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SYNOPSIS

This thesis is concerned with the study of Microcomputers in Large
Industrial Installations as a replacement for the traditional remote

control and monitoring techniques.

A typical conveyor transport installation is described and was used as

the basis for the system model developed by the author.

The thesis outlines the traditional techniques of control and data
transmission in a widely distributed conveyor network and shows how they

were used, or modified, for a microcomputer-based scheme.

In addition to the method of data transmission adopted by the author for
the system model, the need for standard data transmission techniques

(including error checking) is also described.

To be complete, research into distributed microcomputer systems must
cover computer techniques (software and hardware), input/output
requirements and linking techniques. The thesis describes each facet in

detail, and includes the problems encountered during implementation.

The thesis also includes an outline of the Loy Yang project which is one
of two systems for the State Electricity Commission of Victoria (SECV)
where some of the concepts have been implemented since the research was

completed.
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CHAPTER 1 : INTRODUCTION

1.1 BACKGROUND

1.1.1 General

A prerequisite for the overall development, co-ordination and operation
of large complex industrial installations is a centralised control
system. One example is the system required by the State Electricity
Commission of Victoria for the control and monitoring of the mining of
brown coal in the Latrobe Valley. As the size of the power stations
increase, so does the demand for fossil fuel and, to meet this demand,
the open cut operations become more and more complex. To keep the
bunkers of the power stations full, a network of dredgers and conveyors

in an open cut is used to excavate and transport the coal.

In the early stages of development of the Latrobe Valley coalfields, the
supply of coal was fairly easy to co-ordinate because the demand for fuel
was low but, as the demand increased and the transport distances involved
also increased, it became necessary to optimise the control and
monitoring. In practice, a permanent centralised control centre is used
and is Tocated remote from the working faces of the open cut. One of the
functions of the control centre is to co-ordinate the activities on a
daily and long-term basis. Without the control centre, the conveyor
network would be most inefficient in its operation. The amount of time
Tost starting and stopping the conveyors without overall co-ordination
would be considerable. A further function of the control centre is to

optimise the operations of the conveyor network.



Since the early 1960s, large industrial installations have combined both
central minicomputer and telemetry techniques to control the activities
of a complex process. In the case of an open cut conveyor transport
network, the use of computers had been confined to the central control
system with hardwired links (a single wire 1link for each signal

monitored) to the plant.
1.1.2 The Process Under Investigation

Typically, an open cut conveyor transport network consists of manned
dredgers and stackers and unmanned conveyors, power distribution centres
and pumping stations. During start-up, normal operations and stopping
the netWork must be controlled to avoid overfilling and spillage at the

transfer points.

With items of plant being Tocated over a wide area there are many remote
control functions to be performed, such as the starting and stopping of
multiple motor drives, belt slip detection and motor protection.
Traditionally, these functions havé been controlled mainly by relay based
remote control sub-systems with some of the later conveyor control

systems of the 1970's using discrete solid state logic.

Each of the traditional style control sub-systems also has an interface
between the control sub-system and the telemetry sub-system which,
because of the physical connections required, is expensive. The
combination of the control and the telemetry sub-systems provides the
remote control function from the control centre. For each output from
the control centre there was a separate input for the conveyor contro]
sub-system which was connected to the output of the control centre

telemetry sub-system. The combined sub-systems form the "remote slaves"



in a large, widely distributed conveyor control network. The search for

a simpler interface was one of the major objectives of this study.

In addition to the overall control functions, there are monitoring or
data acquisition functions which have to be carried out using the same
interface between the control and telemetry sub-systems. The data is
used to determine the reason for plant stoppages and hence loss of
production. In the case of the unattended plant (conveyor and pumping
stations) the importance of the information to be transmitted to the
control centre is much greater than with the manned plant. On the manned

plant, the information can be supplemented by voice communications.

1.1.3 Developments in Open Cut Control

Between 1966 and 1970, a remote control and monitoring system was
installed in the State Electricity Commission's Morwell Open Cut to
improve the reporting of plant stoppages. It consisted of a single
central minj-computer with 16k of memory and several crossbar scanners
for scanning the field inputs. There was no preprocessing of information
at the plant, except for starting and stopping sequences and overall
control was maintained from the control centre via the central

minicomputer.

During the early 1970s, it was realised that the concepts used in the
Morwell system would have to be improved for the next system required for
the redeveloped Yallourn Open Cut. The Morwell system took six seconds
to scan all of the field inputs and it was therefore not always possible
to determine the correct chronological sequence of events during the

stoppage of a conveyor line because the field inputs could change several

times during the scan perijod,



During the period from 1972 to 1974, the author was involved in
investigations into ways of improving the recording of the chronological

sequence of events at individual conveyors.

It was not until 1975, when the first microcomputer was installed in the
Morwell Open Cut for controlling a pumping station, that an economic
solution became available. It was decided to try a prototype
microcomputer-based control system. If any major problems did develop,
it was possible to man the pumping station on a limited basis without any
risk to the coal supplies. Whereas, with a conveyor, if the prototype
control system had failed, it would have been more difficult to man the
conveyor because of the dusty environment; and further more any
stoppages would have affected coal supplies. The Morwell pumping station
prototype controller provided the basis for a much larger distributed
system and enabled a study to be made of the effects of the industrial

environment without affecting coal supplies.

The author was involved in further developments in 1976 when a second
microcomputer-based pumping station was installed at the Yallourn Open
Cut. The Yallourn pumping station unit included the facility for
transmitting eight status signals to an open cut control centre display

controlled by the pumping station microcomputer.

These two pumping stations formed the basis for the research into the
large scale application of the microcomputer in control systems for open
cut conveyor control. Before proceeding with an actual conveyor system,
it was decided to investigate the suitability of a microcomputer-based
distributed control system. Approval was obtained for the author to

investigate the application of microcomputers in a distributed system



with independent control at the remote locations in an overall
hierarchical master/slave configuration. This investigation was
necessary before proceeding with a major change in philosophy that could
affect the operation of the conveyors and hence the supply of coal to the

power stations.

1.2 OBJECTIVES OF THE RESEARCH

The concepts forming the basis of the research were formulated while
working with the Morwell Open Cut control system and the two

microcomputer-based pumping stations.

The Morwell Open Cut control system configuration could not always
provide chronological recording of events. When an event occurred at a
conveyor, the result had to be detected by the central minicomputer
immediately. Therefore, an objective of the research was to demonstrate,
using a microcomputer-based conveyor control system, that it is possible
to record the events at the remote conveyors in the correct sequence

regardless of the task being performed by the central system.

The pumping station at Yallourn demonstrated that if several events were
to be scanned then an error-free method of transmitting data would have

to be adopted.

In addition to the study of the technique of transmitting data, the
research also aimed to investigate the problem of the compatibility of
transmitted data from different systems. In developing the conveyor
transport network, different manufacturer's control equipment had been

used on the individual conveyors and this continues to be the case.



A model with a minicomputer master and a distributed microcomputer-based
system representing two conveyors linked through high speed serial data
Tinks to the control centre was used to achieve the objectives of the

study. These objectives can be summarised as follows:

To demonstrate that independent control and monitoring can be
maintained by the remote microcomputer-based sub-systems in the

event of the link to the central computer being lost;

To investigate the possibility of improving the chronological
recording of data and to provide secure data transmission from

the remote sub-systems;

To distribute the central system tasks, making it possible to

improve the management reports at the control centre;

To remove single points of failure in an overall control system

by distributing the tasks;

To determine the necessary facilities and design techniques

required for a microcomputer-based system;

To obtain an understanding of the problems and software
requirements associated with using microcomputer-based

distributed sub-systems;

To investigate the possibility of removing the expensive
interface required between the remote plant control sub-system

and the data acquisition sub-system (refer to Section 1.1.2) by



integrating the task of data acquisition in the sub-system

control tasks;

To determine the requirements for linking different

manufacturers' microcomputer-based sub-systems together;

To study the different types of system configurations possible;

To replace the traditional hardwired conveyor control systems
(relay or solid state) and telemetry systems with a more flexible
system utilising serial data transmission, better suited to the

one-off nature associated with large conveyors;

To demonstrate that it is possible to change a conveyor's control
functions by down-1ine loading (transmitting) new control

parameters in the conveyor sub-system.



CHAPTER 2 : LITERATURE REVIEW

2.1 TRADITIONAL TECHNIQUES OF OPEN CUT CONTROL

Initially during the 1920's horse-drawn carts were used to transport coal
to the power stations then as the coal demand increased the carts were
replaced by electric trains. The trains were controlled from a central
communications centre with some control of the railway signals. During
the 1950s, it was decided that it would be more economic to use conveyors
to transport the coal to the power stations. ‘As the conveyor equipment
increased in size and number, it became necessary to centralise the
control and monitoring of the conveyor transport network. The first
major remote control and monitoring system for open cut control used by

the SECV was the system installed in the Morwell Open Cut.

The evaluation of technical and economical aspects by the Control System
Suppliers showed the expediency of employing both minicomputer and
telemetry techniques (using cross-bar scanners), to control the
activities of the Morwell Open Cut. From the experiences of Hailstone
(5) and the practical experiences of the author, the combination of a
minicomputer and a telemetry system, would have been a relatively new
technique for the 1960s. It has now been the practice for the past 25
years to use some form of telemetry (frequency division multiplexing,
(FDM) or time division multiplexing,(TDM)) or direct wiring to connect
the remote plant control systems to a central control centre minicomputer
system to provide the overall system for the control and monitoring of

the plant.

Other observations made and supported by Jenkins (6) in the area of

distributed computers and Prophet (8) in his article ("A new tool for




Production Control") indicated that it would be feasible to implement
major control functions by using dedicated computers. The work
undertaken independently by Jenkins, Prophet and the author during the
.early 1970s suggested that a microprocessor-based computer sub-system
could be dedicated to performing control and monitoring tasks in a

distributed computer system.

The trends in control system techniques during the 1970s is discussed by
Sargent and Lundy (9). In their paper they outline the reasons for an
increase in the use of solid state control systems leading to the

programmable devices of the 1980s.

A problem with the early minicomputer control system used in the Morwell
Open Cut was the high cost and complexity of the interconnecting cabling

system.

A second problem area highlighted by the Morwell Open Cut system was the
low speed of handling data. In order to increase the thoughput of a data
acquisition system, the speed of data transmission had to be increased.
For the FDM and TDM systems, the environmental conditions determine the
speed of transmission and as a result transmission rates of all
sub-systems in the system had to be adjusted to the same rate to be
compatible with the the slowest link. Deshon (2) indicated that, in the
future, it should be possible with the microcomputer sub-system to vary
the transmission rate to suit the environment. This is an important
aspect for an open cut system which could be subject to electrical
interference. The microcomputer would provide the automatic

re-transmission of the message at a different speed or bit rate.
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In the commercial data gathering systems of the late 1970's, a defined
protocol or message format was used to ensure the secure transmission of

information, but this was not the case in the industrial systems.

There is a number of transmission and error detection codes available
(refer to Appendix F for more details). Transmission codes

"Bose Chadahuri", "Baudot", "ASCII" and "BCD" (30) and error codes
"CRC-12", "CRC-16" and "CRC-CCITT" (30) are the most commonly used. The
message protocol of a data transmission system is basically a set of
rules for operating the communication system. McNamara (30) in his book
("Technical Aspects of Data Communications") indicates some of the

reasons for these rules, j.e.:

The determination of which part of the message constitutes the

control characters or the data portion;

To eliminate duplicate messages, to avoid the Toss of messages,
and to properly identify messages that are re-transmitted by the

error control system;

The determination of which station is going to transmit or

receive;

Solving the problem of which message to transmit when there is no

data to send;

Solving the problem of which steps should be carried out if

message flow suddenly ceases;
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The process of initiating transmission in an idle or quiescent

system is often complex.

[t is unfortunate that computer and peripheral equipment suppliers have
developed their own protocols. Nevertheless, certain protocols (refer to
Appendix F (p.183)) are now becoming standards by design or through wider
use in industry. Standards institutes, such as American National
Standards Institute (NASI) and the International Standards Organisation
(1S0), are about to adopt certain protocols as standard protocols (12).
The Australian Standards Association has published a data transmission
standard (25) in an attempt to standardise on data transmission methods.
Because of the large number of control equipment suppliers involved in
conveyor control systems, data protocol was an important area

investigated during this research.

2.2 MICROCOMPUTER HISTORY

In 1971 the Intel Corporation (INTEL) (a large semi-conductor supplier)
produced a programmable device as a solution to a request for a flexible
control system. The result was the INTEL 4004, the world's first
microprocessor (a four (4) bit device). It was very slow by modern
computer standards and it could address only 4k bytes of memory, but it
was programmable and relatively inexpensive. It was then followed by the
8008, an eight bit device. As stated by Tobias (11) in his paper,
microprocessor designs have continued to advance with more powerful and
faster devices being developed such as the 16 bit and the bit slice

devices.
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The microprocessor is very much a hardware oriented product and owes its
development to two major factors associated with Large Scale Integration
(LSI). One is the technological development of the semi-conductor
industry in the LSI area. The other factor is the economics of LSI.
Previously, a hardwired control system required a one-off design for each
application. An alternative in the 1980s is the microcomputer which can
be customised by a change of program. The microcomputer of the early
1980's consisted of one microprocessor chip with a dedicated or defined

software program and the required input/output interfaces.

One problem is that most of the advances have been in hardware. There is
still an almost universal under-estimation of software problems in
industrial microcomputer systems similar to those experienced with the

large computers and minicomputers ten years earlier.

2.3 MONITORING AND CONTROL DEVELOPMENTS

With the advent of solid state logic (discrete components, subsequently
LSI) the control functions were achieved in a similar manner to the relay
systems by using interconnected logical "AND" and "OR" discrete logic

blocks (9).

The changeover to solid state control devices was considered a sufficient
change in direction for control system design during the 1970s and this

made the acceptance of the microcomputer more difficult.
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The question was, "Should a company disregard many years of experience
and use this new microcomputer technology, considering the problems
encountered with minicomputers during the 1960s?". Obviously the
microcomputer had to have definite advantages over the techniques in use
at the time and, in addition, an understanding of the problems of
implementing control requirements using microcomputers was essential if a

company was to change its direction.

Falling microcomputer hardware costs and rising costs of one-off
hardwired logic systems made it economically attractive to replace
traditional methods of remote control and monitoring in large
installations. It was feasible to combine remote control, real-time data
acquisition and distributed computing at the remote plant locations using
microcomputer-based sub-systems 1inked to a central master. Amendt (1)
suggested that a design engineer must consider new approaches to control
design and that learning the techniques associated with
microcomputer-based systems would prove to be invaluable. At the time of
this research, the microcomputer was not widely accepted as a possible
method for industrial control and hence there was a need for a study of

microcomputer techniques.

South (10) also suggested that the form of remote control sub-systems
used at the time could be replaced by a microcomputer-based remote
sub-system. There was no preprocessing of information by the earlier
control sub-systems but it is now possible to distribute some of the
central system's processing of the data to the microcomputer, thereby
increasing the effectiveness of the overall control system. This was

also supported by Deshon (2) and Dominquez and Tennant (3).
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The basic aim of the research program was to investigate a method of
improving the data throughput of a centralised conveyor control system.
This was to be achieved by using microcomputers to control the
transmission of the data from a simulated conveyor network without
complicating the operating procedures of the system. The following
Chapters outline how the microcomputer was adapted tomenab1e the increase

in the data throughput for an actual conveyor control system.
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CHAPTER 3 : THE RESEARCH PROGRAM

3.1 DETERMINATION OF THE SUITABILITY OF MICROCOMPUTER SUB-SYSTEMS

3.1.1 General

In a large open cut industrial installation, the control system must
handle multiple control tasks distributed over a wide area. The layout
of the conveyor network as shown by Figure 3.1 represents at least 30
separate plant items. Each conveyor (L100, etc) and dredger (D14, etc)
requires a dedicated control sub-system to carry out the control and

monitoring functions at each remote location.

It was demonstrated during the research, using modeiling techniques for a
limited system, that it is feasible to use a microcomputer-based
sub-system for a remote control and monitoring system configured as shown
by Figure 3.2. The sub-system tasks were handled by dedicated slave
microcomputers, one for each plant item. To distribute some of the
central system tasks, the slave sub-systems were controlled by a

"Sub-master" or "Front-end" which was in turn controlled by the master.

The natural division between the plant systems, as shown in the open cut
layout of Figure 3.1, is the deciding factor in determining the number of
slaves controiled by a front-end or sub-master. It is considered
undesirable to have plant items on opposite sides of an interchange (or
transfer) area or in different conveyor routes connected to the same
front-end. To avoid any interaction, or the loss of more than one route
(there are 24 possible routes in Figure 3.1), each front-end would have

only one dredger group, bunker group or stacker group of plant items

directly linked.
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A model consisting of one master, one front-end (sub-master) and two
slave sub-systems was selected for the research program to check the

concepts referred to in Section 1.2.

The model was configured in a similar manner to the full scale system of
Figure 3.2. Each sub-system was connected by a high speed serial data
1ink to the next level in the hierarchy. The master communicated with
the front-end which in turn communicated with the slave sub-system using

a defined message protocol.

The model represented the front-end (No 4) for the plant group associated
with Dredger No 17 and the two slave sub-systems represented

Conveyors L400 (Slave 1-S41) and L410 (Slave 2-S42) (see Figures 3.1 and
3.2). The research program was designed to provide a better
understanding of the hardware and software requirements and the
associated problems. Because a full scale system for the open cut
represented many different facets (i.e. the interconnecting cables, the
conveyor sub-systems and the overall control centre system) it was
essential that the working model developed include all of these facets.
The various levels in the hierarchy are discussed in detail in the

following Sections.
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3.1.2 A Single/Multiple Microprocessor-based Sub-system
The sub-systems required to implement the system control strategy would
be based on either a single microprocessor or a multiple microprocessor
configuration.
3.1.2.1 A Single Microprocessor-based Microcomputer Sub-system
A single microprocessor chip microcomputer had to sequentially carry out
the tasks previously performed by the traditional techniques and in
addition demonstrate definite improvements.
The aim of replacing proven control and monitoring techniques by a single
microprocessor-based sub-system, by the proper scheduling of multiple
tasks, was to cover:

the functions provided by a separate telemetry system;

data acquisition via high-speed serial data links;

preprocessing of data at remote plant Tocations;

the problems of interconnecting different manufacturers' products

using standard interfacing methods;

the standardisation of sub-system hardware by having the
differences in the local control algorithms in the individual

software programs;
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a reduction in the central system functions, such as data storage

and time 'tagging' (chronological recording) of events.

The microprocessor also enabled the development of an interactive
diagnostic facility with VDU terminals which were used in conjunction

with a Timited English text (question and answer response) as described

in 4.3.3.1.

3.1.2.2 A Multiple Microprocessor Microcomputer Sub-system

Instead of using a single microprocessor chip, it would have been
possible to develop a sub-system that had multiple microprocessor chips
controlling the various tasks. For example six microprocessors could
have been dedicated to a sub-system with one for each specific task as

follows:

One for motor control, such as starting sequences or variable

speed control, etc;

One for protection monitoring (slip detection, faults, etc);

One for data reduction on the information to be transmitted;

One for data transmission, including control and message protocol

emulation (standardisation possible by reprogramming for

different formats);

One for the different programming formats: such as relay ladder

diagram or logic symbol programming for control;
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One for functional independence of tasks, such as having the

local control functions separate from the data transmission

function.

The multiple microprocessor-based sub-system would have simplified some
of the complexity of the software required in the multiple task single
processor sub-system. It is the author's view that each software task
could have been written for the dedicated device, with less cost and
complexity than for the single microprocessor software package. This
multiple microprocessor-based sub-system model was not developed. At the
time of this research a multiple microprocessor microcomputer was not

available, refer to Chapter 7 regarding further work and recommendations.

3.1.3 Advantages and Disadvantages of Microcomputer-based Systems

An advantage of the microcomputer in some of the areas formerly dominated
by the minicomputer is that it is an economical solution for single
tasks. The conventional approach of using a minicomputer would be to use
it for several parallel tasks. This is not ideal because a failure of a
multiple-task minicomputer would affect the whole system. Using the
model, it was demonstrated that by distributing the tasks over several
microcomputers overall control was maintained during failures of the

central minicomputer with higher reliability and at a lower cost.

Prior to this research it was anticipated that the use of
microcomputer-based sub-systems for control would have the following

advantages and disadvantages:
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ADVANTAGES:

Standardisation of hardware, with special software to suit the
unique control requirements thus enabling the manufacturer to
proceed with the hardware manufacture before completing the

system design;

Reduction in development and design of the hardware for each
unique situation when compared to the one-off relay systems
therefore each design only had to cover the different functional

requirements by incorporating suitable software sub-routines;

Reduction in central system dependence so that each sub-system

can operate independently during failures of the central system;

Reduction in central system tasks, especially in implementing the
control requirements so that the remote sub-system need only

transmit status changes as they occur;

Distribution of the central system tasks to the microcomputer
based sub-systems to provide increased reliability and
flexibility;

Reduction in the overall system hardware costs.

DISADVANTAGES:

Changing to the new microcomputer-based sub-systems would require
a change in existing fault finding techniques. In the past,

fault-finding was achieved by visually checking through the relay
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contacts for electrical continuity which is not possible with the

microcomputers;

In some cases, the introduction of a different style of
technology (computer-based) would require the retraining of

existing personnel;

The cost of software could increase well above the original
estimates if the software programmer does not fully understand
the process to be controlled. This is a common problem with

software based industrial systems.

These advantages and disadvantages were demonstrated and confirmed by the
research work and have since the original study, been reinforced by the

developments that have taken place at Loy Yang.
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3.2 ESTABLISHMENT OF THE HIERARCHY OF THE PROTOTYPE SYSTEM

3.2.1 General

A hierarchical system consists of two or more levels of distributed
sub-systems arranged in a pyramid or multi-level formation. At each
Tevel, a number of sub-systems (front-ends, slaves) operate in parallel.
There is an iterative data transfer between the various levels with a
preference for the data transfer down the pyramid to be treated as a

command by the lower levels.

For the open cut plant situation considered in this project, the control
centre master (a minicomputer) represented the highest level in the
hierarchy with the front-ends (microcomputer-based) and the slaves
(microcomputer-based) representing the second and third levels
respectively. As outlined in Section 3.1.1, a front-end would control.
the slaves for the conveyors from the dredger to the transfer area or
from the transfer area to the bunker as shown in Figure 3.1. The
hierarchy of the control system was determined by the basic process to be
controlled and the functional independence required between common or
parallel tasks, such as a dredger to bunker route, taking into

consideration any interchange area.

Accordingly, the hierarchy of the prototype system model was as shown in
Figure 3.3 and Photograph No 2. This model enabled the requirements of

an actual system to be investigated and demonstrated.
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The anticipated configuration for an actual situation, as shown in

Figure 3.1, (p.16) and Figure 3.3 consists of multiple microcomputers,
each one with well defined tasks to perform. For a conveyor network, the
overall control is maintained by the master (consisting'of single or dual
minicomputers). The next level in the system hierarchy is the front-end
or sub-master level. Because of the number of front-ends, there must be
a defined hierarchy or priority between the front-ends as determined by

the conveyor route requirements.

From experience with earlier open cuts the most important group is the
top conveyor line in the open cut followed by the lower groups. It is
necessary to remove the top layers of overburden and coal in order to

keep the alternative routes available. Therefore, the overburden group

front-end is the highest priority front-end of the second level.

Similarly, the individual slaves also have a priority rating as
determined by the position of the conveyor in the conveyor line. To
avoid spillage, the last slave in the line is given the highest priority
and to minimise the situation where a slave in the hierarchy was never

serviced, a regular check must be initiated by the master.

The model as described in Chapters 3 and 4 is based on this

configuration.
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3.2.2 Master Sub-system

(Photographs Nos 4 and 5)

The 21MX Hewlett Packard minicomputer performed the task of system master
for the model. It was controlled through the VDU keyboard which in turn
controlled the graphic display of Figure 3.1 and the message transmission

to the lower sub-systems (the front-end and the slaves).

Messages to the front-end and slaves (conveyors) were simulated in the
master and transmitted via the high-speed serial data link developed for
the 21IMX minicomputer (refer to Photograph No 5). The message performed
the same function as operating a start or stop button at the master.
When the message was received by the front-end, it was decoded (as
explained in Section 4.3.3.3 on (p.94)) and checked for errors before
performing the task or command contained in the message. If the message
contained a request for data from the front-end sub-system, the
appropriate action of encoding the data was carried out. If the message
was for a slave it was re-transmitted to the slaves by the front-end.
The central master continued on with other tasks until it received an

interrupt from the front-end.

In addition to checking for errors in messages from the master, the
front-end also checked messages from the slaves before re-transmitting to
the master. This reduced the load on the master because the front-end
indicated to the slave that the data received had an error without
interrupting the master. This error checking would be important in an
actual conveyor network because the interconnecting control cables are

located in the vicinity of high voltage equipment in the field and are

therefore susceptible to electrical nojse.
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3.2.3 Sub-master (Front-end) Sub-system

The second Tevel of control in the hierarchy (Figure 3.3) was the
front-end computer which was based on the National Semiconductor PACE
microcomputer (refer Photograph No 6). The introduction of a front-end
in the system strategy enabled the distribution of some of the functions
normally performed by the master. In addition, the front-end sub-system

also provided two secondary. functions:

The storage of programs for the model (the slave, front-end and
master programs were stored on disc and subsequently down-1ine

loaded on request);

Development facilities were provided for the microcomputer
software and hardware via the National Semiconductor prototyping

extender card.

The front-end serviced the messages from the master and re-transmitted to
the slaves as outlined in Section 4.3.4. In the internal front-end
hierarchy, the 1ink to the master had the highest priority after all

internal functions of the front-end were serviced.

The internal functions of the front-end were interrupts from the internal
clock and the other software sub-routines (e.g. stack handling) during
multiple sub-routine servicing. The stack function of the PACE
Microprocessor was an internal logic function of the microprocessor chip
that handled up to ten transfers of data words or sub-routine return

addresses before requiring external memory for storage.
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Distributed systems such as the model are subject to many coincident
interrupt requests. In the model, in addition to random requests from
the connected sub-systems, the front-end was required to service the
front-end VDU (refer to Photograph No 2) and acknowledge requests such as

time of day in hours, minutes and seconds.

The modular approach of the system model also allowed the removal of the
front-end from the hierarchy. The software of the slave was designed to
receive the protocol directly from any sub-system. Hence, for a small
full scale system (e.g. during the initial development of an open cut
with only one dredger and one conveyor line), it would be possible for

the slave to be directly connected to the master.
3.2.4 Slave Sub-systems (Photograph No 7)

The third level in the hierarchy consisted of the microcomputer-based
slave sub-systems and was also based on the PACE microcomputer. Each of
the slaves had the same basic data transfer and internal management

software packages as the front-end.

The individual slave sub-system which would normally be located at the
remote plant sites {conveyors and dredgers) was configured as shown in

Figure 3.4.
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FIGURE 3.4 : INTERFACE REQUIREMENTS FOR A REMOTE SUB-SYSTEM

The slave consisted of a microcomputer-based sub-system with several high
speed serial data links for interconnections with the front-end and
adjacent slaves. The hierarchy within the sub-system was established
with the direct link to the front-end as the highest priority and the
alternative paths through the adjacent slave would be rated according to
the direction of flow of the material on the conveyor. The priority of
the different 1links was the same order for the slave as was required for
the interconnecting 1inks in the front-end (refer to Section 3.2.3). The
slave was also rack mounted for ease of change or card replacement. The
loss of small elements such as individual slaves in one conveyor route
would be more acceptable than the major losses possible with more

traditional techniques which could take out more than one conveyor route.
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3.2.5 Methods of Communication

In the development of the hierarchical system, consideration was given to
the way the sub-systems were connected together. At the hardware

interface level, the following factors were taken into account:

There was a variety of speeds used by the devices and sub-systems
to be interfaced which was accommodated by the selectable Togic

on the interface card;

The devices used were either current or voltage driven;

The voltage requirements for voltage driven devices used the

industry standards EIA (RS-232C) and CCITT (v24);

The hardware interfaces had to be compatible with other serial

devices and with existing software packages.

Once the hardware interfaces for the model had been designed, it was then
necessary to decide if the configuration would be a party line or radial

communications network.

3.2.5.1 Party-Line

In a party-line network, at the slave or front-end level, each sub-system

would share a common data cable pair. A1l units would receive the same

message but only the one addressed would respond.
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3.2.5.2 Radial

In a radial network, each sub-system would have its own dedicated data
cable pair radiating from the central sub-system. Sub-system
identification is not necessary since the identification is inherent in
Ehe layout. The choice of the method to be used usually depends on the
polling frequency, response time and the number of cable pairs required.
Generally, in an open cut situation the smallest cable used (based on the
consideration of its mechaﬁica1 strength) would have 10 pairs, hence the

one cable could support 10 sub-systems.
Following consideration of the cable pairs available and the speed
required to identify the sub-system, a radial communication network was

chosen for the prototype system.

3.3 INVESTIGATION OF THE DATA TRANSFER TECHNIQUES
FOR THE MODEL

3.3.1 Modes of QOperation

Most of the traditional modes of operation of communication systems are

also applicable in hierarchical microcomputer systems, such as:
polling (group, individual) of sub-systems by the master;
interrupt driven communication with the sub-systems;
continuous communication with the sub-systems;

priority messages to and from the sub-systems.
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Use of the microcomputer enabled a system model to be developed which
used basically an interrupt driven and a time initiated polling

structure,

There were two methods of operation which were fundamental to the overall
system structure; interrogation on interrupt from the sub-systems and
time controlled polling of the sub-systems. The polling mode was
controlled by the clock (sub-routines were initiated on a time flag)
while the interrupt mode was controlled by the hardware and the system

hierarchical structure.

3.3.1.1 Interrupt Operation

In a steady state system under normal program execution, the sub-systems
would be fairly inactive, stopping and starting motors, etc, but
continually updating their record of the previous status of the plant.
This mode would reduce the flow of data to and from the master computer
by comparing the previous status (i.e. the status that was last
transmitted to the master, which was stored in memory) to the current
status. If a sub-system does not transmit, the master will assume the
same condition exists; for example, if a slave has reported that a motor
has stopped it will not report its status again unless it is restarted or

the master requests a status check.

3.3.1.2 Polling (or Continuous) Operation

Po11ing, by definition follows a predetermined sequence in its

acquisition of data. Instead of permitting any sub-system to report

status changes as they occur, a polling system permits each sub-system to
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report only when it is requested to do so. In this way, data

transmission is completely controlled by the master.

Pol1ing systems have no way of giving priority to important information.
Each critical alarm must wait until it is next scanned before the master
can act on the data. This is also one of the major problems of the
traditional systems using relay or solid state logic. These earlier
systems have no processing capability, hence there is no way of assigning
priorities. A combination of the above modes can reduce the effect of

these problems. The model allowed:

faster scanning;

checking for the presence of altered data;
preprocessing of information;

increased message efficiency;

system response improvements.

3.3.2 The Message Protocol of the Model

Distributed microcomputer sub-systems require a structured message system
similar to the earlier telemetry systems outlined in Section 2.1. 1In
data transmission systems, data can be transmitted either synchronously
or asynchronously. Synchronous transmission means that the data being
transferred is in synchronisation with a timing signal or a strobe pulse.
In synchronous systems, the strobe pulse is transmitted with the data.
The strobe signal notifies the receiving device that valid data is

available.
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In serial asynchronous systems (such as the one under study),
synchronisation is provided by the active data transmitted or received.
The transmission of a particular data pattern consists of a start bit,

° eight data bits and one or two stop bits; testing for a particular data
word "SYN" provides the synchronisation of the data blocks while the
start and stop bits provide the synchronisation of each character

received.

One of the advantages of a serial system is that it lends itself to
transmission over telephone cables. The serial digital data (refer to
Section 4.2.4) is converted to a frequency signal by a modem, placed onto
a voice-grade cable and converted back to serial digital data by the

receiving modem at the other end of the line.

In the model a defined protocol or message format was used to ensure the

secure transmission of information.

The information outlined in the Literature Review of Chapter 2 and
Appendix F regarding industry standards and the requirements of the
Australian Standards Association was used as a guide for the protocol of
Figure 3.5 (p.41) as adopted for the research model. The system protocol

also included the following standard transmission control characters:

"SYN" (Synchronous idle) - a signal from which synchronism may be

achieved;
"SOH" (start of heading) - first character of a heading;

"ETX" (end of text) - terminates a text;
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"NAK" (negative acknowledge) - message not accepted;

"ENQ" (enquiry) - request for a response;

"EOT" (end of transmission) - indicates the end of the message;

"ACK" (acknowledge) - an affirmative response to the transmitting

sub-system;

"STX" (start of text) - used to precede text and terminate a

heading;

"FS" (File separator) - used to separate blocks of data.

Secure data transfer between the sub-systems was achieved using the
protocol of Figure 3.5, as developed by the author, refer also to
Appendix B, (p.153) for an example of the software sub-routine that used

the developed message protocol to transfer data between the sub-systems.
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In addition to the standard control characters used in the system
protocol of Figure 3.5, the standard control characters were also used to

acknowledge messages or errors in messages.

The incoming message was loaded into a receive buffer énd if at any stage
during the transmission of data an error was detected, a standard error
code, negative acknowledge "NAK" or enquiry "ENQ", was sent to the
transmitting sub-system. It was possible to terminate the data transfer
at any stage by transmitting an "EOT" - end of transmission character.

If the data was received without an error being detected, the acknowledge

signal "ACK" was transmitted by the receiving sub-system.

From Figure 3.5, it can be seen that the protocol developed followed the
basic rules for information protocols as outlined in Appendix F. The
protocol included a synchronising field, an address field, a control
field and a data field. In addition, the system used the standard
control characters such as "SYN" synchronise, "SOH" start of heading and

“ETX" end of text.

Sections 4.3.3.3 (p.94) and 4.3.4 (p.99) explain how the system protocol
and, in particular the control characters, were used to clarify two
important areas of investigation:

The data transfer techniques required for system modelling;

The operating strategy of the model.
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3.3.3 Error Detection in the Model

For error detection within the model, it was decided to develop the
hardware error signals (refer to Section 4.2.4.4 on (p.73)) and a
checksum sub-routine (refer to sub-routine "CHEKSM" as explained in
Section 4.3.3.2, (p.89)) in order to investigate the requirements for

data transfer and its security.

Each eight bits of the incoming data was subjected to the hardware error
checks, followed by a test for particular 8-bit characters (i.e. "SYN",
"SOH", "STX" and "EOT") as outlined in the above section. Once the data
transfer was complete, it was then subjected to the checksum test. For
an actual system, one of the cyclic redundancy checks (CRC) as outlined
in Appendix F3 could be used. Using the more complex CRC code, instead
of.the checksum approach as used, would only have been an additional
software coding exercise. This could be included if there was any
further development of the model but was not implemented due to the time

constraints.
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CHAPTER 4 : THE EXPERIMENTAL MODEL

4.1 DEVELOPMENT OF THE MODEL

The model developed for the research represented the fundamental units
required for the investigation of a microcomputer-based conveyor
transport control and monitoring system. The configuration selected
enabled the study of data transfer techniques within a hierarchical
structure and comprised a hypothetical control centre master with several
lower order sub-systems. In addition, the feasibility of interconnecting
the lower order sub-systems via the alternate data path between the

sub-systems was investigated.

In an open cut plant network, the operational and environmental
constraints determine the basic parameters (system reliability, linking
and construction) of the industrial control system. It was these
parameters that were used as part of the criteria for the model. An
understanding of the requirements of each one was gained by the author
during many years of working with the application of control systems for

open cut plant.

An overall plant control and monitoring system should not degrade the
security of the coal and overburden removal networks. The configuration
selected for the model meets the security requirements since any major
failure of a system would be due to damage to the interconnecting cable,
see Figure 4.1 (p.45). As can be seen from Figure 4.1 and the conveyor
plant layout, Figure 3.1 (p.16) it is not possible to bypass a single
plant item (dredger or conveyor) in the middle of a conveyor line. An

outage of the conveyor route could be caused by the loss of one of the
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individual slave (conveyor) sub-systems or by the loss of the cable along
the conveyor structures which form the routes from the dredgers. For
example, the L400 to L415 conveyor group (Figure 3.1, (p.16)) has only
one cable with up to 24 pairs, damage to the cable or a fajlure of

front-end No 4, as shown in Figures 3.2 and 4.1, would have the same

effect.
CONVEYOR/DREDGER
: GROUP 4
TO OTHER
CONVEYOR FRONT-END
GROUPS 4
(ROUTES) PLANT ITEMS
1) SLAVE 1 DREDGER 1
COMMON (NO 17)
CONTROL™—————u
CABLE
(2) SLAVE 2 CONVEYOR 2
(L400)
CABLE SLAVE 'N' BUNKER OR
PAIR — | ° OVERBURDEN
(*N") DUMP 'N?

FIGURE 4.1 : COMMON CABLE FOR SUB-SYSTEMS OF THE SAME GROUP

Therefore, the use of a front-end in an open cut control system model,
with a small reduction in the overall hardware reliability, was justified
by the increased benefit of improved security of the overall control
system. The front-end provided the opportunity for limited control at

the control centre during any outage of the master, see Section 5.1.1.
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Any other configuration would require control at the remote conveyor
(slave) Tocations during failures of the master which would involve long
delays while trying to co-ordinate the overall control. For comparison
purposes, the hardware and software were also developed to allow for the
case where the master controlied the slaves without the front-end. This
was achieved by developing the software in the Tower sub-system levels to
a point where the front-end sub-systems became transparent by
re-transmitting any messages received to the next Tevel in the hierarchy

(refer to Section 4.3.4) or by direct connections between the master and

slaves.

Another configuration, using the same hardware and software in a multiple
slave daisy chain arrangement is also possible, but due to the time

constraints of the project this configuration was not investigated.
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The model was therefore developed around the natural constraints of the
open cut application and the sub-systems available. The completed model
consisted of a single master minicomputer, one group front-end sub-system

connected to two slave sub-systems representing two conveyors as shown in

Figure 4.2.
4.2 THE HARDWARE REQUIREMENTS OF THE MODEL
4.2.1 Master Computer

The minicomputer selected for the master computer in this project was
typical of the type of computer that has been used for this task since
the early 1960s and as Hewlett Packard support facilities were already
available at the Institute, the HP-21MX computer was selected as the

master computer.

The master computer (21MX) was configured with a high speed paper tape
reader, teletype, Real-time clock and a graphic display VDU. As part of
the project, special high speed serial interfaces were designed for
connection to the system VDU and to the other sub-systems (front-end and

slaves) as shown in Figure 4.2.

With the 21IMX computer, it is possible to service up to 56 distinct
interrupts, each of which has a unique priority code associated with a
corresponding interrupt location in memory and input/output interface
channel. This is designed to suit the different peripherals and high
speed data interfaces of the master. Within the hierarchy of the model
the channels were selectively enabled or disabled under program control,
thus switching the device connected into or out of the defined interrupt

structure.
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Each device (CRT, VDU, Real-time Clock, tape reader and front-end) was
assigned a priority, based on the conveyor plant configuration of
Figure 3.1 (p.16) and the expected master system functions. The
selection of prioritigs enabled a systematic sequence for servicing
interrupts from the different devices. It was also required that the
high-speed devices should not have to wait for the Tow-speed device

transfers.

The plant configuration of Figure 3.1 (p.16) consisting of five dredgers
at different coal levels, set up the priorities for the model with the
external overburden conveyor line as the highest priority followed by the
next level down. For the model, consideration was only given to the
priorities between the devices connected. Logically, the Real-time clock
had the highest priority followed by the front-end interface, with the

VDU unit for display purposes as the lowest priority.
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4.2.2 Front-end Computer

The front-end (Photograph No 6 (p.32)) of the model was a National Semi-
conductor Full Scale PACE microcomputer development system. The PACE
development system consisted of 12k RAM memory, a high speed paper tape
reader, a teletype, VDU, dual floppy discs. Several special high speed
serial data links for communication with the slave and the master
computers were developed as part of the project. The development system
enabled each microcomputer-based sub-system (front-end and slaves) to be

developed from the basic cards and components available.

The locally supported PACE microcomputer was chosen as the most suitable
device for the task in order to avoid delays and problems with
replacement hardware. In addition, the facilities available in the
Electrical Engineering Department at the Footscray Institute of
Technology provided supplementary support to a PACE microcomputer-based
system study. A1l of the basic principles applied to the PACE
microcomputer during the research can be applied to other

microprocessors.

In addition to the standard cards, use was made of the prototyping
facility of the development system (front-end) in order to develop the
special high speed data 1inks of the slaves and front-end and to enable
the interconnection of the sub-systems to the front-end as shown by

Photograph No 3.

Handling multiple tasks is an important function for computer systems and
languages. The sub-systems of the model had to be able to handle several

concurrent tasks in their combined local control and data transmission
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modes. To achieve the hierarchy for the front-end and the slaves, use
was made of the 6-level priority interrupt structure of the PACE

microprocessor shown in Figure 4.3. (p.53).

Each level was provided with a software driven enable "(IE2-IE5)" plus
the overall enable "IEN". When an interrupt request (NIRI1-NIR5)
occurred, the associated request latch (IRl to IR5) was set, if "IEN" was
true then an interrupt was generated and recognised. The interrupt
pointers or addresses of the various interrupt service sub-routines were
stored in the memory (refer to Section 4.3.3.3 (p.91), regarding stack

handling for more details).

Fach of the interrupt levels was assigned a task in the system hierarchy.
The highest priority interrupts were assigned housekeeping tasks such as
stack or multiple sub-routine handling and Real-time clock servicing.
The remaining interrupts were used to form the external hierarchical
structure. See Section 4.3.3.3, on interrupt handling for further
details. For systems that require expanded user interrupts, the
technique outlined in the PACE user's manual (31) could be adopted, but

for the model, an expanded interrupt capability was not required.
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4,2.3 Slave Computer

The hardware requirements of the slave computers were not as involved as
those of either the master or the front-end. The slaves for the model
consisted of the standard general purpose National Microcomputer cards
(CPU, ROM and RAM). In addition a Real-time clock card, input/output

panel and interface control card and a high speed serial Tink card was

designed for the slave.

The Central Processing Unit (CPU) card contained the
microprocessor, a crystal controlled oscillator and data buffers. The
flag and control sections provided the external signals for the
connection to the other cards. Data transfers between the CPU and memory
or peripheral devices were carried out over the 16 bit parallel

input/output data bus.

CONTROL —— TIMING
AND
SIGNALS CONTROL
CARD
ENABLE
—»1 ADDRESS =
SELECT
ADDRESS ADDRESS
MULTIPLEXED STATIC
ADDRESS AND A LATCH .
DATA 1/0 BUS _
DATA IN’J ARRAY
DATA DATA OUT
.
BUFFERS

EIGURE 4.4 : RAM BLOCK DIAGRAM
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The National Semiconductor Memory card, as shown by the block
diagram of Figure 4.4, consisted of the RAM or ROM memory chips -
depending on the type of memory required. The address was latched to

select the memory location for data transfer.

The Real-time clock card was another important area of the
real-time control situation under investigation. The Real-time clock
card was specially customised to suit the timing requirements of the
software programs and provided a predetermined pulse for the Real-time
clock sub-routine. A1l events at the slave sub-systems were related to
the time of occurrence and were therefore referenced to the actual time.
In addition, the scheduling of the software sub-routines for execution
was controlled by the Real-time clock pulses. The time period was fixed
at the smallest value required (100 milliseconds), while larger periods

were determined by the software sub-routines.
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4,2.4 High Speed Data Interfaces

4.2.4.1 General

In addition to the standard computer cards and input/output devices used
and adapted, there was a need for a high speed interface card, as shown
in Photographs Nos 8 and 10, in order to link the sub-systems (master,
front-end and slaves) of the model together and for interfacing the
teletype and VDU to the computers. At the time of the research, the
suppliers of the hardware had not developed a suitable application card
which met all of the requirements of Section 3.2.1. The high speed data
links were an essential part of the model, hence it was necessary to

design and produce several cards for the model.

The hardware was developed using prototyping cards consisting of dual
in-line integrated circuit sockets with wire wrap pins or soldered
connections, as shown by the prototypes in Photographs Nos 8, 9 and 10.
The appropriate cards were tested by using either the PACE development

system or the Hewlett Packard card tester.

The following Sections (4.2.4.2 and 4.2.4.3) describe in block diagram
form how the logic functions on the cards were implemented. As with most
computers, the 21MX-HP minicomputer and the PACE microcomputer processor
cards did not directly drive the peripheral devices connected, therefore
it was necessary to analyse the backplane signals as detailed in the
handbooks with the aid of a camera mounted on a high speed cathode ray

oscilloscope in order to design the interface cards required.
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4.2.4.2 The Basic Building Blocks of the High Speed Interfaces

The basic function of the high speed interface cards was to convert the
paraliel data to serial data and vice versa at a predetermined and
flexible speed. In order to meet the requirements of the model, two
basic building blocks (a Universal Asychronous Receive and Transmit
(UART) chip and a Programmable Baud Rate Chip) were used. These two
devices were selected in preference to discrete shift registers in order
to minimise the number of components and to standardise the cards as much

as possible. The features of the two basic blocks were as follows:

The UART: This device provided the central processing unit of
each sub-system with more time to carry out other tasks while it
transferred the data to the peripherals. The peripherals used
were 8-bit devices and were within the speed range of the 8-bit
UART. Use was made of the inbuilt flags of the UART to interrupt
the computer after the data had been received or transmitted in

order to transfer the data for processing.

Although the 21MX minicomputer and the PACE microcomputers were
able to process 16-bit data, the variable speed and asychronous
features of the UART outweighed the disadvantage of processing
8-bit data. In both the 21MX minicomputer and PACE
Microcomputer, the least significant 8 bits of the 16-bit data
bus were used for the data transfers via the UART interface

cards.
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Although the design and development of the data 1ink cards took
time, it was highly desirable to use a standard interface device
such as the UART because of the substantial time and effort that
would be required for the development of a similar device using
discrete components;

-
The Programmable Baud Rate Chip: Another important requirement
of the high speed interface card was to be able to vary the speed
at which data was transferred Within the hierarchy of the model
without major changes to the hardware. To achieve the variable
output speed required the card edge connectors of the peripheral
device were wired with the code that selected the speed of the
programmable chip (as shown in Figure 4.5). This speed was then
used to determine the baud (bits/s) rate at which the UART

received or transmitted the data.
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4.2.4.3 The High Speed Data Link of the Master

The card developed for the master was the one shown in Photographs Nos 8
and 9 and the circuit details in Appendix & This card used the basic
blocks, the UART and the programmable baud rate chip which enabled the
data to be transferred at selectable baud rates of 50 to 9600 Baud
(bits/s) depending on the device connected. As shown in Figure 4.6 and
Photograph No 8, the prototype card for the 21MX had a standard flag

logic section which provided standard signals on the card for data

control.
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»e ' __::, e e ew Standard Hewlett
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! 281,

FIGURE 4.6 : FLAG BLOCK

It was necessary to include this standard flag logic as part of the logic
for the 21MX interface card in order to make use of the computer
backplane signals. During the execution of the different computer
instructions, the following flag and input/output signals were observed

and photographed.
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The following paragraphs show how the computer backplane signals were
combined with the UART flags to implement the basic data transfer

requirements for transmitting and receiving:



63

Transmit: This was achieved by loading the eight data bits

(Bits 0-7) into a buffer on the card before being strobed into
the UART chip. The UART then converted the data from parallel to
serial data for transmission to the connected peripheral or
sub-system. Depending on the type of device to be connected
(RS232C industry standard voltage or 20 milliamp current, device)
different pins on the output side of the card were connected.

The "Transmit End of Character" (TEOC) flag of the UART was used
to interrupt the computer when the card was ready for another

eight bits.

Once the appropriate interrupt signal was given by the UART to
the computer, the software sub-routine selected via the interrupt
memory location determined the next step to be taken. This
sub-routine, which is explained in the software Sections 4.3.2
and 4.3.3.3, used a combination of the "set device" control bit
signal "STC" (see Figure 4.8) and the "output the register to
device instruction” (OTA or OTB) which generated the data output
signal "I00" shown in Figure 4.8 on the computer backplane (refer
also to the detailed circuit diagram in Appendix C and the block
diagram of Figure 4.11). This signal was used to load the card
control codes (for transmit), select codes (for different
devices) or for loading data words into the data buffer. The
"STC" signal was used to generate a transmit strobe pulse of a
predetermined period to suit the UART timing specification. The
time duration was determined by the logic within the control

logic block shown in Figure 4.11.
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SERIAL DATA INTERFACE CARD
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The parallel data input to the UART was then converted to serial
data and transmitted at a rate (50-9600 baud) determined by the

programmable baud rate chip to the connected device (RS232C or

20 milliamp loop);

Receive: The basic input concepts of the interface are as shown
in Figure 4.12A and make use of another UART flag, "Received Data

Available" (RDA), to signal that the data had been received.

The operational amplifier was used as a Schmitt trigger to remove any
noise associated with the input. The Schmitt trigger arrangement, as
shown in block form, functioned as a one-bit analogue to digital
converter. The device was arranged so that it had two output states
which were functions of the ampliitude of the input excitation

(Figure 4.12B). In addition to removing noise, the circuit converted

20 milliamp signals to TTL logic levels for the UART chip. The UART chip
also had some noise immunity; it sampled the data every half data bit,

testing for a low signal which signified the start of the data word.

+12V
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- —®1 o/P
8
AMPLI - ———e—— LOGIC
> ART
EIA U
FIER HIGH
A8
12V COMPUTER BUS
SCHMITT —
TRIGGER

FIGURE 4.12A : BASIC INPUT BLOCK DIAGRAM
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Switching between the two output states of the Schmitt trigger was very
fast because it utilised the internal regenerative feedback set-up in the
operational amplifier. The input/output relationship is illustrated in
Figure 4.12B. When the input voltage exceeded the threshold voltage
(VTl), the output returned to the '0' state (29). As indicated, the
device exhibits hysteresis in the region between VTl and VTZ' Note that
if the input rises to or falls to Vx’ the output will remain in its last
logic state of either 'l' or '0'. Hence, the arrangement was used as a
threshold filter and was used to remove the contact bounce noise such as
occurred on the signal from a teletype. See Figure 4.13 for a

diagrammatic representation of the observed signals.
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In addition to the above noise which can cause incorrect sampling by the
UART chip due to spikes occurring a half-bit apart, it is also possible
to cause a stalemate situation when reading from a teletype. This
condition could occur if the interface card is given the command to read
and the reader moves the tape one character space but the UART rejects
the character as noise. If a noise spike occurs at the sample period as
shown in Figure 4.13, the UART would wait for the next character and the
computer would not give the next read command until the previous read

command had been carried out.

To overcome this problem, a 16-bit counter was introduced into the Togic
(see Figure 4.14). (33) 1If a character was correctly received, the
"Received Data Available" flag was reset and cleared the counter after 11
bits (eight bit data, one start and two stop bits) but if the UART
rejected the start of the character the counter caused the reader to move

on after a delay of five bits, avoiding the stalemate.
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FIGURE 4.14 : BLOCK DIAGRAM OF READER CONTROL

The software can also use the inherent error checks of the UART because
the framing error, receiver over-run and parity error flags, refer to
Figure 4.17 (p.73), of the device, had been connected to bits 12 to 14 of
the data bus. When the data is read into the computer by executing the
"LIA" computer instruction, which generated the "IOI" signal (see

Figure 4.8), the status of the UART error flags were also connected to

the computer bus during the transfer of data to bits 0 to 7.

4.2.4.4 The High Speed Data Link of the Front-end and the Slaves
(Photograph No 10)

The high speed data 1ink card for the microcomputers of the model was

developed as a dual RS232C (voltage) interface card.
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The logic designs of the microcomputer cards were developed using the
same basic building blocks (the UART and programmable baud rate chip) as

the master computer.

The fundamental difference between the two computers (the minicomputer
and the microcomputer) was that the PACE microcomputer did not have a
select code or special input/output instruction set. The microcomputer
peripheral interface cards were effectively a Tocation in memory as far
as its central processing unit (CPU) was concerned. Therefore, the
interface card was developed using an address decoder. If the address
matched the predetermined card address on the card (see circuit details
in Appendix C and Photographs Nos 3 and 10) then the computer 16-bit
address word was accepted by the card logic as a card select and function
select code word. The first six bits provided the appropriate select
code for the operation to be performed by the executed sub-routine. As
shown in Table 4.1, the possible commands were determined by the bit

pattern of the card address.

Bits Function

5 RS232C 1 or 2 (Link (1) or (2))
4 Ready to transmit (RTS)

3 Ready to receive (RTR)

0-2 Data process code

TABLE 4.1 : DATA WORD FORMAT

The function select code for the 0-2 bits enabled eight different data

process functions. These are listed in Table 4.2:
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Binary Function

000 print or transmit
001 tape read

010 power on

011 power off

100 echo

101 enable data

110 enable status

111 not used

TABLE 4.2 : FUNCTION SELECT CODES

15 16 13 1221 10 9 8[]7 6 s &4]3 2 1 o
1.lolo|111 | ojlololo|oflo|1|1|ofo0]oO

CARD ADDRESS RTS

RS 232 RTR
LA

“ . 1 TRANSMIT

FIGURE 4.15 : CONTROL WORD : PACE

Figure 4.15 represents the control word necessary to select the serial

1ink(RS232C No 1) for data transmission.

Transmit Data: As previously discussed in Section 4.2.4.2, the
front-end and slave serial data link interface cards used the UART chip.
The UART converts the 8-bit parallel data to an acceptable serial form
for transmission either as a 20 milliamp current signal or as an industry
standard voltage signal (RS232C). The UART was used again to minimise
the number of components on the cards and enabled the transmit function

required.
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To achieve the functions outlined in Table 4.2, the basic design adopted
is as shown in Figure 4.16. In order to design the data 1ink card logic,
the microcomputer processor card signals were also studied and combined

with the UART flags as outlined in Section 4.2.4.1 (p.56).

When the correct card address was received the output data strobe (0ODS)

signal of the CPU latched the data on the data bus into the UART.

The next data word was inhibited in the software either by waiting for a
flag (JC13, etc) or an interrupt (NIR 2-5). Refer to Figure 4.3, (p.53),
for the significance of the interrupt signals, i.e. NIR2 is an interrupt
from the Real-time clock. Once the UART had completed the data transfer
a signal (JC13 or NIR 2-5) was given to the central processing unit to

continue with the next word to be transmitted.

The tape read function was also implemented in the same way as explained
for the master interface (p.67) to avoid a halt in the program execution

due to noise rejection.

Receive Data: The data input circuit is also similar to the data
input circuit on the master high speed interface card (p.65). For the
dual RS232C input, an appropriate input code had been selected and
defined in Table 4.1 to enable switching from one input to the other. In
the case of the slaves the normal data transfer path is for data to be
received from the front-end computer; it was also possible to switch to
the alternative or indirect route via the second RS232C input/output
chips (see Figure 4.16) which was connected to the adjacent slave
sub-system, refer to Section 4.2.5 for more details. Data was received
by the UART in a serial string of eight bits (0-7) which then generated a

"Received Data Available" (RDA) flag, which in turn caused an interrupt



72

or flag on the computer backplane. An input sub-routine (MSTINP (p.162))
which included an instruction that provided the "Input Data Strobe"
signal (IDS), was then executed. This enabled the UART high impedance
outputs and the TTL high 1mpedange bus drivers (UART outputs can drive
one TTL gate only). Once enabled, the 8-bit data (incoming) was allowed

to appear on the data bus and hence was read by the processor.

The UART flags were also cleared by the IDS signal ready for the next

data word.
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Where high security techniques were required, it was possible to test for
"Receiver Over-run" (ROR), "Received data Parity Errors" (RPE) and
"Received data Framing Errors" (RFE) by using the UART hardware signals
for ROR, RPE and RFE in a similar way as explained for the master
interface card (see Appendix C for circuit details). The hardware
signals were used in the error detection sub-routine "CHECKSM" in
addition to the error code techniques as explained in Section 3.3.3.
Before loading the next data word, a status request was made; the data
on the computer bus was then tested for any ROR, RPE and RFE errors

before continuing to load data. See Figure 4.17 below.

STATUS ROR SERIAL
(srATus>BUFFERL<—— REE ——{ paTA [—=
' e—] RrPE
!
ENABLE
FUNCTION UART
<] FLAG ROA
INTER - T
RUPT
LOGIC
T

FIGURE 4.17 : ERROR STATUS BLOCK DIAGRAM

4.2.5 The Data Transfer Paths

In the distributed system model, as shown in Figure 4.18, the direct data

path was to or from the slave through the front-end to the master.
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FIGURE 4.18 : INDIRECT/DIRECT DATA ROUTES OF THE MODEL

In order to provide a back-up to the direct 1ink to the master the second
or indirect link on the card was used. As shown in Figure 4.18, an
1ndirecf path was possible via the second set of RS232C inputs and
outputs on the data link card. The computer used a second memory
location in order to select the indirect data path. This route was also
used for Tinking the sub-systems together; messages such as sequence
start, which are required as a direct link between the conveyors, were

passed via this Tink.
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4.3 THE SYSTEM SOFTWARE FOR THE MODEL
4.3.1 General

In order to explain how the software was developed and the problems
encountered in achieving the objectives of the research, a brief outline

of the two computers is included.

The 21MX Hewlett Packard Minicomputer: The computer has eight
16 bit working registers which can be selected for display and
modification through the operator's panel or directly by the software
sub-routines. The main registers are the A and B registers which can be
directly addressed by the memory reference instructions. The memory is
divided into fixed pages of 1024 words each. It is possible to directly
address page zero (the current page) and the page in which the
instruction is located. To address the other pages, indirect addressing
is necessary and is realised by using a defined location in memory. A
more detailed explanation of the 21MX computer can be found in the

Hewlett Packard Reference Manual (28).

The PACE Microcomputer: Four main functional aspects need to be

considered during the development of the system software:

the use of the registers and accumulators;
the use of the status and control flags;
the method of data transfer for the memory or peripherals;

the stack servicing for multiple task handling.
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The Registers and Accumulators: The PACE microprocessor has
seven 16 bit registers with four accumulators (ACO, ACl, AC2 and AC3)
which are available to the programmer. Register ACO serves as the
principal working register while Registers AC2 and AC3 can be used as

index registers.

The Status and Control Flags: There are fourteen status and
- control flags which can be set or pulsed depending on program

requirements for interrupt handling.

The Data Transfer Techniques: The data transfer techniques for
peripherals have already been briefly described in Section 4.2.4.2
(p.58). In contrast to the National approach other microprocessors
(INTEL) and minicomputers (Hewlett Packard) have special input/output
instructions. The PACE approach is more flexible by allowing the direct
use of the full instruction set with the external devices by treating
them as memory locations. In developing the software, consideration had
to be given to the allocation of addresses to the memory and to the

peripherals.

For the front-end sub-system of the model, consideration also had to be
given to the allocation of memory which was used by National
Semiconductor for the PACE Development System peripherals. It was
suggested by National that memory locations 800016 to BFFF16 should be
allocated to any new peripherals which would not conflict with any future
peripherals that National Semiconductor produce for their development
system. Any interfaces which were developed were able to be used with
the standard peripherals thus avoiding conflicting signals. Another
important consideration for the memory allocations was to decide if the

technique of "Split Base Page" was going to be used for the
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sub-systems (see Figure 4.19 below and (p.138) Appendix A) where it was

possible to allow for a split base page.

The technique was used to share

the base page memory area addresses between memory and peripherals for

high speed access, refer to reference (31) for a more detailed

explanation,
NORMAL SPLIT BASE PAGE
(BPS =0) (BPS =1
HARDWARE HARDWARE
CONTROL CONTROL
SIGNAL SIGNAL
FFFF16(65,535 FFFF16 (65535
16(65,539) ﬁmss 77 16 (65,535)
PAGE
7/ //"//FF30|6[65‘[008)
TOP TOP
SECTOR SECTOR
T, | FF16(255) (121)
///?Aéi /z{ :%Z W&Ass /%g;/a
L 016 (0) ZPASE 7/ osg (o)

FIGURE 4.19 : BASE-PAGE MEMORY MAP

The Stack Handling: An important functional aspect of the PACE
microprocessor was the internal stack, which was used for servicing the
sub-routines in the correct order by storing the return addresses of each

sub-routine being serviced. The stack was also used for storing data
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(accumulator content and flag status) by executing the "Push to Stack"
instruction. The stack provided 10 words which were accessed in a

sequential last-in, first-out (LIFQ).

In simple applications this facility eliminates the need for an external
stack but because of the size of the task and the different types of
functions which were performed by the system model, it was necessary to
develop a complex stack service sub-routine for each of the microcomputer
sub-systems to provide increased stack space, refer to Section 4.3.3.3

=]

for details.

4.3.2 System Software Elements

4.3.2.1 Standard Software

The main languages used were BASIC and the respective computer Assemblers
(PACE and Hewlett Packard 2IMX minicomputer). BASIC was used for driving
the graphic representation of Figure 3.1 (p.16) in the Master, while the
control and data transmission requirements were written in Assembler.

The high level language "PASCAL" was not available at the time but from
recent developments it appears that it could become a very useful
language in the future (26) (15). In Section 5.2.2.1 the languages used

in the Loy Yang Open Cut application are briefly covered.

The proven Assembler sub-routines (Load, Dump and Breakpoint) for loading
and dumping programs and for breakpoint handling developed within the
Electrical Engineering Department at Footscray Institute of Technology
for the Hewlett Packard computer and the PACE microcomputer were

integrated into the system software, refer to Section 4.3.3.2. Refer to
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Figures 4.20 (p.80), 4.21 (p.82) and 4.22 (p.85) for a diagrammatic
representation of the software developed by the author which is explained

in the following Sections.
4.3.2.2 Developed Software for the Master

The role of the master in the hierachy of the model was fairly easy to
demonstrate; hence, it did not require any complicated software (refer

to Figure 4.20 for a diagrammatic representation of the master software).

To display the conveyor network of Figure 3.1 (p.16), use was made of the
graphic software package for driving the graphic display VDU. The
software for the master was written in BASIC in order to make use of the

graphic display calls available for driving the VDU.

The master only had two devices to service, the front-end and the graphic
(or master) VDU. An input from the VDU Keyboard was used to interrupt
the display sub-routine (refer to Section 4.3.3.4 (p.98) for more
details). To simplify the master sub-system software, the messages for
communication with the lower levels (front-end and slaves) were
predetermined and stored in memory in tabular form. A look-up table of
VDU Keyboard characters was used to access the different messages for the
demonstration of data transfer between the sub-systems as explained in

Section 4.3.4. (p.99).
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4.3.2.3 Developed Software for the Front-end

The most important sub-system in the model was the front-end, because it
had to handle messages and interrupts from several sources, i.e. the
master and slaves data links, its own internal functions (Real-time

clock, Stack handling and Debug control) and the connected peripherals.

Basically the operation of the front-end depended on the interrupts from
the various sub-routines (refer to Figure 4.21 for a diagrammatic
representation of the software). In its steady-state mode, the front-end
cycled through the debug and interactive character codes in a continuous
loop. Any interrupts from the Stack servicing, Real-time clock control,
Master to Front-end, Front-end to Slave 1 and Front-end to Slave 2
sub-routines interrupted the front-end in a defined priority order. Each
interrupt controlled sub-routine could interrupt a lower priority

sub-routine.
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Sub-routine Priorities: The stack service sub-routine had the highest
priority of all front-end sub-routines. As each sub-routine transferred
the return address of the interrupted sub-routine and the contents of the
registers to the internal stack, a check was made to determine if the
number of words transferred to or from the internal stack had exceeded
ten. This sub-routine could be initiated at any time but it did depend

on the number of words on the stack during the transfer.

The second highest priority sub-routine was the Real-time clock
sub-routine which was initiated every 100 milliseconds to update the

clock values stores in memory.

In the front-end sub-system there were also the three major interrupt
driven sub-routines, "MSTRIT", “SLVIIN" and "SLV2IN" which were used in
the overall distributed system to communicate with the master (MSTRIT),
Slave 1 (SLV1IN) and Slave 2 (SLV2IN). The sub-routine controlling the
data link with the master (MSTRIT) had the highest priority of the three
and the sub-routine SLVZ2IN had the lowest priority. The three
sub-routines were similar except that the interrupt sub-routine "MSTRIT"
also included a test for incoming VDU characters, refer to Appendix B
(p.153) for the detailed flowchart. This test was used to determine
whether a VDU had been connected in place of the master for control at

the second level of the hierarchy.
4.3.2.4 Developed Software for the Slaves
The software for the slaves used sub-routines with a similar structure to

those used in the front-end, i.e. Stack servicing, Real-time clock, Data

1ink and Debug sub-routines. In addition a minor sub-routine was
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included for servicing the input and output panel as shown in Photograph

No 7 (p.32). Refer to Figure 4.22 for a diagrammatic representation of

the software for the slave.

The Panel was used tb represent simple field inputs and outputs for local
control at the conveyor plant. The control logic is far more complex and
the number of inputs and outputs are much greater on actual conveyors.
The panel was used to simulate the motors and protective devices
connected in a real situation and the change of state of the panel was

stored in memory with the time of the occurrence.

The slave sub-system software could be extended to simulate a small
conveyor, including starting several motors, if required for future

investigations.
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4,3.3 The Structure of the Fundamental Software

4.3.3.1 Interactive Programs of the Front-end and Slaves

In industrial control systems interactive programs are performing an
increasingly important role in the man to machine interface. Although it
is not possible to quote current examples for conveyor systems
(microcomputers have only been used since the research was completed for
large conveyor control tasks) it was decided to incorporate some examples

in the system model.

Typical examples of the interactive sub-routines developed and used in

the model are :

Clear memory locations "FLUSH";
Clear current time values "TRSET";
Clear interrupt pointers "MRSET";

Display current time "TIME".

The 'clear' memory type sub-routines (FLUSH, TRSET and MRSET) were used
during system startup, the sub-systems requested simple decisions in
order to establish the initial conditions of the sub-system. Other
sub-routines, such as "TIME", were used during normal operation, if for
example the current time of the front-end was required, depressing the
'T' character of the connected VDU keyboard would initiate the
sub-routine "TIME". This sub-routine converted the values stored by the
interrupt driven sub-routine "RLTIME" into English text for display on

the VDU.
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The interactive sub-routines also enabled control of the hierarchial
network from any level in the model. The control point could be shifted
using a VDU and keyboard to initiate messages to the different

sub-systems (refer to Section 5.1.5 (p.110)).

Other examples of the interactive sub-routines are shown in Appendix A

(p.135) under the heading of 'FRNTND COMNDS'.

4.3.3.2 The Debug Programs of the Front-end and Slave

Use was made of the standard sub-routines, ('Load', 'Dump' and
'Breakpoint') developed at Footscray Institute of Technology for

debugging the system.

These three sub-routines were combined with many others especially

developed for the project by the author.

Typical examples of the special Debug sub-routines developed and used in

the model were:

Transmit a command "CMDTRN";
High speed data link select "TTYMD";
Error code calculate "CHEKSM";

Print memory locations "PRINT",

Refer to Appendix A for the detailed flow charts and software Tistings.
The debug sub-routines enabled the model to be gradually built up until
all of the sub-systems were linked together and properly communicating

using the defined system protocol for data transfer.
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The initiation of the debug sub-routines was also achieved in the same
way as for the interactive sub-routines. The debug sub-routines were the

basic sub-routines to which all of the other sub-routines were added.

Each of the debug sub-routines had specific functions to perform for the

model as follows:

"CMDTRN" (p.147): This was an important debug sub-routine and
was initiated by the control 'Z' character. The sub-routine
enabled the eight bit data, or keyboard characters following the
control 'Z' command to be transmitted via the high speed data
1ink (Front-end to Master, Front-end to Slave 1 and Front-end to
Slave 2) until an "EOT" character was processed. It was possible
to transmit interactive replies and debug commands or to simulate
a data transfer from one sub-system to the next (i.e. front-end

to Slave 1).

This sub-routine also enabled the transmission of simulated
messages (using the system protocol) that were formulated using

the VDU keyboard.

"TTYMD": This sub-routine was used to define which channel of
the dual RS232C data 1ink was connected to the VDU. There were
four possibilities of connecting the VDU to the front-end as can

be seen from the number of cards in Photograph No 3 (p.51), i.e.:
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The Front-end to Master data link card;
The Front-end to Slave 1 data link card;
The Front-end to Slave 2 data link card;

As a normal peripheral device.

"CHEKSM" : This sub-routine was developed as part of

the data link control sub-routines and as a debug program to
provide the error code (a checksum value) for a block of data
between any two memory Tocations "XX" and "YY" given by the
command - "CS, XX, YY" (refer to Appendix A (p.135) for more
details).

For the purpose of this project, the error code is defined as the
calculated checksum of the information field (16 bit words), between the
"STX" and "ETX" control characters of the system protocol. This value
was calculated by the originating sub-system and stored in the address

field of the transmitted message as shown by Figure 3.5 (p.41).

"PRINT" (p.130) : This sub-routine was developed to provide a
print-out of the contents of a block of memory between any two
memory locations "XX" and "YY" (refer to Appendix A for more

details).

4.3.3.3 The Interrupt Sub-routines of the Front-end and Slaves

As outlined in the preceding sections, the servicing of interrupts was a

fundamental mode of operation of the system model.

The structure of the software and the data link card Togic was such that

the first eight bits received initiated an interrupt controlled
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sub-routine. The selected sub-routine turned off the interrupt request
Togic of the Tower priority interrupts until the incoming data block had
been received or there was an enquiry on the data received. If the data
was correct or there was an enquiry, the interrupt request logic was
again enabled after the transfer was finished. The transmitting
sub-system did not continue transmitting data if the previous data word
was not received back as an echoed message from the receiving sub-system.
Therefore, while a message was being received via one high- speed
interface, the other lower priority sub-system interface cards had their
echo and interrupt functions turned off to avoid any loss of information.
For example, if the front-end was processing a message from the master,
the higher order interrupt would take precedence over a slave message
transfer but it would not be able to stop the transmission from the slave

if it did not also turn off the echoing of received data.

There were five major interrupt driven sub-routines involved:

Stack servicing "STKINT";

Real-time clock control "RLTIME";
Master to Front-end control "MSTRIT";
Front-end to Slave 1 control "SLVIIN";

Front-end to Slave 2 control "SLVZ2IN".

The Stack servicing sub-routine had the highest priority with the
Front-end to Slave 2 control as the Towest priority. As the title of
each sub-routine suggests each sub-routine had a basic function to

perform, i.e:
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Stack Servicing "STKINT" (refer to Appendix A (p.131) for the
detailed flow chart and Tisting): An important aspect of a
multiple task software system is its ability to be able to
restore and continue executing any sub-routines that have been
interrupted by a higher priority sub-routine. It became evident
while trying to integrate all of the software tasks to establish
the hierarchy of the model that it would not be possible to
execute the software sub-routines in a sequential order and still
maintain REAL-TIME control. Each interrupt would use five words
of the stack for storing the return address and the contents of
the four registers, therefore, three 1nterrupts would require an
extension to the stack. It was necessary to extend the ten word
stack handling capabilities of the PACE microprocessor chip by
developing a complex sub-routine (STKINT) which extended the
stack into external memory. The stack-full or stack-empty
signals of the PACE microprocessor were used to initiate the
"STKINT" sub-routine via the interupt servicing function. The
sub-routine transferred a full stack to memory or restored an
empty stack from memory. It was not possible to control the
return to each of the interrupted sub-routines by using only the
"Push to Stack" instructions to control the sequence of return

without extending the storage area.

During the development phase of the sub-system software, it was
necessary to include a message to the VDU "stack-full" or
"stack-empty" in order to monitor the co-ordination of the

transfers to or from the stack. The sub-routine could be
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initiated during the execution of any of the interrupt driven
sub-routines, or by a "Push to/Pull from" the stack instruction,

which causes the internal stack to overflow;

Real-time clock control "RLTIME" (refer to Appendix A (p.126))

for the detailed flow chart and listing):
o

In order to provide the Real-time values for the interactive sub-routine
"TIME" in each of the sub-systems, a Real-time intefrupt driven
sub-routine "RLTIME" (p.141) was introduced into each of the sub-systems.
This sub-routine was initiated by the hardware clock card every

100 miiliseconds. The sub-routine utilised the second highest priority
interrupt and saved the contents of the registers and the return address
of the active sub-routine before executing the sub-routine. The memory
location for the tenths of a second portion of the stored current time
value were incremented and tested to determine if the seconds, minutes or

hours should also be incremented.

The sub-routine "TIME" for the front-end also updated the last image it
had received -from each of the slaves which was used to determine if the
sub-system's clocks were synchronised. All of the values were stored in
ASCII characters which provided the format for the display sub-routine

"TIME";

The most important sub-routines developed for the model were the
interrupt driven data 1ink control sub-routines which were used to Tink

the sub-systems together to achieve the system hierarchy.
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Each sub-system used similar interrupt driven sub-routines to format the
data (refer to Figure 3.5 (p.41) for the required format) for transfer
via the high speed data links. The front-end had the three major
interrupt driven sub-routines ("MSTRIT", "SLVIIN" and "SLV2IN") to

control its data links with the other sub-systems.

The data link interrupts sub-routines provided many of the requirements

for the model, i.e.:
orderly servicing of the data transfers between the sub-systems;
the method of data transfer;
the prototype system hierarchy;
the message protocol and error checks.

Since the structure of each sub-routine for controlling the high speed
data 1inks was very similar, only an explanation of the front-end

sub-routine "MSTRIT" will be given here:

Master to front-end control "MSTRIT" (refer to Appendix B (p.153)
for the detailed flowchart and listing): When the UART on the
interface card connected to the master received the first
character (eight bits), it generated the interrupt (as explained
in the hardware Section 4.2.2) which initiated the "MSTRIT"

sub-routine.
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The character recejved by the UART was then checked against a
defined table (refer to Appendix B (p.161)) to determine if it
was a VDU command or a synchronising character "SYN" indicating
the start of a data transfer. Ten errors were allowed to enable
the 1ink to settle before an inquiry on the data receijved was

transmitted back to the transmitting sub-system.

Once the Tlink was established, a test was carried out for six
start of heading characters "SOH" to identify the first header
block as required for the system protocol. The-next header
block, which was separated from the first by a single "SOH", gave
the next data link channel number for the front-end to use if the

message was to be passed onto one of the slave sub-systems.

The address block enabled the variable Tength data of up to 256
words to be Toaded commencing at one of 256 Tocations in the
different sub-system memories depending on the address defined by

the originating sub-system.

The memory of the sub-systems had been divided into 256 sectors
of 256 words (256 x 256 = 65 536 maximum memory size). This
provided the flexibility necessary in this type of distributed
system for loading different memory arrangements depending on the
individual slave configurations or control tasks. The transmit
and receive buffers and the free memory space of each sub-system
could be in different locations for each sub-system. Hence, the
sector address and relocatable address pointer in the control
block provided the required flexibility. The address field of

the message (refer to Figure 3.5 (p.41)) also included the error
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code for the data hence when the data had been received and
loaded in the sub-system receive buffer, it was checked by
the sub-routine. If a difference was detected between the
calculated error code (a checksum value) and the received
error code then the transmission control character "NACK" was
transmitted back to the transmitting sub-system, refer to the

general flowchart of Figure 4.23.

The next field of the message after the address field contained
the control commands of the "Control Block" for determining the
actions to be taken by the receiving sub-system. Refer to

Section 4.3.4 for typical examples.
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The detailed flowcharts in Appendix B represent the sequence of action

carried out by the high speed data Tink sub-routines, ("MSTRIT", "SLV1IN"
and "SLV2IN") of the model.

In summary, the High Speed Data link interrupt service sub-routines of
the sub-systems provided the basic software structure of the model. A
message transmitted from the master contained the controlling commands
(refer to Figures 4.24 (a), (b), (c), (d) and (e) for typical examples)
which determined the actions to be carried out at the Tower levels,
similarly for messages from the front-end to the slaves. It was possible
to control, alter and detect errors at all levels (master, front-end and

slave) in the model.
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4.3.3.4 BASIC Language Sub-routines in the Master

In order to draw a graphical representation of the open cut conveyor and
dredger plant Tayout, a program was written in BASIC with Assembler
sub-routine calls for the VDU (A Textronix CRT display unit with
graphics). The symbols used in the display were calculated using
mathematical formulae in BASIC with the resulting data transmitted to the
display by way of an Assembler call. The unique symbols for representing
the plant items were calculated and then used repeatedly depending on the

number of conveyors or dredgers in a conveyor route.

Once the Tayout had been derived it was only a matter of requesting the
raw data (consisting of CRT co-ordinates with the CRT dot on or off) for

display.

In addition to the open cut plant display, a BASIC sub-routine with
Assembler sub-routine calls was also used to set up the master to
front-end data transfers. This enabled the BASIC sub-routine to control
the display while transmitting data to the other sub-systems. A single
keyboard character was used to initiate the Assembler call to transmit a

defined data block.

Once the data was available for driving the graphic CRT (the system VDU)
from the system master it was also possible to use the data produced by
the BASIC sub-routine to create a similar display with the Textronix unit
connected at any sub-system. The sub-system's memory was down-line
Toaded with the raw display data from the central system. BASIC was
confined to the system master and only the display data was used at the

Tower levels. BASIC was not used in the microcomputer sub-system

software.
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4,3.4 The Operating Strategy of the Model

An important feature of the message protocol in each of the high speed
data 1ink interrupt handling sub-routines (i.e. in "MSTRIT", "SLVLIN" and
"SLV2IN") was the "Control Field" (refer to Figure 3.5 (p.41)). From the
sub-routine, appendix B, (p.156) and the "Control Block" tables of
Figures 4.24 (a), (b), (c), (d) and (e) it can be seen that the receiving
sub-system substituted the first word of the "Control Block" with the
second word and then reversed the two eight bit characters of the 16 bit
word. This logic was used to enable the data to be transferred to the
required destination or to be received from the originating sub-system
computer regardless of the data transfer path which could be through

several sub-systems and levels.

Each sub-system had the same basic protocol handling sub-routine;
therefore, the treatment of the "Control Block" had to control the
transfer of data through all levels. The words were reversed or
substituted in order to set-up the correct transfer sequence as shown by

the examples in Figures 4.24 (a), (b), (c), (d), and (e).

The least significant eight bits of the first word of the "Control Block"
(which consisted of two ASCII characters) was used by the receiving
sub-system, the second of the two ASCII characters was used by the next
sub-system in the hierarchy. The second word of the "Control Block" was

similarly used by any third and fourth level sub-systems as shown by

Figures 4.24 (c) or (e).
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MESSAGE "CONTROL BLOCK":

c ¢’T" 1st word; From
F.E. S ———) the
P9 2nd Word) Master
Becomes:
o 1st Word) Transposed
S ﬂ — ) by the
TF 2nd Word) Front-end

FIGURE 4.24 (a) MASTER TO FRONT-END : SEND A BLOCK OF DATA

Figure 4.24 (a) represents the case where, for éxamp]e, there was a
request for the current time of the front-end. The message block
transmitted by the master contained the memory address of the front-end
time value which had been stored by the sub-routine "RLTIME" as well as
the "Control Block" as shown in the table above. The front-end computer
responded with the two word data block (tenths of a second and seconds;

minutes and hours) and included the error code for the data.

Message destination

Do not care characters (8 bits)

%
$ o8

T

Transmit command character (8 bits)

Load command character (8 bits)

[ /]
L

¢'tT"
Second word of command (Figure 4.24(a))
9P (control commands)

First word of command (Figure 4.24(a))

(Possible "Control Block" characters)

Each of the tables of Figures 4.24(a) to (e) indicates the required
"Control Block" characters in the system message (refer to Figure 3.5
(p.41)). The original two words as determined by the master are shown.
These two words are transposed by the receiving sub-system in order to
determine the "Control Block" for the next level. The least significant
character of the first word as shown by the quotation marks determines

the action to be taken by the receiving sub-system.
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FIGURE 4.24 (b) MASTER TO FRONT-END
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MESSAGE "CONTROL BLOCK":

1st Word) From

) the
2nd Word) Master

Becomes ¢

1st Word) Transposed

gL
Era
B
T

) by the
2nd Word) Front-end

: LOAD A BLOCK OF DATA

Figure 4.24 (b) is an example where the real-time clock value of the

front-end value had to be changed.

The new value was transmitted to the

front-end, checked for errors and then loaded.

FE.

FIGURE 4.21 (c) MASTER TO SLAVE :

.

MESSAGE "CONTROL BLOCK":

Master commands the slave to
load a block of data into the
front-end from the slave.

¢NT9
TL

1st Word) From
) the

2nd Word) Master

Becomes in the front-end:

LT

T’

1st Word) Transposed
) by the

2nd Word) Front-end

Then in the slave:

90

@”L”

1st Word) Transposed
) by the

2nd Word) Slave

LOAD IN F.E.

Another example of Figure 4.24 (c) would be the case of a direct link

lost to a slave, the second RS232 link (or indirect path) would be used

to communicate between the master and the slave via the adjacent slave.
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MESSAGE "CONTROL BLOCK":

Master commands the slave to
load a block of data:

r W

LT

1st Word) From
) the
2nd Word) Master

Becomes:

™

(S

1st Word) Transposed
— ) by the
2nd Word) Front-end

FIGURE 4.24 (d) MASTER TO SLAVE

These two examples,

such as a conveyor,

: LOAD IN SLAVE

4.24 (d) and (e) are direct requests to a plant item

Figure 4.24 (d) indicates the down-line loading of

the starting parameters for the slave control sub-system and

Figure 4.24 (e) is a request for data (a sequence of events) stored at

the slave.
M

'/,,rn

F.E.. l T

U/

S L

FIGURE 4.24 (e) MASTER TO SLAVE :

MESSAGE "CONTROL BLOCK":

Master commands the slave to
transmit a block of data back.

g

TT

1st Word) From
— ) the
2nd Word) Master

(A)]
Becomes in the front-end: @T g
TT

Then in the slave: @‘r“
Transposed

SEND A BLOCK OF DATA

The examples in Figures 4.24 (a), (b), (c), (d) and (e) were used with

the interrupts servicing sub-routines, the hardware, the system protocol

and the different sub-systems (master,

front-end and slaves) to




103

demonstrate the operating strategy of the Model. In order for the model
to operate as a prototype system, each facet as explained in the

preceding sections of Chapter 4 had to function correctly.

Depending on the function required, such as a request for the current
time, a selection initiated via the system VDU would start a sub-routine
which in turn generated a message using the system protocol for

transmission to the lower levels.

A message from the master to the slave requesting data (i.e. from the
control centre to the conveyors) would use all of the hardware facilities
(interrupt flags, baud rate control and interconnected sub-systems) as
well as the software facilities incorporated in the Model, such as the

logic for processing the "Control Block" words.

A VDU and keyboard was used to control the hierarchical network from any
Tevel in the system while still maintaining the Master/Front-end/Slave
configuration. Data was transferred through the system model using a
message protocol that met the standards required (refer to AS 1484,

Parts 1 to 5 (15) and Appendix F),
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CHAPTER 5 : THE VALIDATION OF THE CONCEPTS INVESTIGATED
5.1 The Performance of the System Model
5.1.1 Independent Control

Using the model as outlined in Chapters 3 and 4, it was demonstrated that
the concept of independent control can be maintained. This is especially
important in open cut control of conveyors. Using the more traditional
relay logic techniques of the past, the conveyor control systems had
developed by the 1970's to a stage where the conveyor could continue to
operate even with total lToss of the control centre. It is essential for
coal supplies to have no single point of failure in the overall control
system. Therefore, one of the objectives of the research was to show
that independent control at the plant would be maintained and that it
could be improved by using microcomputer-based sub-systems. To
demonstrate independent control using the micrbcomputer, the links (as
shown in Figure 3.3 (p.26) between the slaves, the front-end and the
master were disconnected. The slave continued to monitor the field
simulation panel (refer Photograph No 7) and displayed outputs as a
result of simulated inputs from the panel switches. The improvements in
overall conveyor control and monitoring were demonstrated by using a VDU
connected to the broken link at the slave. Control and monitoring was
still possible using the VDU while separated from the central master and
sub-master. It is therefore possible for mobile field personnel to
control the conveyors via VDU units at the plant locations. The same
exercise was repeated for the 1ink between the master and the front-end.

It also performed as an independent sub-system with control maintained
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via the VDU connected to the disconnected interface. The software
sub-routines of each sub-system, test for VDU control commands or the

system protocol in any data received.

5.1.2 Results of Actual Data Transmission

Using the "Real-time Clock" card as outlined in Section 4.2.3, the
changes in the field inputs were stored with the time of occurrence.
After allowing for contact bounce, any change in the status of the input
which had been previously transmitted to the master, initiated the
transmission of a data block identifying the input and the time of
occurrence. The slave sub-system was, therefore, able to record events
chronologically with a resolution of one hundred miiliseconds between
occurrences which was approaching the speed of contact bounce. This
improvement in recording is a significant advance over the Morwell Open
Cut system's resolution of six seconds. In large conveyor networks, six
seconds is not fast enough to record the order of occurrence of events
over the whole open cut plant. The individual microcomputers have fewer
inputs to monitor than a single overall computer and fewer functions to
perform. As a result, the operations personnel would be able to identify

the initiating fault.

In order to demonstrate the down-line loading of new sub-system
parameters, a data block was transmitted to the slaves from the master in
a similar manner as represented by Figure 4.24 (d) (p.102). The data
contained new addresses for the direct and alternate links to the slave
sub-system reversing their roles. As a result, the direct link changed
over to the alternate link (refer to the indirect path of Figure 4.18

(p.74) demonstrating that any of the sub-system's parameters could be
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changed to suit, for example, new digging patterns in a constantly
changing open cut environment. This could avoid the need for major plant

outages for changes to conveyor control functions.

In addition to providing a method of data transfer, the microcomputer
based sub-system could in the future enable the removal of any fixed
input to output interface between the conveyor control sub-system and the
data acquisition sub-system. It was possible to demonstrate this by
using the model because the slave sub-system developed, included both

control and data acquisition functions within the one sub-system.

At the time of this study, each input monitored at the open cut control
centres had a separate input in the data aquisition equipment connected
to a separate output in the conveyor control systems. Using the serial
transmission capabilities of the model, it was demonstrated that the
status of the plant (approximately 6000 conveyor and dredger status
signals in total) could be monitored using a transfer of data from the
dedicated sub-systems. The number of inputs monitored by the master of
the model were varied by the size and contents of the data block

transferred.

It was realised during the development of the format of the data block
and the message protocol for the model, that this aspect would represent
the biggest problem for an open cut conveyor system. During the
construction of the open cut, each of the conveyor sub-systems would be
supplied by a different conveyor manufacturer, therefore, the plant
specifications would have to detail the data and the expected message
protocol formats. The interface, which would use a defined protocol

instead of physical 1links, between the different manufacturer's
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sub-systems, would still remain as the area to be carefully implemented.
Serial data transfer does provide flexibility, but it would be necessary
to specify the entire structure of the message and the data block. The

execution of control commands ideally has to be error free.

5.1.3 Performance of the Hardware to the Manufacturer's

Specifications

Two different manufacturer's Universal Asynchronous Receiver Transmitter
(UART) chips were used for the high speed serial interfaces. The two
devices were pin for pin compatible, with only small differences in their
timing characteristics. The two devices performed identically at the
Tower speeds, but at 9600 baud the cheaper device did not always transmit
the data loaded by the computer. This was evident when the data bit
lengths were of the same time duration as the 'strobe' or 'transmit data'

pulse which occurs at 9600 baud.

Another problem of the UART not stressed by the manufacturers, was its
'zero catching' feature. When standard Hewlett Packard software was
used, the card control information was transferred to the interface card
before the data. The problem with this, was that the control word
transferred to the card contained zero's in the data section of the word.
The zero's were retained by the UART blocking the data bits. Therefore,
in order to use standard software sub-routines, a buffer had to be
included on the interface card and the UART strobed every time it was

accessed in order to clear any zeros.
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5.1.4 Software Performance

Each of the sub-routines developed were used in the different sub-systems
with only minor modifications. Another objective of the project was to

show that a microcomputer-based sub-system would be better suited to the
one-off nature of conveyor control than a hardwired sub-system. This was
clearly demonstrated by being able to use the software developed for one

sub-system in the other sub-systems.

A further objective was achieved by shifting some of the central system
tasks to the sub-systems. Each of the sub-systems sorted its events into
their chronological order and also tested each data transfer for errors
before interrupting the master. This was a task previously carried out

at the control centre.

5.1.5 Increased Reliability

As outlined in Section 4.2.5, the system model had an indirect 1ink to
the master via the alternate RS232C serial input and output on the high
speed interface card. When the direct link was lost, it was demonstrated
that the communication with the conveyor was maintained by using the

alternative indirect data path as shown by Figure 4.18 in Section 4.2.5.

In the development of the system model, care was taken to ensure that,
when the hierarchial strategy was established, this path had an order of
priority lTower than the direct path. To avoid a conflict or loss of
message, it was necessary to test in this direction for messages on a
time initiated basis and not have interrupts during the servicing of the

direct Tink.
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A second advantage of the dual 1ink is that it provided an interface for
the local command VDU, making it possible to take control at this level
when required. Therefore, overall control can be maintained by using the
VDU at the front-end Tevel or conveyor level, refer to Figure 5.1. The
alternate path provides a more reliable 1ink between the sub-systems and
can also increases the overall reliability of an open cut control system

by providing more than one point of control and communication path.
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5.1.6 Interrupt Servicing for Multiple Tasks

Careful planning was required for the servicing of the interrupts of each
sub-system task. Priorities were set for the different elements in the
system model. Also, the multiple sub-routine handling techniques
required modifications initially until the Correct return addresses for
the sub-routines were obtained. Light emitting diodes (leds) were used
as a visual indication of the data transfers during the execution of each
sub-routine and were connected to the transmit and receive lines. Error
messages for incorrect sub-routine handling and the echoing of received
data were used to establish the procedures for multiple tasks

implementation.
5.2 THE SUCCESSFUL IMPLEMENTATION IN AN OPEN CUT ENVIRONMENT
5.2.1 General

After the research work had been completed and tenders had been called,
orders were placed with Siemens for two large systems, one for the

Yallourn Open Cut and another for the Loy Yang Open Cut. The Loy Yang
Open Cut system is the most recent and was completed in November 1983,

hence more of the objectives have been achieved at Loy Yang.
5.2.2 The Loy Yang System

Briefly the system for the Loy Yang Open Cut consists of three major
parts, the Central Computer System (the master), the Remote Data

Acquisition equipment (equivalent to the front-end and slaves) and the

Microcomputer Conveyor Controllers.
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The central system consists of two Siemens 300-R30 16 bit minicomputers

in a master (active) and stand-by configuration.

takeover the active role.

The Central Computer System
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A supervisory watchdog unit monitors the

operation of the central system and in the event of a failure of the

master or any peripheral, it automatically switches over the alternative

device.

also possible.

synchronising the overall system.

The central unit also contains a master clock for

The languages used in the central system were 'Fortan’ (for volume

calculations), 'Pascal' (for displays), 'Assembler' (for system reports)

and 'Simat' a Siemens control language.

Either minicomputer can

Manual selection via a control panel of the back-up equipment is
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5.2.2.2 The Data Acquisition Equipment - The Central Remote

Controllers and the Remote Outstations

The Central Remote Controllers are located in the control centre and
comprise 11 microcomputer-based sub-masters which are linked via serial
Tinks to the central master. The sub-masters reduce the functions
performed by the minicomputer by directly controlling the plant based
slaves or remote outstations. A1l software is written in Assembler. The

tasks performed by the central sub-master units are:

message error checking;
cyclic checking of remote outstations;
maintaining an image of the plant status;

control of the data transfer between the master and slaves.

The Central Remote Contro11er$ are linked to the fixed plant (conveyors)
over dedicated cable pairs and two wire modems, whereas the dredgers are
1inked via UHF radio 1links. The system of central remote controllers and
data links are configured such that a single failure does not cause the

loss of more than 10% of the system or one group of plant items.

The Remote Outstations (slaves) are designed to provide the necessary
interface between the control centre and the plant items. The slave
monitors and controls the status of the plant and transmits information
back to the Control Centre. Each remote outstation has the same message

checking and control capability as the central sub-masters.
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A brief summary of the Remote Outstations functions are:

the scanning of digital inputs;

the scanning of pulse counters;

analogue sampling of the raw coal bunker Tevels;
storage of events during link loss;
chronological recording of field events;

the provision of control outputs.

5.2.2.3 The Microcomputer Conveyor Controllers

The microcomputer conveyor controller provides the same basic functions
as the earlier relay or discrete logic systems. It controls the motors
and provides outputs and inputs for the central system remote
outstations. The original specification for the conveyor control
sub-systems included the requirement for a serial link to the central
system. But as a direct result of the research and a check on the
developments in industry, it was decided to continue to use the
traditional input to output interfacing method between the conveyor
control and data aquisition systems as the major suppliers of control
systems did not have a suitable serial link or message protocol available

for industrial conveyor control systems at the time.

5.2.3 The Concepts Incorporated in the Loy Yang System

Many of the concepts investigated during the research program were

incorporated in the Yallourn and Loy Yang Open Cuts, for example:
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independent control of plant was maintained by ensuring that the

plant microcomputers do not rely on the central computer;

chronological recording and secure data transmission techniques
are used;

&
some of the central system tasks have been distributed out to the

data aquisition sub-systems;

alternate paths are available via short sections of cables

between the conveyor lines at the transfer and bunker areas;

the traditional conveyor control sub-systems have been replaced

by programmable microcomputer sub-systems.

The functions of the microcomputer conveyor controllers and the remote
data acquisition equipment (remote outstation) were performed by the

single slave sub-system in the system model as a single unit.
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CHAPTER 6 : CONCLUSIONS

Following the development of the system model it has been demonstrated
that a digital microcomputer-based system can successfully fulfil the
basic requirements for the control and monitoring of an open cut coal and
overburden transport scheme. A1l of the basic functions required for a
full scale system were modelled, including data transmission between the

different levels.

The timely installation of the distributed system in the State
Electricity Commission's Loy Yang Open Cut with a minimum of delays has
reinforced the original motivations behind the research. The Loy Yang
system has incorporated many of the concepts investigated during the
research program. It also has the capabilities of including more of the
concepts in the future when further developments in the industrial

control field make them standard features.

As a result of the research, the following conclusions were reached:

A scheme using microcomputers for remote control of a conveyor
transport network connected to a master while maintaining

independent local control at the remote plant is feasible;

System reljability and information gathering techniques can be
improved by distributing some of the central system tasks between

the plant sub-systems;
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An improvement in the detection of faults and the management of

capital intensive large industrial plant is possible;

Control at several levels in a large plant situation is possible

by using the facilities provided by the microcomputer-based

sub-systems;

Many of the computer techniques, such as down-1ine loading,
normally associated with large computer systems are also feasible

with distributed microcomputers;

The interfacing techniques used between sub-systems can be simple
requiring only a minimum of hardware. Serial data 1inks can also
be used for interfacing control VDU's providing a solution to the

loss of control from the higher level;

One of the most important functions of remote control and
monitoring of an open cut installation is to maintain a reliable
coal supply. The distributed microcomputer, with its inherent
reliability, will enable outages caused by the control systems to

be reduced;

Interactive software packages and other computer techniques can
provide data for the control engineer to assist with the fault

finding;

In the future, a greater use will be made of the microcomputer to

implement control functions hence reduced one-off design costs;
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Further advances in the emulation of message protocol by either
hardware or software techniques will also benefit distributed

microcomputer schemes by defining the standards to be used.

Distributed computer systems require a well defined message structure in
order to communicate with other computers within the system. The
successful use of the microcomputer will depend on a detailed functional
description of the application and a thorough knowledge of digital

techniques.
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CHAPTER 7 : FURTHER WORK AND RECOMMENDATIONS

Now that the basic system model has been developed, further work could be
carried out in the areas where additional developments are needed before
any more advancements in industrial control can be made. These areas

are:
down-1ine loading of control parameters;
linking of different manufacturer's microcomputer - based
conveyor control systems directly to existing control centre

masters;

distributing more of the central system tasks to the remote

sub-systems;

increasing the amount of preprocessing of information at the

plant;
introducing more interactive diagnostic techniques;

achieving Timited control via VDU displays at the different

levels in a system hierarchy.

This work could be carried out with the actual systems after further

tests with the model.

In addition to using the model, it is recommended that an investigation
into directly linking the plant controllers with the system master shouild

include a study of the multiprocessor sub-systems due for release in the
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near future. This device might be able to handle the tasks of control
and data acquisition more effectively than a single microprocessor

system.

The above tasks were implemented in the model, but since the model was a
Timited control system, they were not recommended for the Yallourn or Loy
Yang projects until further tests are carried out. The linking of
conveyor controllers direct to the central master and software controlied
indirect paths had been included in the original designs for the conveyor
plant but were removed as a result of the study. These options will be
investigated in the future depending on developments in the Control

Industry,

Other concepts which were included in the plant and control centre

specifications at the time of the research were:

replacement of traditional techniques with microcomputer-based

control;

fast scanning of plant signals and chronological recording of

data to a resolution of 25 milliseconds;
serial transmission of data to the control centre;
distributed central system tasks.

As a result of the research, these concepts were continued and have since

proven to be successful.
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Many of the concepts of the study were incorporated in the SECV's plant
specifications at the time of the research work. This was due to the long
lead times required for design and installation and although some of the

concepts have been removed, the basic objectives of the study have been

achieved.,

Successful completion of the initial stages of the Loy Yang Open Cut
projects in 1984 has demonstrated that there is a future for the
microcomputer in industrial control. In addition, it has demonstrated a
role for the close co-operation between Targe industrial control system

users and Engineering Institutes.
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PART A

INTERACTIVE AND DEBUG SUB-ROUTINES:

SUB-ROUTINE

RLTIME
TIME
CONTROL 'Z'
PRINT
STKINT
FLUSH
TRSET
MRSET

FLOWCHART
(PAGE)

126
128
129
130
131
132
132
133

LISTING
(PAGE)

141
145
147
147
119
151
152
152
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‘RLTIME’ SUB-ROUTINE ~ APPENDIX A

SAVE REGISTERS NOTE:- (1) REAL TIME SUB-ROUTINE ‘RLTIME’ USES DECIMAL
& RETURN ADDRESS ADDITIONS TO DETERMINE OVERFLOWS BETWEEN S$ECONDS.
ON STACK MINUTES AND HOURS.

IE.1 MINUTE = 80 S8ECONDS

EACH PULSE OR INTERRUPT INCREMENTS BY
100 MILLISECS (0.1 SECONDS) THEREFORE
AN EXAMPLE WOULD BE)-

SAVE FLAGS 59.9 S8ECS
+40.1 ADD CONSTANT
00.0 GIVES AN OVERFLONW

1 TH18 IMPROVES THE EFFICIENCY OF THE RESULT
FOR THE OUTPUT SUB-ROUTINE ‘TIME’,
LOAD TENTHS OF

SECOND & SECONDS
‘SECTEN’
USE
DECIMAL
INCREMENT YALUE ADD
INSTRUCTION

LOAD MINUTES
YALUE ‘MINUTS’

s

MAX
INCREMENT MINUTES POSSIBLE
VALUE AND STORE 85,538
MINUTES

!

RESET TENTHS
& SECONDS VALUE

]

LOAD ﬁOURS/HINUTES
LOAD SECONDS HREMIN’ AND INCREMENT

VALUE ‘S8ECOND’

HAS
YALUE N
INCREMENT AND REACHED STORE HRSMIN
BTORE NEW YALUE 80 MINUTES FOR FRONT-END

LOAD TENTHS OF
SECOND YALUE
‘S8ECTEN’

INCREMENT HOUR
PORTION OF ‘HRSMIN’

]

INCREMENT AND
STORE NENW YALUE

STORE IN HRSMIN
FOR FRONT-END

LOAD TENTHS OF
LOAD HOURS
SECOND AND SECONDS ] ,
FOE SLAVE 1 IMAGE | VALUE ’HOURS |

INCREMENT AND

usE STORE NEW VALUE
INCREMENT VALUE DEEégAL
SETENL INSTRUCT ION
CONTINUED
NEXT PASE

I



‘RLTIME’ SUB-ROUTINE - APPENDIX A

FROM
PREV10US
PAGE

RESET SECONDS AND

STORE
VALUE IN

INCREMENT HOUR
PORTION OF ‘HRMIN1°

TENTHS OF SECOND
‘SETGN1 "’

1

(PAGE 2 OF 2)

LOAD HOURS/MINUTES

FOR SLAVE 1 ‘HRMINL’

|

INCREMENT
MINUTES PORTION

STORE IN FRONT-END
IMAGE AREA

!

LOAD TENTH8 OF SECOND
AND S8ECONDS YALUE FOR
SLAVE 2 IMAQGE ‘S8ETEN2°

USE
DECIMAL

ADD
INSTRUCTION

8TORE HOURS
MINUTES FOR
SLAVE 1 IN FRONT-END
IMAQGE OF
SLAVE 1 CLOCK

|

1

INCREMENT
VALUE ‘SETENZ2°’

REACHED
80 SECONDS

RESTORE RETURN

RESET SECONDS AND

TENTHS OF SECOND
'SETEN2’

!

LOAD HOURS/MINUTES

FOR SLAVE2
'HRMIN2'

]

INCREMENT
MINUTES PORTION

ADDRESS

1

RESTORE REQISTERS

INCREMENT HOUR

USE
DECIMAL

ADD
INSTRUCTION

STORE HOURS
MINUTES IN
SLAVE 2 IMAGE

PORTION OF ‘HRWINZ’
RESET INTERRUPT TOR ")
FLAGS STORE IN IMAGE
RETURN TO

MAIN PROGRAM
END OF CLOCK
INTERRUPT
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‘TIME’ SUB-ROUTINE - APPENDIX A

REQUEST
COMPLETED 8Y AN
ASCII CHARACTER
OR A CARRIAGE
RETURN (CR)
LINE FEED (LF)

WAIT FOR COMPLETION
OF REQUEST
(FOR FRONT-END, SLAVE i OR SLAVE 2)

R,LF

OUTPUT MESSAQE
‘TIME IN HRS:MIN.SECS.TENTHS’

PREPARE FOR

LAST IMAQGE OF

SLAVE | TIME
STORED IN FRONT-END

QUTPUT MESSAQE
‘TIME IN HRStMIN.SECS.TENTHS’

LOAD THE ADDRESS
PREPARE FOR OF SLAVE 1| TIME
LAST IMAGE

OF SLAVE 2

|

LOAD THE ADORESS
LOAD THE ADDRESS OF OF SLAVE 2 TIME
FRONT-END TIME VALUES

SUB—ROUTINE *TINE’ !
SELECT OUTPUT
(1) OUTPUTS TIME IN ASCII ChANNE-FOR
(2) MAX 88158,58.8 FROM INTERRUPT PRINTOUT OF TIME
CONTROLLED SUB—ROUTINE ‘RLTINE’
WHICH STORES THE VALUES IN |
BINARY AND HEXIDECIMAL. e
SET_CONTROL WORD
‘3 OF"rig CLOGKS N THE SLAVE | wonbORSha 0% oL . POINTER To
SUB SYSTEMS FOR REFERENCE. "SECT TENS
(4) ALL VALUES OF TINE (FRONT-END K]
AND SLAVES) ARE UPDAT
EVERY 100 HlLLI.ECON‘. OUTPUT S SPACES

QUTPUT
THO SPACES

SHIFT LOADED WORD
RIGHT FOR FIRST
CHARACTER

1

ADD HEX ‘30 TO
CONVERT TO ASCII

!

SHIFT S8AME WORD
LEFT FOR S8ECOND
CHARACTER

!

OUTPUT CONVERTED
HEX VALUE

RETURN TO
MAIN PROGRAM
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CONTROL ‘Z’ SUB-ROUTINE - APPENDIX A

ENTER HERE ON INTERRUPT
OR BY FLAG REQUEST
SAVE CURRENT LINK ADORESS

LOAD SELECTED OQUTPUT
INTERFACE CARD MEMORY
LOCATION FOR QUTPUT

RETURN TO CURRENT
LINK ADDRESS

LOAD DATA WORD

FROM LINK
NOTE»
(1) THIS SUB-ROUTINE ENABLES THE
TRANSMISSION OF DATA WITHOUT
THE SYSTEM PROTOCOL .
(2) THE LINK COULD BE CONNECTED TO
ANOTHER LEVEL IN THE M]ERARCHY 18
TO RECEIVE THE UNFORMATED DATA L7
OR A VDU UNIT. A BREAK
CHARACTER
(3) THE MESSAQE COULD BE USED
FOR SIMULATING THE SYSTEM PROTOCOL.
N
17 N\
ABORT MESS8SAGE
CONBBOL OUTPUT AND EXIT
N
1s
£ xTor Y
ND EXIT FROM SUB-ROUTINE
TRHNﬁg;f?XO (ENO OF COMMAND SEQUENCE)
N
SAVE LINK
ADDRESS

LOAD SELECTED OUTPUT
INTERFACE CARD ADDRESS

TRANEMIT DATA

TRANSMIT DATA BACK
TO LINK (ECHO)

RESTORE CURRENT LINK
AND CONTINUE RECEIVING




‘PRINT’ SUB-ROUTINE
- APPENDIX A

P XX
PRINT CONTENTS
OF /XX’

130

LOAD RANGE
OF PRINT AREA

SELECT OUTPUT

DEVICE CHANNEL NO.

TYPE ADDRESS

TYPE MEMORY

LOCATION

HAVE
ALL
LOCATIONS

P/XX’"s'YY’
PRINT CONTENTS
OF ‘XX’ TO ‘YY'

EXIT AND
RETURN TO
MAIN PROGRAM

BEEN
PRINTED

NOTE :-

EXIT AND
RETURN TO
MAIN PROGRAM

THIS SUB-ROUTINE PRINTS THE CONTENTS

OF MEMORY FOR ONE LOCATION OR
BETWEEN TWO LOCATIONS ‘XX’ TO

‘YY'.



'STKFULL ’
*STKINT’

SUB-ROUTINE’

ARPPENDIX A

(HIGHEST PRIORITY PROGRAM)

SAVE RESISTERS
SAVE RETURN ADDRESS

!

TEST STACK FOR
LL OR

FU
ALMOST FULL

SET UP A COUNT
OF FIVE.
SAVE TOP FIVE
WORDS OF STACK

!

STORE ONE WORD

131

LOAD EXTENDED

SET UP A COUNT
OF FOUR.
SAVE TOP FOUR
HWORDS OF STACK

FROM STACK IN
RAM SOFTHARE

EXTENDED STACK

HWORDS BEEN
SAVED

GET ANQTHER WORD

FROM STACK AND SAVE

EXTENDED
STACK

STORE WORD
FROM STACK

RESTORE ONE WORD
FROM EXTENDED STACK

|

PUT ON BOTTOM
OF STACK

HAVE
4 ORS

BEEN
RESTORED

CLEAR
HARDWARE
STACK

STACK POINTER

!

SET FIRST WORD
FOR STACK

GET NEXT WORD

—e={ FROM EXTENDED STACK

!

STORE HWORD
ON STACK

HAVE
FOQUR WORDS
TO STACK

!

SEND MESSAGE
EXTENDED STACK
OVERFLONW

!

RESET
STACK FLAG’S

1

RE-ENABLE
INTERRUPT

!

RETURN TO
DEBUG PROGRAM

RESTORE
REGISTERS

!

RETURN FROM
INTERRUPT

RESTORE
REGISTERS

RETURN FROM
INTERRUPT

TO RUNNING

RESTORE POINTER
T0 START OF
EXTENDED STACK

!

PRINT MESSAGE TO
INDICATE UNDERFLOW

!

RESET STACK
FLAG

r

RE-ENABLE
INTERRUPTS

!

RETURN TO
DEBUG PROGRAM

RETURN TO
INTERRUPT
PROGRAM

RETURN

PROGRAM




‘FLUSH’ SUB-ROUTINE - APPENDIX A
(AN INTERACTIVE SUB-ROUTINE)

TRANSMIT MESSAGE
‘BREAK POINTS @'

BREAK POINTS

TRANSHIT MESSAGE
FLUSH?' TO
CLEAR BREAK POINTS

132

NOTE

THIS SUB-ROUTINE CLEARS ANY HALTS
PUT IN PROGRAM WHILE DEBUCCING ERRORS.
AFTER PROMPTING FOR AN ANSKWER.

RETURN TO
MAIN PROGRAM
CLEAR
BREAK POINTS
RETURN TO

MAIN PROGRAM
‘TRSET’ SUB-ROUTINE - APPENDIX A
(AN INTERACTIVE SUB-ROUTINE)

OUTPUT MESSAGE
'RESET REAL TIME CLOCKS'’

!

LOAD RESPONSE

DOES
REAL TIME
YALUE HAVE

NOTE :

THIS SUB-ROUTINE CLEARS THE MEMORY LOCATION
FOR THE CLOCK YALUES IN THE FRONT-END
ON START UP OR REQUEST.

TO BE
CLEARED

RETURN TO
MAIN PROGRAM

INCREMENT
POINTER

RETURN TO
MAIN PROGRAM
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‘MRSET’ SUB-ROUTINE - APPENDIX A
(AN INTERACTIVE SUB-ROUTINE)

TRANSMIT MESSAGE
‘CLEAR MASTER AND SLAVE
MEMORY LOCATIONS?’

i

LOAD
OPERATOR ANSWER

THE
INTERRUPT
LOCATIONS
FOR FRONT-END
SLAVES NEED
CLEARING

NOTE :

THIS SUB-ROUTINE CLEARS THE
MEMORY LOCATIONS FOR THE HIGH
SPEED INTERFACE INTERRUPT
POINTERS: MASTER, SLAVE 1 AND
SLAVE 2 IN THE FRONT-END.

RETURN TO
MAIN PROGRAM

LOAD ADDRESS OF
MEMORY LOCATION

i

CLEAR LOCATION

HAVE

ALL
LOCATIONS
BEEN

CLEARED

RETURN TO
MAIN PROGRAM

INCREMENT ADDRESS
POINTER
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29 DEC 74 PAGE 1

.TITLE PACE, FTND CTRLPRGM 17/18/78
+ASECT
+NOBAS

TYPE Y IF TIMES ARE TO BE CLEARED
N [1] H [ 1] NU T TD BE [}

" Y " MASTER ¢ SLAVES MEM. LOCS. "
" N " NOT  CLEARED

* % N W R w X

TYPE Y IN ANSWER TO FLUSH ! IF REQD. N IF NOT
Y LEAVES BREAK PTS. N CLEARS THEM

Ereknx s ks k3skxsk INITIAL COMNDS.k%xxktt 22 xx0%x88080%

EERXEABERRBAERS A RBEREXREXRAE B REREE RS BESREERRRE R EE £

*
%

EEEXREERERRERBRXRBRX AR EREERERXRERBRRXBRKB KRB RAEXKE XK

JERBAAERREXBXERERRRE KL XXXEXXXAEXX RS XKE XA RS AR XRSSRER

' ¥
H
s ¥
v ¥
v ¥
' ¥
' ¥
' ¢
.
H
' ¥
' ®
' ¥
o ¥
1 ¥
M
H
' ¥
R
' ®
v ¥
v ¥
' ¥
' ¥
v ®
' ®
' ¥
' ¥

17/18/78 VERSION #»%ssksxsxsxs

FRONTENDE DEV. CONTROL PROGRAM * "DEVDB".SRC
FRONTEND (DEBUG) CONTROL OF :- =* LM
1 BINARY LOADER * NP
2 BINARY CORE COPIER EEEXAEERXE X E
3 BOOTSTRAP LOADER
4 BOOTSTRAP CORE COPIER
9 ANY USER PROGRAMS
6 CONTROL OF SLAVE MICROS.
7 STKFUL INTERRUPTS. 7 IENT °
OVERFLOU PRINTS FS <PC>
UNDERFLOW " ES <PC> __ __ .
8 REAL TIME INTERRUPT CLOCK “IEN2”
9 MASTER INTRPTS “IEN3”
1§ OTHER SLAVES ‘IEN4 OR 5°
DESIGNED FOR PACE DEVELOPMENT SYSTEM
AND IS CALLED FROM DISC. IN THE NORMAL
HAY @DEV(DATE).MP ( IE. 6TH. USE & ).MP
ASSEMBLY LISTING TIME APPROX. 4HRS - 3SMINS.
BY TELETYPE. ASR “ 118 BAUD’,
OR BY TELETYPE 43 - 366 BAUD “-2HR 3ISMINS

LIST SUPRSSD. AT END OF RAM LOCS APRX 259
TO COMNDS SECTION APRX. 564
$AGAIN AT END OF REAL TIME SUB TO STKFL SB.

%
%
%
*
%
%
%
%
*
%
%
=
*
%
%
%
%*
%
]

;#**t**‘.#0“0‘.‘#‘.“*‘*“##‘*t#*#*#*“#*‘*#**t#**t#



PACE ASSEMBLER REV-A
PACE FTND CTRLPRGM 17/18/78

FRNTND COMNDS

26
37
38
99
68
61
62
63
b4
65
66
67
68
69
78
71
72
73
74
75
76
77
78
79
8é
81
82
83
84
85
86
87
88
89
96
91
92
93
94
95
96
97
98
99
190
181
162
183
164
185
186
167
198
169
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28 DEC 76 PAGE 3

.PAGE “FRNTND COMNDS”

P EXRERABARAEEREXRRE R KR EXEREERERXRER KRR R XL R KB RXBRKERK R

' ¥
' ¥
' ¥
' ®
' ®
' ¥
' ®
s *
' ¥
' ¥
' ¥
' ¥
' ®
'3
' ®
' ®

y ¥
' ®
' ®
' ¥
HR
' ¥
' ®
' ¥
' ¥
y ¥
' ®
y ®
¥
' ¥
' ¥
' ®
' ®
' ¥
' ¥

;*/CONTROL Z/TRANSMITS COMMANDS TO THE TRANS/REC.
;* CHANNEL AS SELECTED BY "CONTRL @", “DC1"

' ®
' ¥
¢
HRd
g
' ®
' ®
' ®
HR
' ®
s ®
o ¥
' ®
' ®

v

TH

c
CS

PART B DEBDB.SRC S
DEBUG FOR FRONTEND DEV. SYSTEM. #
x

17/18/78 *

USES RAM FROM 6966 TO OBFF UWITH SOME GAPS#

COMMANDS......

XX,DDL,YY,..1 ALTER LOC XX TO DD
(LOC XX+1 TQ YY,ETC.)
XX PRINT CONTENTS OF XX
XX, YY PRINT CONTENTS OF XX TO YY
N,XX[,YY,...] LOAD REGISTER N WITH XX
(N+1 WITH YY,ETC)
N=  #=> ACH 4= FLAGS
12> ACT S=> TOP OF STACK
22> AC2 4=> PROGRAM COUNTER
3=> AC3

TYPE REGISTERS IN ABOVE ORDER

bD, XX, YY MOVE DATA IN XX TO YY UP ONE
THEN INSERT DD IN LOCN. XX

REMOVE ALL BREAKPOINTS
N REMOVE BREAKPOINT N (N=1 TO 4)
N, XX SET BREAKPOINT N AT LOCN. XX
EXECUTE FROM PROGRAM COUNTER
X . EXECUTE FROM LOCN. XX

" SUBSTITUTE","SUB",O0R "CONTROL Z"

TERMINATED BY * EOT *,"CONTROL D"

E ABOVE IS ANOTHER METHOD OF COMMUNICATION
WITH SYSTEM ELEMENTS.

XX, YY DUNP LOCS XX TO YY IN BINARY

TEST SECOND CHAR. AFTER "C" FOR CHKSM REQST,
XX, YY COPY LOCS XX TO YY IN ASCII(HEX)
XX, YY 1S A REQUEST FOR A CHECKSUM

LOAD BINARY TAPE

YOI I I I I I B T I I I R I I I I N R N R JER BN N B N JNR JEK NE BN JNE L N R B BE 2 B SR R L SR A 4
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PACE ASSEMBLER REV-4 28 DEC 74 PAGE 4
PACE FTND CTRLPRGM 17/18/78
FRNTND COMNDS

116 3*¥ S LOAD BOOTSTRAP TAPE [ASCII(HEX)) #
1 '® ' *
112 H TYPE BREAKPOINT LOCATIONS *
113 '* s
114 I | CHANGE I/0 WODE TO HEX *
115 ' * *
116 H CHANGE 1/0 MODE TO OCT %
117 e %
118 ¢ T REAL TIME CLOCK IN HRS:MINS,SEC.T"THS =
119 '* *
126 . T=F.E. TIME,T1=SLAVE1 TIME,T2=SLAVE2 TIME =
121 '® *
122 . 186HOURS MAX. 1E. 99:59,59.9 *
123 e *
124 '* CHANGE THE I/0 TRANS/REC. CHANNEL =
125 H “CONTROL Q" N, "DC1" N *
126 H N = CHANNEL NUMBER =1(MAIN CN’TL) =
127 i " =2(FRT’ED-MASTR) *
128 H " =3(FRT’ED-SLVE2) =
129 . " =4(FRTZED-SLVE1) =
130 7*  NOTE:- *
131 '* TRANS/REC. CAN BE ANY DEVICE“118/T0/9606/BAUD*
132 . SUCH AS A VDU, TTY OR A HIGH SPEED SLAVE. *
133 . *
134 ; EXXEEERREE LR R R REE AL XL XA RERERKEREREKXE XREEREREE R ER
135 ’
’

136
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PACE ASSEMBLER REV-A 28 DEC 76 PAGE S
PACE FTND CTRLPRGM 17/18/78
POINTERS
137 .PAGE “POINTERS”
138 : ;
139 ;
140 @063 A BIT® =3 ; BOC ACA(BIT 8)
141 982 A POS =2 ; BOC IF AC@ POSITIVE
142 $60F A JC14 =15
143 #09F A RFLG = 15 ; TELETYPE INPUT FLAG
144 #0D A PFLG = 13 ; TELETYPE OUTPUT FLAG
145 #98D A READR = 13
144 #68F A SENDP = 15
147 8886 A ACS =9
148 9866 A ACO =9
149 9681 A ACI =1
156 6682 A AC2 = 2
151 6863 A AC3 =3
152 9981 A ZRO = 1
153 085 A NZIRO =5
154 8608 A NEG = 11
155 #8681 A C1 =1 ; ACO = ¢
156 9992 A C2 = 2 ; ACB POS. (BIT 15 = @)
157 #9909 A STKFUL = §
158 990D A NSIGN = X’B
159 #6861 A IENT = 1
149 8892 A IEN2 = 2
161 9963 A IEN3 = 3
162 6084 A IENA = 4
163 #6865 A IEN5 =5
164 9009 A IEN = 9
165 9826 A STSAV  =5AV@ : START OF REGISTER FILE
164 #926 A ENSAY  =PC s END OF REGISTER FILE
147 #824 A BKPNTS =HLOC ; START OF BREAKPOINT TABLE
148 §61F A 0000  =X“1F ; RETURN JUNP FOR LDADERS ETC.
169 #9649 A TINTS  =HRSHIN
176 983C A TIMTS! =HRMINA
171 $83E A TINTS2 =HRMIN2
172 6806 A TTYOUT = @
173 9881 A TTYTAP = 1
174 9082 A TTYON = 2
175 9885 A TTYGET = §
174 9663 A TTYOFF = 3
177 9866 A ADDTTY = X-9684
178 ;
179 ;
189 : BASE PAGE ADDRESSES
181 :
182 ; SHIFT INTERRUPT POINTERS
183 ; IF SPLIT BASE PAGE.
184 :
185 9606 =X"9

186 8890 9801 A AAAA:  UNP @STARTI ; JUMP TO DEBUG INT’N. LOC-N. JMP.
187 6061 88BD A STARTI: .UORD START
188 ’
189 » INTRPT SUB. LOCS.
?

196
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PACE ASSEMBLER REV-4 28 DEC 76 PAGE 6
PACE FTND CTRLPRGM 17/18/78
POINTERS
191 §862 @584 A .UORD STKINT ; STACK FULL
192 9863 8179 A WORD RLTIKE ; REAL TIME CLOCK
193 8864 #6BB A .WORD MSTRIT ;INTERRUPT H3 (MASTER INT. PTR.)
194 9605 9871 A .WORD SLVIIN ; INTERRUPT #4 (SLAVET “ " )
195 6886 #9EF A MORD SLV2IN ; INTERRUPT WS (SLAVE2 “  * )
196 §667 #6826 A JWORD PC  ; LEVEL ZERO PC LOCATION
197 8068 1888 A JHP @ ; FAKE AN INITIALIZE
198 :
199 : RS 232 ADDRESSES
208 :
261 9089 9899 A TTYWD1: .UORD ADDTTY ; SHIFT LOCATION TO
282 #9894 9828 A TTYWD2: .UORD ADDTTY+828 ; SUIT RELATIVE ADD. IN
263 ; TTYFX SUBROUTINE
204 989B 9988 A TTYWD3: .UORD ADDTTY+2168 ; SLAVE2-"99#X"
265 699C 9888 A TTYWDA: .WORD ADDTTY+88¢ SLAVE1-"988X"
206 868D 9989 A SOFTDFT: .UORD @088 ; * DO NOT INSERT ANY PROG AT LOC.
287 : DUE TO SYSTEM WILL NOT LOAD IT
288 ; IT STAYS AS X’D#B2
289 ;
219 ;
211 906E .= X719
212 8619 8208 A XPUTW: .UORD PUTW  js*xsFOR CNTRL PNL IN POW. SYSTEM##s
213 8811 #13F A XCRLF: .WORD CRLF ;*+*%D0 NOT NOVEx*wsx
214 #6812 #2B4 A XGECHO: .WORD GECHO ;*++CALLED BY LOC’N. IN STKFL.®*
215 ;
214 s SPARE SPACE HERE X“13 TO X“1F
217 :
218 :  RAM LOCATIONS ALTER FOR SPLIT TO X“FFBO APROX.
219 ;
229 8828 A SHIFT = X’28
221 §920 A SAVS  =@+SHIFT ; REGISTER STORES
222 §921 A SAVI  =1+SHIFT
223 8822 A SAV2  =24SHIFT
224 #6823 A SAV3  =3+SHIFT
225 #9024 A FLAGS =A+SHIFT ; SAVE FLAGS
226 #9825 A STACK  =5+SHIFT ; TOP OF STACK
227 8626 A PC =6+SHIFT ; PROGRAM COUNTER
228 #9827 A POINTER =7+SHIFT ; POINTER TO BEGIN
229 8928 A CWURD  =B8+SHIFT ; INSERTION DATA
239 $929 A DATA  =9+SHIFT ; INSERTION DATA
231 #924 A HLOC  =1B+SHIFT ; 4 BREAKPOINT LOCATIONS
232 §02E A HDATA  =14+GHIFT ; 4 BREAKPOINTED INSTRUCTIONS
233 9633 A MODE  =194SHIFT  ; CONTROLS 1/0 FORMAT
234 #9834 A PCG =20+SHIFT  ; PC FOR GO SUBROUTINE
235 #9035 A THPE  =214SHIFT
234 8836 A THP1  =224SHIFT
237 8037 A THP2  =234SHIFT
238 8038 A THP3  =24+SHIFT
239 8839 A TTYCHN =25+GHIFT
249 #93A A TTYADD =26+SHIFT
241 ;
242 ; REAL TIME CLOCK LOCS.
243 ;
244 5 SLAVE 1 & 2 TINES

Nx



PACE ASSEMBLER REV-A
PACE FTND CTRLPRGM 172/16/78

POINTERS

245
246
247
248
249
258
251
252
253
254
253
256
257
258
259
268
261
262
263
264
263
266
267
268
269
27¢
21
272
273
274
2735
276
277
278
279
286
281
282
283
284
283
286
287
288
289
296
291
292
293
294
295
296
297
298

#63C
$838
#83E
#4630

#9049
e93F
9841
9942
#0643
g044
#6845
#8446
9647

8048
#64C
664D
§94E
Bo4F
2659

951

pash
#9461
#0466
9067

#6648
#06C

2009

886D
#04E
086F
6874
8871
9672
#6073
#8674

> > D>D>D>D®DD>D>D>

>D>D> D> DD>DD>IPD>D>D

> D>

>

>>D>DD>D>DD>D>D>

29 DEC 76

»

HRMIN1 =28+4SHIFT
SETEN1 =27+SHIFT
HRMIN2 =38+SHIFT
SETEN2 =29+4SHIFT
’

’

y F.tE. TIMES

4

HRSHIN =32+4SHIFT
SECTEN =31+4SHIFT
TENTHS =33+SHIFT
SECOND =34+SHIFT
MINUTS =35+SHIFT
HOURS  =36+SHIFT
RETADT =37+SHIFT
RTCURD =38+SHIFT
RTREG

14
$SAVE
$5AV1
$5AV2
$5AV3
SRETA
$TEMP
SOFTST
STKEND
$STAK
$SWPTR
$SPTR

MSTREG
RETMST

’
MMSGST

’

MSOHCT
MSNSYN
MSTCHL
HSTCHD
HSTADD
HSTERR
MSERAD
MSGEND

.o we Wo wWe We

139

PAGE 7

y SLAVE1 TIME

SLAVE2 "

; HEX VALUE OF TIME

1

s TENTHS OF SECS.

s SECONDS

s MINUTES

s HOURS

sRETURN ADDS. FOR CLOCK

=39+SHIFT | TO 42+SHIFT

=43+SHIFT
=444SHIFT
=4S+SHIFT

2446+SHIFT

=47+4SHIFT
=4B+SHIFT
=49+SHIFT

=64+SHIFT
=45+SHIFT

=70+SHIFT
=71+SHIFT

MASTER INTRPT.

=72+SHIFT

=76+SHIFT

=X"2000

=77+SHIFT
=78+SHIFT
=79+SHIFT
=80+SHIFT
=81+SHIFT
=B2+SHIFT
=83+SHIFT
=84+SHIFT

-2

STKFUL INTERRUPT LOCATIONS

T0_ STKEND (INCREASE S
ALLOWS 4 QVFLS.( &
TO 69+4SHIFT

K_BY_=x71994)

T
X“18FF )

LOCNS.

T0 75+SHIFY

*RET. ADDS.

9K IN F.E. MSG. STRE AREA F.E.

INIT. INT CNT. NON-SYN CHS.
TX. CHANNEL STORE LOC.
CMND. STORE LOC.
MESG LOAD ADDS IN NSTR.
ERROR CODE STR.
" " ADDS. PTR.
TO 85+SHIFT SPARE LOCS FOR MASTER

SLAVE! INTRPT LOC-NS.
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PACE ASSEMBLER REV-4 26 DEC 74 PAGE 8
PACE FTND CTRLPRGM 17/10/78
POINTERS
299 876 A SLIREG =86+SHIFT ; TO 89+SHIFT
399 #6874 A RETSL1 =9@+SHIFT ; RET. ADDRESS
361 ; |
382 2888 A SIMGST =X"2688  ; 16K IN F.E. MSG. STRE AREA SL1.
363 :
394 867B A SISHCT =91+SHIFT
385 897C A SINSYN =92+SHIFT ; INIT. INPT. COUNT OF NON-SYN CHS.
386 #67D A SLICHL =93+SHIFT ; TX. CHNL. STORE LOC.
387 #67E A SLICMD =94+SHIFT ; SLV!. CMD. STORE LOC.
388 087F A SL1ADD =95+SHIFT ; MESG LD ADDS IN F.E.
369 $986 A SL1ERR =96+SHIFT ;ERROR CODE STRE.
318 8881 A S1ERAD =97+SHIFT ; " ADS. PTR.
311 #8982 A STMEND =98+SHIFT ; TO 99+SHIFT SPRE LOCS. FOR SLV1
312 ;
313 :
314 ;
315 s SLAVE2 INTRPT. LOC’NS.
314 :
37 ;
318 $684 A SL2REG =18@+SHIFT  ; TO 183+SHIFT
319 8988 A RETSL2 =184+SHIFT ; RET. ADDRESS
329 :
321 2C96 A S2MBST =X2C68  ; 11K IN F.E. MSG. STRE AREA SL2.
322 ;
323 8989 A S2SHCT =18S+SHIFT
324 888A A S2NSYN =186+SHIFT ; INIT. INPT. COUNT OF NON-SYN CHS.
325 $88B A SL2CHL =187+SHIFT ; TX. CHNL. STORE LOC.
326 988C A SL2CHD =1@8+SHIFT ; SLV2. CMD. STORE LOC.
327 988D A SL2ADD =189+SHIFT ; MESG LD ADDS IN F.E.
328 §98E A SL2ERR =116+SHIFT ;ERROR CODE STRE.
329 898F A S2ERAD =111+SHIFT ; " " ADS. PIR.
339 8698 A S2MEND =112+4SHIFT ; TO 113+SHIFT SPRE LOCS. FOR SLV?
331 :
332 :
333 ;
334 ;
335 ; '
334 8991 A LIMIT =113+SHIFT  ; BASE PAGE STORAGE LIMIT
337 ;
338 ;
339 ;
349 s SPACE HERE X°? TO X’FF
341 : .
342 s HORE SPACE IS ACHIEVED BY
343 ; SHIFTING START (BD) TO X’188
14

344
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PACE ASSEMBLER REV-A 28 DEC 74 PAGE 17
FTND CTRLPRGM 17/18/78
INTRPT. SUB. RLTIME-IEN2

PACE

678
671

672
673
674
673
676
677
678
679
689
681

482
683
484
685
686
687
688
689
698
691

692
693
694
695
696
697
698
699
789
781
792
783
784
7835
786
787
768
769
719
711

712
713
714
713
716
717
7i8
719
728
721
722
723

#17¢

N2
6172
8173
$174
8175
8176
81727
#178
8179
174
6178
#17C
#17D
#17¢
#17¢

#1088
gis1
#182
#183
f184
#185
#1846
#187
9188
g189
g184

#18B
818C
#18D
#18E

#18F
g19¢

Scée

8901

D@47/
D448
D849
DCAA
6499
D@45
SCe9
F466
A744
AS44
geod
C148
SFéd
Co3F
8508

91449
E144
A947
4B9C
DR3F
A946
F13B
1964
Coat
E13C
if 23

194C
Co42
£138
DB42

19F8
€943

>I>DIPD>D®PD>®D®DODP>PD>DDODD>D

>»>» >DDP>PD>DD>P>PD

> D> > P

> >

.PAGE “INTRPT. SUB. RLTIME-IEN2’
PEEERRERRRRER RS RRRRNARARRARERRER KRR RR KRR R kKRR R

' *
H REAL TIME SUBROUTINE ¥
' ¥ 108HR. CLOCK BY INTERRUPTS OF 199MILLISEC*
H INTERRUPT 2 ~IEN2 (NIR2) *
1 *

g FREXFERRXREXSRRTARER I XK RXERXE KA KK KT ERE KKK KR

LTIME: RCPY 6,8 ; NOP

we ws ws X) es ws

LIST @1

ST ACO,RTREG

ST AC1,RTREG+1

ST AC2,RTREG+2

ST AC3,RTREG+3

PULL ACO

ST ACO,RETADT

RCPY AC,AC8 ; WAS PUSHF

CFR ACO s MOVE FLAGS TO ACO
AND ACD,TMASK ; MASK OLD INT. STATUS
OR ACO,TINTST ; OR IN NEW " "
CRF ACO |
LD 8,CONSTL
RCPY 4,3
LD 8,SECTEN s SECONDS/TENTHS OF SECS.
DECA 8, (3) s USE BCD INSTRUCTION “DECA°
: FOR FORMATTING WORDS
SUBB 4,CONSTI sSUBTRACT CONST.
ADD ¢ ,0NET : TW0”S COMPLEMENT

AND @,MSKT

BOC NSIGN,ICMIN1 ; 48 REACHED. RESET T0 @
ST 6,SECTEN

AND ACD,MSKT3

SKNE ACO,ONESEC

JHP INCSEC

INCTEN: LD AC#,TENTHS  ; INCREMENT
ADD ACO,ONET s TENTHS OF A SECOND
ST ACO,TENTHS s COUNTER.

: MAX 65,536 OR 1,822HRS
JNP SLITUD ; JMP TO SL1 TIME UPDATE.
INCSEC: LD ACO,SECOND
ADD ACO,ONET  ; INCREMENT SECOND
ST ACO,SECOND ; COUNTER (MAX 65,536)
; ( OR 18.22HRS.)
JMP INCTEN
ICMINY: LD ACO,NINUTS ; INCREMENT MINUTE



PACE ASSEMBLER REV-A
PACE FTND CTRLPRGM 17/18/78
INTRPT. SUB. RLTIME-IEN2

724
725
724
727
728
729
738
731
732
733
734
7335
736
737
738
739
748
741
742
743
744
7435
746
747
748
749
758
751
732
733
754
733
756
757
758
7359
760
761
762
763
764
763
766
767
768
769
778
771
772
773
774
773
776
777

9191

#192
193
g194
#195
#1946
8197
g198
8199
8194
§19B
$19C
#19D
#19¢E
819F
g1A0
#1A1
142
#1A3
6144
#1A5
#1446
g147
#1A8
§1A9
#1AA
#1AB
#1AC
$1AD
#1AE
91AF
g1B#
#1B1
#182
#1B3
g164
#1B3
#1Bé6
#1B7
g1B8
#1BY
#1BA
21BR
#1BC
#1BD

91BE
#1RF
#1C?
g1c1
#1C2

E134

D843
C135
DO3F
C13A
oF 89
Coaé
8899
9135
E12B
2019
4bo3
2019
Do4é
1938
436D
C125
Ed4p
A927
Do4é
Co4a4
E11F

DB4a4.

19F 6
oC4¢0
A921
E11C

2019

19F 9
SDod
A91D
F11C
19F7
SCo8
19€D
3Co8
€845
6008
Co47
C448
c849
CC4A
kpd 1
3288
’C99

8208
8263
4019
4099
0999

>

>D>>D>P2> D

>P>T>2PPD>PPD>DPDODDODDOPDDOPDOPDOPDPPPIOPDPPIPIDOPDIDPIDPIDIDDIDDPIOIPIIOPIIPIIZIIDDIDIDIDIDDPDOD2IO>DIDPDPODDODDPDDID>PDO>I>DD>D>D

STORHM:

RESTT:

REST2:

REST1:

RTINXT:

14
THASK:
TINTST:
CONST:
CONST1:
ONESEC:

28 DEC 76

ADD ACH,ONET

ST ACO,MINUTS
LD 8,ZEROT
ST 9,SECTEN
LD 8,CNST2L
RCPY 4,3

LD 8,HRSMIN
DECA 8,(3)
SUBE 6,CONST2
ADD @,0NET
ROL 8,8,8 ;T
BOC NSIGN,RES
ROL 9,8,8
ST ,HRSHIN
JMP SL1TUD; J
BOC BIT@,REST
LD 8,0NET2
ADD @,HRSMIN
AND 8,MSKT2
ST ACO,HRSHIN
LD ACO,HOURS
ADD ACO,ONET
ST ACO,HOURS
JMP STORHM+1
RCPY 1,0

AND 8,MSKT3
ADD #,0NET3
ROL 9,8,9

JHP STORHM
RCPY 8,1

AND @ ,MSKT4
SKNE 8,MSKT4
JMP REST2
RCPY 4,9

JKP RESTT+1
RCPY AC#,ACH
LD ACO,RETADT
PUSH ACO

LD ACO,RTREG
LD AC1,RTREG+

142

PAGE 18

s COUNTER (MAX 65,3536)
’ ( OR 48.27DAYS.)

RESET SECOND/TENTHS
y AND INCR. MINS & HRS.

EST FOR SIXTY MINS.
TT
RESTORE BITS IN ACO

MP TO SLAVES TIME UPDATE
1

y RESET HRS-MINS LOCATION

INCREMENT HOUR COUNT.
KNAX 635,536 OR 7.5 YRS,

; WATCH ADDRESSING LATER

EXIT SUBROUTINE. WAS PULLF
RESTORE INTR RETURN ADDR'S

1 ; RESTORE REGS.

LD AC2,RTREG+2
LD AC3,RTREG+3

PFLG IEN2
SFL6 IEN2
RTI

+WORD X 8208
+HORD X-8283
+HORD X“4819
-WORD X 4999
-WORD X’ 9898

; CLEAR INT. LATCH

ALLOW SPACE FOR TIMER INCR-TS.

;STACK FULL CAN INT.
; IENT = BIT "M1*



PACE ASSEMBLER REV-A
PACE FTND CTRLPRGM 17/18/78
INTRPT. SUB. RLTIME-IEN2

778
779
78¢
781

782
783
784
783
786
787
788
789
79¢
791

792
793
794
793
794
797
798
799
860
861

882
803
884
865
886
g8’
848
889
81¢
811
812
813
814
815
816
817
818
819
824
821

822
823
824
825
826
327
828
829
836
B3

81C3
#1C4
#1CS
#1C6
g1c7
g1c8
@1Cc9
81CA
#1CB
g1CC
#1CD
#1CE
§1CF
¢1Do
#1D1
#1D2
#1D3
#1D4
#1D3

#1Dé
#1D7

81D8
#1D9
#1D4A
108
#1DC

§1DD
#1DE
#1DF
p1ed
g1E1
81E2
g1E3
#1E4
#1ES
P1ES

o1E7
#1E8
g1E9
21EA
#1EB
g1EC
#1ED
o1EE
#1EF
giFg

9842
98A5
§1Co
#9901
8100
o018
6000
FFFO
FFog
oF 9
808F
541
po48
#1CE
199D
1995
1996
1998
1998

9438
#03D

C9FD
1583
C9FC
1561
1907

Cie?
SFe
C204
8B09
?1DF
E1E3
A%E4
4p@2
D288
8869

C1E1
D28é
CIES
SFeé
7h81
C289
8boé
91E9
E1Dé
2010

P> 2>222>D>DD>DDPDOPDD>DPD>PDO>PDO>DDD>DP>ID>®DDOIT>D

> >

> D> D> D> D>

>2D>DP>PD>D>DD>DD>PIPD>

»P>PD>DP>D>D>D>DPD>D

RSON:
RSGET:
CONSTLs
ONET:
ONET2:
ONET3:
ZEROT:
MSKT:
MSKT2:
MSKT3:
MSKTA4:
CONSTHM:
CONST2:
CNST2L:
ERROR?:
SENDB:
PUTWI:
JUNP1:
EXITP:

14
SLTPT1:
SLTPT2:

’
SLITUD:
SL2TUD:

4
SLATUD:

4
SLVSEC:

143

28 DEC 76 PAGE 19

.WORD X“9842  ;KEYBOARD LOCATIONS
-WORD X’98AS

.WORD CONST

HORD X1

-WORD X~8189

.WORD X~881p

HORD X’8

JWORD X‘FFF@

WORD X“FF98

.WORD X @8F

.WORD X~@60F

WORD X841

JMORD X’9848

.WORD CONSTH ; HRSMIN CONST. 9999-8846
JHP ERRORS

JMP SENDBI
JHP PUTUWIN

JMP JUMP11
JMP EXITP1

UPDATE TIME SUR FOR CURRENT REC-D. TIMES
FOR SLAVES SEE  FRONT PAGE DIRECT’NS.

-WORD SETEN1
.WORD SETEN2

LD AC2,SLTPTI
JSR SLATUD
LD AC2,SLTPT2
JSR SLATUD
JNP RTINXT

SLAVE1 TIME UFDATE

2’ " (1]

LD ACO,CONSTL ; SLAVES TIME UPD. SUB.
RCPY ACO,AC3

LD ac@,(AC2)

DECA ACO, (AC3)

SUBB ACO,CONSTI

ADDI ACD,ONET

AND ACO,NSKT

BOC NSIGN,SLVSEC

ST AC®,(AC2) ; TENTHS UPDATE

RTS @

LD AC@,ZEROT

ST ACO,(AC2)  ; RESET SECTENTHS
LD ACO,CNST2L

RCPY ACO,AC3

AISZ AC2,1 ; RESET AC2 FOR HRSMIN1
LD ACO,(AC2) ; LOAD  LOCN.

DECA ACO, (AC3)

SUBB ACO,CONST2

ADD ACO,ONET

ROL 9,8,9



PACE ASSEMBLER REV-A

PACE

832
833
834
835
836
837
838
839
849
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
869

144

286 DEC 76 PAGE 26

FTND CTRLPRGM 17/18/78
INTRPT. SUB. RLTIME-IEN2

g1F1
#1F2
#1F3
g1F4

81F35
g1F6
g1F7
g1F8
91F9
g1FA

#1FB
g1fFC
g1FD
#1FE
g1FF
8209
#201
§262
#2063

9264
§205
$206
6297
#2688
§209

4AB#3
2018
iyl 1)
80o¢

4385
Ci1D¢
E209
A9D2
D288
868¢

SDeo
A9DE
F1CF
1985
cic?
E208
A9CY
D299
8069

SC40
A9Cé
E1C1
2019
D269
80d¢

?
SLHRIC:

?
SLHRI1:

?
SLHRST:

BOC NSIGN,SLHRIC ; TEST FOR 68 MINS
ROL ¢,8,9

ST AC#,(AC2) ; STORE NEW MINS

RTS @

BOC BIT@,SLHRI1 ; SLAVE HR INCR.
LD ACO,ONET2

ADD ACO, (AC2)

AND ACO,MSKT2

ST ACO,(AC2) ; STORE HR INCR’T.
RTS 8

RCPY 8,1
AND #,MSKT4
SKNE ACH,MSKTA
JHP SLHRST

LD ACO,ONET2
ADD ACO, (AC2)
AND ACO,MSKT2
ST ACD, (AC2)
RTS @

RCPY 1,0 7 SLAVE HR RESET
AND ACO ,MSKT3

ADD ACO,ONET3

ROL 6,8,0

ST ACO, (AC2) y RESET HRS.
RTS ¢



PACE ASSEMBLER REV-A

PACE

952
953
954
955
956
957
958
959
969
961
962
943
964
945
966
947
948
949
979
971
972
973
974
975
976
977
978
979
98¢
981
982
983
984
985

984
987
988
989
998
991
992
993
994
995
996
997
998
999

1009
1881
1962
1263
1994
1685

145

28 DEC 746 PAGE 24

FTND CTRLPRGM 17/1€/78
INSTRUCTION EXECUTION

§23A
#23B
#23C
#23D
#23E
#23F
82449
#241
§242
8243
8244
§245
#2446
8247
§248
#249
9244
$248B
$24C
#24D
824t
§24F
#2549
§251
9252
#253
2254
#255
#256
8257
#258
8259
#25A
#258
§25€C
#25D
§25E
825F
g260
#261
£262
#8263
§264
#265

1579
19¢B
F146
196C
F1435
194D
3349
1909
1494
SDCé
79FF
D446
1989
152D
9346
19F7
1524
533C
19F4
1327
333t
19F1
5162
6189
CBég
3824
5185
1537
79FF
19FD
5164
F334
1948
5C8a
2A08
2C18
7838
9D2¢C
1981
7847
1324
79FF
19F 4
1983

PP>PPDPDPTPDPDPDOPDPPPO>PDODDO>PDO>PO>PPIPDDODDO>DDPDIDOPDO>DDO>DD>D>>DD>DP>DDDODDODDO>DDO>DDODD>DDD>DD>D>DITD

.PAGE

pREEFRERREAERRRELFERRKERRE KRR hRE KR KRR RRERERRE R KR F

' ¥
v ¥
' ¥
y ¥
't

T: PRINTS HRS:MINS,SEC.TENTHS OF SECS.
HAX. 99:39 , 59.9 +,1SEC -REAL T,
INTERRUPT CONTROLLED CLOCK “IEN2/

* % ®* K #

g FEERRXXREXREEXRRE LR RERERRRORRE R RRE AT R R RE AR RS

’
TIKE:

FEPRTHM:

FETIME:
S1TIME:
S2TIME:

TIME2:

JSR GECHO s WAIT FOR CR,LF
JNP FETIME

SKNE ACO,SLV1TH
JMP S1TIME

SKNE ACO,SLV2TH
JHP S2TIME

LI AC3,TIMTS
P .41

JSR TTYFX

RCPY AC3,AC1
AISZ AC1,-1

ST AC1,RTCURD
JMP TIME2

JSR RTMESG

LI AC3,TINTS
JMP FEPRTHM

JSR RTMESG

LI AC3,TINTSI
JNP FEPRTM

JSR RTMESG

LI AC3,TINTS2
JMP FEPRTM

LI AC1,2

PUSH ACI

~ LD AC2, (ACH)

TSPACE:

PIX1:

PIX2:

LI ACO,X~28

LI AC1,5

JSR RTTS

AISZ AC1,-1
JHP TSPACE

LI AC1,4

SKNE AC1,TWOSP
JHP SPTWO

RCPY AC2,ACO
SHL AC2,4,0
SHR ACO,12,8
AISI ACO,X’38

SKG ACE,RTNU?

JHP .42

AISZ ACO,X”7
JSR RTTS
AISZ AC1,-1
JHP PIXI

JMP SPTUO1



PACE ASSEMBLER REV-A
PACE FTND CTRLPRGM 17/18/78
INSTRUCTION EXECUTION

1096
1687
1668
1869
1616
1811
1612
1613
1814
1815
1816
1817
1618
1819
1628
1921
1622
1423
1824
1825
1426
1627
1428
1629
1939
1631
1632
1933
1034
1935
1636
1037
1638
1839
16490
1841
1942
1643
1844
1045
1646
1847
1848
1649
1850
16351
1832
18353

g266
8247
$268
#2469
264
8248
#26C
$26D
#26t
#246F
827¢
271
8272
8273
#4274
#2753
82746
8277
8278
§279
8274
#278
$27C
#27D
827E
827F
#2860
#281
$282
9283
#284
8285
9286
9287
8288
8289
#28A
8288
#28C
#28D
$28E
p28F
8298
#29F
g2A8
#24F
$2B8
#283

5020
1525
19F2
6569
79FF
1982
S5100
1986
7BFF
1969
aCce
Fo4é
190D
5100
19C4
6DCo
1569
67609
ED16
C3s¢
4186
2418
1551
2419
154F
7881
19F8
4F 40
G101
#6831
9932
193F
1949
196F
192B
1976
194D
9692
8839
99FD
#8062
pa19
2020
éD#a
2029
éDéDd
2429
6999

SPTWO:

SPTUO1:

NEXTUWD:

TIMEXT:
RTMESG:

RTHSRF:

RTHSCT:

RETRNX:

SLVITH:
SLV2TM:
SENDA:
PUTUWA:
GETHXC:
GECHOB:
GETHXB:
ERRORB:
TTYS1:

RTNU9:

RTTS:

TWOSP &

RTITLE:
RTMESS:
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20 DEC 76 PAGE 25

LI ACO,X"28
JSR RTTS

JHP PIX2
PULL ACT
AISZ AC1,-1
JHP NEXTUD
LI AC1,d

JNP TIMEXT
AISZ AC3,-1
JHP L+

RCPY AC3,ACH
SKNE AC# ,RTCURD
JHP TINE2

LI AC1,9

JNP EXITC
RXCH AC3,AC!
JSR .+1

PULL AC3
ADD AC3,RTITLE
LD ACO, (AC3)
BOC 1,RETRNX
ROR 6,8,9
JSR SENDC
ROR §,8,9
JSR SENDC
AISZ AC3, 1
JMP RTHSCT
RXCH AC1,AC3
RTS 9

JWORD X-31
JHORD X’32
JMP SEND

JHP PUTH

JMP GETHX
JHP GECHO
JHP GETHXA
JMP ERRORC
JHORD TTYS
.WORD X’39
JHP @TTYS1
LWORD X"2
.WORD RTMESS-RTMSRF

JASCII * TIME IN HRS:MINS,SECS.TENTHS”
.WORD X’ @DBA

.ASCII ~ s, . .
LMORD X-@D8D

SET STACK WITH NXT, LOC.
PUT INTO AC3
REAL MESSAGE REFERENCE

" " COUNT

@0 We WE we

".ASCII 4 .

«WORD @
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PACE ASSEMBLER REV-A 29 DEC 76 PAGE 33
PACE FTND CTRLPRGN 17/18/78
INSTRUCTION EXECUTION

1321 «PAGE

1322 PEERRKRARRAKERKE KRR RRERKARKER R AEKREERRKERE LR KR REXKEN
1323 ' ¥ . *
1324 H CONTROL Z XXXXXX... EOT” TRANSMITS COMMANDS *
1329 7* TO INTERFACE AS SELCTD. -"DC1 N"-TERM“TD BY EOT =*
1326 PERERREABERREERBREBAKBRARE KRR XRERERKAL KRS KRR S R RK KKK K
1327 H

1328 6379 1584 A CMDTRN: JSR GECMDI ;y ECHO ALL CHARACTERS

1329 637A 19FB A JMP EXIT1 ; (WITHOUT FURTHER PROCESSING)

13306 6378 149A A JSR TTYFX

1331 637C 1516 A JSR SENIR

1332 837D 19FB A JMP CMDTRN

1333 037E 6309 A GECMDI: PUSH AC3

1334 837F CC29 A LD AC3,TTYUI

1335 63886 DC3A A ST AC3,TTYADD

1336 6381 4760 A PULL AC3

1337 6382 13511 A JSR RECVN

1338 £#383 A%13 A AND ACO,H7F1

1339 8384 41F9 A BOC ZRO,GECMDI

1349 8385 F111 A SKNE ACO,HZF1

1341 83846 19F7 A JHP GECMDI

1342 6387 F116 A SKNE ACO,GALT1

1343 6388 9918 A JMP @ABORT1

1344 9389 F119 A SKNE ACO,EQT

1345 §38A 8099 A RTS 9

1346 938B 1581 A JSR SENDG

1347 638C 8891 A RTS 1

1348 038D 4344 A SEND@: PUSH AC3

1349 $#38E CCO9 A LD AC3,TTYWDI

1358 938F DC3A A ST AC3,TTYADD

1331 6396 13562 A JSR SENDR

1352 9391 4766 A PULL AC3

1353 #3392 B999 A RTS &

1354 8393 9941 A SENDR: JMP @TMITS2

1395 6394 9961 A RECUN: JMP @TMITRI

1356 6395 9692 A TMITS2: .WORD TTYS

1357 83946 6693 A TMITR1: .WORD TTYR

1358 8397 667F A H7F1: .WORD X"7F

1359 8398 867D A GALT1: .WORD X“7D

1368 8399 032D A ABORT1: .WORD ABORT

1361 9394 6664 A EOT: .WORD X7 4

1342 ’

1343 ’

1364 ;

13635 PREEARSRRERRERAERKERRKREREERRLEARE KR KRRBKRERBESRFEREEK
13464 * *
13647 4 PRINT MEMORY CONTENTS OF XX TO YY *
1368 ;' * *
1349 ' * P XX:YY OR P XX,YY OR P XX *
1379 S *
1371 PEREREERERBRXERETEARERE AR AR K ERRREKRE AR AR ERRE XK KK
1372 )

1373 #39B 15BF A PRINT: JSK RANGE s GET ADDRESS RANGE

1374 939C 3198 A

LI AC1,8



PACE ASSEMBLER REV-A 26 DEC 76
PACE FTND CTRLPRGM 17/16/78
INSTRUCTION EXECUTION

148

PAGE 34

1375 639D 4188 A PUSH AC1

1376 639E 1494 A JSR TTYFX

1377 839F 15B3 A LINE:  JSR SCRLF ; NEW LINE : CR/LF FIRST

1378 $3A6 SECP A RCPY  AC3,AC2

1379 83A1 1585 A JSR PUTWY ;  TYPE ADDRESS

1386 6342 5928 A RTYP: LI ACH,X" 20 g

1381 9343 1503 A JSR SENDI ;  SEND TWO BLANKS

1382 83A4 CBS# A SURD: LD AC2, (AC3) : TYPE OUT VALUE
1383 #3AS 15B1 A JSR PUTWY

1384 9346 AFGB A BOC RFLG,FIN ; ATTEMPTED INPUT : STOP

1385 8347 FC28 A SKNE  AC3,CURD ; CHECK IF DONE YET
1386 838 1989 A JHP FIN ; FINISHED

1387 8349 7B#1 A AISZ  AC3,1 : INCREMENT ADDRESS
1388 83AA SCCH A RCPY AC3,ACS ; CHECK FOR END OF LINE

1389 63AB B9SA A SKAZ AC@,D07

139¢ #3AC 19F7 A JHP SWRD

1391 §3AD 4509 A PULL AC!

1392 83AE 4160 A PUSH ACT

1393 63AF 7968 A AISZ AC1,8 ; SKIP IF AC1=8 (REG.TYPE TEST)
1394 63B6 19F3 A JNP SWRD s CONTINUE LINE IF AC1=8

1395 6381 19ED A JHP LINE

1396 :

1397 $3B2 15a8 A FIN:  JSR SCRLF ; GIVE CR/LF WHEN FINISHED

1398 $3B3 4569 A PULL ACI :

1399 93B4 5168 A LI AC1,8 ; CLEAR STACK AND AC1

1489 $3B5 19C6 A JHP EXITI s 60 BACK TO PROMPT
1491 63B6 9667 A DO7:  .WORD 7

1492 ;

1483 :
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PACE ASSEMBLER KEV-A 26 DEC 76 PAGE
FACE FTND CTRLPRGM 17/18/78
STKFUL INTERRUPTS

w
(g ]

2036 +PAGE “"STKFUL INTERRUPTS~”

2631 ;

20632 FREFEXEER NN CERE R KKE KL R EKEKEERKKEEEE KRR KR LR
2033 a ' *
2834 y¥ STKFUL INTERRUPT SUBROUTINE *
2835 V¥ *
2036 R Y e T e PR R T
2837 ;

2838 ;

2639 y SAVE REGS. AND DETERMINE IF FULL/EMFPTY,
2848 ’

2841 @5B4 D@G4AB A STKINT: ST ACO,$SAVE

2842 85BS D44C A ST AC1,$SAVI1

2843 95B6 DBAD A ST AC2,$5AV2

2644 8587 DCAE A ST AC3,$SAV3

2845 @5B8 44989 A FULL ACO

2846 85B9 DBAF A ST ACO,$RETA

2047 65BA 441D A BOC STKFUL,$FULL

2048 @5BB 6089 A PUSH ACO

2849 @5BC 4918 A BOC STKFUL, $AFULL ; TEST IF ALMOST
2859 85BD 4460 A FULL ACO ; FULL

2851 4

2852 ; STACK EMPTY. RESTORE FOUR WORDS.

2853 ’

2054 @5BE 5164 A LI AC1,4 ; STACK IS EMPTY

2855 O5BF AC47 A SEMP: DSZ $SPTR , IF EXECUTED FIRST IT
2854 85C0 AB67 A LD ACO,@$SPTR ; WILL STORE A $TEMP LOC-N.
2857 65C1 4886 A PUSH ACO

2858 #5C2 CB67 A LD ACO,$SPTR

2859 65C3 F143 A SKNE ACO,$FEMP ; SKIP IF EXECUTED
28469 85C4 1963 A JMP RSTPTR » BEFORE A STKFUL.
2841 85CS5 79FF A AISZ AC1, -1

28462 #5C6 19F8 A JMP SEMP

2863 @5C7 1904 A JMP $REST

2044 65C8 C13F A RSTPTR: LD ACO,$SSHEG ; RESTORE PTR TO

26465 85C9 DB67 A ST ACO,$SPTK ; START OF SOFTWARE STK.
2866 £5CA 585C A LI ACO,X"SC ; LOAD UNFLW DEFAULT
2867 85CB 192B A JMP SUNFLW

29648 H

2949 ; RESTORE REGISTERS ANI RETURN FROM INTERRUFT
2078 '

?

$REST: LD ACO,SRETA
PUSH ACO

LD ACO,$SAVe
LD AC1,$5AV1
LD AC2,$5AV2
LD AC3,$SAV3

2971 @5CC Co4aF
2872 65CD 6899
2673 85CE C@4B
2674 65CF C44C
2075 #5D6 C84D
2¢76 #5D1 CCAE

> > DT> D>D

20677 €35D2 3169 PFLG TEN1
2678 €5D3 3186 SFLG IEN1
2879 @85h4 7C09 RTI

20088
2¢81
2882

’

y STACK IS ALMOST FULL

’
2063 8505 6468 A SAFULL: PULL ACO
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PACE ASSENBLER KREV-A 2¢ DEC 76 PAGE 33
FACE FTND CTRLPRGM 17/16/78
STKFUL INTERRUPTS

2084 G506 5164 A LI AC1,4 ; NO. OF WORDS TO SAVE
2085 8507 1981 A JHP 42

2886 :
PACE ASSEMBLER REV-A 28 DEC 76 PAGE 54

PACE FTND CTRLPRGM 17/14/78
STKFUL INTRPT. SUB. -IEN1

2087 .PAGE “STKFUL INTRPFT. SUR. -IEN1”
2688 ;
2889 y STACK FULL. SAVE TOP FIVE ELEMENTS OF STACK
2699 ;
2091 635D8 5165 A $FULL: LI AC1,5
2092 85D9 Dasé A ST AC1,$SUFTR
2893 #5DA C92B A LD AC2, $ADR
2894 ;
2095 85DB 6468 A $LP1:  PULL ACO
2896 65DC D268 A ST ACO, (AC2)
2897 85DD 7a01 A AISZ AC2,1
2898 #5DE 79FF A AISZ AC1,-1
2899 #3DF 19FB A JHP $LP1
2108 H
2181 ; NOW PUT BOTTOM FOUR WORDS ONTO SOFTUWARE STACK -
2192 H
2183 93E4 5184 A LI AC1,4
2194 B3E1 6460 A $LP2:  PULL ACO
~ 21835 85E2 BB6Y A ST ACO,@$SPTR
2196 #3E3 CO67 A LD ACO,$SPTR ; CHECK FOR OVERFLOW.
2167 €5E4 F122 A SKNE ACO,$SSEND
2198 #5E5 190B A JMP $OVFL
2189 83E6 7881 A AISZ ACO,1
2118 8387 D@67 A ST ACO,$SPTR
2111 $5EB 79FF A AISZ ACt,-1
2112 @5E9 19F7 A JHP $LF2
2113 ;
2114 ; FINALLY RESTORE TOP 4/35 WORDS TO BOTTOM OF STACK
21135 ;
2116 B5EA CA466 A LD AC1,$SUFTR ; LOAD TOP 4/5 " ",
2117 @5EB 7AFF A $LP3:  AISZ AC2,-1
2118 B3EC C209 A LD ACO, (ACD)
211% @3ED 6068 A _PUSH ACO
2128 €3EE 79FF A " AISZ ACY1,-1
2121 B5EF 19FB A JHP $LP3
2122 @5F6 190B A JHMP $REST

2123
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FACE ASSEMRLER REV-4 28 DEC 76 PAGE 55
FACE FTND CTRLPRGM 17/18/78
STKFUL INTERRUPTS

2124 .PAGE “STKFUL INTERRUFTS”

2125 )

2126 ; STACK OVERFLOUW. /UNDERFLOUWS.

2127 H

2128 @5F1 5189 A $0OVFL: LI AC1,9 ; STACK OVFLOW. HAS OCCURRED.

2129 B5F2 6488 PULL ACO

2136 @85F3 79FF AISZ AC1,-1

2131 #35F4 19FD JNP =2

2132 @5F3 56846 LI  ACO,X"46 ; TRANS. " F " TO INDICATE QVFLU.
2133 B5F6 1982 JHP $PCLOD

2134 @5F7 56435
2135 85F8 6069
2136 B5F9 1494

$UNFLU: LI  ACO,X745 ; TRANS. " E" TO INDICATE UNFLW.
PUSH AC#H ; PUSH STACK FOR UNFLW. RESET.
$PCLOD: JSR TTYFX

2137 B5FA 1492 JSR TTYS

2138 @85FB 5653 LI ACO,X"53 ; SEND “S"

2139 85FC 1492 JSK TTYS

2148 @5FD CBA4F LD AC2,$RETA y PC. AT OV/UNFLW,
2141 @5FE 9418 JSR @XFUTH y SHOW THIS !

2142 85FF 9411 JSR @XCRLF ; D0 A CR-LF.

2143 86890 C167
2144 6681 DHS7
2145 0662 3109
2146 9603 3189
2147 84694 3989
2148 8665 9984

LD ACO,$SSBEG
ST ACO, $SPTR
PFLG 1

SFLG 1
SFLG 9 JRE~ENABLE INTERRUPTS
JHP @PPRMT ; JUMP TO DEBUG

>D>PD>> DPDD>T>PDPDP>D>DDO>D>D>DDPD>PDD>DD>D>D

2149 H

2158 ;  POINTERS.

2151 ;

2152 8686 8861 A $ADR:  .WORD $STAK

2153 9607 8660 A $SSEND: .WORD STKEND ;INCRES. TO 19FF FOR MORE
2154 6608 6651 A $SSBEG: .WORD SOFTST ; " “ 1889 " “RM.
2155 8669 6858 A $FENP: .WORD SOFTST-1 ; $SPTR DECRMTD. TOO EARLY
2156 666A 68FB A PPRNT: .WORD PROMFT ;POINTER TO DEBUG PROMFT ENTRY
2157 ;

2158 ;

2159 968B 9411 A FLUSH: JSR @XCRLF

2160 8640C 1512 A JSR FMES

2161 848D B62C A .WORD FMES1

2162 B4E CB2A A LD AC2,HLOC

2163 968F 9418 A JSR @XPUTW

2164 9619 C82B A LD AC2,HLOC+!

2165 #611 9418 A JSR BXPUTW

2166 $612 C82C A LD AC2,HLOC+2

2167 §613 9418 A JSK @XFUTW

2168 8614 C82D A LD AC2,HLOC+3

2169 8615 9416 A JSR @XPUTUY

2179 8616 9411 A JSR @XCRLF

2171 6617 1587 A -JSR FNES

2172 6418 632 A -HORD FMES2

2173 9619 9412 A JSR @XGECHO

2174 B61A 1982 A JNP .43 ;"CR"™ FLUSH !

2175 B41B F16F @A SKNE ACO,FASCN

2176 861C 8688 A RTS 8 ; “N" -- NO FLUSH

2177 661D 5066 A LI ACS,® ; FLUSH REQD.



PACE ASSERBLER REV-A 28 DEC 74 FAGE 96

FACE

2178
2179
2184
2181
2182
2183
2184
2185
2186
2187
2188
2189
2198
2191
2192
2193
2194
2193
2196
2197
2198
2199
2299
2261
2282
2283
2264
2285
2286
2267
2298
2289
2219
2211
2212
2213
2214
2213
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2226
2229
2238
2231

152

FTND CTRLPRGM 17/198/78
STKFUL INTERRUPTS

B61E
g61F
B620
6621
$622
$623
#624
8625
#626
8627
#628
#629
0624A

g62B
#62C
#631
$632
#8636

9637
9638
6639
#63A
#63B
$63C
#63D
g63E
B63F

#6449
#641
8642
0643
p644
#6435
6646
g647
#4648

09649
f64h
$64B
8657
6658
2668

6L49
666A
6648
866C

8660
6660
6209
CAée
C260
4561
8961
2019
1492
2019
1492
7401
1987

f94E
4232
godd
4464C
pooo

9411
15E6
8648
9412
1982
F16C
8008
3669
8040

9411

13DD
#653
9412
1982
F164
5668
069
8060

@94k
fg4E
5245
¢600
2029
6699

9989
£35Sk
9988
813F

> > > DD D r > > DD D>D>DD >»T>»>D®>DDD>D>D> D >D>D> DD >D>»>»2»D>DD>DPD>DE>D>DDT>D

» DD

RTS 8

FMES:  PULL AC2
PUSH AC2
LD AC2,8(2)

FMNESA: LD ACH,8(2)
BOC NZRO, .+2
RTS 1
ROL 8,8,9
JSR TTYS
ROL 4,8,0
JSR TTYS
AISZ 2,1
JMP FMESA

4

FASCN: .UWORD X "4E

FMES1: .ASCII “BR/PTS @ ~
WORD &

FMES2: +ASCII “FLUSH ? ~
-WORD &

’
TRSET: JSR @XCRLF

JSK FMES ; USE FLUSH PRT. SUB.
.WORD THES1

JSR @XGECHD

JMP .+3  ; “CR" CLEAR

SKNE ACS,TASCN

RTS 8 s “N" NOT CLEARED

LI ACH,0

RTS ¢ ' CLEAR

14

MRSET: JSR @XCRLF
JSR FMES ; USE FLUSH SUB.
.WORD MMES?
JSR @XGECHO
JMP .+3  ; "CR" CLEAR
SKNE AC@,MASCN

RTS 8 s “N" NOT CLEARED
LI ACS,8
RTS & :  CLEAR

14

TASCN: .WORD X-4t

MASCN: .WORD X~ 4E

TMES1: .ASCII “RESET REAL TIME CLOCKS 7°
.WORD @

MMES1: .ASCII -~ " MASTER & SLAVES MEM.
.WORD ¢

4 .

y CHECKSUM SUBROUTINE & PRINT RESULT

’

RANGE1: JMP @RANGE?2

RANGE2: .WORLD' RANGE ; GET MEM. RANGE
CRLFJ:  JMF @CRLFK

CRLFK: .WORD CKLF ; CR/LF TX. SUB.

LOCS.
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APPENDIX B : SYSTEM SOFTWARE : PART B

FRONT-END TO MASTER INTERRUPT SUB-ROUTINE:

PAGE
FLOWCHART 154
LISTING 160
VDU COMMANDS 161

MESSAGE PROTOCOL (SYSTEM) 171



1%4

‘MSTRIT " SUB-ROUTINE - APPENDIX B (PAGE 1 OF B)
"INTERRUPT IEN’

SAVE REQISTERS
SAVE RETURN ADDRESS

f INTERRUPT DRIVEN
SUB-ROUTINE FROM
INTERRUPT OR MASTER LINK

IN NEW STATUS

1

TURN ON MASTER
LINK CARD

T

PREVENT
TURN OFF SLAVE INTERRUPT
INTERFACE CARDS FROM
* SLAVES
LOAD FIRST ® - BIT
CHARACTER DATA
A VOU CAN
POINT WEIH DEBUG
POIN R
TEST FOR DEBUG
LOR COMMAND REQUEST JUMP 1O vou OR VDU COMMAND
SUB-ROUTINE o COMMAND
- R | ‘\ Semmpear | — — — — — — — — — =
COMMAND DEBUC SUB-ROUT INE REQUEST

TEST FOR ‘SYN’

INITIALIZE (AC1)
REOX!!ER FOR NOTE
SOH” TEST (1) SUB-ROUTINE ALLOWS TEN ERRORS BEFORE AN ENQUIRY
ON RECEIVED DATA 18 SENT BACK TO MASTER.

(2} ‘SYN’ CHARACTER USED TO SYNCHRONISE LINK.

18

IT A
SYN’ CHARACTER STORE SYN CHARACTER
IN MESSAGE BUFFER
3YNCH¢£2111NO AREA 3000
LINK

1

INPUT NEXT CHARACTER
AND INCREMENT
BUFFER POINTER

LOAD COUNTER (10) FOR

ERROR DATA TEST ERRORS

CORRECT
N CSGST neéﬁqxzo
R AARExT REG1STERED
TEN
JUMP TO Y T
CHARACTER MORE AN “SOH’
TEST - LOAD ‘ENG* THAN CHARACTER
ENGQUIRY ON MESSAGE 10
' ERbORs HEADING)
TRANSMIT ENQUIRY
TO THE MASTER
INCREMENT *SOH’
f STORE 'SOR’ IN
MESSAOE BUFFER
ERROR ] MESSAQE
TURN ON
[necsxvso INCORRECT? wasTER CiNK '
[ INPUT NEXT
CHARACTER
RESET
€ SEITERS RESTORE REQISTERS & '
RETURN ADDRESS
CONT INUED
‘f INCREMENT MESSAOQE NEXT PAGE
BUFFER POINTER
RETURN FROM I I
INTERRUPT




'‘MSTRIT’ SUB-ROUTINE - APPENDIX B

CHANNEL
FOR
MESSAGE
TRANSMIT

BLOCK (1)
CHANNEL SELECT FOR NEXT
SUB-SBYSTEM LEVEL
£ 00XXX

NOTE»

AT THIS POINT ALL DATA
RECEIVED 18 16 BIT AND
18 RECEIVED TWO BYTES
AT A TIME.

'ERROR
A SEPARATOR ‘SOH’
WAS REQUIRED
lEml

FROM
PREV10US
AGE

I1

LOAD "80H°
COUNTER VALUE
TEST FOR MESSAQE

Y

NER CHARACTER 1§
TRANSMIT CHANNEL
NUMBER

LOAD ‘ENQ’
1 ON MESSAQE
TRANSMIT TO MASTER

F

RESET COUNTERS

!

1

STORE RETURN CHANNEL
FOR SLAVE IN
MESSAGE BUFFER

RETURN FROM MASTER
LINK INTERRUPT

1

INCREMENT MESSAQE
BUFFER POINTER

!

LOAD NEXT WORD

STORE °SOH’ IN
MESSAQE BUFFER

!

LOAD ‘ENQ’
ON MESSAQE
TRANSMIT TO MASTER

1

RESET COUNTERS

1

INCREMENT MESSAQE
BUFFER POINTER

1

INPUT NEXT WORD
(MESSAQE LENGTH)

RETURN FROM MASTER
LINK INTERRUPT

STORE 1IN
MESSAGE BUFFER

REMOVE SECTOR
PRINTER ‘MAX 256°

!

INCREMENT
BUFFER POINTER

]

INPUT NEXT WORD
(ERROR CODE)

STORE ERROR CODE
IN BUFFER AND
ON STACK

CONTINUED
NEXT PAGE

I1I

155

(PAGE 2 OF &)

‘ERROR '
I:sxx ‘SOH’ BYTES
WERE REQUIRED
ENQ’
BTH SOH
RACTER
BLOCK (2) (1)
MESSAGE MESSAGE SECTOR wr;sea]
Bt ) Relesgeia

CAN LDAD A 256 WORD
DATA BLOCK AT ONE OF
256 LOCATIONS.
THEREFORE IN ANY
LOCATION IN THE
POSSIBLE MEMORY AREA
(256 X 256 = 18536)

LOCATION

ERROR
CODE

BLOCK (2) (1)
ERROR CODE IN
SAME BLOCK
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'MSTRIT’ SUB-ROUTINE - APPENDIX B (PAGE 3 OF 8 )

STORE ADDRESS OF
ERROR CODE 1IN
ERROR POINTER

1

STORE ERROR CODE
IN ERROR CODE
LOCATION

i

INPUT NEXT WORD

FROM
PREYI0US
A

I11

NEGATIVE
ERROR
CODE

RELOAD
ERROR CODE
*ERROR’
' FILE SEPARATOR °‘F§’
WAS EXPECTED
LOAD ‘ENQ’ ON ENQ
MESSAGE
$TORE ‘F§’ AND
INCREMENT '
BUFFER POINTER
RETURN FROM *COMMAND BLOCK’
' INTERRUPT BLOCK 3
INPUT NEXT (1) RECEIVED MESSAQE COMMAND
COMMAND COMMAND
H*LL’BE EETHER MESSAQE (2) NEXT LEVEL COMMANDS
TX* OR ‘LD (3) SLAVE ADDRESS FOR DATA

BLOCK OF MESSAOQE

LOAD ‘ENQ’ ON
MESSACE

!

*ERROR’
T WAS NOT A DEFINED
Mo iheren” COMMAND ’TX’ OR ‘LD’
STORED STORE COMMAND (TRANSMIT OR LOAD)

IN COMMAND

FOR LRTER MEMORY LOCATION

TEST

!

* RETURN FROM
MASTER INTERRUPT

LOAD NEXT
OATA WORD
: ’ ROTATE WORD CREATES
gg?;réezgﬁn§33"2§2 JE SHIFT BYTES THE COMMAND
NEXT SUB-SYSTEM ROTATED FOR NEXT
LEVEL SUB-SYSTEM LEVEL

!

STORE IN MESSAGE
BUFFER AREA

LOAD ‘ENGQ’

’ERROR *
ON_ MESSAGE PER
TRANSMIT TO MASTER [com:mo NOT A SROLS ’LD’]
[ “ENG”

RETURN FROM MASTER
LINK INTERRUPT

INPUT NEXT WORD
STORE AS NEXT LEVEL
ADDRESS POINTER

CONTINUED

I:AD ;Rex'r LEVEL n]
ESS POINTE SONTINUED

IV




‘MSTRIT

(8TX)

(ETX)

MESSAQE FOR

TEST RECEIVED
ERRORS

SUB-ROUTINE - APPENDIX B
FROM
PREV10US
PAGE
1

COMMAND
INCREMENT BUFFER IN MSTCMD
ADDRESS POINTER A ADDRESS
IN MSTCMD

]

!

INPUT NEXT WORD

LOAD ‘ENQ’
ON MESSAGE AND

STORE ‘STX°
INCREMENT BUFFER
POINTER AND ADD
T0 REGISTER AC3I

INPUT NEXT WORD

REQISTER
AC3 HAS END
OF ADDRESS

TEST
FOR END
OF TEXT

ADD TO NEOQATIVE
ERROR WORD
LOCATION

1

STORE DATA WORD
IN BUFFER

+

INCREMENT
BUFFER POINTER

ANY
MORE
DATA 70 BE
PROCESSED

N

STORE ‘ETX’
IN BUFFER

TEST
AT END
OF

MESSAGE
BLOCK

1

TEST ERROR CODE
RECEIVED FOR ERRORS

CONT INUED
NEXT PAGE

Vv

ANY
.REMA INDER
AFTER ADDING
DATA

TRANSMIT TO MASTER

3

RETURN FROM
MASTER-LINK
INTERRUPT

157

(PAGE 4 OF 6)

'8TX*

STORE START OF TEXT
OR START OF DATA 8LOCK

*DATA BLOCK’
[sTORE DATA BLOCK ]

U e T

[

ETX’
STORE END OF TEXT
OR END OF DATA BLOCK



[

‘MSTRIT’ SUB-ROUTINE

APPENDIX B

MESSAGE

"ACK’ CORRECT

FROM
PREVIOUS
PAGE

REMA INDER
'Y '=ERROR
‘N ‘=sNO

158

(PAGE S5 OF B6)

LOAD STORED
ERROR CODE

LOAD °‘ACK’
ACKNOWLEDGE
TRANSMIT TO MASTER

1

LOAD MASTER'‘S
COMMAND FROM

LOAD NEGATIVE

LOCATION MSTCMD ACKNOWLEDGR *NACK’
TRANSMIT ‘NACK*
N s 1T TO MASTER
N /TRANSMIT
COMMAND i
Y RETURN FROM
MASTER INTERRUPT
CLEAR ERROR
VALUE IN ‘MSTERR’
LOAD MASTER

MESSAGE POINTER

SEPARATOR
lFsl

RELOAD ERROR
POINTER ADDRESS

CARRY
e
MASTER’S
TEST MASTER TD
FRONT-END COMMAND| \REGUEST
FROM BLOCK 3
w At
COMMAND LOAD ‘ENQ@’ ON LOAD
INCORRECT MESSAGE COMMAND
! ;
TRANSMIT TO
MASTER
LOAD MESSAGE
‘ POINTER
RETURN FROM t
MASTER LINK
INTERRUPT LOAD R WORD
. . | LoAD_‘EN@’ ON
ERROR MESSAGE
TRANSMIT TO
MASTER

!

RETURN FROM
MASTER L INK
INTERRUPT

'ENQ

LOAD DATA IN FRONT-END

LOAD MESSAGE
LENGTH

LOAD BASE VALUE
FOR MESSAGE BLOTK
ARER IN SLAVES
‘FCO0

!

!

LOAD ADDRESS
POINTERS
MESSAGE

DESTINATION

LOAD SECTOR SIZE
AND ADD TO
BASE VALUE

!

!

LOADING DATA FROM
MESSAGE BUFFER

gty

LOAD A WORD
AND TEST FOR
START OF TEXT ’'STX’

LOAD MESSAGE
AND REMOYE
SECTOR POINTER

CONTINUED
NEXT PAGE

VI

CONTINUED
NEXT PAGE

VII

LOAD ’ENQ’ ON
MESSAGE

!

TRANSMIT & RETURN
FROM MASTER
INTERRUPT

DEFINE
RAM AREA
IN
SLAYES

*ERROR CODE TES~
[ ERROR IN
MESSAGE
‘NAK*

ERROR

IN
RECEIVED
DATA



‘MSTRIT’

SUB-ROUTINE

END
J0B

LOAD NEXT
HWORD AND STORE

-

INCREMENT
STORE ADDRESS

TRANSMIT EOT
BACK TO MASTER

1

RETURN FROM
MASTER LINK
INTERRUPT

‘EOT

APPENDIX B

[

159

CREATE A NEW
ERROR CODE FOR

MESSAGE DUE
TO CHANGE

EATIO
OF NEW
ERROR CODE

‘TRANSMIT'
TRANSMIT ALL OF
MESSAGE TO NEXT

SUB-SYSTEM

)

COMPLETE

STORE NEW ERROR
CODE IN MESSAGE

1

TRANSMIT MESSAGE
FROM BUFFER V1A
SELECTED S8LAVE LINK

TRANSMIT ‘EOT‘
BACK TO MASTER

1

RETURN FROM
INTERRUPT FROM
MASTER LINK

'EOT”

(PAGE & OF ©)

DUE TO
NEW BASE
LOCATION FOR
SLAYE

TEST FOR ERROR AND
TRANSMIT BUFFERED
DATA TO NEXT
SUB-SYSTEM
DATA 1S FROM
MASTER

8%€
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FTND CTRLPRGN 17/18/78
_MASTER INTRPT. SUB.-IEN3

PACE

391
392
393
394
395
396
397
398
399
499
A8
462
483
A4
Ag5
496
Y Y
468
4989
418
AN
412
413
414
415
416
417
418
49
420
421
422
423
424
425
426
427
428
429
438
A3
432
433
434
435
436
A37
438
439
440
441
442
443
444

#6BB
#68C
#6BD
#6BE
#6BF
#6Ch
f6C1
9602
#6C3
#6C4
$6C5

86Cé
#4C7
#4C8
g6C?
#46CA
#6CB
#6CC
#6CD
#6CE
g6CF

608
#4601
#6D2
#6D3
#6D4

#6D3
#6D6
8607
¢6D8
86D9
#6BA
#6DB
#6DC

SCéd
D#s8
DA6Y
D84A
DCéB
6408
DT
g46é@
A8C
ASHC
#6449

SOFF
ChoA
D382
CD#?
D383
Cb#s
D383
155D
3199
1965

g2¢7
8267
9880
9900
9888

CHP
CDSE
Fio@
1945
C7¢0¢
F52D
192€
7862

>22>22D>PDPD>D>PDDD>DD>D>D

> > D>D>DD >D2D>DDDO>DIP>DODDD>D>DD

>DIP>PD®PD>DD>D>D

.PAGE “MASTER INTRPT. SUB.-IEN3”

RERERXEEXERESEEERE XX RBR XX ERF XXX KRR R BE R KR REX K RES

*

*

%

* MASTER INTERRUPT SUBROUTINE IEN3

* CHANDS. FROM MASTER CAUSE TNTRPTS.

* THIS ROUTINE WILL LOAD A TRANSMITTED CMND
* FROM CHANNEL 1-TEST AND THEN TRANS. DEPENDING
¢ ON SELECTED CHNL. “DC! N AS REC’D. IN CMND,
%

X 9869
EEEEXBEERRRERREERRXARKRRERNERRRRFR KRR ERRERRRR KRS

% N 6 B % N B

we WO WO We WE WO WE WE W W Wwh W Wa

MSTRIT: RCPY ACO,ACO  ; MSTR INTRPT. SUB. START
ST AC#,MSTREG ; SAVE REGS.
ST AC1,MSTREG+
ST AC2,MSTREG+2
ST AC3,MSTREG+3

PULL AC#

ST ACG,RETMST ; RETURN ADDRESS

CFR AC9 y MOVE " TO aCO

AND ACH, MMSK1 yMASK OLD INT. STATUS
OR ACH,MINTT1 ; OR IN NEW " "

CRF ACH

?
’
NINITN: LI ACS,X“FF ; LOAD DNMY WRD (INITIALIZE SUB.)
LD AC3,HTRCD1 s LOAD MASTER CARD ADDS.
ST ACO,TTYON(3) ; TURN ON MASTER CARD
LD AC3,SLVCI1
ST ACO,TTYOFF(3) ; TURN OFF SLAVEI
LD AC3,SLYC21

ST AC,TTYOFF(3) ;" " SLAVE2
JSR MSTINP _
L1 AC1,0 ; LOAD “SOH’ CNTR. W, #

JMP CHDTST ; TEST FIRST INPUT VDU/MSTR.

’

MMSK1: .WORD X“8287
MINTT1: .WORD X 8287
MTRCD1: .WORD X7 9804
SLVC11: .UORD X/ 9904
SLVC21: .WORD X~ 9884

4
CMDTST: RCPY ACG,ACO ;NOF
LD AC3,DGTBL
NXMCMD: SKNE ACO,(AC3) 3NXT MSTR CMD
JnP LHDGOT  ; EXIT IF EQ. TO CMD.
LD AC1,(AC3)
SKNE AC1,TZRO
JNP MSMSOH ; ALTER HERE
AISZ AC3,2  ;CHECK NXT CHMD



PACE ASSEMBLER REV-A
FACE FTND CTRLPRGM 17/18/78
MASTER INTRPT.

445
446
447
448
449
459
451
452
453
454
455
456
457
458
459
464
441
462
463
464
465
466
467
468
469
479
A1
472
473
474
475
476
477
478
479
480
481
482
433
484
485
486
487
488
489
499
491
492
493
494
495
496
497
498

66DD
$4DE
g6DF
B4ES
#6E1
#6E2
#6E3

g6t4
#6ES
$6E6
g6E7
#6E8
B6EY
féta
g6EB
#4EC
¢6ED
1 2.113
$6EF
goF e
#6F1
#6F2
#6F3
$6F4
$6FS
#6Fé6
§6F7
#6F8
B6F9
$6FA
§4FB
#6FC
§6FD
PoFE
F6FF
g76¢
8791
8782
#7683
#7904
#7865
g§706
£797
6768

§789

8794
6748

19F9
CFe1
CHe
CésC
SCho
6490
6489

1599
$6E6
8941
8214
094C
6224
850
#6398
8943
§433
$642
9418
9644
429
8957
$49E
8953
BA1E
952
2387
0649
#9348
9648
$3C6
8947
$3F1
9814
379
#2458
8264
8OAF
g26F
8811
§0A5
8454
§234
8908

876F

5168
193¢E

SUB.-IENJ

> D> D> D> D> D>

>2>2P2$2PD>2D>DP>P>D>DODPPIPP®PDODPDPIPIDPDPDP®P$PIDODI>>DIDDIT>DI>DD>DD>DIDDI>D>DOP»D>D>DDOID>D>PID>D

CMDGOT:

DGTBL:

DBGTBL:

161
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JHP NXMCMD

LD AC3,1(ACI) y LOAD ADDS,

RCPY AC#,AC8 ;WAS PULLF BUT CAUSED STK.
LD ACO,RETMST

RCPY ACO,ACd
PULL ACO
PULL ACC

JHP (AC3)

+WORD
»HORD
«WORD
-WORD
-WORD
-WORD
+WORD
.WORD
«WORD
+WORD
«WORD
+WORD
-WORD
+WORD
-WORD
-4ORD
-UORD
+WORD
+WORD
+WORD
+HORD
«WORD
-WORD
<HORD

_<HORD_

-HORD
+WORD
-HORD
+WORD
-HORD
-WORD
«HORD
-HORD
+HORD
«HORD
-WORD

WORD

LI AC1,8

NOP
“  JSR GECHO FRH STK.
" " AT X‘F2

we we we

GO TO PROG.
DBGTBL

X741 ;A"

ALTER
X4C
LDREG
x/so ; “P“

PRINT

X743 ; “"C" XX,YY COPY NEM. ONLY
COPPY ;  "CS"™ XX,YY CHKSM REGST.
X‘42 ;" B

BINARY

X/44 ; “D"

DUKP

x/s? ;“u“

WHERE

X3 ; “s"

STORE

X’s2  ; "R"

REGTYPE

XI49 ;"I“

INSERT

x/‘s ;NH"

HALT

x/47 ;“B"

G0

X‘1A ; CONTROL “Z","SUB"

CMDTRN

x/sa ; ﬂx"

MHEX

X“4F  ; *0"

MocT
X711
TTYND
XIs‘ ; "T“
TINE

600  ;END TABLE

|IL"

-e

"CONTRL @" , " DCI"

MSTIXT ; EXIT IF ZERO

; LOAD “SOH” CNTR. V. ¢

JMP MSTSYN
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MASTER INTRPT. SUB.-IEN3

499 ’

o84 8786C 1562 A NMSTILD: JSR MSTRED 7 FRNT-END INPUT LOAD
581 878D 6960 A RADD ACH,ACH y FINAL 16 BITS
562 870t 8868 A RTS @

o83 ’

384 970F 6160 A MSTRED: PUSH ACY ; FRNT-END READ 16 BITS
385 #7218 1514 A JSR MSTINP ; INPUT LSB“S.
386 #711 2818 A SHL #,8,0 ;
387 8712 4968 A PUSH ACE

368 8713 1517 A JSR MSTINP s INPUT MSB’S.
389 #714 6568 A PULL AC1t

316 #715 5849 A RXOR AC1,ACH

911 8716 4568 A PULL AC1

312 8717 8909 A RTS @

313 ’
MSTFET: PUSH AC3  ;FRNT-END.-MASTER TRANS-MT.

514 8718 6360 A

S15 @719 CD25 A LD AC3,MSTCD1

S16 8714 D383 A ST AC@,TTYOFF(3)

S17 §71B CD24 A LD AC3,SLICD1

S18 §71C D363 A ST ACS,TTYOFF(3)

519 #7210 CD23 A LB AC3,SL2CD1

526 §71E D363 A ST ACH, TTYOFF(3)

521 #71F 6768 A PULL AC3 ; AC3 CARD ADDS DETERMD. BY JSR CALL
522 726 D362 A ST ACE,TTYON(3)

523 §721 D348 A ST ACH,TTYOUT(3)

524 9722 AD81 A BOC PFLG,.+2

525 6723 19FE A JNP -1

S26 8724 AF#1 A BOC RFLG,.+2 ; WAIT FOR RTRN MSG
527 6725 19FE A JHP -1

528 §726 C305 A LD ACO,TTYGET(3) ; CLEAR INCON.

529 8727 F11E A SKNE ACO,MS2EOT § SKIP IF NOT EOT
539 #728 1916 A JMP MSTTRH s UNCONDITIONAL TERMTE.
531 #729 D383 A ST ACS, TTYOFF(3)

532 §724 8669 A RTS @

533 :

534 ;

535 872F 4368 A MSTINP: PUSH AC3 * FRNT-END INPUT SUB.

334 #72C CD12
937 872D D3g2
338 872 4F91
939 $72F 19FE
J4¢ 6736 C365
241 8731 A911
942 §732 F16B
943 8733 1985
944 9734 DI8S
945 6735 4D¢1

LD AC3,MSTCD1  ; LOAD CHNNL. 1 ADD“S.

ST ACG,TTYON(3)

BOC RFLG,.+2 ; SKIP IF INPUT FLAG SET

JUP -1

LD AC#,TTYGET(3) ; ™ CHART-R. FROM "

AND AC@,NSRCHK ;MSK UPPER BITS

SKNE ACO,MS3EOT ; SKIP IF NOT EOT

JMP  MSTTRM s UNCONDITIONAL RETURN
MSTSTR: ST ACS,TTYOUT(3) ; PULSE LINE WITH CH.

BOC PFLG,.+2

946 #7346 19FE JHP- -1
947 737 6766 PULL AC3
J48 6738 6869 RTS @

349 8739 6768
358 §73A 4446
551 6738 1933
352

MSTTRM: PULL AC3  ; MASTER TERMNTE,
PULL ACO ; CLEAR STACK (JSR)
JHP MSTIXT ;UNCONDITIONAL EXIT

»T>PT>PP>IP>PDP>PDIP»P>DDODD>DD>DDO>DID>DEDOD>D>
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MASTER INTRPT. SUB.-IEN3

953 673C B828F
954 873B 826F
993 673 #6604
336

>

MSTMSK: .WORD X“826F ; STKFL,CLK,MSTR
MSTINT: .WORD X“826F ; CAN INTERPT,
MS3EOQT: .WORD X’ 9804

> D

’
MSTCD1: .WORD X’986¢

337 #73F 96866 A

598 #7464 9964 A SLICD1: .WORD X’ 9944

999 #741 9888 A SL2CD1: .WORD X~ 9886

969 0742 8661 A MSTONE: .WORD X1

961 6743 G9FF A MSRCMK: .WORD X’ 98FF

362 §744 #96A A MSOCNT: .WORD X“A ; DEC. 18 COUNT
963 @745 6016 A MSTSCH: .WORD X 16 ;SYN CHARACTER
964 #7456 FF#4 A MS2EQT: .WORD X’FF@4 ; SEE MSTEOT
965 0747 #0641 A MS2S0H: .WORD X1 ; "  MSTSOH
966 6748 8985 A MS2SHC: .WORD X’5 ; SEE SHMCNT
967 8749 #6BB A MSSRIT: .WORD MSTRIT

368 ’

549 :

578 874A FIFA A MSTSYN: SKNE AC8,MSTSCH ; TEST FOR SYN CHTR.
571 8748 1987 JHP MS@STR

5§72 #74C CA4E LD AC1,MSNSYN ; LD IN NU. SYN CNT,
573 §74D ESFA4 ADD AC1,MSTONE ; INCRMT.

574 $74E DAGE ST AC1,MSNSYN ; RESET COUNT

575 §74F 6CAD RXCH AC1,ACS

576 $750 9DF3 SKG AC#,MSOCNT ;IF >16 ENQ ON MESG.
577 8751 99F7 JMP @HSSRIT  ;CONT’E. UNTL SOH OR XCESS
578 #752 198D JNP MSEROR  ; OUTPUT EN@ ON MESG
579 6753 C92E A NS#STR: LD AC2,MSTMPT ;LD MSTR MESG STR. PTR.
588 #754 D26 A HSSS5ST: ST AC#,(AC2) ; STR FIRST SYN

581 #755 E9EC ADD AC2,MSTONE

582 9756 15D4 JSR WSTINP ; INPUT NXT CH.

583 6757 F1ED SKNE ACE@,MSTSCH ; TEST FOR NXT SYN CH.

984 #738 19FB JHP MSSSST

985 8759 F1ED A MSTRSH: SKNE AC#,MS2S0H ; SKIP IF NOT START OF MESG.
586 #75A 196B JHP MSCTSH :

987 #75B C46D A SHTST1: LD AC1,MSOHCT ; START OF MESG. TEST

388 875C 6C40
989 #75D 9DEA

RXCH AC1,ACS :
SKG ACO,MS2SHC ; SKIP IF >S5 SOH CNT.

396 675t 1981 JMP MSEROR
391 #75F 1936 JHP MSCNST ; FTHR. PRCSG. INPT. DATA ie. CHNNL. SL
592 8768 5885 A MSEROR: L1 ACH,X’S ; ENQUIRY ON MESG.

393 8761 CDDD
994 8762 D368
395 8763 4Dg1
996 9764 19FE
997 8765 1989
398 9766 CA4D
999 6747 ESDA
608 §768 D44D
681 8769 D246
602 #76A FI1DB
663 #76B 1983
684 §746C E9DS
665 #76D 138D
606 §76E 19EA

LD AC3,HSTCD1
ST AC#,TTYOUT(3)
BOC PFLG,.+2
JNP .-
JMP MSTIXT
KSCTSHz LD AC1,HSOHCT
ADD AC1,MSTONE  ; MSTR. CNT. OF SOH"S
ST. AC1,MSOHCT
MSSTRE: ST ACH,(2) : STORE SOH DATA
SKNE ACO,MS2EOT
JHP MSTIXT ; EXIT END OF CMND.
ADD AC2,MSTONE
JSR MSTINP
JHP MSTRSH ; NXT. SOH

>PP2>D2>P2PPP>D>DDODDIDPDPIDPIDODITDDDODDOPDPIO>DIPIDO>DDODD>DDODDOPDIOPIPIIODIPDODIPDDIODI>I>D
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PACE

697
608
649
619
611
612
613
614
615
616
617
618
619
628
621
622
423
624
625
626
627
628
629
639
631
632
633

634
635
636
637
638
639
)
641
642
643
644
645
646
647
648
649
658
651
652
653
654
455
656
457
458
459
668
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MASTER INTRPT. SUB.-IEN3

g76F
477¢
8771
8772
8773
$774
8773
8776
8777
$778
8779
§774
¢§77B
877¢C
€770
6§77t
877F
§789
#/81

9782
£783
8784
$785
9786
§787
6788
§789
§784
#4788
$78C
978D
878E
878F
9799
§791
8792
$793
8794
§795
796
$797
§798
8799
8794
8798
879¢
§79D
479€
§79F
67hd
741
742

oCed
20066
D@D
DB4E
ChCB
D3g2
cbCa
D363
cbCy
D383
Co#s6C
6008
Cés8
C449
C86A
CCéB
3300
3389
7Céo

2009
CSFE
ce73
7A81
6D8é
C2e9
CC6F
6089
2414
158C
6409
6099
AT4D
1588
6409
34:1
D874
FA74
goee
19F 1
4Ded
A949
JFge
Cres
DC&F
J881
D269
E944
9554
F13D
1961
19BE
D2#¢6

’
MSTIXT:

4
MSTMPT:
MSMTRN:

HSHTX2:

MESITX:

MSCNST:

MSSCBL ¢

HSHSTR:

RCPY AC8,ACH; EXIT ROUTINE

LI ACS,9
ST ACH,MSOHCT  ; RESET "“SOH" COUNT
ST ACB,MSNSYN ; “  SYN "

LD AC3,MSTCD1

ST ACO,TTYON(3) ;TURN ON

LD AC3,SL1CD1

ST AC@,TTYOFF(3) ; " OFF S1
LD AC3,SL2CD1 ; * " §2
ST ACO,TTYOFF(3) :
LD AC8,RETHST

PUSH ACH

LD AC,MSTREG

LD AC1,MSTREG+1

LD AC2,MSTREG+2

LD AC3,MSTREG+3

PFLG IEN3

SFLG IEN3

RTI

.UORD MMSGST

LD AC1,MSTHPT  ;MESG. TRANSHMIT SUB.

LD AC2,MSERAD ; LAST ADDS. DATA STORE

AISZ AC2,1 s INC TO INC. ETX CODE.
RXCH AC2,AC1 ; AC2 HAS END OF MESG. STORE,
LD AC@,(AC2) ; TRNS BLOCK AS DETR AC2 TD AC3 VAL.
LD AC3,MSTCHL

PUSH ACH

ROR 9,8,8

JSR MSTFET

PULL ACH

PUSH AC@ ; TRANS. A CH. :NEED A RETURN CH.
AND AC@,MSRUD

JSR MSTFET

PULL ACS#

ADD AC2,MSTONE

ST AC2,MSGEND

SKNE AC1,MSGEND ; SKIP IF NOT EQ. END MES’G.
RTS @ ; RETURN TO EXIT ROUTINE.

JHP MSHTX2 3 CONTINUE UNTIL CMPLTD.

RXCH AC@,AC! s WSTR. CHNNL. SELECT STORE
AND ACO,NSTCHN ;MSTR. CHNNL. SET

RCPY AC#,AC3

LD AC3,TTYUD1-1(3) ;GET TRN’S CHNNL

ST AC3,MSTCHL

LI ACS,! » RETURN ADDS. FTR.

ST AC@,(AC2) ; STORE RT’N, ADDS. FOR SLV.
ADD AC2,MSTONE

JSR @MSINLD s INPT. STRT/NEXT BLOCK
SKNE AC#,MSTSOH ;SKIP IF NOT "

JMP MSMSTR

JMP MSEROR ; OTPT. ENQ. CHTR.

ST AC@, (AC2) ; MESSAGE STORE (SOH)
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441 8743 E99E A ADD AC2,MSTONE

662 8744 9SAE A JSR @MSINLD s INPT MSSG. LNTH.
663 8745 D266 A ST AC8,(AC2) ; STORE MESG. LNTH.
464 746 A91B A AND AC@,MSTMLH ; SLOUGH SECTOR PTR
465 8747 5F60 A RCPY AC@,AC3

bbb ;

667 ; AC3 HAS MESSAGE LENGTH (MAX 256)

468 ;

469 87A8 E999 A ADD AC2,MSTONE

478 87A9 9549 A JSR @MSINLD ; INPT ERROR COIE

471 8744 5D66 A RCPY ACH,AC1 ; LOAD " " IN ACt
672 ;

673 ; AC1 & STK. HAS ER. CDE. =TOTL DATA WDS
674 ;

475 87AB D266 A ST AC@,(AC2) ; » " "

476 874C D873 A ST AC2,MSERAD ; STRE. ERR. CDE MSG. ADDS
477 874D E994 A ADD AC2,MSTONE

478 87AE 6069 A PUSH ACd ;STORE " " " STK,

479 B74F 7181 A CAI ACt,1 s -(ERROR CODE)
489 67B# D472 A ST AC1,MSTERR ; STRE ERR CDE.

481 :

682 3 AC! HAS -ERROR CODE

483 ;

684 §7B1 9541 A JSR @MSINLD s TEST FOR “FS*"
485 #7B2 F158 A SKNE AC#,MSTFSC :FILE SEPARATOR CH.
686 §7B3 1992 A JNP MSCMDL : JMP TO COMND. LD
487 §7B4 4488 A PULL ACS

488 87BS5 19AA A JMP MSEROR : OTPT. ENQ. CHTR.
489 97B6 D288 A MSCMDL: ST AC@,{AC2) ; STORE FS.

498 67B7 E9BA A ADD AC2,MSTONE

491 6788 953A A JSR @MSINLD ; INPT. TX. OR LD CMND.
692 47B9 A942 A AND ACO,MSRWD

693 67BA F164 A SKNE ACO,NSTXCH

694 87BB 1967 A JHP MSUCMD ; STORE TX CMND.

695 87BC F183 A SKNE ACO,MSLDCH

696 #7BD 1985 A JMP MSVCMD ; STORE LOAD CMND.

497 87BE 19A1 A JMP MSEROR ; ENQ ON MSG

698 §7BF 8954 A MSTXCH: .WORD X“54 ; TX CHARATR, T

499 67C89 §94C A MSLDCH: .MWORD X“4C ; LD * L

760 #7C1 9891 A MSTANE: .WORD X“1

791 97C2 OOFF A MSTMLH: .WORD X’9@FF , MSTR. MSG. LNG6TH. MASK
762 #7C3 D679 A MSVCMD: ST ACO,MSTCHMD ;STORE COMAND

763 ;

764 '

7085 ; THIS ROUTINE ROTATES § CREATES

786 s NEW CMNDS. FOR NXT LEVEL

787 ; DEPENDING ON SECOND CMND. GROUF

768 :

769 :

718 8704 952E
711 67C5 2418
712 87C6 D24¢
713 §7C7 E9F9
714 87C8 D2#¢

JSR @MSINLD

ROR AC#,8,8 ; ROTATE NXT STAGE CHND
ST AC@,(AC2) ; STORE NEW COMMAND

ADD AC2,NSTANE

ST AC@,(AC2) ; ROTATED FOR NEXT LEVEL

» > D> > D>
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PACE FTND CTRLPRGAM 17/18/78
MASTER INTRPT. SUB.-IEN3J

715 67C9 E9F7 A ADD AC2,MSTANE ; & STORED

716 67CA 2418 A ROR AC8,8,8 ; ROTATE BACK FOR TEST
717 @7CB A938 A AND ACY,MSRUD

718 @7CC F1F2 A SKNE AC@,MHSTXCH

719 §7CD 1963 A JHP MSTADP  ; JUMP TO HSTR ADDS PTR.
728 87CE FIF1 A SKNE AC@,MHSLDCH

721 §7CF 1981 A JMP NSTADP ; » v » woow
722 87D6 198F A JMP MSEROR ;™ENG ON MSG

723 #7D1 9521 A MSTADP: JSR @MSINLD

724 67D2 D871 A ST ACO,MSTABD ; STORE ADDS PTR.

725 6703 D288 & ST ACO,(2)

73; §7D4 E9EC A ADD AC2,MSTANE

7 ’

728 ; CMND. IN MSTCKD , ADDS. LOC. IN MSTADD
729 :

738 87DS 951D JSR BHSINLD : TEST FOR STX

731 67D6 F127 SKNE ACS,MSTSTX

732 6707 1981 JHP MSCDST

733 67D8 1987
734 8709 D286
735 87DA E92¢

JHP MSEROR ; TRNS. ENQ.
HSCDST: ST ACH,(AC2) y STORE STX
ADD AC2,MSTMNE

>D»®@DP>D>DD>GD>D>

736 87DB 6BBH RADD AC2,AC3 ; CHND. STORE AC3 = END TEXT
737 H

738 ; AC3 = (END ADDS.-1)

739 H

746 67DC 7361 4 CAI AC3,1 ; AC3= -(LAST LOC. -1)

741 87DD 9515 A HSCDIP: JSR EMSINLD ; INPT. DATA

742 87DE F123 4 SKNE AC#,MSTETX ; TEST FOR END TEXT ETX.
743 87DF 1989 A JMP MSECDT ; JHMP TO ERROR TEST

744 B7ES CA72 A LD AC1,MSTERR

745 B7E1 46998 A RADD AC#,ACH

746 87E2 DA72 A ST ACY1,MSTERK ; DECREASE ERR CNT

747 @7E3 D269 A ST ACH,(AC2) ;STORE DATA

748 #7E4 E916 A ~ADD AC2,MSTMNE  ; INCMT. ADDS.

749 $7ES 5C88 A RCPY AC2,ACH

756 87E6 48C6 A RADD AC3,AC# ; CURRENT ADDS-(LAST ADS.-1)
751 #7E7 4261 4 BOC C2,MSECDT ; BRNCH. TO ERROR CODE TST.
732 87E8 19F4 4 JHP MSCDIP ; CONTINUE INPT.

753 s

754 ; AC2 = END OF STORAGE

753 H

756 97E9 5063 A MSECDT: LI AC#,X"3 ; ETX

757 #7EA D286 A ST AC#,(AC2) ; STORE ETX

758 B7EB 6489 4 PULL ACO ; ERROR CODE TEST

759 87EC 4117 A BOC C1,CMMTST ; JUMP TO CHND. EXECUTE

760 87ED C472 A LD AC1,MSTERKR

761 @7EE S5CA¢ A RCPY AC1,ACH _

762 87EF 4114 A BOC C1,CMMTST ,; " » " "

763 B7F8 59815 A LI ACO,X715 ; LOAD NACK DUE TO ERR.
764 87F1 9942 A JHP @MSERR3

763 ;

766

’
767 @7F2 §72B A MS2INP: .WORD MSTINP
768 87F3 §78C A MSINLD: .WORD MSTILD

>
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PACE FTND CTRLPRGH 17/18/78
MASTER INTRPT. SUB.-IENJ

769 @7F4 €761 A MSERR3: .WORD MSEROR+1

779 ;

771 ;

772 Y

773 97F5 8066 A MSNXSB: HALT y INSERT NEXT SUB HERE
774 07F6 B26F A MSITST: .UORD X" 828F s NEW FLAGS

775 87F7 B26F A MSMSK: .WORD X~ 826F ; CLK CAN INTRPT,
776 #7FB 96806 A MMSCD1: .WORD X’9809 ; MASTER CARD

777 #7F9 9888 A MSCD1A: .UORD X’96886 ; FRTEND CARD ADDS
778 #7FA 9888 A S2CD2A: .WORD X-“9886 ; SLAVE2 CARD ADDS
779 #7FB #8681 A NSTHNE: .MORD X1

780 87FC #6FF A MSRWD: .WORD X“FF ; MASK OUT MSR’S.

781 #7FD #6861 A HSTSOH: .WORD X1 § "SOH" STRT. OF MSG.
782 #7FE #9842 A MSTSTX: .WORD X2 ; STRT. OF TEXT "STX"
783 @7FF #6864 A MSTEOT: .WORD X“4 ; UNCONDITIONAL TERMINATE
7684 6800 06685 A SHICNT: .WORD X°5 ; SOH COUNT

785 0881 #6907 A MSTCHN: .WORD X’7

786 0862 0683 A MSTETX: .WORD X“3 ;END OF TEXT

787 9843 #41C A MSTFSC: .WORD X“1C ; FILE SEPARATOR CHTR.
788 ;

789 ;

798 8864 5866 A CHMTST: LI ACO,X"86 , LOAD ACK -CORRECT MESG
791 #8685 CDF3 A LD AC3,HSCD1A ; " ADDS OF CARD

792 #8646 D3F2 A ST ACO,TTYON(AC3)

793 #867 DIfF A ST ACH,TTYOUT(AC3)

794 6868 4D#1 A BOC PFLG,.+2

795 #8069 19FE A JKP -1

796 680A CO79 A LD AC#,MSTCMD

797 686B F1B3 A SKNE AC#,MSTXCH

798 888C 1984 A JMP NECDLS ; JMP TO NEV ERR CDE &DATA LD
799 986D F1B2 A SKNE AC@,MSLDCH

868 #BOE 1943 A JKP LDMXSB HE "o "
881 #O86F 9931 A JMP @MSERRR ; CHND ERROR

862 ;

863 ;

844 ’ THIS SUB. CREATES

885 7 1 NEW DATA - DEPENDS ON REQ‘T.

866 ; 2 " ERROR CODE FOR ABOVE

867 ; 3 " BASE ADDRESS FOR LOADING

8#8 ; IE. SEE  MSTSLA PTR.

889 .

818 H

811 9818 200606 A MSTPT1: .UORD MMSG6ST

812 ;

813 @811 5200
814 #812 D872
815 #813 CSFC
816 #814 4D8S
817 9815 C29¢
818 #8146 FIEC

14

NECDLS: LI AC2,9
ST AC2,MSTERR ; CLEAR ERR CDE.
LD ACT1,MSTPTI |
RXCH AC2,ACt ; AC1=§,AC2 =HSTHPT

MMSGLT: LD AC@,(AC2) ; TEST FOR “FS"

SKNE AC@,MSTFSC

P>P>PT>DDODD> DT DD

819 6817 1963 JHP MFSFR s JUMP TO MSTR FS FOUND RTNE.
826 0818 7A81 AISZ AC2,1
821 6819 19FB JHP MMSGLT

822 #81A 9926 A JHP @MSERRR
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PACE FTND CTRLPRGM 17/18/78
MASTER INTRPT. SUB.-IENJ

823 0818 7A85 A MFSFR: AISZ AC2,5 ; LOOK FOR MSG LNTH. & ER CD. ADDS
824 #81C D873 A ST AC2,MSERAD ; STRE VALUE OF AC2 IN LOC.
825 #81D 7AF9% A AISZ AC2,-7

826 6B1E CD29 A LD AC3,MSTSLA ; LD BASE ALDS PTR.

827 981F C206 A LD AC@#,(AC2) ,; " SECTOR PTR. (SEC. FOR DIF DEVICES
828 #8289 A%1F A AND AC#,MSTSEC ;

829 8821 48C9% A RADD AC3,ACé ; ADD SECTOR TO BASE

836 9822 CC71 A LD AC3,MSTADD ; LOAD ADDS VALUE

831 6823 648CH A RADD AC3,AC# ; TOTAL = ADDS+SECTOR+BASE
832 8824 7485 A AISZ AC2,5

833 6823 D289 A ST AC#,(AC2) ;y STRE. " & " PTR MSG ADDS.
834 #8246 7AFD A AISZ AC2,-5 ; MSG. LNTH, LOC.

835 6827 C289 A LD ACA,(AC2) ; LD MSG LNTH IN ACH

836 #828 A9D3 A AND ACO ,MSRUD ; REMOVE SECTOR PTR.

837 08829 C472 A LD AC1,MSTERR

838 9824 7A81 A AISZ AC2,1

839 #82B D872 A ST AC2,MSTERR ; STRE ADDS OF ERR IN ERR CDE LOC
849 #82C C871 A LD AC2,MSTADD , LD ADDS " " aC2

841 #6820 5FBF A RCPY AC2,AC3 7 STARTING ADDS TX MSG

842 9B82E 64B#8 A RADD AC8,AC3 ; FINISHING " * v,

843 682F 7381 A CAl AC3,1 ; AC3 = -(LAST LOC. -1)

844 6838 C268 A WFSFR1: LD ACS,(AC2) ; LI DATA

843 6831 4988 A RADD ACY,AC1 ; CREATE NEW ERR CDE.

846 9832 7481 A AISZ AC2,1

847 €833 D871 A ST AC2,MSTADD ; STRE NXT LOC.

848 #834 B#73 A ST AC9,@MSERAD ; " DATA IN F.E. STORE
849 0835 S5CB¢ A RCPY AC2,ACH

858 €836 648CH A RADD AC3,AC4 ; CURRENT ADDS -(LAST-1)

851 9837 4284 A BOC C2,MSNECS ; BRANCH TO NEW ERR STRE
852 #838 C#73 A LD AC#,MSERAD

853 #839 7861 A _AISZ_ACH, !

854 #83A DE73 A ST ACS,MSERAD

855 $#83B 19F4 A JHP MFSFR1 ; GET NEXT 146 BIT WD.

856 ;
MSNECS: RXCH AC1,ACS

857 983C 4CA8 A

858 #83D B872 A ST ACH,@MSTERR ; STRE INDIRECT

859 -

868 ; NEW ERROR COLE

861 H " DATA

862 ; ALL LOADED IN MST MESG. LOC.

863 ;

864 H

B46S #83E 1967 A JHP TXMXSB ; TRANS MSG.

866 #83F FC86 A MSTSLA: .WORD X’/FC88 ; BASE SLAVE ADDS. PTR.

867 6848 FFoe
8é8

>

MSTSEC: .WORD X’FF48 ; MSTR SECTOR ADDS MASK

?
MSERRR: .WORD MSEROR

849 8841 9760 A

876 0842 6718 A MSFETX: .WORD MSTFET

871 $843 4783 A MSMTX1: .WORD MSMTRN

872 #844 2006 A MSMPTR: .WORD MMSGST

873 8845 0614 A MS2SCH: .WORD X“14 ;  SYN., CHARACTER
874 .

875 TRANSMIT STORED MESG-END WITH EOT.

876
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877 6846 CDB2 A TXMXSB: LD AC3,MSCI1A

878 6847 D383 A ST ACO,TTYOFF(AC3) ; TURN OFF CD1
879 6848 CDB1 A LD AC3,S2CD2A y CD2
886 6849 D3IE3 A ST AC#,TTYOFF (AC3)

881 984A CDAD A LD AC3,MMSCD1

882 #84B D3d3 A ST ACH,TTYOFF (AC3)

883 984C 95F6 A JSR @MSMTX1

884 #84D 5004 A TXMXAC: LI ACO,X" 04 y EOT
885 #84E 95F3 A JSR @MSFETX

886 #84F 9948 A JMP @MSTEXT

887 #8568 #76F A MSTEXT: .WORD MSTIXT

888 #851 @#FF A MSTML1: .WORD X’ 04FF

889 ’

899 y LOAD MESG INTO RE@'D. MEM. AREA
891 ;

7
LDKXSBs LD AC3,MSNPTR ; SETUP LD MESG. PTR,
NXMSSH: LD AC@,(AC3)

ADD AC3,NSTMNE
SKNE ACD ,MS2SCH

892 985? CDF1
893 98853 C369

894 8854 EDAS
895 #8355 FI1EF

896 #856 19FC JHP  NXMSSH
897 8857 F1A3 SKNE ACO,MSTSOH
898 £858 1961 JMP NXLDLN

>2P>PD>2P>D>DD> > D

899 9859 9914
994 ;
981 9854 C387 A NXLDLN: LD ACO,7(AC3) ; LD MSG. LNGTH.
962 #85B A9FS AND AC,MSTHL1

JHP @MXLDEQ ; MASTER ENQ ON MSG

> D>

983 #85C SFE0 A RCPY ACO,AC3

994 :

995 :  AC3= MESG, LENGTH (MAX 256)
986 ; |

987 8850 C871 A LD AC2,NSTADL

998 ;

999 ;  AC2= MESG DESTINATION
918 ;

911 885E 6B8E A RADD AC2,AC3

912 §85F DC71 A ST AC3,MSTADD

913 ;

914 :  MSTADD = LAST LOC.
915 ; AC2 = FIRST LOC.
914 ;

917 98640 CDE3 A LD AC3,MSHPTR
918 6861 C308 A MSDATS: LD ACO,(AC3)
919 6862 ED98 A ADD AC3,MSTMNE
920 9843 F194 A SKNE ACO,MSTSTX
921 #864 1901 A JHP MSSTDT
922 9865 19FB A JHP MSDATS : LOOK FOR STX
923 6866 C38# A NSSTDT: LD ACO,(AC3)
924 #847 D249 A ST ACd,(AC2) ; STORE DATA
925 #8648 ED92 A ADD AC3,MSTMNE
926 9849 E991 A ADD AC2,MSTMNE
927 §84A FB?1 A SKNE AC2,MSTADD
928 684D 1981 A JMP LDIXTS ; JMP TO LD EXIT SUB.
929 #86C 19F9 4 JHP MSSTDT
A

936 686D SCH® A LDIXTS: RCPY ACO,ACO



PACE ASSEMBLER REV-A 28 DEC 76
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931 986k 9946 A . JHP @TXMXC1
932 986F 984D A TXMXC1: .WORD TXMXAC

933 6876 #7466 A MXLDEQ: .WORD MSEROR
934 ’

935
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FTND CTRLPRGM 17/18/78

PACE

SLV2IN INTRPT.

1962
1983
1964
1985
1986
1987
1968
1989
1918
1911
1912
1913
1914
1913
1916
1917
1918
1919
1928
1921
1922
1923
1924
1925
1926
1927
1928
1929
193¢
1931
1932
1933
1934
1935
1936
1937
1938
1939
1949
1941
1942
1943
1944
1945
1946
1947
1948

SUB.-IENS

) ¥ *
TRERRBARERKEERKENEREKE KRR KK

’

y
JEREEXEXAEKRERERBKEEKRKKERKE KRS KKRKKE KK XK KKK
) ¥ *
y ¥ *
' ¥ MESG STORED. x
' ¥ ¥
M 0089 %
¥ 9999 *
y‘ " *
. " IGNORED NULLS *
¥ 8809 *
' * XX XX *
' XX XX ALLOW TEN ERRORS IN MESG=*
' ¥ XXXX %
e BOSYN *
¥ DOSYN  NO LIMIT ON NO. *
¥ 00SYN { CONTROL “V7) *
. 00SOH *
¥ 00SOH REQ. SIX SOHS. *
¥ 00S0H *
% 00XXX CHANNEL ADDS. TO NXT LEVEL=
'8 08S0H SEFARATOR (CNTRL “A7) *
3* XX,YY  SECTOR_ADDS.,MSG, LENGTH 146BIT#*
' ERROR CODE. *
' ¥ 89FS (CNTRL “SHIFT” L7) =
' ¥ BATX OR #OLD TX=-"T (X 547)/L(74C*
7*# TXTX; TXLD ; LDTX ;LD8® SLV CMNDS, *
' ® SL1ADD PTR. 16 BIT CHNGE BY PRG #
¥ #OSTX X2 START OF TEXT (CL.B)*
S XXXX DATA 146 BIT *
V¥ XXXX " DETERMINED BY LNG*
' #6ETX  END OF TEXT %
¥ *
o WILL EITHER TRANS ACK OR NACK AT END #
s *
) 0 IS 8 BIT @ IS 146 BIT UDS *
M #80 USE BRK KEY *
' ® EOT CNTRL “D” & ETX CNTRL’C” *
o3 *
;#tt#t#t**tt*t*t*tt*t**t**t**t*t*******t***

#B4A .=.+59
dB9C 8668 A NXTSBE2: .WORD ¢

#OBD A

LEND START
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APPENDIX C : MASTER HIGH SPEED SERIAL DATA INTERFACE CARD

FOR HP-21MX

Circuit Diagram

RS232C and 20 Milliamp Loop

50 to 9600 Baud
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APPENDIX D : FRONTEND AND SLAVE HIGH SPEED SERTAL DATA

INTERFACE CARD

. Circuit Diagram

. Dual RS232C and 20 Milliamp Loop

. 50 to 9600 Baud
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APPENDIX E : PUBLISHED PAPER BY AUTHOR

"Hierarchical Control Using

Satellite Microprocessors"
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Control Using Satellite Microprocessors

A.W.COTTON

State Electricity Commission of Victorra

G. J LOWE

Senior Lecturer, Footscray Institute of Technology. Victoria

SUMMARY The aim of this paper is to show some of the developments in hierarchial control and monitoring of

large scale industrial installations,

Past, present and future trends will be covered.

Research work

currently being undertaken at Footscray Institute of Technology, into the problems and benefits of a syszem

using limited Interconnection betwean satellite microcomputer controllers and a master minicomputer ix =
saper.

ZORTTOl SNVIrOMMEnT will 2 Lsed az the basis 2F the

Zoth nariware and software rijlirements are presented and also general cbservations based on zthe auth:zr

remote control and monitoring methods will be discussecé as well
a micrzcemputer tased scheme. :

experiences. With faliing microcemputer costs and increasing scales of operation in industrial
InsTE..87I003 sericus consizersticon will have o be given to the methods of control and monitoring.
i INTRODUCTION in particular due to the unattended operation <f <he

diith the development of large, complex industrial
instailztions comes <he need Zor a central control
centre i overall co-ordination is to be maintained.
One example 1is the develocment of power generation
utilizirngz fossil Zuels. As the size of the various
power stations increased, so did the demand for
fuel, hence the operations in the mining of the

coal became more anc more complex. In order to

keep the bunkers of the power stations full, a
network of conveyors is required to transport the
coal frcm the dredgers (or excavators) in the bottom
of the open-cut mine 5 the sower station bunkers
arcund tne outside.

Initially the suprly of coal was fairly easy to
cc-oriinate, but as the cdistances Involved increased
to kilcmetres and the transgort equipment increased
in size and numbers, it was found necessary to
centralize the control and monitoring of the
transcort systems.

Generally, located remote Srom the working faces of
the cpen cut mine, the control centre's function is
to plan and control the activities on both a daily
and long term basis. Without Tthe control centre,
this large and cemplicated transport system, would
be most inefficient in its operation. The amount
of time lost starting and stopping the long conveyor
system is considerable, so the jcb of the control
centre is to try and keep every item of plant in
service and producing in the most efficient overall
manner.

Briefly a remote control and monitoring scheme such
as aiready menticned, combines both computer and
telemtry techniques in order to control the activ-
ities of a complex plant situation, consisting of
manned dredgers and stackers and unmanned belt
conveyors and pumping stations. This equipment must
be controlled to avoid overfilling and spillage at
the transfer points during start-up, normal operation
and stopping.

In addition to this main control function there are
monitoring functions which have to be carried out,

conveyors and pumping stations. In the case ¢f the
unattended plant the volume of informaticn to ze
transmitted is much bigger than with the manne:l
units. '

The evaluation of technical and economical asgects
shows the expediency of employing remote controi
and monitoring equipment. For the past 15-20 years
the remote control and monitoring systems have
generally used some form of multiplexing (frequercy
or time division, F.D.M., T.D.M.) or direct wiring
to connect the remote outstations (conveyor drive
units etc.) to the control centre which usuaily

had a minicomputer to provide the overall strategy
for control and monitoring the plant.

The control necessary for the individual machinerv
is placed on the unit itself in cubicles near the
power circuits and equipment and normally operates
at a lower voltage (240V a.c. or 110V d.c.) thaa <he
primary circuits. Initially the control logic was
implemented using conventional relays, more rezezzly
(5-10 years) solid state logic has been used.

With falling hardware costs, especially in the field
of small computers (microcomputers), and increasicg
plant size and complexity it is becoming feasible

to implement the requirements of control and =co-
itoring for large industrial installations by
dedicating various functions to distributed c<ocpuTer
at the remote outstations. The distributed computer
would be linked together in a hierarchial corntrsl
scheme with overall control still maintained aTt the
control centre. Research is currently being carried
out at Footscray Institute of Technology based cn
using the microcomputers as multiple slave ccrruzers
in a distributed remote control and monitoring

scheme. Initial results should be available .ate
1977 or early 1978.

A typical layout showing the remote outsrTarticns .zt
the conveyor drive ends, etc.) and the contrc.
centre is shown by Fig. 1. The diagram has Seen
simplified by leaving out the interchangg ceTwesr
rhe various levels within the open cut m n2.



Bunker

Contro.
Centre etres

"WASTER"

remcle mcbile
cutstation (dredger)

Figure 1 A typical "MASTER/SLAVE" layout

2 CURRENT METHODS OF CONTROL AND MONITORING
2.1 Control

The control requirements at each remote outstation

are implemented by interlocking the various functions

that have to be checked before a successful starting
or stopping operation is carried out. Conventional
relays were used to open or close contacts in a
ladder diagram depending on the condition required.
Extra contacts were provided on the same relay for
monitoring purposes.

With the advent of solid state logic the control
functions were then achieved in a similar manner
with hardwired logical "and's" and "or's".

2.2 Monitoring

As mentioned in the introduction another important
consideration is the method by which information
will be sent to and from the control centre. There
are in use today several ways of sending and
receiving data.

2.2,1 Direct wiring

In direct-wired systems as the name suggests all

of the signals are directly wired from the field to
the control centre. Multi-cored control cables are
generally used for connecting the terminal boxes on

the plant to the main terminal strip in the control
centre.

This method was one of the earliest used in trans-
mitting the signals back to the control centre. It
was quickly realised that, if thousands of signals
have to be brought back many kilometres from remote
locations, the cost and number of cables would
become a very large proportion of the cost of an
installation (generally in practice the life of a
control cable is considered to be 15 years under
good conditions) hence either a system is kept to a
minimum or other methods should be assessed.
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2.2.2 Multiplexing 179

Another technique for transmitting information is
multiplexing (either frequency division or time
division), the signals are sent over the same pair
of wires but at different frequencies or different
time intervals.

3 INTELLIGENT REMOTE OUTSTATIONS

Falling microcomputer hardware costs and rising
hardwired logic system costs makes it economic to
consider replacing the current method of remote
control and monitoring in large installations.
is feasible to combine remote control, real-time
data acquisition, distributed computing (hier-
archical computer systems) low-cost communication
links.

It

3.1 System Organisation

The individual remotes could be as shown in Figure
2.
3.2 Microprocessor Hardware

It is not possible to discuss in detail in this
paper the hardware requirement for a control micro-
processor and the following points simply indicate
some of the major aspects.

3.2.1 Program storage-memory

Programs for the microprocessor are usually stored
in ROM's as opposed to read/write store. The type
of ROM used would be one of the following depending
on the requirements of the system they are to be
used in

(a) (b) U-V erasable

(c)

fuseable link
Mask programmed

To/from NMotors
Limit Switches, etc.

< - e ———
To/from .
To/Froe
To/from t
Upstreanm Con rﬁ:n‘r' -Dovastreas
Coniveyor i 'Convcyor
SLAVE 1/ vaszer/ Field SLAVE 2/
v 3
SLave2 SLAVE 2| Input/Output SLAvE
“hcerf Interface
Intecrface interface Circuits
vi:rgcomputer Controller
“SLAVE 27
Memory and cenzral proceszing unit (C.P.U.}
Rack mountec
Note: (1) Catle link for high apeed seriai cata
uses & minimun number of pairs
standard cable.
(2) Pcssible to restore liok to control
cerire via other slaves if necessary.
()} <S.ave could be rack mounted for ease
0f chahge for laboratory testing lastead
cf .ong plabnt outagesx.
(replace by standby)
Figure 2 Interface requirements for a

"Remote Qutstation"



The dynamic memory of the outstation would use
random access memory for storing counters, timers
and data.

3.2.2 Interface requ.irements

In addition to the central processing unit (C.P.U.)
and the memory a microcomputer controller will

also require suitable interface circuits to provide
the inputs and outputs during program execution.
The interface decouples the primary circuits from

the microprocessor by using either a relay inter-
face or opto-couplers.

The main benefits of using microcomputers would be
realized by connecting the remotes together by -
means of a simple serial interface as shown in Fig.
2.

The use of this seriml interface simplifies the
problem of compatibility of communications between
computers and peripherals including different word
lengths and bit rates.

The serial interface with which we are concerned in
the research project is a self-synchronising type.
It was developed so that it can be used with 20
milliamp current loop or the RS232 standards.

4 SYSTEM CONTROL STRATEGY

There are several system configurations currently
being investigated as shown by Figures 3 and u.
Figure 3 shows the master computer maintaining
overall control of the remote outstations via the
front end microcomputers. For a system as shown in
Figure 1 it is envisaged that each main route or
flight of conveyor would have a front end micro-
computer assigned to control the remote outstations
associated with that line. The master would trans-
mit or receive messages via the front end device.
The second method under investigation as shown in
Figure 4 would use the direct links between master
and slave or possibly a secondary route through

the upstream or downstream outstation.
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4.1 The Communication System

Utilizing the serial interface as outlined, the
communication system is designed so that the remote
outstations will handshake with the master computer
The master sends call messages of a particular
station down the line and receives an acknowledge-
ment. After this, instructions are to be sent to
the remote computer requesting it to perform an
operation or report the current status of the plant.
The master station waits for a reply within a
defined time, retransmission could then be carried
out before the outstation is considered to be out
of communication or another transmission route
could be tried.
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4.2 Mode of Operation

In systems as outlined in this study two basic
modes of operation could be used, interrogation on
interrupt (quiescent) or a continuous scan (or
polling) of outstations.

In a quiescent system the remotes would be fairly
inactive, stopping and starting motors, etc. under
normal program execution but continually checking
the previous status of the plant. This mode could
be used to reduce the flow of data to the master
computer. By comparing the status that it last
transmitted to the master, which is stored in its
own memory, the remote can determine if it is
necessary to transmit to the master. The master
will assume the same condition exists, if a remote
has reported that a conveyor has stopped it will
not report its status again, unless it tells the
conveyor to start, or the master requests a complete
status check.

The second mode to be ccnsidered is zon%tinuous

scan, bv cefinition, this method follows a ore-
determined routine in its acguisition of information
Instead of permitting any station report changes
of status as they occur, a continuc:s scanning
system permits each station to repcrt only when it
is "asked" to do so. Tn this way ZJdata <ransmission
is completely controlled by the master statien.
However, continuously scanning systems have no way
of giving priority to important information. Each
critical alarm must wait until it is next scanned
sefore the master station can act on that data.
This is one of the major problems of the earlier
systems using relay or solid state logic, direct
connected or multiplexed. These earlier systems
have no intelligence, hence there is no way of time
sequencing events. A number of techniques have
been employed to reduce the effect of this problem.

- faster scanning

- checking for the presence of altered data before
scanning all data

- increased message efficiency

- system response improvements

4,3 Reliability and Security

The requirement to detect errors in data has been

a concern of the industry since the first data
acquisition and control systems were developed.

With the countless error detection methods available
what error-detection technique should be used. To
determine the best method for a particular system
the need should be clearly defined.

Basically the method employed should be efficient

- the extra transmitted information required for
error detection should be kept to a minimum. It
should also be simple and economic - the error
detection scheme should be relatively straight-
forward and the cost of all special equipment to be
as low as possible.

Redundant data used for error detection purposes

is one source of wasted time in large system. Any
methods by which this wasted time can be reduced
must be very carefully considered. It is proposed
to investigate the method outlined in reference 1.
In this method a simple error code detection on the
master station to outstation is combined with a
more powerful one using considerably more redundancy
for the reverse direction - using a check-back
before execute procedure, all control operations
involving transmissions between master and slaves
are subject also to the more powerful error detect-
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ion code. Hence a reduced redundancy can be employ-
ed in one direction of transmission while still
retaining a very low overall undetected error rate.

5  REQUIREMENTS FOR DEVELOPING A MICROCOMPUTER
BASED SYSTEM
5.1 Hardware
During the development phase a convenient and
economical means of expediting the development of
software and hardware for the intended micro-
processor system is required. Hence a prototyping
or development system is needed which enables
access to the microprocessor's registers, status
flags and memory. There are several good develop-
ment systems on the market which provided mass
storage in the form of a floppy-disc operating
system as well as high speed printouts and inputs.

For testing purposes a panel of switches and
indicators or another microcomputer that simulates
zne process in which the microcomputer is to be
used to control is essential. The use of a second
microprocessor to simulate the plant providing
rereatability is very useful during the debugging
2f the system.

.z Software

An often underestimated requirement is the software.
The costliest part of a system using a micro-
processor is the software. In choosing a micro-
processor, it is essential to pay a lot of attent-
ion to the software. The following software is a
prerequisite when considering available development
kits.

5.2.1 Assembler

The assembler is used to convert mnemonic instruct-
ions into binary patterns. There are, two general
types of assembler packages available for micro-
computers: (1) cross-assembler programs run on
minicomputers (2) self assembler programs run

on the microcomputer itself, usually in the form of
a development system. Every microcomputer now
produced has one or more accompanying cross-
assemblers. With a teletype or CRT console, the
user can type in his assembly language program.
Self assemblers are written with a definite computer
system in mind.

5.2.2 Editor

The editor is used to write, correct, and display

a source program with a minimum amount of source
handling. It also enables the generation of new
source programs and the modification of existing
sources programs in preparation for program assembly.

5.2.3 Loader

This software package is used to load the assembled
programs into random access memory for test purposes
before final programming of the ROM memory.

5.2.4 System software development techniques

It has been found from experience that the software
requirements should be very well documented and also
developed in small modules. ?hortguts and large
programs leads to long debugging time and generally
outweights the advantage of time saved (J. Hont

1976).



) ADVANTAGES AND DISADVANTAGES

The microcomputer can be an ideal replacement for
crdinary hardwired logic. Microcomputers offer
both a new set of challenges and a new set of prob-
lems.
6.1 Flexibility

The microcomputer offers flexibility in
because it enables the hardware designs
carried out in parallel or earlier than the final
software. Hence changes can be made to control
strategy right up to the commissioning stage.
flexibility offered can also be a disadvantage
since there are more factors to consider in the
design of a scheme.

system design
to be

The

6.2 New techniques

With the introduction of intelligence at the remote
outstations it could lead to a whole new set of
technigues in plant control. Some of the possibilit-
ies are - control of maximum energy demand peaks-
cnvevor belt slip control - preprocessing of data,
cius Tany cthers.

£.3 Speed

Though a microprocessor can execute any desired
functions through a sequence of program steps, its
limited instruction set makes that sequence long
hence consideration must be given to execution time
in reail-time systems. Even when the same circuit
family is involved, hardwired logic is faster.

7  CONCLUSIONS

The successful use of a microprocessor as adistribut-
ed computer controller in a large industrial install-
ation will depend on careful assessment of the
applications. In addition to the new benefits and
probiems associated with microprocessors there are
meny secondary ones that have not been considered

in this paper (such as training of personnel) that
must be included in the assessment.
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The area of large scale hierarchical control and
monitoring is one where the designer may find the '
microprocessor especially effective as an alternatiwe
to complex hardwired logic. Using a microprocessor
can result in a standardisation of design approach,
making it easier to get the design process under
way. The microprocessor is typically capable of
executing a large number of complex logic and
arithmetic functions which would be costly to imp-
lement in hardware.

For anybody considering an industrial remote control
and monitoring system in the future, a great deal

of work will have to be put into the investigation
stage of the project in order to determine what

type of system will suit both the present and

future requirements of the installation. Will it

be the already proven hardwired - F.D.M., T.D.M.
systems or will a system using distributed micro-
computers be a better solution?
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F1 Brief Summary of Australian Standard Document (AS 1484)

Part 1 - Basic mode control procedures. This part describes the
implementation of the standard seven-bit character set for information
interchange. It defines the formats for both the transmitted messages
and the supervisory sequences which are part of the transmission control
procedures. A1l control functions are to be performed by the use of ten

specific transmission control characters.

SOH (start of heading) - first character of a heading of an
information message. .

STX (start of text) - used to precede text and terminate a
heading.

ETX (end of text) - terminates a text.

EOT (end of transmission) - used to indicate the conclusion of
transmission.

ENQ (enquiry) - request for a response.

ACK (acknowledge) - an affirmative response to the sender.

DLE (date 1ink escape) - used to change the meaning of a
following character.

NAK (negative acknowledge) - negative acknowledge.

SYN (synchronous idle) - a signal from which synchronism may be
achieved.

ETB (end of transmission block) - for data block separation.

BCC (block check character) - an error check character.
Examples of the format used with three types of messages:

a Format for the transmission of a message without identification -

STX --- Text of Message --- ETX (BCC)
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b Format for the transmission of a message including an address

block or heading for identification -

SOH --- Heading --- STX --- Text --- ETX (BCC)

c Format for the transmission of a heading or the identification of

a remote outstation, etc -

SOH --- Heading --- ETB (BCC)

Part 2 of the Standard covers the character structure for
start/stop and synchronous transmission, defining the character structure

for serial 'Asynchronous' and 'Synchronous' data transmission systems.

Part 3 covers the requirements for error detection. This part
defines one method of error detection and consists of an error check
character (BCC) with the data in addition to the individual parity bits

included with each data word.

Part 4 defines the connector pin numbers for the interface

between data terminal equipment and data communication equipment.

The fifth part of the Standard (AS 1484) covers the extensions to the

control procedures in Part 1.
F2 INDUSTRY STANDARD PROTOCOLS

There are several protocols in use in industry today that meet the
formats specified in the standards, such as AS 1484. Examples of these

are 'BISYNC', 'DDCMP', 'SDLC' and the system protocol developed for the

research project. A brief explanation of each protocol is included in

the following chapters.
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F2.1 Bisync - Character Oriented Protoco1

One of the most widely used protocols in the industry is IBM's 'BISYNC'.
[t has been in use since 1968 for transmission between IBM computers and
batch and video display terminals. 'BISYNC' is a character-oriented
protocol and uses the special characters outlined in AS 1484 (STX, EQT,

SYSM, etc) to separate the various fields of a message and to control the

necessary protocol functions.
The overall format is as shown in Figure F1l below:
SYN SYN SOH --- HEADING --- STX --- TEXT ---- ETX ---- (BCC)

Figure F1 - 'BISYNC MESSAGE FORMAT'

The contents of the heading or identification block are defined by the
user and the text portion of the message is variable in length, the

length of which is also defined in the heading.

To detect and correct transmission errors, 'BISYNC' uses either
vertical/longitudinal redundancy checks (VRC/LRC) or a cyclic redundance
check (CRC) depending upon the information code being used. For 'ASCII',

a VRC check is performed on each character and and (LRC) on the whole

message.

If the code is 'EBCDIC', no VRC check is made, instead a CRC is

calculated for the entire message, CRC-16 is used. See F 3.4 (ERROR

CODE) for an explanation of CRC-16. If the block check character

transmitied does not agree with the calculation by the receiver, several

re attempts : . ..
mo a p are made until the system determines that the transmission
equipment is faulty. ycualle -es..

I 1 N . N o - .
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There are other protocols that have been developed that are similar to

'BISYNC' but they use different control characters.

F2.2 'DDCMP' - Byte Count Oriented Protocols

A study of '"BISYNC' shows that it is a fairly involved protocol with
special procedures required to achieve transparent transmission and
reception. 'DDCMP' protocol has been developed to solve some of the
transparency problems. As shown in Figure F2, the format is similar to
'BISYNC' in that the message is broken into two parts; a header
containing control information and a text body. Unlike, BISYNC, the
header is necessary and forms the most important part of the message
since it contains the message sequence numbering information and the
character count. Each exchange of message starts with a message number
from 0 to 255 depending on the number of the previous message. Whenever
a station transmits a message, it assigns its next sequenced message
number to that message. When an error occurs 'DDCMP' does not require an
acknowledgement as the number assigned specified the sequence number of

the last good message, (30).
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Figure F2 - 'DDCMP MESSAGE FORMAT'

‘DDCMP' has two drawbacks;

first, the header is relatively short,

therefore, a system must have a buffer of the appropriate size ready on

short notice.

Secondly, the transmitting station must not include a

'sync' character in the middle of a message which would affect the

character count, causing an error.

The first problem is overcome by

1imiting the message length to a fixed Tength. The second is shared by

other systems as well.
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F2.3 'SDLC' - Bit Oriented Protocols

In 'SDLC' the information field is not restricted in format or content

and can be of any length. The maximum length is determined by the length

that can be expected to be received error free. The format for'SDLC' is

as shown in Figure F3.

BEGINNING  ADDRESS  CONTROL  INFORMATION  FRAME  END

FLAG 8 BITS 8 BITS  ANY NUMBER  CHECK  FLAG
Figure F3 - 'SDLC FORMAT'

Two flags (two blocks of five '1's') one at either end of the message are
used as reference points for the information contained within the
message, address and control fields and are used to initiate the error

checking. The end flag indicates that the last 16 bits is the error

check.

The address field is eight bits long and indicates the destination for
the message. The control field can have three formats such as

information transfer format, supervisory format and nonsequenced format,

(30).

The information format is used for data transmission and uses sequence

numbering. The supervisory format is used in conjunction with the

information format to initiate and control data transfer in the

information format. The nonsequenced format is used for initialising

stations.

'SDLC' is simpler than some of the other protocols but the errar check
calculations are more involved.
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F3 : ERROR DETECTION

Data communication systems are subject to the introduction of errors by
transient voltage interference from a variety of external sources, for
example lightning, switching and crosstalk from other communications
Tines. MWith the numerous error detection methods available it is

difficult to determine what error-detection technique should be used for

a particular system.

Basically, the method employed should be efficient with the extra
transmitted information required for error detection kept to a minimum.
Redundant data used for error detection purposes is one source of wasted
time in large systems. One method to reduce the data transmitted would
be to have a simple error code detection on the master station to
outstation message combined with a more powerful one for the reverse
direction using a checkback on the received message before executing the
procedure; hence a reduced redundancy can be employed in one direction
of transmission while still retaining a very low overall undetected error

rate, (19).

A common form of noise in transmission systems is burst noise. A noise
burst of 100 milliseconds duration occurring during a 1200 bit per second

transmission could corrupt 120 bits of data.

The periods of high error rate are gererally separated by long intervals
of low noise. Studies carried out by the authors of references (19) and

(23) have indicated an error rate of between 10'4 and 4 x 10'5 for burst

noise.

The following paragraphs explain some of the error detection techniques

that are used in data transmission systems.
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F3.1 PARITY TECHNIQUES

To determine if the bits of a character have been correctly received, it
is quite simple to append an additional bit to each character. The
parity technique sets the additional bit according to the rule that all
characters shall have an odd or even number of ones (odd or even parity).
In a parity system the device summates the ones and adds the appropriate
bit during transmission. The receiver compares the parity bit expected
with the received value and then decides if the data has been received in
error. Parity is commonly included in LSI chips such as the UART. The
limitation of parity is that it can only detect single (or three or five,

etc) errors and this applies to odd or even parity.
F3.2 LONGITUDINAL REDUNDANCY CHECK (LRC)

A second form of error checking is parity on the columns known as
Longitudinal Redundancy Check (LRC) which is also subject to incorrect
checks because it is possible to have a double error in a column. There
are numerous possibilities for double bit errors in characters to occur
simultaneously with double bit errors in columns such that neither
vertical redundancy check (VRC) nor (LRC) will indicate that the errors

have occurred.
F3.4 CYCLIC REDUNDANCY CHECK (CRC)
The detection system most effective at detecting errors in communications

systems with a minimal amount of hardware is the cyclic redundancy check

(CRC).
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CRC calculations are usually done in muitiple exclusive OR's within

hardware or software. The three most commonly used CRC codes are CRC-12,

CRC-16 and CRC-CCITT. (20C)

To evaluate thé effectiveness of a cyclic coding error checking system,
the data message must be considered in a mathematical form. The form
most commonly used is a polynomial with a dummy variable term x. The
least significant bit (LSB) is x° or 1, and the highest order term,
representing the most significant bit (MSB) is x". The coefficients of
the polynomial indicate whether an individual bit is a '0O' or '1l'. Thus

a data stream of 10 bits can be described as -

G(x) 1110101101 (a random selection)

R B AN B S

The code polynomial P(x) can be described in a similar way to G(x),

for example -

= 101111

To generate the check bits for transmission the data polynomial G(x) is
divided by the code polynomial P (x) to obtain a remainder. This
remainder will be of a degree one less than that of the code polynomial,
and will consist of the same number of bits as P(x). fhe data block is
followed by the remainder block in transmission. The message will be
exactly divisible by the code polynomial at the receiver if no errors

were introduced. (23)
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The polynomial division of G(x) by P(yx) is as follows:
G(x) = Q(x) x P(x) + R(x)
Where Q(x) is the quotient and R(x) is the remainder. This gives -

G(x) - R(x) = Q(x) x P(x)
Since R(x) = -R(x) (modulo 2)

G(x) + R(x) = Q(x) x P(x)

Before the division by P(x) thé data G(x) is multiplied by x"
(n is the degree of P(yx)).

15, 13, 12, 10, 8, 7,5

This result is divided by P(y) to give -

x4 8 xr 1

5

Adding to x~ G(x) gives the message polynomial : F(x)

2
F(y) = X14 + X13 + X1 + X10 + X8 + X7 + X5 + X4 + X2 by + 1

[f errors are introduced into the message resulting in an error

polynomial E(y) the received polynomial H(yx) becomes:

H(x) = F(y) + E(x)

The received polynomial H(yx) is divided by P(x), the remainder will be

E(x)/P(x). Hence, a non-zero remainder indicates the presence of errors.



Data Block (MSB) G(x.) (LSB)
Remainder R(x)
(MsB) " (60e}) R(x) (LSB) Transmitted
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Figure F4 - "TRANSMISSION MESSAGE - ARRANGEMENT OF
DATA STREAM"

There are many variations that can be chosen, generally the user selects
a polynomial best suited to the kind of errors that occur in the system,

(21).

CRC-CCITT and CRC-16 are used to detect bursts of 16 bits or longer to
99.998% efficiency (23) CRC-12 detects bursts longer than 12 bits with
an efficiency of 99.975%, (23).

CRC-CCITT is used for European systems and when operating with eight-bit

characters, the block check character (BCC) is 16 bits. The code

polynomial *P(x)' for CRC-CCITT is xi® + x12 + ¥° + 1.

CRC-16 is applied to synchronous systems that use eight-bit characters.

The code polynomial P(x) is x16 + xls + x2 + 1.

CRC-12 is used with six-bit systems and uses (x12 + xll + x3 + x2 +y + 1)

as the code polynomial P(x).





