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ABSTRACT 

Modem engineering structures such as offshore oil platforms, transmission 

towers, bridges and aircraft frames are regularly monitored and maintained in 

order to avert catastrophic failure. Despite our best efforts, sporadic failures, 

which may have disastrous consequences in terms of human life and 

resources, still occur. It is therefore important to develop techniques which 

lead to significant improvements in the reliability of the structures. 

A challenging area of structural dynamics research is concerned with the 

development and practical implementation of monitoring systems which can 

identify and quantify damage as it occurs in a structure. The development of a 

number of techniques that contribute to providing means to detect structural 

damage is the goal of the work presented in this thesis. 

A structural damage detection technique based on constrained minimization 

theory, which can both locate and quantify damage in a structure has been 

successfully developed. For locating damage only in a structure, a method 

which works well in the presence of appreciable measurement noise and 

coordinate incompleteness was demonstrated. In addition, a submatrix 

procedure was successfully applied to directly identify damaged elements in a 

structure instead of the degrees of freedom. 

Each of the methods required a finite element model of the undamaged 

structure. For applications where such a model was not available, a new 

method was developed which used only the frequency response ftinction from 
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addition to presenting the damage detection methods, consideration of 

problems associated with measurement noise and coordinate incompleteness 

pertaining to the proposed methods have been investigated, and appropriate 

steps suggested to overcome the problems. 



NOMENCLATURE 

The following list gives the principal use of the symbols in this thesis. 

However, a given symbol might be used to denote different quantities under 

special situations. The interpretation to be given to a symbol will be clear 

from the context in which it is employed. 

[A 1 ] - as given in equation (3.3.8) 

[A2] - as given in equation (3.3.9) 

[AQ] - as explained in equation (2.2.25) 

[AMIX] " as defined in equation (3.3.14) 

[B] - as defined in equation (5.4.1) 

{b} - as defined in equation (5.4.1) 

[C] - viscous damping matrix 

[D] - as explained in equation (2.2.31) 

{D} - vector derived from matrix [D] 

{df(Q)} - as defined in equation (2.4.3) 

{d(Q)} - as defined in equation (3.2.7) in Chapter 3 

d - number of frequency pairs 

E - Young's Modulus 

e - error function as defined in equation (2.2.9) 

e l to e5 - random errors 

F - number of unknown non-zero coefficients in the stiffness matrix 

{F(Q)} - excitation at frequency Q 

[G*] - -[A°]'^[KSQ'][A°] 

gi, g2 - constraints in the Lagrange equation 

[H] - structural damping matrix in Chapter 1 

[H]ij - { A D } J { R ^ } / in Chapter 2 

{h} - vector comprising of scaling factors 

\ - n scaling factor 
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[I] - identity matrix 

IYY - moment of inertia of cross sectional area about axis Y-Y 

I2Z - moment of inertia of cross sectional area about axis Z-Z 

[K] - stiffness matrix of the structure 

[K]j - j submatrix of stiffness matrix transformed to global coordinate system 

[KSQ] - [K]uD ® [K]uD 

[AK] - differential stiffness matrix of the structure due to damage 

Knn - coefficient of stiffness matrix at rm coefficient location in the matrix. 

[kj - diagonal modal stiffness matrix 

kr - r modal stiffness 

L - Lagrange function 

[M] - mass matrix of the strucmre 

[AM] - differential mass matrix of the structure due to damage 
th 

[M]j - j submatrix of mass matrix transformed to global coordinate system 

[mj] - diagonal modal mass matrix 

m, - r̂  modal mass 

mm - number of measured modes 

m - number of measured coordinates 

N - number of degrees of freedom of the system 

n^ - number of averages 

[P] - contains orthonormalized eigenvectors of ([T] + [S]) 

[QM] - damage quantification matrix due to change in mass only 

[QK] - damage quantification matrix due to change in stiffness matrix 

[Q2] - damage quantification matrix due to change in dynamic stiffness 

matrix 
th 

Q2,ij - ij element of matrix [Q2] 

{R} - as defined in equation (4.2.12) 

{R }̂i - ith column of [AD]^[KSQJ] in Chapter 2 

[S] - as explained in equation (2.2.32) 

s - number of frequency points 

[T] - as explained in equation (2.2.32) 
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[TR] 

[U] 

u 

[V] 

{X} 

{X} 

{Y} 

[Y] 

[Z(^)] 

Z(Q)D,ij 

{ZUD(")}J 

[ZSQ] 

[AZ(Q)] 

[a(Q)] 

{aD(Q)}k 

{aD(f)(Q)}k 

{auD(^)}k 

{Aa(Q)}k 

akk(Q) 

{P(^)} 

{S}K 

Yxy'(^) 

[<!)] 

TlK 

- transformation matrix 

- as defined in equation (2.2.10) 

- number of unmeasured coordinates 

• diagonal matrix whose diagonal elements are the eigenvalues of 

([T] + [S]) 

- as defined equation (2.2.20) in Chapter 2 

- as defined equation (5.4.1) in Chapter 3 

- as defined in equation (4.2.13) 

- as defined in equation (4.2.14) 

- dynamic stiffness matrix of the structure 

- iĵ  element of dynamic stiffness matrix of damaged structure at 

frequency Q 

- j ' \ o w o f [Z(Q)]uD 

- 0.25 [ZJuD <8) [Z]uD 

- differential dynamic stiffness matrix of the structure due to damage 

at frequency Q 

- receptance matrix at frequency Q 
th 

- k column of the RFRF matrix of the damaged structure at 

frequency Q 

- k column of the filtered RFRF matrix of the damaged structure at 

frequency Q 
til 

- k column of the RFRF matrix of the undamaged structure at 

frequency Q. 
th 

- k column of the differential RFRF matrix between damaged and 

undamaged structure at frequency Q 

- kk element of receptance matrix at frequency Q 

- damage location vector 

- delta vector whose k element is unity 

- coherence at frequency Q 

- mass normalised mode shapes 
th 

- k modal damping factor 
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X,\i - Lagrange multipliers 

[\\f] - eigenvector matrix 

[kf\ - diagonal matrix whose diagonal elements are the eigenvalues 

>uk - k eigenvalue 

BQ* - defined in equation (3.2.20) in Chapter 3 

Q - frequency of the system 
th 

COK - k natural frequency 

Operators and symbols 

S - summation 

{ }̂ » [ ]^ " transpose 

0 - matrix element by element operation 

[ ]-l - standard inverse 

[ ]+ - pseudo inverse 

II II - matrix norm 

[ ]i5 - represents damaged structure 

[ luD " represents undamaged structure 

{*"} - superscript m refers to measured coordinate 

{"} - superscript u refers to unmeasured coordinate 

Abbreviations 

CDLV - cumulative damage location vector 

CMDQ - constrained minimization damage quantification 

COMAC - coordinate modal assurance criterion 

D. E - dynamic expansion 

DLP - damage location plot 

DLV - damage location vector 

DOF -degree of freedom 

FE - finite element 
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FEM - finite element model 

FRF - frequency response function 

IRS - improved reduced system 

MAC - modal assurance criterion 

MDOF -multiple degree of freedom 

MRPT - minimum rank perturbation technique 

PMAC - partial modal assurance criterion 

RFRF - receptance frequency response fiinction 

SDOF - single degree of freedom 

SEREP - system equivalent reduction expansion process 

SSC - signal subspace correlation 
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CHAPTER 1 

INTRODUCTION 

With the progress of materials science, new materials have been introduced 

which have made it possible to build large and complicated structures with 

reduced weight. However, due to the large size and complexity of such 

structures and the possible catastrophic effect associated with their failure, it is 

imperative to develop a technique which is able to locate, and determine the 

extent, of structural damage as it develops in a structure. Advancement in recent 

years in the capability of modem electronic instrumentation for signal 

processing have resulted in the development of superior instruments for 

monitoring the condition of machines. From experience gained in the 

machinery health monitoring field, it is expected that the vibration signature of 

a structure should provide adequate and useful information to detect possible 

structural damage. 

1.1 DAMAGE LOCATION/QUANTIFICATION USING MEASURED 

RECEPTANCE FRF (RFRF) DATA 

As a result of the consequences associated with the failure of some present day 

structures, in terms of both human life and resources, a lot of effort has been 

directed towards developing a suitable technique for detecting damage in 

structures. Most of the work in structural damage detection uses the general 

framework of model refinement or model updatings where the analytical spatial 

model of the undamaged structure (mass and stiffness properties) and the 
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experimental modal model of the damaged structure (natural frequencies and 

mode shapes) have been used together to determine damage location and its 

extent. In these approaches it is assumed that the analytical model of the 

undamaged structure truly represents the structure within certain frequency 

ranges of interest. 

Although the system identification technique is a promising method in 

structural damage detection, use of modal parameters introduces some 

disadvantages and limitations into these methods. The experimental modal 

parameters of a system by themselves usually present a limited amount of data. 

This is because these modal parameters are restricted only to natural frequencies 

and mode shapes of the system within the measured frequency range. For most 

practical applications the measured frequency range contains only a limited 

number of natural frequencies. In addition, if the modal parameters available are 

not severely affected by damage, then it would be difficult to detect damage by 

applying existing methods using modal parameters. 

To generate a true analytical model of a structure, it is required to discretize it 

into a large number of degrees of freedom (DOFs). If the number of DOFs is N, 

then the complete modal model of the structure should have information about 

all N natural frequencies and their corresponding mode shapes. However, the 

experimental modal model obtained for a structure is incomplete, as it becomes 

difficult to measure over a wide frequency band if the value of N is large. In 

addition, it is impractical to measure as many coordinates as an analytical 

model has. A few of the earlier methods which required a complete 

experimental modal model to detect damage consequently performed 
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unsatisfactorily when working in practical situation. In addition, use of modal 

parameters for detecting damage involves the extraction of them from 

measured frequency response function (FRF) data by an analysis method called 

experimental modal analysis, which may introduce additional computational 

burden and errors. 

However, if a suitable technique can be developed which makes use of the 

analytical spatial model and the experimental response model (FRF data) 

instead of the modal model, then it is possible to eliminate most of the 

limitations and disadvantages associated with using the modal model. 

Therefore, in contrast to the existing structural damage detection methods based 

on system identification using the. 

Spatial Model Of The Undamaged Structure + Modal Model Of The 

Damaged Structure, 

the method proposed in this work will use the. 

Spatial Model Of The Undamaged Structure + Response Model Of The 

Damaged Structure 

to locate and quantify damage in the structure. These models are described in 

the next section. 

However, two problems which confront any structural damage detection 

algorithm have to be addressed. These are : 
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• effect of noise - in spite of all the technological advances in electronic 

instrumentation, it is hard to envisage a condition where no noise of any type 

has contaminated the measured vibration data. When using FRF data 

directly, it is possible to judiciously select frequency points with a high 

signal to noise ratio but it is unlikely that the noise effect will be zero. 

• effect of DOF incompleteness - when developing a finite element model of a 

structure, it is possible to use a large number of DOFs to discretize it in order 

to better resemble the structure. However, while taking measurements of the 

structure, it is not possible to measure at all the DOFs corresponding to the 

finite element model (FEM) of the structure. One way to tackle this problem 

of DOF incompatibility is either to expand the measured DOFs to equal to 

FE model DOFs or to reduce the FE model in accordance with the measured 

DOFs. However, both the expansion and reduction methods introduce 

inaccuracy into the data. 

These two problems will be addressed in the context of using FRF data to locate 

and determine the extent of structural damage. 

1.2 SYSTEM MODELS 

The dynamic properties of a system, analytically or experimentally derived, can 

be represented in the following model formats: spatial model, modal model and 

response model. For the application of damage detection, either the 

experimental modal model or the experimental response model of the damaged 

structure can be used along with the analytical spatial model of the undamaged 
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Structure to detect the possible location and extent of damage. These three 

models used to describe the dynamic properties of the system are defined 

below. 

(1) Spatial Model 

When a given structure is discretized analytically, spatially distributed 

properties, such as the mass, stiffness and damping, are assigned to each of the 

N DOFs. These properties are presented in matrix form as given below: 

[M]NXN " mass matrix whose diagonal terms define the inertia force assigned 

to each DOF when they experience an acceleration and whose off-diagonal 

terms contain inertia coupling information. 

[K]NXN ~ stiffness matrix whose diagonal terms define the inherent restoring 

forces due to relative displacement at each DOF and the off-diagonal terms 

express the static coupling between DOFs. 

[C]NXN or [H]NXN " viscous and structural damping matrices respectively. In 

cases where the dissipative forces are negligible, they are often neglected. 

If a spatial model has N co-ordinates, then it is expected to have N modes. 

However, if it is reduced by one of the reduction methods to be discussed in 

Chapter 3, to 'm' co-ordinates (m < N), it will contain information on 'm' 

modes only. 
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Spatial models are also referred to as "Time Models", since equations of motion 

formulated by using spatial properties contain the response motions of system 

as fiinctions of time. 

(2^ Modal Model 

Dynamic properties of a system are also often described in terms of natural 

frequencies, modal damping factors and associated mode shapes. A 

mathematical model comprising these data is called a modal model. 

Mathematically, the mode shapes are represented as vectors in which each 

element represents a deflection of one DOF relative to the other (N-1) DOFs in 

the model. The mode shapes (or eigenvectors) can be grouped together in the, 

so called Modal Matrix which is represented by [̂ ]Nxm- This is a square or 

rectangular matrix containing information about N co-ordinates and m modes. 

The eigenvalues related to system natural frequencies can be grouped together 

forming a diagonal matrix represented by [XrJmxm- Generally, both matrices are 
th 

complex. The k eigenvalue is given here as X̂  and the corresponding mode 

shape as {^jk- The diagonal matrix corresponding to system natural 

frequencies and the modal matrix is presented next: 

l^Am^rr,- 0)1(1 + 11],) ^^-^^ 
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M N . . = 

af+ibf 
a2'+ib; 

< + 'K 

(1.2) 

The k̂  eigenvalue contains information related to the k̂  natural frequency (cô ) 

and modal damping (ri^). The k̂  mode shape {\)/}î  is represented by a real part 

and an imaginary part. 

Since the mode shapes represent relative amplitudes at the DOFs, rather than 

absolute deflections of the structure, the elements of each mode shape can be 

scaled arbitrarily. For instance, they can be scaled in such a way that the largest 

element becomes unity for graphical visualisation purposes. On other occasions, 

mode shapes may be required to be uniquely defined. This can be achieved by 

making use of the concept of modal mass and modal stiffness. Due to the 

orthogonality theory of a multi-degree-of-freedom system, the following 

relationships hold (if m < N): 

Nxm 

(1.3) 

(1.4) 

With [K] assumed as a complex stiffiiess matrix, equations (1.3) and (1.4) gives 

the diagonal modal mass and modal stiffiiess matrices whose elements are 

k / 
interrelated as X^ = y = coJ(l-i-iT]J. The mode shapes of the system can be 

normalized using the modal mass such that: 
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1-0.5 

W-Mk]" (1.5) 

where [(j)] is called the mass normalized mode shape. This will result in a new 

set of orthogonality equations given below as: 

['t'lLjM],,J(|)],.„=[I]_ (1.6) 

[CNM».HW..„=[^,L„ (1.7) 

These mass normalized mode shapes can be experimentally obtained from a 

modal analysis process, as illustrated by Ewins [1]. 

(3) Response Model 

A linear, time invariant dynamic system, when subjected to a certain input, will 

generate a definite output. The basic system equation is: 

OUTPUT = SYSTEM CHARACTERISTICS x INPUT (1.8) 

It can be seen that the output response is related to the input via its dynamic 

characteristics. Using the same system equation for any linear system excited by 

harmonic excitation, the input/output relationship in the frequency domain at 

frequency Q can be written as: 

{X(Q)} = [a(Q)]{F(Q)} (1.9) 

{F(Q)} = [Z(Q)]{X(Q)} (1.10) 
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where [a(Q)] and [Z(Q)] are related by the following relationship. 

[Z(Q)] = [a(Q)]-^ (1.11) 

[a(Q)] is called the receptance frequency response function matrix of the 

system. The receptance FRF matrix [a(Q)] will become the Mobility matrix or 

Inertance matrix if the response measured is velocity or acceleration. In these 

matrices each element is a complex ratio (response/force) called the FRF which 

covers a certain frequency range. In addition, there exists three other formats for 

FRF data, these being the inverse of receptance, mobility and inertance. They 

are generally known as 'dynamic stiffiiess', 'mechanical impedance' and 

'apparent mass' respectively. The response model is then expressed as an FRF 

matrix which may be derived either analytically or experimentally. 

It is important to comprehend different practical implications if measuring 

[a(Q)] or [Z(Q)]. Consider an element aij(Q)in matrix [a(Q)]. It represents the 

amplitude and relative phase of a harmonic displacement at DOF 'i ' due to a 

harmonic force applied at DOF ' j ' (no other external forces are applied to the 

system). However, Zij(Q) represents the amplitude and relative phase of a 

harmonic force applied to DOF 'i ' due to a unit displacement at DOF ' j ' (when 

no other displacement exists in the system). 

For a SDOF system it is easy to measure or calculate either a(Q) or Z(Q). For a 

MDOF system, it is physically impossible to measure [Z(Q)] since it is 

impossible to ensure displacement response only at one DOF while 

displacements at all other DOFs are equal to zero. 
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Elements in a particular column of matrix [a(Q)] can be measured by changing 

the point of response while force location is the same. According to the 

reciprocity principle, matrix [a(Q)] is symmetric. Therefore, measuring one 

column is equivalent to measuring one row, although the mechanism of 

measurement is different. 

To summarize, the Response model of a dynamic system can be described by 

the FRF matrix whose elements can be either measured or analytically 

calculated or sometimes, a mixture of both. 

1.3 REVIEW OF PREVIOUS WORKS 

Using vibration test data to locate structural damage has been attempted by 

many researchers in recent years. A brief review is given here. More details are 

given in later chapters where some specific techniques are studied. 

Most of the prior work in structural damage detection is based on the general 

framework of FEM refinement (System Identification) techniques. The need for 

FEM refinement of a structure arose because of the deviation that occurred 

between the modal properties predicted by the Finite Element Model and that 

measured. To reduce this deviation, the technique of FEM refinement was used 

where measurement data of a structure was used to tune or correct the FEM of 

the structure. The tuned or correlated FEM is expected to represent the actual 

structure more accurately. Unlike model refinement, where the deviation is 

credited to modelling errors, in the case of damage location, the deviation is 
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attributed to the damage in the structure. This explains the reason behind the 

application of the FEM refinement algorithm to damage location problems. 

The FEM refinement algorithms which may be used for structural damage 

detection may be broadly divided into three categories: optimal matrix 

updating, eigenstructure assignment and sensitivity analysis. Among these 

categories, perhaps the most widely used is optimal matrix updating. Early 

work in this area included that of Rodden [3] who used vibration test data to 

determine the structural influence coefficients of a structure. The problem of 

finding a matrix that satisfies a set of measurements as well as symmetry and 

positive definiteness was addressed by Brock [4]. Berman and Flannely [5] 

discussed the calculation of system matrices when the number of DOFs and the 

number of measured modes do not coincide. 

Several optimal matrix update algorithms are based on the problem formulation 

set forth by Baruch and Bar Itzhack [6]. In their work, a closed form solution 

was developed for the minimal Frobenius norm matrix adjustment to the 

structural stiffness matrix incorporating measured natural frequencies and mode 

shapes. Berman and Nagy [7] adopted a similar formulation but included 

approaches to improve both the mass and stiffiiess matrices. In their work, the 

refined stiffiiess (mass) takes a form in which the original physical connectivity 

of the system is destroyed. In separate publications Kabe [8] and Smith and 

Beattie [9] suggested algorithms which preserved the original connectivity of 

the stiffhess matrix. 
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The Kabe [8] algorithm utilised a percentage change in the stiffness value cost 

function and preserved the coimectivity of the original structure. Assuming that 

the accurately measured mode shapes of the damaged structure were available 

at every finite element DOFs of the structure, Smith and Hendricks [9] 

investigated the extent of structural damage. However, in this case the stiffness 

matrix coefficients corresponding to undamaged members were significantly 

affected, making the detection uncertain. Although the minimization of the 

matrix norm of the stiffness difference before and after damage might be a 

promising mathematical method, the success of such a method depends heavily 

on the introduction of adequate and necessary physical constraints. 

The control-based eigenstructure assignment technique determines the pseudo-

control that would be required to produce the measured modal properties with 

the initial Finite Element model. The pseudo-control is then translated into 

matrix adjustments applied to the initial FEM. Among the approaches described 

by Inman and Minas [10], the first approach corrected the stiffness matrix using 

information about the eigenparameters. The symmetry in the resultant model 

was enforced by using an unconstrained numerical non-linear optimization 

approach. The second approach based upon eigenvalue information used a state 

space formulation to find the errors due to damage. Zimmerman [11] used a 

symmetry preserving eigenstructure assignment theorem where the information 

regarding eigenparameters of the damaged structure was incorporated in the 

spatial model of the undamaged structure. This algorithm used the solution of a 

generalized algebraic Riccati equation whose dimension was defined solely by 

the number of measured modes. 
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Sensitivity analysis for damage detection makes use of the derivatives of modal 

parameters with respect to physical design variables. The derivatives are then 

used to update the physical parameters. These algorithms result in updated 

models consistent within the original finite element programme framework. 

Hajela and Soeiro [12] and Soeiro [13] made direct application of non-linear 

optimization to the damage detection problem. Among other works reported 

that uses sensitivity analysis, Jung and Ewins [14] described the application of 

an inverse eigensensitivity method for model updating using arbitrarily chosen 

macro elements to a simple frame. Although the method has been shown to be 

reasonably insensitive to noise, the number of eigensensitivity vectors (derived 

from eigenvectors) required for the method to succeed might become 

prohibitively large for complicated structures. 

In addition to the methods discussed above, Liu and Yao [15] considered the 

development of the probabilistic methodology for the prediction of multiple 

crack distribution in a structure of beam elements. The probabilistic measure of 

crack distribution could then be used for probabilistic diagnosis of crack 

location and extent. Several other authors have also shown that crack locations 

could be identified by using the concept of fracture mechanics along with 

information about change in natural frequencies due to damage. Among them 

was Gudmundson [16] who used saw cuts to simulate open cracks and the 

experimental results obtained by him from vibration measurements agreed 

remarkably well with the predictions from the open crack mathematical model 

he developed. 
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Chondros and Dimarogonas [17] also created actual fatigue cracks in welded 

joints and established a simple relationship between the crack depth and its 

flexibility using concepts of fracture mechanics. However, although it is 

relatively easy to create an open crack mathematical model of a simple beam, it 

may be difficult to apply it to real life structures. Among other researchers in 

this area who tried to analyse the change in natural frequencies due to damage 

by using fracture mechanics, a notable contribution has been made by Ju [18] 

who used the concept of structural modal frequency and concluded that it would 

change with the presence of fracture damages in the structure. In his approach, 

Ju used fracture mechanics to define a damage characteristic and assumed that 

the changes in modal frequencies were functions of damage characteristics. 

A different approach to identifying system matrices was suggested by Lim [19] 

which was described as a 'submatrix' approach. Instead of working with 

individual coefficients in the stiffiiess matrix affected by damage, the submatrix 

approach focused on individual blocks or submatrices which often coincided 

with individual physical components in the structure. Heam and Testa [20] 

studied the dependence of natural frequencies and modal damping coefficients 

on structural deterioration and tried to establish the magnitude of change in 

natural frequencies as a function of location and severity of deterioration. 

Adams et al. [21] used the decrease in natural frequencies and increase in 

damping to detect cracks in fibre reinforced plastics. They developed a 

theoretical model to detect the damage location but the model seems to be valid 

only for simple beam structures. Adams and Cawley [22] employed sensitivity 

analysis to deduce the location of damage in two-dimensional structures, based 
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on the finite element analysis method, but this method appears to be 

computationally intensive. Yuen [23] showed in his paper that for a cantilever 

beam there is a systematic change in the first mode shape with respect to 

damage location. However this method seems to work only when the first mode 

is sensitive to change and for simple structures like beams. 

Instead of comparing the shifts of modal parameters such as natural frequencies 

and mode shapes to detect structural damage, Chemg and Abdelhamid [24] 

tried to introduce a new variable called the Signal Subspace Correlation (SSC) 

index derived from the impulse response function. However, this parameter 

contained no information about damage location. Numerical examples given 

assumed that all modes are present and there was noise free measurement, 

which is impossible to obtain in a practical situation. Therefore, it is not clear 

how the method will behave with incomplete modes and noise present in 

measurement, and in which way it is advantageous to use the SSC index instead 

of commonly used parameters like natural frequency and mode shapes to detect 

structural change. Chen and Garba [25] developed a three step damage location 

procedure that initially used residual force vectors to locate potential damage 

areas; then a least squares approach was used to determine scalars for the 

appropriate element stiffness matrice and finally, damage was located in 

structural members where the calculated element scalars were less than unity. 

Measured modal test data along with an analytical model was used by Ricles 

and Kosmatka [26] to locate damaged regions using residual force vectors and 

to conduct a weighted sensitivity analysis to assess the extent of variations, 

where damage was characterized by stiffness reduction. Penny, et al. [27] used a 
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statistical method of identification based on generalised least square theory to 

detect structural damage. In addition to the works referred to above, Wang and 

Liou [28] tried structural damage detection by observing the change in the FRFs 

of the damaged substructure. A comparison of some of the structural damage 

detection methods has been given by Salawu and Williams [29]. 

Some of the model updating and damage detection methods discussed above 

have already been applied to detect structural damage with encouraging results. 

However, almost all of them have to rely on modal parameters. In addition, 

adequate emphasis has not been given to address the problems of measurement 

noise and DOF incompatibility. Both these factors can be determinants in the 

ultimate success of these methods. This thesis aims at using measured FRF data 

to detect structural damage. In this context, it addresses the question of 

measurement noise and the DOF incompatibility between the analytical and 

experimental data. 

1.4 ASSUMPTIONS OF THIS STUDY 

In the present study certain assumptions have been made regarding the 

behaviour of structures on which the methods to be proposed in this work can 

be applied successfully. These assumptions are made after an extensive 

literature review on the existing methods for structural damage detection and 

conditions based on which the methods operate: 

The first assumption made is that, following structural damage, the major 

change in characteristics manifests itself as a change in the stiffiiess only, with 
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changes in mass and damping small enough to be neglected. This is in line with 

assumptions made by other researchers in the field of damage detection. 

Although the theory developed is valid for changes in mass also, the numerical 

and experimental case studies presented are based on stiffiiess change only. 

It is also assumed that the damping in the structures is small and the structure 

can be safely regarded as undamped without introducing appreciable error. For 

many practical applications, this might be regarded as a reasonable assumtion as 

it is often found that the dissipative forces in the structure are negligible 

compared to its inertial and restoring forces. For structures, where damping is 

big enough to be neglected, the methods to be proposed in this study can be 

readily extended as shown in the appendix. 

Finally, it was assumed that the structures were linear. This means that the 

response of a structure to a combination of forces applied simultaneously is the 

summation of the responses corresponding to each individual force. This is a 

reasonable assumption as most of the real life structures exhibit linear 

behaviour within a certain frequency and dynamic range. Therefore, the FRF 

data used in this study should reflect the linear behaviour of a structure. 

1.5 SCOPE OF PRESENT WORK 

The research program presented in this thesis is concerned with developing a 

technique for structural damage detection using measured FRF data and it is 

comprised of the following parts : 
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Chapter 2 introduces a method called Constrained Minimization Damage 

Quantification (CMDQ) method to identify structural damage. This method 

uses receptance FRF data at different frequencies and information about 

structural connectivity to determine damage extent in a structure. The constraint 

minimization theory behind the CMDQ method is presented along with 

numerical examples to demonstrate the effectiveness of the method. When 

determining damage extent, the CMDQ method works with the whole structural 

model. This increases the computational burden and results in difficulties in 

dealing with noise and incomplete coordinates. To overcome these difficulties 

the next part of the thesis presents a method that concentrates on locating the 

damage in a structure, and then determining the damage extent by focussing 

only on that part of the structure where damage has been located. 

Location of damage in a structure is the subject of Chapter 3. In this chapter, a 

brief review of existing damage location techniques is given. The central part of 

this chapter is devoted to the introduction of a new method of locating damage 

in a structure by using measured RFRF data. The performance of the method 

with noise contaminated data is explored. In addition, the sensitivity of the 

method to coordinate incompleteness is investigated. In this connection, 

different expansion and reduction methods currently available are discussed and 

the suitability of the method proposed in conjunction with different expansion 

methods to locate structural damage has been examined. 

In Chapter 4, the use of the submatrix approach in the field of damage detection 

has been illustrated. Instead of identifying the DOFs affected due to damage, 

the algorithm presented in this chapter makes use of the measured receptance 
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FRF data along with the submatrix technique to identify the damaged element 

and the severity of the damage. 

For determining structural damage extent, a new technique has been proposed 

in Chapter 5. For situations where the finite element model of the structure is 

not available, this method can be used to derive the spatial parameters of the 

structure prior to damage. Subsequent to damage, the same procedure can be 

repeated to obtain the spatial parameters of the damaged structure. A simple 

comparison of the spatial parameters thus derived before and after damage 

provide valuable information about the location and extent of damage. In 

addition, this method, when used in conjunction with the damage location 

method proposed in Chapter 3, utilises the information regarding damage 

location and can work only in that part of the structure where damage is located. 

Numerical examples have been provided to demonstrate these two applications 

of the method. 

Experimental case studies are presented in Chapter 6. Central to this chapter are 

the results obtained from two different structures by applying the damage 

location and quantification methods proposed in earlier chapters. The results 

refiect the application of the methods proposed, to real structures, in 

determining the location and extent of damage in a structure using measured 

FRF data. 

Finally, Chapter 7 presents the general conclusions, contributions of the current 

research work and suggestions for further research. 



CHAPTER 2 

DETERMINATION OF STRUCTURAL DAMAGE EXTENT 

USING CONSTRAINED MINIMIZATION THEORY 

2.1 INTRODUCTION 

Any real life structure under impact, operating and fatigue load is susceptible to 

structural damage over its operating life. Undetected and unattended structural 

damage can lead to structural deterioration ultimately resulting in failure. To 

detect such damage numerous inspection and monitoring procedures have been 

developed. Examples of such endeavours include x-ray, ultrasonic testing, 

magnetic response, dye penetration and visual inspection. These methods are 

time consuming and are local assessments. An alternative approach to damage 

location and quantification is the system identification technique which utilizes 

changes in the vibration signature of a structure before and after damage occurs 

to determine both the location and extent of the structural damage. 

Determining damage location and extent is an area which has seen considerable 

research effort in recent years. He and Ewins [30] in their work proposed the 

use of an error matrix method both to locate and to quantify system changes in 

the field of model updating. Adelman and Haftka [31] made use of a sensitivity 

method to detect damage in a structural system. Wolff and Richardson [32] 

published a paper in 1989 in which they investigated the correlation between a 

physical change and changes in a structure's modal parameters. Using changes 

in modal parameters the authors attempted to detect variations in the tightness 
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of a bolt between a plate and a rib. Martinez, et al. [33] used system 

identification techniques to detect changes in electronic packages by analysing 

the changes in their modal parameters. This work may be regarded more as an 

effort to make practical applications of the concept that the change in modal 

parameters can be used as an effective tool to study changes in the system. 

In addition to the publications mentioned above, a modal model based method 

for the tasks of model updating and identification of joint models in structural 

assemblies has been proposed by Nobari, et al. [34]. Lallement, et al. [35] 

introduced a parametric optimization technique based on sensitivity analysis of 

static deformation with regard to stiffhess parameters of a FEM. This numerical 

process is based on static deformations which naturally introduces the difficulty 

of constructing a sufficiently rigid support during measurement. Law and Li 

[36] presented a perturbation study of a dynamic system involving an 

investigation of the effect of change in the system matrices on the eigenvalues. 

Assuming damage in a structural system affects stiffness only, the changes in 

eigenvalues can be expanded in Taylor's series where only the first term is 

considered. The method used by Law and Li claimed to improve the accuracy 

of the calculated changes in eigenvalues due to large damage by including the 

second term for consideration. This method seems to be more appropriate for 

structural modification than for damage detection. 

Dong, et al. [37] in a more recent publication attempted to examine the 

sensitivity of modal parameters to both crack location and extent. They made 

use of fracture theory to generate finite element model of a cracked beam. Using 

the finite element model, they analytically studied the variations of the modal 
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parameters by altering crack size and location. This work is similar to that of 

Yuen [23]. Even for simple structures like beams the technique has been found 

to work only if the first mode is affected by damage. 

An algorithm proposed by Zimmerman and Kaouk [38] made use of an original 

finite element model and a subset of measured eigenvalues and eigenvectors to 

locate damage. After locating the damage they endeavoured to determine the 

extent of stiffiiess change due to damage by using a method based on minimum 

rank stiffhess perturbation constraint which they named as the minimum rank 

perturbation technique (MRPT) method. Assuming that there are Ng damaged 

portions and each damaged portion has rank r stiffness model, this technique 

would require NgXr modes of vibration to determine damage extent if the data 

were noise free. 

This places a severe constraint on this method since it may not be always 

possible to obtain the required number of eigenvalues and eigenvectors if the 

number of rank change due to damage is large or unknovm. Kaouk and 

Zimmerman [39] extended the concept of MRPT presented in [38] by applying 

the MRPT to each portion of the structure seperately. Although the 

improvement resulted in a significant decrease in the number of modes 

required, the authors did not discuss the performance of the method for 

situations where the data contained noise and/or expansion errors. 

Most of the methods mentioned above have their origin in system identification 

techniques, where the analytical model of the undamaged structure and the 

modal parameters of the damaged structure are used together to determine 
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damage location and extent in one step. However, use of modal parameters 

introduced certain limitations into these methods as described in Chapter 1. 

The outcomes however, can be improved by use of measured FRF data instead 

of modal data. The successful use of FRF data instead of modal data was 

demonstrated by Lin and Ewins [40] in the area of model updating; further, 

Zimmerman et al. [41] in a more recent publication have also made a 

preliminary attempt to use FRF data for structural damage detection. The fact 

that the abundance of data available when using FRF data instead of modal data 

can be advantageous was appreciated by all the authors mentioned above. In 

addition, FRF data not only eliminates the computational burden associated 

with extracting modal parameters from measured FRF data, but also 

circumvents the errors introduced when extracting modal parameters from 

measured FRF data with curve fitting techniques. 

In this chapter a new technique named Constrained Minimization Damage 

Quantification (CMDQ) method based on system identification techniques has 

been presented. The method makes use of the measured receptance Frequency 

Response Function (RFRF) data of the damaged structure and the spatial model 

of the undamaged structure to detect damage in a structure. It employs 

measured RFRF data at different frequencies and applies the concept of 

constrained minimization theory to both locate and quantify damage in a 

structure at the same time. 



Chapter 2: Determination of structural damage extent using constrained minimization theory 24 

2.2 CONSTRAINED MINIMIZATION DAMAGE QUANTIFICATION 

(CMDQ) METHOD 

Consider an N-DOF undamped system whose mass and stiffness properties are 

given by NxN matrices [M]^^ and [K]UD respectively. According to vibration 

theory [2], the dynamic stiffness matrix of the system at frequency Q is given 

by: 

[Z(Q)]uD = ([K]uD - ^ ' [ M ] U D ) (2.2.1) 

It is assumed the mass and stiffness matrices of the undamaged system have 

changed to [M]D and [K]^ respectively due to damage and they are related by 

the following equations: 

[ M ] D = [ M ] U D - [ A M ] (2.2.2) 

[ K ] O = [ K ] U D - [ A K ] (2.2.3) 

Since the dynamic stiffhess matrix of the undamaged structure at a frequency Q 

is given by [Z(Q)]UD, on introduction of damage, the dynamic stiffiiess matrix 

of the undamaged structure at the same frequency Q will be altered to [Z(Q)]j) 

where 

[ Z ( Q ) ] D = ( [ K ] O - Q ' [ M ] O ) (2.2.4) 

Most of the damage detection methods based on system identification 

reasonably assumes that the analytical model of the undamaged structure 
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represents the structure correctly from the connectivity point of view. This 

essentially means that the model of the undamaged structure truly reflects how a 

particular member is connected to the remaining members of the structure. 

However, if the algorithm used for generating the model of the damaged 

structure develops a model which shows different connectivity between 

structural members of the damaged structure, then it would become difficult to 

compare the models before and after damage and isolate the area of damage. In 

fact, structural damage should not usually alter the connectivity of the 

undamaged structure. For this reason, one important feature of the algorithm to 

be developed for determining damage extent in a structure should be to ensure 

that the structural connectivity of the model before and after damage is 

identical. 

In order to ensure that the constraint of connectivity is preserved in the 

following development, it is assumed that the dynamic stiffiiess matrices at a 

particular frequency Q before and after damage are related by the following 

equation: 

[ Z ( Q ) ] D = [ Z ( Q ) ] U D ® [ Q Z ] (2.2.5) 

where the operator ® defines the element operation Z(Q)D y = Z(Q)UD y Qz y ; 

Here the matrix [Q^] is denoted as damage quantification coefficient matrix due 

to changes in both mass and stiffness. The use of the operator ® in equation 

(2.2.5) ensures that all elements of dynamic stiffness matrix with values of zero 

prior to damage occurrence remains zero afterwards. This means that if 
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Z(Q)uD,ij has a value of zero, Z(Q)D y will also have a value of zero. As a result, 

the connectivity of the undamaged and damaged structure remains the same. 

If the difference in dynamic stiffness of the structure at a frequency Q due to 

damage is denoted by [AZ(Q)], then 

[AZ(Q)] = [Z(Q)]uD - [Z(a)]D (2.2.6) 

Combining equations (2.2.5) and (2.2.6) together yields 

[AZ(Q)] = [Z(Q)]UD - [Z(n)]uD ®[Qz] (2.2.7) 

or [AZ(Q)] = [Z(Q)]uD ® ([U] - [U] ® [QJ) (2.2.8) 

Following the method suggested by Kabe [8], any unrealistic changes in 

dynamic stiffiiess elements can be minimized by defining an error function such 

that it is independent of the magnitude of dynamic stiffness elements. This is 

done by defining the error frmction as the norm of matrix ([U]- [U]®[Qz]) 

which can be denoted as: 

e = | |[U]-[U](8)[Qj| (2.2.9) 

e = S Z ( ^ - U , Q . , ) ^ (2.2.10) 

where Uy = 1 if Z^D,]] ^ 0 and Uy = 0 if ZuD,ij = 0 

From a mathematical viewpoint, the objective is to determine a matrix [Qz] 

which will result in minimum deviation between the dynamic stiffiiess matrix 

before the development of damage and that after such damage. As can be seen 
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from equation (2.2.5), a known [Q^] will lead to the dynamic stiffiiess matrix 

[Z(Q)]D. This mathematical operation needs to be performed under certain 

physical constraints. These constraints ensure that the resultant dynamic 

stiffness matrix (dynamic stiffness matrix corresponding to damaged structure) 

satisfies the physical reality of the structure. If an adequate number of such 

constraints can be imposed when determining [Qz], it is both mathematically 

and physically feasible to expect that the dynamic stiffness matrix obtained will 

represent the damaged structure. The mathematical formulation of the problem 

is as follows: 

Given a vector {ao(Q)}k which is the measured k column of receptance 

matrix of the damaged structure, find a matrix [Qz] which minimizes the 

norm given by equation (2.2.9) and also satisfies the constraints given by 

equations (2.2.11) and (2.2.12) below: 

([Z(Q)]uD® [Qz]){aD(^)}k- {S}k= {0} (2.2.11) 

tVi 

where {5}^ is a vector whose elements are zero except that the k element is 

unity and 

[Qz]-[Qzf=[0] (2.2.12) 

From a physical viewpoint, the first constraint ensures that the calculated [Qz] 

should be such that the dynamic stiffness derived is orthogonal to any column 

of the receptance matrix of the damaged structure. The second constraint is 

imposed to guarantee that the derived dynamic stiffness matrix of the damaged 
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Structure is symmetric. Using the method of Lagrange Multipliers, as discussed 

in appendix C, to incorporate these constraints, a Lagrange function can be 

defined as: 

L = e + :̂ gi + ^g2 (2.2.13) 

where X and |LI are the Lagrange multipliers, gi and g2 are the given constraints 

and L is the Lagrange function. It can be written as 

n n 

L = e + X^,(ZZ(Q)^,Q, . ,a ,^ ,)-Y + XZ^i,(Qz,-Qz, ,) (2-2.14) 
i=l 1=1 i=l j=l 

where Y represents the second term on left hand side of equation (2.2.11). 

Taking the partial derivative of L with respect to Qẑ y and setting them equal to 

zero yields an equation that Qz,y has to satisfy for L to be minimal: 

Sy =-2(U, , -Q, , , ) + X,Z(n)™,a„j+H„-Hj ,=0 (2.2.15) 
<5Qz,, 

Equation (2.2.15) can be written in a matrix form yielding: 

-2([U] - [Qz]) + [Z(Q)]uD® ({^}{ocD(^)}k^) + [l̂ ] - il^f = [0] (2.2.16) 

Since the physical constraints are applied at a single frequency Q, the Lagrange 

multiplier has a single column corresponding to the frequency point used. 

Taking the transpose of equation (2.2.16) and adding it to equation (2.2.16) 

itself gives: 



Chapter 2: Determination of structural damage extent using constrained minimization theory 29 

4([U] - [Qz]) + [Z(Q)]uD® ({^}{aD(Q)}/+ {a:,(Q)h{Xf) = [0] (2.2.17) 

Multiplying equation (2.2.17) by 0.25[Z(Q)]UD and rearranging terms it yields. 

[Z(a)]uD® [Qz] = [Z(Q)]UD- [ZSQ] ® {{X}{a:,iQ)]J+ {ao(Q)k {X}^)}(2.2.18) 

where [ZSQ] = 0 .25[Z(Q)]UD® [Z(Q)]UD 

Replacing equations (2.2.18) into (2.2.11), the following equation is derived: 

[Z(Q)]uD{aD(n)}k- [ZSQ] (8) ({;V}{aD(a)}k^+ {aD(Q)}k{^}^){aD(Q)}k 

= {6}k (2.2.19) 

(2.2.20) 

where {X} = ([Z(Q)]uD{aD(Q)}k - (Slk) 

[ZSQ] 0 ({^}{aD(Q)}'^k+ {aD(^)}k {^}^){aD(Q)}k= {X} 

Now the left hand side of equation (2.2.20) can be written as: 

ZzSQ,a?,,„ 
i=l 

0 

0 

SzSQ^.af,,, 
i=l 

hi > + 

ZSQ,,a],jo •• ZSQj„a„^Dan^p 

ZSQniOtnk.D^lk .D ZSQ„nOCnk,D 

X, 

x^ 

Hence equation (2.2.20) can be written as: 

([a] + [b]){^} = {X} 
-1 

or, {;i}==([a]+[b])-'{X} (2.2.21) 

Once {X} is derived, it can be put back into equation (2.2.18) to derive the 

dynamic stiffhess matrix of the damaged structure at a particular frequency Q. 
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The dynamic stiffness matrix [Z(Q)] is a function of frequency. Therefore, at a 

different frequency the matrix [Qz] will also be different, resulting in a different 

error function defined in equation (2.2.9). The constraint equations will also be 

frequency dependant. 

However, if it is assumed that due to structural damage, only stiffiiess 

characteristics have been affected, while variations in mass are small enough to 

be neglected, then the error function may be simplified. In such case, it can be 

written as 

[AK] = [K]UD-[K]D (2.2.22) 

or, [AK] = [K]UD([U] - [U] ® [QK]) (2.2.23) 

where matrix [QK] is denoted as the damage quantification matrix due to change 

in stiffhess only. Since the stiffhess matrix does not vary with frequency, the 

constraint equations may be used repeatedly for multiple frequency points. 

Therefore the constraint equation becomes : 

( [K]uD® [QK])[{aD(^l)}kv. .{aD(nn)}k] " [M]uD[{aD(Ql)}kv. . ,{aD(Qn)}k][^n ' ] 

-[{5}k...{5}k] = [0] (2-2.24) 

or, ([K]UD® [QK])[AD] - [M]uD[AD][^n'] - [{§}k, ,{S}k] - [0] (2.2.25) 

where [ Q / ] is a diagonal matrix. Qj (i = 1, 2, ...., n) is the frequency at which 

RFRF data have been measured, and 

[AD] = [{aD(f^i)}kv..{aD(^n)}k] 
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The second physical constraint is again the symmetry of matrix [Q^], 

[QK] - [QK]'' - [0] (2.2.26) 

The Lagrange function in equation (2.2.14) can then be defined as: 

n s n 

L = e + E S : ^ , ( Z K ^ , Q K , A O , ) - Y+EZ^O(QK, , - QK,,) (2-2.27) 
i=l j=l 1=1 i=l j=l 

Here 's ' represents the number of frequency points used. The term Y represents 

the second and third terms of the left hand side of equation (2.2.25) which are 

not a function of Q^ y and need not be defined. They do not contribute to the 

derivative of L with respect to QK,ij. 

Taking the partial derivative of L with respect to QK,y and setting them equal to 

zero yields equations that Q^^ have to satisfy for L to be minimal. Repeating 

the same procedure for the case of the dynamic stiffness matrix gives: 

-2([U] - [QK]) + [K]uD® rniA^f) + M - [lif = [0] (2.2.28) 

In contrast to equation (2.2.16), the constraint has been applied here at multiple 

frequency points and hence the Lagrange multiplier is given by a matrix [k] 

where each column corresponds to a particular frequency point. Adding the 

transpose of equation (2.2.28) to itself yields : 

-4([U] - [QK]) + [K]uD® ([^][Ao]^+ [AD][^]^) - [0] (2.2.29) 
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Multiplying equation (2.2.29) by 0.25[K]UD and rearranging terms yields, 

[K]uD® [QK] = [K]uD - 0.25 [KSQ] ® ([X][AD]^+ [AD][^]^) (2.2.30) 

where [KSQ] = [Kj^o ® [K]UD 

Substituting equation (2.2.30) into equation (2.2.25) leads to : 

[D] + {[KSQ] ® ([?.][AO]'')}[AD] + {[KSQ] (x) ([AD][;1]'")}[AD] = [0] (2.2.31) 

where [D] = 4.0i[KU[Ah- [MU[AU Q„'] - [{5}k...{5}k]) 

Equation (2.2.31) can be used to establish [X] which when put back into 

equation (2.2.30), will yield [K]^. From equation (2.2.31) the following 

relationship can be derived 

D} = ([T] + [S]){^} (2.2.32) 

where the column vector {D} is formed by putting columns of [D] into a single 

column consecutively. The same happens to column vector {X}. Matrix [T] can 

be represented by the following matrix 

[G'] .. 0 

L 0 .. [G"]. 
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Here [G'] = - [AD]^[KSQ'][AD] and [KSQ'] is a diagonal matrix whose diagonal 

terms are the î  row of [KSQ]. Matrix [S] can be represented as: 

[H]" .. [H] 

[H]"' .. [H] 

In 

where [H]'̂  = - { A J .{R^}; 

Ajj = j^ column of [A^] 

{RJ}i = i* column of [AD]' ' [KSQ'] 

Equation (2.2.32) can be used to determine {2̂ }. However, in most cases ([T] + 

[S]) will be ill-conditioned and simple inversion is not possible for obtaining 

{X}. To overcome this, ([T] + [S]) can be written as: 

[T] + [S] = [P][V][P]^ (2.2.33) 

where [P] contains orthonormalised eigenvectors of ([T] + [S]) and [V] is a 

diagonal matrix whose diagonal elements are the eigenvalues of ([T] + [S]). 

Hence, equation (2.2.32) can be written as 

D} = ([P][V][P]^)fe} (2-2.34) 

Considering only the non-zero elements in [V] and the corresponding columns 

of eigenvectors in [P] and inverting them results in 
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{?i} = [P][V]-'[P]MD} (2.2.35) 

Once {X} has been obtained it can be used to rebuild [X] and which, in turn, can 

be used in equation (2.2.30) to derive [K]^, the stiffness matrix of the damaged 

structure. With [Kj^ determined, the location and extent of damage can be 

easily determined. 

The above derivation to determine [K]D was based on the assumption that the 

system was undamped. However, the CMDQ method can be extended even for 

damped systems and appendix Al suggest a possible method of doing so. 

2.3 DISCUSSION 

From the theory in the preceding section, it is apparent that the success of the 

proposed CMDQ method to locate and quantify damage in a structure rests 

largely on accurate computation of the vector {X} given in equation (2.2.35). 

However, due to the possible ill-conditioning of matrix ([T] + [S]), the CMDQ 

method needs to be applied with prudence in order to accurately estimate {X}. 

If matrix ([T] + [S]) is not ill-conditioned, then matrix [P] obtained in equation 

(2.2.33) through the spectral decomposition of ([T] + [S]) will be orthogonal. In 

such a case, the product of [P]^ and [P] is expected to yield a unity matrix. 

However, in practice it is found that due to ill-conditioning of matrix ([T] + 

[S]), the product [P]^[P] is not an identity matrix. To remove the effect of ill-

conditioning, it is essential to construct ([P][V][P]^) by discarding those 
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diagonal elements (eigenvalues of ([T] + [S])) in matrix [V] which are due to 

ill-conditioning. 

It was found that the product of [P] and [P] provided a very usefiil indicator 

regarding eigenvalues to be included or discarded. The product [P] [P] will 

yield a matrix which has a few diagonal elements equal to one, but there are 

others which yield values different from unity. The diagonal elements in [V] 

corresponding to the non-unity diagonal elements in [P] [P] should then be 

ignored along with those corresponding columns in [P]. The best results are 

obtained if ([T]+[S]) is rebuih by using only those diagonal elements in [V] 
T" 

which correspond to unity diagonal elements in the product [P] [P] and the 

corresponding columns in the matrix [P]. 

To elaborate further, if matrix ([T] + [S]) is a 24 by 24 matrix, then it will have 

24 eigenvalues which are the diagonal elements in the diagonal matrix [V]. 

Matrix [P]^[P] will have twenty four diagonal elements. If the first eighteen of 

these diagonal elements are unity and the remainder are not, then the best 

decomposition of ([T] + [S]) using [P][V][P]^ is by using the first eighteen 

diagonal elements of [V] and the first eighteen columns of [P]. In such a case, 

matrices [P], [V] and [P]^ are of size 24x18, 18x18 and 18x24 respectively and 

their product [P][V][P]^ is a new 24x24 matrix which is used to compute {2.}. 

2.3.1 Determining the number of valid eigenvalues 

An important question to be addressed, is how many valid eigenvalues are 

needed for the CMDQ method to exactiy locate and quantify damage of a 
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structure in cases where the damage has affected the stiffiiess of the structure. 

The sum of the number of diagonal elements in the stiffness matrix and the 

number of non-zero non-diagonal coefficients on one side of the diagonal line 

gives an indication of the minimum number of valid eigenvalues required for 

the CMDQ method to work. If the sum is 'F ' , then it has been found that the 

method is able to quantify damage, provided the number of valid eigenvalues is 

greater than or equal to 'F ' . The reason behind this is explained in the following 

paragraph. 

The relationship between the number of eigenvalues considered and accuracy of 

the result obtained can be explained mathematically by considering equation 

(2.2.15). The equation is obtained by partially differentiating the Lagrange 

function L with respect to a particular element in matrix [QK] and equating it to 

zero. The approach taken in this algorithm, is to correct individually the 

elements (diagonal elements and non-zero non-diagonal elements on one side) 

of the undamaged stiffness matrix. If the number of such stiffness elements is 

'F', then the algorithm would need to solve for 'F' unknowns of QK,y which 

naturally require at least 'F ' independent equations. 

Referring to equation (2.2.33) if the matrix [V] has 'F ' valid eigenvalues 

(validity can be checked by examining the product [P] [P], as already 

discussed), then it automatically ensures the existence of 'F ' linearly 

independent equations. Therefore, 'F' unknowns can be computed. If the 

number of eigenvalues obtained is greater than 'F' , then mathematically it is a 

case of an overdetermined set of equations. Although for the noise free case, it 

was found that the result obtained is most accurate by considering only 'F' valid 
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eigenvalues, for noisy data, better results can be expected by considering all 

valid eigenvalues. 

If the number of valid eigenvalues becomes smaller than 'F' , then the number 

of linearly independent equations reduces and the results therefore becomes 

more and more inaccurate. It was also found that the number of valid 

eigenvalues that can be obtained do not increase indefinitely with increase in 

the number of frequency points. Once the number of valid eigenvalues obtained 

reaches 'F ' or for certain systems slightly higher than 'F' , it does not increase 

any further even with more frequency points. Although the number of valid 

eigenvalues does not increase any further, the individual values of the 

eigenvalues changes by considering additional frequency points. For noisy FRF 

data, inclusion of additional frequency points proved specially beneficial in 

reducing the effect of noise. 

2.3.2 Determining the number of frequency points 

The number of frequency points to be chosen for CMDQ method plays a 

significant role in the success of this method, since generation of an adequate 

number of valid eigenvalues can be ensured only if the number of frequency 

points chosen is sufficient. The number of valid eigenvalues required for 

CMDQ method can be calculated from the stiffiiess matrix of the structure. For 

an N DOF structure which requires 'F' valid eigenvalues, it is not possible to 

have more than N eigenvalues if the number of frequency point selected is one. 

Similarly, if "s" frequency points are selected, then the maximum possible 

number of valid eigenvalues that can be obtained is "sxN". Hence, in order to 
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obtain the required number of eigenvalues, the number of frequency points 

selected should be such that: 

s>F/N (2.3.1) 

Once the number of valid eigenvalues required for a particular system is 

decided, the minimum number of frequency points required can be easily 

computed. A simple illustration is given to explain it in more detail. If for a 10 

DOF system, it is found that the number of valid eigenvalues required for the 

method to work is 23, then using equation (2.3.1), it is possible to obtain the 

minimum number frequency points required as: 

s> 23/10 

or, s > 2.3 

Hence, the minimum number of frequency point required to generate 23 valid 

eigenvalues is 3. However, if by selecting 3 frequency points it is found that, the 

number of valid eigenvalues obtained is less than 23, then it will require 

reselecting frequency points or increasing the number of frequency points. It 

has been found that depending on the load path indeterminancy of certain 

structures and quality of measured FRF data, one may require using additional 

frequency points to obtain more accurate results. 

In Section 2.5, numerical examples are given to illustrate situations where 

additional frequency points are required. In brief, once the value of 'F ' is known 

from the stiffness matrix, the first step is to ensure that at least 'F' number of 
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valid eigenvalues is obtained. The next step is to consider whether additional 

frequency points are required. 

2.3.3 Simultaneous mass and stiffness changes due to damage 

When only the stiffhess of a structure is affected by damage, the damage 

coefficient matrix [QK] due to change in stiffiiess is independent of frequency. 

In other words, equation (2.2.23) is valid at all frequency points. Since [QK] is 

frequency independent, the constraint equation may be used repeatedly for 

different frequency points, as suggested by equation (2.2.24). 

However, in some applications it may be possible that both mass and stiffhess 

are affected by damage. In these case, the dynamic stiffiiess changes due to 

damage can be expressed as given in equation (2.2.8). Unlike the case where 

damage affected stiffhess only, the correction coefficient matrix [Qz] is 

dependant on frequency. The constraint equations in this case are related only to 

a particular frequency, as given by equations (2.2.11) and (2.2.12). No 

constraint equation with multi frequency points is available. As a result, the 

number of valid eigenvalues obtained is no more than the number of DOFs of 

the system as the number of frequency points usable each time is one. This is 

often not sufficient to determine the dynamic stiffhess matrix after damage. 

However, even in this case, the method can still indicate the location of damage. 

From [Qz] alone a rough idea about [Z(Q)]D can be formed but from [Qz] only 

it is not possible to decide in what proportion the damage has affected the mass 

and stiffness of the structure. However, this information can be extracted from 
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[Qz] t>y a simple mathematical manipulation as shown below. Assuming that 

the damage coefficient matrix due to change in mass is given by [Q^], it is 

possible to write: 

[Z(Q)]D = [K]D - tf [M]D = [K]uD (8) [QK] - Q'[M]UD ® [QM] (2.3.2) 

Using equation (2.2.5), gives 

[K]UD® [QK] - ^ ' [ M ] U D ® [QM] = [K]UD® [Qz] - ^ ' [ M ] U D ® [Qz] (2.3.3) 

or, [K]uD (8) ([Qz] - [Qd) = n\MU ® ([Qz] - [QM]) (2.3.4) 

or, ([M]-VD[K]UD) ® ([Qz] - [QK]) = ^ ' ([Qz] - [QM]) (2.3.5) 

Hence, once [Qz] is computed at multiple frequency points, [QK] and [Q^] can 

be computed from which a rough idea can be formed regarding contribution of 

stiffness change and mass change towards total damage. Nevertheless, since 

only one frequency point can be used each time to estimate [Qz], the resultant 

[Qz] will be inaccurate. This in turn will make the estimated [Q^] and [QK] in 

this case deviate from the correct estimate. 

2.4 NOISE FILTERING ALGORITHM FOR CMDQ METHOD 

To be of practical use, the CMDQ method should be capable to produce good 

results when imperfect FRF data are used. Measured FRF data are inevitably 

contaminated by noise, instrument inaccuracy, etc. The random error in a 

typical FRF measurement as per J.S Bendat's Non linear System Analysis and 

Identification from Random Data can be quantified by: 
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4|HXV(^) - I . _ ; | ^ (2-4.1) 
Yxv(^)k/2nd xy 

where y^ = coherence and n^ = number of averages. 

If the coherence of the measurement is 1.0, then the normalised random error is 

zero. However in reality coherence is always less than 1.0. This may be 

attributed to the following : 

• the presence of uncorrelated noise in the input and output signal in time 

domain; 

• a non-linear relationship between input and output signal; 

• to insufficient resolution or wrong choice of windows, power from 

discrete frequency components may leak into adjacent bands. This 

phenomenon is commonly referred to as leakage; 

• a time delay between the input and output signal when this is of the same 

order as the length of the record. This implies that if a possible signal is 

the direct output of another signal, the apparent relationship will not be 

very strong if the delay between the input and output signal is large with 

respect to record length. This bias error can be minimized by applying 

what is known as pre computational delay to the output signal so that the 

sections analyzed correspond to each other. 

However unsatisfactory coherence due to random noise can be improved by 

increasing the number of averages. Figure 2.1 gives an indication of the 

variation of Normalised Random Error as a function of coherence and number 
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of averages. Figure 2.2 shows the exponential relation existing between 

normalized random error and number of averages. 

The proposed CMDQ method using constrained minimization theory was 

assessed for FRF data with noise levels of around 2% on the amplitude of 

vibration. It was found that with that noisy data the CMDQ method does not 

quantify the damage exactly, although the location of damage can still be easily 

identified. Therefore, it is proposed that once the location of damage has been 

ascertained using the CMDQ method, a noise filtering algorithm may be used to 

reduce the effect of noise in the CMDQ method in order to obtain a better 

estimate of the damage. The procedure is explained below in more detail. 

The noise filtering algorithm consists simply of replacing the {aD(^)}k vectors 

by {aD(f)(Q)}k. Here {aD(Q)}k is the noisy receptance FRF data at a particular 

frequency Q obtained from measurement for the damaged structure and 

{aD(f)(Q)}k is the corresponding 'noise filtered' receptance FRF data. The 

filtering is done by using the relationship : 

[ZuD(Q)]{aD(Q)}k={d} (2-4.2) 

In equation (2.4.2) all elements in the vector (d) are expected to be zero except 

those which correspond to the damaged DOFs. Such a result can be obtained if 

the measured data is free of error of any type. In practical situations, due to the 

effect of noise, it is found that almost all the elements in the vector {d} will 

have non-zero values. The values in the elements of the vector {d} which 

correspond to undamaged DOFs is entirely due to the effect of noise while the 
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values in elements which correspond to damaged DOFs is due largely to 

damage and, to much less extent, to noise. As mentioned above, using noisy 

data the CMDQ method successfully indicates the location of damage. 

Once damage has been located, the non-zero elements in the vector {d} 

(obtained by direct multiplication of matrix [ZUD(^)] and vector {aD(Q)}i,) 

which are due to measurement errors can be easily identified. These elements 

can then be set to zero leaving the elements in the vector {d} due to damage to 

its original value. Consequently the revised {d} may be written as {df} and the 

vector {d} in the equation (2.4.2) is replaced by {df}. Therefore equation (2.4.2) 

can rewritten as: 

[ZuD(n)]{aD(f)(a)}k={df} (2.4.3) 

where {aD(f)(^))}k is the filtered receptance FRF data at a frequency Q and this 

can be obtained from equation (2.4.3) by using Gaussian elimination. Once 

{aD(f)(^)}k is computed, it can be used in the CMDQ method to obtain a better 

estimate of the extent of damage. Hence, the steps involved in using the CMDQ 

method in conjunction with the noise filtering algorithm are as follows: 

• Use the CMDQ method with measured FRF data to determine the location 

of damage and a preliminary estimate of the magnitude of damage. 

• Use the information regarding damage location in the noise filtering 

algorithm to derive 'noise-filtered' FRF data. 

• Use the filtered FRF data in the CMDQ method to obtain a more accurate 

estimate of damage. 
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2.5 RESULTS OF NUMERICAL ANALYSIS 

A computer programme written in Fortran for the CMDQ method has been 

developed and implemented on an HP Unix workstation. Frequency points are 

specified at random and using the information regarding a particular column of 

RFRF of a damaged structure, the damage location and quantification was 

carried out using the CMDQ method. In figure 2.3 the flowchart for the 

program is presented. 

Numerical case studies were carried out on three different systems to examine 

the effectiveness of the CMDQ method. These systems have been given in 

figures 2.4, 2.5 and 2.6. 

Example 1 

The first system studied was a 12 DOF undamped mass-spring system as shown 

in figure 2.4. The stiffhess matrix for the undamaged system is given in Table 

2.1 and that for the damaged system is given in Table 2.2. In both cases, the 

mass matrix is as given by Table 2.3 (assume that the mass matrix is unaffected 

by the introduction of damage). It was assumed that the location of damage lies 

between co-ordinates 5 and 6. The actual stiffness change due to damage is 

given in figure 2.7. Table 2.4 tabulates the natural frequency of the 12 DOF 

system both before and after damage. In the following, the results of CMDQ 

method are presented in the form of [AK] instead of [Kj^. 
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Firstiy, the proposed method was applied using three frequency points at 

random and assuming that the RFRF data available for the damaged structure 

were noise free. The frequency points chosen were 3 rad/s, 12 rad/s and 14 

rad/s. All three frequency points chosen lie within the first two modes for this 

system. Only the first column of the receptance matrix (without loosing 

generality) at these three frequency points were used to build up matrix ([T] + 

[S]). As already given in equation (2.2.33), matrix ([T] + [S]) can be 

decomposed to the product of [P], [V] and [P]^. It was found that the matrix 

product [P] [P] as shown in Table 2.5 has unity in the first thirty one diagonal 

elements. However, the 32 diagonal element has a value of 1.59 and from here 

onwards the values of diagonal elements deviate significantly from unity. 

Although by considering the first thirty or thirty one eigenvalues a fairly good 

estimate of the extent of damage can be obtained, the most accurate results were 

obtained when considering the first twenty nine eigenvalues - the number of 

non-zero elements in [K]. The diagonal elements of the diagonal matrix [V] 

have been tabulated in Table 2.6. For noise free data, as already mentioned in 

Section 2.3.1, the best results are obtained when the number of valid 

eigenvalues used are exactly equal to the number of unknowns in the stiffhess 

matrix. Therefore, only the first twenty nine eigenvalues of [V] and the 

corresponding columns of eigenvectors in [P] were used to compute {X} using 

equation (2.2.35) which was then used to compute [Kj^. The method 

successfully indicates the location and extent of damage as shown in figure 2.8. 

Instead of using the first twenty nine eigenvalues, the same example was also 

tried using the first twenty six eigenvalues and first twenty three eigenvalues. 
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the results of which have been shown in figures 2.9 and 2.10 respectively. The 

method locates damage successfully, but the accuracy of the damage extent 

starts to deteriorate. The decrease in accuracy of results was expected. Referring 

to Section 2.3.1, it was mentioned that the sum 'F' , which is 29 in this example, 

represents the number of unknowns and the number of valid eigenvalues 

indicate the number of independent equations available to solve for those 

unknowns. Therefore, using only twenty six or twenty three eigenvalues in this 

example essentially means an effort to solve for twenty nine unknowns using 

twenty six or twenty three equations. Naturally for such cases, the exact 

solution cannot be obtained , as reflected in the results plotted in figures 2.9 and 

2.10. 

Secondly, the same numerical example was tried with a different set of 

frequency points. This time the frequency points were close to each other and 

chosen at random. They were 8 rad/s, 10 rad/s and 11 rad/s. In this case it was 

found that the number of valid eigenvalues were less than 29. As shown in 

figure 2.11, the location of damage is clear but the extent of damage is 

inaccurate. An important observation was that in spite of using three frequency 

points, the method fails to give an accurate estimate of the damage extent, since 

the number of valid eigenvalues was less than the required number for the 

method to succeed. In this particular case the required number was 29 but the 

number of valid eigenvalues obtained was 23. 

The situation however can be improved by either selecting a new set of 

frequency points or by adding more frequency points. In this example an 

attempt was made to increase the number of valid eigenvalues by using an 
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additional frequency point at 13 rad/s. As a result, the number of valid 

eigenvalues increased from 23 to 25 and the results are as shown in figure 2.12. 

Since, from theory it is known that best results in this example can be obtained 

when the number of valid eigenvalues is 29, the same case was repeated by 

adding 15.4 rad/s to the existing set of four frequency points. With five 

frequency points, the number of valid eigenvalues obtained became just equal 

to 29 and the results as plotted in figure 2.13 are almost identical to the correct 

results. 

The two numerical examples use the same system to locate and quantify 

damage. In both the cases, the correct results were obtained although the 

frequency points selected were different. However, both cases had one thing in 

common. The number of valid eigenvalues in both cases equals the sum 'F ' of 

the number of unknown elements in the stiffness matrix which for this 

particular example was 29. Therefore, it may be concluded that for any set of 

frequency points the method will correctly quantify the change in stiffness 

provided the number of valid eigenvalues is equal to the sum 'F ' mentioned 

above. If for certain cases the number of valid eigenvalues obtained is greater 

than the sum 'F' , then for noise free data most accurate results can be obtained 

by considering the first 'F ' eigenvalues. 

To resemble a practical situation, a random noise of 2% was incorporated in the 

amplitudes of the RFRF data and a repetition of the same numerical case as 

described above was carried out. With 2% noise and using three frequency 

points (points used were 3 rad/s, 12 rad/s and 14 rad/s) which generated 29 

valid eigenvalues, the performance of the method in identifying damage 
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deteriorated sharply as evident from the results plotted in figure 2.14. However, 

it was found that by using additional frequency points, the effect of noise can be 

reduced and a reasonably good estimate of the damage location can be 

determined. 

To illustrate, the example was repeated by considering four frequency points (3 

rad/s, 12 rad/s, 14 rad/s and 13 rad/s), five frequency points (3 rad/s, 12 rad/s, 

14 rad/s, 13 rad/s and 16 rad/s) and six frequency points (3 rad/s, 12 rad/s, 14 

rad/s, 13 rad/s, 16 rad/s and 9 rad/s) and the results have been plotted in figures 

2.15, 2.16 and 2.17. It is found that from figures 2.16 or 2.17, the location of 

damage and an estimate of the damage extent can be easily ascertained. The 

results were expected since by considering additional frequency points, 

mathematically more constraints were imposed which helped in diminishing the 

effect of noise and approach the accurate results (as already discussed in 

Section 2.0). The additional frequency points selected were in the frequency 

region where the most severely affected natural frequencies were situated. 

The improvement in results would not be as significant if the frequency points 

were selected in the region where there was not much change in FRF due to 

damage. However, it has been found that beyond a certain number of frequency 

points the effect of noise does not change significantly as demonstrated by the 

similarity of figures 2.16 and 2.17. Therefore, it is suggested that with noisy 

data once the damage has been located, the method should be used in 

conjunction with the noise filtering algorithm to obtain a better estimate of the 

damage extent. Figure 2.18 shows the [AK] results after applying the noise 

filtering algorithm. Comparing figures 2.17 and 2.18, it is apparent that after 
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applying the noise filtering algorithm, the effects of noise vanished leaving only 

the peak due to genuine damage. 

An important point to be noted is that while using noise free RFRF data the 

frequency points selected were all within the first two modes. This is significant 

and can be readily attributed to the use of RFRF data rather than modal data. If 

the same example was repeated using modal data then more modes will be 

needed to get the desired results. The use of RFRF data leads to the same results 

but with data measured over a narrower frequency band. 

Example 2 

The minimum number of frequency points needed to run CMDQ is given by 

equation (2.3.1). In example 1 it has been shown that the effect of noise can be 

reduced by using more frequency points. This example will show that 

depending on the load path indeterminancy of a system, more frequency points 

in addition to the minimum number may be needed. To demonstrate this, the 

system shown in figure 2.5 was used. This was the same system used by Kabe 

in [9]. The difference in stiffness matrix due to damage is given in figure 2.19 

and the stiffhess and mass matrix prior to damage is given by Tables 2.7 and 

2.8. The stiffness matrix after damage has also been tabulated in Table 2.9. In 

this case, the sum of diagonal elements and non zero off-diagonal elements on 

one side of the stiffiiess matrix was 16. Therefore the number of valid 

eigenvalues required for this system was 16. 
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Frequency points selected here were again at random and they were equal to 8, 

14, 19 rad/s. Accurate results as shown in figure 2.21 were obtained as the 

number of valid eigenvalues were 16. However, with two frequency points (8 

and 14 rad/s), even when the number of valid eigenvalues were sixteen, the 

method did not successfully quantify damage if it was in the region of DOFs 6, 

7 and 8 although the extent of damage located between DOFs 3 and 5 could be 

estimated accurately as shown in figure 2.20. This was because DOFs 6, 7 and 8 

involved a load path indeterminancy of three as shown in figure 2.5. This 

essentially means that since m] is connected to only m2, one frequency point is 

good enough for this region. Once this was identified, m2 to m5 has a maximum 

of two unknowns and so two frequency points were good enough. However, for 

mg, even if the stiffness between m^ and m6 was known from m^, it still has 

three unknowns. Therefore, at least three frequency points were required. 

However, if the system given in figure 2.5 was such that, the mass m^ was not 

connected to ground, then two frequency points would have been good enough 

for the entire system. This can be readily determined from the connectivity of 

the system. 

Once the minimum number of frequency points required for this constrained 

minimization method is determined, examination of the connectivity of a 

structure is needed to determine whether more frequency points are required. In 

practice, because of abundant FRF data and due to use of more FRF data points 

to combat noise effect, this load path indeterminancy should not become a 

problem. 
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Examples ; A truss structure 

A truss structure as shown in figure 2.6 was considered in this example. The 

mass and stiffiiess matrices of this 20 member plane truss structure was 

generated using PAFEC FE software. The data file used in PAFEC FE is shown 

in Table 2.10. The structure was modelled using bar elements (element number 

34400), each element having two nodes and each node having only translational 

degrees of freedom in the -x and -y directions. Young's Modulus was taken to 

be E = 2.09 x 10^ N/m^ and the density 7860 kg/ml Nodes 1 and 14 had been 

totally restrained. It was assumed that each member of the truss has a cross 

sectional area of .0002 m ,̂ IYY is equal to 1.666E-9 m and IZZ equal to 

6.666E-9 m^ 

Damage was simulated between nodes 4 and 5 and this was done by changing 

the Young's Modulus of that particular element to half of its original value. 

Figure 2.22 shows the point RFRF curve (a2,2) of the truss structure before and 

after damage. The stiffiiess matrix change due to damage has been given in 

figure 2.23. RFRF data used were at frequency 12 rad/s, 19 rad/s, 25 rad/s and 

43 rad/s to build up the matrix ([T] + [S]) and the results using the CMDQ 

method are shown in figure 2.24. From the figure it is clear that besides locating 

the damage, the extent of damage has also been correctly identified. 

The above results were obtained using RFRF data at 4 frequency points. When 

random noise of 2% was introduced into the amplitude of the RFRF data of the 

damaged structure, the results are as plotted in figure 2.25. The location of 

damage is clear although its quantification is not accurate. Besides, there are a 
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few additional peaks. To identify peaks due to genuine damage, the number of 

frequency points used were increased by adding a point at 37 rad/s. As already 

demonstrated in Example 1, by increasing the number of frequency points the 

effects of noise can be reduced. 

There was a degree of improvement as the peaks due to noise seemed to 

diminish as shown in figure 2.26. From figure 2.26 the location of damage can 

be identified distinctly. Once the damage location was obtained clearly, the 

noise filtering algorithm was applied to the RFRF data. By using the filtered 

RFRF data, the CMDQ method was re-applied to get a more accurate estimate 

of the changes in stiffhess due to damage which have been shown in figure 

2.27. By comparing figures 2.26 and 2.27, it appears that the noise filtering 

algorithm achieved marginal improvement. However, in reality, the usefulness 

of the noise filtering algorithm will not be known unless it is applied. To assure 

better results for CMDQ method, it is suggested to use noise filtering algorithm. 

2.6 SUMMARISING REMARKS 

A new method called the CMDQ method has been developed in this chapter for 

determining the damage extent using measured RFRF data. The use of 

measured RFRF data instead of modal data provides a number of advantages in 

the endeavour of structural damage detection. 

The method has been tested with simulated data to examine its feasibility and 

check the variation in results that occurs due to the use of FRF data at different 

frequency points. It has been found that with noise free data, the method 
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accurately locate and estimate structural damage. The number of valid 

eigenvalues that are required by the CMDQ method to obtain accurate results is 

given by the number of unknown non-zero coefficients 'F ' in the stiffhess 

matrix of the undamaged structure. To identify the validity of eigenvalues 

calculated, a numerical technique has been developed. To obtain reliable results, 

the number of valid eigenvalues obtained should be at least equal to 'F' . If it is 

less than 'F' , then the CMDQ method carmot successfully determine the 

damage extent although it can still indicate damage location. 

To improve the results with noisy FRF data, the use of FRF data with more 

frequency points and the noise filtering algorithm presented in this chapter are 

suggested. In doing so, a preliminary damage estimate can be made by using 

measured FRF data and then the noise filtering algorithm can be employed to 

obtain a more accurate estimate of the damage. 

For some applications measurements cannot be taken on all coordinates in the 

damaged structure (which corresponds to coordinates used to define the 

analytical model of the undamaged structure). It is possible to interpolate the 

FRF data corresponding to those unmeasured coordinates by using expansion 

techniques to be discussed in Chapter 3. 

In conclusion, it can be stated that the CMDQ method is a promising technique 

for quantifying structural damage affecting the stiffness of a dynamic system. 

The method has been found to work well with measured RFRF data. Numerical 

examples using mass spring models and truss structures have successfully 

shown the effectiveness of the method as a damage detection algorithm. 
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Table 2.1: Stiffness matrix of the undamaged system in Fig.2.4 
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Table 2.2: Stiffness matrix of the damaged system in Fig.2.4 

1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
2 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
3 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
4 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
5 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
6 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
7 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
8 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
9 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
10 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
11 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
12 

Table 2.3: Mass matrix of the undamaged/damaged system in Fig.2.4 
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NATURAL FREQUENCY O F ' 

1 
2 
3 
4 
5 
6 

BEFORE 
DAMAGE 

5.8 
15.7 
18.5 
24.9 
26.9 
28.9 

AFTER 
DAMAGE 

5.8 
15.7 
17.8 
24.8 
26.7 
28.5 

FHE FIG.2.4 SYSTEM (RAD/S) 

7 
8 
9 
10 
11 
12 

BEFORE 
DAMAGE 

31.8 
34.9 
40.1 
46.0 
56.4 
81.7 

AFTER 
DAMAGE 

31.3 
34.8 
38.0 
45.7 
56.4 
81.7 

Table 2.4: Natural frequency for the system in Fig.2.4 before and after damage 

1 
1.00 

7 
1.00 
13 

1.00 
19 

1.00 
25 

1.00 
31 

1.00 

2 
1.00 

8 
1.00 
14 

1.00 
20 

1.00 
26 

1.00 
32 

1.59 

3 
1.00 

9 
1.00 
15 

1.00 
21 

1.00 
27 

1.00 
33 

5.18 

4 
1.00 
10 

1.00 
16 

1.00 
22 

1.00 
28 

1.00 
34 

1.58 

5 
1.00 
11 

1.00 
17 

1.00 
23 

1.00 
29 

1.00 
35 

1.03 

6 
1.00 
12 

1.00 
18 

1.00 
24 

1.00 
30 

1.00 • 
36 

1.18 

Table 2.5: Diagonal elements in product [PI'[PI for the system in Fig.2.4 

1 
25.86 

7 
12.52 

13 
0.73 
19 

0.12 
25 

.0057 
31 

.23E-05 

2 
17.47 

8 
11.72 

14 
0.56 
20 

0.07 
26 

.0024 
32 

.52E-06 

3 
16.46 

9 
11.24 

15 
0.44 
21 

0.05 
27 

.001 
33 

.52E-06 

4 
15.19 

10 
10.49 

16 
0.19 
22 

0.04 
28 

.0005 
34 

.35E-06 

5 
14.98 

11 
7.20 
17 

0.17 
23 

.013 
29 

.18E-03 
35 

-.19E-05 

6 
13.18 

12 
6.25 
18 

0.15 
24 

.0075 
30 

.45E-05 
36 

-.36E-05 

Table 2.6: Diagonal elements in the matrix [V] for the system in Fig.2.4 
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Table 2.7: Stiffness matrix of the undamaged system in Fig.2.5 

Table 2.8: Mass matrix of the undamaged system in Fig.2.5 

56 

1000 
-1000 
0 
0 
0 
0 
0 
0 

-1000 
3000 
-1000 
0 
0 
0 
0 
0 

0 
-1000 
3000 
0 

-1000 
0 
0 
0 

0 
0 
0 

3000 
-1000 

-1000 
0 
0 

0 
0 

-1000 

-1000 
3000 
0 
0 
0 

0 
0 
0 

-1000 
0 

4000 

-1000 
-1000 

0 
0 
0 
0 
0 

-1000 
3000 
-1000 

0 
0 
0 
0 
0 

-1000 
-1000 
3000 

1 
0 
0 
0 
0 
0. 
0 
0 

0 
2 
0 
0 
0 
0 
0 
0 

0 
0 
3 
0 
0 
0 
0 
0 

0 
0 
0 
4 
0 
0 
0 
0 

0 
0 
0 
0 
5 
0 
0 
0 

0 
0 
0 
0 
0 
6 
0 
0 

0 
0 
0 
0 
0 
0 
7 
0 

0 
0 
0 
0 
0 
0 
0 
8 

1000 
-1000 
0 
• 0 
0 
0 
0 
0 

-1000 

2400 
-400 
0 
0 
0 
0 
0 

0 
-400 
2400 
0 

-1000 
0 
0 
0 

0 
0 
0 

3000 
-1000 
-1000 
0 
0 

0 
0 

-1000 
-1000 
3000 
0 
0 
0 

0 
0 
0 

-1000 
0 

4000 
-1000 
-1000 

0 
0 
0 
0 
0 

-1000 
2500 
-500 

0 
0 
0 
0 
0 

-1000 
-500 
2500 

Table 2.9: Stiffness matrix of the damaged system in Fig.2.5 
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Y 
0 

2.35 
3.75 
4.50 
4.50 
3.75 
2.35 

CONTROL 
C0NTR0L.END 
NODES 
NODE X 
I 0 
3 .85 
5 2.25 
7 4.05 
9 5.95 

II 7.75 
13 9.15 
ELEMENTS 
ELEMENT.TYPE = 34400 
NUMBER PROP TOPOLOGY 
I 1 1 2 
3 1 2 3 
5 1 2 4 
7 1 5 7 
9 1 6 7 
II 1 68 
13 1 9 11 
15 1 10 11 
17 1 10 12 
19 1 13 14 
BEAMS 
SECTION MATERIAL 
1 11 
MATERL^L 
MATERIAL.NUMBER 
11 
LOADS 
CASE NODE 
1 4 
ACTTVE.FREEDOMS 

NODE 
2 
4 
6 
8 

10 
12 
14 

X 
.85 

2.25 
4.05 
5.95 
7.75 
9.15 
10.00 

NUMBER 
2 
4 
6 
8 

10 
12 
14 
16 
18 
20 

PROP 

1 

Y 
1.50 
2.75 
3.40 
3.40 
2.75 
1.50 

0 

TOPOLOGY 
1 3 
35 
4 5 
4 6 
7 9 
89 
8 10 

11 13 
12 13 
12 14 

IYY 
1.666E-9 

E 
209 E5 

IZZ 
6.666E-9 

TORS.CONST 
4.6E-9 

AREA 
2.0E-4 

NU 
.3 

RO 
7860 

NODE 
2 
R20 
RESTRAINTS 
NODE 
1 
2 
Rl l 1 
14 

DIRECTION 
12 
00 

DIRECTIONS.OF.LOAD 
2 

PRINT.CONTROL 
2 
0 

VALUE.OF.LOAD 
10 

DIRECTION 
0 
3 
0 
0 

MODES.AND.FREQUENCIES 
AUTOMATICMASTERS MODES 
0 10 
MASTERS 
NODE.NUMBER DIRECTION 
2 12 
Rll 1 00 
END.OF.DAT 

Table 2.10: Data file in PAFEC FE for deriving mass and stiffness for truss in fig.2.6 
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FIG.2.1: Normalized random error as a function of coherence and number of averages 
( Reference B & K 2032 Manual; Volume 1) 
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FIG.2.2: Normalized random error vs number of averages 
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Start 

Read fiJes for spatial data 
of undamaged structure 

Calculate the number 
of unknowns 

Use {aD(co))k from 
damaged structure at 

selected frequency range. 

Calculate ([T]+[S]) to 
obtain [P] and [V] 

Calculate [P]^[P] and select 
valid eigenvalues 

Reselect or increase 
frequency points 

Number of valid eigenvalues 
greater than or equal to 'F' 

No 

Yes 

Calculate [k] and 
obtain [K]D 

T 
End 

FIG.2.3: A flowchart of program for computer implementation of CMDQ method 
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CHAPTER 3 

DAMAGE LOCATION IN A STRUCTURE USING 

MEASURED FREQUENCY RESPONSE FUNCTION DATA 

3.1 INTRODUCTION 

The CMDQ method suggested in Chapter 2 was aimed at determining directly 

the extent of damage in a structure. An alternative procedure is to treat the 

problem in a decoupled fashion: first determine the location of damage and then 

concentrate only on the damaged area of the structure to find the extent of 

damage. If the damage can be located beforehand, an algorithm which works 

only with the part of the structure where the damage is located, need to handle 

matrices of much smaller size. This reduces the computational effort and 

increases the capacity to accommodate inaccuracies in the FRF data. 

With this concept in mind, a technique suitable for locating structural damage is 

next developed. The outcome is used in later chapters where techniques which 

work only with the damaged part of a structure are presented. 

Researchers in the past have explored the possibility of locating structural 

faults. However, almost all the methods developed for this purpose depend on 

modal parameters. The application of the Cross Random Decrement method for 

locating damage in a scale model of an offshore platform structure had been 

demonstrated by Tsai, et al. [42]. Their paper demonstrates that the correlation 
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between changes of relative phases at various positions can be succesfuUy used 

to locate damage in a structure. 

In another publication by Akgun and Ju [43] the authors used transmissibility 

changes in a structure caused by damage as a feasible means to diagnose 

structural damage. Rizos, et al. [44] made an attempt to locate a crack in a 

cantilever beam by using vibration modes. In addition to the methods discussed 

above, Lin [45] in his work suggested determining the flexibility matrix using 

experimental data and then multiplying it by the original stiffhess matrix to 

identify the row and/ or column that differs significantly from a row and/ or 

columns of the identity matrix, thereby indicating the DOFs affected. However, 

with the flexibility matrix built up using noisy data it is hard to obtain the 

pattern suggested by Lin and often damage location becomes uncertain. Pandey, 

et al. [46] suggested a method of damage detection using the change in the 

curvature of mode shapes as the indicating factor associated with damage 

location. The authors have also shown that even for situations where the MAC 

and COMAC are not sensitive enough to detect damage, the application of the 

curvature mode shapes succeeded in detecting damage. 

A comparison between some techniques which used natural frequency and 

mode shape data to locate damage has been given by Fox [47]. Based on his 

findings. Fox concluded that the change in natural frequencies and MAC values 

were reasonable indicators of the presence of damage but by themselves they 

were not sufficient enough to indicate the correct location of damage accurately 

enough. According to Fox, plots of the difference and relative difference in the 

mode shapes of a particular mode whose frequency has been affected provides a 
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better tool for damage location. Law, et al. [48] applied the sensitivity equations 

which relate the changes in FRF and phase differences to elemental change for 

detecting damage in a scale model of a bridge deck. However, the experimental 

results obtained by the author using this technique failed to give good results. 

Joon-Ho Kim, et al. [49] showed the feasibility of locating faults by combining 

the concepts of the Partial MAC (PMAC) and the Co-ordinate MAC 

(COMAC). The important issues associated with the use of experimentally 

derived modal parameters as a means of structural fault detection have been 

discussed by Richardson and Mannan [50]. This paper may be regarded as a 

report aimed at highlighting the most common problems likely to be faced 

while trying to detect structural damage from changes in modal parameters. The 

authors suggested the application of neural networks in the field of damage 

detection to utilise it as an effective on-line monitoring system. 

Doebling, et al. [51] presented the experimental results obtained when a model 

updating algorithm which relied on an unconstrained minimization of the 

Frobenius norm of modal dynamic residuals was employed to detect damage in 

a suspended truss. Although the method worked well for a cantilevered truss 

structure it failed to locate damage for the suspended truss. Lim and Kashangaki 

[52] presented a method which used measured modes and frequencies to 

compute the Euclidean distances between the measured mode shapes and the 

best achievable eigenvectors to identify the damaged element directly without 

identifying the DOFs affected by damage. Although the method was found to 

be successful in locating a single area of damage, multiple areas of damage 

could not be located by the algorithm in a single attempt. Sheinman [53] located 
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damage directly by identifying the DOFs where force residue was not zero. This 

can be done with a single measured mode provided the concerned mode is 

affected by damage in question. 

All the research work reviewed in the previous paragraph had their origins in 

system identification techniques, where the analytical model of the undamaged 

structure along with modal parameters of the damaged structure have been used 

to locate damage. To eliminate the disadvantages associated with the use of 

modal data, the damage location method to be presented in this chapter uses the 

measured FRF data of the damaged structure instead of modal data. This 

location method will be computationally attractive as it involves only matrix 

multiplication. As a result, the method has been found to be robust to 

measurement noise and expansion errors. As the discrepancy increases between 

the RFRFs of the structure before and after damage, the level of robustness of 

the method to accomodate measurement noise also increases. 

3.2 THEORY OF DAMAGE LOCATION USING FRF DATA 

It is assumed that an N DOF finite element model of the undamaged structure 

exists and is given by, 

[M]{x} + [K]{x} = {0} (3.2.1) 

where [M] and [K] are the NxN analytical mass and stiffiiess matrices, {x} is an 

Nxl vector of displacements. 
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If a single column of RFRF at a particular frequency Cl is given by {a(Q)}, then 

it follows that: 

([K]uD - Q'[M]uD){auD(^)}k= ([K]D - Q'[M]D){ao(Q)}k (3.2.2) 

or, ([Z(Q)]uD){auD(^)}k= ([Z(n)]D){aD(Q)}k (3.2.3) 

The dynamic stiffness matrix before and after damage is related by: 

([Z(Q)]D = [Z(Q)]uD - [AZ(Q)] (3.2.4) 

Hence, equation (3.2.3) can be written as 

[Z(Q)]uD{auD(^)}k = ([Z(Q)]uD- [AZ(Q)]){aD(Q)}k (3.2.5) 

or, [Z(Q)]uD({aD(^)}k- {auD(^)}k) = [AZ(Q)]{a^(Q)}^ (3.2.6) 

or, [Z(Q)]uD{Aa(Q)}k= {d(Q)} (3.2.7) 

where the vector {Aa(Q)}k represents the difference in RFRFs between the 

damaged and undamaged structure at a frequency Q. The right hand side of 

equation (3.2.7) represents a vector which indicates damage. The j element of 

that vector will be zero if the j row of matrix [AZ(Q)] is zero. In contrast, a 

degree of freedom which has been affected by damage will result in a non-zero 

entry in the vector {d(Q)}. Hence, a straight multiplication of the undamaged 

dynamic stiffiiess matrix and the vector {Aa(Q)}k will generate a vector {d(Q)} 

which will have non-zero values corresponding to damaged DOFs and zero for 

undamaged DOFs. 
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For measurements which are free of error, it is relatively simple to obtain the 

zero non-zero pattern as described above. However, in practical applications 

where the measurements are contaminated by various errors, it is impossible to 

obtain the pattern described above. In addition, if the norm of a few rows of 

dynamic stiffness matrix are much larger or smaller than others, then the vector 

{d(Q)} generated by this method may not be successfiil in locating damage. 

This can be further explained by reference to the simple 5 DOF chain system 

shown in figure 3.1 for which the stiffness element between DOFs 2 and 3 is 

much stiffer than the other elements. This results in rows 2 and 3 of the 

undamaged dynamic stiffness matrix of this system having a much bigger norm 

compared to other rows. 

For this 5 DOF system, equation (3.2.7) becomes: 

•Z,,(Q) Z, , 

Z,. Z,,(Q) Z, '23 

'32 

'43 z,.(Q) z,, 
Z34 Z33(Q)_ 

fAa,(Q)l 
Aa,,(Q) 

Aa3 , (Q) 

Aa,,(Q) 

[Aa3,(Q) 

= {d(Q)} 

Assuming the damage is located between DOFs 4 and 5, error free FRF data 

will lead to: 

Z„(Q)Aa,k(Q) + Zi2Aa2k(Q) = 0.0 

Z21 Aaik(n) + Z22(Q)Aa2k(Q) + Z23Aa3k(Q) = 0.0 

Z32Aa2k(Q) + Z33(Q)Aa3k(Q) + Z34Aa4k(Q) = 0.0 

(3.2.8) 

(3.2.9) 

(3.2.10) 
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Z43Aa3k(co) + Z44(Q)Aa4k(co) + Z45Aa5k(Q) ̂  0.0 (3.2.11) 

Z54Aa4k(0) + Z55(Q)Aa5k(Q) ̂  0.0 (3.2.12) 

In the following section between equations (3.2.13) and (3.2.19), the frequency 

sign Q is omitted from dynamic stiffness and RFRF terms in order to 

accomodate the equations in a single line. Since the measured FRF data will be 

inevitably contaminated by noise, what actually results are the following: 

Zn(Aaik+ el) + Zi2(Aa2k+ e2) = Z H C R Zi2e2 (3.2.13) 

Z2i(Aaik+ el) + Z22(Aa2k+ e2) + Z23(Aa3k+ e3) = Z2iel+ Z22e2 + Z23e3(3.2.14) 

Z32(Aa2k+ e2) + Z33(Aa3k+ e3) + Z34(Aa4k+ e4) = Z32e2 + Z33e3 + Z34e4(3.2.15) 

Z43(Aa3k+ e3) + Z44 (Aa4k+ e4) + Z45(Aa5k+ e5) = Z43e3 + Z44e4 + Z45e5 

+ Non zero value (3.2.16) 

Z54(Aa4k + e4) + Z55(Aa5k + e5) = Z54e4 + Z55e5 + Non zero value (3.2.17) 

where el, e2, e3, e4 and e5 are the random errors associated with FRFs ao^k? 

«D,2k5 otD,3k5 0CD,4k» otD,5k respectively. As assumed Z22(n), Z23 and Z33(Q) are 

much greater than Zii(Q), Z12, Z34, Z44(Q), Z45, Z55(Q). Therefore, unless the 

error due to damage is appreciably large, the following equations will be 

accurate, 

(Z2iel + Z22e2 + Z23e3)»(Z43e3 + Z44e4 + Z45e5 + Non zero value) or, 

(Z54e4 + Z55e5 + Non zero value) (3.2.18) 

and 

(Z32e2 + Z33e3 + Z34e4) »(Z43e3 + Z44e4 + Z45e5 + Non zero value) or, 

(Z54e4 + Z55e5 + Non zero value) (3.2.19) 
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In such cases, the method will wrongly identify DOFs 2 and 3 as damage 

affected DOFs rather than the DOFs 4 and 5. 

One solution to address this problem is to write equation (3.2.7) as, 

dj(Q) = {ZuD(n)}j{Aa(Q)}k = |iZuD(n)jl! l|Aa(Q)||cos(GoJ) (3.2.20) 

where dj(Q) is the j ^ component (or the j ^ DOF) of the vector at a frequency Q, 

{ZUD(Q)}J is the j row of the matrix [ZUD(Q)] and QQ is the angle between the 

vectors {ZUD(Q)}J and {Aa(Q)}k at a frequency Q. Since in this case, the 

product of {ZUD(Q)}J and {Aa(Q)}k is divided by the norm of a particular row, 

it effectively normalises each row and eliminates the imbalance if a particular 

row has a bigger norm compared to other rows. 

It is apparent in this case that a zero dj(Q) corresponds to a Q^ of ninety degrees 

whereas a non-zero dj(Q) corresponds to an angle different than ninety degrees. 

It is also possible to calculate a vector {p(Q)} whose elements are: 

Pô  = 90-eo-* (3.2.21) 

Therefore a zero PQ-" corresponds to an undamaged DOFs and a non-zero PQ* 

corresponds to damaged DOFs. In this case, the vector {(3(Q)} is called the 

'Damage Location Vector' or DLV. 

Although using the vector angle assisted in eliminating the problem caused by 

the difference in matrix/vector norms as described in the preceding paragraphs. 
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the effects of measurement noise on the damage location algorithm still remain 

to be properly addressed. Due to the presence of measurement noise, the 

zero/non-zero pattern will not exist. Even for DOFs unaffected by damage, the 

effect of noise may result in a value for the corresponding element in the 

'Damage Location Vector' which is too large to be ignored. 

The use of FRF data over a frequency range helps significantly in reducing 

uncertainties caused by the effect of noise while trying to locate damage in a 

structure. In general, the effect of noise on measurement varies randomly 

depending on the frequency of measurement. If the elements (corresponding 

DOFs) in the 'Damage Location Vector' are plotted over a certain frequency 

range, then the values of elements due to noise in the measurement only will 

follow a random pattern, becoming negligible at certain frequency points and 

becoming notable at others. In contrast, the elements in the 'Damage Location 

Vector' due to genuine damage, will occur more consistently with a greater 

amplitude and with a definite pattern. 

A 3-D graph can be drawn to locate damage. The first axis of the graph 

corresponds to the DOFs in the 'Damage Location Vector', the second axis 

indicates the frequency range over which the damage location algorithm is 

applied and the third axis represents the values obtained for the elements in the 

'Damage Location Vector'. Using such a 3-D graph, a regular pattern can be 

identified corresponding to the damaged DOFs. In contrast, the elements in the 

'Damage Location Vector' whose values are due only to the effect of noise, will 

follow a random pattern with insignificant amplitudes when plotted over a 

certain frequency range. This 3-D graph is referred to as 3-D 'Damage Location 
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Plot' or DLP and it enables a more reliable identification of damage. This 3-D 

graph is attributable to the use of FRF data since FRF data at different 

frequencies provide abundant information which can be used to locate damage 

with greater reliability. Such a feature would not have been possible if modal 

data were used. 

Instead of drawing a 3-D DLP, it is possible to obtain similar results by 

projecting the 3 dimensional DLP onto a 2 dimensional plane. This means that 

the absolute values of the DLV obtained over a frequency range be added to 

each other to obtain a resultant vector called here a 'Cumulative Damage 

Location Vector' or CDLV. This CDLV can be plotted in a 2 dimensional graph 

where the first axis corresponds to the DOFs and the second axis represents the 

elements of the CDLV. Since the elements in the DLV due to damage will be 

mostly bigger than that due to noise, the CDLV will magnify it greatly making 

it easier to isolate the location of damage. 

3.3 COMPATIBILITY OF MEASURED AND ANALYTICAL DATA 

In creating an analytical model, it is possible to discretize a structure into a large 

number of DOFs to represent the structure accurately. This model is often used 

in conjunction with the measured FRF data of the same structure after it has 

suffered damage in order to locate structural damages. However, an important 

issue to be addressed is the incompatibility between the analytical model and 

the measured FRF data in respect to the coordinates employed. Usually, an 

analytical model will use a far greater number of coordinates to describe the 

vibration characteristics of a structure than is practicable with measured data. 
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The approach to resolving the incompatibility problem can be broadly classified 

in either of the following two ways: 

(i) by reducing the analytical model of the undamaged structure to the 

corresponding measured DOFs 

(ii) by implementing a procedure that will expand the measured data so that 

they are compatible coordinate wise with the analytical model. 

3.3.1 Reduction techniques 

The computational cost of eigenparameters of large systems can be large. At the 

same time only the information in a limited low frequency range is needed. As a 

result, different condensation techniques have been developed for reducing the 

full eigenproblem to a much smaller one. The earliest and probably the most 

commonly used reduction technique is usually referred to as static condensation 

or Guyan Reduction and can be found in publications by Guyan [54] and Irons 

[55]. In contrast to Guyan's method for reducing the size of stiffness and mass 

matrices based on the displacement method, Kaufman and Hall [56] derived a 

reduced mass matrix identical to Guyan by using a force method. 

The error introduced while using static condensation is heavily dependent on 

the selection of DOFs to be retained. Hu and Zheng [57] attempted to minimize 

the loss of accuracy induced by the poor or improper selection of masters by the 

use of a perturbation technique. Similar attempts to improve the accuracy of the 

Guyan Reduction method were attempted by Conti [58]. A better technique than 

static condensation was found to be dynamic condensation and Kidder's 
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approach [59] was one of the earliest. Subsequently, publications by Leung 

[60], Downs [61], Paz [62] and Petersman [63] all used techniques which can be 

broadly categorised as dynamic condensation. 

Suarez and Singh [64] also used a dynamic condensation method in proposing 

an iterative method which starts with a trial condensation matrix to form a 

condensed eigenvalue problem. Some work in this area has been reported which 

can be classified under system balancing. Moore [65] used balanced 

controllability and observability to obtain a reduced model. Yae and Inman [66] 

proposed a method in which the Guyan reduced model was converted to state 

space and further reduced by system balancing. 

In addition to the methods discussed above, the Improved Reduced System 

(IRS) by O'Callahan [67] extended the Guyan method by adjusting the modal 

matrix estimate by taking into account inertial effects associated with the 

deleted DOFs in the transformation matrix. The System Equivalent Reduction 

Expansion process (SEREP) by O'Callahan, et al. [68] had been suggested in 

recent years and was found to be more accurate than previous methods. 

All the methods mentioned above use modal parameters to carry out the 

reduction of the original model. The measure of success of the reduction 

techniques is gauged by the degree of similarity of the eigenparameters 

generated by the reduced model and those of the original model. In other words, 

reduction techniques employed to reduce the original model can be regarded as 

successful only if the eigenproperties of the original model and reduced model 

are similar. 
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Instead of using modal parameters, an attempt was made in this study to use 

RFRF data to reduce the original model. However, while using RFRF data it 

was found that the modal parameters generated by the reduced model were 

similar to that of the original model when the RFRF data chosen for reduction 

were at frequencies very close to the natural frequencies of the system. This can 

result in problems in practical applications while trying to measure RFRF data 

at the natural frequency of the system. 

Irrespective of whether modal data or FRF data is used, the reduced model is 

never found to be physically identical to the original model. This feature was 

quite expected since the idea behind obtaining a reduced model was not to 

ensure that the reduced model and the original structure had the same physical 

properties, but only to ensure that their modal properties were as similar as 

possible. It was found that the connectivity of the reduced model was not 

similar to the original model. This meant that if in the original model DOF 1 

was not connected to DOF 4, the model obtained after reduction might indicate 

that they were connected. It essentially means that the reduced model fails to 

reflect the physical characteristics of the original system. This particular feature 

makes it difficult to use the reduced model for structural damage location. 

Most of the damage location algorithms based on system identification 

techniques need a spatial model of the undamaged structure which is used along 

with the measured data from the damaged structure to determine the location 

and extent of damage. Therefore, for the damage location method to succeed it 

is important for the spatial model to physically represent the structure correctly. 

If the model used for damage location represents coimectivities which do not 
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exist in the actual structure, the algorithms for damage location may falsely find 

locations of damage in areas which are practically impossible. Hence, the use of 

a reduced model, which does not correctly represent the connectivity of the 

original structure, fail to produce satisfactory results from the damage location 

point of view. As a result, for damage location, the only way to solve the 

problem of compatibility is to expand the measured RFRF data so that they are 

compatible with the analytical model. 

3.3.2 Expansion techniques 

The process of interpolating data corresponding to coordinates or DOFs which 

have not been measured may be termed coordinate expansion. The task of 

expanding measured mode shapes using analytically derived properties has 

been the subject of considerable investigation and three different approaches 

have been identified. The first approach for mode shape expansion was 

proposed by Kidder [59] who used the mass and stiffhess matrices of the 

analytical model to compute the missing DOFs in the measured mode shape. 

The approach is equivalent to an inverse Guyan Reduction where the slave co

ordinates are recovered in terms of masters. 

The second approach as discussed seperately by O'Callahan, et al [68] and Roy, 

et al [76] relied on the assumption that the mode shape values corresponding to 

the full system model can be expressed as a linear combination of the mode 

shape values corresponding to the DOFs to be retained in the reduced model. 

The SEREP method discussed by O'Callahan, et al [68] was originally 

formulated as a global mapping technique to develop rotational DOFs for modal 
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test data by the same author [69]. In addition to that SEREP has been 

successfully employed in a variety of applications such as checking correlation 

and orthogonality between analytical and experimental modal vectors by 

Avitable, et al [70], linear and nonlinear forced response studies by Avitable, et 

al [71], and analytical model improvement by O'Callahan, et al [72]. 

Although, O'Callahan, et al [68] applied SEREP on a simple structure to 

demonstrate the accuracy of the reduced model, the method has been found to 

be reversible in the sense that expanding the reduced system's mode shapes 

back to the full system's space, develops mode shapes that are exactly identical 

to the original mode shapes of the full system model. The third approach which 

involved the interpolation/extrapolation of the measured DOFs to those of the 

full model by adopting a spatial interpolation approach was employed by 

Williams and Green [73] and Waters and Lieven [74]. Due to the problems 

associated with complex spatial descriptions and sudden changes of geometry, 

there have been relatively few examples of this technique being applied to 

structural dynamics. The main application area of this technique is the wing 

aeroelasticity where the mesh sizes for fluid and structure are incompatible as 

shown by Harder, et al [75]. 

In what follows, the expansion techniques mentioned in the first and second 

approaches for expanding mode shapes are used here to interpolate RFRF data. 

Subsequently these interpolated FRF data will be used together with measured 

FRF data in order to locate damage in a structure. The coordinates in the 

damaged structure for which RFRF data has been measured are given the 



Chapter 3: Damage location in a structure using measured frequency response function data 

superscript "m" and those which have not been measured and need to be 

interpolated are given the superscript "u". 

(i) Dynamic expansion techniques: 

Using equation (3.2.6): 

[Z(Q)]uD{Aa(Q)}k= [AZ(Q)]{aD(Q)}k (3.2.6) 

The vectors {Aa(Q)}k and {aD(n)}k are partitioned into measured and 

unmeasured parts so that it can be written as: 

JAaCQ)), = 
Aa"(Q) 

Aa"(Q) 
and a,(Q)) = 

a^(Q) 

la;(Q), 
(3.3.1) 

As per the ordering of {Aa(Q))^ and {ao(Q)}^, the dynamic stiffness matrix for 

the undamaged structure, for which it is assumed that a complete FE model is 

available, is reordered to become [Z(Q)]UD, thus 

z,.(^)j \h2S9. 
Z„(Q) Z,,(Q) 

Aa"(Q) 

Aa"(Q) 
= [AZ(Q)1 

a^(Q) 

La"o(a)J, 
(3.3.2) 

-•UD 

This expansion method basically ignores the right hand side of equation (3.3.2) 

and tries to interpolate {Aa"(^)} by equating the left hand side of equation 

(3.3.2) to zero. By doing so, the interpolated DOFs will not contain information 

about structural damage although a full RFRF vector becomes available for 

file:///h2S9
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using in equation (3.2.7) for damage location. In this work {Aa(Q)} has been 

interpolated instead of {aD(Q)}. This have been done for two main reasons. 

Firstly, the use of {Aa(Q)} ensures that the only non zero elements in the right 

hand side of equation (3.2.7) are due to damage in the structure. Otherwise use 

of {a£)(Q)} would mean that the vector to be used for locating damage will 

contain a unity element other than the elements due to damage. The position of 

the unity element in the vector will vary depending on the coloumn of FRF 

matrix being used. This will introduce unnecessary complexities which can be 

avoided by interpolating {Aa(D)}. 

Secondly, the damage location vector proposed in this work uses {Aa(Q)} and 

once {Aa(Q)} is known, it can be used directly to locate damage. However, 

regarding {Aa(Q)} and {aD(Q)}, if either is known, the other can be readily 

computed. Equation (3.3.2) can be written as two matrix equations as follows: 

Z,,(Q)] {Aa'"(Q)}^ +[z„(Q)]^{Aa"(Q)}^^ = {0} (3.3.3) 

Z,,(Q)] {Aa"(Q)}^ + [z^ ) ]^{Aa" (^ )}^ = {0} (3.3.4) 

Three methods are available to calculate the RFRF data for unmeasured co

ordinates from equations (3.3.3) and (3.3.4), all being in the form of 

{Aa"(Q)}^ = [TR]{Aa'"(Q)}^ (3.3.5) 

Each method has a different transformation matrix [TR] which are discussed 

next: 



Chapter 3: Damage location in a structure using measured frequency response function data 85 

Dynamic expansion A (D.E A) 

From equation (3.3.4), it can be shown that by calculating the inverse of the 

partitioned dynamic stiffness matrix corresponding to unmeasured DOFs, the 

transformation matrix becomes: 

[TR] = - K 22 -Q' 
UD 

M 22 
UD. 

[K„] -Q M 21 
UD 

(3.3.6) 

Here, the partitioned dynamic stiffness matrix corresponding to unmeasured 

DOFs is a square matrix and has a dimension of (N-m)x(N-m) where "N" is the 

number of DOFs for the structure and "m" is the number of measured DOFs. 

Dynamic expansion B (D.E B) 

From equation (3.3.3), the transformation matrix given below in equation 

(3.3.7) can be derived: 

[TR]=-[[y ̂  - "iMiil^fN^ - "1M UD 
(3.3.7) 

In this method, the transformation matrix is obtained by calculating the 

generalised inverse of the partitioned dynamic stiffiiess matrix [[KI2]UD " 

Q [MI2]UD] which has a dimension of N x (N-m), and then carrying out a matrix 

multiplication with the dynamic stiffhess matrix corresponding to measured 

DOFs. 

Dynamic expansion C (D.E C) 

From equations (3.3.3) and (3.3.4), one can define matrices [AJ and [A2] as: 
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A,]:= 
K. 

UD 
-a^[M„] 

K 21 - Q ^ 
UD 

M 
21 

UD 

UD-I 

(3.3.8) 

[Aj:= 
K 12 - Q ^ 

JUD 
M 12 

K 22 - Q ' M 
UD ••22 

UD 

UD-

(3.3.9) 

which leads to the following transformation matrix 

[TR] = [A2]"[Ai] (3.3.10) 

This method, in contrast to methods D.E A and D.E B, uses the entire matrix of 

the undamaged structure to build the transformation matrix. Once the 

transformation matrix is built up using any of the three equations given above 

as (3.3.6), (3.3.7) and (3.3.10), the FRF data corresponding to unmeasured 

coordinates can be interpolated using equation (3.3.5). 

riî RFRF mixing 

The second expansion method is one that just fills the FRFs at unmeasured 

coordinates with the corresponding FRFs from the FE model of the undamaged 

structure. As a result, a hybrid FRF vector is formed which will be used as the 

FRF vector for the location of structural damage. 

fiii) System equivalent reduction expansion process (SEREP) 

This method was originally derived for mode shape expansion which solely 

used modal data for expansion. Therefore, in contrast to the dynamic expansion 
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techniques which relied on use of spatial model, the SEREP approach promised 

a significant departure. While using the SEREP approach for interpolating 

modal data corresponding to unmeasured coordinates, the basic assumption was 

that the total modal matrix of a system can be expressed as a linear combination 

of the eigenvectors corresponding to measured coordinates of the same system. 

In the present study, the same concept as suggested by SEREP has been used 

for FRF data. It assumes that the FRF data of the damaged structure at a set of 

frequency points is a linear combination of the FRF data of the same system for 

measured coordinates at the same set of frequency points. In this case the 

transformation matrix may be written as: 

{-M)}i.' i{«.(".)}.Lj=H{{«o(",)}i., {{«.(f̂ .)}j„,; 
or, [AD]NXS = [TR]Nxm [Aolmxs (3.3.1 1) 

where s = number of frequency points at which FRF has been measured. 

Here, [TR] may be taken as a global curve fitting function which projects the 

receptance FRF elements from the group comprising only measured co

ordinates to the complete group. This is exactly what is expected from an 

expansion process. Besides, it is assumed that the transformation matrix built up 

using a set of frequency values is valid for all frequency values within that 

range. 

Since the matrix on the left hand side of equation (3.3.11) is not fiiUy known, it 

is possible to adopt the following approaches for calculating the transformation 

matrix [TR] in equation (3.3.11 ). 
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1.Undamaged structure based (SEREPl) 

ITR1 = [ A J , J A J ; ^ (3,3.12) 

Here, the transformation matrix is built up using the data only from the 

undamaged structure. 

2.Damaged structure based (SEREP2) 

[TR1 = [A„O]„JA„]:_ (3,3.13) 

Here, the transformation matrix is built up by multiplying two matrices. The 

first matrix is built up from data from the undamaged structure and the 

second one from the damaged structure. 

3.Mixing data of damaged and undamaged structure (SEREP3) 

In this approach the matrix on the left hand side of equation (3.3.11) is 

written as a mixture of data from the damaged and undamaged structure. This 

essentially means that each column of the above mentioned matrix comprises 

two parts: the first part corresponds to coordinates which have been measured 

and the second part corresponds to unmeasured coordinates whose value 

have been approximated by the corresponding values for the undamaged 

structure. 

I A 1 = L '̂ J""'̂  
[-^MIXJNXS [ A ] 

_L'̂ UDj(N-m)), 

Hence the transformation matrix in this case may be written as: 
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[TR] = [AM„], . . [A^]*^^ (3,3,14) 

4.Mixing damaged and undamaged structure (SEREP4) 

For this case the transformation matrix may be defined as: 

[TR1 = [A„,X]„JA„1;^ (3,3,15) 

Once these transformation matrix [TR] has been formed using one of the 

approaches described above, it can be used to compute the RFRF corresponding 

to the unmeasured coordinates for the damaged structure using equation 

(3.3.11). 

3.4. RESULTS OF NUMERICAL SIMULATIONS 

In this section numerical studies have been carried out based on a 12 DOF 

mass-spring system (figure 3.2) and a truss structure (figure 3.3) to examine the 

effectiveness of the damage location theory presented in this chapter. 

The 12 DOF mass-spring system shown in figure 3.2 is used to demonstrate the 

damage location algorithm in conjunction with the various expansion methods 

discussed in this chapter. The mass and stiffness matrices corresponding to the 

undamaged case of this system are given in Tables 3.1 and 3.2. It is assumed 

that the mass matrix remains unchanged as a result of damage while the 

stiffhess matrix is changed as given in Table 3.3. The expansion methods were 

evaluated for two cases: (I) no noise is present in the simulated 'measured' FRF 
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data and (II) random noise of 4% is incorporated in the FRF data to resemble a 

practical application. 

For each of these two cases, subcases have been studied by including and not 

including the adjacent coordinates, between where the damage was located, in 

the list of measured coordinates. A three dimensional graph entitled 3-D 

Damage Location Plot has been plotted for each of the case and subcase to 

indicate the location of damage in the system. In the graph, the x-axis indicates 

DOFs, the y-axis represents the frequency range and the z-axis shows values 

describing the damage location. The frequency range used in this numerical 

simulation spans from 20 rad/s to 200 rad/s which essentially covers the first 

four modes of the system. 

Casel 

In the first case, it was assumed that no noise was present in the measured FRF 

data. Damage has caused the stiffness between DOFs 7 and 8 to be reduced by 

30% of the original value leaving the mass of the system unchanged. 

Sub case 1: (co-ordinates included adjacent coordinates between which 

damage was located.) 

This numerical simulation case assumed that measurements were taken at 

coordinates 1, 2, 3, 5, 7, 8 and 11. Since not all coordinates have been 

measured, the RFRFs corresponding to unmeasured coordinates were 

interpolated using the different expansion methods presented in this chapter. 

The interpolated RFRF data corresponding to each expansion technique was 

combined with the measured RFRF data and used to locate damage existing 
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in the structure represented. Figures 3.4A to 3.4H represent the 3-D damage 

location plots obtained by using the damage location algorithm in 

conjunction with different expansion methods discussed. Figure 3.4A 

represents the case in which D.E A was the expansion technique used. It 

clearly shows that the location of damage was between DOFs 7 and 8, since 

there was a consistent peak between DOFs 7 and 8 running over the entire 

frequency range. At certain frequency points there is a crest. However, by 

using a frequency range, damage location appears consistently. This 

highlights the advantage of using FRF data over other data for damage 

location. 

Figures 3.4B to 3.4D represent cases where the method of expansion used 

were D.E B, D.E C and RFRF mixing. However none of these figures show 

the correct location of damage. Of the three cases, D.E C is more preferable, 

since in this case a peak can be located in the region of damage although it is 

still not comparable to D.E A. Figures 3.4E to 3.4H represents the cases 

using SEREPl to SEREP4 as expansion methods, but the 3D graph obtained 

completely fails to indicate the location of damage. 

Therefore, in this particular case, D.E A and to certain extent D.E C can be 

identified as methods working reasonably well when RFRF values 

interpolated for unmeasured coordinate are used in conjunction with 

measured RFRF data to locate damage. 
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Sub case 2: (measured coordinates exclude coordinates between which 

damage is located.) 

In this case, the situation was identical to subcase 1 except that the measured 

coordinates here were 1, 2, 3, 6 8, 11 and 12. This meant one of the co

ordinates between which damage was located (coordinate 7 in this case) was 

not measured. Using D.E A, the damage location results obtained have been 

plotted in figure 3.5A. Again the peaks consistently occured at DOFs 6 and 8. 

Although the DOFs affected due to damage were 7 and 8, the results shown 

in figure 3.5A pinpoints the location of damage between DOFs 6 and 8. This 

is a reasonable result, since DOFs 6 and 8 were the measured coordinates 

closest to the location of the damage. FRF data at DOF 7 have been 

interpolated by using data corresponding to undamaged structure and 

therefore it cannot reflect damage. Thus the peaks occured at the nearest 

measured coordinate with respect to damage. It was also found that if the 

measured coordinates had been 1, 3, 11 and 12 (neither DOF 7 nor 8 

measured), then this method indicates the location of damage between DOFs 

3 and 11, which are the nearest measured coordinates with respect to the 

damage. However, in the high frequency region the situation deteriorates and 

the reasons will be explained in Section 3.5. 

Figure 3.5B represents the results plotted for D.E B. The results indicate that 

the location of damage was between DOFs 7 and 9. This result may appear to 

be encouraging, but it was obtained when the number of measured 

coordinates was greater than the number of unmeasured coordinates. For 

situations where the number of measured coordinates was less than the 

number of unmeasured coordinates, which is most often the case, the results 
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dramatically worsen. Therefore, D.E B may not be regarded as a very reliable 

method to interpolate FRF data to be used subsequently for damage location. 

Figure 3.5C plots the result when using D.E C, and from the figure the 

location of damage can be roughly estimated to be lying between DOFs 6 

and 8 which were the nearest measured coordinates. Figure 3.5D is the 3D 

graph obtained using the FRF mixing method from which no indication can 

be obtained regarding the location of damage. The results obtained using 

SEREPl to SEREP4 have been plotted in figures 3.5E to 3.5H. However, 

using these figures, no estimate can be made regarding location of damage. 

As in subcase 1, D.E A seems to be the best choice for interpolating RFRF 

for unmeasured coordinates to locate damage. Although not as good, the 

results generated using D.E C seems to be the only other alternative as all the 

remaining methods failed completely to give any indicitation of damage 

location. 

Case II 

In this case, measurement noise was simulated by introducing a 4% random 

error to the amplitude of the real part of the generated FRFs. Since in these 

examples, the system was undamped, the FRFs had zero imaginary part. For 

the same system as defined in Tables 3.1, 3.2 and 3.3, subcases 1 and 2 in case 

I were repeated with the difference that FRF data now contains random noise. 

Subcase 1 

Assume that measurements at coordinates 1, 2, 3, 5, 7, 8 and 11 has been 

taken. Figures 3.6A to 3.6C represent the cases where location was attempted 
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after interpolating the unmeasured coordinates using expansion methods D.E 

A, D.E B and D.E C respectively. Similar to the noise free case, D.E A 

succeeded in locating the damage clearly, while a reasonable result was 

achieved using D.E C. In comparison to noise free cases, spurious peaks due 

to noise can be observed throughout the range. Unlike the peaks due to 

damage which are consistent over the entire frequency range, the peaks due 

to noise occured off and on becoming more prominent in regions where the 

peak due to damage reaches a crest. In general, the peaks due to noise were 

found to be not as prominent as the peak due to damage. By running the 

algorithm over a wide frequency range, instead of at a few frequency points, 

damage could be located easily and with reliability. 

Results obtained using D.E B and FRF mixing are plotted in figures 3.6B and 

3.6D. Both of them failed to locate the damage. Since the examples with pure 

data have already shown the uselessness of SEREP in the context of damage 

location, the results have not been shown here. 

For noisy FRF data, the Cumulative Damage Location Vector (CDLV) is an 

alternative to the 3-D damage location plot for locating damage. For this 

particular subcase, an attempt was made to locate damage by using the 

CDLV (using FRF data from frequency points spanning between 20 to 200 

rad/s in steps of 1). Using D.E A, D.E B, D.E C and FRF mixing to 

interpolate the unmeasured coordinates, the CDLV was plotted as given in 

figures 3.6A/1 to 3.6D/1. From the results obtained, it appears that the CDLV 

follows the same trend as seen in the 3-D damage location plot. The damage 

could be readily located when using D.E A as shown in figure 3.6A/1. For 
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D.E C, a rough estimate can be made as shown in figure 3.6C/1. However, no 

indication about damage location is available from figures 3.6B/1 and 3.6D/1 

which used D.E B and FRF mixing to interpolate unmeasured coordinates. 

Subcase 2 

As in subcase 2 of case I, measurement at coordinates 1, 2, 3, 6, 8, 11 and 12 

were assumed to be available. With noise, the results obtained followed the 

same trend as for the noisefree case, except that the presence of noise in the 

measurement caused spurious peaks, thereby making the damage location 

less distinct. Using D.E A as the expansion method, figure 3.7A indicates the 

location of damage between DOFs 6 and 8 which were the nearest measured 

coordinates. In addition to peaks in the region of damage, spurious peaks due 

to noise were also present but were much less consistent and prominent. In 

figure 3.7C, D.E C was used for expansion and the results obtained, though 

clear enough, were less prominent than for D.E A. 

For both D.E A and D.E C, the results for damage location progressively 

deteriorates into the higher frequency region and are consistent with the 

results obtained for case I subcase 2. Figures 3.7B and 3.7D show the results 

obtained using D.E B and FRF mixing. RFRF data interpolated using these 

methods failed altogether to locate damage, as is evident from figures 3.7B 

and 3.7D. For this subcase too, the CDLV was plotted for D.E A, D.E B, D.E 

C and FRF mixing as given in figures 3.7A/1, 3.7B/1, 3.7C/1 and 3.7D/1 

respectively. Like using 3-D damage location plot, the CDLV also indicated 

the location of damage between DOFs 6 and 8 when using D.E A (figure 

3.7A/1) and an approximate damage location when using D.E C (figure 
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3.7C/1). The CDLV generated using D.E B and FRF mixing provides no 

indication of damage location. 

To summarize, D.E A is the most promising method among all methods 

studied for interpolating FRF data corresponding to unmeasured coordinates. 

An alternative is D.E C, although it is not comparable to D.E A in accuracy. 

All other methods studied for interpolating FRF data have proved to be of no 

use in the context of damage location. Moreover, in the context of damage 

location, both the 3-D damage location plot and the CDLV produce similar 

types of results and hence either of them can be used for successful damage 

location with noisy data. 

For a more thorough evaluation, a truss structure as shown in figure 3.3 was 

modelled and damage location method in conjunction with D.E A for 

interpolating unmeasured coordinates was attempted on this model. The 

PAFEC FE data file used to generate the mass and stiffhess matrix for this 

structure is given in Table 3.4. A random error of 4% was incorporated into the 

amplitude of RFRF data to simulate noise. The error was introduced into the 

amplitude of the RFRF data which did not have an imaginary part since it was 

assumed that the system was undamped. 

The structure was modelled using PAFEC FE software. The element type 

selected during this modelling was element number 34400 in the PAFEC 

routine. This particular element has three DOFs at each node which are all 

translational. For this particular truss structure, it is assumed that nodes 1 and 2 

were totally encastered. For the remaining nodes movement was allowed in the 
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X- and Y- direction only. Each element was assumed to have a cross sectional 

area of .0002 m^ with IYY equal to 1.666E-9 m"̂  and IZZ equal to 6.666E-9 m^ 

The material selected for the structure had a Young's Modulus of 209E+4 
2 ^ 

N/m , Poisson's ratio of 0.3 and density of 7860 kg/m . The horizontal and 

vertical members of the truss structure each has a length of 0.1 m and the 

diagonal elements have a length of 0.14 m each. Mass and stiffhess matrices of 

the structure were generated using PAFEC FE software. In this particular study, 

two damage cases were simulated seperately. 

(1) The horizontal member between Nodes 7 and 8 have been damaged. 

(2) The diagonal member between Nodes 8 and 9 have been damaged. 

In both the cases, damage was simulated by changing the Young's Modulus of 

that particular member by 40% to ensure that only the stiffhess is affected. The 

mass of the structure was not altered as structural damage was supposed to 

affect the stiffiiess of the structure much more significantly than mass. 

For each of these two cases, subcases were studied by varying the coordinates 

measured. For case 1, three subcases have been studied each having the 

measured coordinates: 

(I) 3-x, 4-x, 6-x, 7-x, 8-x, 9-x, 10-x, 14-y. 

(II) 3-x, 4-x, 6-x, 7-x, 8-y, 9-x, 10-x, 14-y. 

(III) 3-x, 4-x, 6-x, 7-x, 10-x, 14-y. 

For case2, the subcases studied had the following measured coordinates: 
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(I) 3-X, 4-x, 5-x, 6-x, 7-x, 8-x, 8-y, 9-x, 9-y, 12-x, 13-x, 14-x 

(II) 3-x, 4-x, 5-x, 6-x, 7-x, 8-x, 9-x, 10-x, 11-x, 12-x, 13-x, 14-x 

(III) 3-x, 3-y, 4-y, 5-y, 6-y, 7-y, 8-y, 9-y, 10-y, 11-y, 12-y, 14-y. 

Since the dynamic stiffhess matrix of this particular structure was not tri-

diagonal, the data interpolated using D.E A cannot be used successfully to 

locate damage unless the measured coordinates include 7-x, 7-y, 8-x and 8-y (i.e 

coordinates between which the damage was located). The reason behind that 

has been explained later in in Section 3.5. Figures 3.8B and 3.8C plots the 3-D 

damage location plot when the measured coordinates were as given in subcase 

II and III for case 1 and were in agreement with the above conclusions. Neither 

of these two results indicates the location of damage successfully. 

However, figure 3.8A which shows the results corresponding to measured 

coordinates as for subcase I case 1, demonstrates successful location of damage, 

(using D.E A to interpolate data corresponding to unmeasured coordinate) even 

when the measured coordinates excluded 7-y and 8-y. In contrast, when the 

damaged member is the diagonal member between nodes 8 and 9, the damage 

location plot given in figure 3.9A succeeded in locating the damage only for 

subcase I case 2 when the measured coordinates included 8-x, 8-y, 9-x and 9-y. 

For both subcases II and III in case 2, the damage location plots given in figures 

3.9B and 3.9C respectively do not provide any idea about damage location. 

On comparing cases 1 and 2 for the truss structure, it is clear that when the 

damaged member between nodes 7 and 8 is a horizontal one, damage could be 

located even when measurement had not been taken at 7-y and 8-y which are at 
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right angles to the orientation of the member. However, when the damage 

affected the diagonal member situated between nodes 8 and 9, measurements 

were required at 8-x, 8-y, 9-x and 9-y to indicate damage location. From this it 

appears, that the orientation of a particular member plays a significant role in 

deciding the direction of measurement for a particular node. This fact can be 

explained by considering that for the horizontal truss member in this example, 

the component of displacement in the vertical direction was negligible. 

Therefore, by not using actual measurement in the direction 7-y and 8-y, the 

error introduced in the the damage location vector at a particular frequency was 

too small to affect the ultimate result. 

On the contrary, the diagonal member considered in case 2 for the truss 

structure, has a significant component of displacement in both the x- and y-

direction. This results in a significant error in the damage location vector if any 

of these are not measured. Since the member 7-8 is oriented in x-direction it is 

more important to measure translational displacement in the x- direction than in 

any other direction for this particular member and for the diagonal member 8-9, 

measurement in both the -x and -y direction for both coordinates 8 and 9 has to 

be taken to ascertain the damage location 

3.5 ANALYSIS OF NUMERICAL RESULTS 

It is apparent from the numerical studies that except for D.E A, none of the 

expansion methods investigated in this work can be accepted as working 

satisfactorily in locating damage. Using a suitable expansion method, it was 

possible to interpolate the RFRF data corresponding to the unmeasured 
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coordinates in the damaged structure. However, due to limitations of the 

existing expansion methods, in most cases the interpolated FRF data are 

different from the FRF data otherwise measured resulting in a difference which 

can be referred to as 'Expansion Errors'. The effect of inaccuracy in FRF data 

introduced due to expansion error has been found to be much more substantial 

than that due to measurement noise. 

Of the different expansion methods studied, the only method which worked 

consistently well in locating damage was the D.E A. It was found that for cases 

where the measured coordinate included the coordinates between which damage 

was located, this damage location method in conjunction with D.E A for 

interpolating values for unmeasured coordinate worked successfully in locating 

damage. However for cases, where the measured coordinates excluded the 

coordinates where damage was located, the method worked successfully only if 

the dynamic stiffhess matrix of the model was effectively a tri-diagonal matrix 

with other elements outside the tri-diagonal band appreciably smaller than those 

inside the band. The model (in figure 3.2) used in this study satisfied the above 

constraint at lower frequencies. 

The reason these methods successfully located damage in such cases was 

because the number of unknowns in a particular equation derived from equation 

(3.3.5) was either two or at the most three due to tridiagonality of the dynamic 

stiffiiess matrix. As a result, the two measured coordinates which were nearest 

to the location of damage acted as a barrier and ensured only the receptance 

interpolated for coordinates within this barrier were erroneous. Consequently, 

the receptance for coordinates outside this barrier were interpolated correctly. 
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However, if the dynamic stiffness matrix was not tri-diagonal, then one 

coordinate may have been cormected to more than two coordinates. 

In such cases, the error due to interpolation could not be restricted within the 

limit mentioned above but spread to almost all the interpolated co-ordinates. As 

a result, the damage location method would fail to indicate the damage when 

using such receptance. To elaborate the above explanation further, an eight 

DOF structure was used for which the dynamic stiffness matrix of the 

undamaged structure was given by [Z(Q)]UD and it was assumed that the only 

damage was located between coordinates two and three, represented by 

[AZ(Q)]. Let the measured coordinates on the damaged structure be 1, 3, 5, 7. 

Without losing generality, it is assumed that the first column of receptance had 

been measured. Hence, a^ ii(Q) aD3i(Q), aD5i(Q) and aD7i(Q) were measured 

and were known. 

As Aa(Q) = aY)(Q.) - auj^iCl), 

it was possible to compute Aaii(Q), Aa3i(Q), Aa5i(Q) and Aa7i(Q). However, 

Aa2i(Q), Aa4i(Q), Aa6i(n) and Aa8i(Q) were obtained by expansion using 

equation (3.3.5). If [Z(Q)]UD is represented by equation (3.5.1) as given next: 
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(3.5.1) 

then equation (3.3.2) yielded the following eight equations, where the symbol Q 

has been omitted from Aa to accomodate each of the following equations in a 

single line: 

a]Aaii+ biAa2i+ CiAa3i+ diAa4i+ e]Aa5i+ fiAa6i+ giAa7]+ hiAa8i= 0 (3.5.2) 

biAaii+ b2Aa2i+ C2Aa3i+ d2Aa4i+ e2Aa5i+ f2Aa6i+ g2Aa7i+ h2Aa8i= X (3.5.3) 

CjAai]+ C2Aa2i+ C3Aa3i+ d3Aa4i+ e3Aa5i+ f3Aa6i+ g3Aa7]+ h3Aa8i= Y (3.5.4) 

diAan+ d2Aa2i+ d3Aa3i+ d4Aa4i+ e4Aa5i+ f4Aa6i+ g4Aa7i+ h4Aa8i= 0 (3.5.5) 

eiAan+ e2Aa2i+ 63Aa3i+ e4Aa4i+ e5Aa5i+ f5Aa6i+ g5Aa7i+ h5Aa8i= 0 (3.5.6) 

fiAaii+ f2Aa2i+ f3Aa3i+ f4Aa4i+ f5Aa5i+ feAagî - g6Aa7i+ h6Aa8i= 0 (3.5.7) 

giAa„+ g2Aa2i+ g3Aa3i+ g4Aa4i+ g5Aa5i+ g6Aa6i+ g7Aa7i+ h7Aa8i= 0 (3.5.8) 

hiAan+ h2Aa2i+ h3Aa3i+ h4Aa4i+ h5Aa5i+ h6Aa6i+ h7Aa7i+ h8Aa8i= 0 (3.5.9) 

Because the unmeasured coordinates were 2, 4, 6, 8, equations (3.5.3), (3.5.5), 

(3.5.7) and (3.5.9) were used for solving the receptance of unmeasured 

coordinates. However, since the values on the right hand side of the above 

equations (equations 3.5.2 to 3.5.9) were not known, it was assumed that they 

were all zero. Therefore in this case it is apparent that this assumption resulted 
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in incorrect value for the right hand side of equation (3.5.3) although it was 

correct for equations (3.5.5), (3.5.7) and (3.5.9). Due to the wrong assumption 

regarding the right hand side of equation (3.5.3), the data interpolated for 

Aa2i(Q), Aa4i(Q), Aa6i(Q) and Aa8i(Q) were also erroneous. 

However, it may be noted at this point that if the measured coordinates included 

the adjacent coordinate between which damage was located, then all the 

interpolated values would be correct. To illustrate such a situation, if it was 

assumed that an(Q), a2i(n) and a3i(Q) were measured, then the equations 

selected for interpolating the unknown receptance would be equations (3.5.5) to 

(3.5.9) and since the assumption regarding the right hand side of these equations 

were correct, the interpolated values using these equations would be accurate. 

Once the values were interpolated, they were put back into equations (3.2.7) or 

(3.2.20) to locate damages. It is apparent in this case that when the measured 

coordinates were 1, 3, 5, 7 the second, fourth, sixth and eighth rows would be 

zero, since they had been equated to zero to interpolate the receptance for 

unmeasured coordinates. However, when the wrongly interpolated values were 

put back into first, third, fifth and seventh rows which corresponded to 

measured coordinates, it changed the actual values for these rows. 

Consequently, the damage location vector took a form which had non-zero 

values in all the elements that corresponded to measured coordinates and zero 

values for rows corresponding to unmeasured coordinates. In this particular 

case, the first, third, fifth and seventh elements would return non-zero values 

with the remaining elements being zero. 
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However, if the model was for a chain system with tri-diagonal dynamic 

stiffiiess matrix, then equations (3.5.2) to (3.5.9 ) becomes: 

aiAan(Q) + b,Aa2i(Q) = 0 (3.5.10) 

biAa„(Q) + CiAa2i(Q) + diAa3i(Q) = Xi (3.5.11) 

diAa2i(Q) + eiAa3i(Q) + fiAa4i(Q) = Yj (3.5.12) 

f,Aa3i(Q) + giAa4i(Q) + hiAa5i(Q) = 0 (3.5.13) 

hiAa4i(Q) + iiAa5i(Q) + jiAa6i(Q) = 0 (3.5.14) 

jiAa5i(Q) + kiAa6i(Q) + liAa7i(Q) = 0 (3.5.15) 

liAa6i(Q) + miAa7i(Q) + niAa8i(Q) = 0 (3.5.16) 

niAa7,(Q) + piAa8i(Q) = 0 (3.5.17) 

Here, if the measured coordinates were 1, 4, 6 then the equations selected for 

interpolating the Aa(Q) for the remaining coordinates would be equations 

(3.5.11), (3.5.12), (3.5.14), (3.5.16) and (3.5.17). Hence due to the wrong 

assumption regarding right hand side of equations (3.5.11) and (3.5.12), 

Aa2i(Q) and Aa3i(Q) had wrongly interpolated values. However the effect of 

wrong values did not fall on equations (3.5.14), (3.5.16) and (3.5.17) and the 

values obtained for unknowns in these equations were correct. 

Therefore, while calculating the 'Damage Location Vector' {P(0)} only the 

first and fourth rows which contained wrongly interpolated Aa2i(Q) ^^^ 

Aa3i(Q) returned non-zero values indicating damage location between DOFs 1 

and 4 which were the nearest measured coordinates with respect to damage. 

Since the right hand side of equations (3.5.11), (3.5.12), (3.5.14), (3.5.16) and 

(3.5.17) were to be zero while interpolating unknown values, all these rows in 



Chapter 3: Damage location in a structure using measured frequency response fiinction data 105 

the 'Damage Location Vector' would also be zero. Regarding the sixth row, 

since the values interpolated for Aa5i(Q) and Aa7i(Q) were correct, it also 

returned correct values. 

From the above discussions, it may be said that if any model had a tri-diagonal 

dynamic stiffhess matrix (i.e similar to a chain model) then the interpolated 

receptance data obtained by the D.E A can be used successfully to locate errors. 

For any model to have a tridiagonal dynamic stiffhess matrix, the following 

conditions need to be satisfied: 

(i) stiffness matrix must be tridiagonal 

(ii) mass matrix must be lumped. 

However for models which have a tridiagonal stiffhess matrix and a consistent 

mass matrix, the dynamic stiffness matrix is not tridiagonal. The elements 

outside the tridiagonal band in the dynamic stiffiiess matrix are due to the effect 

of elements of the mass matrix which lie outside the tridiagonal band in the 

mass matrix, and the frequency at which dynamic stiffness matrix is calculated. 

Even in such cases, if in the dynamic stiffhess matrix the elements outside the 

tridiagonal band are very small compared to those inside the band, then they can 

be effectively ignored without introducing any appreciable error. Consequently, 

in such cases the dynamic stiffhess matrix can be looked upon as a tri-diagonal 

one. However, in order to ensure that the elements outside the tri-diagonal band 

in the dynamic stiffhess are small enough to be neglected the following 

conditions need to be satisfied: 
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i) the stiffness connecting the DOFs has a magnitude which is quite large 

compared to the magnitude of the mass of the DOFs; 

ii) dynamic stiffness matrix must be measured at very low values of frequency. 

In the dynamic stiffness matrix if the value of Q is large, it will push up the 

value of Q [M] even if the elements in matrix [M] are small. In such a case, the 

terms outside the tridiagonal band may not be small enough to be neglected. 

Although in such cases the best results are obtained if Q is zero, but even for 

small values of Q the method works, because the elements outside the 

tridiagonal band in the dynamic stiffness matrix still remain small enough 

compared to elements inside the band that they can be neglected. 

3.6 SUMMARISING REMARKS 

A method has been presented to locate damage in a structure using measured 

Frequency Response Function (FRF) data. In addition, an attempt has been 

made to study the effectiveness of the method in handling FRF data containing 

measurement noise and expansion error. 

A major problem associated with using measured vibration data for locating 

structural damage is the effect of noise on such data. Because of this, it was 

often found that it becomes very difficult to identify the actual location of 

damage. The 3 dimensional Damage Location Plot and the Cumulative Damage 

Location Vector suggested in this chapter provides a usefiil technique for 

identifying the actual location of damage when using noisy data. The use of the 

FRF data instead of modal data in these techniques provide the user with an 
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abundance of data. By using these data over a wide frequency band, the more 

prominent peaks due to damage can be easily identified from the spurious peaks 

occurring due to noise in the 3 dimensional Damage Location Plot. The 

summation effect in the CDLV helps to magnify the peaks caused by damage, 

making their identification easier. 

In addition to noise in the data, the problem of coordinate incompleteness as 

discussed in Chapter 1 is another problem faced while attempting to locate 

structural damage using vibration data. The expansion methods commonly used 

to tackle the problem of coordinate incompleteness while using modal data 

were used here for expanding FRF data. The suitability of the expanded FRF 

data in the context of damage location was examined. A comparitive study of 

the different expansion methods from the point of damage location has also 

been carried out. Based on the study carried out in this work, it appears that D.E 

A is the most suitable expansion method in the context of damage location. 

However, when the measured coordinates do not include the coordinates 

between which damage is located, it was found that the data obtained using D.E 

A produces reliable results in the low frequency region and for certain types of 

structures. 
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Table 3.1; Mass matrix of the iindamaged/ciamaged system in Fig.3.2 

60000 
-30000 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

-30000 
60000 
-30000 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
-30000 
50000 
-20000 
0 
0 
0 
0 
0 
0 
0 
0 

0 
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Table 3.2: Stiffness matrix of the undamaged system in Fig.3.2 

60000 
-30000 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

-30000 
60000 
-30000 
0 
0 
0 
0 
0 
0 
0 
0 
0 
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50000 
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0 
0 
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0 
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-30000 
60000 
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0 
0 
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0 
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60000 

Table 3.3: Stiffness matrix of the damaged system in Fig.3.2 
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CONTROL 
CONTROL.END 
NODES 
NODE 
1 
3 
5 
7 
9 
11 
13 
ELEMENTS 

X Y 
0 0 
0 .1 
0 .2 
0 .3 
0 .4 
.2 .3 
.3 .4 

ELEMENT.TYPE = 34400 
NUMBER 
1 
3 
5 
7 
9 
11 
13 
15 
17 
19 
21 
23 
25 
27 
29 
BEAMS 
SECTION 
1 
MATERL\L 

PROP TOPOLOGY 
1 13 
1 2 3 
1 3 5 
1 3 4 
1 4 6 
1 5 7 
1 67 
1 7 8 
1 8 9 
1 8 10 
1 10 11 
1 811 
1 11 12 
1 12 13 
1 12 14 

MATERIAL IYY 

NODE 
2 
4 
6 
8 

10 
12 
14 

NUMBER 

11 1.666E-9 

MATERIAL.NUMBER E 
11 
LOADS 
CASE 
1 

209E4 

NODE 
4 

ACTIVE.FREEDOMS 
NODE 
3 
Rl l 1 

DIRECTION 
12 
00 

RESTRAINTS 
NODE 
1 
2 
3 
Rll 1 

DIRECTION 
0 
0 
3 
0 

MODES.AND.FREQUENCIES 
AtHDMATlCMASTERS 
0 
MASTERS 

2 
4 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 

IZZ 

x 

.2 

.3 

PROP 

Y 
0 
.1 
.2 
.3 
.4 
.4 
.4 

TOPOLOGY 
14 
2 4 
3 6 
4 5 
5 6 
5 8 
68 
7 9 
7 10 
9 10 
8 12 
10 12 
11 13 
11 14 
13 14 

TORS.CONST AREA 
6.666E-9 4.6E-9 2.0E-4 

NU 
.3 

RO 
7860 

DIRBCTIONS.OF.LOAD VALUE.OF.LOAD 

MODES 
10 

NODEIJUMBER DIRECTION 
3 
Rl l 

12 
1 00 

END.OF.DAT 

2 10 

PRINT.CONTROL 
2 
0 

Table 3.4: Data file in PAFEC FE for deriving mass and stiffness for truss in fig.3.3 
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HIG.3.3: A Truss structure (Model 3.3) 
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CHAPTER 4 

SUBMATRIX APPROACH FOR DETERMINING DAMAGE 

EXTENT IN A STRUCTURE 

4.1 INTRODUCTION 

After the damage is located, the severity of the damage can be assessed if the 

extent of the damage could be determined. An algorithm which can determine 

the magnitude or extent of structural damage serves this purpose. 

The method proposed in this chapter utilizes the submatrix scaling technique to 

determine the extent of damage. Using this technique, it attempts to find the 

scaling factor for the particular elements which have been affected by damage. 

Unlike the method suggested in Chapter 2, which identified the matrix 

coefficient change, the proposed method determines the damage extent by 

identifying the damaged elements directly. 

In the field of model updating, attempts to improve the accuracy of the global 

model using the submatrix approach had been already reported by White and 

Maytum [77]. In this work, the authors suggested a method of identifying a set 

of scaling factors which when multiplied by the prescribed submatrices, 

generated an updated model with the same connectivity of the FE model to be 

updated. However, the adjusted matrices computed by this method did not 

produce the expected modal data accurately unless the method went through an 

iterative process. 
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In addition to modal updating, efforts had been made by Stetson and Palma [78] 

to utilize the submatrix concept in the field of structural modification. In their 

work they made use of the inversion of first order perturbation theory and 

expressed the changes in matrix elements in terms of the changes in stiffness 

and mass of the individual structural elements. Sandstrom and Anderson [79] 

improved on Stetson and Palma's [78] method by making it computationally 

simpler. In their work , they expressed each element stiffiiess or mass change as 

a fractional change from the original stiffness or mass of that particular element. 

In 1991, Lim [19] proposed a stiffness correction method based essentially on 

the submatrix method to improve the identification of White and Maytum's [77] 

method. In the same year, Lim [80] applied the method in the field of damage 

detection when he used modal data in a submatrix approach to detect structural 

damage. Lim presented a technique to calculate the stiffhess reduction factor 

(SRF) for each submatrix which revealed the location and extent of structural 

damage. In addition to the above publications, limited application of the 

submatrix approach while using FRF data had been demonstrated by He 

[81,82]. In [81] the author presented the submatrix concept for stiffness 

correction in the field of model updating and suggested a method to estimate 

sfiffhess error using FRF data. In addition. He [82] used the submatrix concept 

along with FRF data to derive the damping matrix of a dynamic structure. 

From the literature search carried out in the course of this research work, it 

appears that the existing submatrix based approaches have been mostly used 

along with modal parameters in the field of model updating and, to a much 

lesser extent, in damage detection. This chapter introduces a technique which 
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extends the submatrix approach in the field of damage detection while using 

FRF data. The use of FRF data has enabled full exploitation of the advantages 

associated with FRF data. 

Theoretically, the submatrix approach based method presented in this chapter 

can work with the mathematical model of a whole structure, thus allowing it to 

determine the damage extent directly without actually locating the damage. But 

as already found with the damage estimation algorithm proposed in Chapter 2, 

the capability of an algorithm to accommodate measurement noise and 

expansion errors is significantly reduced if damage is not located first. On the 

contrary, significant improvement in the performance of the algorithm for 

damage estimation can be achieved if the damage is located beforehand and the 

estimation algorithm works only with that part of the structure. This approach 

of damage location followed by determining its severity has been adopted in 

this chapter. Numerical examples have been presented to show the 

improvement in results obtained when the algorithm proposed in this chapter 

works with the knowledge of damage location. 

4.2 THEORY OF DETERMINING DAMAGE EXTENT USING 

SUBMATRIX APPROACH 

Using equation (3.2.2), it is possible to relate a single column of the receptance 

matrix for the damaged structure at a frequency Q, to the dynamic stiffiiess 

matrix of the damaged structure by the following equation, 

([K]D - Q'[M]D){aD( Q ) } K = {5}k (4.2.1) 
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Using the concept of submatrix scaling factors, the mass and stiffhess matrices 

of a damaged structure given in equation (4.2.1) can be expressed as a linear 

summation of submatrices of the undamaged structure, such that, 

[ K ] , = [ K ] , , - i h J K ] ^ ^ (4.2.2) 
j=i 

M„=[ML-Sh,K,^ (4.2,3) 

j=p+l 

tVi t h 

Here, hj is the j scaling factor, [K]j yp and [M]j yo are the j submatrix of 

undamaged stiffness and mass matrix respectively transformed to global 

coordinates and p and r represents the number of submatrices. Each of the 

submatrices represent a single physical element of the structure. Equations 

(4.2.2) and (4.2.3) imply that before and after damage, the physical connectivity 

of the structure remains the same. Only the stiffhess (and/or mass) values of 

certain physical elements which have been affected by damage are changed. 

Using equations (4.2.2) and (4.2.3), equation (4.2.1) may be modified as: 

[KL -Sh,[K] J -Q{[M]^ - t h,[M] J]{a„(Q)}^ = {5K(4,2,4) 
j=i y V j=p+i / / 

To illustrate the concept of submatrices, a 3 DOF mass-spring system as shown 

in figure 4.1 is considered here. A 3x3 matrix as shown below represents the 

stiffiiess matrix of the structure: 
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[K] = 
k, -k, 0 

-k, (k,+k,) -k , 

0 -k , k,+k. 

The structure has three stiffiiess elements namely kj, k2 and kg and matrix [K] is 

made up of these elements together. In the submatrix approach, instead of using 

the combined matrix [K], each of these particular elements kj, kj and kg is 

represented in the global coordinate system such that 

[K],= 
~K 
-K 

_ 0 

-k , 

K 
0 

0 

0 

0 

, [K], = 

0 

0 

0 

k. 

0 -k. 

0 

-k. 

^2 -J 

, [K], = 

0 

0 

0 

0 0 

0 0 

0 k,_ 

These matrices are called stiffiiess submatrices and the total stiffiiess matrix [K] 

is the sum of these submatrices [K]i, [K]2 and [K]^. Now if there is a damage in 

the structure it will affect only those elements which lie in the damage zone. As 

a consequence, the scaling factors corresponding to the damaged elements will 

assume non-zero values and undamaged element scaling factors remain zero. 

To elaborate the concept of scaling factors, equation (4.2.2) for the system in 

figure 4.1 becomes 

[ K ] D - [ K ] U D - hi[K]i UD- h2[K]2,uD- h3[K]3UD (4.2.5) 

Assuming that damage has affected only the stiffiiess element k2, equation 

(4.2.5) becomes 

[ K ] D - [K]uD - h2[K]2,uD (4.2.6) 
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the Other two terms in the right hand side of equation (4.2.5) vanishes as the 

damage has not affected those elements. As a result, the scaling factors hj and 

hg corresponding to those elements become zero. In order to calculate the 

scaling factor h2, equation (4.2.6) together with equation (4.2.4) gives: 

([K]uD- h2[K]2,uD - Q'[M]uD){aD(n)}k= {5}k (4.2.7) 

From this equation, it is possible to obtain h2. If all three stiffhess elements had 

been affected, then equation (4.2.7) would have been modified to include the hj 

and hg terms in addition to the h2 term. Then, the number of unknowns would 

have been three. In contrast, an approach which tries to correct individual 

matrix coefficients would have to adjust five upper triangular matrix 

coefficients for this system when all three springs in figure 4.1 has been 

affected. From this illustration it is not difficult to appreciate that a reduction in 

the number of unknowns can be achieved by using the submatrix approach for 

determining damage extent. 

Equation (4.2.4) obtained using the concept of submatrices can be further 

modified and written as: 

i;h^[K]j,™-a^ Zh^lM],^ {a„(n}^ ={R} (4,2,8) 
j=l J=P+1 y 

where {R} = -{5}, +([K]^{a,(Q)}^ -QMM]^{a , (Q)} , 

It is apparent that the only unknowns in the above equation are the scaling 

factors and hence equation (4.2.8) can be written as: 
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where 

and 

L j = [K],^{a^(Q)} forj = l t o p 

L j = -QMM]^^{a^(Q)} forj = p+l tor . 

(4.2.9) 

Equation (4.2.9) is obtained by considering a single frequency point. However 

if 's ' frequency points are chosen, then equation (4.2.9) may be modified to 

derive the following equation 

where 

[L]{h 

[L] = 

)={g} 

.{L,}. {L.}. 

{g)={w: {Ri: 

{ h ) = {h, h, „ „ 

•• •• {L,}.. 

„ „ {R}:f 

KY 

(4.2.10) 

th 

Approach 1 

The vector {Lj}k corresponds to {Lj} for the k'" frequency point and the vector 

{h} is made up of all the scaling factors where each scaling factor corresponds 

to a particular element. Note that the size of the matrix [L] and the vector {g} 

are qxr and qxl respectively, where q = Nxs. If the number of scaling factors to 

be identified "r" is less than the product of number of DOFs "N" and the 

number of frequency points "s", then 
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q > r or, s>r/N (4.2.11) 

For such cases it is possible to solve equation (4.2.10) by using a least squares 

approach which gives 

{h} = [[L]lL]]"'[L]Mg} (4,2,12) 

The values of individual scaling factors obtained by solving the above equation 

not only indicates the location of damage but also gives an estimate of the 

extent of the damage. 

Approach 2 

Instead of using a pseudo inverse mathematical technique as shown in 

Approach 1, it is also possible to calculate the scaling factors by using a 

classical inverse. Like Approach 1, Approach 2 is also based on equation 

(4.2.10). However instead of working with the whole equation, this approach 

works with each row of matrix [L] at a time along with the vector {h} and {g}. 

It is obvious that for different frequency points, matrix [L] and vector {g} will 

be different although the vector {h} will be the same. Therefore, while working 

with the first row of matrix [L] along with vectors {h} and {g}, if it is found 

that the number of unknowns are "x", then it is required to regenerate matrix [L] 

and vector {g} for "x" frequency points and use the first row of each of these 

matrices along with the corresponding vector {g} to compute the unknowns. 

This operation has to be repeated for other rows of matrix [L] until all the 

scaling factors have been identified. This concept is illustrated next by using an 

example. 
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A 3 DOF mass-spring system with 4 stiffness and 3 mass elements was 

considered. Assuming that due to damage all stiffness elements had been 

affected leaving the mass unchanged, equation (4.2.10) for a particular 

frequency point may be written as: 

or, 

a 
h.ib 

a, a. x 
' + h,1b, r + h3lb2 r + h j b 3 r = 1y 

a a, 
b b, 

LC 

2 -> . C 3 

a, aj 

b, b3 

c, c. 

h. 

k 
UJ 

^ = ' 

X 

y^ 
7 

(4.2.13) 

(4.2.14) 

While using Approach 1 for this example, it is possible to form an 

overdetermined set of equations by using two frequency points. Approach 2 

uses the classical inverse to solve the unknowns as given in equation (4.2.14). 

By using one frequency point, the first row of the matrix given in the left hand 

side of equation (4.2.14) may be used with the corresponding vector to generate 

the first equation. Using a second frequency point, the first row of the new 

matrix developed in equation (4.2.14) may be used again with the 

corresponding vectors to develop a second equation. Since the equations 

developed for this example using the first row of matrix has four unknowns, it 

is necessary to generate four such equations using four frequency points. 

Therefore, this results in a situation where there are four equations with four 

unknowns which can be solved easily. However, while using Approach 2 it is 

imperative to check that the set of equations built up by using different 
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frequency points are independent of each other. If the equations are not, 

reselecting frequency points to obtain realistic results will be required. 

4.3 DISCUSSION 

The scaling factors used to identify the damaged elements in a system can be 

computed by using either Approach 1 or 2 in section 4.2. However, based on a 

comparative study of both approaches, it appears that Approach 2 is a better 

performer than Approach 1. Approach 2 uses classical inverse. This avoids 

possible numerical errors associated with pseudo inverse. By using more 

frequency points, each contributing to one equation. Approach 2 is based on a 

set of linearly independent equations. It has been found that with noisy FRF 

data, better estimates of damage extent can be made if the location of the 

damage is first ascertained. Following that. Approach 2 is used to determine the 

extent or severity of damage. Once the location of damage has been ascertained, 

it becomes relatively easy to identify only those scaling factors affected by 

damage. Other scaling factors can be safely assumed to be 'zero'. In this way, a 

significant reduction in the number of unknowns can be achieved. The number 

of equations to be solved is drastically reduced resulting in a significant 

reduction in computational burden and improvement in accuracy. 

When FRF data are corrupted by noise, the results of damage estimation 

obtained using Approach 2 with damage location varied to some extent with the 

selection of frequency points. Although the variation is not significant, it is 

found that most accurate results are obtained if frequency points selected are in 

the neighbourhood of natural frequencies which are more affected by damage. 
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In the case of incomplete measurement coordinates, it is possible to expand the 

measured coordinates to the size of the analytical model of the undamaged 

structure. However, 'expansion errors' will affect the performance of the 

algorithm aimed at determining the severity of damage. As the ratio of the 

measured and unmeasured DOFs becomes smaller, the expansion error becomes 

more prominent which hampers the damage estimation. 

Improvement can be achieved by first locating the damage and then working 

with the damaged portion of the structure to determine damage extent. After 

locating the area of damage, the proposed submatrix approach to determine 

damage extent can use FRF data only in the area of damage to determine its 

extent. This can be executed by: 

1. actually measuring the additional DOFs in the area of damage; or 

2. using an expansion method to interpolate the FRF data corresponding to 

unmeasured DOFs in the damaged structure. 

A 10 DOF mass-spring system shown in figure 4.2 was used here to show how 

the submatrix approach successfully determined damage extent by using FRF 

data only measured for DOFs between which damage was located. Let the 

damage in system be located between DOFs 4 and 5 and let the FRFs measured 

be at DOFs 1, 3 and 7. Using the damage location algorithm suggested in 

Chapter 3, the location of damage can be identified to be lying between DOFs 3 

and 7. Once the location of damage had been identified, the proposed submatrix 

approach required only FRF data at DOFs 4, 5 and 6 in addition to the FRFs 

already measured at DOFs 3 and 7 to determine the damage extent. This can be 

better appreciated by considering equation (4.3.1) given below. Since the 
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damage had been located between DOFs 3 and 7, the scaling factors attached to 

stiffness elements kj to kg and kg to k^ could be safely assigned to zero. Hence 

equation (4.2.9) for this particular system becomes: 

(hjK],+h3[K],+ h j K ] , + h j K ] , - Q X [ M ] , - a % [ M ] , -

Q^h,;[M],-Q^h,[M],){a,(Q)} ={R} ^ ' ' ^ 

It is apparent that to solve for h4 to hy and his to h^g, the FRF data for DOFs 3, 

4, 5, 6 and 7 are needed. Since FRF data for 3 and 7 were known, additional 

FRF data required were for DOFs 4, 5 and 6. Measurements at 3 and 7 were 

required in equation (4.3.1) above, because these were the DOFs interfacing the 

area of damage. In general, it can be said that once the damage had been 

located, with incomplete DOFs the submatrix approach to determine damage 

extent requires FRF data in the area of damage and the data for DOFs which are 

connected immediately to the area of damage. 

If the FRF data at the coordinates in the area of damage are unavailable, then 

the alternative is to use interpolated FRF data. In this case, it is found that the 

performance of submatrix method to determine the damage extent deteriorates 

progressively as the error introduced due to FRF data expansion increases. 

4.4 RESULTS OF NUMERICAL ANALYSIS 

To assess the effectiveness of the submatrix method, numerical analysis was 

carried out on the 12 DOF mass-spring system shown in figure 3.2 in Chapter 3 

and the truss structure shown in figure 4.3. 
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The 12 DOF mass-spring system shown in figure 3.2 had 13 stiffiiess elements 

and the stiffhess element between ground and DOF 1 had been named as 

Element 1, the element between DOFs 1 and 2 as Element 2 and so on. It was 

assumed that damage had only affected stiffness of element 8, leaving mass 

unchanged. Due to damage, the stiffness of element 8 had decreased from 

20,000 N/m to 14,000 N/m. For such a change in stiffhess, the actual scaling 

factor of element was given as: 

scaling factor of element 8 = (20,000- 14,000)/20,000 = 0.3 

and the scaling factor for remaining elements were zero. This has been shown in 

figure 4.4 where the scaling factor for stiffness element 8 has been given as 0.3 

and that for remaining stiffiiess elements as zero. 

For noise free FRF data both Approaches 1 and 2 were applied to identify the 

actual scaling factor. For Approach 1, using a single frequency point, equation 

(4.2.10) generated a set of 12 equations with 13 unknowns. Using just two 

frequency points, this equation can be made overdetermined. Initially just two 

frequency points within the first mode were used and the results obtained as 

plotted in figure 4.5 is not very encouraging. Not only the identified scaling 

factor corresponding to Element 8 was not accurate enough, but also non zero 

scaling factors have been identified for other stiffness elements. In the next 

instance, the number of frequency points were increased from two to four 

covering the first two modes and figure 4.6 shows the scaling factors identified 

for this case. Although the result obtained was better than that in figure 4.5, it 

was not perfect considering the fact that pure data was used. 
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The same example was repeated using Approach 2. For this 12 DOF system 

given in figure 3.2, by using a single frequency point in equation (4.2.10), [L] 

becomes a matrix of size 12x13, {h} is a 13x1 sized vector and {g} is a vector 

of size 12x1. To identify scaling factors corresponding to Elements 1 and 2, the 

equation derived from the first row of matrix [L] along with vector {h} and {g} 

was repeated at two frequency points. The resultant pair of equations were 

solved to obtain the scaling factors corresponding to Elements 1 and 2. The 

same operation was repeated using other rows of matrix [L] to compute the 

scaling factors for remaining elements. The frequency points were selected 

within the range of the first two modes. The equations derived were found to be 

independent of each other. The scaling factors thus computed are given in 

figure 4.7 and for noise free data was found to be independent of the frequency 

points selected. The identified scaling factors in figure 4.7 are almost identical 

to the correct answers. 

Next, the same example was used with noisy FRF data. A random noise of 4% 

was introduced into the amplitude of the FRF data of the damaged structure. 

The scaling factors for stiffhess elements were identified using both Approaches 

1 and 2. While using Approach 1, two frequency points were theoretically 

sufficient to obtain the result. However, to reduce the effect of noise additional 

frequency points were used. FRF data at six frequency points covering the first 

three modes were used and the scaling factors were identified using Approach 

1, as shown in figure 4.8. Approach 2 required FRF data at a minimum of two 

frequency points. However, to reduce the effect of noise, FRF data at the same 

six frequency points used in Approach 1 were used in Approach 2 and the 
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resultant overdetermined equation set was solved using pseudo inverse. The 

scaling factors identified using Approach 2 have been plotted in figure 4.9. 

Figure 4.8 obtained using Approach I provides a very inaccurate estimate of the 

scaling factors. In contrast, the identified scaling factors in figure 4.9 provides a 

much better estimate. However, in addition to deriving the scaling factor 

corresponding to Element 8, figure 4.9 has returned non zero values for scaling 

factors corresponding to undamaged elements. 

To improve the accuracy of the derived scaling factors, the damage location was 

first identified using the 3-D DLP suggested in Chapter 3 and then Approach 2 

was employed in the area of damage to estimate the scaling factor 

corresponding to damaged elements only. As already shown in the numerical 

examples in Chapter 3, the 3-D DLP successfully located damage for this 

system with FRF data contaminated by 4% noise. Once the location of damage 

is identified. Approach 2 was used to identify the scaling factor for stiffness 

element 8. Since the number of unknown for this case is just one, FRF data at a 

single frequency point was used to identify the scaling factor. The results 

plotted in figure 4.10 uses FRF data at 120 rad/s. FRF data at this frequency was 

selected as it was in the vicinity of the third natural frequency of this system 

which changed from 121.9 rad/s to 117.2 rad/s due to damage. In the course of 

carrying out the numerical studies, FRF data at different frequency points were 

also used. Although the scaling factors computed were found to vary with 

selection of frequency points, it always approached the correct answer 

whenever the FRF data close to one of the natural frequencies affected by 

damage were used. 
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For incomplete coordinates, the FRF data for unmeasured coordinates has to be 

interpolated before they can be used for damage location and/or estimation. As 

already demonstrated in Chapter 3, the best results of FRF expansion can be 

obtained when D.E A is used. For this 12 DOF system, it is assumed that the 

measured coordinates do not include the coordinates between which damage is 

located. The measured coordinates are 1, 4, 6 and 9 whereas damage is located 

between 7 and 8. With a measurement noise of 4% and using expanded values 

for unmeasured coordinates. Approach 2 was used. FRF data at six frequency 

points spanning the first three modes were used again to identify the scaling 

factors. The identified scaling factors for the stiffiiess elements have been 

plotted in figure 4.11 which does not exhibit the damage location. Hence, the 3-

D damage location plot suggested in Chapter 3 was used to determine damage 

location. Once the damage has been located to be lying between DOFs 6 and 9, 

Approach 2 was applied to determine damage extent. This required FRF data in 

the region of damage which are coordinates 7 and 8. By taking additional 

'measurements' corresponding to DOFs 7 and 8, the extent of damage was 

calculated for elements 7, 8 and 9 which are the elements lying between DOFs 6 

and 9. The identified scaling factors as shown in figure 4.12 estimates the 

change in stiffness in element 8 accurately. 

However in case of incomplete coordinates, it may be possible that coordinates 

in the region of damage are not accessible so that additional FRF measurements 

is not possible. As a result, the expanded FRF data have to be used to estimate 

damage. To simulate the situations, FRF data expanded by D.E A for 

coordinates 7 and 8 were used along with measured coordinates to calculate the 

extent of damage. The results for such a situation have been shown in figure 
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4.13. Although this figure provides a reasonable estimate of the damage, it 

showed a marked deterioration. In general, it has been found that the 

performance of the submatrix method to estimate damage deteriorates as more 

FRF data need to be interpolated in the region of damage. 

The second example was a truss structure shown in figure 4.3. This structure 

has 20 nodes. The truss members were modelled using PAFEC-FE. Element 

number 34400 in PAFEC routine which has only 3 translational DOFs at each 

node was selected to model this truss structure. The PAFEC FE data file used to 

generate the mass and stiffness matrices of the undamaged structure is given in 

Table 4.1. The translational DOFs at y and z direction only at each node was 

retained for the element.The two nodes cantilevered to the wall were assumed 

rigidly fixed. The final FE model thus contained mass and stiffness matrices of 

dimension 36x36. Each horizontal member was assumed to have a length of 

0.1 m, vertical member a length of 0.1m and diagonal members were assigned a 

length of 0.14 m. For generating the mass and stiffness of the structure, the 

material properties were assumed to be E = 208E4 N/m , Poisson's Ratio = 0.3 

and Density = 7860 kg/m^. For this structure, two damage cases were simulated 

separately: 

Case 1 

The vertical member between nodes 7 and 8 has been damaged. 

Case 2 

The vertical member between nodes 7 and 8 along with the diagonal 

member between nodes 12 and 13 have been damaged. 
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Damage was simulated by changing the Young's Modulus (E) of the damaged 

members by 50%. It was assumed that the FRF data were contaminated by 4% 

noise and this was done by introducing a random error of 4% on the FRF data. 

The damage location method using 3-D DLP as suggested in Chapter 3 was 

used in conjunction with the Approach 2 of the submatrix method proposed in 

this chapter to locate and quantify damage. The damage in Case 1 had affected 

the stiffhess of Element 15 and for the second case the damage had affected 

both Elements 15 and 28. Figures 4.14 and 4.15 show the actual magnitudes of 

scaling factors of the damaged elements for Cases 1 and 2 respectively. The 

damage location and the magnitude of the scaling factors for Case 1 were 

shown in figures 4.16 and 4.17 respectively. While plotting the 3-D damage 

location plot for the single damage as shown in Case 1, it was found that the 

damage location plot becomes prominent only after 20 Hz. This was quite 

expected for this structure since the natural frequencies of this structure upto 20 

Hz were hardly affected due to the damage in member between node 8 and 9. 

The scaling factor plotted in figure 4.17 was obtained using a frequency of 24 

Hz. This frequency was selected as the natural frequency corresponding to 24.3 

Hz had been shifted to 23.3 Hz due to damage as described in Case 1. FRF data 

at a single frequency point was required to identify the scaling factor 

corresponding to the damaged member. 

For Case 2, the 3-D damage location plot given in figure 4.18 clearly shows the 

existence of both damages. Unlike Case 1, the damage location plot showed 

appreciable and consistent peaks from 10 Hz onwards. The scaling factors for 

both the affected elements had been given in figure 4.19. Each of these scaling 
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factors can be identified individually. The result plotted in figure 4.19 was 

obtained by using FRF data at frequency point of 25.4 Hz. which is adjacent to 

one of the affected natural frequencies. 

Although, the scaling factors identified in Cases 1 and 2 were found to be 

somewhat frequency dependant, reliable and consistent results can be obtained. 

This can be achieved by using FRF data at frequency points which are in the 

proximity of the natural frequencies which have been more affected due to 

damage. From this truss structure example, an additional significance of the 3-D 

damage location plot can be appreciated. In case of multiple damages, the 3-D 

plot identifies the frequency region in which FRF have been more significantly 

affected due to damage in a particular member. Once the frequency region is 

thus identified, more accurate estimate of the damage in a particular member 

can be made by using FRF data at frequencies, which are more affected due to 

damage in that member. 

4.5 SUMMARISING REMARKS 

The damage location method using submatrix approach has been discussed in 

details in this chapter. The method introduced a different approach to 

determining damage extent by identifying the damaged physical elements 

directly instead of the DOFs. Two different approaches named in this chapter as 

Approaches 1 and 2 have been discussed. It has been found that Approach 2 is 

better when using FRF data with measurement noise. The capacity of Approach 

2 to accomodate measurement noise is further enhanced when the damage is 

located prior to its estimation. With incomplete measured coordinates, it is 
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suggested to locate the damage and then trying to determine its extent. Once the 

region of damage is located, two methods have been tried to obtain the FRF 

data corresponding to unmeasured coordinates in the area of damage : 

measuring the FRF data for unmeasured coordinates in the area of damage and 

interpolating them using D.E A. 

With measured data the results obtained have been quite accurate but with 

interpolated coordinates, the quality of results starts deteriorating as the 

measured coordinates move further away from the damage location. In addition 

to that, while using FRF data contaminated by noise it was found that the results 

obtained often varied to some extent depending on the frequency points 

selected. However, it was found that the results obtained were very close to the 

actual value when the FRF data used were at frequency points in the vicinity of 

the most affected natural frequency within the frequency range measured. 

A significant advantage of using this method is that it can identify the damaged 

elements directiy. In addition, by determining the element scaling factors rather 

than the matrix coefficients, a significant reduction in the number of unknowns 

can be achieved. Finally, the use of measured FRF data instead of modal 

parameters eliminates the complexities and numerical errors associated with 

extracting modal parameters. 
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CONTROL 
C0NTR0L.END 
NODES 
NODE 
1 
4 
7 
10 
13 
16 
19 
ELEMENTS 

x 
0 
.1 
.3 
.4 
.6 
.7 
.9 

ELEMENT.TYPE 
NUMBER 
1 
4 
7 
10 
13 
16 
19 
22 
25 
28 
31 
34 
37 
40 
43 
BEAMS 
SECTION 
1 
MATERIAL 

Y 
0 
.1 
0 
.1 
0 
.1 
0 

= 34400 
PROP TOPOLOGY 

1 3 
2 4 
3 6 
5 6 
67 

- 7 9 
8 10 
9 12 

11 12 
12 13 
13 15 
14 16 
15 18 
17 18 
18 19 

MATERIAL IYY 

NODE 
2 
5 
8 
11 
14 
17 
20 

NUMBER 

11 1.666E-9 

MATERIAL.NUMBER E 
11 
LOADS 
CASE 
1 

208E4 

NODE 
4 

ACTrVE.FREEDOMS 
NODE 
3 
R17 1 
RESTRAINTS 
NODE 
1 
2 
3 
R17 1 

DIRECTION 
23 
00 

DIRECTION 
0 
0 
1 
0 

MODES.AND.FREQUENCIES 
AUTOMATICMASTERS 
0 
MASTERS 
NODEJ^UMBER 
3 
R20 1 
END.OF.DAT 

2 
5 
8 

11 
14 
17 
20 
23 
26 
29 
32 
35 
38 
41 
44 

IZZ 

x 
0 
.2 
.3 
.5 
.6 
.8 
.9 

PROP 

Y 
.1 
0 
.1 
0 
.1 
0 
.1 

TOPOLOGY 
14 
3 4 
4 5 
5 7 
6 8 
7 10 
9 10 

1011 
11 13 
12 14 
13 16 
15 16 
16 17 
17 19 
18 20 

TORSIONAL.CONST 
6.666E-9 

NU 
.3 

RO 
7860 

4.6E-9 

DIRECTIONS.OF.LOAD 
2 

MODES 
10 

DIRECTION 
23 
00 

PRINT.CONTROL 
2 
0 

NODE 
3 
6 
9 
12 
15 
18 

NUMBER 
3 
6 
9 

12 
15 
18 
21 
24 
27 
30 
33 
36 
39 
42 
45 

AREA 
2.0E-4 

X Y 
.1 0 
.2 .1 
.4 0 
.5 .1 
.7 0 
.8 .1 

PROP TOPOLOGY 

VALUE.OF.LOAD 
10 

2 3 
3 5 
4 6 
5 8 
7 8 
8 9 
911 
1012 
11 14 
13 14 
14 15 
15 17 
16 18 
17 20 
20 19 

Table 4.1: Data file in PAFEC FE for deriving mass and stiffness for truss in fig.4.3 
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FIG.4.4: Scaling factor due to damage in model 3.2 
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FIG.4.6: Identified scaling factor using approach 1 (with 
four frequency points and no noise) 
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no noise) 
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FIG.4.10: Identified scaling factor using approach 2 and DLP 
(with 4% noise and damage location known) 
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FIG.4.14: Scaling factor of the truss structure in fig 4.3 (Case 1) 
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FIG.4.16: 3-D Damage Location Plot for case 1 damage 
in fig.4.3 model 
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CHAPTER 5 

USING THE SPATIAL MODEL TO DETERMINE 

DAMAGE EXTENT 

5.1 INTRODUCTION 

Experimental identification of dynamic characteristics of structures can be 

broadly classified in two ways: one is the identification of the modal parameters 

and is called modal testing and analysis; the other is the identification of the 

physical or spatial matrices (mass, damping and stiffiiess matrices) which are 

often referred to as system identification. 

The experimentally derived models can be used in a variety of applications, of 

which detection of damage in a structure is an important area. In damage 

detection, it is found that although modal model by itself is somewhat effective 

in locating or detecting damages, it is generally incapable of providing 

immediate information about the relative magnitudes of the spatial properties 

which are directly related to the quantification of damage. Generally, spatial 

properties could provide a more useful tool not only in detecting damage but 

also in quantifying the spatial property changes due to damage. 

This chapter describes the development of a method for direct identification of 

the spatial properties fi*om measured FRF data, and furthermore to extend the 

method in order to locate and quantify structural damage. 
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5.2 REVIEW OF PREVIOUS RESEARCH FOR SPATIAL MODEL 

DERIVATION 

Derivation of a valid spatial model of a dynamic system from experimental data 

has been a focus of many researchers. Research in this field can be broadly 

classified under two categories: using frequency domain data and using time 

domain data to derive spatial parameters. Among the works using fi-equency 

domain data, one of the earlier publications can be traced back to the work by 

Raney [83] in which he showed ways of computing the mass, stiffhess and 

damping co-efficients at selected locations in a structure using the results of 

near-resonance testing. Subsequent to that, Ross [84] had tried to synthesize 

[M] and [K] by using a normalisation procedure for the measured eigenvectors 

so that the known strain energy characteristics of the system could be preserved. 

Thoren [85] had proposed a technique similar to Ross [84] which used 

orthonormal modal vectors to derive mass, stiffness and damping matrices. In 

essence, his method made use of the orthogonality properties of the vibration 

modes. 

Potter and Mark [86] introduced the concept of a transfer matrix (inverse of a 

system matrix) and had derived expressions to obtain [M], [C] and [K] in terms 

of the poles and the complex modal vectors of an elastic mechanical system. 

Tsang and Rider [87] proposed a method of deriving spatial parameters fi-om 

measured fi-equency response function data. Lee and Dobson [88] also used 

experimentally measured FRF data to derive structural mass, stiffhess and 

damping properties. They also tried with limited success to generate a reduced 

model fi-om measurements which retains the dynamic characteristics. 
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Stanbridge, et al. [89] suggested that the values to be given to the mass, stiffiiess 

and damping constants of these modal elements can in principle be determined 

using the equations of motion of each mass in turn, fi-om a small number of 

experimentally determined sinusoidal firequency responses. Although it was 

shown to be effective for a mass-spring-damper chain system, the effectiveness 

of the proposed method to more complicated structures is open to doubt. 

Muscia [90] introduced a methodology which was similarly based on the 

orthogonality conditions of the eigenvectors of the structure. Alvin, et al. [91] 

tried a method for determining minimum order mass and stifness matrices from 

modal test data. Chen, et al. [92] developed a transformation matrix between 

complex and the normal fi-equency response functions of a structure and used it 

to calculate the damping matrix of the system. 

In addition to the methods discussed above, which were all frequency domain 

techniques, there have been efforts to estimate spatial parameters using time 

domain techniques. Among them, Rajaram and Junkins [94] derived a 

technique that used a Gauss-Newton least squares differential correction 

method to produce modal information that in turn would identify a unique 

lumped parameter model from forced response data. Juang and Pappa [95] 

employed the concept of Singular Value Decomposition to develop the 

Eigensystem Realization Algorithm for deriving spatial parameters. Fritzen [96] 

developed the Instrument Variable (IV) method and compared it with the Least 

Squares Method suggested by Lerudian, et al. [93] to reveal much 

improvement. However, in a more recent work by Roemer and Mook [99], the 

mass, stiffhess and damping matrices were identified by using an integrated 

approach. In this method, the Eigensystem Realization Algorithm [95], the 
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impulse response method [97], and the minimum modal error estimation 

method [98] had been combined to generate a more robust method for spatial 

parameter derivation from the sensitivity of measurement noise viewpoint. 

The method presented in this chapter aims to develop a fi-equency domain 

technique using measured fi-equency response function data to derive spatial 

parameters. Besides enjoying the inherent advantage of using FRF data over 

modal data as described in Chapter 1, the proposed method identifies mass and 

stiffness completely independent of each other. This is in contrast to almost all 

the existing methods which derived mass, stiffness and damping parameters 

from measured FRF data simultaneously. This essentially means that for an N 

DOF system, existing methods work with matrices of size of 3Nx3N. This 

introduces an unnecessary computational burden which can be avoided if the 

mass and stiffhess can be derived seperately. The method presented in this 

chapter addresses this problem. In addition to lessening the computational 

burden, this method will be more efficient in the case of damage detection, 

since the damage most often affects the stiffness of the structure more 

significantly than the mass and damping. Therefore, if this method is used to 

locate and estimate structural damage, the mass properties of the structure may 

be neglected. Finally and most importantly, even in absence of a FE model of 

the undamaged structure, this method can use the FRF data before and after 

damage to generate spatial models. Comparison of these two models will 

indicate the location and extent of damage. 

The submatrix approach can also be used together with this method to identify 

the damaged elements of the structure directly instead of the matrix coefficients 
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in the spatial matrices. 

5.3 THEORY TO GENERATE SPATIAL MODEL 

For an N DOF undamped system, the receptance matrix [a(Q)] is given by: 

[a(Q)] = ([K] - Q'[M])-^ 

or, ([K] - Q'[M])[a( Q)] = [I] (5.3.1) 

where [K] and [M] are NxN real matrices of stiffness and mass respectively. 

Rewriting equation (5.3.1) for a fi-equency Q], 

([K] - Qi'[M])[a(QO] = [I] 

or, [K][a( Qi)] = W + Qi'[M][a( Q,)] (5.3.2) 

At another frequency Q2, equation (5.3.2) can be written as: 

[K][a(Q2)] = [I] + Q2'[M][a(Q2)] (5-3.3) 

Transpose of equation (5.3.2) yields. 

[a(Qi)][K] = [I] + Qi'[a(Q,)][M] (5.3.4) 

Post multiplying both sides of equation (5.3.4) by [a(Q2)] will generate the 

following equation: 
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[a(QO][K][a( Q2)] = M^i)] + a,^[a(Qi)][M][a( Q2)] (53.5) 

Pre multiplying both sides of equation (5.3.3) by [a(QO], the equation derived 

is: 

[a(Qi)][K][a( Q2)] = [a(Qi)] + Q2'[a(ni)][M][a( Q2)] (5.3.6) 

Subtracting equation (5.3.5) from equation (5.3.6) yields: 

(Qi' - Q2')[ a(QO][M][a( Q2)] = [a(Qi)] - [a(Q2)] (5.3.7) 

[M] = ^^, [ ^, ^ ([a(Q,)]-' - [a(n,)]" ) (5.3.8) 

Using equations (5.3.6) and (5.3.8) together the following equation is derived: 

m= ,r^2[n2A^"M^2)r ~^lM^.)r) (5.3.9) 

It is noted that the expression derived for mass [M] and stiffness [K] using 

equations (5.3.8) and (5.3.9) are similar to results derived by Klosterman [100]. 

However, Klosterman had used the results only for extracting modal 

parameters. From a practical viewpoint, an algorithm which relies on a full 

matrix [a(D)] is not promising, since in reality it is not possible to measure the 

whole matrix of [a(Q)] and the re-constructed [a(Q)] will contain various 

errors. More realistically, a single column of RFRF matrix is all that is mostly 

measured. From this viewpoint, an algorithm to derive the mass and stiffhess 
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matrices has to rely only on one column of FRF data rather than the whole 

matrix [a(Q)]. 

Considering a single column of the receptance matrix, equation (5.3.1) at a 

fi-equency Qi can be rewritten as: 

([K]-Qi'[M]){a(QO}k={S}k (5-3.10) 

or, [K]{a(Qi)}k={S}k + ^i'[M]{a(Qj)}k (5-3.11) 

Again, at a different frequency Qj • 

[K]{a(Q2)}k= {6}k+ Q2'[M]{a(Q2)}k (5-3-12) 

The transpose of equation (5.3.11) yields: 

{a(nO}k'^[K] = {5}k^+ Qi'{a(Qi)}k^[M] (5.3.13) 

Post multiplying both sides of equation (5.3.13) by {a(Q2)}k leads to: 

{a(Qi)}/[K]{a( Q2)}k= {6}k'^{a(Q2)}k+ ^i\a(a,)}Jm{<^2)h (5-3.14) 

T 

Also, pre multiplying both sides of equation (5.3.12) by {a(Qi)}k yields: 

{a(Q0}k^[K]{a(Q2)}k= {a(Qi)}k^{S}k+ ^i {oLiQ,)h\U\{a(n2)K (5.3.15) 
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Subtracting equations (5.3.14) from (5.3.15) yields: 

{a(Q,)}k^[M]{a( Q2)}k = (akk(Qi)- akk(Q2))/( ^ i ' - ^2') (5-3.16) 

Replacing equation (5.3.16) into equation (5.3.14), it gives: 

{a(QO}k^[K]{a( Q2)}k = ( ^ 1 ^ 0 0 - Q2V(^2)y ( ^ 1 ' - ^2) (5-3.17) 

In order to derive matrices [M] and [K] using equations (5.3.16) and (5.3.17), 

some mathematical manipulation is needed. In particular, the connectivity 

constraint of the structure needs to be imposed to ensure that non-existent load 

paths do not occur in the derived mathematical model. Two different 

approaches can be taken. Approach I tries to obtain the individual matrix 

coefficients of the spatial matrix and Approach II tries to identify the elements 

instead of the matrix coefficients. 

Approach I 

A 3 DOF undamped mass spring system shown in figure 5.1 is used to illustrate 

the procedure of deriving spatial parameters using this approach. Without 

loosing generality, the first column of receptance matrix {a(Q)}i is used. 

Let {a(Qi)}i= {abc} and {a(Q2)}i= {de f} 

Hence, equation (5.3.17) can be written as: 

{a b c} 
K„ 
K21 

0 

K,2 

K22 

K32 

0 

K23 

K33 

he 

f 

r = x (5.3.18) 
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where x is the right hand side of the equation (5.3.17) and is known. Using 

simple matrix multiplication and knowing that the stiffiiess matrix is symmetric, 

the left hand side of equation (5.3.18) can be written as: 

K^ad + Ki2ae + Kjjbd + K22be + K23cf + K32ce + K33cf 

= K^ad + Ki2(ae + bd) + K23(bf + ce) + K22be + K33cf 

K 22 

= {ad be cf (ae + bd) (bf + ce}iK33 ' 

K 
M2 

K 23 J 

Therefore, 

{ad be cf (ae + bd) (bf + ce)pK33 

K 22 

K 

K 
12 

23 

> = x (5.3.19) 

Equation (5.3.19) has been generated using a pair of fi-equency points, Qj and 

Q2. Since there are five unknowns in the equation, at least five independent 

equations requiring five different pairs of fi-equency points are needed in order 

to derive all the unknowns. 

The above example for a 3 DOF system can be easily extended to an N DOF 

system. On closer inspection, it is found that the derivation for a 3 DOF system 

follows a pattern. The matrix coefficient corresponding to coefficient location 
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1-1 in the stiffiiess matrix is derived by using element 1 in {a(Qi)}i and 

element 1 in {a(Q2)}i- The matrix coefficient for coefficient location 2-2 is 

obtained by using element 2 in {a(Qi)}i and element 2 in {a(Q2)}i and so on. 

For the off-diagonal matrix coefficients in [K], the matrix coefficient for 

coefficient location 1-2 or 2-1 is derived by using elements 1 and 2 in {a(ni)}i 

and elements 1 and 2 in {a(Q2)}i respectively. The same process can be 

repeated for coefficient location of other off-diagonal matrix coefficients. Using 

this pattern, equation (5.3.19) can be implemented in a computer programme for 

an N DOF system. 

Approach II 

Instead of identifying the individual matrix coefficients in the stiffness or mass 

matrix, it is possible to identify individual mass or stiffhess elements in the 

structure. In figure 5.1, ki is the stiffness element connecting DOF 1 to the 

ground, k2 connect DOFs 1 and 2, and so on. In order to identify kj, k2, etc. 

directly, equation (5.3.18) can be written as: 

(a b c} 
k,+kj 

-k, 
0 

-k. 
K.^ " r jlv. 

-k, 

0 

-k. 
k ,+k, . 

d 
e 

id 
' =x (5.3.20) 

Matrix multipHcation of left hand side of equation (5.3.20) yields the following: 

{ad ((ad + be) - (ae + bd)) ((be + cf) - (bf + ce)) cf}^ = x (5.3.21) 
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Again, each coefficient of a particular stiffness element can be built up by 

considering only those DOFs which are connected to that particular stiffiiess 

element. For instance, the coefficient of k2 in equation (5.3.21) is built up using 

elements 1 and 2 of {a(Qi)}i and {a(Q2)}i respectively because k2 connects 

DOFs 1 and 2. By constructing an adequate number of equations using different 

pairs of firequency points, it is possible to identify individual stiffiiess elements 

k], k2, k3 and k4. The same procedure can be repeated for identifying mass 

elements. 

5.4 DISCUSSION 

As shown above in the theory, it is possible to derive mass, stiffness and 

damping matrices by using receptance FRF data at different fi-equency points. 

Instead of the entire FRF matrix, the presented method is able to derive the 

spatial matrices by using a single column of receptance FRF matrix at different 

frequencies. However, in order to obtain accurate results using this method, a 

certain degree of judgement is warranted while selecting fi-equency points at 

which receptance FRF data are required. The fi-equency points selected should 

satisfy the following basic criteria : 

(i) As already discussed above, equations (5.3.16) and (5.3.17) require a pair of 

fi-equency points. Depending on the number of unknowns, the same number of 

equations are required to generate mass or stiffness matrix. It is essential to 

realize that the pair of fi-equency points to be used in a particular equation 

should be always different to eliminate the possibility of division by zero in the 

right hand side of equations (5.3.16) and (5.3.17). 
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(ii) The number of unknowns in the mass, stiffiiess or damping matrix of a 

structure determine the minimum number of equations required. For instance if 

the stiffiiess matrix of a particular structure has three diagonal matrix coefficient 

and two off-diagonal matrix coefficient on each side of the diagonal, then to 

identify the five unknown matrix coefficients using Approach I at least five 

equations have to be generated. Instead of identifying the matrix coefficients, if 

elements are to be identified as shown in Approach II, then the number of 

equations required is guided by the number of unknown elements. 

(iii) Although two particular frequency pairs should not have the same 

combination, the same frequency point can be used in different pairs. This may 

significantly reduce the number of fi-equency points needed for the execution of 

this algorithm. For "n" firequency points, it is possible to build up "d" different 

fi-equency pairs where 

d = 2 (n- i) where i = 1, 2, (n-1) 

Equation (5.3.16) or (5.3.17) at different frequency points offers a set of 

simultaneous equations, which is in the form of: 

[B]{x}={b} (5.4.1) 

where [B] = a square matrix constructed using receptance FRF data at different 

frequency points, 

{x} = an unknown vector comprising of elements of [M] or [K] to be 

determined. 
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{b} = a known vector constructed using point receptance FRF data at 

different frequency points. 

To solve for this set of linear equations, it is essential that matrix [B] is non-

singular. Therefore, it is always necessary to check the singularity of matrix [B]. 

However, fi-om studies on simulated cases, it has been found that the most 

suitable frequency points for this method have certain properties which are 

identical to the findings by Lee and Dobson [88] regarding the selection of 

frequency points for their method of identifying spatial parameters. These 

properties are: 

(i) fi-equency points should be scattered through out the frequency band over 

which it is required to establish the model; 

(ii) it is better to avoid points where noise effect is significant; 

(iii) frequency points selected should be close to resonances; 

(iv) frequency points near anti-resonances should be avoided. 

When FRF data are contaminated by noise, the effect of noise may be reduced 

by using additional frequency points. Consequently, equation (5.4.1) becomes 

overdetermined and can be solved mathematically for the optimum answers. 

However, when using noisy FRF data the [M] and [K] derived have been found 

to be fi-equency dependant. However, as long as the noise is not excessively 

large, the modal parameters generated by this spatial model do not show 

significant variations. Besides, the effect of noise can be reduced by using 

Approach II instead of Approach I. In the numerical examples to follow, 

different noise levels have been used to examine variation of results. 
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5.5 APPLICATION OF THE METHOD FOR DETERMINING 

DAMAGE EXTENT 

The theory proposed in Section 5.3 for deriving spatial parameters can be also 

used effectively for determining damage extent. In the following section three 

different approaches have been suggested for identifying damage in a 

structure: 

5.5.1 Method I: Direct Method using experimental data only 

In some cases, the FE model of the undamaged structure might not be 

available. Instead the FRF data of the structure before and after damage is 

available. Method I proposes to use those FRF data to build the spatial models 

of the structure before and after damage. The connectivity of a structure is 

often derivable from the structure itself without any mathematical model. This 

can be imposed on the spatial models to be built by this method. As a result it 

is possible to ensure that both the derived models represent the connectivity of 

the structure. The location and extent of damage can be obtained by 

comparing the two models thus developed. 

However, if the FE model of the undamaged structure is available, the need to 

derive the spatial model of the undamaged structure will not be there. For such 

a case, the FE model of the undamaged structure can be used with the FRF 

data of the damaged structure to locate damage. Following that Methods II 

and III can be used to determine the extent of damage as shown below. 
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5.5.2 Method II; Indirect Method 

In this method once the area of damage is located, the spatial matrix 

coefficients for that area is computed only. This is illustrated by considering 

the example given in figure 5.1. It is assumed that the damage is located 

between DOFs 2 and 3 and equation (5.3.19) is again given here, 

{ad be cf (ae + bd) (bf + ce)} 

K 22 

K33 ^ = X 

K 

K 
12 

23 J 

(5.3.19) 

From the damage location it is known that K^ and K12 have not been affected 

by damage. Therefore they can be replaced by their original values and 

equation (5.3.19) is modified to give the following equation: 

{be cf (bf + ce)}< 

K 

K 

K 

22 

33 

23 J 

> = X - K„ad - K,2 (ae + bd) = x, (5.5.1) 

Hence, by using at least three sets of frequency points it is possible to derive 

unknowns K22, K23 and K33. However, if the measurement is noisy, better 

results can be obtained by considering more than three sets of frequency 

points and solving the overdetermined equations. 
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5.5.3 Method III: Submatrix approach 

Instead of determining the spatial matrix coefficients affected by damage, the 

proposed method can also be used together with the submatrix approach in 

Chapter 4 to determine damage extent. Using equation (4.2.8), the stiffness of 

the damaged structure for this model in figure 5.1 can be written as: 

[K]D = [K]uD + hi[K], + h2[K]2 + h3[K]3 + h4[K]4 

[K]uD = [K]i + [K]2 + [K]3 + [K]4 

(5.5.2) 

(5.5.3) 

where hj, h2, h3 and h4 are the scaling factors. 

Hence using equation (5.3.17), we get 

{a,(Q,)}'[[K]^ + h,[K], + hjK], + h3[K]3 + h,[K],]{a,(Q2)}, = x (5.5.4) 
f "N 

a.j 3-2 ^3 3-, }^ h, 
h. 

' = X , (5.5.5) 

The only unknowns in the above equation are the scaling factors. Once the 

damaged element is located, the scaling factors which have not been affected 

due to damage can be safely assigned to zero. For the model shown in figure 

5.1, since h3 is the only scaling factor affected by damage, equation (5.5.5) 

can be modified to become 

a3h3 = X2 
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or, h3 = X2/ a3 

Since X2 and a^ are already known from FRF data, h3 can be easily computed 

which represents a measure of damage extent. Therefore, in contrast to 

Method II which requires at least three pairs of frequency points, Method III is 

able to quantify damage of the same system by using a single pair of 

frequency point. 

While trying to detect damage extent using these methods proposed here, it is 

found that the results obtained are not unique when FRF data contaminated by 

noise. In general, it has been found that more accurate estimate of damage can 

be obtained by using FRF data more affected by damage. These FRF data are 

in the vicinity of natural frequencies which have been more severely shifted 

by damage. 

5.6 RESULTS OF NUMERICAL CASE STUDIES 

In this section, two numerical examples are given: the first shows its merits in 

regard to extracting spatial parameters from FRF data and the second one 

shows the effectiveness of the method in identifying and locating structural 

damage. In the second example, all three methods suggested in Section 5.5 for 

determining damage extent are used. In addition, FRF data contaminated by 

simulated measurement noise have been used. 

The first example was based on the axial vibration of an undamped cantilever 

beam and is shown in figure 5.2. The beam was discretized into a lumped 
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mass-spring system that has eight DOFs. The model consisted of eight masses 

with springs between them. 

This eight DOF system was used to investigate the performance of the 

proposed method to develop spatial matrices from FRF data. The actual mass 

and stiffness matrices of this undamped system are given in Tables 5.1 and 5.2 

respectively. In the simulation, it was assumed that the data from the first 

column of the FRF matrix were available. Calculations were carried out in two 

different ways. Firstly, each individual matrix coefficient of the mass and 

stiffness matrices were estimated using Approach I in Section 5.5. Since the 

diagonal mass matrix has 8 elements, it required 8 pairs of frequency points. 

For the stiffness matrix, there are 8 diagonal unknowns and 7 off- diagonal 

unknowns. Therefore, 15 pairs of frequency points were used. The 15 pairs of 

frequency points used to identify the matrix [M] and [K] are given in Table 

5.3 and 5.4 respectively where the first eight pairs were used to derive [M]. 

These two different sets of frequency points were used to test the frequency 

independance of the results obtained by using the proposed method. While 

using Approach II, the individual mass and stiffness elements were obtained. 

There were eight mass and eight stiffness elements. 

The frequency sets used to generate the mass and stiffness elements were the 

first sixteen frequency points given in Tables 5.3 and 5.4. It is worth 

mentioning that the frequency points considered in this exercise were within 

the first five modes of the system. In the next instance, the same example was 

repeated first with 0.5% noise and then with 1.5% noise. When using noisy 
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FRF data, additional frequency sets were used to make the spatial parameter 

derivation problem overdetermined so that the effect of noise may be reduced. 

Using Approach I, the stiffness and mass matrix co-efficients derived using 

noise free and noisy FRF data are given in Table 5.5. 

Using different pairs of frequency points, it was found that the same [M] and 

[K] were derived if the FRF data were noise free. However, with noisy FRF 

data, the derived matrices varied with choice of frequency points and it was 

found that the accuracy of the derived matrices improved if the data selected 

were nearer natural frequencies and covered the frequency range of interest. 

For Approach II, the identified stiffness elements have been tabulated in Table 

5.6. The natural frequencies generated by using the actual and derived spatial 

parameters using both the approaches have been given in Table 5.7. From the 

results obtained it might be concluded that for noise free FRF data the same 

results can be obtained by using different sets of frequency points as long as 

the matrix [B] in equation (5.4.1) is non singular. However, with noisy data 

better results can be obtained by using Approach II and using larger number 

of frequency points so that the problem becomes overdetermined which can 

be solved for the optimum answers. 

The damage extent algorithm proposed in this chapter and referred to as 

Methods I, II and III were examined on the 12 DOF mass spring system given 

in figure 3.2. Figure 5.3 shows the true damage location and extent. Table 5.8 

shows the shifts in natural frequencies due to the damage introduced. From 

the table it is clear that some natural frequencies have been affected more than 

others due to the damage. 
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Method I was first applied to derive the stiffness matrix of the undamaged and 

damaged structure and the [AK] obtained from their comparison is given in 

figure 5.4. From the result, the extent of damage can be ascertained quite 

accurately. With noisy FRF data (4%) noise), the results obtained using 

Method I was found to deteriorate. However, for such cases, better results 

were obtained when using Method II and III as shown below. 

While using Method II, the information regarding the location of the damage 

was utilised and the matrix elements only in the area of the damage was 

located. It was assumed that FRF data were available for a frequency range 

covering the first five modes. The frequency points utilised were in the 

vicinity of the natural frequencies which had been more severely affected than 

others within the 'measured' frequency range. The damage extent plotted in 

figure 5.5 gives a very good estimate of the magnitude of the damage. To 

obtain the result shown in figure 5.5, theoretically three frequency pairs are 

required to compute the three unknown matrix elements corresponding to area 

of damage in the stiffness matrix. However, to reduce the effect of noise, six 

frequency pairs were used involving four frequency points (frequency points 

used: 120 rad/s, 182 rad/s, 185 rad/s, and 204 rad/s) Using Method III for the 

damaged portion of the structure, the result obtained as shown in figure 5.6 is 

equally good, although it can be achieved by using a smaller number of 

frequency points compared to Method II. The result obtained in figure 5.6 was 

obtained by using a single pair of frequency points (183 rad/s and 185 rad/s). 

Methods II and III were repeated by using a different set of frequency points 

and the frequency points were selected such that they were in the vicinity of 
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the natural frequency (natural frequency corresponding to 31.6 rad/s) which 

had not been much affected by damage. Although, it still indicated the damage 

extent as given in figures 5.7 and 5.8, they are not as accurate as the results 

obtained in figures 5.5 and 5.6. Therfore, to obtain the best results, it is always 

better to select frequency points such that they are close to natural frequencies 

which have been most severely affected by damage. 

The same example was repeated but with incomplete coordinates and noise of 

4% in the FRF data. The 'measured' coordinates were assumed to be 1, 2, 3, 6, 

8, 11 and 12. As already shown in figure 3.5A in Chapter 3, the damage 

location plot succeeded in locating the damage between coordinates 6 and 8. 

Two different cases were studied: 

a) the RFRF data for coordinate 7 were available. 

b) the RFRF data for coordinate 7 was interpolated using D.E A. 

For both the cases, the remaining ummeasured coordinates were interpolated 

using D.E A. For case (a), both methods II and III were used to quantify the 

damage extent and they have been shown in figures 5.9 and 5.10. It is clear 

that both Methods II and III produced accurate results. For case (b), the results 

obtained using methods II and III have been plotted in figures 5.11 and 5.12. 

The results obtained offer a reasonably accurate estimate of the extent of the 

damage although it is not as accurate as case (a). Based on simulation studies 

hitherto, it is suggested that once the damage is located, the best results for 

damage estimation can be obtained if it is possible to additionally measure the 
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coordinates in the area of damage and then use the additional FRF data to 

determine the damage extent. 

5.7 SUMMARISING REMARKS 

A new method has been suggested to derive the spatial properties of dynamic 

system using FRF data. The method has the advantage of working only with 

the stiffness of the structure without dealing with the mass properties. This 

allows the user to calculate the changes in stiffness or mass due to structural 

damage seperately and results in substantial reduction in matrix size to be 

handled in damage location and estimation. 

Because of its ability to derive spatial parameters directly from measured FRF 

data, theoretically Method I is able to determine damage extent without the FE 

model of the undamaged structure. With measured FRF data before and after 

damage, two spatial models with the correct connectivity can be derived and 

damage can be related to the difference between them. 

For noisy FRF data, Methods II and III perform better than Method I. 

However, Method I has excellent potential in damage detection as it can work 

without an FE model. Further work is required to develop it to become a more 

robust method when dealing with measured FRF data with noise. 
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Table 5.1: Mass matrix of the cantilever beam model shown in Fig.5.2 

4000 
-2000 

0 
0 
0 
0 
0 
0 

-2000 
4000 
-2000 

0 
0 
0 
0 
0 

0 
-2000 
4000 
-2000 

0 
0 
0 
0 

0 
0 

-2000 
4000 
-2000 

0 
0 
0 

0 
0 
0 

-2000 
4000 
-2000 

0 
0 

0 
0 
0 
0 

-2000 
4000 
-2000 

0 

0 
0 
0 
0 
0 

-2000 
4000 
-2000 

0 
0 
0 
0 
0 
0 

-2000 
2000 

Table 5.2: Stiffness matrix of the cantilever beam model shown in Fig.5.2 

44.6 rad/s 
19 rad/s 

54.8 rad/s 
23 rad/s 

19.3 rad/s 
25.8 rad/s 
45.3 rad/s 
40.5 rad/s 

24.6 rad/s 
48 rad/s 

12.5 rad/s 
36 rad/s 
15 rad/s 
60 rad/s 
32 rad/s 
25 rad/s 

54.6 rad/s 
18 rad/s 
58 rad/s 
29 rad/s 

54.6 rad/s 
40 rad/s 
13 rad/s 
45 rad/s 

39 rad/s 
46 rad/s 

54.6 rad/s 
21 rad/s 
67 rad/s 
22 rad/s 

Table 5.3: Frequency pairs used to generate [M] and [K] for the cantilever beam 
model shown in T îg.5.2 
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14.6 rad/s 
17 rad/s 

54.8 rad/s 
27.5 rad/s 
19.3 rad/s 
20.8 rad/s 
15.3 rad/s 
65.0 rad/s 

29.6 rad/s 
49 rad/s 

42.5 rad/s 
46 rad/s 
15 rad/s 
40 rad/s 
32 rad/s 
25 rad/s 

34.6 rad/s 
28 rad/s 
58 rad/s 
29 rad/s 

54.6 rad/s 
10 rad/s 
33 rad/s 
45 rad/s 

19 rad/s 
26 rad/s 

51.6 rad/s 
21 rad/s 
67 rad/s 
22 rad/s 

Table 5.4: Second combination of frequency pairs used to generate [M] and [K] for the 
cantilever beam model shown in Fig.5.2 

Spatial 
Matrix 
Coeff. 

M„ 
M22 

M33 

M44 

M55 

M66 

M77 

Mgg 

Kii 

K12 

K22 

K.23 

K33 

K34 

K44 

K45 

K55 

K56 

Kge 
K67 

K77 

K78 

Kg8 

Frequency points as 
given in Table 5.3 

Noise Level 

0% 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.5 

4000 
-2000 
4000 
-2000 
4000 
-2000 
4000 
-2000 
4000 
-2000 
4000 
-2000 
4000 
-2000 
2000 

0.5% 
1.03 
1.01 
1.0 
.99 
.98 
1,0 

1.02 
1.52 
3990 
-2005 
4041 
-1992 
4007 
-1960 
3960 
-1985 
4027 
-2009 
3996 
-1992 
4005 
-2017 
2017 

1.5% 
1.06 
1.03 
.94 
.95 
1.05 
1.02 
.97 
1.46 
3960 
-1978 
3962 
-1963 
4042 
-2031 
4093 
-1959 
4100 
-2123 
4087 
-2058 
3901 
-2100 
2285 

Frequency points as 
given in Table 5.4 

Noise Level 

0% 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.5 

4000 
-2000 
4000 
-2000 
4000 
-2000 
4000 
-2000 
4000 
-2000 
4000 
-2000 
4000 
-2000 
2000 

0.5% 
1.01 
.98 
.99 
1.02 
1.0 
.98 
1.02 
1.47 
3982 
-1990 
4054 
-2031 
4025 
-2007 
3989 
-1958 
4013 
-1993 
3990 
-1983 
4010 
-2013 
2015 

1.5% 
1.05 
1.04 
.96 
.95 
1.04 
1.05 
.98 
1.53 
3953 
-1969 
4100 
-2057 
4093 
-2033 
3980 
-1950 
3945 
-2064 
4032 
-1967 
4021 
-2067 
2023 

Table 5.5: Mass and stiffness coefficients generated for the cantilever beammodel 
shown in Fig. 5.2 with different noise levels in FRF data (Approach I) 



Chapter 5: Using spatial model to determine damage extent 177 

Stiffness 
elements 

Kl 
K2 
K3 
K4 
K5 
K6 
K7 
K8 

Frequency points as 
given in Table 5.3 

Noise Level 

0% 
2000 
2000 
2000 
2000 
2000 
2000 
2000 
2000 

0.5% 
2005 
2008 
2003 
1995 
1995 
1997 
2001 
1995 

1.5% 
2013 
2015 
2005 
2016 
1987 
2016 
1994 
2010 

Frequency points as 
given in Table 5.4 

Noise Level 

0% 
2000 
2000 
2000 
2000 
2000 
2000 
2000 
2000 

0.5% 
2010 
1997 
2003 
2006 
2005 
1996 
1997 
2007 

1.5% 
2017 
1990 
2007 
1989 
2020 
2009 
1983 
2019 

Table 5.6: Stiffness elements of the cantilever beam model shown in Fig. 5.2 
with different noise levels in FRF data (Approach II) 

1 
2 
3 
4 
5 
6 
7 
8 

System 
natural 
freq. 

7.80 
23.30 
38.37 
52.46 
64.97 
75.31 
83.05 
87.82 

Identified natural frequencies 
using Approach I 

Noise Level 

0% 
7.86 
23.24 
38.45 
52.46 
64.97 
75.4 
83.14 
87.82 

0.5% 
8.24 

23.70 
38.40 
52.30 
64.80 
74.90 
82.80 
87.90 

1.5% 
6.60 

24.70 
38.60 
52.90 
65.30 
75.20 
83.30 
88.80 

Identified natural frequencies 
using Approach n 

Noise Level 

0% 
7.84 
23.32 
38.37 
52.46 
64.91 
75.28 
83.05 
87.82 

0.5% 
7.78 
23.24 
38.28 
52.24 
64.71 
75.00 
82.80 
87.90 

1.5% 
7.86 
23.57 
38.10 
52.62 
65.00 
75.30 
82.92 
88.50 

Table 5.7: Natural frequency (rad/s) of the cantilever beam model shown in Fig. 5.2 with 
the regenerated mass and stiffness using Table 5.3 

frequency points 
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I 

II 

III 

IV 

v 
VI 

VII 

VIII 

IX 

x 
XI 

XII 

NATURAL FREQUENCY OF THE 
MODEL SHOWN IN FIG.3.2 

BEFORE 
DAMAGE 

rad/s 
31.6 
110.8 
121.9 
185.4 
206.6 
229.1 
269.6 
399.4 
734.7 
751.2 
972.2 
1017.0 

AFTER 
DAMAGE 

rad/s 
31.5 
109.2 
117.2 
179.8 
203.0 
226.4 
268.9 
399.4 
732.1 
739.4 
957.8 
1013.4 

Table 5.8 : Natural frequencies of the model shown in fig.3.2 
before and after damage 
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FIG.5.1: A 3 DOF mass-spring system. 
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FIG.5.2: A continous beam and its lumped mass model. 
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FIG.5.3: [AK] for the 12 DOF mass-spring system shown in fig.3.2 
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FIG.5.4: Calculated [AK] using Method I in section 5.5.1 
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FIG.5.5: Calculated [AK] with 4% noise for the 12 DOF mass 
system in fig.3.2 (using Method II in Section 5.5.2) 
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1 1 

FIG.5.7: Calculated [AK] with 4% noise for the 12 DOF mass-spring system 
in fig.3.2 (using Method U with different frequency points) 
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nG.5.8: Identified scaling factor with 4% noise for the 12 DOF mass-spring 
system in fig.3.2 (using Metiiod IH with different freq. points) 
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1 1 

FTG.5.9: Calculated [AK] with 4% noise (incomplete coordinates in damage location 
measured) for the 12 DOF system in fig.3.2 (using Method II) 
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FIG.5.10: Identified scaling factor with 4% noise (incomplete coordinates in damage 
location measured) for the 12 DOF system in fig.3.2 (using Method HI) 
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FIG.5.11: Calculated [AK] with 4% noise (incomplete coordinates in damage location 
interpolated) for the 12 DOF system in fig.3.2 (using Method II) 
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FIG.5.12: Identified scaling factor with 4% noise (incomplete coordinates in damage 
location interpolated) for the 12 DOF system in fig.3.2 (using Method III) 



CHAPTER 6 

EXPERIMENTAL STUDIES 

6.1 INTRODUCTION 

In the preceding chapters of this thesis, theory and algorithms have been 

developed which were aimed at determining the location of structural damage 

and the severity of such damage. In addition, numerical analysis with 

simulated data was carried out to demonstrate the effectiveness of the 

proposed methods. Although while conducting numerical analysis, efforts 

have been made to simulate complexities associated with practical structures 

and measurements, the ultimate confidence in the proposed algorithms cannot 

be achieved until they are applied to some practical structures. 

In this work, two different test structures have been made and used, one was a 

cantilever beam and the other a cross stiffened grid structure. Finite element 

models of the test structures were generated using PAFEC-FE and the 

receptance FRFs generated by the models and that measured from the 

structures were first compared to ensure that the model truly represented the 

structure within a certain frequency range. Damage in the form of a hack saw 

cut of given depth was imposed on both structures and the damage location 

algorithms proposed in earlier chapters were applied. Subsequent to that, the 

algorithms proposed in Chapter 5 to determine the severity of the damage 

were applied on the beam and the cross grid structure. The effect of selection 

of fi-equency points on analysis of damage severity was also studied in detail. 
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Finally, a second damage was created in the grid structure to test the capacity 

of the location method to identify multiple damages. 

6.2 THE TEST STRUCTURES 

Two different test structures were used to carry out the experimental studies. 

The first was a simple cantilever beam structure made of mild steel of cross 

section 39 mm x 6 mm and 619 mm long. It was assumed that the material has 

a Young's Modulus of 209 GPa, Poisson's ratio of 0.3 and density of 7800 

kg/m . Figure 6.3(a) shows the locations on the beam at which FRFs were 

measured. The points on the beam shown in this figure corresponds to nodal 

points in the data file for PAFEC FE given in Table 6.3. The beam was rigidly 

clamped at one end and was modelled as a cantilever. 

The second was a cross stiffened grid structure shown in figure 6.2. Each 

member of the grid structure was an individual beam with a cross section of 

20x10 mm with welded joints. Figure 6.3b shows the location on the grid 

structure at which FRF data were measured and they correspond to the nodal 

points in the data file in Table 6.6. 

6.3 MEASUREMENT EQUIPMENT 

An instrumented hammer (PCB 086B03) was used to excite the structure at 

one point and the response was measured at a different point using an 

accelerometer. The hammer was used with a plastic tip and a force transducer 

with a sensitivity of 2.10 mV/N. The hammer was connected to a power unit 
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(Model 480D06, Make: PCB) with gains of 1, 10 and 100. For this 

experiment, the gain was selected at 1. The output of the power unit was 

connected to channel A of the Dual Channel Analyzer (B&K 2032). 

The translational responses of the structures were measured by using an 

accelerometer (PCB 10729). The accelerometer was small and light (2.4 gms) 

and was based on a simple configuration of piezo-electric slices clamped 

between a seismic mass and a centre post by a preloaded ring. This very light 

accelerometer ensured that its dynamic loading on the structure was 

negligible. The output of the accelerometer with voltage sensitivity of 0.804 

mV/g was connected to a NVMS signal Conditioning Amplifier, which 

amplified the response signal to a suitable level before feeding it to channel B 

of the analyser. The gain of the Conditioning Amplifier was selectable in 10 

dB steps covering the range -20 dB to 60 dB. The function switch could select 

low pass filter settings as well as velocity or displacement. Low pass filter 

settings included 25 kHz, 10 kHz and 1 kHz in the acceleration mode. 

Additionally, an all-pass wideband operation facility was available in the 

acceleration mode which covers 150 Hz to 100 kHz. For this particular 

experiment the setting selected was All pass with a sensitivity of 1.0 and a 

gain of 1.0 or 0 dB. 

The B&K 2032 Dual Channel Analyser used for this test was a 2-channel real 

time analyser covering a wide range of standard functions. It had 801 lines of 

frequency resolution in dual channel operation and the user had the option of 

selecting frequency range. The window functions for the time domain signals 

of both channels could be selected. The function selected for charmel A which 
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was connected to the force transducer was of Transient type and the function 

for channel B connected to the accelerometer was of Exponential type. For 

both the windows, length was carefully selected so that noise effect was 

minimized and undue damping was limited due to the windows or functions. 

The FRF data from the analyser were downloaded using a GPIB connection to 

a PC for further analysis and storage. 

Tables 6.1 and 6.2 describe the experimental setup and equipment settings 

used while conducting the experiments. In addition, a schematic diagram of 

the measurement equipment and set-up is given in figure 6.4. Figure 6.5 

shows a photograph of the experimental rig. 

6.4 CALIBRATION OF THE MEASUREMENT SETUP 

Having prepared the experimental set-up as per the layout shown in figure 6.4, 

calibration of the set-up was performed using the technique proposed by 

Ewins [1]. A known cylindrical mass (weighing 2.6 kg) was freely suspended 

and the accelerometer to be used for measurement in this particular 

experiment was attached to the mass. This mass was then excited by the 

instrumented hammer in the same way as measurements would be otherwise 

made on the real structure. For this particular mass, it is possible to write: 

mX = F 

or, 2 0 1 o g j ^ ) = 201og„(j4) = -8.29dB 
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Therefore, the measured inertance FRF from the mass was expected to have a 

constant value of -8.29 dB. The calibration units of the Dual Channel 

Analyzer were adjusted until the measured inertance FRF had an amplitude of 

-8.29 dB in the frequency range of interest. 

This calibration technique has the advantage of being simple to perform and 

also ensured that the complete measurement set-up was calibrated rather than 

just the individual channels. 

6.5 FE MODELLING OF UNDAMAGED STRUCTURES 

The damage location algorithm discussed in Chapter 3 and employed here on 

the cantilever beam and the cross stiffened grid structure requires both the 

finite element model of the undamaged structure and the RFRFs of the 

damaged structure. For successful damage location, it was essential that the 

finite element model accurately represented the undamaged structure within 

the frequency range of interest. The finite element modelling of both the 

structures were carried out using PAFEC FE software. 

6.5.1 Beam structure 

The beam was modelled using PAFEC and beam elements (element number 

as per PAFEC reference: 34000) which have at each node six degrees-of-

freedom: three translational and three rotational. However, when modelling 

the beam, for each node only the translational DOF in the z direction and 

rotational DOF in x-y plane as shown in figure 6.1 were considered. The beam 



Chapter 6: Experimental studies 190 

was discretized into 13 elements and 14 nodal points as shown in the file in 

Table 6.3. The data file shown in Table 6.3 was created for PAFEC FE to 

generate the mass and stiffness matrices of the beam. 

6.5.2 Cross stiffened grid structure 

The grid structure used in this study is shown in figure 6.2. It has a cross 

sectional dimension of 20x10 mm. The structure was discretized into 20 

elements and 21 nodal points, details of which are shown in PAFEC FE data 

file given in Table 6.6. The element type employed was again Element 34000 

and the nodes were allowed translational movement in z direction, and 

rotational movement in x-y and y-z plane. The structure was modelled as 

freely supported and hence the mass and stiffness matrices generated by 

PAFEC had a size of 63x63. 

6.6 TEST STRUCTURE PREPARATION FOR MEASUREMENT 

The preparation of the test structure prior to starting experiments may be 

regarded as a most important phase of experimentation as an improper or 

faulty experimental set up affects the quality of data obtained. 

6.6.1 Support conditions 

The support condition of the structure is an important issue which needs to be 

addressed at the onset. The beam structure was grounded at one end so that it 

is regarded as a cantilever beam. This was done by rigidly clamping the beam 
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to a work bench which was assumed to be sufficiently rigid to provide the 

necessary grounding. To confirm the above assumption, the mobility of the 

work bench which acted as the base structure was measured over the 

frequency range of interest. It was found that the base structure had a much 

lower mobility than the corresponding levels for the test structure at the point 

of attachment. This suggested that the base structure could be reasonably 

assumed to be rigid. 

The cross stiffened grid structure was tested in a free-free condition. Although 

in practice it is not possible to provide a truly free support, this could be 

approximated by supporting the test piece on light elastic bands, so that the 

vibration modes of the support had very low natural frequencies compared to 

the first mode of the structure. To ensure minimum interference of the 

suspension on the structure's lowest bending mode, the suspension was 

attached as closely as possible to the nodal points of that mode, the location of 

which was predicted by the FE model of the grid structure. 

6.6.2 Type of excitation 

Different methods are available for exciting a structure and each one has its 

advantages and disadvantages. The selection of excitation is primarily 

dependent on the nature of application. 

Impact excitation using an impact hammer was used in this study. This is a 

convenient means of excitation as it allows easy access to measurement 

locations on the structure and data can be acquired quite rapidly. In addition. 
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there is minimal attachment between the structure and the excitation device, 

thus reducing unwanted interactions. The impulse response of the structure 

will contain information from all the modes of vibration of the structure, 

provided enough energy is put into the structure. However, using this type of 

excitation, the signal to noise ratio may not always be ideal. This problem can 

be partly alleviated by increasing the number of averages. While using this 

form of excitation, care needs to be taken to avoid multiple impacts as this can 

severely affect the quality of data obtained. 

6.6.3 Attachment and location of transducer 

It is important to ensure that the transducer has been located properly and 

attached correctly on the test structure. Various methods are available for 

accelerometer attachment, such as cemented stud, magnet, etc. The method 

used in this experimentation was to attach the accelerometer to the test 

structure by a thin layer of wax. This attachment ensures excellent contact and 

minimum effect on the stiffness of the test structure. From the fi-equency 

responses of different forms of attachment shown in figure 6.9 which is 

quoted from Ewins [1], it is clear that within a frequency range of 0 to 

approximately 7 kHz, the response signal from a structure remains reasonably 

accurate if wax is used for attachment. Since the frequency range of interest in 

this study was restricted to a maximum of 800 Hz, the selection of wax for 

attachment appears adequate. 

From the FE models of the structures, an appreciation of their different modes 

of vibration and their corresponding nodal points was formed. The location of 
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the transducer was then carefully selected to ensure that it was not positioned 

at, or very close to, a node of the structure's modes within the frequency range 

of interest. 

6.7 INTRODUCTION OF DAMAGE IN THE STRUCTURE 

In the beam structure a crack damage was introduced by making a cut at a 

distance of 255 mm from the free end between nodes 8 and 9. The cut which 

had a width of 1 mm and a depth of 6 mm extended for 15 mm on each side. 

Figure 6.1 shows the geometry of the cut. 

For the grid structure, the damage was located at a distance of 235 mm from 

node 7 between nodes 8 and 9 and figure 6.2 shows the geometry of the cut. 

6.8 EXECUTION OF THE MEASUREMENT 

A description of the steps performed in execution of a typical test follows. 

(i) Verification of cable connections and joint tightness 

All the cable connections were checked to ensure that they were working 

properly and they have been properly connected. 

(ii) Calibration of the measurement set-up 

At the beginning of the test, the measurement set-up was calibrated with a 

known mass and the calibration technique as discussed earlier in Section 6.4 

was used for calibration. 
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(iii) Examining the quality of data. 

For the beam structure the accelerometer was placed at node 11 as shown in 

figure 6.3(a) and for the grid structure it was located at node 7 as per figure 

6.3(b). Once each FRF was measured, the data were examined to ensure that 

the quality of data was acceptable. This was done by checking the time 

functions of both channels, coherence function and cross spectrum to ensure 

that anomalies can be explained. 

(iv) Storing Receptance FRFs 

Using a GPIB connection, the FRFs were downloaded from the B&K 2032 

Analyzer to a PC for storage and post analysis. These data were then applied 

to the algorithms discussed earlier in this work to locate and estimate 

structural damage. 

6.9 DAMAGE LOCATION 

For the beam and grid structures, measurements were taken only for the 

translational DOFs in the z direction. However, the FE model of the beam 

structure generated mass and stiffness matrices using both the translational 

DOFs in z direction and the rotational DOFs in x-y plane. For the grid 

structure, the translational DOFs in z direction along with rotational DOFs in 

the x-y and y-z planes were used. Since the rotational DOFs could not be 

measured, the RFRFs of the damaged structure corresponding to the rotational 

DOFs were interpolated using D.E A. The interpolated RFRFs along with 

measured RFRFs for the damaged structure were used with the spatial 

matrices of the undamaged structure to locate damage. Both the 3-D DLP and 
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the CDLV were generated. In the figures showing the 3-D DLP and the 

CDLV, only the values corresponding to measured DOFs have been plotted, 

as the damage location vector values corresponding to interpolated DOFs are 

zero. The reasons for this were explained in Chapter 3. 

The natural frequencies obtained by using the FE mass and stiffness matrices 

of the beam were found to be in agreement with measurement as given in 

Table 6.4. The FE mass and stiffness matrices were then used in a programme 

written in Fortran to produce the RFRFs of the beam structure. The RFRFs 

thus computed were compared with RFRFs obtained from measurement. 

Figure 6.6 presents the point RFRF from measurement and that from FE 

model. It was found that the FE model of the beam is a reasonably accurate 

representation of the beam structure within a frequency range of 200 to 800 

Hz. The validity of the measurements performed on the beam structure was 

confirmed by checking the coherence of measurement such as the one given in 

figure 6.7 for point measurement. For cross measurements, the coherence 

were also observed to be close to be one except in the region of anti-

resonance. As the FE model represented the structure quite accurately in the 

fi-equency range of 200 to 800 Hz, it was decided to concentrate the study 

within this range. 

The shift in natural frequencies caused by damage to the beam structure 

within the frequency range selected for study is given in Table 6.5. Figure 

6.10 shows the plots of the point receptance FRF curves for the undamaged 

and damaged structures. From Table 6.5 it is possible to isolate the natural 

fi-equencies of the structure which have been most affected due to damage. 
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The 3-D Damage Location Plot in figure 6.11(a) over the frequency range of 

200 to 800 Hz clearly shows a continuous peak at the DOFs 8-z and 9-z with 

the peaks becoming more distinct in the frequency region where the shift in 

the natural frequency is more prominent. From this, the location of damage 

can be correctly identified to be between nodes 8 and 9 since the DOFs 8-z 

and 9-z are associated with nodes 8 and 9. The CDLV was generated by using 

DLV between 200 and 800 Hz in steps of 1 Hz. The CDLV plotted for this 

case is shown in figure 6.11(b) which shows an appreciable peak occuring at 

DOFs 8-z and 9-z indicating that damage is located between nodes 8 and 9. 

For the grid structure, the natural frequencies and RFRFs generated by the FE 

model and that from measurement were compared as given in Table 6.7 and 

figure 6.8. It was found that the FE model represented the grid structure 

accurately within a frequency range of 200 to 400 Hz. Therefore, the study on 

the grid structure was concentrated within this frequency range. 

Due to damage in the cross grid structure between nodes 8 and 9, the resultant 

shift in natural frequencies and changes in the point receptance curve has been 

shown in Table 6.8 and figure 6.12 respectively. The 3-D Damage Location 

Plot drawn in figure 6.13(a) shows a continous peak running over the 

frequency range between DOFs 8-z and 9-z with the peaks becoming more 

prominent in the frequency region where the shift in natural frequencies is 

more notable. Therefore, it can be said that the damage in the cross grid 

structure is located between nodes 8 and 9. Figure 6.13(b) shows the CDLV 

obtained for the grid structure by using CDLV between 200 to 400 Hz in steps 
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of 0.5 Hz. Again in this plot, a distinct peak is evident at DOFs 8-z and 9-z 

indicating correctly that the damage is located between nodes 8 and 9. 

6.10 DISCUSSION OF LOCATION RESULTS 

By using either the 3-D DLP or the CDLV, the location of damage can be 

identified. However, since CDLV is obtained by adding all the damage 

location vectors over a frequency range, the peaks due to damage becomes 

magnified. However, from the 3-D DLP it is possible to determine the 

variation in the effect of damage on the structure at different frequency points. 

This information proves very useful when trying to determine the damage 

severity by selecting FRF data at frequency points more affected by damage. 

From the experimental studies in the beam and grid structures, it is clear that 

D.E A can be successfully used to interpolate the FRF data for rotational 

DOFs. These interpolated data can be used in conjunction with the damage 

location algorithm suggested in Chapter 3 to locate damage. This is mainly 

due to relatively smaller magnitudes of spatial matrix elements related to the 

rotational DOFs compared with those related to translational DOFs for these 

two structures. This is explained in more details by using a simple illustration 

given below. In the illustration, the frequency symbol of Q has been 

eliminated from the dynamic stiffness and receptance terms for simplicity. For 

a certain structure, the first row of the Dynamic Stiffness Matrix is given as: 

( Z i i Zi2 Zi3 Z,4 Zi5 Zi6 Z ^ Z^g} 

and the receptance FRF column at a particular frequency is: 

{Xi X2 X3 X4 X5 Xg X7 Xg) 
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Hence the first element of the Damage Location Vector is given by: 

8 

Sz,„x„ 
n=l 

If X2, X4, Xg and Xg have to be interpolated instead of being measured, then the 

actual receptance column may become 

{xi (x2+eO X3 (x4+e2) X5 (x6+e3) Xy (x8+e4)} 

where Cj, e2, 63 and 64 are due to expansion error. Therefore, the first element 

of the damage location vector becomes: 

8 

2.-z,„x^ + Zj2ei + Z]4e2 + 'z^u^s + Zj8e4 
n=l 

However, if z^, Z|3, Z15 and z^ are much greater than Z12, Z14, Zjg and Zjg, then 

the errors introduced in the element of the damage location vector due to 

expansion error becomes almost negligible. For this reason the damage 

location vector is not severely affected, even with the expansion error 

introduced while interpolating FRFs for rotational DOFs, as the dynamic 

stiffness elements related to rotational DOFs are significantly smaller than 

those related to translational DOFs. 

6.11 DETERMINATION OF DAMAGE SEVERITY 

As discussed in Section 6.5, the location of damage in the beam and the cross 

stiffened grid was determined by using the damage location algorithm 

suggested in Chapter 3. Subsequent to locating the damage, the next step was 

to estimate the severity of damage. While trying to do so, it was assumed that 

the hack saw cut in the beam and the cross grid has only affected the stiffness 

of the structure. Therefore, the algorithms to be used here for estimating 
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damage severity were mainly aimed at computing the change in stiffness 

matrix of the undamaged structure due to damage. 

In Sections 5.5.2 and 5.5.3, two different methods have been suggested for 

estimating the severity of damage. The method suggested in Section 5.5.2 and 

named Method II aimed at calculating the change in spatial matrix coefficients 

of the undamaged structure in the area of damage. Method III in Section 5.5.3 

attempted to identify the damaged elements directly by using the submatrix 

approach. In the following sections, both Methods II and III as discussed in 

Sections 5.5.2 and 5.5.3 are employed on the beam and grid structure to 

determine the severity of their respective damage. Henceforth in this chapter, 

reference to Methods II and III will indicate the methods presented in Section 

5.5.2 and 5.5.3 respectively for determining the damage severity. 

6.11.1 Regenerated FRF 

Methods II or III can be applied to the beam and cross grid structure to 

compute the resultant change in stiffness [AK] due to damage. To verify the 

reliability of the [AK] thus obtained, it can be added to [K]UD to generate [K]^. 

The generated [K]D along with [M]UD can then be used to compute the FRF of 

the damaged structure. The FRF thus produced is called the 'regenerated' FRF 

of the damaged structure. If the measured and 'regenerated' FRF of the 

damaged structure are found to be in agreement, then it can be concluded that 

the computed [AK] gives a reliable estimate of the damage. Unlike the 

numerical case studies, the correct [AK] due to damage is not known for the 

beam and grid structures. The [AK] computed cannot be compared with some 
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reference [AK] to check the correctness of the results. Therefore, this indirect 

method has been adopted here to check the accuracy of results. 

However, while comparing the 'regenerated' and measured FRF of the 

damaged structure, it is important to bear in mind that unlike the measured 

FRF, the 'regenerated' FRF are truly undamped. In general, their magnitude 

will always be bigger than the measured FRF. To compare them, it is best to 

check whether the curves have the peaks due to resonance at the same 

frequency rather than magnitudes. 

6.12.2 Beam structure 

For the beam structure, the location of damage was already identified in 

Section 6.9 to be between nodes 8 and 9. Methods II and III were applied 

alternately on the beam structure to determine the [AK] . 

Application of Method II to beam structure 

When applying Method II to the beam structure, the main aim was to calculate 

the change in stiffness matrix coefficients of [K]UD in the area of damage. As 

shown in Section 6.5.1, this beam was discretized into 13 elements and 14 

nodal points. Since one of the nodal points at one end was totally encastered, 

the mass and stiffness matrix of the beam generated by using the PAFEC-FE 

data file shown in Table 6.3 had a size of 26x26. Therefore, damage between 

nodes 8 and 9 will affect the following matrix coefficients in the stiffness 

matrix of the undamaged structure: 
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13-13, 13-14, 13-15, 13-16, 14-14, 14-15, 14-16, 15-15, 15-16, 16-16 

Hence, the number of unknowns to be determined is 10. Theoretically, 

Method II require 10 pairs of frequency points to compute them. As already 

shown in the numerical examples in Chapter 5, additional pairs of frequency 

points prove helpful in reducing the effect of measurement noise. Therefore, 

in this case, 20 frequency points were used to generate 50 frequency pairs and 

FRF data at those points were used to identify the unknown stiffness matrix 

coefficients. To test the sensitivity of the [AK] computed by using Method II 

on frequency points selected, three different cases were tried. Since from the 

numerical examples in Chapter 5, it has been already established that better 

results are obtained by selecting frequency points near resonances, frequency 

points used here for different cases encompassed different resonances. The 

frequency points selected for the three different cases are given below: 

CASE A 

From Table 6.5 it is clear that for the beam structure, the natural frequency at 

745 Hz has been most severely affected due to damage within the frequency 

range of interest. Twenty frequency points were selected such that they were 

in the vicinity of 745 Hz and they are given in Hz in the table below: 

710 

737 

713 

740 

715 

742.5 

717 

745 

720 

747 

722 

750 

727 

752 

730 

755 

732 

757 

735 

760 

CASEB 

The natural frequency at 446 Hz was the least affected due to damage among 

the natural frequencies within the range of 200 to 800 Hz. In case B, 
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frequency points were considered in the neighbourhood of 446 Hz only and 

they are given in Hz in the following table: 

415 

438 

417 

440 

419 

443 

422 

445 

424 

446 

428 

448 

431 

450 

432 

452 

434 

454 

436 

456 

CASEC 

In case C, 20 frequency points encompassing 230 Hz were used. Due to 

damage 230 Hz changed to 226 Hz. For this particular natural frequency, the 

shift due to damage is not as large as the natural frequency at 745 Hz but 

slightly larger than the shift suffered at 446 Hz. 

210 

230 

212 

231 

215 

232 

216 

234 

217 

236 

219 

238 

222 

240 

224 

243 

225 

246 

228 

248 

For all three cases, the magnitude of change in the affected matrix coefficients 

have been given in Tables 6.9A to 6.9C. Figures 6.14A to 6.14C plot the 

measured point RFRF for damaged and undamaged structure along with the 

regenerated point RFRF for the damaged structure. 

Application of Method III to beam structure 

In the next case, Method III was applied to calculate the scaling factors using 

the submatrix approach. This method works with elements directly and 

computes the scaling factors of the elements affected by damage. From the 

location of damage it is clear that only one element lying between nodes 8 and 
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9 had been affected. Therefore, the number of unknowns in this case was just 

one. This unknown can be computed by Method III using a single pair of 

frequency points. A wide spectrum of frequency points were used which 

mostly encompassed the natural frequencies most affected by damage. 

The frequency ranges used separately were 220 Hz to 250 Hz, 430 to 470 Hz 

and 710 to 760 Hz which are the frequency ranges used for Method II. The 

calculated scaling factor for the element between nodes 8 and 9 varied in each 

frequency range. The variation in the identified scaling factor for different 

frequency ranges have been tabulated in Tables 6.10A to 6.IOC and the 

highest value of scaling factor from each of these tables was used to obtain the 

regenerated RFRF. The regenerated point RFRFs obtained by using the 

highest value of scaling factor from Tables 6.10A to 6.IOC have been plotted 

in figures 6.15A to 6.15C respectively along with the point RFRF of the 

damaged and undamaged beam. 

6.11.3 Cross grid structure 

For the cross grid structure, the location of damage was already identified to 

be between nodes 8 and 9 in Section 6.9. Methods II and III were also applied 

alternately on the grid structure to determine the [AK] . The same study which 

was done on the beam structure was repeated. 
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Application of Method II to grid structure 

The main objective in this case was to calculate the change in stiffness matrix 

coefficients of [K]UD in the area of damage. The grid was discretized into 20 

elements and 21 nodal points. Since each nodal point was assumed to have 3 

DOFs, the mass and stiffness matrix of the grid generated by using the data 

file shown in Table 6.6 had a size of 63x63. Therefore, damage between nodes 

8 and 9 will affect the following matrix coefficients in the stiffness matrix of 

the undamaged structure. 

22-22, 22-23, 22-24, 22-25, 22-26, 22-27, 23-23, 23-24, 23-25, 23-26, 23-27, 

24-24, 24-25, 24-26, 24-27, 25-25, 25-26, 25-27, 26-26, 26-27, 27-27 

Hence, the number of unknowns is 21, and theoretically. Method II requires 

21 pairs of frequency points to compute them. Since additional pairs of 

frequency points prove helpful in reducing the effect of measurement noise, 

30 frequency points were used to generate 100 frequency pairs and the FRF 

data at those points were used to identify the unknown stiffness matrix 

coefficients. To test the sensitivity of the [AK] computed by using Method II 

on frequency points selected, four different cases were tried by selecting 

frequency points near resonances which were affected to varied extents due to 

damage. The frequency points selected for four different cases are given 

below: 

CASE A 

The natural frequency corresponding to 370.5 Hz have been most severely 

affected due to damage within the frequency range of interest. Thirty 
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frequency points were selected for this case such that they were at the vicinity 

of 370.5 Hz and they are given in Hz in the table below: 

351 

359.5 

369 

351.5 

360 

370 

352 

361.5 

371 

352.5 

362.5 

372 

353 

363.5 

373 

354 

364 

374 

355 

365 

374.5 

356.5 

366 

375 

358 

366.5 

375.5 

359 

368 

376.5 

CASEB 

In case B, 30 frequency points were used at the vicinity of 308.5 Hz, which 

changed to 307 Hz due to damage. For this particular natural frequency, the 

shift due to damage is the least among the natural frequencies within a 

frequency range of 200 to 400 Hz. The frequency points used are given in Hz 

in the following table. 

301 

311 

320.5 

302 

312 

321 

303 

313 

321.5 

304 

314 

322 

305 

315 

322.5 

306 

316 

323 

307.5 

317 

324 

308 

318 

325 

309 

319 

326 

310 

320 

326.5 

CASEC 

The natural frequency at 244 Hz is almost as severely affected by the damage 

as that at 370.5 Hz, but the shift for 244 Hz is slightly less than for 370.5 Hz. 

In case C, 30 frequency points were considered in the neighbourhood of 446 

Hz and they are given in Hz in the following table: 

232 

237.5 

244.5 

233 

238 

245 

233.5 

239 

245.5 

234 

240 

246.5 

234.5 

240.5 

247 

235 

241 

248 

235.5 

241.5 

248.5 

236 

242 

249 

236.5 

243 

249.5 

237 

243.5 

250 
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CASE D 

In case D, 30 frequency points were used encompassing 224.5 Hz, which 

changed to 222 Hz due to damage. For this particular natural frequency, the 

shift due to damage is much less compared to natural frequencies considered 

in cases A and C for the grid structure. The frequency points used are given in 

Hz in the following table. 

201 

211 

221.5 

202 

212 

222 

203 

213 

222.5 

204 

214 

223 

205 

215 

223.5 

206 

216 

224 

207 

217 

225 

208 

218 

225.5 

209 

219 

227 

210 

220 

227.5 

For all four cases, the magnitudes of change in the affected matrix coefficients 

have been given in Tables 6.11A to 6.1 ID and figures 6.16A to 6.16D shows 

the plot of the measured point RFRF for damaged and undamaged structures 

along with the regenerated point RFRF for the damaged structure. 

Application of Method III to cross grid structure 

Method III was applied to the cross grid structure which aimed to directly 

compute the scaling factor of the element affected by damage. From the 

location of damage it is clear that only the element between nodes 8 and 9 had 

been affected. Since the number of unknowns in this case was just one, it can 

be computed by Method III by using a single pair of frequency points. A wide 

spectrum of frequency points was used which mostly encompassed the natural 

frequencies most affected by damage. The frequency ranges used separately 
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were 350 to 375 Hz, 290 to 315 Hz, 230 to 250 Hz, 215 to 225 Hz and 350 to 

375 Hz which are the same ranges used for Method II. 

The calculated scaling factor for the element between nodes 8 and 9 varied in 

each frequency range. The variation in scaling factor for different frequency 

pairs in different range have been tabulated in Tables 6.12A to 6.12D and the 

highest value of scaling factor from each of these tables were used to obtain 

the regenerated RFRFs. The regenerated point RFRFs obtained by using the 

highest value of the scaling factor from Tables 6.12A to 6.12D have been 

plotted in figures 6.17A to 6.17D respectively along with the point RFRF of 

the damaged and undamaged grid structure. 

6.12 DISCUSSION OF DAMAGE SEVERITY RESULTS 

From the results obtained regarding the severity of damage for both structures, 

it is apparent that the selection of frequency points plays an important role in 

the computations. Two different methods of estimating the severity of damage 

have been undertaken: determining the matrix coefficients and evaluating the 

scaling factors. 

When trying to compute the matrix coefficient, it is clear from Tables 6.9A to 

6.9C and Tables 6.11 A to 6.1 ID, that for both structures, there is an 

appreciable variation in the computed values. As a result there might be a 

degree of uncertainty regarding the final estimate. In order to identify the most 

accurate one of the results obtained, the regenerated RFRF of the damaged 

structure have been compared here with the measured RFRF of the damaged 
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structure. Without loss of generality, the point RFRF have been compared for 

both the beam and grid structure. 

While studying figures 6.14A to 6.14C for the beam structure, it is clear that 

for almost all selection of frequency points, the regenerated RFRF and 

measured RFRF of the damaged structure resemble each other reasonably well 

in the frequency range of 200 to 650 Hz. However, in the frequency range of 

650 to 800 Hz, which encompasses the natural frequency most severely 

affected within the frequency range of interest, the only regenerated curve 

which most closely resembles the measured RFRF of the damaged structure is 

shown by figure 6.14A. 

Therefore, among the different cases considered for the beam, the case 

represented by figure 6.14A where the FRF data used are at frequency points 

close to 745 Hz (which is the most severely affected natural frequency within 

200 to 800 Hz) approximates the actual damage severity. 

For the cross grid structure, two natural frequencies (i.e 244 & 370.5 Hz) 

within the frequency range of interest have been more severely affected than 

the rest. For this structure, the regenerated FRF resembles the measured FRF 

of the damaged structure more closely than the others in figures 6.16A and 

6.16C. The results are similar to that obtained for the beam structure, since for 

both the structures the most accurate results are obtained when FRF data used 

are at frequency points which are in the vicinity of the most affected natural 

frequencies within the frequency range of interest. For the beam structure, 

only a single natural frequency was most severely affected. However, for the 
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grid structure, two natural frequencies have been affected most severely and 

the shift in them is almost similar. Therefore, reliable damage estimate was 

obtained for both cases as given in figures 6.16A and 6.16C which represented 

the cases of using FRF data at frequency points in the vicinity of 370.5 and 

244 Hz respectively. As against that, figure 6.16B represents the case when 

the frequency points selected are in the vicinity of natural frequency at 308.5 

Hz. This particular natural frequency has been hardly affected by the damage. 

Therefore, the regenerated FRF for this case significantly deviates from the 

measured RFRF of the damaged structure. Even so, the shift in the 

regenerated RFRF appear to be in the right direction. From this it can be said 

that the severity computed in this case is an underestimate. Figure 6.16D 

shows the case when the frequency points selected are in the vicinity of 224 

Hz. Although the shift in this natural frequency is almost as much as that in 

the natural frequency at 308.5 Hz, from figure 6.16D, it is apparent that the 

regenerated RFRF is much closer to the actual RFRF compared to that in 

figure 6.16B. This may be attributed to its proximity to the natural frequency 

corresponding to 244 Hz which have been quite significantly affected by 

damage. 

Hence from the results obtained, it is clear that for both the structures the best 

estimate about the severity of damage can be attained when using FRF data at 

the vicinity of the natural frequencies more severely affected by damage; 

Instead of trying to obtain the matrix coefficients, the second approach was to 

use Method III which attempted to calculate the scaling factor of the damaged 

element. For the beam structure, the calculated scaling factor varied from 0.12 
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to 0.265. For the cross grid structure the variation ranged from 0.20 to 0.38. A 

comparitive study of figures 6.15A to 6.15C for the beam structure and figures 

6.17A to 6.17D for the grid structure reveals that the regenerated RFRF 

approximates the RFRF of the damaged structure most closely in figure 6.15C 

for the beam and figures 6.17A and 6.17C for the cross grid structure. 

Analysis of these cases show that figure 6.15C represents the case when the 

frequency points selected were close to 744 Hz and the regenerated RFRF in 

figures 6.17A and 6.17C used frequency points in the vicinity of 370.5 and 

244 Hz. Besides, the variation in computed scaling factors remains reasonably 

small for the frequency ranges in the vicinity of the most affected natural 

frequencies. Therefore like Method II, the most accurate results are obtained 

with Method III when using FRF data at frequency points which are in the 

vicinity of natural frequencies affected by damage. 

Therefore irrespective of the method used, the results obtained are frequency 

dependant. However, from the regenerated FRFs it appears that the results 

obtained are closer to the correct estimate when Method II is used instead of 

Method III. This might be attributed to the fact that Method II uses a larger 

number of frequency points compared to Method III and this results in the 

outcome reflecting the structure more accurately over a wider frequency band. 

But this improvement in accuracy obtained while using Method II can be 

offset by the significant reduction in computational burden that can be 

achieved while using Method III. 

Therefore in brief it can be said that the severity of damage computed is on 

the lower side compared to the actual when the frequency points selected are 
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away from the most severely affected natural frequencies within the frequency 

range of interest. In contrast to that, when the frequency points selected lie 

near the natural frequencies which have been more severely affected, the 

damage estimate approaches the correct estimate more closely. Therefore, it is 

suggested that in order to approach the correct result more closely and to 

eliminate the risks associated with underestimating the damage severity, 

frequency points selected for estimating damage severity should be in the 

vicinity of the most severely affected natural frequency. 

6.13 LOCATION OF MULTIPLE DAMAGES 

In addition to the existing damage, a second damage was introduced on the 

grid structure at a distance of 75 mm from node 13 and between nodes 13 and 

18 in figure 6.3(b). The resultant shift in natural frequency and the point 

receptance curve has been given in Table 6.8 and figure 6.18. The 3-D DLP 

and the CDLV for these damages have been shown in figures 6.19(a) and 

6.19(b). Damage between DOFs 8-z and 9-z could be identified quite 

accurately. Besides the continous peak running corresponding to DOFs 13-z 

and 18-z indicate the location of damage between nodes 13 and 18. This 

experimental results successfully demonstrates the capability of 3-D DLP and 

CDLV to identify more than one damage in a structure at the same time. 

6.14 SUMMARISING REMARKS 

This chapter presented the results obtained when the damage location and 

extent algorithms proposed in this thesis were used to locate damage and 
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determine damage severity on two practical structures. The results obtained 

for both complement to the numerical studies carried out in the previous 

chapters. 

Based on the results presented in this chapter, it can be concluded that the 

methods suggested in this thesis to detect damage using FRF data are feasible 

and can be applied to real structures. Even when FRF data are noisy, location 

of structural damage can be determined by using either the 3-D Damage 

Location Plot or the CDLV. 

Both 3-D DLP and the CDLV have their respective advantages. By using 

CDLV, the location of structural damage becomes more distinct compared to 

using 3-D DLP. However, use of 3-D DLP makes it possible to ascertain 

frequency regions where the damage has affected the FRFs more. This 

information proves useful when trying to determine the damage severity. 

When all coordinates have not been measured, it is possible that damage 

location may still be successfull using interpolated FRF data obtained by 

applying D.E A. 

To determine the severity of damage, two distinct techniques referred to here 

as Methods II and III have been employed. Method II determines the matrix 

coefficients and Method III calculates the scaling factors of the damaged 

element. The computational effort required for Method III is significantly less 

than that for Method II. Irrespective of the method employed for computing 

damage severity, the results obtained are more accurate if the severity of 
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damage is determined locally. This implies that the damage should be located 

before its severity is estimated. 

The damage estimate using FRF data is frequency dependant. However, the 

most accurate estimate of damage can be obtained if damage severity is 

computed locally and if FRF data at frequency points close to natural 

frequencies more severely affected by damage are used. 
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Structures: 

Dual Channel Analyser: 

Exciter: 

Power Unit: 

Signal Amplifier: 

Accelerometer: 

Data Processor: 

Plotter 

Cross Stiffened Grid and Beam 

Bmel & Kjaer, Type 2032 

PCB Hammer, Force Transducer 
Sensitivity: 2.10 mV/N 
PCB Make, Model 480D06 

NVMS Conditioning Amplifier 

PCB 10729 
Voltage Sensitivity: 0.804 mV/g 
HP Workstation, Model 

HP, Model 7440A 

Table 6.1: Experimental setup information for the Beam and Grid structures 

DUAL CHANNEL ANALYSER 

Frequency Range 

Resolution 

Windows 

Sensitivity 
(Calibrated) 
Averages 

0- 800Hz (Beam) 
0- 400Hz (Grid) 
800 Lines 

Exc: Transient 
Res: Exponential 
Exc: 1.08 mV/N 
Res: 43.0 [iV/G 
10 

SIGNAL AMPLIFIER 

Gain 

High Pass 

Freq. Filter 

Sensitivity Unit: 
(Calibrated) 

1.0 

5.0 Hz 

All Pass 

Response: 1.00 

Table 6.2: Equipment setting for the Beam and Grid Structures 
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CONTROL 
C0NTR0L.END 
NODES 
NODE 
1 
2 
3 
4 
5 
6 
7 

x 
0 

.047 

.095 

.142 

.190 

.238 

.285 
ELEMENTS 
ELEM= 34000 
NUMBER 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
BEAMS 
SECTION 
1 
MATERIAL 

Y NODE X 
0 8 

0 9 
0 10 
0 11 
0 12 
0 13 
0 14 

PROPERTIES 

MATERIAL 
11 

MATERIAL.NUMBER E 
11 
LOADS 
CASE 
1 

209E9 

NODE 
2 

ACTIVE.FREEDOMS 
NODE 
2 
R12 1 
RESTRAINTS 
NODE 
1 
2 
R12 1 

DIRECTION 
35 
00 

DIRECTION 
0 
1246 
0000 

.333 

.380 

.428 

.476 

.523 

.571 

.619 

TOPOLOGY 
12 
2 3 
3 4 
4 5 
5 6 
6 7 
7 8 
89 
9 10 

10 11 
11 12 
12 13 
13 14 

IYY 
.072E-8 

NU RO 
.3 7800 

Y 
0 
0 
0 
0 
0 
0 
0 

AREA 
2.34E-4 

DIRECTIONS.OF.LOAD VALUE.OF.LOAD 
3 10 

PRINT.CONTROL 
2 
0 

MODES.AND.FREQUENCIES 
AUTOMATICMASTERS MODES 
0 
MASTERS 
NODE.NUMBER 
2 
R12 
END.OF.DAT 

10 

DIRECTION 
35 
00 

Table 6.3: Data file in PAFEC FE for deriving mass and stiffness of the beam 
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NATURAL FREQUENCIES OF UNDAMAGED BEAM 

FROM MEASUREMENT 
13.0 
82.0 
230 
446 
745 

FROM FINITE ELEMENT MODEL 
13.0 
82.0 

229.7 
450 
745 

Table 6.4: Natural Frequencies of undamaged beam from measurement and 
FE model 

NATURAL FREQUENCIES OF BEAM FROM MEASUREMENT 

BEFORE DAMAGE 
13.0 
82.0 
230 
446 
745 

AFTER DAMAGE 
13.0 
78.0 
226.0 
444 
718 

Table 6.5: Natural Frequencies of damaged and undamaged beam from 
measurement 
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CONTROL 
CONTROL.END 
NODES 
NODE 
1 
3 
5 
7 
9 
11 
13 
15 
17 
19 
21 
ELEMENTS 

X 
0 

.1 

.15 
.4 
.4 
.6 
.6 
.8 
.6 
.15 
0 

ELEMENT.TYPE = 
NUMBER 
1 
3 
5 
7 
9 
11 
13 
15 
17 
19 
21 
BEAMS 
SECTION 
1 
MATERIAL 

PROP 

Y 
0 
.15 
0 
0 
.42 
0 

.42 
0 
.53 
.42 
.42 

=34000 
TOPOLOGY 

12 
3 4 
5 6 
7 8 
7 10 
11 14 
12 13 
11 15 
13 18 
9 19 

19 4 

MATERIAL IYY 

NODE 
2 
4 
6 
8 
10 
12 
14 
16 
18 
20 

NUMBER 

11 1.666E-9 

MATERIAL.NUMBER E 
11 
LOADS 
CASE 
1 

209E9 

NODE 
2 

ACTIVE.FREEDOMS 
NODE 
1 
R20 
RESTRAINTS 
NODE 
1 
R20 1 

DIRECTION 
345 
000 

DIRECTION 
126 
000 

MODES.AND.FREQUENCIES 
AUTOMATICMASTERS 
0 
MASTERS 
NODE-NUMBER 
1 
R20 1 
END.OF.DAT 

2 
4 
6 
8 
10 
12 
14 
16 
18 
20 
22 

IZZ 

X 
.1 
.1 
.15 
.4 
.5 
.6 
.6 
.8 
.5 
.15 

PROP 

Y 
0 

.42 
-.11 
.15 
0 
.15 

-.11 
.42 
.42 
.53 

TOPOLOGY 
2 3 
4 5 
5 7 
89 

1011 
11 12 
13 17 
13 16 
18 9 
19 20 
214 

TORS.CONST AREA 
6.666E-9 4.6E-9 2.0E-4 

NU 
.3 

RO 
7800 

DIRECTIONS.OF.LOAD VALUE.OF.LOAD 
3 

MODES 
10 

DIRECTION 
345 
000 

10 

PRINT.CONTROL 
2 
0 

Table 6.6: Data file in PAFEC FE for deriving mass and stiffness of the grid 
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NATURAL FREQUENCIES OF UNDAMAGED CROSS GRID (Hz) 

FROM MEASUREMENT 
224.5 
244.0 
308.5 
370.5 

FROM FINITE ELEMENT MODEL 
223.0 
242 

308.5 
371 

Table 6.7: Natural Frequencies of undamaged cross grid from measurement 
and FE model 

NATURAL FREQUENCIES OF CROSS GRID FROM 
MEASUREMENT (Hz) 

BEFORE DAMAGE 

224.5 
244 

308.5 
370.5 

AFTER DAMAGE 

222 
231.5 
307 
357 

AFTER TWO 
DAMAGES 

219 
228 

305.5 
352 

Table 6.8: Natural Frequencies of damaged and undamaged cross grid from 
measurement 
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6060000 

-144300 

-6069000 

-144400 

-144300 

4580 

144400 

2290 

-6069000 

144400 

6060000 

144300 

-144400 

2290 

144300 

4580 

Table 6.9A: Magnitude of change of affected stiffness matrix 
coefficients for beam (Case A) 

3990000 
-95010 

-4000000 

-9500 

-95010 

3020 

95000 

1507 

-4000000 

95000 

3990000 

95010 

-9500 

1507 

95010 

3020 

Table 6.9B: Magnitude of change of affected stiffness matrix 
coefficients for beam (Case B) 

2300000 

-54820 

-2310000 

-54800 

-54820 

1740 

54800 

870 

-2310000 

54800 

2300000 

54820 

-54800 

870 

54820 

1740 

Table 6.9C: Magnitude of change of affected stiffhess matrix 
coefficients for beam (Case C) 
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Freq (Hz) 
Scaling 
Factor 
Freq (Hz) 
Scaling 
Factor 
Freq (Hz) 
Scaling 
Factor 

227,231 

.14 

238,249 

.11 

221,227 

.145 

220,245 

.11 

240,250 

.10 

223,226 

.15 

225,227 

.15 

242,250 

.10 

227,235 

.143 

225,231 

.14 

225,228 

.15 

228,232 

.15 

228,233 

.14 

225,248 

.12 

223,243 

.12 

229,236 

.14 

243,247 

.11 

234,246 

.12 

234,238 

.13 

241,247 

.10 

248,250 

.10 

234,243 

.13 

223,229 

.14 

241,247 

.11 

241,243 

.11 

224,230 

.14 

241,231 

.11 

Table 6.10A: Identified scaling factor vs frequency pair 
for beam (220 to 250 Hz) 

Freq (Hz) 
Scaling 
Factor 
Freq (Hz) 
Scaling 
Factor 
Freq (Hz) 
Scaling 
Factor 

437,431 

.16 
438,449 

.17 

451,461 

.15 

430,445 

.15 
440,470 

.15 

453,463 

.15 

455,437 

.16 
452,470 

.10 

437,443 

.17 

445,442 

.17 
465,468 

.1 

431,468 

.15 

448,463 

.15 
435,448 

.16 

439,447 

.15 

439,436 

.16 
443,447 

.17 
434,441 

.15 

434,438 

.15 
441,447 

.17 

448,450 

.14 

434,443 

.16 
453,459 

.16 

441,451 

.16 

441,463 

.15 
463,470 

.14 

431,441 

.15 

Table 6.1 OB: Identified scaling factor vs frequency pair 
for beam (430 to 470 Hz) 

Freq (Hz) 
Scaling 
Factor 
Freq (Hz) 
Scaling 
Factor 
Freq (Hz) 
Scaling 
Factor 

710,724 

.24 

738,749 

.24 

721,727 

.24 

715,725 

.24 

740,750 

.25 

723,753 

.25 

720,727 

.24 

742,760 

.25 

727,759 

.25 

730,740 

.25 

725,728 

.25 

728,760 

.26 

735,758 

.24 

725,748 

.26 

723,743 

.25 

739,760 

.25 

743,747 

.26 

743,760 

.25 

734,738 

.26 

741,760 

.25 

748,750 

.26 

734,743 

.26 

723,729 

.26 

741,747 

.26 

741,743 

.25 

724,730 

.25 

741,731 

.26 

Table 6.IOC: Identified scaling factor vs frequency pair 
for beam (710 to 760 Hz) 
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105000 
14260 
0 

-105700 
14260 
0 

14260 
2560 
0 

-14260 
1283 
0 

0 
0 
682 
0 
0 

-682 

-105700 
-14260 
0 

106000 
-14260 
0 

14260 
1283 
0 

-14260 
2572 
0 

0 
0 

-682 
0 
0 
680 

Table 6.11 A: Magnitude of change of affected stiffness matrix 
coefficients for grid (Case A) 

89000 
12070 
0 

-89400 
12070 
0 

12070 
2170 
0 

-12070 
1086 
0 

0 
0 
577 
0 
0 

-577 

-89400 
-12070 
0 

89000 
-12070 
0 

12070 
1086 
0 

-12070 
2177 
0 

0 
0 

-577 
0 
0 
580 

Table 6.1 IB: Magnitude of change of affected stiffhess matrix 
coefficients for grid (Case B) 

55000 
7410 
0 

-54900 
7410 
0 

7410 
1330 
0 

-7410 
666 
0 

0 
0 
354 
0 
0 

-354 

-54900 
-7410 
0 

55000 
-7410 
0 

7410 
666 
0 

-7410 
1338 
0 

0 
0 

-354 
0 
0 
360 

Table 6.1 IC: Magnitude of change of affected stiffness matrix 
coefficients for grid (Case C) 

103000 
13880 
0 

-93100 
13870 
0 

13880 
2470 
0 

-13870 
1188 
0 

0 
0 
652 
0 
0 

-650 

-93100 
-13870 
0 

73000 
-13870 

0 

13870 
1888 
0 

-13870 
2482 
0 

0 
0 

-650 
0 
0 
650 

Table 6.1 ID: Magnitude of change of affected stiffness matrix 
coefficients for grid (Case D) 
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Freq (Hz) 
Scaling 
Factor 
Freq (Hz) 
Scaling 
Factor 
Freq (Hz) 
Scaling 

1 Factor 

351,355 

.35 

363,369 

.38 

372,366 

.38 

351,357 

.35 

372,375 

.35 

372,368 

.38 

351,361 

.36 

355,358 

.36 

375,370 

.36 

353,363 

.36 
356,362 

.37 

374,354 

.36 

355,360 

.36 

356,367 

.38 

352,356 

.37 

357,367 

.37 

367,350 

.37 

352,359 

.37 

359,369 

.38 
372,360 

.38 
352,361 

.36 

361,373 

.37 
372,362 

.38 
352,363 

.37 

362,374 

.35 
372,364 

.38 

361,371 

.38 

Table 6.12A: Identified scaling factor vs frequency pair for 
cross grid (350 to 375 Hz) 

Freq (Hz) 
Scaling 
Factor 
Freq (Hz) 
Scaling 
Factor 
Freq (Hz) 
Scaling 
Factor 

291,293 

.21 
299,308 

.24 
300,312 

.21 

291,295 

.21 

300,305 

.24 
300,315 

.21 

291,297 

.22 
300,308 

.24 
305,307 

.24 

291,299 

.22 
300,310 

.23 
305,309 

.24 

291,301 

.22 
312,307 

.22 
306,314 

.23 

293,303 

.22 
312,315 

.21 
295,313 

.22 

295,305 

.23 
315,303 

.21 
297,314 

.22 

297,305 

.22 
315,307 

.22 
301,304 

.24 

299,306 

.24 
308,306 

.24 
296,306 

.22 

Table 6.12B: Identified scaling factor vs frequency pair for 
cross grid (290 to 315 Hz) 

Freq (Hz) 
Scaling 
Factor 
Freq (Hz) 
Scaling 
Factor 
Freq (Hz) 
Scaling 
Factor 

230,232 

.35 

238,249 

.35 
239,242 

.35 

232,236 

.37 

240,250 

.35 
239,244 

.36 

236,238 

.37 

242,250 

.35 
239,246 

.37 

238,242 

.37 

231,233 

.37 
239,248 

.36 

243,245 

.36 
231,235 

.37 
239,250 

.36 

246,248 

.35 
231,237 

.37 
234,246 

.36 

248,250 

.35 
235,239 

.37 
249,250 

.35 

231,233 

.37 
235,241 

,36 
230,250 

.35 

241,243 

.36 
239,241 

.36 
235,250 

.35 

Table 6.12C: Identified scaling factor vs frequency pair for 
cross grid (230 to 250 Hz) 

Freq (Hz) 
Scaling 
Factor 
Freq (Hz) 
Scaling 
Factor 

225,215 

.33 
215,220 

.32 

220,225 

.34 

217,220 

.32 

225,217 

.34 

224,220 

.34 

225,219 

.32 

225,218 

.33 

221,220 

.33 
225,223 

.33 

225,216 

.34 

218,219 

.34 

224,218 

.34 

218,215j 

.32 

224,222 

.33 

223,215 

.33 

221,223 

.34 

219,220 

.34 

Table 6.12D: Identified scaling factor vs frequency pair for 
cross grid (215 to 225 Hz) 
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B&K Analyser 

Power Source Computer 

UJ Accelerometer 

FrG,6.4: Schematic diagram of the measurement set up 

FIG.6.5: Photograph of the experimental rig 
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JFIG.6,11(a): 3-D DLP for the beam 
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FlG.6.13(a): 3-D DLP for the grid su^cture 

w 
D 
< 
> 
> 
J 
Q 
O 

0.9 

0.8 

0.7 

0.6 

0.2 

1 

\ 

\ 

\ 

[ 

\ 
\ 

/ 
/ 

\ 
^ '—. 

2 3 4 5 6 7 8 9 10 U 12 13 14 15 16 17 18 19 20 

DOF 

FIG. 6.13(b): CDLV for the grid structure 



Chapter 6: txperimentai studies 234 

-100 

•o 
m u 
2; 
< -150 

s 
DAMAOEn 

- UNDAMAGED 

200 250 300 350 400 450 500 550 600 650 700 750 800 

FREQUENCY(Hz) 

FIG.6.14A: an.ni^) for the beam (regenerated, before and after damage) for case A 

m 

u 
z 
a, w U 

- UNDAMAGED 

200 250 300 350 400 450 500 550 600 650 70O 750 800 

FREQUENCY(Hz) 

FIG.6.14B: a„,„(D) for tlie beam (regenerated, before and after damage) for case B 



/ " • t , — . « g:, 1 - , • . -I _.. J - _ 

v-iia|jici (J. c:.Apciuucuuu Muuics Z J J 

-100 

g- .20 

8 
-140 

UNDAMAGED 

200 250 3C0 350 400 450 500 550 600 650 70O 750 800 

FREQUENCY(Hz) 

FIG.6.14C: ari.,i(r2) for the beam (regenerated, before and after damage) for case C 

u 
< 
OJ 

u 

-120 

-160 

-180 

DAMAGED- •tn^DAMAGED 

200 250 300 350 400 450 500 550 600 650 700 750 800 

FREQUENCY(Hz) 

FIG.6.15A: ai,,ii(Q) for the beam (regenerated, before and after damage) using scaling 
factor .15 



OIA 

.iO 

-80 

-100 

CQ 

W 
O 
< 

s 

-120 

-140 

-160 

-180 

JAMA GED 

20O 250 300 350 400 450 500 550 60O 650 700 750 800 

FREQUENCY(Hz) 

nG.6.15B: aii.u(£i) for the beam (regenerated, before and after damage) using scaling 
factor. 17 

P3 

8 
< -150 

8 
§ 

-200 

-250 

DAMAGED 

LINDAMAGED 

200 250 3C0 350 400 450 500 550 600 650 700 750 800 

FREQUENCY(Hz) 

FIG.6.15C: aij,i,(Q) for the beam (regenerated, before and after damage) using scaling 
factor .26 



Chapter 6: Experimental studies 237 

u 

w u 

-120 

-160 

-200 

1 

i 
V' 1 1' 

^ 
v x ^ 

1 
^ 

^ J f 

' 

-J 
REGENERATED—-> 11 

N ̂ 
-^ 

i^ 
ii 
\ 

m \ \ 
DAMAGED >N 

1 •— UNDAMAGED 

— 

200 225 250 275 300 325 350 375 400 

FREQUENCY(Hz) 

nG.6.16A: a7.7(a) for the grid (regenerated, before and after damage) for case A 

-80 

CQ 
•a 

g-.20 

u 
a 

-160 

-200 

\ 

RE QENERATE 

l|4— UND,i 

3 — A 

1 / \l\\ 

m. 
DAMAGE 

MAGED 

\ 

D +N^ 

200 225 250 275 300 325 

FREQUENCY(Hz) 
350 375 400 

nG.6:16B: a7,7(<:2) for the grid (regenerated, before and after damage) for case B 



chapter 6: Experimental studies 238 

CQ 
T3 

u 

m • 

-100 

-150 

REGENERATED •• 

225 250 275 300 325 350 375 400 

FREQUENCY(Hz) 

FIG.6.16C: a7.7(Q) for the grid (regenerated, before and after damage) for case C 

-50 

-100 

pa 
M" o 
< -150 

u 

1 t 1 

v i N . 

1 1 

REGE >IERATFn— 

/y DAN 
\lf— UND/ 

IAGED' 

MAGED 

200 225 . 250 275 300 325 

FREQUENCY(Hz) 
350 375 400 

nG.6.16D: a7.7(a) for the grid (regenerated, before and after damage) for case D 



Chapter 6: Experimental studies 239 

CQ 2, 
W u z 
< 
D-, m u 
s 

-200 

-50 -

100 -

-150 -

1 w 
^ ^ 

^ 

1 K 1 r 

REGENERATED • 

1 I) 1 
J / 4 — UNDAMAGED 

f 
-

N 

ioo 225 250 275 300 325 350 

FREQUENCY(Hz) 

375 400 

FIG.6.17A: a,,m for the grid (regenerated, before and after damage) using scaling 
factor .38 

-60 

m 
S 
w 
u 
z 
< 

u 

-100 

-120 

-160 

-180 

200 225 250 275 300 325 

FREQUENCY(Hz) 
350 375 400 

nG.6.17B: 07,7(0) for the grid (regenerated, before and after damage) using scaling 
factor .24 



240 

CQ 

w 
u 

w u 

-100 

200 225 250 275 300 325 

FREQUENCY(Hz) 
350 375 400 

FIG.6.17C: a7.7(Q) for the grid (regenerated, before and after damage) using scaling 
factor .37 

-100 

CQ 
T3 
V ' w o 
Z 
< 

u 

-160 

-180 

REOi NERATED-

I ••— UND/ 

1 

_ j \ *l 

^ \ 

PAMAGE 

•MAGED 

^ - . 
3- ^ \ 

_ 
2C0 225 250 275 300 325 350 375 400 

FREQUENCY(Hz) 

FIG.6.17D: a7,7(Q) for the grid (regenerated, before and after damage) using scaling 
factor .34 



Chapter 6: Experimental studies 241 

PQ 

u 

FREQUENCY (Hz) 

FIG. 6.18: a7.7(0) for the grid (undamaged and after both damages) 



Chapter 6: Experimental studies n/(n 

400 

\ ^ 300 

200 1 

FIG.6.19(a): 3-D DLP for the grid for both damages 

CO 
OI 

D 
J 
< 
> 
> 
J 
a U 

1.1 

1 

0.9 

0.8 

0.7 

0 6 

0.5 

0.4 

0.3 

0.2 

0.1 

\ 
V 

\ 
^ 

/ 
/ 

1 

/ 
. 

1 

I - * , 

1 

1 

1 

1 «,, 
\ / ' 

1 2 3 4 5 6 7 9 10 11 12 13 14 15 16 17 18 19 20 21 

DOF 

nG.6.19(b): CDLV for the grid for both damages 



CHAPTER 7 

CONCLUSION AND SUGGESTIONS 

FOR FUTURE WORK 

7.1 CONCLUSION 

The main aim of this work was to develop a structural damage detection tool 

which uses measured FRF data to locate the existence of damage and to 

determine the severity of such damage. In the previous chapters of this thesis, 

a review of existing damage detection methods, detailed mathematical 

derivation of the methods proposed in this work along with numerical and 

experimental studies have been presented. This chapter provides a summary 

of conclusions and important findings of this research. 

In view of the complexities and risk associated with failure of practical 

structures, a number of damage detection algorithms have been developed. 

However, most of them are based on modal parameters. The work presented in 

this thesis makes a departure from this current trend by exploiting the 

advantages associated with the use of measured FRF data. The research has 

focussed on developing a number of damage detection algorithms which, 

when put together, represent a coherent approach to structural damage 

detection using measured FRF data. 

As found in this work, the use of FRF data in damage location can result in 

significant advantages compared to using modal data. In addition to avoiding 
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the complexities of experimental modal analysis, use of FRF data provides the 

user with an abundance of data which i) locate damage with greater reliability 

while using noisy data; ii) allow use of FRF data at more frequency points for 

determining damage extent when the measurement is noisy. 

The damage extent results using FRF data were found to be frequency 

dependant when the data used were noisy, but this can be readily overcome. 

More accurate estimates of damage can be made by using FRF data at 

frequency points near regions of resonance which have been more 

significantly affected than others within the measured frequency range. 

The methods derived in this work have limitations regarding the extent of the 

expansion error it can withstand. Different expansion methods presently in use 

have been investigated and the best method was found to be D.E A but the 

quality of damage detection results were found to deteriorate as the expansion 

errors increased. 

To ensure the damage detection algorithms developed in this work produce 

good results, the following steps should be taken : 

• In order to enhance the sensitivity of damage and reduce systematic errors, 

it is imperative to have a baseline analytical model which can represent 

accurately the undamaged structure. 

• To decrease the influence measurement noise and expansion errors, it is 

necessary to locate the damage before trying to quantify it. 
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• After locating the damage, the extent of damage can be obtained more 

accurately by appropriate selection of frequency points. 

7.2 CONTRIBUTIONS OF THE PRESENT RESEARCH 

A final review of the research work presented in this thesis have been detailed 

in this section. A chapter by chapter listing of the specific contributions of this 

research work have been given here. 

In Chapter 2, the major contributions are as follows: 

(i) the development of CMDQ method using measured FRF data and 

Constrained Minimization Theory to detect damage in a structure; 

(ii)derivation of a noise filtering algorithm which, when used in conjunction 

with the damage detection theory proposed in this chapter, enhances its 

capacity to absorb more measurement noise; 

(iii)providing guidelines regarding the minimum number of frequency points 

required for the success of this method. 

The contributions made in Chapter 3 are the following: 

(i) presentation of a method to locate damage in a structure by using measured 

FRF data; 

(ii)introduction of the concept of 3-D Damage Location Plot to isolate the area 

of damage with greater confidence even when the measured FRF data are 

not of the highest quality; 

(iii)a detailed analysis of the existing expansion algorithms for FRF data; 
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(iv)investigation of the performance of the Damage Location Algorithm when 

used with expanded measured FRF data and a study of conditions under 

which the algorithm succeeds. 

In Chapter 4, the concept of the Submatrix Approach has been introduced into 

the area of damage location using measured FRF data in order to identify the 

damaged spatial elements directly. This has proven to be a promising method. 

The new developments included in Chapter 5 for damage detection are as 

follows: 

(i) formulation of a new algorithm aimed at identifying the matrix coefficients 

of a spatial matrix or the stiffness/mass elements directly by using 

measured FRF data; 

(ii)the extension of the algorithm proposed for identifying spatial parameters 

into the area of damage detection; 

(iii)providing guidelines about the most suitable frequency points for this 

application. 

7.3 SUGGESTIONS FOR FUTURE WORK 

As a consequence of this work, it is believed that an useful step has been taken 

towards making use of measured FRF data in the field of damage detection. 

However, fiarther research is required to make the developments more suitable 

for ultimate and effective applications. It is felt that fiiture direction of 

research in this area may be classified under two headings: short term and 

long term. The former implies extension of work presented in this thesis and 



Chapter 7: Conclusion 247 

the later includes strategic extension and further development of present 

research. 

In the short term, it is envisaged that the areas to be explored should include: 

- improvement of the methods suggested in this work so that their capacity to 

deal with FRF data contaminated by measurement noise can be further 

enhanced. 

- For a damped structure, measured FRF data are damped while the analytical 

model is not. The effect of this discrepancy on the performance of damage 

detection methods should be investigated. 

As for long term development, it is suggested: 

- to develop an integrated system which automates the entire process of 

damage detection and make it an effective condition monitoring tool. This 

can perhaps be achieved by training a system so that it generates the 3-D 

Damage Location Plot, identifies the highest peaks as probable location of 

damage and then determines the change in spatial matrice due to damage by 

applying the extent algorithm. This change in matrices may be compared 

with a 'data bank' in which change in matrices corresponding to typical 

damages for different structures have been stored, and use the result of 

comparison to identify the type of damage and to estimate its extent. 
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APPENDIX A 

Al. EXTENSION OF CMDQ IMETHOD FOR DAMPED 

SYSTEM 

The CMDQ method proposed in Chapter 2 can be readily modified for 

damped systems. For damped systems, the mathematical procedure remains 

the same except that, the constraint equation given by equation (2.2.25) in 

Chapter 2, includes the damping term so that it gets modified. In the following 

equation viscous damping has been considered although the data is valid for 

other forms of damping as well: 

([K]uD® [QK])[AD] - [M]uD[AD][On'] + i[C][AD][Qn] - [{S}k, ,{§}k] = [0] 

2 

where [Qj, ] is the diagonal matrix. Qj (i = 1, 2,...., n) is the frequency at which 

RFRF data have been measured , and 

[AD] = [{ao(Q])}kv..{aD(Qn)}k] 

The second physical constraint is still the symmetry of matrix [Q^]. However 

while doing derivation, the damping terms do not make any contribution. 

However, the [D] matrix in equation (2.2.31) and the receptance matrix will be 

complex. Therefore while trying to use equation (2.2.32), to obtain the 

Lagrange multiplier, the real and imaginary parts may be isolated and then {X} 

can be derived. 
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A2. EXTENSION OF METHOD FOR DERIVING SPATIAL 

MODELS FOR DAMPED SYSTEM. 

For damped system, the derivation follows the same method as for undamped 

systems, with the exception that the stiffness matrix term was considered 

complex. For the mass matrix, the equation remains as: 

{a(Qi)}/[M]{a( Q2)}ic = (aycC^i)- akk(Q2))/( ^ i ' - ^2') 

However, the stiffness term become complex and the equation derived is: 

{a(Qi)}/[K + iH]{a(Q2)}k = ( Q i W ^ i ) - ^2Wi^2)yi ^ 1 ' - ^2') 

Since the receptance terms are also complex, the real and imaginary parts on 

both sides of the equation may be isolated and then equated against each other 

to derive mass, stiffness and damping properties. 
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A NEW METHOD OF DERIVING MODAL PARAMETERS 

For an N DOF system as already explained in Chapter 5, it is possible to 

derive equation (5.3.16) and (5.3.17) by using a single set of frequency points 

where each set comprises of a pair of points. Therefore, by considering N sets 

of frequency points, equations derived in Section A2 of appendix A may be 

modified to yield the following equations: 

[A][M][B] = [XM] 

[A][K+iH][B] = [XKH] 

(BI) 

(B2) 

where 

[A] = 

"ikCi^i) 

> < 

[B] = 

a , , ( Q , ) 

a Nk m 
a ,k ( !^N»2) 

> < 

a Nk (^NJ (^mi^N.l), 

a Ik (^.)l 

«Nk(^2N)J_ 

2 r^ 2x 
XM,mn= ( a k k ( Q J - akk(Qn)y(^m - ^7) 

2 r^2s 
XKH,mn= i^mWi^m) " On akk(^n))/(^m " ^ n ) 

Therefore, [XKH] and [XM] in equations (BI) and (B2) can be built up by using 

a single point FRF at different frequency points. Assume there exists a 
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eigenvectors of such a system can be obtained by solving the following 

generalised complex eigenproblem: 

[[XKH]-lr[XM]]{il/r} = {0} (B3) 

or, [[XM]-'[XKH] - Um{^r} - {0} (B4) 

Now using equations (BI) and (B2) to replace [XKH] and [X^] in equation 

(B4), the following equation may be obtained: 

[[B]-'[M]-'[A]-'[A][K + iH][B]- XMi^r) = (0} (B5) 

or, [[B]-'[M]-'[K + iH][B] - A.,[I]]{nzj = {0} (B6) 

or, [[B]-^[R][B]- XMimA = {0} (B7) 

where [R] = [M]'^[K+ iH] 

or, [[P]-2tr[I]]{il/r} = {0} (B8) 

where [P] = [B]-^[R][B] 

However, for the actual system, whose mass, stiffness and damping are 

represented by [M], [K] and [H] respectively, the eigenparameters may be 

obtained by solving the following equation: 

[[M]-*[K + iH]-Xr[I]]{ii/r} = {0} (B9) 

or, [[R]-^,[I]]{xi/J = {0} (BIO) 

Comparing equations (B8) and (BIO), it is clear that the square matrices [P] 

and [R] are similar if the matrix [B] is non- singular. Thus 

• Matrices [P] and [R] have the same eigenvalues, i.e X= X, 
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• If {v|/r} is the eigenvector of [P] corresponding to the eigenvalue A.̂  then 

{\|/r} = [B]{\j/j.} is the eigenvector of [R] corresponding to the same 

characteristic root X^ of [R]. 

Therefore once the eigenvalues and eigenvectors of the 'Pseudo system' are 

derived, the eigenparameters ofthe actual system given by X^ and {\\f^} can be 

easily derived by using the following relationships 

• Xj— Ar 

• {Vr}=[B]{vi/r} 

Since X^ is the r* eigenvalue of the system which for a damped system is a 

complex quantity, it can be written as: 

X,^= cy,\l+ivi,) 

th 

where o, is the natural frequency and r[, is the damping loss factor for the r 

mode. Hence all the parameters needed to construct the modal model of the 

system can be obtained from FRF measurements. 

However, it might be mentioned that the mode shapes derived here are not 

mass-normalized. To derive mass-normalised mode shapes, it is suggested to 

obtain [M] by using equation (BI) and then derive the modal mass by using 

the orthogonality equation: 

[M/]̂ [M][vi/]= [m,] 
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Once the modal mass is obtained, the mass normalised mode shapes can be 

derived by using the following equation: 

{^>} = (m,y^^\\\j,} 

An alternative approach to derive modal parameters is as given next. From 

equations (BI) and (B2), it is possible to calculate [M] and [K] as given 

below: 

[M] = [A]-^[XM][B]-^ 

[K+iH]-[A]-^[XKH][B]-^ 

[M] and [K+ iH] thus obtained do not retain the connectivity of the original 

structure unlike the method suggested in Chapter 5 to derive spatial 

parameters. However, since the main intention here is to derive the eigen 

parameters, it does not really make any difference if the connectivity of the 

original structure is not preserved as long as the eigenparameters obtained are 

accurate. Knowing [K+ iH] and [M], it is possible to solve equation (B9) to 

obtain the eigenparameters, which yields the natural frequencies, damping 

ratios and mass normalised mode shapes ofthe structure. 
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OPTIMIZATION PROBLEMS WITH CONSTRAINTS 

The problem of finding the maximum or minimum values of z = f(x, y) 

subject to constraint can be approached by solving the constraint equations for 

one ofthe independent variables and substituting the result into the expression 

for f(x, y). This reduces f to a function of a single variable and the relative 

extrema for the function can be obtained by equating the derivative of f to 

zero. 

However, this method is not always ideal, since the constraint equations may 

be difficult to solve, or the resulting function of a single variable may be 

difficult to work with. 

Mathematician Joseph L. Lagrange (1736-1813) discovered a more superior 

method for solving such problems. The Lagrange method of finding the 

extreme values of a Sanction subject to constraints is based on the following 

theorem: 

Let/and g be differentiable at (XQ, yo). Let C be the level curve g(x, y) = 

c that contains (XQ, yo). Assume that C is smooth, and (XQ, yo) is not an 

endpoint ofthe curve. If grad g(xo, yo) ^ 0 and if /has an extreme value 

on C at (XQ, yo), then there is a number X such that 

grad/(xo, yo) = 'k grad g(xo, yg) (C1) 
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The number X in equation (Cl) is called a Lagrange multiplier for/and g. The 

proof of the above theorem proceeds as follows: 

If grad/(x^, yo) = 0, then equation (Cl) is satisfied with X = 0. Thus for the rest 

ofthe proof it is assumed that grad/fx^, yo) ^ 0. Let I be an interval and 

r(t) = x(t)i + y(t)j for t in I 

a smooth parametrization of C. Let to be such that r(to) corresponds to the 

point (XQ, yo). Then to is not an endpoint of I since (xo, yo) is not an endpoint 

of C. Finally let F be defined by 

F(t) = f(x(t),y(t))fortinI 

dF df dx df dy , ,̂ . , . 

Since f has an extreme value on C at (XQ, yo) = (x(to), y(to)), it follows that F 

has an extreme value on I at to. Since F is differentiable on I and to is not an 

endpoint of I it follows that F'(?o) = 0- Therefore 

^ = F'(iy) = grad f(x„y,).r'(t,) 

But r'(t^) ^ 0 since r is a smooth parametrization of I, and grad/fx^, >̂o) ̂ ^ 0 by 

assumption. Thus grad frxg, yo) is perpendicular to r'(t,), which itself is 

tangent to C. Therefore grad frxg, yo) is normal to C. But grad g(xo, yo) is 

normal to C, since C is smooth and grad g(xo, yo) ^^0. Consequentiy grad fixQ, 

yo) and grad g(xo, yo) are parallel. This yields equation (Cl). 
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The method of applying Lagrange multiplier follows: 

(i) Form the function L = f + ?Lg with values 

L(x, y, X) = f(x, y) + ?ig(x,y) 

(ii) Set all partial derivatives of L equal to zero, obtaining the equations 

dL df dg 
— = 0, ov,^ + xf = 0 (a) 
ox ox ox 

f = 0. or, f+^1 = 0 (b) 
dy dy dy 
dL , . 
— = 0 or, g(x,>') = 0 (c) 
dX 

(iii) The desired value can be obtained by solving equations set up in step (ii). 

The method of applying Lagrange multiplier as described above was exactly 

applied in Chapter 2. Unlike x and y in the example described above, the 

variables in Chapter 2 were Qẑ y and QK,ij for different values of i and j . As 

described in step (ii) above, equation (2.2.16) was obtained by differentiating 

with respect to Qẑ y. Differentiating L in equation (2.2.14) with respect to X 

and |Li generated equations (2.2.11) and (2.2.12) respectively. Equations 

(2.2.16), (2.2.11) and {^.l.\T) were solved together to obtain the desired 

value. 



APPENDIX D 

MATRICES: SELECTED DEFINITIONS AND 

MANIPULATIONS 

Matrix theories that were frequentiy used in course of this thesis have been 

highlighted here. Symbols used here are arbitrary and imply no particular 

physical meaning. 

Dl. SUM OF MATRICES 

If A = [Ajj] and B = [By] are two m x n matrices, their sum (difference), A ± 

B, is defined as the m x n matrix C = [Cy], where each element of C is the sum 

(difference) of the corresponding elements of A and B. Thus, A ± B = [Ay ± 

Bij] 

Two matrices of the same order are said to be conformable for addition or 

subtraction. 

D2. Matrix multiplication 

If A = [Ajj] is a m X n matrix and B = [Bjj] is a n x q matrix, then their product 

C is defined as C = AB where Cy = XAjkB ĵ where k ranges from 1 to n, i 

ranges from 1 to m and j ranges from 1 to q. The product AB is defined or A is 

conformable to B for multiplication when the number of columns of A is 

equal to the number of rows of B. The transpose of a product is the product of 

the transpose in reverse order, that is ([A][B])^ = [B]^[A]^ 
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D3. Linear Dependance of Vectors 

The m n-vectors {xi}, , {x ,̂} are said to be linearly dependent provided 

there exists m scalar elements kj, k2, ,k^, not all zero, such that: k i l x j + 

k2{x2} + k^{x^} = 0. 

Otherwise, the m vectors are said to be linearly independent. 

D4. Rank, Singularity 

A non-zero matrix [A] is said to have rank r if at least one of its r-square 

minors is different from zero while every (r + 1) square minor, if any, is zero. 

A null or zero matrix is said to have zero rank. An equivalent definition of 

rank is the maximum number of linearly independent rows (or columns) in 

[A]. 

A matrix whose rank is less than its order is said to be rank deficient. An n-

square matrix A is called non-singular if its rank is equal to its order. 

Otherwise, the matrix is called singular. 

D5. Elementary transformations 

The following operations, called elementary transformations, may be 

performed on a matrix without changing its order or its rank. 

(1) The interchange ofthe i* and j ^ ^ rows, denoted by HJJ; 

The interchange ofthe i* and j * columns, denoted by Ky 
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(2) The multiplication of every element of the i* row by a non-zero scalar k, 

denoted by Hi(k); 

The multiplication of every element of the i* row by a non-zero scalar k, 

denoted by Ki(k). 

(3) The addition to the elements of the î '' row of k, a scalar, times the 
fh 

corresponding elements ofthe j row, denoted by Hij(k); 

The addition to the elements of the i* row of k, a scalar, times the 
th 

corresponding elements ofthe j column, denoted by Ky(k). 

The transformations H are called elementary row transformations; the 

transformations K are called elementary column transformations. 

D6. Similarity transformations 

A similarity transformation possesses the following properties: 

1. [C]-^[Ai][C] + + [C]-^[AJ[C] - [C]-\[A,] + + [A„])[C] 

2.([C]-^[Ai][C])" = [C]-^[Ai]"[C] 

where [C] is a non-singular matrix. The matrix [D] is said to be similar to 

matrix [A] when [D] = [C]"^[A][C]. The most important property common to 

similar matrices is the fact that they have the same eigenvalues, for 

[A]-A[I] = 0 

implies [C]"^([A] - X [I])[C] = 0 

and [C]-\[A][C]-X[I]) = 0 

so that [D] - X[l] = 0 
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Therefore the eigenvalues of [A] and [D] coincide. However, matrices having 

the same eigenvalues are not necessarily similar. 

D7. Basis 

A basis of a vector space is any ordered set of vectors ofthe space that 

(i) is linearly independent 

(ii) spans the vector space 

D8. Orthonormal 

A basis {xj}, ,{x^} is called orthonormal if 

)H( ] Jo whenever i ^ j giving the orthogonality 

\^i] 7J\~\\whenever i = j giving the normalization 

D9. Element by element matrix multiplication 

In Chapter 2, operator ® has been used to perform element by element matrix 

multiplication. Relevant properties ofthe operator are given below: 

1) [c] = [a] ® [b] 

defines Cjj = ayby 

2) [c] = [d]([a] (8) [b]) 

implies Cy = E dik(akjbkj) 

where k ranges from 1 to n 

3) [a] (8) [b] = [b] ® [a] 

4) {[d]([a] ® [b])}^ = ([a]^®[b]^)[d]^ 
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DIO. Matrix differentiation 

Differentiation of a matrix is accomplished by differentiating each of its 

terms. Let {x} = (X] X2 , , x^} and let [A] be an arbitrary n by n square 

matrix that does not depend on the Xj. Suppose that the quadratic form 

(t) = 0.5{xf[A]{x} 

is to be differentiated with respect to each ofthe Xj. The result is conveniently 

stated as a vector. 

dx. _ 5x, Sxj ax„ 
[A]{x} 



APPENDIX E 

METHOD OF LEAST SQUARES 

When the number of equations (m) > n, the number of unknowns in the 

equations y = Ax, then rank (A) < n < m, and rank (A/y) < n + 1 < m; in such 

cases, the equations may be inconsistent, that is, there may not be an exact 

solution. In cases like that, we look for an approximate solution minimizing 

the error 

e = y - Ax 

The solution minimizing the usual norm of e, assuming real vector space for 

simplicity, 

||e|p=e"e = ( y - A x ) " ( y - A x ) 

is called the least squares estimate of x. The vectors y, Ax, and e belong to an 

m - dimensional vector space, say V^, but Ax belongs to M(a), the column 

space of A. Then 

V , - M(a) 

y-

llel 

Ax = e 

2 1 2 

+ M(a)^ 

= Cl + e2 

1 2 
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Since y is given and Ax e M(a), the choice of x cannot affect €2- The least 

squares solution vector x is therefore the one for which \\e^f = 0 or e, = 0, so 

that 

y - Ax = e = e2 e M(a)^ 

that is. 

aj e = 0, i = 1,2, ,n 

A'̂ e = A^(y - Ax) = 0 = A^y - A^Ax 

or, 

A^AX = A V 

which are known as normal equations for the least squares problem. If the 

square matrix is nonsingular, then 

X = (A^AJ^A^y 

which is the usual least squares formula. For weighted least squares, the norm 
T 

is taken as e Qe and yields 

x = (A'̂ QA)"^A^Qy 

If A^A is singular, its usual inverse does not exist. Then the least squares 

estimates can be obtained by using pseudo (or genaralized) inverse with the 

help of singular value decomposition (S VD). 


