20 0.0081 20 0.0079
Stage 4 Percentage Restrictable 0.0003 17 0.0090 17 0.0087
Stage 1 Relative Position 0.0003 17 0.0072 24 0.0069
Stage 2 Relative Position 0.0004 15 0.0158 9 0.0154
Stage 3 Relative Position 0.0002 20 0.0077 22 0.0075
Consecutive Months in Restriction 0.0229 4 0.0582 3 0.0354
Worst Restriction Stage 0.0001 26 0.0120 11 0.0119
Supply Reliability 0.2096 2 0.2392 2 0.0296
Target Storage Curves — Point 2 0.0002 20 0.0055 28 0.0053
Target Storage Curves — Point 3 0.0003 17 0.0089 18 0.0086
Target Storage Curves — Point 4 0.0002 20 0.0187 7 0.0185
Initial Volume of Reservoir A 0.0001 26 0.0070 26 0.0069
Initial Volume of Reservoir B 0.0001 26 0.0071 25 0.0070
SUM 0.9461 1.2745
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Table 4-15. First-Order Indices (S) and Total-Order (Sy;) for eFAST Experiments 5 and 6

(Averaged).

Variable S Ranking Sy Ranking Sy - S
Streamflow 0.6841 1 0.7135 1 0.0294
Rainfall 0.0102 5 0.0210 7 0.0108
Evaporation 0.0055 9 0.0157 10 0.0102
Evaporation Factor A for Reservoir A 0.0074 8 0.0197 9 0.0123
Evaporation Factor A for Reservoir B 0.0084 7 0.0214 6 0.0130
Evaporation Factor B for Reservoir A 0.0016 11 0.0120 12 0.0104
Evaporation Factor B for Reservoir B 0.0014 12 0.0129 11 0.0115
Volume to Surface Area Relationship 0.0013 13 0.0201 8 0.0188
Temporal Disaggregation Factors 0.0038 10 0.0073 15 0.0035
Climate Index 0.0097 6 0.0217 5 0.0121
Upper RRC Position 0.0289 3 0.0357 4 0.0068
Lower RRC Position 0.0001 16 0.0035 21 0.0034
Base Demand Position 0.0011 14 0.0053 17 0.0042
Stage 1 Percentage Restrictable 0.0003 15 0.0035 21 0.0032
Stage 2 Percentage Restrictable 0.0000 20 0.0047 18 0.0047
Stage 3 Percentage Restrictable 0.0000 20 0.0042 20 0.0042
Stage 4 Percentage Restrictable 0.0000 20 0.0028 28 0.0028
Stage 1 Relative Position 0.0001 16 0.0046 19 0.0046
Stage 2 Relative Position 0.0000 20 0.0033 24 0.0033
Stage 3 Relative Position 0.0001 16 0.0069 16 0.0069
Consecutive Months in Restriction 0.0219 4 0.0555 3 0.0336
Worst Restriction Stage 0.0000 20 0.0033 24 0.0032
Supply Reliability 0.2418 2 0.2706 2 0.0289
Target Storage Curves — Point 2 0.0000 20 0.0031 27 0.0031
Target Storage Curves — Point 3 0.0000 20 0.0035 21 0.0034
Target Storage Curves — Point 4 0.0000 20 0.0032 26 0.0032
Initial Volume of Reservoir A 0.0000 20 0.0113 14 0.0112
Initial Volume of Reservoir B 0.0001 16 0.0120 12 0.0119
SUM 1.0276 1.3023
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It was shown earlier in the Morris method (Section 4.4) that the initial storage volumes
have zero influence on the estimation of yield due to the iterative procedure used. However
the Morris method only changes one input variable at a time, so when the initial storage
volumes were changed no other variables were perturbed, meaning that the initial storages
would converge to the same volume causing no effect on the estimation of yield, hence the
zero W, u* and o results. On the other hand, the FAST and eFAST perturb variables at the
same time and although the S estimates the effect of only the i-th input variable, it is prone
to interference from non-independent variables and aliasing from the Fourier transform. As
briefly discussed in Section 3.5.2, aliasing error is due to variance leaking from other
frequencies during the Fourier transform that is central to the FAST technique and the
interference errors is due to correlations in the input variables. Both of these errors lead to an
artificial increase in the attributed S and Sy of an input variable. On the other hand, these
errors may not be present and the the initial storage volumes may indeed be important in the
estimation, hence the non-zero S and S;;. Whatever the reason for these results, the results

show the importance of these variables are small enough to not be of any concern.

The next four experiments (experiments 7, 8, 9 and 10) were performed on groups of
variables as defined in the first column of Table 4-8. Experiments 7 and 8 were performed
with the same number accuracy experiment but different random seeds which causes the
slightly different number of model simulations. The S and Sy sensitivity indices are
averaged and presented in Table 4-16. The averaged S and Sy sensitivity indices for
experiments 9 and 10 are shown in Table 4-17. Again the streamflow dominates both S and
St with the security criteria group second important. The evaporation group and restriction
rule curves group show similar § and Sy results. The same groups also show a large
difference between § and Sy, indicating that they are involved in interactions. The

remaining groups have low first-order sensitivity yet show high higher-order effects.

Table 4-16. First-Order Indices (S) and Total-Order (Sy;) for Grouped eFAST Experiments 7
and 8 (Averaged).

Variable Si Ranking Sy Ranking Sy —S
Streamflow 0.6311 1 0.6528 1 0.0217
Initial Storage Volumes 0.0010 7 0.0297 7 0.0287
Security Criteria 0.2708 2 0.3082 2 0.0374
Restriction Rule Curves 0.0338 4 0.0689 4 0.0351
Target Curves 0.0011 6 0.0320 6 0.0309
Evaporation 0.0393 3 0.0738 3 0.0345
Demand 0.0152 5 0.0431 5 0.0279
SUM 0.9923 1.2085
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Table 4-17. First-Order Indices (S) and Total-Order (Sy;) for Grouped eFAST Experiments 9
and 10 (Averaged).

Variable Si Ranking Sy Ranking Sy —S;
Streamflow 0.6276 1 0.6459 1 0.0183
Initial Storage Volumes 0.0010 7 0.0294 7 0.0285
Security Criteria 0.2810 2 0.3192 2 0.0383
Restriction Rule Curves 0.0323 4 0.0666 3 0.0343
Target Curves 0.0013 6 0.0318 6 0.0305
Evaporation 0.0367 3 0.0647 4 0.0280
Demand 0.0164 5 0.0477 5 0.0313
SUM 0.9962 1.2053

There is good agreement between the results shown in Table 4-16 and Table 4-17 with
only one change of ranking existing in the Sy; measures. For both sets of experiments the
sum of § are relatively high. According to the variance based principles of the FAST
method, this indicates a high additivity of the input variables, i.e. there exist only weak
interactions between variables. Higher-order effects for all groups are present as indicated by
the difference between S;; and S.

The results of the experiments 7 and 8 (not provided here) demonstrate similar § and Sy
results with only some minor discrepancies. Similarly, the experiments 9 and 10 results have
similar § and Sy, results. The results of experiments 9 and 10 are generally closer than the §
and Sy; results of experiments 7 and 8, suggesting that convergence of S and Sy results

occurs with greater number of model simulations used.

Following the common procedure for SA, the variables with negligible importance on
the estimation of yield are set at their nominal values and further experiments performed on
the important variables. The 10 variables with the highest § and Sy rankings were used in
the following SA experiments. These 10 most important variables are the same as found in
the Morris method experiments. These variables are given in Table 4-18. The remaining

variables are set at there nominal values as given in various sections of Section 4.2.1.

Table 4-18. Top 10 Important Variables used in Detailed SA Experiments.

Variable Variable

Streamflow Climate Index

Rainfall Evaporation

Evaporation Factor A for Reservoir A Evaporation Factor A for Reservoir B
Consecutive Months Threshold Reliability Threshold

Upper RRC Position Temporal Disaggregation Factors
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The purpose for these experiments is to gain more detailed sensitivity measures for the
most important variables, without the effects of the less important variables. For these
experiments, the FAST, eFAST and Sobol’ methods were used, where the Sobol” method
was used to determine higher-order sensitivity indices. Details of the experiments are given
in Table 4-19; note that the method of Sobol’ uses a quasi-random sample generation,
therefore does not require a random seed. The Sobol’ method was not employed in the
previous preliminary experiments as the high number of simulations required would not be
practical and the preliminary experiments were used mainly to confirm the results of the

Morris method.

Table 4-19. Settings for the 10 Variable SA Experiments.

Experiment SA _ Algorithm N_umber_ of Random
Number Technique Simulations Seed

11 FAST Classic 5000 75132541
12 FAST Classic 10000 75132541
13 FAST Extended 4970 75132541
14 FAST Extended 9930 75132541
15 FAST Extended 14970 75132541
16 FAST Extended 19930 75132541
17 Sobol' Up to 2nd Order 58368 NA*

18 Sobol' Up to 2nd Order 116736 NA*

*NA: that Sobol” method is a pseudo-random design that does not require a random seed

The results of these experiments are shown below in following five tables. Table 4-20
shows the S results of the classic FAST experiments 11 and 12. These results show excellent
parity, showing the accuracy of the classic FAST algorithm at a relatively low number of
simulations. The first eight importance rankings for the classic FAST experiments shown in
Table 20 and Table 4-13 are the same. The first five ranks also matches with the § rankings

of the combined eFAST experiments shown in Table 4-15.

Figure 4-9 shows the S; indices of eFAST experiments 13, 14, 15 and 16 which are
performed over 5000, 10000, 15000 and 20000 model simulations, respectively. Similarity
exists over these experiments, with only the experiment 13 (5000 model simulations)
providing unsatisfactory results due to the sum of S greater than one. As the results seem to
be stable, only experiment 16 will be considered from this set of experiments for the
following analysis of the importance of input variables used in the estimation of yield of the

hypothetical urban water supply system.
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Table 4-20. First-Order Indices (§) for FAST Experiments 11 and 12.

. Si (Exp . Si (Exp .
Variable 11) Ranking 12) Ranking
Streamflow 0.6243 1 0.6243 1
Climate Index 0.0096 6 0.0097 6
Rainfall 0.0124 5 0.0123 5
Evaporation 0.0016 10 0.0016 10
Evaporation Factor A For Reservoir A 0.0078 8 0.0076 8
Evaporation Factor A For Reservoir B 0.0080 7 0.0080 7
Consecutive Months Threshold 0.0202 4 0.0213 4
Reliability Threshold 0.2360 2 0.2397 2
Upper RRC Position 0.0307 3 0.0309 3
Temporal Disaggregation Factors 0.0040 9 0.0042 9
SUM 0.9546 0.9596
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—X¥— Evaporation Factor A (Res A)
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—+— Consecutive Months Threshold
0.4000 Reliability Threshold
Upper RRC Position
0.2000 TDFs
—SUM
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Number of Model Simulations

Figure 4-9. First-Order Indices (S) for Experiments 13, 14, 15 and 16 Indicating Parity of
Results Across all Experiments.

The results in Table 4-21 (for experiment 16) show similar results as the FAST
experiment in Table 4-20 with the only difference being the swap of the evaporation Factor
A variables ranks. The Sy and the (Sy — S) results in Table 4-21 show that some higher-
order effects exist, mostly in the consecutive months and reliability threshold. The
streamflow variable also shows possible higher-order effect, while the upper RRC position

variable shows a large change between S and Sy relative to the S measure.

Table 4-22 presents the results for the Sobol’ Experiment 18. Experiment 17 is not
shown here due to unsatisfactory results produced, where Sy; < S for some variables. Table

4-22 shows that the first four ranked variables, the streamflow, reliability threshold, upper
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RRC position and consecutive months threshold, have satisfactory results where the § >
0.02 for these variables. The S order of magnitude and their rankings shown in Table 4-22
show excellent comparison with the FAST and eFAST results in Table 4-20 and Table 4-21.
Interestingly, the erroneous results in Table 4-22 occur for most variables that have S <
0.02. To improve the accuracy of the Sobol’ experiment, a higher number of model
simulations is required; however, the next more accurate Sobol’ experiment requires 233,472
model simulations and was deemed computationally infeasible. Errors in the Sy measures
makes comparison of the results difficult between experiments 18 and the eFAST

experiments.

Table 4-21. First-Order Indices (S) and Total-Order (Sy;) for eFAST Experiment 16.

Variable Si Ranking Sy Ranking Sy —S
Streamflow 0.6288 1 0.6451 1 0.0163
Climate Index 0.0100 6 0.0162 7 0.0062
Rainfall 0.0118 5 0.0178 5 0.0060
Evaporation 0.0016 10 0.0070 10 0.0054
Evaporation Factor A For Reservoir A 0.0083 7 0.0165 6 0.0082
Evaporation Factor A For Reservoir B 0.0079 8 0.0139 8 0.0060
Consecutive Months Threshold 0.0228 4 0.0560 3 0.0332
Reliability Threshold 0.2472 2 0.2780 2 0.0308
Upper RRC Position 0.0307 3 0.0414 4 0.0107
Temporal Disaggregation Factors 0.0047 9 0.0113 9 0.0066
SUM 0.9782

Table 4-22. First-Order Indices (S;) and Total-Order (S;) for Sobol” Experiment 18

Variable Si Ranking Sy Ranking Sy —S
Streamflow 0.6329 1 0.6377 1 0.0048
Climate Index 0.0121 6 0.0083 7 -0.0038
Rainfall 0.0162 5 0.0125 5 -0.0036
Evaporation 0.0013 10 0.0003 10 -0.0010
Evaporation Factor A for Reservoir A 0.0099 7 0.0092 6 -0.0007
Evaporation Factor A for Reservoir B 0.0089 8 0.0081 8 -0.0008
Consecutive Months Threshold 0.0219 4 0.0462 3 0.0244
Reliability Threshold 0.2508 2 0.2734 2 0.0226
Upper RRC Position 0.0325 3 0.0330 4 0.0005
Temporal Disaggregation Factors 0.0042 9 0.0062 9 0.0020
SUM 0.9907
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Tables 4-23 and 4-24 present the pair-wise first-order indices (S;) and closed pair-wise

first-order indices (S)) of the Sobol” experiment 18, respectively. Notably, the S indices

show all positive results, whilst the S;, which must be positive for satisfactory results, show
many negative sensitivities. A principal objective of this preliminary case study is to assess
the applicability of SA techniques to an urban water supply system. Therefore, the Sobol’
results shown in Tables 4-23 and 4-24 are presented here only to show a shortcoming of the

Sobol’ method. The closed indices reveal little extra information than what gained in the

previous experiments. The S results (Table 4-24) for most pairs of variables are close to the

addition of the S for the same two variables shown in Table 4-22. For instance, sj? =0.0387

for the rainfall and consecutive months threshold variables, where as their individual § sum
to 0.0381 (from Table 4-22). This suggests negligible pair-wise effects, but this cannot be

relied upon due to the errors present.

From the above FAST/eFAST and Sobol” method experiments, the following points can

be summarised:

1. Results from FAST/eFAST technique experiments proved the ranking results of the
Morris method experiments, highlighting the reliability of the Morris method as a

screening technique.

2. The streamflow, reliability of supply threshold, the upper RRC position and the
consecutive months in restriction are the four most influential variables, with the

streamflow being the greatest source of sensitivity for the estimation of yield.

3. The FAST and eFAST were used successfully with only some minor errors produced
when performed over limited model simulations. The results above lead to the
eFAST being the preferred technique as it calculates S at a similar accuracy as
FAST using less computational cost (with the addition of Sy), making FAST
obsolete. The Sobol’ method was not successful at estimating the importance

measures with errors present, such as the §; <0, and Sy; < S.

4. Similar to the results of the Morris method experiments, the results of the FAST
experiments show that there are higher-order effects between input variables. Most
likely this is pair-wise interactions, however the Sobol’ method results were

contradicted this finding, suggesting that only a small pair-wise interaction effect
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remained in the SJ.C once S and § were removed. However the Sobol” results were

erroneous, therefore could not quantify or confirm this satisfactorily.
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Table 4-23. Pair-Wise Interaction Indices (S;) for Sobol” Experiment 18

. Evaporation Evaporation Consecutive R
Streamflow ﬂérgfte Rainfall Evaporation  Factor A for Factor A for Months $re]|r'2gglté/ gggtelrorF‘zRC
Reservoir A Reservoir A Threshold !

Climate I ndex -0.0023
Rainfall -0.0039 -0.0014
Evaporation 0.0002 -0.0003 -0.0015
Evaporation Factor A -0.0016 -0.0014 -0.0017 0.0005
for Reservoir A
Evaporation Factor A -0.0028 -0.0033 -0.0022 -0.0003 -0.0022
for Reservoir B
Consecutive Months 0.0030 0.0017 -0.0008 -0.0004 -0.0009 -0.0006
Threshold
Reliability Threshold ~ 0.0011 -0.0022 -0.0021 0.0009 -0.0016 -0.0019 0.0155
Upper RRC Position 0.0001 -0.0018 -0.0015 0.0008 -0.0004 -0.0016 0.0001 -0.0032
Temporal -0.0007 -0.0006 -0.0017 0.0007 -0.0010 -0.0003 0.0001 -0.0008 -0.0259

Disaggregation Factors
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Table 4-24. Closed Pair-Wise Interaction Indices (S;) for Sobol” Experiment 18

Evaporation Evaporation Consecutive R
Streamflow Climate Index Rainfall Evaporation  Factor A for Factor A for Months $Srlzg1lcl)ltc)jl ggs}ci)tgrorF]{RC

Reservoir A Reservoir A Threshold !

Climate I ndex 0.6395

Rainfall 0.6410 0.0238

Evaporation 0.6318 0.0118 0.0136

Evaporation Factor A 0.6386 0.0192 0.0219 0.0109

for Reservoir A

Evaporation Factor A 0.6387 0.0186 0.0227 0.0115 0.0181

for Reservoir B

Consecutive Months 0.6591 0.0382 0.0387 0.0260 0.0340 0.0356

Threshold

Reliability Threshold 0.8801 0.2572 0.2603 0.2501 0.2561 0.2572 0.2893

Upper RRC Position 0.6648 0.0432 0.0466 0.0357 0.0431 0.0431 0.0595 0.2791

Temporal 0.6343 0.0148 0.0168 0.0060 0.0128 0.0148 0.0298 0.2518 0.0124

Disaggregation Factors
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4.6 Issues, Limitations and Recommendations

The aim of the hypothetical urban water supply system case study was to evaluate the
applicability of the selected sensitivity analysis techniques on a water supply allocation
model, specifically used to determine the sensitivity to input variables used in the estimation
of yield. The methodology applied to the simple, hypothetical case study is a basic

application of sensitivity analysis based on an uncertainty error framework.

The range of the perturbations for all input variables in the hypothetical case study were
individually assigned using common error margins considered standard within the water
resources industry or where feasible limitations of the variables exist. All input variables
were considered to only have data error (including instrument errors, reading and handling
errors, etc.) and were implemented as such in the sensitivity analysis. The distributions of the
ranges were mostly considered uniform and continuous, but occasionally discrete

distributions were required as some input variable structures could not be handled otherwise.

Throughout the SA of this case study several disadvantages, limitations and
improvement associated with the techniques were identified. Some of these have already
been indicated in the review of the SA techniques (Section 3.5) and the discussion on the
input variable handling strategies (Section 4.3.1). For completeness, these are listed below,
along with a number of weaknesses in the adopted SA framework, and other observations,

conclusions and recommendations:

1. Discretely distributed variables — The main issue with discrete variables for the three
SA techniques relates to the possible lack of relationship between the discrete points
which would give misrepresentative sensitivity measures. Limitations of discrete
variables in SA also exist in the sampling and calculation of EEs in the Morris
method, and in the approximation of the integrals for both variance based methods.
These can be avoided easily by ensuring that all variables have a continuous
distribution. If this is not possible, a relationship between discrete points should be
sought at the least.

2. Integral estimation and approximation — The variance based methods have shown
mixed results in their estimation of the sensitivity indices. The FAST and eFAST
methods have produced acceptable results, however the method of Sobol’ suffered
from errors resulting in negative sensitivity indices. Both methods are still to be used

in the Barwon case study in the optimism that the Sobol’ method will perform
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acceptably in light of the following limitation regarding the handling of time-series

variables (Point 4 below).

Historic data use - When a single set of historic data is used for future planning in the
approach that is commonly used, the management variables, such as the restriction
rule curves, target rule curves and security of supply thresholds, will always have the
same importance. Therefore, a yield estimate and an optimum set of operating rules
that is established from this historic sequence may not be suitable for another

possible climate realisation or for a different planning period.

Time-series variables — It was noted that in all SA experiments in Sections 4.4 and
4.5 that the streamflow variable and streamflow group dominate the sensitivity
measures. This is not surprising considering the handling of the streamflow variable
consisted of increasing or decreasing each streamflow time-series data point, that in
effect changes the total streamflow entering the system. This handling strategy
breaks cross correlations that inherently exist between the streamflow and the other
climate dependant variables (i.e. rainfall, evaporation and climate index variables).
Appendix C provides a discussion on a number of perturbation strategies that could
be applied to the time-series variables. However, they all still break cross
correlations between climate variables and only provide perturbations on a single
time-step basis (i.e. a week or month change), rather than long term variability that is

present in climate events.

Importance of climate dependant variables — knowing the effect of the streamflow,
evaporation, rainfall and demand is of little use to water authorities as they are

uncontrollable.

Definition of yield — The handling strategy employed for a time series variable in
this case study changed all data points by the same amount, causing the total volume
to change with little change the variability. Other perturbation strategy that are
possible to perturb time-series (see Appendix C) are also flawed as the variability
changes are on short term basis (such as week or month), not long term as found in
climate events (such as several months, years or decades). Additionally, and in light
of the points 3 and 4 above, the definition of yield should be changed so that yield is
dependent on climate variability rather than just streamflow variability. The use of
climate implies that the yield is dependent not only on streamflow, but also rainfall,

evaporation and demand.
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7. Additional sensitivity measures — The above SA experiments show that the
streamflow variable dominates the standardised S and Sy indices. Due to this
dominance, the effects of other input variables are lost due to their very small § and
St indices. Therefore, additional sensitivity measures that relay non-standardised
sensitivity measures are required to observe the influence of an input variable on the
estimation of yield without the effect of the dominating variable(s). In the Barwon
case study, the partial variance due to each variable (V;) will be used to reflect the
effect on the estimation of yield in terms of non-standardised measure. In addition,
the total output variance, V(Y), is used so that the sensitivity of the estimation of

yield on the climate scenario can be observed.

To improve the limitations of the adopted methodology as described in points 3, 4 and 5
above, and also considering point 6, it is proposed that the framework for SA on the input
variables used in the estimation of yield of the Barwon urban water supply system uses a
climate scenario approach, which will be discussed in Chapter 5. In this methodology, the
time-series variables, all of which are climate dependant, are broken into several scenarios
over a variety of time periods. A sensitivity analysis is then performed on each scenarios
using the same random samples (as generated according to the SA techniques’
requirements). The use of climate scenarios ensures that cross correlations between climate
dependant time series are maintained and also provides a more rigorous analysis of the

effects of climate variability on the estimation of yield.
4.7 Summary

This chapter describes in detail the sensitivity analysis of the input variables used in the
estimation of yield of a hypothetical urban water supply system. This case study was used as
a preliminary study to assess the applicability of selected sensitivity analysis techniques,
review input variable handling strategies and aid in developing a sensitivity analysis
framework for the application on the complex Barwon urban water supply system case study

given in Chapter 5.

Sensitivity analysis of the hypothetical case study system showed that the streamflow
variable was the most important to yield of the system. However, the type of perturbations
that were applied to the streamflow variable, and the other climate dependent variables,

caused a change to the total volume of the series with little change to the variability.

Sensitivity analysis using the Morris method, the Fourier Amplitude Sensitivity Test
(FAST) and extended FAST (eFAST) provided reasonably acceptable and reliable results,
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with only some minor errors produced when performed with a small number of model
simulations. The results indicated that streamflow is clearly the most important variable in
the estimation of yield, followed by the reliability of supply threshold. Only a few of the
remaining variables show any substantial importance. The Sobol’ method of sensitivity
analysis was also used to provide first- and total-order importance measures, and pair-wise
interaction effects on the estimation of yield. However, the results were mostly erroneous.
Grouping the variables showed the streamflow dominating followed by security criteria
group. The evaporation group and Restriction Rule Curve (RRC) group show synergistic

effects when grouped whereas their individual variables have indistinguishable sensitivities.

The hypothetical urban water supply system case study was adopted as a proof-of-
concept for the application of sensitivity analysis on the estimation of yield of complex
urban water supply systems. From this case study, a number of areas were identified as
needing improvement before application to the more complex, and computationally
demanding, Barwon urban water supply system. The most important outcomes of this case
study relate to the recommended changes to the SA framework. Drawn from the variable
handling strategies used, the recommendation of using climate scenarios in the case study
using the Barwon urban water supply system in particular avoids a humber of issues that

were present in this case study.
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Chapter 5
Sensitivity Analysis Using the Barwon Urban Water Supply
System

5.1 Introduction

Chapter 4 described the identification and quantification of the importance of input variables
used in the estimation of yield of a hypothetical water supply system detailed in REALM
Getting Started Manual (VU and DSE, 2005). This preliminary case study was conducted as
a proof-of-concept study for the assessment of the applicability of three techniques for
Sensitivity Analysis (SA) on the yield of an urban water supply system before use on a much
more computationally expensive case study. A number of conclusions on the performance of

the SA techniques and on variable handling strategies were identified (See Section 4.6).

The SA framework of the hypothetical urban water supply system case study was based
around a simple error uncertainty methodology where all input variables (those that are
considered in the definition of yield) were subject to only measurement and handling error
uncertainty ranges. The findings of this study showed that streamflow, reliability threshold
and upper restriction rule curve position were the most important variables used in the

estimation of yield. However, several limitations were identified in adopted SA framework:

1. The streamflow variable was perturbed in a way that not only was the variability
changed but also the total volume. The effect of the change of variability was minor
compared to the change of total streamflow volume. This did not comply with the
definition of vyield that was dependant on the variability of streamflow. Other
perturbation strategies (Appendix C) avoid changing the streamflow volume whilst
changing the variability, yet these strategies result in a short-term variability, such as
those attributed to instrument error (i.e. over a single time-step), not the desirable
long-term variability (occurring over multiple months, or years) that results from

climatic events.

2. The climate dependant variables (streamflow, evaporation, rainfall and demand) are
uncontrollable to water authorities and therefore their importance to the estimation of
yield is of little use, as research cannot improve their accuracy. Furthermore, yield is
ultimately used for studies of future purposes; therefore, the climate dependant
variables are implying a future climate scenario, which cannot be known precisely in

any case.
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3. The estimation of yield and other system management practices generally use a
single sequence of all available historic data. Although this is a plausible climate,
polices that are derived or optimised from this sequence will not be suitable under all

climate scenarios.

The current chapter begins by describing the Barwon water supply system (Section 5.2),
with an explanation of all considered input variables in light of the SA framework adopted.

The input variables used in this case study and their nominal values are discussed.

Presented in Section 5.3 is the SA framework adopted for the Barwon urban water
supply system case study. A discussion on the justification of this adopted framework is
accompanied by a typology of the sources of variation in the estimation of yield of an urban
water supply system. Particular reference is made to the difference between uncertainty and
variability. This section includes a discussion on the scenario selection and the various
handling procedures of the controllable variables and concludes in the design of SA

experiments for this study.

The results of the SA on the estimation of yield of the Barwon urban water supply
system using the Morris method, eFAST and the method of Sobol’ are desribed in Section
5.4. The conclusions, recommendations and further improvements are then presented in

Section 5.5, with the chapter summarised in Section 5.6.
5.1.1 Hypothesis for Barwon Water Supply System Case Study

The hypothesis to be tested in this case study using the Barwon water supply system is that
the estimation of yield of an urban water supply system and the importance of the input
variables used in its estimation change under different climate scenarios and over different

planning periods.

If this hypothesis is correct then it places doubt on the use of historic data and/or a single
length of climate data for system planning purposes. The use of a single set of historic data
for future planning provides a plausible realisation climate conditions. However, since no
other possible climate scenario is considered the controllable variables, such as the
restriction rule curves, target rule curves and security of supply thresholds, will always have
the same importance. Therefore, a yield estimate and an optimum set of operating rules that
are established from this historic sequence may not be suitable for another possible climate
realisation or for a different planning period length. Consequently, a system should not be
considered to have a single yield value, but a variety of estimates for different planning

periods and for different climate conditions. The yield of a system can be estimated under
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various plausible conditions and over various planning periods to gain a greater
understanding of system behaviour. A suitable yield estimate can then be adopted for

planning according to the planning length and predicted future climate events.

To substantiate the hypothesis that climate variability and planning length are important
in the estimation of yield, several lengths of planning period (20, 40, 60 and 77 years) are
used with a number of scenarios selected for each period. Seven scenarios are selected with a
20 year planning period, five scenario are selected with 40 year length, five with 60 year
length and three with a 77 year length. Each of these climate scenarios contain the four
climate dependant variables (streamflow, rainfall, evaporation and demand) selected to
represent the same period to ensure that cross correlations between the climate variables are
maintained. These climate variables are considered as being uncontrollable variables with

the remaining, controllable variables subject to sensitivity analysis.
5.2 Barwon Water Supply System Description

The Barwon urban water system is operated and maintained by the Barwon Region Water
Corporation (hereafter referred to as Barwon Water) which was formed in 1994. Barwon
Water is now the largest regional water corporation in Victoria (Australia) supplying water
and sewerage services to 275,000 permanent residents over 8,100 square kilometres

(www.barwonwater.vic.gov.au). Highlighted in Figure 5-1 is the region of operation that

covers a regional and coastal area in south-west Victoria. This area encompasses the City of
Greater Geelong, the Borough of Queenscliffe, the Surf Coast and Colac Otway Shires and
part of Golden Plains Shire. The headworks and region of service under the management of

the Barwon Water is shown in Figure 5-2.

The Barwon headworks consist of over 5,000 kilometres of pipes, six major reservoirs,
six water treatment plants and nine water reclamation plants. Water is sourced from the
Barwon River, the East Moorabool River, the West Moorabool River and pumped from a
number of groundwater sources. Approximately 70 percent of potable water supply for
Greater Geelong and surrounding coastal region (consisting of the Bellarine Peninsula and
Surf Coast) is supplied from the Barwon River via the Wurdee Boluc Reservoir. The
remaining water is obtained from catchments on the Moorabool River system, which also
provides water to the inland demand centres, including; Anakie, Staughton Vale,

Bannockburn, Gheringhap, Teesdale, Shelford and Inverleigh.

The REALM (REsource ALlocation Model) model of the Barwon Water system was
supplied by Barwon Water for use in this study. This model was developed by SKM and is


http://www.barwonwater.vic.gov.au/�

described in detail in the Central Region Sustainable Water Strategy (SKM, 2006). The
REALM model comprises of four sub-models; the Upper Barwon model, the Lower Barwon
model, the Central Highlands Water (CHW) model and the Moorabool River Catchment
model, which supply Geelong and Ballarat urban demands, and many rural demands. The
service area of the CHW model is not shown in Figure 5-2 but covers the region north of Lal
Lal Reservoir servicing the Ballarat demand centre encompassing the upper reaches of the
Moorabool River, upstream of Lal Lal reservoir.

Figure 5-1. Region of Service of the Barwon Water. Inset Shows Location of Victoria within
Australia. (Source: www.maps.google.com)

The subject of this study is the Barwon headworks consisting of the Upper Barwon
model, the Lower Barwon model and the Moorabool catchment. The Barwon headworks
consists of the main system is shown as Figure 5-2, without the coastal Apollo Bay, Lorne
and Aireys Inlet systems, and the Colac sub-system from Gellibrand Reservoir in the south
to Cressy in the north. From now on, the Barwon headworks is referred to as the Barwon
urban water supply system, or simply the Barwon system.

Table 5-1 presents the list of the six main reservoirs of the Barwon urban water system.
Note that the Barwon system has a one-third share of the Lal Lal Reservoir and CHW has a
two-thirds share. The individual storage capacities of the six major storages range from
2,091 MI to 38,056 MI, with the total system storage capacity of 98,285 MI: approximately
two and a half times the annual consumption in 2006 (SKM, 2006). The REALM model
consolidates all urban demand centres into two demand centres: Geelong North and Geelong
South. More details of the Barwon REALM can be found in SKM (2006).
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Table 5-1. Major Storages of the Barwon Urban Water Supply System.

L ocation Nominal Capacity (MI)
Wourdee Boluc Reservoir 38,056

West Barwon Reservoir 21,504
Korweinguboora Reservoir 2,091

Bostock Reservoir 7,455

Stony Creek Reservoir 9,494

Lal Lal Reservoir 19,685*

Total Storage 98,285

* Barwon Share

The Barwon model that was provided for use in this study (SKM, 2006) has the Barwon
system connected to the CHW system via Lal Lal Reservoir and some spills from minor
reservoirs. The CHW system, along with rural demands and environmental flows are ignored
from the sensitivity analysis of input variables related to the estimation of yield of the

Barwon system and considered as compulsory rules and policies.

The REALM model of the Barwon system considers a number of input variables which
include physical system attributes (network configuration, storage capacity, pipe capacities
and penalties, etc.), operational policies and rules (restriction rules, storage target rules, etc.),
system climate data inputs (streamflow, rainfall and evaporation) and system output (urban
and rural demand, environmental flows, etc.). This study is only concerned with the
operational policies and rules, and the system inputs and outputs of the REALM model,
which are described below in Section 5.2.1. The physical system attributes (e.g. storage
volumes, pipe penalties, etc.) are fixed and not considered in the SA as they cannot be easily

changed and the definition of yield does not depend on them.
5.2.1 Input Variables Used in this Study

The following sections discuss the input variables, including the climate dependant variables
and the remaining management controllable variables. Reference is made to their nominal
values which refer to the ‘base case’ values of the variables that were provided by Barwon
Water and are present in SKM (2006).

5.2.1.1 Climate Dependant Variables

Seventy-seven years of weekly historic data beginning 1% January, 1927 and ending 31%
December, 2003 was supplied by Barwon Water for the four climate dependant variables

(streamflow, evaporation, rainfall and demand).



The streamflow records include inflow into the reservoirs from rainfall-runoff, river
diversions and groundwater pumping across the Barwon system. This inflow data is derived
from a combination of historic measurements, hindcasting and calibration. Evaporation and
rainfall data for the various reservoirs are also historic data derived through similar

measurements, hindcasting and calibration.

Evaporation and rainfall time series data are used in the calculation of the gains and
losses from the reservoir using the default functions of REALM evaporation modelling as

given in Equations (4.1) and (4.2). They are repeated here as Equations (5.1) and (5.2):

Evaporation (mm) = B x [Evaporation Data] + A—[Rainfall Data] (5.1)
Net Evaporation (MI) = Evaporation (mm) x Surface Area (Ha)/100 (5.2)
where Aand B are empirical factors

The empirical parameters A and B are not tested in the SA of the Barwon case study as
they ultimately adjust the evaporation time-series which is handled using the scenario
approach. If the empirical factors A and B were adjusted it would be akin to the measurement
error perturbations used in the hypothetical case study in Chapter 4. Since the measurement
and handling error uncertainty of climate variables is disregarded from this case study, so

will the empirical evaporation factors A and B.

The demand data for the Geelong North and Geelong South demand centres is
unrestricted weekly demand. Other demands, such as rural and irrigation, are outside the
scope of this study which is to consider only urban water supply. As such they are assumed
to be compulsory outflows similar to environmental flows and therefore they are not

considered in the sensitivity analysis.
5.2.1.2 Security of Supply

Security of supply criteria, also referred to security criteria in this thesis, provide
performance targets for the system ensuring that a supply of demand is reached without total
drawdown whilst meeting stakeholders’ requirements. At a given Average Annual Demand
(AAD) a system is deemed to have failed when at least one security of supply criteria is
violated. For this study, the maximum AAD (the greatest demand before system failure) is
considered as the yield of the system (see Section 2.5 for further description of the procedure
for the estimation of yield). The Barwon system is subject to two security of supply criteria
and their thresholds:



1. Reliability of supply — The percentage of months in which demand restrictions are
not imposed on the Geelong demand centres, with respect to the total number of
months in the simulation. A commonly used value for supply reliability used in
water supply management is 95% (SKM, 2003; Barwon Water, 2007), which allows

the system to have water restrictions imposed 5% of the planning period.

2. Minimum total system storage level — The minimum total system storage of the six
main storages in the Barwon system (as listed in Table 5-1) at any point in the model
simulation period. In correspondence with modellers at Barwon Water, they
expressed that a minimum total system storage volume threshold is somewhat
unknown. The water authority has not considered it a critical threshold in the past,

but was informally considered to be between 10-15% of the total capacity.

The base case simulation (given in SKM, 2006) of the Barwon system considers a supply
reliability of 92% and a minimum storage level of approximately 20% storage capacity.

Further discussion regarding the range and handling of these variables is in Section 5.3.1.2.

5.2.1.3 Restriction Rule Curves

The REALM Barwon system model nominally has a four-stage restriction policy to restrict
demand during low storage volume periods. The restriction rule curves are defined by upper
and lower rule curves, including three intermediate restriction zones (with their definitions of
relative positions and percentage restrictable levels), and a base demand. The values of the
restriction rule curves (RRC) currently used and provided by Barwon Water in the REALM
simulation model are presented in Figure 5-3. The nominal trigger levels of the upper and
lower RRCs, base demand, and the intermediate curves are given in Table 5-2. The upper,
lower and intermediate RRCs are shown as an absolute value of storage, while the base
demand is given as a percentage of annual demand. The nominal values of the relative
position and percentage restrictable for the intermediate curves are given in Table 5-3. The
three intermediate curves are defined by a relative position between the upper and lower
curves, measured as a percentage from the lower RRC.

When the total system storage is drawn down to below the upper RRC (Table 5-2),
demand restrictions are imposed at the percentage restrictable associated whichever zone the
storage falls in (nominal values given in Table 5-3). If further drawdown occurs and an
intermediate trigger level reached, a more severe restriction stage is enforced. Restrictions
are imposed monthly and are introduced at the start of a month in the REALM model.
Restrictions are only applied to ex-house water demand which is the difference between the

monthly (unrestricted) demand and the base demand.
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Table 5-2. Nominal Values of the Upper and Lower Rule Curves, Base Demand and the Intermediate Curves 1, 2 and 3. Relative Positions of the Intermediate
Curves given in Table 5-3.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Upper Rule Curve 34,200 31,000 28,000 25,500 23,000 22,500 23,000 27,000 38,500 42,500 42,000 38,900
Intermediate Curve 1 30,625 27,525 24,725 22,425 20,275 19,675 20,000 23,125 32,250 36,875 37,850 34,925
Intermediate Curve 2 27,050 24,050 21,450 19,350 17,550 16,850 17,000 19,250 26,000 31,250 33,700 30,950
Intermediate Curve 3 23,475 20,575 18,175 16,275 14,825 14,025 14,000 15,375 19,750 25,625 29,550 26,975
Lower Rule Curve 19,900 17,100 14,900 13,200 12,100 11,200 11,000 11,500 13,500 20,000 25,400 23,000
Base Demand (% AAD) 6.1% 6.1% 6.1% 6.1% 6.1% 6.1% 6.1% 6.1% 6.1% 6.1% 6.1% 6.1%

All values given in Ml unless otherwise shown

Table 5-3. Percentage Restrictable and Relative Position of the Intermediate Curves.
Relative Position as % from Lower RRC

Per centage
L ower Bound Upper Bound Restrictable

Zone 0 100 — 0

Zone 1l 75 100 15

Zone 2 50 75 56

Zone 3 25 50 70

Zone 4 0 25 100

Zone 5 - 0 100
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The lower RRC in the REALM model of the Barwon system provides a basis for
positioning intermediate curves. It does not separate restriction zones of different percentage
restrictable. That is, zone four (100% restrictable demand) is below intermediate curve three
down to zero total system storage (see Figure 5-3). This means that the RRC curves are set
up as a five-stage demand restriction policy (as in the hypothetical case study — see Section
4.2.1.6), but act as a four-stage policy. The intermediate curve separating zone three and
zone four is operationally the lower RRC; it separates the intermediate zone 3 from the 100%

restrictable demand zone (zone 4).
5.2.1.4 Target Storage Curves

In the Barwon system REALM model, the target rule curves are defined by a single set of
five-point curves for all months of the year, indicating the preferred distribution of individual
storage volumes for various total system storage volumes. These curves impose inter-storage
transfers to distribute water in the system so as to ensure the required demand at various
demand centres can be supplied. Figure 5-4 shows the five point target rule curves used to
model the water sharing between each of the major storages of the Barwon system with the
values supplied by Barwon Water given in Table 5-4. For total system storages between
points, the Barwon Water REALM model uses linear interpolation to compute individual

reservoir targets.
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Figure 5-4. Five-Point Target Rule Curves for the Barwon Urban Water Supply System.

Lal Lal Reservoir is modelled at full capacity in the REALM model, including the
Central Highlands Water’s two-third share. This explains the ~40,000 Ml difference in the
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total system storage seen in Table 5-1 and Figure 5-4 (134,996 MI) and the total system
storage given in Table 5-4 (98,285 MI).

Table 5-4. Nominal Values of the 5-point Target Storage Curves of the Barwon Water
Supply System.

Total System Storage 0 23,824 47,648 71,471 134,996
Korweinguboora 0 586 1,133 1,666 2,091
Bostock 0 2,089 4,041 5,942 7,455
Stony Creek 0 1,961 3,794 5,578 7,000
Lal Lal Barwon 0 2,363 6,756 11,345 59,550
Wurdee Boluc 0 11,605 20,596 30,284 38,000
West Barwon 0 5,220 11,328 16,656 20,900
Point 1 2 3 4 5

* All values given in Ml unless otherwise shown

5.3 Sensitivity Analysis Framework

The adapted definition of yield of an urban water supply used in this case study is the
maxi mum average annual volume of water that can be supplied from the system over a given
planning period subject to climate variability, demand pattern and operating rules, without
violating the adopted level of service. By definition, the yield of an urban water supply
system experiences variability as a response to changes in the input variables used in its
estimation. These input variables include two distinct groups: climate dependent variables
which cannot be controlled or accurately predicted by the water authority, and management
variables, which include system policies and rules controlled by the water authority. These
fit neatly into the main two types of computational model uncertainty identified in Section
3.2:

1. Natural variability (or inherent randomness) — Also termed objective, non-cognitive,
irreducible, stochastic and aleatory uncertainty, this is uncertainty that random by

nature and is unavoidable.

2. Knowledge deficiency — Also called subjective, cognitive, irreducible or epistemic
uncertainty, knowledge deficiency can be reduced through research, improved
techniques, modelling and experience and better understanding of the physical

system, the processes and data used.

Considering these two types of uncertainty, the hierarchy of the variability of the
estimation of yield of the Barwon urban water supply system can be developed as shown in

Figure 5-5. At this point, a move away from the term uncertainty to the term variability is
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made to better represent the framework of SA used in this case study. Briefly, this
framework considers the effects of possible variability of the input variables, regardless of
whether the source of this variability is from measurement and data handling uncertainty,
optimisation and calibration errors or simply perturbing the input variables to various
positions to observe the model and yield behaviour to such a change. For instance, climate
dependant variables have uncertainty regarding the accuracy of the historic data, however
this accuracy is not relevant as future climate will certainly be different, hence voiding the
importance of the data errors. Furthermore, the security of supply thresholds are model input
variables which the water authority set; therefore contain no uncertainty regarding the
accuracy of the values. However, they have a range of positions that they can be set,

depending on numerous stakeholder requirements, performance targets, optimisation, etc.

The natural variability in the estimation of yield relates to inherent fluctuations that can
occur within the urban water supply system. These fluctuations are not due to uncertainty of
the state or value, but are due to the natural characteristics of the variable. In this case study,
natural variability of the climate dependent variables — streamflow, rainfall, evaporation and
demand - cause variability in the yield estimate. Following the natural variability branch in
Figure 5-5, the inherent fluctuation in these variables is primarily due to spatial and temporal
trends and patterns, with some randomly occurring events such as extreme weather events

causing further fluctuations (i.e. individual heterogeneity).

The second type of variability in the estimation of yield of an urban water supply system
is caused by knowledge deficiency. This, as the name suggests, is caused by an uncertainty
of the true value of a variable or not knowing the variable’s optimal value. Knowledge
deficiency exists in the operation of the system and model, including interpretation; model
uncertainty, consisting of formulation, numerical, parameter and execution errors; and data
uncertainty, which consists of measurement errors, handling errors and inconsistent
sampling. Indicated in Figure 5-5 are the input variables that contribute to the knowledge
deficiency, including: RRCs, security of supply thresholds, target rule curves, evaporation
empirical factors, etc. These variables are management policies, rules and empirical
parameters that are derived primarily through optimisation, calibration and modeller
experience. With exception of the evaporation factors, knowledge deficiency of the input
variables is not related to measurement error and handling uncertainty but regarding the
position of their optimum position. The operational positions (i.e. the values used in the
management and studies of the system) of these variables are known to the water authority
but their optimum positions are relatively unknown as they are subject to the climate

sequence over which variable optimisation is performed.
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Variables that have knowledge deficiency can, and do, have a natural variability
associated with their values as a product of their dependence on the climate dependent
variables. It can also be suggested that the climate dependent variables have some
knowledge deficiency associated with them due to measurement and handling errors.
However, it is meaningless assessing the impact of measurement and handling errors of
historical data of climate dependant variables (which was done in Chapter 4) as the
estimation of yield is used for future prediction of system performance and future planning

purposes for which the climate will be different and will encompass much more variability.

Table 5-5 presents a summary of the variables used in the study of the importance of
input variables and climate variability to the estimation of yield of the Barwon urban water
supply system. Each variable that is perturbed in the SA is listed in Table 5-5 including their
range, and the two groupings they are assigned. Following the table, in Section 5.3.1, is a
description of the variable handling techniques and the perturbation methods used to change

the input variables listed in Table 5-5.

5.3.1 Scenario Selection and Input Variable Handling

The following section describes the selection of the climate scenarios using the 77 year
historic climate data sequence, followed by variable handling of the remaining controllable

variables.

5.3.1.1 Scenario Selection

Seventy-seven years of weekly historic data is available for the climatic dependent variables,
i.e. streamflow, rainfall, evaporation and demand. Four planning lengths were selected,
consisting of 20 years, 40 years, 60 years and 77 years as an even spread between minimum
planning period considered (20 years) and the maximum possible (77 years). Planning
lengths less than 20 years were not considered practical for industry and for properly
capturing climate events such as drought and wet periods which the system must provide a
buffer against. For each of these planning period lengths several scenarios were selected.

Scenarios were identified by ranking the moving total streamflow volume of specific
planning length through each of the weekly time steps in the 77 year sequence. The scenarios
were then selected from equal spacing of the rankings. Streamflow was used to select the
scenarios as it provides a robust representation of climate behaviour. For every streamflow
sequence that was identified as suitable, the same time period of the remaining climate
dependant variables (rainfall, evaporation and demand) were also selected to complete each

scenario and so as to maintain cross correlations. For the 20 year scenarios, a 20 year moving
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total streamflow was used, for the 40 year scenarios a 40 year moving average was used, and
so on. The procedure of scenario selection is further explained using the 20 year planning

length as an example.

Table 5-5. Description of Input Variables Used in this Study

Grouping 1 Grouping 2 Variable Range

Upper Restriction Rule Up to -10% - +10% of

Curve Curvature nominal position
Upper Curve

Upper Restriction Rule -5% - +5% of nominal

Curve Position position

Lower Restriction Rule Up to -10% - +10% of

Curve Curvature nominal position
Lower Curve
Lower Restriction Rule -5% - +5% of historic
Curve Position data
Base Demand  Base Demand Position 70% — 76%
Restriction Stage 1 Percentage o o
Rule Curves Restrictable 0.10% - 0.20%
Percentage Stage 2 Percentage o o
Restrictable Restrictable 0.50% - 0.60%

Stage 3 Percentage

Restrictable 0.70% - 0.80%

Stage 1 Relative Position  0.20% — 0.30%

Eelz_it_lve Stage 2 Relative Position  0.45% — 0.55%
ositions
Stage 3 Relative Position ~ 0.70% — 0.80%
Supply Reliability 80% — 98%
Security of Security
Supply Criteria
Minimum Storage Level 4% — 20%
Target Storage Discrete distribution

Target Curve Target Storage Curves

Curves 0-10,000

Seven 20 year scenarios were selected from a 20 year total moving streamflow volume.
Shown in Figure 5-6 are the weekly streamflow volumes, 20 year total streamflow volume
and the seven selected scenarios. The blue line represents the 20 year streamflow totals (for
the following the 20 years) with the red circles indicating selected scenarios. The year and
season are given in the format YYY'Y.SS, where YYYY is the year and SS is the week in
that year.
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Scenarios were selected by ranking the 20 year streamflow totals and choosing the
maximum and minimum streamflow volumes (scenario 1 and scenario 5, respectively).
Three intermediate scenarios were selected using evenly spaced ranking intervals. The
scenario ranks (rank 1 has the lowest streamflow total), the starting time step and 20 year
total streamflow volume are shown in Table 5-6. Two more scenarios were selected that
have a similar total streamflow volume as scenario 2, but at significantly different positions
in the historic sequence. As the two extra scenarios have almost the same streamflow volume
as scenario 2, and are labelled scenario 2b and 2c. The additional scenarios (scenarios 2b and
2¢) were selected so that the effect of climate variability can be assessed without the effect of

the total streamflow volume.

Table 5-6. 20 Year Planning Length Scenario Selection Data.

Scenario Rank Starting Year .Week é?r\e(aer;awrﬂ-lc;\?vt?lM N
1 2990 1945.42 3,665,400
2 2242 1960.39 3,351,200
3 1495 1967.45 3,137,500
4 747 1936.29 2,925,500
5 1 1927.01 2,487,400
2b 2244 1952.37 3,355,900
2c 2243 1943.33 3,353,700

The same method of scenario selection was performed for the 40 and 60 year scenarios
producing the ranking, starting week and total streamflows shown in Table 5-7 and Table
5-8, respectively. In both of these cases, five scenarios each were selected, while the three 77
year scenarios required a different selection approach (as described below). Extra scenarios,
such as scenario 2b and 2c of 20 year simulation length, are not selected for the 40 and 60

year scenario sets as no significantly different sequences of 40 and 60 years were found.
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Table 5-7. 40 Year Planning Length Scenario Selection Data.

Scenario Rank Y ear Week g)r\e(aer?lﬂ‘l-(l;\?vta(ﬂM )
1 1951 1951.07 6,730,400
2 1464 1949.17 6,600,700
3 976 1957.50 6,430,200
4 488 1931.35 6,160,200
5 1 1964.26 5,839,500

Table 5-8. 60 Year Planning Length Scenario Selection Data.
60 Year Total

Scenario Rank Y ear Week Streamflow (M1)
1 911 1939.08 9,509,100
2 684 1941.22 9,384,300
3 456 1940.03 9,306,700
4 228 1930.32 9,228,000
5 1 1928.25 9,152,000

A shuffling (or recycled) method is used for the 77 year planning period scenarios. The
77 year historic sequence is divided into a number of blocks and reordered to produce
replicate climate sequences. Blocks of a whole years must be used to ensure that the correct
weekly climate pattern within the year is observed in the replicated climate sequence. In this
study 11 blocks of seven years is used. The advantage of this method is that a number of new
scenarios of maximum length are easily generated, without generating data using stochastic
data generation methods (See Srikanthan and McMahon, 1985; Srikanthan and McMahon,
2001; McMahon and Adeloye, 2005, for discussions and reviews of stochastic data
generation methods). It is possible that this approach can break severe droughts or create
worse droughts, providing new climate event sequences. The disadvantage is that it breaks

serial correlations between six pairs of years at the end and beginning of the blocks.

As there is little total streamflow volume change between scenarios 2, 2b and 2c¢ (Table
5-6) and no volume change in the three 77 years scenarios, these scenarios provide an
opportunity to test the importance of input variables due to changes in climate variability

without the effects of a volume change of streamflow, rainfall and evaporation. All other
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scenarios test the effects of different streamflow, rainfall and evaporation volumes and their

climate variability.
5.3.1.2 Security of Supply

As stated in Section 5.2.1.2, the two security of supply criteria used in the management of
the Barwon urban water supply system are the reliability of supply threshold and the
minimum storage level threshold. The reliability threshold sets the limit on the number of
restriction periods that are imposed in the ex-house demand as a percentage of total number
of time steps. The minimum storage level threshold is the minimum volume of water stored

in the system at any time step during the simulation.

The reliability of supply threshold was nominally set at the generally accepted industry
standard of 95% (Barwon Water, 2007). This variable was been assigned a continuous,
uniformly distributed range of 80% to 98% for the random sampling in the SA in this study.
These limits were considered for the same reasons as the hypothetical water supply model
case study (Section 4.3.1.5); the lower limit set at a reasonable minimum reliability expected

by water users and the upper set to 98%, as 100% would produce very low yield estimates.

As stated in Section 5.2.1.2, Barwon Water does not have a typical minimum total
system storage volume for use in their yield studies and operational planning. However,
modellers from Barwon Water casually mentioned a range of 10% to 15% capacity. The
lower bound for the random sampling of the minimum storage volume can be as low as 0%,
while the upper bound can be limited by the RRCs. It is reasonable to consider the lowest
value of intermediate RRC three as the upper bound of the minimum storage volume
threshold as it defines the lowest point of the boundary between zone three (75% restrictable
demand) and zone four (100% restrictable). The use of this value allows all three restriction
zones to be introduced throughout all months of the year. From the nominal position of the
RRCs as given in Table 5-2, the minimum level of intermediate curve three is 14,000 Ml,
occurring in July, which equates to 14.2% of total system storage (capacity = 98,285 Ml).
This storage level is illustrated on Figure 5-7. However, the position of intermediate RRC
three will change due to the random sampling in the SA, therefore the above rationalisation

becomes invalid.
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Figure 5-7. Nominal Restriction Rule Curves Showing Percentage of Total System Capacity.

To determine a suitable range for the minimum storage level threshold and confirm the
80-98% reliability range selected above, a preliminary SA observing the behaviour of the
estimation of yield to changes in the security criteria thresholds was performed. The test
consisted of estimating the yield of the Barwon system considering various combinations of
the two security criteria thresholds, while keeping all other REALM input variables constant.
The reliability of supply threshold ranged between 80% to 100% at steps of 2%, while the
minimum storage threshold was sampled at 1% steps between 1% and 20% of total system
storage. The ranges were extended to beyond those provided above (i.e. minimum storage
threshold 10% to 15% total storage volume and 80% to 98% supply reliability) to assess the
behaviour at extreme values. The tests were done for each scenario. Figure 5-8 and Figure
5-9 show some of the more interesting results of the security of supply criteria range tests.
Figure 5-8 shows the results of scenarios 1, 2, 3 and 5 for the 20 year planning length, while
Figure 5-9 shows the results for scenarios 1, 2, 3 and 4 for the 40 year planning length. They
show the minimum storage threshold versus reliability with the yield estimate shown in
contours. The dashed line represents the separation between the critical security of supply
threshold. In the areas on the left and upper left of the dashed line the reliability threshold is
the critical threshold, i.e. the system has failed due to violating the reliability threshold. In
the area to the right and lower right of the dashed line, the minimum storage level is critical.
All other scenarios (20 year scenarios 4, 2b and 2c, 40 year scenario 5, the five 60 year
scenarios and the three 77 year scenarios) show similar results.
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From Figure 5-8, it can be seen in the 20 year planning period scenarios the yield
estimate is highly sensitive to changes in the reliability, particularly between 94% and 98%
(shown by the tightness of the contour lines). When the reliability decreases towards the
lower bound (80%) the yield estimate is not as sensitive. The exception is scenario 3, which
is largely dominated by the minimum storage threshold. This indicates that importance of the
severe drought that occurs in this scenario, as it causes the system to drawdown greatly,
violating the minimum storage threshold at a lower AAD (average annual demand) than

would be needed to violate the reliability threshold.
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Figure 5-8. Samples of the Security of Supply Range Tests for 20 Year Planning Period.
Showing Yield Versus Reliability/Minimum Storage VVolume Thresholds.

Comparing the 20 year scenarios (Figure 5-8) to the 40 year scenarios (Figure 5-9), it is
clear that there is a difference in the behaviour of yield with respect to the security
thresholds. The 40 year scenarios show a greater dependency on the minimum storage
threshold with an effective range from as low as 6-7% up to 20%, whereas the 20 year
scenarios it has an effective range from 12% upwards (with the exception of 20 year scenario
3).

5-22



field (M) - 40 Year Scenario 1 9(’1 o Yield (M) - 40 Year Scenario 2 x10'
! 65

Refiability Threshold
tn
in
Rediability Threshold

10 15 5 10 15
Minimurm Storage Threshald Minimum Storage Threshold

Yield (M) - 40 Year Scenano 3 x10' field (Wi} - 40 Year Scenario 4

98
96
a4

a2

90

83

Refiability Threshold
Refiability Threshold

86

a4

&2

&0
5 10 15 sl 5 10 15 20

Minimurm Storage Threshald Minimum Storage Threshold

Figure 5-9. Samples of the Security of Supply Range Tests for 40 Year Planning Period.
Showing Yield Versus Reliability/Minimum Storage Volume Thresholds.

The test described above highlights the regions of variable space that the two security
criteria thresholds are effective. Therefore, the range selected for the minimum storage
threshold is 4% to 20% of total system storage to capture the effective range with an extreme
lower minimum storage threshold still possible. The reliability threshold has a uniform
distributed range of 80% to 98%. The implications of testing the security criteria within SA

provide an indication of the importance of correctly setting the thresholds.

To reiterate, the reliability threshold has a range of 80% to 98% and the minimum
storage volume threshold has a perturbation range of 4% to 20%. The upper limit of 20% for
the minimum storage volume consequently sets the minimum storage volume threshold to
19,657 MI. Shown in Figure 5-7 is a line highlighting the position of 20% capacity. The
implication of an upper limit of 20% is that in the months from April to August, inclusive,
the imposed demand restrictions are limited to zone one and zone two. For most of the other

months the restrictions can enter zones three and four.
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5.3.1.3 Restriction Rule Curves

Three groups of factors are within the set of restriction rule curves. These are the upper and
lower curves and base demand, the percentage restrictable, and the relative positions of the

intermediate curves.

Upper and Lower Restriction Curves and Base Demand Perturbations

Two types of perturbations were performed on the upper and lower RRCs and a single
perturbation is applied to the base demand. A curvature change is applied to the upper and
the lower RRCs which adjusts the slope of the curves shown in Figure 5-3. A position
change is applied to the upper and lower RRCs and the base demand. The base demand is

assumed to be constant throughout the year so it is not subject to a curvature perturbation.

The curvatures of the upper curve and lower curve are changed separately and done so
that the slopes of the curves become flatter or steeper. Changing the curvature alters the
trigger volumes of the restriction zones; a steeper curve means that the difference of the
trigger volumes between the filling and summer months (September to March), and the other
months is increased. When a flatter curve is generated, the difference between the trigger
volumes decreases. The purpose is to generate a variation in the curvature of the RRCs so

that the importance of the slope can be assessed.

To change the curvature, a percentage value, randomly selected from between a range of
-10% to +10% in accordance with the SA technique, is used to generate a new curve by
interpolating between predefined bounds. An example of these bounds is shown in Figure
5-10 surrounding the nominal position of the upper and lower curves (i.e. the 0% curvature
change) used in REALM model of the Barwon system as provided by Barwon Water. The
curves shown in Figure 5-10 have a maximum of 10% deviation from the nominal positions
at the peaks (reservoir filling and summer months) and troughs of the nominal curve. The

remaining monthly values are generated so that a smooth curve was maintained.

The positions of the upper curve, lower curve and base demand are perturbed with
respect to the total system storage (Figure 5-3), i.e. they are raised or lowered against the
total system storage. Each curve is perturbed separately using a single randomly generated
percentage value: i.e. three random numbers are required; one for each curve. Each random
percentage changes the 12 monthly values associated to a curve by that random percentage;
either increasing or decreasing the monthly values from the curves nominal position. The
range of the position perturbations for both the upper curve and the lower curve is £5%. This
is applied to the curve after the curvature perturbation is performed, or to the nominal
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position of the curves (given in Table 5-2) if the curvature perturbation is not required in the
SA. The nominal value of the base demand curve is 73% of AAD (combined for all months
of the year) which is replaced by a randomly selected value from a range of 70% to 76%
(approximately £5% from the nominal value). Note that the base demand values given in
Table 5-2 are monthly values with respect to the 73% AAD, i.e. (73% / 12 months) = 6.1%

AAD per month; the base demand is the same for each month.

When the upper and lower curves are perturbed, the trigger level for each intermediate
zone will also change. This means that restrictions are triggered at a different total system
storage volume. When the base demand curve is increased, the in-house water demand is
increased, effectively decreasing the volume of water that can be restricted since only the ex-
house demand is restricted. The ex-house demand is the difference between the total demand
and the in-house demand, i.e. the base demand. By perturbing the base demand in the SA,
the importance of accurately determining and modelling the in-house water demand is

measured.

Relative Position Perturbations

The relative positions of the intermediate curves are set nominally to the values shown in
Table 5-3. Each position is individually perturbed, each using a random value selected from
a 5% uniformly distributed range. Therefore, a total three random numbers are required to

perturb the three intermediate curves.

Percentage Restrictable Perturbations

The values of the percentage of demand restrictable for each restriction zone is perturbed in a
+5% uniformly distributed range. The nominal values are in Table 5-3. Note that the
percentage restrictable in zone four is not perturbed and is set at 100%. Each percentage
restrictable value uses a single random value for this perturbation; therefore, three randomly

selected values are required.
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Figure 5-10. Upper and Lower Interpolation Limit Bounds for Perturbation of Curvature.
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5.3.1.4 Target Storage Curves

In the hypothetical water supply model case study (Chapter 4), the target storage curves were
perturbed in the SA by changing the intermediate points of one of the two reservoirs. The
intermediate points of the second reservoir were then assigned volumes so that the associated

total system storage was met (see Section 4.3.1.6).

This strategy is simple to implement for a two reservoir system as one of the two
reservoirs is controlled by the required perturbation, while the other reservoir takes up the
remaining total system storage. This method only requires one random number to perturb
two reservoirs, two random numbers to perturb three reservoirs, and so on. The inclusion of
additional reservoirs means that the required properties of the target curves become
increasingly complex to maintain. The properties are the sum of the individual storages sum
to the total system storage at each point and the reservoir storage only increases as the total

system storage increases.

The Barwon system has six reservoirs, and therefore this handling strategy is not suitable
as it would require five random numbers per each intermediate point (i.e. points 2, 3 and 4 in
Figure 5-4), totalling 15 random numbers and would be extremely complex to ensure that the
target storage curves maintain to the correct properties. Instead, 10,000 sets of target storage
curves were randomly generated and assigned a 1 to 10,000 discrete sampling distribution
from which the SA technique selects. The sets were generated ensuring that individual
storage volumes summed to the required total system storage and that the individual volumes
of reservoirs do not decrease at higher total system storage. As the sets of curves were
generated randomly, similarity to the nominal curves, given in Figure 5-4, was not
guaranteed. Although it has been stressed in this thesis that a discrete distribution should be
avoided in SA (due to problems with integral estimation and index calculations), a suitable
handling strategy to perturb the target storage curves could not be found during the SA
experiments of this study.

5.3.2 Design of Sensitivity Analysis Experiments

The three SA techniques that have been identified as suitable (Section 3.5) for analysis of the
input variables used in the estimation of yield of the Barwon urban water supply system are
the Morris method, the extended Fourier Amplitude Sensitivity Test (eFAST) and the
method of Sobol’. The same tiered approach used in the SA of the yield of the hypothetical
water supply case study (Section 4.3.2) is applied to the Barwon urban water supply system

case study. Increasingly more accurate but computationally expensive experiments were
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performed so that more information was progressively gained to provide a better
understanding of the individual input variables used in the estimation of yield. The effects of
groups of associated variables were also tested so that any synergism, or cancelling out, of
perturbing a group of individual variables could be identified. The grouping of variables was

done so that the closely related variables are allocated into the same group, or groups.

The Morris method was used as a screening technique to identify input variables, or
groups of input variables, that have no or very little importance on the estimation of yield
and to give an initial indication of the behaviour of the yield estimate to perturbations of
input variables. As the indices are not reliable quantitative estimates of input variable
behaviour they can only be used for ranking input variables; therefore limited experiments
using the Morris method were used in this study. If, using the Morris method, an input
variable was identified as having little effect on the yield estimate over all scenarios, it
would be kept at its nominal value and neglected from the subsequent experiments. If an
input variable shows importance in just a single experiment then it should remain in all other

experiments so that the evolution of importance can be assessed completely.

The eFAST and Sobol” methods were then used in an attempt to accurately quantify the
importance of the input variables used in the estimation of yield. Note the FAST method was
not used as the eFAST technique provides more importance measures and better accuracy at
a lower computational cost and was found to perform adequately in Chapter 4. The eFAST
and Sobol’ methods produce the same first- and total-order sensitivity indices, but use
different techniques. The first-order importance measure (S) provides information on the
sensitivity of the yield estimate to variations in the i-th input variable, free of the effects of
all other variables. The total-order measure (Sr;) provides the overall importance measure of
an input variable which includes all combinations of interactions with the remaining input
variables. eFAST is also used to determine the importance of groupings of input variables to
identify possible synergy of groups of related variables, or lack there of. The Sobol’ method
was also used to determine two-factor interaction effects, S;. Negative importance indices of
the Sobol’ method experiments were estimated in the pilot study in Chapter 4, which voids
the accuracy and success of the technique. With this in mind, the Sobol” method is still used

with caution.

Each experiment has a unique set of randomly selected input variable samples, or
perturbations, in accordance to the requirements of the technique used. Each set of samples
was applied to all scenarios for each experiment. This ensures the importance of the input
variables could be compared across the scenarios without the introduction of additional

variability. By comparing the S and the Sy indices of an input variable across scenarios, the
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change of importance of that variable can be observed. If a large change in the importance of
input variables exists over different planning periods, it would indicate how the importance
of the management of the controllable variables would change under different planning
lengths. A change of importance of input variables over different climate scenarios of the
same length signifies the effect of climate variability on the behaviour of the model and,

thus, on the yield estimate.

Findings of the hypothetical case study led to the recommendation of using the total
output variance, V(Y), and the partial output variance (V;) due to each input variable so that
non-standardised effects of input variables can be observed. V(Y) provides insight into the
sensitivity of the estimation of yield to the climate sequence. A high V(Y) indicates a large
range of yield estimates, indicating sensitivity to the climate sequence of that scenario. V;
provides similar information as S, however it can be compared across scenarios and

planning lengths to give understanding of the effects of the i-th variable.

As the 77 year scenarios are generated by shuffling blocks of years, they can be used to
show the influence of the climate variability, free of the influence of the volume of
streamflow entering the system. The same can be done with 20 year scenarios 2, 2b and 2c.
These are significant in terms of the hypothesis, which brings into question the use of a
single climate sequence for a all planning purposes. If these sets of scenarios (20 year
scenarios 2, 2b and 2c, and the three 77 year scenarios), show a change in importance of

input variables, it highlights the need to consider a number of climate scenarios.
5.4 Sensitivity Analysis Results
5.4.1 Morris Method Results

The Morris method is commonly used as a screening technique to provide information
regarding the sensitivity of yield estimate to input variable perturbations and information on
possible interactions or non-linear behaviour of input variables. The Morris method involves
a randomly generated One-At-a-Time (OAT) sampling procedure that provides ranking
estimates of the importance of a model’s input variables (to the output) with a low
computational cost. The algorithm generates a trajectory through the input variable space
which links model realisations together to estimate an Elementary Effect (EE;) for each of
the k variables (1 < i < k) at a cost of k+1 model simulations. Multiple trajectories, r, are
constructed to provide r EEs for each input variable. Further details of the Morris method are
given in Section 3.5.1. The following Morris method sensitivity indices are used in this

discussion:
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i - the mean of the EE;s — provides overall sensitivity of changes in the i-th input

variable. This includes all interaction effects and all-order effects.

ui* - the mean of the absolute EE;s is — provides the overall sensitivity void of any

cancelling out effects that can result from ;.

i - the standard deviation of the EE;s — the spread of the EE;s indicates possible

non-linearity or interactions.

In the individual input variable experiments following, further information regarding the
monotonicity, or non- monotonicity, of the input variable to model output relationship can be
identified by observing the difference between p and p*. If a difference exists, it shows non-
monotonicity of an input variable, i.e. a change in the input in one direction (positive or
negative) causes the yield estimate to both increase and decrease. This could be due to a non-

uniform input to output behaviour or due to interactions with other input variables.

Three sets of Morris method experiments were performed, consisting of individual input
variable experiments and two sets grouped input variable experiments. The individual input
variables are shown in the third column of Table 5-5, whilst the groups that they are assigned
to are given in columns 1 and 2 of the same table. All Morris method experiments were
performed using an 8-level sampling resolution and used 50 trajectories to ensure that results

sufficiently converged.

Shown in Figure 5-11 is the cumulative u, p* and o indices of all 20 year simulation
length scenarios. Shown here is the evolution of the indices for the restriction rule curve
(RRC) group showing that 50 trajectories are sufficient to reach convergence. Other

variables show similar results.

The Morris method experiments were performed on 18 climate scenarios over four
simulation time lengths. The [ - ¢ plane typically used to present the Morris method indices
will allow only one scenario to be presented and viewed with ease. Therefore, u, p* and o
are shown in table and bar chart formats so that they can be compared over all scenarios. In
the two grouping experiments, only pu* and ¢ are considered. The p index considers the
direction of model output change due to either a positive or a negative input variable change.
As variables within a group can have a positive and a negative change at the same time, p is
not used when grouping variables. The p* index avoids this issue by considering only the
magnitude of the output change and not the direction (See Campolongo et al., 2007 for
further details).
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Figure 5-11. Grouping Experiment 1. Showing the Evolution of the Morris Indices for the
Restriction Rule Curves Group over 20 Year Planning Period.

5.4.1.1 Individual Input Variable Experiments

The individual input variable Morris method experiment includes all 14 variables shown in
Table 5-5. Individual experiments were performed using i) a 50 trajectory, 8-level, A = 2
design, ii) a 50 trajectory, 8-level, A = 4 design, and iii) a 50 trajectory, 4-level, A = 2 design
(See Section 3.5.1 for details regarding the Morris method algorithm). These experiments
showed similar results, therefore only the 50 trajectory, 4-level, A = 2 design results are

shown below and discussed for brevity.

The 20 year simulation period results are shown in Figure 5-12 and Table 5-9. Figure
5-12 shows the p* results that indicate four input variables are notably important for all
scenarios, except scenario 3. These are reliability of supply threshold, the minimum
storage threshold, the upper RRC curvature, the upper RRC position and the target
curves. Interestingly, when the reliability of supply threshold is the most important
variable (for all scenarios except scenario 3), the upper RRC curvature and upper RRC
position are clearly defined as being the next most important, while the remaining
variables showing inconclusive difference. For scenario 3, the most important variable is

the minimum storage threshold, then the reliability of supply threshold, with all other
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variables showing minor sensitivity effects. The reason for the apparent correlation
between the reliability threshold variable and upper RRC curvature and position
variables is related to which security criteria threshold is critical (i.e. which threshold
will cause the system to fail at a lowest average annual demand - AAD) and the climate
variability. The reliability threshold has a reliance on the upper RRC as the upper RRC
determines when restrictions are triggered. When the upper RRC is increased with
respect to the total system storage, restrictions will be imposed at a higher total storage.
The reliability threshold will then be violated at a lower AAD and is more likely to be
the critical threshold. Conversely, the minimum storage threshold does not rely on the
upper RRC and will be violated regardless of the position of the upper RRC. Therefore,
changing the upper RRC does not effect the likelihood of the minimum storage threshold

being the critical threshold, hence the lack of correlation.

The results of the 20 year individual variable scenario (shown in Table 5-9) suggest
considerable non-linearity or interaction behaviour as indicated by high o values in
comparison to the p and p* results. Furthermore, almost all input variables over all scenarios
show non-monotonicity as indicated by the difference between g and p*. The exceptions are
highlighted in Table 5-9. The yellow highlights the input variables that have inverse
monotonic input to output relationship and the green highlights positive monotonic input to
output relationships. The minimum level and reliability thresholds both have an inverse
monotonic input to output relationship, signifying that when they are increased (i.e. they
become more strict thresholds) the yield estimate decreases. Alternatively, the yield estimate

increases when the thresholds are lessened, i.e. become less strict.

The Morris results of the 40 year simulation period experiment (presented in Table 5-10)
shows that the two security of supply threshold are the most important in the estimation of
yield for this time period. The next important are again the upper RRC position and
curvature variables, with the base demand and target curve variables showing some
importance. The remaining variables do not show a notable trend across the scenarios. Many
variables show non-monotonicity while the highlighted cells show the monotonic variables

that have an inverse input to output relationship.

The results for the 60 year simulation period experiment are shown in Table 5-11 and the
77 year simulation period experiment is shown in Table 5-12. For both simulation lengths,
the reliability of supply and minimum storage level threshold variables are the most
important and the base demand, target curves, upper RRC position and upper RRC curvature

show some significance across all scenarios. Again, non-monotonic input to output
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relationships exist for most variables with the highlighted cells of Table 5-11 and Table 5-12

showing the exceptions for the 60 year and 77 year experiments.
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Figure 5-12. u* Results of the Individual Input Variable Morris Method Experiment — 20
Year Planning Period.
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Table 5-9. Results of the Individual Input Variable Morris Method Experiment — 20 Year
Planning Period.

Factor Scenl Scen2 Scen3  Scend  Scen5  Scen2b  Scen2c
1] Relative Position 1 -208 158 -108 -159 -141 -50 -94
Relative Position 2 -63 -98 -66 -78 -45 -7 -10
Relative Position 3 -1 -27 -389 -53 -28 -25 -219
Percentage Restrictable 1 150 115 58 162 71 104 143
Percentage Restrictable 2 39 10 661 182 25 42 157
Percentage Restrictable 3 41 401 84 20 13 63 18
Upper RRC Curvature -2954  -2221  -555 -1299  -1073  -797 -1374
Upper RRC Position -6177  -3306  -355 -1541  -1176  -3744  -2265
Lower RRC Curvature 140 75 -487 112 154 106 110
Lower RRC Position 53 98 682 83 82 42 148
Base Demand -240 -240 -956 -398 -388 -150 -469
Target Curves 294 -312 -143 -37 -132 -226 790
Minimum Level Threshold -2552  -9862  -11063 -4943  -4610 -6297  -3983
Reliability Threshold -13944 -15585 -5401  -7620 -6488  -16491 -11002
p* Relative Position 1 251 507 108 216 152 160 269
Relative Position 2 82 98 67 147 50 71 90
Relative Position 3 1 55 400 86 47 25 258
Percentage Restrictable 1 257 226 91 168 82 134 299
Percentage Restrictable 2 116 114 667 213 123 53 232
Percentage Restrictable 3 108 472 84 84 48 63 159
Upper RRC Curvature 3679 2460 1129 1712 1621 1658 2023
Upper RRC Position 6367 3941 599 1729 1489 3858 2581
Lower RRC Curvature 157 129 754 268 209 154 279
Lower RRC Position 100 98 682 110 104 91 191
Base Demand 284 518 1000 449 416 287 503
Target Curves 1699 2193 930 1116 575 1526 1610
Minimum Level Threshold 2552 9862 11063 4943 4610 6297 3983
Reliability Threshold 13944 15585 5401 7620 6488 16491 11002
c Relative Position 1 539 2385 269 380 294 418 623
Relative Position 2 393 343 192 311 164 236 248
Relative Position 3 10 273 2601 236 129 155 843
Percentage Restrictable 1 482 853 227 248 205 264 670
Percentage Restrictable 2 306 339 4211 392 262 156 443
Percentage Restrictable 3 262 2220 186 235 140 172 422
Upper RRC Curvature 3166 2510 1922 1621 1502 2070 2203
Upper RRC Position 3810 3875 1071 1518 1439 2889 2938
Lower RRC Curvature 477 320 4244 419 373 361 503
Lower RRC Position 276 364 4209 240 218 281 503
Base Demand 407 972 4302 591 372 613 761
Target Curves 2332 3310 1254 1541 709 1903 2046
Minimum Storage Threshold 5865 15007 9044 6097 5561 11751 7337
Reliability Threshold 4953 11233 8380 4474 4628 8804 5767
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Table 5-10. Results of the Individual Input Variable Morris Method Experiment — 40 Year

Planning Period.

Factor Scenl Scen2 Scen3 Scen4 Scen5
M Relative Position 1 -50 -73 -26 -70 -137
Relative Position 2 -62 -65 -65 -70 -66
Relative Position 3 -41 -45 -39 -46 -67
Percentage Restrictable 1 45 74 98 36 107
Percentage Restrictable 2 89 20 67 23 74
Percentage Restrictable 3 -667 149 878 78 90
Upper RRC Curvature -547 -185 -423 -1232 -48
Upper RRC Position -1092 -327 -966 -2203 -238
Lower RRC Curvature 139 111 48 32 114
Lower RRC Position 62 124 84 187 224
Base Demand -328 -740 -915 -340 -1000
Target Curves 202 -221 -19 351 -827
Minimum Level Threshold  -17777 -14610 -16306 -6941 -9183
Reliability Threshold -5951 -4885 -5560 -12927 -4919
p* Relative Position 1 220 166 97 103 179
Relative Position 2 73 67 65 124 66
Relative Position 3 58 45 82 52 90
Percentage Restrictable 1 118 166 357 146 116
Percentage Restrictable 2 176 110 111 114 163
Percentage Restrictable 3 879 179 889 102 92
Upper RRC Curvature 1025 644 838 1559 688
Upper RRC Position 1337 1118 1204 2354 1080
Lower RRC Curvature 206 154 205 137 200
Lower RRC Position 87 135 118 249 224
Base Demand 550 768 1316 413 1000
Target Curves 880 799 865 1258 915
Minimum Level Threshold 17777 14610 16306 6941 9183
Reliability Threshold 5951 4885 5560 12927 4919
c Relative Position 1 610 515 239 253 367
Relative Position 2 190 169 148 453 206
Relative Position 3 168 136 228 154 257
Percentage Restrictable 1 283 520 1324 345 228
Percentage Restrictable 2 533 334 344 208 306
Percentage Restrictable 3 5364 414 4780 230 222
Upper RRC Curvature 1638 908 1211 1491 910
Upper RRC Position 2510 2368 2271 2130 1437
Lower RRC Curvature 343 324 384 377 362
Lower RRC Position 200 454 276 523 351
Base Demand 632 2159 5034 586 805
Target Curves 1780 1504 1868 1656 750
Minimum Storage Threshold 14247 10542 12442 10691 5130
Reliability Threshold 9237 7303 8308 8009 6373
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Table 5-11. Results of the Individual Input Variable Morris Method Experiment — 60 Year

Planning Period.

Factor Scenl Scen2 Scen3 Scen4d Scen5
M Relative Position 1 -86 -208 -179 -111 -116
Relative Position 2 -141 -50 -84 -67 -13
Relative Position 3 -46 -92 -82 -35 -14
Percentage Restrictable 1 37 145 134 97 67
Percentage Restrictable 2 76 99 100 -37 -9
Percentage Restrictable 3 65 111 112 311 72
Upper RRC Curvature -230 -189 123 -221 -438
Upper RRC Position -1020 333 134 -505 -895
Lower RRC Curvature 128 121 104 119 134
Lower RRC Position 75 256 165 92 53
Base Demand -844 -1192 -929 -646 -344
Target Curves -61 -748 477 41 -108
Minimum Level Threshold  -12187 -11312 -9836 -11457 -12180
Reliability Threshold -5351 -2621 -3141 -5748 -6021
p* Relative Position 1 115 208 201 121 116
Relative Position 2 181 87 90 70 62
Relative Position 3 62 116 82 92 83
Percentage Restrictable 1 86 153 161 103 124
Percentage Restrictable 2 130 170 133 156 121
Percentage Restrictable 3 101 149 118 345 100
Upper RRC Curvature 649 768 451 616 848
Upper RRC Position 1286 931 687 756 1199
Lower RRC Curvature 172 132 151 142 185
Lower RRC Position 103 256 186 115 95
Base Demand 855 1192 929 737 464
Target Curves 784 855 689 687 781
Minimum Level Threshold 12187 11312 9836 11457 12180
Reliability Threshold 5351 2621 3141 5748 6021
c Relative Position 1 224 357 325 235 257
Relative Position 2 583 232 179 194 167
Relative Position 3 157 287 261 262 231
Percentage Restrictable 1 231 272 304 234 269
Percentage Restrictable 2 263 278 250 457 256
Percentage Restrictable 3 201 291 212 1665 203
Upper RRC Curvature 954 1183 639 879 1135
Upper RRC Position 2346 1127 985 1019 1789
Lower RRC Curvature 314 308 301 253 315
Lower RRC Position 208 344 315 245 219
Base Demand 2515 867 711 1714 496
Target Curves 1385 766 765 1138 1387
Minimum Storage Threshold 8801 4163 4394 8472 9352
Reliability Threshold 7713 4898 5455 7826 8203




Table 5-12. Results of the Individual Input Variable Morris Method Experiment — 77 Year
Planning Period.

Factor Scenl Scen2 Scen3
M Relative Position 1 -153 -144 -136
Relative Position 2 -82 -111 -239
Relative Position 3 -96 -104 -136
Percentage Restrictable 1 124 55 42
Percentage Restrictable 2 76 125 198
Percentage Restrictable 3 61 143 41
Upper RRC Curvature -153 -282 -236
Upper RRC Position 166 -173 -113
Lower RRC Curvature 155 310 242
Lower RRC Position 251 276 204
Base Demand -1184 -1143 -1114
Target Curves -734 -343 -541
Minimum Level Threshold  -11132 -13697 -13299
Reliability Threshold -2816 -5147 -4992
u* Relative Position 1 176 163 172
Relative Position 2 82 133 263
Relative Position 3 96 164 136
Percentage Restrictable 1 132 130 166
Percentage Restrictable 2 123 243 220
Percentage Restrictable 3 112 229 129
Upper RRC Curvature 722 947 956
Upper RRC Position 963 1080 1129
Lower RRC Curvature 156 403 378
Lower RRC Position 257 276 206
Base Demand 1184 1143 1114
Target Curves 837 827 993
Minimum Level Threshold 11132 13697 13299
Reliability Threshold 2816 5147 4992
c Relative Position 1 372 270 327
Relative Position 2 215 268 954
Relative Position 3 279 363 299
Percentage Restrictable 1 232 246 383
Percentage Restrictable 2 219 571 532
Percentage Restrictable 3 237 395 288
Upper RRC Curvature 1193 1359 1377
Upper RRC Position 1294 1359 1534
Lower RRC Curvature 318 645 654
Lower RRC Position 407 463 329
Base Demand 809 1009 1041
Target Curves 77 1294 1715
Minimum Storage Threshold 4077 6389 6692
Reliability Threshold 4920 7372 7495
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The main findings of the individual variable experiments using the Morris method are:

1. The most important input variables in all scenarios over all simulation lengths are
the reliability of supply and the minimum storage level thresholds. The base
demand, target curves, upper RRC position and upper RRC curvature variables also

show considerable importance across all scenarios.

2. A number of input variables show an inverse input to output relationship (i.e. a
positive input change causes a negative output change and vice versa) as indicated

by the large negative W results.

3. The above results suggest a correlation between the importance indices of input
variables exists. When the reliability threshold is the critical security of supply
criteria, the upper RRC curvature and position variables are also important. When
the minimum storage level threshold is critical, the remaining variables show non-
conclusive importance. This correlation is further investigated and discussed in the

results of the variance based methods.

4. Most input variables show a non-monotonic relationship with the yield estimate.
This means that a positive change to the input variable can results in a positive or a
negative change in the yield estimate. The notable exceptions to this generality is the
minimum storage and reliability thresholds which show a negatively inverse
monotonic relationship with the yield estimate. i.e. a positive change to the

threshold(s) causes a decrease in the estimation of yield.
5.4.1.2 Grouping 1 Experiments

In grouping 1 experiments, the individual input variables were assigned into three groups (11
variables in the restriction rule curves group, two variables in the security of supply group
and one in the target storage curves group) as shown in Table 5-13, with the ranges as
indicated in Table 5-5. The Morris method indices for the grouping 1 experiment for
simulation length 20, 40, 60 and 77 years are presented in Tables 5-14, 5-15, 5-16 and 5-17,
respectively. The pu* indices for all scenarios are shown graphically in Figures 5-13, 5-14, 5-
15 and 5-16. The grouping 1 experiments were performed using a 50 trajectory, eight level,
A = 4 Morris design so that the same input variable sampling points as the individual input

variable experiment could be selected.
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Table 5-13. Assignment of Input Variables for the Grouping 1 Experiments.

Group Name Individual Variable Grouping Name  Individual Variable
Upper RRC Curvature Target Storage
— Curves Target Storage Curves
Upper RRC Position (Target Curves)
Lower RRC Curvature Security of Supply Reliability Threshold
Lower RRC Position (Security Criteria)  \inimum Storage Threshold
Base Demand
Restriction Rule -
Curves (RRCs) Percentage Restrictable 1

Percentage Restrictable 2

Percentage Restrictable 3

Relative Position 1

Relative Position 2

Relative Position 3

Table 5-14. Results of the Grouping 1 Morris Method Experiment — 20 Year Planning

Period.
Morrisindex Group Scenl Scen2 Scen3 Scen4d Scen5 Scen2b  Scen2c
p* RRCs 8364 11195 4253 4641 4163 9537 5961
Target Curves 4714 5497 1815 2365 2072 4698 3877
Security Criteria 11747 17605 8440 7002 6442 14573 9314
c RRCs 10315 16731 6698 6700 6031 14253 8218
Target Curves 7690 11316 3592 4234 3881 9213 7059
Security Criteria 14101 22940 12012 8933 8511 18143 11625
20000
|_ ‘D RRCs W Target Curves O Security Criteri4
15000
T 10000 - ’7
5000 - r ’_Hr
0
Scenl Scen2 Scen3 Scen4 Scen5 Scen2b Scen2c
O RRCs 8364 11195 4253 4641 4163 9537 5961
| Target Curves 4714 5497 1815 2365 2072 4698 3877
O Security Criteria 11747 17605 8440 7002 6442 14573 9314

Figure 5-13. p* results of the Grouping 1 Morris Method Experiment — 20 Year Planning

Period.
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Table 5-15. Results of the Grouping 1 Morris Method Experiment — 40 Year Planning

Period.
Factor Scenl Scen2 Scen3 Scen4 Scenb5
p* RRCs 5508 4350 5057 7312 4017
Target Curves 2427 2125 2488 3129 1852
Security Criteria 11951 9679 10769 11915 7636
c RRCs 8468 6826 7865 10692 6654
Target Curves 6213 5282 5808 7201 3491
Security Criteria 18736 14458 16154 15261 9683
14000
O RRCs
12000 -
N W Target Curves
10000 — " O Security Criteria [|
8000
6000
4000 -
2000
0 4
Scenl Scen2 Scen3 Scen4 Scen5
O RRCs 5508 4350 5057 7312 4017
B Target Curves 2427 2125 2488 3129 1852
O Security Criteria 11951 9679 10769 11915 7636

Figure 5-14. p* results of the Grouping 1 Morris Method Experiment — 40 Year Planning

Period.
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Table 5-16. Results of the Grouping 1 Morris Method Experiment — 60 Year Planning

Period.
Factor Scenl Scen2 Scen3 Scen4d Scen5
Vel RRCs 3873 4294 3753 3488 3867
Target Curves 1931 1943 1484 1983 2125
Security Criteria 8538 7997 7317 7940 8455
c RRCs 6189 6881 6138 5610 6150
Target Curves 4695 3660 2959 4478 4783
Security Criteria 12625 9855 9174 11218 12210
9000 _ | BRRCs B Target Curves O Security Criteria -
8000 -
7000 ] —
6000 -
5000 -
* 4000 —
3000 1 -
2000 1 -
1000 T T — T -
0
Scenl Scen2 Scen3 Scen4 Scen5
ORRCs 3873 4294 3753 3488 3867
Bl Target Curves 1931 1943 1484 1983 2125
O Security Criteria 8538 7997 7317 7940 8455

Figure 5-15. p* results of the Grouping 1 Morris Method Experiment — 60 Year Planning
Period.
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Table 5-17. Results of the Grouping 1 Morris Method Experiment — 77 Year Planning

Period.
Factor Scenl Scen2 Scen3
p* RRCs 4102 4812 4128
Target Curves 1992 2732 2600
Security Criteria 7876 10734 9406
c RRCs 6606 8186 6922
Target Curves 3747 5359 5159
Security Criteria 9724 13706 12201
12000
O RRCs
10000 11 B Target Curves
O Security Criteria
8000
. 6000
U
4000
S H
0
Scenl Scen2 Scen3
O RRCs 4102 4812 4128
B Target Curves 1992 2732 2600
O Security Criteria 7876 10734 9406

Figure 5-16. pu* results of the Grouping 1 Morris Method Experiment — 77 Year Planning
Period.
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From the above tables and figures a number findings for the variable grouping 1

experiments can be extracted:

1. All groups of input variables show some influence on the yield estimate (indicated
by the non-zero p* indices) and show considerable interaction or non-linearity

(indicated by the high o indices).

2. The p* indices shown in Figures 5-13, 5-14, 5-15 and 5-16 clearly indicate that the
input variable groups maintain the same rankings for every scenario in every
simulation length. The most important group of variables in the estimation of yield is
the security criteria group, followed by the restriction rule curves and the target
curves. These findings are expected as the security criteria thresholds essentially

drive the estimation of yield with dependency on the restriction rule curves.

3. A large range of magnitudes of the p* and o indices exists across scenarios of the
same length and across different planning lengths. No obvious trends exist based on
the total streamflow volume (scenarios are selected using the total streamflow

volume, see Section 5.3.1.1) or the planning lengths.
5.4.1.3 Grouping 2 Experiments

The grouping 2 experiments consist of a larger number of groups compared to the grouping 1
experiments, with the restriction rule curves group of the grouping 1 experiments separated
into smaller groups of related variables. These experiments were designed to test the
importance of the components of the restriction rule curves. They consist of groups of
variables as indicated in Table 5-18, with their ranges shown in Table 5-5. An eight level, A

= 4 Morris design over 50 trajectories was used.

The Morris method indices for the grouping 2 experiment for the 20 year planning length
are presented in Table 5-19 with the pu* indices shown graphically in Figure 5-17. The p*
and o results for the 40 year planning length are given in Table 5-20, with pu* presented
visually in Figure 5-18. Similarly, the 60 year indices are presented in Table 5-21 and in
Figure 5-19. Finally, the p* and o results of the 77 year grouping 2 experiment are shown in
Table 5-22 and Figure 5-20. The grouping 2 experiments were performed using a 50
trajectory, eight level, A =4 Morris design so that the same input variable sampling points as
the individual input variable experiment could be used.
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Table 5-18. Assignment of Input Variables for the Grouping 2 Experiments.

Group Name Individual Variable

Group Name

Individual Variable

Upper Restriction Upper RRC - Curvature

Rule Curve

Base Demand

Base Demand

(Upper RRC) Upper RRC - Position

Lower Restriction Lower RRC — Curvature

Rule Curve

(Lower RRC) Lower RRC — Position

Relative Positions

Relative Position 1

Relative Position 2

Relative Position 3

Percentage Restrictable 1

Percentage
Restrictable

Reliability Threshold

Security of Supply
Percentage Restrictable 2 Minimum Storage Threshold
Percentage Restrictable 3 Target Storage Target Storage Curves
Curves

Table 5-19 and Figure 5-17 show the p* index of the 20 year simulation period

scenarios. These results show that the most important group of input variables for each

scenario is the security criteria, followed by the lower RRC group. The ranking of the

remaining groups of variables show some stability over the scenarios with the percentage

restrictable, the upper RRC and the target curves groups ranked three, four and five over

most of the scenarios. The base curves and relative position groups are ranked six and seven

for most of the scenarios.

The security criteria group and the lower RRC group are the most important variables for

all scenarios in the 40 year scenarios (shown in Table 5-20 and Figure 5-18), the 60 year

scenarios, (Table 5-21 and Figure 5-19) and the 77 year scenarios (Table 5-22 and Figure

5-20). The rankings of the remaining variables change providing little conclusions with these

results.
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Table 5-19. Results of the Grouping 2 Morris Method Experiment - 20 Year Planning

Period.
Morrisindex Group Scenl Scen2 Scen3  Scend  Scen5  Scen2b  Scen2c
p* Relative Position 1714 1949 1568 1000 790 1851 1610
Percentage Restrictable 2913 4165 2334 1967 1674 3656 2577
Upper RRC 2940 3540 1790 1725 1539 3263 2233
Lower RRC 4347 5867 2616 2510 2294 4823 3412
Base Demand 1741 3111 1238 1232 1158 2104 1736
Target Curves 2381 3009 1544 1316 1348 2724 1758
Security Criteria 5828 7184 4168 3225 2623 6845 4102
c Relative Position 4461 6020 4258 2584 2329 5393 3847
Percentage Restrictable 6438 10575 5477 4120 4194 9017 6016
Upper Curve 5452 8897 5213 3718 3652 8004 4487
Lower Curve 7897 12380 6026 4847 4427 9926 6728
Base Demand 4410 7465 2919 3076 2923 5602 4205
Target Curves 5110 8664 3508 3110 3323 7585 4300
Security Criteria 9020 12357 8094 5256 4736 11566 6675
8000
7000
6000
5000
|&* 4000
3000 -
2000 H
1000 H
0 4
Scenl Scen2 Scen3 Scen4 Scen5 Scen2b Scen2c
O Relative Position 1714 1949 1568 1000 790 1851 1610
| Perc. Restrictable 2913 4165 2334 1967 1674 3656 2577
O Upper Curve 2940 3540 1790 1725 1539 3263 2233
O Low er Curve 4347 5867 2616 2510 2294 4823 3412
B Base Demand 1741 3111 1238 1232 1158 2104 1736
O Target Curves 2381 3009 1544 1316 1348 2724 1758
| Security Criteria 5828 7184 4168 3225 2623 6845 4102

Figure 5-17. p* Results of the Grouping 2 Morris Method Experiment - 20 Year Planning

Period.
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Table 5-20. Results of the Grouping 2 Morris Method Experiment — 40 Year Planning

Period.
Morrisindex Group Scenl Scen2 Scen3  Scend  Scenb
p* Relative Position 2344 2017 2176 1720 1432
Percentage Restrictable 2591 2122 2403 3089 1927
Upper Curve 2588 2176 2380 2441 1831
Lower Curve 4220 3280 3816 4084 2668
Base Demand 1887 1723 1699 2016 1704
Target Curves 1684 1567 1669 2044 1537
Security Criteria 5755 4799 5247 5210 3401
c Relative Position 7170 5763 6661 4969 4039
Percentage Restrictable 6175 4833 5561 7448 4657
Upper RRC 8066 6552 7319 5783 4008
Lower RRC 9995 7992 9118 8083 5467
Base Demand 4921 4364 4470 5162 3871
Target Curves 4049 3607 3913 5480 3692
Security Criteria 11784 9311 10250 9302 6211
7000
6000
5000
4000
u*
3000
2000 -
1000 -
0 |
Scenl Scen2 Scen3 Scen4 Scen5
O Relative Position 2344 2017 2176 1720 1432
| Perc. Restrictable 2591 2122 2403 3089 1927
O Upper Curve 2588 2176 2380 2441 1831
O Low er Curve 4220 3280 3816 4084 2668
B Base Demand 1887 1723 1699 2016 1704
O Target Curves 1684 1567 1669 2044 1537
B Security Criteria 5755 4799 5247 5210 3401

Figure 5-18. u* Results of the Grouping 2 Morris Method Experiment - 40 Year Planning
Period.
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Table 5-21. Results of the Grouping 2 Morris Method Experiment — 60 Year Planning

Period.
Morrisindex Group Scenl Scen2 Scen3  Scend  Scen5
[Thd Relative Position 1622 1571 1489 1568 1629
Percentage Restrictable 2061 1914 2033 1996 2054
Upper RRC 1995 1734 1562 1789 2052
Lower RRC 2790 2788 2667 2764 2895
Base Demand 1579 1614 1472 1503 1571
Target Curves 1333 1550 1488 1338 1381
Security Criteria 3912 4310 3679 3818 3923
c Relative Position 4937 4064 3940 4802 4946
Percentage Restrictable 4421 4394 4662 4591 4569
Upper RRC 5496 3711 3459 4750 5553
Lower RRC 6717 5314 5299 6706 7124
Base Demand 3981 3555 3237 3664 4018
Target Curves 2905 3739 3490 2807 2960
Security Criteria 7730 7259 6259 7610 7658
5000
4500
4000
3500
3000
W* 2500
2000 H
1500 -
1000 -
500 A
0 -
Scenl Scen2 Scen3 Scen4 Scen5
O Relative Position 1622 1571 1489 1568 1629
B Perc. Restrictable 2061 1914 2033 1996 2054
O Upper Curve 1995 1734 1562 1789 2052
O Low er Curve 2790 2788 2667 2764 2895
B Base Demand 1579 1614 1472 1503 1571
O Target Curves 1333 1550 1488 1338 1381
B Security Criteria 3912 4310 3679 3818 3923

Figure 5-19. u* Results of the Grouping 2 Morris Method Experiment - 60 Year Planning
Period.
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Table 5-22. Results of the Grouping 2 Morris Method Experiment — 77 Year Planning

Period.

Morrisindex Group Scenl Scen2  Scen3

u* Relative Position 1463 1611 1670
Percentage Restrictable 1820 2509 2259
Upper RRC 1693 2186 2246
Lower RRC 2647 3551 2903
Base Demand 1600 1933 2119
Target Curves 1534 1899 1435
Security Criteria 4000 5035 4393

c Relative Position 3850 4466 4859
Percentage Restrictable 4359 6185 5198
Upper RRC 3709 5382 5248
Lower RRC 5248 7321 6101
Base Demand 3555 5123 4974
Target Curves 3743 4799 3603
Security Criteria 6858 9107 7753

6000

5000

4000

3000 _|
§* —|
2000

1000 -
0

Scenl Scen2 Scen3
O Relative Position 1463 1611 1670
B Perc. Restrictable 1820 2509 2259
O Upper Curve 1693 2186 2246
O Low er Curve 2647 3551 2903
B Base Demand 1600 1933 2119
O Target Curves 1534 1899 1435
B Security Criteria 4000 5035 4393

Figure 5-20. u* Results of the Grouping 2 Morris Method Experiment - 77 Year Planning
Period.

Based on Tables 5-19, 5-20, 5-21 and 5-22 and Figures 5-17, 5-18, 5-19 and 5-20 given
above, the following conclusions can be drawn from the grouping 2 Morris method

experiments:
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1. All experiments indicate that the security criteria group and the lower RRC group
are the most important. The rankings of the remaining groups show consistency
across scenarios in the 20 year planning length (Figure 5-17) but inconsistent results
for the 40, 60 and 77 year planning length scenarios (Figures 5-18, 5-19 and 5-20,

respectively).

2. All groups show influence on the estimation of yield (indicated by the non-zero p*
indices) and show considerable interaction or non-linear effects (indicated by non-

Zero o).

3. A large range of magnitudes of the p* and o indices exists across scenarios of the
same planning length and also across different planning lengths. No obvious trends

exist regarding the total streamflow volume or the planning lengths.

4. This experiment showed that the lower RRC group was important, which is
contradictory to the individual experiment results that shows the upper RRC
curvature and position as more important. This could be a result of a synergy of the
lower RRC when grouped, or by some cancelling out of the upper RRC variables

when grouped.
5.4.1.4 Summary of Morris Experiments

The following conclusions can be deduced from comparison of the individual, grouping 1

and grouping 2 experiments:

1. The p* and o indices across the grouping 1 and grouping 2 experiments have
somewhat similar magnitude, while most p* and o indices in the individual
experiments are considerably different. Consider the relative position 1, 2 and 3
variables. The p* indices of these variables in the individual experiments are
considerably less than the p* for the relative position group in grouping 2
experiment. This shows that the yield estimate is effected more when they are
changed at the same time, indicating a synergistic effect. On the other hand, the two
security of supply thresholds seem to have ‘cancelling out’ effect when changed at

the same time.

2. No trends are evident across planning periods or between scenarios within a single
simulation length. In other words, neither the streamflow volume nor the planning
length have significant influence on the importance of input variables used in the
estimation of yield. Climate variability, however, does effect the importance of input
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variables, and groups of, as shown by the significant differences in the y, u* and o
indices across scenario 2, 2b and 2c of the 20 year planning period and between the
77 year planning period scenarios. (If these indices showed little change amongst
scenarios 2, 2b and 2c it would suggest that climate variability is not influential.)
These findings are explored further in the results of the variance based methods
(Section 5.4.2).

The Morris method was used successfully to identify important input variables and
groups of input variables in the estimation of yield of an urban water supply system. The
primary aim of the Morris method was to screen out input variables that show no importance
over all scenarios for all simulation periods. All variables and groups of input variables show
some importance with a number of input variables that have a cause a high sensitivity,

therefore none will be omitted from the following SA using the variance based techniques.
5.4.2 Variance Based Method Results

The extended Fourier Amplitude Sensitivity Test (eFAST) was used here to estimate the
first- and total-order importance measures of input variables used in the estimation of yield
of the Barwon urban water supply system. Only eFAST (see Section 3.5.2) was used here as
it accurately estimates the same first-order importance index as the classic FAST in less
model simulations with the addition of estimating the total-order importance index (See
Section 4.5 for comparison). The same grouping experiments as the Morris method
experiments were performed using the eFAST technique. Experiments using the method of
Sobol’ (see Section 3.5.3 for details on the Sobol’ method) were also performed in which

first-, second- and total-order importance indices are estimated.

As explained in Section 3.4.3.6, the first- (S) and total-order (Sy) indices determined
using the eFAST and Sobol’ methods are theoretically the same. However, these methods
use different numerical approximations that lead to slight discrepancies. As seen in Section
4.5, the Sobol’ method can provide erroneous results such as negative importance indices
and S > Sy. If these are encountered, increasing accuracy Sobol’ experiments should be
performed until satisfactory results are met, i.e. §> 0 and § < Sy;. However this may not be
possible as the next accurate Sobol” experiment would require twice the number of model
simulations. If indeed the number of model simulations becomes infeasible to compute, the
erroneous results can be analysed in a qualitative manner, disregarding any quantitative
inconsistencies. By design, the eFAST algorithm never produces negative indices but can
produce IS > 1 or S > Sy; for a given experiment. If this occurs, the number of simulations

that eFAST is performed over should be increased.
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Details of the FAST and Sobol’ techniques are in Sections 3.5.2 and 3.5.3, respectively.
The following importance indices are used in the experiments using the variance based

techniques:

S - first-order importance index which measures the effect of the i-th input variable, free
of interaction and higher-order effects, where § = Vi/V(Y). V; and V(Y) are explained

below.

Sy — total-order sensitivity index that measures the combined first- and higher-order effect
of the i-th input variable. This includes all interaction effects involving the i-th input
variable, i.e. for a three variable model: S;; = § + §; + Sk + Sj«. See below for
definition of S; and S.

S; — ‘closed” second-order importance index that measures the effect of the i-th and j-th

input variables, individually and combined. S is only calculated using the method
of Sobol’.

S; - second-order importance index quantifying the combined effect of the i-th and j-th

input variables only. It is calculated using the closed index, i.e. § =5 -§ -5,

therefore can only be determined using the Sobol’ method. This index can be
expanded to even higher-order indices such as S, which is the combined effect of

the i-th, j-th, and k-th input variables.

The above four indices are standardised indices within an SA experiment. Because of
this, comparison between experiments can only be qualitative comments on the ranking of
importance of the input variables. To observe the absolute effect of the input variables on the
estimation of yield in a method that allows a better comparison between scenarios and

experiments, the following measures are used:

V(Y)- the total variance of the yield estimate (Y) due to all input variables, including
individual and combined effects. A single V(Y) value is computed for each scenario.
The value of V(Y) indicates volatility of the estimation of yield to changes of all
input variables for each scenario. Scenarios with a high yield estimate variance are
more sensitive to the changes to the input variables, suggesting that the positions,
states or values of the input variables are more important for that climate sequence
than scenarios with a low yield variance. Conversely, a scenario with a low output
variance is robust against changes in the input variables and the input variables are

then less important for that scenario.
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V; - is a non-standardised measure of the partial output variance due to the i-th input
variable only. A V; measure is computed for each variable in every scenario. It
demonstrates the effect of the i-th variable on the estimation of yield, comparable
between scenarios and experiments. A changing V; across scenarios and planning
periods reflects the change of importance of the input variable due to the climate
sequence or planning length used. This change of importance may not become clear

using the standardised S index.
5.4.2.1 Individual Experiments

This section presents the results of the individual input variable experiments similar to
Section 5.4.1.1. The § and Sy indices for the eFAST SA experiments (using 1918 model
simulations) are presented in Tables 5-23 and 5-24. The graphs of the eFAST experiments
showing the § and Sy results for the individual experiments are given in Appendix D.
However, the results for the reliability threshold and minimum storage level threshold are
shown in Figures 5-21 and 5-22 respectively, as examples since they are the most important

input variables identified by the SA study.

Table 5-23 shows that the most important input variables in all scenarios of all
experiments are the security criteria thresholds: the minimum storage threshold and the
reliability threshold. For all scenarios, either the minimum storage threshold or the reliability
threshold is the most important input variable. This corresponds to the most critical threshold
within each scenario (the threshold that will causes system failure at the lowest AAD -
Average Annual Demand): an indication of the dependence of these variables on the climate
sequence. For instance, the reliability threshold is the most important variable for all 20 year
scenarios, except scenario 3, which can be seen from the S results in Figures 5-21 and 5-22
for both variables. The 20 year scenario 3 streamflow sequence has a large drought that
causes a severe drawdown; violating the minimum storage criteria. Whereas the minimum
storage threshold is the most important for all 40 year scenarios, except scenario 4 which has
a relatively constant climate variability with no severe dry periods. This constant climate
results in the reliability threshold is violated at a lower AAD than required to violate the
minimum storage threshold, therefore making the reliability threshold critical and important
in scenario 4. Interestingly, the reliability threshold has little importance in the 60 and 77
year scenarios. This is due to these scenarios containing a severe drought that causes large

system drawdown, hence violating the minimum storage threshold.
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Table 5-23. § Results of the Individual eFAST Experiment using 1918 Simulations

First-Order Sensitivity Index (S;)

Upper Upper  Lower Lower Base Target Minimum
Storage

Curvature Position Curvature Position Demand  Curves Threshold

Simulation Scenario Relative  Relative  Relative  Percent. Percent. Percent. RRC RRC RRC RRC

Reliability SUM
Period Position 1 Position 2 Position 3 Restrict. 1  Restrict. 2  Restrict. 3

Threshold

1 0.0031 0.0065 0.0068 0.0009 0.0077 0.0007 0.0417 0.0935 0.0018 0.0053 0.0064 0.0045 0.0229 0.7519 0.9537
2 0.0021 0.0019 0.0045 0.0019 0.0025 0.0003 0.0021 0.0300 0.0028 0.0051 0.0024 0.0084 0.3075 0.4515 0.8230
3 0.0012 0.0022 0.0045 0.0176 0.0011 0.0022 0.0066 0.0057 0.0026 0.0029 0.0043 0.0050 0.5918 0.0901 0.7378
4
5

20 Year 0.0016 0.0119 0.0083 0.0033 0.0057 0.0023 0.0119 0.0234 0.0034 0.0022 0.0026 0.0022 0.1393 0.6088 0.8269
0.0035 0.0076 0.0040 0.0036 0.0078 0.0013 0.0166 0.0185 0.0066 0.0029 0.0056 0.0026 0.2384 0.5200 0.8390

2b 0.0036 0.0062 0.0095 0.0021 0.0018 0.0019 0.0040 0.0369 0.0047 0.0040 0.0042 0.0147 0.2675 0.4837 0.8448

2c 0.0087 0.0112 0.0059 0.0029 0.0169 0.0047 0.0074 0.0383 0.0005 0.0067 0.0130 0.0045 0.1448 0.6626 0.9281

1 0.0055 0.0031 0.0075 0.0094 0.0041 0.0089 0.0049 0.0059 0.0079 0.0036 0.0050 0.0023 0.6632 0.0719 0.8032

2 0.0057 0.0017 0.0037 0.0165 0.0043 0.0069 0.0042 0.0091 0.0040 0.0025 0.0035 0.0033 0.6924 0.0499 0.8077

40 Year 3 0.0086 0.0018 0.0072 0.0110 0.0028 0.0031 0.0048 0.0079 0.0086 0.0023 0.0044 0.0023 0.6588 0.0671 0.7907
4 0.0038 0.0041 0.0065 0.0016 0.0031 0.0030 0.0081 0.0219 0.0012 0.0025 0.0031 0.0043 0.2761 0.5096 0.8489

5 0.0027 0.0021 0.0012 0.0060 0.0021 0.0007 0.0017 0.0029 0.0012 0.0014 0.0117 0.0006 0.5805 0.1294 0.7443

1 0.0081 0.0026 0.0040 0.0124 0.0039 0.0064 0.0053 0.0093 0.0066 0.0029 0.0028 0.0035 0.6047 0.1184 0.7909

2 0.0022 0.0035 0.0006 0.0042 0.0031 0.0007 0.0021 0.0022 0.0007 0.0014 0.0232 0.0027 0.8303 0.0230 0.9000

60 Year 3 0.0004 0.0006 0.0002 0.0044 0.0015 0.0021 0.0002 0.0004 0.0013 0.0007 0.0121 0.0010 0.7073 0.0545 0.7869
4 0.0011 0.0049 0.0024 0.0030 0.0041 0.0014 0.0047 0.0029 0.0039 0.0026 0.0016 0.0031 0.5740 0.1569 0.7666

5 0.0084 0.0035 0.0041 0.0075 0.0037 0.0035 0.0065 0.0095 0.0082 0.0027 0.0029 0.0022 0.5653 0.1462 0.7742

1 0.0025 0.0029 0.0004 0.0044 0.0028 0.0005 0.0019 0.0014 0.0011 0.0012 0.0170 0.0031 0.8069 0.0313 0.8774

77 Year 2 0.0027 0.0058 0.0012 0.0027 0.0041 0.0037 0.0020 0.0037 0.0030 0.0013 0.0077 0.0010 0.7079 0.1021 0.8489
3 0.0048 0.0028 0.0019 0.0035 0.0073 0.0028 0.0034 0.0020 0.0016 0.0020 0.0143 0.0029 0.7029 0.0640 0.8162
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Table 5-24. Sy; Results of the Individual eFAST Experiment using 1918 Simulations

Total-Order Sensitivity Index (St;)

Simulation . Relative Relative Relative Percent. Percent. Percent. Upper Upper  Lower Lower Base Target Minimum Reliability
Period Scenario Position 1 Position 2 Position 3 Restrict. 1 Restrict. 2 Restrict. 3 RRC RRQ. RRC RRQ. Demand Curves Storage Threshold SUM
' ' ' Curvature Position Curvature Position Threshold

1 0.0578 0.0997 0.0986 0.0483 0.0967 0.0376 0.1335 0.1657 0.0922 0.1041  0.0833 0.1135 0.0770 0.8448 2.0528
2 0.0451 0.0632 0.0645 0.0438 0.0728 0.0360 0.0668 0.0836 0.0454 0.0843  0.0426 0.0944 0.4496 0.5846 1.7767
3 0.1739 0.1177 0.1185 0.1536 0.1173 0.1238 0.0845 0.1311 0.1193 0.0879  0.1315 0.0806 0.7984 0.2425 2.4806
4
5

20 Year 0.0435 0.0836 0.1458 0.0718 0.1090 0.0420 0.1060 0.0804 0.0799 0.1077  0.0353 0.1347 0.2920 0.8000 2.1316
0.0557 0.0768 0.1048 0.0830 0.1252 0.0465 0.0971 0.0715 0.1001 0.0901 0.0416 0.1064 0.4033 0.7141 2.1161

2b 0.0585 0.0767 0.1003 0.0691 0.0759 0.0530 0.0734 0.1021 0.0657 0.0777  0.0609 0.1258 0.4257 0.6422 2.0070

2c 0.1043 0.1402 0.0861 0.0719 0.1928 0.0813 0.0960 0.1299 0.1332 0.0952  0.0973 0.1554 0.2799 0.8493 2.5129

1 0.1042 0.0824 0.1003 0.0928 0.0941 0.1306 0.0890 0.1169 0.1027 0.0951  0.0867 0.0833 0.8802 0.2697 2.3282

2 0.0983 0.0685 0.0758 0.1269 0.0802 0.1245 0.0900 0.1288 0.0699 0.0812  0.0952 0.0740 0.8865 0.2125 2.2124

40 Year 3 0.1149 0.0794 0.0887 0.1027 0.0954 0.1211 0.0819 0.1236 0.1114 0.0912  0.0889 0.0760 0.8660 0.2397 2.2809
4 0.0508 0.0478 0.0773 0.0494 0.0586 0.0523 0.0624 0.0861 0.0393 0.0605  0.0550 0.0800 0.4505 0.6838 1.8539

5 0.0490 0.0433 0.0222 0.0926 0.0529 0.0611 0.0378 0.0485 0.0494 0.0251 0.0444 0.0266 0.7544 0.3309 1.6383

1 0.1086 0.0760 0.0634 0.1531 0.0749 0.1286 0.0862 0.1040 0.0694 0.0722  0.0631 0.0984 0.8411 0.3410 2.2798

2 0.0461 0.0489 0.0597 0.0649 0.0681 0.0583 0.0384 0.0499 0.0583 0.0395  0.0602 0.0452 0.9341 0.1295 1.7011

60 Year 3 0.0260 0.0336 0.0250 0.0870 0.0355 0.0485 0.0313 0.0374 0.0338 0.0236  0.0393 0.0255 0.8277 0.1327 1.4068
4 0.0545 0.0748 0.0617 0.0700 0.0737 0.0626 0.0684 0.0597 0.0620 0.0719  0.0377 0.0708 0.7968 0.3804 1.9448

5 0.1042 0.0751 0.0666 0.1172 0.0808 0.1146 0.0818 0.0974 0.0697 0.0739  0.0593 0.0652 0.8083 0.3800 2.1942

1 0.0466 0.0426 0.0440 0.0724 0.0658 0.0589 0.0387 0.0468 0.0603 0.0357  0.0538 0.0405 0.9246 0.1491 1.6798

77 Year 2 0.0647 0.0548 0.0283 0.0687 0.0408 0.0620 0.0538 0.0410 0.0582 0.0370 0.0478 0.0403 0.8815 0.2893 1.7683
3 0.0956 0.0664 0.0408 0.0925 0.0688 0.1033 0.0571 0.0422 0.0784 0.0543  0.0828 0.0352 0.8870 0.2665 1.9710
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Figure 5-22. eFAST Individual Experiment. Minimum Storage Level Threshold. S and Sy
Results for all Scenarios.

Results of the Morris method experiments (Section 5.4.1.1) indicated that correlation of
the importance indices of input variables existed. Section 5.4.1.1 described that when the
reliability of supply threshold is the most important, the upper RRC curvature and upper
RRC position variables are important. Similarly, when the minimum storage threshold is the
most important the other variables have somewhat indistinguishable pu* measures. This is
also identifiable in S and Sy; results shown in Figures 5-21 and 5-22, and also from some of
the charts of the S and Sy indices of the eFAST individual experiments presented in
Appendix D. Progressing with this investigation, Table 5-25 presents a correlation of the S

importance measures of all input variables.
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Table 5-25. Correlation Matrix of the First-Order Indices (S) for the eFAST Individual Experiment.

Upper Upper L ower L ower Minimum

Relative Relative Relative Percent. Percent.  Percent. Base Target Reliability
Position 1 Position 2 Position 3 Restrict. 1 Restrict. 2 Restrict. 3 RRC RR.C:. RRC RR.C. Demand Curves Storage Threshold
Curvature Position Curvature Position Threshold
Relative 1
Position 1
Relative
Position 2 0.043 1
Relative
Position 3 0.325 0.450 1
Per cent.
Restrict 1 0.309 -0.459 0.007 1
Per cent.
Restrict. 2 0.417 0.693 0.184 -0.281 1
Per cent.
Restrict. 3 0.599 -0.057 0.274 0.529 0.182 1
Upper RRC  h 508 0414 0394  -0226  0.366 0171 1
Curvature
Upper RRC o046 0469 0553  -0386  0.419 0195  0.852 1
Position
Lower RRC 535 9103 0412 0398 0165 0472 -0.003 0142 1
Curvature
Lower RRC 250 0439 0602  -0.153  0.612 0.135 0.458 0729  0.043 1
Position
Base -0.155 -0.078 -0.593 -0.240 0.157 -0.292 -0.203 -0.206 -0.586 -0.294 1
Demand
Target
Curves -0.036 0.121 0.528 -0.170 -0.078 -0.164 0.043 0.428 -0.006 0.525 -0.248 1
Minimum
Storage -0.016 -0.708 -0.671 0.443 -0.492 0.195 -0.666 -0.819 0.070 -0.712 0.408 -0418 1
Threshold
Reliability
-0.010 0.748 0.613 -0.541 0.542 -0.236 0.662 0.833 -0.164 0.699 -0.284 0.411 -0.984 1
Threshold
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The correlations are calculated using all scenarios over all planning lengths. From this
table it can be seen that a number of strong correlations between the importance indices of
variables exist. A positive correlation demonstrates that when the importance of an input
variable increases, the importance of the correlated variable also increases. When there is a
negative correlation, the importance of the other variable decreases. The strong negative
correlation between the reliability threshold and minimum storage threshold confirms the
suspected correlations of the important of variables discussed above. The positive
correlations between the reliability threshold variable and both the upper RRC position and
curvature variables are also understandable as the upper RRC directly affects the reliability

threshold. The remaining correlations are of little interest.

The difference between the first- and total-order importance measures can be gained
from a comparison of Tables 5-23 and 5-24. The highlighted cells in Tables 5-23 and 5-24
designate the variables that increase by greater than 0.1 between § and Sy;. The minimum
storage threshold, the reliability threshold and a few other input variables in the 20 year
scenarios show a large increase between S and Sy, implying interactions and/or higher-order

effects. No other results are clearly obvious from Tables 5-23 and 5-24.

The S and Sy; indices for the Sobol” SA experiments using 6848 model simulations are
given in Tables 5-26 and 5-27, respectively. However, these results are unsatisfactory due to

the large number of negative results. The Sobol’ experiments also determined second-order

importance indices, Sjand S, but these are also unsatisfactory (note that indices from the

variance based methods should be always be positive). This is a limitation of the Sobol’

method, as the algorithm produces negative sensitivities when a model has a number of

variables with relatively negligible importance (Saltelli et al., 2004). The Sjand S; results of

20 year scenarios can be seen in Appendix D from which the negative results can be seen.

All other scenarios had similar errors.
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Table 5-26. S Results of the Individual Sobol’ Second-Order Experiment Using 6848 Model Simulations.

First-Order Sensitivity Index (S;)

. . . . . Upper Upper  Lower Lower Minimum -
o o e e e ity foety wRC RRC RRC RRC B T o TR suy
1 -0.0061  0.0010 0.0013 0.0063 0.0043 0.0002 0.0446 0.0335 0.0018 -0.0011  -0.0053 0.0474 0.0608 0.7260 0.9148
2 -0.0066  0.0011 -0.0007  -0.0066  0.0079 -0.0012  0.0183 0.0110 0.0027 0.0005 -0.0311 -0.0127 0.4404 0.4563 0.8793
3 0.0013 -0.0014  0.0019 0.0002 0.0000 -0.0061  0.0081 0.0200 -0.0008 -0.0010 -0.0020 0.0357 0.7262 0.2161 0.9981
20 Year 4 -0.0028  0.0005 0.0013 0.0020 -0.0012  0.0031 -0.0188 0.0029 -0.0008 0.0035 -0.0026 -0.1150 0.1696 0.5385 0.5802
5 0.0020 0.0009 0.0009 -0.0033  -0.0073  0.0068 -0.0171 0.0412 0.0048 0.0178  -0.0121 0.0296 0.2782 0.4710 0.8131
2b 0.0045 0.0620 0.0028 0.0025 0.0031 0.0005 0.0573 0.0055 0.0442 0.0505 0.0521 -0.0252 0.3091 0.5437 1.1126
2c 0.0011 -0.0022  -0.0004 -0.0045 -0.0009  -0.0002 0.0279 -0.0188 0.0027 0.0021  -0.0044 -0.0664 0.1384 0.5808 0.6551
1 0.0564 0.0060 0.0084 -0.0022  -0.0007  0.0074 0.0797 0.0072 0.0046 -0.0008 0.0041 0.0411 0.7915 0.1640 1.1665
2 0.0017 -0.0005 -0.0023  -0.0026  -0.0152  -0.0093  -0.0137 0.0035 0.0020 0.0010 0.0089 0.0488 0.9063 0.1390 1.0677
40 Year 3 0.0064 0.0018 -0.0016  -0.0001  0.0019 -0.0011  0.0225 0.0147 0.0045 0.0025 -0.0028 0.0579 0.8335 0.1845 1.1247
4 0.0015 0.0016 0.0059 0.0036 0.0025 -0.0010  -0.0073 -0.0024 0.0004 -0.0011  -0.0007 -0.0032 0.2998 0.3371 0.6367
5 -0.0003  -0.0052  0.0013 -0.0030  -0.0046  -0.0051 -0.0311 0.0156 0.0030 0.0000 0.0018 0.0257 0.7587 0.1107 0.8676
1 0.0042 -0.0007  -0.0046  -0.0039  0.0053 -0.0031 -0.0162 0.0104 0.0014 0.0032 0.0005 0.0145 0.7704 0.2145 0.9959
2 -0.0065  -0.0002  0.0020 0.0002 0.0035 -0.0002  -0.0036 0.0259 -0.0005 0.0019  -0.0050 0.0529 0.9718 0.0400 1.0823
60 Year 3 -0.0037  -0.0058 -0.0016 -0.0047  -0.0056  -0.0009  0.0033 0.0171 -0.0062  -0.0021 -0.0083 -0.0054 0.9100 0.1107 0.9969
4 0.0106 0.0009 -0.0039  0.0015 0.0071 0.0008 -0.0144 0.0124 0.0014 -0.0009 0.0104 0.0320 0.6962 0.2257 0.9798
5 0.0020 -0.0002  -0.0061 -0.0088  0.0020 -0.0040  -0.0258 0.0161 0.0008 0.0001  -0.0021 0.0194 0.7439 0.2513 0.9886
1 -0.0086  -0.0031  0.0015 0.0021 0.0036 -0.0011  0.0006 0.0259 0.0000 0.0017  -0.0098 0.0679 0.9275 0.0520 1.0602
77 Year 2 -0.0064  0.0000 0.0044 -0.0021  -0.0032  0.0055 -0.0187 0.0152 -0.0043 0.0000 -0.0057 0.0905 0.7368 0.1294 0.9415
3 0.0009 0.0019 -0.0035  0.0115 0.0040 0.0003 -0.0026 -0.0040 -0.0038 0.0029 0.0044 0.0730 0.7830 0.1247 0.9927
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Table 5-27. Sy; Results of the Individual Sobol” Second-Order Experiment using 6848 Simulations.

Total-Order Sensitivity Index (St;)

SO o RONe  Relaive  Rolatve pecent  peent peent T giT pac' ppe B T g Relidilly g,
Curvature Position Curvature Position Threshold
1 0.0013 0.0014 0.0019 0.0015 0.0049 0.0017 0.0828 0.0609 -0.0059 0.0093 0.0025 0.0349 0.0550 0.7446 0.9969
2 -0.0032 0.0003 -0.0006 -0.0025 -0.0013 -0.0006 0.0272 0.0323 -0.0005 0.0044 -0.0002 0.0026 0.5702 0.5871 1.2154
3 0.0023 -0.0016 -0.0008 0.0027 -0.0055 -0.0017 -0.0151 -0.0087 0.0033 -0.0007 0.0016 0.0469 0.8911 0.2521 1.1660
20 Year 4 0.0073 -0.0012 -0.0028 0.0123 0.0118 0.0082 0.0448 0.0470 0.0130 0.0042 0.0040 0.1309 0.3538 0.7619 1.3952
5 -0.0048 0.0001 -0.0052 0.0091 0.0026 0.0004 0.0299 0.0152 0.0027 0.0036 -0.0122 0.1676 0.4554 0.7010 1.3655
2b 0.0017 0.0182 -0.0049 -0.0032 -0.0018 -0.0020 0.0544 0.0401 0.0427 0.0418 0.0467 0.0493 0.4164 0.6371 1.3365
2c -0.0065 -0.0004 -0.0065 0.0006 -0.0073 -0.0071 0.0284 -0.0225 -0.0083 -0.0072 -0.0060 0.0838 0.2039 0.7080 0.9529
1 0.1268 0.1277 0.1221 0.1242 0.1273 0.1276 0.1284 0.1218 0.1375 0.1428 0.1149 0.1878 0.9791 0.3280 2.8961
2 0.0020 0.0003 0.0007 0.0012 -0.0044 -0.0006 -0.0002 -0.0047 0.0033 0.0038 0.0074 0.0810 1.0525 0.1213 1.2636
40 Year 3 -0.0049 -0.0011 -0.0001 -0.0003 -0.0011 -0.0029 0.0178 0.0099 -0.0011 0.0052 0.0023 0.0802 1.0089 0.1725 1.2854
4 -0.0015 0.0024 -0.0032 0.0008 0.0043 0.0045 0.0242 0.0195 0.0054 0.0096 -0.0039 0.0687 0.4610 0.6250 1.2168
5 0.0020 0.0013 -0.0027 -0.0015 -0.0099 -0.0078 -0.0030 -0.0033 -0.0002 -0.0118 -0.0128 0.0355 1.0098 0.2091 1.2048
1 0.0207 0.0181 0.0002 0.0170 0.0237 0.0165 0.0353 0.0196 0.0148 0.0240 0.0169 0.0727 1.0434 0.2659 1.5888
2 0.0008 0.0043 -0.0022 -0.0110 -0.0040 0.0000 -0.0094 0.0095 0.0020 -0.0033 0.0134 0.0650 1.0599 0.0347 1.1595
60 Year 3 -0.0025 0.0014 -0.0018 0.0004 -0.0101 -0.0005 0.0030 0.0173 0.0024 0.0018 0.0136 0.0258 0.9548 0.1410 1.1466
4 0.0147 0.0034 -0.0025 0.0005 0.0044 -0.0049 0.0222 0.0084 -0.0086 0.0063 0.0128 0.0828 1.0020 0.2665 1.4080
5 -0.0020 -0.0005 -0.0016 -0.0050 -0.0012 -0.0047 0.0030 0.0025 -0.0023 0.0045 -0.0156 0.0458 1.0446 0.2371 1.3046
1 0.0110 0.0034 0.0012 -0.0010 0.0017 0.0041 -0.0012 0.0040 0.0034 0.0008 0.0128 0.0875 1.0936 0.0407 1.2619
77 Year 2 -0.0013 -0.0042 0.0058 0.0052 0.0067 -0.0024 -0.0063 0.0020 0.0024 -0.0012 0.0083 0.1097 0.9606 0.2038 1.2892
3 0.0071 0.0004 -0.0025 0.0228 0.0069 0.0087 0.0113 -0.0009 0.0029 -0.0057 0.0048 0.0318 1.0545 0.1067 1.2489

5-59



To improve the accuracy of the Sobol' experiment in an attempt to avoid erroneous
results, experiments of greater sampling resolution (and therefore greater number of model
simulations) should be used. However, the next Sobol’ experiment would require 13,696
model simulations, then 27,392 model simulations, and so on, i.e. the number of required
model simulations doubles for each progressively greater sampling resolution experiment.
Experiments using 27,392 model simulations were begun but initial results still gave
erroneous S and Sy, and therefore were not completed. The next more accurate experiments
would require 54,784 model simulations, which was deemed impracticable to calculate due
to the amount of computational time required. Still some qualitative comments can be given
based on the 6848 model simulation Sobol’ experiment. The S and Sy results this
experiment show that the reliability threshold and the minimum storage threshold are the
most important for all scenarios, with their ranking in each scenario matching the ranking of
the FAST experiments. No other reliable comparisons can be made between the Sobol’ and

the FAST experiments.

Table 5-28 shows the partial output variance due to each input variable (V;)
corresponding to each scenario, and the average V; for each input variable under scenarios of
the same length. The partial variances provide an alternative view of the effects of each input
variable on the estimation of yield. Comparing each input variable across scenarios (of the
same length and of different planning length) it can be seen that there are no discernable
trends, demonstrating the variability in the yield estimate due to each input variable is not
dependant on the planning length or the streamflow volume. From the partial variances it can
again be seen that the reliability threshold and the minimum storage threshold cause the
greatest amount of output variance, hence their high § results. A number of variables
(relative position 2, percentage restrictable 2, upper RRC position and curvature, target
curves and reliability threshold) exhibit a reduction of variance as the planning length
increases from 20 to 60 years. This indicates that the yield estimate becomes less sensitive to

changes in these variables as the planning length increases.

The 77 year scenarios and the 20 year scenarios 2, 2b and 2c show large changes in the
V; of many input variables. The percentage restrictable 1 and 2, lower RRC curvature, target
curves, reliability threshold and minimum storage threshold show considerable range in the
20 year scenarios 2, 2b and 2c. The same do not show such a range in the 77 year scenarios.
Indeed, the V; range of all input variables in the 77 year scenarios are moderate. This could
suggest that the variability of climate is significant for a shorter planning length than a long

planning length.
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Table 5-28. V; Results of the Individual eFAST Experiment using 1918 Simulations.

Partial Variance (V;)

Upper Upper Lower Lower Minimum

SR oo v Pdae e pecal | patelbemi GGG mec mec S T o Sy
Scenl 291 422 432 159 459 140 1069 1600 222 381 419 351 792 4538
Scen2 374 356 547 356 408 138 374 1414 432 583 400 748 4525 5484
Scen3 148 201 287 567 142 201 347 323 218 230 280 302 3289 1283
20 Year Scend 131 356 298 188 247 157 356 500 190 153 167 153 1219 2548
Scen5 172 253 183 174 256 105 374 395 236 156 217 148 1416 2092
Scen2b 406 533 660 310 287 295 428 1301 464 428 439 821 3502 4709
Scen2c 438 497 360 253 610 322 404 918 107 384 535 315 1786 3820
AVERAGE 280 374 395 287 344 194 479 921 267 331 351 405 2,361 3,496
Scenl 497 373 580 649 429 632 469 514 595 402 474 321 5453 1796
Scen2 399 218 322 679 347 439 343 505 335 264 313 304 4402 1182
40 Year Scen3 554 254 507 627 316 333 414 531 554 287 397 287 4853 1549
Scen4 353 366 461 229 319 313 515 847 198 286 319 375 3006 4084
Scenb 181 160 121 270 160 94 144 188 121 131 377 89 2658 1255
AVERAGE 397 274 398 491 314 362 377 517 361 274 376 275 4,074 1,973
Scenl 408 231 287 505 283 362 330 437 368 244 240 268 3524 1559
Scen2 177 223 95 244 210 100 173 177 99 141 574 196 3433 571
60 Year Scen3 67 83 50 217 127 150 47 69 118 88 359 103 2748 763
Scend 132 279 195 219 255 149 274 215 249 203 160 222 3023 1580
Scen5 419 270 293 396 278 270 369 446 414 238 246 214 3437 1748
AVERAGE 241 217 184 316 231 206 238 269 250 183 316 201 3233 1244
Scenl 183 198 73 243 194 85 160 137 122 127 478 204 3295 649
77 Year Scen2 246 361 164 246 303 288 212 288 259 171 416 150 3984 1513
Scen3 308 235 194 263 379 235 259 199 178 199 531 239 3724 1124
AVERAGE 246 264 144 251 292 203 210 208 186 165 475 198 3668 1095
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The average yield estimates for each scenario from these experiments are shown in Table
5-29. The average yield estimate for each scenario in Table 5-29 was calculated using the
1918 yield estimates from the individual input variable eFAST experiments for that scenario.
Also given in Table 5-29 is the range of the average yield estimates of scenario of the same
length. As can be seen from this table, the average yield estimate decreases as the simulation
length increases. There are no observable trends within simulations of the same simulation
length, signifying that the greater total streamflow volume (where scenario 1 has the greatest
to scenario 5 at the least) does not necessarily result in increased yield. It can be seen from
the range of the average yield estimates from scenarios of the same length, i.e. the scenarios
1 to 7 of 20 year length, the five 40 year scenarios, five 60 year scenarios and the three 77
year scenarios, that the range of the average yield estimate reduces as the planning length
increases. The decreasing average yield and the reducing range of the average yield over
increasing planning period indicates that the yield estimate stabilises at a generally lower
value and becomes less sensitive to changes in the climate variability and changes to the

input variables.

Table 5-29. Average Yield Estimates for Each Scenario with Individual eFAST Experiment.

Yield (M1) 20 Years 40 Years 60 Years 77 Years
Scenario 1 67,490 51,061 49,986 42,932
Scenario 2 61,173 50,595 43,041 44,500
Scenario 3 49,595 50,771 41,461 44,292
Scenario 4 50,887 53,320 49,647

Scenario 5 49,475 42,279 49,884

Scenario 2b 60,028

Scenario 2¢ 60,031

Average 56,954 49,605 46,804 43,908
Range 18,015 11,041 8,525 1,568

Table 5-30 presents the standard deviation of the yield estimates of each scenario with
the last row showing the range of the standard deviations, i.e. the difference between the
largest standard deviation and the smallest standard deviation. The standard deviation is
simply the square root of V(Y) and is used instead of V(Y) for simplicity. As the simulation
length increases, the range of standard deviation of the yield estimate decreases, showing

that the estimation of yield becomes more stable with respect to the input variable changes
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and less sensitive. That is, the 20 year scenarios show a 5,260 difference in the standard
deviation of the yield estimate, the 40 year scenarios has 3,208 difference, 60 year scenarios
contains a 1,303 range and the 77 year scenarios only show approximately a 1,066
difference. This particularly suggests that the selection of a climate scenario for a short
planning period is more important than the selection for a longer period. The estimation of
yield for longer periods seems to be more robust in this case, which is due to them having the
same extreme climate events, i.e. the shuffling approach used to generate the 77 year

scenarios does not break the “critical’ climate event.

Table 5-30. Standard Deviation of Yield Estimates for Each Scenario with Individual eFAST
Experiment.

20 Years 40 Years 60 Years 77 Years

Scenario 1 5,233 6,696 4,531 3,669
Scenario 2 8,161 5,290 3,767 4,735
Scenario 3 4,276 5,979 3,268 4,442
Scenario 4 3,266 5,721 3,990

Scenario 5 2,901 3,488 4571

Scenario 2b 6,771

Scenario 2¢ 4,693

Range 5,260 3,208 1,303 1,066

The 20 year scenarios 2, 2b and 2¢ show a wide range of standard deviation (Table 5-30)
yet similar average estimation of yield (Table 5-29), explicitly demonstrating that the yield
estimation is sensitive to climate variability. Similar conclusions can be drawn from the 77

year scenarios.

The implications of the yield estimate becoming more robust as the planning length
increases are interesting with respect to the approach of estimation, handling and use of yield
of an urban water supply system. On one hand it can be argued that a simulation length used
for the yield estimate should be the same or similar length as the planning period. In this way
a greater maximal yield is estimated and adopted. That is, if the study is for a 20 year period,
then the estimation of yield should only consider 20 years, giving rise to a greater yield
estimate. On the other hand, using the average yield estimate resulting from the 77 years
planning length provides a conservative estimate which will lead to conservative planning
measures. These findings and conclusions are of course only relevant to this study and the

data used.
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The individual eFAST experiments provide the following findings:

1. The minimum storage threshold and the reliability threshold dominate the S
measures. For the 20 year scenarios, the reliability threshold is the most important
with the minimum storage threshold the second most important. This order is
swapped for the longer planning periods. The upper RRC position shows some
significance in the 20 year scenarios while the base demand becomes more
influential in the 60 and 77 year scenarios. The remaining variables show mostly

inconclusive results.

2. The Sy are also dominated by the minimum storage threshold and the reliability
threshold. The target rule curves become less important as the planning length
increases while the upper RRC position is significant in the 40 year scenarios within
the total-order sensitivity measures. The remaining variables show mostly

inconclusive results.

3. Significant increases from S to Sy exist for most input variables indicating higher-

order effects, i.e. interaction effects.

4. The average yield estimate reduces as the planning length increases. Also, as the
planning length increases, the estimate becomes more stable as shown by the reduced

range of variance of the yield estimate.

5. The climate variability has a considerable effect on the sensitivity of the yield
estimate, on the importance of individual input variables and on the partial variance
of each variable. There are no significant trends that can be identified for the
importance measures of input variables over scenarios of the same planning length.
Similarly, the partial variances show no significant trend, over scenarios of the same

length or over different lengths.

6. Sobol’ method experiments produced unacceptable results, therefore no first-,

higher- or total-order effects were largely disregarded.
5.4.2.2 Grouping 1 Experiments

The grouping 1 experiments were performed using the variable groupings as shown in Table
5-13. The eFAST experiments were performed over 979 randomly selected model simulation
samples with acceptable results. The first-order sensitivity measures (S) and the total-order

sensitivity measures (Sy) are shown in Table 5-31.
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Noticeably from Table 5-31, the security criteria group of variables is dominant,
providing the greatest S and Sy; for all experiments. The RRCs are then the next dominant
for both measures over most scenarios with the target curves generally the least important.

All groups show higher-order effects as indicated by the difference between S and Sy;.

Table 5-31. § and Sy; Results of the Grouping 1 eFAST Experiment using 979 Simulations.

First-Order Sensitivity Index (S;) Total-Order Sensitivity Index (St)
Scenario RRCs Target Se(_:un_ty SUM RRCs Target Se(_:un_ty
Curves Criteria Curves Criteria

1 0.1612 0.0023 0.7025 0.8660 0.2600 0.1397 0.8167

2 0.0299 0.0017 0.8442 0.8758 0.1220 0.0641 0.9555
20 Year 3 0.0216 0.0034 0.8108 0.8358 0.1945 0.0816 0.9788

4

5

Simulation 0.0617  0.0018  0.7854  0.8489  0.1712 0.0888 0.9329
Period 0.0497 0.0007 0.7987 0.8491 0.1719 0.0925 0.9525
2b 0.0317  0.0033  0.8612  0.8962  0.1408 0.1057 0.9698
2c 0.0487  0.0017 07638  0.8142  0.1706 0.1712 0.9163
1 0.0314  0.0015  0.8229  0.8558  0.1756 0.0598 0.9753
40 Vear 2 0.0263  0.0012  0.8551  0.8826  0.1565 0.0562 0.9775
Simulation 3 0.0274  0.0012  0.8444 08730  0.1652 0.0620 0.9761
Period 4 0.0278  0.0023  0.8896 09197  0.0964 0.0635 0.9640
5 0.0236  0.0010 09111  0.9357  0.0945 0.0334 0.9841
1 0.0225  0.0007  0.8808  0.9040  0.1200 0.0399 0.9841
60 Year 2 0.0175  0.0006  0.9198  0.9380  0.0842 0.0363 0.9812
Simulation 3 0.0192  0.0002 09268  0.9462  0.0819 0.0239 0.9865
Period 4 0.0196 0.0017 0.8970  0.9183 0.1059 0.0484 0.9868
5 0.0240  0.0012  0.8833  0.9085  0.1255 0.0481 0.9845
77 Year 1 0.0169  0.0005  0.9228  0.9402  0.0732 0.0288 0.9838
Simulation 2 0.0087  0.0015 09173  0.9275  0.0680 0.0619 0.9908
Period 3 0.0117 0.0010 0.9047 0.9174 0.0839 0.0586 0.9854

The S and Sy; indices for the three groups of variables (RRCs, target curves and security
criteria) for all scenarios are represented in Figures 5-23, 5-24 and 5-25, respectively. It can
be seen from Figure 5-23 and Figure 5-24 that the importance of the RRCs and the target
curves tends to decrease as the simulation period increases. However, generalising a trend
within scenarios of the same planning period is not possible. The lack of trend indicates that
the planning period is significant in terms of the importance of the groups, more so than the
total streamflow volume entering the system. It also suggests that the variability of
streamflow is significant. This is most clear when observing the 20 year period Scenarios 2,
2b and 2c and the 77 year simulation periods of the target curves (Figure 5-24). Figure 5-25
shows the S and the Sy results for the security criteria group in which it is clear of the

dominance of the group for all scenarios.
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Tables 5-32 shows the average yield estimate for each scenario. Each scenario average
yield was calculated from the 979 yield estimates used in the eFAST grouping 1 experiment.
Also given in Table 5-32 is the average and range of the average yield estimates. From Table
5-32 it can be seen that as the planning length increases the average yield estimate decreases
and the range of the average yield estimate decreases. For this case study, this indicates that,
regardless of the climate variability and input variable variability, the yield estimate and the

spread of the yield estimates will generally decrease as the planning length increases.

Table 5-32. Average Yield Estimates for Each Scenario in the Grouping 1 eFAST
Experiments.

Yield (MI) 20Years 40Years 60Years 77 Years
Scenario 1 67,378 51,114 49,950 43,077
Scenario 2 60,972 50,518 43,179 44,561
Scenario 3 49,644 50,781 41,611 44,413
Scenario 4 50,864 53,194 49,674

Scenario 5 49,455 42,346 49,828

Scenario 2b 59,921

Scenario 2¢ 59,907

Average 56,877 49,501 46,849 44,017
Range 17,923 10,848 8,339 1,484

Table 5-33 shows the standard deviation of the yield estimates for each scenario, with the
range (difference between maximum and minimum standard deviations) given in the last
row. The standard deviations shown are the square root of the total variance of each scenario,
V(Y). The total variance is shown here as the standard deviation for ease of reading. From
Table 5-33 it is clear that the range of the standard deviations decreases as the planning
length increases, indicating that the variability of the yield estimate caused by climate
variability decreases as the planning length increases. That is, the yield estimate becomes
more robust against the climate variability and changes in the input variables as the planning
length increases. Once again there are no obvious trends between scenarios in the same

planning length that can be observed from Tables 5-32 and 5-33.

The average yield estimates for scenarios of the same streamflow volume (20 year
Scenarios 2, 2b and 2c¢) show that the yield estimate seems to be reasonably similar with
regards to the average yield estimate. However, the range of the average yield (Table 5-32)
and the total variance (shown as the standard deviation in Table 5-33) of the yield estimates
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for the 20 year scenario 2, 2b and 2c are significantly different. Similarly, the three 77 year

scenarios have similar average yield estimates but has relatively similar standard deviation of

the yield estimate.

Table 5-33. Standard Deviation of the Yield Estimates for Each Scenario in the Grouping 1

eFAST Experiments.

20Years 40Years 60Years 77Years
Scenario 1 4,609 6,281 4,112 3,792
Scenario 2 7,488 4,822 3,900 4,655
Scenario 3 4,145 5,515 3,315 4,420
Scenario 4 2,929 5,178 3,772
Scenario 5 2,603 3,386 4,068
Scenario 2b 6,309
Scenario 2¢ 4,214
Range 4,885 2,895 797 863

The following findings can be drawn from this grouping experiment:

1. All groups of variables show importance (indicated by Sy) and show significant

interaction between groups (indicated by the difference between S and Sy).

2. Table 5-31 clearly shows the importance of the groups for every scenario over every

simulation length. The most important group of variables in the estimation of yield is

the security criteria group, followed by the RRCs and then the target curve groups.

3. The importance of the RRCs group and the target curves group decrease as the

simulation length increases. The security criteria group does not show a notable

trend.

5.4.2.3 Grouping 2 Experiments

The first-order (S) and the total-order indices (Sy;) of the grouping 2 SA experiments using

the eFAST technique are shown in Table 5-34. The variables are grouped as shown in Table

5-18. The experiment was performed over 1862 model simulations, which produced

acceptable results, i.e. £S not greater than 1 and the § < Sy.
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Table 5-34. S and Sy; Results of the eFAST Grouping 2 Experiments using 1862 Simulations.

First-Order Sensitivity Index (S)

Total-Order Sensitivity Index (St;)

Sim_ulation Scenario Relgt'ive Perce_nt. Upper Lower Base Target Se_curi_ty Sum Relgt'ive Perce'nt. Upper Lower Base Target Sepur[ty
Period Position  Restrict. ~ Curve Curve Curve Curves Criteria Position  Restrict.  Curve Curve Curve Curves Criteria
1 0.0110 0.0087 0.1664 0.0175 0.0007 0.0013 0.7235 0.9291 0.0883 0.0965 0.2705 0.1337 0.0801 0.0489 0.8376
2 0.0066 0.0057 0.0483 0.0081 0.0010 0.0005 0.8646 0.9348 0.0811 0.0963 0.1451 0.0991 0.0528 0.0450 0.9549
3 0.0209 0.0095 0.0129 0.0148 0.0051 0.0004 0.8569 0.9205 0.1672 0.1400 0.1654 0.1483 0.0775 0.1174 0.9918
20 Year 4 0.0143 0.0101 0.0636 0.0101 0.0036 0.0013 0.8189 0.9219 0.0901 0.0867 0.1620 0.1033 0.0796 0.0513 0.9275
5 0.0103 0.0123 0.0491 0.0181 0.0028 0.0020 0.8055 0.9001 0.1117 0.0998 0.1607 0.1301 0.0721 0.0460 0.9298
2b 0.0125 0.0074 0.0389 0.0137 0.0027 0.0020 0.8373 0.9145 0.1037 0.1153 0.1453 0.1149 0.0826 0.0586 0.9456
2C 0.0074 0.0141 0.0632 0.0265 0.0015 0.0026 0.8122 0.9275 0.0922 0.1168 0.1887 0.1914 0.0826 0.0701 0.9275
1 0.0261 0.0209 0.0199 0.0201 0.0027 0.0004 0.8700 0.9601 0.1773 0.1315 0.1493 0.1433 0.0843 0.0741 0.9843
2 0.0240 0.0201 0.0211 0.0153 0.0020 0.0015 0.8896 0.9736 0.1582 0.1151 0.1420 0.1117 0.0694 0.0759 0.9880
40 Year 3 0.0246 0.0175 0.0219 0.0193 0.0017 0.0010 0.8737 0.9597 0.1788 0.1091 0.1520 0.1318 0.0732 0.0687 0.9843
4 0.0099 0.0037 0.0383 0.0101 0.0005 0.0009 0.8981 0.9615 0.0760 0.0491 0.1084 0.0824 0.0588 0.0390 0.9685
5 0.0079 0.0051 0.0099 0.0086 0.0096 0.0005 0.9123 0.9539 0.0582 0.0513 0.0890 0.0566 0.0433 0.0276 0.9782
1 0.0235 0.0153 0.0134 0.013 0.0027 0.0015 0.9110 0.9804 0.1259 0.0878 0.1045 0.0930 0.0735 0.0921 0.9901
2 0.0061 0.0025 0.0059 0.0082 0.0112 0.0013 0.9172 0.9524 0.0684 0.0330 0.0775 0.0667 0.0474 0.0393 0.9816
60 Year 3 0.0065 0.0066 0.0091 0.0084 0.0091 0.0007 0.9134 0.9538 0.0601 0.0528 0.0825 0.0604 0.0286 0.0232 0.9793
4 0.0158 0.0135 0.0074 0.0117 0.0018 0.0005 0.9195 0.9702 0.1001 0.0813 0.0885 0.0762 0.0610 0.0439 0.9886
5 0.0212 0.0146 0.0192 0.0118 0.0020 0.0013 0.9022 0.9723 0.1253 0.0891 0.1315 0.0905 0.0716 0.0731 0.9885
1 0.0052 0.0020 0.0064 0.0087 0.0115 0.0008 0.9195 0.9541 0.0549 0.0302 0.0732 0.0645 0.0469 0.0336 0.9807
77 Year 2 0.0070 0.0053 0.0066 0.0087 0.0043 0.0010 0.9202 0.9530 0.0643 0.0541 0.0748 0.0661 0.0398 0.0408 0.9852
3 0.0048 0.0070 0.0102 0.0082 0.0057 0.0011 0.9044 0.9414 0.0756 0.0621 0.1038 0.0667 0.0622 0.0572 0.9800
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The security criteria group dominates the S and Sy; indices for all scenarios as shown in
Table 5-34. Of the remaining variables, the upper RRC curve group shows some importance
in the 20 year scenarios but becomes less important as the planning length increases. There is
significant increase between S and Sy for all groups (except the security criteria group),

indicating that higher-order effects are attributed to these groups.

The partial variances and total contribution variances are shown in Table 5-35. This
explicitly reveals the domination of the security criteria on the total output variance; note:
S = V;/ V(Y). The higher-order effects of most groups can also be seen in Table 5-35 by
comparing the V; and V+; results. The V; due to the upper RRC curve group tends to decrease
as the planning length increases, showing that yield estimate becomes more robust to
changes in upper RRC curve as the planning length increases. This is related to which
security criteria is critical, if the reliability of supply is critical (violates a lower average
annual demand) then the upper RRC is important (see Section 5.4.2.1). It was found that as
the planning length increases the minimum storage level threshold becomes critical and the
upper RRC becomes less significant in the estimation of yield. There are no other obvious

trends of V; and V+; across different planning lengths.

Table 5-36 presents the average yield estimate for each scenario, the average yield
estimate for scenarios of the same length and the range of the average yield estimates. The
results presented in Table 5-36 show excellent similarity to the results given in Tables 5-29
and 5-32, which once again show that average yield estimate decreases as the length of
simulation increases. There are no discernable trends of the average yield estimates within
the same planning length. It also shows that the range of the average yield estimates (i.e.
difference between the minimum and maximum average yield estimate) decreases as the
simulation length increases. This is the range of the average yield estimates across scenarios
of the different length, therefore indicating how the yield estimate generally behaves with

respect to the planning period.
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Table 5-35. Partial Variance and Total Contribution Variance Results of the eFAST Grouping 2 Experiment using 1862 Simulations.

Partial Variance (Vi) Total Contribution Variance (VTi)
Simulation Scenario Relz_it_ive Perce_nt. Upper Lower Base Target Sef:uri_ty Relz_at_ive Perce_nt. Upper Lower Base Target Sepur[ty
Period Position  Restrict. Curve Curve Curve Curves Criteria Position Restrict. Curve Curve Curve Curves Criteria
1 527 468 2,048 664 133 181 4,271 1,492 1,560 2,611 1,836 1,421 1,110 4,595
2 643 597 1,739 712 245 182 7,357 2,253 2,455 3,014 2,490 1,819 1,678 7,731
3 611 412 480 514 302 85 3,914 1,729 1,582 1,720 1,628 1,177 1,449 4,211
4 363 305 765 305 182 109 2,745 911 893 1,221 975 856 687 2,921
20 Year 5 277 303 605 368 145 122 2452|013 863 1,095 985 734 586 2,634
2b 744 572 1,312 779 346 297 6,087 2,142 2,258 2,536 2,255 1,912 1,611 6,467
2c 385 532 1,126 729 174 228 4,038 1,360 1,531 1,946 1,960 1,287 1,186 4,315
Average | 507 456 1,154 582 218 172 4,409 1,543 1,592 2,020 1,733 1,315 1,187 4,696
1 1,055 944 921 926 339 130 6,093 2,750 2,368 2,524 2,473 1,897 1,778 6,480
2 800 732 750 638 231 200 4,868 2,053 1,751 1,945 1,725 1,360 1,422 5,130
3 911 768 859 807 239 183 5,428 2,455 1,918 2,264 2,109 1,571 1,522 5,761
40 Year 4 546 334 1,074 552 119 165 5203 |1513 1217 1,808 1576 1331 1,084 5403
5 311 250 348 324 343 75 3,341 844 792 1,044 832 728 581 3,459
Average |725 606 790 649 254 151 4,987 1,923 1,609 1,917 1,743 1,377 1,277 5,247
1 670 541 506 498 227 169 4,172 1,551 1,295 1,413 1,333 1,185 1,327 4,349
2 301 193 296 350 408 139 3,696 1,009 701 1,074 997 840 765 3,824
3 268 270 317 304 317 90 3,175 815 763 954 816 561 506 3,288
60 Year 4 499 461 341 429 168 01 3806  |1256 1,132 1,181 1096 980 831 3,947
5 637 529 607 476 196 158 4,158 1,550 1,307 1,587 1,317 1,171 1,184 4,352
Average |475 399 413 411 263 129 3,801 1,236 1,040 1,242 1,112 947 923 3,952
1 271 168 300 350 402 103 3,598 879 653 1,015 953 812 688 3,716
2 399 347 388 445 313 148 4,576 1,210 1,109 1,305 1,227 952 964 4,735
77 Yyear 3 312 377 455 408 340 149 4282|1238 1122 1451 1162 1,122 1077 4457
Average |327 297 381 401 352 133 4,152 1,109 961 1,257 1,114 962 910 4,303
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Table 5-36. Average Yield Estimates for Each Scenario in the eFAST Grouping 2
Experiments.

Yield (MI) 20 Years 40 Years 60 Years 77 Years
Scenario 1 67,492 51,019 49,987 43,036
Scenario 2 61,077 50,534 43,142 44,600
Scenario 3 49,625 50,730 41,584 44,424
Scenario 4 50,827 53,289 49,695

Scenario 5 49,424 42,401 49,863

Scenario 2b 60,182

Scenario 2c 59,971

Average 56,943 49,595 46,854 44,020
Range 18,068 10,888 8,403 1,564

Table 5-37 shows the standard deviation of the yield estimates for each scenario (i.e. the
square root of the total yield variance V(Y) for each scenario), with the last row showing the
range of these standard deviations (difference between the minimum and maximum
deviations). The standard deviations indicate the spread of the possible yield estimates that
are possible in each scenario, due to changes in the input groups. The results in Table 5-37
show very similar results to Tables 5-30 and 5-33, where the range of the variance in the
yield estimates reduces as the simulation length increases. This, once again, shows that the
estimation of yield becomes less sensitive to changes in the input variables as the planning

length increases.

Table 5-37. Standard Deviation of Yield Estimates for Each Scenario in the eFAST
Grouping 2 Experiments.

20 Years 40 Years 60 Years 77 Years

Scenario 1 5,021 6,532 4,371 3,752
Scenario 2 7,912 5,161 3,860 4,771
Scenario 3 4,228 5,807 3,322 4,502
Scenario 4 3,033 5,490 3,969

Scenario 5 2,732 3,498 4,378

Scenario 2b 6,652

Scenario 2c 4,480

Range 5,180 3,034 1,055 1,018
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The following conclusions can be drawn from the grouping 2 FAST experiment:

1. The security criteria group is the most influential variable in the estimation of yield.

The S and Sy; indices for the other groups have inconclusive results.

2. Large differences between the S and Sy indices for all groups over all scenarios

show that high-order effects of input variables are present.

3. The partial variances given in Table 5-35 show that the sensitivity of the yield
estimate to variation in all groups of variables decreases as the planning length
increases, indicating that the yield estimate becomes more robust as the planning

length increases.

4. The lack of trends within all indices (S and Sy;) and measures (V;, V4 and (Y) -

standard deviation) indicates that the importance of these groups on the estimation of
yield is not directly driven by the streamflow volume. More so this suggests that the
climate variability effects the yield estimate, as is explicitly shown by the difference

in the variances of the 20 year 2, 2b and 2c scenarios and the 77 year scenarios.

The following Table 5-38 shows the approximate average yield estimate of the Barwon
urban water supply system for each considered planning length. Also shown is the range of
the average yield estimate for scenarios of the same planning period. As has been highlighted
a number of times, there is a clear reduction of the average yield and the range of the average
yield as the planning period increases. The significance of the range of the average yield
estimate gives an indication on the minimum length of data required to produce a robust
yield estimate and for use in other water supply planning studies conducted by the water
authorities. Although there are limited values given in Table 5-38, it can be argued that a
minimum of 40 years of data is required so that the range of the average yield estimate is not
greater than approximately 10,000 MI. However, it must be stressed that this claim is valid

for only this case study.

Table 5-38. Average Yield Estimate for the Barwon Urban Water Supply System.

20 Years 40 Years 60 Years 77 Years
Average Yield 57,000 50,000 47,000 44,000
Estimate (M)
Range of Average 18,000 11,000 8,000 2,000

Yield Estimates (Ml)
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5.5 Issues, Limitations and Recommendations

The following are summaries of the major findings, including the issues, limitations and
recommendations, from all SA experiments on the Barwon urban water supply system
detailed in Section 5.4:

1. Application of selected SA techniques — Successful application of the Morris method
and eFAST were given in Section 5.4. Sobol’ experiments provided erroneous
results with negative first- and second-order importance indices, and S greater than
1. The Morris method showed excellent accuracy in identifying the important
variables in the estimation of yield of the Barwon urban water supply system, and

the eFAST technique gave good quantification.

2. Importance of variables — The importance of variables were consistant throughout all
experiments over all scenarios with the security criteria variables (reliability of
supply and minimum storage threshold) proving to be the most important in the

estimation of yield of the Barwon urban water supply system.

3. Importance correlations - When the reliability threshold is the most important, the
upper RRC position and curvature variables have a clear defined importance. When
the minimum storage threshold is the most important variable, all remaining

variables have inconclusive Si indices and partial variances.

4. Grouping — The security criteria group is the most important in both grouping
experiments. The only other group of variables that show any significant importance
is the upper RRC group, containing the upper RRC position and curvature groups.
Significant high-order effects are present within groups, especially within the

Grouping 2 experiments.

5. Integral estimation and approximation — Again, the variance based methods have
shown mixed results in their estimation of the sensitivity indices. The eFAST
methods have reliably given acceptable results at relatively low model simulations,
however the method of Sobol’ suffered from errors causing negative sensitivity
indices. The solution to this is to increase the number of model simulations, however
this becomes infeasible due to excessive computational time required for the Barwon

system simulation model.

6. Further sensitivity measures — The total output variance, V(Y) (presented as a

standard deviation in this study for simplicity), provided an excellent measure to
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observe the sensitivity of the yield estimate on the climate scenarios and changes to
the input variables. The range of the total output variance for a planning period
shows the volatility or stability of the yield estimate. The results given in Section
5.4.2 show that the variance of the yield estimate and the range of the variance

decrease as the planning period increases.

7. Average yield estimate — The average yield estimate due to different climate
scenarios decreases as the planning period increases. This, combined with the
findings considered in point 6 above, suggests that the estimation of yield converges
as the planning length increases. Perhaps the estimation of yield will converge to a

single value if a planning period of sufficient length is used.

8. Historic data use — In Section 4.6 the use of historic data use for planning purposes
was discussed. Doing so provides a plausible set of climate data. However without
the consideration of alternative plausible climate sets, the optimal position and the
importance of the management variables will not vary. It has been shown in the
current chapter that the yield and the importance of variables changes significantly

when considering different climate scenarios and planning lengths.
5.6 Summary

This study discussed the estimation of yield of an urban water supply system, considering the
Barwon Region Water Corporation water supply system as the case study. The definition of
yield adopted was “the maximum average annual volume of water that can be supplied from
the system over a given planning period subject to climate variability, demand pattern and
operating rules, without violating the adopted level of service”. For the Barwon water
system, the level of service includes a reliability of supply threshold (i.e. the number of time
periods without demand restrictions imposed to the total number of time periods) and a
minimum total system storage volume threshold. If either threshold is violated, the system is
deemed to have failed. The yield of a system can be simply explained as the maximum
annual volume of water that can be supplied by system sustainably over a number of years.
This volume is synonymous to the maximum allowable annual demand, or the target demand

for supply and demand balancing.

The sensitivity analysis (SA) experiments in this chapter indicate the importance of input
variables used in the estimation of yield of an urban water supply system considering climate
variability and planning length. The security of supply thresholds that are applied to the

Barwon system are the most important, which is unsurprising as they directly influence
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water consumption. Following these only the upper restriction rule curve variables, the
curvature and position, show any other discernable importance. The implication of these
findings is that these four important variables need to be accurately estimated and set first. If
further improvements are then required, another SA will identify which of the remaining

variables will provide the next best improvement in the estimation of yield.

The SA methodology used in this study differs from most other SA studies due to the use
of the climate scenarios. The use of the total variance and the partial variance allowed for
comparison between scenarios and provided extra information that would not have been

available from the standard Fourier Amplitude Sensitivity Test (FAST) sensitivity indices.

Most significantly these findings prove the hypothesis that the planning length and the
climate variability are influential in the estimation of yield. This questions the use of a single
climate sequence in the use of the estimation of yield and other water resources planning
studies, and the use of a single set of management polices and rules for all possible future

climates.

It has been shown throughout this chapter that the average yield estimate decreases as the
planning length increases. Also the range of the yield estimate decreases as the planning
length increases, which results in a low and robust average yield estimate for 77 years,
whereas the estimation of yield for under a 20 year planning length is high and highly
fluctuating. The implication of this to industry is that the use of an entire available historic
climate data sequence will generally provide a conservative estimation of yield (as found in
this study) and therefore conservative planning designs. This chapter also found that the use
of a long climate sequence means that the estimate is more robust to changes in the input
variables, i.e. the spread of the yield estimate decreases as the planning length increases.
This means that accurate knowledge and estimation of input variables will not significantly
improve on the estimation of yield for long planning periods. Conversely, a short planning
period results in a generally high estimation of yield that is sensitive to changes in the input

variables.

An alternative approach to the estimation, handling and use of yield of an urban water
supply system is required. This approach should consider a simulation length appropriate to
the water authorities planning period and different climate scenarios. Doing so will provide a
better insight into the possible range of behaviour of input variables and the estimation of
yield of the urban water supply system in question. The planning length used in the
simulation of the system should be the same or similar to the length of the study that it will

be used for. For instance, if a planning period is 20 years, the length in the simulation should
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also be 20 years. Then, various climate scenarios of 20 years can be used to assess the range
of possible behaviour of the system, giving rise to a number of yield estimates from which

one can be appropriately selected. These issues are further discussed in Chapter 6.
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Chapter 6

Summary, Conclusions and Recommendations

6.1 Summary

In concluding this study, this chapter briefly provides a summary of the work undertaken to
fulfil the aims of the study. It provides the major results of the Sensitivity Analysis (SA) on
the two case studies, commenting on the success of the SA techniques applied to water
supply planning models and reiterates the major findings, conclusions and recommendations

from the research undertaken. Recommendations are thereafter provided for future research.

Balancing demand and available supply is the foremost issue that water authorities face.
Water supply management is primarily concerned with how to sustain a reasonable supply of
water during drought periods which cause low storage volumes. It is due to these low storage
volumes that drought response plans and water conservation measures have been developed
and generally implemented only when the storage volume falls below a threshold.
Safeguards and policies, such as consumption restrictions, have been in place for some time
to protect water supply systems from low system storage volumes. However the increasing
population growth and the recent drought that much of Australia is experiencing have forced
many water authorities to impose permanent water saving measures and mandatory water
consumption restrictions to reduce urban demand. Still, many water supply systems are
required to supply a demand that exceeds a sustainable volume. This shortfall can be reduced
by: decreasing the demand via water saving measures and schemes, and education; and/or
increasing the yield of the system by optimising system management, or augmentation with

additional water sources.

This research initially aimed at finding the most important input variables used in the
estimation of yield of an urban water supply system. As well as being used as a sustainable
demand (i.e. a target demand), the estimation of the yield of a water supply system is also an
essential part in water resources management, and policy development and enforcement, as it
is used in processes such as augmentation studies, water sharing and decision-making
polices. It is therefore important that an accurate estimation of yield is established and used
in these studies. The yield of a water supply system is typically estimated by simulating a
computational model of the physical system using the entire length of available climate data.
Both the model and its required input variables are subject to inherent uncertainty which
propagates through the model to the yield, inducing uncertainty and decreasing confidence in

the yield estimate. By identifying the most important input variables used in the estimation
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of yield via a sensitivity analysis, resources can be allocated and research prioritised so that
water authorities can improve their knowledge, hence decreasing their uncertainty and

increasing the confidence in the yield estimate.

Sensitivity Analysis (SA) using three techniques on a hypothetical urban water supply
system case study showed that the estimation of yield is most sensitive to variations in the
streamflow input variable. Through this case study it was found that the selected SA
techniques — the Morris method, the Fourier Amplitude Sensitivity Test (FAST) and the
Sobol’ method of SA — had mixed success. The extended Fourier Amplitude Sensitivity Test
(eFAST) was also used as an extension of FAST. The Morris method and FAST/eFAST
gave satisfactory results while Sobol’ gave erroneous results, as a consequence of many
input variables that had negligible importance on the yield. Through this case study it was
found that the SA framework that the study was built upon could be improved considerably
by considering a different uncertainty/variability methodology, alternative variable handling

strategies and different sensitivity indices.

The second significant downfall in the approach used to estimate the yield of an urban
water supply system (which is a typical yield study) was thereby realised: using a single
climate sequence provides a plausible realisation to perform simulations but without the
consideration of alternative future climate sequences, it implies that future climate is the
same as the historic climate, including wet and dry event patterns. When a single climate
sequence is used for studies pertaining to or using the yield estimate, the results, information,
calibration and optimisation are only truly valid for that climate sequence. Any policies,
rules or other system management studies that are derived or optimised from this sequence

may not be appropriate for another realisation of climate.

Lastly, the third weakness was the use of a single planning period in the estimation of
yield. In the hypothetic urban water supply system case study, only a single 28 years of
historic climate data was available and used to test the importance of input variables on the
estimation of yield. Doing so allowed for the identification of the important variables for
only that length of simulation. This is the method that is typically used for yield studies but it
does not allow for observation of the effect of the different planning lengths on the yield

estimate.

The second case study, using the Barwon Water urban water supply system explicitly
addressed the issue of use of a single climate sequence by considering multiple climate
scenarios selected from the historic climate data sequence. The scenarios were chosen so that

different climate patterns were present over four different planning periods of 20, 40, 60 and
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77 years. SA was applied to each scenario with the aim of observing the evolution of the
importance of the management variables (i.e. the input variables that the water authority can
set) over the different climate scenarios and different planning lengths. The two level of
service thresholds, the reliability of supply and the minimum storage level, were found to be
the most important in all scenarios. Some correlation effects between the importance indices
of the security of supply criteria and the upper restriction rule curve variables. Besides this,
few other trends and results were explicitly assessable, which in itself is a significant finding
in terms of the handling and application of the estimation of yield of an urban water supply

system.
6.2 Findings and Conclusions of the Study

In the following three sections (i.e. Sections 6.2.1 — 6.2.3), the main conclusions related to

various aspects of the study are presented.
6.2.1 Sensitivity Analysis in Water Supply System Modelling

Traditionally SA has been viewed as a facet of uncertainty analysis. Indeed they share many
common elements, however SA can be regarded as a distinct set of principles and tools that
offer an analyst more than a branch of uncertainty analysis. SA is increasingly being
appreciated as a major statistical tool for use in the development, operation, calibration,
optimisation and application of computational modelling. Given correct selection of
technique(s) and planning of SA experiments, a SA can provide information regarding the
model structure, the dependence on input variables, the behaviour of the model at extreme
values/events, areas of lack of knowledge and data, and can be used as a decision making

tool.
6.2.1.1 Sensitivity Analysis Techniques

The available SA techniques discussed in this thesis differ with each other in the quality and
quantity of input information required, the methodology and sampling strategy used, the
sensitivity indices produced, accuracy, and computational expense. None of the techniques
discussed in Chapter 3 are a ‘solve all’ technique that can be easily applied to any SA
problem. Rather a technique or techniques should be selected for applicability to the problem
and model in subject. In this thesis a number of ideal SA technique characteristics were

sought, viz.;

o Does not require the knowledge of the model or its algorithm(s) — The REALM

software package and the two water supply planning models used were assumed as
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‘black-box” models which the internal parameters, setting and configuration cannot

be changed.

e The techniques are model independent — The techniques should be free of
assumptions regarding linearity, additivity (lack of interactions between variables) or

monotonicity of the model.

e The ability to handle input variable correlations and interactions — The level of

correlation or interaction should not detract from the accuracy of the technique.

e Does not require intricate model input and output characteristics — A priori
knowledge of input variable characteristics such as distributions and likelihood
measures should ideally not be required. A continuous model output must be

required.

e Apportion output variance into different order levels — To assess the first- and

higher-order effects without the influence of other order effects.

Computational expense was also considered but was not ultimately a deciding selection

criteria.

Using the above five criteria, the three SA techniques selected for use in this study were
the Morris method, FAST/eFAST and Sobol’ method of SA. The Morris method and
FAST/eFAST were used as screening techniques and the FAST/eFAST and Sobol’ methods

used for more detailed and higher-order analyses.

The Morris method and FAST/eFAST proved to be successful in their application of
screening variables for negligible importance, while the FAST/eFAST technique was also
able to provide non-erroneous first- and total-order indices in the detailed analyses of both
case study systems. The Sobol’ method gave erroneous measures illustrating a limitation
with its algorithm and application to such an analysis. Early results of an increased accuracy
Sobol’ experiment in the preliminary case study and the Barwon system case study showed
erroneous results and were therefore not completed. The next iteration of the Sobol” method
required impracticable computational expense and hence were not undertaken. Considering
the results of this study, the Morris method and FAST/eFAST are suitable methods for
identifying and quantifying the importance of input variables used in the estimation of yield
of an urban water supply system, and can therefore be extended to be applicable techniques
to apply to other problems related to water supply planning modelling.
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Several limitations exists, specifically the lack of accurate estimation of higher-order
effects of input variables and application to a model that considers a time series input
variable, such as streamflow, evaporation, rainfall and demand used in water supply planning
models, and presumably other environmentally dependant models. The limitation of
handling time series is due to the requirement that the input variables can be perturbed by a
scalar value and that the typical SA techniques indices do not allow comparison across

experiments, such as different climate scenarios in this study.

6.2.1.2 Variable Handling

There is a lack of appreciation of variable handling strategies in SA application literature. All
SA techniques reviewed in this thesis randomly select a single scalar value from within a
predefined range to perturb an input variable. Typically, analysts use discrete distributions
for variables that cannot be easily handled using a single scalar value, such as variables that
contain a number of interrelated factors, like the target storage curves used in this study.
However, discretely distributed variables cause issues for many SA techniques, such as the
FAST and Sobol’ approximate an integral in which the relationship between sample points is

required to be continuous.

Variable handling strategies were therefore a major obstacle that needed to be overcome
in this study. Several strategies were established to perturb an input variable that has a
number of factors (such as the temporal distribution factors and time-series variables) by a
scalar value. An algorithm was developed that approximately perturbs individual factors
within a multi-factored input variable by the randomly selected percentage value. Other input
variable specific strategies were also developed as discussed in this thesis. However, some
limitations relating to the handling of multi-factored input variables and handling of
discretely distributed input variables were not overcome as suitable strategies were not

available at the time.

6.2.1.3 Additional Sensitivity Analysis Measures

The sensitivity measures, or indices, that are determined via the FAST and Sobol’ techniques
provide an estimation of the importance of the input variables standardised within each
experiment. The quantitative effect of an input variable on the model output is lost through
this standardisation; therefore, comparison across scenarios is limited to the qualitative
ranking of importance of the input variables. This limitation was identified in the case study
on the hypothetical water supply system presented in Chapter 4. In the Barwon urban water
supply system case study in Chapter 5, the partial variances due to each input variable, V;,

and the total yield variance, V(Y), were determined for each climate scenario considered in
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this study. V; provided a measure of the individual effect of each variable on the estimation
of yield, comparable across scenarios and planning periods. V(Y) quantifies the amount of
variance in the estimation of yield due to all variables, which indicates the sensitivity of the
estimation of yield to the climate scenarios. The findings that these additional sensitivity

measures are discussed in Section 6.2.2.
6.2.2 Sensitivity of Yield Estimate to Input Variables

The sensitivity of yield estimate to changes in the input variables was the primary aim of this
study. In the preliminary case study using the hypothetical urban water supply system, it was
found that the streamflow was the most important input variable, followed by the reliability
of supply threshold. The upper Restriction Rule Curve (RRC) and the maximum number of
consecutive months in restriction threshold also showed considerable sensitivity effect. The

remaining variables had negligible importance to the yield estimate.

The SA framework applied to the Barwon urban water supply system case study
included the dichotomy of input variables consisting of: i) climate dependant variables and,
i) management controllable variables. The climate dependant variables consisted of
streamflow, evaporation, rainfall and demand. The second source of variability in the
estimation of yield, the management controllable variables, consisted of the system
management polices and rules such as the target storage curves, restriction rule curves, etc.
SA was performed on the management variables while considering various climate

scenarios.

Using this climate scenario based approach, the most important input variables in
estimation of yield of the Barwon urban water supply system over nearly all scenarios were
the security criteria: the reliability of supply threshold and the minimum storage level
threshold. It was also shown that when the reliability threshold variable was more important
than the minimum storage threshold variable, the upper RRC curvature and upper RRC
position are also important. However, when the minimum storage threshold is important,
then the remaining variables have mostly ambiguous importance. Furthermore, it was shown
that the reliability threshold is the most important security criteria for the 20 year scenarios
and the minimum storage level threshold was most important for the 40, 60 and 77 year
scenarios. The presence of interaction effects was identified by the Morris method and
FAST/eFAST but they cannot provide quantitative estimates. The Sobol’ method was used

to quantify the second order effects but gave unsatisfactory, erroneous results.

These results highlight the areas and order that research should be focussed and

resources spent so a better understanding of these input variables is gained, resulting in a
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smaller variability of yield and a greater confidence in its estimation. For all scenarios, the
minimum storage level threshold and the reliability of supply need to be accurately set,
which will remove a significant amount of variability in the estimation of yield. After this is
done, if it is found that the reliability threshold is critical, then the upper RRC curvature and
the upper RRC position should subsequently be researched and set. The study done on the
Barwon system could not provide a definitive preference to the order of research if the
minimum storage level threshold is critical as the importance indices did not show a trend.
This lack of trend indicates that the input variables, i.e. the system policy and rules, are
sensitive to the climate scenarios, including a change of total streamflow volume, change of

planning length and climate variability.

The system policy and rules provide a set of operational and management guidelines that
are general enough to provide system security and adequate system performance for the
unpredictable climatic future. It has been shown in this study that the controllable input
variables are sensitive to changes in the climate variability and planning length. Therefore,
several climate scenarios should be considered when generating these general set of rules
and policies, rather than the current approach that uses a single climate sequence using the
entire available historic climate data. Alternative climate scenarios can be achieved using
stochastic generation methods or the methods described in this thesis, i.e. selecting a sub-
sequence from a longer sequence or using the shuffling block approach used to generate the

77 year scenarios.

6.2.3 Sensitivity of the Yield Estimate to Planning Length and Climate
Variability

To assess the sensitivity of the yield estimate to the climate scenarios, the V(Y) for each
scenario was computed and compared. For simplicity, the square root of V(Y) (i.e. the
standard deviation) as used instead. Comparing V(Y) across the planning length indicated
that as the simulation length increases, the variance decreases, i.e. the range of the yield
estimates decreases. It was also found that the average of the yield estimates deceases as the
planning length increases. As the random samples of the SA are the same across the all
scenarios and planning lengths, these findings indicate that the estimation of yield becomes
more robust against changes in the input variables and climate variability as the planning

length increases.

This highlights the importance of the length of simulation when estimating yield and
yield related studies. It is especially important for short planning periods. For a planning

period of 20 years, it was found that the estimation of yield for the Barwon system is highly
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variable compared to the estimates resulting from the 60 and 77 year planning periods. The
longer planning periods contain a number of extreme climate events such as drought periods
and high streamflow periods. The high streamflow periods that are contained within the
longer planning period fill the storages allows them to buffer against the dryer, drought
periods, therefore leading to a lower but more stable estimation of yield. Conversely, a short
planning period will capture fewer opposing climate events, therefore the range of the yield
estimate is higher. This conclusion is only valid for the Barwon urban water supply system

under the historic climate sequences used.

The implications of these findings are quite significant with respect to the typical method
that yield is estimated and handled, which considers the entire sequence of historic climate
data. In the case of the Barwon system, the use of the 77 years of historic data, without the
consideration of alternative climate scenarios, suggests that the future climate will be the
same as the climate represented in the historic data. Therefore this method will produce an
inappropriate yield estimate and set of optimal system polices and rules for any future
climate. However, the future climate is unpredictable, so a representative scenario can never
be determined. It is recommended here that multiple climate scenarios of appropriate length
are used in the estimation of yield and subsequent studies. Table 6-1 shows the average and
range of the average yield estimates of the Barwon urban water supply system that are
experienced amongst each considered planning period. These were based on the results given
as Table 5-38 in Chapter 5.

Table 6-1. Average Yield Estimate for the Barwon Urban Water Supply System.

20 Years 40 Years 60 Years 77 Years
Average Yield 57,000 50,000 47,000 44,000
Estimate (MI)
Range of Average 18,000 11,000 8,000 2,000

Yield Estimates (Ml)

The results of the Barwon case study show that the entire available historic climate data
sequence (77 years in length) produces a lower and more robust average estimation of yield
compared to the average estimate resulting from a shorter planning length. The average yield
result for the 77 year planning length is approximately 44,000 MI. This could be considered

as a safe yield, quoted to the public as a target demand in the attempt to reduce water
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consumption, which will mean a better security of supply, greater water for environmental

flows, etc.

In the operation of the water supply system however, yield should be estimated using an
appropriate planning period for simulation (i.e. simulation length) so that the appropriate
yield is realised for that planning period. This simulation length should ideally be the same
or similar to the study period (i.e. the period considered in the water authorities’ studies). In
the Barwon case study it was found that a shorter planning period of 20 years results in a
greater average yield estimate. For Barwon Water this yield estimate can be used as a guide
to system augmentation or other development purposes. For example, based on the 20 year
average Yyield results given in Chapter 5, the Barwon system has a 20 year yield of 57,000
MI. If this operational yield is to be maintained up to 40 year planning length, then system

augmentation resulting in a yield increase of 7,000 Ml is required after 20 years.

Using historic sequences of the appropriate length to a study purpose, and considering
multiple climate variability scenarios, water authorities can gain an appreciation of a range
of possible yields and the importance of the input variables. However, these results are
clearly dependant on the behaviour of the system under the adopted climate sequences, and

the appropriateness of these sequences as a representative climate.

Section 1.4 presented the significance of the study, making reference to Figure 1-1 which
highlights the change of average annual inflow to the Barwon system over the 77 year
historic sequence. It is clearly seen that a 51% decrease in average annual streamflow from
an average annual streamflow of 155 GI from 1927 to 1996, to 76 Gl for the period from
1997 to 2003. The reduced inflow into the Barwon system has continued to 2008. It is likely
that the climate sequence from 1997 to present is indicative of what to expect for the future.
In that case, the use of the entire sequence prior to 1997, or part thereof, is erroneous, only

the last 10 years or so (1997 — 2008) will be relevant to the present day climate.

Based on the average yield estimate and standard deviation of yield estimate results
given in Table 6-1, it can be seen that the yield estimate is very sensitive to changes in the
climate variability and input variables for short planning lengths. As the planning length
increases the average yield estimate becomes more robust (i.e. the standard deviation of the

estimation of yield decreases) to climate and input variable changes.

Based on the results of this study, it is the recommendation that climate data of at least
40 years in length is required for a robust estimation of yield, and for that matter, any other
water supply planning studies using climatic data. This length will provide a reliable yield

estimate and will be long enough to capture an appropriate sample of natural climate

6-9



variability. The gains in terms of robustness between the 40 year and 60 year planning
lengths are marginal. The 77 year length shows considerable robustness, but this could be
due to the method of generating the data. However, this claim is only valid for the Barwon
system as it is the only urban water supply system considered in this study. There is
opportunity here for future research into the determining a more accurate required planning

length and to apply the hypothesis on other urban waters supply systems.

6.3 Limitations of the Study and Recommendations for Further

Research

The climate scenario approach used to test the sensitivity of the yield estimate to changes in
the input variables, the climate variability and the planning length, only used a limited
number of climates and planning lengths. As mentioned in the section above, there is
opportunity for future research to be carried out using more climate scenarios and planning
lengths generated from the historic climate data, using historic data that has been adjusted to
the required characteristics and/or using stochastically generated climate sequences. This
will confirm the required planning period for a robust representation of climate and will also
give a better understanding of the system behaviour, yield estimate and importance of input
variables. There are also possibilities to extend the methods used in this study to other urban
water supply systems and other investigation techniques, i.e. other sensitivity analysis

techniques or to decision making tools.

The sensitivity analysis techniques used in this study were limited by their inability to
handle time series variables and discretely distributed variables, and to provide a
comparative measure across various sensitivity analysis experiments. The Morris method
and the use of the partial- and total-output variances did somewhat provide a quantitative
measure to allow comparison across various experiments. However, the comparisons in this
study were mostly qualitative since the climate sequences were not characterised robustly in
terms of dry/wet periods, critical periods etc. Here also lays scope for a sensitivity analysis
technique that is specifically designed to consider time-series variables without the use of

discrete sets of sequences.

Only the effect of the changes of input variables over the total planning period were
considered in the sensitivity measures determined. Further information regarding the
behaviour of the system can be gained if importance of input variables on the model were
determined throughout the planning period, i.e. a sensitivity measure determined at each time
simulation step. This would then highlight which variables are important for various system

conditions and climate events. Combining this information with predictions of future climate
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can be made based on current conditions, ultimately leads to a dynamic approach to the

research and optimisation of management processes and practices.

The performance of an urban water supply system can be measured from the yield of the
system. If the physical system and its management are at an optimal state the yield is
maximised. In this study, this was the only output of the model considered. Significant
improvements in the understanding of the behaviour of the system could be gained by
performing sensitivity analysis on other model outputs and/or by changing the purpose of the
sensitivity analysis; such as testing the sensitivity of the security criteria to climate

variability, urban demand and to changes in the remaining system policies and rules.

6-11






REFERENCES

Ababei, D.A., Kurowicka, D. and Cooke R.M. 2007, Uncertainty Analysis with UNICORN,
In: Proceedings of the Third Brazilian Conference on Statistical Modelling in

Insurance and Finance, March 25 - 30, Maresias, Brazil, np.

Andres, T.H. and Hajas, W.C. 1993. Using Iterated Fractional Factorial Design to Screen
Parameters in Sensitivity Analysis of a Probabilistic Risk Assessment Model. In:
Kusters, H., Stein, E., Werner W. (eds), Joint International Conference on

Mathematical Methods and Supercomputing in Nuclear Applications, 2, pp. 328-37.

ANRA (Australian Natural Resources Atlas), 2007, Water - Victoria - Water Technical
Report, Department of the Environment, Water, Heritage and the Arts, Canberra, last
viewed 09 February 2009.
<http://www.anra.gov.au/topics/water/pubs/state_technical/vic_tecpage.html>

Ascough 11, J.C., Maier, H.R., Ravalico, J.K. and Strudley, M.W. 2008, Future Research
Challenges for Incorporation of Uncertainty in Environmental and Ecological
Decision-Making. Ecological Modelling, 219(3-4), pp. 383-399.

Barwon Water, 2007, Water Supply Demand Strategy, Barwon Water, Geelong, Australia,
162 p.

Beck, M.B. 1987, Water Quality Modeling: A Review of the Analysis of Uncertainties,
Water Resources Research, 23(8), pp. 1393-1442.

Bedford, T. and Cooke, R.M. 2001, Probabilistic Risk Analysis: Foundations and Methods,
Cambridge University Press, Cambridge, 414 p.

Beven, K.J. 1979, A Sensitivity Analysis of the Penman-Monteith actual Evapotranspiration
Estimates, Journal of Hydrology, 44(3-4), pp. 169-190.

Beven, K.J. 2006, A Manifesto for the Equifinality Thesis, Journal of Hydrology, 320(1), pp.
18-36.

Beven, K.J. and Binley, A.M. 1992, The Future of Distributed Models: Model Calibration
and Uncertainty Prediction, Hydrological Processes, 6(3), pp.279-298.

Bevington, P.R. and Robinson, D.K. 2002, Data Reduction and Error Analysis for the
Physical Sciences, McGraw-Hill, Inc., New York, NY, 336 p.

7-1


http://www.anra.gov.au/topics/water/pubs/state_technical/vic_tecpage.html�

Binley, A.M. and Beven, K.J. 1991, Changing Responses in Hydrology: Assessing the
Uncertainty in Physically Based Predictions, Water Resources Research, 27(6), pp.
1253-1261.

Braddock, R.D. and Schreider, S.Y. 2006, Application of the Morris Algorithm for
Sensitivity Analysis of the REALM Model for the Goulburn Irrigation System,
Environmental Modeling and Assessment, 11(4), pp. 297-313.

Brandt, R.C. and Elliott, H.A. 2005, Sensitivity Analysis of the Pennsylvania Phosphorus
Index for Agricultural Recycling of Municipal Biosolids, Journal of Soil and Water
Conservation, 60(4), pp. 209-219.

Brown, L.C. and Barnwell, T.0. 1987, The Enhanced Stream Water Quality Models
QUALZ2E and QUALZ2E-UNCAS, EPA/600/3-87-007, U.S. Environmental
Protection Agency, Athens, GA, USA, 189 p.

Burges, S.J. and Lettenmaier D.P. 1975, Probabilistic Methods in Stream Quality
Management, Water Resources Bulletin, 11(1), pp. 115-130.

Calver, A. 1988, Calibration, Sensitivity and Validation of a Physically-Based Rainfall-
Runoff Model, Journal of Hydrology, 103(1-2), pp. 103-115.

Campolongo F. and Saltelli A. 1997, Sensitivity Analysis of an Environmental Model: An
Application of Different Analysis Methods, Reliability Engineering and System
Safety, 57(1), pp. 49-69.

Campolongo, F. and Braddock, R.D. 1999, The use of Graph Theory in the Sensitivity
Analysis of the Model Output: A Second Order Screening Method, Reliability
Engineering and System Safety, 64(1), pp. 1-12.

Campolongo, F., Saltelli, A., Sorensen, T. and Tarantola, S. 2000a, Hitchhiker’s Guide to
Sensitivity Analysis. In: Saltelli, A., Chan, K., Scott, E.M. (eds), Sensitivity
Analysis, John Wiley & Sons, West Sussex, England, pp. 15-47.

Campolongo, F., Kleijnen, J. and Andres, T. 2000b, Screening Methods. In: Saltelli, A.,
Chan, K., Scott, E.M. (eds), Sensitivity Analysis, John Wiley & Sons, West Sussex,
England, pp. 65-80.



Campolongo, F., Cariboni, J., Saltelli, A. and Schoutens, W. 2005, Enhancing the Morris
Method, paper presented at Sensitivity Analysis of Model Output, Proceedings of the
4th International Conference on Sensitivity Analysis of Model Output (SAMO
2004), Los Alamos National Laboratory, Los Alamos, U.S.A., Los Alamos National
Laboratory, pp. 369-379.

Campolongo, F., Cariboni, J. and Saltelli, A. 2007, An Effective Screening Design for
Sensitivity Analysis of Large Models, Environmental Modelling and Software,
22(10), pp. 1509-1518.

Carrasco, I.J. and Chang, S-Y. 2005, Random Monte Carlo Simulation Analysis and Risk
Assessment for Ammonia Concentrations in Wastewater Effluent Disposal,

Stochastic Environmental Research and Risk Assessment, 19(2), pp. 134-145.

Chadderton, R.A., Miller, C. and McDonnell, A.J. 1982, Uncertainty Analysis of Dissolved
Oxygen Model, Journal of the Environmental Engineering Division, 108(5), pp.
1003-1013.

Chan, K., Tarantola, S., Saltelli, A. and Sobol’ I.M. 2000, Variance-Based Methods. In:
Saltelli, A., Chan, K., Scott, E.M. (eds), Sensitivity Analysis, John Wiley & Sons,
West Sussex, England, pp. 167-197.

Christensen, S. 2003, A Synthetic Groundwater Modelling Study of the Accuracy of GLUE
Uncertainty Intervals, Nordic Hydrology, 35(1), pp. 45-59.

Christiaens, K. and Feyen, J. 2002, Use of Sensitivity and Uncertainty Measures in
Distributed Hydrological Modelling With an Application to the MIKE-SHE model.
Water Resources Research, 38(9), pp. 81-815.

Chu, H., Wang, Z., Cole, S.R. and Greenland, S. 2006, Sensitivity Analysis of
Misclassification: A Graphical and a Bayesian Approach, Annals of Epidemiology,
16(11), pp. 834-841.

Coleman, G. and DeCoursey, D.G. 1976, Sensitivity and model Variance Analysis Applied
to Some Evaporation and Evapotranspiration Models, Water Resources Research,
12(5), pp. 873-879.

Cooke, R.M. and van Noordwijk, J.M. 2000, Generalized Graphical Methods for Uncertainty
and Sensitivity Analysis, Bashkir Ecological Journal, 1(8), pp. 54-57.



Cotter, S.C. 1979, A Screening Design for Factorial Experiments with Interactions,
Biometrika, 66(2), pp. 317-320.

Cropp, R. A. and Braddock, R. D. 2002, The New Morris Method: An Efficient Second-
Order Screening Method, Reliability Engineering and System Safety, 78(1), pp. 77—
83.

Cukier, R.1., Fortuin, C.M., Shuler, K.E., Petschek, A.G. and Schaibly, J.H. 1973, Study of
the Sensitivity of Coupled Reaction Systems to Uncertainties in Rate Coefficients.
Part I: Theory, Journal of Chemical Physics, 59(8), pp. 3873-3878.

Cukier, R.l., Schaibly, J.H. and Shuler, K.E. 1975, Study of the Sensitivity of Coupled
Reaction Systems to Uncertainties in Rate Coefficients. Part I1l: Analysis of the

Approximations. Journal of Chemical Physics, 63(3), pp. 1140-1149.

Cukier, R.1., Levine, H.V. and Shuler, K.E. 1978, Nonlinear Sensitivity Analysis of Kinetic
Mechanisms, International Journal of Chemical Kinetics, 11, pp. 427-444.

Cullen, A.C. and H.C. Frey, 1999, Probabilistic Techniques in Exposure Assessment.
Plenum Press, New York, 335 p.

Dakins, M.E., Toll, J.E. and Small, M.J. 1994, Risk-Based Environmental Remediation:
Decision Framework and Role of Uncertainty, Environmental Toxicology and
Chemistry, 13(12), pp. 1907-1915.

Department of Land and Water Conservation (DLWC), 1999, Integrated Quantity Quality
Model — IQQM, Centre for Natural Resources, 2nd edn., August, CNR 99.025.

Department of Sustainability and Environment (DSE), 2004, Victorian Government White
Paper: Our Water Our Future: Securing Our Water Future Together, Melbourne.

Diment G.A. 1991, Wide Use of a Generalized Headworks and Resources Model: REALM,
Proceedings, International Hydrology and Water Resources Symposium, I.E.
(Aust.), Perth, Australia, Australia, National Conference Publication No. 91/22, pp.
579-583.

Dingle, T. 2008, The Life and Times of the Chadwickian Solution, In: Troy, P. (eds),
Troubled Waters: Confronting the Water Crisis in Australia’s Cities, pp. 7-18.

Draper, N. R. and Smith, H. 1981, Applied Regression Analysis, 2nd edn., Wiley, New
York, 407 p.



Ekstrom, P-A., 2005, A Simulation Toolbox for Sensitivity Analysis, Masters Degree

Project, Faculty of Science and Technology, Uppsala Universitet.

Fang, S., Gertner, G. Z., Shinkareva, S., Wang, G. and Anderson, A. 2003, Improved
Generalized Fourier Amplitude Sensitivity Test (FAST) for Model Assessment,
Statistics and Computing, 13(3), pp. 221-226.

Francos, A., Elorza, F.J., Bouraoui, F., Bidoglio, G. and Galbiati, L. 2003, Sensitivity
Analysis of Distributed Environmental Simulation Models: Understanding the
Model Behaviour in Hydrological Studies at the Catchment Scale, Reliability
Engineering and System Safety, 79(2), pp. 205-218.

Frantz, F.K. 1995, A Taxonomy of Model Abstraction Techniques. Proceedings of the 1995
Winter Simulation Conference (WSC 95), Proceedings in Artificial Intelligence,
Arlington, VA, December 1995, pp. 1413-1420.

Freer, J., Beven, K.J. and Ambroise, B. 1996, Bayesian Estimation of Uncertainty in Runoff
Prediction and the Value of Data: An Application of the GLUE Approach. Water
Resources Research, 32(7), pp. 2161-2173.

Freeze, R.A., 1972, The Role of Subsurface Flow in the Generation of Surface Runoff 2:
Upstream Source Areas, Water Resources Research, 8(5), pp. 1272-1283.

Frey, H.C. and Patil, S.R. 2002, Identification and Review of Sensitivity Analysis Methods,
Risk Analysis, 22(3), pp. 553-578.

Funtowicz, S.O. and Ravetz, J.R. 1990, Uncertainty and Quality in Science for Policy.
Kluwer Academic Publishers, Dordrecht, 229 p.

Ginot, V., Gaba, S., Beaudouin, R., Aries, F. and Monod, H. 2006, Combined Use of Local
and ANOVA-Based Global Sensitivity Analyses for the Investigation of a Stochastic
Dynamic Model: Application to the Case Study of an Individual-Based Model of a
Fish Population, Ecological Modelling, 193(3-4), pp. 479-491.

Greis, N.P., 1982, Seasonal Climate Forecasts and Water Management for Steam-Electric
Generation, Journal of Applied Meteorology, 21(12), pp. 1798-1814.

Halder, A. and Mahadevan, S. 2000, Reliability Assessment Using Stochastic Finite Element
Analysis, Wiley, New York, 328 p.



Hall, J.W., Tarantola, S., Bates, P.D. and Horritt, M.S. 2005, Distributed Sensitivity Analysis
of Flood Inundation Model Calibration, Journal of Hydraulic Engineering, 131(2),
pp. 117-126.

Hamby, D.M. 1994, A Review of Techniques for Parameter Sensitivity Analysis of
Environmental Models, Environmental Monitoring and Assessment, 32(2), pp. 135-
154.

Hamby, D.M., 1995, A Comparison of Sensitivity Analysis Techniques, Health Physics
Society, 68(2), pp. 195-204.

Harwood, J. and Stokes, K. 2003, Coping with Uncertainty in Ecological Advice: Lessons
From Fisheries, Trends Ecology and Evolution, 18(12), pp. 617-622.

Haskin F.E., Staple B.D. and Ding C. 1996, Efficient Uncertainty Analyses Using Fast
Probability Integration, Nuclear Engineering And Design, 166(2), pp. 225-248.

Helton, J.C. 1993, Uncertainty and Sensitivity Analysis Techniques for use in Performance
Assessment for Radioactive Waste Disposal, Reliability Engineering System Safety,
42(2-3), 327-367.

Helton, J.C. 2000, Sampling-Based Methods, In: Saltelli, A., Chan, K., Scott, E.M. (eds),
Sensitivity Analysis, John Wiley & Sons, West Sussex, England, pp. 101-153.

Helton, J.C. and Davis, F.J. 2002, lllustration of Sampling-Based Methods for Uncertainty
and Sensitivity Analysis. Risk Analysis, 22(3), pp. 591-622.

Helton, J.C. and Davis, F.J. 2003, Latin Hypercube Sampling and the Propagation of
Uncertainty Analysis of Complex Systems, Reliability Engineering and System
Safety, 81(1), pp. 23-69.

Ho, C.M., Cropp, R.A., Braddock, R.D., Zerger, A. and Argent, R.M. 2005, On the
Sensitivity Analysis of Two Hydrologic Models. In: MODSIM 2005 International
Congress on Modelling and Simulation, Modelling and Simulation Society of
Australia and New Zealand, pp. 2491-2497.

Hochberg, Y. and Tamhane, A.C. 1987, Multiple Comparison Procedures, John Wiley and
Sons, Inc., New York, 450 p.



Hoffman, F. O. and Gardner, R. H. 1983 Evaluation of Uncertainties in Radiological
Assessment Models. In: Till, J.E., Meyer, H.R. (eds), Radiological Assessment: A
textbook on Environmental Dose Analysis, NRC Office of Nuclear Reactor
Regulation, Washington, D.C., pp. 11-1 — 11-55.

Hofstetter, P. 1998, Perspectives in Life Cycle Impact Assessment: A Structured Approach
to Combine Models of the Technosphere, Ecosphere and Valuesphere, Kluwer
Academic Publishers, Dordrecht, 504 p.

Homma, T. and Saltelli, A. 1996, Importance Measures in Global Sensitivity Analysis of

Nonlinear Models, Reliability Engineering and System Safety, 52(1), pp. 1-17.

Hornberger G.M. and Spear R.C. 1980, Eutrophication in Peel Inlet. I. The Problem:
Defining Behaviour and a Mathematical Model for the Phosphorus Scenario, Water
Resources Research, 14(1), pp. 29-42.

Huijbregts, M.A.J., Norris, G., Bretz, R., Ciroth, A., Maurice, B., von Bahr, B., Weidema, B.
and de Beaufort, A.S.H. 2001, Framework for Modelling Data Uncertainty in Life
Cycle Inventories, International Journal of Life Cycle Assessment, 6(3), pp. 127-
132.

Hydrologic Engineering Center, 1971, HEC-3 Reservoir System Analysis, Technical Report,
U.S. Army Corps of Engineers, Davis, California, USA.

Hydrologic Engineering Center, 1979, HEC-5 Reservoir System Operation for Flood Control
and Conservation User's Manual, Technical Report, US Army Corps of Engineers,
Davis, California, USA.

Isukapalli, S.S. 1999. Uncertainty Analysis of Transport-Transformation Models, PhD
Thesis, The State University of New Jersey,

<http://www.ccl.rutgers.edu/~ssi/thesis/thesis.html>

Jakeman, A.J., Ghassemi, F., Dietrich, R. Musgrove, T.J. and Whitehead, P.G. 1990,
Calibration and Reliability of an Aquifer System Model Using Generalized
Sensitivity Analysis, Proceedings of ModelCARE 90: Calibration and Reliability in
Groundwater Modelling, The Hague, September 1990, IAHS Publ. no. 195, pp. 43-
51.


http://www.ccl.rutgers.edu/~ssi/thesis/thesis.html�

Kioutsioukis, 1., Tarantola, S., Saltelli, A. and Gatelli, D. 2004, Uncertainty and Global
Sensitivity Analysis of Road Transport Emission Estimates, Atmospheric
Environment, 38, pp. 6609-6620.

Koda, M., McRae, G.J. and Seinfeld, J. H. 1979, Automatic Sensitivity Analysis of Kinetic
Mechanisms, International Journal of Chemical Kinetics, 11(4), pp. 427-444.

Kondolf, G.M. 1995, Geomorphological Stream Channel Classification in Aquatic Habitat
Restoration: Uses and limitations. Aquatic Conservation: Marine and Freshwater
Ecosystems, 5(2), pp. 127-141.

Kuczera G. and Diment G.A. 1988, General Water Supply System Simulation Model:
WASP, Journal of Water Resources Planning and Management, 114(4), pp. 365-382.

Kuczera, G. 1990, WATHNET: Generalized Water Supply Simulation Using Network
Linear Programming, Department of Civil Engineering and Surveying, University of

Newcastle, Newcastle, Australia.

Kuczera, G. 1992, Water Supply Headworks Simulation Using Network Linear
Programming, Advances in Engineering Software, 14(1), pp. 55-60.

Labadie, J.W. 2004, Optimal Operation of Multireservoir Systems: State-of-the-Art Review,
Journal of Water Resources Planning and Management, 130(2), pp. 93-111.

Labadie, J.W. Bode, D.A. and Pineda, A.M. 1986, Network Model for Decision-Support in
Municipal Water Raw Water Supply, Water Resources Bulletin, 22(6), pp. 927-940.

Law, F. 1955, Estimation of the Yield of Reservoired Catchments, Journal of the Institute of
Water Engineers, 9, pp. 467-493.

Lei, J. and Schilling, W. 1994, Parameter Uncertainty Propagation Analysis for Urban
Rainfall Runoff Modelling, Water Science and Technology, 29(1-2), pp. 145-154.

Lewin J. 2001, Alluvial Systematics. In: Maddy, D., Macklin, M.G., Woodard, J.C. (eds),
River Basin Sediment Systems: Archives of Environmental Change, A.A. Balkema
Publishers, Steenwijik, The Netherlands, pp. 19-41.

Linsley, R.K., Franzini, J.B., Freyberg, D.L. and Tchobanoglous, G. 1992, Water Resources
Engineering, 4th edition, Mac Graw-Hill, New York, 841 p.



Loucks, D.P., Kazimierz, A.S. and Codner, G.P. 1987, Dynamic Simulation Under
Uncertainty: An Application of Water Resource Planning. In: Dean, B.V. (ed),
Proceedings, Second Symposium on Analytic Techniques for Energy, Natural
Resources and Environmental Planning, Studies in Management Science and

Systems vol. 15, Elsevier, Amsterdam, The Netherlands, pp. 137-152.

Lu, Y. and Mohanty, S. 2001, Sensitivity Analysis of a Complex, Proposed Geologic Waste
Disposal System Using the Fourier Amplitude Sensitivity Test Method, Reliability
Engineering and System Safety, 72(3), pp. 275-291.

McCuen, R.H. 1973, The Role of Sensitivity Analysis in Hydrologic Modelling, Journal of
Hydrology, 18, pp. 37-53.

McCuen, R.H. 1974, A Sensitivity and Error Analysis of Procedures Used for Estimating
Evaporation, Water Resources Bulletin, 10(3), pp. 486-498.

McKeon, G. 2006, Living in a Variable Climate, Article Prepared for the 2006 Australia
State of the Environment Committee, Department of Environment and Heritage,
Canberra, Australia.

<http://www.deh.gov.au/soe/2006/integrative/climate/index.html>.

McMahon, T.A. and Mein, R.G. 1986. River and Reservoir Yield, Water Resources
Publications, Fort Collins, Colorado, USA, 236 p.

McMahon, T.A. and Adeloye, A.J. 2005, Water Resources Yield, Water Resources
Publications, Highlands Ranch, Colorado, USA, 220 p.

McRae, G.J., Tilden, JW. and Seinfeld, J.H., 1982, Global Sensitivity Analysis - A
Computational Implementation of the Fourier Amplitude Sensitivity Test (FAST),
Computers and Chemical Engineering, 6(1), pp.15-25.

Maier, H. R., Lence B.J., Tolson B.A., and Foschi, R.O. 2001, First-order Reliability Method
for Estimating Reliability, Vulnerability, and Resilience, Water Resources Research,
37(3), pp. 779-790.

Maier H.R. and Ascough Il, J.C. 2006, Uncertainty in Environmental Decision-Making:
Issues, Challenges and Future Directions, In: Voinov, A., Jakeman, A., Rizzoli, A.
(eds), Proceedings of the iEMSs Third Biennial Meeting: Summit on Environmental
Modelling and Software, iEMSs, Burlington, VT, USA, July 2006.

< http://www.iemss.org/iemss2006/sessions/all.html > (Invited Key Position Paper).



http://www.iemss.org/iemss2006/sessions/all.html�

Maier, H.R., Ascough II, J.C., Wattenbach, M., Renschler, C.S., Labiosa, W.B. and
Ravalico, J.K. 2008, Uncertainty in Environmental Decision Making: Issues,
Challenges, and Future Directions. In: Jakeman, A.J., Voinov, A.E., Rizzoli, A.E.,
Chen, S. (eds), Environmental Modelling and Software and Decision Support -

Developments in Integrated Environmental Assessment (DIEA), 3, pp. 69-85.

Manache, G. and Melching, C.S. 2004, Sensitivity Analysis of a Water-Quality Model Using
Latin Hypercube Sampling, Journal of Water Resources Planning and Management,
130(3), pp. 232-242.

Marsden Jacob Associates (MJA), 2006, Securing Australia’s Urban Water Supplies:
Opportunities and Impediments. Paper prepared for Department of Prime Minister
and Cabinet, November, 2006.

Oberkampf, W.L., Sindir, M.N. and Conlisk, A.T. 1998, Guide for the Verification and
Validation of Computational Fluid Dynamics Simulations, Technical Report G-077-
98, American Institute of Aeronautics and Astronautics, Reston, Virginia, USA, 19p.

Melching, C.S. and Anmangandla, S. 1992, Improved First-Order Uncertainty Method for
Water-Quality Modeling, Journal of Environmental Engineering, 118(5), pp. 791-
805.

Melching, C.S. and Yoon, C.G. 1996, Key Sources of Uncertainty in QUAL2E Model of
Passiac River, Journal of Water Resources Planning and Management, 122(2), pp.
105-113.

Montanari, A. 2005, Large Sample Behaviors of the Generalized Likelihood Uncertainty
Estimation (GLUE) in Assessing the Uncertainty of Rainfall Runoff Simulations,
Water Resources Research, 41, W08406, doi:10.1029/2004WR003826.

Montgomery, D.C. 1997, Design and Analysis of Experiments, Wiley and Sons Ltd.: New
York.

Morgan, M.G. and Henrion, M. 1990, Uncertainty: A Guide to Dealing With Uncertainty in
Quantitative Risk and Policy Analysis, Cambridge University Press, Cambridge, 344

p.

Morris, M.D. 1991, Factorial Sampling Plans for Preliminary Computational Experiments,
Technometrics, 33(2), pp. 161-174.

7-10



Muleta, M.K. and Nicklow, J.W. 2005, Sensitivity and Uncertainty Analysis Coupled with
Automatic Calibration for a Distributed Watershed Model, Journal of Hydrology,
306(1-4), pp. 127-145.

Nagy, I.V., Asante-Duah, D.K. and Zsuffa, I. 2002, Hydrological Dimensioning and
Operation of Reservoirs: Practical Design Concepts and Principles, Kluwer
Academic Publishers, Dordrecht, 225 p.

National Research Council (NRC), 2000, Risk Analysis and Uncertainty in Flood Damage
Reduction Studies, National Academy Press, Washington, DC, 202 p.

Norton, J.P., 2008, Algebraic Sensitivity Analysis of Environmental Models, Environmental
Modelling and Software, 23(8), pp. 963-972.

Norton, J.P., Brown, J.D. and Mysiak, J. 2006, To What Extent, and How, Might
Uncertainty be Defined? Comments Engendered by “Defining uncertainty: a
Conceptual Basis for Uncertainty Management in Model-Based Decision Support”
(Walker, 2003), Integrated Assessment, 6(1), pp. 83-88.

Oakley, J. and O'Hagan, A. 2004, Probabilistic Sensitivity Analysis of Complex Models: a
Bayesian Approach, Journal of the Royal Statistical Society. Series B, Statistical
Methodology, 66(3), pp. 751-769.

Oxford Scientific Software, 2004, A Guide to Aquator. Version 2.1, Oxford Scientific
Software Ltd, Oxford, 553 p.

Page, T., Beven, K.J., Freer, J. and Jenkins, A. 2003, Investigating the Uncertainty in
Predicting Responses to Atmospheric Deposition Using the Model of Acidification
of Groundwater in Catchments (MAGIC) within a Generalised Likelihood
Uncertainty Estimation (GLUE) Framework, Water Air and Soil Pollution, 142(1),
pp. 71- 94.

Pappenberger, F., Beven, K.J., Horritt, M. and Blazkova, S. 2005, Uncertainty in the
Calibration of Effective Roughness Parameters in HEC-RAS Using Inundation and
Downstream Level Observations, Journal of Hydrology, 302(1), pp. 46-69.

Pappenberger, F. and Beven, K.J. 2006, Ignorance is Bliss: Or Seven Reasons not to use
Uncertainty Analysis, Water Resources Research, 42(5), WO5302, doi:
10.1029/2005WR004820.

7-11



Pappenberger, F., lorgulescu, I. and Beven, K.J. 2006a, Sensitivity Analysis Based on
Regional Splits and Regression Trees (SARS-RT), Environmental Modelling and
Software, 21(7), pp. 976-990.

Pappenberger, F., Harvey, H., Beven, K.J., Hall, J. and Meadowcroft, 1. 2006b, Decision
Tree for Choosing an Uncertainty Analysis Methodology: A Wiki Experiment,
Hydrological Processes, 20(17), pp. 3793-3798.

Pastres, R., Chan, K., Solidoro, C., and Dejak, C. 1999, Global sensitivity analysis of a
Shallow-Water 3D Eutrophication Model. Computer Physics Communications,
117(1-2), pp. 62-74.

Patil, S.R. and Frey, H.C. 2004, Comparison of Sensitivity Analysis Methods Based on
Applications to a Food Safety Risk Assessment Model, Risk Analysis, 24(3), pp.
573-585.

Perera, B.J.C. and Codner, G.P. 1996, Reservoir Targets for Urban Water Supply Systems,
Journal for Water Resources Planning and Management, ASCE, 122(4), pp. 270-
279.

Perera, B.J.C. and James B. 2003, A Generalised Water Supply Simulation Computer
Software Package, Hydrology Journal, Institute of Engineers (India), 26(1-2), pp.
67-83.

Perera, B.J.C., James, B. and Kularathna, M.D.U. 2005, Computer software tool REALM for
Sustainable Water Allocation and Management, Journal of Environmental
Management, 77(4), pp 291-300.

Ratto, M., Young, .P.C., Romanowicz, R., Pappenberger, F., Saltelli, A. and Pagano, A.
2007, Uncertainty, Sensitivity Analysis and the Role of data Based Mechanistic
Modeling in Hydrology, Hyrdology and Earth System Sciences, 11(4), pp. 1249-
1266.

Ravalico, J.K., Dandy, G.C. and Maier, H.R. 2007, MORE Sensitivity Analysis of the MSM-
BIGMOD River Murray Flow and Salinity Model. In: Oxley, L. and Kulasiri, D.
(eds) MODSIM 2007 International Congress on Modelling and Simulation.
Modelling and Simulation Society of Australia and New Zealand, December 2007,
pp. 2754-2760.

7-12



Refsgaard, J.C., van der Sluijs, J.P., Hgjberg, A.L. and Vanrolleghem, P.A. 2007,
Uncertainty in the Environmental Modelling Process — A Framework and Guidance,
Environmental Modelling and Software, 22(11), pp. 1543-1556.

Regan, H.M., Colyvan, M. and Burgman, M.A. 2002, A Taxonomy and Treatment of
Uncertainty for Ecology and Conservation Biology, Ecological Applications 12(2),
pp. 618-628.

ReVelle, C.S. 1999, Optimizing Reservoir Resources, Wiley, New York, NY, 180 pp.

Risbey, J.S. and Entekhabi, D. 1996, Observed Sacramento Basin Streamflow Response to
Precipitation and Temperature Changes and its Relevance to Climate Impact Studies,
Journal of Hydrology, 184(3-4), pp. 209-223.

Rogers, C.C.M., Beven, K.J., Morris, E.M., and Anderson, M.G. 1985, Sensitivity Analysis,
Calibration and Predictive Uncertainty of the Institute of Hydrology Distributed
Model. Journal of Hydrology, 81(1-2), pp. 179-191.

Romanowicz, R. and Beven, K. J. 2003, Estimation of Flood Inundation Probabilities as
Conditioned on Event Inundation Maps, Water Resources Research, 39(3), 1073,
doi:10.1029/2001WR001056

Ronen, Y. 1988, Uncertainty Analysis, CRC Press Inc., Boca Raton, USA, 296 p.

Saltelli, A., 2000, What is Sensitivity Analysis? In: Saltelli, A., Chan, K., Scott, E.M. (eds),
Sensitivity Analysis, John Wiley & Sons, West Sussex, England, pp. 3-13.

Saltelli, A., 2002a, Sensitivity Analysis for Importance Assessment, Risk Analysis, 22(3),
pp. 579-590.

Saltelli, A. 2002b, Making Best use of Model Evaluations to Compute Sensitivity Indices,
Computer Physics Communications, 145(2), pp. 280-297.

Saltelli, A. and Bolado, R. 1998, An Alternative Way to Compute Fourier Amplitude
Sensitivity Test (FAST), Computational Statistics and Data Analysis, 26(4), pp. 445-
460.

Saltelli, A., Tarantola, S. and Chan, K.P-S. 1999, A Quantitative Model-Independent Method
for Global Sensitivity Analysis of Model Output, Technometrics, 41(1), pp. 39-56.

7-13



Saltelli, A, Chan, K. and Scott, E.M. 2000, Sensitivity Analysis, John Wiley and Sons, West
Sussex, England, 475p.

Saltelli, A., Tarantola, S., Campolongo, F. and Ratto, M. 2004, Sensitivity Analysis in
Practice, Wiley, New York, NY, 219 p.

Schaibly, J.H. and Shuler, K.E. 1973, Study of the Sensitivity of Coupled Reaction Systems
to Uncertainties in Rate Coefficients. Part 1, Applications. Journal of Chemical
Physics, 59, pp. 3879-3888.

Schreider, S.Yu, James, B., Seker, M.P. and Weinmann, P.E. 2003, Sensitivity and Error
Propagation Analysis for the Goulburn Simulation Model Built by REALM. In:
Post, D., Proceedings of MODSIMO03 (Modelling and Simulation Soc., Aust. and
N.Z. 2003), pp. 1661-1666.

Sieber, A. and Uhlenbroo, S. 2005, Sensitivity Analyses of a Distributed Catchment Model
to Verify the Model Structure, Journal of Hydrology, 310(1-4), pp. 216-235.

Sinclair Knights Merz (SKM), 2003, Review of the Performance Criteria in Sydney
Catchment Authority’s Operating Licence — Final Report, prepared for Independent
Pricing and Regulatory Tribunal of NSW, Sydney.

Sinclair Knights Merz (SKM), 2006, Central Region Sustainable Water Strategy — Draft A,

Sinclair Knights Merz, Malvern.

Sinokrot, B.A. and Stefan, H.G. 1994, Stream Water-Temperature Sensitivity to Weather
and Bed Parameters, Journal of Hydraulics Engineering, 120(6), pp. 722-736.

Sobol’, .M. 1993, Sensitivity Analysis for Nonlinear Mathematical Models, Mathematical
Modelling and Computational Experiment, 1, pp. 407-414.

Smith, D.l. 1998, Water in Australia, Oxford, Oxford University Press, Melbourne, 384 p.

Spear, R.C. and Hornberger, G.M. 1980, Eutrophication in Peel Inlet — 1. Identification of
Critical Uncertainties via Generalized Sensitivity Analysis, Water Resources
Research, 14(1), pp. 43-49.

Spear, R.C., Grieb, T.M. and Shang, N. 1994, Parameter Uncertainty and Interaction in
Complex Environmental Models, Water Resources Research, 30(11), pp. 3159-3169.

7-14



Srikanthan, R. and McMahon, T.A., 1985, Stochastic Generation of Rainfall and
Evaporation Data, Technical Paper 84 (Australian Water Resources Council),
Canberra, 301 p.

Srikanthan, R. and McMahon, T.A. 2001, Stochastic Generation of Annual, Monthly and
Daily Climate Data: A Review, Hydrology and Earth System Sciences, 5(4), pp.
653-670.

Streeter, H.W. and Phelps, E.B. 1925, A Study of the Pollution and Natural Purification of
the Ohio River, US Public Health Service, Washington, DC, Public Health Bulletin,
pp. 127-146.

Tang, Y., Reed, P.M. and Wagener, T. 2006, How Effective and Efficient are Multiobjective
Evolutionary Algorithms at Hydrologic Model Calibration? Hydrology and Earth
Systems Science, 10(2), pp. 289-307.

Tang, Y., Reed, P.M., Wagener, T. and van Werkhoven, K. 2007a, Comparing Sensitivity
Analysis Methods to Advance Lumped Watershed Model Identification and
Evaluation, Hydrology and Earth Systems Science, 11, pp. 793-817.

Tang, Y., Reed, P.M., Wagener, T. and van Werkhoven, K. 2007b, Advancing the
Identification and Evaluation of Distributed Rainfall-Runoff Models Using Sobol’s
Global Sensitivity Analysis, Water Resources Research, 43(6), W06415,
d0i:10.1029/2006WR005813.

Tung, Y-K. and Hathhorn, W.E. 1988, Assessment of Probability Distribution of Dissolved
Oxygen Deficit, Journal of Environmental Engineering, 114(6), pp. 1421-1435.

Tung, Y-K. and Yen, B-C. 2005, Hydrosystems Engineering Uncertainty Analysis, ASCE
Press and McGraw-Hill, 285 p.

Twort, A.C., Ratnayaka, D.D. and Brandt, M.J. 2000, Water Supply, 5th edn. Arnold,
London, 478 p.

U.S. Environmental Protection Agency (US EPA), 1997, Exposure Factors Handbook,
National Center for Environmental Assessment, EPA Office of Research and
Development, Washington, D.C., 36 p.

U.S. Environmental Protection Agency (US EPA), 1999, Protocol for developing nutrient
TMDLs, 1st edn, Office of Water, Rep. EPA 841-B-99-007, Washington, D.C.

7-15



U.S. Environmental Protection Agency (US EPA), 2003, Taxonomies for Probabilistic
Assessment. In: Volume 1V: Evaluating Uncertainty and Sensitivity, SAB Review
Materials for 3SMRA Modeling System, U.S. Environmental Protection Agency,
Washington, D.C., last viewed 09 February 2009.

<http://www.epa.gov/osw/hazard/wastetypes/wasteid/hwirwste/risk03.htm>

van Asselt M.B.A., Rotmans J. 2002, Uncertainty in Integrated Assessment Modelling —
From Positivism to Pluralism, Climatic Change, 54 (1-2), pp. 75-105.

van der Sluijs, J.P., Craye, M., Funtowicz, S., Kloprogge, P., Ravetz, J. and Risbey, J. 2005,
Combining Quantitative and Qualitative Measures of Uncertainty in Model-Based
Environmental Assessment: The NUSAP System, Risk Analysis, 25(2), pp. 481-492.

van Griensven, A., Meixner, T., Grunwald, S., Bishop, T., Diluzio, M. and Srinivasan, R.
2006, A Global Sensitivity Analysis Tool for the Parameters of Multi-Variable
Catchment Models, Journal of Hydrology, 324(1), pp. 10-23.

van Werkhoven, K., Wagener, T., Reed, P. and Tang, Y. 2008, Characterization of
Watershed Model Behavior Across a Hydroclimatic Gradient, Water Resources
Research, 44, W01429, doi:10.1029/2007WR006271.

von Winterfeldt, D. and Edwards, W. 1986, Decision Analysis and Behavioural Research,

Cambridge University Press, London, pp. 399-405.

Victoria University and Department of Sustainability and Environment (VU and DSE), 2005,
REALM: Getting Started Manual, (www.dse.vic.gov.au/vro/water).

Vose, D., 2000, Risk Analysis: A Quantitative Guide, 2nd edn., John Wiley and Sons, Ltd.:
New York, 40 p.

Votruba, L. and Broza, V. 1989, Water Management in Reservoirs. Developments in Water

Science:33. Elsevier, Amsterdam, 444 p.

Wagner, R.A., Tisdale, T.S. and Zhang, J. 1996, Framework for Phosphorus Transport
Modeling in the Lake Okeechobee Watershed. Journal of the American Water
Resources Association, 32(1), pp. 57-73.

Walker, W.E., Harremoés, P., Rotmans, J., van der Sluijs, J.P., van Asselt, M.B.A., Janssen,
P. and von Krauss, M.P.K., 2003. Defining Uncertainty: A Conceptual Basis for
Uncertainty Management in Model-Based Decision Support. Integrated Assessment,
4(1), pp. 5-17.

7-16


http://www.epa.gov/osw/hazard/wastetypes/wasteid/hwirwste/risk03.htm�

Walpole, R.E. and Myers, R.H. 1993, Probability and Statistics for Engineers and Scientists,
5th edn., Macmillan, New York, 766 p.

Warwick, J.J. 1997, Use of First-Order Uncertainty Analysis to Optimize Successful Stream
Water Quality Simulation, Journal of the American Water Resources Association,
33(6), pp. 1173-1185.

Weyl, H. 1938, Mean Motion, American Journal of Mathematics, 60, pp. 889-896.

Wheaton, J.M., Darby, S.E. and Sear, D.A. 2008, The Scope of Uncertainties in River
Restoration, In: Darby, S., Sear, D. (eds), River Restoration: Managing the
Uncertainty in Restoring Physical Habitat, John Wiley & Sons, Ltd., Chichester,
UK, pp. 21-39.

Wurbs, R.A. 1993, Reservoir System Simulation and Optimization Models, Journal of Water
Resources Planning and Management, 119(4), pp. 455-472.

Wurbs, R.A. 1996, Modeling and Analysis of Reservoir System Operations, Prentice-Hall,
Upper Saddle River, NJ, 356 p.

Wurbs, R.A. 2005, Modeling River/Reservoir System Management, Water Allocation, and
Supply Reliability, Journal of Hydrology, 200(1-4), pp. 100-113.

Xu, C. and Gertner, G.Z. 2007, A general First-Order Global Sensitivity Analysis Method,
Reliability Engineering and System Safety, 93(7), pp. 1060-1071.

Yakowitz, S. 1982, Dynamic Programming Applications in Water Resources, Water
Resources Research, 18(4), pp. 673-696.

Yeh, W.W-G. 1985, Reservoir Management and Operations Models: A State-of-the-Art
Review, Water Resources Research, 21(12), pp. 1797-1818.

Yeh, K-C. and Tung, Y-K. 1993. Uncertainty and Sensitivity Analysis of Pit-Migration
Model, Hydraulic Engineering, 119(2), p. 262-281.

Yen, B.C. and Ang, A.H.S. 1971, Risk Analysis in Design of Hydraulic Projects. In: Chiu,
C.L. (Ed), Stochastic Hydraulics, Proceedings of the First International Symposium
on Stochastic Hydraulics, University of Pittsburgh, Pittsburgh, PA, June 1971, pp.
694-701.

7-17



Yen, B.C., Cheng, S-T. and Melching, C.S. 1986, First Order Reliability Analysis. In: Yen,
B.C. (Ed), Stochastic and Risk Analysis in Hydraulic Engineering, Water Resources
Publications, Littleton, Colorado, pp. 1-36.

Young, P.C. 1999, Data-Based Mechanistic Modelling, Generalised Sensitivity and
Dominant Mode Analysis, Computer Physics Communication, 117(1-2), pp. 113-
129.

Zagona E.A. Fulp T.A., Shane R., Magee T. and Goranflo H.M. 2001, RiverWare: A
Generalized Tool For Complex Reservoir Systems Modeling, Journal of the

American Water Resources Association, 37(4), pp. 913-929.

Zerihun D., Feyen J. and Reddy J.M. 1996, Sensitivity Analysis of Furrow-Irrigation
Performance Parameters, Journal of Irrigation and Drainage Engineering, 122(1), pp.
49-57.

Zhang, H.X. and Yu, S.L., 2004, Applying the First-Order Error Analysis in Determining the
Margin of Safety for Total Maximum Daily Load Computations, Journal of
Environmental Engineering, 130(6), pp. 664-673.

Zheng, Y. and Keller, A.A. 2007, Uncertainty Assessment in Watershed-Scale Water Quality
Modeling and Management: 1. Framework and Application of Generalized
Likelihood Uncertainty Estimation (GLUE) approach, Water Resources Research,
43, W08407, doi:10.1029/2006 WR005345.

7-18



APPENDIX A
Morris Method Algorithm

The following describes the algorithm that Morris (1991) proposed for the construction of
trajectory pathways through the region of experimentation, Q, as shown in Figure A-1(b).

/ /
(@) (b)

Figure A-1. The Region of Experimentation, Q.
(a) Individual EEs for a Three Variable Model. Six Simulations Required. P = 4.
(b) Trajectory EEs for a Three Variable Model. Four Simulations Required. p = 4.

The trajectories are used to denote the variable perturbation from which an Elementary
Effect (EE) can be calculated for each input variable. An EE is determined using Equation
(A.L):

EE (X) = [Y(X0 X X X + A0 X000 %) = Y(X)]/ A (A1)

where A is a predetermined multiple of 1/(p - 1).
is the number of ‘levels’, or values, over which the variables
can be sampled. Also known as the resolution of sampling.

To define the pathway of each trajectory, Morris (1991) used a series of matrices to
construct the final trajectory matrix, B*, which is defined by Equation (A.2) and explained
following. A number of these final trajectory matrices, r, ultimately determine the design
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input matrix X, as shown in Equation (A.3). X is an (n x k) matrix where n signifies a the

number of model simulations.

B*=(J, x*+(A/2)[(2B-J, )D*+J, J)P* (A2)
B,

x =| B: (A3)
é;

Letting m = k + 1, the initial step is to create a (m x k) sampling matrix, B, which
contains elements of 0’s and 1’s, and has the key property that for each column, i =1, 2, 3,
..., K, there are two rows of B that differ only in their i-th entries (Morris 1991). A lower left

triangle unit matrix for example:

(A.4)

= - O
N =
~ o o o
o o o o
o o o o

The sampling matrix, B, is then modified so that within randomly selected columns 0’s
become 1’s and 1’s become 0’s. Denoted as B' this modified sampling matrix can be

produced using Equation (A.5):

B'=()I(2B-J.,)D*+J 1] (A.5)
where Jmk is a (mx k) matrix of 1’s (unit matrix)
D* is a k-dimensional diagonal matrix which the diagonal

elements have an equal probability of taking a value of +1 of
-1
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By introducing -1s, the D* matrix allows a negative A change to occur. An example of

D* for k = 6 is shown below:

-1 0 0 0 O
0 1 0 0 O
0 01 0 O
D* = (A.6)
0 00 -1 0 O
0 0O 1 0
10 00 0 -1
Using Equation (A.6) in Equation (A.5), B' then becomes:
10 01 0 1]
0 00101
010101
B'=|0 1 1 1 0 1 (A.7)
011001
011011
101 10 1 0]
B* could then be constructed as Equation (A.8):
B*=J,.X*+(AB") (A.8)
where Jm1 isa (mx 1) matrix of 1’s
X* x* is a set of randomly selected base values from the set of

selectable x values ranging from0to 1 - A

The base values, x*, is only selectable from 0 to 1-A so that when AB' is added to x*, B*
does not exceed the upper bounds of Q. It is interesting to note that x* is therefore never

used as a sample point in B*.
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Letting p= 6 and A = 2/5, the available set of selectable variable points becomes {0, 1/5,
2/5, 3/5}. Assuming the randomly selected base value x* = {3/5, 0, 2/5, 1/5, 3/5, 2/5},

Equation (A.8) then resolves to:

B* =

0.6
0.6
0.6
0.6
0.6
0.6

0.4
0.4
0.4
0.4
0.4

0.4
0.4
0.4
0.8
0.8
0.8
0.8

0.6
0.6
0.6
0.6
0.2
0.2
0.2

0.6
0.6
0.6
0.6
0.6

0.8 ]

0.8
0.8
0.8
0.8
0.8
0.4

(A.9)

The final permutation matrix (P*) is a k-dimensional matrix where each column and row

contains only single element equal to 1 and the rest 0’s, as demonstrated in Equation (A.10)

for a k = 6 matrix.

O O O O O

O O O O O -

R O O O O O

o O O O +—» O

O r O O O O

o O O » O O

(A.10)

P* is not an essential element of B*, but as the location of the 1’s is random, it provides

a random change to the order that the variables are perturbed, and increases the number of

trajectories possible. Combining Equations (A.5), (A.8) and (A.10) the final trajectory

matrix, Equation (A.2), is realised:

B* =

0.6

0.6
0.6
0.6
0.2
0.2
0.2

0.6
0.6
0.6
0.6
0.6
0.6

0.8
0.8
0.8
0.8
0.8
0.8
0.4

A-4

0.4
0.4
0.4
0.4
0.4

0.6
0.6
0.6
0.6
0.6

0.4]

0.4
0.4
0.8
0.8
0.8
0.8

(A.11)



Here it can be seen that each column, which represents a variable, is changed one-at-a-
time by a negative or positive A, where A = 2/5. From these change, an EE can then be

calculated for each input variable using Equation (A.1).

A number r B* matrices are constructed and assembled to finally make up the design
matrix X, given in Equation (A.3). The columns of X are then scaled to appropriate range of

the input variables.

Here a shortcoming of the Morris method becomes clear. When applying the Morris
method to discrete variables, the number of points of a discrete variable must be the same as,
or a multiple of, the number of levels, p, used in the above algorithm. This ensures that two
discrete points are chosen for the A change and the EE is correctly calculated. Alternatively,
it is possible to assign different p values (p;), and hence different A values (A;), to each input
variable by allowing the choice of x* from the appropriate distributions. However, as x* may
be selected from sets that contain different number of values, resulting from different
number of levels, P* will need to be modified to ensure that the columns with equal p;
values are permuted together. Although as discussed earlier, P* is not essential and if

omitted this issue will be avoided.






APPENDIX B
Results of Individual Morris Method Experiments of
the Preliminary Case Study

The following are the results of the Morris method experiments performed on the
preliminary case study. The individual experiments were performed using the algorithm

settings as shown in Table B-1.

Table B-1. Algorithm Settings for the Morris Method Sensitivity Analysis Experiment.

Experiment 'Il\'l:Je;Febc?orci)f& Level A Seed

1 10 4 1 18936437
2 10 4 1 874366872
3 10 6 2 18936437
4 10 6 2 874366872
5 10 6 3 18936437
6 10 6 3 874366872
7 10 6 4 18936437
8 10 6 4 874366872
9 10 8 3 18936437
10 10 8 3 874366872
11 10 8 4 18936437
12 10 8 4 874366872
13 10 8 5 18936437
14 10 8 5 874366872
15 20 4 2 18936437
16 20 4 2 874366872




Table B-2. Results of the Morris Method Experiment 1.

Factor R p* c p* Ranking
Streamflow 6085 6085 796 1
Rainfall 919 919 334 5
Evaporation -560 560 350 9
Evaporation Factor A for Reservoir A -742 742 292 8
Evaporation Factor A for Reservoir B -818 818 412 7
Evaporation Factor B for Reservoir A -433 433 352 11
Evaporation Factor B for Reservoir B -163 163 217 15
Volume to Surface Area Relationship 182 182 296 14
Temporal Disaggregation Factors -480 480 413 10
Climate Index -827 827 266 6
Upper RRC - Position -1216 1216 782 4
Lower RRC — Position 76 76 241 16
Base Demand — Position -261 261 368 12
Stage 1 Percentage Restrictable 254 254 352 13
Stage 2 Percentage Restrictable 13 13 37 18
Stage 3 Percentage Restrictable 0 0 0 19
Stage 4 Percentage Restrictable 0 0 0 19
Stage 1 Relative Position -15 15 37 17
Stage 2 Relative Position 0 0 0 19
Stage 3 Relative Position 0 0 0 19
Consecutive Months in Restriction 1534 1534 3674 3
Worst Restriction Level 0 0 0 19
Supply Reliability -4313 4313 1341 2
Target Storage Curves — Point 2 0 0 0 19
Target Storage Curves — Point 3 0 0 0 19
Target Storage Curves — Point 4 0 0 0 19
Initial Volume of Reservoir A 0 0 0 19
Initial Volume of Reservoir B 0 0 0 19
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Table B-3. Results of the Morris Method Experiment 2.

Factor R p* c p* Ranking
Streamflow 5906 5906 969 1
Rainfall 920 920 40 5
Evaporation -674 674 350 7
Evaporation Factor A for Reservoir A -652 652 332 8
Evaporation Factor A for Reservoir B -595 595 358 9
Evaporation Factor B for Reservoir A -396 396 422 11
Evaporation Factor B for Reservoir B -239 239 284 14
Volume to Surface Area Relationship 279 420 464 10
Temporal Disaggregation Factors -346 346 367 12
Climate Index -771 771 323 6
Upper RRC Position -1172 1172 587 4
Lower RRC Position 76 76 241 16
Base Demand Position -243 243 368 13
Stage 1 Percentage Restrictable 62 86 230 15
Stage 2 Percentage Restrictable 0 0 0 17
Stage 3 Percentage Restrictable 0 0 0 17
Stage 4 Percentage Restrictable 0 0 0 17
Stage 1 Relative Position 0 0 0 17
Stage 2 Relative Position 0 0 0 17
Stage 3 Relative Position 0 0 0 17
Consecutive Months in Restriction 1652 1652 3125 3
Worst Restriction Level 0 0 0 17
Supply Reliability -4749 4749 1549 2
Target Storage Curves — Point 2 0 0 0 17
Target Storage Curves — Point 3 0 0 0 17
Target Storage Curves — Point 4 0 0 0 17
Initial Volume of Reservoir A 0 0 0 17
Initial Volume of Reservoir B 0 0 0 17
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Table B-4. Results of the Morris Method Experiment 3.

Factor R p* c p* Ranking
Streamflow 6812 6812 924 1
Rainfall 826 826 49 5
Evaporation -682 682 185 8
Evaporation Factor A for Reservoir A -776 776 285 6
Evaporation Factor A for Reservoir B -704 704 219 7
Evaporation Factor B for Reservoir A -352 372 360 11
Evaporation Factor B for Reservoir B -306 306 303 12
Volume to Surface Area Relationship 225 225 298 14
Temporal Disaggregation Factors -498 498 329 10
Climate Index -640 640 322 9
Upper RRC Position -1136 1136 717 3
Lower RRC Position 141 141 275 15
Base Demand Position -305 305 305 13
Stage 1 Percentage Restrictable 91 110 200 16
Stage 2 Percentage Restrictable -4 6 15 18
Stage 3 Percentage Restrictable 0 0 0 19
Stage 4 Percentage Restrictable 0 0 0 19
Stage 1 Relative Position -19 19 39 17
Stage 2 Relative Position 0 0 0 19
Stage 3 Relative Position 0 0 0 19
Consecutive Months in Restriction 986 986 2673 4
Worst Restriction Level 0 0 0 19
Supply Reliability -3953 3953 1133 2
Target Storage Curves — Point 2 0 0 0 19
Target Storage Curves — Point 3 0 0 0 19
Target Storage Curves — Point 4 0 0 0 19
Initial Volume of Reservoir A 0 0 0 19
Initial Volume of Reservoir B 0 0 0 19
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Table B-5. Results of the Morris Method Experiment 4.

Factor R p* c p* Ranking
Streamflow 6170 6170 1058 1
Rainfall 867 867 196 4
Evaporation -753 753 42 8
Evaporation Factor A for Reservoir A -700 700 189 9
Evaporation Factor A for Reservoir B -788 788 40 7
Evaporation Factor B for Reservoir A -173 173 240 13
Evaporation Factor B for Reservoir B -370 370 284 10
Volume to Surface Area Relationship 197 197 256 12
Temporal Disaggregation Factors -337 337 302 11
Climate Index -828 828 210 6
Upper RRC Position -861 861 618 5
Lower RRC Position 0 0 0 16
Base Demand Position -97 97 193 14
Stage 1 Percentage Restrictable 54 54 48 15
Stage 2 Percentage Restrictable 0 0 0 16
Stage 3 Percentage Restrictable 0 0 0 16
Stage 4 Percentage Restrictable 0 0 0 16
Stage 1 Relative Position 0 0 0 16
Stage 2 Relative Position 0 0 0 16
Stage 3 Relative Position 0 0 0 16
Consecutive Months in Restriction 943 943 2014 3
Worst Restriction Level 0 0 0 16
Supply Reliability -4498 4498 1684 2
Target Storage Curves — Point 2 0 0 0 16
Target Storage Curves — Point 3 0 0 0 16
Target Storage Curves — Point 4 0 0 0 16
Initial Volume of Reservoir A 0 0 0 16
Initial Volume of Reservoir B 0 0 0 16
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Table B-6. Results of the Morris Method Experiment 5.

Factor R p* c p* Ranking
Streamflow 6215 6215 951 1
Rainfall 882 882 186 5
Evaporation -700 700 331 8
Evaporation Factor A for Reservoir A -677 677 211 9
Evaporation Factor A for Reservoir B -818 818 201 6
Evaporation Factor B for Reservoir A -234 234 204 13
Evaporation Factor B for Reservoir B -314 314 191 11
Volume to Surface Area Relationship 211 211 197 14
Temporal Disaggregation Factors -375 375 312 10
Climate Index -759 759 252 7
Upper RRC Position -1391 1391 602 3
Lower RRC Position 0 0 0 17
Base Demand Position -284 284 305 12
Stage 1 Percentage Restrictable 104 104 203 15
Stage 2 Percentage Restrictable 0 91 193 16
Stage 3 Percentage Restrictable 0 0 0 17
Stage 4 Percentage Restrictable 0 0 0 17
Stage 1 Relative Position 0 0 0 17
Stage 2 Relative Position 0 0 0 17
Stage 3 Relative Position 0 0 0 17
Consecutive Months in Restriction 1195 1195 2226 4
Worst Restriction Level 0 0 0 17
Supply Reliability -4060 4060 741 2
Target Storage Curves — Point 2 0 0 0 17
Target Storage Curves — Point 3 0 0 0 17
Target Storage Curves — Point 4 0 0 0 17
Initial Volume of Reservoir A 0 0 0 17
Initial Volume of Reservoir B 0 0 0 17
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Table B-7. Results of the Morris Method Experiment 6.

Factor R p* c p* Ranking
Streamflow 5784 5784 935 1
Rainfall 947 947 231 5
Evaporation -593 593 147 9
Evaporation Factor A for Reservoir A -898 898 309 6
Evaporation Factor A for Reservoir B -668 668 190 8
Evaporation Factor B for Reservoir A -271 271 211 12
Evaporation Factor B for Reservoir B -314 314 186 11
Volume to Surface Area Relationship 168 168 191 14
Temporal Disaggregation Factors -373 373 218 10
Climate Index -749 749 224 7
Upper RRC Position -1082 1082 657 4
Lower RRC Position 159 159 320 15
Base Demand Position -244 244 234 13
Stage 1 Percentage Restrictable 155 155 215 16
Stage 2 Percentage Restrictable 21 21 31 17
Stage 3 Percentage Restrictable 0 0 0 19
Stage 4 Percentage Restrictable 0 0 0 19
Stage 1 Relative Position -10 10 31 18
Stage 2 Relative Position 0 0 0 19
Stage 3 Relative Position 0 0 0 19
Consecutive Months in Restriction 1110 1110 1767 3
Worst Restriction Level 0 0 0 19
Supply Reliability -4128 4128 1229 2
Target Storage Curves — Point 2 0 0 0 19
Target Storage Curves — Point 3 0 0 0 19
Target Storage Curves — Point 4 0 0 0 19
Initial Volume of Reservoir A 0 0 0 19
Initial Volume of Reservoir B 0 0 0 19
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Table B-8. Results of the Morris Method Experiment 7.

Factor R p* c p* Ranking
Streamflow 6099 6099 950 1
Rainfall 791 791 145 5
Evaporation -663 663 154 8
Evaporation Factor A for Reservoir A -608 608 153 9
Evaporation Factor A for Reservoir B -684 684 147 6
Evaporation Factor B for Reservoir A -408 408 108 11
Evaporation Factor B for Reservoir B -358 358 23 12
Volume to Surface Area Relationship 175 175 152 13
Temporal Disaggregation Factors -451 451 113 10
Climate Index -668 668 235 7
Upper RRC Position -1390 1390 594 4
Lower RRC Position 0 0 0 18
Base Demand Position -152 152 170 14
Stage 1 Percentage Restrictable 137 137 166 15
Stage 2 Percentage Restrictable 32 32 100 16
Stage 3 Percentage Restrictable 0 0 0 18
Stage 4 Percentage Restrictable 0 0 0 18
Stage 1 Relative Position -5 5 15 17
Stage 2 Relative Position 0 0 0 18
Stage 3 Relative Position 0 0 0 18
Consecutive Months in Restriction 1604 1604 2096 3
Worst Restriction Level 0 0 0 18
Supply Reliability -2866 2866 1674 2
Target Storage Curves — Point 2 0 0 0 18
Target Storage Curves — Point 3 0 0 0 18
Target Storage Curves — Point 4 0 0 0 18
Initial Volume of Reservoir A 0 0 0 18
Initial Volume of Reservoir B 0 0 0 18

B-8



Table B-9. Results of the Morris Method Experiment 8.

Factor R p* c p* Ranking
Streamflow 5760 5760 939 1
Rainfall 826 826 229 5
Evaporation -595 595 146 9
Evaporation Factor A for Reservoir A -674 674 231 7
Evaporation Factor A for Reservoir B -769 769 153 6
Evaporation Factor B for Reservoir A -199 199 164 13
Evaporation Factor B for Reservoir B -308 308 121 11
Volume to Surface Area Relationship 257 257 139 12
Temporal Disaggregation Factors -394 394 216 10
Climate Index -605 605 252 8
Upper RRC Position -1035 1035 597 4
Lower RRC Position 45 45 107 18
Base Demand Position -166 166 162 14
Stage 1 Percentage Restrictable 54 54 90 17
Stage 2 Percentage Restrictable 74 74 133 16
Stage 3 Percentage Restrictable 0 0 0 19
Stage 4 Percentage Restrictable 0 0 0 19
Stage 1 Relative Position -87 87 169 15
Stage 2 Relative Position 0 0 0 19
Stage 3 Relative Position 0 0 0 19
Consecutive Months in Restriction 1461 1461 1929 3
Worst Restriction Level 0 0 0 19
Supply Reliability -3466 3466 1581 2
Target Storage Curves — Point 2 0 0 0 19
Target Storage Curves — Point 3 0 0 0 19
Target Storage Curves — Point 4 0 0 0 19
Initial Volume of Reservoir A 0 0 0 19
Initial Volume of Reservoir B 0 0 0 19
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Table B-10. Results of the Morris Method Experiment 9.

Factor R p* c p* Ranking
Streamflow 6913 6913 1045 1
Rainfall 871 871 252 4
Evaporation -606 606 362 9
Evaporation Factor A for Reservoir A -648 648 203 8
Evaporation Factor A for Reservoir B -673 673 177 7
Evaporation Factor B for Reservoir A -305 305 250 11
Evaporation Factor B for Reservoir B -283 283 281 12
Volume to Surface Area Relationship 211 211 268 15
Temporal Disaggregation Factors -458 458 295 10
Climate Index -798 798 181 5
Upper RRC Position -1201 1201 773 3
Lower RRC Position 11 11 29 17
Base Demand Position -267 267 288 13
Stage 1 Percentage Restrictable 138 252 392 14
Stage 2 Percentage Restrictable -14 14 31 16
Stage 3 Percentage Restrictable 0 0 0 18
Stage 4 Percentage Restrictable 0 0 0 18
Stage 1 Relative Position 0 0 0 18
Stage 2 Relative Position 0 0 0 18
Stage 3 Relative Position 0 0 0 18
Consecutive Months in Restriction 743 743 2349 6
Worst Restriction Level 0 0 0 18
Supply Reliability -4231 4231 1187 2
Target Storage Curves — Point 2 0 0 0 18
Target Storage Curves — Point 3 0 0 0 18
Target Storage Curves — Point 4 0 0 0 18
Initial Volume of Reservoir A 0 0 0 18
Initial Volume of Reservoir B 0 0 0 18
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Table B-11. Results of the Morris Method Experiment 10.

Factor R p* c p* Ranking
Streamflow 6320 6320 1024 1
Rainfall 874 874 225 3
Evaporation -695 695 42 8
Evaporation Factor A for Reservoir A -665 665 174 9
Evaporation Factor A for Reservoir B -770 770 182 7
Evaporation Factor B for Reservoir A -175 175 235 13
Evaporation Factor B for Reservoir B -347 347 275 11
Volume to Surface Area Relationship 139 139 161 14
Temporal Disaggregation Factors -448 448 306 10
Climate Index -796 796 196 6
Upper RRC Position -840 840 700 4
Lower RRC Position 9 9 29 17
Base Demand Position -91 202 312 12
Stage 1 Percentage Restrictable -93 129 246 15
Stage 2 Percentage Restrictable 0 0 0 18
Stage 3 Percentage Restrictable 0 0 0 18
Stage 4 Percentage Restrictable 0 0 0 18
Stage 1 Relative Position -73 73 188 16
Stage 2 Relative Position 0 0 0 18
Stage 3 Relative Position 0 0 0 18
Consecutive Months in Restriction 802 802 1897 5
Worst Restriction Level 0 0 0 18
Supply Reliability -4601 4601 1368 2
Target Storage Curves — Point 2 0 0 0 18
Target Storage Curves — Point 3 0 0 0 18
Target Storage Curves — Point 4 0 0 0 18
Initial volume of Reservoir A 0 0 0 18
Initial Volume of Reservoir B 0 0 0 18
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Table B-12. Results of the Morris Method Experiment 11.

Factor R p* c p* Ranking
Streamflow 6609 6609 636 1
Rainfall 733 733 192 7
Evaporation -631 631 173 9
Evaporation Factor A for Reservoir A -708 708 203 8
Evaporation Factor A for Reservoir B -775 775 217 5
Evaporation Factor B for Reservoir A -273 273 218 11
Evaporation Factor B for Reservoir B -253 253 200 13
Volume to Surface Area Relationship 95 95 139 15
Temporal Disaggregation Factors -492 492 245 10
Climate Index -836 836 332 4
Upper RRC Position -1304 1304 476 3
Lower RRC Position 0 0 0 18
Base Demand Position -263 263 239 12
Stage 1 Percentage Restrictable 146 146 193 14
Stage 2 Percentage Restrictable 9 9 22 17
Stage 3 Percentage Restrictable 0 0 0 18
Stage 4 Percentage Restrictable 0 0 0 18
Stage 1 Relative Position -51 51 140 16
Stage 2 Relative Position 0 0 0 18
Stage 3 Relative Position 0 0 0 18
Consecutive Months in Restriction 759 759 2065 6
Worst Restriction Level 0 0 0 18
Supply Reliability -3676 3676 743 2
Target Storage Curves — Point 2 0 0 0 18
Target Storage Curves — Point 3 0 0 0 18
Target Storage Curves — Point 4 0 0 0 18
Initial Volume of Reservoir A 0 0 0 18
Initial Volume of Reservoir B 0 0 0 18
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Table B-13. Results of the Morris Method Experiment 12.

Factor R p* c p* Ranking
Streamflow 6138 6138 742 1
Rainfall 781 781 226 4
Evaporation -642 642 259 8
Evaporation Factor A for Reservoir A -502 590 360 9
Evaporation Factor A for Reservoir B -706 706 205 6
Evaporation Factor B for Reservoir A -198 198 200 13
Evaporation Factor B for Reservoir B -365 365 187 11
Volume to Surface Area Relationship 222 222 198 12
Temporal Disaggregation Factors -370 479 358 10
Climate Index -677 677 346 7
Upper RRC Position -1074 1074 671 3
Lower RRC Position 135 135 218 15
Base Demand Position -164 164 193 14
Stage 1 Percentage Restrictable 118 118 166 16
Stage 2 Percentage Restrictable 0 7 16 18
Stage 3 Percentage Restrictable 0 0 0 19
Stage 4 Percentage Restrictable 0 0 0 19
Stage 1 Relative Position -58 58 172 17
Stage 2 Relative Position 0 0 0 19
Stage 3 Relative Position 0 0 0 19
Consecutive Months in Restriction 728 728 1239 5
Worst Restriction Level 0 0 0 19
Supply Reliability -4170 4170 1413 2
Target Storage Curves — Point 2 0 0 0 19
Target Storage Curves — Point 3 0 0 0 19
Target Storage Curves — Point 4 0 0 0 19
Initial Volume of Reservoir A 0 0 0 19
Initial Volume of Reservoir B 0 0 0 19
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Table B-14. Results of the Morris Method Experiment 13.

Factor R p* c p* Ranking
Streamflow 6270 6270 961 1
Rainfall 778 778 325 7
Evaporation -596 673 386 8
Evaporation Factor A for Reservoir A -786 786 105 6
Evaporation Factor A for Reservoir B -819 819 35 5
Evaporation Factor B for Reservoir A -424 424 233 11
Evaporation Factor B for Reservoir B -241 241 167 12
Volume to Surface Area Relationship 187 187 164 13
Temporal Disaggregation Factors -479 479 197 10
Climate Index -669 669 281 9
Upper RRC Position -1382 1382 521 3
Lower RRC Position 11 11 23 18
Base Demand Position -173 173 182 14
Stage 1 Percentage Restrictable 57 57 104 17
Stage 2 Percentage Restrictable 114 114 166 16
Stage 3 Percentage Restrictable 0 0 0 19
Stage 4 Percentage Restrictable 0 0 0 19
Stage 1 Relative Position -116 116 269 15
Stage 2 Relative Position 0 0 0 19
Stage 3 Relative Position 0 0 0 19
Consecutive Months in Restriction 1061 1061 1955 4
Worst Restriction Level 0 0 0 19
Supply Reliability -3595 3595 618 2
Target Storage Curves — Point 2 0 0 0 19
Target Storage Curves — Point 3 0 0 0 19
Target Storage Curves — Point 4 0 0 0 19
Initial Volume of Reservoir A 0 0 0 19
Initial Volume of Reservoir B 0 0 0 19
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Table B-15. Results of the Morris Method Experiment 14.

Factor R p* c p* Ranking
Streamflow 5744 5744 876 1
Rainfall 798 798 142 5
Evaporation -663 663 155 8
Evaporation Factor A for Reservoir A -640 640 161 9
Evaporation Factor A for Reservoir B -675 675 178 7
Evaporation Factor B for Reservoir A -379 379 205 12
Evaporation Factor B for Reservoir B -382 382 328 11
Volume to Surface Area Relationship 223 223 177 13
Temporal Disaggregation Factors -316 403 286 10
Climate Index -713 713 272 6
Upper RRC Position -1069 1069 574 4
Lower RRC Position 100 100 184 15
Base Demand Position -211 211 277 14
Stage 1 Percentage Restrictable 100 100 133 15
Stage 2 Percentage Restrictable 34 34 104 17
Stage 3 Percentage Restrictable 0 0 0 18
Stage 4 Percentage Restrictable 0 0 0 18
Stage 1 Relative Position 0 0 0 18
Stage 2 Relative Position 0 0 0 18
Stage 3 Relative Position 0 0 0 18
Consecutive Months in Restriction 1170 1170 1637 3
Worst Restriction Level 0 0 0 18
Supply Reliability -3869 3869 1022 2
Target Storage Curves — Point 2 0 0 0 18
Target Storage Curves — Point 3 0 0 0 18
Target Storage Curves — Point 4 0 0 0 18
Initial Volume of Reservoir A 0 0 0 18
Initial Volume of Reservoir B 0 0 0 18
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Table B-16. Results of the Morris Method Experiment 15.

Factor R p* c p* Ranking
Streamflow 5958 5958 1211 1
Rainfall 923 923 139 5
Evaporation -604 604 169 9
Evaporation Factor A for Reservoir A -686 686 190 8
Evaporation Factor A for Reservoir B -699 699 182 7
Evaporation Factor B for Reservoir A -242 242 185 12
Evaporation Factor B for Reservoir B -305 305 165 11
Volume to Surface Area Relationship 241 241 184 13
Temporal Disaggregation Factors -464 464 235 10
Climate Index -761 761 236 6
Upper RRC Position -1474 1474 542 3
Lower RRC Position 1 1 6 18
Base Demand Position -211 211 202 14
Stage 1 Percentage Restrictable 158 158 220 15
Stage 2 Percentage Restrictable 2 2 7 17
Stage 3 Percentage Restrictable 0 0 0 19
Stage 4 Percentage Restrictable 0 0 0 19
Stage 1 Relative Position -19 19 85 16
Stage 2 Relative Position 0 0 0 19
Stage 3 Relative Position 0 0 0 19
Consecutive Months in Restriction 1110 1110 1935 4
Worst Restriction Level 0 0 0 19
Supply Reliability -3538 3538 2191 2
Target Storage Curves — Point 2 0 0 0 19
Target Storage Curves — Point 3 0 0 0 19
Target Storage Curves — Point 4 0 0 0 19
Initial Volume of Reservoir A 0 0 0 19
Initial Volume of Reservoir B 0 0 0 19
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Table B-17. Results of the Morris Method Experiment 16.

Factor R p* c p* Ranking
Streamflow 5833 5833 1181 1
Rainfall 863 863 142 6
Evaporation -519 613 382 9
Evaporation Factor A for Reservoir A -275 984 1743 5
Evaporation Factor A for Reservoir B -700 700 168 8
Evaporation Factor B for Reservoir A -349 349 230 12
Evaporation Factor B for Reservoir B -342 342 173 13
Volume to Surface Area Relationship 206 206 186 14
Temporal Disaggregation Factors -463 463 209 10
Climate Index -753 753 343 7
Upper RRC Position -1046 1415 1291 4
Lower RRC Position 25 25 92 19
Base Demand Position -145 145 178 16
Stage 1 Percentage Restrictable 157 163 194 15
Stage 2 Percentage Restrictable 36 36 110 17
Stage 3 Percentage Restrictable 0 0 0 20
Stage 4 Percentage Restrictable 0 0 0 20
Stage 1 Relative Position -28 28 92 18
Stage 2 Relative Position 0 0 0 20
Stage 3 Relative Position 0 0 0 20
Consecutive Months in Restriction 1636 1636 2083 3
Worst Restriction Level 0 0 0 20
Supply Reliability -3628 3628 1905 2
Target Storage Curves — Point 2 -445 445 1992 11
Target Storage Curves — Point 3 0 0 0 20
Target Storage Curves — Point 4 0 0 0 20
Initial Volume of Reservoir A 0 0 0 20
Initial Volume of Reservoir B 0 0 0 20
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APPENDIX C
Time-Series Perturbation and Correlation Issues

In the sensitivity analysis of the input variables used in the estimation of yield of the
hypothetical urban water supply system, the handling strategy used for perturbing the
streamflow time-series variable consisted of changing all datum in the sequence by a
randomly selected percentage. This was used as a simple method of perturbation that
changes all data points by the same measurement error margin. This in effect changes not
only the variability of the streamflow but also the total volume of water entering the system.
Below is a discussion on uniform change perturbation method used in the Chapter 4 SA and

two more perturbation methods that were consequently considered:

1. Uniform change — A percentage change randomly selected from the variable range
to change all the data in the time series. The change can be a positive or negative
percentage change applied to all data simultaneously. This is the method that was

used in the above SA.

2. Varying change — Like the uniform change, a single percentage change is randomly
selected from the sampling range and is used to change all data points in the time
series. However, approximately half the data is assigned a positive change and the
other half a negative change. The pattern of these positive or negative changes is
randomly predefined and used in all experiments to avoid introducing unnecessary

uncertainty or variability that would not be accounted for in the sensitivity analysis.

3. Random change — This method of perturbation introduces an extra level of
randomness to the magnitude of each datum perturbation. Each datum is randomly
perturbed between predefined margins in a way that the total streamflow
perturbation is equal to the selected percentage change required by the SA technique.
Say the selected required percentage change is +3.5% and a predefined margin of
+1% to -1% is used. Each datum in then randomly assigned a perturbed between
+2.5% and +4.5%, so that the average change is +3.5%.

Table C-1 shows the effects of the time-series perturbation methods on the streamflow
sequence for Reservoir A of the hypothetical urban water supply system case study of
Chapter 4. Given are the monthly mean, standard deviation, variance and coefficient of
variation (C,) of the original streamflow and also after the three perturbation methods were

performed. A noteworthy point is the standard deviation of the uniform change, which shows



a change in variance but an unchanged C,. This is due to the changed mean and the uniform
perturbation dispersing further the data from it. The varying and random perturbation show
changes to both the standard deviation and C,, where the varying method retains a similar

mean as the original streamflow.

Table C-1. Analysis of Uniform, Varying and Random Perturbation Methods for a 5%
Change.

Random Change

Original Uniform Change Varying Change (4% Margin)

Mean 5672 5955 5669 5955
Standard Deviation 4762 5000 4780 4990
Coefficient of Variation (C,) 0.8395 0.8395 0.8430 0.8378

In the SA presented in Chapter 4, the uniform perturbation method was used; however,
the varying perturbation method would have better corresponded with the definition of yield
which states that it is dependent on the variability of the streamflow, not the volume.
However this variability is only on a short-term measurement error basis, not on a long-term

climate event basis.

A 5000 model simulation eFAST SA experiment was performed with the variables
shown in Table C-2 using the three perturbation methods described above. The S results are
shown in Table C-3 and the Sy; results are given in Table C-4. Immediately the difference in
importance is clear with the streamflow variable becoming the least important when the
varying change and the random change perturbation strategies are applied. Note that the
climate index, rainfall and evaporation time series were all perturbed using the uniform
change strategy. Due to the streamflow decreasing its dominance on the total output
variance, the remaining variables increase, however not at the same rate. There are some
changing of ranks between the variables that can be rationalised by considering an altering of
interactions with the streamflow variable and ultimately the volume of streamflow entering

the system.
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Table C-2. Top 10 Important Variables used in Detailed SA Experiments.

Variable Name

Streamflow

Climate index

Rainfall

Evaporation

Evaporation Factor A (Reservoir A)
Evaporation Factor A (Reservoir B)
Consecutive Months Threshold
Reliability Threshold

Upper RRC Position

Temporal Disaggregation Factors

Table C-3. First-Order Indices (§) for eFAST Perturbation Strategies Experiment.

Random Change

Variable Uniform Change Varying Change (4% margin)
Streamflow 0.6398 0.0011 0.0002
Climate Index 0.0120 0.0285 0.0267
Rainfall 0.0150 0.0312 0.0316
Evaporation 0.0012 0.0046 0.0044
Evaporation Factor A (Reservoir A)  0.0100 0.0194 0.0216
Evaporation Factor A (Reservoir B)  0.0075 0.0290 0.0277
Consecutive Months Threshold 0.0190 0.0541 0.0515
Reliability Threshold 0.2650 0.6607 0.6681
Upper Restriction Rule Curve Position 0.0333 0.0930 0.0941
Temporal Disaggregation Factors 0.0049 0.0086 0.0094




Table C-4. Total-Order Indices (Sy) for eFAST Perturbation Strategies Experiment.

Random Change

Variable Uniform Change Varying Change (4% margin)
Streamflow 0.6639 0.0272 0.0271
Climate Index 0.0242 0.0574 0.0535
Rainfall 0.0260 0.0601 0.0591
Evaporation 0.0097 0.0264 0.0257
Evaporation Factor A (Reservoir A)  0.0222 0.0435 0.0451
Evaporation Factor A (Reservoir B)  0.0167 0.0502 0.0487
Consecutive Months Threshold 0.0494 0.1307 0.1200
Reliability Threshold 0.3001 0.7388 0.7453
Upper Restriction Rule Curve Position 0.0502 0.1316 0.1305
Temporal Disaggregation Factors 0.0162 0.0315 0.0314




APPENDIX D
SA Results of eFAST Individual Experiments for the
Barwon Water Supply System Case Study

The following (Figure D-1 to D-14) show the first- and total-order results of the eFAST
individual experiments on the Barwon urban water supply system. The experiments were
performed using 1918 model simulations.

o018 B Relative Position 1 - Total-Order | |
O Relative Position 1 - First-Order

20 Year Simulation Period 40 Year Simulation Period 60 Year Simulation Period 77 Year Simulation
Period

Scenario

Figure D-1. eFAST Individual Experiment. Relative Position Intermediate Curve 1. S and
Sri Results for all Scenarios.
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Figure D-2. eFAST Individual Experiment. Relative Position Intermediate Curve 2. S and
S Results for all Scenarios.
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Figure D-3. eFAST Individual Experiment. Relative Position Intermediate Curve 3. S and
Sr Results for all Scenarios.
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Figure D-4. eFAST Individual Experiment. Percentage Restricatable Zone 1. S and Sy;
Results for all Scenarios.
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Figure D-5. eFAST Individual Experiment. Percentage Restricatable Zone 2. § and Sy;
Results for all Scenarios.
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Figure D-6. eFAST Individual Experiment. Percentage Restricatable Zone 3. S and Sy,
Results for all Scenarios.
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Figure D-7. eFAST Individual Experiment. Upper RRC Curvature. S and Sy Results for all

Scenarios.

03

0.25

3 1]

Si

B Upper RRC Position - Total-Order
@ Upper RRC Position - First-Order

1 2 3 4 5

20 Year Simulation Period

2b

2c

1 2 3 4

40 Year Simulation Period

Scenario

5

1

2 3 4 5 1 2 3

77 Year Simulation
Period

60 Year Simulation Period

Figure D-8. eFAST Individual Experiment. Upper RRC Position. S and Sy; Results for all

Scenarios.
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Figure D-9. eFAST Individual Experiment. Lower RRC Curvature. S and Sy; Results for all
Scenarios.
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Figure D-10. eFAST Individual Experiment. Lower RRC Position. S and Sy; Results for all
Scenarios.
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Figure D-11. eFAST Individual Experiment. Base Demand Curve Position. § and Sy;
Results for all Scenarios.
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Figure D-12. eFAST Individual Experiment. Target Storage Curves. S and Sy; Results for all
Scenarios.
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Figure D-13. eFAST Individual Experiment. Minimum Storage Level Threshold. § and Sy
Results for all Scenarios.
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Figure D-14. eFAST Individual Experiment. Reliability of Supply Threshold. S and Sy
Results for all Scenarios.
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APPENDIX E
Sobol’ Second-Order Sensitivity Indices of Individual
Experiments for Barwon Urban Water Supply System
Case Study

The following tables display the S]? and S; results of the 6848 simulation Sobol” experiments
performed on the Barwon urban water supply system. They are included her to show the
erroneous Sj?< 0 and S; < 0 results. Only the 20 year scenarios are shown here for brevity
but the other results of other planning lengths show similar errors.
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Table E-1. ‘Closed’ Second-Order Importance Measures (S‘j’) of the Sobol' Experiment for the Barwon Urban Water Supply System Case Study —
20 year Scenario 1.

Relative  Relative Relative  Percent. Percent.  Percent. Upper Upper L ower L ower Base Target Minimum
Position 1 Position 2 Position 3 Restrict. 1 Restrict. 2 Restrict. 3 RRC RRC RRC RRC Demand Curves Storage
) ) "~ Curvature Postion Curvature Position Threshold

Isgl?ttil(\)/r?Z 00081  0.0011 00064 00043 00031 00465  0.0930 00376  -0.0019  -0.0100 00343 01146  0.7598

Relative

Pesition 3 -0.0058  0.0062  0.0052 00060  0.0466  0.0349 00443 00364  -0.0047 00499 00634  0.8245

Percent.

Rostriot. 1 00009 00031 00002 00481 00457 00016 00463 00318 00476 00599  0.7179

Percent.

Rostiot. 2 -0.0026  -0.0003 00446 00386 00070  -0.0015  0.0382  0.0694 00627  0.7256

Percent.

: -0.0058  0.0481 00339 00080 00011 00034 00893 00826  0.7238

Restrict. 3

Upper RRC 55100 00356 00032 00028  -00044 00474 00854  0.7126

Curvature

UpperRRC 0403 00018  -0.0011  -00021 00420 00607  0.7554

Position

Lower RRC 0066 -0.0017  -0.0052  0.0473 00640  0.7260

Curvature

Lower RRC 50073 -0.0089 00439 00632 07282

Position

Base Demand -0.0225 0.0472 0.0612 0.7270

Target Curves 0.0511 0.0635 0.7259

Minimum

Storage 0.0571 0.7275
Threshold

Reliability

Threshold 0.7325




Table E-2. ‘Closed’ Second-Order Importance Measures (S‘j’) of the Sobol' Experiment for the Barwon Urban Water Supply System Case Study —

20 year Scenario 2.

Relative  Relative Relative Percent. Percent. Percent. Upper Upper L ower L ower Base Target Minimum
Position 1 Position 2 Position 3 Restrict. 1 Restrict. 2 Restrict. 3 RRC RRC RRC RRC Demand Curves Storage
) ) "~ Curvature Postion Curvature Position Threshold

Isgl?ttil(\)/r?Z 0.0060  0.0004  -0.0066 -0.0070  0.0071 00178  0.0072  0.0076  -0.0024  -0.0314  -0.0016  0.4692  0.9848

Relative

Pesition 3 -0.0073  -00068  0.0073  -0.0228  0.0218  0.0094 00184 00069  -0.0303  -0.0095 04333  0.5115

Percent.

Rostriot. 1 -0.0093 00076  -0.0018 00218 00151 00030 00166  0.0069  -0.0112 04410  0.4546

Percent.

Rostiot. 2 00010  0.0024 00183 00055 00087 00012  -0.0073  -0.0015  0.4432  0.4583

Percent.

: -0.0073 00187 00101  -0.0040 00073  -0.0278  -0.0079  0.4514  0.4582

Restrict. 3

Upper RRC 55130 00078 00013  -0.0062  -00274  -00112 04439  0.4529

Curvature

UpperRRC 16093 00040  -0.0004  -00261  -0.0077 04368  0.4732

Position

Lower RRC 50050 00012  -0.0320  -0.0089 04354  0.4505

Curvature

Lower RRC 0058 -0.0327  -0.0127 04412  0.4555

Position

Base Demand -0.0294  -0.0104  0.4404  0.4548

Target Curves -0.0108 0.439%4 0.4563

Minimum

Storage 0.4334 0.4562

Threshold

Reliability

Threshold 0.4567




Table E-3. ‘Closed’ Second-Order Importance Measures (S‘j’) of the Sobol' Experiment for the Barwon Urban Water Supply System Case Study —

20 year Scenario 3.

Relative  Relative Relative Percent. Percent. Percent. Upper Upper L ower L ower Base Target Minimum
Position 1 Position 2 Position 3 Restrict. 1 Restrict. 2 Restrict. 3 RRC RRC RRC RRC Demand Curves Storage
) ) "~ Curvature Position Curvature Position Threshold

Isgl?ttil(\)/r?Z 0.0016  -0.0001  0.0016 00016  -0.0058  0.0064  0.0305 00234 00041  -0.0028 00321 07310  1.0322

Relative

Pesition 3 00037  -0.0006 00017  -00035 00100 00217 00138 00220 00033 00366 07014  0.2323

Percent.

Rostriot. 1 00012  -0.0043  -0.0028 00135 00186  -0.0020 0.0084  0.0190  0.0400 07269  0.2205

Percent.

Rostiot. 2 00039  -0.0071 00048 00226 00015  -0.0047 00070 00514 07125  0.2148

Percent.

: -0.0048  0.0079 00216  -0.0005 -0.0005 -0.0018  0.0549 07539  0.2129

Restrict. 3

Upper RRC 55135 00202 00022  -0.0010  -0.0003 00343 07429  0.1901

Curvature

UpperRRC 6197 00009 00029  -00012 00373 07254  0.2070

Position

Lower RRC , 6000 00004 00009 00353 07280  0.1998

Curvature

Lower RRC 0000  -0.0009 00340 07336 02150

Position

Base Demand -0.0017 00310 07223  0.2163

Target Curves 0.0415 0.7241 0.2175

Minimum

Storage 0.7062 0.2011

Threshold

Reliability

Threshold 0.2158




Table E-4. ‘Closed’ Second-Order Importance Measures (S‘j’) of the Sobol' Experiment for the Barwon Urban Water Supply System Case Study —
20 year Scenario 4.

Relative  Relative Relative Percent. Percent. Percent. Upper Upper L ower L ower Base Target Minimum
Position 1 Position 2 Position 3 Restrict. 1 Restrict. 2 Restrict. 3 RRC RRC RRC RRC Demand Curves Storage
) ) "~ Curvature Position Curvature Position Threshold

Isgl?ttil(\)/r?Z -0.0042  0.0028 00038  -0.0053 -0.0006 -0.0133  0.058  -0.0098  0.0002 00013  -0.1210  0.1167  0.9006

Relative

Pesition 3 -0.0003 00011  -0.0007 00030  -00160 -0.0080  -0.0157  -0.0014  -0.0022  -0.1130  0.1802  0.5738

Percent.

Rostriot. 1 -0.0017  0.0020 00034  -0.0211  -00029 00016  -00113  -0.0147  -0.1120  0.1690  0.5360

Percent.

Rostiot. 2 -0.0009 00037  -0.0219  -0.0020 00019  0.0047  -00276  -0.0605 01718  0.5400

Percent.

: -0.0015  -0.0184  -0.0018  -0.0019 00062  -0.0022  -0.1000  0.1857  0.5348

Restrict. 3

UpperRRC 5161 00012 00021 00063  -0.0002  -0.1130 01849  0.5309

Curvature

UpperRRC 0018 -0.0012  -0.0004  -00031  -0.1260 01730 05675

Position

Lower RRC 50013 00003  -0.0038  -01200 01731  0.5408

Curvature

Lower RRC 0026 00006  -0.1160 01708 05360

Position

Base Demand -0.0062 -0.1050 0.1708 0.5317

Target Curves -0.1140 0.1657 0.5418

Minimum

Storage 0.1684 0.5378
Threshold

Reliability

Threshold 0.5373




Table E-5. ‘Closed’ Second-Order Importance Measures (S‘j’) of the Sobol' Experiment for the Barwon Urban Water Supply System Case Study —
20 year Scenario 5.

Relative  Relative Relative  Percent. Percent.  Percent. Upper Upper L ower L ower Base Target Minimum
Position 1 Position 2 Position 3 Restrict. 1 Restrict. 2 Restrict. 3 RRC RRC RRC RRC Demand Curves Storage
) ) "~ Curvature Position Curvature Position Threshold

Isgl?ttil(\)/r?Z 00002 00001 00092  -0.0002 00022  -0.0112 00141 00380 00147  -0.0032  0.0216 02734  0.9406

Relative

Pesition 3 00040 00015  -0.0029  -0.0051  -0.0145 00394  -0.0075 00415  -00114  0.0397 02859  0.5348

Percent.

Rostriot. 1 -0.0049  -00040 00051  -0.0153  0.0360 00121  -0.0047  0.0442 00330 02939  0.4633

Percent.

Rostriot. 2 -0.0054  0.0046  -0.0221 00469  -00031 00153  -0.0210 0.0799 02797  0.4759

Percent.

: 00055  -0.0174 00387 00061 00102  -0.0125 00304 03303  0.4680

Restrict. 3

UpperRRC 5179 00440 00103 00154  -0.0180 00335 02959  0.4756

Curvature

UpperRRC 0412 00060 00054  -0.0036 00253  0.2945  0.4702

Position

Lower RRC 6021 00074  -00121 00299 02741 04712

Curvature

Lower RRC 6112 -00171 00336 02752  0.4695

Position

Base Demand -0.0163 0.0290 0.2791 0.4782

Target Curves 0.0311 0.2793 0.4726

Minimum

Storage 0.2800 0.4649
Threshold

Reliability

Threshold 0.4682




Table E-6. ‘Closed’ Second-Order Importance Measures (S‘j’) of the Sobol' Experiment for the Barwon Urban Water Supply System Case Study —

20 year Scenario 2b.

Relative  Relative Relative Percent. Percent. Percent. Upper Upper L ower L ower Base Target Minimum
Position 1 Position 2 Position 3 Restrict. 1 Restrict. 2 Restrict. 3 RRC RRC RRC RRC Demand Curves Storage
) ) "~ Curvature Position Curvature Position Threshold

Isgl?ttil(\)/r?Z 0.0100  0.0484 00061 00537 00603 00593 00221  -0.0409 00497 00070  -0.0125 03703  0.9831

Relative

Pesition 3 00575 00495 00076  0.0009 00731  -0.0425 00574 00054 00481  -0.0114 03198 05153

Percent.

Rostriot. 1 00575 00510 00629 00206 00117 00013 00761 00130  -00145 03101  0.4788

Percent.

Rostiot. 2 00528 00483 00739  -00398 00500 00028 00226  -0.0630  0.3598  0.4671

Percent.

: -0.0032  0.0690  -0.0422  -0.0001  0.0046  0.0533 00274 03534  0.5402

Restrict. 3

Upper RRC 5 5704 00196  -0.0013 00043 00500  -00238 03272  0.4487

Curvature

UpperRRC 331 00603 00487 00520  -0.0115 03077 05404

Position

Lower RRC 5015 00631 00571 00215 03643  0.5447

Curvature

Lower RRC 0041 00035  -0.0123 03123  0.4667

Position

Base Demand 0.0038  -0.0138  0.3092  0.5434

Target Curves -0.0089 0.3628 0.5479

Minimum

Storage 0.3621 0.5413

Threshold

Reliability

Threshold 0.5435




Table E-7. ‘Closed’ Second-Order Importance Measures (S‘j’) of the Sobol' Experiment for the Barwon Urban Water Supply System Case Study —
20 year Scenario 2c.

Relative  Relative Relative Percent. Percent. Percent. Upper Upper L ower L ower Base Target Minimum
Position 1 Position 2 Position 3 Restrict. 1 Restrict. 2 Restrict. 3 RRC RRC RRC RRC Demand Curves Storage
) ) "~ Curvature Postion Curvature Position Threshold

Isgl?ttil(\)/r?Z 00021  -0.0024  -0.0030  0.0032 00038 00146 00198  -0.0226 00012  -0.0022  -0.0853  0.1590  0.8681

Relative

Pesition 3 00007  -0.0059  0.0001  0.0064 00200  -0.0199 00197  -0.0182  -0.0080  -0.0709 01381  0.5618

Percent.

Rostriot. 1 -0.0026  -0.0010  0.0007 00244  -00248 00018 00239  -0.0225  -0.0689  0.1487  0.5861

Percent.

Rostiot. 2 -0.0043 00070  0.0248  -0.0242  -0.0005 0.0030 00145  -0.0555  0.1451  0.5843

Percent.

: -0.0009 00291  -0.0236  -0.0081  -0.0030  -0.0033  -0.0610 0.1751  0.5789

Restrict. 3

Upper RRC 5 5093 00200 00027  -0.0062  -0.0010  -0.0649 01207  0.5333

Curvature

UpperRRC 0162 -0.0026  -0.0040  -00016  -0.0761 01364 05934

Position

Lower RRC 6021 00003  -0.0056  -0.0674 01355  0.5853

Curvature

Lower RRC 0034 -0.0043  -0.0662 01374 05848

Position

Base Demand -0.0116  -0.0726  0.1347  0.5834

Target Curves -0.0741 0.1367 0.5816

Minimum

Storage 0.1386 0.5809

Threshold

Reliability

Threshold 0.5837




Table E-8. Second-Order Importance Measures (S;) of the Sobol' Experiment for the Barwon Urban Water Supply System Case Study — 20 year

Scenario 1.
. . . Upper Upper L ower L ower Minimum
Relative  Relative Relative Percent. Percent. Percent. Base Target
Position 1 Position 2 Position 3 Restrict. 1 Restrict. 2 Restrict. 3 RRC RRC RRC RRC Demand  Curves Storage
) ) "~ Curvature Position Curvature Position Threshold
sgl?ttilc\)/r? 2 -0.0029 -0.0013 -0.0013 -0.0063 -0.0014 0.0017 0.0148 0.0023 -0.0027 -0.0036 -0.0078 0.0064 -0.0269
Relative
Position 3 -0.0010 -0.0011 -0.0004 -0.0006 -0.0022 0.0012 -0.0021 0.0040 -0.0013 0.0036 0.0078 0.0512
Percent.
Restrict. 1 0.0007 -0.0022 -0.0013 -0.0028 0.0078 -0.0004 0.0028 0.0036 -0.0016 0.0001 -0.0028
Percent.
Restrict. 2 -0.0007 -0.0016 -0.0013 -0.0013 0.0009 -0.0007 -0.0011 -0.0115 0.0001 0.0007
Percent.
. 0.0001 0.0025 -0.0010 -0.0002 -0.0021 0.0084 -0.0027 -0.0118 -0.0040
Restrict. 3
UpperRRC 40015 00011 00000  -0.0025  -0.0034  -0.0002  -0.0200  -0.0469
Curvature
UPPerRRC 55129 -0.0010  -0.0013  -0.0032  -0.0096  -0.0003  -0.0152
Position
LowerRRC 0093 00016  -0.0012  -0.0064  -0.0011  -0.0002
Curvature
LowerRRC 0001 -0.0046  -0.0048  -0.0040  -0.0021
Position
Base Demand -0.0111 -0.0011 -0.0009 -0.0053
Target Curves 0.0098 0.0017 -0.0014
Minimum
Storage 0.0024 0.0005
Threshold
Reliability
Threshold 0.0127




Table E-9. Second-Order Importance Measures (S;) of the Sobol' Experiment for the Barwon Urban Water Supply System Case Study — 20 year

Scenario 2.
. . . Upper Upper L ower L ower Minimum
Relative  Relative Relative Percent. Percent. Percent. Base Target
Position 1 Position 2 Position 3 Restrict. 1 Restrict. 2 Restrict. 3 RRC RRC RRC RRC Demand  Curves Storage
) ) "~ Curvature Position Curvature Position Threshold
sgl?ttilc\)/r? 2 -0.0006 0.0000 0.0007 -0.0083 0.0005 0.0008 -0.0220 -0.0061 -0.0056 -0.0008 0.0423 0.0416 0.0881
Relative
Position 3 0.0000 -0.0014 0.0002 -0.0150 -0.0043 -0.0004 -0.0025 -0.0045 -0.0018 0.0027 0.0240 0.0679
Percent.
Restrict. 1 0.0038 -0.0014 0.0001 0.0101 -0.0037 0.0015 -0.0022 0.0271 -0.0012 0.0001 0.0294
Percent.
Restrict. 2 -0.0003 0.0024 0.0007 0.0011 -0.0018 0.0018 0.0055 0.0003 0.0001 0.0015
Percent.
. 0.0004 -0.0007 -0.0001 -0.0001 -0.0011 0.0045 -0.0134 0.0000 -0.0008
Restrict. 3
Upper RRC 5013 -0.0043  -0.0007  -0.0001  -0.0041 00027  -0.0147  -0.0144
Curvature
UPPerRRC 5049 00001  -0.0003 00116  -0.0028  -0.0024  -0.0014
Position
LowerRRC 0012 .0.0005  -0.0002 00104  -0.0128  -0.0046
Curvature
LowerRRC 5002 -0.0027 00007 00074  -0.0086
Position
Base Demand 0.0083 0.0012 0.0007 0.0050
Target Curves 0.0084 -0.0022 0.0007
Minimum
Storage -0.0005 -0.0012
Threshold
Reliability
Threshold 0.0069

E-10



Table E-10. Second-Order Importance Measures (S;) of the Sobol' Experiment for the Barwon Urban Water Supply System Case Study — 20 year

Scenario 3.
. . . Upper Upper L ower L ower Minimum
Relative  Relative Relative Percent. Percent. Percent. Base Target
Position 1 Position 2 Position 3 Restrict. 1 Restrict. 2 Restrict. 3 RRC RRC RRC RRC Demand  Curves Storage
) ) "~ Curvature Position Curvature Position Threshold
sgl?ttilc\)/r? 2 -0.0015 -0.0006 -0.0006 0.0014 0.0003 0.0044 0.0024 0.0042 0.0059 0.0002 -0.0016 -0.0308 0.0900
Relative
Position 3 0.0005 0.0006 -0.0002 0.0023 0.0019 0.0077 0.0066 0.0029 0.0061 0.0019 -0.0228 -0.0194
Percent.
Restrict. 1 -0.0003 -0.0029 0.0014 0.0052 -0.0014 0.0049 0.0013 0.0010 0.0051 0.0018 0.0065
Percent.
Restrict. 2 0.0026 0.0005 -0.0052 0.0023 0.0023 0.0024 0.0009 -0.0043 -0.0129 -0.0003
Percent.
. 0.0000 0.0013 -0.0004 0.0001 0.0004 0.0063 0.0111 0.0077 -0.0024
Restrict. 3
Upper RRC 5042 00016 00011  -0.0002 00016 00047 00087  -0.0460
Curvature
UpPerRRC 50016  0.0031 00020 00005 00015 00053  -0.0171
Position
LowerRRC 0005 00028 00009  -0.0006 00018  -0.0102
Curvature
LowerRRC 0003 -0.0065  -0.0036 00072  -0.0011
Position
Base Demand -0.0010 -0.0032 -0.0057
Target Curves 0.0045 -0.0006 -0.0005
Minimum
Storage -0.0213 -0.0135
Threshold
Reliability
Threshold -0.0016

E-11



Table E-11. Second-Order Importance Measures (S;) of the Sobol' Experiment for the Barwon Urban Water Supply System Case Study — 20 year

Scenario 4.
. . . Upper Upper L ower L ower Minimum
Relative  Relative Relative Percent. Percent. Percent. Base Target
Position 1 Position 2 Position 3 Restrict. 1 Restrict. 2 Restrict. 3 RRC RRC RRC RRC Demand Curves Storage
’ ’ "~ Curvature Position Curvature Position Threshold
sgl?ttilgﬁz 0.0019  0.0010 0.0006 0.0061  -0.0025  0.0025 0.0216 00119  -0.0024  0.0004 -0.0036  0.0619 0.1925
Relative
Positio: 3 0.0012 -0.0014  -0.0008  -0.0021  0.0040 0.0140  0.0039 -0.0078  0.0012 0.0021  0.0133 0.1500
Percent.
Restrict. 1 -0.0009  0.0027 -0.0010  -0.0043  -0.0047  -0.0006  0.0040 -0.0150  0.0037 -0.0041  0.0001
Percent.
Restriot. 2 0.0031 0.0001 -0.0043  -0.0069  0.0039 -0.0018  -0.0062  0.0513 0.0030 -0.0020
Percent.
: -0.0018  -0.0001  -0.0060  -0.0031  0.0039 -0.0027  0.0331 0.0131 -0.0029
Restrict. 3
Upper RRC 6054 -00022 00017 00008 00036  -0.0016 00341  -0.0105
Curvature
Upper RRC —, 5016 -0.0009  -0.0051  -0.0026  -0.0098  0.0003 0.0478
Position
Lower RRC 6023 .0.0037  -0.0025  -0.0070  0.0047  -0.0008
Curvature
Lower RRC , 5018 0.0027 -0.0025  -0.0008  -0.0013
Position

Base Demand -0.0008 0.0091 0.0000 -0.0088

Target Curves 0.0030 -0.0044 0.0021

Minimum

Storage 0.0016 -0.0012
Threshold

Reliability

Threshold 0.0016

E-12



Table E-12. Second-Order Importance Measures (S;) of the Sobol' Experiment for the Barwon Urban Water Supply System Case Study — 20 year

Scenario 5.
. . . Upper Upper L ower L ower Minimum
Relative  Relative Relative Percent. Percent. Percent. Base Target
Position 1 Position 2 Position 3 Restrict. 1 Restrict. 2 Restrict. 3 RRC RRC RRC RRC Demand Curves Storage
’ ’ "~ Curvature Position Curvature Position Threshold
sgl?tti'c‘)’ﬁ ) 0.0027  -0.0017  0.0116 0.0105 0.0028 0.0009  -0.0100  -0.0080  -0.0078  -0.0089  0.0041 0.0344  0.1915
Relative
Positio: 3 0.0011 0.0039 0.0035 -0.0085  0.0100 -0.0086  0.0048 00175  -0.0041  -0.0077  0.0198 0.0342
Percent.
Restrict. 1 -0.0036  0.0025 -0.0025  0.0051 0.0021 0.0006 -0.0054  0.0150 -0.0014  -0.0020  0.0044
Percent.
Restriot. 2 -0.0001  -0.0031  -0.0059  0.0090 -0.0006  -0.0092  0.0082 0.0091 -0.0033  -0.0128
Percent.
: -0.0033  -0.0012  -0.0034  0.0046 -0.0003  -0.0071  0.0179 0.0109 -0.0077
Restrict. 3
Upper RRC 40097 00019 00046 00010 00014  -0.0028 00349  -0.0366
Curvature
Upper RRC 5 0001 0.0003 -0.0133  0.0119 0.0031 0.0096 0.0164
Position
Lower RRC 0047 00113  -0.0009 00036 00033  -0.0065
Curvature
Lower RRC 0086 -0.0059  0.0031 0.0004 0.0059
Position

Base Demand -0.0062 -0.0014 0.0001 0.0106

Target Curves -0.0005 0.0003 0.0008

Minimum

Storage -0.0002 -0.0069
Threshold

Reliability

Threshold -0.0048

E-13



Table E-13. Second-Order Importance Measures (S;) of the Sobol" Experiment for the Barwon Urban Water Supply System Case Study — 20 year

Scenario 2b.
. . . Upper Upper L ower L ower Minimum
Relative  Relative Relative Percent. Percent. Percent. Base Target
Position 1 Position 2 Position 3 Restrict. 1 Restrict. 2 Restrict. 3 RRC RRC RRC RRC Demand Curves Storage
’ ’ "~ Curvature Position Curvature Position Threshold
ggl?tti'c‘)’ﬁ ) 0.0766  -0.0164  0.0008 0.0480 0.0566 0.0015 -0.0407  -0.0906  -0.0450  -0.0955  -0.0393  0.0865 0.1302
Relative
Positio: 3 0.0502 -0.0150  0.0017 20.0022  0.0128 0.0486  -0.0440  -0.0506  -0.0482  -0.0366  -0.0414  -0.0032
Percent.
Restrict. 1 0.0505 -0.0141  0.0596 -0.0392  0.0031 -0.0434  -0.0317  -0.0446  -0.0335  -0.0495  -0.1170
Percent.
Restriot. 2 0.0452 -0.0142  0.0138 -0.0479  0.0027 -0.0482  -0.0867  -0.0433  0.0065 -0.1270
Percent.
: -0.0083  -0.0503  -0.0505  -0.0469  -0.0489  0.0007 -0.0046  0.0388 -0.0477
Restrict. 3
Upper RRC 6106 -0.0480  -0.0483  -00487  -0.0052 00009  -0.0392  -0.1010
Curvature
UpperRRC 50431 .00459  -0.0045  -0.0027  0.0106 -0.0019  -0.0606
Position
Lower RRC 0470 .00494 00022 00442 00520  0.0005
Curvature
Lower RRC 0509 -0.4120  0.0102 0.0007 -0.0801
Position

Base Demand -0.0528 -0.0505 -0.0027 -0.0029

Target Curves 0.0118 -0.0084 0.0015

Minimum

Storage 0.0484 -0.0644
Threshold

Reliability

Threshold -0.0047
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Table E-14. Second-Order Importance Measures (S;) of the Sobol' Experiment for the Barwon Urban Water Supply System Case Study — 20 year

Scenario 2c.
. . . Upper Upper L ower L ower Minimum
Relative  Relative Relative Percent. Percent. Percent. Base Target
Position 1 Position 2 Position 3 Restrict. 1 Restrict. 2 Restrict. 3 RRC RRC RRC RRC Demand Curves Storage
’ ’ "~ Curvature Position Curvature Position Threshold
ggl?tti'c‘)’ﬁ ) 0.0032 0.0001 0.0020 0.0087 0.0049 0.0131  0.0107 -0.0065  -0.0036  0.0001 -0.0145  0.0870 0.1489
Relative
Positio: 3 0.0000 0.0008 0.0015 0.0112 0.0070  -0.0008  -0.0109  -0.0015  -0.0062  -0.0065  0.0042 0.0474
Percent.
Restrict. 1 0.0008 0.0021 0.0014 0.0010 -0.0051  -0.0007  -0.0061  0.0008 -0.0052  0.0082 0.0097
Percent.
Restriot. 2 -0.0045  0.0094 -0.0027  -0.0009  -0.0022  0.0011 -0.0090  0.0298 0.0040 0.0014
Percent.
: -0.0018  0.0034 -0.0044  -0.0063  -0.0041  0.0014 -0.0225  0.0555 -0.0046
Restrict. 3
Upper RRC 0067 00000 00004  -00038 00044 00018  -0.0456  -0.0287
Curvature
Upper RRC —, 5015 0.0031  -0.0057  0.0074 -0.0087  -0.0018  -0.0153
Position
Lower RRC 50017 00004  -0.0007 00036  -0.0020  0.0047
Curvature
Lower RRC 1, 5002 0.0023 0.0006 0.0036 0.0049
Position

Base Demand -0.0083 -0.0041 -0.0033 0.0071

Target Curves -0.0089 0.0005 0.0012

Minimum

Storage -0.0010 0.0023
Threshold

Reliability

Threshold 0.0018

E-15
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