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ABSTRACT 

Simulation of ocean wave processes and model studies related to marine 

technology are areas of increasing economic and environmental importance. 

Sophisticated laboratory facilities are needed to model ocean wave 

phenomena under controlled conditions. This thesis describes the 

techniques and principles employed in the design, commissioning and 

evaluation of a computer controlled random wave generation facility devised 

to accurately simulate spectral wave models. 

A discussion on the classification of ocean waves is presented together 

with a review of classical wave theories and their range of application. 

The treatment of water waves as a random process is presented along with an 

outline of current spectral analysis techniques. Statistical properties of 

random waves are considered and a description of various mathematical 

spectral models used to represent ocean waves is given. 

Various designs and random wave generation techniques employed in existing 

laboratory wave generators are critically reviewed. A detailed description 

of the design of the wave generator, wave absorbers and wave probe is 

presented. Computer software developed for managing the wave generator was 

principally designed to control the wave maker motion and carry out 

spectral and statistical analyses of recorded wave data. 

Experiments aimed at evaluating the characteristics of the wave generator 

and ancillary equipment are outlined. Both the static and dynamic 

properties of the wave probe were investigated as well as the reflection 

characteristics of the wave absorbers. The system frequency response 

characteristics under various operating conditions were measured and are 

discussed. Random waves produced from a spectral model were used to 

compare the performance of open and closed-loop control techniques. A 

series of experiments devised to investigate the capability of the system 

to generate spectral models of ocean waves were conducted and the results 

are discussed. 



TABLE OF CONTENTS 

PAGE 

Acknowledgements iv 

List of figures v 

List of tables vii 

1. Introduction 1 

1.1 Background 1 

1.2 Aim and Significance 2 

2. i?eview of Classical Wave Theories 3 

2.1 Classification of Ocean Waves 3 

2.2 Development of Classical Wave Theories 4 

2.3 Small Amplitude Wave Theory 11 

2.4 Finite Amplitude Wave Theory 18 

2.5 Stoke's Wave Theory 22 

2.6 Cnoidal Wave Theory 24 

2.7 Solitary Wave Theory 24 

2.8 Stream Function Wave Theory 24 

2.9 Wave Superposition 25 

3. Statistical Analysis of Ocean Waves 33 

3.1 Spectral Analysis of Random Processes 33 

3.2 Spectral Models of Ocean Waves 39 

3.3 Distribution of Water Surface Elevation 44 

3.4 Distribution of Surface Elevation Maxima 46 

3.5 Distribution of Wave Heights 51 

3.6 Significant Wave Height 53 

11 



TABLE OF CONTENTS (cont'd) 

4. Wave Generation Equipment and Software 56 

U.l Review of Wave Generators 56 

4.2 Design of Wave Generator 62 

4.3 Wave Probe 73 

4.4 Wave Absorbers 75 

4.5 Control System 77 

4.6 Software Development 78 

4.6.1 Wave Probe Calibration 78 

4.6.2 Reflection Evaluation and Regular Wave Generation 79 

4.6.3 Random Wave Generation 80 

4.6.4 System Frequency Response Measurement 88 

4.6.5 Statistical Analysis 89 

5. Results and Discussion 93 

5.1 Experiments 93 

5.2 Wave Probe Characteristics 93 

5.3 Wave Energy Absorber Characteristics 96 

5.4 System Frequency Response Evaluation 97 

5.5 Comparison of Open and Closed-loop Performance 106 

5.6 Generation of Single Peak Spectral Models 114 

5.7 Generation of Double Peak Spectral Models 123 

6. Conclusions 129 

Bibliography 130 

Appendix A. Further Theoretical Relationships for the Wallops 

Spectrum 136 

Appendix B. Formulation of the Wave Maker Generating Surface 137 

111 



ACKNOWLEDGMENTS 

I wish to express my deep appreciation to Dr. G.T. Lleonart, who initiated 

and supervised this study, for his valuable guidance and helpful 

suggestions. My gratitude extends to Mr. R. Juniper, Dr. M.A. Sek and Mr. 

J. McLeod for their constructive advice. My thanks also go to the 

technical staff of the Department of Mechanical Engineering and the Fluid 

Dynamics Laboratory who contributed in the construction of the wave 

generation facility. 

I would finally like to thank the secretarial staff of the Department of 

Mechanical Engineering who assisted in the typing of this report. 

IV 



LIST OF FIGURES 

2.1 Estimation of the distribution of wave energy. 

2.2 Conservation of mass. 

2.3 Rotation of a fluid particle. 

2.4 External forces acting on a fluid element. 

2.5 Schematic diagram of a small amplitude wave. 

2.6 Effects of water depth on fluid particle paths. 

2.7 Classification of wave theories. 

2.8 Stationary finite amplitude wave. 

2.9 Second order Stoke's wave. 

2.10 Illustration of various wave profiles. 

2.11 Polar representation of common harmonics of arbitrary phase. 

2.12 Nodes and antinodes of wave envelope. 

3.1 Linear system input-output relationships. 

3.2 Variation of the water surface elevation maxima with spectral 

width parameter. 

3.3 Narrow band random process. 

3.4 Definition of wave heights. 

3.5 Variation of Hj^,^/ 2MQ. 

4.1 Some types of wave makers. 

4.2 Schematic of wave generation facility. 

4.3 Wave maker support arrangement. 

4.4 Wave maker dimensions. 

4.5 Wave maker plunger. 

4.6 Wave maker arrangement. 

4.7 Wave generator arrangement. 

4.8 Force excitation of A frame model for FEA. 

4.9 Deflection response of A frame. 

4.10 Displacement excitation of pivot beam for FEA. 

4.11 Displacement response of pivot beam. 

4.12 Electro-hydraulic wave generator system. 

4.13 Wave probe. 

4.14 Wave energy absorbers. 

4.15 Parabolic wave absorber pattern. 



LIST OF FIGURES (cont'd) 

4.16 Illustration of control method for random wave generation. 

4.17 Random wave generation control flow chart. 

4.18 On-line menu for random wave generation. 

4.19 Signal generation and acquisition method for random wave 

generation. 

4.20 Spectral moments computation method. 

5.1 Wave probe static calibration curves. 

5.2 Time response characteristics of wave probe. 

5.3 Stoke's breaking wave profile. 

5.4 Breaking wave measurement. 

5.5 Amplitude reflection characteristics of wave tank. 

5.6 Definition of single and dual stage systems. 

5.7 Single and dual stage system frequency response estimates. 

5.8 Variation of system frequency response with wave probe 

location. 

5.9 Variation of system frequency response with input signal level 

5.10 Open-loop spectral estimates. 

5.11 Closed-loop spectral estimates. 

5.12 History of measured spectral estimates. 

5.13 Control system recovery. 

5.14 Single peak target spectra. 

5.15 Command signal distribution. 

5.16 Single peak spectrum - experiment 1. 

5.17 Single peak spectrum - experiment 2. 

5.18 Single peak spectrum - experiment 3. 

5.19 Single peak spectrum - experiment 4. 

5.20 Double peak spectrum - experiment 5. 

5.21 Double peak target spectra. 

5.22 Double peak spectrum - experiment 1. 

5.23 Double peak spectrum - experiment 2. 

5.24 Double peak spectrum - experiment 3. 

IB. Development of the plunger generating surface. 

2B. Expected maximum horizontal displacement error. 

VI 



LIST OF TABLES 

5.1 Experimental conditions - single peak spectrum. 

5.2 Statistical results - single peak spectrum. 

5.3 Experimental conditions - double peak spectrum. 

5.4 Statistical results - double peak spectrum. 

VIL 



1. INTRODUCTION 

1.1. Backgrotind. 

Oceans are a major source of minerals, energy and food and constitute an 

essential means of communication, distribution and transport. The motions 

in the upper ocean provide the means for the exchange of matter, momentum 

and energy between the atmosphere and the underlying ocean. These 

exchanges produce the general circulation pattern in the oceans and at the 

same time form one of the most important factors in the worldwide 

distribution of climate. 

Successful ventures in the marine environment, such as the design and 

construction of ships, structures, diving, dredging, drilling and towing 

equipment as well as communication equipment require a wide range of 

information and professional advice on the behaviour of the oceans. 

Even to the casual observer, the random nature and continually changing 

condition of the ocean surface is evident. Waves of different lengths 

travelling at different speeds combine and recombine to form constantly 

changing patterns. For a long time it was thought that this apparently 

chaotic process was beyond adequate mathematical description. In 

comparatively recent times, the development of an approach based on the 

combination of statistics, Fourier analysis and hydrodynamics promises a 

better understanding of real sea conditions. Statistical theories have 

been used to determine stable parameters for describing random sea states, 

Fourier analysis was then employed to separate the random process into 

harmonic components which can be analysed using classical theories of wave 

motion. 

The evaluation of sea surface conditions is a problem of long-standing 

interest to ocean engineers and the effects of wave motions on natural and 

artificial structures demand detailed and sophisticated analysis. 

Important considerations in the study of ocean waves are firstly, the 

observation, description and measurement of the phenomenon under natural, 

uncontrolled conditions, and secondly, the physical modelling of one or 

more attributes of ocean waves under controlled conditions in the 



laboratory where the analysis of these motions and the development of a 

coherent theory can be undertaken. It is only by drawing these 

considerations together in a consistent manner that the nature of ocean 

wave motion may be better understood. 

1.2. Alms and Significance. 

There is a need for wave generators which can be readily and accurately 

programmed to undertake experimental studies on wave phenomena and scale 

modelling of offshore structures, mooring systems, breakwaters, beaches and 

other marine engineering systems. Such a laboratory facility would provide 

a tool for deepening our understanding of the basic design and physical 

processes involved. 

With the advent of digital computers and electronically controlled 

servo-mechanisms, wave generators can be controlled more accurately and 

reliably. Furthermore, with digital computers, optimal control techniques 

such as feedback compensation in the frequency domain, are more easily 

implemented. 

The principal aim of this work is to design and commission a computer 

controlled random wave generator capable of simulating ocean wave phenomena 

and analysing data in a practical engineering manner. 



2. REVIEW OF CLASSICAL WAVE THEORIES 

2.1. Classification of Ocean Waves, 

In this chapter the classical theories for unsteady free surface flow 

subjected to gravitational forces are reviewed. Such motions are called 

water waves. They are also called gravity waves. From a physical 

standpoint there are a great multiplicity of water waves which range from 

tsunami waves generated by earthquakes to seiches in harbours; from tidal 

bores in estuaries to waves generated by wind in the oceans. 

Water wave motions are of such diversity and complexity that classification 

is far from simple. One method of classifying ocean waves is by estimating 

the relative energy content at various wave periods. Figure 2.1, after 

Kinsman (1965), shows that a large amount of energy is associated with 

gravity waves. These waves, with periods ranging from 1 to 30 seconds, are 

of primary concern. 

Period 
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Figure 2.1. Estimation of the distribution of ocean wave energy. 

- After Kinsman (1965) -

Gravity waves in the ocean are further distinguished according to the 

following criteria: 



(i) Sea - waves created by direct action of the wind on the ocean 

surface. 

(ii) Swell - waves caused by distant meteorological disturbances which 

have spread from the generating area and are no longer subjected to 

significant wind action. 

Seas generally consist of steeper, higher frequency waves of shorter 

wavelengths and are more chaotic than swells. Swells persist after the 

source of disturbance has disappeared and maintain a constant direction so 

long as deep water conditions prevail. Sea waves, caused by local wind, 

are often superimposed on swells and interactions between the two can cause 

unpredictably high waves. 

2.2. Development of Classical Wave Theories. 

Water wave theories may generally be classified in two main groups. These 

are the small amplitude wave theories and the long wave theories. The 

small amplitude wave theories cover the linearised solutions for 

infinitesimal amplitude waves as well as power series in terms of the wave 

height to wavelength ratio for finite amplitude waves. Long waves theories 

include the numerical methods of solutions generally used for solving 

nonlinear long wave equations. The two groups encompass cases exhibiting 

features of both groups. For instance, cnoidal and solitary waves are 

considered as special cases of the long wave theories since they are 

nonlinear shallow water waves. 

Water waves have traditionally been treated as the combination of many 

different waves of various amplitudes, wavelengths and shapes. In order to 

omit most of the complicating factors, classical wave theories assume the 

waves to be periodic and uniform. Classical wave theories are developed by 

approximating solutions to the differential equations describing the 

kinematic and dynamic conditions under certain specific boundary 

conditions. 

In the development of water wave theories the conservation of mass, hence 

continuity of flow, is assumed. The equation of continuity may be derived 

by considering fluid flowing through an elemental volume hV fixed in a 

rectangular Cartesian coordinate system as shown in figure 2.2. 
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Figure 2.2. Conservation of mass. 

The law of conservation of mass is expressed by 

5 (pti.V) S(pu)AxAA.y ̂  5 (pv)LytiA ^ 5 (pw)t^hA^ 
5t Sx Sy Sz 

(2.1) 

where p is the fluid density and u, v and w are the velocities in the 

X, y and z directions respectively. 

Since hV =• LA^ =• AA =• AA^, equation (2.1) reduces to 

Sp 
St 

- ^(P"^ + 5(pv; ̂  S(pw) 
5x Sy 

(2.2) 
Sz 

If it is assumed that the fluid is incompressible, the continuity equation 

may be written as 

1 H + .§Z + ^ = 
5x Sy Sz 

(2.3) 

In hydrodynamics, the concept of irrotational motion is important since 

many real flows are nearly irrotational. The properties of irrotational 

motion lead to a number of simple and powerful analytical methods which can 



be used to solve problems. Most of these methods result from the existence 

of a special function known as the velocity potential. In general, the 

motion of the fluid particles may be considered irrotational when the 

velocity gradient is small, such as in periodic gravity waves. 

Mathematical simplification is achieved in the treatment of fluid flow 

problems if the fluid in considered to be irrotational. 
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Figure 2.3. Rotation of a fluid particle. 

For simplicity, the motion of a two-dimensional rectangular fluid particle 

with its centre of mass at (x,z) is considered as shown in figure 2.3. 

After a short time interval At, the element is subjected to a small 

deformation. From the geometrical configuration of figure 2.3, the mean 

velocities of the fluid particle faces, for planes parallel to the x axis, 

are 

u -
5u Az 

Sz 2 
and u + 

5u Az 

Sz 2 
(2.4) 



and for planes parallel to the z axis, 

w -
6w Ax 

5x 2 
and w + 

Sw Ax (2.5) 
Sx 2 

In a time interval At, the difference in the velocities of opposing 

planes will result in the deformation of the fluid particle as shown by the 

dotted line in figure 2.3. The mean rate of change of the angles a and 

0 may then be written as 

Aa 
At 

fv + i2. ^ 1 - (v - ii: Ax) 
\ Sx 2 J \ Sx 2 I 

At/(Ax At; 
" 5x 

(2.6) 

and 

At 
u + 6u Az\ _ (u _ 6u. A£\ 

Sz 2 I \ Sz 2 I 
At/(Az At; = - iiL 

Sz 
(2.7) 

where anticlockwise rotations are considered positive. 

The mean angular velocity, Qy» °^ ^^^ fluid particle in the x-z 

plane is therefore 

Qi 

2 
Sw _ ̂ u_ 
5x Sz 

(2.8) 

If three dimensional flow is considered, the remaining two components of 

the rotational vector are given by 

a '9 a" 1 (Su, 
Sy 

Sv 
Sx 

in the x - y plane (2.9) 

and 

% , 1 Sv 
Sz 

Sw 
Syj 

in the z - y plane (2.10) 

The flow is rotational if Qj^ = 0.2 " ^3 °^ 

Sw ^ ^ 
Sx Sz 

Sw ^ 5u^ 
Sx Sz 

and ^ ^ ^ 
Sx Sz 

(2.11) 



It can be stipulated that there exists a velocity potential represented by 

the scalar function i(x,y,z,t) which, by definition, satisfies 

u - i i , v = ii and v - i l (^•^2> 
Sx Sy Sz 

If it is assumed that the velocity potential has continuous derivatives, 

then 

A (§1\ = _1 / i l l o r iM - 5w; (2.13) Su „ 
Sz 

5x 

Sw _ 
Sy 

Sw 
Sx 

Su 
Sy 

Sv 
Sz 

Sz \SxJ Sx \ Sz 

Al§^\ §.(§!] or 5v ^ 5u (2.14) 
Sx \ Sy j Sy \ Sx 

A(§±\^A(§±\ or ii? - 5v (2.15) 
Sy \SzJ Sz \Sy 

which are the conditions for irrotational flow. Consequently, for 

irrotational flow of an incompressible fluid, the continuity equation 

reduces to 

S^§ + i f i ^ _ 5 ^ „ Q (2.16) 

Sx^ Sy^ Sz^ 

which is known as the Laplace equation. 

The dynamical equations of motion are derived by considering the forces 

acting on an elemental mass of fluid. By Newton's second law of motion, 

the net sum of the external forces acting on a mass must be equal to the 

rate of change of the linear momentum. 

By considering an elemental mass of frictionless fluid in rectangular 

Cartesian coordinates, as shown in figure 2.4, the sum of the forces in the 

X direction is 

pAyAz - Ip + l£ Ax] AyAz + XpAxAyAz - pAzAyAz • ~ (2.17) 

where X is the body force per unit mass acting in the x direction and p is 

the pressure acting on the element. 
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Figure 2.4. External forces acting on a fluid element. 

Equation (2.17) reduces to the equation of motion for a frictionless fluid 

in the x direction : 

^ - X 
dt 

Similarly 

dv ^ Y 
dt 

^ . z 
dt 

_ 1_ Sp 
p Sx 

- LAt 
P Sy 

p Sz 

(2.18) 

- equation of motion in the y direction 

- equation of motion in the z direction 

(2.19) 

(2.20) 

Alternatively, the equations of motion in the x, y and z directions may be 

written as 

J f - i . i £ - . ^ - i H . + u ^ + v i H + viH 
p 5x dt St Sx Sy Sz 

(2.21) 

p 57 dt St Sx Sy Sz 
(2.22) 

Z - AAL ~ ^ ~ § E + U^ + V^ + W^ 
p Sx dt St Sx Sy Sz 

(2.23) 

Since the body forces only include gravity, then 



X ^ 0 , Y s O and Z ^ - g ^ - ^^^z) (2.24) 
Sz 

Under the assumption that the motion is irrotational and from the 

definition of the velocity potential, the continuity equations become 

- AiE = -A-1 + u^ + v^ + w^ (2-2^) 
p Sx 5x51 5x 5x 5x 

-AlR- -Ah + u^+ v^ + w^ (^-^^^ 
p Sy SySt Sy Sy Sy 

_ S(gz) _ 1 Sp ^ _ sh ^ „5u ^ ,̂5v ^ ^^Sw (2.27) 
Sz p Sz SzSt Sz Sz Sz 

If the fluid density is assumed to be uniform, equations (2.25), (2.26) and 

(2.27) may be written as 

A.(-il+l (u2 + v2 + z^) + ^ ] = 0 (2.28) 
Sx \ St 2 p I 

Sy \ St 2 ' pj 

_ i _ ( - i l + l . C u ^ + v^ + z^) + P . + gz) = 0 (2-30) 
Sx \ St 2 P I 

Integrating and combining equations (2.28), (2.29) and (2.30) results in 

the single equation describing Bernoulli's law 

- §1 +1 (u2 + v2 + z^) +P.+ gz = F(t) (2-31) 
Sx 2 p 

where F(t) is an arbitrary function of time. 

If the flow is considered steady, Si/St = 0 and F(t)=constant, 

equation (2.31) is reduced to the steady-state Bernoulli equation 

A (u^ + v^ + z^) +A.+ gz - constant (2.32) 
2 p 

In the general case, equation (2.31) is solved by obtaining $ through 

the solution of Laplace's equation. 
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2.3. Small Amplitude Wave Theory. 

The small amplitude wave theory, also known as Airy's wave theory or the 

first order wave theory, is generally considered as the most important of 

all classical wave theories. It is also the basis for the spectral 

description of ocean waves. As its name suggests, the small amplitude wave 

theory is based on the assumption that the wave amplitudes are so small 

that the contributions of the higher order terms to the solution are 

negligible. By neglecting the squares of the velocity components, equation 

(2.31) reduces to 

^ + P.+ gz - 0 
St p ^ 

(2.33) 

In establishing the linearized boundary conditions necessary to solve 

Laplace's equation, the physical characteristics of a two-dimensional 

travelling surface wave are defined in figure 2.5. 

^"Kx, t) 

lm^m^i^^^-^'^'mM:^:^im^-'^:^^ Ĥ A 

Figure 2.5. Schematic representation of a small amplitude wave. 

The Cartesian coordinate system has its origin located on the still water 

level (SWL) and the depth, h, of the water is measured from the sea bed to 

the SWL. The wave is of height, H, has a wavelength, L, and a phase 

velocity or celerity, C. rj denotes the elevation of the free surface 

from the SWL at any position x and time t. 

If the seabed is regarded as fixed, horizontal and impermeable, the 

11 



velocity normal to sea bed must be zero. The bottom boundary condition may 

therefore be written as 

w -il^ 0 
Sz at z - h (2.34) 

If it is assumed that the pressure on the free surface is zero (gauge) at 

any position x or time t and that the flow is irrotational, the free 

surface boundary condition is obtained by applying Bernoulli's equation at 

the free surface (z " n)• Furthermore, by neglecting the second order 

terms to satisfy the small amplitude assumptions, the linearized dynamic 

boundary condition is 

1 £§ 
g St 

at z 7 = 0 (2.35) 

In physical terms the linearization assumes that the flow is sufficiently 

small to render the kinetic energy of the fluid particles negligible 

compared with the total mechanical energy in the system. 

Since no particle can cross the free surface, the particle velocity at the 

free surface must be equal to the normal velocity at the free surface. If 

it is assumed that the water surface elevations are small relative to the 

wavelength, the rate of change of elevation of the water surface at any 

point may be said to be approximately equal to the vertical velocity 

component, w, at the same point 

w ̂ ±1 
dt 

therefore 

Sn 4. ST] 

St 

0 
(2.36) 

In 
St 

= w at z = 0 (2.37) 

Since 

w 
5£ 
Sz 

(2.38) 
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The linearized free-surface boundary conditions of equations (2.35) and 

(2.37) may be combined by eliminating rj to obtain 

i.A_i+ii-0 for z " -n ^ 0 (2.39) 
S st^ ^^ 

Since a continuous fluid within the wave is being considered and 

irrotational flow is assumed, the differential equation to be satisfied 

within the region -h < z < +TJ and -« < x < +« is the 

two-dimensional form of Laplace's equation which is written as 

sh ^ 5 ^ ^ Q (2.40) 
5x^ Sz^ 

Using the method of seperation of variables, in which the solution of the 

partial differential equation is assumed in product form, the general 

solution of equation (2.40) may be written as 

§Cx,z,t; = X(x) Z(z) T(t) (2.41) 

where X is a function of x alone, 

Z is a function of z alone, 

and T is a function of t alone. 

Substituting equation (2.41) into equation (2.40), dividing by X(x)Z(z)T(t) 

then seperating the variables yields 

!_ dfx _ _ J_ df2__ _ ^ (2.42) 
X dx^ Z dz^ 

where the constant k is the wave number. The general solutions for X(x) 

and Z(z) respectively are 

X(x) =• (72 sin(kx + ^) (2.43) 

and 

Z(z) - C2 cosh(kz + a) (2.43) 

13 



vhere C^ , Cn , a and 3 are arbitrary constants. The 

particular solution of Z(z) is obtained by applying the boundary condition 

at the sea bed so that equation (2.43) is satisfied at z =• -h. Hence 

^ ' Cr, k sinh(-kh + a) ' 0 
dz ^ 

(2.44) 

from which a - kh. Equation (2.43) therefore becomes 

Z(z) = C2 cosh(kz + kh) (2.45) 

By substituting equations (2.41) and (2.45) into the linearized 

free-surface boundary condition (eqn. 2.39) the solution of the time 

function, T(t), is 

A cosh(kz + kh) ^ ^ + sinh(kz + kh) 
I g dt^ 

- 0 (2.46) 

z=0 

When the seperation of variables is applied, equation (2.46) becomes 

Ail^J- -0 
T dt̂  

where co is the wave circular frequency and is expressed as 

(2.47) 

CO = [kg tanh(kh)] 0.5 (2.48) 

The general solution of equation (2.47) is 

T(t) - C-, sin(uit + 1) (2.49) 

By equating the phase angles /3 and 7 to zero and combining 

equations (2.43), (2.45) and (2.49), the solution to the differential 

equation according to equation (2.41) can now be expressed as 

i(x,z,t) - A cosh(kz + kh) sin(kx) sin(oot) (2.50) 

where the arbitrary constants C-, , C2 and Co are now represented by 

the amplitude coefficient A. 

14 



Substituting for the velocity potential in the dynamic free-surface 

condition yields the expression for the displacement of the free surface of 

a standing wave: 

r7--iii 
g 5t 

- - — cosh(kh)- sin(kx)- cos ((jit) 
Z'O S 

- a sin(kx)' cos((^t) (2.51) 

where a is the wave amplitude. By replacing the amplitude coefficient A in 

equation (2.50) by -ag/ui cosh(kh) , one obtains 

i(x,z.t) - -f_g cosh(kz + ich;.^_.^^^^ ^^^^^^ ^2.52) 
00 cosh (kh) 

From the combinations of the sine and cosine functions of x and t, there 

exist three additional standing wave solutions. The four standing waves 

are 

rij^ = a sin(kx)- cos(ut) (2.53) 

T]2 ^ a. cos (kx) • cos ("cot; (2.54) 

ri2 = a sin(kx)- sin(ut) (2.55) 

r ? ^ = a cos(kx)- sin(u>t) (2.56) 

Since the above expressions result from the solution of a linear equation, 

any pair can be superimposed to obtain solutions describing travelling 

waves: 

T]~='rij^ + T]^ = a sin(kx + cot) (2.57) 

for left-running waves, and 

ri^ = ri2 + n2''^ ^°^(^ - ^^) (2.58) 

for right-running waves. The velocity potential functions corresponding to 

equations (2.57) and (2.58) are respectively 

^- . _ a g cosh(kz + kh) _,^,^j,^ + ̂ t; (2.59) 

CO cosh(kh) 
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and 

i^ . a j COsh(kz -H kh) , ^.„^^ ^ ̂ ^̂  ^^^0^ 

to cosh(kh) 

If the origin of the coordinate system is allowed to travel with the wave, 

then the argument of the cosine term in equation (2.58) is constant, or 

kx - cot - constant (2.61) 

and the differential of the argument is 

k dx - (uo dt = 0 (2.62) 

The wave velocity or celerity is therefore defined as 

C ^ ^ - ^ ^ k ^ f L (2.63) 
dt k T 

where f is the wave frequency, L the wavelength, and T the wave period. 

The combination of equations (2.48) and (2.63) yields an expression for the 

wave celerity 

C = 1. tanh(kh) <2-^^^ 
k 

and a transcendental equation for the wavelength 

^ T2 
L = C T = M-L tanh(2nh/L) (2.65) 

2n 

For deep water waves, customarily defined when the water depth is greater 

than twice the wavelength, or h/L > 2 , Kinsman (1965), equation (2.65) 

reduces to 

L = gr^/2n (2.66) 

Similarly, for shallow water waves, commonly defined when the water depth 

to wavelength ratio is less than 1/25, or h/L < 1/25 , Kinsman (1965), 
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equation (2.65) is written as 

L = gT^ h/L (2.67) 

In considering the fluid particle motion, equations (2.12) and (2.60) are 

combined to give the velocity components of the fluid in a right-running 

wave as 

5§ a__g_k cosh(kz + kh) ^^^^^ _ ̂ ^^ ^2.68) 
Sx CO cosh (kh) 

and 

v - 5 $ ^ S k sinh(kz + kh) ^^^^^ _ ^^^ (2.69) 
Sz CO cosh(kh) 

It is evident from equations (2.68) and (2.69) that the fluid particle 

velocities u and w vary sinusoidally in time with a mean position at a 

fixed point (XQ,ZQ). The fluid particle displacement equations are 

obtained by integration of the particle velocity equations with respect to 

time yielding 

i = - ̂  g ^ cosh(kzQ + kh) s^n(kxQ - cot; (2.70) 

CO cosh (kh) 

for horizontal particle displacements and 

^ = ^ S k sinh(kzQ + kh) cos(kxQ - cot) (2.71) 
2 

CO cosh (kh) 

for vertical particle displacements. 

It can be seen from equations (2.70) and (2.71) that the paths of the fluid 

particles about a mean position (XQ,ZQ) are determined by the ratio of 

the water depth to the wavelength, h/L = kh/2n. For deep water waves 

(0.5 < h/L) the fluid particles move in a circular path which radius 

decreases exponentially with depth. The fluid particles motion of 

intermediate depth waves (1/25 < h/L < 0.5) follow an eliptic path with its 
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major and minor axes decreasing exponentially with depth. For waves in 

shallow water (0 < h/L < 1/20), the fluid particles motion is approximated 

by an eliptic path with the major axis independent of depth as illustrated 

in figure 2.6. 

miin/m/mwi/iiimiiiii/ 

Shallow water 

L 20 

Intemiediate depth 

J- < iL < i 
20 L 2 

wnmmmmnmrmm 
Deep water 

A > i 
L 2 

Figure 2.6. Effects of water depth on fluid particle paths. 

2.4. Finite Amplitude Waves. 

The small amplitude wave theory, presented above, is founded on the premise 

that the fluid motions are sufficiently small to permit the linearization 

of the free surface boundary conditions. Alternatively the validity of the 

small amplitude wave theory may be defined by 

JL « 1 and JL « 1 (2.72) 

or by the Ursell parameter 

U„ -MA. < 15 
h^ 

(2.73) 

Since these assumptions are no longer valid if the wave amplitudes are 

finite, it is necessary to retain the higher-order terms to achieve an 

accurate representation of the nonlinear wave motion to allow for cases 

where H/h and H/L approach 1. In order to eliminate the difficulties in 

developing a theory in which both H/h and H/L are defined over a certain 

range, it is assumed that either one of these parameters is small (H/h and 
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H/L « 1). The validity of various classical wave theories according to 

ranges of these important parameters are shown graphically in figure 2.7. 

0.001 

Figure 2.7. Classification of wave theories. 

- After Le Mehaute (1976) -

The formulation of the finite amplitude wave boundary value problem is 

basically the same as that presented for the small amplitude wave theory 

with the exception that the nonlinear higher order terms are retained. For 

convenience, it is generally assumed that a wave travels at a constant 

celerity c and with retention of its shape. A right-running wave of finite 

amplitude within a rectangular coordinate system, whose origin travels with 

the wave crest at a velocity c, as shown in figure 2.8, is considered. 

Since, as in the analysis of linear small amplitude waves, the fluid is 

assumed to be incompressible and irrotational, Laplace's equation is 

applied 

5^$ 5^$ 

5x2 Sy2 

S^ 

sz' 
- 0 (2.74) 
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Ocean 
bottom 

Figure 2.8. A stationary finite amplitude wave. 

The boundary condition at the bottom is such that there is no flow across 

the boundary and is written as 

w 
5$ 
5z 

0 at z = - h (2.75) 

There are two boundary conditions at the (stationary) free surface that 

must be satisfied. The dynamic boundary condition is the requirement that 

the total energy along the free surface remains constant. This is 

expressed as Bernoulli's equation applied to the quasi-steady flow at the 

surface 

7 9 9 

??+-=- (u - C) + w^ = Q at z = n 
2g 

(2.76) 

Where Q is the fluid flow at the surface. It must be noted that the 

nonlinear terms u and w^ are now retained, unlike in the development 

of the small amplitude wave theory. 
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The kinematic free surface boundary condition requires that no fluid be 

transported across the free surface. This can be formulated by specifing 

that the resultant vector of the fluid velocity at the free surface be 

tangent to the free surface. 

5x (u - C) 
at z (2.77) 

Equation (2.77) may be expanded by the Maclaurin series in which 

,, -̂  , , = Zic"-I + k + k 2 + ^ + 
(^ - ^> n=0 

(2.78) 

Since 

Srj ^ w 
Sx (u - C) 

w 
C (1 - u/C) 

(2.79) 

then equation (2.77) becomes 

ST] _ 5̂  _ 2̂  f^ 

5^ n-o' ^ 

n 

w wu wu WW 

if f l + H + [ii 
C L C \C 

+ (ii (2.80) 

In summary, the derivation of an accurate finite amplitude wave theory was 

achieved by finding a solution to Laplace's equation which satisfies the 

boundary conditions as expressed in equations (2.75), (2.76) and (2.77). 

2.5. Stokes Wave Theory. 

The nonlinear Stokes wave theory was developed by assuming that the 

solutions to the properties of wave motion, such as the velocity potential, 

the free surface displacement and the wave celerity can be represented by a 

series of small pertubations expressed as 
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$ - Z e" §^ (2.81) 
n~l 

n - I. e'^ n^ (2.82) 
n-l 

and 

$ - C^ + 2 e" C^ (2.83) 
n-1 

Where C.^ is the lowest order celerity term and is equivalent to equation 

(2.64). In the solutions above, the sum of the terms up to index n 

represent the n order theory. Accordingly, as the number of terms 

increases, so does the accuracy of approximation to the actual wave 

properties. The solutions to equations (2.81), (2.82) and (2.83) are 

obtained by successive approximations and require numerous and detailed 

calculations of the coefficients and parameters in which small errors often 

occur. Consequently, there often exist differences in the final results of 

various investigators. As the development of Stokes theory is rather 

involved, the reader is refered to Kinsman (1965) for a thorough review of 

Stokes pertubation method. 

The results of Stokes first order analysis are identical to those of the 

linear, small amplitude wave theory. 

When extended to the second order, the solutions to the finite amplitude 

Stokes analysis are, for the velocity potential: 

^ ^H c cô rfc/̂  + kz) _ ^j_^(f^ _ ^^) ^ 

2 sinh(kh) 

Ai 3nC_ cosh(2kh 4- 2kz) , ^-^ ^2kK - 2u>t) (2 .84) 
4 41 sinh^(kh) 

for the free surface displacement: 
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n - l cos(kx - oot) ^iJASSflll^ 
2 4 2L sinh^(kh) 

[2 + cosh(2kh)] cos(2kx - loot) (2.85) 

and for the wave celerity: 

£.tanh(kh) - C^ 
k (2.86) 

The wavelength is given by 

L - ^.tanh(2Kh/L) 
2n 

(2.87) 

The first term of the free surface profile (eqn. 2.85) is the same as the 

solution to free surface profile of the linear small amplitude theory 

while the remaining term is the second order correction for nonlinearity. 

However, the expressions for the celerity and the wavelength are identical 

to those described for the first order small amplitude theory. 

Unlike the linear theory, Stokes' second order theory describes a wave form 

that is asymmetrical about the mean water level as shown in Figure 2.9. 

Still-water level Mean water level 

Figure 2.9. Second order Stokes wave. 

Solutions for the third and higher order Stokes waves that take into 

account more terms to improve the approximation have been derived and are 

given in the Shore Protection Manual (1984). 

Stokes higher order theories are only valid when the Ursell parameter is 

very small, namely, for steep waves in deep water. 
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2.6. Cnoidal Wave Theory. 

Long waves of finite amplitude in shallow water are presently best 

described by the cnoidal wave theory. It is based on the assumption that 

the square of the slope of the water surface is small relative to unity. 

The cnoidal wave is periodic and has sharp crests separated by wide troughs 

as shown in Figure 2.10. The surface profile of the cnoidal wave is given 

by the Jacobian elliptical cosine function, hence the term cnoidal. 

Solutions for the cnoidal water surface profile, wave celerity and 

wavelength may be found in the Shore Protection Manual (1984). 

The cnoidal wave theory is considered only valid for h/L < 1/8 and 

Up > 26. As the wave height becomes small relative to the water depth, 

the wave profile approaches a sinusoidal profile as predicted in the 

linear small amplitude theory. However, when the wavelength increases and 

approaches infinity, the cnoidal wave theory reduces to the solitary wave 

theory. 

2.7. Solitary Wave Theory. 

The solitary wave theory describes a wave of permanent form and of infinite 

wavelength. A solitary wave is neither oscillatory nor does it have a 

trough as it lies entirely above the still water level. The profile of a 

solitary wave is illustrated in figure 2.10. Equations defining the 

solitary wave profile and the wave celerity are outlined in the Shore 

Protection Manual (1984). 

2.8. Stream Function Wave Theory. 

A numerical approximation to solutions of the hydrodynamic equations 

describing wave motion have been proposed by Dean (1965). The stream 

function wave theory (more accurately described as a procedure), is a 

nonlinear theory based on a stream function representation of the flow. 

The theory is similar to that of Stokes in that it is constructed in terms 

of sine or cosine functions that satisfy the original differential 

equation (Laplace's equation). However, the coefficient of each higher 

order term is determined numerically such that errors in the solution to 

the dynamic free surface boundary conditions are minimized. 
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Figure 2.10. Illustration of various wave profiles. 

2.9. Wave Superposition - Small Amplitude Waves. 

Due to the linearity of Laplace's equation for small amplitude waves, the 

total velocity potential of the wave field, ij., is equal to the sum 

of the velocity potential of each individual wave: 

N 

n-1 

(2.88) 

where N is the total number of individual waves and 

$n - fn_! go^^Cy + ^n^> . cos(k^x + cô t + 5„; 
cô  cosh(k^h) 

in which S is an arbitrary phase relationship between various 

individual waves. 

(2.89) 
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By applying the linear boundary conditions for small amplitude waves, as in 

section 2.3, the resulting water surface displacement is given by 

N 
rjj ~ "^ Tin (2.90) 

n'-l 

When a number of small amplitude waves travelling in the same direction in 

water of constant depth are considered, the water surface displacement may 

be written as 

N 
^T ' ^ ^n s^n(knX " "n + ^n> (2.91) 

n-1 

If the frequency of each individual wave is the same then 

^ 2 = co^ = coj = . . . . co^ (2.92) 

and 

kl ' k2 - kj = . . . . k^ (2.93) 

Using the trigonometric identity 

sin(A + B; = (sin A • cos B) + (cos A • sin B) (2.94) 

equation (2.91) may be written as 

N N 
rjj, = sin(kx - cot) Z a cos(S^) + cos(kx - cot) S a sin(S ) (2.95) 

n-1 n-1 

If the summations in equation (2.95) are substituted such that 

N 
2 

n-1 
2 a^ cos 5^ = r cos A (2.96) 

and 
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N 

2 a^ sin 5_ = r sin A 
n-1 

(2.97) 

then equation (2.95) becomes 

•q^ - r sin(kx - cot) cos(X) + r cos(kx - cot) sin(X) (2.98) 

or 

rjj. - r sin(kx - cot + X) (2.99) 

where r and X are dependents of the amplitudes and phases of the 

individual waves and are written as 

r = ( 2 a^ cos 5„;2 + C 2 a^ sin S^)' 
. n-1 n-1 

(2.100) 

and 

A = tan 

N 
2 a„ sin 5„ 

n-1 

N 
2 a„ cos 5„ 

n-1 

(2.101) 

This resulting harmonic oscillation is best illustrated when presented in 

polar coordinates as shown in figure 2.11. 

When two harmonic progressive waves of the same frequency travelling in 

opposite directions are combined, the resulting water surface displacement, 

obtained by addition of each individual wave, is written as 

r]j, = ai sin(kix - ooit + Si) + ao sin(k2X + 002̂  + 5^; (2.102) 

Again, by using the trigonometric identity of equation (2.94) equation 

(2.102) becomes 
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rij - a J sin(kx - cot; + ao cos 5^ s i n ("/ex + cot; 

+ 32 sin S2 sin(kx + cot) (2.103) 

Kx - cjl 

Figure 2.11. Polar representation of common harmonics 

of arbitrary phase. 

When the above wave system is considered such that the outgoing wave is 

generated by the perfect reflection of the oncoming wave from a vertical 

wall, the amplitude of the reflected (outgoing) wave will be the same as 

that of the incident (oncoming) wave. Since the wave frequency co, and 

hence the wave number k, are assumed to remain constant, the reflection 

coefficient, K , defined as the ratio of the amplitude of the incident 

wave to the amplitude of the reflected wave, or 

Kj. = 3^/32 (2.104) 

must be equal to unity. 

The velocity potential of the wave system is obtained by superposition of 

the velocity potential of each individual wave and is written as 

^ ^ a g cosh(kz + kh) ^cos(kx - cot) - cos(kx + cot + S.)] (2.105) 
CO cosh(kh) 
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The boundary condition at the impermeable plane vertical wall (x = B) is 

such that the horizontal partical velocity, Uj, is zero or 

S§rr, 
Urj, i = 0 at X - B for all t (2.106) 

^ Sx 

By differentiating equation (2.105) and applying the above boundary 

condition at x = B 

sin(kB - cot; = sin(kB + 5^; (2.107) 

Applying the trigonometric identity of equation (2.94), 

sin(kB) cos (cot) - cos(kB) sin(oot) = sin(kB + 62) cos (cot) 

+ cos(kB + 5^; sin(cot) (2.108) 

and equating the sinusoidal and cosinusoidal components, 

sin(kB) = sin (kB + 62) (2.109) 

and 

cos(kB) cos(kB + S2) (2.110) 

Ic follows that 

62 - n(2n + 1) - 2kB for n =- 0, 1, 2, . . . (2.111) 

By substituting for S2 in equation (2.103), and expanding 

rjrp = a sin(2kB) cos(kx) cos (cot) - a sin(2kB) sin(kx) sin(cot) 

- a cos(kx) sin(cot) - a cos(2kB) sin(kx) cos (tot) 

+ a sin(kx) cos (cot) - a cos(2kB) cos(kx) sin(cot) (2.112) 

By introducing the following trigonometric identities: 

sin(2kB) = 2 sin(kB) cos(kB) (2.113) 
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and 

cos(2kB) - 2 cos'(kB) - 1 = 1 - 2 sin'(kB) (2.114) 

equation (2.112) reduces to 

rjj, - 2a sin(kB - cot) cos(kx - kB) (2.115) 

which is the equation for a standing wave or clapotis, the nodes of which 

are located at 

cos(kx - kB) = 0 (2.116) 

or 

""node - B -''(''' + ^>. for n - 0, 1, 2 , . . . (2.117) 
2k 

and the antinodes at 

cos(kx - kB) = + 1 (2.118) 

or 

""antinode = ̂  " ""A for n - 0, 1, 2 , . . . . (2.119) 

If the boundary, B, is made to be at x — 0, the phase of the reflected wave 

is reduced to S2 =• n(2n + 1) . Consequently, for n = 0, equation 

(2.115) reduces to 

rij. 2a sin (cot) cos(kx) (2.120) 

When energy dissipation and/or transmission occurs, the reflection is not 

perfect and the reflection coefficient, K , will therefore be less than 

unity. 

Again, by applying the principle of superposition, the resultant water 

surface displacement, given by the addition of the incident and reflected 
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waves, is written as 

T}j - aj^ sin(kx - oot) + a2 sin(kx + cot + S2) (2.121) 

If it is assumed that the incident wave is partially reflected from a 

vertical wall located at x — 0 and that the phase of the reflected wave is 

n as for the perfect reflection case, then equation (2.121) reduces to 

rjj, = a^ sin(kx - oot) - K^a-j^ sin(kx + cot; (2.122) 

where K ai = ao 

The addition and subtraction of the term K^a-isin(kx - cot; yields 

rjj = aj^(l-K^)sin(kx - cot) - 2K^a-j^ sin(o3t) cos(kx) (2.123) 

in which a progressive wave and a standing wave are represented by the 

first and second terms respectively. It can be seen that, as the 

reflection coefficient increases, the amplitude of the progressive wave 

component decreases, and, in the limit when K = 1, equation (2.123) 

reduces to equation (2.120). Alternatively, equation (2.123) may be 

written as 

Hj - aj^(l-K^)sin(kx) cos (cot) - a-j^(l+K^) cos(kx) sin(cot) (2.124) 

The time at which extremes of rjj. at any location, x, occur may be 

obtained by differentiating equation (2.124) with respect to time, thus 

Sr]j, 
= 0 (2.125) 

X St 

resulting in 

[cot]„ = tan' 
'Tmax 

- ^I^^ "̂  ^r^ cot(kx) 
L 32(1 - icp 

(2.126) 

By substituting ^Tmax ^^^ ^T ^^^° equation (2.124), the 

location, x, at which these extremes occur may be found by setting the 

derivative of ^j^ax ^^^^ respect to x to zero. 
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STI Tmax - 0 
5x 

(2.127) 

resulting in 

[kx]. - nn and i (2n + 1) 
^Tmax 2 

(2.128) 

where n - 0, 1, 2, 

Substituting for oot and kx into equation (2.124), it can be seen that 

the resulting function describes a "standing" wave in that the amplitude 

envelope is stationary with extremes a and a^ at the nodes and 

antinodes respectively, where 

i^ - a^(l - K^) (2.129) 

'h '^l(l ^ V (2.130) 

The reflection coefficient may therefore be obtained from the envelope of 

the wave amplitudes from 

K, ^h - ^1 
au + a. 

(2.131) 

or, for small amplitude waves where H = 2a, 

"h^"x 

(2.132) 

where HL and H are defined in figure 2.12. 

Figure 2.12. Nodes and antinodes of wave envelope. 
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3. STATISTICAL ANALYSIS OF OCEAN WAVES 

3.1. Spectral Analysis of Random Processes. 

The study of ocean waves has developed as a combination of time series 

analysis and statistical geometry governed by the laws of hydrodynamics. 

In this chapter nondeterministic methods of describing the structure of the 

wave disturbed water surface are presented. The basic ideas of spectral 

analysis are first considered followed by a review of spectral models of 

ocean waves. The probability distributions of sea surface parameters, 

which give concise and useful properties of water waves, are also examined. 

Random processes are generally classified into three categories: (1) 

nonstationary, (2) stationary and (3) stationary and ergodic. A random 

process is said to be stationary when the governing statistical 

characteristics are time invariant. A stationary process is ergodic if any 

finite record if completely representative of the whole, infinite process. 

Since any record of ocean wave data is of finite duration, ergodicity has 

to be assumed. Furthermore, since it is never possible to demonstrate 

ergodicity, one is forced to make the ergodic assumption. 

Although no two wave records are ever identical, they will possess certain 

identifiable statistical properties. Sverdrup and Munk (1947) 

characterised a random sea by introducing the concept of the significant 

wave. Where the variety of wave forms is great, such as in a random sea, 

characterisation by a single wave form is inconsistent with the random 

nature of the process. 

Longuet-Higgins (1957) described ocean waves by treating the random process 

as a combination of an infinite number of monochromatic waves of different 

amplitude, frequencies, directions and phases expressed as 

00 

ri(x,y,t) = 2 a„ cosCk^x cosO^ + k^y sin9^ - 2nf^t + S^) (3.1) 
n=l 
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where a is the wave amplitude, k is the wave number, 9 is the wave 

direction, f is the wave frequency and 5 is the phase angle. 

Although the correctness of this interpretation of random ocean waves as a 

linear superposition of free progressive waves cannot be proven, it has 

been successfully used to characterise most properties of ocean waves. 

This interpretation of ocean waves rests on four conditions: (1) the 

frequencies f^ must be densely distributed between zero and infinity such 

that an infinitesimal interval df contains an infinite number of 

frequencies f^. (2) the wave directions 9 must be densely 

distributed between -n and n such that an infinitesimal interval 

d9 contains an infinite number of directions 9 . (3) the phase 

angle 5^ must be randomly and uniformly distributed between 0 and 

2n. And (4) although the amplitude of each wave is infinitely small, 
2 

the summation of a^ should have a finite and unique value G(f,9) 
expressed as 

f+df 9+d9 
2 2 0.5 a^ = G(f,9) df d9 (3.2) 
f 9 

The directional wave spectrum G(f,9) defined by equation (3.2) is an 

expression of the distribution of wave energy with respect to frequency and 

direction. When waves are observed at a fixed single point in the ocean, 

the wave profile is expressed as 

n(t) = 2 a„ cos(2nf^ + S^) (3.3) 
n=l 

The sum of the squares of the wave amplitudes over an interval f to f+df is 

given by 

f+df 
2 0.5 a^' = G(f) df (3.4) 
f 

which represents the wave energy distribution with respect to frequency, 

irrespective of the wave direction and is called the frequency spectrum. 

In this study only two-dimensional and unidirectional waves will be 
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considered. Random waves will therefore be represented in the frequency 

domain by the frequency spectrum . The use of spectral or frequency 

analysis to describe ocean waves has now been well established and is 

discussed by Kinsman (1965). 

Linear physical systems are defined as being additive and homogeneous. 

Specifically, a system is additive when the response to a sum of inputs 

equals the sum of the responses due to each individual input. If y(x) is 

the response to an input x^ then 

y(xj^ + x^; = 7CX2; + y(x2) (3.5) 

A system is considered homogeneous if the response to a an input,x , times 

a constant, c, is equal to the constant times the response of the input 

alone, or 

y(cx) - c y(x) (3.6) 

Consequently, when the random input into a linear system is Gaussian, the 

response will also be Gaussian. 

The mathematical basis of spectral analysis is the Fourier Transform which 

assumes that the signal is composed of a number of sinusoidal or 

cosinusoidal components of various frequency, amplitude and initial phase. 

The one-sided discrete Fourier Transform of a sampled time signal g(t) is 

given by 

n-1 

^(^k^ ' i ^ S(^J exp(-j2Tmk/N) (3.7) 

where k and n are positive integers. It can be seen from equation (3.7) 

that in order to obtain N frequency components from N time samples requires 
2 

N complex multiplications. Since its introduction in the mid 1960's, 

the alogarithm known as the Fast Fourier Transform or FFT which obtains the 

same results with Nlog2(N) complex multiplications has been widely used. 

Stationary random time signals which have a finite and statistically 

constant power are more commonly represented in the frequency domain by the 
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Power Spectral Density, or PSD, wich has the units of energy per unit 

frequency or, in the case of water surface elevation, or/Hz. 

The frequency response function of a. system represents the output to input 

ratio in the frequency domain and as such characterises stable, linear, 

stationary systems. The relationships between the input signal a(t) and 

the output b(t) of a stable, linear, stationary system in the absence of 

noise are shown in figure 3.1. 

a(t) 

A(f) - * 

hit) 

Hlf) 

b(t) = a{t) • h(t) 

B(f) = A(f) • H(f) 

Figure 3.1. Linear system input - output relationships 

The system is characterised in the time domain by its impulse response h(t) 

and the output signal b(t) is the convolution of aCt; with h(t) or 

b(t) - a(t) * h(t) (3.8) 

where * indicates convolved with. Application of the convolution theorem 

yields 

B(f) - A(f) H(f) (3.9) 

where A(f) is the Fourier transform of a(t), B(f) that of b(t) and H(f) 

that of h(t). A more thorough discussion of the convolution theorem is 

presented by Randall (1987). 

The frequency response function, H(f), of the linear system in the absence 

of noise is obtained by 

H(f) - B(f)/A(f) (3.10) 
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If noise is present in the output signal, errors in the result are 

minimized by multiplying the numerator and denominator of equation (3.10) 

by the complex conjugate of the Fourier transform of the input thus. 

H.(f) -^(f> A (f) = (^AB(^) (3-W 

'AA'' A(f) A*(f) G.Jf) 

which represents the one-sided cross spectrum normalised by the one-sided 

autospectrum of the input. 

It has been shown by Bendat and Piersol (1971 & 1986) that the normalized 

standard error (random portion of estimation error) in spectral density 

estimates of a stationary (ergodic) Gaussian random process, obtained by 

the Fourier Transform, is a function of the bandwidth, B^ (Hz), of the 

measurement and the record length T (sec) written as 

^r ' VCBgr;^--^ (3.12) 

For a raw spectral estimate, it turns out that 

Bg = Af = 1/T (3.13) 

It follows, from equation (3.12), that the normalized standard error of a 

raw spectral estimate is unity. This indicates that the standard deviation 

of the estimate is equal to the value of the estimate, hence poor accuracy 

is obtained. 

The distribution of each frequency component of the estimate may be 

approximated by a chi-square distribution, ; 

statistical degrees of freedom, n, being 2. 

2 
approximated by a chi-square distribution, x„ . with the number of 

Furthermore, it can be seen from equations (3.12) and (3.13) that an 

increase in record length will not yield improvement of the random error of 

spectral estimates. 

The accuracy of spectral estimates may be improved by two methods. The 

first is by ensemble averaging, in which the average of a number, N^, of 
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raw spectral estimates from independent sample records is computed. This 

method requires the measurement and analysis of a number of independent 

records. The second method of improving the accuracy of spectral estimates 

is by smooching of the estimate over frequency by averaging a number of 

adjacent spectral components according to one of several weighting 

functions. Smoothing by this method is usually performed on the estimate 

from a single sample record. This technique is only valid under the 

assumption that the spectral density varies only gradually with respect to 

frequency. 

If p adjacent frequency components of the raw spectral estimates are 

averaged, the smoothed spectral estimate will be a yc variable with 

approximately n - 2p degrees of freedom. The resulting effective 

resolution bandwidth becomes 

Sg = p/T (3.14) 

so that the normalized standard error is given by 

Similarly for ensemble averaging 

where N^ is the number of raw spectral estimates, and for a combination 

of both frequency smoothing and ensemble averaging, the normalized standard 
error is given by 

e^^ l/(pN^)^-^ (3.17) 

It can be seen from the above analysis that smoothing of raw spectral 

estimates by averaging adjacent estimates always results in loss of 

resolution in the frequency domain. A compromise must therefore always be 

arrived at in specifying the number of ensembles (number of spectral 

estimates) to be averaged and/or the frequency bandwidth of the weighting 

function. 
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3.2. Spectral Models of Ocean Waves. 

There have been numerous attempts at formulating mathematical spectral 

models of ocean waves and there now exists a number of empirical and 

semi-empirical frequency spectrum models. These mathematical models, 

generally based on one or more parameters such as the significant wave 

height, wave period, shape factor, wind velocity, etc., are usually derived 

from experimental ocean wave records and hydrodynamic theories. 

The Neumann spectral model was developed in 1953 and is expressed in terms 

of prevalent wind velocity, U^, and is written as 

G(ui) - Boo-^ exp[-2g^/(dU^)'] (3.19) 

In which B is a dimensional constant. As one of the earlier mathematical 

models, it was derived from limited data. With later developments in 

measurement techniques, the shortcomings of this model have been 

demonstrated and it is now regarded as outdated. 

The majority of recent spectral models are based on the spectral function 

proposed by Phillips (1958) who defined the equilibrium range of the 

frequency spectrum for a fully developed sea as 

G(ui) - ag'(ijo)-^ (3.18) 

where a is the Phillips constant, g the acceleration due to gravity and 

CO the angular wave frequency. 

Although seldom employed in practice, the Phillips spectrum has been used 

as a basis for the formulation of other spectral models. 

The Bretshneider spectrum, developed in 1959, may be used to represent 

fully-developed sea conditions. The model is based on the assumptions that 

the spectrum is narrow-banded and that the distribution of the wave height 

and wave period follow the Rayleigh distribution. It is written as 

G(oo) - 0.1687(Hj'((^J^(co)-^ exp[-0.675(co^/co)^] (3.22) 
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where H^ is the significant wave height in feet, T the significant 

wave period in seconds defined as the average period of the significant 

waves and co_ - 2nT^. s s 

In 1964, a slight modification to the Bretshneider spectrum was suggested 

at the International Ship Structures Congress. The ISSC spectrum is 

written as 

G(oi) - 0.1107(H^)'(^)^(co)'^ exp[-0.4427(co/oo)^] (3.23) 

where ZS — 1.296 OOQ in which OOQ is the spectral peak frequency. 

Pierson and Moskowitz (1964) developed a spectral model also based on wind 

velocity. This model, commonly referred to as the P-M spectrum, is based on 

more accurately recorded data and represents a fully developed sea state. It is 

formulated on the assumptions that the wind has blown at a steady velocity and 

fixed direction for many hours over a large area. 

Despite the fact that the model is derived from steady sea and wind conditions 

and that ocean waves rarely approach a fully developed sea state, it has been 

widely used in the design of offshore structures to represent severe storms. 

The P-M spectrum is 

G(co) - ag'uT^ exp[-0.74(uo U^/g)-^] (3.20) 

Where a - 0.0081 

and U - prevalent wind velocity [ft/s] at 54 ft above the mean 

sea level. 

Alternatively, the P-M spectrum may be expressed in terms of spectral peak 

frequency, COQ, as 

G(co) = aĝ co"-̂  exp[-1.25(co/ooQ)-^] (3.21) 

The International Towing Tank Conference (ITTC) spectrum is a modified 

version of the P-M spectrum and is defined in terms of the significant wave 

height and the average zero crossing frequency. 
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The P-M, Bretshneider, ISSC and ITTC spectral models are of the same class 

and may all be described by a two parameter spectrum expressed in terms of 

a statistical wave height and a characteristic wave period as shown by 

Chakrabarti (1987). Since the P-M based and Bretshneider based spectral 

models rely on wind speed measurements taken at different heights above the 

water surface, the difference between the two forms may be considerably 

reduced by taking into account the gradients of the wind velocity with 

respect to altitude. 

The Scott spectral model, developed in 1965, is independent of wind speed, 

fetch or duration and was formulated to represent the spectrum of a 

fully-developed sea. It is expressed in terms of significant wave height 

and spectral peak frequency as. 

G(co) = 0.214 HJ exp 
(00 - . , ) ' \0-' 

\0.065(co - COQ + 0.26)J 

for - 0.26 < (co - cô ; < 1.65 (3.25) 

G(co) — 0 elsewhere 

where H is the significant wave height in feet. 

Derived from wave data recorded on Lake Michigan, the Liu spectral model 

was developed in 1971 and contains a fetch-dependence parameter. The model 

is similar in form to the P-M spectrum and is written as, 

G(co; = ag'(XQ)-^-'^(i^)-^ exp[-0(oo U^/g)-^X(j-^/^] (3.26) 

where a = 0.4, 13 = 5500, Xg = gX/uJ- and U^ = U^(U^/gX)^^^ in which U^ 

is the wind velocity at 10 metres. 

Mitsuyasu (1972) proposed another fetch-limited spectral model based on 

data recorded from waves generated in a laboratory and in a bay. Unlike an 

earlier model, which did not give consistent results at low frequencies, 

this revised model of the fetch limited spectrum consists of two parts and 

is written as, 

G(co) = ag'(co)-^ exp[l3(co U^yg)-^(XQ)^'^^^] O.Scog < co < C,Q (3.27) 
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where a - 9.12 x 10~^^ and 3 = 3.55, and 

, G(co; - ag'(ao)-^(XQ)-^-308 co > co^ (3.28) 

where a = 0.589. 

Since both the Liu and Mitsuyasu spectra are fetch dependent and are based 

on lakes and reservoirs of limited fetch, they may have limited application 

in ocean conditions. 

The JONSWAP spectrum was developed during the Joint North Sea Wave Project 

by Hasselman et. al. (1973). The model was derived from experimental data 

based on unsaturated (or not fully developed) sea conditions. Comparison 

between the experimental JONSWAP spectrum and the P-M spectrum showed 

discrepancies near the spectral peak. The JONSWAP model is therefore 

basically the P-M model with an additional peak enhancement function and is 

expressed in terms of five parameters. Even though three of the five 

parameters may be reduced to constants via empirical relationships, the 

model is somewhat inaccurate and inconvenient to use since the agreement 

between some of these empirical formulae and the data are rather crude as 

shown by Hasselman et. al. (1976). The JONSWAP spectrum is written as 

GCco; = aĝ co-̂  expl-1.25(co/u>Q)-''] jexp[-(oo-Oo)'/(2r'c,o')] (^.24) 

Where 7 is the peakedness parameter and r the shape parameter. For 

a prevailing wind of velocity U (in ft/s at 54 ft above the mean sea 

level) and a fetch X (ft), the parameters are defined as 

1 < 1 < 7 ( average = 3 .3 ) . 

T = 0.07 for CO < U)Q (considered fixed). 

T = 0.09 for CO > COQ (considered fixed) . 

a = 0.076 (XQ)~^-'' (a = 0.0081 when X is unknown). 

CO - 2vi (g/U^) (XQ)~^'^^ (frequency in rad/s) 

^0 = sx/uj 

Ochi and Hubble (1976) developed a six parameter spectral model which may 

be used to represent the low frequency (swell) and high frequency (sea) 
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components of ocean waves. This is written as follows 

[0.25(oof.j)^(4X,+l)] J H„,' 
G(ao) - 0.25 2 ' Oj' ' J '^ sj_ 

J'l ^(^,) J4Xj^l) 

exp[-0.25 (4Xj+l) (COQJ/CO)^] (3 .29) 

where H^-, OOQ . and A- are the significant wave height, the 

spectral peak frequency and the spectral shape factor for the lower and 

higher frequency components when J equals to 1 and 2 respectively. The 

model is an algebraic summation of two three-parameter spectra with 

different spectral peak frequencies and is expressed in terms of 

significant wave height, spectral peak frequency and spectral shape 

factor. As shown in equation (3.29), this model may be reduced to the 

single peaked P-M spectrum by setting the spectral shape parameters to 0 

and 1. 

Huang et. al. (1981) proposed the Wallops spectral model derived from 

theoretical analysis and laboratory wave data. Unlike the P-M, 

Bretshneider and JONSWAP models, the Wallops spectrum is independent of 

local wind conditions. It is instead related to the significant wave field 

slope, which is a measure of nonlinearity of the waves in the field, and 

the spectral peak frequency. The spectral bandwidth of the Wallops 

spectrum is variable and depends on the nonlinearity of the wave field. 

The Wallops spectrum may therefore be used to represent the state of the 

ocean surface under varying conditions including developing, 

fully-developed and decaying seas. The Wallops spectrum is written as 

G(co) = ^^ exp[-0.25m(co/u>Q)~^] (3.30) 

J^ oo(^-^^ 

Where /3 and m are functions of the significant wave field slope, i, 

and are defined as 

^ - (^rms>^/h (^-^^^ 
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where LQ is the wavelength at the spectral peak, 

(3.32) m — 
log(niV2)' 

log(2) 

and 

3 ̂  (2nO' uP-'5(m-l) j ^3.33) 

^0.25(m-5) T[0.25(m-1)] 

The similarity between the P-M, JONSWAP and Wallops spectral models is made 

evident when the significant wave field slope parameter, i , of the 

Wallops spectrum is set at 0.0398 (hence m - 5) and the peakedness 

parameter of the JONSWAP spectrum is set at 1. Under these conditions they 

both reduce exactly to the P-M spectrum. The similarity between the P-M, 

JONSWAP and Wallops spectral models exists only when fully developed sea 

conditions are represented. 

Based on the assumption of weak nonlinear interactions, Huang et. al. 

(1981) suggested that the superposition of two Wallops spectra of different 

spectral peak frequency and wave field slopes should prove a useful model 

for the combined representation of low frequency swell together with higher 

frequency sea. 

Additionally, Hinwood, Blackman and Lleonart (1982) proposed a modified 

version of the Wallops spectrum to take into account the effects of finite 

water depths and demonstrated its ability to represent intermediate depth 

ocean waves. 

3.3. Distribution of Water Surface Elevations. 

By assuming that dynamic interactions between each component of the random 

wave process are weak, it follows that the wave motions tend to be 

statistically independent. Therefore, under the central limit theorem, the 

probability distribution of the water surface elevation may be assumed 

Gaussian. The Gaussian model, which implies a zero-mean value, is given by 
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P(T]) - — exp - n ' 

V^ 
(3.34; 

The variance of the water surface elevation, o , is defined as 

a/ -MQ- (n^^)' (3.35) 

where MQ is the zeroth moment of the frequency spectrum. A general 

definition of the spectral moments is given by 

W„ - J co" G(co; dco (3.36) 

The Gaussian distribution of the water surface elevation is, however, only 

an approximation. It has been theoretically shown by Phillips (1961) and 

Longuet-Higgins (1963) that the water surface elevation distribution 

slightly deviates from the Gaussian distribution due to weakly nonlinear 

interactions. Kinsman (1965) compared the water surface elevation 

distribution of experimental wave records with the Gaussian and 

Gram-Charlier distributions. However, it was concluded that, although the 

Gram-Charlier distribution exhibited better agreement with the experimental 

data, the Gaussian distribution usefully represented the distribution of 

water surface elevations. 

Huang et. al. (1980) showed that the deviations from the Gaussian 

distribution, however slight, are proportional to the significant slope of 

the wave field. They experimentally demonstrated the relationship between 

the skewness of the water surface elevation distribution and the 

significant slope of the wave field, i. Furthermore, the authors also 

demonstrated that under highly non-Gaussian conditions, such as i -

0.04, the water surface elevation distribution may be approximated by a 

four-term Gram-Charlier expansion. 
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3.4. Distribution of Surface Elevation Maxima. 

By assuming that ocean waves are composed of many sinusoidal wave 

components of random phase and the frequency spectrum of that process is 

sufficiently narrow, Longuet-Higgins (1952) showed that the probability 

distribution of the wave amplitudes corresponds to the Rayleigh 

distribution, defined as follows 

P(a; - _Jf expf-(a/a^^P^7 (3-37) 

^^rms^ 

where the wave amplitude, a, is defined as one half of the height of a wave 

crest above the preceding trough, hence a - H^/2 where H* is the 

crest-to-trough wave height. 

Equation (3.37) can be alternatively expressed as 

p(a) - A- exp[-a-^/2MQ] (3.38) 

^0 

Where MQ is the zeroth moment of the frequency spectrum and is equivalent 

to the mean-square of the water surface elevation . For linear motions, 

when the individual wave crests are approximately sinusoidal, MQ may be 

expressed as 

^0-0.5 (a^^^)' (3.39) 

It is therefore only when equation (3.39) is satisfied that equation (3.38) 

is equivalent to equation (3.37). The theoretical distribution of the wave 

amplitude for processes with wider spectral bandwidths is more difficult to 

establish and is discussed in section 3.5. 

Cartwright and Longuet-Higgins (1956) considered the water surface 

elevation maxima, rj , to be the difference between the wave crest and 

the mean water level. They adapted the results of work done by Rice (1944, 

1945) on electrical noise signals to ocean waves. The resulting 

theoretical distribution was found to be dependent on a spectral width 
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parameter, €, and the root mean square of the surface elevation. 

^rms' ^^^ distribution is written as 

p(Ti^) - (l/JI^) e. exp[-0.5(nye)'] + Jl-e'' n^ exp(-0.5nj) 

^ m ^ /^ 
J exp(-0.5 x^; dx (3.40) 

and is illustrated in figure 3.2 as a function of the spectral width 

parameter e. 
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Figure 3.2. Variation of the water surface elevation 

maxima with the spectral width parameter 

- After Cartwright and Longuet-Higgins (1956) -

In general, € is a measure of the root-mean-square width of the 

frequency spectrum and may vary between zero and unity. A process is 

usually considered narrow band when € is less than 0.6. The spectral 

width parameter may be computed from the moments of the spectral density 

function by 

€.-€.. \MQM^ - M2" (3.41) 

"0^4 
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For a narrow band process (e - 0), equation (3.32) reduces to the 

Rayleigh distribution while for a wide band process (e - 1), equation 

(3.32) reduces to the Gaussian distribution. A narrow band process is one 

in which all maxima (peaks) are above the mean water level (positive) and 

all minima, (troughs) are below the mean water level (negative). This is 

illustrated in Figure 3.3. 

Figure 3.3. Narrow band random process. 

In a wide band process, peaks appear below and troughs above the mean water 

level. For water waves this may be realised when ripples are superimposed 

on a low frequency swell. 

The spectral width parameter may alternatively be obtained by simply 

counting the number of positive and negative maxima in a record. Here 

e is defined as 

e - e^- [1 - (N^/N^)'f-^ (3.42) 

Where N- is the number of zero-up-crossings in the record and N_ is the 

total number of crests in the record. 

Longuet-Higgins (1957) proposed an alternative definition of the spectral 

bandwidth, u, as follows 

V - (M2/W2; 0.5 (3.43) 

where ô is the second central moment of the energy spectrum and is 

defined as 

48 



^2 = J (co - co; G(co; dco ("3.44; 

0 

with the mean frequency co defined as 

CO - MJ^/MQ (3.45) 

Goda (1974) questioned the usefulness of the spectral width parameter, 

e, and subsequently proposed a spectral peakedness parameter which 

describes the sharpness of the spectral peak(s). The spectral peakedness 

parameter, Q , is defined as 

^P =- — / CO G^(co; dco (3.46) 
MQ' 0 

Q becomes unity for white noise and takes larger values for spectra with 

sharp peaks. 

Longuet-Higgins (1952) studied the expected extreme value of the maxima 

^^^m max^ ' ^^^ ^̂ ® most probable extreme value of r] nj-y, 

denoted as p(̂jjj ujax^' ^°^ narrow banded processes. Cartwright and 

Longuet-Higgins (1956) proposed a solution for the expected extreme value 

of the maxima for all values of e ranging between 0 and 1. This 

solution was based on the assumption that the number of maxima, N, in the 

record is large. 

Ochi (1972) proposed a simplified solution for E(r]j^ max^ ^°^ values 

of e ranging between 0 and 0.9 which is written as 

^(lm r^^^) = / 2Mr, In *• 'm.max' / 0 
ll-e' 2N 

(1 + ll-e')X 

for € < 0.9 (3.47) 

where N is the number of maxima in the sample and X is a small 

probability level such that E(r) max^ will be exceeded. Equation 

(3.47) is valid for X < 0.01 . 
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When e - 0, equation (3.47) reduces to the original solution proposed 

by Longuet-Higgins (1952) for a narrow band process: 

^(''m.max> " J'^0 ^^(N/X) ' for e - 0 (3.48) 

Ochi (1972) also compared the expected extreme value for a narrow band 

process with the corresponding most probable extreme value. It was found 

that, for large values of the number of maxima, N, the probability of 

exceeding P(nja,xnax^ ^^^ quite high. 

The solution for the most probable extreme value, p(ri ) , for 

0 < € < 0.9 is given by 

P(^m.max> " I'^0 ^ n l H ^ l ^ ] for e < 0.9 (3.49) 
\(1 + h-e')/ 

which reduces to the solution given by Longuet-Higgins (1952) for large 

values of N when e - 0 : 

P('^m.max> ' J'^0 ^"W for e - 0 (3.50) 

Ochi (1972) showed that when E(ri^ ^j^^^) and p(T]jj,^^.^) are 

expressed in terms of time, the functions are no longer dependent on the 

spectral width parameter but on the expected rate of zero-up-crossings, 

f^, defined as 

f^ - (M2/MQ)°-^ (3.51) 

The expected extreme value of the highest maxima as a function of time is 

given by 

^("^m.max^ ' ['^0 ln(T^f^/2nX) f ' ^ for X < 0.01 (3.52) 

where T is the length of the record in seconds. 

And the most probable extreme value the highest maxima as a function of 

time is given by 

P('Jm.max) = ['^0 ln(T^f^/2n)f'^ for X < 0.01 (3.53) 
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3.5. Distribution of Wave Heights. 

There are two essential definitions of wave heights. The zero-up-cross 

wave height, H, is defined as the difference in level between the maxima 

and minima located between two adjacent points where the surface elevation 

crosses the line of mean water level upward. The crest-to-trough wave 

height H however, is defined as the difference in level between any 

positive or negative maxima (crest) and the subsequent minima (trough). 

These are illustrated in Figure 3.4. 

Figure 3.4. Definition of wave heights. 

When considering zero-up-cross waves, any existing negative peaks or 

positive troughs are, by definition, not taken into account. This leads to 

the process being treated as purely narrow band regardless of the actual 

width of the spectrum. Consequently, the statistical distribution of 

zero-up-cross wave heights is independent of the spectral width parameter 

and, in general, follows the Rayleigh distribution. Since the 

zero-up-cross wave height of individual waves represent twice the amplitude 

a, equation (3.37) can be written in terms of H as 

P(H) - 2H 

^ rms^ 

exp[-(H/H^^)^] (3.54) 

When a random process has a narrow frequency spectrum, negative maxima and 

positive minima are unlikely to exist. Consequently, for narrow band 

processes (e « 1), the statistical distribution of crest-to-trough 

wave heights follows the Rayleigh distribution (eqn. 3.54). 
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Alternatively, the distribution can be expressed in terms of the zeroth 

spectral moment, MQ, as 

>(H*) -
4MQ exp 

-H*' 

W 
(3.55) 

where 

^0 - (^rms>^/^ (3.56) 

As previously mentioned in section 3.4., equations (3.54) and (3.55) are 

equivalent only when equation (3.39) is true. 

Since by definition, H -2a, the distribution of crest-to-trough wave 

heights is equivalent to the distribution of the wave amplitude described 

by equation (3.37). 

Cartwright and Longuet-Higgins (1956) suggested that the general expression 

for the distribution of crest-to-trough wave heights would depend on other 

parameters besides the spectral width parameter. Furthermore, they also 

demonstrated that, in general, observed crest-to-trough wave height 

distributions departed from the Rayleigh distribution as the width of the 

energy density spectrum increased: The authors also noted that 

discrepancies between observed crest-to-trough wave height distribution and 

the Rayleigh distribution were small for data with a spectral width 

parameter less than 0.5. 

Forristall (1978) observed that the distribution of crest-to-trough wave 

heights of hurricane generated waves in the Gulf of Mexico was better 

described by a Weibull distribution rather than the Rayleigh distribution 

of equation (3.38). Longuet-Higgins (1980) rejected Forristall's 

conclusions claiming that some confusion had been introduced as to the 

definition of the Rayleigh distribution. Longuet-Higgins (1980) emphasised 

that equation (3.38) is one of many possible Rayleigh distributions and was 

not the form of equation (3.37) as originally proposed by Longuet-Higgins 

(1952). The author subsequently showed that the distribution of the 

experimental data used by Forristall could be equally well described by the 

52 



Rayleigh distribution of equation (3.37) provided that the root-mean-square 

amplitude is estimated from the original true record and not from the 

frequency spectrum. He concluded that Forristall's two-parameter Weibull 

distribution did not offer any obvious advantages over the originally 

proposed Rayleigh distribution. 

3.6. Significant Wave Height. 

The concept of the significant wave height was introduced by Sverdrup and 

Munk (1947) and is defined as the average height of the highest one third 

of all waves. The significant wave height, H or ^2/3' ^"^y ^® computed 

from a time record by using the following equation. 

N/3 

"l/3 " <^/^> ^ "i* (3-57) 
i-1 

ic 

where N is the number of crest-to-trough waves heights, H. , in the 

record ranked from highest to lowest. 

Since the above method of computation is time consuming, Tucker (1963) 

formulated an approximation for determining the significant wave height 

from a wave record which is given as 

H^ = y/2'Cj^ (a^ + a^) (3.58) 

where a is the height of the highest crest above the mean water level, 

a^ the depth of the lowest trough below the mean water level, and Cj^ is 

defined as 

^2 - (In N^)'^-^ [1 + 0.289 (In N^)-^ - 0.247 (In N^)-'r^ (3.59) 

where N is the total number of zero-up-crossing cycles. 

Alternatively, the significant wave height may he estimated from the 

frequency spectrum. Since by definition the significant wave height is the 

average of the highest one-third waves, then 
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P(HQ) = 2/3 = 1 - exp[-(V^r/ns^^^ (3-60) 

or 

HQ = 1.0481 H^^^ ^3^^^^ 

which states that all values of H which are greater than HQ are in the 

highest one-third range. The significant wave height is determined by 

defining the centroid of the area under the density function for which H 

s HQ as follows 

J H p(H) dH 

Hn 
H 1/3 - =0 (3.62) 

J p(H) dH 

H 

For spectra with small spectral width parameters, where the wave height 

distribution follows the Raleigh distribution, the significant wave height 

is given by 

"1/3 = ̂ -̂ 6̂ H^^^ (3.63) 

or by substituting for H^^^ (eqn. 3.39) where Ĥ ^̂  = 2 â ^̂ , 

"l/3 '^ ^'005 VMQ (3.64) 

With the assumption that all crest-to-trough wave heights are twice the 

wave amplitude from the still water level, Cartwright and Longuet-Higgins 

(1956) studied the variation of H^/^ y^sive ^"^ "l/lO ^^^^^^^^ ^° ^^^ 

spectral width parameter e. The result of their approximation was 

graphically derived by Silvester (1974) from the paper by Cartwright and 

Longuet-Higgins (1956) and is shown in figure 3.5 where -/E = 2MQ. 

54 



3 
HVn 

TJarms 

H./n 
/r 

n=10 

3 

- ^ ^ 

_H,/„ 

• ^ H , 

SkHa»e 

0.2 0.4 ae 0.8 1.0 

Figure 3.4. Variation of H-^,.^/ 2MQ 

After Cartwright and Longuet-Higgins (1956) 

55 



4. WAVE GENERATION EQUIPMENT AND SOFTWARE 

4.1. Review of Wave Generators. 

Early laboratory wave generators were restricted to reproducing periodic 

waves of regular form, usually by means of complicated mechanical linkages 

driven by electric motors. Later wave generators mostly employed 

electro-hydraulic servo-mechanisms to generate both regular and random 

waves. In reviewing the development of wave generators, the most pertinent 

factors relating to their design and performance will be examined and 

discussed. 

Biesel and Suquet (1951) were among the first to attempt to classify 

laboratory wave generators. Besides specifying a number of important 

design criteria, they identified seven main types of wave generating 

mechanisms which are illustrated in figure 4.1 

FLEXIBLE HINGED FLAP 

RIGID HINGED FLAP 

VX/V ^\y\^ 

HORIZONTAL PISTON 

Figure 4.1. Some types of wave makers. 
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VERTICAL PLUNGER 

ROTATING 

HORIZONTAL FLAP 

^r\y\y\ 

PNEUMATIC 

Figure 4.1.(cont'd) Some types of wave makers. 

Biesel and Suquet also published calculated frequency response functions 

relating the wave maker stroke to wave height for some popular types of 

wave makers. Their calculations were based on the wave maker theory of 

Havelock (1929) and apply only to the generation of small amplitude waves. 

Ursell, Dean and Yu (1960) attempted to experimentally verify the linear 

wave maker theory for a piston type wave maker. Their experiments were 

conducted in a 100 ft. long wave channel equipped with an electro-hydraulic 

wave maker and a plane impermeable wave energy absorber with a gradient of 

1:15. The amplitude reflection coefficient was found to usually be less 
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than 10%. The results obtained from experiments conducted with small wave 

steepnesses (0.002 < H/L < 0.03) showed good agreement with the theoretical 

wave maker theory based on classical hydrodynamic assumptions. Experiments 

conducted for larger wave steepnesses (0.045 < H/L < 0.048) showed some 

departure from the theory. This was attributed to finite amplitude 

effects. Although wave reflection was accounted for in the analysis, the 

authors indicated that the errors could be reduced and the analysis 

simplified if wave absorption was more efficient. There have since been 

many studies of wave generator behaviour, mostly aimed at determining the 

ratio of wave maker stroke to wave height for regular waves. 

A vertical triangular plunger type wave maker was analysed by Huyn (1967) . 

This study was also based on Biesel and Suquet's approach. The wave maker 

frequency response function was analysed in terms of plunger stroke to wave 

height and the total hydrodynamic force on the triangular shaped wedge was 

studied. 

Gilbert, Thompson and Brewer (1971) published design curves for both 

regular and random wave generators. Their analysis was based on the same 

approach as that of Biesel and Suquet but they presented dimensionless 

values of wave maker stroke and force over a wide range of a dimensionless 

parameter directly dependent on the wave period rather than wave length. 

Hinged flap, piston and wedge type wave makers were analysed. 

Wang (1973) also studied plunger type wave makers. Theoretical wave height 

prediction functions in terms of wave maker stroke and frequency were 

presented. In addition, the variation of the wave maker stroke to wave 

height ratio and the wave maker force components with respect to the 

geometric parameters of the plunger were presented. It was also noted that 

the wave elevation at far field is not sensitive to the geometrical details 

of the plunger other than its width, depth of submergence and area. 

Keating and Webber (1977) conducted experiments similar to those of Ursell 

et. al. on a piston type wave maker and evaluated the effects of leakage of 

water around the sides of the wave maker. They concluded that errors in 

wave height prediction due to leakage were less than IX. 
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Multer and Galvin (1967) observed that when relatively long waves of finite 

amplitude were generated by a sinusoidally moving wave maker, the resulting 

waves broke down into a primary and one or more secondary waves. These 

travel at different velocities and the resulting wave profile exhibited the 

presence of secondary waves depending on the distance from the wave 

generating surface. Madsen (1971) studied this phenomenon and showed that 

the free second harmonic wave may be substantially reduced by giving the 

wave maker a non-sinusoidal motion that consists of a first and second 

harmonic. Hansen, Schiolten and Svendsen (1975) studied the concept of a 

second order Stokes wave and the superimposed second harmonic. They 

demonstrated that the wave pattern exhibits an apparent variation in mean 

water level along the tank length as well as the presence of free second 

harmonics. This meander of the mean water level has an amplitude equal to 

that of the free second harmonic component. This was experimentally 

verified and the authors subsequently proposed a non-sinusoidal wave maker 

motion to generate sinusoidal waves. 

More germane to this study is the application of wave makers to the 

physical modelling of real sea conditions as opposed to the generation of 

regular waves. This section reviews various methods of simulating random 

wave trains in the laboratory. 

Borgman (1969) identified two basic methods for the numerical simulation of 

a zero-mean Gaussian random process of specified spectral density for ocean 

waves: (1) by linear filtration, and (2) by wave superposition. The linear 

filtration technique employs a pure Gaussian random signal (white noise) 

modified by a linear filter designed according to specific spectral density 

characteristics. In the wave superposition technique a finite number of 

sinusoidal or cosinusoidal functions, governed by a specific spectral 

density function, are generated with randomly assigned phases. In the 

latter method, the target spectral density function is used to compute the 

amplitude of the sinusoids and the random phase angles are required to be 

uniformly distributed between 0 and 2n. 

Goda (1970) successfully used the wave superposition method for the 

numerical simulation of irregular waves with a digital computer. The 

effects of the number of component waves, N, on the distribution of the 

59 



time signal was studied and a compromise between the computation time and 

the realisation of the Gaussian distribution was arrived at. Goda 

subsequently recommended that, although 200 or more component waves would 

achieve better results, 50 and 60 component waves, for single and double 

peak spectra respectively, would be sufficient for the time signal to have 

a Gaussian distribution. 

Fryer, Gilbert and Wilkie (1973) described the design of a wave spectrum 

synthesizer in which white noise was generated digitally in a shift 

register and passed through a digital filter to obtain the desired shape of 

the frequency spectnun. 

Webber and Christian (1974) employed the digital filtration method for the 

physical modelling of wave spectra. Their design of a piston type wave 

maker were based on the design curves formulated by Gilbert, Thompson and 

Brewer (1971). The wave generator used for the experiment consisted of a 

closed loop electro-hydraulic positioning servomechanism The command 

signal was generated by exciting a specially designed digital filter with 

computer generated white noise. The filter was not only designed according 

to the target spectral density function but also to accommodate the 

frequency response characteristics of the wave generation system. The 

frequency response function was considered as two separate stages; the 

command signal-to-wave maker motion and wave maker motion-to-wave motion. 

The frequency response function of the second stage was obtained directly 

from the theoretical function published by Biesel and Suquet (1951). 

Reasonable experimental results were obtained but the authors acknowledged 

room for improvement in the control system. 

Funke (1974), similarly to Fryer, Gilbert and Wilkie (1973), used a binary 

feedback shift register to generate a pseudo-random signal which was then 

numerically convolved with a digital filter to produce a synthetic wave 

record. Experiments, aimed at reproducing the JONSWAP spectrum, were 

carried out on an electro-hydraulic wave generator which, through two 

separate linkages, allowed the wave maker to operate in three modes; 

piston, hinged flap or a combination of both. Reproduction of the target 

spectrum in the tank was achieved by initially compensating for the system 

frequency response characteristics and subsequently optimised by means of a 

difference alogarithm based on the target spectrum and the measured 
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spectral estimates. Their results show good agreement between the target 

and realised spectra. 

Hudspeth and Borgman (1979) used an inverse FFT alogarithm together with a 

digital computer to generate random time sequences from a spectral density 

function without the use of spectral feedback compensation. Their 

experiments were conducted in an unusually large wave tank (104 metre long) 

equipped with a hinged flap type electro-hydraulic wave generator. The 

experiments, aimed at reproducing the Bretshneider - Pierson -

Moskowitz and the Scott spectra, show good agreement between measured 

spectral estimates and target spectra. Furthermore, the good agreement 

between the measured and theoretical water surface elevation distribution 

was attributed to the longer duration of simulation made possible by the 

stacked FFT alogarithm. 

There have been many more reports of various experiments aimed at 

physically simulating spectral models of ocean waves in the laboratory. 

Most, although using different means of command signal synthesis and wave 

generation have been achieved with a reasonable degree of accuracy. 

Model sea conditions may be reproduced by generating a scaled actual ocean 

surface elevation record via a wave maker. Although feasible, this method 

may not be practical since actual wave records are not readily available. 

Moreover, the record may only apply to a specific location and set of 

conditions. As demonstrated by many observers, ocean waves may be 

represented by a zero mean Gaussian stochastic process with a specified 

spectral density function (or frequency spectrum). Simulation may be 

achieved by generating a synthesised signal, derived from a target spectral 

density function, while retaining the original statistical characteristics 

of the process. This may be achieved by the Inverse Fast Fourier Transform 

where a large number of frequency components can be used in the simulation 

by specifying closely spaced frequency components. The resulting time 

signal, y(t), is defined as 

N 
2 
n-1 

y(t) - T A^ cos(2nf^t + 6^) (4.1) 

in which 
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^n-' J^(fn) ^n C^-') 

where n — 1, 2,....N. 

N — number of component waves, 

f - frequency in Hz. 

S - uniformly distributed phase between 0 and 2n. 

G(f) — spectral density function. 

Of practical importance in physical wave modelling is the need to consider 

and accommodate the effects of the system response characteristics on the 

command signal. 

Electro-hydraulic wave generators have proved to be most popular due to 

their ability to follow command signals with good accuracy and 

reliability. Despite the significance of higher order effects, linear 

theory is generally used to determine system response characteristics. 

Surprisingly, few random wave generation facilities employ spectral 

feedback compensation techniques to improve the reproduction of spectral 

models. The effects of duration and the number of component waves on the 

distribution of the water surface elevation are of major importance on the 

performance of a random wave generators facility and should be given due 

cons ideration. 

This study is principally concerned with the steady-state behaviour of 

ocean waves. The random processes under consideration will therefore be 

treated as stationary and ergodic. 

4.2. Design of Wave Generator. 

In this section, the important concepts related to the design of the wave 

generator are considered. The principal components of the system, as shown 

in figure 4.2, form the basis for discussion of the design. The wave 

generator comprises a concrete flume, a wave maker, two wave absorbers and 

a wave probe. The flume is 21 metre long, 1 metre wide and 1.2 metre 

deep. In order to allow visual observation of wave motions, one side of 

the wave flume is fitted with four laminated glass panel each 2 metre long 

by 1 metre high. 
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A plunger-type mechanical wave maker, powered by an electro-hydraulic 

servomechanism, was mounted near one end of the flume and the wave 

absorbers, used to minimise reflections, were located at each end of the 

flume. A moveable wave probe for monitoring the water surface elevation 

was moxxnted on horizontal rails fixed to the top of the flume. A 

micro-computer was programmed to control the motion of the wave maker as 

well as to run software developed for recording and analysing experimental 

data. 

Figure 4.2. Schematic of wave generation facility. 

In considering the design of computer controlled wave generators, good 

engineering practice dictates that a number of important criteria be met. 

Paramount among these is that the design of the wave maker must be 

characterised by high rigidity and low inertia in order to effect good 

system response and reduce errors in controlling motion. It is essential 

to restrict the number of mechanical linkages to a minimum while the 

mechanism driving the wave maker should be free of frictional effects, 

slack, dead bands etc. As noted in the literature, attention needs to be 

paid to reducing leakage between the wave plunger and the flume walls since 

it has been shown to be a source of errors when generating waves. 

A satisfactory variety of sea conditions may be simulated in the laboratory 

if the maximum wave height were about 50 cm and the frequency range for 

random waves between 0 and 3 Hertz. Using this data, the maximum stroke. 
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velocity and force requirements were calculated from the design curves 

published by Gilbert et. al. (1971). An electro-hydraulic servo-mechanism 

coupled directly to a wave plunger appeared an attractive proposition. 

However, analysis showed that a servo-valve capable of handling high flow 

rates was needed to drive the wave plunger at the required velocities. A 

system designed around this concept was rejected since the power 

requirements were excessive and the cost was prohibitive. The wave 

generator was instead designed with a servo-valve rated for lower flow 

rates and a simple mechanical lever system was introduced to drive the wave 

plunger at the required velocities. This proved to be an effective and 

economic alteimative. 

SERVQACTQAIOR 

Figure 4.3. Wave maker support arrangement. 

The wave maker consists of a wedge shaped plunger connected to a beam 

hinged about a horizontal axis across the wave tank. The wave maker is 

activated by means of an electro-hydraulic servo-actuator hinged to a steel 

frame whose position may be varied so that the mechanical advantage of the 

plunger may be altered as shown in figure 4.3. 
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The shape of the plunger was designed to approximate the effect produced by 

a triangular wedge moving vertically or normal to the still water surface. 

The rear of the plunger forms an arc of 2.5 metres radius from the pivot 

beam hinge to minimize the generation of disturbances behind the wave 

maker. The front or generating surface of the plunger forms an arc of 2.56 

metres radius about point 'o' as shown in figure 4.4. This profile was 

designed to minimize the differences in the horizontal displacement of each 

horizontal plane when the wave maker is activated, as shown in figure 4.4 

where 

x^ - X - =* 0 
for i - 2,3,4 ...n 
and J - 1,2,3 ...n-1 (4.3) 

S 
a 

T J ~ - ^ 
0X105 m 

Figure 4.4. Wave maker dimensions. 

The mathematical formulation of the generating surface profile is given, in 

detail, in appendix B. 

The plunger is a welded aluminium structure designed with a high stiffness 

to mass ratio in order to optimize the response characteristics of the 

system and to minimize positioning errors arising from structural 

deflections when operating under dynamic conditions. The plunger, made of 

aluminium sheeting, comprises five vertical ribs each 3 mm thick with the 

rear and front surfaces each 5 mm thick as shown in figure 4.5. 

Supports made of aluminium angle sections were fixed to the plunger to 

provide a firm and rigid base for attachment to the pivot beam. 
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The plunger was made to fit in the wave tank with a clearance of 5 mm on 

each side. 

CONNECTION SUPPORTS BEIHFOBCEMENT RIBS 

GQIERATING 
SURFACE 

Figure 4.5. Wave maker plunger. 

PIVOT BEAM 

Figure 4.6. Wave maker arrangement. 
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The pivot beam is a welded steel truss made of rolled hollow steel (RHS) 

sections of the following dimensions: 76 mm x 38 mm x 3.2 mm and 25 mm x 25 

mm X 2.0 mm. The pivot beam was also designed to achieve high rigidity and 

low inertia and was firmly bolted to a shaft supported by two pairs of 

tapered roller bearings to eliminate slack. The bearings and bearing 

housing consist of a hub arrangement similar to that used in road 

vehicles. The bearing housings were rigidly bolted to an RHS section of 

250 mm X 150 mm X 10 mm straddling the wave tank as shown in Figure 4.6. 

The support beam was rigidly bolted to the 180 mm wide reinforced concrete 

tank walls with epoxy aerylate adhesive anchors. 

The hydraulic servo-actuator hangs vertically from a steel frame to which 

it was hinged via a pair of tapered roller bearings. The support structure 

forms an 'A' frame consisting of four steel columns and two channel 

sections mounted horizontally as shown in Figure 4.7. 

SERVO VALVE 

Figure 4.7. Wave generator arrangement 
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The 'A' frame straddles the wave tank and was firmly bolted to the concrete 

floor. The mechanical advantage of the wave maker may be changed if 

desired by moving the 'A' frame to various positions along the wave tank. 

The rod end of the hydraulic actuator and the pivot beam were coupled by a 

pair of tapered roller bearings and bearing housing arrangement rigidly 

fixed to the pivot beam. 

Estimates of the resonant frequencies and corresponding mode shapes of the 

pivot beam and the 'A' frame were obtained by finite element analysis using 

the McNeal-Schwendler Corporation's FEA computer software package, MSC-PAL. 

A computer based finite element model of the 'A' frame was created and the 

structure was analysed by simulating a dynamic load applied at the 

hydraulic actuator connecting point as shown in figure 4.8. 

Figure 4.8. Force excitation of A frame model for 

Finite Element Analysis. 

The load was made to vary sinusoidally at an amplitude of 18 kN and at 

frequencies ranging between 0 and 300 Hz. The results of the analysis, 

displayed in figure 4.9, indicate the presence of a resonant frequency at 

approximately 190 Hz. The ordinate scale represents displacement in 

decibels. Since it is expected that the wave maker will not operate at 

frequencies higher than 4 Hz, the 190 Hz resonance is well above the 

recommended separation limit of 10 decades between the maximum operating 

frequency and the first natural frequency. 
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Figure 4.9(a). Deflection response of A frame. 
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Figure 4.9(b). Deflection response of A frame. 

Figure 4.9(a) shows the deflection response of the A frame to excitation 

frequencies between 0 and 300 Hz, while Figure 4.9(b) gives a more accurate 

representation of the expected deflections of the 'A' frame at the actuator 

connecting point for dynamic loads with frequencies ranging between 0 and 

10 Hz. The ordinate scale is in metres (linear). As can be seen from 

figures 4.9(a) and (b), the expected vertical deflections of the 'A' frame 
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predicted by finite element analysis are negligible and thus demonstrate 

adequate stiffness of the structure. 

Similarly to the 'A' frame, a finite element model of the pivot beam was 

created and analysed. A vertical dynamic displacement function was 

programmed to act at point 'i' along the beam as shown in figure 4.10. The 

displacement function was defined as sinusoidal with an amplitude of 0.1 

metres and frequencies ranging between 0 and 200 Hz. 

Figure 4.10. Displacement excitation of pivot beam for FEA. 

The resulting amplitude of motion at point 'o' is plotted against frequency 

in figure 4.11(a) and indicates the existence of a resonant frequency at 

approximately 86 Hz. The ordinate scale represents displacement in 

decibels. It must be noted that, because of the mechanical advantage, the 

expected displacement amplitude at point 'o' for a d.c. input is 0.4 metres 

or -7.96 dB. 
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Figure 4.11(a). Displacement response of pivot beam. 
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Figure 4.11(b). Displacement response of pivot beam. 

Figure 4.11.(b) shows the frequency response at point 'o' for frequencies 

of 10 Hz or less with the ordinate scale in metres (linear). The expected 

dynamic displacement error, e^, at 4 Hz, may be evaluated as follows: 

[^dU Hz - 1(0.401011 - 0.4)/0.4] 

- 0.0025 

- 0.25 X (̂ .4; 

These results verify that the structural properties of the pivot beam are 

satisfactory under the worse expected dynamic loading conditions. 

The stresses in both the 'A' frame and the pivot beam were also computed by 

finite element analysis and were found to be well within acceptable limits. 

The electro-hydraulic system consists of a MOOG series M852 servo-actuator 

which incorporates a hydraulic actuator, servo-valve and position 

transducer. The hydraulic actuator, of 50.8 mm bore and 600 mm stroke, was 

fitted with a 76 series flow control servo-valve capable of handling a flow 

rate of up to 40 litres per minute when extending and 35 litres per minute 

when retracting. The contactless 'GYTL' magnetostrictive displacement 

transducer was mounted inside the hydraulic actuator and was connected to a 
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displacement signal conditioner which provided an analogue voltage output 

directly proportional to the position of the actuator. A schematic diagram 

of the electro-hydraulic wave generator system is shown in Figure 4.12. 
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Figure 4.12. Electro-hydraulic wave generator system. 

The servo-actuator operates as a closed loop feedback positioning system 

controlled by a.MOOG servo-amplifier type M121-823. The servo-amplifier 

incorporates means of adjusting the loop gain, bias (zero offset) and span 

of the command signal. A dither signal generator is also included in the 

servo-amplifier to help overcome actuator stiction (static friction) during 

operation at low frequencies. Listed below are some characteristics of the 

servo-actuator system. 

72 



330 mm/sec. 

18 kN @ 11.8 Mpa. 

+ 0.5 mm 

0 

0 

0 

0 

01% FS 

05% FS 

01% FS 

- 50 °C 

Maximum actuator velocity 

Maximum output force 

Expected static position accuracy 

Displacement transducer specifications: 

Resolution 

Nonlinearity 

Repeatability 

Operating temperature range 

Hydraulic power was provided by a VICKERS hydraulic power unit supplying 

hydraulic oil at 40 litres per minute and 14 MPa. The unit consists of a 

15 kW three-phase electric motor, a variable displacement pressure 

compensated piston pump and a 6.3 litre nitrogen charged accumulator. The 

unit also includes a water cooled heat exchanger, controlled by a 

thermostatic valve, with a cooling capacity of 18 kW. The hydraulic power 

unit was connected to the servo-actuator with 25.4 mm teflon-lined flexible 

hoses. The hydraulic oil was filtered by a MOOG 15-micron high pressure 

filter model HP020 located in the high pressure line and a MOOG 3-micron 

low pressure filter model LPA0250 located in the return line. 

4.3. Wave Probe. 

Water surface elevation was measured by means of a capacitance type wave 

probe consisting of a perspex frame supporting a single strand of enamel 

coated copper wire 0.24 mm in diameter. The wave probe operates on the 

principle that the capacitance between the insulated copper wire and the 

body of water varies linearly with depth of submergence. The wave probe 

formed the active component of an AC capacitance bridge which was excited 

by a SANGAMO carrier amplifier card type 911001-85. The amplifier card 

also included a demodulator, signal amplifier and low-pass filter to 

provide a stable analogue voltage signal proportional to water surface 

elevation. Additionally, the amplifier permitted the selection of a wide 

range of sensitivities as well as zero balancing adjustments. 
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Further specifications of the SANGAMO carrier amplifier card are listed 

below: 

Oscillator output: 

Selectable sensitivity range 

Range of gain settings 

Maximum output range 

Output ripple 

Low-pass filter 

Nonlinearity 

Operating temperature range 

: 5 V RMS sine wave Q 5 kHz 

: 0.5 mV/V to 750 mV/V 

: Coarse : 500:1 

: Fine : 3:1 

: + 5 V 

: < 5 mVpp 

: 3rd order, 500 Hz cutoff frequency 

: < 0.02 X FS 

: 0 - 70 °C 

REGULATED 
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15 KHC 
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3RD ORDER 
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ADC MODULE 

/ 
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WIRE 

MICRO COMPUTER 
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Figure 4.13. Wave probe. 
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A schematic diagram of the wave probe is displayed in Figure 4.13. The 

vertical arm of the perspex frame supporting the copper wire was 

streamlined to minimize fluid disturbances near the copper wire. The 

diameter of the enamel coated copper wire was kept to a practical minimum 

in order to lessen errors due to meniscus. The wave probe was mounted on a 

carriage which may be wheeled along the length of the tank manually or by 

an electric motor and pulley arrangement. The carriage consists of an 

aluminium frame fitted with a screw thread to which the wave probe was 

secured. The screw thread was used to move the probe vertically for static 

calibration purposes. 

4.4. Wave Absorbers. 

In order to reduce reflection of generated waves, a wave energy absorber 

was located at the non-generating end of the wave tank. The wave absorber 

consists of two parts: a pile of clay bricks arranged to form an average 

slope of 18 degrees from the horizontal and a parabolic shaped perforated 

aluminium sheet lined with eight (8) layers of nylon knitted shade cloth. 

The wave absorber is shown in figure 4.14. 

r -1 

PARABOLIC WAVE 
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X 
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-\ 

T7 SWL 

2200 mm 

720 mm 

Figure 4.14. Wave energy absorber. 

The parabolic wave absorber was made from 2 mm thick aluminium sheet 

perforated in a regular pattern with 15 mm diameter holes. In addition, 

rows of louvre perforations 10 mm high were pressed in the aluminium sheet 

in a random pattern. The width of the louvre perforations varies between 
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35 and 240 mm. The pattern of the wave absorber surface is shown in Figure 

4.15. 
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Figure 4.15. Parabolic wave absorber pattern. 

The parabolic wave absorber was based on the work of Svendsen and Jonsson 

(1976) who demonstrated that a parabolic profile yields efficient 

dissipation of wave energy. Due to the relatively short length of the wave 

tank, the parabolic wave absorber was kept as short as practically possible 

and was shaped according to the following equation 

0.3x 0.03x^ for 0 < X < 3 metres (4.5) 

where x and y are defined in figure 4.14. 

The slope, depth and position of the parabolic wave absorber were made 

adjustable to allow optimisation of energy absorbed. 

The wave tank was fitted with a second energy absorber aimed at reducing 

disturbances behind the wave maker. This absorber was made entirely of 

clay bricks and occupied most of the space between the plunger and the back 
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wall of the wave tank (see figure 4.3). The narrow passages formed by the 

wave absorber reduces spurious fluid disturbances creates by the wave 

maker. 

4.5. Control System. 

The wave generator control system was based on a PC-AT 286 micro-computer 

system with 640 kilobyte Random Access Memory (RAM) equipped with a 40 Mb 

hard disk for mass data storage and a 80287 floating point math 

co-processor. The micro-computer was interfaced with a DATA TRANSLATION 

data acquisition card type DT2806 hosting an analogue-to-digital (A/D) 

conversion module type DTX311 and a digital-to-analogue (D/A) conversion 

module type DTX328. Analogue to digital conversions are accomplished by a 

12 bit monolithic converter capable of up to 20,000 conversions per 

second. The DTX311 provides eight differential input channels and is 

configurated to receive bipolar signals ranging between -5 and +5 volts. 

Specifications of the DTX311 are listed below: 

Resolution : ± 0.5 bit 

Nonlinearity : < 0.5 LSB (Least Significant Bit) 

Operating temperature range : 0 - 70 C 

The DTX328 digital-to-analogue conversion module is capable of 3300 

conversions per second and provides four bipolar output channels each 

ranging between -5 and +5 volts. Specifications of the DTX328 are listed 

below: 

Resolution : ± 0.5 bit 

Nonlinearity : < 0.5 LSB (least Significant Bit) 

Operating temperature range : 0 - 55 C 

The digital position command signal, generated from the microcomputer, is 

converted into an analogue voltage by the D/A conversion module and 

transmitted to the servo-amplifier which in turn controls the position of 

the servo-actuator. The water surface elevation record measured by the 

wave probe is captured by the A/D conversion module and stored in the 

micro-computer's Random Access Memory for future processing. 
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4.6. Software Development. 

Computer software developed for the control and management of the wave 

generation facility was based on the commercial software package DADS 

(Data Acquisition Operating System) released by Laboratory Software 

Associates. DAOS is a high level operating environment and language 

implemented using the C programming language and was designed to 

specifically meet the needs of laboratory automation applications. DAOS 

comprises modules such as REALTIME for data generation and acquisition, 

PLOT which contains graphical display functions, CHEF for interactive 

screen and menu management, and FFT for forward and inverse Fast Fourier 

Transformations. Preliminary assessment of this software package revealed 

its suitability for this project. 

A number of program libraries, each containing a collection of subroutines 

or macros, were designed and developed specifically for the management of 

the wave generation facility. The function of each of these libraries are 

briefly outlined below and later described in greater detail. 

WPCAL - for static calibration of wave probes. 

WGRECO - for determination of wave reflection characteristics of 

the wave tank and also used to generate wave trains 

consisting of up to three regular wave components. 

WGTFS - for determination of the frequency response 

characteristics of any part of the system. 

WGENSP - for generation of random waves based on spectral models. 

WGSTAT - for statistical analysis of measured wave data from 

random wave experiments. 

4.6.1. Wave Probe Calibration - WPCAL. 

Although the variation of the wave probe calibration constant with time 

was found to be small, it is desirable to calibrate the wave probe 
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before and after each experiment. In order to facilitate frequent static 

calibration of wave probes, the collection of subroutines contained in 

this program library were developed. 

Calibration was simply performed by manually adjusting the height of the 

wave probe relative to the still water level and capturing the sampled 

output signal in the computer memory via the A/D conversion module. After 

a specified number of calibration points were recorded a line of best fit 

using the least squares method was computed. The gradient of the line of 

best fit was stored on the system hard disk to be latter retrieved as 

required. The data points may then be printed and or plotted on screen or 

plotter. 

4.6.2. Reflection Evaluation and Regular Wave Generation - WGRECO. 

This collection of subroutines enables generation of a command signal 

composed of the sum of up to three sinusoidal waveforms. The frequency, 

amplitude and phase of each sinusoidal component may be specified 

independently. The subroutines also allows the water surface elevation 

signal, measured by a wave probe, to be recorded. 

The reflection characteristics of the wave energy absorber are determined 

by generating a regular wave train while recording the water surface 

elevation from a wave probe moving along the tank. The resulting water 

surface elevation record will be that of the envelope of the standing wave 

or partial clapotis resulting from the addition of the incident and 

reflected waves trains. The incident wave steepness and the reflection 

coefficient are then determined graphically. 

The menu driven programs allows the user to set the frequency and 

amplitude of the command signal while the wave length is automatically 

computed by iteration, using the relationship between wavelength and 

frequency given by equation (2.65). 

The command signal is then transmitted to the wave maker through the 

digital-to-analogue conversion module. The water surface elevation time 

history, as monitored by the moving wave probe, is captured through the 
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analogue-to-digital conversion module and displayed graphically. If 

required, any portion of the measured water surface elevation record may 

be expanded graphically on screen. A line cursor moving vertically on the 

computer screen allows the operator to graphically determine the height of 

the nodes and antinodes from which the amplitude reflection coefficient 

may be calculated using equation (2.132). Alternatively, the nodes and 

antinodes heights may be measured from a paper plot of the water surface 

elevation time history. 

4.6.3. Random Wave Generation - WGENSP 

As mentioned in section 4.1, real sea conditions may be simulated in the 

laboratory by reproducing an actual time history of the ocean surface 

elevation. Alternatively, random waves may be simulated by using a 

synthesised command signal derived from a mathematical spectral model. 

This wave generation system uses of the Inverse Digital Fast Fourier 

Transform to generate random signals from a specified spectral model, 

scaled according to Froude's similarity law. 

A simple spectral feedback compensation technique was employed to 

accurately achieve the desired wave conditions in the wave tank. The 

control method is illustrated in figure 4.16. 

Signal compensation was performed in the frequency domain by comparing 

the measured spectral estimate with the target spectrum and correcting 

for differences over the complete frequency range. The compensated 

spectrum was corrected for discrepancies after each completed control loop 

until acceptable agreement between the target spectrum and the measured 

spectral estimates was achieved. A specific spectral model may be 

continuously reproduced as an aperiodic signal by allocating a new set of 

random values, uniformly distributed between 0 and 2n, to the phase 

component of the compensated spectrum at the beginning of each control 

loop. Both the acquired surface elevation data and its corresponding 

spectral estimates may be saved on hard disk to be later available for 

statistical analysis. Spectral estimates of the water surface elevation 

are computed by means of the Fast Fourier Transform after the captured 

time data are initially passed through a rectangular window to suppress 
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Figure 4.16. Illustration of control method for 

random wave generation. 

side-lobe leakage. Aliasing was eliminated by ensuring that the sampling 

frequency exceeds the Nyquist frequency. The spectral estimate may be 

smoothed by means of a moving spectral window whose weighting function and 

bandwidth are selectable. A compromise must be made when selecting the 

spectral window bandwidth in order to retain a reasonable frequency 

resolution while reducing the variance of each spectral estimate. 

For control purposes only, better results are obtained if the measured 

spectral estimates are smoothed before being compared with the target 

spectrum. The final spectral estimates from an experiment can be obtained 

from the average the raw spectral estimates stored at each loop of 

operation or, if desired, the raw spectral estimates may be smoothed by 

the moving spectral window method before being averaged thus combining 

both spectral smoothing methods mentioned in section 3.1. 
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Figure 4.15. Random wave generation control flow chart . 

Figure 4.15 shows the flow chart describing the operation of the WGENSP 

program library. The on-line screen menu, shown in figure 4.16, enables 

the operator to set the preliminary parameters required for random wave 

generation. 

' Target spectrum definition. Provisions have been made to generate 

the Pierson-Moskowitz, JONSWAP, and Wallops (single and double peak) 

spectral models. The desired target spectrum is computed by specifying 

the required spectral parameters, namely, spectral peak frequency, 

peakedness parameter (JONSWAP) and significant wave field slope 

(Wallops). The capability to simulate an arbitrary frequency spectrum 

has also been made available. This feature allows a frequency spectrum 

of arbitrary shape to be created by graphically specifying values of 

spectral density at specific frequencies. These arbitrary frequency 

spectra may vary from a single frequency component, resulting in a 
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sinusoidal command signal in the time domain, to a wide band spectrum 

of any specific shape. This feature may become useful in the 

simulation of experimentally measured spectra which are not represented 

mathematically. 

HAVE GENERATION FACILITY 
CLOSED LOOP SPECTRUM BASED HAVE GENERATION 

(MALLOPS) 

OPTIONS 
GENERATE HODEL SPECTRUM 
START DATA GENERATION 
STOP DATA GENERATION i AQUISITION 
PLOT SPECTRA [L=LOS P=LINEAR] 
ESCAPE TO DAOS 
RETURN TO HAIN HENU (DOS) [SHIFT] 
RESET ARRAYS 

[ ] SPECTRUH SETTINGS -.W 
[G] FEEDBACK ATTENUATION [1] : [ 65 ] 
[S] TINE DELAY (S) : [ 18 ] 
[ ] SPECTRUH DURATION CODE :[ 2 ] 
[P] [ 1 = 32 SECS ] [ 8 = 256 SECS ] 
[E] [ 2 = 64 SECS ] [ 16 = 512 SECS ] 
[R] [ 4 = 128 SECS ] 
[Y] 

SAVE DATA (1=YES 8=N0) ; [ 3 ] SMOOTHING METHOD (SELECT) : [ 3 ] 
DATA FILE NAME [7 CHARACTERS]:[ ] SMOOTHING BANDWIDTH : [ 7 ] 
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GENERATE STORED COMMAND SIGNAL : [ 8 ] HAVE GENERATOR ( B / M ) :{ 6.827] 
COMMAND SIGNAL FILENAME [ 5 ] : [ ] HAVE PROBE ( B / u ) : [ 11.385] 
LOOP INTERUPT (1=YES B=NO) : [ 1 ] GRAPHICS SETTINGS 
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PHASE RE-RANDOMIZATION ( 1 / 9 ) : [ 1 ] FREQUENCY AXIS MAX.(Hz) : [ 2.2B8] 
FEEDBACK LOOP NUMBER : [ B ] SPECTRAL DENSITY MIN. : [ ] 

SPECTRAL DENSITY MAX. : [ 2BB8] 

Figure 4.16. On-line menu for random wave generation. 

System Frequency Response Compensation. This option enables the 

initial command signal to be compensated for the frequency response 

characteristics of the system. When the option is invoked, the system 

frequency response function, previously measured and stored, is 

retrieved from the computer hard disk and divided into the target 

spectrum to provide a system-compensated spectrum. It must be noted 

that after generation of the initial command signal, the original 

system frequency response estimates become redundant as any further 

compensation is performed by comparison of the target spectrum with the 

measured spectral estimates. 

Loop Duration Code. The loop duration code deteirmines the nominal 

duration of each set of generated and acquired data and therefore the 

frequency resolution of both the generated spectrum and the measured 

(raw) spectral estimate. Both the target spectrum and the measured 
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spectral estimates are based on 2048 elements long arrays and the 

sampling rate may be set to 64, 32, 16, 8 and 4 Hz by varying the 

duration code. Selection of the duration code should be based on the 

highest frequency component of the command signal. Since the same 

sampling rate is used to both generate the command signal and capture 

the water surface elevation signal, the minimum sampling frequency 

should not, in this case, be based on the Nyquist frequency but on the 

ability of the wave generator to operate smoothly under a discrete 

command signal. It is recommended that the minimum sampling rate, 

f , should be governed by 

f, > 12 f^^^ (4.6) 
s max 

Phase Re-randomization. This option enables the generation of 

truly random waves (non periodic) as opposed to pseudo-random waves 

where the same random command signal is repeatedly generated over a 

pre-specifled period. When this option is invoked, the phase of the 

compensated spectrum at each loop of operation is reassigned with a new 

set of random numbers uniformly distributed between 0 and 2n to 

eliminate repetition. When this option is not used, the original phase 

array is combined with the compensated spectrum thus generating a 

pseudo-random command signal. The option may be activated or 

deactivated at any time during an experiment without causing any 

disruption to the system operation. 

Feedback Attenuation. The level of the spectral compensation 

parameter, Cf, may be set initially and varied as desired during the 

simulation of random waves. Spectral compensation is performed 

according to 

Old - New r I Target Measured] (4.7) 
Spectrum Spectrum + f [Spectrum - Spectrum) 

When Cf is set to zero, compensation in the frequency domain does not 

occur and the system operates under open-loop control. 

Mode of Operation. The closed-loop spectral feedback control 

system may be operated in the interrupt or automatic mode. In the 
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interrupt mode, the command signal is repeatedly generated until the 

operator allows a new, system-compensated command signal to be 

generated. In the automatic mode, a new system-compensated command 

signal is automatically generated after spectral compensation has been 

performed. The mode of operation may be changed at any time without 

disruption to the wave generating process. 

Time Delay. In order to allow generated waves to travel from the 

wave maker to the wave probe, a time delay, set by the operator, is 

introduced between the generation of the command signal and the 

acquisition of the water surface elevation data. 

Spectral Smoothing Method. Smoothing of the measured spectral 

estimates may be undertaken by ensemble averaging, moving spectral 

window or a combination of both. For control purposes, the measured 

raw spectral estimates at each loop of operation is smoothed (when 

required) by using the moving spectral window method. Two spectral 

window shapes are available for selection: (1) rectangular window with 

variable width defined by 

n-i+0.5(N-l) 

G(f.) ^A 2 G(f„; (^.8) 

n-i~0.5(N-l) 

where N is the the number of adjacent spectral components defined by 

the window width, and (2) three-element triangular window, also known 

as the /fanning spectral window, and defined by 

G(fj_) = 0.25 G(f^,j_) + 0.5 G(f^) + 0.25 G(fj,^j^) (4.9) 

When using the rectangular window smoothing method, the window 

bandwidth may be adjusted during an experiment to enable the 

optimisation of spectral smoothing without interrupting the operation 

of the system. The final spectral estimates from an experiment can be 

computed by averaging the raw or smoothed spectral estimates stored at 

each loop of operation. 

Data Storage. At any time during operation the save option may 

be switched on to effect permanent storage of the measured water 
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surface elevation data and its corresponding spectral estimates (both 

raw and smoothed) on the computer hard disk at each loop of operation. 

This option is usually activated when the agreement between the target 

and the measured spectral estimates is satisfactory. The stored data 

may subsequently be used for statistical analysis. 

Wave Probe Calibration Constant. The most recent wave probe 

calibration constant, previously measured and stored, is automatically 

retrieved from the computer hard disk at the beginning of each 

experiment. 

Graphics Settings. The range of the frequency and spectral density 

axes may be specified by the operator for graphical display of the 

target spectrum and the instantaneous and cumulated spectral 

estimates. This option becomes important when visually assessing 

agreement between the target spectrum and the measured spectral 

estimates. 

After specification of preliminary parameters, the target spectrum is 

generated in an array and displayed graphically. If the system 

characteristics compensation option has been enabled, the previously 

measured frequency response estimates are retrieved, in numerical form, 

from the computer hard disk and are divided into the target spectrum to 

produce the system-compensated spectrum which is also displayed on the 

screen. The phase array, containing random numbers uniformly distributed 

between from 0 to 2K, is merged with the system-compensated spectrum 

array to form a complex array. The inverse Fourier transform of the 

complex array is computed, resulting in the corresponding time data array 

which is displayed on the computer screen. When the request to start data 

generation is granted, the command signal is continuously transmitted to 

the wave maker via the digital-to-analogue conversion module. After 

execution of the time delay loop, the water surface elevation data, as 

monitored by the wave probe, are recorded through the analogue-to-digital 

conversion module. On completion of the data acquisition period, the 

spectral estimate of the recorded signal is computed by FFT and, if 

requested, smoothed according to the prescribed spectral smoothing method. 

Except for the first loop of operation, the cumulated spectral estimates 
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are then computed by either linear or exponential averaging. The latter is 

achieved by dividing the sum of the cumulated measured spectral estimates 

and the most recently measured spectral estimates by two. If enabled, the 

save option will activate the storage of both the measured water 

surface elevation data and its corresponding raw and smoothed spectral 

estimates on the computer hard disk. 

COMPENSATED TABCET 
SPECTRUM 

HEW COMPENSATED 
TAREZT SPECTRUM 

NEW COMPENSATED 
TARGET SPECTRUM 

MEASURED SPBRRDN MEASURE SFSCIBDM 

Figure 4.17. Signal generation and acquisition method 

for random wave generation. 

The target spectrum and the measured instantaneous and cumulated spectral 

estimates are then displayed on screen as well as the control loop number, 

the feedback attenuation level, the smoothing window width, the phase 

re-randomisation status, the interrupt status, the save status and the 

number of averaged spectral estimates. If the interrupt option is 

activated, the operator is given the option to proceed or to stop the wave 

maker and terminate the experiment. Otherwise, compensation in the 

frequency domain is automatically undertaken and, depending on the status 

of the phase re-randomization option, the compensated spectrum is 
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merged with the original phase array or with a newly randomized phase array 

to form a complex array. The inverse Fourier transform of the complex 

array is computed resulting in a compensated command signal which is 

subsequently transmitted to the wave generator, overriding the previous 

command signal. 

This method of signal generation and closed-loop spectral control enables 

the simulation of random waves of any duration by generating a number of 

relatively short time records in succession as can be seen from figure 

4.17. 

4.6.4. System Frequency Response Measurement - WGTFS. 

This program library contains a series of subroutines used to determine the 

frequency response characteristics of any portion of the system, for 

example, the command signal-to-wave maker motion frequency response 

function or the wave maker motion-to-water surface elevation frequency 

response function. The software makes use the generation of band-limited 

white noise synthesised into a time domain random command signal by inverse 

FFT. Likewise, the measurement of the frequency response is achieved by 

FFT. The specification of preliminary parameters, as required by the menu 

driven software, are outlined below: 

• Noise generation level. 

m Noise generation frequency range. 

m Spectrum duration code - which determines the nominal duration of 

the command signal and therefore the frequency resolution of both 

the generated spectrum and the measured (raw) spectral estimates. 

The generated and acquired data are based on arrays of 2048 elements 

and the sampling rate may be set to 64, 32, 16, 8 and 4 Hz by 

varying the duration code. 

• Number of data sets (spectral estimates) to be averaged - the 

frequency response function is based on the linear average of a 

predetermined number of raw spectral estimates. 

0 Time delay - the delay required to allow the waves to reach the wave 

probe and for the system to stabilise. 
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Having specified the preliminary parameters, the spectral density function 

array is merged with a phase array containing random numbers uniformly 

distributed between 0 to 2n to form a complex array. The inverse 

Fourier transform of that array is then computed to produce a random time 

signal which is continuously transmitted to the wave maker via the 

digital-to-analogue conversion module. The generation of a truly random 

(non periodic) command signal is achieved by re-randomization of the phase 

array as described in section 4.6.3. 

At the request of the operator the analogue-to-digital conversion module is 

activated after a specified time delay to simultaneously capture the system 

input and system output signals, for example the computer generated signal 

(input) and the wave probe signal (output). At the end of each data 

acquisition period, as determined by the loop duration code, the spectral 

estimates of both measured signals are computed by FFT and stored on the 

computer hard disk. 

On completion of the data acquisition session, the raw spectral estimates 

are retrieved from the computer hard disk and their linear average computed 

to obtain smoothed spectral estimates of the input and output signals. The 

system frequency response function is then computed and subsequently 

displayed graphically on screen or plotter. The operator is then given the 

option to smooth the frequency response function further by one of the 

moving spectral window methods described in section 4.6.3. The frequency 

response characteristics may then be stored in numerical form on the 

computer hard disk for later use. 

4.6.5. Statistical Analysis - WGSTAT. 

This collection of subroutines was developed to enable various statistical 

analyses of both the time and frequency domain data measured and stored 

during random wave simulation experiments. Initially, the experimental 

time records are retrieved from the computer hard disk and used to compute 

the highest water surface elevation peak, the lowest water surface 

elevation trough and the root mean square water surface elevation, 

?7 . The water surface elevation maxima, defined as the points 

which satisfy the conditions rj - 0 and ij < 0 (maxima either 
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above or below the mean water level), are then detected as well as the 

highest water surface elevation maxima and the root mean square surface 

elevation maxima, T]„ , ^ „ . 
' 'm.rms 

The zero-up-cross wave heights, defined as the difference between the 

highest peak and the lowest trough between two subsequent zero-up-crossing 

points of the time record, are detected as well as the maximum 

zero-up-cross wave height and the root mean square zero-up-cross wave 

height, H^^g. Similarly, the crest-to-trough wave heights, defined as 

the difference between any positive or negative maxima (crest) and the 

subsequent minima (trough), are detected as well as the maximum 

crest-to-trough wave height and the root mean square crest-to-trough wave 

height, H ̂ jjjg. Finally, the spectral width parameter, e, and the 

significant wave height, H^, are computed from the time records using 

equations (3.38) and (3.53) respectively. 

Statistical analysis on the experimental spectral estimates may be 

performed by firstly retrieving the stored spectral data from the computer 

hard disk. The spectral estimates may all be displayed simultaneously to 

show any variation in measured spectral estimation during the experiment 

and the average of a specified number of spectral estimates may be 

computed. The zeroth, first, second and fourth spectral moments as well as 

the second central moment of the average measured spectral estimate are 

computed numerically. Due to the introduction of potentially large errors 

when numerically computing the higher order moments, each elementary 

spectral area is treated as a trapezoid and its centroid is computed 

accordingly as illustrated in figure 4.18. The n " spectral moment M^ 

is computed according to 

K 
M^- -L (co^)"- 0.5 [G(oo^) + G(coj^^j^)] (4.10) 

i-0 

and the second central moment ^2 ^^ computed according to 

K 
M2 = 2: (co_̂ -S;̂  0.5 [G(co^) + G(co^^j^)] (4.11) 

1-0 
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Figure 4.18. Spectral moments computation method. 

The spectral width parameter, €, and the spectral bandwidth, v, are 

then computed numerically using equations (3.37) and (3.39). For single 

peak Wallops spectral models only, the theoretical values of e and 

V are also computed from the target spectirum - (Refer to appendix B 

for theoretical relationships). Finally, the following statistical 

parameters are computed from the average of the measured spectral estimates 

and displayed on the screen: 

Root mean square water surface elevation - equation (3.31) 

Root mean square wave amplitude - equation (3.35) 

Mean frequency - equation (3.41) 

Zero-up-crossing frequency - equation (3.47) 

Expected height of highest maxima - equation (3.43) 

Root mean square wave height - equation (3.52) 

Significant wave height - equation (3.60) 

The menu-driven software may then be directed to compute any of the 

following statistical distributions: 
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The water surface elevation distribution: a histogram of the 

normalised water surface elevation distribution (n/n ) is 

computed and displayed graphically together with the theoretical 

Gaussian distribution (eqn. 3.34). The number of classes in the 

histogram is set by default to 1.87 (N)^'^ - Cacko et. al. (1988). 

However, both the variance range and the number of histogram classes 

are selectable. 

The distribution of water surface elevation maxima; a histogram of 

the distribution of normalised water surface elevation maxima 

^^n/^m.rms^ ^^ displayed graphically together with the 

theoretical distribution as defined by Cartwright and Longuet-Higgins 

(1956) (eqn. 3.37). 

The zero-up-cross wave height distribution; a histogram of the 

normalised zero-up-cross wave height distribution (H/H^^^) is 

computed and displayed graphically together with the Rayleigh 

distribution (eqn. 3.55). 

The crest-to-trough wave height distribution; a histogram of the 

normalised crest-to-trough wave height distribution (n /H ^̂ ;̂ is 

computed and displayed graphically together with the theoretical 

Rayleigh distribution (eqn. 3.55). 
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5. RESULTS AND DISCUSSION 

5.1. Experiments. 

A number of experiments aimed at evaluating the performance of the wave 

generator and its components are presented in this chapter. Each section 

contains a description of the experimental methods employed together with 

the presentation and discussion of results. 

5.2. Wave Probe Characteristics. 

The static calibration of the wave probe was performed using the WPCAL 

program library described in section 4.6.1. Figure 5.1 displays the 

calibration curves of the wave probe for t:wo different sensitivities. 
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Figure 5.1. Wave probe static calibration curves. 

The output is represented in nvunerical value as a result of the 

conversion of the analogue output signal by the A/D conversion module in 

which, for 12 Bit conversions, -5 and +5 volts are equivalent to 0 and 

4095 numerical values respectively. Linear regression analysis on the 
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calibration data points was automatically performed by the WPCAL software. 

The nonlinearity of the wave probe was found to be less than 0.5 X full 

scale and the resolution less than 0.15 X full scale. 

Another experiment aimed at establishing the dynamic response properties of 

the wave probe was conducted. In order to obtain the time domain response 

characteristics, the wave probe was subjected to a mechanical step input by 

means of a tension spring. The wave probe was manually raised against the 

spring to approximately 50 mm from a reference point and released suddenly 

to return to its original position. Both the motion of the wave probe, as 

monitored by a linear potentiometric displacement transducer, and the wave 

probe output (proportional to the depth of submergence) were simultaneously 

recorded by the micro-computer via the analogue-to-digital conversion 

module. The results of this experiment are displayed graphically in figure 

5.2 and indicate that the time response properties of the wave probe 

permits the accurate measurement of vertical water surface velocity of up 

to 0.78 m/s. However, it must be noted that this result does not establish 

the true limitation of the wave probe because the step function motion 

attributed to the probe was not realised. 
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Figure 5.2. Time response characteristics of wave probe. 
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In order to estimate the dynamic range of the wave probe, the maximum 

vertical particle velocities of second order Stokes waves at the breaking 

limit were computed over a relevant range of frequencies. For classical 

Stokes waves, the maximum crest angle of a wave before breaking is 120 

degrees as shown in figure 5.3. 

Figure 5.3. Stokes breaking wave profile. 

From figure 5.3 the maximum crest angle is written as 

drj I_ (5.1) 
dL tan (60) 

since L - C T, then 

dL r 
7E' ^ 

(5.2) 

And the maximum vertical particle velocity, v̂ ^̂ , at the breaking limit 

is 

dri drf dL 

'^^^ ' dt ' dL dt w_ 
(5.3) 

or 

w 
(5.4) 

max tan(60) 

By using equations (2.86) and (2.87) to compute the celerity, C, and the 

wavelength, L, respectively, the maximum vertical particle velocity at the 

breaking limit is plotted against frequency in figure 5.4. Additionally, 

the corresponding wave heights, computed from 
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^max - 0.143 L (5.5) 

which defines the maximum wave steepness, are also plotted against 

frequency as shown in figure 5.4. As can be seen from figure 5.4, the 

results of the time response experiment suggests that the wave probe is 

capable of measuring Stokes breaking waves with frequencies greater than 

1.05 Hz with a still water level of 900 mm. It must be emphasized that 

figure 5.4 does not represent the true limitation of the wave probe which 

is believed to be higher than those presented here. 
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Figure 5.4. Breaking wave measurement. 

4.00 

5.3. Wave Energy Absorber Characteristics. 

The performance characteristics of the wave energy absorbers were assessed 

using the WGRECO program library described in section 4.6.2. The 

reflection characteristics were determined at specific wave frequencies and 

slopes by generating a single component regular wave train while recording 

the water surface elevation from a wave probe moving along the tank. The 

amplitude reflection coefficient was then derived from the heights of the 

nodes and antinodes of the standing wave created by the addition of the 

incident and reflected wave trains. Experiments were conducted with 

96 



various wave slopes for regular waves with nominal frequencies of 0.5, 

0.7, 0.9 and 1.1 Hz. The results are displayed graphically in figure 5.5 

The wave slope was derived from the ratio of the incident wave height to 

wavelength where the latter was computed iteratively from the wave 

frequency according to the linear theory relationship of equation (2.65) 

which also applies to second order Stokes waves. 
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Figure 5.5. Amplitude reflection characteristics. 

of wave tank 

The above evaluation of the reflection characteristics of the wave energy 

absorbers shows that the amplitude reflection coefficient varied between 

9.5 X for waves of small slope (H/L » 0.0046; and approximately 2.5 X 

for steeper waves (H/L = 0.08). 

5.4. System Frequency Response Evaluation. 

A series of experiments aimed at determining the linear frequency response 

characteristics of the wave generator under various operating conditions 

were conducted using the WGTF program library described in section 4.6.4. 
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The system frequency response functions were determined by passing a 

band-limited white noise command signal through the system and using 

spectral analysis, namely the FFT, to graphically describe the frequency 

response characteristics. As shown in figure 5.6, the wave generation 

facility may be considered as a single or dual stage linear system. 

SINGLE STAGE 
TRANSFER 
FDN^CXON 

COMMAND 
SIGNAL GENERATION 
(MICRO COMPOTER) 

" 

HAVE MAKER MSTIOH 
(DISPL. TRANSCnCER) 

'' 

HATER SURFACE 

(VaVE PRC IBE) 

STAGE 1 
TRANSFER 
FUNCTION 

STAGE 2 
TRANSFER 
FUNCTION 

Figure 5.6. Definition of single and dual stage systems. 

Characterization of the single stage linear system was made by establishing 

the frequency response function betrween the command signal as generated by 

the micro-computer and the water surface elevation as monitored by the wave 

probe. As a dual stage linear system, characterization was made by 

establishing two frequency response functions: firstly that bet:ween the 

command signal and the wave maker motion (wave generator frequency 

response) , and secondly that between the wave maker motion and the water in 

the flume (hydrodynamic frequency response). 

The results of the experiments are described below. All experiments were 

conducted with a mean water level of 900 mm. 

Firstly, an experiment was conducted to establish the frequency response 

characteristics of stages 1 and 2 of the system independently and to 

determine the level of agreement with the frequency response 

characteristics of the single stage system. 
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Experimental conditions: 

Command signal level 

Command signal frequency range 

Sampling frequency 

Frequency resolution 

Wave probe location 

Number of spectral averages 

150 mn^/Hz 

0 - 3.5 Hz 

32 samples per seconds 

1/64 Hz 

10.38 m (from wave maker) 

30 

Figures 5.7.(a) and (b) represent the resulting frequency response 

estimates for the first stage and second stage respectively while the 

frequency response estimate of the single stage system is presented in 

figure 5.7.(c). The frequency response estimates are the result of 30 

linearly averaged raw spectra. 

The stage 1 frequency response function - figure 5.7.(a) - reveals 

behaviour typical of a second order linear system with a gain drop of 40 dB 

per decade. The frequency response function of stage 2 - figure 5.7.(b) 

shows an increase in magnitude ratio with frequency followed by a 

convergence towards a constant gain value which is typical of the 

hydrodynamic frequency response characteristics of mechanically generated 

waves described in the literature. The resonance peaks at approximately 

0.15 and 0.29 Hz are due to the resonant frequencies of the water motion in 

the tank. The wavelengths corresponding to these frequencies, as 

approximated by equation (2.65), were found to be 19.74 and 9.825 metres 

respectively which correspond approximately to the effective length and 

half length of the wave tank. 

It can be seen that the frequency response estimates of the single stage 

system presented in figure 5.7. (c) is characterised by the combination of 

both single stage systems. 

With the aim of demonstrating the additive properties of the system, the 

frequency response estimates of stages 1 and 2 of the dual stage system 

shown together in figure 5.7.(d) are combined together in figure 5.7.(e) 

and compared with the single stage frequency response estimate in figure 

5.7.(f). 
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Figure 5.7. Single and dual stage system frequency response estimates. 
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Figure 5.7. Single and dual stage system frequency response estimates. 
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As can be seen from figure 5.7.(f), good agreement exists between both 

methods of estimating the system frequency response characteristics. 

It was thought of interest to investigate the effects, if any, of the 

location of the wave probe on the system frequency response 

characteristics. A second experiment was conducted in which a band-limited 

white noise command signal was used measure the system frequency response 

with the wave probe located at 12.25, 9.50 and 6.75 metres from the wave 

maker. 

Experimental conditions: 

Command signal level 

Command signal frequency range 

Sampling frequency 

Frequency resolution 

Number of spectra averaged (per test) 

150 mm^/Hz 

0 - 3.5 Hz 

32 samples per seconds 

1/64 Hz 

30 

The resulting frequency response estimates are displayed in Figures 

5.8.(a), (b) and (c) for the wave probe located at 6.75 metres, 9.50 metres 

and 12.25 metres from the wave maker respectively. In order to facilitate 

comparison, all three spectral estimates are also displayed on common axes 

in figure 5.8.(d). 
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(a) Wave probe at 6.75 metres. 

Figure 5.8. Variation of frequency response with wave probe location. 

102 



HACNITUOE RATIO (dB) va FREQUENCY (Hz) 
10.0 

-30.0 

10.0 

-30.0 

10.0 

H 0.0 
A 
C 
N 
I 
T 
U 
0-10.0 
E 

R 
A 
T 
I 
0 -20. 0 

-30.0 

LOG FREQUENCY (0. 1 - 4.0 Hz) 

(b) Wave probe at 9.50 metres. 

MAGNITUDE RATIO (dB) va FREQUENCY (Hz) 

LOG FREQUENCY (0. 1 - 4. Q Hz) 

(c) Wave probe at 12.25 metres. 

MAGNITUDE RATIO (dB) va FREQUENCY (Hz) 

1 

F 
LOG FREQUENCY (0. 1 - 4.0 Hz) 

(d) Wave probe at 6.75, 9.50 and 12.25 metres. 

Figure 5.8. Variation of frequency response with wave probe location. 
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It can be seen from these graphical results that the location of the wave 

probe has negligible effect on the measured system frequency response over 

the range of distance studied. 

An third experiment, aimed at investigating the effects of the level of a 

band limited white noise input signal on the frequency response 

characteristics of the system, was conducted. Two separate tests were 

conducted in which all relevant parameters were kept constant with the 

exception of the white noise input signal level which was set at 25 

mnr/Hz for the first test and 150 mnr/Hz for the second test. 

Experimental conditions: 

Command signal level 

Command signal frequency range 

Sampling frequency 

Frequency resolution 

Number of spectra averaged (per test) 

25 and 150 mn^/Hz 

0 - 3.5 Hz 

32 samples per seconds 

1/64 Hz 

30 

The resulting frequency response estimates are shown in Figure 5.9.(a) and 

(b) for the first and second tests respectively. From figure 5.9(c), where 

the frequency response estimates of both tests are plotted together, it is 

evident that the system frequency response function was affected by the 

level of the input signal especially for frequencies exceeding 1 Hz. These 

results confirm the presence of nonlinear ities in the system. 
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Figure 5.9. Variation of frequency response with input signal level. 
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5.5. Comparison of Open and Closed-Loop Random Wave Generation Control. 

A number of experiments were conducted with the aim of demonstrating the 

superiority of the closed-loop spectral feedback compensation control 

technique over open-loop control. This was achieved by generating random 

waves based on a spectral model using the WGENSP software described in 

section 4.6.3. All experiments were conducted with a still water level of 

900 mm. A Wallops spectrum with a spectral peak frequency of 0.8 Hz and a 

significant wave field slope of 0.01 was selected as a target spectrum. 

The duration of the time signal for each loop of operation was set at 128 

seconds. After specifying parameters defining the target spectrum and the 

operating conditions of the machine, the wave generator was switched on and 

the command signal transmitted to the system. The save option was 

immediately activated to enable the storage of both the measured water 

surface elevation data and their corresponding spectral estimates. Upon 

reaching a predetermined period of wage generation, the system was halted 

and the linear average of the measured spectral estimates was computed. 

All experimental results are displayed graphically on linear scales. 

In the first experiment, the target spectrum was compensated to accommodate 

the system frequency response function which was measured and stored prior 

to the experiment. Random waves were then simulated for 12 loops of 

operation with the control system set to open-loop. The experiment was 

then repeated under the same conditions for 12 loops of operation with the 

control system set to closed-loop. The results from both the open and 

closed-loop tests are shown in figure 5.10 and 5.11 respectively. All 

measured spectral estimates were smoothed with a rectangular moving 

spectral window of 0.0703 Hz (9/128 Hz) bandwidth before being averaged to 

obtain the final spectral estimate. Graphs (a) of figures 5.10 and 5.11 

show the linear average of all 12 measured spectral estimates together with 

the target spectrum while graphs (b) show all 12 individually measured 

spectral estimate at each loop of operation. 

As may be seen from figures 5.10 and 5.11, the measured spectral estimates 

obtained from the generation of random waves under both open and 

closed-loop control exhibit good agreement with the target spectrum. 

Although quite satisfactory, wave generation under open-loop control was 

inferior to that under closed-loop control. 
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Figure 5.10. Open-loop spectral estimates. 
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Figure 5.11. Closed-loop spectral estimates. 
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Using the same target spectrum and experimental conditions as in the 

previous experiment, random waves were generated under closed-loop control 

with the feedback attenuation parameter set at 65 X. However, the initial 

command signal was not compensated to account for the system frequency 

response characteristics. Random waves were generated until agreement 

between the measured spectral estimates and the target spectrum was 

achieved. Figure 5.12 shows the history of the measured spectral estimates 

for each loop of operation together with the target spectrum. All measured 

spectral estimates were smoothed with a rectangular moving spectral window 

of 0.0703 Hz (9/128 Hz) bandwidth. 

As may be seen from figure 5.12, the agreement between the target spectrum 

and the measured spectral estimates improves with time and becomes 

acceptable after Just the second loop of operation. These results 

demonstrate that the generation of random waves with the closed-loop 

spectral compensation technique can be achieved without the need to 

accurately evaluate the system frequency response before each experiment. 
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A third experiment was conducted to characterise the behaviour of the 

control system when a disturbance was introduced into the wave field. The 

target spectrum, compensated to accommodate the system frequency response 

characteristics, was generated with the control system initially set on 

open loop. During the fifth loop of operation an obstruction, in the form 

of a 0.5 metre wide by 1.0 metre long rectangular barge weighting 30 kg, 

was placed in the wave tank 3 metres behind the wave probe. During the 

10th loop of operation the closed-loop spectral feedback compensation 

control system, with the feedback attenuation parameter set to 65 X. was 

activated with the barge still in the wave tank. Wave generation was then 

continued for a further 4 control loops. All measured spectral estimates 

were smoothed with a rectangular moving spectral window of 0.0703 Hz (9/128 

Hz) bandwidth before being averaged to obtain the final spectral estimate. 

Figure 5.13(a) shows the linear average of the measured spectral estimates 

for the first 4 loops of operation (open-loop), figure 5.13(b) shows the 

linear average of the measured spectral estimates for loops 5 to 9 

inclusive (open-loop with obstruction) and figure 5.13(c) shows the linear 

average of the measured spectral estimates for loops 10 to 15, inclusive, 

(closed-loop with obstruction). For comparison, the target spectrum is 

also displayed with the linear average of the measured spectral estimates. 

As may be seen from figure 5.13(a), reasonable agreement between the target 

spectrum and the measured spectral estimates is initially achieved under 

open-loop control. However, the introduction of an obstruction creates 

disturbances in the wave field which cannot be compensated by open-loop 

control, as shown in figure 5.13(b). It can be seen from figure 5.13(c), 

however, that the agreement between the target spectrum and the measured 

spectral estimates is improved by introducing closed-loop spectral feedback 

control which compensates for the spurious disturbances in the wave field. 
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Figure 5.13. Control system recovery. 
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As may be seen from the results of the initial experiment, the generation 

of random waves from spectral models may be undertaken with an open-loop 

system when the target spectrum is initially compensated for the system 

frequency response. The agreement between the target spectrum and the 

measured spectral estimates is superior when the system operates under 

closed-loop spectral feedback compensation control. This suggests that the 

performance of the system under open-loop control is highly dependent on 

the accuracy of the separately measured system frequency response. 

As demonstrated in the second experiment, the generation of random waves 

from spectral models under closed-loop control may be achieved without 

initially compensating the target spectrum for the system frequency 

response. Compensation was in fact achieved within the first two loops of 

operation. This feature eliminates the need to reassess the system 

frequency response before each experiment when one or more system-dependent 

parameters are varied, for example, the still water level, the shape of 

target spectrum or the level of the input command signal. It must be noted 

that although the closed-loop control system requires some time for 

agreement to be reached between the target spectrum and the measured 

spectral estimates (approximately 2 loops or 4 minutes in this case), the 

accurate measurement of the system frequency response characteristics would 

be much more time consuming. 

The superiority of closed-loop spectral feedback control over the open-loop 

control was further emphasized by the results of the final experiment where 

the recovery of agreement between the target spectrum and the measured 

spectral estimates by closed-loop control was demonstrated. The ability of 

the closed-loop control system to recover from the introduction of 

disturbances in the wave field should prove a useful feature when 

conducting scale modelling tests. 
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5.6. Generation of Single Peak Spectral Models. 

This series of experiments were conducted to investigate the effectiveness 

of the facility for generating a range of single peak spectra. Various 

single peak spectral models were simulated using the WGENSP program library 

described in section 4.6.4. Statistical analysis of the measured water 

surface elevation records together with their corresponding spectral 

estimates were performed with the WGSTAT program library described in 

section 4.6.5. Four Wallops spectra and one Pierson-Moskowitz spectrum 

with various spectral bandwidths, spectral peak frequencies and spectral 

densities, were selected as target spectra in five separate experiments. 

These spectral models, displayed in figure 5.14, were selected to represent 

a wide range of sea conditions ranging from gentle swells to storms. All 

experiments were conducted with a still water level of 900 mm and the 

control system was set on the closed-loop spectral feedback mode. 

2000 

(mm/lHz) 

0.00 0.50 1.00 
FREQUENCY (Hz) 

2.00 

Figure 5.14. Single peak target spectra. 

In order to establish the statistical properties of the input command 

signal, the normalised distribution of a typical sample command signal was 

computed and is displayed in figure 5.15 together with the theoretical 

Gaussian distribution. As can be seen from figure 5.15, it may be assumed 

that the input command signal is Gaussian. 
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Ĵ -' lllllll 
m J 

fill 11. 

' 1 \ " 

"" '•' inj H ilTTm M 

J i l l 
. 1 1 [ ^ 

1 H i 1i11 t 11! 1 

1 
1 1 l l l l tamvm 

-2. 00 0. 00 2. 00 
SURFACE ELEVATION / RHS SURFACE ELEVATION 

Figure 5.15. Typical command signal distribution. 

Each target spectrum, together with the experimental conditions, are 

specified in table 5.1 below. 

Experiment number 

Target spectral model 

Spectral peak frequency (Hz) 

Significant slope 

of wave field, $ 
2 

Nominal energy content (mm ) 

Nominal spectral width 

parameter, e 

Loop duration (seconds) 

Frequency resolution (Hz) 

Number of spectral estimates 

1 

: Wallops 

: 0.4 

: 0.001 

: 95.2 

: 0.299 

: 256 

: 3/256 

: 8 

2 

Wallops 

0.6 

0.005 

470.2 

0.389 

128 

5/128 

20 

3 

Wallops 

0.8 

0.01 

595.1 

0.464 

128 

9/128 

12 

4 

Wallops 

1.0 

0.15 

548.5 

0.533 

128 

13/128 

5 

5 

P-M 

0.7 

n/a 

416.6 

64 

6/64 

6 

Table 5.1. Experimental conditions - single peak spectrum. 

The results of experiments 1 to 5 are displayed in figure 5.16 to figure 5.20 

respectively where graphs (a) show both the linear average of the measured 

spectral estimates together with the target spectrum while graphs (b) show the 

individually measured spectral estimates of the simulated wave field at each 

loop of operation. Finally, in graphs (c) the normalised water surface 
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elevation distribution of the measured wave field is presented together with 

the theoretical normalised Gaussian distribution. 

The results of statistical analyses on the stored experimental data are 

tabulated below. 

Experiment number : 1 2 3 4 5 

Energy content, MQ (mm') : 90.3 475.2 600.3 524.4 420.3 

RMS water surface elevation (mm) 

from time record : 9.5 21.8 24.6 23.0 20.5 

from spectral estimates : 9.5 21.8 24.6 22.9 20.5 

Spectral width parameter, e^ 

from time record : 0.317 0.404 0.473 0.461 0.700 

Spectral width parameter, e 

from spectral estimates : 0.29 0.387 0.443 0.467 0.629 

Table 5.2. Statistical results - single peak spectrum. 
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Figure 5.16. Single peak spectrum - Experiment 1. 
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Figure 5.17. Single peak spectrum - Experiment 2, 
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Figure 5.18. Single peak spectrum - Experiment 3 
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Figure 5.19. Single peak spectrum - Experiment 4. 
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Figure 5.20. Single peak spectrum - Experiment 5 
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In can be seen from graphs (a) of figures 5.16 - 5.20 that good agreement 

was achieved between target and measured spectral estimate for spectral 

models with relatively narrow spectral bandwidths, namely experiments 1,2, 

and 3. The small discrepancies between target and measured spectral 

estimates for spectral models with broader spectral bandwidths (experiments 

4 and 5) may be attributed to unrecoverable loss of energy between the wave 

maker and the wave probe due to the breaking of the steeper waves in the 

flume. 

Graphs (b) of figures 5.16 - 5.20 show that the variation of the 

individually measured spectral estimates with respect to time, as new 

compensated command signals are generated, was small for spectral models 

with a small spectral width parameter - namely experiments 1, 2 and 3. 

The steady simulation of broader spectral models - experiments 4 and 5 -

proved to be more difficult to achieve. This may be explained by the 

increasingly nonlinear nature of generated waves with greater significant 

wave field slopes which may not be readily controlled by simple linear 

spectral feedback compensation techniques. 

The water surface elevation distributions were found to agree well with the 

Gaussian distribution as shown in graphs (c) of figures 5.16 - 5.20. A 

slight skewness of the distribution histograms from experiments 4 and 5 may 

be detected and may be attributed to the nonlinearity of the wave field as 

often observed in nature. 

The statistical analysis results displayed in table 5.2 are in generally 

good accord with the theoretical values of table 5.1. The spectral width 

parameters e and e^ from experiment 4 (£^ — 0.467) and 

(e^ = 0.461; can be seen to differ considerably with the theoretical 

value (e^ = 0.533). This may be explained by referring to graph (a) 

of figure 5.19 where the linear average of the measured spectral estimates 

is noticeably narrower than the target spectrum; hence the discrepancy in 

measured and theoretical spectral width parameters. 
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5.7. Generation of Double Peak Spectral Models. 

This series of experiments were conducted with the aim of investigating the 

ability of the facility to generate various double peak spectral wave 

models. Three double peak Wallops spectral models representing swell 

together with various sea conditions were used as target spectra and are 

displayed in figure 5.21. Generation was undertaken with the WGENSP 

program library described in section 6.4.4. Statistical analysis of the 

measured water surface elevation records together with their corresponding 

spectral estimates were performed with the WGSTAT program library described 

in section 6.4.5. All experiments were conducted with a still water level 

of 900 mm and the control system was set to closed-loop spectral feedback 

mode. 

2000 

1500 
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2.00 

Figure 5.21. Double peak target spectra. 

As for the generation of single peak spectral models, the distribution of a 

typical command signal was computed and was found to be in good agreement 

with the Gaussian distribution. 

After the preliminary parameters defining the target spectrum and the 

required operating conditions of the machine were specified, the wave 

generator was switched on and the command signal transmitted to the 

system. The process was then allowed to stabilize while operating in the 

closed-loop spectral compensation mode. While random waves were 

continuously generated for an predetermined period of time, both the water 

surface elevation data and its corresponding spectral estimate were stored 
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on the system hard disk. Statistical analysis of the stored experimental 

water surface elevation data was carried later. The specifications of each 

target spectrum are outlined in table 5.3 together with the experimental 

conditions. 

Experiment number 

Target spectral model (double peak) 

Spectral peak frequency (Hz) (swell) 

Spectral peak frequency (Hz) (sea) 

Significant wave field slope, i (swell) 

Significant wave field slope, i (sea) 

Nominal total energy content (mar) 

Loop duration (seconds) 

Frequency resolution (Hz) 

Number of spectral estimates 

1 2 3 

Wallops Wallops Wallops 

0.4 

0.62 

0.001 

0.005 

507.6 

128 

5/128 

10 

0.4 

0.9 

0.001 

0.012 

630.2 

128 

11/128 

10 

0.4 

1.1 

0.001 

0.014 

421.5 

64 

9/64 

12 

Table 5.3. Experimental conditions - double peak spectrum. 

The results of experiments 1, 2 and 3 are displayed in figures 5.22 - 5.24 

respectively where graphs (a) show the linear average of the measured 

spectral estimates together with the target spectrum model while graphs (b) 

show the individually measured spectral estimates of the simulated wave 

field at each loop of operation. Finally, in graphs (c) the normalised 

water surface elevation distribution of the measured wave field is 

presented together with the theoretical Gaussian distribution. The results 

of statistical analyses on the experimental data are displayed in table 5.4 

below. 

Experiment number 
2 

Energy content, MQ (mm ) 

RMS water surface elevation, (mm) 

from time record 

from spectral estimates 

Spectral width parameter, e^ 

from time record 

Spectral width parameter, e^ 

from spectral estimates 

1 1 3 

506.3 625.0 420.3 

22.5 25.2 20.8 

22.5 25.0 20.5 

0.472 0.571 0.766 

0.446 0.496 0.561 

Table 5.4. Statistical results - double peak spectrum. 
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Figure 5.22. Double peak spectrum - Experiment 1 
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(c) Surface elevation distribution. 

Figure 5.23. Double peak spectrum - Experiment 2. 
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(c) Surface elevation distribution. 

Figure 5.24. Double peak spectrum - Experiment 3 
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It can be seen from graphs (a) of figures 5.22 - 5.24 that the linear 

average of the measured spectral estimates is in reasonably good agreement 

with the target spectra. It can also be seen from graphs (b) of figures 

5.22 - 5.24 that the variation of the measured spectral estimates with 

respect to time (or loop of operation) seems to increase with the 

nonlinearity of the wave field. 

The distribution of the water surface elevation, displayed in graphs (c) of 

figures 5.22 - 5.24, appear to be in reasonable accordance with the 

theoretical Gaussian distribution. Furthermore, in can be seen that, 

although not quantified, the skewness of the water surface elevation 

distribution histograms increases slightly with the nonlinearity of the 

wave field. 

The results from further statistical analysis of the experimental data, 

displayed in table 5.4, generally show good agreement with the theoretical 

values of table 5.3. It can be seen from table 5.3 that the spectral width 

parameter e^, computed from the spectral estimates of experiments 2 

and 3, are inferior to those computed from the time records of the same 

experiments. These discrepancies are, in this case, attributed to the fact 

that the cutoff frequencies of the measured spectral estimates were set at 

only twice the spectral peak frequency of the 'sea' spectrum (i.e. cutoff 

frequencies of 1.8 Hz and 2.2 Hz for experiments 2 and 3 respectively). It 

is made evident from graphs (a) and (b) of figures 5.23 and 5.24 that these 

cutoff frequencies were excessively low leading to difficulties in the 

accurate computation of the spectral moments. 
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6. CONCLUSIONS 

A laboratory facility for generating water waves comprising a flume, 

electro-hydraulic wave generator, wave absorbers and wave probe was 

designed and commissioned. Tasks associated with generating waves such as: 

calibration of wave probes, assessment of wave reflection characteristics, 

evaluation of system frequency response, data acquisition and statistical 

analyses of wave records were successfully accomplished using specially 

developed software. 

The electro-hydraulic wave generator, under the command of a 

micro-computer, was rigorously tested over a range of operating conditions 

and functioned very well. Alogarithms devised to create random waves from 

ocean wave spectral models were written using the Inverse Fast Fourier 

Transform and closed-loop spectral feedback compensation techniques. 

Experiments carried out confirmed that the system performed better under 

closed-loop spectral feedback control than under open-loop control. The 

generation of long random wave trains was successfully achieved by 

continuously reproducing shorter segments each complying with the original 

target spectral density and distribution functions. 

The amplitude reflection coefficients of the wave absorbers were measured 

for waves ranging from 0.5 to 1.1 Hertz and were found to vary between 

9.5 % and 2.5 %. 

A range of single peak spectral wave models were simulated using spectral 

feedback compensation. Four single peak wallops spectra, with various 

spectral peak frequencies and significant wave field slopes, along with one 

P-M spectrum were generated. Three double peak Wallops spectra, 

representing swell together with a variety of seas, were also simulated 

with generally good agreement between target spectra and measured spectral 

estimates, Analysis of recorded wave data showed that the probability 

distribution of the water surface elevation compared favourably with the 

Gaussian distribution. 
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APPENDIX A 

Further Theoretical Definitions for the Wallops Spectrum. - After Huang 

et. al. (1981). 

The definition of the n'̂  moment, M^, of a spectral density function is 

defined as 

M„ = J co" S(oo) doo 

0 
n (Al) 

For the Wallops spectrum 

M„ = Mn (m/4)"^^ O^Q" T[0.25(m-n-l)] 
'0 (A2) 

T[0.25(m-1)] 

where 

M 0 = 
p,„2 ,0.25(m-5) 
ĝ ^, ^ . T[(m-l)/4)] 
0.25(m-l) ^ 4 m con 

(A3) 

Hence the theoretical nominal energy content, MQ, may he obtained from 

equation (A3) and the theoretical spectral width parameter, e , from 

S = /V4 - V 
MQM^ 

The spectral bandwidth, u, for the wallops spectrum, as defined by 

Longuet-Higgins (1957), may be theoretically determined from 

(A4) 

V = 1 - l'l0.25(m-2)] 

T[0.25(m-3)] T[0.25(m-1)] 

0.5 (A5) 

Since m is a function of the significant slope of the wave field, i, 

the spectral bandwidth, u, is also a function of i alone. The 

Wallops spectrum is therefore a spectral model of variable bandwidth which 

depends solely on the nonlinearity of the wave field. 
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APPENDIX B 

Formulation of the Plunger Generating Surface. 

The shape of the plunger was formulated so that the differences in 

horizontal displacement at each horizontal plane would be minimized as 

illustrated in figure 6.3. The shape of the generating surface was 

developed by considering the rotation of the wave maker by a nominal angle 

9 about the pivot point 'o' as shown in figure IB. 

Figure IB. Development of the plunger generating surface. 

The polar coordinates of points a, b, c . . . are defined by a^, 

a^, a^ . . . and r^, r^, r^ . . . respectively. It may be 

seen from figure IB that far a specific angle of rotation 9, a unique 

curve may be generated for which the horizontal displacement at every-plane 

shall be the same (i.e. equal to a constant k). This unique curve may be 

generated as follows: 

r^ cos(a^) - rjj cos(a^ + 9) = k 

r^ sin(a^) = r^ sin(a^ + 9; 

(Bl) 

(B2) 
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Re-arranging equation (B2) 

r^ = r^ sin(a^;/sin(a^ + 9) (B3) 

Substituting for r^^ in equation (Bl) and making a^ the subject of 

the equation 

-1 a^ = tan /r^ sin(a^)/(r^ cos(a^) - k)] - 9 (B4) 

Similarly 

r^ = r^ sin(a^)/sin(a^ + 9) 

a^ = tan' [r^ sinCa^)/(r^ cos(a^) - k)] - 9 

(B5) 

(B6) 

and likewise for a,, a ....etc. 

Therefore, by initially defining the coordinates of point a (i.e. a 

3.nd r^; and a constant k, a unique curve may be generated for a specific 

angle of rotation 9. 

Xi - Xn = 4 mm 

Figure 2B. Expected maximum horizontal displacement error. 
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A curve was generated using equations (B3), (B5).... and (B4), (B6).,. by 

means of a BASIC computer program. By fitting a circular arc to the 

resulting data points values of the radius and centre point coordinates 

were obtained. 

Further analysis of the curve showed that when the wave maker was rotated 

by 10° (expected maximum rotation), the maximum error in horizontal 

displacement, as defined in figure 2B, is approximately 4 mm. 
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